WorldWideScience

Sample records for biological functions dietary

  1. Increasing the biological value of dietary cutlets

    OpenAIRE

    SYZDYKOVA L.S.; DIKHANBAYEVA F.T.; BAZYLHANOVA E.CH

    2015-01-01

    Relevance of work: meat products are the main source of the proteins, necessary for activity of the person. In this article is determined the biological value of the cutlets with dietary properties. The purpose of this work is development of the production technology of dietary cutlets in branches of public catering and determination of their biological value. As a result of work dietary cutlets with the increased biological value due to addition of oatmeal are received.

  2. Dietary Polyphenols and Their Biological Significance

    Directory of Open Access Journals (Sweden)

    Hongxiang Lou

    2007-09-01

    Full Text Available Dietary polyphenols represent a wide variety of compounds that occur in fruits,vegetables, wine, tea, extra virgin olive oil, chocolate and other cocoa products. They aremostly derivatives and/or isomers of flavones, isoflavones, flavonols, catechins andphenolic acids, and possess diverse biological properties such as antioxidant, antiapoptosis,anti-aging, anticarcinogen, anti-inflammation, anti-atherosclerosis, cardiovascularprotection, improvement of the endothelial function, as well as inhibition of angiogenesisand cell proliferation activity. Most of these biological actions have been attributed to theirintrinsic reducing capabilities. They may also offer indirect protection by activatingendogenous defense systems and by modulating cellular signaling processes such asnuclear factor-kappa B (NF-кB activation, activator protein-1(AP-1 DNA binding,glutathione biosynthesis, phosphoinositide 3 (PI3-kinase/protein kinase B (Akt pathway,mitogen-activated protein kinase (MAPK proteins [extracellular signal-regulated proteinkinase (ERK, c-jun N-terminal kinase (JNK and P38 ] activation, and the translocationinto the nucleus of nuclear factor erythroid 2 related factor 2 (Nrf2. This paper covers themost recent literature on the subject, and describes the biological mechanisms of action andprotective effects of dietary polyphenols.

  3. Dietary fatty acids and membrane protein function.

    Science.gov (United States)

    Murphy, M G

    1990-02-01

    In recent years, there has been growing public awareness of the potential health benefits of dietary fatty acids, and of the distinction between the effects of the omega6 and omega3 polyunsaturated fatty acids that are concentrated in vegetable and fish oils, respectively. A part of the biologic effectiveness of the two families of polyunsaturated fatty acids resides in their relative roles as precursors of the eicosanoids. However, we are also beginning to appreciate that as the major components of the hydrophobic core of the membrane bilayer, they can interact with and directly influence the functioning of select integral membrane proteins. Among the most important of these are the enzymes, receptors, and ion channels that are situated in the plasma membrane of the cell, since they carry out the communication and homeostatic processes that are necessary for normal cell function. This review examines current information regarding the effects of diet-induced changes in plasma membrane fatty acid composition on several specific enzymes (adenylate cyclase, 5'-nucleotidase, Na(+)/K(+)-ATPase) and cell-surface receptors (opiate, adrenergic, insulin). Dietary manipulation studies have demonstrated a sensitivity of each to a fatty acid environment that is variably dependent on the nature of the fatty acid(s) and/or source of the membrane. The molecular mechanisms appear to involve fatty acid-dependent effects on protein conformation, on the "fluidity" and/or thickness of the membrane, or on protein synthesis. Together, the results of these studies reinforce the concept that dietary fats have the potential to regulate physiologic function and to further our understanding of how this occurs at a membrane level.

  4. Functions in Biological Kind Classification

    Science.gov (United States)

    Lombrozo, Tania; Rehder, Bob

    2012-01-01

    Biological traits that serve functions, such as a zebra's coloration (for camouflage) or a kangaroo's tail (for balance), seem to have a special role in conceptual representations for biological kinds. In five experiments, we investigate whether and why functional features are privileged in biological kind classification. Experiment 1…

  5. Biological Reactive Intermediates (BRIs) Formed from Botanical Dietary Supplements

    Science.gov (United States)

    Dietz, Birgit M.; Bolton, Judy L.

    2013-01-01

    The use of botanical dietary supplements is increasingly popular, due to their natural origin and the perceived assumption that they are safer than prescription drugs. While most botanical dietary supplements can be considered safe, a few contain compounds, which can be converted to reactive biological reactive intermediates (BRIs) causing toxicity. For example, sassafras oil contains safrole, which can be converted to a reactive carbocation forming genotoxic DNA adducts. Alternatively, some botanical dietary supplements contain stable BRIs such as simple Michael acceptors that react with chemosensor proteins such as Keap1 resulting in induction of protective detoxification enzymes. Examples include curcumin from turmeric, xanthohumol from hops, and Z-ligustilide from dang gui. Quinones (sassafras, kava, black cohosh), quinone methides (sassafras), and epoxides (pennyroyal oil) represent BRIs of intermediate reactivity, which could generate both genotoxic and/or chemopreventive effects. The biological targets of BRIs formed from botanical dietary supplements and their resulting toxic and/or chemopreventive effects are closely linked to the reactivity of BRIs as well as dose and time of exposure. PMID:20970412

  6. Dietary and lifestyle factors in functional dyspepsia.

    Science.gov (United States)

    Feinle-Bisset, Christine; Azpiroz, Fernando

    2013-03-01

    Dietary factors are increasingly recognized to have an important role in triggering symptoms in a large proportion of patients with functional dyspepsia. Fatty foods seem to be the main culprits, but other foods (including carbohydrate-containing foods, milk and dairy products, citrus fruits, spicy foods, coffee and alcohol) have also been implicated. However, blind challenge tests do not provide consistent results. Moreover, although patients identify specific foods as triggers of their symptoms, these patients often do not seem to make behavioural adjustments in an attempt to improve symptoms; that is, any differences in dietary intake and lifestyle between patients and healthy individuals are small. Patients with functional dyspepsia exhibit mixed sensory-motor abnormalities, such as gastric hypersensitivity and impaired gastric accommodation of a meal. Nutrients, particularly fat, exacerbate these abnormalities and might thereby trigger postprandial symptoms. Cognitive factors, including anticipation related to previous negative experience with certain foods, might also have a role in triggering symptoms. Studies evaluating the potential beneficial effect of dietary interventions and changes in lifestyle are lacking, and this Review outlines a number of options that could be used as starting points for meaningful large-scale studies in the future.

  7. The relativity of biological function.

    Science.gov (United States)

    Laubichler, Manfred D; Stadler, Peter F; Prohaska, Sonja J; Nowick, Katja

    2015-12-01

    Function is a central concept in biological theories and explanations. Yet discussions about function are often based on a narrow understanding of biological systems and processes, such as idealized molecular systems or simple evolutionary, i.e., selective, dynamics. Conflicting conceptions of function continue to be used in the scientific literature to support certain claims, for instance about the fraction of "functional DNA" in the human genome. Here we argue that all biologically meaningful interpretations of function are necessarily context dependent. This implies that they derive their meaning as well as their range of applicability only within a specific theoretical and measurement context. We use this framework to shed light on the current debate about functional DNA and argue that without considering explicitly the theoretical and measurement contexts all attempts to integrate biological theories are prone to fail.

  8. Biology of Ageing and Role of Dietary Antioxidants

    Directory of Open Access Journals (Sweden)

    Cheng Peng

    2014-01-01

    Full Text Available Interest in relationship between diet and ageing is growing. Research has shown that dietary calorie restriction and some antioxidants extend lifespan in various ageing models. On the one hand, oxygen is essential to aerobic organisms because it is a final electron acceptor in mitochondria. On the other hand, oxygen is harmful because it can continuously generate reactive oxygen species (ROS, which are believed to be the factors causing ageing of an organism. To remove these ROS in cells, aerobic organisms possess an antioxidant defense system which consists of a series of enzymes, namely, superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx, and glutathione reductase (GR. In addition, dietary antioxidants including ascorbic acid, vitamin A, vitamin C, α-tocopherol, and plant flavonoids are also able to scavenge ROS in cells and therefore theoretically can extend the lifespan of organisms. In this connection, various antioxidants including tea catechins, theaflavins, apple polyphenols, black rice anthocyanins, and blueberry polyphenols have been shown to be capable of extending the lifespan of fruit flies. The purpose of this review is to brief the literature on modern biological theories of ageing and role of dietary antioxidants in ageing as well as underlying mechanisms by which antioxidants can prolong the lifespan with focus on fruit flies as an model.

  9. Dietary phosphorus acutely impairs endothelial function.

    Science.gov (United States)

    Shuto, Emi; Taketani, Yutaka; Tanaka, Rieko; Harada, Nagakatsu; Isshiki, Masashi; Sato, Minako; Nashiki, Kunitaka; Amo, Kikuko; Yamamoto, Hironori; Higashi, Yukihito; Nakaya, Yutaka; Takeda, Eiji

    2009-07-01

    Excessive dietary phosphorus may increase cardiovascular risk in healthy individuals as well as in patients with chronic kidney disease, but the mechanisms underlying this risk are not completely understood. To determine whether postprandial hyperphosphatemia may promote endothelial dysfunction, we investigated the acute effect of phosphorus loading on endothelial function in vitro and in vivo. Exposing bovine aortic endothelial cells to a phosphorus load increased production of reactive oxygen species, which depended on phosphorus influx via sodium-dependent phosphate transporters, and decreased nitric oxide production via inhibitory phosphorylation of endothelial nitric oxide synthase. Phosphorus loading inhibited endothelium-dependent vasodilation of rat aortic rings. In 11 healthy men, we alternately served meals containing 400 mg or 1200 mg of phosphorus in a double-blind crossover study and measured flow-mediated dilation of the brachial artery before and 2 h after the meals. The high dietary phosphorus load increased serum phosphorus at 2 h and significantly decreased flow-mediated dilation. Flow-mediated dilation correlated inversely with serum phosphorus. Taken together, these findings suggest that endothelial dysfunction mediated by acute postprandial hyperphosphatemia may contribute to the relationship between serum phosphorus level and the risk for cardiovascular morbidity and mortality.

  10. Lactose Intolerance in Adults: Biological Mechanism and Dietary Management.

    Science.gov (United States)

    Deng, Yanyong; Misselwitz, Benjamin; Dai, Ning; Fox, Mark

    2015-09-18

    Lactose intolerance related to primary or secondary lactase deficiency is characterized by abdominal pain and distension, borborygmi, flatus, and diarrhea induced by lactose in dairy products. The biological mechanism and lactose malabsorption is established and several investigations are available, including genetic, endoscopic and physiological tests. Lactose intolerance depends not only on the expression of lactase but also on the dose of lactose, intestinal flora, gastrointestinal motility, small intestinal bacterial overgrowth and sensitivity of the gastrointestinal tract to the generation of gas and other fermentation products of lactose digestion. Treatment of lactose intolerance can include lactose-reduced diet and enzyme replacement. This is effective if symptoms are only related to dairy products; however, lactose intolerance can be part of a wider intolerance to variably absorbed, fermentable oligo-, di-, monosaccharides and polyols (FODMAPs). This is present in at least half of patients with irritable bowel syndrome (IBS) and this group requires not only restriction of lactose intake but also a low FODMAP diet to improve gastrointestinal complaints. The long-term effects of a dairy-free, low FODMAPs diet on nutritional health and the fecal microbiome are not well defined. This review summarizes recent advances in our understanding of the genetic basis, biological mechanism, diagnosis and dietary management of lactose intolerance.

  11. Lactose Intolerance in Adults: Biological Mechanism and Dietary Management

    Directory of Open Access Journals (Sweden)

    Yanyong Deng

    2015-09-01

    Full Text Available Lactose intolerance related to primary or secondary lactase deficiency is characterized by abdominal pain and distension, borborygmi, flatus, and diarrhea induced by lactose in dairy products. The biological mechanism and lactose malabsorption is established and several investigations are available, including genetic, endoscopic and physiological tests. Lactose intolerance depends not only on the expression of lactase but also on the dose of lactose, intestinal flora, gastrointestinal motility, small intestinal bacterial overgrowth and sensitivity of the gastrointestinal tract to the generation of gas and other fermentation products of lactose digestion. Treatment of lactose intolerance can include lactose-reduced diet and enzyme replacement. This is effective if symptoms are only related to dairy products; however, lactose intolerance can be part of a wider intolerance to variably absorbed, fermentable oligo-, di-, monosaccharides and polyols (FODMAPs. This is present in at least half of patients with irritable bowel syndrome (IBS and this group requires not only restriction of lactose intake but also a low FODMAP diet to improve gastrointestinal complaints. The long-term effects of a dairy-free, low FODMAPs diet on nutritional health and the fecal microbiome are not well defined. This review summarizes recent advances in our understanding of the genetic basis, biological mechanism, diagnosis and dietary management of lactose intolerance.

  12. Commonly Used Dietary Supplements on Coagulation Function during Surgery

    Directory of Open Access Journals (Sweden)

    Chong-Zhi Wang

    2015-07-01

    Full Text Available Background: Patients who undergo surgery appear to use dietary supplements significantly more frequently than the general population. Because they contain pharmacologically active compounds, dietary supplements may affect coagulation and platelet function during the perioperative period through direct effects, pharmacodynamic interactions, and pharmacokinetic interactions. However, in this regard, limited studies have been conducted that address the pharmacological interactions of dietary supplements. To avoid possible bleeding risks during surgery, information about the potential complications of dietary supplements during perioperative management is important for physicians. Methods: Through a systematic database search of all available years, articles were identified in this review if they included dietary supplements and coagulation/platelet function, while special attention was paid to studies published after 1990. Results: Safety concerns are reported in commercially available dietary supplements. Effects of the most commonly used natural products on blood coagulation and platelet function are systematically reviewed, including 11 herbal medicines (echinacea, ephedra, garlic, ginger, ginkgo, ginseng, green tea, kava, saw palmetto, St John’s wort, and valerian and four other dietary supplements (coenzyme Q10, glucosamine and chondroitin sulfate, fish oil, and vitamins. Bleeding risks of garlic, ginkgo, ginseng, green tea, saw palmetto, St John’s wort, and fish oil are reported. Cardiovascular instability was observed with ephedra, ginseng, and kava. Pharmacodynamic and pharmacokinetic interactions between dietary supplements and drugs used in the perioperative period are discussed. Conclusions: To prevent potential problems associated with the use of dietary supplements, physicians should be familiar with the perioperative effects of commonly used dietary supplements. Since the effects of dietary supplements on coagulation and platelet

  13. Commonly Used Dietary Supplements on Coagulation Function during Surgery

    Science.gov (United States)

    Wang, Chong-Zhi; Moss, Jonathan; Yuan, Chun-Su

    2015-01-01

    Abstract Background Patients who undergo surgery appear to use dietary supplements significantly more frequently than the general population. Because they contain pharmacologically active compounds, dietary supplements may affect coagulation and platelet function during the perioperative period through direct effects, pharmacodynamic interactions, and pharmacokinetic interactions. However, in this regard, limited studies have been conducted that address the pharmacological interactions of dietary supplements. To avoid possible bleeding risks during surgery, information about the potential complications of dietary supplements during perioperative management is important for physicians. Methods Through a systematic database search of all available years, articles were identified in this review if they included dietary supplements and coagulation/platelet function, while special attention was paid to studies published after 1990. Results Safety concerns are reported in commercially available dietary supplements. Effects of the most commonly used natural products on blood coagulation and platelet function are systematically reviewed, including 11 herbal medicines (echinacea, ephedra, garlic, ginger, ginkgo, ginseng, green tea, kava, saw palmetto, St John’s wort, and valerian) and four other dietary supplements (coenzyme Q10, glucosamine and chondroitin sulfate, fish oil, and vitamins). Bleeding risks of garlic, ginkgo, ginseng, green tea, saw palmetto, St John’s wort, and fish oil are reported. Cardiovascular instability was observed with ephedra, ginseng, and kava. Pharmacodynamic and pharmacokinetic interactions between dietary supplements and drugs used in the perioperative period are discussed. Conclusions To prevent potential problems associated with the use of dietary supplements, physicians should be familiar with the perioperative effects of commonly used dietary supplements. Since the effects of dietary supplements on coagulation and platelet function are

  14. Commonly Used Dietary Supplements on Coagulation Function during Surgery.

    Science.gov (United States)

    Wang, Chong-Zhi; Moss, Jonathan; Yuan, Chun-Su

    2015-09-01

    Patients who undergo surgery appear to use dietary supplements significantly more frequently than the general population. Because they contain pharmacologically active compounds, dietary supplements may affect coagulation and platelet function during the perioperative period through direct effects, pharmacodynamic interactions, and pharmacokinetic interactions. However, in this regard, limited studies have been conducted that address the pharmacological interactions of dietary supplements. To avoid possible bleeding risks during surgery, information of potential complications of dietary supplements during perioperative management is important for physicians. Through a systematic database search of all available years, articles were identified in this review if they included dietary supplements and coagulation/platelet function, while special attention was paid to studies published after 1990. Safety concerns are reported in commercially available dietary supplements. Effects of the most commonly used natural products on blood coagulation and platelet function are systematically reviewed, including 11 herbal medicines (echinacea, ephedra, garlic, ginger, ginkgo, ginseng, green tea, kava, saw palmetto, St John's wort, and valerian) and 4 other dietary supplements (coenzyme Q 10 , glucosamine and chondroitin sulfate, fish oil, and vitamins). Bleeding risks of garlic, ginkgo, ginseng, green tea, saw palmetto, St John's wort, and fish oil are reported. Cardiovascular instability was observed with ephedra, ginseng, and kava. Pharmacodynamic and pharmacokinetic interactions between dietary supplements and drugs used in the perioperative period are discussed. To prevent potential problems associated with the use of dietary supplements, physicians should be familiar with the perioperative effects of commonly used dietary supplements. Since the effects of dietary supplements on coagulation and platelet function are difficult to predict, it is prudent to advise their

  15. The biological function of consciousness

    Directory of Open Access Journals (Sweden)

    Brian eEarl

    2014-08-01

    Full Text Available This research is an investigation of whether consciousness—one’s ongoing experience—influences one’s behavior and, if so, how. Analysis of the components, structure, properties, and temporal sequences of consciousness has established that, (1 contrary to one’s intuitive understanding, consciousness does not have an active, executive role in determining behavior; (2 consciousness does have a biological function; and (3 consciousness is solely information in various forms. Consciousness is associated with a flexible response mechanism (FRM for decision-making, planning, and generally responding in nonautomatic ways. The FRM generates responses by manipulating information and, to function effectively, its data input must be restricted to task-relevant information. The properties of consciousness correspond to the various input requirements of the FRM; and when important information is missing from consciousness, functions of the FRM are adversely affected; both of which indicate that consciousness is the input data to the FRM. Qualitative and quantitative information (shape, size, location, etc., is incorporated into the input data by a qualia array of colors, sounds, and so on, which makes the input conscious. This view of the biological function of consciousness provides an explanation why we have experiences; why we have emotional and other feelings, and why their loss is associated with poor decision-making; why blindsight patients do not spontaneously initiate responses to events in their blind field; why counter-habitual actions are only possible when the intended action is in mind; and the reason for inattentional blindness.

  16. Dietary fat intake and functional dyspepsia

    Directory of Open Access Journals (Sweden)

    Mahdieh Khodarahm

    2016-01-01

    Full Text Available A few studies have assessed the effects of fat intake in the induction of dyspeptic symptoms. So, the aim of this study was to review the articles regarding the dietary fat intake and FD. We used electronic database of PubMed to search. These key words were chosen: FD, dietary fat, dyspeptic symptom, energy intake and nutrients. First, articles that their title and abstract were related to the mentioned subject were gathered. Then, full texts of related articles were selected for reading. Finally, by excluding four articles that was irrelevant to subject, 19 relevant English papers by designing clinical trial, cross-sectional, case–control, prospective cohort, and review that published from 1992 to 2012 were investigated. Anecdotally, specific food items or food groups, particularly fatty foods have been related to dyspepsia. Laboratory studies have shown that the addition of fat to a meal resulted in more symptoms of fullness, bloating, and nausea in dyspeptic patients. Studies have reported that hypersensitivity of the stomach to postprandial distension is an essential factor in the generation of dyspeptic symptoms. Small intestinal infusions of nutrients, particularly fat, exacerbate this hypersensitivity. Moreover, evidence showed that perception of gastric distension increased by lipids but not by glucose. Long chain triglycerides appear to be more potent than medium chain triglycerides in inducing symptoms of fullness, nausea, and suppression of hunger. Thus, Fatty foods may exacerbate dyspeptic symptoms. Therefore, it seems that a reduction in intake of fatty foods may useful, although this requires more evaluations.

  17. Current evidence on dietary pattern and cognitive function.

    Science.gov (United States)

    Cheung, Bernice H K; Ho, Ivan C H; Chan, Ruth S M; Sea, Mandy M M; Woo, Jean

    2014-01-01

    With global aging population, age-related cognitive decline becomes epidemic. Lifestyle-related factor is one of the key preventative measures. Dietary pattern analysis which considers dietary complexity has recently used to examine the linkage between nutrition and cognitive function. A priori approach defines dietary pattern based on existing knowledge. Results of several dietary pattern scores were summarized. The heterogeneity of assessment methods and outcome measurements lead to inconsistent results. Posteriori approach derives a dietary pattern independently of the existing nutrition-disease knowledge. It showed a dietary pattern abundant with plant-based food, oily fish, lower consumption of processed food, saturated fat, and simple sugar which appears to be beneficial to cognitive health. Despite inconclusive evidence from both approaches, diet and exercise, beneficial for other diseases, remains to be the two key modifiable factors for cognitive function. Large-scale prospective studies in multiethics population are required to provide stronger evidence in the future. © 2014 Elsevier Inc. All rights reserved.

  18. Lifelong dietary intervention does not affect hematopoietic stem cell function

    NARCIS (Netherlands)

    Lazare, Seka; Ausema, Albertina; Reijne, Aaffien C; van Dijk, Gertjan; van Os, Ronald; de Haan, Gerald

    Hematopoietic stem cells (HSCs) undergo a profound functional decline during normal aging. Because caloric or dietary restriction has been shown to delay multiple aspects of the aging process in many species, we explored the consequences of lifelong caloric restriction, or conversely, lifelong

  19. Structure and function in biology

    International Nuclear Information System (INIS)

    Hirs, C.H.W.

    1976-01-01

    A summary is given of the history of the developments of structural chemistry in biology beginning with the work of the bacteriologist Ehrlich leading to a comprehensive examination of the influence of size and configuration on the interaction between specific antibodies and side-chain determinants. Recent developments include the recognition of a higher order of specificity in the interaction of proteins with one another

  20. Updates on chemical and biological research on botanical ingredients in dietary supplements.

    Science.gov (United States)

    Pawar, Rahul S; Tamta, Hemlata; Ma, Jun; Krynitsky, Alexander J; Grundel, Erich; Wamer, Wayne G; Rader, Jeanne I

    2013-05-01

    Increased use of dietary supplements is a phenomenon observed worldwide. In the USA, more than 40% of the population recently reported using complementary and alternative medicines, including botanical dietary supplements. Perceptions that such dietary supplements are natural and safe, may prevent disease, may replace prescription medicines, or may make up for a poor diet, play important roles in their increased use. Toxicity of botanical dietary supplements may result from the presence of naturally occurring toxic constituents or from contamination or adulteration with pharmaceutical agents, heavy metals, mycotoxins, pesticides, or bacteria, misidentification of a plant species in a product, formation of electrophilic metabolites, organ-specific reactions, or botanical-drug interactions. The topics discussed in this review illustrate several issues in recent research on botanical ingredients in dietary supplements. These include (1) whether 1,3-dimethylamylamine is a natural constituent of rose geranium (Pelargonium graveolens), (2) how analysis of the components of dietary supplements containing bitter melon (Momordica charantia) is essential to understanding their potential biological effects, and (3) how evolving methods for in vitro studies on botanical ingredients can contribute to safety evaluations. The virtual explosion in the use of botanical ingredients in hundreds of products presents a considerable challenge to the analytical community, and the need for appropriate methods cannot be overstated. We review recent developments and use of newer and increasingly sensitive methods that can contribute to increasing the safety and quality of botanical ingredients in dietary supplements.

  1. Dietary antioxidant synergy in chemical and biological systems.

    Science.gov (United States)

    Wang, Sunan; Zhu, Fan

    2017-07-24

    Antioxidant (AOX) synergies have been much reported in chemical ("test-tube" based assays focusing on pure chemicals), biological (tissue culture, animal and clinical models), and food systems during the past decade. Tentative synergies differ from each other due to the composition of AOX and the quantification methods. Regeneration mechanism responsible for synergy in chemical systems has been discussed. Solvent effects could contribute to the artifacts of synergy observed in the chemical models. Synergy in chemical models may hardly be relevant to biological systems that have been much less studied. Apparent discrepancies exist in understanding the molecular mechanisms in both chemical and biological systems. This review discusses diverse variables associated with AOX synergy and molecular scenarios for explanation. Future research to better utilize the synergy is suggested.

  2. Milk protein tailoring to improve functional and biological properties

    Directory of Open Access Journals (Sweden)

    JEAN-MARC CHOBERT

    2012-01-01

    Full Text Available Proteins are involved in every aspects of life: structure, motion, catalysis, recognition and regulation. Today's highly sophisticated science of the modifications of proteins has ancient roots. The tailoring of proteins for food and medical uses precedes the beginning of what is called biochemistry. Chemical modification of proteins was pursued early in the twentieth century as an analytical procedure for side-chain amino acids. Later, methods were developed for specific inactivation of biologically active proteins and titration of their essential groups. Enzymatic modifications were mainly developed in the seventies when many more enzymes became economically available. Protein engineering has become a valuable tool for creating or improving proteins for practical use and has provided new insights into protein structure and function. The actual and potential use of milk proteins as food ingredients has been a popular topic for research over the past 40 years. With today's sophisticated analytical, biochemical and biological research tools, the presence of compounds with biological activity has been demonstrated. Improvements in separation techniques and enzyme technology have enabled efficient and economic isolation and modification of milk proteins, which has made possible their use as functional foods, dietary supplements, nutraceuticals and medical foods. In this review, some chemical and enzymatic modifications of milk proteins are described, with particular focus on their functional and biological properties.

  3. A Unifying Theory of Biological Function.

    Science.gov (United States)

    van Hateren, J H

    2017-01-01

    A new theory that naturalizes biological function is explained and compared with earlier etiological and causal role theories. Etiological (or selected effects) theories explain functions from how they are caused over their evolutionary history. Causal role theories analyze how functional mechanisms serve the current capacities of their containing system. The new proposal unifies the key notions of both kinds of theories, but goes beyond them by explaining how functions in an organism can exist as factors with autonomous causal efficacy. The goal-directedness and normativity of functions exist in this strict sense as well. The theory depends on an internal physiological or neural process that mimics an organism's fitness, and modulates the organism's variability accordingly. The structure of the internal process can be subdivided into subprocesses that monitor specific functions in an organism. The theory matches well with each intuition on a previously published list of intuited ideas about biological functions, including intuitions that have posed difficulties for other theories.

  4. Myricetin: A Dietary Molecule with Diverse Biological Activities

    Directory of Open Access Journals (Sweden)

    Deepak Kumar Semwal

    2016-02-01

    Full Text Available Myricetin is a common plant-derived flavonoid and is well recognised for its nutraceuticals value. It is one of the key ingredients of various foods and beverages. The compound exhibits a wide range of activities that include strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities. It displays several activities that are related to the central nervous system and numerous studies have suggested that the compound may be beneficial to protect against diseases such as Parkinson’s and Alzheimer’s. The use of myricetin as a preserving agent to extend the shelf life of foods containing oils and fats is attributed to the compound’s ability to protect lipids against oxidation. A detailed search of existing literature revealed that there is currently no comprehensive review available on this important molecule. Hence, the present work includes the history, synthesis, pharmaceutical applications and toxicity studies of myricetin. This report also highlights structure-activity relationships and mechanisms of action for various biological activities.

  5. Functional model of biological neural networks.

    Science.gov (United States)

    Lo, James Ting-Ho

    2010-12-01

    A functional model of biological neural networks, called temporal hierarchical probabilistic associative memory (THPAM), is proposed in this paper. THPAM comprises functional models of dendritic trees for encoding inputs to neurons, a first type of neuron for generating spike trains, a second type of neuron for generating graded signals to modulate neurons of the first type, supervised and unsupervised Hebbian learning mechanisms for easy learning and retrieving, an arrangement of dendritic trees for maximizing generalization, hardwiring for rotation-translation-scaling invariance, and feedback connections with different delay durations for neurons to make full use of present and past informations generated by neurons in the same and higher layers. These functional models and their processing operations have many functions of biological neural networks that have not been achieved by other models in the open literature and provide logically coherent answers to many long-standing neuroscientific questions. However, biological justifications of these functional models and their processing operations are required for THPAM to qualify as a macroscopic model (or low-order approximate) of biological neural networks.

  6. Biological and chemical standardization of a hop (Humulus lupulus) botanical dietary supplement.

    Science.gov (United States)

    Krause, Elizabeth; Yuan, Yang; Hajirahimkhan, Atieh; Dong, Huali; Dietz, Birgit M; Nikolic, Dejan; Pauli, Guido F; Bolton, Judy L; van Breemen, Richard B

    2014-06-01

    Concerned about the safety of conventional estrogen replacement therapy, women are using botanical dietary supplements as alternatives for the management of menopausal symptoms such as hot flashes. Before botanical dietary supplements can be evaluated clinically for safety and efficacy, botanically authenticated and standardized forms are required. To address the demand for a standardized, estrogenic botanical dietary supplement, an extract of hops (Humulus lupulus L.) was developed. Although valued in the brewing of beer, hop extracts are used as anxiolytics and hypnotics and have well-established estrogenic constituents. Starting with a hop cultivar used in the brewing industry, spent hops (the residue remaining after extraction of bitter acids) were formulated into a botanical dietary supplement that was then chemically and biologically standardized. Biological standardization utilized the estrogen-dependent induction of alkaline phosphatase in the Ishikawa cell line. Chemical standardization was based on the prenylated phenols in hops that included estrogenic 8-prenylnaringenin, its isomer 6-prenylnaringenin, and pro-estrogenic isoxanthohumol and its isomeric chalcone xanthohumol, all of which were measured using high-performance liquid chromatography-tandem mass spectrometry. The product of this process was a reproducible botanical extract suitable for subsequent investigations of safety and efficacy. Copyright © 2014 John Wiley & Sons, Ltd.

  7. A functional overview of conservation biological control

    DEFF Research Database (Denmark)

    Begg, Graham S; Cook, Samantha M; Dye, Richard

    2017-01-01

    Conservation biological control (CBC) is a sustainable approach to pest management that can contribute to a reduction in pesticide use as part of an Integrated Pest Management (IPM) strategy. CBC is based on the premise that countering habitat loss and environmental disturbance associated...... CBC prescriptions have proved elusive. To tackle this, we consolidate existing knowledge of CBC using a simple conceptual model that organises the functional elements of CBC into a common, unifying framework. We identify and integrate the key biological processes affecting natural enemies...... and their biological control function across local and regional scales, and consider the interactions, interdependencies and constraints that determine the outcome of CBC strategies. Conservation measures are often effective in supporting natural enemy populations but their success cannot be guaranteed; the greatest...

  8. A shortcut to wide-ranging biological actions of dietary polyphenols: modulation of the nitrate-nitrite-nitric oxide pathway in the gut.

    Science.gov (United States)

    Rocha, Bárbara S; Nunes, Carla; Pereira, Cassilda; Barbosa, Rui M; Laranjinha, João

    2014-08-01

    Dietary polyphenols are complex, natural compounds with recognized health benefits. Initially attractive to the biomedical area due to their in vitro antioxidant properties, the biological implications of polyphenols are now known to be far from their acute ability to scavenge free radicals but rather to modulate redox signaling pathways. Actually, it is now recognized that dietary polyphenols are extensively metabolized in vivo and that the chemical, biophysical and biological properties of their metabolites are, in most cases, quite different from the ones of the parent molecules. Hence, the study of the metabolic, absorptive and signaling pathways of both phenolics and derivatives has become a major issue. In this paper we propose a short-cut for the systemic effects of polyphenols in connection with nitric oxide (˙NO) biology. This free radical is a ubiquitous signaling molecule with pivotal functions in vivo. It is produced through an enzymatic pathway and also through the reduction of dietary nitrate and nitrite in the human stomach. At acidic gastric pH, dietary polyphenols, in the form they are conveyed in foods and at high concentration, not only promote nitrite reduction to ˙NO but also embark in a complex network of chemical reactions to produce higher nitrogen oxides with signaling functions, namely by inducing post-translational modifications. Modified endogenous molecules, such as nitrated proteins and lipids, acquire important physiological functions. Thus, local and systemic effects of ˙NO such as modulation of vascular tone, mucus production in the gut and protection against ischemia-reperfusion injury are, in this sense, triggered by dietary polyphenols. Evidence to support the signaling and biological effects of polyphenols by modulation of the nitrate-nitrite-NO pathway will be herein provided and discussed. General actions of polyphenols encompassing absorption and metabolism in the intestine/liver are short-cut via the production of

  9. Functional biology of sympatric krill species

    DEFF Research Database (Denmark)

    Agersted, Mette Dalgaard; Nielsen, Torkel Gissel

    2016-01-01

    Here we compare the functional biology of the sympatric krill species, Meganyctiphanes norvegica and Thysanoessa inermis. For M. norvegica, we investigated functional responses on diatoms and copepods, together with prey size spectra on plankton ,400 mm and copepods in the size range 500–3220 mm....... For T. inermis, only prey size spectrum on plankton ,400 mm were investigated. The prey size ranges of both species include organisms ,400 mm, and they consequently graze on several trophic levels. However, T. inermis feed on cells ,10 mm equivalent spherical diameter (ESD), whereas M. norvegica only...

  10. Dietary Patterns Derived by Cluster Analysis are Associated with Cognitive Function among Korean Older Adults.

    Science.gov (United States)

    Kim, Jihye; Yu, Areum; Choi, Bo Youl; Nam, Jung Hyun; Kim, Mi Kyung; Oh, Dong Hoon; Yang, Yoon Jung

    2015-05-29

    The objective of this study was to investigate major dietary patterns among older Korean adults through cluster analysis and to determine an association between dietary patterns and cognitive function. This is a cross-sectional study. The data from the Korean Multi-Rural Communities Cohort Study was used. Participants included 765 participants aged 60 years and over. A quantitative food frequency questionnaire with 106 items was used to investigate dietary intake. The Korean version of the MMSE-KC (Mini-Mental Status Examination-Korean version) was used to assess cognitive function. Two major dietary patterns were identified using K-means cluster analysis. The "MFDF" dietary pattern indicated high consumption of Multigrain rice, Fish, Dairy products, Fruits and fruit juices, while the "WNC" dietary pattern referred to higher intakes of White rice, Noodles, and Coffee. Means of the total MMSE-KC and orientation score of the participants in the MFDF dietary pattern were higher than those of the WNC dietary pattern. Compared with the WNC dietary pattern, the MFDF dietary pattern showed a lower risk of cognitive impairment after adjusting for covariates (OR 0.64, 95% CI 0.44-0.94). The MFDF dietary pattern, with high consumption of multigrain rice, fish, dairy products, and fruits may be related to better cognition among Korean older adults.

  11. Dietary Patterns Derived by Cluster Analysis are Associated with Cognitive Function among Korean Older Adults

    Directory of Open Access Journals (Sweden)

    Jihye Kim

    2015-05-01

    Full Text Available The objective of this study was to investigate major dietary patterns among older Korean adults through cluster analysis and to determine an association between dietary patterns and cognitive function. This is a cross-sectional study. The data from the Korean Multi-Rural Communities Cohort Study was used. Participants included 765 participants aged 60 years and over. A quantitative food frequency questionnaire with 106 items was used to investigate dietary intake. The Korean version of the MMSE-KC (Mini-Mental Status Examination–Korean version was used to assess cognitive function. Two major dietary patterns were identified using K-means cluster analysis. The “MFDF” dietary pattern indicated high consumption of Multigrain rice, Fish, Dairy products, Fruits and fruit juices, while the “WNC” dietary pattern referred to higher intakes of White rice, Noodles, and Coffee. Means of the total MMSE-KC and orientation score of the participants in the MFDF dietary pattern were higher than those of the WNC dietary pattern. Compared with the WNC dietary pattern, the MFDF dietary pattern showed a lower risk of cognitive impairment after adjusting for covariates (OR 0.64, 95% CI 0.44–0.94. The MFDF dietary pattern, with high consumption of multigrain rice, fish, dairy products, and fruits may be related to better cognition among Korean older adults.

  12. Marine Carotenoids: Biological Functions and Commercial Applications

    Science.gov (United States)

    Vílchez, Carlos; Forján, Eduardo; Cuaresma, María; Bédmar, Francisco; Garbayo, Inés; Vega, José M.

    2011-01-01

    Carotenoids are the most common pigments in nature and are synthesized by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological functions of carotenoids relevant for life on earth. Biological properties of carotenoids allow for a wide range of commercial applications. Indeed, recent interest in the carotenoids has been mainly for their nutraceutical properties. A large number of scientific studies have confirmed the benefits of carotenoids to health and their use for this purpose is growing rapidly. In addition, carotenoids have traditionally been used in food and animal feed for their color properties. Carotenoids are also known to improve consumer perception of quality; an example is the addition of carotenoids to fish feed to impart color to farmed salmon. PMID:21556162

  13. Dietary fatty acids influence sperm quality and function.

    Science.gov (United States)

    Ferramosca, A; Moscatelli, N; Di Giacomo, M; Zara, V

    2017-05-01

    Recently, obesity has been linked to male infertility. In animal models the administration of a high-fat diet caused a reduction in sperm quality, by impairing gamete energy metabolism. The aim of this study was to investigate a possible effect of dietary fatty acids supplementation in the modulation of sperm energy metabolism and, in turn, in the improvement of sperm quality in rats fed a high-fat diet. Sexually mature male Sprague-Dawley rats were divided into four groups and fed for 4 weeks a standard diet (control group), a high-fat diet (enriched in 35% of fat and 15% sucrose), a high-fat diet supplemented with 2.5% olive oil (a source of monounsaturated fatty acids) or a high-fat diet supplemented with 2.5% krill oil (a source of n-3 polyunsaturated fatty acids). Liver and adipose tissue weight, plasma glucose, insulin and lipid concentrations were determined. Activities of enzymes involved in sperm energetic metabolism were evaluated by spectrophotometric assays. Sperm mitochondrial respiratory efficiency was also assayed. The obtained results suggest that olive oil partially counteracts the negative effects of a high-fat diet on sperm quality, by increasing gamete motility, by reducing oxidative stress and slightly improving mitochondrial respiration efficiency. On the other hand, krill oil determines an increase in sperm concentration and motility, an increase in the activities of lactate dehydrogenase, Krebs cycle enzymes and respiratory chain complexes; a parallel increase in the cellular levels of ATP and a reduction in oxidative damage were also observed. These results suggest that dietary fatty acids are able to positively influence sperm quality and function. © 2017 American Society of Andrology and European Academy of Andrology.

  14. Neurotrophin Propeptides: Biological Functions and Molecular Mechanisms.

    Science.gov (United States)

    Rafieva, Lola M; Gasanov, Eugene V

    2016-01-01

    Neurotrophins constitute a family of growth factors that play a key role in the regulation of the development and function of the central and peripheral nervous systems. A common feature of all the neurotrophins is their synthesis in cells as long precursors (pre-pro-neurotrophins) that contain an N-terminal signal peptide, a following propeptide and the mature neurotrophin. Although the signal peptide functions have been well studied, the role of neurotrophin propeptides is not so clear. Here, we briefly summarize the biochemistry of neurotrophin propeptides, including their role as folding-assistants for the mature factor and their role in processing and in secretion of neurotrophins. In the main part of the review we summarize our current state of knowledge of the biological activity of neurotrophin propeptides, their possible mechanisms of action, and their potential influence on the activity of the mature neurotrophins.

  15. Effects of dietary fat and calorie on immunologic function

    International Nuclear Information System (INIS)

    Barness, L.A.; Carver, J.D.; Friedman, H.; Hsu, K.H.L.

    1986-01-01

    The effect of dietary fat and calories on immunologic function in specific pathogen-free inbred DBA/2 and CBA/J mice was studied. Three diets were modified from control, the AIN-76 purified diet. The high saturated fat diet contained 22.5% coconut oil and 2.5% safflower oil. The high unsaturated fat diet contained 25% safflower oil. Fat was substituted isoclorically for carbohydrate in these two diets. The low calorie diet contained 40% less protein, carbohydrate and fat than control diet; fiber was substituted for these ingredients. Female weanling mice were on the diets for more than 35 days before testing. The natural killer (NK) activity of spleen cells was determined by in vitro cytolysis of 51 Cr-labeled YAC-1 cells. The spleen cells response to sheep red blood cells (SRBC) or allogeneic tumor EL-4 cells was measured after immunizing the mice with SRBC or EL-4 cells for 4 or 11 days, respectively. The results showed no significant effect of the low calorie diet on NK activity, anti-SRBC or anti-EL-4 response compared to normal diet. Anti-SRBC plaque response was significantly enhanced (27% higher), while anti-EL-4 response was significantly suppressed (15% less) with high saturated fat diet. NK activity was normal. Mice on high unsaturated fat diet showed suppressed anti-SRBC response (16% less) and anti-EL-4 response (17% less), while NK activity was significantly enhanced (70% higher)

  16. Dietary protein effects on irradiated rat kidney function

    International Nuclear Information System (INIS)

    Mahler, P.A.; Yatuin, M.B.

    1984-01-01

    The authors have previously reported that unilaterally nephrectomized, kidney irradiated young male S-D rats have an increased median survival when placed on a low (4%) protein diet, as compared to a normal (20%) or high (50%) protein diet (200, 103, and 59 days respectively for 14 Gy irradiation). They have expanded these studies to examine the effects of irradiation and dietary protein levels on kidney function, by examining the parameters of blood urea nitrogen, serum creatinine, urine urea nitrogen, urine creatinine, urine osmolarity, urine volume, and water consumption. Irradiated 20% protein diet animals show an increase in water consumption and urine production and also a decrease in urine osmolarity, urine urea concentration and urine creatinine concentration. These changes all support the hypothesis the kidney irradiated rats fed a normal protein diet have a reduced capability to concentrate urine compared to nonirradiated control rats. Evaluation of the same parameters in irradiated rats fed a 4% protein diet does not indicate a similar loss of concentrating capability. Whether this protection is due to the growth inhibition of the 4% protein diet or some other phenomena remains to be determined

  17. FUNCTION IN BIOLOGY: ETIOLOGICAL AND ORGANIZATIONAL PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    Charbel Niño El-Hani

    2009-10-01

    Full Text Available ABSTRACT. In this paper, we argue for a taxonomy of approaches to function based on different epistemological perspectives assumed with regard to the treatment of this central concept in the life sciences. We distinguish between etiological and organizational perspectives on function, analyzing two distinct theories related to each perspective: Wright’s selectionist etiological approach and Godfrey-Smith’s modern history theory of functions, in the case of the etiological perspective; and Cummins’ functional analysis and Collier’s interactivist approach to function, among organizational accounts. We explain differences and similarities between these theories and the broader perspectives on function, arguing for a particular way of understanding the consensus without unity in debates about function. While explaining the accounts of function, we also deal with the relationship between this concept and other important biological concepts, such as adaptation, selection, complexity, and autonomy. We also advance an argument for the limits and prospects of the explanatory role of function in evolution. By arguing that changes in functionality are always grounded on changes in systems’ organization, we show that function can never explain the origins of traits. Nevertheless, it can explain the spread of traits in populations, but only when we are dealing with functionally novel traits. Finally, we stress that organizational accounts of function are needed to understand how new functions appear by means of changes in systems’ organization. KEYWORDS: Function; Teleology; Explanation; Etiology; Organization.   RESUMEN. En este artículo, argumentamos a favor de una taxonomía de abordajes sobre función basada en diferentes perspectivas epistemológicas a cerca del tratamiento de este concepto central en las ciencias de la vida. Distinguimos entre perspectivas etiológicas y organizacionales sobre función, analizando dos teorías distintas

  18. The functional biology of human milk oligosaccharides.

    Science.gov (United States)

    Bode, Lars

    2015-11-01

    Human milk oligosaccharides (HMOs) are a group of complex sugars that are highly abundant in human milk, but currently not present in infant formula. More than a hundred different HMOs have been identified so far. The amount and composition of HMOs are highly variable between women, and each structurally defined HMO might have a distinct functionality. HMOs are not digested by the infant and serve as metabolic substrates for select microbes, contributing to shape the infant gut microbiome. HMOs act as soluble decoy receptors that block the attachment of viral, bacterial or protozoan parasite pathogens to epithelial cell surface sugars, which may help prevent infectious diseases in the gut and also the respiratory and urinary tracts. HMOs are also antimicrobials that act as bacteriostatic or bacteriocidal agents. In addition, HMOs alter host epithelial and immune cell responses with potential benefits for the neonate. The article reviews current knowledge as well as future challenges and opportunities related to the functional biology of HMOs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Relationships between Dietary Intake and Cognitive Function in Healthy Korean Children and Adolescents

    OpenAIRE

    Kim, Jin Young; Kang, Seung Wan

    2017-01-01

    Background It has long been theorized that a relatively robust dietary intake impacts cognitive function. The aim of the study was to explore dietary intake and cognitive function in healthy Korean children and adolescents. Methods Three hundred and seventeen healthy children with no previous diagnosis of neurologic or psychiatric disorders were evaluated (167 girls and 150 boys with a mean age of 11.8 ? 3.3 years). Analysis indicators including food frequency questionnaires (FFQs) consisting...

  20. The Structure and Function of Biological Networks

    Science.gov (United States)

    Wu, Daniel Duanqing

    2010-01-01

    Biology has been revolutionized in recent years by an explosion in the availability of data. Transforming this new wealth of data into meaningful biological insights and clinical breakthroughs requires a complete overhaul both in the questions being asked and the methodologies used to answer them. A major challenge in organizing and understanding…

  1. Metabolic disposition and biological significance of simple phenols of dietary origin: hydroxytyrosol and tyrosol.

    Science.gov (United States)

    Rodríguez-Morató, Jose; Boronat, Anna; Kotronoulas, Aristotelis; Pujadas, Mitona; Pastor, Antoni; Olesti, Eulalia; Pérez-Mañá, Clara; Khymenets, Olha; Fitó, Montserrat; Farré, Magí; de la Torre, Rafael

    2016-05-01

    Hydroxytyrosol and tyrosol are dietary phenolic compounds present in virgin olive oil and wine. Both compounds are also endogenously synthesized in our body as byproducts of dopamine and tyramine metabolisms, respectively. Over the last decades, research into hydroxytyrosol and tyrosol has experienced an increasing interest due to the role that these compounds may play in the prevention of certain pathologies (e.g. cardiovascular, metabolic, neurodegenerative diseases and cancer). The translation of promising in vitro and in vivo biological effects from preclinical studies to the context of human disease prevention initially depends on whether the dose ingested becomes available at the site of action. In this regard, information regarding the bioavailability and metabolic disposition of hydroxytyrosol and tyrosol is of most importance to evaluate the impact they may have on human health. In this review, we discuss and summarize the state of the art of the scientific evidence regarding the processes of absorption, distribution, metabolism and excretion of both hydroxytyrosol and tyrosol. We also examine the impact of these compounds and their metabolites on biological activity in terms of beneficial health effects. Finally, we evaluate the different analytical approaches that have been developed to measure the plasma and urinary levels of hydroxytyrosol, tyrosol and their metabolites.

  2. Dietary intake and biological measurement of folate: A qualitative review of validation studies

    NARCIS (Netherlands)

    Park, Y.H.; Vollset, S.E.; Boonstra, A.; Chajes, V.; Ueland, P.M.; Slimani, N.

    2013-01-01

    Folate is a nutrient of major health significance, but its dietary intake assessment is particularly complex to quantify through traditional approaches. Attempts have been made to validate dietary instruments for assessing folate intake against circulating concentration biomarkers. However, this

  3. Modulation of the chicken immune cell function by dietary polyunsaturated fatty acids

    NARCIS (Netherlands)

    Sijben, J.W.C.

    2002-01-01

    Polyunsaturated fatty acids (PUFA) possess a wide range of biological properties, including immunomodulation. The amount, type, and ratio of dietary PUFA determine the types of fatty acids that are incorporated into immune cell membranes. Consequently, the physiological properties of immune cells

  4. Feedback dynamics and cell function: Why systems biology is called Systems Biology.

    Science.gov (United States)

    Wolkenhauer, Olaf; Mesarovic, Mihajlo

    2005-05-01

    A new paradigm, like Systems Biology, should challenge the way research has been conducted previously. This Opinion article aims to present Systems Biology, not as the application of engineering principles to biology but as a merger of systems- and control theory with molecular- and cell biology. In our view, the central dogma of Systems Biology is that it is system dynamics that gives rise to the functioning and function of cells. The concepts of feedback regulation and control of pathways and the coordination of cell function are emphasized as an important area of Systems Biology research. The hurdles and risks for this area are discussed from the perspective of dynamic pathway modelling. Most of all, the aim of this article is to promote mathematical modelling and simulation as a part of molecular- and cell biology. Systems Biology is a success if it is widely accepted that there is nothing more practical than a good theory.

  5. Usage, biological activity, and safety of selected botanical dietary supplements consumed in the United States

    Directory of Open Access Journals (Sweden)

    P. Annécie Benatrehina

    2018-04-01

    Full Text Available In view of the continuous growth of the botanical dietary supplement industry and the increased popularity of lesser known or exotic botanicals, recent findings are described on the phytochemical composition and biological activities of five selected fruits consumed in the United States, namely, açaí, noni, mangosteen, black chokeberry, and maqui berry. A review of the ethnomedicinal uses of these plants has revealed some similarities ranging from wound-healing to the treatment of fever and infectious diseases. Laboratory studies on açaí have shown both its antioxidant and anti-inflammatory activities in vitro, and more importantly, its neuroprotective properties in animals. Anthraquinones and iridoid glucosides isolated from noni fruit induce the phase II enzyme quinone reductase (QR, and noni fruit juice exhibited antitumor and antidiabetic activities in certain animal models. Antitumorigenic effects of mangosteen in animal xenograft models of human cancers have been attributed to its xanthone content, and pure α-mangostin was shown to display antineoplastic activity in mice despite a reported low oral bioavailability. Work on the less extensively investigated black chokeberry and maqui berry has focused on recent isolation studies and has resulted in the identification of bioactive secondary metabolites with QR-inducing and hydroxyl-radical scavenging properties. On the basis of the safety studies and toxicity case reports described herein, these fruits may be generally considered as safe. However, cases of adulteration found in a commercialized açaí product and some conflicting results from mangosteen safety studies warrant further investigation on the safety of these marketed botanical dietary supplements. Keywords: Açaí, Noni, Mangosteen, Black chokeberry, Maqui berry

  6. Marine Carotenoids: Biological Functions and Commercial Applications

    NARCIS (Netherlands)

    Vilchez, C.; Forján, E.; Cuaresma, M.; Bédmar, F.; Garbayo, I.; Vega, J.M.

    2011-01-01

    Carotenoids are the most common pigments in nature and are synthesized by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological

  7. IMRT optimization with pseudo-biologic objective function

    International Nuclear Information System (INIS)

    Yi, B. Y.; Ahn, S. D.; Kim, J. H.; Lee, S. W.; Choi, E. K.

    2002-01-01

    The pseudo-biologic objective function has been proposed for the IMRT optimization. It is similar to the biological objective function in mathematical shape, but uses physical parameters. The pseudo-biologic objective function concept is consisted of the target coverage index (TCI) and the organ score index (OSI), was introduced. The TCI was expressed as the sum of all of the weighted bins of target dose volume histogram (DVH). The weights were given as the normal distribution of which the average is 100 % and the standard deviation is ±. The OSI was expressed as similar way. The average of the normal distribution was 0% of the dose and that of standard deviation was selected as a function of limiting dose and its importance. The objective function could be calculated as the product of the TCI and OSI's. The RTP Tool Box (RTB) was used for this study. The constraints applied in the optimization was intuitively clinical experience based numbers, while the physical objective function asks just numbers which are not necessarily based on the clinic, and the parameters for the biologic objective functions are uncertain. The OSI's from the pseudo-biological function showed better results than from the physical functions, while TCI's showed similar tendency. We could show that the pseudo-biologic function can be used for an IMRT objective function on behalf of the biological objective function

  8. Diurnal rhythmicity in biological processes involved in bioavailability of functional food factors.

    Science.gov (United States)

    Tsurusaki, Takashi; Sakakibara, Hiroyuki; Aoshima, Yoshiki; Yamazaki, Shunsuke; Sakono, Masanobu; Shimoi, Kayoko

    2013-05-01

    In the past few decades, many types of functional factors have been identified in dietary foods; for example, flavonoids are major groups widely distributed in the plant kingdom. However, the absorption rates of the functional food factors are usually low, and many of these are difficult to be absorbed in the intact forms because of metabolization by biological processes during absorption. To gain adequate beneficial effects, it is therefore mandatory to know whether functional food factors are absorbed in sufficient quantity, and then reach target organs while maintaining beneficial effects. These are the reasons why the bioavailability of functional food factors has been well investigated using rodent models. Recently, many of the biological processes have been reported to follow diurnal rhythms recurring every 24 h. Therefore, absorption and metabolism of functional food factors influenced by the biological processes may vary with time of day. Consequently, the evaluation of the bioavailability of functional food factors using rodent models should take into consideration the timing of consumption. In this review, we provide a perspective overview of the diurnal rhythm of biological processes involved in the bioavailability of functional food factors, particularly flavonoids.

  9. Function-Based Algorithms for Biological Sequences

    Science.gov (United States)

    Mohanty, Pragyan Sheela P.

    2015-01-01

    Two problems at two different abstraction levels of computational biology are studied. At the molecular level, efficient pattern matching algorithms in DNA sequences are presented. For gene order data, an efficient data structure is presented capable of storing all gene re-orderings in a systematic manner. A common characteristic of presented…

  10. Biological and Chemical Standardization of a Hop (Humulus lupulus) Botanical Dietary Supplement

    OpenAIRE

    Krause, Elizabeth; Yuan, Yang; Hajirahimkhan, Atieh; Dong, Huali; Dietz, Birgit M.; Nikolic, Dejan; Pauli, Guido F.; Bolton, Judy L.; van Breemen, Richard B.

    2014-01-01

    Concerned about the safety of conventional estrogen replacement therapy, women are using botanical dietary supplements as alternatives for the management of menopausal symptoms such as hot flashes. Before botanical dietary supplements can be evaluated clinically for safety and efficacy, botanically authenticated and standardized forms are required. To address the demand for a standardized, estrogenic botanical dietary supplement, an extract of hops (Humulus lupulus, L.) was developed. Althoug...

  11. Functional food monitoring as part of the new Dutch dietary monitoring system

    NARCIS (Netherlands)

    Rompelberg CJM; Jager M; Bakker MI; Buurma-Rethans EJM; Ocke MC; CVG

    2006-01-01

    Good data on functional food consumption necessary for an adequate Dutch nutrition policy are lacking. This lack may be overcome in future by including functional food monitoring in the new dietary monitoring system in the Netherlands. One specific form of monitoring could be an Internet-based

  12. Review of the ethnobotany, chemistry, biological activity and safety of the botanical dietary supplement Morinda citrifolia (noni).

    Science.gov (United States)

    Pawlus, Alison D; Kinghorn, Douglas A

    2007-12-01

    Morinda citrifolia, commonly called noni, has a long history as a medicinal plant and its use as a botanical dietary supplement has grown tremendously in recent years. This has prompted a concomitant increase in research on the phytochemical constituents and biological activity of noni. A relatively large number of scientific publications on noni have been published in recent years, including a number of review articles. The goals of this review are to provide an updated categorization of the phytochemical constituents found in noni and to provide perspective for its extensive utilization as a major botanical dietary supplement. Included herein are a comprehensive list of known ethnobotanical uses and common names of M. citrifolia, a brief summary of relevant biological studies and a discussion of the safety of noni as a supplement.

  13. Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Ye-Rang Yun

    2010-01-01

    Full Text Available Fibroblast growth factors (FGFs that signal through FGF receptors (FGFRs regulate a broad spectrum of biological functions, including cellular proliferation, survival, migration, and differentiation. The FGF signal pathways are the RAS/MAP kinase pathway, PI3 kinase/AKT pathway, and PLCγ pathway, among which the RAS/MAP kinase pathway is known to be predominant. Several studies have recently implicated the in vitro biological functions of FGFs for tissue regeneration. However, to obtain optimal outcomes in vivo, it is important to enhance the half-life of FGFs and their biological stability. Future applications of FGFs are expected when the biological functions of FGFs are potentiated through the appropriate use of delivery systems and scaffolds. This review will introduce the biology and cellular functions of FGFs and deal with the biomaterials based delivery systems and their current applications for the regeneration of tissues, including skin, blood vessel, muscle, adipose, tendon/ligament, cartilage, bone, tooth, and nerve tissues.

  14. Functionalized Nanodiamonds for Biological and Medical Applications.

    Science.gov (United States)

    Lai, Lin; Barnard, Amanda S

    2015-02-01

    Nanodiamond is a promising material for biological and medical applications, owning to its relatively inexpensive and large-scale synthesis, unique structure, and superior optical properties. However, most biomedical applications, such as drug delivery and bio-imaging, are dependent upon the precise control of the surfaces, and can be significantly affected by the type, distribution and stability of chemical funtionalisations of the nanodiamond surface. In this paper, recent studies on nanodiamonds and their biomedical applications by conjugating with different chemicals are reviewed, while highlighting the critical importance of surface chemical states for various applications.

  15. Dietary Sodium/Potassium Intake Does Not Affect Cognitive Function or Brain Imaging Indices.

    Science.gov (United States)

    Nowak, Kristen L; Fried, Linda; Jovanovich, Anna; Ix, Joachim; Yaffe, Kristine; You, Zhiying; Chonchol, Michel

    2018-01-01

    Dietary sodium may influence cognitive function through its effects on cerebrovascular function and cerebral blood flow. The aim of this study was to evaluate the association of dietary sodium intake with cognitive decline in community-dwelling older adults. We also evaluated the associations of dietary potassium and sodium:potassium intake with cognitive decline, and associations of these nutrients with micro- and macro-structural brain magnetic resonance imaging (MRI) indices. In all, 1,194 participants in the Health Aging and Body Composition study with measurements of dietary sodium intake (food frequency questionnaire [FFQ]) and change in the modified Mini Mental State Exam (3MS) were included. The age of participants was 74 ± 3 years with a mean dietary sodium intake of 2,677 ± 1,060 mg/day. During follow-up (6.9 ± 0.1 years), 340 (28%) had a clinically significant decline in 3MS score (≥1.5 SD of mean decline). After adjustment, dietary sodium intake was not associated with odds of cognitive decline (OR 0.96, 95% CI 0.50-1.84 per doubling of sodium). Similarly, potassium was not associated with cognitive decline; however, higher sodium:potassium intake was associated with increased odds of cognitive decline (OR 2.02 [95% CI 1.01-4.03] per unit increase). Neither sodium or potassium alone nor sodium:potassium were associated with micro- or macro-structural brain MRI indices. These results are limited by the use of FFQ. In community-dwelling older adults, higher sodium:potassium, but not sodium or potassium intake alone, was associated with decline in cognitive function, with no associations observed with micro- and macro-structural brain MRI indices. These findings do not support reduction dietary sodium/increased potassium intake to prevent cognitive decline with aging. © 2018 S. Karger AG, Basel.

  16. Distinguishing between "function" and "effect" in genome biology.

    Science.gov (United States)

    Doolittle, W Ford; Brunet, Tyler D P; Linquist, Stefan; Gregory, T Ryan

    2014-05-09

    Much confusion in genome biology results from conflation of possible meanings of the word "function." We suggest that, in this connection, attention should be paid to evolutionary biologists and philosophers who have previously dealt with this problem. We need only decide that although all genomic structures have effects, only some of them should be said to have functions. Although it will very often be difficult or impossible to establish function (strictly defined), it should not automatically be assumed. We enjoin genomicists in particular to pay greater attention to parsing biological effects. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Dietary restriction alters fine motor function in rats.

    Science.gov (United States)

    Smith, Lori K; Metz, Gerlinde A

    2005-08-07

    A number of standard behavioral tasks in animal research utilize food rewards for positive reinforcement. In order to enhance the motivation to participate in these tasks, animals are usually placed on a restricted diet. While dietary restriction (DR) has been shown to have beneficial effects on recovery after brain injury, life span and aging processes, it might also represent a stressor. Since stress can influence a broad range of behaviors, the purpose of this study was to assess whether DR may have similar effects on skilled movement. Adult male Long-Evans rats were trained and tested in a skilled reaching task both prior to and during a mild food restriction regimen that maintained their body weights at 90-95% of baseline weight for eight days. The observations revealed that DR decreased reaching success and increased the number of attempts to grasp a single food pellet. The animals appeared to be more frantic when attempting to reach for food pellets, and the time taken to reach for 20 pellets decreased following the onset of DR. A second experiment investigating behaviors that do not require food rewards, including a ladder rung walking task and an open field test, confirmed that rats on DR display deficits in skilled movements and are hyperactive. These findings suggest that results obtained in motor tasks using food rewards need to be interpreted with caution. The findings are discussed with respect to stress associated with DR.

  18. A Unifying Theory of Biological Function

    NARCIS (Netherlands)

    van Hateren, J. H.

    2017-01-01

    A new theory that naturalizes biological function is explained and compared with earlier etiological and causal role theories. Etiological (or selected effects) theories explain functions from how they are caused over their evolutionary history. Causal role theories analyze how functional mechanisms

  19. Explaining Biological Functionality: Is Control Theory Enough ...

    African Journals Online (AJOL)

    I argue that the etiological approach, as understood in terms of control theory, suffers from a problem of symmetry, by which function can equally well be placed in the environment as in the organism. Focusing on the autonomy view, I note that it can be understood to some degree in terms of control theory in its version called ...

  20. Functional mapping in biology and medicine

    International Nuclear Information System (INIS)

    McEachron, D.L.

    1986-01-01

    This book contains 10 selections. Some of the titles are: Two Views of Functional Mapping and Autoradiography; Quantitative Analysis of Autoradiographs; Hardware and Software Design Considerations in Engineering an Image Processing Workstation: Autoradiographic Analysis with DUMAS and the BRAIN Autoradiograph Analysis Software Package (with 1 color plate); and Quantitative Autoradiography and in vitro Radioligand Binding

  1. Towards Integration of Biological and Physiological Functions at Multiple Levels

    Directory of Open Access Journals (Sweden)

    Taishin eNomura

    2010-12-01

    Full Text Available An aim of systems physiology today can be stated as to establish logical and quantitative bridges between phenomenological attributes of physiological entities such as cells and organs and physical attributes of biological entities, i.e., biological molecules, allowing us to describe and better understand physiological functions in terms of underlying biological functions. This article illustrates possible schema that can be used for promoting systems physiology by integrating quantitative knowledge of biological and physiological functions at multiple levels of time and space with the use of information technology infrastructure. Emphasis will be made for systematic, modular, hierarchical, and standardized descriptions of mathematical models of the functions and advantages for the use of them.

  2. Genomic Functionalization: The Next Revolution In Biology

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Peter [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Schoeniger, Joseph S. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Imbro, Paula M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-07-01

    We have implemented a ligand-alignment algorithm into our developed computational pipeline for identifying specificity-determining features (SDFs) in protein-ligand complexes. Given a set of protein-ligand complex structures, the algorithm aligns the complexes by ligand rather than by the C -RMSD or standard approach, providing a single reference frame for extracting SDFs. We anticipate that this ligand-alignment capability will be highly useful for protein function prediction. We already have a database containing > 20 K ligand-protein complex crystal structures taken from the Protein Data Bank. By aligning these proteins to single reference frames using ligand alignment, we can submit the complexes to our pipeline for SDF extraction. The SDFs derived from this training procedure can be used as thumbprints that are hallmarks of individual enzyme classes. These SDF thumbprints may then serve as guides to the prediction of function of new unknown proteins.

  3. The Dietary Approaches to Stop Hypertension Diet, Cognitive Function, and Cognitive Decline in American Older Women

    NARCIS (Netherlands)

    Berendsen, A.M.; Kang, Jae H.; Rest, van de O.; Feskens, E.J.M.; Groot, de C.P.G.M.; Grodstein, F.

    2017-01-01

    ObjectivesTo examine the association between long-term adherence to the Dietary Approaches to Stop Hypertension (DASH) diet with cognitive function and decline in older American women.DesignProspective cohort study.SettingThe Nurses' Health Study, a cohort of registered nurses residing in 11 US

  4. DIETARY OMEGA-3 FATTY ACIDS MODIFIED THE ASSOCIATION OF PULMONARY FUNCTION WITH AIR POLLUTION IN ADOLESCENTS

    Science.gov (United States)

    Previous children's studies in North America and Germany have shown that ambient sulfate particles are associated with an increased prevalence of bronchitis and decreased lung function. We have now investigated the ability of dietary intake of anti-inflammatory omega-3 fatty aci...

  5. Dietary inflammatory index and memory function: population-based national sample of elderly Americans.

    Science.gov (United States)

    Frith, Emily; Shivappa, Nitin; Mann, Joshua R; Hébert, James R; Wirth, Michael D; Loprinzi, Paul D

    2018-03-01

    The objective of this study was to examine the association between dietary inflammatory potential and memory and cognitive functioning among a representative sample of the US older adult population. Cross-sectional data from the 2011-2012 and 2013-2014 National Health and Nutrition Examination Survey were utilised to identify an aggregate sample of adults 60-85 years of age (n 1723). Dietary inflammatory index (DII®) scores were calculated using 24-h dietary recall interviews. Three memory-related assessments were employed, including the Consortium to Establish a Registry for Alzheimer's disease (CERAD) Word Learning subset, the Animal Fluency test and the Digit Symbol Substitution Test (DSST). Inverse associations were observed between DII scores and the different memory parameters. Episodic memory (CERAD) (b adjusted=-0·39; 95 % CI -0·79, 0·00), semantic-based memory (Animal Fluency Test) (b adjusted=-1·18; 95 % CI -2·17, -0·20) and executive function and working-memory (DSST) (b adjusted=-2·80; 95 % CI -5·58, -0·02) performances were lowest among those with the highest mean DII score. Though inverse relationships were observed between DII scores and memory and cognitive functioning, future work is needed to further explore the neurobiological mechanisms underlying the complex relationship between inflammation-related dietary behaviour and memory and cognition.

  6. Does dietary inulin affect biological activity of a grapefruit flavonoid-rich extract?

    Science.gov (United States)

    Jurgoński, Adam; Juśkiewicz, Jerzy; Kowalska, Karolina; Zduńczyk, Zenon

    2012-04-11

    The aim of the study was to verify that the concomitant presence of grapefruit flavonoid extract with inulin in a Western-type diet may provide synergistic effects to the hindgut metabolism, as well as blood lipid and mineral profiles. Forty male Wistar rats were distributed into 4 groups and fed for 28 days with diets rich in fat, cholesterol and protein. A two-way repeated measures ANOVA was applied to assess the effects of inulin (v. sucrose, 5% of the diet), the addition of dietary grapefruit flavonoid extract (diets without or with 0.3% of an extract from hard parts of grapefruit) and the interaction between these two dietary factors. When compared to the control sucrose-containing diet, the diet enriched with inulin led to typical changes within the caecum, the main part of hindgut fermentation in rats, such as acidification of the digesta, support of bifidobacteria growth and increase of propionate and butyrate production. The dietary grapefruit flavonoid extract without inulin increased the bulk and pH value of caecal digesta, whereas short-chain fatty acid concentration and the bifidobacteria population were lowered compared to the extract-free diets. Simultaneous dietary addition of both tested components decreased slightly the pH value and increased somewhat the bifidobacteria number and the propionate concentration, however to the level observed with the control sucrose-containing diet. With regard to blood lipids, dietary grapefruit flavonoid extract decreased the triglyceride concentration regardless of the dietary carbohydrate type. Inulin does not provide any additional benefit to the blood lipid profile caused by the dietary application of grapefruit flavonoid extract and it does not counteract clearly detrimental effects of the extract in the hindgut. Adding grapefruit extract to the diet must be performed with caution due to possible adverse hindgut responses with overdoses.

  7. Does dietary inulin affect biological activity of a grapefruit flavonoid-rich extract?

    Directory of Open Access Journals (Sweden)

    Jurgoński Adam

    2012-04-01

    Full Text Available Abstract Background The aim of the study was to verify that the concomitant presence of grapefruit flavonoid extract with inulin in a Western-type diet may provide synergistic effects to the hindgut metabolism, as well as blood lipid and mineral profiles. Methods Forty male Wistar rats were distributed into 4 groups and fed for 28 days with diets rich in fat, cholesterol and protein. A two-way repeated measures ANOVA was applied to assess the effects of inulin (v. sucrose, 5% of the diet, the addition of dietary grapefruit flavonoid extract (diets without or with 0.3% of an extract from hard parts of grapefruit and the interaction between these two dietary factors. Results When compared to the control sucrose-containing diet, the diet enriched with inulin led to typical changes within the caecum, the main part of hindgut fermentation in rats, such as acidification of the digesta, support of bifidobacteria growth and increase of propionate and butyrate production. The dietary grapefruit flavonoid extract without inulin increased the bulk and pH value of caecal digesta, whereas short-chain fatty acid concentration and the bifidobacteria population were lowered compared to the extract-free diets. Simultaneous dietary addition of both tested components decreased slightly the pH value and increased somewhat the bifidobacteria number and the propionate concentration, however to the level observed with the control sucrose-containing diet. With regard to blood lipids, dietary grapefruit flavonoid extract decreased the triglyceride concentration regardless of the dietary carbohydrate type. Conclusion Inulin does not provide any additional benefit to the blood lipid profile caused by the dietary application of grapefruit flavonoid extract and it does not counteract clearly detrimental effects of the extract in the hindgut. Adding grapefruit extract to the diet must be performed with caution due to possible adverse hindgut responses with overdoses.

  8. Dynamic Biological Functioning Important for Simulating and Stabilizing Ocean Biogeochemistry

    Science.gov (United States)

    Buchanan, P. J.; Matear, R. J.; Chase, Z.; Phipps, S. J.; Bindoff, N. L.

    2018-04-01

    The biogeochemistry of the ocean exerts a strong influence on the climate by modulating atmospheric greenhouse gases. In turn, ocean biogeochemistry depends on numerous physical and biological processes that change over space and time. Accurately simulating these processes is fundamental for accurately simulating the ocean's role within the climate. However, our simulation of these processes is often simplistic, despite a growing understanding of underlying biological dynamics. Here we explore how new parameterizations of biological processes affect simulated biogeochemical properties in a global ocean model. We combine 6 different physical realizations with 6 different biogeochemical parameterizations (36 unique ocean states). The biogeochemical parameterizations, all previously published, aim to more accurately represent the response of ocean biology to changing physical conditions. We make three major findings. First, oxygen, carbon, alkalinity, and phosphate fields are more sensitive to changes in the ocean's physical state. Only nitrate is more sensitive to changes in biological processes, and we suggest that assessment protocols for ocean biogeochemical models formally include the marine nitrogen cycle to assess their performance. Second, we show that dynamic variations in the production, remineralization, and stoichiometry of organic matter in response to changing environmental conditions benefit the simulation of ocean biogeochemistry. Third, dynamic biological functioning reduces the sensitivity of biogeochemical properties to physical change. Carbon and nitrogen inventories were 50% and 20% less sensitive to physical changes, respectively, in simulations that incorporated dynamic biological functioning. These results highlight the importance of a dynamic biology for ocean properties and climate.

  9. The Association between Sweet Taste Function, Anthropometry, and Dietary Intake in Adults.

    Science.gov (United States)

    Low, Julia Y Q; Lacy, Kathleen E; McBride, Robert; Keast, Russell S J

    2016-04-23

    Variation in ability to detect, recognize, and perceive sweetness may influence food consumption, and eventually chronic nutrition-related conditions such as overweight and obesity. The aim of this study was to investigate the associations between sweet taste function, anthropometry, and dietary intake in adults. Participants' (n = 60; mean age in years = 26, SD = ±7.8) sweet taste function for a range of sweeteners (glucose, fructose, sucrose, sucralose, erythritol, and Rebaudioside A) was assessed by measuring detection and recognition thresholds and sweetness intensity. Height, weight, and waist circumference were also measured, and participants also completed a Food Frequency Questionnaire. There was large inter-individual variation in detection, recognition and sweetness intensity measures. Pearson's correlation coefficient revealed no robust correlations between measures of sweet taste function, anthropometry, and dietary intake, with the exception of suprathreshold intensity, which was moderately correlated with total energy intake (r = 0.23-0.40). One-way analysis of variance revealed no significant differences between the most and least sensitive participants in terms of BMI, waist circumference, and dietary intake for all measures of sweet taste function and sweeteners (all p > 0.01). When stratified into BMI categories, there were no significant differences in any measure of sweet taste function between the normal weight and overweight/obese participants (all p > 0.01). Results show that that sweet taste function is not associated with anthropometry and sweetness intensity measures are the most appropriate measure when assessing links between sweet taste and food consumption.

  10. Effects of dietary lipids on renal function of aged rats

    Directory of Open Access Journals (Sweden)

    Valente Gamba C.

    2001-01-01

    Full Text Available Normal aging is accompanied by renal functional and morphological deterioration and dietetic manipulation has been used to delay this age-related decline. We examined the effects of chronic administration of diets containing 5% lipid-enriched diet (LD, w/w on renal function of rats at different ages. Three types of LD were tested: canola oil, fish oil and butter. Mean systemic tail-cuff blood pressure and glycemia remained within the normal range whatever the age and the diet of the animals. Proteinuria began to rise from the 8th month in the groups ingesting LD, while in the control group it increased significantly (above 10 mg/24 h only after the 10th month. With age, a significant and progressive decline in glomerular filtration rate (GFR and renal plasma flow was observed in the LD groups but after 6 months of lipid supplementation, the decline in these parameters was more marked in the butter and fish oil groups. By the 18th month, the lowest GFR level was observed in the group ingesting the butter diet (2.93 ± 0.22 vs 5.01 ± 0.21 ml min-1 kg-1 in control, P<0.05. Net acid excretion, evaluated in 9- and 18-month-old rats, was stimulated in the fish oil group when compared both to control and to the other two LD groups. These results suggest that even low levels of LD in a chronic nutritional regimen can modify the age-related changes in renal function and that the impact of different types of lipid-supplemented diets on renal function depends on the kind of lipid present in the diet.

  11. Dietary Energy Density, Renal Function, and Progression of Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Rouhani

    2016-01-01

    Full Text Available Background. There is evidence of the association between dietary energy density and chronic diseases. However, no report exists regarding the relation between DED and chronic kidney disease (CKD. Objective. To examine the association between dietary energy density (DED, renal function, and progression of chronic kidney disease (CKD. Design. Cross-sectional. Setting. Three nephrology clinics. Subjects. Two hundred twenty-one subjects with diagnosed CKD. Main Outcome Measure. Dietary intake of patients was assessed by a validated food frequency questionnaire. DED (in kcal/g was calculated with the use of energy content and weight of solid foods and energy yielding beverages. Renal function was measured by blood urea nitrogen (BUN, serum creatinine (Cr, and estimated glomerular filtration rate (eGFR. Results. Patients in the first tertile of DED consumed more amounts of carbohydrate, dietary fiber, potassium, phosphorus, zinc, magnesium, calcium, folate, vitamin C, and vitamin B2. After adjusting for confounders, we could not find any significant trend for BUN and Cr across tertiles of DED. In multivariate model, an increased risk of being in the higher stage of CKD was found among those in the last tertile of DED (OR: 3.15; 95% CI: 1.30, 7.63; P=0.01. Conclusion. We observed that lower DED was associated with better nutrient intake and lower risk of CKD progression.

  12. Dietary Approach to Recurrent or Chronic Hyperkalaemia in Patients with Decreased Kidney Function

    Directory of Open Access Journals (Sweden)

    Adamasco Cupisti

    2018-02-01

    Full Text Available Whereas the adequate intake of potassium is relatively high in healthy adults, i.e., 4.7 g per day, a dietary potassium restriction of usually less than 3 g per day is recommended in the management of patients with reduced kidney function, especially those who tend to develop hyperkalaemia including patients who are treated with angiotensin pathway modulators. Most potassium-rich foods are considered heart-healthy nutrients with high fibre, high anti-oxidant vitamins and high alkali content such as fresh fruits and vegetables; hence, the main challenge of dietary potassium management is to maintain high fibre intake and a low net fixed-acid load, because constipation and metabolic acidosis are per se major risk factors for hyperkalaemia. To achieve a careful reduction of dietary potassium load without a decrease in alkali or fibre intake, we recommend the implementation of certain pragmatic dietary interventions as follows: Improving knowledge and education about the type of foods with excess potassium (per serving or per unit of weight; identifying foods that are needed for healthy nutrition in renal patients; classification of foods based on their potassium content normalized per unit of dietary fibre; education about the use of cooking procedures (such as boiling in order to achieve effective potassium reduction before eating; and attention to hidden sources of potassium, in particular additives in preserved foods and low-sodium salt substitutes. The present paper aims to review dietary potassium handling and gives information about practical approaches to limit potassium load in chronic kidney disease patients at risk of hyperkalaemia.

  13. Dietary saturated and unsaturated fats as determinants of blood pressure and vascular function.

    Science.gov (United States)

    Hall, Wendy L

    2009-06-01

    The amount and type of dietary fat have long been associated with the risk of CVD. Arterial stiffness and endothelial dysfunction are important risk factors in the aetiology of CHD. A range of methods exists to assess vascular function that may be used in nutritional science, including clinic and ambulatory blood pressure monitoring, pulse wave analysis, pulse wave velocity, flow-mediated dilatation and venous occlusion plethysmography. The present review focuses on the quantity and type of dietary fat and effects on blood pressure, arterial compliance and endothelial function. Concerning fat quantity, the amount of dietary fat consumed habitually appears to have little influence on vascular function independent of fatty acid composition, although single high-fat meals postprandially impair endothelial function compared with low-fat meals. The mechanism is related to increased circulating lipoproteins and NEFA which may induce pro-inflammatory pathways and increase oxidative stress. Regarding the type of fat, cross-sectional data suggest that saturated fat adversely affects vascular function whereas polyunsaturated fat (mainly linoleic acid (18 : 2n-6) and n-3 PUFA) are beneficial. EPA (20 : 5n-3) and DHA (22 : 6n-3) can reduce blood pressure, improve arterial compliance in type 2 diabetics and dyslipidaemics, and augment endothelium-dependent vasodilation. The mechanisms for this vascular protection, and the nature of the separate physiological effects induced by EPA and DHA, are priorities for future research. Since good-quality observational or interventional data on dietary fatty acid composition and vascular function are scarce, no further recommendations can be suggested in addition to current guidelines at the present time.

  14. Functional foods and dietary supplements for the management of dyslipidaemia.

    Science.gov (United States)

    Hunter, Paola M; Hegele, Robert A

    2017-05-01

    Dyslipidaemia is characterized by increased blood levels of total or LDL cholesterol and triglycerides, or decreased HDL cholesterol levels, and is a risk factor for cardiovascular disease. Dyslipidaemia has a high worldwide prevalence, and many patients are turning to alternatives to pharmacotherapy to manage their lipid levels. Lifestyle modification should be emphasized in all patients to reduce cardiovascular risk and can be initiated before pharmacotherapy in primary prevention of cardiovascular disease. Many functional foods and natural health products have been investigated for potential lipid-lowering properties. Those with good evidence for a biochemical effect on plasma lipid levels include soy protein, green tea, plant sterols, probiotic yogurt, marine-derived omega-3 fatty acids and red yeast rice. Other products such as seaweed, berberine, hawthorn and garlic might confer some limited benefit in certain patient groups. Although none of these products can reduce lipid levels to the same extent as statins, most are safe to use in addition to other lifestyle modifications and pharmacotherapy. Natural health products marketed at individuals with dyslipidaemia, such as policosanol, guggulsterone and resveratrol, have minimal definitive evidence of a biochemical benefit. Additional research is required in this field, which should include large, high-quality randomized controlled trials with long follow-up periods to investigate associations with cardiovascular end points.

  15. Relationship Between Dietary Fatty Acids and Reproductive Functions in Dairy Cattle

    Directory of Open Access Journals (Sweden)

    Ercan Soydan

    2017-12-01

    Full Text Available Selection of dairy cattle for higher milk yield, without considering important non-production traits, has decreased reproductive efficiency. Thus, low reproductive performance is a major problem in high yielding dairy cattle. Previous studies showed that dietary manipulation to improve fertility holds much promise and dietary fats have positive effects on reproductive functions in high yielding dairy cattle. Positive effects of fats on reproductive performance due to the fatty acids, which are the precursors of progesterone and prostaglandins. Progesterone and prostaglandins hormones are most important factors that play a role on the control of reproductive functions. The amount of linoleic, linolenic and arachidonic fattty acids in ration can be increase or decrease progesterone and prostaglandins synthesis especially PGF2α from ovary and uterus, respectively. Also fatty acids can be influence follicular development, ovulation, embryonic implantation and maternal recognition of pregnancy. This review focuses on the relationships between dietary fatty acids and reproductive functions such as hormone profiles, ovarian function and follicular development, oocyte quality, embryo development, embryonic implantation and maternal recognition of pregnancy in dairy cattle.

  16. The effects of various sources of dietary fibre on cholesterol metabolism and colonic function in healthy subjects

    NARCIS (Netherlands)

    Stasse-Wolthuis, M.

    1980-01-01

    This thesis deals with the influence of several types of dietary fibre on cholesterol metabolism and colonic function in young healthy subjects. Dietary fibre has been defined as those plant polysaccharides (cellulose, hemicelluloses, pectic substances) and lignin which are resistant to hydrolysis

  17. Dietary sodium modulation of aldosterone activation and renal function during the progression of experimental heart failure.

    Science.gov (United States)

    Miller, Wayne L; Borgeson, Daniel D; Grantham, J Aaron; Luchner, Andreas; Redfield, Margaret M; Burnett, John C

    2015-02-01

    Aldosterone activation is central to the sodium–fluid retention that marks the progression of heart failure (HF). The actions of dietary sodium restriction, a mainstay in HF management, on cardiorenal and neuroendocrine adaptations during the progression of HF are poorly understood. The study aim was to assess the role of dietary sodium during the progression of experimental HF. Experimental HF was produced in a canine model by rapid right ventricular pacing which evolves from early mild HF to overt, severe HF. Dogs were fed one of three diets: (i) high sodium [250 mEq (5.8 g) per day, n =6]; (ii) standard sodium [58 mEq (1.3 g) per day, n =6]; and (iii) sodium restriction [11 mEq (0.25 g) per day, n =6]. During the 38-day study, haemodynamics, renal function, plasma renin activity (PRA), and aldosterone were measured. Changes in haemodynamics at 38 days were similar in all three groups, as were changes in renal function. Aldosterone activation was demonstrated in all three groups; however, dietary sodium restriction, in contrast to high sodium, resulted in early (10 days) activation of PRA and aldosterone. High sodium demonstrated significant suppression of aldosterone activation over the course of HF progression. Excessive dietary sodium restriction particularly in early stage HF results in early aldosterone activation, while normal and excess sodium intake are associated with delayed or suppressed activation. These findings warrant evaluation in humans to determine if dietary sodium manipulation, particularly during early stage HF, may have a significant impact on neuroendocrine disease progression.

  18. Associations between Dietary Patterns and Post-Bronchodilation Lung Function in the SAPALDIA Cohort.

    Science.gov (United States)

    Steinemann, Nina; Grize, Leticia; Pons, Marco; Rothe, Thomas; Stolz, Daiana; Turk, Alexander; Schindler, Christian; Brombach, Christine; Probst-Hensch, Nicole

    2018-05-04

    Chronic obstructive pulmonary disease (COPD) is not restricted to smokers. Dietary habits may contribute to the disease occurrence. Epidemiological studies point to a protective effect of fruit and vegetable intake against COPD. To investigate the associations between dietary patterns and parameters of lung function related to COPD in the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA). Data were included from the second follow-up assessment of the SAPALDIA cohort in 2010-2011 using a food frequency questionnaire. Principal component factor analysis was used to derive dietary patterns, whose association with FEV1, FEV1/FVC, FEF2575, and COPD was investigated by applying multivariate regression analyses. After adjustment for potential confounders, the "prudent dietary pattern" characterised by the predominant food groups vegetables, fruits, water, tea and coffee, fish, and nuts was positively associated with FEV1 (increase of 40 mL per SD, p promotion. © 2018 The Author(s) Published by S. Karger AG, Basel.

  19. Dietary resources shape the adaptive changes of cyanide detoxification function in giant panda (Ailuropoda melanoleuca)

    OpenAIRE

    He Huang; Shangmian Yie; Yuliang Liu; Chengdong Wang; Zhigang Cai; Wenping Zhang; Jingchao Lan; Xiangming Huang; Li Luo; Kailai Cai; Rong Hou; Zhihe Zhang

    2016-01-01

    The functional adaptive changes in cyanide detoxification in giant panda appear to be response to dietary transition from typical carnivore to herbivorous bear. We tested the absorption of cyanide contained in bamboo/bamboo shoots with a feeding trial in 20 adult giant pandas. We determined total cyanide content in bamboo shoots and giant panda?s feces, levels of urinary thiocyanate and tissue rhodanese activity using color reactions with a spectrophotometer. Rhodanese expression in liver and...

  20. Biological pathways and genetic mechanisms involved in social functioning.

    Science.gov (United States)

    Ordoñana, Juan R; Bartels, Meike; Boomsma, Dorret I; Cella, David; Mosing, Miriam; Oliveira, Joao R; Patrick, Donald L; Veenhoven, Ruut; Wagner, Gert G; Sprangers, Mirjam A G

    2013-08-01

    To describe the major findings in the literature regarding associations between biological and genetic factors and social functioning, paying special attention to: (1) heritability studies on social functioning and related concepts; (2) hypothesized biological pathways and genetic variants that could be involved in social functioning, and (3) the implications of these results for quality-of-life research. A search of Web of Science and PubMed databases was conducted using combinations of the following keywords: genetics, twins, heritability, social functioning, social adjustment, social interaction, and social dysfunction. Variability in the definitions and measures of social functioning was extensive. Moderate to high heritability was reported for social functioning and related concepts, including prosocial behavior, loneliness, and extraversion. Disorders characterized by impairments in social functioning also show substantial heritability. Genetic variants hypothesized to be involved in social functioning are related to the network of brain structures and processes that are known to affect social cognition and behavior. Better knowledge and understanding about the impact of genetic factors on social functioning is needed to help us to attain a more comprehensive view of health-related quality-of-life (HRQOL) and will ultimately enhance our ability to identify those patients who are vulnerable to poor social functioning.

  1. Utilization of Food Processing By-products as Dietary, Functional, and Novel Fiber: A Review.

    Science.gov (United States)

    Sharma, Satish Kumar; Bansal, Sangita; Mangal, Manisha; Dixit, Anil Kumar; Gupta, Ram K; Mangal, A K

    2016-07-26

    Fast growing food processing industry in most countries across the world, generates huge quantity of by-products, including pomace, hull, husk, pods, peel, shells, seeds, stems, stalks, bran, washings, pulp refuse, press cakes, etc., which have less use and create considerable environmental pollution. With growing interest in health promoting functional foods, the demand of natural bioactives has increased and exploration for new sources is on the way. Many of the food processing industrial by-products are rich sources of dietary, functional, and novel fibers. These by-products can be directly (or after certain modifications for isolation or purification of fiber) used for the manufacture of various foods, i.e. bread, buns, cake, pasta, noodles, biscuit, ice creams, yogurts, cheese, beverages, milk shakes, instant breakfasts, ice tea, juices, sports drinks, wine, powdered drink, fermented milk products, meat products and meat analogues, synthetic meat, etc. A comprehensive literature survey has been carried on this topic to give an overview in the field dietary fiber from food by-products. In this article, the developments in the definition of fiber, fiber classification, potential sources of dietary fibers in food processing by-products, their uses, functional properties, caloric content, energy values and the labelling regulations have been discussed.

  2. A review on early gut maturation and colonization in pigs, including biological and dietary factors affecting gut homeostasis

    DEFF Research Database (Denmark)

    Everaert, Nadia; Van Cruchten, Steven; Weström, Björn

    2017-01-01

    During the prenatal, neonatal and post-weaning periods, the mammalian gastrointestinal tract undergoes various morphological and physiological changes alongside with an expansion of the immune system and microbial ecosystem. This review focuses on the time period before weaning and summarizes...... in digestive function coincides with development in both the adaptive and innate immune system. This secures a balanced immune response to the ingested milk-derived macromolecules, and colonizing bacteria. Husbandry and dietary interventions in early life appear to affect the development of multiple components...... and immunological maturation, as influenced by early microbial colonization and ingestion of dietary factors, is of utmost importance to identify management and feeding strategies to optimize intestinal health. We discuss some possible implications related to intrauterine growth restriction, and preterm delivery...

  3. Uncovering Biological Network Function via Graphlet Degree Signatures

    Directory of Open Access Journals (Sweden)

    Nataša Pržulj

    2008-01-01

    Full Text Available Motivation: Proteins are essential macromolecules of life and thus understanding their function is of great importance. The number of functionally unclassified proteins is large even for simple and well studied organisms such as baker’s yeast. Methods for determining protein function have shifted their focus from targeting specific proteins based solely on sequence homology to analyses of the entire proteome based on protein-protein interaction (PPI networks. Since proteins interact to perform a certain function, analyzing structural properties of PPI networks may provide useful clues about the biological function of individual proteins, protein complexes they participate in, and even larger subcellular machines.Results: We design a sensitive graph theoretic method for comparing local structures of node neighborhoods that demonstrates that in PPI networks, biological function of a node and its local network structure are closely related. The method summarizes a protein’s local topology in a PPI network into the vector of graphlet degrees called the signature of the protein and computes the signature similarities between all protein pairs. We group topologically similar proteins under this measure in a PPI network and show that these protein groups belong to the same protein complexes, perform the same biological functions, are localized in the same subcellular compartments, and have the same tissue expressions. Moreover, we apply our technique on a proteome-scale network data and infer biological function of yet unclassified proteins demonstrating that our method can provide valuable guidelines for future experimental research such as disease protein prediction.Availability: Data is available upon request.

  4. The functioning and behaviour of biological parents of children ...

    African Journals Online (AJOL)

    Parenting a child with ADHD may intensify parental stress through functional impairment notwithstanding the diagnosis of ADHD. Methods: Eighty-one biological parents of children diagnosed with attention-deficit/ hyperactivity disorder were screened using self-reporting measurements. ADHD self-report scale (ASRS-V 1.1) ...

  5. Effects of Dietary Flavonoids on Reverse Cholesterol Transport, HDL Metabolism, and HDL Function.

    Science.gov (United States)

    Millar, Courtney L; Duclos, Quinn; Blesso, Christopher N

    2017-03-01

    Strong experimental evidence confirms that HDL directly alleviates atherosclerosis. HDL particles display diverse atheroprotective functions in reverse cholesterol transport (RCT), antioxidant, anti-inflammatory, and antiapoptotic processes. In certain inflammatory disease states, however, HDL particles may become dysfunctional and proatherogenic. Flavonoids show the potential to improve HDL function through their well-documented effects on cellular antioxidant status and inflammation. The aim of this review is to summarize the basic science and clinical research examining the effects of dietary flavonoids on RCT and HDL function. Based on preclinical studies that used cell culture and rodent models, it appears that many flavonoids (e.g., anthocyanidins, flavonols, and flavone subclasses) influence RCT and HDL function beyond simple HDL cholesterol concentration by regulating cellular cholesterol efflux from macrophages and hepatic paraoxonase 1 expression and activity. In clinical studies, dietary anthocyanin intake is associated with beneficial changes in serum biomarkers related to HDL function in a variety of human populations (e.g., in those who are hyperlipidemic, hypertensive, or diabetic), including increased HDL cholesterol concentration, as well as HDL antioxidant and cholesterol efflux capacities. However, clinical research on HDL functionality is lacking for some flavonoid subclasses (e.g., flavanols, flavones, flavanones, and isoflavones). Although there has been a tremendous effort to develop HDL-targeted drug therapies, more research is warranted on how the intake of foods or specific nutrients affects HDL function. © 2017 American Society for Nutrition.

  6. Evolutionary cell biology: functional insight from "endless forms most beautiful".

    Science.gov (United States)

    Richardson, Elisabeth; Zerr, Kelly; Tsaousis, Anastasios; Dorrell, Richard G; Dacks, Joel B

    2015-12-15

    In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking. © 2015 Richardson et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. The Association between Sweet Taste Function, Anthropometry, and Dietary Intake in Adults

    Directory of Open Access Journals (Sweden)

    Julia Y. Q. Low

    2016-04-01

    Full Text Available Variation in ability to detect, recognize, and perceive sweetness may influence food consumption, and eventually chronic nutrition-related conditions such as overweight and obesity. The aim of this study was to investigate the associations between sweet taste function, anthropometry, and dietary intake in adults. Participants’ (n = 60; mean age in years = 26, SD = ±7.8 sweet taste function for a range of sweeteners (glucose, fructose, sucrose, sucralose, erythritol, and Rebaudioside A was assessed by measuring detection and recognition thresholds and sweetness intensity. Height, weight, and waist circumference were also measured, and participants also completed a Food Frequency Questionnaire. There was large inter-individual variation in detection, recognition and sweetness intensity measures. Pearson’s correlation coefficient revealed no robust correlations between measures of sweet taste function, anthropometry, and dietary intake, with the exception of suprathreshold intensity, which was moderately correlated with total energy intake (r = 0.23–0.40. One-way analysis of variance revealed no significant differences between the most and least sensitive participants in terms of BMI, waist circumference, and dietary intake for all measures of sweet taste function and sweeteners (all p > 0.01. When stratified into BMI categories, there were no significant differences in any measure of sweet taste function between the normal weight and overweight/obese participants (all p > 0.01. Results show that that sweet taste function is not associated with anthropometry and sweetness intensity measures are the most appropriate measure when assessing links between sweet taste and food consumption.

  8. Linking structural features of protein complexes and biological function.

    Science.gov (United States)

    Sowmya, Gopichandran; Breen, Edmond J; Ranganathan, Shoba

    2015-09-01

    Protein-protein interaction (PPI) establishes the central basis for complex cellular networks in a biological cell. Association of proteins with other proteins occurs at varying affinities, yet with a high degree of specificity. PPIs lead to diverse functionality such as catalysis, regulation, signaling, immunity, and inhibition, playing a crucial role in functional genomics. The molecular principle of such interactions is often elusive in nature. Therefore, a comprehensive analysis of known protein complexes from the Protein Data Bank (PDB) is essential for the characterization of structural interface features to determine structure-function relationship. Thus, we analyzed a nonredundant dataset of 278 heterodimer protein complexes, categorized into major functional classes, for distinguishing features. Interestingly, our analysis has identified five key features (interface area, interface polar residue abundance, hydrogen bonds, solvation free energy gain from interface formation, and binding energy) that are discriminatory among the functional classes using Kruskal-Wallis rank sum test. Significant correlations between these PPI interface features amongst functional categories are also documented. Salt bridges correlate with interface area in regulator-inhibitors (r = 0.75). These representative features have implications for the prediction of potential function of novel protein complexes. The results provide molecular insights for better understanding of PPIs and their relation to biological functions. © 2015 The Protein Society.

  9. Dietary Patterns Associated with Cognitive Function among the Older People in Underdeveloped Regions: Finding from the NCDFaC Study.

    Science.gov (United States)

    Yin, Zhaoxue; Chen, Jing; Zhang, Jian; Ren, Zeping; Dong, Kui; Kraus, Virginia B; Wang, Zhuoqun; Zhang, Mei; Zhai, Yi; Song, Pengkun; Zhao, Yanfang; Pang, Shaojie; Mi, Shengquan; Zhao, Wenhua

    2018-04-09

    Although dietary patterns are crucial to cognitive function, associations of dietary patterns with cognitive function have not yet been fully understood. This cross-sectional study explored dietary patterns associated with cognitive function among the older adults in underdeveloped regions, using 1504 community-dwelling older adults aged 60 and over. Diet was assessed using a food frequency questionnaire and 24-h dietary recall. Factor analysis was used to extract dietary patterns. Global cognitive function was assessed using the Mini-Mental State Examination (MMSE). Two dietary patterns, a "mushroom, vegetable, and fruits" (MVF) pattern and a "meat and soybean products" (MS) pattern, were identified. The MVF pattern, characterized by high consumption of mushrooms, vegetables, and fruits was significantly positively associated with cognitive function ( p cognitive impairment and β (95% CIs) 0.15 (0.02, 0.29) for -log (31-MMSE score). The MS pattern, characterized by high consumption of soybean products and meat, was also associated with better cognitive function, with an odds ratio of 0.47 (95% CIs 0.30, 0.74) for cognitive impairment and β (95% CIs) 0.34 (0.21, 0.47) for -log (31-MMSE score). Our results suggested that both the MVF and MS patterns were positively associated with better cognitive function among older adults in underdeveloped regions.

  10. Mediterranean and western dietary patterns are related to markers of testicular function among healthy men

    DEFF Research Database (Denmark)

    Cutillas-Tolín, A; Mínguez-Alarcón, L; Mendiola, J

    2015-01-01

    STUDY QUESTION: Are there any associations of dietary patterns with semen quality, reproductive hormone levels, and testicular volume, as markers of testicular function? SUMMARY ANSWER: These results suggest that traditional Mediterranean diets may have a positive impact on male reproductive...... potential. WHAT IS KNOWN ALREADY: The Mediterranean diet has been related to lower risk of multiple chronic diseases, but its effects on reproduction potential are unclear. STUDY DESIGN, SIZE, DURATION: Cross-sectional sample of 215 male university students recruited from October 2010 to November 2011...... to analyze the relation between diet patterns with semen quality parameters, reproductive hormone levels and testicular volume adjusting for potential confounders. MAIN RESULTS AND THE ROLE OF CHANCE: We identified two dietary patterns: a Mediterranean (characterized by high intakes of vegetables, fruits...

  11. Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids.

    Science.gov (United States)

    El-Seedi, Hesham R; El-Said, Asmaa M A; Khalifa, Shaden A M; Göransson, Ulf; Bohlin, Lars; Borg-Karlson, Anna-Karin; Verpoorte, Rob

    2012-11-07

    Hydroxycinnamic acids are the most widely distributed phenolic acids in plants. Broadly speaking, they can be defined as compounds derived from cinnamic acid. They are present at high concentrations in many food products, including fruits, vegetables, tea, cocoa, and wine. A diet rich in hydroxycinnamic acids is thought to be associated with beneficial health effects such as a reduced risk of cardiovascular disease. The impact of hydroxycinnamic acids on health depends on their intake and pharmacokinetic properties. This review discusses their chemistry, biosynthesis, natural sources, dietary intake, and pharmacokinetic properties.

  12. Dietary sodium restriction and β2-adrenergic receptor polymorphism modulate cardiovascular function in humans

    Science.gov (United States)

    Eisenach, John H; Schroeder, Darrell R; Pike, Tasha L; Johnson, Christopher P; Schrage, William G; Snyder, Eric M; Johnson, Bruce D; Garovic, Vesna D; Turner, Stephen T; Joyner, Michael J

    2006-01-01

    group. This study provides evidence that dietary Na+ modulates effects of the Arg16Gly polymorphism on cardiovascular function. PMID:16740612

  13. Modification of sympathetic neuronal function in the rat tail artery by dietary lipid treatment

    International Nuclear Information System (INIS)

    Panek, R.L.; Dixon, W.R.; Rutledge, C.O.

    1985-01-01

    The effect of dietary lipid treatment on sympathetic neuronal function was examined in isolated perfused tail arteries of adult rats. The hypothesis that dietary manipulations alter the lipid environment of receptor proteins which may result in the perturbation of specific membrane-associated processes that regulate peripheral adrenergic neurotransmission in the vasculature was the basis for this investigation. In the present study, rats were fed semisynthetic diets enriched in either 16% coconut oil (saturated fat) or 16% sunflower oil (unsaturated fat). The field stimulation-evoked release of endogenous norepinephrine and total 3 H was decreased significantly in rats receiving the coconut oil diet when compared to either sunflower oil- or standard lab chow-fed rats. Norepinephrine content in artery segments from coconut oil-treated rats was significantly higher compared to either sunflower oil- or standard lab chow-fed rats. Tail arteries from rats receiving the coconut oil diet displayed significantly lower perfusion pressure responses to nerve stimulation at all frequencies tested when compared to the sunflower oil- or standard lab chow-fed rats. Vasoconstrictor responses of perfused tail arteries exposed to exogenous norepinephrine resulted in an EC50 for norepinephrine that was not changed by the dietary treatment, but adult rats receiving the sunflower oil diet displayed a significantly greater maximum response to exogenous norepinephrine (10(-5) M) compared to arteries from either coconut oil- or standard lab chow-fed rats

  14. Dietary intake, lung function and airway inflammation in Mexico City school children exposed to air pollutants

    Directory of Open Access Journals (Sweden)

    Díaz-Sánchez David

    2009-12-01

    Full Text Available Abstract Introduction Air pollutant exposure has been associated with an increase in inflammatory markers and a decline in lung function in asthmatic children. Several studies suggest that dietary intake of fruits and vegetables might modify the adverse effect of air pollutants. Methods A total of 158 asthmatic children recruited at the Children's Hospital of Mexico and 50 non-asthmatic children were followed for 22 weeks. Pulmonary function was measured and nasal lavage collected and analyzed every 2 weeks. Dietary intake was evaluated using a 108-item food frequency questionnaire and a fruit and vegetable index (FVI and a Mediterranean diet index (MDI were constructed. The impact of these indices on lung function and interleukin-8 (IL-8 and their interaction with air pollutants were determined using mixed regression models with random intercept and random slope. Results FVI was inversely related to IL-8 levels in nasal lavage (p 1 (test for trend p 1 and FVC as was with MDI and ozone for FVC. No effect of diet was observed among healthy children. Conclusion Our results suggest that fruit and vegetable intake and close adherence to the Mediterranean diet have a beneficial effect on inflammatory response and lung function in asthmatic children living in Mexico City.

  15. Dietary influences on cognitive function with aging: from high-fat diets to healthful eating.

    Science.gov (United States)

    Parrott, Matthew D; Greenwood, Carol E

    2007-10-01

    Human epidemiologic studies provide convincing evidence that dietary patterns practiced during adulthood are important contributors to age-related cognitive decline and dementia risk. Diets high in fat, especially trans and saturated fats, adversely affect cognition, while those high in fruits, vegetables, cereals, and fish are associated with better cognitive function and lower risk of dementia. While the precise physiologic mechanisms underlying these dietary influences are not completely understood, modulation of brain insulin activity and neuroinflammation likely contribute. Not surprisingly, deficits in cognitive functions, especially those dependent on the medial temporal lobes, are apparent in type 2 diabetes mellitus (T2DM). Special care in food selection at meals should be exercised by those with T2DM since ingestion of rapidly absorbed, high-glycemic index carbohydrate foods further impairs medial temporal lobe function, with food-induced increases in oxidative stress and cytokine release likely explaining the association between food ingestion and reduction in cognitive function in those with T2DM.

  16. Knowledge base and functionality of concepts of some Filipino biology teachers in five biology topics

    Science.gov (United States)

    Barquilla, Manuel B.

    2018-01-01

    This mixed research, is a snapshot of some Filipino Biology teachers' knowledge structure and how their concepts of the five topics in Biology (Photosynthesis, Cellular Respiration, human reproductive system, Mendelian genetics and NonMendelian genetics) functions and develops inside a biology classroom. The study focuses on the six biology teachers and a total of 222 students in their respective classes. Of the Six (6) teachers, three (3) are under the Science curriculum and the other three (3) are under regular curriculum in both public and private schools in Iligan city and Lanao del Norte, Philippines. The study utilized classroom discourses, concept maps, interpretative case-study method, bracketing method, and concept analysis for qualitative part; the quantitative part uses a nonparametric statistical tool, Kendall's tau Coefficient for determining relationship and congruency while measures of central tendencies and dispersion (mean, and standard deviation) for concept maps scores interpretation. Knowledge Base of Biology teachers were evaluated by experts in field of specialization having a doctorate program (e.g. PhD in Genetics) and PhD Biology candidates. The data collection entailed seven (7) months immersion: one (1) month for preliminary phase for the researcher to gain teachers' and students' confidence and the succeeding six (6) months for main observation and data collection. The evaluation of teachers' knowledge base by experts indicated that teachers' knowledge of (65%) is lower than the minimum (75%) recommended by ABD-el-Khalick and Boujaoude (1997). Thus, the experts believe that content knowledge of the teachers is hardly adequate for their teaching assignment. Moreover, the teachers in this study do not systematically use reallife situation to apply the concepts they teach. They can identify concepts too abstract for their student; however, they seldom use innovative ways to bring the discussion to their students' level of readiness and

  17. Progress in the biological function of alpha-enolase

    Directory of Open Access Journals (Sweden)

    Hong Ji

    2016-03-01

    Full Text Available Alpha-enolase (ENO1, also known as 2-phospho-D-glycerate hydrolase, is a metalloenzyme that catalyzes the conversion of 2-phosphoglyceric acid to phosphoenolpyruvic acid in the glycolytic pathway. It is a multifunctional glycolytic enzyme involved in cellular stress, bacterial and fungal infections, autoantigen activities, the occurrence and metastasis of cancer, parasitic infections, and the growth, development and reproduction of organisms. This article mainly reviews the basic characteristics and biological functions of ENO1.

  18. Physicochemical and functional properties of dietary fiber from maca (Lepidium meyenii Walp.) liquor residue.

    Science.gov (United States)

    Chen, Jinjin; Zhao, Qingsheng; Wang, Liwei; Zha, Shenghua; Zhang, Lijun; Zhao, Bing

    2015-11-05

    Using maca (Lepidium meyenii) liquor residue as the raw material, dietary fiber (DF) was prepared by chemical (MCDF) and enzymatic (MEDF) methods, respectively, of which the physicochemical and functional properties were comparatively studied. High contents of DF were found in MCDF (55.63%) and MEDF (81.10%). Both fibers showed good functional properties, including swelling capacity, water holding capacity, oil holding capacity, glucose adsorption capacity and glucose retardation index. MEDF showed better functional properties, which could be attributed to its higher content of DF, more irregular surface and more abundant monosaccharide composition. The results herein suggest that maca DF prepared by enzymatic method from liquor residue is a good functional ingredient in food products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. SU-E-T-54: Benefits of Biological Cost Functions

    International Nuclear Information System (INIS)

    Demirag, N

    2014-01-01

    Purpose: To verify the benefits of the biological cost functions. Methods: TG166 patients were used for the test case scenarios. Patients were planned using Monaco V5.0 (CMS/Elekta, St.Louis, MO) Monaco has 3 biological and 8 physical CFs. In this study the plans were optimized using 3 different scenarios. 1- Biological CFs only 2-Physical CFs only 3- Combination of Physical and Biological CFsMonaco has 3 biological CFs. Target EUD used for the targets, derived from the poisson cell kill model, has an α value that controls the cold spots inside the target. α values used in the optimization were 0.5 and 0.8. if cold spots needs to be penalized α value increased. Serial CF: it's called serial to mimic the behaviour of the serial organs, if a high k value like 12 or 14 is used it controls the maximum dose. Serial CF has a k parameter that is used to shape the whole dvh curve. K value ranges between 1–20. k:1 is used to control the mean dose, lower k value controls the mean dose, higher k value controls the higher dose, using 2 serial CFs with different k values controls the whole DVH. Paralel CF controls the percentage of the volume that tolerates higher doses than the reference dose to mimic the behaviour of the paralel organs. Results: It was possible to achive clinically accepted plans in all 3 scenarios. The benefit of the biological cost functions were to control the mean dose for target and OAR, to shape the DVH curve using one EUD value and one k value simplifies the optimization process. Using the biological CFs alone, it was hard to control the dose at a point. Conclusion: Biological CFs in Monaco doesn't require the ntcp/tcp values from the labs and useful to shape the whole dvh curve. I work as an applications support specialist for Elekta and I am a Ph.D. Student in Istanbul University for radiation therapy physics

  20. Construction of Biologically Functional Bacterial Plasmids In Vitro

    Science.gov (United States)

    Cohen, Stanley N.; Chang, Annie C. Y.; Boyer, Herbert W.; Helling, Robert B.

    1973-01-01

    The construction of new plasmid DNA species by in vitro joining of restriction endonuclease-generated fragments of separate plasmids is described. Newly constructed plasmids that are inserted into Escherichia coli by transformation are shown to be biologically functional replicons that possess genetic properties and nucleotide base sequences from both of the parent DNA molecules. Functional plasmids can be obtained by reassociation of endonuclease-generated fragments of larger replicons, as well as by joining of plasmid DNA molecules of entirely different origins. Images PMID:4594039

  1. Dietary sodium loading impairs microvascular function independent of blood pressure in humans: role of oxidative stress

    Science.gov (United States)

    Greaney, Jody L; DuPont, Jennifer J; Lennon-Edwards, Shannon L; Sanders, Paul W; Edwards, David G; Farquhar, William B

    2012-01-01

    Animal studies have reported dietary salt-induced reductions in vascular function independent of increases in blood pressure (BP). The purpose of this study was to determine if short-term dietary sodium loading impairs cutaneous microvascular function in normotensive adults with salt resistance. Following a control run-in diet, 12 normotensive adults (31 ± 2 years) were randomized to a 7 day low-sodium (LS; 20 mmol day−1) and 7 day high-sodium (HS; 350 mmol day−1) diet (controlled feeding study). Salt resistance, defined as a ≤5 mmHg change in 24 h mean BP determined while on the LS and HS diets, was confirmed in all subjects undergoing study (LS: 84 ± 1 mmHg vs. HS: 85 ± 2 mmHg; P > 0.05). On the last day of each diet, subjects were instrumented with two microdialysis fibres for the local delivery of Ringer solution and 20 mm ascorbic acid (AA). Laser Doppler flowmetry was used to measure red blood cell flux during local heating-induced vasodilatation (42°C). After the established plateau, 10 mm l-NAME was perfused to quantify NO-dependent vasodilatation. All data were expressed as a percentage of maximal cutaneous vascular conductance (CVC) at each site (28 mm sodium nitroprusside; 43°C). Sodium excretion increased during the HS diet (P sodium loading impairs cutaneous microvascular function independent of BP in normotensive adults and suggest a role for oxidative stress. PMID:22907057

  2. The Link between Dietary Protein Intake, Skeletal Muscle Function and Health in Older Adults

    Directory of Open Access Journals (Sweden)

    Jamie I. Baum

    2015-07-01

    Full Text Available Skeletal muscle mass and function are progressively lost with age, a condition referred to as sarcopenia. By the age of 60, many older adults begin to be affected by muscle loss. There is a link between decreased muscle mass and strength and adverse health outcomes such as obesity, diabetes and cardiovascular disease. Data suggest that increasing dietary protein intake at meals may counterbalance muscle loss in older individuals due to the increased availability of amino acids, which stimulate muscle protein synthesis by activating the mammalian target of rapamycin (mTORC1. Increased muscle protein synthesis can lead to increased muscle mass, strength and function over time. This review aims to address the current recommended dietary allowance (RDA for protein and whether or not this value meets the needs for older adults based upon current scientific evidence. The current RDA for protein is 0.8 g/kg body weight/day. However, literature suggests that consuming protein in amounts greater than the RDA can improve muscle mass, strength and function in older adults.

  3. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions.

    Science.gov (United States)

    Zhang, Dong-Mei; Jiao, Rui-Qing; Kong, Ling-Dong

    2017-03-29

    High dietary fructose is a major contributor to insulin resistance and metabolic syndrome, disturbing tissue and organ functions. Fructose is mainly absorbed into systemic circulation by glucose transporter 2 (GLUT2) and GLUT5, and metabolized in liver to produce glucose, lactate, triglyceride (TG), free fatty acid (FFA), uric acid (UA) and methylglyoxal (MG). Its extrahepatic absorption and metabolism also take place. High levels of these metabolites are the direct dangerous factors. During fructose metabolism, ATP depletion occurs and induces oxidative stress and inflammatory response, disturbing functions of local tissues and organs to overproduce inflammatory cytokine, adiponectin, leptin and endotoxin, which act as indirect dangerous factors. Fructose and its metabolites directly and/or indirectly cause oxidative stress, chronic inflammation, endothelial dysfunction, autophagy and increased intestinal permeability, and then further aggravate the metabolic syndrome with tissue and organ dysfunctions. Therefore, this review addresses fructose-induced metabolic syndrome, and the disturbance effects of direct and/or indirect dangerous factors on the functions of liver, adipose, pancreas islet, skeletal muscle, kidney, heart, brain and small intestine. It is important to find the potential correlations between direct and/or indirect risk factors and healthy problems under excess dietary fructose consumption.

  4. Effects of Dietary Vitamin E on Fertility Functions in Poultry Species

    Directory of Open Access Journals (Sweden)

    Deivendran Rengaraj

    2015-04-01

    Full Text Available Vitamin E is found in high quantities in vegetable oils. Although vitamin E has multiple functions in humans and animals, its key function is protecting cells from oxidative damage. Since its discovery, several studies have demonstrated that vitamin E deficiency causes impaired fertility in humans and lab animals. However, the effects of vitamin E deficiency or of its supplementation on the fertility of farm animals, particularly on poultry, are less well studied. Therefore, a comprehensive review of the effects of dietary vitamin E on the fertility of poultry species is needed in order to understand the beneficial role of vitamin E in the maintenance of sperm and egg qualities. Based on the observations reviewed here, we found that a moderate amount of vitamin E in poultry diet significantly protects semen/sperm qualities in male birds and egg qualities in female birds via decreasing the lipid peroxidation in semen/sperms and eggs. This review provides an overall understanding of the effects of dietary vitamin E on fertility functions in poultry species.

  5. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions

    Directory of Open Access Journals (Sweden)

    Dong-Mei Zhang

    2017-03-01

    Full Text Available High dietary fructose is a major contributor to insulin resistance and metabolic syndrome, disturbing tissue and organ functions. Fructose is mainly absorbed into systemic circulation by glucose transporter 2 (GLUT2 and GLUT5, and metabolized in liver to produce glucose, lactate, triglyceride (TG, free fatty acid (FFA, uric acid (UA and methylglyoxal (MG. Its extrahepatic absorption and metabolism also take place. High levels of these metabolites are the direct dangerous factors. During fructose metabolism, ATP depletion occurs and induces oxidative stress and inflammatory response, disturbing functions of local tissues and organs to overproduce inflammatory cytokine, adiponectin, leptin and endotoxin, which act as indirect dangerous factors. Fructose and its metabolites directly and/or indirectly cause oxidative stress, chronic inflammation, endothelial dysfunction, autophagy and increased intestinal permeability, and then further aggravate the metabolic syndrome with tissue and organ dysfunctions. Therefore, this review addresses fructose-induced metabolic syndrome, and the disturbance effects of direct and/or indirect dangerous factors on the functions of liver, adipose, pancreas islet, skeletal muscle, kidney, heart, brain and small intestine. It is important to find the potential correlations between direct and/or indirect risk factors and healthy problems under excess dietary fructose consumption.

  6. The dietary fiber profile of fruit peels and functionality modifications induced by high hydrostatic pressure treatments.

    Science.gov (United States)

    Tejada-Ortigoza, Viridiana; García-Amezquita, Luis Eduardo; Serna-Saldívar, Sergio O; Welti-Chanes, Jorge

    2017-07-01

    The effect of high hydrostatic pressure (HHP) and temperature on composition of non-conventional dietary fiber (DF) sources and functional properties were evaluated. Mango, orange, or prickly pear peels were processed at 600 MPa during 10 min at 22 ℃ and 55 ℃. Total (TDF), soluble (SDF), and insoluble (IDF) dietary fiber, water/oil holding, and retention capacity, solubility, swelling capacity, and bulk density were assayed. An increment in the SDF content was observed due to the effect of pressure with the greatest changes noticed in mango peel, increasing from 37.4% (control) to 45.7% (SDF/TDF) in the HHP-treated (55 ℃) sample. Constant values of TDF after the treatments suggest a conversion of IDF to SDF in mango (38.9%-40.5% dw) and orange (49.0%-50.8% dw) peels. The highest fiber solubility values were observed for mango peel ranging between 80.3% and 83.9%, but the highest increase, from 55.1% to 62.3%, due to treatment was displayed in orange peel processed at 22 ℃. A relationship between DF modifications induced by HHP treatment and changes in the functional properties of the materials was established. Application of HHP opens up the opportunity to modify non-conventional sources of DF and to obtain novel functional properties for different food applications.

  7. Dietary Sodium Modulation of Aldosterone Activation and Renal Function During the Progression of Experimental Heart Failure Miller: Dietary Sodium and Early Heart Failure

    Science.gov (United States)

    Miller, Wayne L.; Borgeson, Daniel D.; Grantham, J. Aaron; Luchner, Andreas; Redfield, Margaret M.; Burnett, John C.

    2015-01-01

    Aims Aldosterone activation is central to the sodium-fluid retention that marks the progression of heart failure (HF). The actions of dietary sodium restriction, a mainstay in HF management, on cardiorenal and neuroendocrine adaptations during the progression of HF are poorly understood. The study aim was to assess the role of dietary sodium during the progression of experimental HF. Methods and Results Experimental HF was produced in a canine model by rapid right ventricular pacing which evolves from early mild HF to overt, severe HF. Dogs were fed one of three diets: 1) high sodium [250 mEq (5.8 grams) per day, n=6]; 2) standard sodium [58 mEq (1.3 grams) per day, n=6]; and 3) sodium restriction [11 mEq (0.25 grams) per day, n=6]. During the 38 day study hemodynamics, renal function, renin activity (PRA), and aldosterone were measured. Changes in hemodynamics at 38 days were similar in all three groups, as were changes in renal function. Aldosterone activation was demonstrated in all three groups, however, dietary sodium restriction, in contrast to high sodium, resulted in early (10 days) activation of PRA and aldosterone. High sodium demonstrated significant suppression of aldosterone activation over the course of HF progression. Conclusions Excessive dietary sodium restriction particularly in early stage HF results in early aldosterone activation, while normal and excess sodium intake are associated with delayed or suppressed activation. These findings warrant evaluation in humans to determine if dietary sodium manipulation, particularly during early stage HF, may have a significant impact on neuroendocrine disease progression. PMID:25823360

  8. Biological properties of extracellular vesicles and their physiological functions

    Science.gov (United States)

    Yáñez-Mó, María; Siljander, Pia R.-M.; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E.; Buzas, Edit I.; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Silva, Anabela Cordeiro-da; Fais, Stefano; Falcon-Perez, Juan M.; Ghobrial, Irene M.; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H. H.; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Hoen, Esther N.M. Nolte-‘t; Nyman, Tuula A.; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; del Portillo, Hernando A.; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N.; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem; Stukelj, Roman; Van der Grein, Susanne G.; Vasconcelos, M. Helena; Wauben, Marca H. M.; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system. PMID:25979354

  9. Biological properties of extracellular vesicles and their physiological functions

    Directory of Open Access Journals (Sweden)

    María Yáñez-Mó

    2015-05-01

    Full Text Available In the past decade, extracellular vesicles (EVs have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.

  10. Blood pressure responses to dietary sodium: Association with autonomic cardiovascular function in normotensive adults.

    Science.gov (United States)

    Matthews, Evan L; Brian, Michael S; Edwards, David G; Stocker, Sean D; Wenner, Megan M; Farquhar, William B

    2017-12-01

    Blood pressure responses to dietary sodium vary widely person-to-person. Salt sensitive rodent models display altered autonomic function, a trait thought to contribute to poor cardiovascular health. Thus, we hypothesized that increased salt sensitivity (SS) in normotensive humans would be associated with increased muscle sympathetic nerve activity (MSNA), decreased high frequency heart rate variability (HF-HRV), and decreased baroreflex sensitivity. Healthy normotensive men and women completed 1week of high (300mmol·day -1 ) and 1week of low (20mmol·day -1 ) dietary sodium (random order) with 24h mean arterial pressure (MAP) assessed on the last day of each diet to assess SS. Participants returned to the lab under habitual sodium conditions for testing. Forty-two participants are presented in this analysis, 19 of which successful MSNA recordings were obtained (n=42: age 39±2yrs., BMI 24.3±0.5kg·(m 2 ) -1 , MAP 83±1mmHg, habitual urine sodium 93±7mmol·24h -1 ; n=19: MSNA burst frequency 20±2 bursts·min -1 ). The variables of interest were linearly regressed over the magnitude of SS. Higher SS was associated with increased MSNA (burst frequency: r=0.469, p=0.041), decreased HF-HRV (r=-0.349, p=0.046), and increased LF/HF-HRV (r=0.363, p=0.034). SS was not associated with sympathetic or cardiac baroreflex sensitivity (p>0.05). Multiple regression analysis accounting for age found that age, not SS, independently predicted HF-HRV (age adjusted no longer significant; p=0.369) and LF/HF-HRV (age adjusted p=0.273). These data suggest that age-related salt sensitivity of blood pressure in response to dietary sodium is associated with altered resting autonomic cardiovascular function. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effects of resistance training and dietary changes on physical function and body composition in overweight and obese older adults.

    Science.gov (United States)

    Straight, Chad R; Dorfman, Leah R; Cottell, Kathryn E; Krol, Julie M; Lofgren, Ingrid E; Delmonico, Matthew J

    2012-08-01

    Community-based interventions that incorporate resistance training (RT) and dietary changes have not been extensively studied in overweight and obese older adults. The purpose of this investigation was to determine the effects of a community-based RT and dietary intervention on physical function and body composition in overweight and obese older adults. Ninety-five overweight and obese (BMI=33.4±4.0 kg/m2) older adults aged 55-80 years completed an 8-week RT and dietary intervention at 4 Rhode Island senior centers. Participants performed RT twice-weekly using resistance tubing, dumbbells, and ankle weights. Participants also attended 1 weekly dietary counseling session on a modified Dietary Approaches to Stop Hypertension diet. Outcome measurements included anthropometrics, body composition, and physical function. There were small changes in body mass (-1.0±1.8 kg, Pfoot up-and-go test time (-0.56±0.89 s, P<.001). Community-based RT and dietary modifications can improve body composition, muscle strength, and physical function in overweight and obese older adults. Future investigations should determine if this intervention is effective for long-term changes.

  12. Biomarkers of Aging: From Function to Molecular Biology

    Directory of Open Access Journals (Sweden)

    Karl-Heinz Wagner

    2016-06-01

    Full Text Available Aging is a major risk factor for most chronic diseases and functional impairments. Within a homogeneous age sample there is a considerable variation in the extent of disease and functional impairment risk, revealing a need for valid biomarkers to aid in characterizing the complex aging processes. The identification of biomarkers is further complicated by the diversity of biological living situations, lifestyle activities and medical treatments. Thus, there has been no identification of a single biomarker or gold standard tool that can monitor successful or healthy aging. Within this short review the current knowledge of putative biomarkers is presented, focusing on their application to the major physiological mechanisms affected by the aging process including physical capability, nutritional status, body composition, endocrine and immune function. This review emphasizes molecular and DNA-based biomarkers, as well as recent advances in other biomarkers such as microRNAs, bilirubin or advanced glycation end products.

  13. The Dietary Approaches to Stop Hypertension Diet, Cognitive Function, and Cognitive Decline in American Older Women.

    Science.gov (United States)

    Berendsen, Agnes A M; Kang, Jae H; van de Rest, Ondine; Feskens, Edith J M; de Groot, Lisette C P G M; Grodstein, Francine

    2017-05-01

    To examine the association between long-term adherence to the Dietary Approaches to Stop Hypertension (DASH) diet with cognitive function and decline in older American women. Prospective cohort study. The Nurses' Health Study, a cohort of registered nurses residing in 11 US states. A total of 16,144 women from the Nurses' Health Study, aged ≥70 years, who underwent cognitive testing a total of 4 times by telephone from 1995 to 2001 (baseline), with multiple dietary assessments between 1984 and the first cognitive examination. DASH adherence for each individual was based on scoring of intakes of 9 nutrient or food components. Long-term DASH adherence was calculated as the average DASH adherence score from up to 5 repeated measures of diet. Primary outcomes were cognitive function calculated as the average scores of the 4 repeated measures, as well as cognitive change of the Telephone Interview for Cognitive Status score and composite scores of global cognition and verbal memory. Greater adherence to long-term DASH score was associated with better average cognitive function, irrespective of apolipoprotein E ε4 allele status [multivariable-adjusted differences in mean z-scores between extreme DASH quintiles = 0.04 (95% confidence interval, CI 0.01-0.07), P trend = .009 for global cognition; 0.04 (95% CI 0.01-0.07), P trend = .002 for verbal memory and 0.16 (95% CI 0.03-0.29), and P trend = .03 for Telephone Interview for Cognitive Status, P interaction >0.24]. These differences were equivalent to being 1 year younger in age. Adherence to the DASH score was not associated with change in cognitive function over 6 years. Our findings in the largest cohort on dietary patterns and cognitive function to date indicate that long-term adherence to the DASH diet is important to maintain cognitive function at older ages. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. All rights reserved.

  14. Dietary supplementation with an amino acid blend enhances intestinal function in piglets.

    Science.gov (United States)

    Yi, Dan; Li, Baocheng; Hou, Yongqing; Wang, Lei; Zhao, Di; Chen, Hongbo; Wu, Tao; Zhou, Ying; Ding, Binying; Wu, Guoyao

    2018-05-16

    The traditionally classified nutritionally non-essential amino acids are now known to be insufficiently synthesized for maximal growth and optimal health in piglets. This study determined the effects of dietary supplementation with an amino acid blend (AAB; glutamate:glutamine:glycine:arginine:N-acetylcysteine = 5:2:2:1:0.5) on piglet growth performance and intestinal functions. Sixteen piglets (24-day-old) were randomly assigned to a corn and soybean meal-based diet supplemented with 0.99% alanine (isonitrogenous control) or 1% AAB. On day 20 of the trial, blood and intestinal tissue samples were obtained from piglets. Compared with the control, AAB supplementation reduced (P sodium-independent amino acid transporters (b 0,+ AT and y + LAT1), aquaporin (AQP) 3, AQP8, AQP10, nuclear factor erythroid 2-related factor 2 and glutathione S-transferase omega-2, and protein abundances of AQP3, AQP4, claudin-1, occludin and myxovirus resistance 1; and the numbers of Bifidobacterium genus and Lactobacillus genus in the colon digesta. Collectively, these comprehensive results indicate that dietary AAB supplementation plays an important role in improving piglet growth and intestinal function.

  15. Dietary Chlorella vulgaris Ameliorates Altered Immunomodulatory Functions in Cyclophosphamide-Induced Immunosuppressive Mice

    Science.gov (United States)

    Cheng, Dai; Wan, Zhaodong; Zhang, Xinyu; Li, Jian; Li, He; Wang, Chunling

    2017-01-01

    Based on the well-known toxicity of cyclophosphamide (CYP) on the immune system, this research investigated the modulating effects of the long-term dietary Chlorella vulgaris (CV) supplementation on the immunosuppression induced by CYP in mice, in order to provide a novel dietary design to mitigate the side effects of CYP therapy. Control, CYP-treated, CYP + CV (6%), CYP + CV (12%) and CYP + CV (24%) were used for 6 weeks, CV supplement in diet recovered the significantly reduced immunological function in CYP treated mice. As CV may have a modulating function through the inducible expression of cytokines, we assayed the expressions of interleukin-2 (IL-2), interleukin-12 (IL-12), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). Our results suggested that CYP significantly reduced the lymphocytes proliferation and phagocytic activities of macrophages, and stimulated the production of IL-2, IL-12, TNF-α and IFN-γ and that this impairment has been successfully adjusted by CV supplementation. Treatment with the algae also enhanced the natural killer (NK) cells cytotoxicity, and ameliorate histological changes of the spleen in CYP-treated mice. Therefore, as we found in this study, a diet supplemented with whole CV has beneficial effects on CVP-induced immunosuppression, through its immunomodulatory potential. PMID:28684674

  16. Thyroid nodules, thyroid function and dietary iodine in the Marshall islands.

    Science.gov (United States)

    Takahashi, T; Fujimori, K; Simon, S L; Bechtner, G; Edwards, R; Trott, K R

    1999-08-01

    Thyroid nodules have been found to be common in the population of the Marshall Islands. This has been attributed to potential exposure of radioiodines from the nuclear weapons tests on Bikini and Eniwetok between 1946 and 1958. In order to get a full picture of thyroid pathology in the Marshallese population potentially exposed to radioactive fallout we performed a large thyroid screening programme using palpation, high resolution ultrasound and fine needle biopsies of palpable nodules. In addition, various parameters of thyroid function (free T3, free T4, thyroid stimulating hormone [TSH]) and anti-thyroid antibodies were examined in large proportions of the total population at risk. Since dietary iodine deficiency is an established risk factor for thyroid nodules, iodine concentration in urine samples of 362 adults and 119 children was measured as well as the iodine content of selected staple food products. The expected high prevalence of thyroid nodules was confirmed. There was no indication of an increased rate of impaired thyroid function in the Marshallese population. A moderate degree of iodine deficiency was found which may be responsible for some of the increased prevalence of thyroid nodules in the Marshallese population. Studies on the relationship between exposure to radioiodines and thyroid nodules need to take dietary iodine deficiency into account in the interpretation of findings.

  17. Are Dietary Supplements and Nutraceuticals Effective for Musculoskeletal Health and Cognitive Function? A Scoping Review.

    Science.gov (United States)

    Iolascon, G; Gimigliano, R; Bianco, M; De Sire, A; Moretti, A; Giusti, A; Malavolta, N; Migliaccio, S; Migliore, A; Napoli, N; Piscitelli, P; Resmini, G; Tarantino, U; Gimigliano, F

    2017-01-01

    The aim of our scoping review was to summarize the state of the art regarding micronutrients in order to identify which of them might effectively improve health status in the areas typically impaired in older people: bone, skeletal muscle, and cognitive function. Scoping review. The Italian Study Group on Healthy Aging by Nutraceuticals and Dietary Supplements (HANDS) performed this scoping review, based on the following steps: doing a list of micronutrients related with musculoskeletal or cognitive functions, included in dietary supplements and nutraceuticals commercialized in Italy; planning a research on PubMed, according to an evidence-based approach, in order to the most relevant positive study for each micronutrient into each of the three areas involved (bone, skeletal muscle and cognitive function); identifying the micronutrients effective in maintaining or achieving an adequate health status in older people, specifying the effective and safe daily doses, according to the selected studies. In literature we found 12 relevant positive studies (1 international society guidelines/recommendations, 1 systematic review, 7 randomized controlled trials, and 3 prospective cohort studies). We showed that only 16 micronutrients resulted to have appropriate scientific evidences in terms of improving musculoskeletal health and/or cognitive function in older people: beta-alanine, calcium, creatine, fluorides, leucine, magnesium, omega-3 fatty acids, potassium, vitamin B6, vitamin B9, vitamin B12, vitamin C, vitamin D, vitamin E, vitamin K2, and zinc. This scoping review showed that selected micronutrients in adequate doses might have an ancillary role in musculoskeletal health and cognitive functions in older people.

  18. Relationships between Dietary Intake and Cognitive Function in Healthy Korean Children and Adolescents.

    Science.gov (United States)

    Kim, Jin Young; Kang, Seung Wan

    2017-01-01

    It has long been theorized that a relatively robust dietary intake impacts cognitive function. The aim of the study was to explore dietary intake and cognitive function in healthy Korean children and adolescents. Three hundred and seventeen healthy children with no previous diagnosis of neurologic or psychiatric disorders were evaluated (167 girls and 150 boys with a mean age of 11.8 ± 3.3 years). Analysis indicators including food frequency questionnaires (FFQs) consisting of 76 items and neurocognitive tests including symbol digit modalities (SDMT), verbal memory, visual memory, shift attention, reasoning, and digit span (forward and backward) tests were observed and recorded. The standard deviation in reaction time was significantly shorter in girls than in boys (p Coca-Cola showed negative correlation with the results of verbal memory tests (p < 0.05). The consumption of mushrooms showed positive correlation with visual memory and reasoning test results (p < 0.05). The consumption of nuts showed positive correlation with SDMT results (p < 0.01). Omission errors were negatively correlated with the intake of protein, vitamin B1, vitamin B2, niacin, and vitamin B6 (p < 0.05), as well as with vitamin D and zinc intake (p < 0.01). Reaction time showed positive correlation with caffeine intake (p < 0.05). Omission errors were positively correlated with the consumption of rice and ramyeon (p < 0.01). Reaction time showed positive correlation with the consumption of snacks (p < 0.05). Standard deviations in reaction times showed positive correlation with the consumption of rice (p < 0.01), snacks, and chocolate (p < 0.05). Omission errors were negatively correlated with the consumption of rice with mixed grains (p < 0.01) and eggs (p < 0.05). The relationship between dietary intake and cognitive function is generally better observed in girls than in boys. The consumption of healthy foods is correlated with good cognitive function. These results suggest that diet is

  19. Meat-based functional foods for dietary equilibrium omega-6/omega-3.

    Science.gov (United States)

    Reglero, Guillermo; Frial, Paloma; Cifuentes, Alejandro; García-Risco, Mónica R; Jaime, Laura; Marin, Francisco R; Palanca, Vicente; Ruiz-Rodríguez, Alejandro; Santoyo, Susana; Señoráns, Francisco J; Soler-Rivas, Cristina; Torres, Carlos; Ibañez, Elena

    2008-10-01

    Nutritionists encourage improving the diet by combining meat products with fish or other sea-related foods, in order to equilibrate the omega-6/omega-3 ratio. Strong scientific evidence supports the beneficial health effects of a balanced omega-6/omega-3 PUFA (poly unsaturated fatty acids) diets. In the present work, the scientific bases of new functional meat products with both a balanced omega-6/omega-3 ratio and a synergic combination of antioxidants are discussed. The aim is to contribute to the dietary equilibrium omega-6/omega-3 and to increase the antioxidant intake. Conventional meat products supplemented with a specific fatty acids and antioxidants combination led to functional foods with healthier nutritional parameters.

  20. Effects of dietary esfenvalerate exposures on three aquatic insect species representing different functional feeding groups.

    Science.gov (United States)

    Palmquist, Katherine R; Jenkins, Jeffrey J; Jepson, Paul C

    2008-08-01

    Given the chemical properties of synthetic pyrethroids, it is probable that compounds, including esfenvalerate, that enter surface waters may become incorporated into aquatic insect food sources. We examined the effect of dietary esfenvalerate uptake in aquatic insects representing different functional feeding groups. We used three field-collected aquatic insect species: A grazing scraper, Cinygmula reticulata McDunnough (Ephemeroptera: Heptageniidae); an omnivorous filter feeder, Brachycentrus americanus Banks (Trichoptera: Brachycentridae); and a predator, Hesperoperla pacifica Banks (Plecoptera: Perlidae). Laboratory-cultured algae were preexposed for 24 h to esfenvalerate concentrations of 0, 0.025, 0.05, and 0.1 microg/L and provided to two C. reticulata age classes (small and final-instar nymphs). Reduction in small nymph growth was observed following three weeks of feeding on algae exposed to 0.05 and 0.1 microg/L of esfenvalerate, and the highest dietary exposure reduced egg production in final-instar nymphs. The diet for B. americanus and H. pacifica consisted of dead third-instar Chironomus tentans larvae preexposed for 24 h to esfenvalerate concentrations ranging between 0.1 and 1.0 microg/L. Consumption of larvae exposed to 0.5 to 1.0 microg/L of esfenvalerate caused case abandonment and mortality in B. americanus caddisfly larvae. Although H. pacifica nymphs readily consumed esfenvalerate-exposed larvae, no adverse effects were observed during the present study. Furthermore, no evidence of esfenvalerate-induced feeding deterrence was found in any of the species tested, suggesting that aquatic insects may not be able to distinguish between pyrethroid-contaminated and uncontaminated food sources. These findings indicate that feeding deterrence is not a factor in regulating aquatic insect dietary exposures to synthetic pyrethroids.

  1. Metabolomics for functional genomics, systems biology, and biotechnology.

    Science.gov (United States)

    Saito, Kazuki; Matsuda, Fumio

    2010-01-01

    Metabolomics now plays a significant role in fundamental plant biology and applied biotechnology. Plants collectively produce a huge array of chemicals, far more than are produced by most other organisms; hence, metabolomics is of great importance in plant biology. Although substantial improvements have been made in the field of metabolomics, the uniform annotation of metabolite signals in databases and informatics through international standardization efforts remains a challenge, as does the development of new fields such as fluxome analysis and single cell analysis. The principle of transcript and metabolite cooccurrence, particularly transcriptome coexpression network analysis, is a powerful tool for decoding the function of genes in Arabidopsis thaliana. This strategy can now be used for the identification of genes involved in specific pathways in crops and medicinal plants. Metabolomics has gained importance in biotechnology applications, as exemplified by quantitative loci analysis, prediction of food quality, and evaluation of genetically modified crops. Systems biology driven by metabolome data will aid in deciphering the secrets of plant cell systems and their application to biotechnology.

  2. Structure, function, and behaviour of computational models in systems biology.

    Science.gov (United States)

    Knüpfer, Christian; Beckstein, Clemens; Dittrich, Peter; Le Novère, Nicolas

    2013-05-31

    Systems Biology develops computational models in order to understand biological phenomena. The increasing number and complexity of such "bio-models" necessitate computer support for the overall modelling task. Computer-aided modelling has to be based on a formal semantic description of bio-models. But, even if computational bio-models themselves are represented precisely in terms of mathematical expressions their full meaning is not yet formally specified and only described in natural language. We present a conceptual framework - the meaning facets - which can be used to rigorously specify the semantics of bio-models. A bio-model has a dual interpretation: On the one hand it is a mathematical expression which can be used in computational simulations (intrinsic meaning). On the other hand the model is related to the biological reality (extrinsic meaning). We show that in both cases this interpretation should be performed from three perspectives: the meaning of the model's components (structure), the meaning of the model's intended use (function), and the meaning of the model's dynamics (behaviour). In order to demonstrate the strengths of the meaning facets framework we apply it to two semantically related models of the cell cycle. Thereby, we make use of existing approaches for computer representation of bio-models as much as possible and sketch the missing pieces. The meaning facets framework provides a systematic in-depth approach to the semantics of bio-models. It can serve two important purposes: First, it specifies and structures the information which biologists have to take into account if they build, use and exchange models. Secondly, because it can be formalised, the framework is a solid foundation for any sort of computer support in bio-modelling. The proposed conceptual framework establishes a new methodology for modelling in Systems Biology and constitutes a basis for computer-aided collaborative research.

  3. Scavenger Receptor CD163 and Its Biological Functions

    Directory of Open Access Journals (Sweden)

    Gabriela Onofre

    2009-01-01

    Full Text Available CD163 is a member of scavenger receptor super family class B of the first subgroup. It is mapped to the region p13 on chromosome 12. Five different isoforms of CD163 have been described, which differ in the structure of their cytoplasmic domains and putative phosporylation sites. This scavenger receptor is selectively expressed on cells of monocytes and macrophages lineage exclusively. CD163 immunological function is essentially homeostatic. It also has other functions because participates in adhesion to endothelial cells, in tolerance induction and tissues regeneration. Other very important function of CD163 is the clearance of hemoglobin in its cell-free form and participation in anti-inflammation in its soluble form, exhibiting cytokine-like functions. We review the biological functions of CD163 which have been discovered until now. It seems apparent from this review that CD163 scavenger receptor can be used as biomarker in different diseases and as a valuable diagnostic parameter for prognosis of many diseases especially inflammatory disorders and sepsis.

  4. STAT6: its role in interleukin 4-mediated biological functions.

    Science.gov (United States)

    Takeda, K; Kishimoto, T; Akira, S

    1997-05-01

    Interleukin (IL) 4 is known to be a cytokine which plays a central role in the regulation of immune response. Studies on cytokine signal transduction have clarified the mechanism by which IL4 exerts its functions. Two cytoplasmic proteins, signal transducer and activator of transcription (STAT) 6 and IL4-induced phosphotyrosine substrate/insulin receptor substrate 2 (4PS/IRS2), are activated in IL4 signal transduction. Recent studies from STAT6-deficient mice have revealed the essential role of STAT6 in IL4-mediated biological actions. In addition, STAT6 has also been demonstrated to be important for the functions mediated by IL13, which is related to IL4. IL4 and IL13 have been shown to induce the production of IgE, which is a major mediator in an allergic response. These findings indicate that STAT6 activation is involved in IL4- and IL13-mediated disorders such as allergy.

  5. Effect of biological factors during functional scintigraphy of the heart

    Energy Technology Data Exchange (ETDEWEB)

    Breuel, H P; Emrich, D; Luig, H [Goettingen Univ. (F.R. Germany). Abt. fuer Nuklearmedizin

    1976-07-01

    The parameters relating to functional scintigraphy of the heart (average circulation time, peak time) depend not only on the method (injection technique, radiopharmaceutical), but also on biological factors. Failure to take these into consideration may result in an erroneous interpretation of the findings. Circulation time in normal children aged 6 to 14 years, as determined by isotope methods is significantly shorter than in normal adults. Patients with compensated heart disease, as well trained athletes, show significant increase in all portions of the circulation time, when compared with normals of similar ages. This indicates that deviation in the haemodynamics of the circulation as shown by functional scintigraphy, can only be interpreted in the light of clinical findings.

  6. Functions of MicroRNAs in Cardiovascular Biology and Disease

    Science.gov (United States)

    Hata, Akiko

    2015-01-01

    In 1993, lin-4 was discovered as a critical modulator of temporal development in Caenorhabditis elegans and, most notably, as the first in the class of small, single-stranded noncoding RNAs now defined as microRNAs (miRNAs). Another eight years elapsed before miRNA expression was detected in mammalian cells. Since then, explosive advancements in the field of miRNA biology have elucidated the basic mechanism of miRNA biogenesis, regulation, and gene-regulatory function. The discovery of this new class of small RNAs has augmented the complexity of gene-regulatory programs as well as the understanding of developmental and pathological processes in the cardiovascular system. Indeed, the contributions of miRNAs in cardiovascular development and function have been widely explored, revealing the extensive role of these small regulatory RNAs in cardiovascular physiology. PMID:23157557

  7. Carotenoids from Marine Organisms: Biological Functions and Industrial Applications

    Directory of Open Access Journals (Sweden)

    Christian Galasso

    2017-11-01

    Full Text Available As is the case for terrestrial organisms, carotenoids represent the most common group of pigments in marine environments. They are generally biosynthesized by all autotrophic marine organisms, such as bacteria and archaea, algae and fungi. Some heterotrophic organisms also contain carotenoids probably accumulated from food or partly modified through metabolic reactions. These natural pigments are divided into two chemical classes: carotenes (such as lycopene and α- and β-carotene that are composed of hydrogen and carbon; xanthophylls (such as astaxanthin, fucoxanthin and lutein, which are constituted by hydrogen, carbon and oxygen. Carotenoids, as antioxidant compounds, assume a key role in the protection of cells. In fact, quenching of singlet oxygen, light capture and photosynthesis protection are the most relevant biological functions of carotenoids. The present review aims at describing (i the biological functions of carotenoids and their benefits for human health, (ii the most common carotenoids from marine organisms and (iii carotenoids having large success in pharmaceutical, nutraceutical and cosmeceutical industries, highlighting the scientific progress in marine species cultivation for natural pigments production.

  8. Event-based text mining for biology and functional genomics

    Science.gov (United States)

    Thompson, Paul; Nawaz, Raheel; McNaught, John; Kell, Douglas B.

    2015-01-01

    The assessment of genome function requires a mapping between genome-derived entities and biochemical reactions, and the biomedical literature represents a rich source of information about reactions between biological components. However, the increasingly rapid growth in the volume of literature provides both a challenge and an opportunity for researchers to isolate information about reactions of interest in a timely and efficient manner. In response, recent text mining research in the biology domain has been largely focused on the identification and extraction of ‘events’, i.e. categorised, structured representations of relationships between biochemical entities, from the literature. Functional genomics analyses necessarily encompass events as so defined. Automatic event extraction systems facilitate the development of sophisticated semantic search applications, allowing researchers to formulate structured queries over extracted events, so as to specify the exact types of reactions to be retrieved. This article provides an overview of recent research into event extraction. We cover annotated corpora on which systems are trained, systems that achieve state-of-the-art performance and details of the community shared tasks that have been instrumental in increasing the quality, coverage and scalability of recent systems. Finally, several concrete applications of event extraction are covered, together with emerging directions of research. PMID:24907365

  9. No effect of dietary fish oil on renal hemodynamics, tubular function, and renal functional reserve in long-term renal transplant recipients

    DEFF Research Database (Denmark)

    Hansen, J M; Løkkegaard, H; Høy, Carl-Erik

    1995-01-01

    Dietary supplementation with fish oil rich in n-3 polyunsaturated fatty acids has been suggested to protect the kidney against cyclosporin A (CsA) toxicity. This study investigated the effects of a 10-wk dietary supplementation with fish oil on renal function and renal functional reserve in healt...... transplant recipients treated with a low maintenance dose of CsA had a well-preserved renal functional reserve, and dietary supplementation with fish oil in these patients did not improve renal function.......Dietary supplementation with fish oil rich in n-3 polyunsaturated fatty acids has been suggested to protect the kidney against cyclosporin A (CsA) toxicity. This study investigated the effects of a 10-wk dietary supplementation with fish oil on renal function and renal functional reserve in healthy...... volunteers (N = 9) and two groups of stable long-term kidney-transplanted patients treated with maintenance low-dose CsA (3.0 +/- 0.6 mg/kg; N = 9) or without CsA (N = 9). After an overnight fast, the subjects were water loaded, and clearance studies were performed, postponing morning medication. GFR...

  10. Dietary fibers from mushroom sclerotia: 1. Preparation and physicochemical and functional properties.

    Science.gov (United States)

    Wong, Ka-Hing; Cheung, Peter C K

    2005-11-30

    Preparation of three novel dietary fibers (DFs) from mushroom sclerotia, namely, Pleurotus tuberregium, Polyporous rhinocerus, and Wolfiporia cocos, by a scale-up modified AOAC procedure using industrial enzymes was investigated. A remarkably high level of total dietary fiber (TDF) ranging from 81.7 to 96.3% sample dry matter (DM), in which a content of nonstarch polysaccharide (NSP) ranging from 86.6 to 94.3% sclerotial TDF DM, was obtained from the three sclerotia. All sclerotial DFs were rich in beta-glucan (the glucose residue ranged from 89.7 to 94.5% NSP DM) with a very low level of resistant glycogen (ranged from 3.77 to 3.94% sclerotial TDF DM). All three novel sclerotial DFs also exhibited similar, if not better, physicochemical and functional properties (pH, color, water binding capacity, oil holding capacity, and emulsifying properties) as those of barely DF control and commercial DF-rich ingredients. The potential use of the three mushroom sclerotial DFs as a new beta-glucan type DF-rich ingredient in the food industry was discussed.

  11. Biological response to purification and acid functionalization of carbon nanotubes

    Science.gov (United States)

    Figarol, Agathe; Pourchez, Jérémie; Boudard, Delphine; Forest, Valérie; Tulliani, Jean-Marc; Lecompte, Jean-Pierre; Cottier, Michèle; Bernache-Assollant, Didier; Grosseau, Philippe

    2014-07-01

    Acid functionalization has been considered as an easy way to enhance the dispersion and biodegradation of carbon nanotubes (CNT). However, inconsistencies between toxicity studies of acid functionalized CNT remain unexplained. This could be due to a joint effect of the main physicochemical modifications resulting from an acid functionalization: addition of surface acid groups and purification from catalytic metallic impurities. In this study, the impact on CNT biotoxicity of these two physiochemical features was assessed separately. The in vitro biological response of RAW 264.7 macrophages was evaluated after exposure to 15-240 µg mL-1 of two types of multi-walled CNT. For each type of CNT (small: 20 nm diameter, and big: 90 nm diameter), three different surface chemical properties were studied (total of six CNT samples): pristine, acid functionalized and desorbed. Desorbed CNT were purified by the acid functionalization but presented a very low amount of surface acid groups due to a thermal treatment under vacuum. A Janus effect of acid functionalization with two opposite impacts is highlighted. The CNT purification decreased the overall toxicity, while the surface acid groups intensified it when present at a specific threshold. These acid groups especially amplified the pro-inflammatory response. The threshold mechanism which seemed to regulate the impact of acid groups should be further studied to determine its value and potential link to the other physicochemical state of the CNT. The results suggest that, for a safer-design approach, the benefit-risk balance of an acid functionalization has to be considered, depending on the CNT primary state of purification. Further research should be conducted in this direction.

  12. Middle age onset short-term intermittent fasting dietary restriction prevents brain function impairments in male Wistar rats.

    Science.gov (United States)

    Singh, Rumani; Manchanda, Shaffi; Kaur, Taranjeet; Kumar, Sushil; Lakhanpal, Dinesh; Lakhman, Sukhwinder S; Kaur, Gurcharan

    2015-12-01

    Intermittent fasting dietary restriction (IF-DR) is recently reported to be an effective intervention to retard age associated disease load and to promote healthy aging. Since sustaining long term caloric restriction regimen is not practically feasible in humans, so use of alternate approach such as late onset short term IF-DR regimen which is reported to trigger similar biological pathways is gaining scientific interest. The current study was designed to investigate the effect of IF-DR regimen implemented for 12 weeks in middle age rats on their motor coordination skills and protein and DNA damage in different brain regions. Further, the effect of IF-DR regimen was also studied on expression of energy regulators, cell survival pathways and synaptic plasticity marker proteins. Our data demonstrate that there was an improvement in motor coordination and learning response with decline in protein oxidative damage and recovery in expression of energy regulating neuropeptides. We further observed significant downregulation in nuclear factor kappa B (NF-κB) and cytochrome c (Cyt c) levels and moderate upregulation of mortalin and synaptophysin expression. The present data may provide an insight on how a modest level of short term IF-DR, imposed in middle age, can slow down or prevent the age-associated impairment of brain functions and promote healthy aging by involving multiple regulatory pathways aimed at maintaining energy homeostasis.

  13. Does Dietary Mitigation of Enteric Methane Production Affect Rumen Function and Animal Productivity in Dairy Cows?

    Science.gov (United States)

    Veneman, Jolien B; Muetzel, Stefan; Hart, Kenton J; Faulkner, Catherine L; Moorby, Jon M; Perdok, Hink B; Newbold, Charles J

    2015-01-01

    It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; Prumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations.

  14. AFM imaging of functionalized carbon nanotubes on biological membranes

    International Nuclear Information System (INIS)

    Lamprecht, C; Danzberger, J; Rangl, M; Gruber, H J; Hinterdorfer, P; Kienberger, F; Ebner, A; Liashkovich, I; Neves, V; Heister, E; Coley, H M; McFadden, J; Flahaut, E

    2009-01-01

    Multifunctional carbon nanotubes are promising for biomedical applications as their nano-size, together with their physical stability, gives access into the cell and various cellular compartments including the nucleus. However, the direct and label-free detection of carbon nanotube uptake into cells is a challenging task. The atomic force microscope (AFM) is capable of resolving details of cellular surfaces at the nanometer scale and thus allows following of the docking of carbon nanotubes to biological membranes. Here we present topographical AFM images of non-covalently functionalized single walled (SWNT) and double walled carbon nanotubes (DWNT) immobilized on different biological membranes, such as plasma membranes and nuclear envelopes, as well as on a monolayer of avidin molecules. We were able to visualize DWNT on the nuclear membrane while at the same time resolving individual nuclear pore complexes. Furthermore, we succeeded in localizing individual SWNT at the border of incubated cells and in identifying bundles of DWNT on cell surfaces by AFM imaging.

  15. Biological activity of lactoferrin-functionalized biomimetic hydroxyapatite nanocrystals

    Directory of Open Access Journals (Sweden)

    Nocerino N

    2014-03-01

    Full Text Available Nunzia Nocerino,1 Andrea Fulgione,1 Marco Iannaccone,1 Laura Tomasetta,1 Flora Ianniello,1 Francesca Martora,1 Marco Lelli,2 Norberto Roveri,2 Federico Capuano,3 Rosanna Capparelli1 1Department of Agriculture Special Biotechnology Center Federico II, CeBIOTEC Biotechnology, University of Naples Federico II, Naples, 2Department of Chemistry, G Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, 3Department of Food Inspection IZS ME, Naples, Italy Abstract: The emergence of bacterial strains resistant to antibiotics is a general public health problem. Progress in developing new molecules with antimicrobial properties has been made. In this study, we evaluated the biological activity of a hybrid nanocomposite composed of synthetic biomimetic hydroxyapatite surface-functionalized by lactoferrin (LF-HA. We evaluated the antimicrobial, anti-inflammatory, and antioxidant properties of LF-HA and found that the composite was active against both Gram-positive and Gram-negative bacteria, and that it modulated proinflammatory and anti-inflammatory responses and enhanced antioxidant properties as compared with LF alone. These results indicate the possibility of using LF-HA as an antimicrobial system and biomimetic hydroxyapatite as a candidate for innovative biomedical applications. Keywords: lactoferrin, hydroxyapatite nanocrystals, biomimetism, biological activity, drug delivery

  16. Click Chemistry Mediated Functionalization of Vertical Nanowires for Biological Applications.

    Science.gov (United States)

    Vutti, Surendra; Schoffelen, Sanne; Bolinsson, Jessica; Buch-Månson, Nina; Bovet, Nicolas; Nygård, Jesper; Martinez, Karen L; Meldal, Morten

    2016-01-11

    Semiconductor nanowires (NWs) are gaining significant importance in various biological applications, such as biosensing and drug delivery. Efficient and controlled immobilization of biomolecules on the NW surface is crucial for many of these applications. Here, we present for the first time the use of the Cu(I) -catalyzed alkyne-azide cycloaddition and its strain-promoted variant for the covalent functionalization of vertical NWs with peptides and proteins. The potential of the approach was demonstrated in two complementary applications of measuring enzyme activity and protein binding, which is of general interest for biological studies. The attachment of a peptide substrate provided NW arrays for the detection of protease activity. In addition, green fluorescent protein was immobilized in a site-specific manner and recognized by antibody binding to demonstrate the proof-of-concept for the use of covalently modified NWs for diagnostic purposes using minute amounts of material. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Linking biological soil crust diversity to ecological functions

    Science.gov (United States)

    Glaser, Karin; Borchhardt, Nadine; Schulz, Karoline; Mikhailyuk, Tatiana; Baumann, Karen; Leinweber, Peter; Ulf, Karsten

    2016-04-01

    Biological soil crusts (BSCs) are an association of different microorganisms and soil particles in the top millimeters of the soil. They are formed by algae, cyanobacteria, microfungi, bacteria, bryophytes and lichens in various compositions. Our aim was to determine and compare the biodiversity of all occurring organisms in biogeographically different habitats, ranging from polar (both Arctic and Antarctic), subpolar (Scandinavia), temperate (Germany) to dry regions (Chile). The combination of microscopy and molecular techniques (next-generation sequencing) revealed highly diverse crust communities, whose composition clustered by region and correlates with habitat characteristics such as water content. The BSC biodiversity was then linked to the ecological function of the crusts. The functional role of the BSCs in the biogeochemical cycles of carbon, nitrogen and phosphorous is evaluated using an array of state of the art soil chemistry methods including Py-FIMS (pyrolysis field ionization mass spectrometry) and XANES (x-ray absorbance near edge structure). Total P as well as P fractions were quantified in all BSCs, adjacent soil underneath and comparable nearby soil of BSC-free areas revealing a remarkable accumulation of total phosphorous and a distinct pattern of P fractions in the crust. Further, we observed an indication of a different P-speciation composition in the crust compared with BSC-free soil. The data allow answering the question whether BSCs act as sink or source for these compounds, and how biodiversity controls the biogeochemical function of BSCs.

  18. A Synthetic Biology Framework for Programming Eukaryotic Transcription Functions

    Science.gov (United States)

    Khalil, Ahmad S.; Lu, Timothy K.; Bashor, Caleb J.; Ramirez, Cherie L.; Pyenson, Nora C.; Joung, J. Keith; Collins, James J.

    2013-01-01

    SUMMARY Eukaryotic transcription factors (TFs) perform complex and combinatorial functions within transcriptional networks. Here, we present a synthetic framework for systematically constructing eukaryotic transcription functions using artificial zinc fingers, modular DNA-binding domains found within many eukaryotic TFs. Utilizing this platform, we construct a library of orthogonal synthetic transcription factors (sTFs) and use these to wire synthetic transcriptional circuits in yeast. We engineer complex functions, such as tunable output strength and transcriptional cooperativity, by rationally adjusting a decomposed set of key component properties, e.g., DNA specificity, affinity, promoter design, protein-protein interactions. We show that subtle perturbations to these properties can transform an individual sTF between distinct roles (activator, cooperative factor, inhibitory factor) within a transcriptional complex, thus drastically altering the signal processing behavior of multi-input systems. This platform provides new genetic components for synthetic biology and enables bottom-up approaches to understanding the design principles of eukaryotic transcriptional complexes and networks. PMID:22863014

  19. Biological effects of simple changes in functionality on rhodium metalloinsertors

    Science.gov (United States)

    Weidmann, Alyson G.; Komor, Alexis C.; Barton, Jacqueline K.

    2013-01-01

    DNA mismatch repair (MMR) is crucial to ensuring the fidelity of the genome. The inability to correct single base mismatches leads to elevated mutation rates and carcinogenesis. Using metalloinsertors–bulky metal complexes that bind with high specificity to mismatched sites in the DNA duplex–our laboratory has adopted a new chemotherapeutic strategy through the selective targeting of MMR-deficient cells, that is, those that have a propensity for cancerous transformation. Rhodium metalloinsertors display inhibitory effects selectively in cells that are deficient in the MMR machinery, consistent with this strategy. However, a highly sensitive structure–function relationship is emerging with the development of new complexes that highlights the importance of subcellular localization. We have found that small structural modifications, for example a hydroxyl versus a methyl functional group, can yield profound differences in biological function. Despite similar binding affinities and selectivities for DNA mismatches, only one metalloinsertor shows selective inhibition of cellular proliferation in MMR-deficient versus -proficient cells. Studies of whole-cell, nuclear and mitochondrial uptake reveal that this selectivity depends upon targeting DNA mismatches in the cell nucleus. PMID:23776288

  20. Dietary Flavanols: A Review of Select Effects on Vascular Function, Blood Pressure, and Exercise Performance.

    Science.gov (United States)

    Al-Dashti, Yousef A; Holt, Roberta R; Stebbins, Charles L; Keen, Carl L; Hackman, Robert M

    2018-05-02

    An individual's diet affects numerous physiological functions and can play an important role in reducing the risk of cardiovascular disease. Epidemiological and clinical studies suggest that dietary flavanols can be an important modulator of vascular risk. Diets and plant extracts rich in flavanols have been reported to lower blood pressure, especially in prehypertensive and hypertensive individuals. Flavanols may act in part through signaling pathways that affect vascular function, nitric oxide availability, and the release of endothelial-derived relaxing and constricting factors. During exercise, flavanols have been reported to modulate metabolism and respiration (e.g., maximal oxygen uptake, O 2 cost of exercise, and energy expenditure), and reduce oxidative stress and inflammation, resulting in increased skeletal muscle efficiency and endurance capacity. Flavanol-induced reductions in blood pressure during exercise may decrease the work of the heart. Collectively, these effects suggest that flavanols can act as an ergogenic aid to help delay the onset of fatigue. More research is needed to better clarify the effects of flavanols on vascular function, blood pressure regulation, and exercise performance and establish safe and effective levels of intake. Flavanol-rich foods and food products can be useful components of a healthy diet and lifestyle program for those seeking to better control their blood pressure or to enhance their physical activity. Key teaching points • Epidemiological and clinical studies indicate that dietary flavanols can reduce the risk of vascular disease. • Diets and plant extracts rich in flavanols have been reported to lower blood pressure and improve exercise performance in humans. • Mechanisms by which flavanols may reduce blood pressure function include alterations in signaling pathways that affect vascular function, nitric oxide availability, and the release of endothelial-derived relaxation and constriction factors.

  1. Dietary supplementation with hybrid palm oil alters liver function in the common Marmoset.

    Science.gov (United States)

    Spreafico, Flavia; Sales, Rafael Carvalho; Gil-Zamorano, Judit; Medeiros, Priscylla da Costa; Latasa, Maria-Jesús; Lima, Monique Ribeiro; de Souza, Sergio Augusto Lopes; Martin-Hernández, Roberto; Gómez-Coronado, Diego; Iglesias-Gutierrez, Eduardo; Mantilla-Escalante, Diana C; das Graças Tavares do Carmo, Maria; Dávalos, Alberto

    2018-02-09

    Hybrid palm oil, which contains higher levels of oleic acid and lower saturated fatty acids in comparison with African palm oil, has been proposed to be somehow equivalent to extra virgin olive oil. However, the biological effects of its consumption are poorly described. Here we have explored the effects of its overconsumption on lipid metabolism in a non-human primate model, the common marmoset. Dietary supplementation of marmoset with hyperlipidic diet containing hybrid palm oil for 3 months did not modify plasma lipids levels, but increased glucose levels as compared to the supplementation with African palm oil. Liver volume was unexpectedly found to be more increased in marmosets consuming hybrid palm oil than in those consuming African palm oil. Hepatic total lipid content and circulating transaminases were dramatically increased in animals consuming hybrid palm oil, as well as an increased degree of fibrosis. Analysis of liver miRNAs showed a selective modulation of certain miRNAs by hybrid palm oil, some of which were predicted to target genes involved in cell adhesion molecules and peroxisomal pathways. Our data suggest that consumption of hybrid palm oil should be monitored carefully, as its overconsumption compared to that of African palm oil could involve important alterations to hepatic metabolism.

  2. Effect of dietary fish oil on renal function and rejection in cyclosporine-treated recipients of renal transplants

    NARCIS (Netherlands)

    van der Heide, J. J.; Bilo, H. J.; Donker, J. M.; Wilmink, J. M.; Tegzess, A. M.

    1993-01-01

    Dietary fish oil exerts effects on renal hemodynamics and the immune response that may benefit renal-transplant recipients treated with cyclosporine. To evaluate this possibility, we studied the effect of fish oil on renal function, blood pressure, and the incidence of acute rejection episodes in

  3. Toxic effects of dietary methylmercury on immune function and hematology in American kestrels (Falco sparverius)

    Science.gov (United States)

    Fallacara, Dawn M.; Halbrook, Richard S.; French, John B.

    2011-01-01

    Fifty-nine adult male American kestrels (Falco sparverius) were assigned to one of three diet formulations including 0 (control), 0.6, and 3.9 μg/g (dry wt) methylmercury (MeHg). Kestrels received their diets daily for 13 weeks to assess the effects of dietary MeHg on immunocompetence. Immunotoxic endpoints included assessment of cell-mediated immunity (CMI) using the phytohemagglutinin (PHA) skin-swelling assay and primary and secondary antibody-mediated immune responses (IR) via the sheep red blood cell (SRBC) hemagglutination assay. Select hematology and histology parameters were evaluated to corroborate the results of functional assays and to assess immunosuppression of T and B cell-dependent components in spleen tissue. Kestrels in the 0.6 and 3.9 μg/g MeHg groups exhibited suppression of CMI, including lower PHA stimulation indexes (p = 0.019) and a 42 to 45% depletion of T cell-dependent splenic lymphoid tissue (p = 0.006). Kestrels in the 0.6 μg/g group exhibited suppression of the primary IR to SRBCs (p = 0.014). MeHg did not have a noticeable effect on the secondary IR (p = 0.166). Elevation of absolute heterophil counts (p p p = 0.003) was apparent in the 3.9 μg/g group at week 12. Heterophilia, or the excess of heterophils in peripheral blood above normal ranges, was apparent in seven of 17 (41%) kestrels in the 3.9 μg/g group and was indicative of an acute inflammatory response or physiological stress. This study revealed that adult kestrels were more sensitive to immunotoxic effects of MeHg at environmentally relevant dietary concentrations than they were to reproductive effects as previously reported.

  4. Chicken antimicrobial peptides: biological functions and possible applications

    NARCIS (Netherlands)

    Dijk, Albert van

    2007-01-01

    Farm animals often suffer from diseases of the gastro-intestinal tract. Modulation of natural defence mechanisms by dietary additives may be one way to improve intestinal health and food safety. In mammals, antimicrobial peptides (AMPs) play an important role in the host defence of skin and mucosal

  5. Functional Characterization and Expression of Molluscan Detoxification Enzymes and Transporters Involved in Dietary Allelochemical Resistance

    National Research Council Canada - National Science Library

    Whalen, Kristen E

    2008-01-01

    The processes underlying dietary allelochemical tolerance are likely mediated, in part, by biochemical resistance mechanisms that have evolved under the selective pressure of host chemical defenses...

  6. Pectin: cell biology and prospects for functional analysis.

    Science.gov (United States)

    Willats, W G; McCartney, L; Mackie, W; Knox, J P

    2001-09-01

    Pectin is a major component of primary cell walls of all land plants and encompasses a range of galacturonic acid-rich polysaccharides. Three major pectic polysaccharides (homogalacturonan, rhamnogalacturonan-I and rhamnogalacturonan-II) are thought to occur in all primary cell walls. This review surveys what is known about the structure and function of these pectin domains. The high degree of structural complexity and heterogeneity of the pectic matrix is produced both during biosynthesis in the endomembrane system and as a result of the action of an array of wall-based pectin-modifying enzymes. Recent developments in analytical techniques and in the generation of anti-pectin probes have begun to place the structural complexity of pectin in cell biological and developmental contexts. The in muro de-methyl-esterification of homogalacturonan by pectin methyl esterases is emerging as a key process for the local modulation of matrix properties. Rhamnogalacturonan-I comprises a highly diverse population of spatially and developmentally regulated polymers, whereas rhamnogalacturonan-II appears to be a highly conserved and stable pectic domain. Current knowledge of biosynthetic enzymes, plant and microbial pectinases and the interactions of pectin with other cell wall components and the impact of molecular genetic approaches are reviewed in terms of the functional analysis of pectic polysaccharides in plant growth and development.

  7. Peroxisome proliferator-activated receptor α ligands and modulators from dietary compounds: Types, screening methods and functions.

    Science.gov (United States)

    Yang, Haixia; Xiao, Lei; Wang, Nanping

    2017-04-01

    Peroxisome proliferator-activated receptor α (PPARα) plays a key role in lipid metabolism and glucose homeostasis and a crucial role in the prevention and treatment of metabolic diseases. Natural dietary compounds, including nutrients and phytochemicals, are PPARα ligands or modulators. High-throughput screening assays have been developed to screen for PPARα ligands and modulators in our diet. In the present review, we discuss recent advances in our knowledge of PPARα, including its structure, function, and ligand and modulator screening assays, and summarize the different types of dietary PPARα ligands and modulators. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  8. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions.

    Science.gov (United States)

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M; Oldfield, Christopher J; Dunker, A Keith; Uversky, Vladimir N; Obradovic, Zoran

    2007-05-01

    Identifying relationships between function, amino acid sequence, and protein structure represents a major challenge. In this study, we propose a bioinformatics approach that identifies functional keywords in the Swiss-Prot database that correlate with intrinsic disorder. A statistical evaluation is employed to rank the significance of these correlations. Protein sequence data redundancy and the relationship between protein length and protein structure were taken into consideration to ensure the quality of the statistical inferences. Over 200,000 proteins from the Swiss-Prot database were analyzed using this approach. The predictions of intrinsic disorder were carried out using PONDR VL3E predictor of long disordered regions that achieves an accuracy of above 86%. Overall, out of the 710 Swiss-Prot functional keywords that were each associated with at least 20 proteins, 238 were found to be strongly positively correlated with predicted long intrinsically disordered regions, whereas 302 were strongly negatively correlated with such regions. The remaining 170 keywords were ambiguous without strong positive or negative correlation with the disorder predictions. These functions cover a large variety of biological activities and imply that disordered regions are characterized by a wide functional repertoire. Our results agree well with literature findings, as we were able to find at least one illustrative example of functional disorder or order shown experimentally for the vast majority of keywords showing the strongest positive or negative correlation with intrinsic disorder. This work opens a series of three papers, which enriches the current view of protein structure-function relationships, especially with regards to functionalities of intrinsically disordered proteins, and provides researchers with a novel tool that could be used to improve the understanding of the relationships between protein structure and function. The first paper of the series describes our

  9. Functional Anthology of Intrinsic Disorder. I. Biological Processes and Functions of Proteins with Long Disordered Regions

    Science.gov (United States)

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M.; Oldfield, Christopher J.; Dunker, A. Keith; Uversky, Vladimir N.; Obradovic, Zoran

    2008-01-01

    Identifying relationships between function, amino acid sequence and protein structure represents a major challenge. In this study we propose a bioinformatics approach that identifies functional keywords in the Swiss-Prot database that correlate with intrinsic disorder. A statistical evaluation is employed to rank the significance of these correlations. Protein sequence data redundancy and the relationship between protein length and protein structure were taken into consideration to ensure the quality of the statistical inferences. Over 200,000 proteins from Swiss-Prot database were analyzed using this approach. The predictions of intrinsic disorder were carried out using PONDR VL3E predictor of long disordered regions that achieves an accuracy of above 86%. Overall, out of the 710 Swiss-Prot functional keywords that were each associated with at least 20 proteins, 238 were found to be strongly positively correlated with predicted long intrinsically disordered regions, whereas 302 were strongly negatively correlated with such regions. The remaining 170 keywords were ambiguous without strong positive or negative correlation with the disorder predictions. These functions cover a large variety of biological activities and imply that disordered regions are characterized by a wide functional repertoire. Our results agree well with literature findings, as we were able to find at least one illustrative example of functional disorder or order shown experimentally for the vast majority of keywords showing the strongest positive or negative correlation with intrinsic disorder. This work opens a series of three papers, which enriches the current view of protein structure-function relationships, especially with regards to functionalities of intrinsically disordered proteins and provides researchers with a novel tool that could be used to improve the understanding of the relationships between protein structure and function. The first paper of the series describes our statistical

  10. Association between Dietary Sodium Intake and Cognitive Function in Older Adults.

    Science.gov (United States)

    Rush, T M; Kritz-Silverstein, D; Laughlin, G A; Fung, T T; Barrett-Connor, E; McEvoy, L K

    2017-01-01

    To examine the association of dietary sodium intake with cognitive function in community-dwelling older adults. Cross-sectional study. Southern California community. White men (n=373) and women (n=552), aged 50-96 years from the Rancho Bernardo Study, a longitudinal study of cardiovascular disease risk factors and healthy aging. During the 1992-1996 research clinic visit, a food frequency questionnaire was used to determine daily sodium intake; cognitive function was assessed with Trails Making Test, part B (Trails B), Mini-Mental State Exam (MMSE), and Verbal Fluency Test (VFT); and medical, clinical and demographic information was obtained. Linear regression was used to assess the association between calorie-adjusted sodium intake and cognitive test scores with adjustment for demographic, behavioral and health measures. Logistic regression examined the odds of having cognitive impairment by sodium intake. Lower sodium intake was associated with poorer performance on Trails B (p=0.008) and MMSE (p=0.003) after controlling for age, sex, and education. Associations did not differ by sex, but there was a significant interaction by age for the Trails B: older (≥80 years), but not younger, adults showed worse performance with lower sodium intake (p=0.03). Associations remained significant after additional adjustment for smoking, alcohol intake, exercise, body weight, cardiovascular risk factors, kidney function, diuretic medication use, and diet quality. Lower daily sodium intake was associated with increased odds of cognitive impairment on the MMSE (score cognitive function in older community-dwelling adults. For the maintenance of cognitive health, older adults may be advised to avoid very low sodium diets.

  11. [The role of nutritional factors on the structure and function of the brain: an update on dietary requirements].

    Science.gov (United States)

    Bourre, J-M

    2004-09-01

    The brain is an organ elaborated and functioning from substances present in the diet. Dietary regulation of blood glucose level (via ingestion of food with a low glycemic index ensuring a low insulin level) improves the quality and duration of intellectual performance, if only because at rest the adult brain consumes 50 p. 100 of dietary carbohydrates, 80 p. 100 of them for energy purposes. The nature of the amino acid composition of dietary proteins contributes to good cerebral function; tryptophan plays a special role. Many indispensable amino acids present in dietary proteins help to elaborate neurotransmitters and neuromodulators. Omega-3 fatty acids provided the first coherent experimental demonstration of the effect of dietary nutrients on the structure and function of the brain. First it was shown that the differentiation and functioning of cultured brain cells requires omega-3 fatty acids. It was then demonstrated that alpha-linolenic acid (ALA) deficiency alters the course of brain development, perturbs the composition and physicochemical properties of brain cell membranes, neurones, oligodendrocytes, and astrocytes (ALA). This leads to physicochemical modifications, induces biochemical and physiological perturbations, and results in neurosensory and behavioral upset. Consequently, the nature of polyunsaturated fatty acids (in particular omega-3) present in formula milks for infants (premature and term) conditions the visual and cerebral abilities, including intellectual abilities. Moreover, dietary omega-3 fatty acids are certainly involved in the prevention of some aspects of cardiovascular disease (including at the level of cerebral vascularization), and in some neuropsychiatric disorders, particularly depression, as well as in dementia, notably Alzheimer's disease. Their deficiency can prevent the satisfactory renewal of membranes and thus accelerate cerebral aging. Iron is necessary to ensure oxygenation, to produce energy in the cerebral parenchyma

  12. Role of Dietary Protein and Thiamine Intakes on Cognitive Function in Healthy Older People: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Freda Koh

    2015-04-01

    Full Text Available The effectiveness of nutritional interventions to prevent and maintain cognitive functioning in older adults has been gaining interest due to global population ageing. A systematic literature review was conducted to obtain and appraise relevant studies on the effects of dietary protein or thiamine on cognitive function in healthy older adults. Studies that reported on the use of nutritional supplementations and/or populations with significant cognitive impairment were excluded. Seventeen eligible studies were included. Evidence supporting an association between higher protein and/or thiamine intakes and better cognitive function is weak. There was no evidence to support the role of specific protein food sources, such as types of meat, on cognitive function. Some cross-sectional and case-control studies reported better cognition in those with higher dietary thiamine intakes, but the data remains inconclusive. Adequate protein and thiamine intake is more likely associated with achieving a good overall nutritional status which affects cognitive function rather than single nutrients. A lack of experimental studies in this area prevents the translation of these dietary messages for optimal cognitive functioning and delaying the decline in cognition with advancing age.

  13. Redox Biology in Neurological Function, Dysfunction, and Aging.

    Science.gov (United States)

    Franco, Rodrigo; Vargas, Marcelo R

    2018-04-23

    Reduction oxidation (redox) reactions are central to life and when altered, they can promote disease progression. In the brain, redox homeostasis is recognized to be involved in all aspects of central nervous system (CNS) development, function, aging, and disease. Recent studies have uncovered the diverse nature by which redox reactions and homeostasis contribute to brain physiology, and when dysregulated to pathological consequences. Redox reactions go beyond what is commonly described as oxidative stress and involve redox mechanisms linked to signaling and metabolism. In contrast to the nonspecific nature of oxidative damage, redox signaling involves specific oxidation/reduction reactions that regulate a myriad of neurological processes such as neurotransmission, homeostasis, and degeneration. This Forum is focused on the role of redox metabolism and signaling in the brain. Six review articles from leading scientists in the field that appraise the role of redox metabolism and signaling in different aspects of brain biology including neurodevelopment, neurotransmission, aging, neuroinflammation, neurodegeneration, and neurotoxicity are included. An original research article exemplifying these concepts uncovers a novel link between oxidative modifications, redox signaling, and neurodegeneration. This Forum highlights the recent advances in the field and we hope it encourages future research aimed to understand the mechanisms by which redox metabolism and signaling regulate CNS physiology and pathophysiology. Antioxid. Redox Signal. 00, 000-000.

  14. Function and regulation of lipid biology in Caenorhabditis elegans aging

    Directory of Open Access Journals (Sweden)

    Nicole Shangming Hou

    2012-05-01

    Full Text Available Rapidly expanding aging populations and a concomitant increase in the prevalence of age-related diseases are global health problems today. Over the past three decades, a large body of work has led to the identification of genes and regulatory networks that affect longevity and health span, often benefitting from the tremendous power of genetics in vertebrate and invertebrate model organisms. Interestingly, many of these factors appear linked to lipids, important molecules that participate in cellular signaling, energy metabolism, and structural compartmentalization. Despite the putative link between lipids and longevity, the role of lipids in aging remains poorly understood. Emerging data from the model organism Caenorhabditis elegans suggest that lipid composition may change during aging, as several pathways that influence aging also regulate lipid metabolism enzymes; moreover, some of these enzymes apparently play key roles in the pathways that affect the rate of aging. By understanding how lipid biology is regulated during C. elegans aging, and how it impacts molecular, cellular and organismal function, we may gain insight into novel ways to delay aging using genetic or pharmacological interventions. In the present review we discuss recent insights into the roles of lipids in C. elegans aging, including regulatory roles played by lipids themselves, the regulation of lipid metabolic enzymes, and the roles of lipid metabolism genes in the pathways that affect aging.

  15. Dietary nitrate improves vascular function in patients with hypercholesterolemia: a randomized, double-blind, placebo-controlled study123

    Science.gov (United States)

    Velmurugan, Shanti; Gan, Jasmine Ming; Rathod, Krishnaraj S; Khambata, Rayomand S; Ghosh, Suborno M; Hartley, Amy; Van Eijl, Sven; Sagi-Kiss, Virag; Chowdhury, Tahseen A; Curtis, Mike; Kuhnle, Gunter GC; Wade, William G; Ahluwalia, Amrita

    2016-01-01

    Background: The beneficial cardiovascular effects of vegetables may be underpinned by their high inorganic nitrate content. Objective: We sought to examine the effects of a 6-wk once-daily intake of dietary nitrate (nitrate-rich beetroot juice) compared with placebo intake (nitrate-depleted beetroot juice) on vascular and platelet function in untreated hypercholesterolemics. Design: A total of 69 subjects were recruited in this randomized, double-blind, placebo-controlled parallel study. The primary endpoint was the change in vascular function determined with the use of ultrasound flow-mediated dilatation (FMD). Results: Baseline characteristics were similar between the groups, with primary outcome data available for 67 patients. Dietary nitrate resulted in an absolute increase in the FMD response of 1.1% (an ∼24% improvement from baseline) with a worsening of 0.3% in the placebo group (P nitrate group, showing a trend (P = 0.06) to improvement in comparison with the placebo group. Dietary nitrate also caused a small but significant reduction (7.6%) in platelet-monocyte aggregates compared with an increase of 10.1% in the placebo group (P = 0.004), with statistically significant reductions in stimulated (ex vivo) P-selectin expression compared with the placebo group (P nitrate were detected. The composition of the salivary microbiome was altered after the nitrate treatment but not after the placebo treatment (P nitrate treatment; of those taxa present, 2 taxa were responsible for >1% of this change, with the proportions of Rothia mucilaginosa trending to increase and Neisseria flavescens (P nitrate treatment relative to after placebo treatment. Conclusions: Sustained dietary nitrate ingestion improves vascular function in hypercholesterolemic patients. These changes are associated with alterations in the oral microbiome and, in particular, nitrate-reducing genera. Our findings provide additional support for the assessment of the potential of dietary nitrate as a

  16. Dietary resources shape the adaptive changes of cyanide detoxification function in giant panda (Ailuropoda melanoleuca).

    Science.gov (United States)

    Huang, He; Yie, Shangmian; Liu, Yuliang; Wang, Chengdong; Cai, Zhigang; Zhang, Wenping; Lan, Jingchao; Huang, Xiangming; Luo, Li; Cai, Kailai; Hou, Rong; Zhang, Zhihe

    2016-10-05

    The functional adaptive changes in cyanide detoxification in giant panda appear to be response to dietary transition from typical carnivore to herbivorous bear. We tested the absorption of cyanide contained in bamboo/bamboo shoots with a feeding trial in 20 adult giant pandas. We determined total cyanide content in bamboo shoots and giant panda's feces, levels of urinary thiocyanate and tissue rhodanese activity using color reactions with a spectrophotometer. Rhodanese expression in liver and kidney at transcription and translation levels were measured using real-time RT-PCR and immunohistochemistry, respectively. We compared differences of rhodanese activity and gene expressions among giant panda, rabbit (herbivore) and cat (carnivore), and between newborn and adult giant pandas. Bamboo shoots contained 3.2 mg/kg of cyanide and giant pandas absorbed more than 65% of cyanide. However, approximately 80% of absorbed cyanide was metabolized to less toxic thiocyanate that was discharged in urine. Rhodanese expression and activity in liver and kidney of giant panda were significantly higher than in cat, but lower than in rabbit (all P pandas were higher than that in newborn cub. Phylogenetic analysis of both nucleotide and amino acid sequences of the rhodanese gene supported a closer relationship of giant panda with carnivores than with herbivores.

  17. Differences in Dietary Intake as a Function of Sexual Activity and Hormonal Contraception

    Directory of Open Access Journals (Sweden)

    Diana S. Fleischman

    2007-07-01

    Full Text Available As a consequence of the need to downregulate some maternal immune responses so as to tolerate paternal genetic material following conception, the luteal phase of the menstrual cycle is associated with increased susceptibility to infection. Because meat was one of the primary sources of foodborne pathogens throughout our evolutionary history, Fessler (2001 predicted a decrease in meat intake during the luteal phase; the current research provides the first test of this prediction. Based on the assumption that any such behavioral changes would be hormonally mediated, we also investigated the effects of varying levels of exogenous hormones on meat consumption by examining dietary intake in women using hormonal contraceptives. Lastly, because, from a functional perspective, immunomodulation is unnecessary during anovulatory cycles and in women who are not currently sexually active, luteal phase compensatory behavioral prophylaxis was predicted to be absent in these contexts. Although we find that women who are sexually active eat less meat than those who are not, we do not find support for the core prediction regarding effect of cycle phase on meat consumption, nor do we find support for the ancillary prediction that meat consumption would be influenced by the presence or withdrawal of exogenous hormones. We replicate the finding that periovulatory total food intake is decreased compared to the rest of the cycle and find that sexually active women show a greater periovulatory decrease in food intake than sexually inactive women.

  18. Dietary fibre intakes and reduction in functional constipation rates among Canadian adults: a cost-of-illness analysis

    Directory of Open Access Journals (Sweden)

    Mohammad M. H. Abdullah

    2015-12-01

    Full Text Available Background: Evidence-based research highlights beneficial impacts of dietary fibre on several aspects of the gut pathophysiology that are accompanied by a considerable financial burden in healthcare services. Recommended intakes of dietary fibre may thus associate with financial benefits at a population level. Objective: We sought to systematically assess the potential annual savings in healthcare costs that would follow the reduction in rates of functional constipation and irregularity with increased dietary fibre intakes among Canadian adults. Design: A cost-of-illness analysis was developed on the basis of current and recommended levels of fibre intake in Canada, constipation reduction per 1 g fibre intake, proportion of adults who are likely to consume fibre-rich diets, and population expected to respond to fibre intake. Sensitivity analyses covering a range of assumptions were further implemented within the economic simulation. Results: Our literature searches assumed a 1.8% reduction in constipation rates with each 1 g/day increase in fibre intake. With intakes corresponding to the Institute of Medicine's adequate levels of 38 g/day for men and 25 g/day for women, among 5 and 100% of the adult populations, anywhere between CAD$1.5 and CAD$31.9 million could be saved on constipation-related healthcare costs annually. Each 1 g/day increase in dietary fibre was estimated to result in total annual healthcare cost savings that ranged between CAD$0.1 and CAD$2.5 million. Conclusions: The present research suggests an economic value of increasing dietary fibre intake beyond its well-known health benefits. Healthy-eating behaviours consistent with the recommended intakes of dietary fibre by the general public should hence be advocated as a practical approach for reducing costs associated with the management of constipation in Canada.

  19. Phytochrome from Green Plants: Properties and biological Function

    Energy Technology Data Exchange (ETDEWEB)

    Quail, Peter H.

    2014-07-25

    Pfr conformer reverses this activity upon initial light exposure, inducing the switch to photomorphogenic development. This reversal involves light-triggered translocation of the photoactivated phy molecule into the nucleus where it interacts with PIF-family members, inducing rapid phosphorylation and degradation of the PIFs via the ubiquitin-proteasome system. This degradation in turn elicits rapid alterations in gene expression that drive the deetiolation transition. This project has made considerable progress in defining phy-PIF signaling activity in controlling the SAR. The biological functions of the multiple PIF-family members in controlling the SAR, including dissection of the relative contributions of the individual PIFs to this process, as well as to diurnal growth-control oscillations, have been investigated using higher-order pif-mutant combinations. Using microarray analysis of a quadruple pif mutant we have defined the shade-induced, PIF-regulated transcriptional network genome-wide. This has revealed that a dynamic antagonism between the phys and PIFs generates selective reciprocal responses during deetiolation and the SAR in a rapidly light-responsive transcriptional network. Using integrated RNA-seq and ChIP-seq analysis of higher order pif-mutant combinations, we have defined the direct gene-targets of PIF transcriptional regulation, and have obtained evidence that this regulation involves differential direct targeting of rapidly light-responsive genes by the individual PIF-family members. This project has provided significant advances in our understanding of the molecular mechanisms by which the phy-PIF photosensory signaling pathway regulates an important bioenergy-related plant response to the light environment. The identification of molecular targets in the primary transcriptional-regulatory circuitry of this pathway has the potential to enable genetic or reverse-genetic manipulation of the partitioning of carbon between reproductive and

  20. Dietary isoflavones alter regulatory behaviors, metabolic hormones and neuroendocrine function in Long-Evans male rats

    Directory of Open Access Journals (Sweden)

    Bu Lihong

    2004-12-01

    Full Text Available Abstract Background Phytoestrogens derived from soy foods (or isoflavones have received prevalent usage due to their 'health benefits' of decreasing: a age-related diseases, b hormone-dependent cancers and c postmenopausal symptoms. However, little is known about the influence of dietary phytoestrogens on regulatory behaviors, such as food and water intake, metabolic hormones and neuroendocrine parameters. This study examined important hormonal and metabolic health issues by testing the hypotheses that dietary soy-derived isoflavones influence: 1 body weight and adipose deposition, 2 food and water intake, 3 metabolic hormones (i.e., leptin, insulin, T3 and glucose levels, 4 brain neuropeptide Y (NPY levels, 5 heat production [in brown adipose tissue (BAT quantifying uncoupling protein (UCP-1 mRNA levels] and 6 core body temperature. Methods This was accomplished by conducting longitudinal studies where male Long-Evans rats were exposed (from conception to time of testing or tissue collection to a diet rich in isoflavones (at 600 micrograms/gram of diet or 600 ppm vs. a diet low in isoflavones (at approximately 10–15 micrograms/gram of diet or 10–15 ppm. Body, white adipose tissue and food intake were measured in grams and water intake in milliliters. The hormones (leptin, insulin, T3, glucose and NPY were quantified by radioimmunoassays (RIA. BAT UCP-1 mRNA levels were quantified by PCR and polyacrylamide gel electrophoresis while core body temperatures were recorded by radio telemetry. The data were tested by analysis of variance (ANOVA (or where appropriate by repeated measures. Results Body and adipose tissue weights were decreased in Phyto-600 vs. Phyto-free fed rats. Food and water intake was greater in Phyto-600 animals, that displayed higher hypothalamic (NPY concentrations, but lower plasma leptin and insulin levels, vs. Phyto-free fed males. Higher thyroid levels (and a tendency for higher glucose levels and increased uncoupling

  1. Functional foods for weight management: Dietary Fiber – a systematic review

    Directory of Open Access Journals (Sweden)

    Mona Boaz

    2013-04-01

    Full Text Available ABSTRACTIt has been estimated that more than 1.5 billion adults are overweight or obese worldwide [1], rendering obesity a global epidemic [2]. Obesity is associated with significant morbidity, including type 2 diabetes, cardiovascular disease, osteoarthritis and some cancers [3]. Thus, obesity is clearly a medical issue, its costs impacting heavily on health care systems in both developed and developing nations [4]. The combined impact of transmissible and chronic disease in the third world is particularly devastating to the very health care systems with fewest resources [5].Because obesity has been identified as a major health issue, treating obesity is an important goal. However, weight loss management has proven notoriously difficult. It is well documented that reduced energy intake and increased energy expenditure may reduce body weight in the short term, but obesity relapse is the long term is anticipated [6]. In a study of overweight or obese US adults who weighed ≥ 10% less than their maximum body weight the year prior to the survey (n=1310, 33.5% regained > 5% during that year [7].Despite its somewhat unimpressive success rate, "lifestyle" weight management remains the first line intervention for obesity treatment [8]. Lifestyle weight management can be defined as interventions based on energy restriction (weight loss diet; increased energy output (exercise; and/or behavioral change (cognitive or behavior therapy. Functional foods have been explored as a tool for enhancing lifestyle weight management.Functional foods evaluated for their efficacy as obesity interventions can be divided into two broad categories: 1 foods which suppress appetite and increase satiety; and 2 foods which enhance thermogenesis. The present review will focus on those foods thought to act by increasing satiety and suppressing appetite.Key words: Obesity, weight loss, systematic review, dietary fiber

  2. A Chan Dietary Intervention Enhances Executive Functions and Anterior Cingulate Activity in Autism Spectrum Disorders: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Agnes S. Chan

    2012-01-01

    Full Text Available Executive dysfunctions have been found to be related to repetitive/disinhibited behaviors and social deficits in autism spectrum disorders (ASDs. This study aims to investigate the potential effect of a Shaolin-medicine-based dietary modification on improving executive functions and behavioral symptoms of ASD and exploring the possible underlying neurophysiological mechanisms. Twenty-four children with ASD were randomly assigned into the experimental (receiving dietary modification for one month and the control (no modification groups. Each child was assessed on his/her executive functions, behavioral problems based on parental ratings, and event-related electroencephalography (EEG activity during a response-monitoring task before and after the one month. The experimental group demonstrated significantly improved mental flexibility and inhibitory control after the diet modification, which continued to have a large effect size within the low-functioning subgroup. Such improvements coincided with positive evaluations by their parents on social communication abilities and flexible inhibitory control of daily behaviors and significantly enhanced event-related EEG activity at the rostral and subgenual anterior cingulate cortex. In contrast, the control group did not show any significant improvements. These positive outcomes of a one-month dietary modification on children with ASD have implicated its potential clinical applicability for patients with executive function deficits.

  3. Dietary modification of brain function: effects on neuroendocrine and psychological determinants of mental health- and stress-related disorders.

    Science.gov (United States)

    Waladkhani, A R; Hellhammer, J

    2008-01-01

    Stress is associated with both psychological and biological adaptation. Chronic stress, however, impairs adaptation, and may finally lead to illness, in part through unhealthy changes in nutritional behavior. This chapter shows how physiological and psychological stress responses are affected by different food ingredients, and how stress affects health behavior, for example food choice. It becomes obvious that nutrition is closely linked to food choice and that food ingredients affect a broad range of neuroendocrine and related psychological processes, which regulate adaptation to chronic stress. Thus, dietary modification may become a valuable tool to modify the susceptibility to stress and stress-related disorders.

  4. Membrane Binding of Recoverin: From Mechanistic Understanding to Biological Functionality

    Czech Academy of Sciences Publication Activity Database

    Timr, S.; Pleskot, Roman; Kadlec, J.; Kohagen, M.; Magarkar, A.; Jungwirth, P.

    2017-01-01

    Roč. 3, č. 8 (2017), s. 868-874 ISSN 2374-7943 Institutional support: RVO:61389030 Keywords : recoverin * membrane * myristoyl Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Cell biology Impact factor: 7.481, year: 2016

  5. Chemical composition and functional characteristics of dietary fiber-rich powder obtained from core of maize straw.

    Science.gov (United States)

    Lv, Jin-Shun; Liu, Xiao-Yan; Zhang, Xiao-Pan; Wang, Lin-Shuang

    2017-07-15

    A novel dietary fiber (MsCDF) based core of maize straw (Core) was prepared by using high boiling solvent of sodium peroxide by high pressure pretreatment (HBSHP). The composition of MsCDF, and several physicochemical properties for MsCDF related to its nutritional quality were investigated. The results revealed that the MsCDF contains high contents total dietary fiber (TDF), soluble dietary fiber (SDF), insoluble dietary fiber (IDF) and two main monosaccharaides, xylose and glucose. Meanwhile, the studies of physicochemical properties of MsCDF indicated that MsCDF performed well water-holding capacity (WHC), oil-holding capacity (OHC), Swelling, solubility (SOL), Glucose dialysis retardation index (GDRI) and adsorption capacity on cholesterol. The results of this study serve as evidence that MsCDF can be used as a functional food additive, Core can be used as a crude material to produce MsCDF and the technology of HBSHP can be used to modify the physico-chemical properties of Core. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Prevalence of Functional Constipation and Relationship with Dietary Habits in 3- to 8-Year-Old Children in Japan.

    Science.gov (United States)

    Fujitani, Asami; Sogo, Tsuyoshi; Inui, Ayano; Kawakubo, Kiyoshi

    2018-01-01

    To determine the prevalence and effect of dietary habits on functional constipation in preschool and early elementary school children in Japan. A total of 3595 children aged 3 to 8 years from 28 nursery schools and 22 elementary schools in Yokohama City, Kanagawa Prefecture, Japan, were evaluated. The subjects were divided into a functional constipation group and a nonfunctional constipation group according to the Rome III criteria. Dietary intake data were collected using a brief-type, self-administered, diet-history questionnaire validated for Japanese preschool-aged children. Of the 3595 subjects evaluated, 718 (20.0%) had functional constipation. The association between functional constipation and gender was not statistically significant ( p = 0.617). A decrease in bowel frequency was observed in 15.9% of those with functional constipation. There was no significant difference in the proportion of participants in the constipation group by age ( p = 0.112). Binomial logistic regression analysis indicated that only fat per 100 kcal positively correlated with functional constipation [odds ratio = 1.216, 95% confidence interval: 1.0476-1.412]. Functional constipation is common among children in preschool and early elementary school in urban areas of Japan. Parents should pay attention to constipation-related symptoms other than defecation frequency. A high-fat diet should be avoided to prevent functional constipation.

  7. Prevalence of Functional Constipation and Relationship with Dietary Habits in 3- to 8-Year-Old Children in Japan

    Directory of Open Access Journals (Sweden)

    Asami Fujitani

    2018-01-01

    Full Text Available Objectives. To determine the prevalence and effect of dietary habits on functional constipation in preschool and early elementary school children in Japan. Study Design. A total of 3595 children aged 3 to 8 years from 28 nursery schools and 22 elementary schools in Yokohama City, Kanagawa Prefecture, Japan, were evaluated. The subjects were divided into a functional constipation group and a nonfunctional constipation group according to the Rome III criteria. Dietary intake data were collected using a brief-type, self-administered, diet-history questionnaire validated for Japanese preschool-aged children. Results. Of the 3595 subjects evaluated, 718 (20.0% had functional constipation. The association between functional constipation and gender was not statistically significant (p=0.617. A decrease in bowel frequency was observed in 15.9% of those with functional constipation. There was no significant difference in the proportion of participants in the constipation group by age (p=0.112. Binomial logistic regression analysis indicated that only fat per 100 kcal positively correlated with functional constipation [odds ratio = 1.216, 95% confidence interval: 1.0476–1.412]. Conclusions. Functional constipation is common among children in preschool and early elementary school in urban areas of Japan. Parents should pay attention to constipation-related symptoms other than defecation frequency. A high-fat diet should be avoided to prevent functional constipation.

  8. Functional properties and dietary fiber characterization of mango processing by-products (Mangifera indica L., cv Ataulfo and Tommy Atkins).

    Science.gov (United States)

    García-Magaña, María de Lourdes; García, Hugo S; Bello-Pérez, Luis A; Sáyago-Ayerdi, Sonia G; de Oca, Miguel Mata-Montes

    2013-09-01

    Several reports have focused on utilization of post-harvest residues of crops, while neglecting those residues produced by mango processing. These residues represent a waste of nutrients and a source of environmental contaminants. Such by-products could be valuable sources of dietary fiber (DF), antioxidant compounds, and single carbohydrates. The aim of this study was to evaluate some functional properties (FP), and the content of DF and polyphenols (PP) of the peel and coarse material obtained from residues during the industrial processing of Ataulfo and Tommy Atkins mangoes. The total dietary fiber (TDF) content was about 225 mg/g and 387 mg/g (dry weight) for the coarse material and the peel, respectively, from which soluble dietary fiber represented 23 and 42%, respectively. The main neutral sugar identified was rhamnose, especially in peels; the klason lignin (KL) content was 92 mg/g, which highlights the Ataulfo peel (Ataulfo-P) and the Tommy Atkins peel (Tommy Atkins-P). The extractable PP content in Ataulfo-P was higher than in Tommy-Atkins-P, and interesting data for non-extractable PP were obtained in the residues. FP as swelling, water holding, oil holding, and glucose absorption in the residues was studied, obtaining better functional properties when compared to cellulose fiber. The results show that mango industrial by-products, mainly from the Ataulfo-P variety, could be used as ingredients in food products because of their functional properties as well as their DF and PP content.

  9. Dietary Intake of Flavonoids and Ventilatory Function in European Adults: A GA2LEN Study

    Directory of Open Access Journals (Sweden)

    Vanessa Garcia-Larsen

    2018-01-01

    Full Text Available Background: Flavonoids exert anti-inflammatory properties and modulate oxidative stress in vitro, suggesting a protective effect on lung function, but epidemiological studies examining this association are scarce. Methods: A stratified random sample was drawn from the GA2LEN screening survey, in which 55,000 adults aged 15 to 75 answered a questionnaire on respiratory symptoms. Post-bronchodilator spirometry was obtained from 2850 subjects. Forced vital capacity (FVC, the ratio between the forced exhaled volume in 1 second (FEV1 and FVC (FEV1/FVC, FVC below lower limit of normal (FVC < LLN, and FEV1/FVC < LLN were calculated. Intake of the six main subclasses of flavonoids was estimated using the GA2LEN Food Frequency Questionnaire. Adjusted associations between outcomes and each subclass of flavonoids were examined with multivariate regressions. Simes’ procedure was used to test for multiple comparisons. Results: A total of 2599 subjects had valid lung function and dietary data. A lower prevalence of FVC < LLN (airway restriction was observed in those with higher total flavonoid (adjusted odds ratio (aOR, higher vs. lowest quintile intake 0.58; 95% Confidence Interval (CI 0.36, 0.94, and pro-anthocyanidin intakes (aOR 0.47; 95% CI 0.27, 0.81. A higher FEV1/FVC was associated with higher intakes of total flavonoids and pro-anthocyanidins (adjusted correlation coefficient (a β-coeff 0.33; 0.10, 0.57 and a β-coeff 0.44; 95% CI 0.19, 0.69, respectively. After Simes’ procedure, the statistical significance of each of these associations was attenuated but remained below 0.05, with the exception of total flavonoids and airway restriction. Conclusions: This population-based study in European adults provides cross-sectional evidence of a positive association of total flavonoid intake and pro-anthocyanidins and ventilatory function, and a negative association with spirometric restriction in European adults.

  10. Physicochemical and Functional Properties of Insoluble Dietary Fiber Isolated from Bambara Groundnut (Vigna subterranea [L.] Verdc.).

    Science.gov (United States)

    Diedericks, Claudine F; Jideani, Victoria A

    2015-09-01

    Bambara groundnut (BGN) is a widely cultivated legume with a rich nutritional profile, yet despite its many benefits it still remains underutilized. To highlight its potential value, 4 BGN varieties-brown, red, black eye, and brown eye were subjected to sequential enzymatic treatments followed by centrifugation to obtain the insoluble dietary fiber (IDF) fraction. The IDFs were vacuum-dried and evaluated for color, hydration properties, fat absorption, polyphenolic compounds, neutral sugars, and uronic acids. An optimized white bread formulation was also determined using brown BGN-IDF in an optimal (IV) mixture design. Three mixture components constrained at lower and upper limits (water: 57% to 60%, yeast: 2.3% to 5.3%, and BGN-IDF: 7% to 10%) were evaluated for their effects on responses of specific loaf volume, gumminess, chewiness, and resilience of the loaves. All BGN-IDFs differed significantly (P ≤ 0.05) across all color parameters. Polyphenols were significantly (P ≤ 0.05) highest in red and brown BGN-IDFs. Arabinose/galactose (31.04% to 37.12%), xylose (16.53% to 27.30%), and mannose (14.48% to 22.24%) were the major sugars identified. Swelling capacity was significantly (P ≤ 0.05) highest for brown eye BGN-IDF (7.72 ± 0.49 mL/g). Water retention capacity ranged from 1.63 to 2.01 g water/g dry weight. Fat absorption for red BGN-IDF differed significantly (P ≤ 0.05). Furthermore, the best optimal white bread formulation enriched with brown BGN-IDF was established with numerical optimization at 59.5% water, 4.3% yeast, and 8.5% BGN-IDF. Overall positive physicochemical and functional properties were observed for BGN-IDFs, and it was shown that an optimal white bread enriched with BGN-IDF could be produced. © 2015 Institute of Food Technologists®

  11. The functional and biological properties of whey proteins: prospects for the development of functional foods

    Directory of Open Access Journals (Sweden)

    H. J. T. KORHONEN

    2008-12-01

    Full Text Available Advances in processing technologies and the accumulation of scientific data on the functional and biological properties of whey components have contributed to the growing commercial valuation of cheese whey over the last decade. New membrane separation and chromatographic techniques have made it possible to fractionate and enrich various components of whey more efficiently than before. The specific properties of these components can now be examined in greater detail and new applications developed accordingly. The utilisation of cheese whey is evolving into a new industry producing a multitude of purified ingredients for numerous purposes. The most significant areas of R&D related to whey proteins include functional foods, the rheological properties of foodstuffs, and biopharmaceuticals.

  12. Regulation of dietary glutamine on the growth, intestinal function, immunity and antioxidant capacity of sea cucumber Apostichopus japonicus (Selenka).

    Science.gov (United States)

    Yu, Haibo; Gao, Qinfeng; Dong, Shuanglin; Lan, Ying; Ye, Zhi; Wen, Bin

    2016-03-01

    The present study examined the effects of dietary glutamine (Gln) on the growth, intestinal function, immunity and antioxidant capacity of sea cucumber Apostichopus japonicus (Selenka). The specific growth rate, intestinal morphology, activity of digestive enzymes, activity and gene expression of lysozyme and antioxidative enzymes of the sea cucumbers were determined after feeding 5 experimental diets with additions of increasing levels of Gln (at 0%, 0.4%, 0.8%,1.2% and 1.6%, respectively) for 60 days. We discovered that the specific growth rate of the sea cucumbers in 0.4%, 0.8% and 1.2% groups increased 35.3%, 27.3% and 24.1%, respectively, compared to the control (0%) group with significant differences. Dietary Gln can improve the intestinal function of the sea cucumbers by increasing the activities of trypsin and lipase in the intestine and the villus height and villus density of the intestine, eventhough significant differences were not observed in some groups. 0.4%-0.8% of dietary Gln can significantly increase the activity of lysozyme (LSZ) in the coelomic fluid of the sea cucumbers. Significant improvements were observed on the SOD activity in coelomic fluid of the sea cucumbers fed diets supplemented with 0.4%-1.6% of Gln compared to the control group. Similarly, the CAT activity in coelomic fluid of the sea cucumbers significantly increased in 0.8%, 1.2% and 1.6% groups compared to the control and 0.4% groups. Change pattern of the activity of CAT was consistent with the change pattern of the expression of CAT gene, indicating the dietary Gln can up-regulate the expression of CAT gene and consequently promote the secretion of CAT. However, the down-regulation of the expression of SOD gene by dietary Gln were observed in almost all of the treatment groups, which is in contrast with the change pattern of the activity of SOD, indicating the negative feedback regulation of the secretion of SOD on the expression of SOD gene. In summary, the suitable

  13. Lipid polymorphism and the functional roles of lipids in biological membranes

    NARCIS (Netherlands)

    Cullis, P.R.; Kruijff, B. de

    1979-01-01

    The reasons for the great variety of lipids found in biological membranes, and the relations between lipid composition and membrane function pose major unsolved problems in membrane biology. Perhaps the only major functional role of lipids which may be regarded as firmly established involves the

  14. Chronic dietary supplementation with soy protein improves muscle function in rats.

    Directory of Open Access Journals (Sweden)

    Ramzi J Khairallah

    Full Text Available Athletes as well as elderly or hospitalized patients use dietary protein supplementation to maintain or grow skeletal muscle. It is recognized that high quality protein is needed for muscle accretion, and can be obtained from both animal and plant-based sources. There is interest to understand whether these sources differ in their ability to maintain or stimulate muscle growth and function. In this study, baseline muscle performance was assessed in 50 adult Sprague-Dawley rats after which they were assigned to one of five semi-purified "Western" diets (n = 10/group differing only in protein source, namely 19 kcal% protein from either milk protein isolate (MPI, whey protein isolate (WPI, soy protein isolate (SPI, soy protein concentrate (SPC or enzyme-treated soy protein (SPE. The diets were fed for 8 weeks at which point muscle performance testing was repeated and tissues were collected for analysis. There was no significant difference in food consumption or body weights over time between the diet groups nor were there differences in terminal organ and muscle weights or in serum lipids, creatinine or myostatin. Compared with MPI-fed rats, rats fed WPI and SPC displayed a greater maximum rate of contraction using the in vivo measure of muscle performance (p<0.05 with increases ranging from 13.3-27.5% and 22.8-29.5%, respectively at 60, 80, 100 and 150 Hz. When the maximum force was normalized to body weight, SPC-fed rats displayed increased force compared to MPI (p<0.05, whereas when normalized to gastrocnemius weight, WPI-fed rats displayed increased force compared to MPI (p<0.05. There was no difference between groups using in situ muscle performance. In conclusion, soy protein consumption, in high-fat diet, resulted in muscle function comparable to whey protein and improved compared to milk protein. The benefits seen with soy or whey protein were independent of changes in muscle mass or fiber cross-sectional area.

  15. Exploring candidate biological functions by Boolean Function Networks for Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Maria Simak

    Full Text Available The great amount of gene expression data has brought a big challenge for the discovery of Gene Regulatory Network (GRN. For network reconstruction and the investigation of regulatory relations, it is desirable to ensure directness of links between genes on a map, infer their directionality and explore candidate biological functions from high-throughput transcriptomic data. To address these problems, we introduce a Boolean Function Network (BFN model based on techniques of hidden Markov model (HMM, likelihood ratio test and Boolean logic functions. BFN consists of two consecutive tests to establish links between pairs of genes and check their directness. We evaluate the performance of BFN through the application to S. cerevisiae time course data. BFN produces regulatory relations which show consistency with succession of cell cycle phases. Furthermore, it also improves sensitivity and specificity when compared with alternative methods of genetic network reverse engineering. Moreover, we demonstrate that BFN can provide proper resolution for GO enrichment of gene sets. Finally, the Boolean functions discovered by BFN can provide useful insights for the identification of control mechanisms of regulatory processes, which is the special advantage of the proposed approach. In combination with low computational complexity, BFN can serve as an efficient screening tool to reconstruct genes relations on the whole genome level. In addition, the BFN approach is also feasible to a wide range of time course datasets.

  16. Design of Functional Polyesters for Electronic and Biological Applications

    OpenAIRE

    Nelson, Ashley Marie

    2015-01-01

    Melt polymerization and novel monomers enabled the synthesis of polyesters for electronic and biological applications. Inspiration from nature and a passion for environmental preservation instigated an emphasis on the incorporation of renewable resources into polymeric materials. Critical analysis of current research surrounding bisphenol-A replacements and ioncontaining segmented polyurethanes aided in identifying benchmark polymers, including limitations, challenges, and future needs. Struc...

  17. Oxidative metabolites of lycopene and their biological functions

    Science.gov (United States)

    To gain a better understanding of the beneficial biological activities of lycopene on cancer prevention, a greater knowledge of the metabolism of lycopene is needed. In particular, the identification of lycopene metabolites and oxidation products in vivo; the importance of tissue specific lycopene c...

  18. Click chemistry mediated functionalization of vertical nanowires for biological applications

    DEFF Research Database (Denmark)

    Vutti, Surendra; Schoffelen, Sanne; Bolinsson, Jessica

    2016-01-01

    is of general interest for biological studies. The attachment of a peptide substrate provided NW arrays for the detection of protease activity. In addition, green fluorescent protein was immobilized in a site-specific manner and recognized by antibody binding to demonstrate the proof-of-concept for the use...

  19. Role of Dietary Antioxidants in the Preservation of Vascular Function and the Modulation of Health and Disease

    Directory of Open Access Journals (Sweden)

    Saradhadevi Varadharaj

    2017-11-01

    Full Text Available In vascular diseases, including hypertension and atherosclerosis, vascular endothelial dysfunction (VED occurs secondary to altered function of endothelial nitric oxide synthase (eNOS. A novel redox regulated pathway was identified through which eNOS is uncoupled due to S-glutathionylation of critical cysteine residues, resulting in superoxide free radical formation instead of the vasodilator molecule, nitric oxide. In addition, the redox sensitive cofactor tetrahydrobiopterin, BH4, is also essential for eNOS coupling. Antioxidants, either individually or combined, can modulate eNOS uncoupling by scavenging free radicals or impairing specific radical generating pathways, thus preventing oxidative stress and ameliorating VED. Epidemiological evidence and dietary guidelines suggest that diets high in antioxidants, or antioxidant supplementation, could preserve vascular health and prevent cardiovascular diseases (CVDs. Therefore, the purpose of this review is to highlight the possible role of dietary antioxidants in regulating eNOS function and uncoupling which is critical for maintenance of vascular health with normal blood flow/circulation and prevention of VED. We hypothesize that a conditioned dietary approach with suitable antioxidants may limit systemic oxidation, maintain a beneficial ratio of reduced to oxidized glutathione, and other redox markers, and minimize eNOS uncoupling serving to prevent CVD and possibly other chronic diseases.

  20. Function of dynamic models in systems biology: linking structure to behaviour.

    Science.gov (United States)

    Knüpfer, Christian; Beckstein, Clemens

    2013-10-08

    Dynamic models in Systems Biology are used in computational simulation experiments for addressing biological questions. The complexity of the modelled biological systems and the growing number and size of the models calls for computer support for modelling and simulation in Systems Biology. This computer support has to be based on formal representations of relevant knowledge fragments. In this paper we describe different functional aspects of dynamic models. This description is conceptually embedded in our "meaning facets" framework which systematises the interpretation of dynamic models in structural, functional and behavioural facets. Here we focus on how function links the structure and the behaviour of a model. Models play a specific role (teleological function) in the scientific process of finding explanations for dynamic phenomena. In order to fulfil this role a model has to be used in simulation experiments (pragmatical function). A simulation experiment always refers to a specific situation and a state of the model and the modelled system (conditional function). We claim that the function of dynamic models refers to both the simulation experiment executed by software (intrinsic function) and the biological experiment which produces the phenomena under investigation (extrinsic function). We use the presented conceptual framework for the function of dynamic models to review formal accounts for functional aspects of models in Systems Biology, such as checklists, ontologies, and formal languages. Furthermore, we identify missing formal accounts for some of the functional aspects. In order to fill one of these gaps we propose an ontology for the teleological function of models. We have thoroughly analysed the role and use of models in Systems Biology. The resulting conceptual framework for the function of models is an important first step towards a comprehensive formal representation of the functional knowledge involved in the modelling and simulation process

  1. On the mechanism by which dietary nitrate improves human skeletal muscle function

    Directory of Open Access Journals (Sweden)

    Charles eAffourtit

    2015-07-01

    Full Text Available Inorganic nitrate is present at high levels in beetroot and celery, and in green leafy vegetables such as spinach and lettuce. Though long believed inert, nitrate can be reduced to nitrite in the human mouth and, further, under hypoxia and/or low pH, to nitric oxide. Dietary nitrate has thus been associated favourably with nitric-oxide-regulated processes including blood flow and energy metabolism. Indeed, the therapeutic potential of dietary nitrate in cardiovascular disease and metabolic syndrome – both ageing-related medical disorders – has attracted considerable recent research interest. We and others have shown that dietary nitrate supplementation lowers the oxygen cost of human exercise, as less respiratory activity appears to be required for a set rate of skeletal muscle work. This striking observation predicts that nitrate benefits the energy metabolism of human muscle, increasing the efficiency of either mitochondrial ATP synthesis and/or of cellular ATP-consuming processes. In this mini-review, we evaluate experimental support for the dietary nitrate effects on muscle bioenergetics and we critically discuss the likelihood of nitric oxide as the molecular mediator of such effects.

  2. Dietary Patterns in Infancy and Cognitive and Neuropsychological Function in Childhood

    Science.gov (United States)

    Gale, Catharine R.; Martyn, Christopher N.; Marriott, Lynne D.; Limond, Jennifer; Crozier, Sarah; Inskip, Hazel M.; Godfrey, Keith M.; Law, Catherine M.; Cooper, Cyrus; Robinson, Sian M.

    2009-01-01

    Background: Trials in developing countries suggest that improving young children's diet may benefit cognitive development. Whether dietary composition influences young children's cognition in developed countries is unclear. Although many studies have examined the relation between type of milk received in infancy and subsequent cognition, there has…

  3. Mapping the diverse functions of dietary fatty acids via target gene regulation

    NARCIS (Netherlands)

    Georgiadi, A.

    2012-01-01

    Dietary fat is a strong predictor of chronic diseases, such as cardiovascular diseases, obesity, diabetes, dyslipidemia and metabolic syndrome. A great number of epidemiological and observational studies clearly show that in addition to the amount of fat consumed in a diet, fat composition is an

  4. Recent Advances in Momordica charantia: Functional Components and Biological Activities

    Directory of Open Access Journals (Sweden)

    Shuo Jia

    2017-11-01

    Full Text Available Momordica charantia L. (M. charantia, a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been reported, such as antihyperglycemic, antibacterial, antiviral, antitumor, immunomodulation, antioxidant, antidiabetic, anthelmintic, antimutagenic, antiulcer, antilipolytic, antifertility, hepatoprotective, anticancer and anti-inflammatory activities. However, both in vitro and in vivo studies have also demonstrated that M. charantia may also exert toxic or adverse effects under different conditions. This review addresses the chemical constituents of M. charantia and discusses their pharmacological activities as well as their adverse effects, aimed at providing a comprehensive overview of the phytochemistry and biological activities of M. charantia.

  5. Recent Advances in Momordica charantia: Functional Components and Biological Activities.

    Science.gov (United States)

    Jia, Shuo; Shen, Mingyue; Zhang, Fan; Xie, Jianhua

    2017-11-28

    Momordica charantia L. ( M. charantia ), a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been reported, such as antihyperglycemic, antibacterial, antiviral, antitumor, immunomodulation, antioxidant, antidiabetic, anthelmintic, antimutagenic, antiulcer, antilipolytic, antifertility, hepatoprotective, anticancer and anti-inflammatory activities. However, both in vitro and in vivo studies have also demonstrated that M. charantia may also exert toxic or adverse effects under different conditions. This review addresses the chemical constituents of M. charantia and discusses their pharmacological activities as well as their adverse effects, aimed at providing a comprehensive overview of the phytochemistry and biological activities of M. charantia .

  6. Heavy water effects on the structure, functions and behavior of biological systems

    International Nuclear Information System (INIS)

    Buzgariu, Wanda; Caloianu, Maria; Moldovan, Lucia; Titescu, G.

    2003-01-01

    The H 2 O substitution for D 2 O either in environment or in the culture medium of the living systems generates changes in their main functions and composition. In this paper some of the heavy water effects in biological systems such as structural and functional changes were reviewed: normal cell architecture alterations, cell division and membrane functions disturbance, muscular contractility and the perturbations of biological oscillators such as circadian rhythm, heart rate, respiratory cycle, tidal and ultradian rhythm. (authors)

  7. Urban consumers’ attitudes and willingness to pay for functional foods in Iran: A case of dietary sugar

    Directory of Open Access Journals (Sweden)

    Mohammad Kavoosi-Kalashami

    2017-09-01

    Full Text Available Growing concerns for the incidence of incurable diseases and high costs of health care have attracted consumers to functional foods in the world. These foods are characterized with health improvement, lower risk of disease incidence and less health hazards. The present work examined consumers’ attitude and willingness to pay for dietary sugar in Rasht city, Iran. The studied sample included 125 citizens of Rasht in spring and summer of 2016 whose size was determined by Mitchell and Carson approach. Results of contingent valuation method on the basis of one-and-one-half-bound choice model revealed that the descriptive variable of bid had negative, statistically significant impact on the acceptance of bid by participants. In addition, the descriptive variables of respondent’s age, educational level, family size, monthly income of the family, record of diabetes in family, healthy purchase attitude, and attitude towards the benefits of dietary sugar had positive, significant influence on bid acceptance. Participants expressed their willingness to pay 35.59% extra for dietary sugar as compared to conventional sugar.

  8. Inferring biological functions of guanylyl cyclases with computational methods

    KAUST Repository

    Alquraishi, May Majed; Meier, Stuart Kurt

    2013-01-01

    A number of studies have shown that functionally related genes are often co-expressed and that computational based co-expression analysis can be used to accurately identify functional relationships between genes and by inference, their encoded proteins. Here we describe how a computational based co-expression analysis can be used to link the function of a specific gene of interest to a defined cellular response. Using a worked example we demonstrate how this methodology is used to link the function of the Arabidopsis Wall-Associated Kinase-Like 10 gene, which encodes a functional guanylyl cyclase, to host responses to pathogens. © Springer Science+Business Media New York 2013.

  9. Inferring biological functions of guanylyl cyclases with computational methods

    KAUST Repository

    Alquraishi, May Majed

    2013-09-03

    A number of studies have shown that functionally related genes are often co-expressed and that computational based co-expression analysis can be used to accurately identify functional relationships between genes and by inference, their encoded proteins. Here we describe how a computational based co-expression analysis can be used to link the function of a specific gene of interest to a defined cellular response. Using a worked example we demonstrate how this methodology is used to link the function of the Arabidopsis Wall-Associated Kinase-Like 10 gene, which encodes a functional guanylyl cyclase, to host responses to pathogens. © Springer Science+Business Media New York 2013.

  10. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach.

    Science.gov (United States)

    Li, Jun; Zhao, Patrick X

    2016-01-01

    Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/.

  11. The lectins: properties, functions, and applications in biology and medicine

    National Research Council Canada - National Science Library

    Liener, Irvin E; Sharon, Nathan; Goldstein, Irwin J

    1986-01-01

    ... (Editors). The Enzymology of Post-Translational Modification of Proteins, Volume 1, 1980. Volume 2, 1985 W A I YIU CHEUNG (Editor). Calcium and Cell Function, Volume I: Calmodulin, 1980. Volume II, ...

  12. Dietary patterns are associated with cognitive function in the REasons for Geographic And Racial Differences in Stroke (REGARDS) cohort.

    Science.gov (United States)

    Pearson, Keith E; Wadley, Virginia G; McClure, Leslie A; Shikany, James M; Unverzagt, Fred W; Judd, Suzanne E

    2016-01-01

    Identifying factors that contribute to the preservation of cognitive function is imperative to maintaining quality of life in advanced years. Of modifiable risk factors, diet quality has emerged as a promising candidate to make an impact on cognition. The objective of this study was to evaluate associations between empirically derived dietary patterns and cognitive function. This study included 18 080 black and white participants aged 45 years and older from the REasons for Geographic And Racial Differences in Stroke (REGARDS) cohort. Principal component analysis on data from the Block98 FFQ yielded five dietary patterns: convenience, plant-based, sweets/fats, Southern, and alcohol/salads. Incident cognitive impairment was defined as shifting from intact cognitive status (score >4) at first assessment to impaired cognitive status (score ≤4) at latest assessment, measured by the Six-Item Screener. Learning, memory and executive function were evaluated with the Word List Learning, Word List Delayed Recall, and animal fluency assessments. In fully adjusted models, greater consumption of the alcohol/salads pattern was associated with lower odds of incident cognitive impairment (highest quintile (Q5) v . lowest quintile (Q1): OR 0·68; 95 % CI 0·56, 0·84; P for trend 0·0005). Greater consumption of the alcohol/salads pattern was associated with higher scores on all domain-specific assessments and greater consumption of the plant-based pattern was associated with higher scores in learning and memory. Greater consumption of the Southern pattern was associated with lower scores on each domain-specific assessment (all P  < 0·05). In conclusion, dietary patterns including plant-based foods and alcohol intake were associated with higher cognitive scores, and a pattern including fried food and processed meat typical of a Southern diet was associated with lower scores.

  13. Correlations of dietary energy and protein intakes with renal function impairment in chronic kidney disease patients with or without diabetes.

    Science.gov (United States)

    Chen, Mei-En; Hwang, Shang-Jyh; Chen, Hung-Chun; Hung, Chi-Chih; Hung, Hsin-Chia; Liu, Shao-Chun; Wu, Tsai-Jiin; Huang, Meng-Chuan

    2017-05-01

    Dietary energy and protein intake can affect progression of chronic kidney disease (CKD). CKD complicated with diabetes is often associated with a decline in renal function. We investigated the relative importance of dietary energy intake (DEI) and dietary protein intake (DPI) to renal function indicators in nondiabetic and diabetic CKD patients. A total of 539 Stage 3-5 CKD patients [estimated glomerular filtration rate (eGFR)Disease equation] with or without diabetes were recruited from outpatient clinics of Nephrology and Nutrition in a medical center in Taiwan. Appropriateness of DEI and DPI was used to subcategorize CKD patients into four groups:(1) kidney diet (KD) A (KD-A), the most appropriate diet, was characterized by low DPI and adequate DEI; (2) KD-B, low DPI and inadequate DEI; (3) KD-C, excess DPI and adequate DEI; and (4) KD-D, the least appropriate diet, excess DPI and inadequate DEI. Inadequate DEI was defined as a ratio of actual intake/recommended intake less than 90% and adequate DEI as over 90%. Low DPI was defined as less than 110% of recommended intake and excessive when over 110%. Outcome measured was eGFR. In both groups of CKD patients, DEI was significantly lower (ppatients were KD-C and KD-D significantly correlated with reduced eGFR compared with KD-A at increments of -5.63 mL/min/1.73 m 2 (p = 0.029) and -7.72 mL/min/1.73 m 2 (p=0.015). In conclusion, inadequate energy and excessive protein intakes appear to correlate with poorer renal function in nondiabetic CKD patients. Patients with advanced CKD are in need of counseling by dietitians to improve adherence to diets. Copyright © 2017. Published by Elsevier Taiwan.

  14. Dietary fibre as functional ingredient in meat products: a novel approach for healthy living - a review.

    Science.gov (United States)

    Verma, Arun Kumar; Banerjee, Rituparna

    2010-06-01

    There is a rapid change in our overall lifestyle due to impact of globalization. Every day hasty life has forced consumers to be dependent upon fast foods, which contain meagre amount of dietary fibre. Non-starch polysaccharides and resistant oligosaccharides, lignin, substances associated with NSP and lignin complex in plants, other analogous carbohydrates, such as resistant starch and dextrins, and synthesized carbohydrate compounds, like polydextrose are categorized as dietary fibre. They are mostly concentrated in cereals, pulses, fruits and vegetables. It has been proclaimed that daily dietary fibre intake helps in prevention of many nutritional disorders like gut related problems, cardiovascular diseases, type 2 diabetes, certain types of cancer and obesity. Meat is generally lacking this potential ingredient, which could be incorporated while products processing to make them more healthful. Various fibre rich sources have been attempted in different products attributed to their technological and health benefits and many are in the queue to be used in a variety of meat products. Selection of appropriate fibre rich ingredients and their proper incorporation can improve health image of meat products.

  15. Choline: Clinical Nutrigenetic/Nutrigenomic Approaches for Identification of Functions and Dietary Requirements

    Science.gov (United States)

    Zeisel, Steven H.

    2013-01-01

    Nutrigenetics/nutrigenomics (the study of the bidirectional interactions between genes and diet) is a rapidly developing field that is changing research and practice in human nutrition. Though eventually nutrition clinicians may be able to provide personalized nutrition recommendations, in the immediate future they are most likely to use this knowledge to improve dietary recommendations for populations. Currently, estimated average requirements are used to set dietary reference intakes because scientists cannot adequately identify subsets of the population that differ in requirement for a nutrient. Recommended intake levels must exceed the actual required intake for most of the population in order to assure that individuals with the highest requirement ingest adequate amounts of the nutrient. As a result, dietary reference intake levels often are set so high that diet guidelines suggest almost unattainable intakes of some foods. Once it is possible to identify common subgroups that differ in nutrient requirements using nutrigenetic/nutrigenomic profiling, targeted interventions and recommendations can be refined. In addition, when a large variance exists in response to a nutrient, statistical analyses often argue for a null effect. If responders could be differentiated from nonre-sponders based on nutrigenetic/nutrigenomic profiling, this statistical noise could be eliminated and the sensitivity of nutrition research greatly increased. PMID:20436254

  16. Renal Function Following Three Distinct Weight Loss Dietary Strategies During 2 Years of a Randomized Controlled Trial

    OpenAIRE

    Tirosh, Amir; Golan, Rachel; Harman-Boehm, Ilana; Henkin, Yaakov; Schwarzfuchs, Dan; Rudich, Assaf; Kovsan, Julia; Fiedler, Georg M.; Blüher, Matthias; Stumvoll, Michael; Thiery, Joachim; Stampfer, Meir J.; Shai, Iris

    2013-01-01

    OBJECTIVE This study addressed the long-term effect of various diets, particularly low-carbohydrate high-protein, on renal function on participants with or without type 2 diabetes. RESEARCH DESIGN AND METHODS In the 2-year Dietary Intervention Randomized Controlled Trial (DIRECT), 318 participants (age, 51 years; 86% men; BMI, 31 kg/m2; mean estimated glomerular filtration rate [eGFR], 70.5 mL/min/1.73 m2; mean urine microalbumin-to-creatinine ratio, 12:12) with serum creatinine 0.05) across...

  17. Dietary exposure to cadmium at close to the current provisional tolerable weekly intake does not affect renal function among female Japanese farmers

    International Nuclear Information System (INIS)

    Horiguchi, Hyogo; Oguma, Etsuko; Sasaki, Satoshi; Miyamoto, Kayoko; Ikeda, Yoko; Machida, Munehito; Kayama, Fujio

    2004-01-01

    Dietary cadmium (Cd) exposure and renal tubular function were investigated in 1381 female farmers from five districts in Japan (Japanese Multi-centered Environmental Toxicant Study project; JMETS). Dietary Cd exposure of the five populations was assessed from the individual Cd concentrations of the rice consumed by the study participants and the quantities of rice consumed daily. The populations showed a sequential difference in dietary Cd exposure, ranging from a level as low as that of the general Japanese population to one close to the current provisional tolerable weekly intake (PTWI). The levels of urinary Cd excretion, an indicator of Cd accumulation in the kidneys, increased along the same sequential pattern as dietary Cd exposure. However, no differences were observed among the populations in levels of urinary α 1 -microglobulin and β 2 -microglobulin excretion, which are indicators of renal tubular function. These results indicate that the current PTWI is sufficient to prevent Cd-induced renal dysfunction among the general population

  18. Single-wavelength functional photoacoustic microscopy in biological tissue.

    Science.gov (United States)

    Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin; Wang, Lihong V

    2011-03-01

    Recently, we developed a reflection-mode relaxation photoacoustic microscope, based on saturation intensity, to measure picosecond relaxation times using a nanosecond laser. Here, using the different relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, the oxygen saturation was quantified in vivo with single-wavelength photoacoustic microscopy. All previous functional photoacoustic microscopy measurements required imaging with multiple-laser-wavelength measurements to quantify oxygen saturation. Eliminating the need for multiwavelength measurements removes the influence of spectral properties on oxygenation calculations and improves the portability and cost-effectiveness of functional or molecular photoacoustic microscopy.

  19. Chemically-functionalized microcantilevers for detection of chemical, biological and explosive material

    Science.gov (United States)

    Pinnaduwage, Lal A [Knoxville, TN; Thundat, Thomas G [Knoxville, TN; Brown, Gilbert M [Knoxville, TN; Hawk, John Eric [Olive Branch, MS; Boiadjiev, Vassil I [Knoxville, TN

    2007-04-24

    A chemically functionalized cantilever system has a cantilever coated on one side thereof with a reagent or biological species which binds to an analyte. The system is of particular value when the analyte is a toxic chemical biological warfare agent or an explosive.

  20. Biological markers for kidney injury and renal function in the intensive care unit

    NARCIS (Netherlands)

    Royakkers, A.A.N.M.

    2014-01-01

    The purpose of the investigations described in this thesis was to seek for answers to two relevant questions in ICUs in resource-rich settings, i.e., can new biological markers play a role in early recognition of AKI, and can new biological markers predict recovery of renal function in patients who

  1. Exosome function: from tumor immunology to pathogen biology.

    Science.gov (United States)

    Schorey, Jeffrey S; Bhatnagar, Sanchita

    2008-06-01

    Exosomes are the newest family member of 'bioactive vesicles' that function to promote intercellular communication. Exosomes are derived from the fusion of multivesicular bodies with the plasma membrane and extracellular release of the intraluminal vesicles. Recent studies have focused on the biogenesis and composition of exosomes as well as regulation of exosome release. Exosomes have been shown to be released by cells of hematopoietic and non-hematopoietic origin, yet their function remains enigmatic. Much of the prior work has focused on exosomes as a source of tumor antigens and in presentation of tumor antigens to T cells. However, new studies have shown that exosomes might also promote cell-to-cell spread of infectious agents. Moreover, exosomes isolated from cells infected with various intracellular pathogens, including Mycobacterium tuberculosis and Toxoplasma gondii, have been shown to contain microbial components and can promote antigen presentation and macrophage activation, suggesting that exosomes may function in immune surveillance. In this review, we summarize our understanding of exosome biogenesis but focus primarily on new insights into exosome function. We also discuss their possible use as disease biomarkers and vaccine candidates.

  2. Advancing Functional Metagenomics using Synthetic Biology from Soil to Sequence

    DEFF Research Database (Denmark)

    van der Helm, Eric

    as ‘functional metagenomics’, the DNA of these bacteria can be recovered from the environment and used by host-bacteria which can be grown in a lab. This allows us to make use of the capabilities of the billions of bacteria that a represent in the environment without actually growing them but by making use...

  3. Single-wavelength functional photoacoustic microscopy in biological tissue

    OpenAIRE

    Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin; Wang, Lihong V.

    2011-01-01

    Recently, we developed a reflection-mode relaxation photoacoustic microscope, based on saturation intensity, to measure picosecond relaxation times using a nanosecond laser. Here, using the different relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, the oxygen saturation was quantified in vivo with single-wavelength photoacoustic microscopy. All previous functional photoacoustic microscopy measurements required ima...

  4. Preliminary biological evaluation of a urea-functionalized dendrimer

    International Nuclear Information System (INIS)

    Stephan, H.; Syhre, R.; Spies, H.; Johannsen, B.; Zessin, J.; Steinbach, J.; Klein, L.; Werner, N.; Voegtle, F.

    2002-01-01

    A new third generation ethylurea-functionalized polypropyleneamine dendrimer was prepared. After labelling this dendrimer with 11-carbon the biodistribution in rats was studied. The highest level of radioactivity was found in the liver (30-35% ID). The 11 C-labelled dendrimer was well tolerated by the rats. (orig.)

  5. The functionality of biological knowledge in the workplace. Integrating school and workplace learning about reproduction

    NARCIS (Netherlands)

    Mazereeuw, M.

    2013-01-01

    This thesis reports on a design research project about a learning, supervising and teaching strategy to enable students in agricultural preparatory vocational secondary education (VMBO) to recognize the functionality of biological knowledge of reproduction in work placement sites. Although

  6. MicroRNA functional network in pancreatic cancer: From biology to ...

    Indian Academy of Sciences (India)

    [Wang J and Sen S 2011 MicroRNA functional network in pancreatic cancer: From biology to biomarkers of disease. ... growth factor type I receptor; INSR, insulin receptor; IPA, Ingenuity Pathway Analysis; IPMN, ..... Prostate cancer signalling.

  7. 3D Printing Polymers with Supramolecular Functionality for Biological Applications.

    Science.gov (United States)

    Pekkanen, Allison M; Mondschein, Ryan J; Williams, Christopher B; Long, Timothy E

    2017-09-11

    Supramolecular chemistry continues to experience widespread growth, as fine-tuned chemical structures lead to well-defined bulk materials. Previous literature described the roles of hydrogen bonding, ionic aggregation, guest/host interactions, and π-π stacking to tune mechanical, viscoelastic, and processing performance. The versatility of reversible interactions enables the more facile manufacturing of molded parts with tailored hierarchical structures such as tissue engineered scaffolds for biological applications. Recently, supramolecular polymers and additive manufacturing processes merged to provide parts with control of the molecular, macromolecular, and feature length scales. Additive manufacturing, or 3D printing, generates customizable constructs desirable for many applications, and the introduction of supramolecular interactions will potentially increase production speed, offer a tunable surface structure for controlling cell/scaffold interactions, and impart desired mechanical properties through reinforcing interlayer adhesion and introducing gradients or self-assembled structures. This review details the synthesis and characterization of supramolecular polymers suitable for additive manufacture and biomedical applications as well as the use of supramolecular polymers in additive manufacturing for drug delivery and complex tissue scaffold formation. The effect of supramolecular assembly and its dynamic behavior offers potential for controlling the anisotropy of the printed objects with exquisite geometrical control. The potential for supramolecular polymers to generate well-defined parts, hierarchical structures, and scaffolds with gradient properties/tuned surfaces provides an avenue for developing next-generation biomedical devices and tissue scaffolds.

  8. Functional nanostructured platforms for chemical and biological sensing

    Science.gov (United States)

    Létant, S. E.

    2006-05-01

    The central goal of our work is to combine semiconductor nanotechnology and surface functionalization in order to build platforms for the selective detection of bio-organisms ranging in size from bacteria (micron range) down to viruses, as well as for the detection of chemical agents (nanometer range). We will show on three porous silicon platforms how pore geometry and pore wall chemistry can be combined and optimized to capture and detect specific targets. We developed a synthetic route allowing to directly anchor proteins on silicon surfaces and illustrated the relevance of this technique by immobilizing live enzymes onto electrochemically etched luminescent nano-porous silicon. The powerful association of the specific enzymes with the transducing matrix led to a selective hybrid platform for chemical sensing. We also used light-assisted electrochemistry to produce periodic arrays of through pores on pre-patterned silicon membranes with controlled diameters ranging from many microns down to tens of nanometers. We demonstrated the first covalently functionalized silicon membranes and illustrated their selective capture abilities with antibody-coated micro-beads. These engineered membranes are extremely versatile and could be adapted to specifically recognize the external fingerprints (size and coat composition) of target bio-organisms. Finally, we fabricated locally functionalized single nanopores using a combination of focused ion beam drilling and ion beam assisted oxide deposition. We showed how a silicon oxide ring can be grown around a single nanopore and how it can be functionalized with DNA probes to detect single viral-sized beads. The next step for this platform is the detection of whole viruses and bacteria.

  9. The biology and function of exosomes in cancer

    OpenAIRE

    Kalluri, Raghu

    2016-01-01

    Humans circulate quadrillions of exosomes at all times. Exosomes are a class of extracellular vesicles released by all cells, with a size range of 40?150 nm and a lipid bilayer membrane. Exosomes contain DNA, RNA, and proteins. Exosomes likely remove excess and/or unnecessary constituents from the cells, functioning like garbage bags, although their precise physiological role remains unknown. Additionally, exosomes may mediate specific cell-to-cell communication and activate signaling pathway...

  10. Biology and Function of Fetal and Pediatric Skin

    OpenAIRE

    Leung, Alice; Balaji, Swathi; Keswani, Sundeep G

    2013-01-01

    The development of the integumentary system is a series of events, which start in utero and continue throughout life. Although at birth, skin in full-term infants is anatomically mature, functional maturity develops during the first year of life. Pediatric skin transitions again with the onset of puberty. At each stage, there are changes in transepidermal water loss, skin hydration, and skin acidity that define the specific period of development.

  11. Biological factors of natural and artificial ecosystems stable (unstable) functioning

    Science.gov (United States)

    Pechurkin, Nikolai S.

    The problem of sustainable development of humanity on Earth and the problem of supporting human life in space have the same scientific and methodological bases. The key to solve both problems is a long term maintenance of balanced material cycle. As a whole, natural or artificial ecosystems are to be more closed than open, but their elements (links of systems) are to be substantially open in interactions with each other. Prolonged stable interactions of different links have to have unique joint results - closed material cycling or biotic turnover. It is necessary to include, at least, three types of main links into any system to support real material cycling: producers, consumers, reducers. Producer links are now under studies in many laboratories. It is evident that the higher productivity of link, the lower link stability. Especially, it concerns with parasite impact to plants. As usual, artificial ecosystems are more simple (incomplete) than natural ecosystems, sometimes, they have not enough links for prolonged stable functioning. For example, life support system for space flight can be incomplete in consumer link, having only some crew persons, instead of interacting populations of consumers. As for reducer link, it is necessary to "organize" a special coordinated work of microbial biocenoses to fulfill proper cycling. Possible evolution of links, their self development is a matter of special attention for the maintenance of prolonged stable functioning. It's the most danger for systems with populations of quickly reproducing, so-called, R - strategists, according to symbols of logistic equation. From another side, quick reproduction of R - strategists is able to increase artificial ecosystems and their links functioning. After some damages of system, R - strategist's link can be quickly "self repaired" up to level of normal functioning. Some experimental data of this kind and mathematical models are to be discussed in the paper. This work is supported by

  12. Plantain peel - a potential source of antioxidant dietary fibre for developing functional cookies.

    Science.gov (United States)

    Arun, K B; Persia, Florence; Aswathy, P S; Chandran, Janu; Sajeev, M S; Jayamurthy, P; Nisha, P

    2015-10-01

    Plantain cultivar Nendran is popular as a staple food in many parts of India and deep fried chips made from raw matured Nendran are one of the popular snack items in India. This study aims to utilize peel from Nendran variety- the main byproduct of banana chips industry- to develop high fibre cookies with enhanced bioactive content. Proximate analysis indicated that peels are rich in total dietary fibre (64.33 g/100 g), vitamins (Folic acid- 33.12 mg/100 g) and minerals (Potassium- 35.61 mg/100 g). Nendran Peel Flour (NPF) was extracted with hexane, ethyl acetate and methanol. Phenolic and flavonoid content was high for ethyl acetate extract (15.21 and 9.39 mg QE/g dry weight). Methanol extract was more potent in reducing Copper ion (2.36 μM TR/g dry weight) and scavenging NO (IC50-381.71 μg/mL). Ethyl acetate extract was capable of scavenging DPPH and hydroxyl radical. HPLC profiling showed presence of gallic acid, protocatechuic acid, rutin hydrate and quercetin in ethyl acetate extract and gallic acid, chlorogenic acid and vanillic acid in methanol extract. Cookies prepared with NPF possess higher total dietary fibre content. There was a decrease in spread ratio, breaking strength and browning index of cookies as the percentage of NPF increased. NPF incorporation gradually increased the phenolic content from 4.36 to 5.28 mg GAE, compared to control cookie (3.21 mg GAE). DPPH scavenging activity also increased with increase in NPF. Hence NPF is a very good source of antioxidant dietary fibre and acceptable cookies can be produced by replacing wheat flour with 10 % NPF.

  13. Description and evaluation of a net energy intake model as a function of dietary chewing index

    DEFF Research Database (Denmark)

    Jensen, Laura Mie; Markussen, Bo; Nielsen, N. I.

    2016-01-01

    Previously, a linear relationship has been found between net energy intake (NEI) and dietary chewing index (CI) of the diet for different types of cattle. Therefore, we propose to generalize and calibrate this relationship into a new model for direct prediction of NEI by dairy cows from CI values...... a value of 2, implying a constant maximum daily chewing time. The intercept NEI0 in the regression of NEI on CINE may be interpreted as metabolic net energy intake capacity of the cows fed without physical constraints on intake. Based on experimental data, the maximum chewing time was estimated as 1...

  14. Effects of dietary selenium and vitamin E on immune response and biological blood parameters of broilers reared under thermoneutral or heat stress conditions

    Science.gov (United States)

    Habibian, Mahmood; Ghazi, Shahab; Moeini, Mohammad Mehdi; Abdolmohammadi, Alireza

    2014-07-01

    A study was conducted using 360 broiler chickens to evaluate the effects of dietary vitamin E (0, 125 and 250 mg/kg), selenium (Se, 0, 0.5 and 1 mg/kg), or their different combinations on immune response and blood biological parameters of broilers raised under either thermoneutral (TN, 23.9 °C constant) or heat stress (HS, 23.9 to 37 °C cycling) conditions. Humoral immunity was assessed by intravenous injection of 7 % sheep red blood cell (SRBC) followed by evaluation of serum for antibody titers in primary and secondary responses. Heterophil to lymphocyte (H/L) ratio also determined as an indicator of stress. Furthermore, at the end of the experiment, birds were bled for determination of some biological parameters. There was a significant reduction in body weight and feed intake, but the feed conversion ratio increased when the birds were exposed to HS ( P vitamin E and Se ( P > 0.05), whereas feed conversion was improved significantly by 125 mg/kg vitamin E ( P vitamin E resulted in improvement of primary and secondary antibody responses both in TN and HS broilers ( P Vitamin E and Se had interactive effects on anti-SRBC titers; however, no consistent differences were found between dietary levels during the study. The H/L ratio decreased by feeding vitamin E at both levels either under HS or TN conditions ( P < 0.05). The serum concentrations of glucose, triglycerides, total cholesterol, and LDL-cholesterol were increased but serum HDL-cholesterol decreased in HS broilers ( P < 0.05).

  15. Biological functions of iduronic acid in chondroitin/dermatan sulfate.

    Science.gov (United States)

    Thelin, Martin A; Bartolini, Barbara; Axelsson, Jakob; Gustafsson, Renata; Tykesson, Emil; Pera, Edgar; Oldberg, Åke; Maccarana, Marco; Malmstrom, Anders

    2013-05-01

    The presence of iduronic acid in chondroitin/dermatan sulfate changes the properties of the polysaccharides because it generates a more flexible chain with increased binding potentials. Iduronic acid in chondroitin/dermatan sulfate influences multiple cellular properties, such as migration, proliferation, differentiation, angiogenesis and the regulation of cytokine/growth factor activities. Under pathological conditions such as wound healing, inflammation and cancer, iduronic acid has diverse regulatory functions. Iduronic acid is formed by two epimerases (i.e. dermatan sulfate epimerase 1 and 2) that have different tissue distribution and properties. The role of iduronic acid in chondroitin/dermatan sulfate is highlighted by the vast changes in connective tissue features in patients with a new type of Ehler-Danlos syndrome: adducted thumb-clubfoot syndrome. Future research aims to understand the roles of the two epimerases and their interplay with the sulfotransferases involved in chondroitin sulfate/dermatan sulfate biosynthesis. Furthermore, a better definition of chondroitin/dermatan sulfate functions using different knockout models is needed. In this review, we focus on the two enzymes responsible for iduronic acid formation, as well as the role of iduronic acid in health and disease. © 2013 The Authors Journal compilation © 2013 FEBS.

  16. Beneficial Effects of Dietary Nitrate on Endothelial Function and Blood Pressure Levels

    Directory of Open Access Journals (Sweden)

    Jenifer d’El-Rei

    2016-01-01

    Full Text Available Poor eating habits may represent cardiovascular risk factors since high intake of fat and saturated fatty acids contributes to dyslipidemia, obesity, diabetes mellitus, and hypertension. Thus, nutritional interventions are recognized as important strategies for primary prevention of hypertension and as adjuvants to pharmacological therapies to reduce cardiovascular risk. The DASH (Dietary Approach to Stop Hypertension plan is one of the most effective strategies for the prevention and nonpharmacological management of hypertension. The beneficial effects of DASH diet on blood pressure might be related to the high inorganic nitrate content of some food products included in this meal plan. The beetroot and other food plants considered as nitrate sources account for approximately 60–80% of the daily nitrate exposure in the western population. The increased levels of nitrite by nitrate intake seem to have beneficial effects in many of the physiological and clinical settings. Several clinical trials are being conducted to determine the broad therapeutic potential of increasing the bioavailability of nitrite in human health and disease, including studies related to vascular aging. In conclusion, the dietary inorganic nitrate seems to represent a promising complementary therapy to support hypertension treatment with benefits for cardiovascular health.

  17. Development of biological functional material and product from Nelumbo nucifera

    International Nuclear Information System (INIS)

    Jeong, Il Yun; Park, Yong Dae; Jin, Chang Hyun; Choi, Dae Seong

    2008-01-01

    The solvent extracts of Nelumbo nucifera G. were investigated for the activities of antioxidant, whitening, anti-wrinkle and antimicrobial effects to apply as a functional ingredient for cosmetic products. The electron donating ability of irradiated NN-L extract was above 85% at the concentration of 50ppm. The superoxide dismutase(SOD)-like activity of irradiated NN-L extract was about 76% at 1,000ppm concentration. The xanthine oxidase inhibitory effect of irradiated NN-L extract was about 15% at 1,000ppm. The tyrosinase inhibitory effect of irradiated NN-L extract was about 18% at 1,000ppm. Anti-wrinkle effect, the elastase inhibition activity of irradiated NN-L extract was about 45% at 1,000ppm concentration. All these findings suggested that Nelumbo nucifera G. has a great potential as a cosmeceutical ingredient

  18. The biology and function of exosomes in cancer.

    Science.gov (United States)

    Kalluri, Raghu

    2016-04-01

    Humans circulate quadrillions of exosomes at all times. Exosomes are a class of extracellular vesicles released by all cells, with a size range of 40-150 nm and a lipid bilayer membrane. Exosomes contain DNA, RNA, and proteins. Exosomes likely remove excess and/or unnecessary constituents from the cells, functioning like garbage bags, although their precise physiological role remains unknown. Additionally, exosomes may mediate specific cell-to-cell communication and activate signaling pathways in cells they fuse or interact with. Exosomes are detected in the tumor microenvironment, and emerging evidence suggests that they play a role in facilitating tumorigenesis by regulating angiogenesis, immunity, and metastasis. Circulating exosomes can be used as liquid biopsies and noninvasive biomarkers for early detection, diagnosis, and treatment of cancer patients.

  19. The functions of biological diversity in an age of extinction.

    Science.gov (United States)

    Naeem, Shahid; Duffy, J Emmett; Zavaleta, Erika

    2012-06-15

    Ecosystems worldwide are rapidly losing taxonomic, phylogenetic, genetic, and functional diversity as a result of human appropriation of natural resources, modification of habitats and climate, and the spread of pathogenic, exotic, and domestic plants and animals. Twenty years of intense theoretical and empirical research have shown that such biotic impoverishment can markedly alter the biogeochemical and dynamic properties of ecosystems, but frontiers remain in linking this research to the complexity of wild nature, and in applying it to pressing environmental issues such as food, water, energy, and biosecurity. The question before us is whether these advances can take us beyond merely invoking the precautionary principle of conserving biodiversity to a predictive science that informs practical and specific solutions to mitigate and adapt to its loss.

  20. Development of biological functional material and product from Nelumbo nucifera

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Il Yun; Park, Yong Dae; Jin, Chang Hyun; Choi, Dae Seong

    2008-01-15

    The solvent extracts of Nelumbo nucifera G. were investigated for the activities of antioxidant, whitening, anti-wrinkle and antimicrobial effects to apply as a functional ingredient for cosmetic products. The electron donating ability of irradiated NN-L extract was above 85% at the concentration of 50ppm. The superoxide dismutase(SOD)-like activity of irradiated NN-L extract was about 76% at 1,000ppm concentration. The xanthine oxidase inhibitory effect of irradiated NN-L extract was about 15% at 1,000ppm. The tyrosinase inhibitory effect of irradiated NN-L extract was about 18% at 1,000ppm. Anti-wrinkle effect, the elastase inhibition activity of irradiated NN-L extract was about 45% at 1,000ppm concentration. All these findings suggested that Nelumbo nucifera G. has a great potential as a cosmeceutical ingredient.

  1. Biological function of activation-induced cytidine deaminase (AID

    Directory of Open Access Journals (Sweden)

    Ritu Kumar

    2014-10-01

    Full Text Available Activation-induced Cytidine Deaminase (AID is an essential regulator of B cell diversification, but its full range of action has until recently been an enigma. Based on homology, it was originally proposed to be an RNA-editing enzyme, but so far, no RNA substrates are known. Rather, it functions by deaminating cytidine, and in this manner, coupled with base-excision repair or mismatch repair machinery, it is a natural mutator. This allows it to play a central role in adaptive immunity, whereby it initiates the processes of class switch recombination and somatic hypermutation to help generate a diverse and high-affinity repertoire of immunoglobulin isotypes. More recently, it has been appreciated that methylated cytidine, already known as a key epigenetic mark on DNA controlling gene expression, can also be a target for AID modification. Coupled with repair machinery, this can facilitate the active removal of methylated DNA. This activity can impact the process of cellular reprogramming, including transition of a somatic cell to pluripotency, which requires major reshuffling of epigenetic memory. Thus, seemingly disparate roles for AID in controlling immune diversity and epigenetic memory have a common mechanistic basis. However, the very activity that is so useful for B cell diversity and cellular reprogramming is dangerous for the integrity of the genome. Thus, AID expression and activity is tightly regulated, and deregulation is associated with diseases including cancer. Here, we review the range of AID functions with a focus on its mechanisms of action and regulation. Major questions remain to be answered concerning how and when AID is targeted to specific loci and how this impacts development and disease.

  2. Impaired barrier function by dietary fructo-oligosaccharides (FOS in rats is accompanied by increased colonic mitochondrial gene expression

    Directory of Open Access Journals (Sweden)

    Kramer Evelien

    2008-03-01

    Full Text Available Abstract Background Dietary non-digestible carbohydrates stimulate the gut microflora and are therefore presumed to improve host resistance to intestinal infections. However, several strictly controlled rat infection studies showed that non-digestible fructo-oligosaccharides (FOS increase, rather than decrease, translocation of Salmonella towards extra-intestinal sites. In addition, it was shown that FOS increases intestinal permeability already before infection. The mechanism responsible for this adverse effect of FOS is unclear. Possible explanations are altered mucosal integrity due to changes in tight junctions or changes in expression of defense molecules such as antimicrobials and mucins. To examine the mechanisms underlying weakening of the intestinal barrier by FOS, a controlled dietary intervention study was performed. Two groups of 12 rats were adapted to a diet with or without FOS. mRNA was collected from colonic mucosa and changes in gene expression were assessed for each individual rat using Agilent rat whole genome microarrays. Results Among the 997 FOS induced genes we observed less mucosal integrity related genes than expected with the clear permeability changes. FOS did not induce changes in tight junction genes and only 8 genes related to mucosal defense were induced by FOS. These small effects are unlikely the cause for the clear increase in intestinal permeability that is observed. FOS significantly increased expression of 177 mitochondria-related genes. More specifically, induced expression of genes involved in all five OXPHOS complexes and the TCA cycle was observed. These results indicate that dietary FOS influences intestinal mucosal energy metabolism. Furthermore, increased expression of 113 genes related to protein turnover, including proteasome genes, ribosomal genes and protein maturation related genes, was seen. FOS upregulated expression of the peptide hormone proglucagon gene, in agreement with previous studies, as

  3. Selenium and arsenic in biology: their chemical forms and biological functions.

    Science.gov (United States)

    Shibata, Y; Morita, M; Fuwa, K

    1992-01-01

    Based on the recent development of analytical methods, sensitive systems for the analysis and speciation of selenium and arsenic have been established. A palladium addition technique was developed for the accurate determination of selenium in biological samples using graphite furnace atomic absorption analysis. For the speciation of the elements, combined methods of HPLC either with ICP-AES or with ICP-MS were found to work well. These systems were applied to the elucidation of the chemical form of the elements in natural samples. Some chemical properties of the selenium-mercury complex in dolphin liver were elucidated: i.e., it was a cationic, water-soluble, low molecular weight compound containing selenium and mercury in a 1:1 molar ratio, and was shown to be different from a known selenium-mercury complex, bis(methylmercuric)selenide. The major selenium compound excreted in human urine was revealed to be other than any of those previously identified (TMSe, selenate, and selenite). TMSe, a suspected major metabolite in urine, was found, if at all, in low levels. The major water-soluble, and lipid-soluble arsenic compounds in a brown seaweed, U. pinnatifida (WAKAME), were rigorously identified, and the results were compared with other data on marine algae and animals. The major organic arsenic compounds (termed "arseno-sugars") in marine algae commonly contain 5-deoxy-5-dimethylarsinyl-ribofuranoside moiety. There are various kinds of arseno-sugar derivatives containing different side-chains attached to the anomeric position of the sugar, and the distribution of each arsenic species seems to be related to algal species. The arseno-sugar (A-XI) is present in every alga so far examined, is metabolized to lipids, and possibly may play some specific role in the algal cells. On the other hand, the major arsenic compound in fish, crustacea and molluscs has been identified as arsenobetaine, which is an arseno-analog of glycinebetaine, a very common osmo-regulator in

  4. Prospective subjective evaluation of swallowing function and dietary pattern in head and neck cancers treated with concomitant chemo-radiation

    Directory of Open Access Journals (Sweden)

    Agarwal Jaiprakash

    2010-01-01

    Full Text Available Aim : Prospective subjective evaluation of swallowing function and dietary pattern in locally advanced head and neck cancer patients treated with concomitant chemo-radiotherapy (CRT. Materials and Methods : Prospective evaluation of swallowing function with performance status scale for head and neck cancer patients (PSSHN at pre-CRT, CRT completion and at subsequent follow-ups in adult with loco-regionally advanced head and neck squamous cell carcinoma (HNSCC patients. Results : In 47 patients (40 male, seven females; mean age 53; 72% smoker 53%, oropharyngeal cancer, the mean total PSSHN score at pre-CRT was 258.5 and decreased to 225.2 and 219.2 at two and six months respectively. Understandability of speech, normalcy in diet and eating in public at pre-CRT and six months were 91.5 and 84.4; 80.4 and 63.1; 87.3 and 76.6 respectively. In univariate analysis, pre-CRT PSSHN scores were significantly lesser in patients with severe pre-CRT dysphagia (P = 0.001, hypopharyngeal cancer (P = 0.244 and advanced T-stage (T3/4 disease (P = 0.144. At CRT completion, there was significant reduction of PSSHN scores in patients with severe pre-CRT dysphagia (P = 0.008, post-CRT weight loss (>10% and disease progression (P = 0.039. At two months and six months, 17 (57% and 11 (73.5% patients respectively showed change in dietary habit. Mean increase in meal time was 13% and 21% at two and six-month follow-up. Conclusions : HNSCC patients show deterioration in swallowing function after CRT with normalcy of diet in maximum and eating in public least affected. Pre-CRT severity of dysphagia, weight loss> 10% and disease progression have significant correlation with higher swallowing function deterioration after CRT.

  5. Biological Functions of the Secretome of Neisseria meningitidis

    Directory of Open Access Journals (Sweden)

    Jan Tommassen

    2017-06-01

    Full Text Available Neisseria meningitidis is a Gram-negative bacterial pathogen that normally resides as a commensal in the human nasopharynx but occasionally causes disease with high mortality and morbidity. To interact with its environment, it transports many proteins across the outer membrane to the bacterial cell surface and into the extracellular medium for which it deploys the common and well-characterized autotransporter, two-partner and type I secretion mechanisms, as well as a recently discovered pathway for the surface exposure of lipoproteins. The surface-exposed and secreted proteins serve roles in host-pathogen interactions, including adhesion to host cells and extracellular matrix proteins, evasion of nutritional immunity imposed by iron-binding proteins of the host, prevention of complement activation, neutralization of antimicrobial peptides, degradation of immunoglobulins, and permeabilization of epithelial layers. Furthermore, they have roles in interbacterial interactions, including the formation and dispersal of biofilms and the suppression of the growth of bacteria competing for the same niche. Here, we will review the protein secretion systems of N. meningitidis and focus on the functions of the secreted proteins.

  6. Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Dilshad [Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Najam-ul-Haq, Muhammad, E-mail: najamulhaq@bzu.edu.pk [Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, A-6020 Innsbruck (Austria); Jabeen, Fahmida; Ashiq, Muhammad N.; Athar, Muhammad [Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Rainer, Matthias; Huck, Christian W.; Bonn, Guenther K. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, A-6020 Innsbruck (Austria)

    2013-05-02

    Graphical abstract: -- Highlights: •Derivatization of diamond nanopowder as IMAC and RP. •Characterization with SEM, EDX and FT-IR. •Phosphopeptide enrichment from standard as well as real samples. •Desalting and human serum profiling with reproducible results. •MALDI-MS analysis with database identification. -- Abstract: Diamond is known for its high affinity and biocompatibility towards biomolecules and is used exclusively in separation sciences and life science research. In present study, diamond nanopowder is derivatized as Immobilized Metal Ion Affinity Chromatographic (IMAC) material for the phosphopeptides enrichment and as Reversed Phase (C-18) media for the desalting of complex mixtures and human serum profiling through MALDI-TOF-MS. Functionalized diamond nanopowder is characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Diamond-IMAC is applied to the standard protein (β-casein), spiked human serum, egg yolk and non-fat milk for the phosphopeptides enrichment. Results show the selectivity of synthesized IMAC-diamond immobilized with Fe{sup 3+} and La{sup 3+} ions. To comprehend the elaborated use, diamond-IMAC is also applied to the serum samples from gall bladder carcinoma for the potential biomarkers. Database search is carried out by the Mascot program ( (www.matrixscience.com)) for the assignment of phosphorylation sites. Diamond nanopowder is thus a separation media with multifunctional use and can be applied to cancer protein profiling for the diagnosis and biomarker identification.

  7. Biological catalysis of the hydrological cycle: life's thermodynamic function

    Science.gov (United States)

    Michaelian, K.

    2011-01-01

    Darwinian theory depicts life as being overwhelmingly consumed by a fight for survival in a hostile environment. However, from a thermodynamic perspective, life is a dynamic out of equilibrium process, stabilizing and coevolving in concert with its abiotic environment. The living component of the biosphere on the surface of the Earth of greatest biomass, the plants and cyanobacteria, are involved in the transpiration of a vast amount of water. Transpiration is part of the global water cycle, and it is this cycle that distinguishes Earth from its apparently life barren neighboring planets, Venus and Mars. The dissipation of sunlight into heat by organic molecules in the biosphere and its coupling to the water cycle (as well as other abiotic processes), is by far the greatest entropy producing process occurring on Earth. Life, from this perspective, can be viewed as performing an important thermodynamic function; acting as a dynamic catalyst by aiding irreversible abiotic process such as the water cycle, hurricanes, and ocean and wind currents to produce entropy. The role of animals in this view is that of unwitting but dedicated servants of the plants and cyanobacteria, helping them to grow and to spread into initially inhospitable areas.

  8. Towards understanding the biological function of hopanoids (Invited)

    Science.gov (United States)

    Doughty, D. M.; Hunter, R.; Summons, R. E.; Newman, D. K.

    2010-12-01

    Rhodopseudomonas palustris TIE-1 expresses bacterial hopanoid lipids that are structurally similar and evolutionarily related to eukaryotic sterols. The genome of R. palustris TIE-1 contains two copies of the hpnN gene (hpnN1 and hpnN2) that are orthologs of genes encoding eukaryotic sterol and lipid transporters. Hopanoid localization to the outer membrane was found to be dependent upon hpnN1. Since the cell cycle of R. palustris TIE-1 is obligately bimodal with each cell division resulting in the generation of one mother and one swarmer cell, evidence was obtained that hopanoids where specifically localized to the outer membrane of mother cells. The sequestration of hopanoids to the mother cells was also disrupted by the deletion of the hpnN1 gene. Mutants lacking the hopanoid transporters were able to grow normally at 30 °C but showed decreased growth at 38 °C. The hopanoid transporter mutant formed cellular filaments when grown at elevated temperature. Because sedimentary steranes and hopanes comprise some of the earliest evidence for the emergence of distinct bacteria and eukaryotic phyla, a better appreciation of the function of hopanoids will improve our ability to interpret the evolution of life on Earth.

  9. Taste and smell function in testicular cancer survivors treated with cisplatin-based chemotherapy in relation to dietary intake, food preference, and body composition

    NARCIS (Netherlands)

    IJpma, Irene; Renken, Remco J.; Gietema, Jourik A.; Slart, Riemer H.J.A.; Mensink, Manon G.J.; Lefrandt, Joop D.; Horst, ter Gert J.; Reyners, Anna K.L.

    2016-01-01

    Background

    Chemotherapy can affect taste and smell function. This may contribute to the high prevalence of overweight and metabolic syndrome in testicular cancer survivors (TCS). Aims of the study were to evaluate taste and smell function and possible consequences for dietary intake, food

  10. Taste and smell function in testicular cancer survivors treated with cisplatin-based chemotherapy in relation to dietary intake, food preference, and body composition

    NARCIS (Netherlands)

    IJpma, Irene; Renken, Remco J.; Gietema, Jourik A.; Slart, Riemer H. J. A.; Mensink, Manon G. J.; Lefrandt, Joop D.; Ter Horst, Gert J.; Reyners, Anna K. L.

    2016-01-01

    Background: Chemotherapy can affect taste and smell function. This may contribute to the high prevalence of overweight and metabolic syndrome in testicular cancer survivors (TCS). Aims of the study were to evaluate taste and smell function and possible consequences for dietary intake, food

  11. Dietary sugars and proline influence biological parameters of adult Trissolcus grandis, an egg parasitoid of Sunn pest, Eurygaster integriceps

    NARCIS (Netherlands)

    Hajirajabi, Nafiseh; Fazel, Morteza Movahedi; Harvey, Jeffrey A.; Arbab, Abbass; Asgari, Shahriar

    Parasitoids are important natural enemies that are used in the biological control of insect herbivore pests. The egg parasitoid Trissolcus grandis Thompson (Hym. Scelionidae) is a major enemy of the Sunn pest, Eurygaster integriceps Puton (Hem. Scutelleridae), which in turn is one of the most

  12. The reflection of life functional entailment and imminence in relational biology

    CERN Document Server

    Louie, A H

    2013-01-01

    A. H. Louie’s The Reflection of Life: Functional Entailment and Imminence in Relational Biology is a continuation of the exploratory journey in relational biology which began with his 2009 monograph More Than Life Itself: A Synthetic Continuation in Relational Biology. The theme of his first book was ‘What is life?’; the theme of this sequel is “How do two life forms interact?” Biology is a subject concerned with organization of relations. Relational biology is the approach that advocates ‘function dictates structure”, rather than ‘structure implies function’. It is mathematics decoded into biological realizations. The book demonstrates some of the powers of the approach of relational biology, and illustrates how pertinent problems in biology can be better addressed this way. In the first volume the theory was developed by using partially ordered sets, lattices, simulations, models, Aristotle’s four causes, graphs, categories, simple and complex systems, anticipatory systems, and metabolis...

  13. Description and evaluation of a net energy intake model as a function of dietary chewing index

    DEFF Research Database (Denmark)

    Jensen, L.M.; Markussen, B.; Nielsen, N.I.

    2016-01-01

    Previously, a linear relationship has been found between net energy intake (NEI) and dietary chewing index (CI) of the diet for different types of cattle. Therefore, we propose to generalize and calibrate this relationship into a new model for direct prediction of NEI by dairy cows from CI values...... (CINE; min/MJ of NE). Furthermore, we studied the forage-to-concentrate substitution rate in this new NEI model. To calibrate the model on a diverse set of situations, we built a database of mean intake from 14 production experiments with a total of 986 primi- and multiparous lactating dairy cows......, and disturbance, across and within experiments on independent data from 19 experiments including 812 primi- and multiparous lactating dairy cows of different breeds fed 80 different diets ad libitum. The NEI model predicted NEI with an MSPE of 8% of observed, and across the 19 experiments the error central...

  14. A Case Study Of Dietary Deficiency On Peripheral Nerve Functions In Chronic Alcoholic Patient

    Directory of Open Access Journals (Sweden)

    Arbind Kumar Choudhary

    2015-08-01

    Full Text Available Abstract Alcoholic neuropathy is most likely result of dietary deficiency rather than direct neurotoxic effect of alcohol. A male alcoholic patient aged 34- years old with clear clinical sign of peripheral neuropathy was examined after his habit of six years chronic alcoholic drinking. Conduction velocities latencies and nerve action potential amplitudes was measured from median radial common peroneal and sural nerves on respective upper and lower limb and the results showed that there was decrease in conduction velocity of common peroneal and posterior tibial in lower limbs. However sensory nerve conduction SNCV of sural nerve right and left was normal in lower limb. Based on the results observed in our study we conclude that the combination of vitamin B12 uridine and cytidine can be safe and effective in the treatment of patients presenting alcoholic polyneuropathy. So the prognosis of alcoholic peripheral neuropathy is good and independent of age provided that intake of alcohol is withdrawn completely.

  15. Development of a nutritionally balanced pizza as a functional meal designed to meet published dietary guidelines.

    Science.gov (United States)

    Combet, Emilie; Jarlot, Amandine; Aidoo, Kofi E; Lean, Michael E J

    2014-11-01

    To develop a worked example of product reformulation of a very popular 'junk food' to meet nutritional guidelines for public health in a ready meal. Indicative survey of popular Margherita pizzas, followed by product reformulation, applying dietary guidelines to generate a single-item pizza meal containing 30 % daily amounts of energy and all nutrients. An iterative process was used; first to optimize nutrient balance by adjusting the proportions of bread base, tomato-based sauce and mozzarella topping, then adding ingredients to provide specific nutrients and consumer tasting. Urban areas of contrasting socio-economic status. Untrained unselected adults (n 49) and children (n 63), assessing pizza at tasting stations. Most commercial pizzas provide insufficient information to assess all nutrients and traditional Margherita pizza ingredients provide insufficient Fe, Zn, iodine, and vitamins C and B12. Energy content of the portions currently sold as standard range from 837 to 2351 kJ (200 to 562 kcal), and most exceed 30 % Guideline Daily Amounts for saturated fat and Na when a 2510 kJ (600 kcal) notional meal is considered. The 'nutritionally balanced pizza' provides the required energy for a single-item meal (2510 kJ/600 kcal), with all nutrients within recommended ranges: Na (473 mg, ∼45 % below recommended level), saturated fat (<11 % energy) and dietary fibre (13·7 g). Most adults (77 %) and children (81 %) rated it 'as good as' or 'better than' their usual choice. Nutritional guidelines to reduce chronic diseases can be applied to reformulate 'junk food' ready meals, to improve public health through a health-by-stealth approach without requiring change in eating habits.

  16. Revealing complex function, process and pathway interactions with high-throughput expression and biological annotation data.

    Science.gov (United States)

    Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila

    2016-10-20

    The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.

  17. Whole dietary patterns to optimize cognitive function for military mission-readiness: a systematic review and recommendations for the field.

    Science.gov (United States)

    Teo, Lynn; Crawford, Cindy; Yehuda, Rachel; Jaghab, Danny; Bingham, John J; Gallon, Matthew D; O'Connell, Meghan L; Chittum, Holly K; Arzola, Sonya M; Berry, Kevin

    2017-06-01

    Optimizing cognitive performance, particularly during times of high stress, is a prerequisite to mission-readiness among military personnel. It has been of interest to determine whether such performance could be enhanced through diet. This systematic review assesses the quality of the evidence for whole dietary patterns across various outcomes related to cognitive function in healthy adult populations to develop research recommendations for the military. PubMed, CINAHL, Embase, PsycInfo, and the Cochrane Library were searched. Peer-reviewed randomized controlled trials published in the English language were eligible. Fifteen included trials were assessed for methodological quality, and descriptive data were extracted. Of the 6 acceptable-quality studies, 1 demonstrated statistically nonsignificant results, whereas the other 5 showed conflicting results across the cognitive outcomes assessed. Due to the heterogeneity across the included studies, no recommendations could be reached concerning whether certain whole dietary patterns have an effect on cognitive outcomes in healthy populations. Specific recommendations for future research are offered. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Household expenditures on dietary supplements sold for weight loss, muscle building, and sexual function: Disproportionate burden by gender and income.

    Science.gov (United States)

    Austin, S Bryn; Yu, Kimberly; Liu, Selena Hua; Dong, Fan; Tefft, Nathan

    2017-06-01

    Dietary supplements sold for weight loss (WL), muscle building (MB), and sexual function (SF) are not medically recommended. They have been shown to be ineffective in many cases and pose serious health risks to consumers due to adulteration with banned substances, prescription pharmaceuticals, and other dangerous chemicals. Yet no prior research has investigated how these products may disproportionately burden individuals and families by gender and socioeconomic position across households. We investigated household (HH) cost burden of dietary supplements sold for WL, MB, and SF in a cross-sectional study using data from 60,538 U.S. households (HH) in 2012 Nielsen/IRi National Consumer Panel, calculating annual HH expenditures on WL, MB, and SF supplements and expenditures as proportions of total annual HH income. We examined sociodemographic patterns in HH expenditures using Wald tests of mean differences across subgroups. Among HH with any expenditures on WL, MB, or SF supplements, annual HH first and ninth expenditure deciles were, respectively: WL $5.99, $145.36; MB $6.99, $141.93; and SF $4.98, $88.52. Conditional on any purchases of the products, female-male-headed HH spent more on WL supplements and male-headed HH spend more on MB and SF supplements compared to other HH types ( p -values supplements types ( p -values supplements ( p -values supplements sold for WL, MB, and SF disproportionately burden HH by income and gender.

  19. Correlations of dietary energy and protein intakes with renal function impairment in chronic kidney disease patients with or without diabetes

    Directory of Open Access Journals (Sweden)

    Mei-En Chen

    2017-05-01

    Full Text Available Dietary energy and protein intake can affect progression of chronic kidney disease (CKD. CKD complicated with diabetes is often associated with a decline in renal function. We investigated the relative importance of dietary energy intake (DEI and dietary protein intake (DPI to renal function indicators in nondiabetic and diabetic CKD patients. A total of 539 Stage 3–5 CKD patients [estimated glomerular filtration rate (eGFR<60 mL/min/1.73 m2 using the Modification of Diet in Renal Disease equation] with or without diabetes were recruited from outpatient clinics of Nephrology and Nutrition in a medical center in Taiwan. Appropriateness of DEI and DPI was used to subcategorize CKD patients into four groups:(1 kidney diet (KD A (KD-A, the most appropriate diet, was characterized by low DPI and adequate DEI; (2 KD-B, low DPI and inadequate DEI; (3 KD-C, excess DPI and adequate DEI; and (4 KD-D, the least appropriate diet, excess DPI and inadequate DEI. Inadequate DEI was defined as a ratio of actual intake/recommended intake less than 90% and adequate DEI as over 90%. Low DPI was defined as less than 110% of recommended intake and excessive when over 110%. Outcome measured was eGFR. In both groups of CKD patients, DEI was significantly lower (p<0.001 and DPI higher (p=0.002 than recommended levels. However, only in the nondiabetic CKD patients were KD-C and KD-D significantly correlated with reduced eGFR compared with KD-A at increments of −5.63 mL/min/1.73 m2 (p = 0.029 and −7.72 mL/min/1.73 m2 (p=0.015. In conclusion, inadequate energy and excessive protein intakes appear to correlate with poorer renal function in nondiabetic CKD patients. Patients with advanced CKD are in need of counseling by dietitians to improve adherence to diets.

  20. Sharing Structure and Function in Biological Design with SBOL 2.0.

    Science.gov (United States)

    Roehner, Nicholas; Beal, Jacob; Clancy, Kevin; Bartley, Bryan; Misirli, Goksel; Grünberg, Raik; Oberortner, Ernst; Pocock, Matthew; Bissell, Michael; Madsen, Curtis; Nguyen, Tramy; Zhang, Michael; Zhang, Zhen; Zundel, Zach; Densmore, Douglas; Gennari, John H; Wipat, Anil; Sauro, Herbert M; Myers, Chris J

    2016-06-17

    The Synthetic Biology Open Language (SBOL) is a standard that enables collaborative engineering of biological systems across different institutions and tools. SBOL is developed through careful consideration of recent synthetic biology trends, real use cases, and consensus among leading researchers in the field and members of commercial biotechnology enterprises. We demonstrate and discuss how a set of SBOL-enabled software tools can form an integrated, cross-organizational workflow to recapitulate the design of one of the largest published genetic circuits to date, a 4-input AND sensor. This design encompasses the structural components of the system, such as its DNA, RNA, small molecules, and proteins, as well as the interactions between these components that determine the system's behavior/function. The demonstrated workflow and resulting circuit design illustrate the utility of SBOL 2.0 in automating the exchange of structural and functional specifications for genetic parts, devices, and the biological systems in which they operate.

  1. Active Interaction Mapping as a tool to elucidate hierarchical functions of biological processes.

    Science.gov (United States)

    Farré, Jean-Claude; Kramer, Michael; Ideker, Trey; Subramani, Suresh

    2017-07-03

    Increasingly, various 'omics data are contributing significantly to our understanding of novel biological processes, but it has not been possible to iteratively elucidate hierarchical functions in complex phenomena. We describe a general systems biology approach called Active Interaction Mapping (AI-MAP), which elucidates the hierarchy of functions for any biological process. Existing and new 'omics data sets can be iteratively added to create and improve hierarchical models which enhance our understanding of particular biological processes. The best datatypes to further improve an AI-MAP model are predicted computationally. We applied this approach to our understanding of general and selective autophagy, which are conserved in most eukaryotes, setting the stage for the broader application to other cellular processes of interest. In the particular application to autophagy-related processes, we uncovered and validated new autophagy and autophagy-related processes, expanded known autophagy processes with new components, integrated known non-autophagic processes with autophagy and predict other unexplored connections.

  2. N-acylation of phosphatidylethanolamine and its biological functions in mammals

    DEFF Research Database (Denmark)

    Wellner, Niels; Diep, Thi Ai; Janfelt, Christian

    2013-01-01

    N-acylphosphatidylethanolamine (NAPE) and N-acylplasmenylethanolamine (pNAPE) are widely found phospholipids, and they are precursors for N-acylethanolamines, a group of compounds that has a variety of biological effects and encompasses the endocannabinoid anandamide. NAPE and pNAPE are synthesiz...... reviews the metabolism, occurrence and assay of NAPE and pNAPE, and discusses the putative biological functions in mammals of these phospholipids. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism....

  3. Association between dietary patterns and cognitive function among 70-year-old Japanese elderly: a cross-sectional analysis of the SONIC study.

    Science.gov (United States)

    Okubo, Hitomi; Inagaki, Hiroki; Gondo, Yasuyuki; Kamide, Kei; Ikebe, Kazunori; Masui, Yukie; Arai, Yasumichi; Ishizaki, Tatsuro; Sasaki, Satoshi; Nakagawa, Takeshi; Kabayama, Mai; Sugimoto, Ken; Rakugi, Hiromi; Maeda, Yoshinobu

    2017-09-11

    An increasing number of studies in Western countries have shown that healthy dietary patterns may have a protective effect against cognitive decline and dementia. However, information on this relationship among non-Western populations with different cultural settings is extremely limited. We aim to examine the relationship between dietary patterns and cognitive function among older Japanese people. This cross-sectional study included 635 community-dwelling people aged 69-71 years who participated in the prospective cohort study titled Septuagenarians, Octogenarians, Nonagenarians Investigation with Centenarians (SONIC). Diet was assessed over a one-month period with a validated, brief-type, self-administered diet history questionnaire. Dietary patterns from thirty-three predefined food groups [energy-adjusted food (g/d)] were extracted by factor analysis. Cognitive function was assessed using the Japanese version of the Montreal Cognitive Assessment (MoCA-J). Multivariate regression analysis was performed to examine the relationship between dietary patterns and cognitive function. Three dietary patterns were identified: the 'Plant foods and fish', 'Rice and miso soup', and 'Animal food' patterns. The 'Plant foods and fish' pattern, characterized by high intakes of green and other vegetables, soy products, seaweeds, mushrooms, potatoes, fruit, fish, and green tea, was significantly associated with a higher MoCA-J score [MoCA-J score per one-quartile increase in dietary pattern: β = 0.56 (95% CI: 0.33, 0.79), P for trend cognitive function. To confirm the possibility of reverse causation we also conducted a sensitivity analysis excluding 186 subjects who reported substantial changes in their diet for any reason, but the results did not change materially. This preliminary cross-sectional study suggests that a diet with high intakes of vegetables, soy products, fruit, and fish may have a beneficial effect on cognitive function in older Japanese people. Further

  4. Dietary Lactobacillus rhamnosus GG Supplementation Improves the Mucosal Barrier Function in the Intestine of Weaned Piglets Challenged by Porcine Rotavirus.

    Directory of Open Access Journals (Sweden)

    Xiangbing Mao

    Full Text Available Lactobacillus rhamnosus GG (LGG has been regarded as a safe probiotic strain. The aim of this study was to investigate whether dietary LGG supplementation could alleviate diarrhea via improving jejunal mucosal barrier function in the weaned piglets challenged by RV, and further analyze the potential roles for apoptosis of jejunal mucosal cells and intestinal microbiota. A total of 24 crossbred barrows weaned at 21 d of age were assigned randomly to 1 of 2 diets: the basal diet and LGG supplementing diet. On day 11, all pigs were orally infused RV or the sterile essential medium. RV infusion increased the diarrhea rate, increased the RV-Ab, NSP4 and IL-2 concentrations and the Bax mRNA levels of jejunal mucosa (P<0.05, decreased the villus height, villus height: crypt depth, the sIgA, IL-4 and mucin 1 concentrations and the ZO-1, occludin and Bcl-2 mRNA levels of jejunal mucosa (P<0.05, and affected the microbiota of ileum and cecum (P<0.05 in the weaned pigs. Dietary LGG supplementation increased the villus height and villus height: crypt depth, the sIgA, IL-4, mucin 1 and mucin 2 concentrations, and the ZO-1, occludin and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05 reduced the Bax mRNA levels of the jejunal mucosa (P<0.05 in weaned pigs. Furthermore, dietary LGG supplementation alleviated the increase of diarrhea rate in the weaned pigs challenged by RV (P<0.05, and relieve the effect of RV infection on the villus height, crypt depth and the villus height: crypt depth of the jejunal mucosa (P<0.05, the NSP4, sIgA, IL-2, IL-4, mucin 1 and mucin 2 concentrations of jejunal mucosa (P<0.05, the ZO-1, occludin, Bax and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05, and the microbiota of ileum and cecum (P<0.05 in the weaned pigs challenged by RV. These results suggest that supplementing LGG in diets alleviated the diarrhea of weaned piglets challenged by RV via inhibiting the virus multiplication and improving the jejunal mucosal barrier

  5. Composite Structural Motifs of Binding Sites for Delineating Biological Functions of Proteins

    Science.gov (United States)

    Kinjo, Akira R.; Nakamura, Haruki

    2012-01-01

    Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs that represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures. PMID:22347478

  6. Biologic variability and correlation of platelet function testing in healthy dogs.

    Science.gov (United States)

    Blois, Shauna L; Lang, Sean T; Wood, R Darren; Monteith, Gabrielle

    2015-12-01

    Platelet function tests are influenced by biologic variability, including inter-individual (CVG ) and intra-individual (CVI ), as well as analytic (CVA ) variability. Variability in canine platelet function testing is unknown, but if excessive, would make it difficult to interpret serial results. Additionally, the correlation between platelet function tests is poor in people, but not well described in dogs. The aims were to: (1) identify the effect of variation in preanalytic factors (venipuncture, elapsed time until analysis) on platelet function tests; (2) calculate analytic and biologic variability of adenosine diphosphate (ADP) and arachidonic acid (AA)-induced thromboelastograph platelet mapping (TEG-PM), ADP-, AA-, and collagen-induced whole blood platelet aggregometry (WBA), and collagen/ADP and collagen/epinephrine platelet function analysis (PFA-CADP, PFA-CEPI); and (3) determine the correlation between these variables. In this prospective observational trial, platelet function was measured once every 7 days, for 4 consecutive weeks, in 9 healthy dogs. In addition, CBC, TEG-PM, WBA, and PFA were performed. Overall coefficients of variability ranged from 13.3% to 87.8% for the platelet function tests. Biologic variability was highest for AA-induced maximum amplitude generated during TEG-PM (MAAA; CVG = 95.3%, CVI = 60.8%). Use of population-based reference intervals (RI) was determined appropriate only for PFA-CADP (index of individuality = 10.7). There was poor correlation between most platelet function tests. Use of population-based RI appears inappropriate for most platelet function tests, and tests poorly correlate with one another. Future studies on biologic variability and correlation of platelet function tests should be performed in dogs with platelet dysfunction and those treated with antiplatelet therapy. © 2015 American Society for Veterinary Clinical Pathology.

  7. INTERACTION BETWEEN DIETARY MINERAL AND PHYTASE ON BIOLOGICAL PERFORMANCES OF JAPANESE FLOUNDER, Paralichthys olivaceus. PART I. GROWTH, FEED INTAKE, AND WHOLE BODY MINERAL CONTENT

    Directory of Open Access Journals (Sweden)

    Asda Laining

    2013-06-01

    Full Text Available In order to determine the effect of dietary calcium (Ca, inorganic phosphorus (IP, and phytase (P supplementation in marine fish, a 2 x 2 x 2 factorial design was arranged to observe the interrelationship between dietary Ca and IP with the presence of dietary phytase. Two levels of dietary Ca at 0% and 0.2% combined with either 0% or 0.25% of dietary IP and either with 0 and 2,000 FTU phytase/kg diet, respectively to formulate eight experimental diets. SPI-based diet was used as basal diet and the sources of Ca, IP, and phytase were similar to those used in the previous experiment. Juvenile Japanese flounder with initial body weight around 0.6 g was fed the test diets. After 30 days of feeding trial, the results showed that both dietary IP and phytase, but not dietary Ca significantly enhanced the growth and feed intake. The highest growth was achieved in fish fed a diet containing the Ca, IP, and phytase supplement among groups. Fish fed diet without the three dietary supplements had the lowest SGR and did not significantly improve by supplementing dietary Ca. Feed intake (FI and was significantly influenced by dietary IP and phytase, not dietary Ca while feed conversion ratio (FCR was significantly affected by all dietary treatments. Interaction effect was detected between dietary Ca and IP, between dietary IP and P on FCR. Total phosphorus content in whole body was significantly increased by supplementing all dietary treatments which was highest in fish fed 0.25 IP/0.2 Ca/P. Significant interaction was observed between dietary IP and P on this parameter. Whole body Ca content was significantly improved by either dietary IP or Ca and not dietary P. As conclusion even without inorganic Ca supplement, dietary IP at level of 0.25% or 2,000 FTU phytase/kg diet could enhance growth and FI of fish as well as whole body phosphorus content of juvenile Japanese flounder when diet basal contained organic Ca around 1.2%.

  8. The relationship between oral health status and biological and psychosocial function in the bedridden elderly.

    Science.gov (United States)

    Hanada, N; Tada, A

    2001-01-01

    The present study was conducted in order to determine what item of biological and psychosocial function is related to oral health status in the bedridden elderly. The subjects were 94 elderly individuals (30 males, 64 females) who had been admitted to a nursing home in Chiba city, Japan. We assessed the number of remaining teeth and the number of functional teeth as oral health status variables. Biological and psychosocial function levels were determined using the functional independence measure method developed by the State University of New York at Buffalo. More than 70% of subjects had less than ten remaining teeth. Almost all subjects needed prosthesis treatment. More than 50% of subjects had 27 or less functional teeth. Mann-Whitney U-test and logistic regression models showed that 'expression' was concerned with the number of remaining teeth and 'bladder management', 'locomotion', 'transfers' were related to the number of functional teeth. These data suggest close relation between oral health status and biological and psychosocial function levels in the bedridden elderly.

  9. Changes in taste and smell function, dietary intake, food preference, and body composition in testicular cancer patients treated with cisplatin-based chemotherapy

    NARCIS (Netherlands)

    Ijpma, Irene; Renken, Remco J.; Gietema, Jourik A.; Slart, Riemer H. J. A.; Mensink, Manon G. J.; Lefrandt, Joop D.; Ter Horst, Gert J.; Reyners, Anna K. L.

    2017-01-01

    Background & aims: Taste and smell changes due to chemotherapy May contribute to the high prevalence of overweight in testicular cancer patients (TCPs). This study investigates the taste and smell function, dietary intake, food preference, and body composition in TCPs before, during, and up to 1

  10. Dietary approach to stop hypertension (DASH) diet and risk of renal function decline and all-cause mortality in renal transplant recipients

    NARCIS (Netherlands)

    Osté, M.C.J.; Gomes-neto, A.W.; Corpeleijn, E.; Gans, R.O.B.; De Borst, M.H.; Van Den Berg, E.; Soedamah-Muthu, S.S.; Kromhout, D.; Navis, G.J.; Bakker, S.J.L.

    Renal transplant recipients (RTR) are at risk of decline of graft function and premature mortality, with high blood pressure as important risk factor for both. To study the association of the Dietary Approach to Stop Hypertension (DASH) diet with these adverse events, we conducted a prospective

  11. [Recent advances of synthetic biology for production of functional ingredients in Chinese materia medica].

    Science.gov (United States)

    Su, Xin-Yao; Xue, Jian-Ping; Wang, Cai-Xia

    2016-11-01

    The functional ingredients in Chinese materia medica are the main active substance for traditional Chinese medicine and most of them are secondary metabolites derivatives. Until now,the main method to obtain those functional ingredients is through direct extraction from the Chinese materia medica. However, the income is very low because of the high extraction costs and the decreased medicinal plants. Synthetic biology technology, as a new and microbial approach, can be able to carry out large-scale production of functional ingredients and greatly ease the shortage of traditional Chinese medicine ingredients. This review mainly focused on the recent advances in synthetic biology for the functional ingredients production. Copyright© by the Chinese Pharmaceutical Association.

  12. Physical exercise, fitness and dietary pattern and their relationship with circadian blood pressure pattern, augmentation index and endothelial dysfunction biological markers: EVIDENT study protocol

    Directory of Open Access Journals (Sweden)

    Nicolás Eguskiñe

    2010-05-01

    Full Text Available Abstract Background Healthy lifestyles may help to delay arterial aging. The purpose of this study is to analyze the relationship of physical activity and dietary pattern to the circadian pattern of blood pressure, central and peripheral blood pressure, pulse wave velocity, carotid intima-media thickness and biological markers of endothelial dysfunction in active and sedentary individuals without arteriosclerotic disease. Methods/Design Design: A cross-sectional multicenter study with six research groups. Subjects: From subjects of the PEPAF project cohort, in which 1,163 who were sedentary became active, 1,942 were sedentary and 2,346 were active. By stratified random sampling, 1,500 subjects will be included, 250 in each group. Primary measurements: We will evaluate height, weight, abdominal circumference, clinical and ambulatory blood pressure with the Radial Pulse Wave Acquisition Device (BPro, central blood pressure and augmentation index with Pulse Wave Application Software (A-Pulse and SphymgoCor System Px (Pulse Wave Analysis, pulse wave velocity (PWV with SphymgoCor System Px (Pulse Wave Velocity, nutritional pattern with a food intake frequency questionnaire, physical activity with the 7-day PAR questionnaire and accelerometer (Actigraph GT3X, physical fitness with the cycle ergometer (PWC-170, carotid intima-media thickness by ultrasound (Micromax, and endothelial dysfunction biological markers (endoglin and osteoprotegerin. Discussion Determining that sustained physical activity and the change from sedentary to active as well as a healthy diet improve circadian pattern, arterial elasticity and carotid intima-media thickness may help to propose lifestyle intervention programs. These interventions could improve the cardiovascular risk profile in some parameters not routinely assessed with traditional risk scales. From the results of this study, interventional approaches could be obtained to delay vascular aging that combine physical

  13. PANTHER version 6: protein sequence and function evolution data with expanded representation of biological pathways

    OpenAIRE

    Mi, Huaiyu; Guo, Nan; Kejariwal, Anish; Thomas, Paul D.

    2006-01-01

    PANTHER is a freely available, comprehensive software system for relating protein sequence evolution to the evolution of specific protein functions and biological roles. Since 2005, there have been three main improvements to PANTHER. First, the sequences used to create evolutionary trees are carefully selected to provide coverage of phylogenetic as well as functional information. Second, PANTHER is now a member of the InterPro Consortium, and the PANTHER hidden markov Models (HMMs) are distri...

  14. Late-stage diversification of biologically active pyridazinones via a direct C-H functionalization strategy.

    Science.gov (United States)

    Li, Wei; Fan, Zhoulong; Geng, Kaijun; Xu, Youjun; Zhang, Ao

    2015-01-14

    Divergent C-H functionalization reactions (arylation, carboxylation, olefination, thiolation, acetoxylation, halogenation, naphthylation) using a pyridazinone moiety as an internal directing group were successfully established. This approach offers a late-stage, ortho-selective diversification of a biologically active pyridazinone scaffold. Seven series of novel pyridazinone analogues were synthesized conveniently as the synthetic precursors of potential sortase A (SrtA) inhibitors.

  15. A biologically inspired psychometric function for accuracy of visual identification as a function of exposure duration

    DEFF Research Database (Denmark)

    Petersen, Anders; Andersen, Tobias

    , all of these having a temporal offset included, as well as the ex-Gaussian, and finally a new psychometric function, motivated from single-neuron studies by (Albrecht, Geisler, Frazor & Crane, 2002). The new psychometric function stands out by having a nonmonotonous hazard rate which is initially...

  16. Mediterranean Diet and Other Dietary Patterns in Primary Prevention of Heart Failure and Changes in Cardiac Function Markers: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Karina Sanches Machado d’Almeida

    2018-01-01

    Full Text Available Background: Heart failure (HF is a complex syndrome and is recognized as the ultimate pathway of cardiovascular disease (CVD. Studies using nutritional strategies based on dietary patterns have proved to be effective for the prevention and treatment of CVD. Although there are studies that support the protective effect of these diets, their effects on the prevention of HF are not clear yet. Methods: We searched the Medline, Embase, and Cochrane databases for studies that examined dietary patterns, such as dietary approaches to stop hypertension (DASH diet, paleolithic, vegetarian, low-carb and low-fat diets and prevention of HF. No limitations were used during the search in the databases. Results: A total of 1119 studies were identified, 14 met the inclusion criteria. Studies regarding the Mediterranean, DASH, vegetarian, and Paleolithic diets were found. The Mediterranean and DASH diets showed a protective effect on the incidence of HF and/or worsening of cardiac function parameters, with a significant difference in relation to patients who did not adhere to these dietary patterns. Conclusions: It is observed that the adoption of Mediterranean or DASH-type dietary patterns may contribute to the prevention of HF, but these results need to be analyzed with caution due to the low quality of evidence.

  17. Development of a bread delivery vehicle for dietary prebiotics to enhance food functionality targeted at those with metabolic syndrome

    Science.gov (United States)

    Costabile, Adele; Walton, Gemma E; Tzortzis, George; Vulevic, Jelena; Charalampopoulos, Dimitris; Gibson, Glenn R

    2015-01-01

    Prebiotics are dietary carbohydrates that favourably modulate the gut microbiota. The aims of the present study were to develop a functional prebiotic bread using Bimuno®, (galactooligosaccharide (B-GOS) mixture), for modulation of the gut microbiota in vitro in individuals at risk of metabolic syndrome. A control bread, (no added prebiotic) and positive control bread (containing equivalent carbohydrate to B-GOS bread) were also developed. A 3-stage continuous in vitro colonic model was used to assess prebiotic functionality of the breads. Bacteria were quantified by fluorescence in situ hybridization and short chain fatty acids by gas chromatography. Ion-exchange chromatography was used to determine GOS concentration after bread production. Following B-GOS bread fermentation numbers of bifidobacteria and lactobacilli were significantly higher compared to controls. There was no significant degradation of B-GOS during bread manufacture, indicating GOS withstood the manufacturing process. Furthermore, based on previous research, increased bifidobacteria and butyrate levels could be of benefit to those with obesity related conditions. Our findings support utilization of prebiotic enriched bread for improving gastrointestinal health. PMID:26099034

  18. An examination of structure-function claims in dietary supplement advertising in the U.S.: 2003-2009.

    Science.gov (United States)

    Avery, Rosemary J; Eisenberg, Matthew D; Cantor, Jonathan H

    2017-04-01

    Dietary supplement advertising cannot claim a causal link between the product and the treatment, prevention, or cure of a disease unless manufacturers seek approval from the FDA for a health claim. Manufacturers can make structure-function (S-F) claims without FDA approval linking a supplement to a body function or system using words such as "may help" or "promotes." These S-F claims are examined in this study in order to determine whether they mimic health claims for which the FDA requires stricter scientific evidence. Data include S-F claims in supplement advertisements (N=6179) appearing in US nationally circulated magazines (N=137) from 2003 to 2009. All advertisements were comprehensively coded for S-F claims, seals of approval, and other claims of guarantee. S-F claims associate supplements with a wide variety of health conditions, many of which are serious diseases and/or ailments. A significant number of the specific verbs used in these S-F claims are indicative of disease treatment/cure effects, thereby possibly mimicking health claims to the average consumer. The strength of the clinical associations made are largely unsubstantiated in the medical literature. Claims that a product is "scientifically proven" or "guaranteed" were largely unsubstantiated by clinical literature. Ads carrying externally validating seals of approval were highly prevalent. S-F claims that strongly mimic FDA-prohibited health claims are likely to create confusion in interpretation and possible public health concerns are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Dietary n-3 PUFA affect TcR-mediated activation of purified murine T cells and accessory cell function in co-cultures

    Science.gov (United States)

    CHAPKIN, R S; ARRINGTON, J L; APANASOVICH, T V; CARROLL, R J; MCMURRAY, D N

    2002-01-01

    Diets enriched in n-3 polyunsaturated fatty acids (PUFA) suppress several functions of murine splenic T cells by acting directly on the T cells and/or indirectly on accessory cells. In this study, the relative contribution of highly purified populations of the two cell types to the dietary suppression of T cell function was examined. Mice were fed diets containing different levels of n-3 PUFA; safflower oil (SAF; control containing no n-3 PUFA), fish oil (FO) at 2% and 4%, or 1% purified docosahexaenoic acid (DHA) for 2 weeks. Purified (>90%) T cells were obtained from the spleen, and accessory cells (>95% adherent, esterase-positive) were obtained by peritoneal lavage. Purified T cells or accessory cells from each diet group were co-cultured with the alternative cell type from every other diet group, yielding a total of 16 different co-culture combinations. The T cells were stimulated with either concanavalin A (ConA) or antibodies to the T cell receptor (TcR)/CD3 complex and the costimulatory molecule CD28 (αCD3/αCD28), and proliferation was measured after four days. Suppression of T cell proliferation in the co-cultures was dependent upon the dose of dietary n-3 PUFA fed to mice from which the T cells were derived, irrespective of the dietary treatment of accessory cell donors. The greatest dietary effect was seen in mice consuming the DHA diet (P = 0·034 in the anova; P = 0·0053 in the Trend Test), and was observed with direct stimulation of the T cell receptor and CD28 costimulatory ligand, but not with ConA. A significant dietary effect was also contributed accessory cells (P = 0·033 in the Trend Test). We conclude that dietary n-3 PUFA affect TcR-mediated by T cell activation by both direct and indirect (accessory cell) mechanisms. PMID:12296847

  20. Beneficial Effects of an Alternating High- Fat Dietary Regimen on Systemic Insulin Resistance, Hepatic and Renal Inflammation and Renal Function

    NARCIS (Netherlands)

    Yakala, G.K.; Heijden, R. van der; Molema, G.; Schipper, M.; Wielinga, P.Y.; Kleemann, R.; Kooistra, T.; Heeringa, P.

    2012-01-01

    Background: An Alternating high- cholesterol dietary regimen has proven to be beneficial when compared to daily high- cholesterol feeding. In the current study we explored whether the same strategy is applicable to a high- fat dietary regimen. Objective: To investigate whether an alternating high-

  1. Beneficial Effects of an Alternating High- Fat Dietary Regimen on Systemic Insulin Resistance, Hepatic and Renal Inflammation and Renal Function

    NARCIS (Netherlands)

    Yakala, Gopala K.; van der Heijden, Roel; Molema, Grietje; Schipper, Martin; Wielinga, Peter Y.; Kleemann, Robert; Kooistra, Teake; Heeringa, Peter

    2012-01-01

    Background: An Alternating high-cholesterol dietary regimen has proven to be beneficial when compared to daily high-cholesterol feeding. In the current study we explored whether the same strategy is applicable to a high-fat dietary regimen. Objective: To investigate whether an alternating high-fat

  2. Single amino acid substitution in important hemoglobinopathies does not disturb molecular function and biological process

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2008-06-01

    Full Text Available Viroj WiwanitkitDepartment of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, ThailandAbstract: Hemoglobin is an important protein found in the red cells of many animals. In humans, the hemoglobin is mainly distributed in the red blood cell. Single amino acid substitution is the main pathogenesis of most hemoglobin disorders. Here, the author used a new gene ontology technology to predict the molecular function and biological process of four important hemoglobin disorders with single substitution. The four studied important abnormal hemoglobins (Hb with single substitution included Hb S, Hb E, Hb C, and Hb J-Baltimore. Using the GoFigure server, the molecular function and biological process in normal and abnormal hemoglobins was predicted. Compared with normal hemoglobin, all studied abnormal hemoglobins had the same function and biological process. This indicated that the overall function of oxygen transportation is not disturbed in the studied hemoglobin disorders. Clinical findings of oxygen depletion in abnormal hemoglobin should therefore be due to the other processes rather than genomics, proteomics, and expression levels.Keywords: hemoglobin, amino acid, substitution, function

  3. European regulations on nutraceuticals, dietary supplements and functional foods: A framework based on safety

    International Nuclear Information System (INIS)

    Coppens, Patrick; Fernandes da Silva, Miguel; Pettman, Simon

    2006-01-01

    This article describes the legislation that is relevant in the marketing of functional foods in the European Union (EU), how this legislation was developed as well as some practical consequences for manufacturers, marketers and consumers. It also addresses some concrete examples of how the EU's safety requirements for food products have impacted a range of product categories. In the late nineties, research into functional ingredients was showing promising prospects for the use of such ingredients in foodstuffs. Due mainly to safety concerns, these new scientific developments were accompanied by an urgent call for legislation. The European Commission 2000 White Paper on Food Safety announced some 80 proposals for new and improved legislation in this field. Among others, it foresaw the establishment of a General Food Law Regulation, laying down the principles of food law and the creation of an independent Food Authority endowed with the task of giving scientific advice on issues based upon scientific risk assessment with clearly separated responsibilities for risk assessment, risk management and risk communication. Since then, more than 90% of the White Paper proposals have been implemented. However, there is not, as such, a regulatory framework for 'functional foods' or 'nutraceuticals' in EU Food Law. The rules to be applied are numerous and depend on the nature of the foodstuff. The rules of the general food law Regulation are applicable to all foods. In addition, legislation on dietetic foods, on food supplements or on novel foods may also be applicable to functional foods depending on the nature of the product and on their use. Finally, the two proposals on nutrition and health claims and on the addition of vitamins and minerals and other substances to foods, which are currently in the legislative process, will also be an important factor in the future marketing of 'nutraceuticals' in Europe. The cornerstone of EU legislation on food products, including

  4. Dietary and plant polyphenols exert neuroprotective effects and improve cognitive function in cerebral ischemia.

    Science.gov (United States)

    Panickar, Kiran S; Jang, Saebyeol

    2013-08-01

    Cerebral ischemia is caused by an interruption of blood flow to the brain which generally leads to irreversible brain damage. Ischemic injury is associated with vascular leakage, inflammation, tissue injury, and cell death. Cellular changes associated with ischemia include impairment of metabolism, energy failure, free radical production, excitotoxicity, altered calcium homeostasis, and activation of proteases all of which affect brain functioning and also contribute to longterm disabilities including cognitive decline. Inflammation, mitochondrial dysfunction, increased oxidative/nitrosative stress, and intracellular calcium overload contribute to brain injury including cell death and brain edema. However, there is a paucity of agents that can effectively reduce cerebral damage and hence considerable attention has focused on developing newer agents with more efficacy and fewer side-effects. Polyphenols are natural compounds with variable phenolic structures and are rich in vegetables, fruits, grains, bark, roots, tea, and wine. Most polyphenols have antioxidant, anti-inflammatory, and anti-apoptotic properties and their protective effects on mitochondrial functioning, glutamate uptake, and regulating intracellular calcium levels in ischemic injury in vitro have been demonstrated. This review will assess the current status of the potential effects of polyphenols in reducing cerebral injury and improving cognitive function in ischemia in animal and human studies. In addition, the review will also examine available patents in nutrition and agriculture that relates to cerebral ischemic injury with an emphasis on plant polyphenols.

  5. Dietary flavanols and procyanidin oligomers from cocoa (Theobroma cacao) inhibit platelet function.

    Science.gov (United States)

    Murphy, Karen J; Chronopoulos, Andriana K; Singh, Indu; Francis, Maureen A; Moriarty, Helen; Pike, Marilyn J; Turner, Alan H; Mann, Neil J; Sinclair, Andrew J

    2003-06-01

    Flavonoids may be partly responsible for some health benefits, including antiinflammatory action and a decreased tendency for the blood to clot. An acute dose of flavanols and oligomeric procyanidins from cocoa powder inhibits platelet activation and function over 6 h in humans. This study sought to evaluate whether 28 d of supplementation with cocoa flavanols and related procyanidin oligomers would modulate human platelet reactivity and primary hemostasis and reduce oxidative markers in vivo. Thirty-two healthy subjects were assigned to consume active (234 mg cocoa flavanols and procyanidins/d) or placebo (cocoa flavanols and procyanidins/d) tablets in a blinded parallel-designed study. Platelet function was determined by measuring platelet aggregation, ATP release, and expression of activation-dependent platelet antigens by using flow cytometry. Plasma was analyzed for oxidation markers and antioxidant status. Plasma concentrations of epicatechin and catechin in the active group increased by 81% and 28%, respectively, during the intervention period. The active group had significantly lower P selectin expression and significantly lower ADP-induced aggregation and collagen-induced aggregation than did the placebo group. Plasma ascorbic acid concentrations were significantly higher in the active than in the placebo group (P antioxidant status did not change in either group. Cocoa flavanol and procyanidin supplementation for 28 d significantly increased plasma epicatechin and catechin concentrations and significantly decreased platelet function. These data support the results of acute studies that used higher doses of cocoa flavanols and procyanidins.

  6. Influence of selected dietary components on the functioning of the human nervous system

    Science.gov (United States)

    Wendołowicz, Agnieszka; Stefańska, Ewa; Ostrowska, Lucyna

    The diet is directly connected not only with the physical status but also with the functioning of the brain and the mental status. The potentially beneficial nutrients with a protective effect on the nervous system function include amino acids (tryptophan, phenylalanine, tyrosine, taurine), glucose and vitamins C, E, D and beta-carotene, B group vitamins (vitamin B12, vitamin B6, vitamin B4, vitamin B1) and minerals (selenium, zinc, magnesium, sodium, iron, copper, manganese, iodine). The presence of antioxidants in the diet protects against oxidative damage to nervous system cells. Biochemical data indicate that polyunsaturated fatty acids such as arachidonic acid (AA), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and gamma-linolenic acid (GLA) as structural components of the nervous system play a key role in its function. The nutrition of the entire body also influences the production of neurotransmitters in the brain. A diet without an appropriate supply of protein, mineral nutrients or vitamins may result in a failure to form appropriately balanced numbers of neurotransmitters, which, as a result, may lead to neurotransmission dysfunction. This is the reason why proper nutrition is based on vegetables, fruits, whole-grain cereal products supplemented with products providing full-value protein (dairy products, fish, lean meat) and high-quality fat products (vegetable oils, fish fats).

  7. Self-reported dietary intake of omega-3 fatty acids and association with bone and lower extremity function.

    Science.gov (United States)

    Rousseau, James H; Kleppinger, Alison; Kenny, Anne M

    2009-10-01

    To assess the relationship between self-reported omega-3 fatty acid (O3FA) intake and bone mineral density (BMD) and lower extremity function in older adults. Cross-sectional analysis of baseline information from three separate ongoing studies of older adults, pooled for this analysis. Academic health center. Two hundred forty-seven men (n=118) and women (n=129) residing in the community or an assisted living facility. Self-reported dietary intake (O3FA, omega-6 fatty acids (O6FA), protein, and total calorie); BMD of the hip or heel; and lower extremity function including leg strength, chair rise time, walking speed, Timed Up and Go, and frailty. The mean reported intake of O3FA was 1.27 g/day. Correlation coefficients (r) between O3FA and T-scores from total femur (n=167) were 0.210 and 0.147 for combined femur and heel T scores. Similar correlations were found for leg strength (r=0.205) and chair rise time (r=-0.178), but the significance was lost when corrected for protein intake. Subjects with lower reported O3FA intake (<1.27 g/day) had lower BMD than those with higher reported O3FA intake. In a multiple regression analysis with femoral neck BMD as the dependent variable and reported intake of O3FA, O6FA, protein, and vitamin D as independent variables, reported O3FA intake was the only significant variable, accounting for 6% of the variance in BMD. Older adults had low reported intakes of O3FA. There was an association between greater reported O3FA intake and higher BMD. There was no independent association between reported O3FA intake and lower extremity function. Results from this preliminary report are promising and suggest further investigation.

  8. Renal function following three distinct weight loss dietary strategies during 2 years of a randomized controlled trial.

    Science.gov (United States)

    Tirosh, Amir; Golan, Rachel; Harman-Boehm, Ilana; Henkin, Yaakov; Schwarzfuchs, Dan; Rudich, Assaf; Kovsan, Julia; Fiedler, Georg M; Blüher, Matthias; Stumvoll, Michael; Thiery, Joachim; Stampfer, Meir J; Shai, Iris

    2013-08-01

    This study addressed the long-term effect of various diets, particularly low-carbohydrate high-protein, on renal function on participants with or without type 2 diabetes. In the 2-year Dietary Intervention Randomized Controlled Trial (DIRECT), 318 participants (age, 51 years; 86% men; BMI, 31 kg/m(2); mean estimated glomerular filtration rate [eGFR], 70.5 mL/min/1.73 m(2); mean urine microalbumin-to-creatinine ratio, 12:12) with serum creatinine low-fat, Mediterranean, or low-carbohydrate diets. The 2-year compliance was 85%, and the proportion of protein intake significantly increased to 22% of energy only in the low-carbohydrate diet (P vs. low-fat and Mediterranean). We examined changes in urinary microalbumin and eGFR, estimated by Modification of Diet in Renal Disease and Chronic Kidney Disease Epidemiology Collaboration formulas. Significant (P low-carbohydrate (+5.3% [95% CI 2.1-8.5]), Mediterranean (+5.2% [3.0-7.4]), and low-fat diets (+4.0% [0.9-7.1]) with similar magnitude (P > 0.05) across diet groups. The increased eGFR was at least as prominent in participants with (+6.7%) or without (+4.5%) type 2 diabetes or those with lower baseline renal function of eGFR low-carbohydrate diet is as safe as Mediterranean or low-fat diets in preserving/improving renal function among moderately obese participants with or without type 2 diabetes, with baseline serum creatinine <176 μmol/L. Potential improvement is likely to be mediated by weight loss-induced improvements in insulin sensitivity and blood pressure.

  9. The bottom-up approach to defining life : deciphering the functional organization of biological cells via multi-objective representation of biological complexity from molecules to cells

    Directory of Open Access Journals (Sweden)

    Sathish ePeriyasamy

    2013-12-01

    Full Text Available In silico representation of cellular systems needs to represent the adaptive dynamics of biological cells, recognizing a cell’s multi-objective topology formed by spatially and temporally cohesive intracellular structures. The design of these models needs to address the hierarchical and concurrent nature of cellular functions and incorporate the ability to self-organise in response to transitions between healthy and pathological phases, and adapt accordingly. The functions of biological systems are constantly evolving, due to the ever changing demands of their environment. Biological systems meet these demands by pursuing objectives, aided by their constituents, giving rise to biological functions. A biological cell is organised into an objective/task hierarchy. These objective hierarchy corresponds to the nested nature of temporally cohesive structures and representing them will facilitate in studying pleiotropy and polygeny by modeling causalities propagating across multiple interconnected intracellular processes. Although biological adaptations occur in physiological, developmental and reproductive timescales, the paper is focused on adaptations that occur within physiological timescales, where the biomolecular activities contributing to functional organisation, play a key role in cellular physiology. The paper proposes a multi-scale and multi-objective modelling approach from the bottom-up by representing temporally cohesive structures for multi-tasking of intracellular processes. Further the paper characterises the properties and constraints that are consequential to the organisational and adaptive dynamics in biological cells.

  10. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials.

    Directory of Open Access Journals (Sweden)

    Carmel McDougall

    Full Text Available In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the

  11. Incontinence Treatment: Dietary Tips

    Science.gov (United States)

    ... helpful, please consider supporting IFFGD with a small tax-deductible donation. Lifestyle Changes Dietary Tips Medication Bowel ... arises requiring an expert’s care. © Copyright 1998-2018 International Foundation for Functional Gastrointestinal Disorders, Inc. (IFFGD). All ...

  12. Randomized comparison of the influence of dietary management and/or physical exercise on ovarian function and metabolic parameters in overweight women with polycystic ovary syndrome.

    Science.gov (United States)

    Nybacka, Åsa; Carlström, Kjell; Ståhle, Agneta; Nyrén, Sven; Hellström, Per Martin; Hirschberg, Angelica Lindén

    2011-12-01

    To compare the influence of dietary management and/or physical exercise on ovarian function and metabolic variables in women with polycystic ovary syndrome (PCOS). Randomized 4-month trial with three interventions and a long-term follow-up. Women's health clinical research unit at a university hospital. Fifty-seven overweight/obese women with PCOS. Dietary management, physical exercise, or both, using programs individually adapted and supervised by a dietician and/or a physical therapist. Ovarian function, endocrinologic, and metabolic status and body composition. On average, body mass index was reduced 6% by the dietary management, 3% by the exercise, and 5% by the combined interventions. Lower body fat and lean body mass were significantly decreased in the dietary groups, whereas upper body fat was lowered and lean body mass maintained by exercise alone. The menstrual pattern was significantly improved in 69% and ovulation confirmed in 34% of the patients, with no differences among the groups. The strongest predictor of resumed ovulation was a high serum level of insulin-like growth factor-binding protein 1 after the intervention. Follow-up of one-half of the patients for a median of 2.8 years revealed sustained weight reduction and improvement in menstrual pattern. Dietary management and exercise, alone or in combination, are equally effective in improving reproductive function in overweight/obese women with PCOS. The underlying mechanisms appear to involve enhanced insulin sensitivity. Supportive individualized programs for lifestyle change could exert long-term beneficial effects. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. Taste and smell function in testicular cancer survivors treated with cisplatin-based chemotherapy in relation to dietary intake, food preference, and body composition.

    Science.gov (United States)

    IJpma, Irene; Renken, Remco J; Gietema, Jourik A; Slart, Riemer H J A; Mensink, Manon G J; Lefrandt, Joop D; Ter Horst, Gert J; Reyners, Anna K L

    2016-10-01

    Chemotherapy can affect taste and smell function. This may contribute to the high prevalence of overweight and metabolic syndrome in testicular cancer survivors (TCS). Aims of the study were to evaluate taste and smell function and possible consequences for dietary intake, food preference, and body composition in TCS treated with cisplatin-based chemotherapy. Fifty TCS, 1-7 years post-chemotherapy, and 50 age-matched healthy men participated. Taste and smell function were measured using taste strips and 'Sniffin' Sticks', respectively. Dietary intake was investigated using a food frequency questionnaire. Food preference was assessed using food pictures varying in taste (sweet/savoury) and fat or protein content. Dual-Energy X-ray Absorptiometry was performed to measure body composition. Presence of metabolic syndrome and hypogonadism were assessed. TCS had a lower total taste function, a higher bitter taste threshold, higher Body Mass Index (BMI), and more (abdominal) fat than controls (p body composition in TCS (p = 0.016). Although taste function was impaired in TCS, this was not related to a different dietary intake compared to controls. Lower testosterone levels were associated with a higher BMI, fat mass, and abdominal fat distribution in TCS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Liking of health-functional foods containing lupin kernel fibre following repeated consumption in a dietary intervention setting.

    Science.gov (United States)

    Hall, Ramon S; Baxter, Amynta L; Fryirs, Cathy; Johnson, Stuart K

    2010-10-01

    Liking of a particular food after repeated consumption may be reduced, limiting the effectiveness of health-functional foods requiring on-going consumption to deliver their benefits. This study examined the effect of repeated consumption of foods containing the novel ingredient, Australian sweet lupin (Lupinus angustifolius) kernel fibre (LKFibre) on sensory acceptability in the dietary intervention setting. In a single-blind randomised crossover 4-week intervention, participants consumed both control and equivalent LKFibre-containing products daily on separate interventions separated by a 4-week period on habitual diet. Seven products: muesli, bread, muffin, chocolate brownie, chocolate milk drink, pasta and instant mashed potato were assessed twice (days 4 and 18 of intervention), by 38 participants for appearance, texture, flavour and general acceptability using a structured graphic hedonic scale. Overall the results showed there was no reduction (P=0.594) in general acceptability of LKFibre foods after repeated consumption, suggesting potential for long-term consumption. The control food products were however generally preferred (P<0.001) over the LKFibre foods; the mean difference for general acceptability between being <6% (0.82cm) of the 15cm hedonic scale used, suggesting LKF addition did not severely affect product palatability.

  15. Dietary supplementation of tiger nut alters biochemical parameters relevant to erectile function in l-NAME treated rats.

    Science.gov (United States)

    Olabiyi, Ayodeji A; Carvalho, Fabiano B; Bottari, Nathieli B; Lopes, Thauan F; da Costa, Pauline; Stefanelo, Naiara; Morsch, Vera M; Akindahunsi, Afolabi A; Oboh, Ganiyu; Schetinger, Maria Rosa

    2018-07-01

    Tiger nut tubers have been reportedly used for the treatment of erectile dysfunction (ED) in folk medicine without scientific basis. Hence, this study evaluated the effect of tiger nut on erectile dysfunction by assessing biochemical parameters relevant to ED in male rats by nitric oxide synthase (NOS) inhibitor, Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME) treatment. Rats were divided into five groups (n = 10) each: Control group; l-NAME plus basal diet; l-NAME plus Sildenafil citrate; diet supplemented processed tiger nut (20%) plus l-NAME;diet supplemented raw tiger nut (20%) plus l-NAME. l-NAME pre-treatment (40 mg/kg/day) lasted for 14 days. Arginase, acetycholinesterase (AChE) and adenosine deaminase (ADA) activities as well as nitric oxide levels (NO) in serum, brain and penile tissue were measured. l-NAME increased the activity of arginase, AChE and ADA and reduced NO levels. However, dietary supplementation with tiger nut caused a reduction on the activities of the above enzymes and up regulated nitric oxide levels when compared to the control group. The effect of tiger nut supplemented diet may be said to prevent alterations of the activities of the enzymes relevant in erectile function. Quercetin was revealed to be the most active component of tiger nut tuber by HPLC finger printing. Copyright © 2018. Published by Elsevier Ltd.

  16. Deep Illumina-based shotgun sequencing reveals dietary effects on the structure and function of the fecal microbiome of growing kittens.

    Directory of Open Access Journals (Sweden)

    Oliver Deusch

    Full Text Available Previously, we demonstrated that dietary protein:carbohydrate ratio dramatically affects the fecal microbial taxonomic structure of kittens using targeted 16S gene sequencing. The present study, using the same fecal samples, applied deep Illumina shotgun sequencing to identify the diet-associated functional potential and analyze taxonomic changes of the feline fecal microbiome.Fecal samples from kittens fed one of two diets differing in protein and carbohydrate content (high-protein, low-carbohydrate, HPLC; and moderate-protein, moderate-carbohydrate, MPMC were collected at 8, 12 and 16 weeks of age (n = 6 per group. A total of 345.3 gigabases of sequence were generated from 36 samples, with 99.75% of annotated sequences identified as bacterial. At the genus level, 26% and 39% of reads were annotated for HPLC- and MPMC-fed kittens, with HPLC-fed cats showing greater species richness and microbial diversity. Two phyla, ten families and fifteen genera were responsible for more than 80% of the sequences at each taxonomic level for both diet groups, consistent with the previous taxonomic study. Significantly different abundances between diet groups were observed for 324 genera (56% of all genera identified demonstrating widespread diet-induced changes in microbial taxonomic structure. Diversity was not affected over time. Functional analysis identified 2,013 putative enzyme function groups were different (p<0.000007 between the two dietary groups and were associated to 194 pathways, which formed five discrete clusters based on average relative abundance. Of those, ten contained more (p<0.022 enzyme functions with significant diet effects than expected by chance. Six pathways were related to amino acid biosynthesis and metabolism linking changes in dietary protein with functional differences of the gut microbiome.These data indicate that feline feces-derived microbiomes have large structural and functional differences relating to the dietary

  17. Multilevel functional genomics data integration as a tool for understanding physiology: a network biology perspective.

    Science.gov (United States)

    Davidsen, Peter K; Turan, Nil; Egginton, Stuart; Falciani, Francesco

    2016-02-01

    The overall aim of physiological research is to understand how living systems function in an integrative manner. Consequently, the discipline of physiology has since its infancy attempted to link multiple levels of biological organization. Increasingly this has involved mathematical and computational approaches, typically to model a small number of components spanning several levels of biological organization. With the advent of "omics" technologies, which can characterize the molecular state of a cell or tissue (intended as the level of expression and/or activity of its molecular components), the number of molecular components we can quantify has increased exponentially. Paradoxically, the unprecedented amount of experimental data has made it more difficult to derive conceptual models underlying essential mechanisms regulating mammalian physiology. We present an overview of state-of-the-art methods currently used to identifying biological networks underlying genomewide responses. These are based on a data-driven approach that relies on advanced computational methods designed to "learn" biology from observational data. In this review, we illustrate an application of these computational methodologies using a case study integrating an in vivo model representing the transcriptional state of hypoxic skeletal muscle with a clinical study representing muscle wasting in chronic obstructive pulmonary disease patients. The broader application of these approaches to modeling multiple levels of biological data in the context of modern physiology is discussed. Copyright © 2016 the American Physiological Society.

  18. Teleology then and now: the question of Kant's relevance for contemporary controversies over function in biology.

    Science.gov (United States)

    Zammito, John

    2006-12-01

    'Naturalism' is the aspiration of contemporary philosophy of biology, and Kant simply cannot be refashioned into a naturalist. Instead, epistemological 'deflation' was the decisive feature of Kant's treatment of the 'biomedical' science in his day, so it is not surprising that this might attract some philosophers of science to him today. A certain sense of impasse in the contemporary 'function talk' seems to motivate renewed interest in Kant. Kant--drawing on his eighteenth-century predecessors-provided a discerning and powerful characterization of what biologists had to explain in organic form. His difference from the rest is that he opined that it was impossible to explain it. Its 'inscrutability' was intrinsic. The third Critique essentially proposed the reduction of biology to a kind of pre-scientific descriptivism, doomed never to attain authentic scientificity, to have its 'Newton of the blade of grass'. By contrast, for Locke, and a fortiori for Buffon and his followers, 'intrinsic purposiveness' was a fact of the matter about concrete biological phenomena; the features of internal self-regulation were hypotheses arising out of actual research practice. The difference comes most vividly to light once we recognize Kant's distinction of the concept of organism from the concept of life. If biology must conceptualize self-organization as actual in the world, Kant's regulative/constitutive distinction is pointless in practice and the (naturalist) philosophy of biology has urgent work to undertake for which Kant turns out not to be very helpful.

  19. TCA Cycle and Mitochondrial Membrane Potential Are Necessary for Diverse Biological Functions.

    Science.gov (United States)

    Martínez-Reyes, Inmaculada; Diebold, Lauren P; Kong, Hyewon; Schieber, Michael; Huang, He; Hensley, Christopher T; Mehta, Manan M; Wang, Tianyuan; Santos, Janine H; Woychik, Richard; Dufour, Eric; Spelbrink, Johannes N; Weinberg, Samuel E; Zhao, Yingming; DeBerardinis, Ralph J; Chandel, Navdeep S

    2016-01-21

    Mitochondrial metabolism is necessary for the maintenance of oxidative TCA cycle function and mitochondrial membrane potential. Previous attempts to decipher whether mitochondria are necessary for biological outcomes have been hampered by genetic and pharmacologic methods that simultaneously disrupt multiple functions linked to mitochondrial metabolism. Here, we report that inducible depletion of mitochondrial DNA (ρ(ο) cells) diminished respiration, oxidative TCA cycle function, and the mitochondrial membrane potential, resulting in diminished cell proliferation, hypoxic activation of HIF-1, and specific histone acetylation marks. Genetic reconstitution only of the oxidative TCA cycle function specifically in these inducible ρ(ο) cells restored metabolites, resulting in re-establishment of histone acetylation. In contrast, genetic reconstitution of the mitochondrial membrane potential restored ROS, which were necessary for hypoxic activation of HIF-1 and cell proliferation. These results indicate that distinct mitochondrial functions associated with respiration are necessary for cell proliferation, epigenetics, and HIF-1 activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Dietary nutrients associated with preservation of lung function in Hispanic and non-Hispanic white smokers from New Mexico

    Directory of Open Access Journals (Sweden)

    Leng S

    2017-10-01

    mg/day. Slower FEV1 decline in Hispanics compared to NHWs may be due to the greater protection of eicosenoic fatty acid and DPA for FEV1 decline rather than greater intake of protective nutrients in this ethnic group. Conclusion: The protective nutrients for the preservation of FEV1 in ever smokers could lay foundation for designing individualized nutritional intervention targeting “optimal physiological levels” in human to improve lung function in ever smokers. Ethnic disparity in FEV1 decline may be explained by difference in magnitude of protection of dietary intakes of eicosenoic fatty acid and DPA between Hispanics and NHWs. Keywords: nutrientomics, spirometry, ethnic disparity

  1. Evaluation of perturbations in serum thyroid hormones during human pregnancy due to dietary iodide and perchlorate exposure using a biologically based dose-response model.

    Science.gov (United States)

    Lumen, Annie; Mattie, David R; Fisher, Jeffrey W

    2013-06-01

    A biologically based dose-response model (BBDR) for the hypothalamic pituitary thyroid (HPT) axis was developed in the near-term pregnant mother and fetus. This model was calibrated to predict serum levels of iodide, total thyroxine (T4), free thyroxine (fT4), and total triiodothyronine (T3) in the mother and fetus for a range of dietary iodide intake. The model was extended to describe perchlorate, an environmental and food contaminant, that competes with the sodium iodide symporter protein for thyroidal uptake of iodide. Using this mode-of-action framework, simulations were performed to determine the daily ingestion rates of perchlorate that would be associated with hypothyroxinemia or onset of hypothyroidism for varying iodide intake. Model simulations suggested that a maternal iodide intake of 75 to 250 µg/day and an environmentally relevant exposure of perchlorate (~0.1 µg/kg/day) did not result in hypothyroxinemia or hypothyroidism. For a daily iodide-sufficient intake of 200 µg/day, the dose of perchlorate required to reduce maternal fT4 levels to a hypothyroxinemic state was estimated at 32.2 µg/kg/day. As iodide intake was lowered to 75 µg/day, the model simulated daily perchlorate dose required to cause hypothyroxinemia was reduced by eightfold. Similarly, the perchlorate intake rates associated with the onset of subclinical hypothyroidism ranged from 54.8 to 21.5 µg/kg/day for daily iodide intake of 250-75 µg/day. This BBDR-HPT axis model for pregnancy provides an example of a novel public health assessment tool that may be expanded to address other endocrine-active chemicals found in food and the environment.

  2. Characteristics of microbial community functional structure of a biological coking wastewater treatment system.

    Science.gov (United States)

    Joshi, Dev Raj; Zhang, Yu; Zhang, Hong; Gao, Yingxin; Yang, Min

    2018-01-01

    Nitrogenous heterocyclic compounds are key pollutants in coking wastewater; however, the functional potential of microbial communities for biodegradation of such contaminants during biological treatment is still elusive. Herein, a high throughput functional gene array (GeoChip 5.0) in combination with Illumina HiSeq2500 sequencing was used to compare and characterize the microbial community functional structure in a long run (500days) bench scale bioreactor treating coking wastewater, with a control system treating synthetic wastewater. Despite the inhibitory toxic pollutants, GeoChip 5.0 detected almost all key functional gene (average 61,940 genes) categories in the coking wastewater sludge. With higher abundance, aromatic ring cleavage dioxygenase genes including multi ring1,2diox; one ring2,3diox; catechol represented significant functional potential for degradation of aromatic pollutants which was further confirmed by Illumina HiSeq2500 analysis results. Response ratio analysis revealed that three nitrogenous compound degrading genes- nbzA (nitro-aromatics), tdnB (aniline), and scnABC (thiocyanate) were unique for coking wastewater treatment, which might be strong cause to increase ammonia level during the aerobic process. Additionally, HiSeq2500 elucidated carbozole and isoquinoline degradation genes in the system. These findings expanded our understanding on functional potential of microbial communities to remove organic nitrogenous pollutants; hence it will be useful in optimization strategies for biological treatment of coking wastewater. Copyright © 2017. Published by Elsevier B.V.

  3. INTERACTION BETWEEN DIETARY MINERAL AND PHYTASE ON BIOLOGICAL PERFORMANCES OF JAPANESE FLOUNDER, Paralichthys olivaceus. PART II. MINERAL DIGESTIBILITY AND VERTEBRAL MINERAL CONTENT

    Directory of Open Access Journals (Sweden)

    Asda Laining

    2015-06-01

    Full Text Available Interactive effects between dietary inorganic phosphorus (IP and phytase (P on mineral digestibility and vertebral mineral content were investigated in a 30 days feeding trial followed by three weeks digestibility trial with Japanese flounder, Paralichthys olivaceus. Eight experimental diets were formulated based on two levels of dietary Ca at 0% and 0.2% combined with either 0% or 0.25% of dietary IP and either with 0 and 2,000 fytase unit (FTU/kg of phytase in diet, respectively. Result indicated that digestibility of total phosphorus significantly increased by three dietary compounds where the highest was observed in fish fed diet contained 0.25% IP and 2,000 FTU phytase/kg and dietary Ca also included in diet. Significant interaction was only detected between dietary IP and P on this parameter. Supplementation of IP and Ca not phytase significantly improved Ca digestibility. Ca digestibility was very poor when dietary IP and Ca were not supplemented in diet even with when phytase supplemented in diet. There was significant interaction between dietary IP and Ca on Ca digestibility. Vertebral total phosphorus, Ca, and Mg content as well as Ca:P ratio were significantly enhanced by dietary IP and phytase. Dietary Ca has significant effect only on vertebral total phosphorus. Interaction between dietary IP and Ca was significantly found on vertebral Ca content and Ca:P ratio. No significant second-order interaction was observed among the three dietary mineral on overall parameters. Based on total phosphorus and Ca digestibility as well vertebral phosphorus content found in this study, dietary IP, Ca, and phytase at rate of 0.25%, 0.2%, and 2,000 FTU phytase/kg diet, respectively are needed to supplement in diet for a better mineral absorption and bone mineralization.

  4. Form and function: Perspectives on structural biology and resources for the future

    International Nuclear Information System (INIS)

    Vaughan, D.

    1990-12-01

    The purpose of this study is largely to explore and expand on the thesis that biological structures and their functions are suited to. Form indeed follows function and if we are to understand the workings of a living system, with all that such an understanding promises, we must first seek to describe the structure of its parts. Descriptions of a few achievements of structural biology lay the groundwork, but the substance of this booklet is a discussion of important questions yet unanswered and opportunities just beyond our grasp. The concluding pages then outline a course of action in which the Department of Energy would exercise its responsibility to develop the major resources needed to extend our reach and to answer some of those unanswered questions. 22 figs

  5. Mediating objects: scientific and public functions of models in nineteenth-century biology.

    Science.gov (United States)

    Ludwig, David

    2013-01-01

    The aim of this article is to examine the scientific and public functions of two- and three-dimensional models in the context of three episodes from nineteenth-century biology. I argue that these models incorporate both data and theory by presenting theoretical assumptions in the light of concrete data or organizing data through theoretical assumptions. Despite their diverse roles in scientific practice, they all can be characterized as mediators between data and theory. Furthermore, I argue that these different mediating functions often reflect their different audiences that included specialized scientists, students, and the general public. In this sense, models in nineteenth-century biology can be understood as mediators between theory, data, and their diverse audiences.

  6. PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance.

    Science.gov (United States)

    van Oers, Johanna M M; Roa, Sergio; Werling, Uwe; Liu, Yiyong; Genschel, Jochen; Hou, Harry; Sellers, Rani S; Modrich, Paul; Scharff, Matthew D; Edelmann, Winfried

    2010-07-27

    The DNA mismatch repair protein PMS2 was recently found to encode a novel endonuclease activity. To determine the biological functions of this activity in mammals, we generated endonuclease-deficient Pms2E702K knock-in mice. Pms2EK/EK mice displayed increased genomic mutation rates and a strong cancer predisposition. In addition, class switch recombination, but not somatic hypermutation, was impaired in Pms2EK/EK B cells, indicating a specific role in Ig diversity. In contrast to Pms2-/- mice, Pms2EK/EK male mice were fertile, indicating that this activity is dispensable in spermatogenesis. Therefore, the PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance and tumor suppression.

  7. Automated quantitative assessment of proteins' biological function in protein knowledge bases.

    Science.gov (United States)

    Mayr, Gabriele; Lepperdinger, Günter; Lackner, Peter

    2008-01-01

    Primary protein sequence data are archived in databases together with information regarding corresponding biological functions. In this respect, UniProt/Swiss-Prot is currently the most comprehensive collection and it is routinely cross-examined when trying to unravel the biological role of hypothetical proteins. Bioscientists frequently extract single entries and further evaluate those on a subjective basis. In lieu of a standardized procedure for scoring the existing knowledge regarding individual proteins, we here report about a computer-assisted method, which we applied to score the present knowledge about any given Swiss-Prot entry. Applying this quantitative score allows the comparison of proteins with respect to their sequence yet highlights the comprehension of functional data. pfs analysis may be also applied for quality control of individual entries or for database management in order to rank entry listings.

  8. Automated Quantitative Assessment of Proteins' Biological Function in Protein Knowledge Bases

    Directory of Open Access Journals (Sweden)

    Gabriele Mayr

    2008-01-01

    Full Text Available Primary protein sequence data are archived in databases together with information regarding corresponding biological functions. In this respect, UniProt/Swiss-Prot is currently the most comprehensive collection and it is routinely cross-examined when trying to unravel the biological role of hypothetical proteins. Bioscientists frequently extract single entries and further evaluate those on a subjective basis. In lieu of a standardized procedure for scoring the existing knowledge regarding individual proteins, we here report about a computer-assisted method, which we applied to score the present knowledge about any given Swiss-Prot entry. Applying this quantitative score allows the comparison of proteins with respect to their sequence yet highlights the comprehension of functional data. pfs analysis may be also applied for quality control of individual entries or for database management in order to rank entry listings.

  9. The functional biology and trophic role of krill (Thysanoessa raschii) in a Greenlandic fjord

    DEFF Research Database (Denmark)

    Agersted, Mette Dalgaard; Nielsen, Torkel Gissel; Munk, Peter

    2011-01-01

    Despite being a key zooplankton group, knowledge on krill biology from the Arctic is inadequate. The present study examine the functional biology and evaluate the trophic role of krill in the GodthAyenbsfjord (64 degrees N, 51 degrees W) SW Greenland, through a combination of fieldwork...... and laboratory experiments. Krill biomass was highest in the middle fjord and inner fjord, whereas no krill was found offshore. The dominating species Thysanoessa raschii revealed a type III functional response when fed with the diatom Thalassiosira weissflogii. At food saturation, T. raschii exhibited a daily...... ration of 1% body C d(-1). Furthermore, T. raschii was capable of exploiting plankton cells from 5 to 400 mu m, covering several trophic levels of the pelagic food web. The calculated grazing impact by T. raschii on the fjord plankton community was negligible. However, the schooling and migratory...

  10. PreproVIP-derived peptides in the human female genital tract: expression and biological function

    DEFF Research Database (Denmark)

    Bredkjoer, H E; Palle, C; Ekblad, E

    1997-01-01

    The aim of the study was to elucidate the localization, distribution, colocalization and biological effect of preproVIP-derived peptides in the human female genital tract. Radioimmunoassays applying antisera against the five functional domains of the VIP precursor in combination with immunohistoc......The aim of the study was to elucidate the localization, distribution, colocalization and biological effect of preproVIP-derived peptides in the human female genital tract. Radioimmunoassays applying antisera against the five functional domains of the VIP precursor in combination...... with immunohistochemistry were used. The effect of preproVIP 22-79, preproVIP 111-122 and preproVIP 156-170 on genital smooth muscle activity in the Fallopian tube was investigated in vitro and compared to that of VIP. All the preproVIP-derived peptides were expressed throughout the genital tract in neuronal elements...

  11. Form and function: Perspectives on structural biology and resources for the future

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, D. (ed.)

    1990-12-01

    The purpose of this study is largely to explore and expand on the thesis that biological structures and their functions are suited to. Form indeed follows function and if we are to understand the workings of a living system, with all that such an understanding promises, we must first seek to describe the structure of its parts. Descriptions of a few achievements of structural biology lay the groundwork, but the substance of this booklet is a discussion of important questions yet unanswered and opportunities just beyond our grasp. The concluding pages then outline a course of action in which the Department of Energy would exercise its responsibility to develop the major resources needed to extend our reach and to answer some of those unanswered questions. 22 figs.

  12. Tongue and Taste Organ Biology and Function: Homeostasis Maintained by Hedgehog Signaling.

    Science.gov (United States)

    Mistretta, Charlotte M; Kumari, Archana

    2017-02-10

    The tongue is an elaborate complex of heterogeneous tissues with taste organs of diverse embryonic origins. The lingual taste organs are papillae, composed of an epithelium that includes specialized taste buds, the basal lamina, and a lamina propria core with matrix molecules, fibroblasts, nerves, and vessels. Because taste organs are dynamic in cell biology and sensory function, homeostasis requires tight regulation in specific compartments or niches. Recently, the Hedgehog (Hh) pathway has emerged as an essential regulator that maintains lingual taste papillae, taste bud and progenitor cell proliferation and differentiation, and neurophysiological function. Activating or suppressing Hh signaling, with genetic models or pharmacological agents used in cancer treatments, disrupts taste papilla and taste bud integrity and can eliminate responses from taste nerves to chemical stimuli but not to touch or temperature. Understanding Hh regulation of taste organ homeostasis contributes knowledge about the basic biology underlying taste disruptions in patients treated with Hh pathway inhibitors.

  13. Effects of Physical Exercise on Cognitive Functioning and Wellbeing: Biological and Psychological Benefits

    Directory of Open Access Journals (Sweden)

    Laura Mandolesi

    2018-04-01

    Full Text Available Much evidence shows that physical exercise (PE is a strong gene modulator that induces structural and functional changes in the brain, determining enormous benefit on both cognitive functioning and wellbeing. PE is also a protective factor for neurodegeneration. However, it is unclear if such protection is granted through modifications to the biological mechanisms underlying neurodegeneration or through better compensation against attacks. This concise review addresses the biological and psychological positive effects of PE describing the results obtained on brain plasticity and epigenetic mechanisms in animal and human studies, in order to clarify how to maximize the positive effects of PE while avoiding negative consequences, as in the case of exercise addiction.

  14. The effects of dietary protein intake on appendicular lean mass and muscle function in elderly men

    DEFF Research Database (Denmark)

    Mitchell, Cameron J; Milan, Amber M; Mitchell, Sarah M

    2017-01-01

    Background: The Recommended Daily Allowance (RDA) for protein intake in the adult population is widely promoted as 0.8 g · kg-1 · d-1 Aging may increase protein requirements, particularly to maintain muscle mass.Objective: We investigated whether controlled protein consumption at the current RDA...... or twice the RDA (2RDA) affects skeletal muscle mass and physical function in elderly men.Design: In this parallel-group randomized trial, 29 men aged >70 y [mean ± SD body mass index (in kg/m2): 28.3 ± 4.2] were provided with a complete diet containing either 0.8 (RDA) or 1.6 (2RDA) g protein · kg-1 · d-1...... energy balance (mean ± SD RDA: 209 ± 213 kcal/d; 2RDA 145 ± 214 kcal/d; P= 0.427 for difference between the groups). In comparison with RDA, whole-body lean mass increased in 2RDA (P = 0.001; 1.49 ± 1.30 kg, P

  15. Paul Langerhans: a prilgrim "traveling" from functional histology to marine biology.

    Science.gov (United States)

    Raica, Marius; Cimpean, Anca Maria

    2017-06-01

    The nineteenth century was the time of a real revolution in science and medicine. A lot of seminal discoveries in medicine and biology were done in this time, and many of them were coincident with the introduction of the compound microscope by Hermann van Deijl and the standard histological technique by Paul Ehrlich. The main tissue types and individual cells were characterized and originally classified more than hundred years ago, although less attention was paid to their basic functions. This was mainly due to the modality of tissue specimen processing that allowed particularly detailed descriptive studies. Even so, we can notice some attempts to correlate the structure with the function. The German scientist Paul Langerhans, well-known for the discovery of Langerhans islets of the pancreas and Langerhans cells from the epidermis, tried to change the conventional fate of morphological studies introducing in his works functional hypothesis based on traditional microscopic observations even from the beginning of his scientific career. Paul Langerhans was a complex personality of the second half of the nineteenth century, not only in medicine, but also in other fields of biology. In the present review, presented is the life and research activity of Paul Langerhans, not only because of the importance of his discoveries, but also for perspectives that were opened by these findings in unexpected fields of medicine and biology.

  16. Determining the impacts of trawling on benthic function in European waters : a biological traits approach

    DEFF Research Database (Denmark)

    Bolam, Stefan; Kenny, Andrew; Garcia, Clement

    characteristics, have allowed us to better understand the interactions between the benthic fauna and their environment at a functional level. We present the initial findings of work conducted under the auspices of the EU-funded project ‘BENTHIS’ which aims to improve our understanding of the impacts of trawling...... on benthic ecosystem functioning over much larger spatial scales than previously undertaken. Biological traits information from 887 stations across European waters (Norwegian, UK, Belgian, Dutch, Danish waters, the Mediterranean and Black Sea) were analysed to: i) quantify the relationships between infaunal...

  17. [IMPACT OF DIETARY FATTY ACIDS ON LIPID PROFILE, INSULIN SENSITIVITY AND FUNCTIONALITY OF PANCREATIC β CELLS IN TYPE 2 DIABETIC SUBJECTS].

    Science.gov (United States)

    Sambra Vásquez, Verónica; Rojas Moncada, Pamela; Basfi-Fer, Karen; Valencia, Alejandra; Codoceo, Juana; Inostroza, Jorge; Carrasco, Fernando; Ruz Ortiz, Manuel

    2015-09-01

    the quality of fats could influence the metabolic control of patients with Type 2 Diabetes Mellitus (DM2). to determine the relationship between intake and quality of dietary fatty acids to lipid profile, metabolic control, functionality of pancreatic cells and insulin sensivity in subjects with DM2. we studied 54 subjects with DM2, anthropometric measurements were performed, body composition and dietary lipid intake, saturated fatty acids (SFA), trans, monounsaturated, polyunsaturated, omega 3, omega 6 and dietary cholesterol. Laboratory parameters related to their metabolic control were determined (fasting blood glucose, glycated hemoglobin, and lipid profile). The insulin secretion and insulin sensitivity was determined with the insulin-modified intravenous glucose tolerance test according to the Bergman's minimal model. 28 men and 26 women were studied (BMI of 29.5 ± 3.7 kg/m2; age 55.6 ± 6.8 y.), 48% had LDL-C 40 mg/dL and 7.4% of women c-HDL > 50 mg/dL. 32% consumed > 10% of AGS and > 300 mg/day of dietary cholesterol. The SFA intake and percentage of calories from fat (G%) were significantly associated with insulin resistance and fasting plasma glucose concentration. The G% predicted 84% variability on c-VLDL. in patients with DM2 a greater intake of fat and saturated fatty acids it associated with greater fasting glycemia and insulin resistance. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  18. A Bayesian spatial model for neuroimaging data based on biologically informed basis functions.

    Science.gov (United States)

    Huertas, Ismael; Oldehinkel, Marianne; van Oort, Erik S B; Garcia-Solis, David; Mir, Pablo; Beckmann, Christian F; Marquand, Andre F

    2017-11-01

    The dominant approach to neuroimaging data analysis employs the voxel as the unit of computation. While convenient, voxels lack biological meaning and their size is arbitrarily determined by the resolution of the image. Here, we propose a multivariate spatial model in which neuroimaging data are characterised as a linearly weighted combination of multiscale basis functions which map onto underlying brain nuclei or networks or nuclei. In this model, the elementary building blocks are derived to reflect the functional anatomy of the brain during the resting state. This model is estimated using a Bayesian framework which accurately quantifies uncertainty and automatically finds the most accurate and parsimonious combination of basis functions describing the data. We demonstrate the utility of this framework by predicting quantitative SPECT images of striatal dopamine function and we compare a variety of basis sets including generic isotropic functions, anatomical representations of the striatum derived from structural MRI, and two different soft functional parcellations of the striatum derived from resting-state fMRI (rfMRI). We found that a combination of ∼50 multiscale functional basis functions accurately represented the striatal dopamine activity, and that functional basis functions derived from an advanced parcellation technique known as Instantaneous Connectivity Parcellation (ICP) provided the most parsimonious models of dopamine function. Importantly, functional basis functions derived from resting fMRI were more accurate than both structural and generic basis sets in representing dopamine function in the striatum for a fixed model order. We demonstrate the translational validity of our framework by constructing classification models for discriminating parkinsonian disorders and their subtypes. Here, we show that ICP approach is the only basis set that performs well across all comparisons and performs better overall than the classical voxel-based approach

  19. Clinical history and biologic age predicted falls better than objective functional tests.

    Science.gov (United States)

    Gerdhem, Paul; Ringsberg, Karin A M; Akesson, Kristina; Obrant, Karl J

    2005-03-01

    Fall risk assessment is important because the consequences, such as a fracture, may be devastating. The objective of this study was to find the test or tests that best predicted falls in a population-based sample of elderly women. The fall-predictive ability of a questionnaire, a subjective estimate of biologic age and objective functional tests (gait, balance [Romberg and sway test], thigh muscle strength, and visual acuity) were compared in 984 randomly selected women, all 75 years of age. A recalled fall was the most important predictor for future falls. Only recalled falls and intake of psycho-active drugs independently predicted future falls. Women with at least five of the most important fall predictors (previous falls, conditions affecting the balance, tendency to fall, intake of psychoactive medication, inability to stand on one leg, high biologic age) had an odds ratio of 11.27 (95% confidence interval 4.61-27.60) for a fall (sensitivity 70%, specificity 79%). The more time-consuming objective functional tests were of limited importance for fall prediction. A simple clinical history, the inability to stand on one leg, and a subjective estimate of biologic age were more important as part of the fall risk assessment.

  20. Effects of dietary supplementation of lipid-coated zinc oxide on intestinal mucosal morphology and expression of the genes associated with growth and immune function in weanling pigs

    Directory of Open Access Journals (Sweden)

    Young Min Song

    2018-03-01

    Full Text Available Objective The present study was conducted to investigate the effects of a lipid-coated zinc oxide (ZnO supplement Shield Zn (SZ at the sub-pharmacological concentration on intestinal morphology and gene expression in weanling pigs, with an aim to gain insights into the mechanism of actions for SZ. Methods Forty 22-day-old weanling pigs were fed a nursery diet supplemented with 100 or 2,500 mg Zn/kg with uncoated ZnO (negative control [NC] or positive control [PC], respectively, 100, 200, or 400 mg Zn/kg with SZ for 14 days and their intestinal tissues were taken for histological and molecular biological examinations. The villus height (VH and crypt depth (CD of the intestinal mucosa were measured microscopically following preparation of the tissue specimen; expression of the genes associated with growth and immune function was determined using the real-time quantitative polymerase chain reaction. Results There was no difference in daily gain, gain:feed, and diarrhea score between the SZ group and either of NC and PC. The VH and VH:CD ratio were less for the SZ group vs NC in the jejunum and duodenum, respectively (p<0.05. The jejunal mucosal mRNA levels of insulin-like growth factor (IGF-I and interleukin (IL-10 regressed and tended to regress (p = 0.053 on the SZ concentration with a positive coefficient, respectively, whereas the IL-6 mRNA level regressed on the SZ concentration with a negative coefficient. The mRNA levels of IGF-I, zonula occludens protein-1, tumor necrosis factor-α, IL-6, and IL-10 did not differ between the SZ group and either of NC and PC; the occludin and transforming growth factor-β1 mRNA levels were lower for the SZ group than for PC. Conclusion The present results are interpreted to suggest that dietary ZnO provided by SZ may play a role in intestinal mucosal growth and immune function by modulating the expression of IGF-I, IL-6, and IL-10 genes.

  1. Functional profiles reveal unique ecological roles of various biological soil crust organisms

    Science.gov (United States)

    Bowker, M.A.; Mau, R.L.; Maestre, F.T.; Escolar, C.; Castillo-Monroy, A. P.

    2011-01-01

    1. At the heart of the body of research on biodiversity effects on ecosystem function is the debate over whether different species tend to be functionally singular or redundant. When we consider ecosystem multi-function, the provision of multiple ecosystem functions simultaneously, we may find that seemingly redundant species may in fact play unique roles in ecosystems. 2. Over the last few decades, the significance of biological soil crusts (BSCs) as ecological boundaries and ecosystem engineers, and their multi-functional nature, has become increasingly well documented. We compiled 'functional profiles' of the organisms in this understudied community, to determine whether functional singularity emerges when multiple ecosystem functions are considered. 3. In two data sets, one representing multiple sites around the semi-arid regions of Spain (regional scale), and another from a single site in central Spain (local scale), we examined correlations between the abundance or frequency of BSC species in a community, and multiple surrogates of ecosystem functioning. There was a wide array of apparent effects of species on specific functions. 4. Notably, in gypsiferous soils and at regional scale, we found that indicators of carbon (C) and phosphorus cycling were apparently suppressed and promoted by the lichens Diploschistes diacapsis and Squamarina lentigera, respectively. The moss Pleurochaete squarrosa appears to promote C cycling in calcareous soils at this spatial scale. At the local scale in gypsiferous soils, D. diacapsis positively correlated with carbon cycling, but negatively with nitrogen cycling, whereas numerous lichens exhibited the opposite profile. 5. We found a high degree of functional singularity, i.e. that species were highly individualistic in their effects on multiple functions. Many functional attributes were not easily predictable from existing functional grouping systems based primarily on morphology. 6. Our results suggest that maintaining

  2. Functional soil microbial diversity across Europe estimated by EEA, MicroResp and BIOLOG

    DEFF Research Database (Denmark)

    Winding, Anne; Rutgers, Michiel; Creamer, Rachel

    consisting of 81 soil samples covering five Biogeograhical Zones and three land-uses in order to test the sensitivity, ease and cost of performance and biological significance of the data output. The techniques vary in how close they are to in situ functions; dependency on growth during incubation......Soil microorganisms are abundant and essential for the bio-geochemical processes of soil, soil quality and soil ecosystem services. All this is dependent on the actual functions the microbial communities are performing in the soil. Measuring soil respiration has for many years been the basis...... of estimating soil microbial activity. However, today several techniques are in use for determining microbial functional diversity and assessing soil biodiversity: Methods based on CO2 development by the microbes such as substrate induced respiration (SIR) on specific substrates have lead to the development...

  3. Chronic aerobic exercise associated to dietary modification improve endothelial function and eNOS expression in high fat fed hamsters.

    Directory of Open Access Journals (Sweden)

    Beatriz C S Boa

    Full Text Available Obesity is epidemic in the western world and central adipose tissue deposition points to increased cardiovascular morbidity and mortality, independently of any association between obesity and other cardiovascular risk factors. Physical exercise has been used as non-pharmacological treatment to significantly reverse/attenuate obesity comorbidities. In this study we have investigated effects of exercise and/or dietary modification on microcirculatory function, body composition, serum glucose, iNOS and eNOS expression on 120 male hamsters treated for 12 weeks with high fat chow (HF, n = 30 starting on the 21st day of birth. From week 12 to 20, animals were randomly separated in HF (no treatment change, return to standard chow (HFSC, n = 30, high fat chow associated to an aerobic exercise training program (AET (HFEX, n = 30 and return to standard chow+AET (HFSCEX, n = 30. Microvascular reactivity in response to acetylcholine and sodium nitroprusside and macromolecular permeability increase induced by 30 minutes ischemia followed by reperfusion were assessed on the cheek pouch preparation. Total body fat and aorta eNOS and iNOS expression by immunoblotting assay were evaluated on the experimental day. Compared to HFSC and HFSCEX groups, HF and HFEX ones presented increased visceral fat [(mean±SEM (HF4.9±1.5 g and (HFEX4.7±0.9 g vs. (HFSC*3.0±0.7 g and (HFSCEX*1.9±0.4 g/100 g BW]; impaired endothelial-dependent vasodilatation [Ach 10(-8 M (HF87.9±2.7%; (HFSC*116.7±5.9%; (HFEX*109.1±4.6%; (HFSCEX*105±2.8%; Ach10(-6 M (HF95.3±3.1%; (HFSC*126±6.2%; (HFEX*122.5±2.8%; (HFSCEX*118.1±4.3% and Ach10(-4 M (HF109.5±4.8%; (HFSC*149.6±6.6%; (HFEX*143.5±5.4% and (HFSCEX*139.4±5.2%], macromolecular permeability increase after ischemia/reperfusion [(HF40.5±4.2; (HFSC*19.0±1.6; (HFEX*18.6±2.1 and (HFSCEX* 21.5±3.7 leaks/cm2, decreased eNOS expression, increased leptin and glycaemic levels. Endothelial-independent microvascular

  4. A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems

    Science.gov (United States)

    Shekofteh, Yasser; Jafari, Sajad; Sprott, Julien Clinton; Hashemi Golpayegani, S. Mohammad Reza; Almasganj, Farshad

    2015-02-01

    As we know, many biological systems such as neurons or the heart can exhibit chaotic behavior. Conventional methods for parameter estimation in models of these systems have some limitations caused by sensitivity to initial conditions. In this paper, a novel cost function is proposed to overcome those limitations by building a statistical model on the distribution of the real system attractor in state space. This cost function is defined by the use of a likelihood score in a Gaussian mixture model (GMM) which is fitted to the observed attractor generated by the real system. Using that learned GMM, a similarity score can be defined by the computed likelihood score of the model time series. We have applied the proposed method to the parameter estimation of two important biological systems, a neuron and a cardiac pacemaker, which show chaotic behavior. Some simulated experiments are given to verify the usefulness of the proposed approach in clean and noisy conditions. The results show the adequacy of the proposed cost function.

  5. Dietary effect on mixed function P450 1A2 activity assayed by estimation of caffeine metabolism in man.

    Science.gov (United States)

    Kall, M A; Clausen, J

    1995-10-01

    Two studies were performed in order to evaluate cytochrome P450 1A2 mediated caffeine metabolism during different nutritional conditions. 1. In the first study, 23 healthy male non-smokers, mean age 25, changed from a customary mixed diet to a standard diet in 6 days. The 6 day's standard diet was based on bread, potatoes, rice and boiled meat. Thus, broccoli, cabbage and other cruciferous vegetables, spinach, leeks, onion, parsley, grapefruit, toasted bread, fried and charcoal grilled food, smoked fish and meat, ham and sausages were avoided. 2. In the second study, 33 healthy non-smoking subjects, 24 men and nine women mean age 25 years, volunteered. The study was designed to compare a customary home dietary period with the 6 day period of low dietary P450 induction and with a 5 day supplementary dietary period, i.e. ingestion of known dietary inducers. None of the women were using oral contraceptives or were pregnant during the experimental period. In the period of diet supplementation, the volunteers received charcoal grilled hamburger as a supplement to the standard low induction diet for lunch for 5 days. The hamburgers were made with 150 g beef (18-20% fat) and were grilled on charcoal for 10 min on each side until they were 'well done'. In the present study P450 1A2 activity was estimated from the caffeine metabolic ratio, the so-called CYP 1A2 index:(AFMU + 1-MX + 1-MU/ 17 -DMU) of the caffeine metabolites formed after oral ingestion of 200 mg caffeine. Urine was collected 4-8 h after caffeine ingestion in study 1 and 5 h after caffeine ingestion in study 2. In study 1 the CYP 1A2 index decreased from 4.28 +/- 0.98 in the customary home dietary period to 3.87 +/- 0.69 in the standard dietary period corresponding to 10.6% (P hamburgers as a dietary supplement, the CYP 1A2 index increased to almost the same level as in the customary home dietary period. The index increased to 4.45 +/- 1.57 in the whole group of volunteers, corresponding to a 14.1% (P < 0

  6. Endothelial mechanotransduction proteins and vascular function are altered by dietary sucrose supplementation in healthy young male subjects.

    Science.gov (United States)

    Gliemann, Lasse; Rytter, Nicolai; Lindskrog, Mads; Slingsby, Martina H Lundberg; Åkerström, Thorbjörn; Sylow, Lykke; Richter, Erik A; Hellsten, Ylva

    2017-08-15

    response to passive movement (by 17 ± 2%) and to 12 W of active exercise (by 9 ± 1%), indicating impaired vascular function. A reduced flow response to passive and active exercise was paralleled by a significant up-regulation of platelet endothelial cell adhesion molecule (PECAM-1), endothelial nitric oxide synthase, NADPH oxidase and the Rho family GTPase Rac1 protein expression in the muscle tissue, as well as an increased basal phosphorylation status of vascular endothelial growth factor receptor 2 and a reduced phosphorylation status of PECAM-1. The phosphorylation status was not acutely altered with passive leg movement. These findings indicate that a regular intake of high levels of sucrose can impair vascular mechanotransduction and increase the oxidative stress potential, and suggest that dietary excessive sugar intake may contribute to the development of vascular disease. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  7. Integration of multiscale dendritic spine structure and function data into systems biology models

    Directory of Open Access Journals (Sweden)

    James J Mancuso

    2014-11-01

    Full Text Available Comprising 1011 neurons with 1014 synaptic connections the human brain is the ultimate systems biology puzzle. An increasing body of evidence highlights the observation that changes in brain function, both normal and pathological, consistently correlate with dynamic changes in neuronal anatomy. Anatomical changes occur on a full range of scales from the trafficking of individual proteins, to alterations in synaptic morphology both individually and on a systems level, to reductions in long distance connectivity and brain volume. The major sites of contact for synapsing neurons are dendritic spines, which provide an excellent metric for the number and strength of signaling connections between elements of functional neuronal circuits. A comprehensive model of anatomical changes and their functional consequences would be a holy grail for the field of systems neuroscience but its realization appears far on the horizon. Various imaging technologies have advanced to allow for multi-scale visualization of brain plasticity and pathology, but computational analysis of the massive big data sets involved forms the bottleneck toward the creation of multiscale models of brain structure and function. While a full accounting of techniques and progress toward a comprehensive model of brain anatomy and function is beyond the scope of this or any other single paper, this review serves to highlight the opportunities for analysis of neuronal spine anatomy and function provided by new imaging technologies and the high-throughput application of older technologies while surveying the strengths and weaknesses of currently available computational analytical tools and room for future improvement.

  8. Synthesis, characterization, and in vitro biological evaluation of highly stable diversely functionalized superparamagnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Bhattacharya, Dipsikha; Sahu, Sumanta K.; Banerjee, Indranil; Das, Manasmita; Mishra, Debashish; Maiti, Tapas K.; Pramanik, Panchanan

    2011-01-01

    In this article, we report the design and synthesis of a series of well-dispersed superparamagnetic iron oxide nanoparticles (SPIONs) using chitosan as a surface modifying agent to develop a potential T 2 contrast probe for magnetic resonance imaging (MRI). The amine, carboxyl, hydroxyl, and thiol functionalities were introduced on chitosan-coated magnetic probe via simple reactions with small reactive organic molecules to afford a series of biofunctionalized nanoparticles. Physico-chemical characterizations of these functionalized nanoparticles were performed by TEM, XRD, DLS, FTIR, and VSM. The colloidal stability of these functionalized iron oxide nanoparticles was investigated in presence of phosphate buffer saline, high salt concentrations and different cell media for 1 week. MRI analysis of human cervical carcinoma (HeLa) cell lines treated with nanoparticles elucidated that the amine-functionalized nanoparticles exhibited higher amount of signal darkening and lower T 2 relaxation in comparison to the others. The cellular internalization efficacy of these functionalized SPIONs was also investigated with HeLa cancer cell line by magnetically activated cell sorting (MACS) and fluorescence microscopy and results established selectively higher internalization efficacy of amine-functionalized nanoparticles to cancer cells. These positive attributes demonstrated that these nanoconjugates can be used as a promising platform for further in vitro and in vivo biological evaluations.

  9. Synthesis and Characterization of Rhodamine B-ethylenediamine-hyaluronan Acid as Potential Biological Functional Materials

    Science.gov (United States)

    Li, Y. L.; Wang, W. X.; Wang, Y.; Zhang, W. B.; Gong, H. M.; Liu, M. X.

    2018-05-01

    The purpose of this study is to synthesize and characterize fluorescent polymers, rhodamine B-ethylenediamine-hyaluronan acid (RhB-EA-HA). RhB-EA-HA was successfully synthesized by ester ammonolysis reaction and amidation reaction. Moreover, the structural properties of RhB-EA-HA were characterized by 1H-NMR spectra, UV-vis spectrometry and Fourier transform infrared spectroscopy (FT-IR). RhB-EA-HA can be grafted on the surface of silica nanomaterials, which may be potential biological functional materials for drug delivery system.

  10. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes.

    Directory of Open Access Journals (Sweden)

    Christopher Y Park

    Full Text Available A key challenge in genetics is identifying the functional roles of genes in pathways. Numerous functional genomics techniques (e.g. machine learning that predict protein function have been developed to address this question. These methods generally build from existing annotations of genes to pathways and thus are often unable to identify additional genes participating in processes that are not already well studied. Many of these processes are well studied in some organism, but not necessarily in an investigator's organism of interest. Sequence-based search methods (e.g. BLAST have been used to transfer such annotation information between organisms. We demonstrate that functional genomics can complement traditional sequence similarity to improve the transfer of gene annotations between organisms. Our method transfers annotations only when functionally appropriate as determined by genomic data and can be used with any prediction algorithm to combine transferred gene function knowledge with organism-specific high-throughput data to enable accurate function prediction. We show that diverse state-of-art machine learning algorithms leveraging functional knowledge transfer (FKT dramatically improve their accuracy in predicting gene-pathway membership, particularly for processes with little experimental knowledge in an organism. We also show that our method compares favorably to annotation transfer by sequence similarity. Next, we deploy FKT with state-of-the-art SVM classifier to predict novel genes to 11,000 biological processes across six diverse organisms and expand the coverage of accurate function predictions to processes that are often ignored because of a dearth of annotated genes in an organism. Finally, we perform in vivo experimental investigation in Danio rerio and confirm the regulatory role of our top predicted novel gene, wnt5b, in leftward cell migration during heart development. FKT is immediately applicable to many bioinformatics

  11. Dietary intake of fibers: differential effects in men and women on perceived general health and immune functioning

    NARCIS (Netherlands)

    Fernstrand, Amanda M; Bury, Didi; Garssen, Johan; Verster, Joris C.

    2017-01-01

    Background: It has been reported previously that dietary fiber intake provides health benefits. Nevertheless, only a limited number of human studies have investigated whether gender differences exist in the relationship between fiber intake and perceived health and immune status. Objective: To

  12. Effect of dietary administration of probiotics on growth and intestine functionality of juvenile Senegalese sole (Solea senegalensis, Kaup 1858)

    NARCIS (Netherlands)

    Saenz de Rodriganez, M.A.; Diaz-Rosales, P.; Chabrillon, M.; Smidt, H.; Arijo, S.; Leon-Rubio, J.M.; Alarcon, F.J.; Balebona, M.C.; Morinigo, M.A.; Cara, J.B.; Moyano, F.J.

    2009-01-01

    The effects of the dietary administration of two bacterial probiotic strains (Ppd11 and Pdp13) from the Alteromonadaceae family for 60 days, were assessed by measuring growth and feed efficiency, activities of leucine aminopeptidase and alkaline phosphatase and structural changes in the intestine of

  13. Testing the relative associations of different components of dietary restraint on psychological functioning in anorexia nervosa and bulimia nervosa.

    Science.gov (United States)

    Linardon, Jake; Phillipou, Andrea; Newton, Richard; Fuller-Tyszkiewicz, Matthew; Jenkins, Zoe; Cistullo, Leonardo L; Castle, David

    2018-05-25

    Although empirical evidence identifies dietary restraint as a transdiagnostic eating disorder maintaining mechanism, the distinctiveness and significance of the different behavioural and cognitive components of dietary restraint are poorly understood. The present study examined the relative associations of the purportedly distinct dietary restraint components (intention to restrict, delayed eating, food avoidance, and diet rules) with measures of psychological distress (depression, anxiety, and stress), disability, and core eating disorder symptoms (overvaluation and binge eating) in patients with anorexia nervosa (AN) and bulimia nervosa (BN). Data were analysed from a treatment-seeking sample of individuals with AN (n = 124) and BN (n = 54). Intention to restrict, food avoidance, and diet rules were strongly related to each other (all r's > 0.78), but only weakly-moderately related to delayed eating behaviours (all r's psychological distress. Patient diagnosis did not moderate these associations. Overall, findings indicate that delayed eating behaviours may be a distinct component from other indices of dietary restraint (e.g., intention to restrict, food avoidance, diet rules). This study highlights the potential importance of ensuring that delayed eating behaviours are screened, assessed, and targeted early in treatment for patients with AN and BN. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Dietary nitrate does not reduce oxygen cost of exercise or improve muscle mitochondrial function in patients with mitochondrial myopathy

    NARCIS (Netherlands)

    Nabben, M.; Schmitz, J.P.J.; Ciapaite, J.; le Clercq, C.M.P.; van Riel, N.A.; Haak, H.R.; Nicolay, K.; de Coo, I.F.M.; Smeets, H.; Praet, S.F.; van Loon, L.J.; Prompers, J.J.

    2017-01-01

    Muscle weakness and exercise intol erance negatively affect the quality of life of patients with mitochondrial myopathy. Short-term dietary nitrate supplementation has been shown to improve exercise performance and reduce oxygen cost of exercise in healthy humans and trained athletes. We

  15. Metabolomics: Definitions and Significance in Systems Biology.

    Science.gov (United States)

    Klassen, Aline; Faccio, Andréa Tedesco; Canuto, Gisele André Baptista; da Cruz, Pedro Luis Rocha; Ribeiro, Henrique Caracho; Tavares, Marina Franco Maggi; Sussulini, Alessandra

    2017-01-01

    Nowadays, there is a growing interest in deeply understanding biological mechanisms not only at the molecular level (biological components) but also the effects of an ongoing biological process in the organism as a whole (biological functionality), as established by the concept of systems biology. Within this context, metabolomics is one of the most powerful bioanalytical strategies that allow obtaining a picture of the metabolites of an organism in the course of a biological process, being considered as a phenotyping tool. Briefly, metabolomics approach consists in identifying and determining the set of metabolites (or specific metabolites) in biological samples (tissues, cells, fluids, or organisms) under normal conditions in comparison with altered states promoted by disease, drug treatment, dietary intervention, or environmental modulation. The aim of this chapter is to review the fundamentals and definitions used in the metabolomics field, as well as to emphasize its importance in systems biology and clinical studies.

  16. Carcinogenesis: alterations in reciprocal interactions of normal functional structure of biologic systems.

    Science.gov (United States)

    Davydyan, Garri

    2015-12-01

    The evolution of biologic systems (BS) includes functional mechanisms that in some conditions may lead to the development of cancer. Using mathematical group theory and matrix analysis, previously, it was shown that normally functioning BS are steady functional structures regulated by three basis regulatory components: reciprocal links (RL), negative feedback (NFB) and positive feedback (PFB). Together, they form an integrative unit maintaining system's autonomy and functional stability. It is proposed that phylogenetic development of different species is implemented by the splitting of "rudimentary" characters into two relatively independent functional parts that become encoded in chromosomes. The functional correlate of splitting mechanisms is RL. Inversion of phylogenetic mechanisms during ontogenetic development leads cell differentiation until cells reach mature states. Deterioration of reciprocal structure in the genome during ontogenesis gives rise of pathological conditions characterized by unsteadiness of the system. Uncontrollable cell proliferation and invasive cell growth are the leading features of the functional outcomes of malfunctioning systems. The regulatory element responsible for these changes is RL. In matrix language, pathological regulation is represented by matrices having positive values of diagonal elements ( TrA  > 0) and also positive values of matrix determinant ( detA  > 0). Regulatory structures of that kind can be obtained if the negative entry of the matrix corresponding to RL is replaced with the positive one. To describe not only normal but also pathological states of BS, a unit matrix should be added to the basis matrices representing RL, NFB and PFB. A mathematical structure corresponding to the set of these four basis functional patterns (matrices) is a split quaternion (coquaternion). The structure and specific role of basis elements comprising four-dimensional linear space of split quaternions help to understand what

  17. Importance of N-Glycosylation on CD147 for Its Biological Functions

    Science.gov (United States)

    Bai, Yang; Huang, Wan; Ma, Li-Tian; Jiang, Jian-Li; Chen, Zhi-Nan

    2014-01-01

    Glycosylation of glycoproteins is one of many molecular changes that accompany malignant transformation. Post-translational modifications of proteins are closely associated with the adhesion, invasion, and metastasis of tumor cells. CD147, a tumor-associated antigen that is highly expressed on the cell surface of various tumors, is a potential target for cancer diagnosis and therapy. A significant biochemical property of CD147 is its high level of glycosylation. Studies on the structure and function of CD147 glycosylation provide valuable clues to the development of targeted therapies for cancer. Here, we review current understanding of the glycosylation characteristics of CD147 and the glycosyltransferases involved in the biosynthesis of CD147 N-glycans. Finally, we discuss proteins regulating CD147 glycosylation and the biological functions of CD147 glycosylation. PMID:24739808

  18. Importance of N-Glycosylation on CD147 for Its Biological Functions

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2014-04-01

    Full Text Available Glycosylation of glycoproteins is one of many molecular changes that accompany malignant transformation. Post-translational modifications of proteins are closely associated with the adhesion, invasion, and metastasis of tumor cells. CD147, a tumor-associated antigen that is highly expressed on the cell surface of various tumors, is a potential target for cancer diagnosis and therapy. A significant biochemical property of CD147 is its high level of glycosylation. Studies on the structure and function of CD147 glycosylation provide valuable clues to the development of targeted therapies for cancer. Here, we review current understanding of the glycosylation characteristics of CD147 and the glycosyltransferases involved in the biosynthesis of CD147 N-glycans. Finally, we discuss proteins regulating CD147 glycosylation and the biological functions of CD147 glycosylation.

  19. The RNAi Universe in Fungi: A Varied Landscape of Small RNAs and Biological Functions.

    Science.gov (United States)

    Torres-Martínez, Santiago; Ruiz-Vázquez, Rosa M

    2017-09-08

    RNA interference (RNAi) is a conserved eukaryotic mechanism that uses small RNA molecules to suppress gene expression through sequence-specific messenger RNA degradation, translational repression, or transcriptional inhibition. In filamentous fungi, the protective function of RNAi in the maintenance of genome integrity is well known. However, knowledge of the regulatory role of RNAi in fungi has had to wait until the recent identification of different endogenous small RNA classes, which are generated by distinct RNAi pathways. In addition, RNAi research on new fungal models has uncovered the role of small RNAs and RNAi pathways in the regulation of diverse biological functions. In this review, we give an up-to-date overview of the different classes of small RNAs and RNAi pathways in fungi and their roles in the defense of genome integrity and regulation of fungal physiology and development, as well as in the interaction of fungi with biotic and abiotic environments.

  20. Structural and Conformational Chemistry from Electrochemical Molecular Machines. Replicating Biological Functions. A Review.

    Science.gov (United States)

    Otero, Toribio F

    2017-12-14

    Each constitutive chain of a conducting polymer electrode acts as a reversible multi-step electrochemical molecular motor: reversible reactions drive reversible conformational movements of the chain. The reaction-driven cooperative actuation of those molecular machines generates, or destroys, inside the film the free volume required to lodge/expel balancing counterions and solvent: reactions drive reversible film volume variations, which basic structural components are here identified and quantified from electrochemical responses. The content of the reactive dense gel (chemical molecular machines, ions and water) mimics that of the intracellular matrix in living functional cells. Reaction-driven properties (composition-dependent properties) and devices replicate biological functions and organs. An emerging technological world of soft, wet, reaction-driven, multifunctional and biomimetic devices and the concomitant zoomorphic or anthropomorphic robots is presented. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Microstructure, mechanical properties, and biological response to functionally graded HA coatings

    International Nuclear Information System (INIS)

    Rabiei, Afsaneh; Blalock, Travis; Thomas, Brent; Cuomo, Jerry; Yang, Y.; Ong, Joo

    2007-01-01

    Hydroxyapatite (HA) [Ca 10 (PO 4 ) 6 (OH) 2 ] is the primary mineral content, representing 43% by weight, of bone. Applying a thin layer of HA, to the surface of a metal implant, can promote osseointegration and increase the mechanical stability of the implant. In this study, a biocompatible coating comprising an HA film with functionally graded crystallinity is being deposited on a heated substrate in an Ion Beam Assisted Deposition (IBAD) system. The microstructure of the film was studied using Transmission Electron Microscopy techniques. Finally, initial cell adhesion and cell differentiation on the coating was evaluated using ATCC CRL 1486 human embryonic palatal mesenchymal cell, an osteoblast precursor cell line. The results have shown superior mechanical properties and biological response to the functionally graded HA film

  2. Enzymes for ecdysteroid biosynthesis: their biological functions in insects and beyond.

    Science.gov (United States)

    Niwa, Ryusuke; Niwa, Yuko S

    2014-01-01

    Steroid hormones are responsible for the coordinated regulation of many aspects of biological processes in multicellular organisms. Since the last century, many studies have identified and characterized steroidogenic enzymes in vertebrates, including mammals. However, much less is known about invertebrate steroidogenic enzymes. In the last 15 years, a number of steroidogenic enzymes and their functions have been characterized in ecdysozoan animals, especially in the fruit fly Drosophila melanogaster. In this review, we summarize the latest knowledge of enzymes crucial for synthesizing ecdysteroids, the principal insect steroid hormones. We also discuss the functional conservation and diversity of ecdysteroidogenic enzymes in other insects and even non-insect species, such as nematodes, vertebrates, and lower eukaryotes.

  3. Serum zinc reference intervals and its relationship with dietary, functional, and biochemical indicators in 6- to 9-year-old healthy children

    Directory of Open Access Journals (Sweden)

    Camila Xavier Alves

    2016-04-01

    Full Text Available Background: Zinc is an important cause of morbidity, particularly among young children. The dietary, functional, and biochemical indicators should be used to assess zinc status and to indicate the need for zinc interventions. Objective: The purpose of this study was to determine the zinc status and reference intervals for serum zinc concentration considering dietary, functional, and biochemical indicators in apparently healthy children in the Northeast Region of Brazil. Design: The cross-sectional study included 131 healthy children: 72 girls and 59 boys, aged between 6 and 9 years. Anthropometric assessment was made by body mass index (BMI and age; dietary assessment by prospective 3-day food register, and an evaluation of total proteins was performed. Zinc in the serum samples was analyzed in triplicate in the same assay flame, using atomic absorption spectrophotometry. Results: With respect to dietary assessment, only the intake of fiber and calcium was below the recommendations by age and gender. All subjects were eutrophic according to BMI and age classification. Zinc intake correlated with energy (p=0.0019, protein (p=0.0054, fat (p<0.0001, carbohydrate (p=0.0305, fiber (p=0.0465, calcium (p=0.0006, and iron (p=0.0003 intakes. Serum zinc correlated with protein intake (p=0.0145 and serum albumin (p=0.0141, globulin (p=0.0041, and albumin/globulin ratio (p=0.0043. Biochemical parameters were all within the normal reference range. Reference intervals for basal serum zinc concentration were 0.70–1.14 µg/mL in boys, 0.73–1.17 µg/mL in girls, and 0.72–1.15 µg/mL in the total population. Conclusions: This study presents pediatric reference intervals for serum zinc concentration, considering dietary, functional, and biochemical indicators, which are useful to establish the zinc status in specific groups. In this regard, there are few studies in the literature conducted under these conditions, which make it an innovative methodology.

  4. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review.

    Science.gov (United States)

    Tallawi, Marwa; Rosellini, Elisabetta; Barbani, Niccoletta; Cascone, Maria Grazia; Rai, Ranjana; Saint-Pierre, Guillaume; Boccaccini, Aldo R

    2015-07-06

    The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed.

  5. Embryonic stem cell interactomics: the beginning of a long road to biological function.

    Science.gov (United States)

    Yousefi, Maram; Hajihoseini, Vahid; Jung, Woojin; Hosseinpour, Batol; Rassouli, Hassan; Lee, Bonghee; Baharvand, Hossein; Lee, KiYoung; Salekdeh, Ghasem Hosseini

    2012-12-01

    Embryonic stem cells (ESCs) are capable of unlimited self-renewal while maintaining pluripotency. They are of great interest in regenerative medicine due to their ability to differentiate into all cell types of the three embryonic germ layers. Recently, induced pluripotent stem cells (iPSCs) have shown similarities to ESCs and thus promise great therapeutic potential in regenerative medicine. Despite progress in stem cell biology, our understanding of the exact mechanisms by which pluripotency and self-renewal are established and maintained is largely unknown. A better understanding of these processes may lead to discovery of alternative ways for reprogramming, differentiation and more reliable applications of stem cells in therapies. It has become evident that proteins generally function as members of large complexes that are part of a more complex network. Therefore, the identification of protein-protein interactions (PPI) is an efficient strategy for understanding protein function and regulation. Systematic genome-wide and pathway-specific PPI analysis of ESCs has generated a network of ESC proteins, including major transcription factors. These PPI networks of ESCs may contribute to a mechanistic understanding of self-renewal and pluripotency. In this review we describe different experimental approaches for the identification of PPIs along with various databases. We discuss biological findings and technical challenges encountered with interactome studies of pluripotent stem cells, and provide insight into how interactomics is likely to develop.

  6. Biological adaptations for functional features of language in the face of cultural evolution.

    Science.gov (United States)

    Christiansen, Morten H; Reali, Florencia; Chater, Nick

    2011-04-01

    Although there may be no true language universals, it is nonetheless possible to discern several family resemblance patterns across the languages of the world. Recent work on the cultural evolution of language indicates the source of these patterns is unlikely to be an innate universal grammar evolved through biological adaptations for arbitrary linguistic features. Instead, it has been suggested that the patterns of resemblance emerge because language has been shaped by the brain, with individual languages representing different but partially overlapping solutions to the same set of nonlinguistic constraints. Here, we use computational simulations to investigate whether biological adaptation for functional features of language, deriving from cognitive and communicative constraints, may nonetheless be possible alongside rapid cultural evolution. Specifically, we focus on the Baldwin effect as an evolutionary mechanism by which previously learned linguistic features might become innate through natural selection across many generations of language users. The results indicate that cultural evolution of language does not necessarily prevent functional features of language from becoming genetically fixed, thus potentially providing a particularly informative source of constraints on cross-linguistic resemblance patterns.

  7. Biology of bone and how it orchestrates the form and function of the skeleton

    Science.gov (United States)

    Sommerfeldt, D. W.; Rubin, C. T.

    2001-01-01

    The principal role of the skeleton is to provide structural support for the body. While the skeleton also serves as the body's mineral reservoir, the mineralized structure is the very basis of posture, opposes muscular contraction resulting in motion, withstands functional load bearing, and protects internal organs. Although the mass and morphology of the skeleton is defined, to some extent, by genetic determinants, it is the tissue's ability to remodel--the local resorption and formation of bone--which is responsible for achieving this intricate balance between competing responsibilities. The aim of this review is to address bone's form-function relationship, beginning with extensive research in the musculoskeletal disciplines, and focusing on several recent cellular and molecular discoveries which help understand the complex interdependence of bone cells, growth factors, physical stimuli, metabolic demands, and structural responsibilities. With a clinical and spine-oriented audience in mind, the principles of bone cell and molecular biology and physiology are presented, and an attempt has been made to incorporate epidemiologic data and therapeutic implications. Bone research remains interdisciplinary by nature, and a deeper understanding of bone biology will ultimately lead to advances in the treatment of diseases and injuries to bone itself.

  8. Role of soil biology and soil functions in relation to land use intensity.

    Science.gov (United States)

    Bondi, Giulia; Wall, David; Bacher, Matthias; Emmet-Booth, Jeremy; Graça, Jessica; Marongiu, Irene; Creamer, Rachel

    2017-04-01

    The delivery of the ecosystem's functions is predominantly controlled by soil biology. The biology found in a gram of soil contains more than ten thousand individual species of bacteria and fungi (Torsvik et al., 1990). Understanding the role and the requirements of these organisms is essential for the protection and the sustainable use of soils. Soil biology represents the engine of all the processes occurring in the soil and it supports the ecosystem services such as: 1) nutrient mineralisation 2) plant production 3) water purification and regulation and 4) carbon cycling and storage. During the last years land management type and intensity have been identified as major drivers for microbial performance in soil. For this reason land management needs to be appropriately studied to understand the role of soil biology within this complex interplay of functions. We aimed to study whether and how land management drives soil biological processes and related functions. To reach this objective we built a land use intensity index (LUI) able to quantify the impact of the common farming practices carried out in Irish grassland soils. The LUI is derived from a detailed farmer questionnaire on grassland management practices at 38 farms distributed in the five major agro-climatic regions of Ireland defined by Holden and Brereton (2004). Soils were classified based on their drainage status according to the Irish Soil Information System by Creamer et al. (2014). This detailed questionnaire is then summarised into 3 management intensity components: (i) intensity of Fertilisation (Fi), (ii) frequency of Mowing (Mi) and (iii) intensity of Livestock Grazing (Gi). Sites were sampled to assess the impact of land management intensity on microbial community structure and enzyme behaviour in relation to nitrogen, phosphorus and carbon cycling. Preliminary results for enzymes linked to C and N cycles showed higher activity in relation to low grazing pressure (low Gi). Enzymes linked to P

  9. Self-reported dietary supplement use is confirmed by biological markers in the Norwegian Mother and Child Cohort Study (MoBa)

    DEFF Research Database (Denmark)

    Brantsæter, Anne Lise; Haugen, Margaretha; Hagve, Tor-Arne

    2007-01-01

    and nonsupplement users and to validate self- reported intake of dietary supplements in mid pregnancy. Method: 120 women were recruited from MoBa, and 119 subjects completed the MoBa FFQ and a 4- day weighed food diary. Information on supplement use was collected by both methods. Venous blood specimens and 24- hour...

  10. Influence of dietary inclusion of Bacillus licheniformis on laying performance, egg quality, antioxidant enzyme activities, and intestinal barrier function of laying hens.

    Science.gov (United States)

    Lei, K; Li, Y L; Yu, D Y; Rajput, I R; Li, W F

    2013-09-01

    This experiment was conducted to evaluate the effects of dietary inclusion of Bacillus licheniformis on laying performance, egg quality, antioxidant enzyme activities, and intestinal barrier function of laying hens. Hy-Line Variety W-36 hens (n = 540; 28 wk of age) were randomized into 6 groups, each group with 6 replications (n = 15). The control group received the basal diet formulated with maize and soybean meal. The treatment groups received the same basal diets supplemented with 0.01, 0.02, 0.03, 0.06, and 0.09% Bacillus licheniformis powder (2 × 10(10) cfu/g) for an 8-wk trial. The results showed that dietary supplementation with 0.01 and 0.03% B. licheniformis significantly increased egg production and egg mass. However, no significant differences were observed in egg weight, feed consumption, and feed conversion efficiency among the 6 groups. Supplementation with different levels of B. licheniformis was found to be effective in improvement of egg quality by increasing egg shell thickness and strength. Compared with control, d-lactate content, diamine oxidase activity, and adrenocorticotropic hormone level in serum decreased significantly, and the level of estradiol and follicle-stimulating hormone increased significantly in plasma of all the experimental groups. Dietary supplementation with B. licheniformis increased the intestinal villus height and reduced the crypt depth. In conclusion, dietary inclusion of B. licheniformis could improve laying performance and egg quality significantly in a dose-dependent manner by decreasing the stress response, upregulating the growth hormone, and improving intestinal health.

  11. Unsupervised Learning and Pattern Recognition of Biological Data Structures with Density Functional Theory and Machine Learning.

    Science.gov (United States)

    Chen, Chien-Chang; Juan, Hung-Hui; Tsai, Meng-Yuan; Lu, Henry Horng-Shing

    2018-01-11

    By introducing the methods of machine learning into the density functional theory, we made a detour for the construction of the most probable density function, which can be estimated by learning relevant features from the system of interest. Using the properties of universal functional, the vital core of density functional theory, the most probable cluster numbers and the corresponding cluster boundaries in a studying system can be simultaneously and automatically determined and the plausibility is erected on the Hohenberg-Kohn theorems. For the method validation and pragmatic applications, interdisciplinary problems from physical to biological systems were enumerated. The amalgamation of uncharged atomic clusters validated the unsupervised searching process of the cluster numbers and the corresponding cluster boundaries were exhibited likewise. High accurate clustering results of the Fisher's iris dataset showed the feasibility and the flexibility of the proposed scheme. Brain tumor detections from low-dimensional magnetic resonance imaging datasets and segmentations of high-dimensional neural network imageries in the Brainbow system were also used to inspect the method practicality. The experimental results exhibit the successful connection between the physical theory and the machine learning methods and will benefit the clinical diagnoses.

  12. How biological soil crusts became recognized as a functional unit: a selective history

    Science.gov (United States)

    Lange, Otto L.; Belnap, Jayne

    2016-01-01

    It is surprising that despite the world-wide distribution and general importance of biological soil crusts (biocrusts), scientific recognition and functional analysis of these communities is a relatively young field of science. In this chapter, we sketch the historical lines that led to the recognition of biocrusts as a community with important ecosystem functions. The idea of biocrusts as a functional ecological community has come from two main scientific branches: botany and soil science. For centuries, botanists have long recognized that multiple organisms colonize the soil surface in the open and often dry areas occurring between vascular plants. Much later, after the initial taxonomic and phyto-sociological descriptions were made, soil scientists and agronomists observed that these surface organisms interacted with soils in ways that changed the soil structure. In the 1970’s, research on these communities as ecological units that played an important functional role in drylands began in earnest, and these studies have continued to this day. Here, we trace the history of these studies from the distant past until 1990, when biocrusts became well-known to scientists and the public.

  13. Evaluation of functionality and biological response of the multilayer flow modulator in porcine animal models.

    Science.gov (United States)

    Sultan, Sherif; Kavanagh, Edel P; Hynes, Niamh; Diethrich, Edward B

    2016-02-01

    This study outlines the use of non-aneurysmal porcine animal models to study device functionality and biological response of the Multilayer Flow Modulator (MFM) (Cardiatis, Isnes, Belgium), with an emphasis on preclinical device functionality and biological response characteristics in an otherwise healthy aorta. Twelve animals were implanted with the study device in the abdominal aorta, in 6 animals for 1 month and 6 animals for 6 months. Upon completion of the study period, each animal underwent a necropsy to examine how the implanted device had affected the artery and surrounding tissue. Neointima and stenosis formation were recorded via morphometry, and endothelialization via histopathological analysis. The MFM devices were delivered to their respective implantation sites without difficulty. Six of the implanted stents were oversized with percentages ranging from 2.6% to 18.8%. Statistical analysis was carried out and showed no significance between the regular sized stent group and oversized stent group for neointimal area (P=0.17), neointimal thickness (P=0.17), and percentage area stenosis (P=0.65). Histopathological findings showed in most areas flattened endothelium like cells lined the luminal surface of the neointima. Scanning electron microscopy also showed the devices were well tolerated, inciting only a minimal neointimal covering and little fibrin or platelet deposition. Neointimal thickness of 239.7±55.6 μm and 318.3±130.4 μm, and percentage area stenosis of 9.6±2.6% and 12.6±5% were recorded at 1 and 6 months respectively. No statistical differences were found between these results. The MFM devices were delivered to their respective implantation sites without difficulty and incited little neointimal and stenosis formation in the aorta, affirming its functionality and biocompatibility.

  14. Virtual Agonist-antagonist Mechanisms Produce Biological Muscle-like Functions: An Application for Robot Joint Control

    DEFF Research Database (Denmark)

    Xiong, Xiaofeng; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Purpose – Biological muscles of animals have a surprising variety of functions, i.e., struts, springs, and brakes. According to this, the purpose of this paper is to apply virtual agonist-antagonist mechanisms to robot joint control allowing for muscle-like functions and variably compliant joint......, variably compliant joint motions can be produced without mechanically bulky and complex mechanisms or complex force/toque sensing at each joint. Moreover, through tuning the damping coefficient of the VAAM, the functions of the VAAM are comparable to biological muscles. Originality/value – The model (i.......e., VAAM) provides a way forward to emulate muscle-like functions that are comparable to those found in physiological experiments of biological muscles. Based on these muscle-like functions, the robotic joints can easily achieve variable compliance that does not require complex physical components...

  15. Excessive dietary calcium in the disruption of structural and functional status of adult male reproductive system in rat with possible mechanism.

    Science.gov (United States)

    K Chandra, Amar; Sengupta, Pallav; Goswami, Haimanti; Sarkar, Mahitosh

    2012-05-01

    Calcium is essential for functioning of different systems including male reproduction. However, it has also been reported as chemo-castrative agent. The study has been undertaken to elucidate the effect of excessive dietary calcium on male reproductive system in animals with possible action. Adult male healthy rats fed CaCl(2) at different doses (0.5, 1.0 and 1.5 g%) in diet for 13 and 26 days to investigate reproductive parameters as well as the markers of oxidative stress. Significant alteration was found (P male reproduction.

  16. Dietary patterns and pulmonary function in Korean women: findings from the Korea National Health and Nutrition Examination Survey 2007-2011.

    Science.gov (United States)

    Cho, Yoonsu; Chung, Hye-Kyung; Kim, Seung-Sup; Shin, Min-Jeong

    2014-12-01

    In the present study, we evaluated the association between dietary patterns and pulmonary functions in Korean women older than 40 years. This study analyzed the data from the Korea National Health and Nutrition Examination Survey IV and V (2007-2010). In total, 7615 women were included in the analysis. Using principal component analysis, two dietary patterns were identified, namely a balanced diet pattern (vegetables, fish, meat, seaweed, and mushrooms) and a refined diet (snacks, bread, milk, dairy products, and fast food). The refined diet pattern was positively associated with energy from fat but negatively associated with vitamin A, β-carotene, niacin, and fiber. After adjusting for potential confounders, the refined diet pattern was negatively associated with levels of predicted forced vital capacity (odds ratio (OR): 0.84, 95% confidence intervals (CIs): 0.70, 0.99) and predicted forced expiratory volume in 1 second (OR: 0.79, 95% CIs: 0.66, 0.93). In conclusion, the refined diet pattern was associated with decreased pulmonary function in Korean women. This information may be useful toward the development of nutritional guidelines for improving pulmonary function in Korean women. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The role of ontologies in biological and biomedical research: a functional perspective

    KAUST Repository

    Hoehndorf, Robert

    2015-04-10

    Ontologies are widely used in biological and biomedical research. Their success lies in their combination of four main features present in almost all ontologies: provision of standard identifiers for classes and relations that represent the phenomena within a domain; provision of a vocabulary for a domain; provision of metadata that describes the intended meaning of the classes and relations in ontologies; and the provision of machine-readable axioms and definitions that enable computational access to some aspects of the meaning of classes and relations. While each of these features enables applications that facilitate data integration, data access and analysis, a great potential lies in the possibility of combining these four features to support integrative analysis and interpretation of multimodal data. Here, we provide a functional perspective on ontologies in biology and biomedicine, focusing on what ontologies can do and describing how they can be used in support of integrative research. We also outline perspectives for using ontologies in data-driven science, in particular their application in structured data mining and machine learning applications.

  18. Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology.

    Science.gov (United States)

    ul Hassan, Muhammad Naeem; Zainal, Zamri; Ismail, Ismanizan

    2015-08-01

    Plants have evolved numerous constitutive and inducible defence mechanisms to cope with biotic and abiotic stresses. These stresses induce the expression of various genes to activate defence-related pathways that result in the release of defence chemicals. One of these defence mechanisms is the oxylipin pathway, which produces jasmonates, divinylethers and green leaf volatiles (GLVs) through the peroxidation of polyunsaturated fatty acids (PUFAs). GLVs have recently emerged as key players in plant defence, plant-plant interactions and plant-insect interactions. Some GLVs inhibit the growth and propagation of plant pathogens, including bacteria, viruses and fungi. In certain cases, GLVs released from plants under herbivore attack can serve as aerial messengers to neighbouring plants and to attract parasitic or parasitoid enemies of the herbivores. The plants that perceive these volatile signals are primed and can then adapt in preparation for the upcoming challenges. Due to their 'green note' odour, GLVs impart aromas and flavours to many natural foods, such as vegetables and fruits, and therefore, they can be exploited in industrial biotechnology. The aim of this study was to review the progress and recent developments in research on the oxylipin pathway, with a specific focus on the biosynthesis and biological functions of GLVs and their applications in industrial biotechnology. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  19. The role of ontologies in biological and biomedical research: a functional perspective

    KAUST Repository

    Hoehndorf, Robert; Schofield, P. N.; Gkoutos, G. V.

    2015-01-01

    Ontologies are widely used in biological and biomedical research. Their success lies in their combination of four main features present in almost all ontologies: provision of standard identifiers for classes and relations that represent the phenomena within a domain; provision of a vocabulary for a domain; provision of metadata that describes the intended meaning of the classes and relations in ontologies; and the provision of machine-readable axioms and definitions that enable computational access to some aspects of the meaning of classes and relations. While each of these features enables applications that facilitate data integration, data access and analysis, a great potential lies in the possibility of combining these four features to support integrative analysis and interpretation of multimodal data. Here, we provide a functional perspective on ontologies in biology and biomedicine, focusing on what ontologies can do and describing how they can be used in support of integrative research. We also outline perspectives for using ontologies in data-driven science, in particular their application in structured data mining and machine learning applications.

  20. Exploring new biological functions of amyloids: bacteria cell agglutination mediated by host protein aggregation.

    Directory of Open Access Journals (Sweden)

    Marc Torrent

    Full Text Available Antimicrobial proteins and peptides (AMPs are important effectors of the innate immune system that play a vital role in the prevention of infections. Recent advances have highlighted the similarity between AMPs and amyloid proteins. Using the Eosinophil Cationic Protein as a model, we have rationalized the structure-activity relationships between amyloid aggregation and antimicrobial activity. Our results show how protein aggregation can induce bacteria agglutination and cell death. Using confocal and total internal reflection fluorescence microscopy we have tracked the formation in situ of protein amyloid-like aggregates at the bacteria surface and on membrane models. In both cases, fibrillar aggregates able to bind to amyloid diagnostic dyes were detected. Additionally, a single point mutation (Ile13 to Ala can suppress the protein amyloid behavior, abolishing the agglutinating activity and impairing the antimicrobial action. The mutant is also defective in triggering both leakage and lipid vesicle aggregation. We conclude that ECP aggregation at the bacterial surface is essential for its cytotoxicity. Hence, we propose here a new prospective biological function for amyloid-like aggregates with potential biological relevance.

  1. Effects of nutrients (in food) on the structure and function of the nervous system: update on dietary requirements for brain. Part 1: micronutrients.

    Science.gov (United States)

    Bourre, J M

    2006-01-01

    The objective of this update is to give an overview of the effects of dietary nutrients on the structure and certain functions of the brain. As any other organ, the brain is elaborated from substances present in the diet (sometimes exclusively, for vitamins, minerals, essential amino-acids and essential fatty acids, including omega- 3 polyunsaturated fatty acids). However, for long it was not fully accepted that food can have an influence on brain structure, and thus on its function, including cognitive and intellectuals. In fact, most micronutrients (vitamins and trace-elements) have been directly evaluated in the setting of cerebral functioning. For instance, to produce energy, the use of glucose by nervous tissue implies the presence of vitamin B1; this vitamin modulates cognitive performance, especially in the elderly. Vitamin B9 preserves brain during its development and memory during ageing. Vitamin B6 is likely to benefit in treating premenstrual depression. Vitamins B6 and B12, among others, are directly involved in the synthesis of some neurotransmitters. Vitamin B12 delays the onset of signs of dementia (and blood abnormalities), provided it is administered in a precise clinical timing window, before the onset of the first symptoms. Supplementation with cobalamin improves cerebral and cognitive functions in the elderly; it frequently improves the functioning of factors related to the frontal lobe, as well as the language function of those with cognitive disorders. Adolescents who have a borderline level of vitamin B12 develop signs of cognitive changes. In the brain, the nerve endings contain the highest concentrations of vitamin C in the human body (after the suprarenal glands). Vitamin D (or certain of its analogues) could be of interest in the prevention of various aspects of neurodegenerative or neuroimmune diseases. Among the various vitamin E components (tocopherols and tocotrienols), only alpha-tocopherol is actively uptaken by the brain and is

  2. Enhanced surface functionality via plasma modification and plasma deposition techniques to create more biologically relevant materials

    Science.gov (United States)

    Shearer, Jeffrey C.

    Functionalizing nanoparticles and other unusually shaped substrates to create more biologically relevant materials has become central to a wide range of research programs. One of the primary challenges in this field is creating highly functionalized surfaces without modifying the underlying bulk material. Traditional wet chemistry techniques utilize thin film depositions to functionalize nanomaterials with oxygen and nitrogen containing functional groups, such as --OH and --NHx. These functional groups can serve to create surfaces that are amenable to cell adhesion or can act as reactive groups for further attachment of larger structures, such as macromolecules or antiviral agents. Additional layers, such as SiO2, are often added between the nanomaterial and the functionalized coating to act as a barrier films, adhesion layers, and to increase overall hydrophilicity. However, some wet chemistry techniques can damage the bulk material during processing. This dissertation examines the use of plasma processing as an alternative method for producing these highly functionalized surfaces on nanoparticles and polymeric scaffolds through the use of plasma modification and plasma enhanced chemical vapor deposition techniques. Specifically, this dissertation will focus on (1) plasma deposition of SiO2 barrier films on nanoparticle substrates; (2) surface functionalization of amine and alcohol groups through (a) plasma co-polymerization and (b) plasma modification; and (3) the design and construction of plasma hardware to facilitate plasma processing of nanoparticles and polymeric scaffolds. The body of work presented herein first examines the fabrication of composite nanoparticles by plasma processing. SiOxC y and hexylamine films were coated onto TiO2 nanoparticles to demonstrate enhanced water dispersion properties. Continuous wave and pulsed allyl alcohol plasmas were used to produce highly functionalized Fe2 O3 supported nanoparticles. Specifically, film composition was

  3. FUSE: a profit maximization approach for functional summarization of biological networks

    Directory of Open Access Journals (Sweden)

    Seah Boon-Siew

    2012-03-01

    Full Text Available Abstract Background The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein interaction network (PPI using graph theoretic analysis. Despite the recent progress, systems level analysis of PPIS remains a daunting task as it is challenging to make sense out of the deluge of high-dimensional interaction data. Specifically, techniques that automatically abstract and summarize PPIS at multiple resolutions to provide high level views of its functional landscape are still lacking. We present a novel data-driven and generic algorithm called FUSE (Functional Summary Generator that generates functional maps of a PPI at different levels of organization, from broad process-process level interactions to in-depth complex-complex level interactions, through a pro t maximization approach that exploits Minimum Description Length (MDL principle to maximize information gain of the summary graph while satisfying the level of detail constraint. Results We evaluate the performance of FUSE on several real-world PPIS. We also compare FUSE to state-of-the-art graph clustering methods with GO term enrichment by constructing the biological process landscape of the PPIS. Using AD network as our case study, we further demonstrate the ability of FUSE to quickly summarize the network and identify many different processes and complexes that regulate it. Finally, we study the higher-order connectivity of the human PPI. Conclusion By simultaneously evaluating interaction and annotation data, FUSE abstracts higher-order interaction maps by reducing the details of the underlying PPI to form a functional summary graph of interconnected functional clusters. Our results demonstrate its effectiveness and superiority over state-of-the-art graph clustering methods with GO term enrichment.

  4. FUSE: a profit maximization approach for functional summarization of biological networks.

    Science.gov (United States)

    Seah, Boon-Siew; Bhowmick, Sourav S; Dewey, C Forbes; Yu, Hanry

    2012-03-21

    The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein interaction network (PPI) using graph theoretic analysis. Despite the recent progress, systems level analysis of PPIS remains a daunting task as it is challenging to make sense out of the deluge of high-dimensional interaction data. Specifically, techniques that automatically abstract and summarize PPIS at multiple resolutions to provide high level views of its functional landscape are still lacking. We present a novel data-driven and generic algorithm called FUSE (Functional Summary Generator) that generates functional maps of a PPI at different levels of organization, from broad process-process level interactions to in-depth complex-complex level interactions, through a pro t maximization approach that exploits Minimum Description Length (MDL) principle to maximize information gain of the summary graph while satisfying the level of detail constraint. We evaluate the performance of FUSE on several real-world PPIS. We also compare FUSE to state-of-the-art graph clustering methods with GO term enrichment by constructing the biological process landscape of the PPIS. Using AD network as our case study, we further demonstrate the ability of FUSE to quickly summarize the network and identify many different processes and complexes that regulate it. Finally, we study the higher-order connectivity of the human PPI. By simultaneously evaluating interaction and annotation data, FUSE abstracts higher-order interaction maps by reducing the details of the underlying PPI to form a functional summary graph of interconnected functional clusters. Our results demonstrate its effectiveness and superiority over state-of-the-art graph clustering methods with GO term enrichment.

  5. Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules

    Science.gov (United States)

    Zheng, Haoping

    2003-04-01

    The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with unchanged calculation precision. So the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule becomes a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the Ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), are presented. The reactive sites of the inhibitors are determined and explained. The precision of structure determination of inhibitors are tested theoretically.

  6. Functional biology and ecological role of krill in Northern marine ecosystems

    DEFF Research Database (Denmark)

    Agersted, Mette Dalgaard

    Krill is an understudied key group of zooplankton, which transfers energy through the food web by linking lower and higher trophic levels. Furthermore, krill play an important role in the biological pump by transporting carbon out of the euphotic zone to depth by diel vertical migration (DVM...... to be the key factor determining the trophic position of a species, where the largest species had the highest trophic position. The species were feeding on the same food items, which could lead to competition for food. However, there is a difference between the two functional groups, represented by M. norvegica...... for the two dominating species within the fjord, T. inermis and T. raschii. The krill grazed community at this time of year. Yet, the grazing impact was similar to the copepods’, which are normally...

  7. Detection of Metabolism Function of Microbial Community of Corpses by Biolog-Eco Method.

    Science.gov (United States)

    Jiang, X Y; Wang, J F; Zhu, G H; Ma, M Y; Lai, Y; Zhou, H

    2016-06-01

    To detect the changes of microbial community functional diversity of corpses with different postmortem interval (PMI) and to evaluate forensic application value for estimating PMI. The cultivation of microbial community from the anal swabs of a Sus scrofa and a human corpse placed in field environment from 0 to 240 h after death was performed using the Biolog-Eco Microplate and the variations of the absorbance values were also monitored. Combined with the technology of forensic pathology and flies succession, the metabolic characteristics and changes of microbial community on the decomposed corpse under natural environment were also observed. The diversity of microbial metabolism function was found to be negatively correlated with the number of maggots in the corpses. The freezing processing had the greatest impact on average well color development value at 0 h and the impact almost disappeared after 48 h. The diversity of microbial metabolism of the samples became relatively unstable after 192 h. The principal component analysis showed that 31 carbon sources could be consolidated for 5 principal components (accumulative contribution ratio >90%).The carbon source tsquare-analysis showed that N -acetyl- D -glucosamine and L -serine were the dominant carbon sources for estimating the PMI (0=240 h) of the Sus scrofa and human corpse. The Biolog-Eco method can be used to reveal the metabolic differences of the carbon resources utilization of the microbial community on the corpses during 0-240 h after death, which could provide a new basis for estimating the PMI. Copyright© by the Editorial Department of Journal of Forensic Medicine

  8. [Historic and functional biology: the inadequacy of a system theory of evolution].

    Science.gov (United States)

    Regelmann, J P

    1982-01-01

    In the first half of the 20th century neo-Kantianism in a broad sense proved itself the main conceptual and methodological background of the central European biology. As such it contributed much to the victory on the typological, idealistic-morphological and psycho-vitalistic interpretations of life. On the other hand it could not give tools to the biologists for working out a strictly darwinian evolution theory. Kant's theory of organism was conceived without evolution as a theory of the internal functionality of the organism. There was only some 'play' with the evolutionary differentiation of the species. Since then the disputes around the work of August Weismann, a synthetical evolution theory which is now behind time, arose. This theory developed from coinciding claims, elaborated by geneticists, mathematicians, and by biologists studying development, natural history and systematics. This was done under a strong influence of marxist ideas. Through the interweaving of such different approaches it was possible for this evolutionary synthesis to influence successfully the development of evolution research during more than 40 years. Philosophically speaking modern evolution theory means therefore an aversion, even a positive abolition of Kantian positions. A number of biologists however--as L. von Bertalanffy--refused to adhere to a misinterpreted Kantian methodology and oriented themselves to an approach via system theory, which obtained a place in evolution research. In fact this is a Kantian approach as well. They only repeated the Kantian dilemma of the evolution which can also be found in Lamarck and Hegel. The system theory of the functionality of the organism never reaches to the level of the evolving species, but remains always on the level of epigenetic thinking, because of its philosophical origin. This paper points out the consequences of this still current dilemma. At the same time an all-enclosing reflection on the methodological, epistemological and

  9. Dietary exposure to a low dose of pesticides alone or as a mixture: the biological metabolic fingerprint and impact on hematopoiesis.

    Science.gov (United States)

    Demur, C; Métais, B; Canlet, C; Tremblay-Franco, M; Gautier, R; Blas-Y-Estrada, F; Sommer, C; Gamet-Payrastre, L

    2013-06-07

    Consumers are exposed to a mixture of pesticides through their food intake. These compounds are considered risk factors for human health, and the impact of dietary exposure to low doses of pesticide mixtures remains poorly understood. For this study we developed a mouse model to mimic consumer exposure in order to compare the effect of pesticides both alone or combined at doses corresponding to their Acceptable Daily Intake value. Female mice were exposed to pesticides throughout gestation and lactation. After weaning pups were fed the same pesticide-enriched diet their mothers had received for an additional 11 weeks. A metabonomic approach using (1)H NMR-based analysis of plasma showed that exposure to each pesticide produced a specific metabolic fingerprint in adult offspring. Discriminant metabolites between groups were glucose or lactate, choline, glycerophosphocholine and phosphocholine. Interestingly, metabolite differences were observed as early as weaned animals that had not yet been directly exposed themselves. Studies of the hematopoietic system revealed that dietary exposure to one particular pesticide, endosulfan, produced a significant decrease in red blood cell and hemoglobin levels, consistent with hemolytic anemia. Moreover, cell signaling profiles of bone marrow progenitors were also clearly affected. Expression of cell signaling proteins such as P35, CDC27, FAK, P38 MAP kinase, calcineurin and caspase as well as proteins involved in the stability or structure of the cytoskeleton (vinculin, MAP2) was changed upon dietary exposure to pesticides. Finally, we found that dietary exposure to a mixture of pesticides had effects that differed and were often lesser or equal to that of the most efficient pesticide (endosulfan), suggesting that the effect of pesticide mixtures cannot always be predicted from the combined effects of their constituent compounds. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. [The hyperiricosuria as an indicator of derangement of biologic functions of endoecology and adaptation, biologic reactions of excretion, inflammation and arterial tension].

    Science.gov (United States)

    Titov, V N; Oshchepkova, E V; Dmitriev, V A; Gushchina, O V; Shiriaeva, Iu K; Iashin, A Ia

    2012-04-01

    During millions years in all animals allantoine (oxidized by uricase uric acid) was catabolite of purines and ascorbic acid was an acceptor of active forms of oxygen. The proximal tubules of nephron reabsorbed the trace amounts of uric acid Then during phylogenesis the primates had a mutation of ascorbic acid gen minus. Later on occurred a second spontaneous mutation and uricase gen minus and uric acid became catabolites of purines. In absence of ascorbic acid synthesis ions of urates became a major capturers of active forms of oxygen and all uric acid as before underwent the reabsorption. Later the carriers were formed which began in epithelium of proximal tubules to secrete all uric acid into urine. At every incident of "littering" of intercellular medium with endogenic flogogens (impairment of biologic function of endoecology) under compensatory development of biologic reaction of inflammation the need in inactivation of active forms of oxygen increases. Hence later on in phylogenesis one more stage was formed--post secretory reabsorption of uric acid In the biologic reaction of inflammation epithelium of proximal tubules initiates retentional hyperiricosuria. The general antioxidant activity of human blood plasma in 60% is presented by urates' ions. The excretion of uric acid includes 4 stages: filtration, full reabsorption, secretion and post secretory reabsorption. In phylogenesis these stages formed in sequence. The mild hyperiricosuria is most frequently considered as a non-specific indicator of activation of biologic reaction of inflammation. The productive hyperiricosuria develops more infrequently under surplus of meat food and cytolysis syndrome (intensification of cell loss in vivo). Under concentration of uric acid more than 400 mkmol/l part of urates circulates in intercellular medium in the form of crystals. The microcrystals of uric acid (biologic "litter") initiate the syndrome of systemic inflammatory response as an endogenic flogogen

  11. Riboflavin-binding protein. Concentration and fractional saturation in chicken eggs as a function of dietary riboflavin.

    OpenAIRE

    White, H B; Armstrong, J; Whitehead, C C

    1986-01-01

    The concentration of riboflavin and riboflavin-binding protein were determined in the plasma, egg yolk and albumen from hens fed a riboflavin-deficient diet (1.2 mg/kg) supplemented with 0, 1, 2, 3, 10 and 40 mg of riboflavin/kg. We observed that the deposition of riboflavin in egg yolk and albumen is dependent on dietary riboflavin and reaches half-maximal values at about 2 mg of supplemental riboflavin/kg. The maximal amount of riboflavin deposited in the yolk is limited stoichiometrically ...

  12. Re-evaluating concepts of biological function in clinical medicine: towards a new naturalistic theory of disease.

    Science.gov (United States)

    Chin-Yee, Benjamin; Upshur, Ross E G

    2017-08-01

    Naturalistic theories of disease appeal to concepts of biological function, and use the notion of dysfunction as the basis of their definitions. Debates in the philosophy of biology demonstrate how attributing functions in organisms and establishing the function-dysfunction distinction is by no means straightforward. This problematization of functional ascription has undermined naturalistic theories and led some authors to abandon the concept of dysfunction, favoring instead definitions based in normative criteria or phenomenological approaches. Although this work has enhanced our understanding of disease and illness, we need not necessarily abandon naturalistic concepts of function and dysfunction in the disease debate. This article attempts to move towards a new naturalistic theory of disease that overcomes the limitations of previous definitions and offers advantages in the clinical setting. Our approach involves a re-evaluation of concepts of biological function employed by naturalistic theories. Drawing on recent insights from the philosophy of biology, we develop a contextual and evaluative account of function that is better suited to clinical medicine and remains consistent with contemporary naturalism. We also show how an updated naturalistic view shares important affinities with normativist and phenomenological positions, suggesting a possibility for consilience in the disease debate.

  13. Optimization of polysaccharides extraction from watermelon rinds: Structure, functional and biological activities.

    Science.gov (United States)

    Romdhane, Molka Ben; Haddar, Anissa; Ghazala, Imen; Jeddou, Khawla Ben; Helbert, Claire Boisset; Ellouz-Chaabouni, Semia

    2017-02-01

    In the present work, optimization of hot water extraction, structural characteristics, functional properties, and biological activities of polysaccharides extracted from watermelon rinds (WMRP) were investigated. The physicochemical characteristics and the monosaccharide composition of these polysaccharides were then determined using chemical composition analysis, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and gas chromatography-flame ionization detection (GC-FID). SEM images showed that extracted polysaccharides had a rough surface with many cavities. GC-FID results proved that galactose was the dominant sugar in the extracted polysaccharides, followed by arabinose, glucose, galacturonic acid, rhamnose, mannose, xylose and traces of glucuronic acid. The findings revealed that WMRP displayed excellent antihypertensive and antioxidant activities. Those polysaccharides had also a protection effect against hydroxyl radical-induced DNA damage. Functional properties of extracted polysaccharides were also evaluated. WMRP showed good interfacial dose-dependent proprieties. Overall, the results suggested that WMRP presents a promising natural source of antioxidants and antihypertensive agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A postprocessing method in the HMC framework for predicting gene function based on biological instrumental data

    Science.gov (United States)

    Feng, Shou; Fu, Ping; Zheng, Wenbin

    2018-03-01

    Predicting gene function based on biological instrumental data is a complicated and challenging hierarchical multi-label classification (HMC) problem. When using local approach methods to solve this problem, a preliminary results processing method is usually needed. This paper proposed a novel preliminary results processing method called the nodes interaction method. The nodes interaction method revises the preliminary results and guarantees that the predictions are consistent with the hierarchy constraint. This method exploits the label dependency and considers the hierarchical interaction between nodes when making decisions based on the Bayesian network in its first phase. In the second phase, this method further adjusts the results according to the hierarchy constraint. Implementing the nodes interaction method in the HMC framework also enhances the HMC performance for solving the gene function prediction problem based on the Gene Ontology (GO), the hierarchy of which is a directed acyclic graph that is more difficult to tackle. The experimental results validate the promising performance of the proposed method compared to state-of-the-art methods on eight benchmark yeast data sets annotated by the GO.

  15. Functionalized polypyrrole film: synthesis, characterization, and potential applications in chemical and biological sensors.

    Science.gov (United States)

    Dong, Hua; Cao, Xiaodong; Li, Chang Ming

    2009-07-01

    In this paper, we report the synthesis of a carboxyl-functionalized polypyrrole derivative, a poly(pyrrole-N-propanoic acid) (PPPA) film, by electrochemical polymerization, and the investigation of its basic properties via traditional characterization techniques such as confocal-Raman, FTIR, SEM, AFM, UV-vis, fluorescence microscopy, and contact-angle measurements. The experimental data show that the as-prepared PPPA film exhibits a hydrophilic nanoporous structure, abundant -COOH functional groups in the polymer backbone, and high fluorescent emission under laser excitation. On the basis of these unique properties, further experiments were conducted to demonstrate three potential applications of the PPPA film in chemical and biological sensors: a permeable and permselective membrane, a membrane with specific recognition sites for biomolecule immobilization, and a fluorescent conjugated polymer for amplification of fluorescence quenching. Specifically, the permeability and permselectivity of ion species through the PPPA film are detected by means of rotating-disk-electrode voltammetry; the specific recognition sites on the film surface are confirmed with protein immobilization, and the amplification of fluorescence quenching is measured by the addition of a quenching agent with fluorescence microscopy. The results are in good agreement with our expectations.

  16. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells

    Directory of Open Access Journals (Sweden)

    Rinaldo Florencio-Silva

    2015-01-01

    Full Text Available Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines and systemic (e.g., calcitonin and estrogens factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.

  17. Unexpected functional similarities between gatekeeper tumour suppressor genes and proto-oncogenes revealed by systems biology.

    Science.gov (United States)

    Zhao, Yongzhong; Epstein, Richard J

    2011-05-01

    Familial tumor suppressor genes comprise two subgroups: caretaker genes (CTs) that repair DNA, and gatekeeper genes (GKs) that trigger cell death. Since GKs may also induce cell cycle delay and thus enhance cell survival by facilitating DNA repair, we hypothesized that the prosurvival phenotype of GKs could be selected during cancer progression, and we used a multivariable systems biology approach to test this. We performed multidimensional data analysis, non-negative matrix factorization and logistic regression to compare the features of GKs with those of their putative antagonists, the proto-oncogenes (POs), as well as with control groups of CTs and functionally unrelated congenital heart disease genes (HDs). GKs and POs closely resemble each other, but not CTs or HDs, in terms of gene structure (Pexpression level and breadth (Pimplied suggest a common functional attribute that is strongly negatively selected-that is, a shared phenotype that enhances cell survival. The counterintuitive finding of similar evolutionary pressures affecting GKs and POs raises an intriguing possibility: namely, that cancer microevolution is accelerated by an epistatic cascade in which upstream suppressor gene defects subvert the normal bifunctionality of wild-type GKs by constitutively shifting the phenotype away from apoptosis towards survival. If correct, this interpretation would explain the hitherto unexplained phenomenon of frequent wild-type GK (for example, p53) overexpression in tumors.

  18. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells.

    Science.gov (United States)

    Florencio-Silva, Rinaldo; Sasso, Gisela Rodrigues da Silva; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio

    2015-01-01

    Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.

  19. Structural and functional biological materials: Abalone nacre, sharp materials, and abalone foot adhesion

    Science.gov (United States)

    Lin, Albert Yu-Min

    A three-part study of lessons from nature is presented through the examination of various biological materials, with an emphasis on materials from the mollusk Haliotis rufescens, commonly referred to as the red abalone. The three categories presented are: structural hierarchy, self-assembly, and functionality. Ocean mollusk shells are composed of aragonite/calcite crystals interleaved with layers of a visco-elastic protein, having dense, tailored structures with excellent mechanical properties. The complex nano-laminate structure of this bio-composite material is characterized and related to its mechanical properties. Three levels of structural hierarchy are identified: macroscale mesolayers separating larger regions of tiled aragonite, microscale organization of 0.5 mum by 10 mum aragonite bricks; nanoscale mineral bridges passing through 30 nm layers of organic matrix separating individual aragonite tiles. Composition and growth mechanisms of this nanostructure were observed through close examination of laboratory-grown samples using scanning electron microscopy (SEM), Raman spectroscopy, and transmission electron microscopy (TEM). Glass slides and nacre pucks were implanted onto the growth surface of living abalone and removed periodically to observe trends in nacre deposition. Various deproteinization and demineralization experiments are used to explore the inorganic and organic components of the nacre's structure. The organic component of the shell is characterized by atomic force microscopy (AFM). The functionality of various biological materials is described and investigated. Two specific types of functionality are characterized, the ability of some materials to cut and puncture through sharp designs, and the ability for some materials to be used as attachment devices. Aspects of cutting materials employed by a broad range of animals were characterized and compared. In respect to the attachment mechanisms the foot of the abalone and the tree frog were

  20. Multi-functional photonic crystal sensors enabled by biological silica (Conference Presentation)

    Science.gov (United States)

    Wang, Alan X.

    2017-02-01

    Diatoms are microalgae found in every habitat where water is present. They produce 40% of the ocean's yearly production of organic carbon and 20% of the oxygen that we breathe. Their abundance and wide distribution make them ideal materials for a wide range of applications as living organisms. In our previous work, we have demonstrated that diatom biosilica with self-assembled silver nanoparticles (Ag NPs) can be used as ultra-sensitive, low-cost substrates for surface-enhanced Raman scattering (SERS) sensing. The enhancement comes from the photonic crystal enhancement of diatom frustules that could improve the hot-spots of Ag NPs. In this work, we report the unique micro-fluidic flow, analyte concentration effect, and thin layer chromatography (TLC) on diatom biosilica, which enables selection, separation, detection, and analysis of complex chemical and biological samples. Particularly, we show that the microscopic fluidic flow induced by the evaporation of liquid droplet can concentrate the analyte and achieve label-free sensing of single molecule detection of R6G and label-free sensing of 4.5×10-17g trinitrotoluene (TNT) from only 200 nano-liter solution. We also demonstrated a facile method for instant on-site separation and detection of analytes by TLC in tandem with SERS spectroscopy using high density diatom thin film. This lab-on-chip technology has been successfully applied for label-free detection of polycyclic aromatic hydrocarbons from human plasma and histamine from salmon fish. Our research suggests that such cost-effective, multi-functional photonic crystal sensors enabled by diatom biosilica opens a new route for lab-on-chip systems and possess significant engineering potentials for chemical and biological sensing.

  1. Decreased functional diversity and biological pest control in conventional compared to organic crop fields.

    Directory of Open Access Journals (Sweden)

    Jochen Krauss

    Full Text Available Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short

  2. Decreased functional diversity and biological pest control in conventional compared to organic crop fields.

    Science.gov (United States)

    Krauss, Jochen; Gallenberger, Iris; Steffan-Dewenter, Ingolf

    2011-01-01

    Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional) and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short-term effects on aphid

  3. Effects of dietary coenzyme Q10 supplementation on hepatic mitochondrial function and the activities of respiratory chain-related enzymes in ascitic broiler chickens.

    Science.gov (United States)

    Geng, A L; Guo, Y M

    2005-10-01

    1. One hundred and sixty 1-d-old Arbor Acre male broiler chicks were fed with maize-soybean based diets for 6 weeks in a 2 x 2 factorial experiment. The factors were CoQ10 supplementation (0 or 40 mg/kg) and Escherichia coli lipopolysaccharide (LPS) challenge (LPS or saline). 2. CoQ10 was supplemented from d 1. From d 18, the chickens received three weekly i.p. injections of LPS (1.0 mg/kg BW) or an equivalent amount of sterile saline as control. From d 10 on, all chickens were exposed to low ambient temperature (12 to 15 degrees C) to induce ascites. 3. The blood packed cell volume and ascites heart index of broiler chickens were reduced by dietary CoQ10 supplementation. Mitochondrial State 3 and State 4 respiration, respiratory control ratio and phosphate oxygen ratio were not changed, but H+/site stoichiometry of complex II + III was elevated by dietary CoQ10 supplementation. 4. Cytochrome c oxidase and H+-ATPase activity were increased by CoQ10 supplementation, whereas NADH cytochrome c reductase and succinate cytochrome c reductase were not influenced. Mitochondrial anti-ROS capability was increased and malondialdehyde content was decreased by CoQ10 supplementation. 5. The work suggested that dietary CoQ10 supplementation could reduce broiler chickens' susceptibility to ascites, which might be the result of improving hepatic mitochondrial function, some respiratory chain-related enzymes activities and mitochondrial antioxidative capability.

  4. Supernatant from bifidobacterium differentially modulates transduction signaling pathways for biological functions of human dendritic cells.

    Directory of Open Access Journals (Sweden)

    Cyrille Hoarau

    Full Text Available BACKGROUND: Probiotic bacteria have been shown to modulate immune responses and could have therapeutic effects in allergic and inflammatory disorders. However, the signaling pathways engaged by probiotics are poorly understood. We have previously reported that a fermentation product from Bifidobacterium breve C50 (BbC50sn could induce maturation, high IL-10 production and prolonged survival of DCs via a TLR2 pathway. We therefore studied the roles of mitogen-activated protein kinases (MAPK, glycogen synthase kinase-3 (GSK3 and phosphatidylinositol 3-kinase (PI3K pathways on biological functions of human monocyte-derived DCs treated with BbC50sn. METHODOLOGY/PRINCIPAL FINDINGS: DCs were differentiated from human monocytes with IL-4 and GM-CSF for 5 days and cultured with BbC50sn, lipopolysaccharide (LPS or Zymosan, with or without specific inhibitors of p38MAPK (SB203580, ERK (PD98059, PI3K (LY294002 and GSK3 (SB216763. We found that 1 the PI3K pathway was positively involved in the prolonged DC survival induced by BbC50sn, LPS and Zymosan in contrast to p38MAPK and GSK3 which negatively regulated DC survival; 2 p38MAPK and PI3K were positively involved in DC maturation, in contrast to ERK and GSK3 which negatively regulated DC maturation; 3 ERK and PI3K were positively involved in DC-IL-10 production, in contrast to GSK3 that was positively involved in DC-IL-12 production whereas p38MAPK was positively involved in both; 4 BbC50sn induced a PI3K/Akt phosphorylation similar to Zymosan and a p38MAPK phosphorylation similar to LPS. CONCLUSION/SIGNIFICANCE: We report for the first time that a fermentation product of a bifidobacteria can differentially activate MAPK, GSK3 and PI3K in order to modulate DC biological functions. These results give new insights on the fine-tuned balance between the maintenance of normal mucosal homeostasis to commensal and probiotic bacteria and the specific inflammatory immune responses to pathogen bacteria.

  5. Biological function evaluation and effects of laser micro-pore burn-denatured acellular dermal matrix.

    Science.gov (United States)

    Zhang, Youlai; Zeng, Yuanlin; Xin, Guohua; Zou, Lijin; Ding, Yuewei; Duyin, Jiang

    2018-03-01

    In the field of burns repairs, many problems exist in the shortage of donor skin, the expense of allograft or xenograft skin, temporary substitution and unsatisfactory extremity function after wound healing. Previous studies showed that burn-denatured skin could return to normal dermis formation and function. This study investigates the application of laser micro-pore burn-denatured acellular dermis matrix (DADM) from an escharotomy in the repair of burn wounds and evaluates the biological properties and wound repair effects of DADM in implantation experiments in Kunming mice. Specific-pathogen-free (SPF) Kunming mice were used in this study. A deep II° burn wound was created on the dorsum of the mice by an electric heated water bath. The full-thickness wound tissue was harvested. The necrotic tissue and subcutaneous tissue were removed. The denatured dermis was preserved and treated with 0.25% trypsin, 0.5% Triton X-100. The DADM was drilled by laser micro-pore. The biological properties and grafting effects of laser micro-pore burn-DADM were evaluated by morphology, cytokine expression levels and subcutaneous implantation experiments in Kunming mice. We found statistical significance (Ppore burn-DADM (experimental group) compared to the control group (no laser micro-pore burn-DADM). Cytokine expression level was different in the dermal matrixes harvested at various time points after burn (24h, 48h, 72h and infected wound group). Comparing the dermal matrix from 24h burn tissue to infected wound tissue, the expression level of IL-6, MMP-24, VE-cadherin and VEGF were decreased. We found no inflammatory cells infiltration in the dermal matrix were observed in both experimental and control groups (24h burn group), while the obviously vascular infiltration and fiber fusion were observed in the experimental group after subcutaneous implantation experiments. There was better bio-performance, low immunogenicity and better dermal incorporation after treated by laser

  6. The Structural and Functional Capacity of Ruminal and Cecal Microbiota in Growing Cattle Was Unaffected by Dietary Supplementation of Linseed Oil and Nitrate

    Science.gov (United States)

    Popova, Milka; McGovern, Emily; McCabe, Matthew S.; Martin, Cécile; Doreau, Michel; Arbre, Marie; Meale, Sarah J.; Morgavi, Diego P.; Waters, Sinéad M.

    2017-01-01

    Microorganisms in the digestive tract of ruminants differ in their functionality and ability to use feed constituents. While cecal microbiota play an important role in post-rumen fermentation of residual substrates undigested in the rumen, limited knowledge exists regarding its structure and function. In this trial we investigated the effect of dietary supplementation with linseed oil and nitrate on methane emissions and on the structure of ruminal and cecal microbiota of growing bulls. Animals were allocated to either a CTL (control) or LINNIT (CTL supplemented with 1.9% linseed and 1.0% nitrates) diet. Methane emissions were measured using the GreenFeed system. Microbial diversity was assessed using amplicon sequencing of microbial genomic DNA. Additionally, total RNA was extracted from ruminal contents and functional mcrA and mtt genes were targeted in amplicon sequencing approach to explore the diversity of functional gene expression in methanogens. LINNIT had no effect on methane yield (g/kg DMI) even though it decreased methane production by 9% (g/day; P ruminants. There was a parallel between the lack of effect of LINNIT on ruminal and cecal microbial community structure and functions on one side and methane emission changes on the other. These results suggest that the sequencing strategy used here to study microbial diversity and function accurately reflected the absence of effect on methane phenotypes in bulls treated with linseed plus nitrate. PMID:28596764

  7. Invited review: Caseins and the casein micelle: their biological functions, structures, and behavior in foods.

    Science.gov (United States)

    Holt, C; Carver, J A; Ecroyd, H; Thorn, D C

    2013-10-01

    A typical casein micelle contains thousands of casein molecules, most of which form thermodynamically stable complexes with nanoclusters of amorphous calcium phosphate. Like many other unfolded proteins, caseins have an actual or potential tendency to assemble into toxic amyloid fibrils, particularly at the high concentrations found in milk. Fibrils do not form in milk because an alternative aggregation pathway is followed that results in formation of the casein micelle. As a result of forming micelles, nutritious milk can be secreted and stored without causing either pathological calcification or amyloidosis of the mother's mammary tissue. The ability to sequester nanoclusters of amorphous calcium phosphate in a stable complex is not unique to caseins. It has been demonstrated using a number of noncasein secreted phosphoproteins and may be of general physiological importance in preventing calcification of other biofluids and soft tissues. Thus, competent noncasein phosphoproteins have similar patterns of phosphorylation and the same type of flexible, unfolded conformation as caseins. The ability to suppress amyloid fibril formation by forming an alternative amorphous aggregate is also not unique to caseins and underlies the action of molecular chaperones such as the small heat-shock proteins. The open structure of the protein matrix of casein micelles is fragile and easily perturbed by changes in its environment. Perturbations can cause the polypeptide chains to segregate into regions of greater and lesser density. As a result, the reliable determination of the native structure of casein micelles continues to be extremely challenging. The biological functions of caseins, such as their chaperone activity, are determined by their composition and flexible conformation and by how the casein polypeptide chains interact with each other. These same properties determine how caseins behave in the manufacture of many dairy products and how they can be used as functional

  8. Carbohydrate/glycan-binding specificity of legume lectins in respect to their proposed biological functions

    Directory of Open Access Journals (Sweden)

    Márcio Viana Ramos

    2000-01-01

    Full Text Available The lectins, proteins which specifically recognize carbohydrate moieties, have been extensively studied in many biochemical and structural aspects in order to establish the molecular basis of this non-catalytic event. On the other hand, their clinical and agricultural potentials have been growing fast. Although lectins, mainly those from legume plants, had been investigated for biological properties, studies about the physiological functions of lectins are scarce in literature. Therefore, despite the accumulated data on lectins (as proteins, the role played by these signalizing molecules is poorly discussed. In the light of our accumulated results on legume lectins, specially those obtained from plants belonging to the Diocleinae sub-tribe and available data in literature, we discuss here the main hypothesis of their functions according to their carbohydrate/glycan-binding specificity.As lectinas, proteinas que especificamente reconhecem estruturas que contém carboidratos, têm sido extensivamente estudadas em muitos aspectos bioquímicos e estruturais, objetivando estabelecer as bases moleculares deste evento não-catalítico. Por outro lado, os potenciais clínicos e agriculturais destas proteínas têm crescido rapidamente. Embora as lectinas, principalmente aquelas de legumes tenham sido bastante investigadas em suas propriedades biológicas, estudos sobre as funcões fisiológicas de lectinas são escassos na literatura. Além disto, a despeito da quantidade de dados acumulados sobre lectinas (como proteínas, o papel desempenhado por estas moléculas de sinalização é pobremente discutido. Valendo-se de nossos estudos sobre lectinas de leguminosas, principalmente da sub-tribo Diocleinae, e outros dados presentes na literatura, discutimos aqui, as principais hipóteses de suas funções com base na especificidade por carboidratos e glicanos complexos.

  9. Melanocyte biology and function with reference to oral melanin hyperpigmentation in HIV-seropositive subjects.

    Science.gov (United States)

    Feller, Liviu; Chandran, Rakesh; Kramer, Beverley; Khammissa, Razia A G; Altini, Mario; Lemmer, Johan

    2014-09-01

    The color of normal skin and of oral mucosa is not determined by the number of melanocytes in the epithelium but rather by their melanogenic activity. Pigmented biopolymers or melanins are synthesized in melanosomes. Tyrosinase is the critical enzyme in the biosynthesis of both brown/black eumelanin and yellow/red pheomelanin. The number of the melanosomes within the melanocytes, the type of melanin within the melanosomes, and the efficacy of the transfer of melanosomes from the melanocytes to the neighboring keratinocytes all play an important role in tissue pigmentation. Melanin production is regulated by locally produced factors including proopiomelanocortin and its derivative peptides, particularly alpha-melanocyte-stimulating hormone (α-MSH), melanocortin 1 receptor (MC1R), adrenergic and cholinergic agents, growth factors, cytokines, and nitric oxide. Both eumelanin and pheomelanin can be produced by the same melanocytes, and the proportion of the two melanin types is influenced by the degree of functional activity of the α-MSH/MC1R intracellular pathway. The cause of HIV oral melanosis is not fully understood but may be associated with HIV-induced cytokine dysregulation, with the medications commonly prescribed to HIV-seropositive persons, and with adrenocortical dysfunction, which is not uncommon in HIV-seropositive subjects with AIDS. The purpose of this article is to discuss some aspects of melanocyte biology and HIV-associated oral melanin hyperpigmentation.

  10. Ants: Major Functional Elements in Fruit Agro-Ecosystems and Biological Control Agents

    Directory of Open Access Journals (Sweden)

    Lamine Diamé

    2017-12-01

    Full Text Available Ants are a very diverse taxonomic group. They display remarkable social organization that has enabled them to be ubiquitous throughout the world. They make up approximately 10% of the world’s animal biomass. Ants provide ecosystem services in agrosystems by playing a major role in plant pollination, soil bioturbation, bioindication, and the regulation of crop-damaging insects. Over recent decades, there have been numerous studies in ant ecology and the focus on tree cropping systems has given added importance to ant ecology knowledge. The only missing point in this knowledge is the reasons underlying difference between the positive and negative effects of ants in tree cropping systems. This review article provides an overview of knowledge of the roles played by ants in orchards as functional elements, and on the potential of Oecophylla weaver ants as biological control agents. It also shows the potential and relevance of using ants as an agro-ecological diagnosis tool in orchards. Lastly, it demonstrates the potential elements which may determine the divergent negative and positive of their effects on cropping systems.

  11. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements

    International Nuclear Information System (INIS)

    Margheri, L; Laschi, C; Mazzolai, B

    2012-01-01

    Octopuses are molluscs that belong to the group Cephalopoda. They lack joints and rigid links, and as a result, their arms possess virtually limitless freedom of movement. These flexible appendages exhibit peculiar biomechanical features such as stiffness control, compliance, and high flexibility and dexterity. Studying the capabilities of the octopus arm is a complex task that presents a challenge for both biologists and roboticists, the latter of whom draw inspiration from the octopus in designing novel technologies within soft robotics. With this idea in mind, in this study, we used new, purposively developed methods of analysing the octopus arm in vivo to create new biologically inspired design concepts. Our measurements showed that the octopus arm can elongate by 70% in tandem with a 23% diameter reduction and exhibits an average pulling force of 40 N. The arm also exhibited a 20% mean shortening at a rate of 17.1 mm s −1 and a longitudinal stiffening rate as high as 2 N (mm s) −1 . Using histology and ultrasounds, we investigated the functional morphology of the internal tissues, including the sinusoidal arrangement of the nerve cord and the local insertion points of the longitudinal and transverse muscle fibres. The resulting information was used to create novel design principles and specifications that can in turn be used in developing a new soft robotic arm. (paper)

  12. Structural changes in PVDF fibers due to electrospinning and its effect on biological function

    International Nuclear Information System (INIS)

    Damaraju, Sita M; Wu, Siliang; Jaffe, Michael; Arinzeh, Treena Livingston

    2013-01-01

    Polyvinylidine fluoride (PVDF) is being investigated as a potential scaffold for bone tissue engineering because of its proven biocompatibility and piezoelectric property, wherein it can generate electrical activity when mechanically deformed. In this study, PVDF scaffolds were prepared by electrospinning using different voltages (12–30 kV), evaluated for the presence of the piezoelectric β-crystal phase and its effect on biological function. Electrospun PVDF was compared with unprocessed/raw PVDF, films and melt-spun fibers for the presence of the piezoelectric β-phase using differential scanning calorimetry, Fourier transform infrared spectroscopy and x-ray diffraction. The osteogenic differentiation of human mesenchymal stem cells (MSCs) was evaluated on scaffolds electrospun at 12 and 25 kV (PVDF-12 kV and PVDF-25 kV, respectively) and compared to tissue culture polystyrene (TCP). Electrospinning PVDF resulted in the formation of the piezoelectric β-phase with the highest β-phase fraction of 72% for electrospun PVDF at 25 kV. MSCs cultured on both the scaffolds were well attached as indicated by a spread morphology. Cells on PVDF-25 kV scaffolds had the greatest alkaline phosphatase activity and early mineralization by day 10 as compared to TCP and PVDF-12 kV. The results demonstrate the potential for the use of PVDF scaffolds for bone tissue engineering applications. (paper)

  13. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements.

    Science.gov (United States)

    Margheri, L; Laschi, C; Mazzolai, B

    2012-06-01

    Octopuses are molluscs that belong to the group Cephalopoda. They lack joints and rigid links, and as a result, their arms possess virtually limitless freedom of movement. These flexible appendages exhibit peculiar biomechanical features such as stiffness control, compliance, and high flexibility and dexterity. Studying the capabilities of the octopus arm is a complex task that presents a challenge for both biologists and roboticists, the latter of whom draw inspiration from the octopus in designing novel technologies within soft robotics. With this idea in mind, in this study, we used new, purposively developed methods of analysing the octopus arm in vivo to create new biologically inspired design concepts. Our measurements showed that the octopus arm can elongate by 70% in tandem with a 23% diameter reduction and exhibits an average pulling force of 40 N. The arm also exhibited a 20% mean shortening at a rate of 17.1 mm s(-1) and a longitudinal stiffening rate as high as 2 N (mm s)(-1). Using histology and ultrasounds, we investigated the functional morphology of the internal tissues, including the sinusoidal arrangement of the nerve cord and the local insertion points of the longitudinal and transverse muscle fibres. The resulting information was used to create novel design principles and specifications that can in turn be used in developing a new soft robotic arm.

  14. A novel biological function of soluble biglycan: Induction of erythropoietin production and polycythemia.

    Science.gov (United States)

    Frey, Helena; Moreth, Kristin; Hsieh, Louise Tzung-Harn; Zeng-Brouwers, Jinyang; Rathkolb, Birgit; Fuchs, Helmut; Gailus-Durner, Valérie; Iozzo, Renato V; de Angelis, Martin Hrabě; Schaefer, Liliana

    2017-06-01

    Secondary polycythemia, a disease characterized by a selective increase in circulating mature erythrocytes, is caused by enhanced erythropoietin (Epo) concentrations triggered by hypoxia-inducible factor-2α (HIF-2α). While mechanisms of hypoxia-dependent stabilization of HIF-2α protein are well established, data regarding oxygen-independent regulation of HIF-2α are sparse. In this study, we generated a novel transgenic mouse model, in which biglycan was constitutively overexpressed and secreted by hepatocytes (BGN Tg ), thereby providing a constant source of biglycan released into the blood stream. We discovered that although the mice were apparently normal, they harbored an increase in mature circulating erythrocytes. In addition to erythrocytosis, the BGN Tg mice showed elevated hemoglobin concentrations, hematocrit values and enhanced total iron binding capacity, revealing a clinical picture of polycythemia. In BGN Tg mice markedly enhanced Epo mRNA expression was observed in the liver and kidney, while elevated Epo protein levels were found in liver, kidney and blood. Mechanistically, we showed that the transgenic animals had an abundance of HIF-2α protein in the liver and kidney. Finally, by transiently overexpressing circulating biglycan in mice deficient in various Toll-like receptors (TLRs), we determined that this novel function of biglycan to promote Epo synthesis was specifically mediated by a selective interaction with TLR2. Thus, we discovered a novel biological pathway of soluble biglycan inducing HIF-2α protein stabilization and Epo production presumably in an oxygen-independent manner, ultimately giving rise to secondary polycythemia.

  15. Improved normal tissue sparing in head and neck radiotherapy using biological cost function based-IMRT.

    Science.gov (United States)

    Anderson, N; Lawford, C; Khoo, V; Rolfo, M; Joon, D L; Wada, M

    2011-12-01

    Intensity-modulated radiotherapy (IMRT) has reduced the impact of acute and late toxicities associated with head and neck radiotherapy. Treatment planning system (TPS) advances in biological cost function based optimization (BBO) and improved segmentation techniques have increased organ at risk (OAR) sparing compared to conventional dose-based optimization (DBO). A planning study was undertaken to compare OAR avoidance in DBO and BBO treatment planning. Simultaneous integrated boost treatment plans were produced for 10 head and neck patients using both planning systems. Plans were compared for tar get coverage and OAR avoidance. Comparisons were made using the BBO TPS Monte Carlo dose engine to eliminate differences due to inherent algorithms. Target coverage (V95%) was maintained for both solutions. BBO produced lower OAR doses, with statistically significant improvement to left (12.3%, p = 0.005) and right parotid mean dose (16.9%, p = 0.004), larynx V50_Gy (71.0%, p = 0.005), spinal cord (21.9%, p < 0.001) and brain stem dose maximums (31.5%, p = 0.002). This study observed improved OAR avoidance with BBO planning. Further investigations will be undertaken to review any clinical benefit of this improved planned dosimetry.

  16. Short term recovery of soil biological functions in a new vineyard cultivated in organic farming

    Science.gov (United States)

    Costantini, Edoardo; Agnelli, Alessandro; Fabiani, Arturo; Gagnarli, Elena; Mocali, Stefano; Priori, Simone; Simoni, Sauro; Valboa, Giuseppe

    2014-05-01

    soil biological classes). Physical soil characteristics remained unchanged after the first year from the earthworks and did not change under grass cover. Chemical analysis only indicated a significant effect of earthworks. Over the 2010-2013 period, the new vineyard showed a slight increase of TOC and total N contents; as compared to the old vineyard, it averaged lower TOC and total N, and higher CaCO3 contents, suggesting still evolving equilibrium conditions. Microarthropod analysis showed significant different abundances and communities' structures both by management system and by year, increasing where the land use pressure was reduced by permanent grass cover and along with the aging of vineyard. Though the euedaphic forms, well adapted to soil life, were always rare. Microbiological analysis showed a different structure of eubacterial communities and a lower microbial activity in the new vineyard, especially during 2010-2012. In contrast, significant differences were not observed between the two vineyards in 2013, and grass cover effect was controversial. To sum up, the consequence of deep earthworks on chemical and biological properties were still evident after four years from planting and more time was needed to recover soil functions. Permanent grass cover did not always show a consistent positive effect.

  17. Single Fluorescent Molecules as Nano-Illuminators for Biological Structure and Function

    Science.gov (United States)

    Moerner, W. E.

    2011-03-01

    Since the first optical detection and spectroscopy of a single molecule in a solid (Phys. Rev. Lett. {62}, 2535 (1989)), much has been learned about the ability of single molecules to probe local nanoenvironments and individual behavior in biological and nonbiological materials in the absence of ensemble averaging that can obscure heterogeneity. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic imaging of individual fluorophores leads naturally to superlocalization, or determination of the position of the molecule with precision beyond the optical diffraction limit, simply by digitization of the point-spread function from the single emitter. For example, the shape of single filaments in a living cell can be extracted simply by allowing a single molecule to move through the filament (PNAS {103}, 10929 (2006)). The addition of photoinduced control of single-molecule emission allows imaging beyond the diffraction limit (super-resolution) and a new array of acronyms (PALM, STORM, F-PALM etc.) and advances have appeared. We have used the native blinking and switching of a common yellow-emitting variant of green fluorescent protein (EYFP) reported more than a decade ago (Nature {388}, 355 (1997)) to achieve sub-40 nm super-resolution imaging of several protein structures in the bacterium Caulobacter crescentus: the quasi-helix of the actin-like protein MreB (Nat. Meth. {5}, 947 (2008)), the cellular distribution of the DNA binding protein HU (submitted), and the recently discovered division spindle composed of ParA filaments (Nat. Cell Biol. {12}, 791 (2010)). Even with these advances, better emitters would provide more photons and improved resolution, and a new photoactivatable small-molecule emitter has recently been synthesized and targeted to specific structures in living cells to provide super-resolution images (JACS {132}, 15099 (2010)). Finally, a new optical method for extracting three-dimensional position information based on

  18. Meat Science and Muscle Biology Symposium: Ecological and dietary impactors of foodborne pathogens and methods to reduce fecal shedding in cattle.

    Science.gov (United States)

    Callaway, T R; Edrington, T S; Nisbet, D J

    2014-04-01

    Pathogenic bacteria can live asymptomatically within and on cattle and can enter the food chain but also can be transmitted to humans by fecal or direct animal contact. Reducing pathogenic bacterial incidence and populations within live cattle represents an important step in improving food safety. A broad range of preslaughter intervention strategies are being developed, which can be loosely classified as 1) directly antipathogen strategies, 2) competitive enhancement strategies (that use the microbiome's competitive nature against pathogens), and 3) animal management strategies. Included within these broad categories are such diverse methods as vaccination against foodborne pathogens, probiotics and prebiotics, bacterial viruses (i.e., bacteriophages), sodium chlorate feeding, and dietary and management changes that specifically alter the microbiome. The simultaneous application of 1 or more preharvest strategies has the potential to reduce human foodborne illnesses by erecting multiple hurdles preventing entry into humans. However, economic factors that govern producer profitability must be kept in mind while improving food safety.

  19. Connecting Structure-Property and Structure-Function Relationships across the Disciplines of Chemistry and Biology: Exploring Student Perceptions

    Science.gov (United States)

    Kohn, Kathryn P.; Underwood, Sonia M.; Cooper, Melanie M.

    2018-01-01

    While many university students take science courses in multiple disciplines, little is known about how they perceive common concepts from different disciplinary perspectives. Structure-property and structure-function relationships have long been considered important explanatory concepts in the disciplines of chemistry and biology, respectively.…

  20. Perchlorate exposure and association with iron homeostasis and other biological functions among NHANES 2005-2008 subjects

    Science.gov (United States)

    Perchlorate exposure and association with iron homeostasis and other biological functions among NHANES 2005-2008 subjects Schreinemachers DM, Ghio AJ, Cascio WE, Sobus JR. U.S. EPA, RTP, NC, USA Perchlorate (ClO4-), an environmental pollutant, is a known thyroid toxicant and...

  1. Physicochemical and functional properties of micronized jincheng orange by-products (Citrus sinensis Osbeck) dietary fiber and its application as a fat replacer in yogurt.

    Science.gov (United States)

    Yi, Tian; Huang, Xingjian; Pan, Siyi; Wang, Lufeng

    2014-08-01

    Orange by-products from juice extraction are generally discarded or used in animal feed due to their low market value. However, orange by-products show potential as dietary fiber (DF) and fat replacers in products such as yogurt. This study assessed the benefits of using orange by-products in DF-enriched materials such as DF powders (OP) and micronized DF with ball-milling (MDF). The study also investigated the effects of adding different levels of OP and MDF on the quality of low-fat yogurt. Results show that MDF showed better physicochemical and functional properties than OP, and that 2% MDF as a fat replacer in yogurt retained most of the textural and sensory properties of full-fat yogurt. Therefore, this study showed that MDF is a promising alternative as a fat replacer in low-fat yogurt, without sacrificing good taste and other qualities of full-fat yogurt.

  2. Proteome-wide Structural Analysis of PTM Hotspots Reveals Regulatory Elements Predicted to Impact Biological Function and Disease.

    Science.gov (United States)

    Torres, Matthew P; Dewhurst, Henry; Sundararaman, Niveda

    2016-11-01

    Post-translational modifications (PTMs) regulate protein behavior through modulation of protein-protein interactions, enzymatic activity, and protein stability essential in the translation of genotype to phenotype in eukaryotes. Currently, less than 4% of all eukaryotic PTMs are reported to have biological function - a statistic that continues to decrease with an increasing rate of PTM detection. Previously, we developed SAPH-ire (Structural Analysis of PTM Hotspots) - a method for the prioritization of PTM function potential that has been used effectively to reveal novel PTM regulatory elements in discrete protein families (Dewhurst et al., 2015). Here, we apply SAPH-ire to the set of eukaryotic protein families containing experimental PTM and 3D structure data - capturing 1,325 protein families with 50,839 unique PTM sites organized into 31,747 modified alignment positions (MAPs), of which 2010 (∼6%) possess known biological function. Here, we show that using an artificial neural network model (SAPH-ire NN) trained to identify MAP hotspots with biological function results in prediction outcomes that far surpass the use of single hotspot features, including nearest neighbor PTM clustering methods. We find the greatest enhancement in prediction for positions with PTM counts of five or less, which represent 98% of all MAPs in the eukaryotic proteome and 90% of all MAPs found to have biological function. Analysis of the top 1092 MAP hotspots revealed 267 of truly unknown function (containing 5443 distinct PTMs). Of these, 165 hotspots could be mapped to human KEGG pathways for normal and/or disease physiology. Many high-ranking hotspots were also found to be disease-associated pathogenic sites of amino acid substitution despite the lack of observable PTM in the human protein family member. Taken together, these experiments demonstrate that the functional relevance of a PTM can be predicted very effectively by neural network models, revealing a large but testable

  3. OP-16 DIETARY INTERVENTION USING THE LOW FODMAP DIET VERSUS THE "MILK, EGG, WHEAT AND SOYA FREE" DIET FOR TREATMENT OF FUNCTIONAL GUT DISORDERS A SINGLE CENTRE EXPERIENCE.

    Science.gov (United States)

    Keetarut, K; Kiparissi, F; McCartney, S; Murray, C

    2015-10-01

    The adolescent clinic is a tertiary referral clinic including patients with a wide variety of complex gastroenterology conditions predominantly tertiary referrals fromGreat Ormond Street Hospital transition clinic. To assess the benefit of the low FODMAP diet versus the "Milk, egg, wheat and soya" (MEWS) free diet for symptom control in patients with functional gut disorders and/or food allergy from June 2013 to June 2015. A total of 436 patients were seen during this time period for dietetic advice and the age range varied from 13-21 years old with 43terms of diagnosis used. These included the broad categories of inflammatory bowel disease, food allergy, functional gut conditions, congenital gut disorders, autoimmune disorders and oncology conditions. For functional gut disorders/food allergy there were 14 terms used which varied from "Functional gut disorder" to "Irritable bowel syndrome" and also included patients with delayed gastric emptying. For patients with food allergy the terms "multiple food allergy" or EosinophilicOesophagitis or Colitis were used. A total of 40 patients with functional gut disorders were referred for the MEWS or low FODMAP diet. The efficacy of the diet was measured using a symptom scale pre and post dietary intervention assessing if patients symptoms changed from nil/mild/moderate tosignificant. The results indicate whether the presenting predominant symptom e.g., bloating, constipation or abdominal pain improved following the dietary intervention. A total of 29 patients were seen for the "MEWS" free diet.These were 17 functional, 3 food allergy, 6 IBS, 2 EosinophilicOesophagitis, 1 oncology patient. The age ranged from 14 to 21 and average ageat treatment was 16.6 years old with 11 males and 18 females. 13 patients were referred for the low FODMAP diet. The patients referred for the low FODMAP diet were 7 with a functional gut disorder, 5Irritable Bowel Syndrome and1 EosinophilicColitis.The age range was 14 to 19 years old with

  4. Dietary supplementation with n-3 polyunsaturated fatty acids in early childhood: effects on blood pressure and arterial structure and function at age 8 y.

    Science.gov (United States)

    Ayer, Julian G; Harmer, Jason A; Xuan, Wei; Toelle, Brett; Webb, Karen; Almqvist, Catarina; Marks, Guy B; Celermajer, David S

    2009-08-01

    n-3 Fatty acid supplementation in adults results in cardiovascular benefits. However, the cardiovascular effects of n-3 supplementation in early childhood are unknown. The objective was to evaluate blood pressure (BP) and arterial structure and function in 8-y-old children who had participated in a randomized controlled trial of dietary n-3 and n-6 modification over the first 5 y of life. The children (n = 616; 49% girls) were randomly assigned antenatally to active (n = 312; increase in n-3 intake and decrease in n-6 intake) or control (n = 304) diet interventions implemented from the time of weaning or introduction of solids until 5 y of age. At age 8.0 +/- 0.1 y, BP, carotid intima-media thickness, carotid artery distensibility, augmentation index, and brachial pulse wave velocity were measured in 405 of these children. Venous blood was collected for measurement of plasma fatty acids, lipoproteins, high-sensitivity C-reactive protein, and asymmetric dimethylarginine. Plasma fatty acid concentrations were also assessed during the intervention. Plasma concentrations of n-3 fatty acids were higher and of n-6 were lower in the active than in the control diet group at 18 mo and 3 and 5 y (P n-3 and n-6 fatty acids were similar at 8 y. At 8 y of age, no significant differences were found in BP, carotid intima-media thickness, carotid artery distensibility, augmentation index, asymmetric dimethylarginine, high-sensitivity C-reactive protein, or lipoproteins between diet groups. A dietary supplement intervention to increase n-3 and decrease n-6 intakes from infancy until 5 y does not result in significant improvements in arterial structure and function at age 8 y. This trial was registered at the Australian Clinical Trials Registry as ACTRN012605000042640.

  5. Crucial roles of Nox2-derived oxidative stress in deteriorating the function of insulin receptors and endothelium in dietary obesity of middle-aged mice.

    Science.gov (United States)

    Du, Junjie; Fan, Lampson M; Mai, Anna; Li, Jian-Mei

    2013-11-01

    Systemic oxidative stress associated with dietary calorie overload plays an important role in the deterioration of vascular function in middle-aged patients suffering from obesity and insulin resistance. However, effective therapy is still lacking. In this study, we used a mouse model of middle-aged obesity to investigate the therapeutic potential of pharmaceutical inhibition (apocynin, 5 mM supplied in the drinking water) or knockout of Nox2, an enzyme generating reactive oxygen species (ROS), in high-fat diet (HFD)-induced obesity, oxidative stress, insulin resistance and endothelial dysfunction. Littermates of C57BL/6J wild-type (WT) and Nox2 knockout (KO) mice (7 months old) were fed with a HFD (45% kcal fat) or normal chow diet (NCD, 12% kcal fat) for 16 weeks and used at 11 months of age. Compared to NCD WT mice, HFD WT mice developed obesity, insulin resistance, dyslipidaemia and hypertension. Aortic vessels from these mice showed significantly increased Nox2 expression and ROS production, accompanied by significantly increased ERK1/2 activation, reduced insulin receptor expression, decreased Akt and eNOS phosphorylation and impaired endothelium-dependent vessel relaxation to acetylcholine. All these HFD-induced abnormalities (except the hyperinsulinaemia) were absent in apocynin-treated WT or Nox2 KO mice given the same HFD. In conclusion, Nox2-derived ROS played a key role in damaging insulin receptor and endothelial function in dietary obesity after middle-age. Targeting Nox2 could represent a valuable therapeutic strategy in the metabolic syndrome. © 2013 The British Pharmacological Society.

  6. Dietary acid load and renal function have varying effects on blood acid-base status and exercise performance across age and sex.

    Science.gov (United States)

    Hietavala, Enni-Maria; Stout, Jeffrey R; Frassetto, Lynda A; Puurtinen, Risto; Pitkänen, Hannu; Selänne, Harri; Suominen, Harri; Mero, Antti A

    2017-12-01

    Diet composition influences acid-base status of the body. This may become more relevant as renal functional capacity declines with aging. We examined the effects of low (LD) versus high dietary acid load (HD) on blood acid-base status and exercise performance. Participants included 22 adolescents, 33 young adults (YA), and 33 elderly (EL), who followed a 7-day LD and HD in a randomized order. At the end of both diet periods the subjects performed a cycle ergometer test (3 × 10 min at 35%, 55%, 75%, and (except EL) until exhaustion at 100% of maximal oxygen uptake). At the beginning of and after the diet periods, blood samples were collected at rest and after all workloads. Oxygen uptake, respiratory exchange ratio (RER), and heart rate (HR) were monitored during cycling. In YA and EL, bicarbonate (HCO 3 - ) and base excess (BE) decreased over the HD period, and HCO 3 - , BE, and pH were lower at rest after HD compared with LD. In YA and EL women, HCO 3 - and BE were lower at submaximal workloads after HD compared with LD. In YA women, the maximal workload was 19% shorter and maximal oxygen uptake, RER, and HR were lower after HD compared with LD. Our data uniquely suggests that better renal function is associated with higher availability of bases, which may diminish exercise-induced acidosis and improve maximal aerobic performance. Differences in glomerular filtration rate between the subject groups likely explains the larger effects of dietary acid load in the elderly compared with younger subjects and in women compared with men.

  7. Dietary sodium

    DEFF Research Database (Denmark)

    Graudal, Niels

    2015-01-01

    The 2013 Institute of Medicine (IOM) report "Sodium Intake in Populations: Assessment of Evidence" did not support the current recommendations of the IOM and the American Heart Association (AHA) to reduce daily dietary sodium intake to below 2,300 mg. The report concluded that the population...

  8. Revealing the functions of the transketolase enzyme isoforms in Rhodopseudomonas palustris using a systems biology approach.

    Directory of Open Access Journals (Sweden)

    Chia-Wei Hu

    Full Text Available BACKGROUND: Rhodopseudomonas palustris (R. palustris is a purple non-sulfur anoxygenic phototrophic bacterium that belongs to the class of proteobacteria. It is capable of absorbing atmospheric carbon dioxide and converting it to biomass via the process of photosynthesis and the Calvin-Benson-Bassham (CBB cycle. Transketolase is a key enzyme involved in the CBB cycle. Here, we reveal the functions of transketolase isoforms I and II in R. palustris using a systems biology approach. METHODOLOGY/PRINCIPAL FINDINGS: By measuring growth ability, we found that transketolase could enhance the autotrophic growth and biomass production of R. palustris. Microarray and real-time quantitative PCR revealed that transketolase isoforms I and II were involved in different carbon metabolic pathways. In addition, immunogold staining demonstrated that the two transketolase isoforms had different spatial localizations: transketolase I was primarily associated with the intracytoplasmic membrane (ICM but transketolase II was mostly distributed in the cytoplasm. Comparative proteomic analysis and network construction of transketolase over-expression and negative control (NC strains revealed that protein folding, transcriptional regulation, amino acid transport and CBB cycle-associated carbon metabolism were enriched in the transketolase I over-expressed strain. In contrast, ATP synthesis, carbohydrate transport, glycolysis-associated carbon metabolism and CBB cycle-associated carbon metabolism were enriched in the transketolase II over-expressed strain. Furthermore, ATP synthesis assays showed a significant increase in ATP synthesis in the transketolase II over-expressed strain. A PEPCK activity assay showed that PEPCK activity was higher in transketolase over-expressed strains than in the negative control strain. CONCLUSIONS/SIGNIFICANCE: Taken together, our results indicate that the two isoforms of transketolase in R. palustris could affect photoautotrophic growth

  9. Rapidly restoring biological soil crusts and ecosystem functions in a severely disturbed desert ecosystem.

    Science.gov (United States)

    Chiquoine, Lindsay P; Abella, Scott R; Bowker, Matthew A

    2016-06-01

    Restoring biological soil crusts (biocrusts) in degraded drylands can contribute to recovery of ecosystem functions that have global implications, including erosion resistance and nutrient cycling. To examine techniques for restoring biocrusts, we conducted a replicated, factorial experiment on recently abandoned road surfaces by applying biocrust inoculation (salvaged and stored dry for two years), salvaged topsoil, an abiotic soil amendment (wood shavings), and planting of a dominant perennial shrub (Ambrosia dumosa). Eighteen months after treatments, we measured biocrust abundance and species composition, soil chlorophyll a content and fertility, and soil resistance to erosion. Biocrust addition significantly accelerated biocrust recovery on disturbed soils, including increasing lichen and moss cover and cyanobacteria colonization. Compared to undisturbed controls, inoculated plots had similar lichen and moss composition, recovered 43% of total cyanobacteria density, had similar soil chlorophyll content, and exhibited recovery of soil fertility and soil stability. Inoculation was the only treatment that generated lichen and moss cover. Topsoil application resulted in partial recovery of the cyanobacteria community and soil properties. Compared to untreated disturbed plots, topsoil application without inoculum increased cyanobacteria density by 186% and moderately improved soil chlorophyll and ammonium content and soil stability. Topsoil application produced 22% and 51% of the cyanobacteria density g⁻¹ soil compared to undisturbed and inoculated plots, respectively. Plots not treated with either topsoil or inoculum had significantly lower cyanobacteria density, soil chlorophyll and ammonium concentrations, and significantly higher soil nitrate concentration. Wood shavings and Ambrosia had no influence on biocrust lichen and moss species recovery but did affect cyanobacteria composition and soil fertility. Inoculation of severely disturbed soil with native

  10. Biological oscillations for learning walking coordination: dynamic recurrent neural network functionally models physiological central pattern generator.

    Science.gov (United States)

    Hoellinger, Thomas; Petieau, Mathieu; Duvinage, Matthieu; Castermans, Thierry; Seetharaman, Karthik; Cebolla, Ana-Maria; Bengoetxea, Ana; Ivanenko, Yuri; Dan, Bernard; Cheron, Guy

    2013-01-01

    The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum, or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996) was recently modeled (Barliya et al., 2009) by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator (CPG) processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN) mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank, and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.

  11. Functional near infrared spectroscopy as a potential biological assessment of addiction recovery: preliminary findings.

    Science.gov (United States)

    Dempsey, Jared P; Harris, Kitty S; Shumway, Sterling T; Kimball, Thomas G; Herrera, J Caleb; Dsauza, Cynthia M; Bradshaw, Spencer D

    2015-03-01

    Addiction science has primarily utilized self-report, continued substance use, and relapse factors to explore the process of recovery. However, the entry into successful abstinence substantially reduces our assessment abilities. Advances in neuroscience may be the key to objective understanding, treating, and monitoring long-term success in addiction recovery. To explore functional near infrared spectroscopy (fNIR) as a viable technique in the assessment of addiction-cue reactivity. Specifically, prefrontal cortex (PFC) activation to alcohol cues was explored among formally alcohol-dependent individuals, across varying levels of successful abstinence. The aim of the investigation was to identify patterns of PFC activation change consistent with duration of abstinence. A total of 15 formally alcohol-dependent individuals, with abstinence durations ranging from 1 month to 10 years, viewed alcohol images during fNIR PFC assessment. Participants also subjectively rated the same images for affect and arousal level. Subjective ratings of alcohol cues did not significantly correlate with duration of abstinence. As expected, days of abstinence did not significantly correlate with neutral cue fNIR reactivity. However, for alcohol cues, fNIR results showed increased days of abstinence was associated with decreased activation within the dorsolateral and dorsomedial prefrontal cortex regions. The present results suggest that fNIR may be a viable tool in the assessment of addiction-cue reactivity. RESULTS also support previous findings on the importance of dorsolateral and dorsomedial PFC in alcohol-cue activation. The findings build upon these past results suggesting that fNIR-assessed activation may represent a robust biological marker of successful addiction recovery.

  12. The development of peptide-based interfacial biomaterials for generating biological functionality on the surface of bioinert materials.

    Science.gov (United States)

    Meyers, Steven R; Khoo, Xiaojuan; Huang, Xin; Walsh, Elisabeth B; Grinstaff, Mark W; Kenan, Daniel J

    2009-01-01

    Biomaterials used in implants have traditionally been selected based on their mechanical properties, chemical stability, and biocompatibility. However, the durability and clinical efficacy of implantable biomedical devices remain limited in part due to the absence of appropriate biological interactions at the implant interface and the lack of integration into adjacent tissues. Herein, we describe a robust peptide-based coating technology capable of modifying the surface of existing biomaterials and medical devices through the non-covalent binding of modular biofunctional peptides. These peptides contain at least one material binding sequence and at least one biologically active sequence and thus are termed, "Interfacial Biomaterials" (IFBMs). IFBMs can simultaneously bind the biomaterial surface while endowing it with desired biological functionalities at the interface between the material and biological realms. We demonstrate the capabilities of model IFBMs to convert native polystyrene, a bioinert surface, into a bioactive surface that can support a range of cell activities. We further distinguish between simple cell attachment with insufficient integrin interactions, which in some cases can adversely impact downstream biology, versus biologically appropriate adhesion, cell spreading, and cell survival mediated by IFBMs. Moreover, we show that we can use the coating technology to create spatially resolved patterns of fluorophores and cells on substrates and that these patterns retain their borders in culture.

  13. Dietary and health biomarkers-time for an update

    NARCIS (Netherlands)

    Dragsted, L.O.; Gao Qizian,; Praticò, G.; Manach, Claudine; Wishart, D.S.; Scalbert, A.; Feskens, E.J.M.

    2017-01-01

    In the dietary and health research area, biomarkers are extensively used for multiple purposes. These include biomarkers of dietary intake and nutrient status, biomarkers used to measure the biological effects of specific dietary components, and biomarkers to assess the effects of diet on health.

  14. Antisense oligodeoxynucleotide inhibition as a potent diagnostic tool for gene function in plant biology

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Christer; Sun, Chuanxin; Ghebramedhin, Haile; Hoglund, Anna-Stina; Jansson, Christer

    2008-01-15

    Antisense oligodeoxynucleotide (ODN) inhibition emerges as an effective means for probing gene function in plant cells. Employing this method we have established the importance of the SUSIBA2 transcription factor for regulation of starch synthesis in barley endosperm, and arrived at a model for the role of the SUSIBAs in sugar signaling and source-sink commutation during cereal endosperm development. In this addendum we provide additional data demonstrating the suitability of the antisense ODN technology in studies on starch branching enzyme activities in barley leaves. We also comment on the mechanism for ODN uptake in plant cells. Antisense ODNs are short (12-25 nt-long) stretches of single-stranded ODNs that hybridize to the cognate mRNA in a sequence-specific manner, thereby inhibiting gene expression. They are naturally occurring in both prokaryotes and eukaryotes where they partake in gene regulation and defense against viral infection. The mechanisms for antisense ODN inhibition are not fully understood but it is generally considered that the ODN either sterically interferes with translation or promotes transcript degradation by RNase H activation. The earliest indication of the usefulness of antisense ODN technology for the purposes of molecular biology and medical therapy was the demonstration in 1978 that synthetic ODNs complementary to Raos sarcoma virus could inhibit virus replication in tissue cultures of chick embryo fibroblasts. Since then the antisense ODN technology has been widely used in animal sciences and as an important emerging therapeutic approach in clinical medicine. However, antisense ODN inhibition has been an under-exploited strategy for plant tissues, although the prospects for plant cells in suspension cultures to take up single-stranded ODNs was reported over a decade ago. In 2001, two reports from Malho and coworker demonstrated the use of cationic-complexed antisense ODNs to suppress expression of genes encoding pollen

  15. The influence of maternal dietary exposure to dioxins and PCBs during pregnancy on ADHD symptoms and cognitive functions in Norwegian preschool children.

    Science.gov (United States)

    Caspersen, Ida Henriette; Aase, Heidi; Biele, Guido; Brantsæter, Anne Lise; Haugen, Margaretha; Kvalem, Helen Engelstad; Skogan, Annette Holth; Zeiner, Pål; Alexander, Jan; Meltzer, Helle Margrete; Knutsen, Helle K

    2016-09-01

    Polychlorinated dibenzo-p-dioxins/dibenzofurans (dioxins) and polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) with potentially adverse impact on child neurodevelopment. Whether the potential detrimental effects of dioxins and PCBs on neurodevelopment are of specific or unspecific character is not clear. The purpose of the current study was to examine the influence of maternal dietary exposure to dioxins and PCBs on ADHD symptoms and cognitive functioning in preschoolers. We aimed to investigate a range of functions, in particular IQ, expressive language, and executive functions. This study includes n=1024 children enrolled in a longitudinal prospective study of ADHD (the ADHD Study), with participants recruited from The Norwegian Mother and Child Cohort Study (MoBa). Boys and girls aged 3.5years participated in extensive clinical assessments using well-validated tools; The Preschool Age Psychiatric Assessment interview (PAPA), Stanford-Binet 5th revision (SB-5), Child Development Inventory (CDI), and Behavior Rating Inventory of Executive Function, Preschool version (BRIEF-P). Maternal dietary exposure to dioxins and PCBs was estimated based on a validated food frequency questionnaire (FFQ) answered mid-pregnancy and a database of dioxin and PCB concentrations in Norwegian foods. Exposure to dioxins and dioxin-like PCBs (dl-compounds) was expressed in total toxic equivalents (TEQ), and PCB-153 was used as marker for non-dioxin-like PCBs (ndl-PCBs). Generalized linear and additive models adjusted for confounders were used to examine exposure-outcome associations. Exposure to PCB-153 or dl-compound was not significantly associated with any of the outcome measures when analyses were performed for boys and girls together. After stratifying by sex, adjusted analyses indicated a small inverse association with language in girls. An increase in the exposure variables of 1 SD was associated with a reduction in language score of -0.2 [CI -0.4, -0

  16. Synthesis, characterization and functionalization of silicon nanoparticle based hybrid nanomaterials for photovoltaic and biological applications

    Science.gov (United States)

    Xu, Zejing

    Silicon nanoparticles are attractive candidates for biological, photovoltaic and energy storage applications due to their size dependent optoelectronic properties. These include tunable light emission, high brightness, and stability against photo-bleaching relative to organic dyes (see Chapter 1). The preparation and characterization of silicon nanoparticle based hybrid nanomaterials and their relevance to photovoltaic and biological applications are described. The surface-passivated silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with various organic ligands. The surface structure and optical properties of the passivated silicon nanoparticles were systematically characterized. Fast approaches for purifying and at the same time size separating the silicon nanoparticles using a gravity GPC column were developed. The hydrodynamic diameter and size distribution of these size-separated silicon nanoparticles were determined using GPC and Diffusion Ordered NMR Spectroscopy (DOSY) as fast, reliable alternative approaches to TEM. Water soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water stable chloroalkyl or alkynyl terminated nanoparticles, respectively. Nanoparticles with the ω-chloroalkyl substituents were easily converted to ω-azidoalkyl groups through the reaction of the silicon nanoparticles with sodium azide in DMF. The azido terminated nanoparticles were then grafted with monoalkynyl-PEG polymers using a copper catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core-shell silicon nanoparticles with a covalently attached PEG shell. Covalently

  17. Proteome-wide Structural Analysis of PTM Hotspots Reveals Regulatory Elements Predicted to Impact Biological Function and Disease*

    Science.gov (United States)

    Dewhurst, Henry; Sundararaman, Niveda

    2016-01-01

    Post-translational modifications (PTMs) regulate protein behavior through modulation of protein-protein interactions, enzymatic activity, and protein stability essential in the translation of genotype to phenotype in eukaryotes. Currently, less than 4% of all eukaryotic PTMs are reported to have biological function - a statistic that continues to decrease with an increasing rate of PTM detection. Previously, we developed SAPH-ire (Structural Analysis of PTM Hotspots) - a method for the prioritization of PTM function potential that has been used effectively to reveal novel PTM regulatory elements in discrete protein families (Dewhurst et al., 2015). Here, we apply SAPH-ire to the set of eukaryotic protein families containing experimental PTM and 3D structure data - capturing 1,325 protein families with 50,839 unique PTM sites organized into 31,747 modified alignment positions (MAPs), of which 2010 (∼6%) possess known biological function. Here, we show that using an artificial neural network model (SAPH-ire NN) trained to identify MAP hotspots with biological function results in prediction outcomes that far surpass the use of single hotspot features, including nearest neighbor PTM clustering methods. We find the greatest enhancement in prediction for positions with PTM counts of five or less, which represent 98% of all MAPs in the eukaryotic proteome and 90% of all MAPs found to have biological function. Analysis of the top 1092 MAP hotspots revealed 267 of truly unknown function (containing 5443 distinct PTMs). Of these, 165 hotspots could be mapped to human KEGG pathways for normal and/or disease physiology. Many high-ranking hotspots were also found to be disease-associated pathogenic sites of amino acid substitution despite the lack of observable PTM in the human protein family member. Taken together, these experiments demonstrate that the functional relevance of a PTM can be predicted very effectively by neural network models, revealing a large but testable

  18. Role of dietary ginger Zingiber officinale in improving growth performances and immune functions of Labeo rohita fingerlings.

    Science.gov (United States)

    Sukumaran, Venkatachalam; Park, Se Chang; Giri, Sib Sankar

    2016-10-01

    This study evaluated the effects of ginger (Zingiber officinale) as a feeding supplement on the growth, skin mucus immune parameters, and cytokine-related gene expression of Labeo rohita, and its susceptibility to Aeromonas hydrophila infection. Diets containing six different concentrations of dried ginger (0% [basal diet], 0.2% [G2], 0.4% [G4], 0.6% [G6], 0.8% [G8], and 1.0% [G10] were fed to fish (average weight: 12.3 g) for 60 days. Growth parameters were examined at 30 and 60 days post-feeding. Skin mucosal immune responses and gene expression were examined 60 days post-feeding. Results showed that growth parameters such as final weight gain (93.47 ± 1.73 g) and specific growth rate (3.41 ± 0.14) were significantly higher in G8 than in the control. Among the skin mucosal immune parameters examined, lysozyme (46.5 ± 3.8 U mg(-1)), immunoglobulin level (8.9 ± 0.4 unit-mg mL(-1)), protein level (44.3 ± 2.2 mg mL(-1)) were significantly higher in G8. However, alkaline phosphatase activity (171.6 ± 10.2 IU L(-1)) was high (P ginger supplemented diet exhibited significantly higher relative post-challenge survival (65.52%) against Aeromonas hydrophila infection. Collectively, these results suggest that dietary supplements of ginger (at 0.8%) can promote growth performance, skin mucus immune parameters, and strengthen immunity of L. rohita. Therefore, ginger represents a promising food additive for carps in aquaculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Evening dietary tryptophan improves post-sleep behavioral and brain measures of memory function in healthy subjects

    NARCIS (Netherlands)

    Markus, C.R.; Jonkman, L.M.; Lammers, J.H.C.M.; Deutz, N.E.P.

    2006-01-01

    Brain serotonin function has been implicated in the control of sleep and sleep related memory dysfunctions are attributed to deficient brain serotonin activity. Depletion of the serotonin precursor tryptophan reduces brain serotonin function and is found to cause sleep abnormalities and cognitive

  20. Application of the Nutrition Functional Diversity indicator to assess food system contributions to dietary diversity and sustainable diets of Malawian households.

    Science.gov (United States)

    Luckett, Brian G; DeClerck, Fabrice A J; Fanzo, Jessica; Mundorf, Adrienne R; Rose, Donald

    2015-09-01

    Dietary diversity is associated with nutrient adequacy and positive health outcomes but indicators to measure diversity have focused primarily on consumption, rather than sustainable provisioning of food. The Nutritional Functional Diversity score was developed by ecologists to describe the contribution of biodiversity to sustainable diets. We have employed this tool to estimate the relative contribution of home production and market purchases in providing nutritional diversity to agricultural households in Malawi and examine how food system provisioning varies by time, space and socio-economic conditions. A secondary analysis of nationally representative household consumption data to test the applicability of the Nutritional Functional Diversity score. The data were collected between 2010 and 2011 across the country of Malawi. Households (n 11 814) from predominantly rural areas of Malawi. Nutritional Functional Diversity varied demographically, geographically and temporally. Nationally, purchased foods contributed more to household nutritional diversity than home produced foods (mean score=17·5 and 7·8, respectively). Households further from roads and population centres had lower overall diversity (PFunctional Diversity score is an effective indicator for identifying populations with low nutritional diversity and the relative roles that markets, agricultural extension and home production play in achieving nutritional diversity. This information may be used by policy makers to plan agricultural and market-based interventions that support sustainable diets and local food systems.

  1. A Plant-Based Dietary Intervention Improves Beta-Cell Function and Insulin Resistance in Overweight Adults: A 16-Week Randomized Clinical Trial.

    Science.gov (United States)

    Kahleova, Hana; Tura, Andrea; Hill, Martin; Holubkov, Richard; Barnard, Neal D

    2018-02-09

    The aim of this study was to test the effect of a plant-based dietary intervention on beta-cell function in overweight adults with no history of diabetes. Participants ( n = 75) were randomized to follow a low-fat plant-based diet ( n = 38) or to make no diet changes ( n = 37) for 16 weeks. At baseline and 16 weeks, beta-cell function was quantified with a mathematical model. Using a standard meal test, insulin secretory rate was calculated by C-peptide deconvolution. The Homeostasis Model Assessment (HOMA-IR) index was used to assess insulin resistance while fasting. A marked increase in meal-stimulated insulin secretion was observed in the intervention group compared with controls (interaction between group and time, Gxt, p effect -1.0 (95% CI, -1.2 to -0.8); Gxt, p = 0.004). Changes in HOMA-IR correlated positively with changes in body mass index (BMI) and visceral fat volume ( r = 0.34; p = 0.009 and r = 0.42; p = 0.001, respectively). The latter remained significant after adjustment for changes in BMI ( r = 0.41; p = 0.002). Changes in glucose-induced insulin secretion correlated negatively with BMI changes ( r = -0.25; p = 0.04), but not with changes in visceral fat. Beta-cell function and insulin sensitivity were significantly improved through a low-fat plant-based diet in overweight adults.

  2. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: A review

    International Nuclear Information System (INIS)

    Upadhyayula, Venkata K.K.

    2012-01-01

    Highlights: ► Smart sensors are needed for detection of chemical and biological threat agents. ► Smart sensors detect analytes with rapid speed, high sensitivity and selectivity. ► Functionalized gold nanoparticles (GNPs) can potentially smart sense threat agents. ► Functionalized GNPs support multiple analytical methods for sensing threat agents. ► Threat agents of all types can be detected using functionalized GNPs. - Abstract: There is a great necessity for development of novel sensory concepts supportive of smart sensing capabilities in defense and homeland security applications for detection of chemical and biological threat agents. A smart sensor is a detection device that can exhibit important features such as speed, sensitivity, selectivity, portability, and more importantly, simplicity in identifying a target analyte. Emerging nanomaterial based sensors, particularly those developed by utilizing functionalized gold nanoparticles (GNPs) as a sensing component potentially offer many desirable features needed for threat agent detection. The sensitiveness of physical properties expressed by GNPs, e.g. color, surface plasmon resonance, electrical conductivity and binding affinity are significantly enhanced when they are subjected to functionalization with an appropriate metal, organic or biomolecular functional groups. This sensitive nature of functionalized GNPs can be potentially exploited in the design of threat agent detection devices with smart sensing capabilities. In the presence of a target analyte (i.e., a chemical or biological threat agent) a change proportional to concentration of the analyte is observed, which can be measured either by colorimetric, fluorimetric, electrochemical or spectroscopic means. This article provides a review of how functionally modified gold colloids are applied in the detection of a broad range of threat agents, including radioactive substances, explosive compounds, chemical warfare agents, biotoxins, and

  3. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: A review

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyayula, Venkata K.K., E-mail: Upadhyayula.Venkata@epa.gov [Oak Ridge Institute of Science and Education (ORISE), MC-100-44, PO Box 117, Oak Ridge, TN 37831 (United States)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Smart sensors are needed for detection of chemical and biological threat agents. Black-Right-Pointing-Pointer Smart sensors detect analytes with rapid speed, high sensitivity and selectivity. Black-Right-Pointing-Pointer Functionalized gold nanoparticles (GNPs) can potentially smart sense threat agents. Black-Right-Pointing-Pointer Functionalized GNPs support multiple analytical methods for sensing threat agents. Black-Right-Pointing-Pointer Threat agents of all types can be detected using functionalized GNPs. - Abstract: There is a great necessity for development of novel sensory concepts supportive of smart sensing capabilities in defense and homeland security applications for detection of chemical and biological threat agents. A smart sensor is a detection device that can exhibit important features such as speed, sensitivity, selectivity, portability, and more importantly, simplicity in identifying a target analyte. Emerging nanomaterial based sensors, particularly those developed by utilizing functionalized gold nanoparticles (GNPs) as a sensing component potentially offer many desirable features needed for threat agent detection. The sensitiveness of physical properties expressed by GNPs, e.g. color, surface plasmon resonance, electrical conductivity and binding affinity are significantly enhanced when they are subjected to functionalization with an appropriate metal, organic or biomolecular functional groups. This sensitive nature of functionalized GNPs can be potentially exploited in the design of threat agent detection devices with smart sensing capabilities. In the presence of a target analyte (i.e., a chemical or biological threat agent) a change proportional to concentration of the analyte is observed, which can be measured either by colorimetric, fluorimetric, electrochemical or spectroscopic means. This article provides a review of how functionally modified gold colloids are applied in the detection of a broad

  4. Association between dietary intake of vitamin A, C, and E as antioxidants and cognitive function in the elderly at a nursing home

    Directory of Open Access Journals (Sweden)

    Jowy Tani

    2007-12-01

    Full Text Available As oxidative stress is considered one of the major mechanisms underlying degenerative changes, antioxidants from dietary sources, such as vitamin A, C, and E, may have protective effects against oxidative stress and thus be able to prevent or delay cognitive impairment in the elderly. This cross sectional study was designed to determine the association between dietary intake of vitamin A, C, and E and the presence of cognitive impairment in the elderly, along with other factors. Subjects included 36 residents from a nursing home in Jakarta, Indonesia. The data obtained including daily nutrition intake values one week prior to sampling converted from semi- quantitative food frequency questionnaire (SFFQ results, Mini Mental State Examination (MMSE scores, and anthropometrical measurement results. This study showed that while sex, age, education, nutritional status, and macronutrients intake were not significantly associated with presence of cognitive impairment, significant positive correlation existed between education and MMSE score (p=0.036, r=0.351. Higher vitamin A and vitamin C intake were shown to be significantly associated with lower incidence of cognitive impairment (p=0.022 and p=0.045, respectively. Moreover, vitamin C was shown to have significant positive correlation with MMSE score (p=0.031, r=0.359. However, the association between vitamin E and the presence of impairment was not significant (p=0.129. Higher intake of vitamin A and C may delay or prevent cognitive impairment in the elderly. Higher intake of vitamin C may contribute to better cognitive functioning. The findings may be explained by the two antioxidant vitamins’ protective effects against neurode generative processes cause by oxidative stress. (Med J Indones 2007; 16:261-6Keywords: antioxidant, vitamin A, vitamin C, vitamin E, cognitive impairment, the elderly

  5. Dietary HMB and β-alanine co-supplementation does not improve in situ muscle function in sedentary, aged male rats.

    Science.gov (United States)

    Russ, David W; Acksel, Cara; Boyd, Iva M; Maynard, John; McCorkle, Katherine W; Edens, Neile K; Garvey, Sean M

    2015-12-01

    This study evaluated the effects of dietary β-hydroxy-β-methylbutyrate (HMB) combined with β-alanine (β-Ala) in sedentary, aged male rats. It has been suggested that dietary HMB or β-Ala supplementation may mitigate age-related declines in muscle strength and fatigue resistance. A total of 20 aged Sprague-Dawley rats were studied. At age 20 months, 10 rats were administered a control, purified diet and 10 rats were administered a purified diet supplemented with both HMB and β-Ala (HMB+β-Ala) for 8 weeks (approximately equivalent to 3 and 2.4 g per day human dose). We measured medial gastrocnemius (MG) size, force, fatigability, and myosin composition. We also evaluated an array of protein markers related to muscle mitochondria, protein synthesis and breakdown, and autophagy. HMB+β-Ala had no significant effects on body weight, MG mass, force or fatigability, myosin composition, or muscle quality. Compared with control rats, those fed HMB+β-Ala exhibited a reduced (41%, P = 0.039) expression of muscle RING-finger protein 1 (MURF1), a common marker of protein degradation. Muscle from rats fed HMB+β-Ala also exhibited a 45% reduction (P = 0.023) in p70s6K phosphorylation following fatiguing stimulation. These data suggest that HMB+β-Ala at the dose studied may reduce muscle protein breakdown by reducing MURF1 expression, but has minimal effects on muscle function in this model of uncomplicated aging. They do not, however, rule out potential benefits of HMB+β-Ala co-supplementation at other doses or durations of supplementation in combination with exercise or in situations where extreme muscle protein breakdown and loss of mass occur (e.g., bedrest, cachexia, failure-to-thrive).

  6. Permeating disciplines: Overcoming barriers between molecular simulations and classical structure-function approaches in biological ion transport.

    Science.gov (United States)

    Howard, Rebecca J; Carnevale, Vincenzo; Delemotte, Lucie; Hellmich, Ute A; Rothberg, Brad S

    2018-04-01

    Ion translocation across biological barriers is a fundamental requirement for life. In many cases, controlling this process-for example with neuroactive drugs-demands an understanding of rapid and reversible structural changes in membrane-embedded proteins, including ion channels and transporters. Classical approaches to electrophysiology and structural biology have provided valuable insights into several such proteins over macroscopic, often discontinuous scales of space and time. Integrating these observations into meaningful mechanistic models now relies increasingly on computational methods, particularly molecular dynamics simulations, while surfacing important challenges in data management and conceptual alignment. Here, we seek to provide contemporary context, concrete examples, and a look to the future for bridging disciplinary gaps in biological ion transport. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Role of anorectic N-acylethanolamines in intestinal physiology and satiety control with respect to dietary fat

    DEFF Research Database (Denmark)

    Hansen, Harald S.

    2014-01-01

    ), and they have biological activity by themselves being anorectic and anti-inflammatory. It appears that the major effect of dietary fat on the level of these molecules is in the gastrointestinal system, where OEA, PEA and LEA in the enterocytes may function as homeostatic signals, which are decreased...

  8. Coral Reef Health Indices versus the Biological, Ecological and Functional Diversity of Fish and Coral Assemblages in the Caribbean Sea.

    Science.gov (United States)

    Díaz-Pérez, Leopoldo; Rodríguez-Zaragoza, Fabián Alejandro; Ortiz, Marco; Cupul-Magaña, Amílcar Leví; Carriquiry, Jose D; Ríos-Jara, Eduardo; Rodríguez-Troncoso, Alma Paola; García-Rivas, María Del Carmen

    2016-01-01

    This study evaluated the relationship between the indices known as the Reef Health Index (RHI) and two-dimensional Coral Health Index (2D-CHI) and different representative metrics of biological, ecological and functional diversity of fish and corals in 101 reef sites located across seven zones in the western Caribbean Sea. Species richness and average taxonomic distinctness were used to asses biological estimation; while ecological diversity was evaluated with the indices of Shannon diversity and Pielou´s evenness, as well as by taxonomic diversity and distinctness. Functional diversity considered the number of functional groups, the Shannon diversity and the functional Pielou´s evenness. According to the RHI, 57.15% of the zones were classified as presenting a "poor" health grade, while 42.85% were in "critical" grade. Based on the 2D-CHI, 28.5% of the zones were in "degraded" condition and 71.5% were "very degraded". Differences in fish and coral diversity among sites and zones were demonstrated using permutational ANOVAs. Differences between the two health indices (RHI and 2D-CHI) and some indices of biological, ecological and functional diversity of fish and corals were observed; however, only the RHI showed a correlation between the health grades and the species and functional group richness of fish at the scale of sites, and with the species and functional group richness and Shannon diversity of the fish assemblages at the scale of zones. None of the health indices were related to the metrics analyzed for the coral diversity. In general, our study suggests that the estimation of health indices should be complemented with classic community indices, or should at least include diversity indices of fish and corals, in order to improve the accuracy of the estimated health status of coral reefs in the western Caribbean Sea.

  9. A randomised controlled intervention trial evaluating the efficacy of a Mediterranean dietary pattern on cognitive function and psychological wellbeing in healthy older adults: the MedLey study.

    Science.gov (United States)

    Knight, Alissa; Bryan, Janet; Wilson, Carlene; Hodgson, Jonathan; Murphy, Karen

    2015-04-28

    The incidence of age-related cognitive decline is rising considerably around the world. There is evidence from a number of recent cross-sectional and prospective studies indicating positive associations between the Mediterranean dietary pattern (MedDiet) and improved cognitive outcomes among the elderly including, reduced age-related cognitive decline and enhanced age-related cognitive performance. However, to date no study has validated these associations in healthy older adult populations (≥65 years and above) with randomised evidence. The main aim of the present study is to provide justified evidence regarding the efficacy of a MedDiet approach to safely reduce the onset of cognitive decline, and promote optimal cognitive performance among healthy older adults using rigorous, randomised intervention methodology. MedLey is a 6-month, randomised controlled 2-cohort parallel group intervention trial, with initial assessment at baseline and repeated every three months. A sample of 166 healthy Australian men and women aged 65 years and above, with normal cognitive function and proficient in English language were recruited from metropolitan Adelaide, South Australia for the study. Participants randomly allocated to the experimental group are required to maintain an intervention dietary pattern based from the traditional Cretan MedDiet (i.e. vegetables, fruits, olive oil, legumes, fish, whole grain cereals, nuts and seeds and low consumption of processed foods, dairy products, red meat and vegetable oils) for six months, while those participants allocated to the control group are asked to maintain their customary lifestyle and diet. The primary outcome of interest is the quantitative difference in age-related cognitive performance, as measured by latent variables (cognitive constructs) sensitive to normal ageing and diet (i.e. speed of processing, memory, attention, executive functions, visual spatial and visuomotor ability). Secondary outcomes include change in

  10. Dietary Intake of Competitive Bodybuilders.

    Science.gov (United States)

    Spendlove, Jessica; Mitchell, Lachlan; Gifford, Janelle; Hackett, Daniel; Slater, Gary; Cobley, Stephen; O'Connor, Helen

    2015-07-01

    Competitive bodybuilders are well known for extreme physique traits and extremes in diet and training manipulation to optimize lean mass and achieve a low body fat. Although many of the dietary dogmas in bodybuilding lack scientific scrutiny, a number, including timing and dosing of high biological value proteins across the day, have more recently been confirmed as effective by empirical research studies. A more comprehensive understanding of the dietary intakes of bodybuilders has the potential to uncover other dietary approaches, deserving of scientific investigation, with application to the wider sporting, and potential health contexts, where manipulation of physique traits is desired. Our objective was to conduct a systematic review of dietary intake practices of competitive bodybuilders, evaluate the quality and currency of the existing literature, and identify research gaps to inform future studies. A systematic search of electronic databases was conducted from the earliest record until March 2014. The search combined permutations of the terms 'bodybuilding', 'dietary intake', and 'dietary supplement'. Included studies needed to report quantitative data (energy and macronutrients at a minimum) on habitual dietary intake of competitive bodybuilders. The 18 manuscripts meeting eligibility criteria reported on 385 participants (n = 62 women). Most studies were published in the 1980-1990s, with three published in the past 5 years. Study methodological quality was evaluated as poor. Energy intake ranged from 10 to 24 MJ/day for men and from 4 to 14 MJ/day for women. Protein intake ranged from 1.9 to 4.3 g/kg for men and from 0.8 to 2.8 g/kg for women. Intake of carbohydrate and fat was 6 months from competition) or immediate post-competition period and lowest during competition preparation (≤6 months from competition) or competition week. The most commonly reported dietary supplements were protein powders/liquids and amino acids. The studies failed to provide

  11. Understanding the Biological Roles of Pectins in Plants through Physiological and Functional Characterizations of Plant and Fungal Mutants

    DEFF Research Database (Denmark)

    Stranne, Maria

    The plant cell wall is a dynamic structure and it is involved in regulating a number of physiological features of plants such as physical strength, growth, cell differentiation, intercellular communication, water movement and defense responses. Pectins constitute a major class of plant cell wall...... polysaccharides and consist of backbones rich in galacturonic acids, which are decorated with a range of functional groups including acetyl esters and arabinan sidechains. Although much effort has been made to uncover biological functions of pectins in plants and remarkable progresses have taken place, many...... aspects remain elusive. Studies described in this thesis aimed at gaining new insights into the biological roles of pectin acetylation and arabinosylation in the model plant Arabidopsis thaliana. The thesis consists of four chapters: physiological characterization of cell wall mutants affected in cell...

  12. Functional Foods and Nutraceuticals as Dietary Intervention in Chronic Diseases; Novel Perspectives for Health Promotion and Disease Prevention.

    Science.gov (United States)

    Adefegha, Stephen Adeniyi

    2017-12-27

    Functional foods describe the importance of foods in promoting health and preventing diseases aside their primary role of providing the body with the required amount of essential nutrients such as proteins, carbohydrates, vitamins, fats, and oils needed for its healthy survival. This review explains the interaction of functional food bioactive compounds including polyphenols (phenolic acids [hydroxybenzoic acids and hydroxycinnamic acids], flavonoids [flavonols, flavones, flavanols, flavanones, isoflavones, proanthocyanidins], stilbenes, and lignans), terpenoids, carotenoids, alkaloids, omega-3 and polyunsaturated fatty acids, among others with critical enzymes (α- amylase, α- glucosidase, angiotensin-I converting enzyme [ACE], acetylcholinesterase [AChE], and arginase) linked to some degenerative diseases (type-2 diabetes, cardiovascular diseases [hypertension], neurodegenerative diseases [Alzheimer's disease] and erectile dysfunction). Different functional food bioactive compounds may synergistically/additively confer an overwhelming protection against these degenerative diseases by modulating/altering the activities of these critical enzymes of physiological importance.

  13. Discovering and validating biological hypotheses from coherent patterns in functional genomics data

    Energy Technology Data Exchange (ETDEWEB)

    Joachimiak, Marcin Pawel

    2008-08-12

    The area of transcriptomics analysis is among the more established in computational biology, having evolved in both technology and experimental design. Transcriptomics has a strong impetus to develop sophisticated computational methods due to the large amounts of available whole-genome datasets for many species and because of powerful applications in regulatory network reconstruction as well as elucidation and modeling of cellular transcriptional responses. While gene expression microarray data can be noisy and comparisons across experiments challenging, there are a number of sophisticated methods that aid in arriving at statistically and biologically significant conclusions. As such, computational transcriptomics analysis can provide guidance for analysis of results from newer experimental technologies. More recently, search methods have been developed to identify modules of genes, which exhibit coherent expression patterns in only a subset of experimental conditions. The latest advances in these methods allow to integrate multiple data types anddatasets, both experimental and computational, within a single statistical framework accounting for data confidence and relevance to specific biological questions. Such frameworks provide a unified environment for the exploration of specific biological hypothesis and for the discovery of coherent data patterns along with the evidence supporting them.

  14. Functionalization and microfluidic integration of silicon nanowire biologically gated field effect transistors

    DEFF Research Database (Denmark)

    Pfreundt, Andrea

    This thesis deals with the development of a novel biosensor for the detection of biomolecules based on a silicon nanowire biologically gated field-effect transistor and its integration into a point-of-care device. The sensor and electrical on-chip integration was developed in a different project...

  15. Functionalization and microfluidic integration of silicon nanowire biologically gated field effect transistors

    DEFF Research Database (Denmark)

    Pfreundt, Andrea; Svendsen, Winnie Edith; Dimaki, Maria

    2016-01-01

    This thesis deals with the development of a novel biosensor for the detection of biomolecules based on a silicon nanowire biologically gated field-effect transistor and its integration into a point-of-care device. The sensor and electrical on-chip integration was developed in a different project...

  16. Systems Biology-Derived Biomarkers to Predict Progression of Renal Function Decline in Type 2 Diabetes

    NARCIS (Netherlands)

    Mayer, Gert; Heerspink, Hiddo J. L.; Aschauer, Constantin; Heinzel, Andreas; Heinze, Georg; Kainz, Alexander; Sunzenauer, Judith; Perco, Paul; de Zeeuw, Dick; Rossing, Peter; Pena, Michelle; Oberbauer, Rainer

    OBJECTIVE: Chronic kidney disease (CKD) in diabetes has a complex molecular and likely multifaceted pathophysiology. We aimed to validate a panel of biomarkers identified using a systems biology approach to predict the individual decline of estimated glomerular filtration rate (eGFR) in a large

  17. Surface functionalization of bioactive glasses with natural molecules of biological significance, Part I: Gallic acid as model molecule

    Science.gov (United States)

    Zhang, Xin; Ferraris, Sara; Prenesti, Enrico; Verné, Enrica

    2013-12-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) and its derivatives are a group of biomolecules (polyphenols) obtained from plants. They have effects which are potentially beneficial to heath, for example they are antioxidant, anticarcinogenic and antibacterial, as recently investigated in many fields such as medicine, food and plant sciences. The main drawbacks of these molecules are both low stability and bioavailability. In this research work the opportunity to graft GA to bioactive glasses is investigated, in order to deliver the undamaged biological molecule into the body, using the biomaterial surfaces as a localized carrier. GA was considered for functionalization since it is a good model molecule for polyphenols and presents several interesting biological activities, like antibacterial, antioxidant and anticarcinogenic properties. Two different silica based bioactive glasses (SCNA and CEL2), with different reactivity, were employed as substrates. UV photometry combined with the Folin&Ciocalteu reagent was adopted to test the concentration of GA in uptake solution after functionalization. This test verified how much GA consumption occurred with surface modification and it was also used on solid samples to test the presence of GA on functionalized glasses. XPS and SEM-EDS techniques were employed to characterize the modification of material surface properties and functional group composition before and after functionalization.

  18. Dietary pyridoxine deficiency reduced growth performance and impaired intestinal immune function associated with TOR and NF-κB signalling of young grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Zheng, Xin; Feng, Lin; Jiang, Wei-Dan; Wu, Pei; Liu, Yang; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2017-11-01

    The objective of this study was to evaluate the effects of dietary pyridoxine (PN) deficiency on growth performance, intestinal immune function and the potential regulation mechanisms in young grass carp (Ctenopharyngodon idella). Fish were fed six diets containing graded levels of PN (0.12-7.48 mg/kg) for 70 days. After that, a challenge test was conducted by infection of Aeromonas hydrophila for 14 days. The results showed that compared with the optimal PN level, PN deficiency: (1) reduced the production of innate immune components such as lysozyme (LZ), acid phosphatase (ACP), complements and antimicrobial peptides and adaptive immune components such as immunoglobulins in three intestinal segments of young grass carp (P TOR) signalling [TOR/ribosomal protein S6 kinases 1 (S6K1) and eIF4E-binding proteins (4E-BP)] in three intestinal segments of young grass carp; (3) up-regulated the mRNA levels of pro-inflammatory cytokines such as tumour necrosis factor α (TNF-α) [not in the proximal intestine (PI) and distal intestine (DI)], IL-1β, IL-6, IL-8, IL-12p35, IL-12p40, IL-15 and IL-17D [(rather than interferon γ2 (IFN-γ2)] partly relating to nuclear factor kappa B (NF-κB) signalling [IκB kinase β (IKKβ) and IKKγ/inhibitor of κBα (IκBα)/NF-κB (p65 and c-Rel)] in three intestinal segments of young grass carp. These results suggest that PN deficiency could impair the intestinal immune function, and the potential regulation mechanisms were partly associated with TOR and NF-κB signalling pathways. In addition, based on percent weight gain (PWG), the ability against enteritis and LZ activity, the dietary PN requirements for young grass carp were estimated to be 4.43, 4.75 and 5.07 mg/kg diet, respectively. Copyright © 2017. Published by Elsevier Ltd.

  19. Endothelial mechanotransduction proteins and vascular function are altered by dietary sucrose supplementation in healthy young male subjects

    DEFF Research Database (Denmark)

    Gliemann, Lasse; Rytter, Nicolai; Lindskrog, Mads

    2017-01-01

    Endothelial mechanotransduction is important for vascular function but alterations and activation of vascular mechanosensory proteins have not been investigated in humans. In endothelial cell culture, simple sugars effectively impair mechanosensor proteins. To study mechanosensor- and vascular...... by ultrasound doppler. A muscle biopsy was obtained from the thigh muscle before and after acute passive leg movement, to asses the protein amount and phosphorylation status of mechanosensory proteins and NADPH oxidase. The sucrose intervention led to a reduced flow response to passive movement (by 17 ± 2...... %) and to 12 watts of active exercise (by 9 ± 1 %), indicating impaired vascular function. Reduced flow response to passive and active exercise was paralleled by a significant upregulation of Platelet endothelial cell adhesion molecule (PECAM-1), endothelial nitric oxide synthase, NADPH oxidase and the Rho...

  20. Bayesian uncertainty analysis for complex systems biology models: emulation, global parameter searches and evaluation of gene functions.

    Science.gov (United States)

    Vernon, Ian; Liu, Junli; Goldstein, Michael; Rowe, James; Topping, Jen; Lindsey, Keith

    2018-01-02

    Many mathematical models have now been employed across every area of systems biology. These models increasingly involve large numbers of unknown parameters, have complex structure which can result in substantial evaluation time relative to the needs of the analysis, and need to be compared to observed data of various forms. The correct analysis of such models usually requires a global parameter search, over a high dimensional parameter space, that incorporates and respects the most important sources of uncertainty. This can be an extremely difficult task, but it is essential for any meaningful inference or prediction to be made about any biological system. It hence represents a fundamental challenge for the whole of systems biology. Bayesian statistical methodology for the uncertainty analysis of complex models is introduced, which is designed to address the high dimensional global parameter search problem. Bayesian emulators that mimic the systems biology model but which are extremely fast to evaluate are embeded within an iterative history match: an efficient method to search high dimensional spaces within a more formal statistical setting, while incorporating major sources of uncertainty. The approach is demonstrated via application to a model of hormonal crosstalk in Arabidopsis root development, which has 32 rate parameters, for which we identify the sets of rate parameter values that lead to acceptable matches between model output and observed trend data. The multiple insights into the model's structure that this analysis provides are discussed. The methodology is applied to a second related model, and the biological consequences of the resulting comparison, including the evaluation of gene functions, are described. Bayesian uncertainty analysis for complex models using both emulators and history matching is shown to be a powerful technique that can greatly aid the study of a large class of systems biology models. It both provides insight into model behaviour

  1. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering.

    Science.gov (United States)

    Zhou, Changchun; Deng, Congying; Chen, Xuening; Zhao, Xiufen; Chen, Ying; Fan, Yujiang; Zhang, Xingdong

    2015-08-01

    Functionally graded materials (FGM) open the promising approach for bone tissue repair. In this study, a novel functionally graded hydroxyapatite (HA) bioceramic with micrograin and nanograin structure was fabricated. Its mechanical properties were tailored by composition of micrograin and nanograin. The dynamic mechanical analysis (DMA) indicated that the graded HA ceramics had similar mechanical property compared to natural bones. Their cytocompatibility was evaluated via fluorescent microscopy and MTT colorimetric assay. The viability and proliferation of rabbit bone marrow mesenchymal stem cells (BMSCs) on ceramics indicated that this functionally graded HA ceramic had better cytocompatibility than conventional HA ceramic. This study demonstrated that functionally graded HA ceramics create suitable structures to satisfy both the mechanical and biological requirements of bone tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Sphingomyelin in High-Density Lipoproteins: Structural Role and Biological Function

    Directory of Open Access Journals (Sweden)

    Jesús Osada

    2013-04-01

    Full Text Available High-density lipoprotein (HDL levels are an inverse risk factor for cardiovascular diseases, and sphingomyelin (SM is the second most abundant phospholipid component and the major sphingolipid in HDL. Considering the marked presence of SM, the present review has focused on the current knowledge about this phospholipid by addressing its variable distribution among HDL lipoparticles, how they acquire this phospholipid, and the important role that SM plays in regulating their fluidity and cholesterol efflux from different cells. In addition, plasma enzymes involved in HDL metabolism such as lecithin–cholesterol acyltransferase or phospholipid transfer protein are inhibited by HDL SM content. Likewise, HDL SM levels are influenced by dietary maneuvers (source of protein or fat, drugs (statins or diuretics and modified in diseases such as diabetes, renal failure or Niemann–Pick disease. Furthermore, increased levels of HDL SM have been shown to be an inverse risk factor for coronary heart disease. The complexity of SM species, described using new lipidomic methodologies, and their distribution in different HDL particles under many experimental conditions are promising avenues for further research in the future.

  3. A Plant-Based Dietary Intervention Improves Beta-Cell Function and Insulin Resistance in Overweight Adults: A 16-Week Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Hana Kahleova

    2018-02-01

    Full Text Available The aim of this study was to test the effect of a plant-based dietary intervention on beta-cell function in overweight adults with no history of diabetes. Participants (n = 75 were randomized to follow a low-fat plant-based diet (n = 38 or to make no diet changes (n = 37 for 16 weeks. At baseline and 16 weeks, beta-cell function was quantified with a mathematical model. Using a standard meal test, insulin secretory rate was calculated by C-peptide deconvolution. The Homeostasis Model Assessment (HOMA-IR index was used to assess insulin resistance while fasting. A marked increase in meal-stimulated insulin secretion was observed in the intervention group compared with controls (interaction between group and time, Gxt, p < 0.001. HOMA-IR index fell significantly (p < 0.001 in the intervention group (treatment effect −1.0 (95% CI, −1.2 to −0.8; Gxt, p = 0.004. Changes in HOMA-IR correlated positively with changes in body mass index (BMI and visceral fat volume (r = 0.34; p = 0.009 and r = 0.42; p = 0.001, respectively. The latter remained significant after adjustment for changes in BMI (r = 0.41; p = 0.002. Changes in glucose-induced insulin secretion correlated negatively with BMI changes (r = −0.25; p = 0.04, but not with changes in visceral fat. Beta-cell function and insulin sensitivity were significantly improved through a low-fat plant-based diet in overweight adults.

  4. Thyroid Autoimmunity and Function after Treatment with Biological Antirheumatic Agents in Rheumatoid Arthritis

    DEFF Research Database (Denmark)

    Bliddal, Sofie; Borresen, Stina Willemoes; Feldt-Rasmussen, Ulla

    2017-01-01

    With the increased pro-inflammatory response in both rheumatoid arthritis and thyroid autoimmune diseases, treatment with biological antirheumatic agents (BAAs) of the former may affect the course of the latter. In hepatitis C and cancer patients, treatment with biological agents substantially...... increases the risk of developing thyroid autoimmunity. As the use of BAAs in the treatment of rheumatoid arthritis is increasing, this review aimed to investigate if such use affected thyroid status in rheumatoid arthritis patients. We conducted a systematic literature search and included six studies...... status: a reduction of thyroid peroxidase and thyroglobulin antibody concentrations, and a reduction of thyrotropin levels in hypothyroid patients. Despite the small number of studies, they presented compliant data. The BAAs used in rheumatoid arthritis thus did not seem to negatively affect thyroid...

  5. Recent Progress in Synthesis and Functionalization of Multimodal Fluorescent-Magnetic Nanoparticles for Biological Applications

    Directory of Open Access Journals (Sweden)

    Raquel Serrano García

    2018-01-01

    Full Text Available There is a great interest in the development of new nanomaterials for multimodal imaging applications in biology and medicine. Multimodal fluorescent-magnetic based nanomaterials deserve particular attention as they can be used as diagnostic and drug delivery tools, which could facilitate the diagnosis and treatment of cancer and many other diseases. This review focuses on the recent developments of magnetic-fluorescent nanocomposites and their biomedical applications. The recent advances in synthetic strategies and approaches for the preparation of fluorescent-magnetic nanocomposites are presented. The main biomedical uses of multimodal fluorescent-magnetic nanomaterials, including biological imaging, cancer therapy and drug delivery, are discussed, and prospects of this field are outlined.

  6. A high dietary intake of sodium glutamate as flavoring (ajinomoto) causes gross changes in retinal morphology and function.

    Science.gov (United States)

    Ohguro, Hiroshi; Katsushima, Harumi; Maruyama, Ikuyo; Maeda, Tadao; Yanagihashi, Satsuki; Metoki, Tomomi; Nakazawa, Mitsuru

    2002-09-01

    The purpose of this study was to investigate the effects of glutamate accumulation in vitreous on retinal structure and function, due to a diet high in sodium glutamate. Three different diet groups were created, consisting of rats fed on a regular diet (diet A), a moderate excess of sodium glutamate diet (diet B) and a large excess of sodium glutamate diet (diet C). After 1, 3 and 6 months of the administration of these diets, amino acids concentrations in vitreous were analyzed. In addition, retinal morphology and function by electroretinogram (ERG) of three different diet groups were studied. Significant accumulation of glutamate in vitreous was observed in rats following addition of sodium glutamate to the diet as compared to levels with a regular diet. In the retinal morphology, thickness of retinal neuronal layers was remarkably thinner in rats fed on sodium glutamate diets than in those on a regular diet. TdT-dUTP terminal nick-end labelling (TUNEL) staining revealed significant accumulation of the positive staining cells within the retinal ganglion cell layers in retinas from diets B and C as compared with that from diet A. Similar to this, immunohistochemistry demonstrated increased expression of glial fibrillary acidic protein (GFAP) within the retinal inner layers from diets B and C as compared with diet A. Functionally, ERG responses were reduced in rats fed on a sodium glutamate diets as compared with those on a regular diet. The present study suggests that a diet with excess sodium glutamate over a period of several years may increase glutamate concentrations in vitreous and may cause retinal cell destruction.

  7. Associations between functional polymorphisms and response to biological treatment in Danish patients with psoriasis

    DEFF Research Database (Denmark)

    Loft, N D; Skov, L; Iversen, L.

    2018-01-01

    Biological agents including anti-tumor necrosis factor (anti-TNF; adalimumab, infliximab, etanercept) and anti-interleukin-12/13 (IL12/23; ustekinumab) are essential for treatment of patients with severe psoriasis. However, a significant proportion of the patients do not respond to a specific tre...... with ustekinumab.The Pharmacogenomics Journal advance online publication, 11 July 2017; doi:10.1038/tpj.2017.31....

  8. Bio-templated CdSe quantum dots green synthesis in the functional protein, lysozyme, and biological activity investigation

    International Nuclear Information System (INIS)

    Wang, Qisui; Li, Song; Liu, Peng; Min, Xinmin

    2012-01-01

    Bifunctional fluorescence (CdSe Quantum Dots) – protein (Lysozyme) nanocomposites were synthesized at room temperature by a protein-directed, solution-phase, green-synthetic method. Fluorescence (FL) and absorption spectra showed that CdSe QDs were prepared successfully with Lyz. The average particle size and crystalline structure of QDs were investigated by high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD), respectively. With attenuated total reflection-fourier transform infrared (ATR-FTIR) spectra and thermogravimetric (TG) analysis, it was confirmed that there is interaction between QDs and amide I, amide II groups in Lyz. FL polarization was measured and FL imaging was done to monitor whether QDs could be responsible for possible changes in the conformation and activity of Lyz. Interestingly, the results showed Lyz still retain the biological activity after formation of QDs, but the secondary structure of the Lyz was changed. And the advantage of this synthesis method is producing excellent fluorescent QDs with specifically biological function. -- Highlights: ► Lysozyme-directed green synthesis of CdSe quantum dots. ► Lysozyme still retain the biological activity after formation of CdSe. ► The method is the production of fluorescent QDs with highly specific and functions.

  9. Dietary Patterns High in Red Meat, Potato, Gravy, and Butter Are Associated with Poor Cognitive Functioning but Not with Rate of Cognitive Decline in Very Old Adults1234

    Science.gov (United States)

    Davies, Karen; Adamson, Ashley; Kirkwood, Thomas; Hill, Tom R; Siervo, Mario; Mathers, John C; Jagger, Carol

    2016-01-01

    Background: Healthy dietary patterns (DPs) have been linked to better cognition and reduced risk of dementia in older adults, but their role in cognitive functioning and decline in the very old (aged ≥85 y) is unknown. Objective: We investigated the association between previously established DPs from the Newcastle 85+ Study and global and attention-specific cognition over 5 y. Methods: We followed up with 302 men and 489 women (1921 birth cohort from Northeast United Kingdom) for change in global cognition [measured by the Standardized Mini-Mental State Examination (SMMSE)] over 5 y and attention (assessed by the cognitive drug research attention battery) over 3 y. We used 2-step clustering to derive DPs and mixed models to determine the relation between DPs and cognition in the presence of the dementia susceptibility gene. Results: Previously, we characterized 3 DPs that differed in intake of red meat, potato, gravy, and butter and varied with key health measures. When compared with participants in DP1 (high red meat) and DP3 (high butter), participants in DP2 (low meat) had higher SMMSE scores at baseline (P gravy (DP1), or butter (DP3) were associated with poor cognition but not with the rate of cognitive decline in very old adults. PMID:26740685

  10. Dietary Patterns High in Red Meat, Potato, Gravy, and Butter Are Associated with Poor Cognitive Functioning but Not with Rate of Cognitive Decline in Very Old Adults.

    Science.gov (United States)

    Granic, Antoneta; Davies, Karen; Adamson, Ashley; Kirkwood, Thomas; Hill, Tom R; Siervo, Mario; Mathers, John C; Jagger, Carol

    2016-02-01

    Healthy dietary patterns (DPs) have been linked to better cognition and reduced risk of dementia in older adults, but their role in cognitive functioning and decline in the very old (aged ≥85 y) is unknown. We investigated the association between previously established DPs from the Newcastle 85+ Study and global and attention-specific cognition over 5 y. We followed up with 302 men and 489 women (1921 birth cohort from Northeast United Kingdom) for change in global cognition [measured by the Standardized Mini-Mental State Examination (SMMSE)] over 5 y and attention (assessed by the cognitive drug research attention battery) over 3 y. We used 2-step clustering to derive DPs and mixed models to determine the relation between DPs and cognition in the presence of the dementia susceptibility gene. Previously, we characterized 3 DPs that differed in intake of red meat, potato, gravy, and butter and varied with key health measures. When compared with participants in DP1 (high red meat) and DP3 (high butter), participants in DP2 (low meat) had higher SMMSE scores at baseline (P gravy (DP1), or butter (DP3) were associated with poor cognition but not with the rate of cognitive decline in very old adults.

  11. A multi-ingredient dietary supplement abolishes large-scale brain cell loss, improves sensory function, and prevents neuronal atrophy in aging mice.

    Science.gov (United States)

    Lemon, J A; Aksenov, V; Samigullina, R; Aksenov, S; Rodgers, W H; Rollo, C D; Boreham, D R

    2016-06-01

    Transgenic growth hormone mice (TGM) are a recognized model of accelerated aging with characteristics including chronic oxidative stress, reduced longevity, mitochondrial dysfunction, insulin resistance, muscle wasting, and elevated inflammatory processes. Growth hormone/IGF-1 activate the Target of Rapamycin known to promote aging. TGM particularly express severe cognitive decline. We previously reported that a multi-ingredient dietary supplement (MDS) designed to offset five mechanisms associated with aging extended longevity, ameliorated cognitive deterioration and significantly reduced age-related physical deterioration in both normal mice and TGM. Here we report that TGM lose more than 50% of cells in midbrain regions, including the cerebellum and olfactory bulb. This is comparable to severe Alzheimer's disease and likely explains their striking age-related cognitive impairment. We also demonstrate that the MDS completely abrogates this severe brain cell loss, reverses cognitive decline and augments sensory and motor function in aged mice. Additionally, histological examination of retinal structure revealed markers consistent with higher numbers of photoreceptor cells in aging and supplemented mice. We know of no other treatment with such efficacy, highlighting the potential for prevention or amelioration of human neuropathologies that are similarly associated with oxidative stress, inflammation and cellular dysfunction. Environ. Mol. Mutagen. 57:382-404, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Physicochemical and functional properties of coconut (Cocos nucifera L) cake dietary fibres: Effects of cellulase hydrolysis, acid treatment and particle size distribution.

    Science.gov (United States)

    Zheng, Yajun; Li, Yan

    2018-08-15

    Effects of cellulase hydrolysis, acid treatment and particle size distribution on the structure, physicochemical and functional properties of coconut cake dietary fiber (DCCDF) were studied. Results showed that both the cellulase hydrolysis and acid treatment contributed to the structural modification of DCCDF as evident from XRD, FT-IR and SEM analysis. Moreover, the cellulase hydrolysis enhanced soluble carbohydrate content, water holding capacity (WHC) and swelling capacity (WSC), α-amylase inhibition activity (α-AAIR), glucose dialysis retardation index (GDRI) and cation-exchange capacity (CEC) of DCCDF; but it had undesirable effects on colour, oil holding capacity (OHC) and emulsifying capacity (EC). On other hand, acid treatment decreased the WHC, WSC and GDRI, but improved the colour, CEC, OHC and emulsion stability of DCCDF. Furthermore, the WHC, WSC and EC of DCCDF increased as the particle size reduced from 250 to 167 μm, while the GDRI, OHC, α-AAIR and emulsion stability decreased with decreasing particle size. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. From transcriptome to biological function: environmental stress in an ectothermic vertebrate, the coral reef fish Pomacentrus moluccensis

    Directory of Open Access Journals (Sweden)

    Ward Alister C

    2007-10-01

    Full Text Available Abstract Background Our understanding of the importance of transcriptional regulation for biological function is continuously improving. We still know, however, comparatively little about how environmentally induced stress affects gene expression in vertebrates, and the consistency of transcriptional stress responses to different types of environmental stress. In this study, we used a multi-stressor approach to identify components of a common stress response as well as components unique to different types of environmental stress. We exposed individuals of the coral reef fish Pomacentrus moluccensis to hypoxic, hyposmotic, cold and heat shock and measured the responses of approximately 16,000 genes in liver. We also compared winter and summer responses to heat shock to examine the capacity for such responses to vary with acclimation to different ambient temperatures. Results We identified a series of gene functions that were involved in all stress responses examined here, suggesting some common effects of stress on biological function. These common responses were achieved by the regulation of largely independent sets of genes; the responses of individual genes varied greatly across different stress types. In response to heat exposure over five days, a total of 324 gene loci were differentially expressed. Many heat-responsive genes had functions associated with protein turnover, metabolism, and the response to oxidative stress. We were also able to identify groups of co-regulated genes, the genes within which shared similar functions. Conclusion This is the first environmental genomic study to measure gene regulation in response to different environmental stressors in a natural population of a warm-adapted ectothermic vertebrate. We have shown that different types of environmental stress induce expression changes in genes with similar gene functions, but that the responses of individual genes vary between stress types. The functions of heat

  14. Dietary quality, lifestile factors and healthy ageing in Europe

    NARCIS (Netherlands)

    Haveman-Nies, A.

    2001-01-01

    Keywords: dietary quality, dietary patterns, lifestyle factors, smoking, physical activity, elderly, mortality, Mediterranean Diet Score, Healthy Diet Indicator, healthy ageing, self-rated health, functional status


    The contribution

  15. Influence of dietary lipid sources on sensory characteristics of broiler

    African Journals Online (AJOL)

    Influence of dietary lipid sources on sensory characteristics of broiler meat ... fatty acid profile of poultry products such as eggs and meat by means of dietary inclusion of ..... Designer eggs: From improvement of egg composition to functional.

  16. Self-assembly and stability of double rosette nanostructures with biological functionalities

    NARCIS (Netherlands)

    ten Cate, M.G.J.; Omerovic, Merdan; Oshovsky, G.; Crego Calama, Mercedes; Reinhoudt, David

    2005-01-01

    The syntheses of calix[4]arene dimelamines that are functionalized with alkyl, aminoalkyl, ureido, pyridyl, carbohydrate, amino acid and peptide functionalities, and their self-assembly with barbituric acid or cyanuric acid derivatives into well-defined hydrogen-bonded nanostructures are described.

  17. Novel function of polyaniline for biological environments: Cultivation of paramecium in the presence of polyaniline

    Science.gov (United States)

    Goto, Hiromasa

    2014-03-01

    The reduced form of polyaniline (PANI, emeraldine base) functions as water purification to extend the lives of paramecia. The emeraldine base can absorb discharged waste from the planktons such as nitrogenous compounds and salts. This is a new function of π-conjugated polymers for micro-organisms.

  18. Novel function of polyaniline for biological environments: Cultivation of paramecium in the presence of polyaniline

    International Nuclear Information System (INIS)

    Goto, Hiromasa

    2014-01-01

    The reduced form of polyaniline (PANI, emeraldine base) functions as water purification to extend the lives of paramecia. The emeraldine base can absorb discharged waste from the planktons such as nitrogenous compounds and salts. This is a new function of π-conjugated polymers for micro-organisms

  19. The relationship between the connecting peptide of recombined single chain insulin and its biological function

    Institute of Scientific and Technical Information of China (English)

    HUANG; Yiding; (

    2001-01-01

    [1]Straus, D. S., Growth-stimulatory of insulin in vitro and in vivo, Endocr. Rev., 1984, 5(2): 356-369.[2]Svenningsen, A. F., Kanje, M., Insulin and the insulin-like growth factors I and II are mitogenic to cultured rat sciatic nerve segments and stimulate [3H] thuymidine incorporation through their respective receptors, Glia, 1996, 18(1): 68-72.[3]Ogihara, S., Yamada, M., Saito, T. et al., Insulin potentiates mitogenic effect of epidermal growth factor on cultured guinea pig gastric mucous cells, Am. J. Physiol., 1996, 271(1 Pt 1): G104-121.[4]Steiner, D. F., Oyer, P. E., The biosynthesis of insulin and a probable precursor of insulin by a human islet cell adenoma, Proc. Nalt. Acad. Sci. USA, 1967, 57(2): 473-480.[5]King, G. L., Kahn, C. R., The growth-promoting effects of insulin, in Growth and Maturation Factors(ed. Guroff, G.), New York: John Wiley & Sons, 1984, 223-265.[6]Peavy, D. E., Brunner, M. R., Duckworth, W. C. et al., Receptor binding and biological potency of several split forms (conversion intermediates) of human proinsulin, Studies in cultured IM-9 lymphocytes and in vivo and in vitro in rats, J. Biol. Chem., 1985, 260: 13989-13994.[7]Derewenda, U., Derewenda, Z., Dodson, E. J. et al., X-ray analysis of the single chain B29-A1 peptide-linked insulin molecule. A completely inactive analogue, J. Mol. Biol., 1991, 220: 425-433.[8]Hua, Q. X., Shoelson, S. E., Kochoyan, M. et al., Receptor binding redefined by a structural switch in a mutant human insulin, Nature, 1991, 354: 238-241.[9]Hua, Q. X., Gozani, S. N., Chance, R. E. et al., Structure of a protein in a kinetic trap, Nat. Struc. Boil, 1995, 2: 129-138.[10]Kristensen, C., Andersen, A. S., Hach, M., A single-chain insulin-like growth factor I/insulin hybrid binds with high affinity to the insulin receptor, Biochem. J., 1995, 305: 981-986.[11]Humbel, R. E., Insulin-like growth factors I and II, Euro. J. Biochem., 1990, 190: 445-462.[12]Cooke, R. M

  20. Biological half-life of iodine in adults with intact thyroid function and in athyreotic persons

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, G.H.; Hauck, B.M.; Chamberlain, M.J

    2002-07-01

    A joint project between the Human Monitoring Laboratory (HML) and the Ottawa Hospital has measured the retention of {sup 131}I in patients who have received the radioiodine diagnostically. Thirty-nine subjects with intact thyroid glands and nine athyreotic subjects were measured in the HML's whole-body/thyroid counter to determine the retention of {sup 131}I following its medical administration. The average biological half-life of {sup 131}I in 26 euthyroid subjects was found to be 66.1{+-}6.3 days which may be statistically significantly lower than the ICRP recommended value of 80 days. Nine hyperthyroid patients had a mean biological half-life of 38.2{+-}8.6 days and in three hypothyroid patients the corresponding value was 29.3{+-}8.8 days. Thyroid {sup 131}I uptake was measured in a conventional clinical fashion at the Ottawa Hospital Civic campus 24 h after oral administration of the radioiodine using a collimated thick sodium iodide detector placed over the neck arteriorly. Measured values were 0.144{+-}0.009, 0.314{+-}0.035 and 0.045{+-}0.010 of the administered dose in euthyroid, hyperthyroid and hypothyroid patients respectively. The euthyroid range at the hospital is 0.06-0.22. Uptake was significantly lower for the euthyroid group than the ICRP value of 0.3. The radioiodine retention in athyreotic subjects followed a two compartment model with biological half-lives of 1.0{+-}0.2 days and 18.4{+-}1.1. days. (author)

  1. Biological aspects and life table of Uroleucon ambrosiae (Thomas, 1878) as a function of temperature

    OpenAIRE

    Auad Alexander Machado; Moraes Jair Campos de

    2003-01-01

    The aphid Uroleucon ambrosiae (Thomas) is considered a pest of hidroponically-grown lettuce, but basic and applied information on its control are scarce in Brazil. The aim of this study was to determine the effect of different temperatures on biological aspects and life history of U. ambrosiae (Thomas) developing on hydroponic lettuce (Lactuca sativa L.) crop. Newly emerged nymphs were placed on 4-cm discs of hydroponic lettuce, var. Verônica, which were maintained on 5-cm Petri dishes, at te...

  2. Associations between functional polymorphisms and response to biological treatment in Danish patients with psoriasis

    DEFF Research Database (Denmark)

    Loft, N D; Skov, L; Iversen, L

    2017-01-01

    Biological agents including anti-tumor necrosis factor (anti-TNF; adalimumab, infliximab, etanercept) and anti-interleukin-12/13 (IL12/23; ustekinumab) are essential for treatment of patients with severe psoriasis. However, a significant proportion of the patients do not respond to a specific...... of ustekinumab treatment. Associations between genetic variants and treatment outcomes (drug survival and Psoriasis Area Severity Index reduction) were assessed using logistic regression analyses (crude and adjusted for gender, age, psoriatic arthritis and previous treatment). After correction for multiple...

  3. Associations between functional polymorphisms and response to biological treatment in Danish patients with psoriasis

    DEFF Research Database (Denmark)

    Loft, N D; Skov, L; Iversen, L

    2017-01-01

    Biological agents including anti-tumor necrosis factor (anti-TNF; adalimumab, infliximab, etanercept) and anti-interleukin-12/13 (IL12/23; ustekinumab) are essential for treatment of patients with severe psoriasis. However, a significant proportion of the patients do not respond to a specific tre...... with ustekinumab.The Pharmacogenomics Journal advance online publication, 11 July 2017; doi:10.1038/tpj.2017.31....... with response to ustekinumab treatment (qhigh interferon-γ levels may be favorable when treating psoriasis...

  4. Dual functionality of triticale as a novel dietary source of prebiotics with antioxidant activity in fermented dairy products.

    Science.gov (United States)

    Agil, Rania; Hosseinian, Farah

    2012-03-01

    The objectives of this study were to: (i) define the optimum concentration of triticale bran (TB) that can be incorporated in yogurt, (ii) evaluate the prebiotic effects of TB on microbial viability, pH and total titratable acidity (TTA) in yogurt across 28 days of cold storage, and (iii) measure the oxygen radical absorbance capacity (ORAC) of water-extractable polysaccharides (WEP) in TB. Lactobacillus bulgaricus and Streptococcus thermophilus were used as starter cultures. Lactobacillus acidophilus and Bifidobacterium lactis were used as probiotics. A concentration of 4% TB in yogurt was determined to be the maximum amount that could be added without causing synersis. By day 7, the number of bacteria greatly increased in yogurt samples containing TB and maintained higher viable bacteria counts at the end of the cold storage period, in comparison to controls (P ≤ 0.05). Confirming this data was the lower pH levels and higher TTA values of TB yogurt samples exhibited throughout 28 days (P ≤ 0.05). Polysaccharide extracts of TB exhibited strong antioxidant activity with an ORAC value of 33.86 ± 2.30 μmol trolox equivalents (TE)/g of bran. Results of this study suggest that TB may serve as a new prebiotic and antioxidant source for functional foods and nutraceutical applications.

  5. Biological functioning of PAH-polluted and thermal desorption-treated soils assessed by fauna and microbial bioindicators.

    Science.gov (United States)

    Cébron, Aurélie; Cortet, Jérôme; Criquet, Stéven; Biaz, Asmaa; Calvert, Virgile; Caupert, Cécile; Pernin, Céline; Leyval, Corinne

    2011-11-01

    A large number of soil bioindicators were used to assess biological diversity and activity in soil polluted with polycyclic aromatic hydrocarbons (PAHs) and the same soil after thermal desorption (TD) treatment. Abundance and biodiversity of bacteria, fungi, protozoa, nematodes and microarthropods, as well as functional parameters such as enzymatic activities and soil respiration, were assessed during a two year period of in situ monitoring. We investigated the influence of vegetation (spontaneous vegetation and Medicago sativa) and TD treatment on biological functioning. Multivariate analysis was performed to analyze the whole data set. A principal response curve (PRC) technique was used to evaluate the different treatments (various vegetation and contaminated vs. TD soil) contrasted with control (bare) soil over time. Our results indicated the value of using a number of complementary bioindicators, describing both diversity and functions, to assess the influence of vegetation on soil and discriminate polluted from thermal desorption (TD)-treated soil. Plants had an influence on the abundance and activity of all organisms examined in our study, favoring the whole trophic chain development. However, although TD-treated soil had a high abundance and diversity of microorganisms and fauna, enzymatic activities were weak because of the strong physical and chemical modifications of this soil. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. A promising future for integrative biodiversity research: an increased role of scale-dependency and functional biology

    Science.gov (United States)

    Schmitz, L.

    2016-01-01

    Studies into the complex interaction between an organism and changes to its biotic and abiotic environment are fundamental to understanding what regulates biodiversity. These investigations occur at many phylogenetic, temporal and spatial scales and within a variety of biological and geological disciplines but often in relative isolation. This issue focuses on what can be achieved when ecological mechanisms are integrated into analyses of deep-time biodiversity patterns through the union of fossil and extant data and methods. We expand upon this perspective to argue that, given its direct relevance to the current biodiversity crisis, greater integration is needed across biodiversity research. We focus on the need to understand scaling effects, how lower-level ecological and evolutionary processes scale up and vice versa, and the importance of incorporating functional biology. Placing function at the core of biodiversity research is fundamental, as it establishes how an organism interacts with its abiotic and biotic environment and it is functional diversity that ultimately determines important ecosystem processes. To achieve full integration, concerted and ongoing efforts are needed to build a united and interactive community of biodiversity researchers, with education and interdisciplinary training at its heart. PMID:26977068

  7. A promising future for integrative biodiversity research: an increased role of scale-dependency and functional biology.

    Science.gov (United States)

    Price, S A; Schmitz, L

    2016-04-05

    Studies into the complex interaction between an organism and changes to its biotic and abiotic environment are fundamental to understanding what regulates biodiversity. These investigations occur at many phylogenetic, temporal and spatial scales and within a variety of biological and geological disciplines but often in relative isolation. This issue focuses on what can be achieved when ecological mechanisms are integrated into analyses of deep-time biodiversity patterns through the union of fossil and extant data and methods. We expand upon this perspective to argue that, given its direct relevance to the current biodiversity crisis, greater integration is needed across biodiversity research. We focus on the need to understand scaling effects, how lower-level ecological and evolutionary processes scale up and vice versa, and the importance of incorporating functional biology. Placing function at the core of biodiversity research is fundamental, as it establishes how an organism interacts with its abiotic and biotic environment and it is functional diversity that ultimately determines important ecosystem processes. To achieve full integration, concerted and ongoing efforts are needed to build a united and interactive community of biodiversity researchers, with education and interdisciplinary training at its heart. © 2016 The Author(s).

  8. Minimal information: an urgent need to assess the functional reliability of recombinant proteins used in biological experiments

    Directory of Open Access Journals (Sweden)

    de Marco Ario

    2008-07-01

    Full Text Available Abstract Structural characterization of proteins used in biological experiments is largely neglected. In most publications, the information available is totally insufficient to judge the functionality of the proteins used and, therefore, the significance of identified protein-protein interactions (was the interaction specific or due to unspecific binding of misfolded protein regions? or reliability of kinetic and thermodynamic data (how much protein was in its native form?. As a consequence, the results of single experiments might not only become questionable, but the whole reliability of systems biology, built on these fundaments, would be weakened. The introduction of Minimal Information concerning purified proteins to add as metadata to the main body of a manuscript would render straightforward the assessment of their functional and structural qualities and, consequently, of results obtained using these proteins. Furthermore, accepted standards for protein annotation would simplify data comparison and exchange. This article has been envisaged as a proposal for aggregating scientists who share the opinion that the scientific community needs a platform for Minimum Information for Protein Functionality Evaluation (MIPFE.

  9. Functionalization of Self-Organized Nanoparticles for Biological Targeting and Active Drug Release

    DEFF Research Database (Denmark)

    Jølck, Rasmus Irming

    Functional nanomaterials have attracted much attention due to the unique properties of these nanoconstructs. In recognition of the huge potential within this field, much research has been devoted to develop sophisticated nanoparticles for medical diagnostics, sensors, contrast agents, vaccines an...

  10. In silico determination of intracellular glycosylation and phosphorylation sites in human selectins: Implications for biological function

    DEFF Research Database (Denmark)

    Ahmad, I.; Hoessli, D.C.; Gupta, Ramneek

    2007-01-01

    Post-translational modifications provide the proteins with the possibility to perform functions in addition to those determined by their primary sequence. However, analysis of multifunctional protein structures in the environment of cells and body fluids is made especially difficult by the presence...... both modifications are likely to occur can also be predicted (YinYang sites), to suggest further functional versatility. Structural modifications of hydroxyl groups of P-, E-, and L-selectins have been predicted and possible functions resulting from such modifications are proposed. Functional changes...... of the three selectins are based on the assumption that transitory and reversible protein modifications by phosphate and O-GlcNAc cause specific conformational changes and generate binding sites for other proteins. The computer-assisted prediction of glycosylation and phosphorylation sites in selectins should...

  11. Complexity of cancer protease biology: Cathepsin K expression and function in cancer progression

    NARCIS (Netherlands)

    Verbovšek, Urška; van Noorden, Cornelis J. F.; Lah, Tamara T.

    2015-01-01

    Proteases, including lysosomal cathepsins, are functionally involved in many processes in cancer progression from its initiation to invasion and metastatic spread. Only recently, cathepsin K (CatK), the cysteine protease originally reported as a collagenolytic protease produced by osteoclasts,

  12. Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function.

    Science.gov (United States)

    Chasman, Daniel I; Fuchsberger, Christian; Pattaro, Cristian; Teumer, Alexander; Böger, Carsten A; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; O'Seaghdha, Conall M; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D; Gierman, Hinco J; Feitosa, Mary F; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Asa; Tönjes, Anke; Dehghan, Abbas; Lambert, Jean-Charles; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Coassin, Stefan; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank; Demirkan, Ayse; Oostra, Ben A; de Andrade, Mariza; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Meisinger, Christa; Gieger, Christian; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S; van Duijn, Cornelia M; Borecki, Ingrid B; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Parsa, Afshin; Bochud, Murielle; Heid, Iris M; Kao, W H Linda; Fox, Caroline S; Köttgen, Anna

    2012-12-15

    In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10(-9)) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10(-4)-2.2 × 10(-7). Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general.

  13. A Tricky Trait: Applying the Fruits of the "Function Debate" in the Philosophy of Biology to the "Venom Debate" in the Science of Toxinology.

    Science.gov (United States)

    Jackson, Timothy N W; Fry, Bryan G

    2016-09-07

    The "function debate" in the philosophy of biology and the "venom debate" in the science of toxinology are conceptually related. Venom systems are complex multifunctional traits that have evolved independently numerous times throughout the animal kingdom. No single concept of function, amongst those popularly defended, appears adequate to describe these systems in all their evolutionary contexts and extant variations. As such, a pluralistic view of function, previously defended by some philosophers of biology, is most appropriate. Venom systems, like many other functional traits, exist in nature as points on a continuum and the boundaries between "venomous" and "non-venomous" species may not always be clearly defined. This paper includes a brief overview of the concept of function, followed by in-depth discussion of its application to venom systems. A sound understanding of function may aid in moving the venom debate forward. Similarly, consideration of a complex functional trait such as venom may be of interest to philosophers of biology.

  14. Changes in number and function of the lymphocyte populations as a biological indicator for ionizing radiation

    International Nuclear Information System (INIS)

    Dehos, A.; Hinz, G.; Schwarz, E.R.

    1986-01-01

    Siegal and Siegal reported that the number of immunoglobulin producing cells, especially after higher doses of ionizing radiation on isolated mononuclear cells decreases considerably. However, if non-irradiated B cells are cultivated with irradiated (16 Gy) T cells, a significant increase of immunoglobulin production due to the non-irradiated B cells can be observed. Siegal and Siegal described a similar result when they combined and cultivated non-irradiated with irradiated mononuclear cells. The immunoglobulin producing cells decreased in a lower and increased in a higher dose range. The two results can be explained by the fact that Tg cells which act as suppressor cells are relatively sensitive to radiation while Tm cells which are helper cells in this test are relatively resistant. According to these results, B lymphocytes are the most sensitive of the lymphocyte subpopulations. The aim of the project is to clarify whether the mentioned effects are suitable for 'biological dosimetry'. (orig./MG)

  15. synthesis and characterization of some poly functionalized heterocyclic derivatives of expected biological activity

    International Nuclear Information System (INIS)

    El-sayed, M.S.

    2001-01-01

    The present work was aimed and designed to fulfil The following objectives : 1- Continuation of the effort done by our research group in the field of chemistry of pyridinethione derivatives and their biological activities. 2- Synthesis of several new heterocyclic derivatives containing N and/or S using the laboratory available reagents. 3- Establishment of the structures of the newly synthesized heterocyclic compounds by the data of IR, 1 H-NMR, mass spectra in addition to the elemental analysis. 4- Synthesis of some of these heterocyclic derivatives via alternative routs and this used as a tool to confirm the structures of the newly synthesized heterocyclic derivatives. 5- study of the most probable mechanisms leading to the formation of the new heterocyclic derivatives. 6- The antimicrobial activity of some of the newly synthesized heterocyclic derivatives was tested against several types of organisms

  16. Biological aspects and life table of Uroleucon ambrosiae (Thomas, 1878 as a function of temperature

    Directory of Open Access Journals (Sweden)

    Auad Alexander Machado

    2003-01-01

    Full Text Available The aphid Uroleucon ambrosiae (Thomas is considered a pest of hidroponically-grown lettuce, but basic and applied information on its control are scarce in Brazil. The aim of this study was to determine the effect of different temperatures on biological aspects and life history of U. ambrosiae (Thomas developing on hydroponic lettuce (Lactuca sativa L. crop. Newly emerged nymphs were placed on 4-cm discs of hydroponic lettuce, var. Verônica, which were maintained on 5-cm Petri dishes, at temperatures of 15, 20 and 25ºC and 14 h photophase, and inside a greenhouse, within micro-cages at room temperature. The duration of development in all nymphal stages varied inversely to temperature. Nymphs maintained at 20ºC and 25ºC, had similar development period. However, at fluctuating greenhouse temperatures (daily mean = 21ºC, different results were obtained, which was also true for the pre-reproductive, reproductive and post-reproductive periods. Daily and total fertilities at 20ºC were better in comparison to the other treatments. The highest mortality rate of aphids occurred under greenhouse conditions. The production of 1.28 nymphs per female per day, the time needed for the population to double in size (TD=2.77days, and the intrinsic rate of population increase (r m=0.25, were similar for in insects maintained at 20 and 25ºC. On the other hand, time interval between generations (T and the net reproductive rate (Ro were higher at 20ºC. In the greenhouse, even though T was similar to laboratory conditions at 20 and 25ºC, the R0, r m and l parameters were lower and TD was higher. Based on biological aspects, fertility and life expectancy tables, constant temperature of 20ºC is the most suitable for U. ambrosiae.

  17. Ruminant Metabolic Systems Biology: Reconstruction and Integration of Transcriptome Dynamics Underlying Functional Responses of Tissues to Nutrition and Physiological Statea

    Science.gov (United States)

    Bionaz, Massimo; Loor, Juan J.

    2012-01-01

    High-throughput ‘omics’ data analysis via bioinformatics is one key component of the systems biology approach. The systems approach is particularly well-suited for the study of the interactions between nutrition and physiological state with tissue metabolism and functions during key life stages of organisms such as the transition from pregnancy to lactation in mammals, ie, the peripartal period. In modern dairy cows with an unprecedented genetic potential for milk synthesis, the nature of the physiologic and metabolic adaptations during the peripartal period is multifaceted and involves key tissues such as liver, adipose, and mammary. In order to understand such adaptation, we have reviewed several works performed in our and other labs. In addition, we have used a novel bioinformatics approach, Dynamic Impact Approach (DIA), in combination with partly previously published data to help interpret longitudinal biological adaptations of bovine liver, adipose, and mammary tissue to lactation using transcriptomics datasets. Use of DIA with transcriptomic data from those tissues during normal physiological adaptations and in animals fed different levels of energy prepartum allowed visualization and integration of most-impacted metabolic pathways around the time of parturition. The DIA is a suitable tool for applying the integrative systems biology approach. The ultimate goal is to visualize the complexity of the systems at study and uncover key molecular players involved in the tissue’s adaptations to physiological state or nutrition. PMID:22807626

  18. [The Functional Role of Exosomes in Cancer Biology and Their Potential as Biomarkers and Therapeutic Targets of Cancer].

    Science.gov (United States)

    Naito, Yutaka; Yoshioka, Yusuke; Ochiya, Takahiro

    2015-06-01

    Intercellular communication plays an important role in the regulation of various cellular events. In particular, cancer cells and the surrounding cells communicate with each other, and this intercellular communication triggers cancer initiation and progression through the secretion of molecules, including growth factors and cytokines. Recent advances in cancer biology have indicated that small membrane vesicles, termed exosomes, also serve as regulatory agents in intercellular communications. Exosomes contain functional cellular components, including proteins and microRNAs (miRNAs), and they transfer these components to recipient cells. This exosome-mediated intercellular communication leads to increased growth, invasion, and metastasis of cancer. Thus, researchers regard exosomes as important cues to understanding the molecular mechanisms of cancer biology. Indeed, several lines of evidence have demonstrated that exosomes can explain multiple aspects of cancer biology. In addition, increasing evidence suggests that exosomes and their specific molecules are also attractive for use as biomarkers and therapeutic targets in cancer. Recent reports showed the efficacy of a novel diagnosis by detecting component molecules of cancer-derived exosomes, including miRNAs and membrane proteins. Furthermore, clinical trials that test the application of exosomes for cancer therapy have already been reported. From these points of view, we will summarize experimental data that support the role of exosomes in cancer progression and the potential of exosomes for use in novel diagnostic and therapeutic approaches for cancer.

  19. Nerve Regeneration: Understanding Biology and Its Influence on Return of Function After Nerve Transfers.

    Science.gov (United States)

    Gordon, Tessa

    2016-05-01

    Poor functional outcomes are frequent after peripheral nerve injuries despite the regenerative support of Schwann cells. Motoneurons and, to a lesser extent, sensory neurons survive the injuries but outgrowth of axons across the injury site is slow. The neuronal regenerative capacity and the support of regenerating axons by the chronically denervated Schwann cells progressively declines with time and distance of the injury from the denervated targets. Strategies, including brief low-frequency electrical stimulation that accelerates target reinnervation and functional recovery, and the insertion of cross-bridges between a donor nerve and a recipient denervated nerve stump, are effective in promoting functional outcomes after complete and incomplete injuries. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. [Scientific bases for the development of functional meat products with combined biological activity].

    Science.gov (United States)

    Palanca, V; Rodríguez, E; Señoráns, J; Reglero, G

    2006-01-01

    The scientific evidences on the relationship between food and health have given place to a new food market of rapid growth in the last years: the market of the functional food. Though the interest of maintaining or improving the state of health by means of the consumption of traditional food with bioactive ingredients added is undoubtedly high, the Spanish population, increasingly formed and informed, is unwilling to consume functional food, until these possess a scientific rigorous base. This article presents a review of the scientific bases that support the development of functional meat products with balanced ratio omega-6/omega-3 and a combination of synergic antioxidants, among them an extract of rosemary obtained by means of extraction with supercritical CO2.

  1. Dietary fibre in foods: a review.

    Science.gov (United States)

    Dhingra, Devinder; Michael, Mona; Rajput, Hradesh; Patil, R T

    2012-06-01

    Dietary fibre is that part of plant material in the diet which is resistant to enzymatic digestion which includes cellulose, noncellulosic polysaccharides such as hemicellulose, pectic substances, gums, mucilages and a non-carbohydrate component lignin. The diets rich in fibre such as cereals, nuts, fruits and vegetables have a positive effect on health since their consumption has been related to decreased incidence of several diseases. Dietary fibre can be used in various functional foods like bakery, drinks, beverages and meat products. Influence of different processing treatments (like extrusion-cooking, canning, grinding, boiling, frying) alters the physico- chemical properties of dietary fibre and improves their functionality. Dietary fibre can be determined by different methods, mainly by: enzymic gravimetric and enzymic-chemical methods. This paper presents the recent developments in the extraction, applications and functions of dietary fibre in different food products.

  2. The nutrigenetics and nutrigenomics of the dietary requirement for choline.

    Science.gov (United States)

    Corbin, Karen D; Zeisel, Steven H

    2012-01-01

    Advances in nutrigenetics and nutrigenomics have been instrumental in demonstrating that nutrient requirements vary among individuals. This is exemplified by studies of the nutrient choline, in which gender, single-nucleotide polymorphisms, estrogen status, and gut microbiome composition have been shown to influence its optimal intake level. Choline is an essential nutrient with a wide range of biological functions, and current studies are aimed at refining our understanding of its requirements and, importantly, on defining the molecular mechanisms that mediate its effects in instances of suboptimal dietary intake. This chapter introduces the reader to challenges in developing individual nutrition recommendations, the biological function of choline, current and future research paradigms to fully understand the consequences of inadequate choline nutrition, and some forward thinking about the potential for individualized nutrition recommendations to become a tangible application for improved health. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. The fine-grained metaphysics of artifactual and biological functional kinds

    NARCIS (Netherlands)

    Carrara, M.; Vermaas, P.E.

    2008-01-01

    In this paper we consider the emerging position in metaphysics that artifact functions characterize real kinds of artifacts. We analyze how it can circumvent an objection by David Wiggins (Sameness and substance renewed, 2001, 87) and then argue that this position, in comparison to expert judgments,

  4. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer.

    Science.gov (United States)

    Fasano, Alessio

    2011-01-01

    The primary functions of the gastrointestinal tract have traditionally been perceived to be limited to the digestion and absorption of nutrients and to electrolytes and water homeostasis. A more attentive analysis of the anatomic and functional arrangement of the gastrointestinal tract, however, suggests that another extremely important function of this organ is its ability to regulate the trafficking of macromolecules between the environment and the host through a barrier mechanism. Together with the gut-associated lymphoid tissue and the neuroendocrine network, the intestinal epithelial barrier, with its intercellular tight junctions, controls the equilibrium between tolerance and immunity to non-self antigens. Zonulin is the only physiological modulator of intercellular tight junctions described so far that is involved in trafficking of macromolecules and, therefore, in tolerance/immune response balance. When the finely tuned zonulin pathway is deregulated in genetically susceptible individuals, both intestinal and extraintestinal autoimmune, inflammatory, and neoplastic disorders can occur. This new paradigm subverts traditional theories underlying the development of these diseases and suggests that these processes can be arrested if the interplay between genes and environmental triggers is prevented by reestablishing the zonulin-dependent intestinal barrier function. This review is timely given the increased interest in the role of a "leaky gut" in the pathogenesis of several pathological conditions targeting both the intestine and extraintestinal organs.

  5. Exercise and dietary advice intervention for survivors of triple-negative breast cancer: effects on body fat, physical function, quality of life, and adipokine profile.

    Science.gov (United States)

    Swisher, Anne K; Abraham, Jame; Bonner, Daniel; Gilleland, Diana; Hobbs, Gerald; Kurian, Sobha; Yanosik, Mary Anne; Vona-Davis, Linda

    2015-10-01

    Regular exercise and healthy eating are routinely recommended for breast cancer survivors, and past studies show benefits in quality of life and decreased inflammation. However, this has not been tested specifically in triple-negative breast cancer survivors. Increasing physical activity and losing body fat are thought to positively affect inflammatory biomarkers that have been associated with breast cancer. Therefore, the primary purpose of this study was to determine if participation in an exercise and dietary counseling program can improve body fat, physical function, and quality of life in survivors of this aggressive breast cancer. Secondarily, we sought to determine if participation in the program had beneficial effects on obesity-related markers of the adipokine profile. Sixty-six survivors of triple-negative breast cancer with BMI >25 were invited to participate. Twenty-eight enrolled and 23 completed the randomized, controlled trial (13 intervention, 10 control). Moderate-intensity aerobic exercise (150 min per week, for 12 weeks) and diet counseling were compared to usual care, education only. The primary outcome of interest was weight loss (body mass, BMI, % fat), and secondary outcomes included physical function (exercise capacity), quality of life (Function After Cancer Therapy-Breast (FACT-B)), cytokines (C-reactive protein (CRP), TNF-α, IL-6), and adipokine profile (leptin, adiponectin, insulin). Participants in the program lost more body fat (2.4 % loss vs. 0.4 % gain, p life (FACT-B total score +14 pts) and decreased sedentary time but did not improve peak exercise capacity. The intervention had no effect on serum cytokines and adipokines after 12 weeks in the program. However, serum leptin and adiponectin and their ratio were significantly correlated with BMI in the intervention group (p life in survivors of triple-negative breast cancer. BMI was associated with favorable changes in leptin and adiponectin which may reflect a change in adiposity

  6. Effects of Dietary Approaches to Stop Hypertension (DASH Eating Plan on Inflammation and Liver Functional Tests among Type 2 Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Leila Azadbakht

    2012-04-01

    Full Text Available Background: Considering that the new cardiovascular risk factors are important among type 2 diabetes. We evaluated the effects of the Dietary Approaches to Stop Hypertension (DASH eating pattern on inflammation and novel cardiovascular risk factors in type 2 diabetic patients.Materials and Method: In this eight-weeks crossover randomized clinical trail, 31 type 2 diabetic patients were on a control diet or the DASH diet. Fruits, vegetables, whole grains, low-fat dairy products are consumed in high amounts in this diet. However, saturated fat, total fat, cholesterol, refined grains, and sweets are recommended in low amounts. DASH diet had a total of 2,400 mg sodium per day. There was a four week washout between two trial phases. C-reactive protein level, coagulation indices and hepatic function tests were measured at baseline and after each phase of trial.Results: The mean percent change for plasma C-reactive protein level was -26.9±3.5% after the DASH diet and-5.1±3.8% after the control diet (p=0.001. Both alanine aminotransferase and aspartate aminotransferase levels were significantly reduced after consuming the DASH diet compared to the control diet (-14.8±3.0 % vs -6.6±3.4%; p=0.001, -29.4±3.7% vs -5.9±1.4%; p=0.001, respectively. The DASH diet reduced the plasma fibrinogen level compared to the control diet (-11.4±3.6% and 0.5±3.4%; p=0.03, respectively. Conclusion: Among diabetic patients, the DASH diet can play an important role in reducing inflammation, plasma levels of fibrinogen and liver aminotranferases. Future long-term studies are recommended.

  7. Dietary omega-3 polyunsaturated fatty acids improve the neurolipidome and restore the DHA status while promoting functional recovery after experimental spinal cord injury.

    Science.gov (United States)

    Figueroa, Johnny D; Cordero, Kathia; Llán, Miguel S; De Leon, Marino

    2013-05-15

    Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) confer multiple health benefits and decrease the risk of neurological disorders. Studies are needed, however, to identify promising cellular targets and to assess their prophylactic value against neurodegeneration. The present study (1) examined the efficacy of a preventive diet enriched with ω-3 PUFAs to reduce dysfunction in a well-established spinal cord injury (SCI) animal model and (2) used a novel metabolomics data analysis to identify potential neurolipidomic targets. Rats were fed with either control chow or chow enriched with ω-3 PUFAs (750 mg/kg/day) for 8 weeks before being subjected to a sham or a contusion SCI operation. We report new evidence showing that rats subjected to SCI after being pre-treated with a diet enriched with ω-3 PUFAs exhibit significantly better functional outcomes. Pre-treated animals exhibited lower sensory deficits, autonomic bladder recovery, and early improvements in locomotion that persisted for at least 8 weeks after trauma. We found that SCI triggers a robust alteration in the cord PUFA neurolipidome, which was characterized by a marked docosahexaenoic acid (DHA) deficiency. This DHA deficiency was associated with dysfunction and corrected with the ω-3 PUFA-enriched diet. Multivariate data analyses revealed that the spinal cord of animals consuming the ω-3 PUFA-enriched diet had a fundamentally distinct neurolipidome, particularly increasing the levels of essential and long chain ω-3 fatty acids and lysolipids at the expense of ω-6 fatty acids and its metabolites. Altogether, dietary ω-3 PUFAs prophylaxis confers resiliency to SCI mediated, at least in part, by generating a neuroprotective and restorative neurolipidome.

  8. Dietary creatine supplementation during pregnancy: a study on the effects of creatine supplementation on creatine homeostasis and renal excretory function in spiny mice.

    Science.gov (United States)

    Ellery, Stacey J; LaRosa, Domenic A; Kett, Michelle M; Della Gatta, Paul A; Snow, Rod J; Walker, David W; Dickinson, Hayley

    2016-08-01

    Recent evidence obtained from a rodent model of birth asphyxia shows that supplementation of the maternal diet with creatine during pregnancy protects the neonate from multi-organ damage. However, the effect of increasing creatine intake on creatine homeostasis and biosynthesis in females, particularly during pregnancy, is unknown. This study assessed the impact of creatine supplementation on creatine homeostasis, body composition, capacity for de novo creatine synthesis and renal excretory function in non-pregnant and pregnant spiny mice. Mid-gestation pregnant and virgin spiny mice were fed normal chow or chow supplemented with 5 % w/w creatine for 18 days. Weight gain, urinary creatine and electrolyte excretion were assessed during supplementation. At post mortem, body composition was assessed by Dual-energy X-ray absorptiometry, or tissues were collected to assess creatine content and mRNA expression of the creatine synthesising enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT) and the creatine transporter (CrT1). Protein expression of AGAT and GAMT was also assessed by Western blot. Key findings of this study include no changes in body weight or composition with creatine supplementation; increased urinary creatine excretion in supplemented spiny mice, with increased sodium (P < 0.001) and chloride (P < 0.05) excretion in pregnant dams after 3 days of supplementation; lowered renal AGAT mRNA (P < 0.001) and protein (P < 0.001) expressions, and lowered CrT1 mRNA expression in the kidney (P < 0.01) and brain (P < 0.001). Creatine supplementation had minimal impact on creatine homeostasis in either non-pregnant or pregnant spiny mice. Increasing maternal dietary creatine consumption could be a useful treatment for birth asphyxia.

  9. Dietary Omega-3 Polyunsaturated Fatty Acids Improve the Neurolipidome and Restore the DHA Status while Promoting Functional Recovery after Experimental Spinal Cord Injury

    Science.gov (United States)

    Figueroa, Johnny D.; Cordero, Kathia; llán, Miguel S.

    2013-01-01

    Abstract Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) confer multiple health benefits and decrease the risk of neurological disorders. Studies are needed, however, to identify promising cellular targets and to assess their prophylactic value against neurodegeneration. The present study (1) examined the efficacy of a preventive diet enriched with ω-3 PUFAs to reduce dysfunction in a well-established spinal cord injury (SCI) animal model and (2) used a novel metabolomics data analysis to identify potential neurolipidomic targets. Rats were fed with either control chow or chow enriched with ω-3 PUFAs (750 mg/kg/day) for 8 weeks before being subjected to a sham or a contusion SCI operation. We report new evidence showing that rats subjected to SCI after being pre-treated with a diet enriched with ω-3 PUFAs exhibit significantly better functional outcomes. Pre-treated animals exhibited lower sensory deficits, autonomic bladder recovery, and early improvements in locomotion that persisted for at least 8 weeks after trauma. We found that SCI triggers a robust alteration in the cord PUFA neurolipidome, which was characterized by a marked docosahexaenoic acid (DHA) deficiency. This DHA deficiency was associated with dysfunction and corrected with the ω-3 PUFA-enriched diet. Multivariate data analyses revealed that the spinal cord of animals consuming the ω-3 PUFA-enriched diet had a fundamentally distinct neurolipidome, particularly increasing the levels of essential and long chain ω-3 fatty acids and lysolipids at the expense of ω-6 fatty acids and its metabolites. Altogether, dietary ω-3 PUFAs prophylaxis confers resiliency to SCI mediated, at least in part, by generating a neuroprotective and restorative neurolipidome. PMID:23294084

  10. Dietary Omega-3 Fatty Acids Suppress Experimental Autoimmune Uveitis in Association with Inhibition of Th1 and Th17 Cell Function

    Science.gov (United States)

    Shoda, Hiromi; Yanai, Ryoji; Yoshimura, Takeru; Nagai, Tomohiko; Kimura, Kazuhiro; Sobrin, Lucia; Connor, Kip M.; Sakoda, Yukimi; Tamada, Koji; Ikeda, Tsunehiko; Sonoda, Koh-Hei

    2015-01-01

    Omega (ω)–3 long-chain polyunsaturated fatty acids (LCPUFAs) inhibit the production of inflammatory mediators and thereby contribute to the regulation of inflammation. Experimental autoimmune uveitis (EAU) is a well-established animal model of autoimmune retinal inflammation. To investigate the potential effects of dietary intake of ω-3 LCPUFAs on uveitis, we examined the anti-inflammatory properties of these molecules in comparison with ω-6 LCPUFAs in a mouse EAU model. C57BL/6 mice were fed a diet containing ω-3 LCPUFAs or ω-6 LCPUFAs for 2 weeks before as well as after the induction of EAU by subcutaneous injection of a fragment of human interphotoreceptor retinoid-binding protein emulsified with complete Freund’s adjuvant. Both clinical and histological scores for uveitis were smaller for mice fed ω-3 LCPUFAs than for those fed ω-6 LCPUFAs. The concentrations of the T helper 1 (Th1) cytokine interferon-γ and the Th17 cytokine interleukin-17 in intraocular fluid as well as the production of these cytokines by lymph node cells were reduced for mice fed ω-3 LCPUFAs. Furthermore, the amounts of mRNAs for the Th1- and Th17-related transcription factors T-bet and RORγt, respectively, were reduced both in the retina and in lymph node cells of mice fed ω-3 LCPUFAs. Our results thus show that a diet enriched in ω-3 LCPUFAs suppressed uveitis in mice in association with inhibition of Th1 and Th17 cell function. PMID:26393358

  11. The dimer interface of the membrane type 1 matrix metalloproteinase hemopexin domain: crystal structure and biological functions.

    Science.gov (United States)

    Tochowicz, Anna; Goettig, Peter; Evans, Richard; Visse, Robert; Shitomi, Yasuyuki; Palmisano, Ralf; Ito, Noriko; Richter, Klaus; Maskos, Klaus; Franke, Daniel; Svergun, Dmitri; Nagase, Hideaki; Bode, Wolfram; Itoh, Yoshifumi

    2011-03-04

    Homodimerization is an essential step for membrane type 1 matrix metalloproteinase (MT1-MMP) to activate proMMP-2 and to degrade collagen on the cell surface. To uncover the molecular basis of the hemopexin (Hpx) domain-driven dimerization of MT1-MMP, a crystal structure of the Hpx domain was solved at 1.7 Å resolution. Two interactions were identified as potential biological dimer interfaces in the crystal structure, and mutagenesis studies revealed that the biological dimer possesses a symmetrical interaction where blades II and III of molecule A interact with blades III and II of molecule B. The mutations of amino acids involved in the interaction weakened the dimer interaction of Hpx domains in solution, and incorporation of these mutations into the full-length enzyme significantly inhibited dimer-dependent functions on the cell surface, including proMMP-2 activation, collagen degradation, and invasion into the three-dimensional collagen matrix, whereas dimer-independent functions, including gelatin film degradation and two-dimensional cell migration, were not affected. These results shed light on the structural basis of MT1-MMP dimerization that is crucial to promote cellular invasion.

  12. Systems biology of personalized nutrition

    NARCIS (Netherlands)

    Ommen, B. van; Broek, T. van den; Hoogh, I. de; Erk, M. van; Someren, E. van; Rouhani-Rankouhi, T.; Anthony, J.C.; Hogenelst, K.; Pasman, W.; Boorsma, A.; Wopereis, S.

    2017-01-01

    Personalized nutrition is fast becoming a reality due to a number of technological, scientific, and societal developments that complement and extend current public health nutrition recommendations. Personalized nutrition tailors dietary recommendations to specific biological requirements on the

  13. The EBI Search engine: providing search and retrieval functionality for biological data from EMBL-EBI.

    Science.gov (United States)

    Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Gur, Tamer; Cowley, Andrew; Li, Weizhong; Uludag, Mahmut; Pundir, Sangya; Cham, Jennifer A; McWilliam, Hamish; Lopez, Rodrigo

    2015-07-01

    The European Bioinformatics Institute (EMBL-EBI-https://www.ebi.ac.uk) provides free and unrestricted access to data across all major areas of biology and biomedicine. Searching and extracting knowledge across these domains requires a fast and scalable solution that addresses the requirements of domain experts as well as casual users. We present the EBI Search engine, referred to here as 'EBI Search', an easy-to-use fast text search and indexing system with powerful data navigation and retrieval capabilities. API integration provides access to analytical tools, allowing users to further investigate the results of their search. The interconnectivity that exists between data resources at EMBL-EBI provides easy, quick and precise navigation and a better understanding of the relationship between different data types including sequences, genes, gene products, proteins, protein domains, protein families, enzymes and macromolecular structures, together with relevant life science literature. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Using synthetic biology to distinguish and overcome regulatory and functional barriers related to nitrogen fixation.

    Directory of Open Access Journals (Sweden)

    Xia Wang

    Full Text Available Biological nitrogen fixation is a complex process requiring multiple genes working in concert. To date, the Klebsiella pneumoniae nif gene cluster, divided into seven operons, is one of the most studied systems. Its nitrogen fixation capacity is subject to complex cascade regulation and physiological limitations. In this report, the entire K. pneumoniae nif gene cluster was reassembled as operon-based BioBrick parts in Escherichia coli. It provided ~100% activity of native K. pneumoniae system. Based on the expression levels of these BioBrick parts, a T7 RNA polymerase-LacI expression system was used to replace the σ(54-dependent promoters located upstream of nif operons. Expression patterns of nif operons were critical for the maximum activity of the recombinant system. By mimicking these expression levels with variable-strength T7-dependent promoters, ~42% of the nitrogenase activity of the σ(54-dependent nif system was achieved in E. coli. When the newly constructed T7-dependent nif system was challenged with different genetic and physiological conditions, it bypassed the original complex regulatory circuits, with minor physiological limitations. Therefore, we have successfully replaced the nif regulatory elements with a simple expression system that may provide the first step for further research of introducing nif genes into eukaryotic organelles, which has considerable potentials in agro-biotechnology.

  15. Covariance Association Test (CVAT) Identifies Genetic Markers Associated with Schizophrenia in Functionally Associated Biological Processes.

    Science.gov (United States)

    Rohde, Palle Duun; Demontis, Ditte; Cuyabano, Beatriz Castro Dias; Børglum, Anders D; Sørensen, Peter

    2016-08-01

    Schizophrenia is a psychiatric disorder with large personal and social costs, and understanding the genetic etiology is important. Such knowledge can be obtained by testing the association between a disease phenotype and individual genetic markers; however, such single-marker methods have limited power to detect genetic markers with small effects. Instead, aggregating genetic markers based on biological information might increase the power to identify sets of genetic markers of etiological significance. Several set test methods have been proposed: Here we propose a new set test derived from genomic best linear unbiased prediction (GBLUP), the covariance association test (CVAT). We compared the performance of CVAT to other commonly used set tests. The comparison was conducted using a simulated study population having the same genetic parameters as for schizophrenia. We found that CVAT was among the top performers. When extending CVAT to utilize a mixture of SNP effects, we found an increase in power to detect the causal sets. Applying the methods to a Danish schizophrenia case-control data set, we found genomic evidence for association of schizophrenia with vitamin A metabolism and immunological responses, which previously have been implicated with schizophrenia based on experimental and observational studies. Copyright © 2016 by the Genetics Society of America.

  16. Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain

    Science.gov (United States)

    Maestre, Fernando T.; Bowker, Matthew A.; Cantón, Yolanda; Castillo-Monroy, Andrea P.; Cortina, Jordi; Escolar, Cristina; Escudero, Adrián; Lázaro, Roberto; Martínez, Isabel

    2015-01-01

    Biological soil crusts (BSCs), composed of lichens, cyanobacteria, mosses, liverworts and microorganisms, are key biotic components of arid and semi-arid ecosystems worldwide. Despite they are widespread in Spain, these organisms have been historically understudied in this country. This trend is beginning to change as a recent wave of research has been identifying BSCs as a model ecological system. Many studies and research projects carried out in Spain have explored the role of BSCs on water, carbon and nitrogen fluxes, the interactions between BSCs and vascular plants, their dynamics after disturbances, and their response to global change, among other topics. In this article we review the growing body of research on BSCs available from semi-arid areas of Spain, highlighting its importance for increasing our knowledge on this group of organisms. We also discuss how it is breaking new ground in emerging research areas on the ecology of BSCs, and how it can be use to guide management and restoration efforts. Finally, we provide directions for future research on the ecology of BSCs in Spain and abroad. PMID:25908884

  17. [Effects of ADAM28 on biological functions of human dental pulp stem cells].

    Science.gov (United States)

    Zhao, Zheng; Liu, Hong-chen; E, Ling-ling; Wang, Yi; Wang, Dong-sheng

    2010-06-01

    To investigate the effects of a disintegrin and metalloproteinase 28 (ADAM28) on proliferation, differentiation and apoptosis of human dental pulp stem cells (HDPSCs) and the possible mechanism. Firstly, HDPSCs were isolated and cultured in vitro and identified. ADAM28 eukaryotic expression plasmid was constructed via gene rebuilt technique and transfected into HDPSCs. Then MTT chromatometry, enzyme dynamics and flow cytometry (FCM) techniques were performed to detect the effects of ADAM28 on biological characteristics of HDPSCs. Immunocytochemical and image analysis techniques were used to determine the influence of ADAM28 on HDPSCs expressing dentin sialophosphoprotein (DSPP), bone sialoprotein (BSP) and osteopontin (OPN). Statistical significance was assessed by the Student-Newman-Keuls (SNK) test with SPSS 13.0 software package. ADAM28 eukaryotic plasmid was constructed and transfected into HDPSCs for 48 hours successfully. In ADAM28 eukaryotic plasmid group, proliferation activity and index of HDPSCs were lower than those of pcDNA3.1(+) group and untransfected group significantly.Alkaline phosphatase (ALP) secretion level and percentage of apoptotic cells went up remarkly. Significant difference was detected between eukaryotic plasmid group and other groups (P<0.05). The expression level of DSPP in HDPSCs elevated significantly (P<0.05). ADAM28 could inhibit HDPSCs proliferation, promote ALP secretion activity and DSPP expression in HDPSCs and induce HDPSCs apoptosis significantly.

  18. TTH biological effect and thyrocyte binding in functional states of the thyroid gland

    International Nuclear Information System (INIS)

    Petrova, G.A.

    1979-01-01

    It was established in experiments made in vitro on the thyroid glands of intact animals and also on hyperplastic, functionally atrophied and inflamed thyroid glands that tritiated TTH actively incorporated into thyroid gland cells of the control animals and raised the rate of thyroxin secretion. Under the conditions of experimental hyperplasia, atrophy and thyroiditis of the thyroid gland, the hormonogenic reaction of thyrocytes and the nature of TTH binding by them was greatly disturbed. The thyrocytes of the hyperplastic and inflamed thyroid tissue did not accept the labelled TTH and did not react to its administration by intensification of thyroxin secretion. The thyrocytes of the functionally atrophied thyroid gland tissue actively bound the tritiated TTH and enhanced thyroxin s