WorldWideScience

Sample records for biological engineering electronic

  1. Engineered phages for electronics.

    Science.gov (United States)

    Cui, Yue

    2016-11-15

    Phages are traditionally widely studied in biology and chemistry. In recent years, engineered phages have attracted significant attentions for functionalization or construction of electronic devices, due to their specific binding, catalytic, nucleating or electronic properties. To apply the engineered phages in electronics, these are a number of interesting questions: how to engineer phages for electronics? How are the engineered phages characterized? How to assemble materials with engineered phages? How are the engineered phages micro or nanopatterned? What are the strategies to construct electronics devices with engineered phages? This review will highlight the early attempts to address these questions and explore the fundamental and practical aspects of engineered phages in electronics, including the approaches for selection or expression of specific peptides on phage coat proteins, characterization of engineered phages in electronics, assembly of electronic materials, patterning of engineered phages, and construction of electronic devices. It provides the methodologies and opens up ex-cit-ing op-por-tu-ni-ties for the development of a variety of new electronic materials and devices based on engineered phages for future applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Electronics engineer's reference book

    CERN Document Server

    Turner, L W

    1976-01-01

    Electronics Engineer's Reference Book, 4th Edition is a reference book for electronic engineers that reviews the knowledge and techniques in electronics engineering and covers topics ranging from basics to materials and components, devices, circuits, measurements, and applications. This edition is comprised of 27 chapters; the first of which presents general information on electronics engineering, including terminology, mathematical equations, mathematical signs and symbols, and Greek alphabet and symbols. Attention then turns to the history of electronics; electromagnetic and nuclear radiatio

  3. Synthetic biology and metabolic engineering.

    Science.gov (United States)

    Stephanopoulos, Gregory

    2012-11-16

    Metabolic engineering emerged 20 years ago as the discipline occupied with the directed modification of metabolic pathways for the microbial synthesis of various products. As such, it deals with the engineering (design, construction, and optimization) of native as well as non-natural routes of product synthesis, aided in this task by the availability of synthetic DNA, the core enabling technology of synthetic biology. The two fields, however, only partially overlap in their interest in pathway engineering. While fabrication of biobricks, synthetic cells, genetic circuits, and nonlinear cell dynamics, along with pathway engineering, have occupied researchers in the field of synthetic biology, the sum total of these areas does not constitute a coherent definition of synthetic biology with a distinct intellectual foundation and well-defined areas of application. This paper reviews the origins of the two fields and advances two distinct paradigms for each of them: that of unit operations for metabolic engineering and electronic circuits for synthetic biology. In this context, metabolic engineering is about engineering cell factories for the biological manufacturing of chemical and pharmaceutical products, whereas the main focus of synthetic biology is fundamental biological research facilitated by the use of synthetic DNA and genetic circuits.

  4. Electron microscopy for Engineers

    International Nuclear Information System (INIS)

    Jones, I P

    2009-01-01

    This paper reviews the application of (mainly) Transmission Electron Microscopy (TEM) in an engineering context. The first two sections are TEM and chemical in nature; the final three sections are more general and include aspects of Scanning Electron Microscopy (SEM).

  5. Multiplexed Engineering in Biology.

    Science.gov (United States)

    Rogers, Jameson K; Church, George M

    2016-03-01

    Biotechnology is the manufacturing technology of the future. However, engineering biology is complex, and many possible genetic designs must be evaluated to find cells that produce high levels of a desired drug or chemical. Recent advances have enabled the design and construction of billions of genetic variants per day, but evaluation capacity remains limited to thousands of variants per day. Here we evaluate biological engineering through the lens of the design–build–test cycle framework and highlight the role that multiplexing has had in transforming the design and build steps. We describe a multiplexed solution to the ‘test’ step that is enabled by new research. Achieving a multiplexed test step will permit a fully multiplexed engineering cycle and boost the throughput of biobased product development by up to a millionfold.

  6. Electronics engineer's reference book

    CERN Document Server

    Mazda, F F

    1989-01-01

    Electronics Engineer's Reference Book, Sixth Edition is a five-part book that begins with a synopsis of mathematical and electrical techniques used in the analysis of electronic systems. Part II covers physical phenomena, such as electricity, light, and radiation, often met with in electronic systems. Part III contains chapters on basic electronic components and materials, the building blocks of any electronic design. Part IV highlights electronic circuit design and instrumentation. The last part shows the application areas of electronics such as radar and computers.

  7. Wireless Biological Electronic Sensors.

    Science.gov (United States)

    Cui, Yue

    2017-10-09

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.

  8. Space Electronic Test Engineering

    Science.gov (United States)

    Chambers, Rodney D.

    2004-01-01

    The Space Power and Propulsion Test Engineering Branch at NASA Glenn Research center has the important duty of controlling electronic test engineering services. These services include test planning and early assessment of Space projects, management and/or technical support required to safely and effectively prepare the article and facility for testing, operation of test facilities, and validation/delivery of data to customer. The Space Electronic Test Engineering Branch is assigned electronic test engineering responsibility for the GRC Space Simulation, Microgravity, Cryogenic, and Combustion Test Facilities. While working with the Space Power and Propulsion Test Engineering Branch I am working on several different assignments. My primary assignment deals with an electrical hardware unit known as Sunny Boy. Sunny Boy is a DC load Bank that is designed for solar arrays in which it is used to convert DC power form the solar arrays into AC power at 60 hertz to pump back into the electricity grid. However, there are some researchers who decided that they would like to use the Sunny Boy unit in a space simulation as a DC load bank for a space shuttle or even the International Space Station hardware. In order to do so I must create a communication link between a computer and the Sunny Boy unit so that I can preset a few of the limits (such power, set & constant voltage levels) that Sunny Boy will need to operate using the applied DC load. Apart from this assignment I am also working on a hi-tech circuit that I need to have built at a researcher s request. This is a high voltage analog to digital circuit that will be used to record data from space ion propulsion rocket booster tests. The problem that makes building this circuit so difficult is that it contains high voltage we must find a way to lower the voltage signal before the data is transferred into the computer to be read. The solution to this problem was to transport the signal using infrared light which will lower

  9. Synthetic biology: engineering molecular computers

    CERN Document Server

    CERN. Geneva

    2018-01-01

    Complicated systems cannot survive the rigors of a chaotic environment, without balancing mechanisms that sense, decide upon and counteract the exerted disturbances. Especially so with living organisms, forced by competition to incredible complexities, escalating also their self-controlling plight. Therefore, they compute. Can we harness biological mechanisms to create artificial computing systems? Biology offers several levels of design abstraction: molecular machines, cells, organisms... ranging from the more easily-defined to the more inherently complex. At the bottom of this stack we find the nucleic acids, RNA and DNA, with their digital structure and relatively precise interactions. They are central enablers of designing artificial biological systems, in the confluence of engineering and biology, that we call Synthetic biology. In the first part, let us follow their trail towards an overview of building computing machines with molecules -- and in the second part, take the case study of iGEM Greece 201...

  10. Mammalian Synthetic Biology: Engineering Biological Systems.

    Science.gov (United States)

    Black, Joshua B; Perez-Pinera, Pablo; Gersbach, Charles A

    2017-06-21

    The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.

  11. Electron holography of biological samples.

    Science.gov (United States)

    Simon, P; Lichte, H; Formanek, P; Lehmann, M; Huhle, R; Carrillo-Cabrera, W; Harscher, A; Ehrlich, H

    2008-01-01

    In this paper, we summarise the development of off-axis electron holography on biological samples starting in 1986 with the first results on ferritin from the group of Tonomura. In the middle of the 1990s strong interest was evoked, but then stagnation took place because the results obtained at that stage did not reach the contrast and the resolution achieved by conventional electron microscopy. To date, there exist only a few ( approximately 12) publications on electron holography of biological objects, thus this topic is quite small and concise. The reason for this could be that holography is mostly established in materials science by physicists. Therefore, applications for off-axis holography were powerfully pushed forward in the area of imaging, e.g. electric or magnetic micro- and nanofields. Unstained biological systems investigated by means of off-axis electron holography up to now are ferritin, tobacco mosaic virus, a bacterial flagellum, T5 bacteriophage virus, hexagonal packed intermediate layer of bacteria and the Semliki Forest virus. New results of the authors on collagen fibres and surface layer of bacteria, the so-called S-layer 2D crystal lattice are presented in this review. For the sake of completeness, we will shortly discuss in-line holography of biological samples and off-axis holography of materials related to biological systems, such as biomaterial composites or magnetotactic bacteria.

  12. Engineering limitations with electrons

    CERN Document Server

    Gröbner, Oswald

    1992-01-01

    The vacuum required for electron machines is determined by the beam lifetime and must be in the ultrahigh vacuum range. Since the emission of intense synchrotron radiation by the electron beam produces strong dynamic outgassing from the vacuum chamber, this gas load must be removed by a powerful, distributed pumping system. To achieve good beam lifetimes an extended in-situ cleaning (beam conditioning) by synchrotron radiation must be applied. High pumping speeds can be obtained using a distributed pumping system, e.g. based on linear, non-evaporable getter pumps. The absorption of the synchrotron radiation power, either by the vacuum chamber directly or on local aborbers,is closely linked to the design of the global system and to the choice of the vacuum chamber material.

  13. Synthetic biology: an emerging engineering discipline.

    Science.gov (United States)

    Cheng, Allen A; Lu, Timothy K

    2012-01-01

    Over the past decade, synthetic biology has emerged as an engineering discipline for biological systems. Compared with other substrates, biology poses a unique set of engineering challenges resulting from an incomplete understanding of natural biological systems and tools for manipulating them. To address these challenges, synthetic biology is advancing from developing proof-of-concept designs to focusing on core platforms for rational and high-throughput biological engineering. These platforms span the entire biological design cycle, including DNA construction, parts libraries, computational design tools, and interfaces for manipulating and probing synthetic circuits. The development of these enabling technologies requires an engineering mindset to be applied to biology, with an emphasis on generalizable techniques in addition to application-specific designs. This review aims to discuss the progress and challenges in synthetic biology and to illustrate areas where synthetic biology may impact biomedical engineering and human health.

  14. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  15. Biology: An Important Agricultural Engineering Mechanism

    Science.gov (United States)

    Henderson, S. M.

    1974-01-01

    Describes the field of bioengineering with particular emphasis on agricultural engineering, and presents the results of a survey of schools that combine biology and engineering in their curricula. (JR)

  16. A Synthetic Biology Approach to Engineering Living Photovoltaics.

    Science.gov (United States)

    Schuergers, N; Werlang, C; Ajo-Franklin, C M; Boghossian, A A

    2017-05-01

    The ability to electronically interface living cells with electron accepting scaffolds is crucial for the development of next-generation biophotovoltaic technologies. Although recent studies have focused on engineering synthetic interfaces that can maximize electronic communication between the cell and scaffold, the efficiency of such devices is limited by the low conductivity of the cell membrane. This review provides a materials science perspective on applying a complementary, synthetic biology approach to engineering membrane-electrode interfaces. It focuses on the technical challenges behind the introduction of foreign extracellular electron transfer pathways in bacterial host cells and the past and future efforts to engineer photosynthetic organisms with artificial electron-export capabilities for biophotovoltaic applications. The article highlights advances in engineering protein-based, electron-exporting conduits in a model host organism, E. coli, before reviewing state-of-the-art biophotovoltaic technologies that use both unmodified and bioengineered photosynthetic bacteria with improved electron transport capabilities. A thermodynamic analysis is used to propose an energetically feasible pathway for extracellular electron transport in engineered cyanobacteria and identify metabolic bottlenecks amenable to protein engineering techniques. Based on this analysis, an engineered photosynthetic organism expressing a foreign, protein-based electron conduit yields a maximum theoretical solar conversion efficiency of 6-10% without accounting for additional bioengineering optimizations for light-harvesting.

  17. Newnes radio and electronics engineer's pocket book

    CERN Document Server

    Moorshead, H W; Perry, J

    1978-01-01

    Newnes Radio and Electronics Engineer's Pocket Book, Fifteenth Edition provides reference of the information relevant in radio and electronics engineering. The book presents tables, illustrations, and diagrams of various data used in radio and electronics engineering. The coverage of the text includes abbreviations and symbols, electrical equations, and code conversions. The text will be useful to engineers, technicians, and other professionals who require a reference about the different aspects of radio and electronics.

  18. An Analog Computer for Electronic Engineering Education

    Science.gov (United States)

    Fitch, A. L.; Iu, H. H. C.; Lu, D. D. C.

    2011-01-01

    This paper describes a compact analog computer and proposes its use in electronic engineering teaching laboratories to develop student understanding of applications in analog electronics, electronic components, engineering mathematics, control engineering, safe laboratory and workshop practices, circuit construction, testing, and maintenance. The…

  19. Synthetic Biological Engineering of Photosynthesis

    Science.gov (United States)

    2015-11-16

    sink’, allowing a greater utilization of solar energy under conditions of excess light. The engineered microalgae exhibit a 25-30% enhancement in...the cellular ‘metabolic sink’, allowing a greater utilization of solar energy under conditions of excess light. The engineered microalgae exhibit a

  20. Synthetic Biology to Engineer Bacteriophage Genomes.

    Science.gov (United States)

    Rita Costa, Ana; Milho, Catarina; Azeredo, Joana; Pires, Diana Priscila

    2018-01-01

    Recent advances in the synthetic biology field have enabled the development of new molecular biology techniques used to build specialized bacteriophages with new functionalities. Bacteriophages have been engineered towards a wide range of applications including pathogen control and detection, targeted drug delivery, or even assembly of new materials.In this chapter, two strategies that have been successfully used to genetically engineer bacteriophage genomes are addressed: a yeast-based platform and bacteriophage recombineering of electroporated DNA.

  1. e-Biologics: Fabrication of Sustainable Electronics with "Green" Biological Materials.

    Science.gov (United States)

    Lovley, Derek R

    2017-06-27

    The growing ubiquity of electronic devices is increasingly consuming substantial energy and rare resources for materials fabrication, as well as creating expansive volumes of toxic waste. This is not sustainable. Electronic biological materials (e-biologics) that are produced with microbes, or designed with microbial components as the guide for synthesis, are a potential green solution. Some e-biologics can be fabricated from renewable feedstocks with relatively low energy inputs, often while avoiding the harsh chemicals used for synthesizing more traditional electronic materials. Several are completely free of toxic components, can be readily recycled, and offer unique features not found in traditional electronic materials in terms of size, performance, and opportunities for diverse functionalization. An appropriate investment in the concerted multidisciplinary collaborative research required to identify and characterize e-biologics and to engineer materials and devices based on e-biologics could be rewarded with a new "green age" of sustainable electronic materials and devices. Copyright © 2017 Lovley.

  2. Engineering reduced evolutionary potential for synthetic biology

    Science.gov (United States)

    Renda, Brian A.; Hammerling, Michael J.

    2014-01-01

    The field of synthetic biology seeks to engineer reliable and predictable behaviors in organisms from collections of standardized genetic parts. However, unlike other types of machines, genetically encoded biological systems are prone to changes in their designed sequences due to mutations in their DNA sequences after these devices are constructed and deployed. Thus, biological engineering efforts can be confounded by undesired evolution that rapidly breaks the functions of parts and systems, particularly when they are costly to the host cell to maintain. Here, we explain the fundamental properties that determine the evolvability of biological systems. Then, we use this framework to review current efforts to engineer the DNA sequences that encode synthetic biology devices and the genomes of their microbial hosts to reduce their ability to evolve and therefore increase their genetic reliability so that they maintain their intended functions over longer timescales. PMID:24556867

  3. Synthetic biology approaches to engineer T cells.

    Science.gov (United States)

    Wu, Chia-Yung; Rupp, Levi J; Roybal, Kole T; Lim, Wendell A

    2015-08-01

    There is rapidly growing interest in learning how to engineer immune cells, such as T lymphocytes, because of the potential of these engineered cells to be used for therapeutic applications such as the recognition and killing of cancer cells. At the same time, our knowhow and capability to logically engineer cellular behavior is growing rapidly with the development of synthetic biology. Here we describe how synthetic biology approaches are being used to rationally alter the behavior of T cells to optimize them for therapeutic functions. We also describe future developments that will be important in order to construct safe and precise T cell therapeutics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Biological Systems Thinking for Control Engineering Design

    Directory of Open Access Journals (Sweden)

    D. J. Murray-Smith

    2004-01-01

    Full Text Available Artificial neural networks and genetic algorithms are often quoted in discussions about the contribution of biological systems thinking to engineering design. This paper reviews work on the neuromuscular system, a field in which biological systems thinking could make specific contributions to the development and design of automatic control systems for mechatronics and robotics applications. The paper suggests some specific areas in which a better understanding of this biological control system could be expected to contribute to control engineering design methods in the future. Particular emphasis is given to the nonlinear nature of elements within the neuromuscular system and to processes of neural signal processing, sensing and system adaptivity. Aspects of the biological system that are of particular significance for engineering control systems include sensor fusion, sensor redundancy and parallelism, together with advanced forms of signal processing for adaptive and learning control. 

  5. An engineering design approach to systems biology.

    Science.gov (United States)

    Janes, Kevin A; Chandran, Preethi L; Ford, Roseanne M; Lazzara, Matthew J; Papin, Jason A; Peirce, Shayn M; Saucerman, Jeffrey J; Lauffenburger, Douglas A

    2017-07-17

    Measuring and modeling the integrated behavior of biomolecular-cellular networks is central to systems biology. Over several decades, systems biology has been shaped by quantitative biologists, physicists, mathematicians, and engineers in different ways. However, the basic and applied versions of systems biology are not typically distinguished, which blurs the separate aspirations of the field and its potential for real-world impact. Here, we articulate an engineering approach to systems biology, which applies educational philosophy, engineering design, and predictive models to solve contemporary problems in an age of biomedical Big Data. A concerted effort to train systems bioengineers will provide a versatile workforce capable of tackling the diverse challenges faced by the biotechnological and pharmaceutical sectors in a modern, information-dense economy.

  6. Quantifying electron transfer reactions in biological systems

    DEFF Research Database (Denmark)

    Sjulstok, Emil Sjulstok; Olsen, Jógvan Magnus Haugaard; Solov'yov, Ilia A

    2015-01-01

    to deduce the driving force for the electron transfer reaction and to establish those interactions that play the major role in propelling the electron. The suggested approach is seen as a general recipe to treat electron transfer events in biological systems computationally, and we utilize it to describe...

  7. Biological cryo‐electron microscopy in China

    Science.gov (United States)

    2016-01-01

    Abstract Cryo‐electron microscopy (cryo‐EM) plays an increasingly more important role in structural biology. With the construction of an arm of the Chinese National Protein Science Facility at Tsinghua University, biological cryo‐EM has entered a phase of rapid development in China. This article briefly reviews the history of biological cryo‐EM in China, describes its current status, comments on its impact on the various biological research fields, and presents future outlook. PMID:27534377

  8. Enabling plant synthetic biology through genome engineering.

    Science.gov (United States)

    Baltes, Nicholas J; Voytas, Daniel F

    2015-02-01

    Synthetic biology seeks to create new biological systems, including user-designed plants and plant cells. These systems can be employed for a variety of purposes, ranging from producing compounds of industrial or therapeutic value, to reducing crop losses by altering cellular responses to pathogens or climate change. To realize the full potential of plant synthetic biology, techniques are required that provide control over the genetic code - enabling targeted modifications to DNA sequences within living plant cells. Such control is now within reach owing to recent advances in the use of sequence-specific nucleases to precisely engineer genomes. We discuss here the enormous potential provided by genome engineering for plant synthetic biology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Micromechanics of engineered and biological systems

    Indian Academy of Sciences (India)

    Microsystems are good examples of integrated engineered systems of small size. Although this .... In develop- mental biology, the application of controlled forces on growing embryos is shown to help in under- standing ..... Optimization is a useful tool for synthesis. Many optimal synthesis methods have been developed for.

  10. Electron-electron attraction in an engineered electromechanical system

    Science.gov (United States)

    Széchenyi, Gábor; Pályi, András; Droth, Matthias

    2017-12-01

    Two electrons in a quantum dot repel each other: their interaction can be characterized by a positive interaction energy. From the theory of superconductivity, we also know that mechanical vibrations of the crystal lattice can make the electron-electron interaction attractive. Analogously, if a quantum dot interacts with a mechanical degree of freedom, the effective interaction energy can be negative; that is, the electron-electron interaction might be attractive. In this work, we propose and theoretically study an engineered electromechanical system that exhibits electron-electron attraction: a quantum dot suspended on a nonlinear mechanical resonator, tuned by a bottom and a top gate electrode. We focus on the example of a dot embedded in a suspended graphene ribbon, for which we identify conditions for electron-electron attraction. Our results suggest the possibility of electronic transport via tunneling of packets of multiple electrons in such devices, similar to that in superconducting nanostructures, but without the use of any superconducting elements.

  11. Peptide π-Electron Conjugates: Organic Electronics for Biology?

    Science.gov (United States)

    Ardoña, Herdeline Ann M; Tovar, John D

    2015-12-16

    Highly ordered arrays of π-conjugated molecules are often viewed as a prerequisite for effective charge-transporting materials. Studies involving these materials have traditionally focused on organic electronic devices, with more recent emphasis on biological systems. In order to facilitate the transition to biological environments, biomolecules that can promote hierarchical ordering and water solubility are often covalently appended to the π-electron unit. This review highlights recent work on π-conjugated systems bound to peptide moieties that exhibit self-assembly and aims to provide an overview on the development and emerging applications of peptide-based supramolecular π-electron systems.

  12. Newnes electronics engineers pocket book

    CERN Document Server

    Brindley, Keith

    2013-01-01

    This book is packed with information and material which everyone involved in electronics will find indispensable. Now when you need to know a transistor's characteristics, or an integrated circuit's pinout details, simply look it up! The book is full of tables, symbols, formulae, conversions and illustrations.Promotion via the new Newnes Pocket Book catalogue to the electronics trade will drive sales into the book trade Covers component data; encapsulations; pin-outs; symbols & codings Extensive material on conversion factors, formulae; units and relationships

  13. Molecular ferroelectrics: where electronics meet biology.

    Science.gov (United States)

    Li, Jiangyu; Liu, Yuanming; Zhang, Yanhang; Cai, Hong-Ling; Xiong, Ren-Gen

    2013-12-28

    In the last several years, we have witnessed significant advances in molecular ferroelectrics, with the ferroelectric properties of molecular crystals approaching those of barium titanate. In addition, ferroelectricity has been observed in biological systems, filling an important missing link in bioelectric phenomena. In this perspective, we will present short historical notes on ferroelectrics, followed by an overview of the fundamentals of ferroelectricity. The latest developments in molecular ferroelectrics and biological ferroelectricity will then be highlighted, and their implications and potential applications will be discussed. We close by noting molecular ferroelectric as an exciting frontier between electronics and biology, and a number of challenges ahead are also described.

  14. Interface engineering for organic electronics

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hong; Yip, Hin-Lap; Jen, Alex K.Y. [Department of Materials Science and Engineering, University of Washington, Seattle, WA (United States); Huang, Fei [Department of Materials Science and Engineering, University of Washington, Seattle, WA (United States); Institute of Polymer Optoelectronic Materials and Devices College of Materials Science and Engineering, South China University of Technology Guangzhou (China)

    2010-05-10

    The field of organic electronics has been developed vastly in the past two decades due to its promise for low cost, lightweight, mechanical flexibility, versatility of chemical design and synthesis, and ease of processing. The performance and lifetime of these devices, such as organic light-emitting diodes (OLEDs), photovoltaics (OPVs), and field-effect transistors (OFETs), are critically dependent on the properties of both active materials and their interfaces. Interfacial properties can be controlled ranging from simple wettability or adhesion between different materials to direct modifications of the electronic structure of the materials. In this Feature Article, the strategies of utilizing surfactant-modified cathodes, hole-transporting buffer layers, and self-assembled monolayer (SAM)-modified anodes are highlighted. In addition to enabling the production of high-efficiency OLEDs, control of interfaces in both conventional and inverted polymer solar cells is shown to enhance their efficiency and stability; and the tailoring of source-drain electrode-semiconductor interfaces, dielectric-semiconductor interfaces, and ultrathin dielectrics is shown to allow for high-performance OFETs. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  15. Electronics Engineering Research. Final report, FY 1979

    International Nuclear Information System (INIS)

    Weissenberger, S.

    1980-01-01

    Accomplishments in Electronics Engineering Research (EER) during FY79 spanned a broad range of technologies, from high-speed microelectronics to digital image enhancement; from underground probing with electromagnetic waves to detecting neutrons with a small solid-state device; and from computer systems to aid engineers, to software tools to aid programmers. This report describes the overall EER program and its objectives, summarizes progress made in FY79, and outlines plans for FY80

  16. Electronics Engineering Research. Final report, FY 1979

    Energy Technology Data Exchange (ETDEWEB)

    Weissenberger, S. (ed.)

    1980-01-01

    Accomplishments in Electronics Engineering Research (EER) during FY79 spanned a broad range of technologies, from high-speed microelectronics to digital image enhancement; from underground probing with electromagnetic waves to detecting neutrons with a small solid-state device; and from computer systems to aid engineers, to software tools to aid programmers. This report describes the overall EER program and its objectives, summarizes progress made in FY79, and outlines plans for FY80.

  17. Engineering Liposomes and Nanoparticles for Biological Targeting

    DEFF Research Database (Denmark)

    Jølck, Rasmus Irming; Feldborg, Lise Nørkjær; Andersen, Simon

    2011-01-01

    Our ability to engineer nanomaterials for biological and medical applications is continuously increasing, and nanomaterial designs are becoming more and more complex. One very good example of this is the drug delivery field where nanoparticle systems can be used to deliver drugs specifically...... to diseased tissue. In the early days, the design of the nanoparticles was relatively simple, but today we can surface functionalize and manipulate material properties to target diseased tissue and build highly complex drug release mechanisms into our designs. One of the most promising strategies in drug...

  18. Engineering biological systems toward a sustainable bioeconomy.

    Science.gov (United States)

    Lopes, Mateus Schreiner Garcez

    2015-06-01

    The nature of our major global risks calls for sustainable innovations to decouple economic growth from greenhouse gases emission. The development of sustainable technologies has been negatively impacted by several factors including sugar production costs, production scale, economic crises, hydraulic fracking development and the market inability to capture externality costs. However, advances in engineering of biological systems allow bridging the gap between exponential growth of knowledge about biology and the creation of sustainable value chains for a broad range of economic sectors. Additionally, industrial symbiosis of different biobased technologies can increase competitiveness and sustainability, leading to the development of eco-industrial parks. Reliable policies for carbon pricing and revenue reinvestments in disruptive technologies and in the deployment of eco-industrial parks could boost the welfare while addressing our major global risks toward the transition from a fossil to a biobased economy.

  19. Drastic reformation of Electrical and Electronics Engineering Laboratory(Researches)

    OpenAIRE

    青柳, 稔; Minoru, Aoyagi

    2016-01-01

    The Department of Electrical and Electronic Engineering opened in 1978, as the Department of Electrical Engineering. In 1987, the Department of Electrical Engineering was renamed the Department of Electrical and Electronic Engineering. The Department of Electrical and Electronic Engineering has conducted basic educations and studies on electric and electronic engineering. In this paper, I will introduce an overview of recent researches and educations of the Department of Ele ctrical and Elect...

  20. Advancing metabolic engineering through systems biology of industrial microorganisms

    DEFF Research Database (Denmark)

    Dai, Zongjie; Nielsen, Jens

    2015-01-01

    resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review...... the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further....

  1. New Project System for Undergraduate Electronic Engineering

    Science.gov (United States)

    Chiu, Dirk M.; Chiu, Shen Y.

    2005-01-01

    A new approach to projects for undergraduate electronic engineering in an Australian university has been applied successfully for over 10 years. This approach has a number of projects running over three year period. Feedback from past graduates and their managers has confirmed that these projects train the students well, giving them the ability…

  2. Electronics Engineering Department Thrust Area report FY'84

    International Nuclear Information System (INIS)

    Minichino, C.; Phelps, P.L.

    1984-01-01

    This report describes the work of the Electronics Engineering Department Thrust Areas for FY'84: diagnostics and microelectronic engineering; signal and control engineering; microwave and pulsed power engineering; computer-aided engineering; engineering modeling and simulation; and systems engineering. For each Thrust Area, an overview and a description of the goals and achievements of each project is provided

  3. Engineering and Biology: Counsel for a Continued Relationship

    Science.gov (United States)

    Levy, Arnon; Siegal, Mark L.; Soyer, Orkun S.; Wagner, Andreas

    2015-01-01

    Biologists frequently draw on ideas and terminology from engineering. Evolutionary systems biology—with its circuits, switches, and signal processing—is no exception. In parallel with the frequent links drawn between biology and engineering, there is ongoing criticism against this cross-fertilization, using the argument that over-simplistic metaphors from engineering are likely to mislead us as engineering is fundamentally different from biology. In this article, we clarify and reconfigure the link between biology and engineering, presenting it in a more favorable light. We do so by, first, arguing that critics operate with a narrow and incorrect notion of how engineering actually works, and of what the reliance on ideas from engineering entails. Second, we diagnose and diffuse one significant source of concern about appeals to engineering, namely that they are inherently and problematically metaphorical. We suggest that there is plenty of fertile ground left for a continued, healthy relationship between engineering and biology. PMID:26085824

  4. Existing and emerging detection technologies for DNA (Deoxyribonucleic Acid) finger printing, sequencing, bio- and analytical chips: a multidisciplinary development unifying molecular biology, chemical and electronics engineering.

    Science.gov (United States)

    Kumar Khanna, Vinod

    2007-01-01

    The current status and research trends of detection techniques for DNA-based analysis such as DNA finger printing, sequencing, biochips and allied fields are examined. An overview of main detectors is presented vis-à-vis these DNA operations. The biochip method is explained, the role of micro- and nanoelectronic technologies in biochip realization is highlighted, various optical and electrical detection principles employed in biochips are indicated, and the operational mechanisms of these detection devices are described. Although a diversity of biochips for diagnostic and therapeutic applications has been demonstrated in research laboratories worldwide, only some of these chips have entered the clinical market, and more chips are awaiting commercialization. The necessity of tagging is eliminated in refractive-index change based devices, but the basic flaw of indirect nature of most detection methodologies can only be overcome by generic and/or reagentless DNA sensors such as the conductance-based approach and the DNA-single electron transistor (DNA-SET) structure. Devices of the electrical detection-based category are expected to pave the pathway for the next-generation DNA chips. The review provides a comprehensive coverage of the detection technologies for DNA finger printing, sequencing and related techniques, encompassing a variety of methods from the primitive art to the state-of-the-art scenario as well as promising methods for the future.

  5. Electronics engineering research proposals for FY78

    International Nuclear Information System (INIS)

    Cleland, L.L.; Ekstrom, M.P.; Miller, E.K.

    1977-01-01

    Since most of the Electronics Engineering Research expenditures are in the Engineering Research Division (ERD), the two are inseparable when discussing plans. A reorganization of ERD aimed at further expanding LLL capabilities and being more responsive to LLL needs is now complete. Six discipline related groups constitute the research elements in ERD. Three groups remained unchanged, one group was modified slightly, two groups were added, and one group was dissolved. The technical activities of each of the six research-oriented groups within ERD are reported

  6. Elements of theoretical mechanics for electronic engineers

    CERN Document Server

    Bultot, Franz

    1965-01-01

    Elements of Theoretical Mechanics for Electronic Engineers deals with theoretical mechanics, which is considered one of the fundamental branches of instruction essential to training an engineer. This book discusses the oscillatory motions and their counterparts in electrical circuits and radio, and provides an introduction to differential operators of vector field theory. Other topics covered include systems and functions of vectors; dynamics of a free point; vibrations and waves; and statics. Worked examples and many notes on the application of most sections of the theories to electrical deve

  7. CMOS biomicrosystems where electronics meets biology

    CERN Document Server

    2011-01-01

    "The book will address the-state-of-the-art in integrated Bio-Microsystems that integrate microelectronics with fluidics, photonics, and mechanics. New exciting opportunities in emerging applications that will take system performance beyond offered by traditional CMOS based circuits are discussed in detail. The book is a must for anyone serious about microelectronics integration possibilities for future technologies. The book is written by top notch international experts in industry and academia. The intended audience is practicing engineers with electronics background that want to learn about integrated microsystems. The book will be also used as a recommended reading and supplementary material in graduate course curriculum"--

  8. Issues and architecture for Electronic Enterprise Engineering (EEE)

    Energy Technology Data Exchange (ETDEWEB)

    Tanik, M.M.; Yeh, R.T.; Bieber, M. [New Jersey Inst. of Technology, Newark, NJ (United States)] [and others

    1996-12-31

    Society needs a new class of engineers able to deal with the rapidly changing electronic marketplace. We introduce a new multi-disciplinary field, Electronic Enterprise Engineering (EEE), in which this new class of engineers will function as integrators. We identify objectives for training these engineers. We also outline a preliminary architecture for the EEE program. The appendix introduces a curriculum for training electronic enterprise engineers.

  9. Quantitative biological measurement in Transmission Electron Tomography

    International Nuclear Information System (INIS)

    Mantell, Judith M; Verkade, Paul; Arkill, Kenton P

    2012-01-01

    It has been known for some time that biological sections shrink in the transmission electron microscope from exposure to the electron beam. This phenomenon is especially important in Electron Tomography (ET). The effect on shrinkage of parameters such as embedding medium or sample type is less well understood. In addition anisotropic area shrinkage has largely been ignored. The intention of this study is to explore the shrinkage on a number of samples ranging in thickness from 200 nm to 500 nm. A protocol was developed to determine the shrinkage in area and thickness using the gold fiducials used in electron tomography. In brief: Using low dose philosophy on the section, a focus area was used prior to a separate virgin study area for a series of known exposures on a tilted sample. The shrinkage was determined by measurements on the gold beads from both sides of the section as determined by a confirmatory tomogram. It was found that the shrinkage in area (approximately to 90-95% of the original) and the thickness (approximately 65% of the original at most) agreed with pervious authors, but that a lmost all the shrinkage was in the first minute and that although the direction of the in-plane shrinkage (in x and y) was sometimes uneven the end result was consistent. It was observed, in general, that thinner samples showed more percentage shrinkage than thicker ones. In conclusion, if direct quantitative measurements are required then the protocol described should be used for all areas studied.

  10. Quantitative biological measurement in Transmission Electron Tomography

    Science.gov (United States)

    Mantell, Judith M.; Verkade, Paul; Arkill, Kenton P.

    2012-07-01

    It has been known for some time that biological sections shrink in the transmission electron microscope from exposure to the electron beam. This phenomenon is especially important in Electron Tomography (ET). The effect on shrinkage of parameters such as embedding medium or sample type is less well understood. In addition anisotropic area shrinkage has largely been ignored. The intention of this study is to explore the shrinkage on a number of samples ranging in thickness from 200 nm to 500 nm. A protocol was developed to determine the shrinkage in area and thickness using the gold fiducials used in electron tomography. In brief: Using low dose philosophy on the section, a focus area was used prior to a separate virgin study area for a series of known exposures on a tilted sample. The shrinkage was determined by measurements on the gold beads from both sides of the section as determined by a confirmatory tomogram. It was found that the shrinkage in area (approximately to 90-95% of the original) and the thickness (approximately 65% of the original at most) agreed with pervious authors, but that a lmost all the shrinkage was in the first minute and that although the direction of the in-plane shrinkage (in x and y) was sometimes uneven the end result was consistent. It was observed, in general, that thinner samples showed more percentage shrinkage than thicker ones. In conclusion, if direct quantitative measurements are required then the protocol described should be used for all areas studied.

  11. Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Nielsen, Jens; Jewett, Michael Christopher

    2008-01-01

    in the industrial application of this yeast. Developments in genomics and high-throughput systems biology tools are enhancing one's ability to rapidly characterize cellular behaviour, which is valuable in the field of metabolic engineering where strain characterization is often the bottleneck in strain development...... programmes. Here, the impact of systems biology on metabolic engineering is reviewed and perspectives on the role of systems biology in the design of cell factories are given....

  12. Challenges and opportunities in synthetic biology for chemical engineers

    Energy Technology Data Exchange (ETDEWEB)

    Luo, YZ; Lee, JK; Zhao, HM

    2013-11-15

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement. (C) 2012 Elsevier Ltd. All rights reserved.

  13. International Conference on Medical and Biological Engineering 2017

    CERN Document Server

    2017-01-01

    This volume presents the proceedings of the International Conference on Medical and Biological Engineering held from 16 to 18 March 2017 in Sarajevo, Bosnia and Herzegovina. Focusing on the theme of ‘Pursuing innovation. Shaping the future’, it highlights the latest advancements in Biomedical Engineering and also presents the latest findings, innovative solutions and emerging challenges in this field. Topics include: - Biomedical Signal Processing - Biomedical Imaging and Image Processing - Biosensors and Bioinstrumentation - Bio-Micro/Nano Technologies - Biomaterials - Biomechanics, Robotics and Minimally Invasive Surgery - Cardiovascular, Respiratory and Endocrine Systems Engineering - Neural and Rehabilitation Engineering - Molecular, Cellular and Tissue Engineering - Bioinformatics and Computational Biology - Clinical Engineering and Health Technology Assessment - Health Informatics, E-Health and Telemedicine - Biomedical Engineering Education - Pharmaceutical Engineering.

  14. IntegromeDB: an integrated system and biological search engine.

    Science.gov (United States)

    Baitaluk, Michael; Kozhenkov, Sergey; Dubinina, Yulia; Ponomarenko, Julia

    2012-01-19

    With the growth of biological data in volume and heterogeneity, web search engines become key tools for researchers. However, general-purpose search engines are not specialized for the search of biological data. Here, we present an approach at developing a biological web search engine based on the Semantic Web technologies and demonstrate its implementation for retrieving gene- and protein-centered knowledge. The engine is available at http://www.integromedb.org. The IntegromeDB search engine allows scanning data on gene regulation, gene expression, protein-protein interactions, pathways, metagenomics, mutations, diseases, and other gene- and protein-related data that are automatically retrieved from publicly available databases and web pages using biological ontologies. To perfect the resource design and usability, we welcome and encourage community feedback.

  15. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875

  16. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2013-10-01

    Full Text Available Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  17. Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-10-11

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  18. A transatlantic perspective on 20 emerging issues in biological engineering.

    Science.gov (United States)

    Wintle, Bonnie C; Boehm, Christian R; Rhodes, Catherine; Molloy, Jennifer C; Millett, Piers; Adam, Laura; Breitling, Rainer; Carlson, Rob; Casagrande, Rocco; Dando, Malcolm; Doubleday, Robert; Drexler, Eric; Edwards, Brett; Ellis, Tom; Evans, Nicholas G; Hammond, Richard; Haseloff, Jim; Kahl, Linda; Kuiken, Todd; Lichman, Benjamin R; Matthewman, Colette A; Napier, Johnathan A; ÓhÉigeartaigh, Seán S; Patron, Nicola J; Perello, Edward; Shapira, Philip; Tait, Joyce; Takano, Eriko; Sutherland, William J

    2017-11-14

    Advances in biological engineering are likely to have substantial impacts on global society. To explore these potential impacts we ran a horizon scanning exercise to capture a range of perspectives on the opportunities and risks presented by biological engineering. We first identified 70 potential issues, and then used an iterative process to prioritise 20 issues that we considered to be emerging, to have potential global impact, and to be relatively unknown outside the field of biological engineering. The issues identified may be of interest to researchers, businesses and policy makers in sectors such as health, energy, agriculture and the environment.

  19. Engineering Biology by Controlling Tissue Folding.

    Science.gov (United States)

    Hookway, Tracy A

    2018-04-01

    Achieving complex self-organization in vitro has remained a fundamental challenge in tissue engineering. A recent study in Developmental Cell by Hughes and colleagues uses computational and experimental approaches to understand and control the morphogenic process of tissue folding. These approaches provide an engineering framework to reproducibly control tissue shape. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Accessing Nature's diversity through metabolic engineering and synthetic biology.

    Science.gov (United States)

    King, Jason R; Edgar, Steven; Qiao, Kangjian; Stephanopoulos, Gregory

    2016-01-01

    In this perspective, we highlight recent examples and trends in metabolic engineering and synthetic biology that demonstrate the synthetic potential of enzyme and pathway engineering for natural product discovery. In doing so, we introduce natural paradigms of secondary metabolism whereby simple carbon substrates are combined into complex molecules through "scaffold diversification", and subsequent "derivatization" of these scaffolds is used to synthesize distinct complex natural products. We provide examples in which modern pathway engineering efforts including combinatorial biosynthesis and biological retrosynthesis can be coupled to directed enzyme evolution and rational enzyme engineering to allow access to the "privileged" chemical space of natural products in industry-proven microbes. Finally, we forecast the potential to produce natural product-like discovery platforms in biological systems that are amenable to single-step discovery, validation, and synthesis for streamlined discovery and production of biologically active agents.

  1. Advancing metabolic engineering through systems biology of industrial microorganisms.

    Science.gov (United States)

    Dai, Zongjie; Nielsen, Jens

    2015-12-01

    Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Synthetic biology and its alternatives. Descartes, Kant and the idea of engineering biological machines.

    Science.gov (United States)

    Kogge, Werner; Richter, Michael

    2013-06-01

    The engineering-based approach of synthetic biology is characterized by an assumption that 'engineering by design' enables the construction of 'living machines'. These 'machines', as biological machines, are expected to display certain properties of life, such as adapting to changing environments and acting in a situated way. This paper proposes that a tension exists between the expectations placed on biological artefacts and the notion of producing such systems by means of engineering; this tension makes it seem implausible that biological systems, especially those with properties characteristic of living beings, can in fact be produced using the specific methods of engineering. We do not claim that engineering techniques have nothing to contribute to the biotechnological construction of biological artefacts. However, drawing on Descartes's and Kant's thinking on the relationship between the organism and the machine, we show that it is considerably more plausible to assume that distinctively biological artefacts emerge within a paradigm different from the paradigm of the Cartesian machine that underlies the engineering approach. We close by calling for increased attention to be paid to approaches within molecular biology and chemistry that rest on conceptions different from those of synthetic biology's engineering paradigm. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. 2012 International Conference on Mechanical and Electronic Engineering

    CERN Document Server

    Lin, Sally; ICMEE2012; Advances in Mechanical and Electronic Engineering v.2

    2012-01-01

    This book includes the volume 2 of the proceedings of the 2012 International Conference on Mechanical and Electronic Engineering(ICMEE2012), held at June 23-24,2012 in Hefei, China. The conference provided a rare opportunity to bring together worldwide researchers who are working in the fields. This volume 2 is focusing on Mechatronic Engineering and Technology,  Electronic Engineering and Electronic Information Technology .

  4. 2012 International Conference on Electrical and Electronics Engineering

    CERN Document Server

    Chen, Suting; Wei, Zhanming; Xia, Jingming

    2014-01-01

    Unifying Electrical Engineering and Electronics Engineering is based on the Proceedings of the 2012 International Conference on Electrical and Electronics Engineering (ICEE 2012). This book collects the peer reviewed papers presented at the conference. The aim of the conference is to unify the two areas of Electrical and Electronics Engineering. The book examines trends and techniques in the field as well as theories and applications. The editors have chosen to include the following topics; biotechnology, power engineering, superconductivity circuits, antennas technology, system architectures and telecommunication.

  5. Challenges of medical and biological engineering and science

    International Nuclear Information System (INIS)

    Magjarevic, R.

    2004-01-01

    All aspects of biomedical engineering and science, from research and development, education and training, implementation in health care systems, internationalisation and globalisation, and other, new issues are present in the strategy and in action plans of the International Federation for Medical and Biological Engineering (IFMBE) which, with help of a large number of highly motivated volunteers, will stay in leading position in biomedical engineering and science

  6. Synthetic Biology: Engineering Living Systems from Biophysical Principles.

    Science.gov (United States)

    Bartley, Bryan A; Kim, Kyung; Medley, J Kyle; Sauro, Herbert M

    2017-03-28

    Synthetic biology was founded as a biophysical discipline that sought explanations for the origins of life from chemical and physical first principles. Modern synthetic biology has been reinvented as an engineering discipline to design new organisms as well as to better understand fundamental biological mechanisms. However, success is still largely limited to the laboratory and transformative applications of synthetic biology are still in their infancy. Here, we review six principles of living systems and how they compare and contrast with engineered systems. We cite specific examples from the synthetic biology literature that illustrate these principles and speculate on their implications for further study. To fully realize the promise of synthetic biology, we must be aware of life's unique properties. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Electron Transfer in Chemistry and Biology - The Primary Events in ...

    Indian Academy of Sciences (India)

    electron transfer. (PET) is a very important process, with considerable chemical and biological relevance. GENERAL I ARTICLE of electrons, respectively. This has entirely changed the earlier framework of interpreting reactions in chemistry and biology. This shift in emphasis enables one to understand the elementary.

  8. Electron Transfer in Chemistry and Biology - The Primary Events in ...

    Indian Academy of Sciences (India)

    Electron Transfer in Chemistry and Biology -. The Primary Events in Photosynthesis. V Krishnan. One of the most important chemical reactions is electron transfer from one atomic/molecular unit to another. This reaction, accompanied by proton and hydrogen atom transfers, occurs in a cascade in many biological processes,.

  9. XIV Mediterranean Conference on Medical and Biological Engineering and Computing

    CERN Document Server

    Christofides, Stelios; Pattichis, Constantinos

    2016-01-01

    This volume presents the proceedings of Medicon 2016, held in Paphos, Cyprus. Medicon 2016 is the XIV in the series of regional meetings of the International Federation of Medical and Biological Engineering (IFMBE) in the Mediterranean. The goal of Medicon 2016 is to provide updated information on the state of the art on Medical and Biological Engineering and Computing under the main theme “Systems Medicine for the Delivery of Better Healthcare Services”. Medical and Biological Engineering and Computing cover complementary disciplines that hold great promise for the advancement of research and development in complex medical and biological systems. Research and development in these areas are impacting the science and technology by advancing fundamental concepts in translational medicine, by helping us understand human physiology and function at multiple levels, by improving tools and techniques for the detection, prevention and treatment of disease. Medicon 2016 provides a common platform for the cross fer...

  10. Basic science through engineering? Synthetic modeling and the idea of biology-inspired engineering.

    Science.gov (United States)

    Knuuttila, Tarja; Loettgers, Andrea

    2013-06-01

    Synthetic biology is often understood in terms of the pursuit for well-characterized biological parts to create synthetic wholes. Accordingly, it has typically been conceived of as an engineering dominated and application oriented field. We argue that the relationship of synthetic biology to engineering is far more nuanced than that and involves a sophisticated epistemic dimension, as shown by the recent practice of synthetic modeling. Synthetic models are engineered genetic networks that are implanted in a natural cell environment. Their construction is typically combined with experiments on model organisms as well as mathematical modeling and simulation. What is especially interesting about this combinational modeling practice is that, apart from greater integration between these different epistemic activities, it has also led to the questioning of some central assumptions and notions on which synthetic biology is based. As a result synthetic biology is in the process of becoming more "biology inspired." Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Powertrain engineering using holographic/electronic speckle pattern interferometry

    Science.gov (United States)

    Chen, Fang; Marchi, Mitchell M.; Allen, Thomas E.

    2002-06-01

    Novel applications of computer aided holographic interferometry and electronic speckle pattern interferometry in automotive powertrain engineering are presented. Four applications are described: engine manifold/cylinder head interface deformation measurement, engine camcover strain analysis, throttle bore deformation measurement, and alternator modal characterization.

  12. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering

    NARCIS (Netherlands)

    He, F.; Murabito, E.; Westerhoff, H.V.

    2016-01-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out throughin silicotheoretical studies with the aim to guide and complement furtherin vitroandin vivoexperimental

  13. Electronics and Telemetry Engineering and Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electronics Laboratory is a fully equipped facility providing the capability to support electronic product development from highly complex weapon system sensors,...

  14. Dynamical "in situ" observation of biological samples using variable pressure scanning electron microscope

    Czech Academy of Sciences Publication Activity Database

    Neděla, Vilém

    2008-01-01

    Roč. 126, - (2008), 012046:1-4 ISSN 1742-6588. [Electron Microscopy and Analysis Group Conference 2007 (EMAG 2007). Glasgow, 03.09.2007-07.09.2007] R&D Projects: GA ČR(CZ) GA102/05/0886; GA AV ČR KJB200650602 Institutional research plan: CEZ:AV0Z20650511 Keywords : biological sample * VP-SEM * dynamical experiments Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  15. Tissue Engineering Organs for Space Biology Research

    Science.gov (United States)

    Vandenburgh, H. H.; Shansky, J.; DelTatto, M.; Lee, P.; Meir, J.

    1999-01-01

    Long-term manned space flight requires a better understanding of skeletal muscle atrophy resulting from microgravity. Atrophy most likely results from changes at both the systemic level (e.g. decreased circulating growth hormone, increased circulating glucocorticoids) and locally (e.g. decreased myofiber resting tension). Differentiated skeletal myofibers in tissue culture have provided a model system over the last decade for gaining a better understanding of the interactions of exogenous growth factors, endogenous growth factors, and muscle fiber tension in regulating protein turnover rates and muscle cell growth. Tissue engineering these cells into three dimensional bioartificial muscle (BAM) constructs has allowed us to extend their use to Space flight studies for the potential future development of countermeasures.

  16. Biological process of soil improvement in civil engineering: A review

    Directory of Open Access Journals (Sweden)

    Murtala Umar

    2016-10-01

    Full Text Available The concept of using biological process in soil improvement which is known as bio-mediated soil improvement technique has shown greater potential in geotechnical engineering applications in terms of performance and environmental sustainability. This paper presents a review on the soil microorganisms responsible for this process, and factors that affect their metabolic activities and geometric compatibility with the soil particle sizes. Two mechanisms of biomineralization, i.e. biologically controlled and biologically induced mineralization, were also discussed. Environmental and other factors that may be encountered in situ during microbially induced calcite precipitation (MICP and their influences on the process were identified and presented. Improvements in the engineering properties of soil such as strength/stiffness and permeability as evaluated in some studies were explored. Potential applications of the process in geotechnical engineering and the challenges of field application of the process were identified.

  17. Microenvironmental Regulation of Tumor Angiogenesis: Biological and Engineering Considerations

    Science.gov (United States)

    Infanger, David W.; Pathi, Siddharth P.; Fischbach, Claudia

    Tumor angiogenesis is fundamental to tumor growth and metastasis, and antiangiogenic therapies have been developed to target this process. However, the clinical success of these treatments has been limited, which may be due, in part, to an incomplete understanding of cell-microenvironment interactions and their role in tumor angiogenesis. Traditionally, two-dimensional (2D) culture approaches have been used to study tumor progression in vitro, but these systems fail to faithfully recreate tumor microenvironmental conditions contributing to tumor angiogenesis in vivo. By integrating cancer biology with tissue engineering and drug delivery approaches, the development of biologically inspired tumor models has emerged. Such 3D model systems allow studying the specific role of soluble factor signaling, cell-extracellular matrix (ECM) interactions, cell-cell interactions, mechanical cues, and metabolic stress. This chapter discusses specific biological and engineering design considerations for tissue-engineered tumor models and highlights their application for defining the underpinnings of tumor angiogenesis.

  18. Recent applications of synthetic biology tools for yeast metabolic engineering

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Keasling, Jay

    2015-01-01

    The last 20 years of metabolic engineering has enabled bio-based production of fuels and chemicals from renewable carbon sources using cost-effective bioprocesses. Much of this work has been accomplished using engineered microorganisms that act as chemical factories. Although the time required...... to engineer microbial chemical factories has steadily decreased, improvement is still needed. Through the development of synthetic biology tools for key microbial hosts, it should be possible to further decrease the development times and improve the reliability of the resulting microorganism. Together...... with continuous decreases in price and improvements in DNA synthesis, assembly and sequencing, synthetic biology tools will rationalize time-consuming strain engineering, improve control of metabolic fluxes, and diversify screening assays for cellular metabolism. This review outlines some recently developed...

  19. Genome modularity and synthetic biology: Engineering systems.

    Science.gov (United States)

    Mol, Milsee; Kabra, Ritika; Singh, Shailza

    2018-01-01

    Whole genome sequencing projects running in various laboratories around the world has generated immense data. A systematic phylogenetic analysis of this data shows that genome complexity goes on decreasing as it evolves, due to its modular nature. This modularity can be harnessed to minimize the genome further to reduce it with the bare minimum essential genes. A reduced modular genome, can fuel progress in the area of synthetic biology by providing a ready to use plug and play chassis. Advances in gene editing technology such as the use of tailor made synthetic transcription factors will further enhance the availability of synthetic devices to be applied in the fields of environment, agriculture and health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Applying elastic fibre biology in vascular tissue engineering

    OpenAIRE

    Kielty, Cay M; Stephan, Simon; Sherratt, Michael J; Williamson, Matthew; Shuttleworth, C. Adrian

    2007-01-01

    For the treatment of vascular disease, the major cause of death in Western society, there is an urgent need for tissue-engineered, biocompatible, small calibre artery substitutes that restore biological function. Vascular tissue engineering of such grafts involves the development of compliant synthetic or biomaterial scaffolds that incorporate vascular cells and extracellular matrix. Elastic fibres are major structural elements of arterial walls that can enhance vascular graft design and pate...

  1. A discussion of molecular biology methods for protein engineering.

    Science.gov (United States)

    Zawaira, Alexander; Pooran, Anil; Barichievy, Samantha; Chopera, Denis

    2012-05-01

    A number of molecular biology techniques are available to generate variants from a particular start gene for eventual protein expression. We discuss the basic principles of these methods in a repertoire that may be used to achieve the elemental steps in protein engineering. These include site-directed, deletion and insertion mutagenesis. We provide detailed case studies, drawn from our own experiences, packaged together with conceptual discussions and include an analysis of the techniques presented with regards to their uses in protein engineering.

  2. Transcription control engineering and applications in synthetic biology

    Directory of Open Access Journals (Sweden)

    Michael D. Engstrom

    2017-09-01

    Full Text Available In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein, a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators (cis-factors were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators (trans-factors, giving examples of how cis- and trans-acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli, we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.

  3. Transcription control engineering and applications in synthetic biology.

    Science.gov (United States)

    Engstrom, Michael D; Pfleger, Brian F

    2017-09-01

    In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein), a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity) levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators ( cis -factors) were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators ( trans- factors), giving examples of how cis- and trans -acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli , we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.

  4. Biological applications of ultraviolet free-electron lasers

    International Nuclear Information System (INIS)

    Sutherland, J.C.

    1997-10-01

    This review examines the possibilities for biological research using the three ultraviolet free-electron lasers that are nearing operational status in the US. The projected operating characteristics of major interest in biological research of the free-electron lasers at Brookhaven National Laboratory, the Thomas Jefferson National Accelerator Facility, and Duke University are presented. Experimental applications in the areas of far- and vacuum ultraviolet photophysics and photochemistry, structural biology, environmental photobiology, and medical research are discussed and the prospects for advances in these areas, based upon the characteristics of the new ultraviolet free-electron lasers, are evaluated

  5. Interactions of electrons with biologically important molecules

    International Nuclear Information System (INIS)

    Pisklova, K.; Papp, P.; Stano, M.

    2012-01-01

    For the study of interactions of low-energy electrons with the molecules in the gas phase, the authors used electron-molecule cross-beam apparatus. The experiment is carried out in high vacuum, where molecules of the tested compound are inducted through a capillary. For purposes of this experiment the sample was electrically heated to 180 Deg C., giving a bundle of GlyGly molecules into the gas phase. The resulting signals can be evaluated in two different modes: mass spectrum - at continuous electron energy (e.g. 100 eV) they obtained the signal of intensity of the ions according to their mass to charge ratio; ionization and resonance spectra - for selected ion mass when the authors received the signal of intensity of the ions, depending on the energy of interacting electron.

  6. Biological augmentation and tissue engineering approaches in meniscus surgery.

    Science.gov (United States)

    Moran, Cathal J; Busilacchi, Alberto; Lee, Cassandra A; Athanasiou, Kyriacos A; Verdonk, Peter C

    2015-05-01

    The purpose of this review was to evaluate the role of biological augmentation and tissue engineering strategies in meniscus surgery. Although clinical (human), preclinical (animal), and in vitro tissue engineering studies are included here, we have placed additional focus on addressing preclinical and clinical studies reported during the 5-year period used in this review in a systematic fashion while also providing a summary review of some important in vitro tissue engineering findings in the field over the past decade. A search was performed on PubMed for original works published from 2009 to March 31, 2014 using the term "meniscus" with all the following terms: "scaffolds," "constructs," "cells," "growth factors," "implant," "tissue engineering," and "regenerative medicine." Inclusion criteria were the following: English-language articles and original clinical, preclinical (in vivo), and in vitro studies of tissue engineering and regenerative medicine application in knee meniscus lesions published from 2009 to March 31, 2014. Three clinical studies and 18 preclinical studies were identified along with 68 tissue engineering in vitro studies. These reports show the increasing promise of biological augmentation and tissue engineering strategies in meniscus surgery. The role of stem cell and growth factor therapy appears to be particularly useful. A review of in vitro tissue engineering studies found a large number of scaffold types to be of promise for meniscus replacement. Limitations include a relatively low number of clinical or preclinical in vivo studies, in addition to the fact there is as yet no report in the literature of a tissue-engineered meniscus construct used clinically. Neither does the literature provide clarity on the optimal meniscus scaffold type or biological augmentation with which meniscus repair or replacement would be best addressed in the future. There is increasing focus on the role of mechanobiology and biomechanical and

  7. Biological process of soil improvement in civil engineering: A review

    OpenAIRE

    Murtala Umar; Khairul Anuar Kassim; Kenny Tiong Ping Chiet

    2016-01-01

    The concept of using biological process in soil improvement which is known as bio-mediated soil improvement technique has shown greater potential in geotechnical engineering applications in terms of performance and environmental sustainability. This paper presents a review on the soil microorganisms responsible for this process, and factors that affect their metabolic activities and geometric compatibility with the soil particle sizes. Two mechanisms of biomineralization, i.e. biologically co...

  8. The fusion of biology, computer science, and engineering: towards efficient and successful synthetic biology.

    Science.gov (United States)

    Linshiz, Gregory; Goldberg, Alex; Konry, Tania; Hillson, Nathan J

    2012-01-01

    Synthetic biology is a nascent field that emerged in earnest only around the turn of the millennium. It aims to engineer new biological systems and impart new biological functionality, often through genetic modifications. The design and construction of new biological systems is a complex, multistep process, requiring multidisciplinary collaborative efforts from "fusion" scientists who have formal training in computer science or engineering, as well as hands-on biological expertise. The public has high expectations for synthetic biology and eagerly anticipates the development of solutions to the major challenges facing humanity. This article discusses laboratory practices and the conduct of research in synthetic biology. It argues that the fusion science approach, which integrates biology with computer science and engineering best practices, including standardization, process optimization, computer-aided design and laboratory automation, miniaturization, and systematic management, will increase the predictability and reproducibility of experiments and lead to breakthroughs in the construction of new biological systems. The article also discusses several successful fusion projects, including the development of software tools for DNA construction design automation, recursive DNA construction, and the development of integrated microfluidics systems.

  9. Electron spin interactions in chemistry and biology fundamentals, methods, reactions mechanisms, magnetic phenomena, structure investigation

    CERN Document Server

    Likhtenshtein, Gertz

    2016-01-01

    This book presents the versatile and pivotal role of electron spin interactions in nature. It provides the background, methodologies and tools for basic areas related to spin interactions, such as spin chemistry and biology, electron transfer, light energy conversion, photochemistry, radical reactions, magneto-chemistry and magneto-biology. The book also includes an overview of designing advanced magnetic materials, optical and spintronic devices and photo catalysts. This monograph appeals to scientists and graduate students working in the areas related to spin interactions physics, biophysics, chemistry and chemical engineering.

  10. Engineering Titanium for Improved Biological Response

    Energy Technology Data Exchange (ETDEWEB)

    Orme, C; Bearinger, J; Dimasi, E; Gilbert, J

    2002-01-23

    The human body and its aggressive environment challenge the survival of implanted foreign materials. Formidable biocompatibility issues arise from biological, chemical, electrical, and tribological origins. The body's electrolytic solution provides the first point of contact with any kind of implant, and is responsible for transport, healing, integration, or attack. Therefore, determining how to successfully control the integration of a biomaterial should begin with an analysis of the early interfacial dynamics involved. setting, a complicated feedback system of solution chemistry, pH, ions, and solubility exists. The introduction of a fixation device instantly confounds this system. The body is exposed to a range of voltages, and wear can bring about significant shifts in potentials across an implant. In the environment of a new implant the solution pH becomes acidic, ionic concentrations shift, cathodic currents can lead to corrosion, and oxygen levels can be depleted; all of these impact the ability of the implant to retain its protective oxide layer and to present a stable interface for the formation of a biolayer. Titanium has been used in orthopedic and maxilofacial surgery for many years due to its reputation as being biocompatible and its ability to osseointegrate. Osseointegration is defined as direct structural and functional connection between ordered, living bone, and the surface of a load carrying implant. Branemark discovered this phenomenon in the 60's while examining titanium juxtaposed to bone. The mechanism by which titanium and its passivating oxide encourage osseosynthetic activity remains unknown. However in general terms the oxide film serves two purposes: first to provide a kinetic barrier that prevents titanium from corroding and second to provide a substrate that allows the constituents of bone (calcium phosphate crystals, cells, proteins, and collagen) to bond to it. We believe that the electrochemical environment dictates the

  11. Quantum effects in biological electron transfer

    Czech Academy of Sciences Publication Activity Database

    de la Lande, A.; Babcock, N. S.; Řezáč, Jan; Levy, B.; Sanders, B. C.; Salahub, D.

    2012-01-01

    Roč. 14, č. 17 (2012), s. 5902-5918 ISSN 1463-9076 Institutional research plan: CEZ:AV0Z40550506 Keywords : electron transfer * tunnelling * decoherence * semi-classical molecular dynamics * density functional theory Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.829, year: 2012

  12. Towards Engineering Biological Systems in a Broader Context.

    Science.gov (United States)

    Venturelli, Ophelia S; Egbert, Robert G; Arkin, Adam P

    2016-02-27

    Significant advances have been made in synthetic biology to program information processing capabilities in cells. While these designs can function predictably in controlled laboratory environments, the reliability of these devices in complex, temporally changing environments has not yet been characterized. As human society faces global challenges in agriculture, human health and energy, synthetic biology should develop predictive design principles for biological systems operating in complex environments. Natural biological systems have evolved mechanisms to overcome innumerable and diverse environmental challenges. Evolutionary design rules should be extracted and adapted to engineer stable and predictable ecological function. We highlight examples of natural biological responses spanning the cellular, population and microbial community levels that show promise in synthetic biology contexts. We argue that synthetic circuits embedded in host organisms or designed ecologies informed by suitable measurement of biotic and abiotic environmental parameters could be used as engineering substrates to achieve target functions in complex environments. Successful implementation of these methods will broaden the context in which synthetic biological systems can be applied to solve important problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Reverse engineering development: Crosstalk opportunities between developmental biology and tissue engineering.

    Science.gov (United States)

    Marcucio, Ralph S; Qin, Ling; Alsberg, Eben; Boerckel, Joel D

    2017-11-01

    The fields of developmental biology and tissue engineering have been revolutionized in recent years by technological advancements, expanded understanding, and biomaterials design, leading to the emerging paradigm of "developmental" or "biomimetic" tissue engineering. While developmental biology and tissue engineering have long overlapping histories, the fields have largely diverged in recent years at the same time that crosstalk opportunities for mutual benefit are more salient than ever. In this perspective article, we will use musculoskeletal development and tissue engineering as a platform on which to discuss these emerging crosstalk opportunities and will present our opinions on the bright future of these overlapping spheres of influence. The multicellular programs that control musculoskeletal development are rapidly becoming clarified, represented by shifting paradigms in our understanding of cellular function, identity, and lineage specification during development. Simultaneously, advancements in bioartificial matrices that replicate the biochemical, microstructural, and mechanical properties of developing tissues present new tools and approaches for recapitulating development in tissue engineering. Here, we introduce concepts and experimental approaches in musculoskeletal developmental biology and biomaterials design and discuss applications in tissue engineering as well as opportunities for tissue engineering approaches to inform our understanding of fundamental biology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2356-2368, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. Urban Biomining: Biological Extraction of Metals and Materials from Electronics Waste Using a Synthetic Biology Approach

    Science.gov (United States)

    Urbina-Navarrete, J.; Rothschild, L.

    2016-12-01

    End-of-life electronics waste (e-waste) containing toxic and valuable materials is a rapidly progressing human health and environmental issue. Using synthetic biology tools, we have developed a recycling method for e-waste. Our innovation is to use a recombinant version of a naturally-occurring silica-degrading enzyme to depolymerize the silica in metal- and glass- containing e-waste components, and subsequently, to use engineered bacterial surfaces to bind and separate metals from a solution. The bacteria with bound metals can then be used as "bio-ink" to print new circuits using a novel plasma jet electronics printing technology. Here, we present the results from our initial studies that focus on the specificity of metal-binding motifs for a cognate metal. The candidate motifs that show high affinity and specificity will be engineered into bacterial surfaces for downstream applications in biologically-mediated metal recycling. Since the chemistry and role of Cu in metalloproteins is relatively well-characterized, we are using Cu as a proxy to elucidate metal and biological ligand interactions with various metals in e-waste. We assess the binding parameters of 3 representative classes of Cu-binding motifs using isothermal titration calorimetry; 1) natural motifs found in metalloproteins, 2) consensus motifs, and 3) rationally designed peptides that are predicted, in silico, to bind Cu. Our results indicate that naturally-occurring motifs have relative high affinity and specificity for Cu (association constant for Cu Ka 104 M-1, Zn Ka 103 M-1) when competing ions are present in the aqueous milieu. However, motifs developed through rational design by applying quantum mechanical methods that take into account complexation energies of the elemental binding partners and molecular geometry of the cognate metal, not only show high affinity for the cognate metal (Cu Ka 106 M-1), but they show specificity and discrimination against other metal ions that would be

  15. Cell-free synthetic biology forin vitroprototype engineering.

    Science.gov (United States)

    Moore, Simon J; MacDonald, James T; Freemont, Paul S

    2017-06-15

    Cell-free transcription-translation is an expanding field in synthetic biology as a rapid prototyping platform for blueprinting the design of synthetic biological devices. Exemplar efforts include translation of prototype designs into medical test kits for on-site identification of viruses (Zika and Ebola), while gene circuit cascades can be tested, debugged and re-designed within rapid turnover times. Coupled with mathematical modelling, this discipline lends itself towards the precision engineering of new synthetic life. The next stages of cell-free look set to unlock new microbial hosts that remain slow to engineer and unsuited to rapid iterative design cycles. It is hoped that the development of such systems will provide new tools to aid the transition from cell-free prototype designs to functioning synthetic genetic circuits and engineered natural product pathways in living cells. © 2017 The Author(s).

  16. The electronics companion devices and circuits for physicists and engineers

    CERN Document Server

    Fischer-Cripps, Anthony C

    2014-01-01

    Updated and expanded with new topics, The Electronics Companion: Devices and Circuits for Physicists and Engineers, 2nd Edition presents a full course in introductory electronics using a unique and educational presentation technique that is the signature style of the author’s companion books. This concise yet detailed book covers introductory electrical principles (DC and AC circuits), the physics of electronics components, circuits involving diodes and transistors, transistors amplifiers, filtering, operational amplifiers, digital electronics, transformers, instrumentation, and power supplies.

  17. Connecting Biology to Electronics: Molecular Communication via Redox Modality.

    Science.gov (United States)

    Liu, Yi; Li, Jinyang; Tschirhart, Tanya; Terrell, Jessica L; Kim, Eunkyoung; Tsao, Chen-Yu; Kelly, Deanna L; Bentley, William E; Payne, Gregory F

    2017-12-01

    Biology and electronics are both expert at for accessing, analyzing, and responding to information. Biology uses ions, small molecules, and macromolecules to receive, analyze, store, and transmit information, whereas electronic devices receive input in the form of electromagnetic radiation, process the information using electrons, and then transmit output as electromagnetic waves. Generating the capabilities to connect biology-electronic modalities offers exciting opportunities to shape the future of biosensors, point-of-care medicine, and wearable/implantable devices. Redox reactions offer unique opportunities for bio-device communication that spans the molecular modalities of biology and electrical modality of devices. Here, an approach to search for redox information through an interactive electrochemical probing that is analogous to sonar is adopted. The capabilities of this approach to access global chemical information as well as information of specific redox-active chemical entities are illustrated using recent examples. An example of the use of synthetic biology to recognize external molecular information, process this information through intracellular signal transduction pathways, and generate output responses that can be detected by electrical modalities is also provided. Finally, exciting results in the use of redox reactions to actuate biology are provided to illustrate that synthetic biology offers the potential to guide biological response through electrical cues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Can an engineer fix an immune system?--Rethinking theoretical biology.

    Science.gov (United States)

    Mattiussi, Claudio

    2013-06-01

    In an instant classic paper (Lazebnik, in Cancer Cell 2(3); 2002: 179-182) biologist Yuri Lazebnik deplores the poor effectiveness of the approach adopted by biologists to understand and "fix" biological systems. Lazebnik suggests that to remedy this state of things biologist should take inspiration from the approach used by engineers to design, understand, and troubleshoot technological systems. In the present paper I substantiate Lazebnik's analysis by concretely showing how to apply the engineering approach to biological problems. I use an actual example of electronic circuit troubleshooting to ground the thesis that, in engineering, the crucial phases of any non-trivial troubleshooting process are aimed at generating a mechanistic explanation of the functioning of the system, which makes extensive recourse to problem-driven qualitative reasoning possibly based on cognitive artifacts applied to systems that are known to have been designed for function. To show how to translate these findings into biological practice I consider a concrete example of biological model building and "troubleshooting", aimed at the identification of a "fix" for the human immune system in presence of progressing cancer, autoimmune disease, and transplant rejection. The result is a novel immune system model--the danger model with regulatory cells--and new, original hypotheses concerning the development, prophylaxis, and therapy of these unwanted biological processes. Based on the manifest efficacy of the proposed approach, I suggest a refocusing of the activity of theoretical biologists along the engineering-inspired lines illustrated in the paper.

  19. Plant synthetic biology for molecular engineering of signalling and development.

    Science.gov (United States)

    Nemhauser, Jennifer L; Torii, Keiko U

    2016-03-02

    Molecular genetic studies of model plants in the past few decades have identified many key genes and pathways controlling development, metabolism and environmental responses. Recent technological and informatics advances have led to unprecedented volumes of data that may uncover underlying principles of plants as biological systems. The newly emerged discipline of synthetic biology and related molecular engineering approaches is built on this strong foundation. Today, plant regulatory pathways can be reconstituted in heterologous organisms to identify and manipulate parameters influencing signalling outputs. Moreover, regulatory circuits that include receptors, ligands, signal transduction components, epigenetic machinery and molecular motors can be engineered and introduced into plants to create novel traits in a predictive manner. Here, we provide a brief history of plant synthetic biology and significant recent examples of this approach, focusing on how knowledge generated by the reference plant Arabidopsis thaliana has contributed to the rapid rise of this new discipline, and discuss potential future directions.

  20. Reliable design of electronic equipment an engineering guide

    CERN Document Server

    Natarajan, Dhanasekharan

    2014-01-01

    This book explains reliability techniques with examples from electronics design for the benefit of engineers. It presents the application of de-rating, FMEA, overstress analyses and reliability improvement tests for designing reliable electronic equipment. Adequate information is provided for designing computerized reliability database system to support the application of the techniques by designers. Pedantic terms and the associated mathematics of reliability engineering discipline are excluded for the benefit of comprehensiveness and practical applications. This book offers excellent support

  1. Genome-scale engineering for systems and synthetic biology

    Science.gov (United States)

    Esvelt, Kevin M; Wang, Harris H

    2013-01-01

    Genome-modification technologies enable the rational engineering and perturbation of biological systems. Historically, these methods have been limited to gene insertions or mutations at random or at a few pre-defined locations across the genome. The handful of methods capable of targeted gene editing suffered from low efficiencies, significant labor costs, or both. Recent advances have dramatically expanded our ability to engineer cells in a directed and combinatorial manner. Here, we review current technologies and methodologies for genome-scale engineering, discuss the prospects for extending efficient genome modification to new hosts, and explore the implications of continued advances toward the development of flexibly programmable chasses, novel biochemistries, and safer organismal and ecological engineering. PMID:23340847

  2. Engineering plant metabolism into microbes: from systems biology to synthetic biology.

    Science.gov (United States)

    Xu, Peng; Bhan, Namita; Koffas, Mattheos A G

    2013-04-01

    Plant metabolism represents an enormous repository of compounds that are of pharmaceutical and biotechnological importance. Engineering plant metabolism into microbes will provide sustainable solutions to produce pharmaceutical and fuel molecules that could one day replace substantial portions of the current fossil-fuel based economy. Metabolic engineering entails targeted manipulation of biosynthetic pathways to maximize yields of desired products. Recent advances in Systems Biology and the emergence of Synthetic Biology have accelerated our ability to design, construct and optimize cell factories for metabolic engineering applications. Progress in predicting and modeling genome-scale metabolic networks, versatile gene assembly platforms and delicate synthetic pathway optimization strategies has provided us exciting opportunities to exploit the full potential of cell metabolism. In this review, we will discuss how systems and synthetic biology tools can be integrated to create tailor-made cell factories for efficient production of natural products and fuel molecules in microorganisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Recent applications of synthetic biology tools for yeast metabolic engineering.

    Science.gov (United States)

    Jensen, Michael K; Keasling, Jay D

    2015-02-01

    The last 20 years of metabolic engineering has enabled bio-based production of fuels and chemicals from renewable carbon sources using cost-effective bioprocesses. Much of this work has been accomplished using engineered microorganisms that act as chemical factories. Although the time required to engineer microbial chemical factories has steadily decreased, improvement is still needed. Through the development of synthetic biology tools for key microbial hosts, it should be possible to further decrease the development times and improve the reliability of the resulting microorganism. Together with continuous decreases in price and improvements in DNA synthesis, assembly and sequencing, synthetic biology tools will rationalize time-consuming strain engineering, improve control of metabolic fluxes, and diversify screening assays for cellular metabolism. This review outlines some recently developed synthetic biology tools and their application to improve production of chemicals and fuels in yeast. Finally, we provide a perspective for the challenges that lie ahead. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  4. Advances and Computational Tools towards Predictable Design in Biological Engineering

    Directory of Open Access Journals (Sweden)

    Lorenzo Pasotti

    2014-01-01

    Full Text Available The design process of complex systems in all the fields of engineering requires a set of quantitatively characterized components and a method to predict the output of systems composed by such elements. This strategy relies on the modularity of the used components or the prediction of their context-dependent behaviour, when parts functioning depends on the specific context. Mathematical models usually support the whole process by guiding the selection of parts and by predicting the output of interconnected systems. Such bottom-up design process cannot be trivially adopted for biological systems engineering, since parts function is hard to predict when components are reused in different contexts. This issue and the intrinsic complexity of living systems limit the capability of synthetic biologists to predict the quantitative behaviour of biological systems. The high potential of synthetic biology strongly depends on the capability of mastering this issue. This review discusses the predictability issues of basic biological parts (promoters, ribosome binding sites, coding sequences, transcriptional terminators, and plasmids when used to engineer simple and complex gene expression systems in Escherichia coli. A comparison between bottom-up and trial-and-error approaches is performed for all the discussed elements and mathematical models supporting the prediction of parts behaviour are illustrated.

  5. Nanostructure Engineering Using Electron Beam Lithography

    National Research Council Canada - National Science Library

    Fischer, Paul

    1993-01-01

    ...) system created by modifying a scanning electron microscope. (2) The exploration of minimum achievable feature sizes using ultra-high resolution EBL and a lift-off process with polymethyl-methacrylate resists...

  6. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-01-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, free-standing electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on-demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function. PMID:26974408

  7. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  8. Applying elastic fibre biology in vascular tissue engineering.

    Science.gov (United States)

    Kielty, Cay M; Stephan, Simon; Sherratt, Michael J; Williamson, Matthew; Shuttleworth, C Adrian

    2007-08-29

    For the treatment of vascular disease, the major cause of death in Western society, there is an urgent need for tissue-engineered, biocompatible, small calibre artery substitutes that restore biological function. Vascular tissue engineering of such grafts involves the development of compliant synthetic or biomaterial scaffolds that incorporate vascular cells and extracellular matrix. Elastic fibres are major structural elements of arterial walls that can enhance vascular graft design and patency. In blood vessels, they endow vessels with the critical property of elastic recoil. They also influence vascular cell behaviour through direct interactions and by regulating growth factor activation. This review addresses physiological elastic fibre assembly and contributions to vessel structure and function, and how elastic fibre biology is now being exploited in small diameter vascular graft design.

  9. Data base systems in electronic design engineering

    Science.gov (United States)

    Williams, D.

    1980-01-01

    The concepts of an integrated design data base system (DBMS) as it might apply to an electronic design company are discussed. Data elements of documentation, project specifications, project tracking, firmware, software, electronic and mechanical design can be integrated and managed through a single DBMS. Combining the attributes of a DBMS data handler with specialized systems and functional data can provide users with maximum flexibility, reduced redundancy, and increased overall systems performance. Although some system overhead is lost due to redundancy in transitory data, it is believed the combination of the two data types is advisable rather than trying to do all data handling through a single DBMS.

  10. Synthetic Biology: Engineering, Evolution and Design (SEED) Conference 2014

    Energy Technology Data Exchange (ETDEWEB)

    Voigt, Christopher [Massachusetts Institute of Technology

    2014-07-01

    SEED2014 focused on advances in the science and technology emerging from the field of synthetic biology. We broadly define this as technologies that accelerate the process of genetic engineering. It highlighted new tool development, as well as the application of these tools to diverse problems in biotechnology, including therapeutics, industrial chemicals and fuels, natural products, and agriculture. Systems spanned from in vitro experiments and viruses, through diverse bacteria, to eukaryotes (yeast, mammalian cells, plants).

  11. Engineers' Responsibilities for Global Electronic Waste: Exploring Engineering Student Writing Through a Care Ethics Lens.

    Science.gov (United States)

    Campbell, Ryan C; Wilson, Denise

    2017-04-01

    This paper provides an empirically informed perspective on the notion of responsibility using an ethical framework that has received little attention in the engineering-related literature to date: ethics of care. In this work, we ground conceptual explorations of engineering responsibility in empirical findings from engineering student's writing on the human health and environmental impacts of "backyard" electronic waste recycling/disposal. Our findings, from a purposefully diverse sample of engineering students in an introductory electrical engineering course, indicate that most of these engineers of tomorrow associated engineers with responsibility for the electronic waste (e-waste) problem in some way. However, a number of responses suggested attempts to deflect responsibility away from engineers towards, for example, the government or the companies for whom engineers work. Still other students associated both engineers and non-engineers with responsibility, demonstrating the distributed/collective nature of responsibility that will be required to achieve a solution to the global problem of excessive e-waste. Building upon one element of a framework for care ethics adopted from the wider literature, these empirical findings are used to facilitate a preliminary, conceptual exploration of care-ethical responsibility within the context of engineering and e-waste recycling/disposal. The objective of this exploration is to provide a first step toward understanding how care-ethical responsibility applies to engineering. We also hope to seed dialogue within the engineering community about its ethical responsibilities on the issue. We conclude the paper with a discussion of its implications for engineering education and engineering ethics that suggests changes for educational policy and the practice of engineering.

  12. Gravitational Wave & Relativity Impact Electronic Communication & Engineering

    Directory of Open Access Journals (Sweden)

    Zakaria Shahrudin

    2017-01-01

    Full Text Available About a few months ago (Feb 11, 2016, the LIGO (Laser Interferometer Gravitational-Wave Observatory scientist team researchers made an announcement that they had confirmed the gravitational wave already detected on Sept 14, 2015 (by LIGO’s twin detectors in Livingston, Louisiana and Hanford, Washington. The wave was predicted by Einstein back in 1916 with his theory of General Relativity. This paper is about gravitational wave and relativity theory that may contribute to the field of Telecommunication and other engineering as well.

  13. CellNet: network biology applied to stem cell engineering.

    Science.gov (United States)

    Cahan, Patrick; Li, Hu; Morris, Samantha A; Lummertz da Rocha, Edroaldo; Daley, George Q; Collins, James J

    2014-08-14

    Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. First International Conference on Electrical, Electronic and Communications Engineering

    CERN Document Server

    Vyas, Nalinaksh; Sanei, Saeid; Deb, Kalyanmoy

    2017-01-01

    The book reports on advanced theories and methods in two related engineering fields: electrical and electronic engineering, and communications engineering and computing. It highlights areas of global and growing importance, such as renewable energy, power systems, mobile communications, security and the Internet of Things (IoT). The contributions cover a number of current research issues, including smart grids, photovoltaic systems, wireless power transfer, signal processing, 4G and 5G technologies, IoT applications, mobile cloud computing and many more. Based on the proceedings of the first International Conference on Emerging Trends in Electrical, Electronic and Communications Engineering (ELECOM 2016), held in Voila Bagatelle, Mauritius from November 25 to 27, 2016, the book provides graduate students, researchers and professionals with a snapshot of the state-of-the-art and a source of new ideas for future research and collaborations.

  15. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites

    DEFF Research Database (Denmark)

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup

    2016-01-01

    Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches for th...

  16. Engineered ion channels as emerging tools for chemical biology.

    Science.gov (United States)

    Mayer, Michael; Yang, Jerry

    2013-12-17

    Over the last 25 years, researchers have developed exogenously expressed, genetically engineered, semi-synthetic, and entirely synthetic ion channels. These structures have sufficient fidelity to serve as unique tools that can reveal information about living organisms. One of the most exciting success stories is optogenetics: the use of light-gated channels to trigger action potentials in specific neurons combined with studies of the response from networks of cells or entire live animals. Despite this breakthrough, the use of molecularly engineered ion channels for studies of biological systems is still in its infancy. Historically, researchers studied ion channels in the context of their own function in single cells or in multicellular signaling and regulation. Only recently have researchers considered ion channels and pore-forming peptides as responsive tools to report on the chemical and physical changes produced by other biochemical processes and reactions. This emerging class of molecular probes has a number of useful characteristics. For instance, these structures can greatly amplify the signal of chemical changes: the binding of one molecule to a ligand-gated ion channel can result in flux of millions of ions across a cell membrane. In addition, gating occurs on sub-microsecond time scales, resulting in fast response times. Moreover, the signal is complementary to existing techniques because the output is ionic current rather than fluorescence or radioactivity. And finally, ion channels are also localized at the membrane of cells where essential processes such as signaling and regulation take place. This Account highlights examples, mostly from our own work, of uses of ion channels and pore-forming peptides such as gramicidin in chemical biology. We discuss various strategies for preparing synthetically tailored ion channels that range from de novo designed synthetic molecules to genetically engineered or simply exogenously expressed or reconstituted wild

  17. Advancing Small Satellite Electronics Heritage for Microfluidic Biological Experiments

    Science.gov (United States)

    White, Bruce; Mazmanian, Edward; Tapio, Eric

    2016-01-01

    DLR's Eu:CROPIS (Euglena and Combined Regenerative Organic-Food Production in Space) mission, launching in 2017, will carry multiple biological payloads into a sun-synchronous orbit, including NASA Ames' PowerCell experiment. PowerCell will attempt to characterize the viability of synthetic biology at micro-g, Lunar, and Martian gravity levels. PowerCell experiment requirements demand an electronic system similar to previous microfluidic biology payloads, but with an expanded feature set. As such, the system was based on PharmaSat (Diaz-Aguado et al. 2009), a previous successful biology payload from NASA Ames, and improved upon. Newer, more miniaturized electronics allow for greater capability with a lower part count and smaller size. Two identical PowerCell enclosures will fly. Each enclosure contains two separate and identical experiments with a 48-segment optical density measurement system, grow light system, microfluidic system for nutrient delivery and waste flushing, plus thermal control and environmental sensing/housekeeping including temperature, pressure, humidity, and acceleration. Electronics consist of a single Master PCB that interfaces to the spacecraft bus and regulates power and communication, plus LED, Detector, and Valve Manifold PCBs for each experiment. To facilitate ease of reuse on future missions, experiment electronics were designed to be compatible with a standard 3U small sat form factor and power bus, or to interface with a Master power/comm PCB for use in a larger satellite as in the case of PowerCell's flight on Eu:CROPIS.

  18. Some examples of utilization of electron paramagnetic resonance in biology

    International Nuclear Information System (INIS)

    Bemski, G.

    1982-10-01

    A short outline of the fundamentals of electron paramagnetic resonance (EPR) is presented and is followed by examples of the application of EPR to biology. These include use of spin labels, as well as of ENDOR principally to problems of heme proteins, photosynthesis and lipids. (Author) [pt

  19. Electrical, electronics, and digital hardware essentials for scientists and engineers

    CERN Document Server

    Lipiansky, Ed

    2012-01-01

    A practical guide for solving real-world circuit board problems Electrical, Electronics, and Digital Hardware Essentials for Scientists and Engineers arms engineers with the tools they need to test, evaluate, and solve circuit board problems. It explores a wide range of circuit analysis topics, supplementing the material with detailed circuit examples and extensive illustrations. The pros and cons of various methods of analysis, fundamental applications of electronic hardware, and issues in logic design are also thoroughly examined. The author draws on more than tw

  20. Flexible Organic Electronics in Biology: Materials and Devices.

    Science.gov (United States)

    Liao, Caizhi; Zhang, Meng; Yao, Mei Yu; Hua, Tao; Li, Li; Yan, Feng

    2015-12-09

    At the convergence of organic electronics and biology, organic bioelectronics attracts great scientific interest. The potential applications of organic semiconductors to reversibly transmit biological signals or stimulate biological tissues inspires many research groups to explore the use of organic electronics in biological systems. Considering the surfaces of movable living tissues being arbitrarily curved at physiological environments, the flexibility of organic bioelectronic devices is of paramount importance in enabling stable and reliable performances by improving the contact and interaction of the devices with biological systems. Significant advances in flexible organic bio-electronics have been achieved in the areas of flexible organic thin film transistors (OTFTs), polymer electrodes, smart textiles, organic electrochemical ion pumps (OEIPs), ion bipolar junction transistors (IBJTs) and chemiresistors. This review will firstly discuss the materials used in flexible organic bioelectronics, which is followed by an overview on various types of flexible organic bioelectronic devices. The versatility of flexible organic bioelectronics promises a bright future for this emerging area. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering.

    Science.gov (United States)

    He, Fei; Murabito, Ettore; Westerhoff, Hans V

    2016-04-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. © 2016 The Author(s).

  2. From biology to mathematical models and back: teaching modeling to biology students, and biology to math and engineering students.

    Science.gov (United States)

    Chiel, Hillel J; McManus, Jeffrey M; Shaw, Kendrick M

    2010-01-01

    We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge that they find difficult. To give students a sense of mastery in each area, several complementary approaches are used in the course: 1) a "live" textbook that allows students to explore models and mathematical processes interactively; 2) benchmark problems providing key skills on which students make continuous progress; 3) assignment of students to teams of two throughout the semester; 4) regular one-on-one interactions with instructors throughout the semester; and 5) a term project in which students reconstruct, analyze, extend, and then write in detail about a recently published biological model. Based on student evaluations and comments, an attitude survey, and the quality of the students' term papers, the course has significantly increased the ability and willingness of biology students to use mathematical concepts and modeling tools to understand biological systems, and it has significantly enhanced engineering students' appreciation of biology.

  3. Advances in cryo-electron tomography for biology and medicine.

    Science.gov (United States)

    Koning, Roman I; Koster, Abraham J; Sharp, Thomas H

    2018-05-01

    Cryo-electron tomography (CET) utilizes a combination of specimen cryo-fixation and multi-angle electron microscopy imaging to produce three-dimensional (3D) volume reconstructions of native-state macromolecular and subcellular biological structures with nanometer-scale resolution. In recent years, cryo-electron microscopy (cryoEM) has experienced a dramatic increase in the attainable resolution of 3D reconstructions, resulting from technical improvements of electron microscopes, improved detector sensitivity, the implementation of phase plates, automated data acquisition schemes, and improved image reconstruction software and hardware. These developments also greatly increased the usability and applicability of CET as a diagnostic and research tool, which is now enabling structural biologists to determine the structure of proteins in their native cellular environment to sub-nanometer resolution. These recent technical developments have stimulated us to update on our previous review (Koning, R.I., Koster, A.J., 2009. Cryo-electron tomography in biology and medicine. Ann Anat 191, 427-445) in which we described the fundamentals of CET. In this follow-up, we extend this basic description in order to explain the aforementioned recent advances, and describe related 3D techniques that can be applied to the anatomy of biological systems that are relevant for medicine. Copyright © 2018 Elsevier GmbH. All rights reserved.

  4. Electron crystallography--the waking beauty of structural biology.

    Science.gov (United States)

    Pope, Christopher R; Unger, Vinzenz M

    2012-08-01

    Since its debut in the mid 1970s, electron crystallography has been a valuable alternative in the structure determination of biological macromolecules. Its reliance on single-layered or double-layered two-dimensionally ordered arrays and the ability to obtain structural information from small and disordered crystals make this approach particularly useful for the study of membrane proteins in a lipid bilayer environment. Despite its unique advantages, technological hurdles have kept electron crystallography from reaching its full potential. Addressing the issues, recent initiatives developed high-throughput pipelines for crystallization and screening. Adding progress in automating data collection, image analysis and phase extension methods, electron crystallography is poised to raise its profile and may lead the way in exploring the structural biology of macromolecular complexes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Handbook of power systems engineering with power electronics applications

    CERN Document Server

    Hase, Yoshihide

    2012-01-01

    Formerly known as Handbook of Power System Engineering, this second edition provides rigorous revisions to the original treatment of systems analysis together with a substantial new four-chapter section on power electronics applications. Encompassing a whole range of equipment, phenomena, and analytical approaches, this handbook offers a complete overview of power systems and their power electronics applications, and presents a thorough examination of the fundamental principles, combining theories and technologies that are usually treated in separate specialised fields, in a single u

  6. Engineered Ribosomes for Basic Science and Synthetic Biology.

    Science.gov (United States)

    d'Aquino, Anne E; Kim, Do Soon; Jewett, Michael C

    2018-03-28

    The ribosome is the cell's factory for protein synthesis. With protein synthesis rates of up to 20 amino acids per second and at an accuracy of 99.99%, the extraordinary catalytic capacity of the bacterial translation machinery has attracted extensive efforts to engineer, reconstruct, and repurpose it for biochemical studies and novel functions. Despite these efforts, the potential for harnessing the translation apparatus to manufacture bio-based products beyond natural limits remains underexploited, and fundamental constraints on the chemistry that the ribosome's RNA-based active site can carry out are unknown. This review aims to cover the past and present advances in ribosome design and engineering to understand the fundamental biology of the ribosome to facilitate the construction of synthetic manufacturing machines. The prospects for the development of engineered, or designer, ribosomes for novel polymer synthesis are reviewed, future challenges are considered, and promising advances in a variety of applications are discusse Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering Volume 9 is June 7, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  7. Engineering Therapeutic T Cells: From Synthetic Biology to Clinical Trials.

    Science.gov (United States)

    Esensten, Jonathan H; Bluestone, Jeffrey A; Lim, Wendell A

    2017-01-24

    Engineered T cells are currently in clinical trials to treat patients with cancer, solid organ transplants, and autoimmune diseases. However, the field is still in its infancy. The design, and manufacturing, of T cell therapies is not standardized and is performed mostly in academic settings by competing groups. Reliable methods to define dose and pharmacokinetics of T cell therapies need to be developed. As of mid-2016, there are no US Food and Drug Administration (FDA)-approved T cell therapeutics on the market, and FDA regulations are only slowly adapting to the new technologies. Further development of engineered T cell therapies requires advances in immunology, synthetic biology, manufacturing processes, and government regulation. In this review, we outline some of these challenges and discuss the contributions that pathologists can make to this emerging field.

  8. Is nanotechnology the key to unravel and engineer biological processes?

    Science.gov (United States)

    Navarro, Melba; Planell, Josep A

    2012-01-01

    Regenerative medicine is an emerging field aiming to the development of new reparative strategies to treat degenerative diseases, injury, and trauma through developmental pathways in order to rebuild the architecture of the original injured organ and take over its functionality. Most of the processes and interactions involved in the regenerative process take place at subcellular scale. Nanotechnology provides the tools and technology not only to detect, to measure, or to image the interactions between the different biomolecules and biological entities, but also to control and guide the regenerative process. The relevance of nanotechnology for the development of regenerative medicine as well as an overview of the different tools that contribute to unravel and engineer biological systems are presented in this chapter. In addition, general data about the social impact and global investment in nanotechnology are provided.

  9. Engineering the robustness of industrial microbes through synthetic biology.

    Science.gov (United States)

    Zhu, Linjiang; Zhu, Yan; Zhang, Yanping; Li, Yin

    2012-02-01

    Microbial fermentations and bioconversions play a central role in the production of pharmaceuticals, enzymes and chemicals. To meet the demands of industrial production, it is desirable that microbes maintain a maximized carbon flux towards target metabolites regardless of fluctuations in intracellular or extracellular environments. This requires cellular systems that maintain functional stability and dynamic homeostasis in a given physiological state, or manipulate transitions between different physiological states. Stable maintenance or smooth transition can be achieved through engineering of dynamic controllability, modular and hierarchical organization, or functional redundancy, three key features of biological robustness in a cellular system. This review summarizes how synthetic biology can be used to improve the robustness of industrial microbes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Systems biology for understanding and engineering of heterotrophic oleaginous microorganisms.

    Science.gov (United States)

    Park, Beom Gi; Kim, Minsuk; Kim, Joonwon; Yoo, Heewang; Kim, Byung-Gee

    2017-01-01

    Heterotrophic oleaginous microorganisms continue to draw interest as they can accumulate a large amount of lipids which is a promising feedstock for the production of biofuels and oleochemicals. Nutrient limitation, especially nitrogen limitation, is known to effectively trigger the lipid production in these microorganisms. For the aim of developing improved strains, the mechanisms behind the lipid production have been studied for a long time. Nowadays, system-level understanding of their metabolism and associated metabolic switches is attainable with modern systems biology tools. This work reviews the systems biology studies, based on (i) top-down, large-scale 'omics' tools, and (ii) bottom-up, mathematical modeling methods, on the heterotrophic oleaginous microorganisms with an emphasis on further application to metabolic engineering. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Simple glycolipids of microbes: Chemistry, biological activity and metabolic engineering

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammad Abdel-Mawgoud

    2018-03-01

    Full Text Available Glycosylated lipids (GLs are added-value lipid derivatives of great potential. Besides their interesting surface activities that qualify many of them to act as excellent ecological detergents, they have diverse biological activities with promising biomedical and cosmeceutical applications. Glycolipids, especially those of microbial origin, have interesting antimicrobial, anticancer, antiparasitic as well as immunomodulatory activities. Nonetheless, GLs are hardly accessing the market because of their high cost of production. We believe that experience of metabolic engineering (ME of microbial lipids for biofuel production can now be harnessed towards a successful synthesis of microbial GLs for biomedical and other applications. This review presents chemical groups of bacterial and fungal GLs, their biological activities, their general biosynthetic pathways and an insight on ME strategies for their production.

  12. PREFACE: Nanobiology: from physics and engineering to biology

    Science.gov (United States)

    Nussinov, Ruth; Alemán, Carlos

    2006-03-01

    Biological systems are inherently nano in scale. Unlike nanotechnology, nanobiology is characterized by the interplay between physics, materials science, synthetic organic chemistry, engineering and biology. Nanobiology is a new discipline, with the potential of revolutionizing medicine: it combines the tools, ideas and materials of nanoscience and biology; it addresses biological problems that can be studied and solved by nanotechnology; it devises ways to construct molecular devices using biomacromolecules; and it attempts to build molecular machines utilizing concepts seen in nature. Its ultimate aim is to be able to predictably manipulate these, tailoring them to specified needs. Nanobiology targets biological systems and uses biomacromolecules. Hence, on the one hand, nanobiology is seemingly constrained in its scope as compared to general nanotechnology. Yet the amazing intricacy of biological systems, their complexity, and the richness of the shapes and properties provided by the biological polymers, enrich nanobiology. Targeting biological systems entails comprehension of how they work and the ability to use their components in design. From the physical standpoint, ultimately, if we are to understand biology we need to learn how to apply physical principles to figure out how these systems actually work. The goal of nanobiology is to assist in probing these systems at the appropriate length scale, heralding a new era in the biological, physical and chemical sciences. Biology is increasingly asking quantitative questions. Quantitation is essential if we are to understand how the cell works, and the details of its regulation. The physical sciences provide tools and strategies to obtain accurate measurements and simulate the information to allow comprehension of the processes. Nanobiology is at the interface of the physical and the biological sciences. Biology offers to the physical sciences fascinating problems, sophisticated systems and a rich repertoire of

  13. Multiple choice questions in electronics and electrical engineering

    CERN Document Server

    DAVIES, T J

    2013-01-01

    A unique compendium of over 2000 multiple choice questions for students of electronics and electrical engineering. This book is designed for the following City and Guilds courses: 2010, 2240, 2320, 2360. It can also be used as a resource for practice questions for any vocational course.

  14. MODELING OF ELECTRONIC GASOLINE INJECTION PROCESSES IN TWO STROKE ENGINE

    Directory of Open Access Journals (Sweden)

    Hraivoronskyi, Y.

    2013-06-01

    Full Text Available Basic provision of the processes developed mode, occurring in ignition fuel system with electronically controlled two stroke engine with positive ignition are given. Fuel injection process’ calculation results for the case of placing fuel injector into intake system presented.

  15. Toward Defect Engineering Strategies to Optimize Energy and Electronic Materials

    Directory of Open Access Journals (Sweden)

    Efstratia N. Sgourou

    2017-06-01

    Full Text Available The technological requirement to optimize materials for energy and electronic materials has led to the use of defect engineering strategies. These strategies take advantage of the impact of composition, disorder, structure, and mechanical strain on the material properties. In the present review, we highlight key strategies presently employed or considered to tune the properties of energy and electronic materials. We consider examples from electronic materials (silicon and germanium, photocatalysis (titanium oxide, solid oxide fuel cells (cerium oxide, and nuclear materials (nanocomposites.

  16. Innovative technologies in course Electrical engineering and electronics

    Science.gov (United States)

    Kuznetsov, E. V.; Kiselev, V. I.; Kulikova, E. A.

    2017-11-01

    Department of Electrical Engineering and Nondestructive Testing, NRU “MPEI”, has been working on development Electronic Learning Resources (ELRs) in course Electrical Engineering and Electronics for several years. This work have been focused on education intensification and effectiveness while training bachelors in nonelectrical specializations including students from Thermal and Atomic Power Engineering Institute. The developed ELRs are united in a tutorial module consisting of three parts (Electrical Circuits, Electrical Machines, Basics of Electronics): electronic textbook and workbook (ETW); virtual laboratory sessions (VLS); training sessions (ETS); personal tasks (PT); testing system that contains electronic tests in all course subjects and built-in verification of a student’s work results in ETW, VLS, ETS, PT. The report presents samples of different ELRs in html format and MathCAD, MatLAB Simulink applications, copyrighted programs in Java2, Delphi, VB6, C++. The report also contains the experience description, advantages and disadvantages of the new technologies. It is mentioned that ELRs provide new opportunities in course studying.

  17. Electron Bifurcation: Thermodynamics and Kinetics of Two-Electron Brokering in Biological Redox Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Peng; Yuly, Jonathon L.; Lubner, Carolyn E. [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Mulder, David W. [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; King, Paul W. [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Peters, John W. [Institute; Beratan, David N. [Department

    2017-08-23

    How can proteins drive two electrons from a redox active donor onto two acceptors at very different potentials and distances? And how can this transaction be conducted without dissipating very much energy or violating the laws of thermodynamics? Nature appears to have addressed these challenges by coupling thermodynamically uphill and downhill electron transfer reactions, using two-electron donor cofactors that have very different potentials for the removal of the first and second electron. Although electron bifurcation is carried out with near perfection from the standpoint of energy conservation and electron delivery yields, it is a biological energy transduction paradigm that has only come into focus recently. This Account provides an exegesis of the biophysical principles that underpin electron bifurcation.

  18. Electron beam irradiation for biological decontamination of Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Brasoveanu, Mirela [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor Street, P.O. Box MG-36, RO 76 900 Bucharest-Magurele (Romania)]. E-mail: mirela@infim.ro; Nemtanu, Monica [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor Street, P.O. Box MG-36, RO 76 900 Bucharest-Magurele (Romania); Minea, R. [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor Street, P.O. Box MG-36, RO 76 900 Bucharest-Magurele (Romania); Grecu, Maria Nicoleta [National Institute for Materials Physics, Bucharest-Magurele (Romania); Mazilu, Elena [Hofigal SA (Romania); Radulescu, Nora [Hofigal SA (Romania)

    2005-10-15

    The Cyanobacterium Spirulina is commercialized for its use in health foods and for therapeutic purposes due to its valuable constituents particularly proteins and vitamins. The aim of the paper is to study the Spirulina platensis behaviour when it is electron beam irradiated for biological decontamination. Microbial load, antioxidant activity, enzymatic inhibition, electron spin resonance (ESR) and UV-Vis spectra were measured for doses up to 80 kGy. The results were correlated with doses in order to find where decontamination is efficient, keeping the Spirulina qualities.

  19. Electron beam irradiation for biological decontamination of Spirulina platensis

    Science.gov (United States)

    Brasoveanu, Mirela; Nemtanu, Monica; Minea, R.; Grecu, Maria Nicoleta; Mazilu, Elena; Radulescu, Nora

    2005-10-01

    The Cyanobacterium Spirulina is commercialized for its use in health foods and for therapeutic purposes due to its valuable constituents particularly proteins and vitamins. The aim of the paper is to study the Spirulina platensis behaviour when it is electron beam irradiated for biological decontamination. Microbial load, antioxidant activity, enzymatic inhibition, electron spin resonance (ESR) and UV-Vis spectra were measured for doses up to 80 kGy. The results were correlated with doses in order to find where decontamination is efficient, keeping the Spirulina qualities.

  20. Infusing photonics to increase enrollment in electronics engineering technology

    Science.gov (United States)

    Panayiotou, Chrys A.; Seeber, Fred P.

    2007-06-01

    During the last 15 years most of the electronics engineering technology programs across the nation have experienced a constant decline in enrollment. Today's high school students do not seem to consider a career in electronics engineering appealing enough to commit to a field of study in desperate need of new students. They still associate electronics programs with the electronics section of a department store; televisions, stereo systems, DVD and VCR players, and other disposable electronics. While the downward trend continues across the nation, Indian River Community College (IRCC) has been able not only to stop it but to reverse it by attracting a new generation of students. By introducing high school students to new and emerging technologies, their perception of established degrees has changed and their interest has been stimulated. Photonics is one of those technologies capturing students' attention. IRCC, a partner college in the National Center for Optics and Photonics Education (OP-TEC), with the assistance of other colleges like Camden County College which already offers an Associate in Applied Science degree in Photonics, has created a Photonics specialization under the Electronics Engineering Technology program. The targeted marketing of this new specialization has led to an increase in enrollment of 50% in 2005, 80% in 2006, and for 2007 it is projected it to be over 100%. An interesting comparison can be made concerning enrollment at colleges with a full AAS program in photonics like Camden County College and IRCC which uses photonics as an enabling technology. This analysis could lead to a new approach in restructuring engineering technology degrees with the infusion of photonics throughout many technology fields. This presentation will discuss the plan of action that made possible this initiative at Indian River Community College and new program directions at Camden County College, Blackwood, New Jersey.

  1. A model of engineering materials inspired by biological tissues

    Directory of Open Access Journals (Sweden)

    Holeček M.

    2009-12-01

    Full Text Available The perfect ability of living tissues to control and adapt their mechanical properties to varying external conditions may be an inspiration for designing engineering materials. An interesting example is the smooth muscle tissue since this "material" is able to change its global mechanical properties considerably by a subtle mechanism within individual muscle cells. Multi-scale continuum models may be useful in designing essentially simpler engineering materials having similar properties. As an illustration we present the model of an incompressible material whose microscopic structure is formed by flexible, soft but incompressible balls connected mutually by linear springs. This simple model, however, shows a nontrivial nonlinear behavior caused by the incompressibility of balls and is very sensitive on some microscopic parameters. It may elucidate the way by which "small" changes in biopolymer networks within individual muscular cells may control the stiffness of the biological tissue, which outlines a way of designing similar engineering materials. The 'balls and springs' material presents also prestress-induced stiffening and allows elucidating a contribution of extracellular fluids into the tissue’s viscous properties.

  2. PGASO: A synthetic biology tool for engineering a cellulolytic yeast

    Directory of Open Access Journals (Sweden)

    Chang Jui-Jen

    2012-07-01

    Full Text Available Abstract Background To achieve an economical cellulosic ethanol production, a host that can do both cellulosic saccharification and ethanol fermentation is desirable. However, to engineer a non-cellulolytic yeast to be such a host requires synthetic biology techniques to transform multiple enzyme genes into its genome. Results A technique, named Promoter-based Gene Assembly and Simultaneous Overexpression (PGASO, that employs overlapping oligonucleotides for recombinatorial assembly of gene cassettes with individual promoters, was developed. PGASO was applied to engineer Kluyveromycesmarxianus KY3, which is a thermo- and toxin-tolerant yeast. We obtained a recombinant strain, called KR5, that is capable of simultaneously expressing exoglucanase and endoglucanase (both of Trichodermareesei, a beta-glucosidase (from a cow rumen fungus, a neomycin phosphotransferase, and a green fluorescent protein. High transformation efficiency and accuracy were achieved as ~63% of the transformants was confirmed to be correct. KR5 can utilize beta-glycan, cellobiose or CMC as the sole carbon source for growth and can directly convert cellobiose and beta-glycan to ethanol. Conclusions This study provides the first example of multi-gene assembly in a single step in a yeast species other than Saccharomyces cerevisiae. We successfully engineered a yeast host with a five-gene cassette assembly and the new host is capable of co-expressing three types of cellulase genes. Our study shows that PGASO is an efficient tool for simultaneous expression of multiple enzymes in the kefir yeast KY3 and that KY3 can serve as a host for developing synthetic biology tools.

  3. Applications of Free Electron Lasers in Biology and Medicine

    International Nuclear Information System (INIS)

    Pelka, J.B.; Tybor, K.R.; Nietubyc, R.; Wrochna, G.

    2010-01-01

    The advent of free electron lasers opens up new opportunities to probe the dynamics of ultrafast processes and the structure of matter with unprecedented spatial and temporal resolution. New methods inaccessible with other known types of radiation sources can be developed, resulting in a breakthrough in deep understanding the fundamentals of life as well as in numerous medical and biological applications. In the present work the properties of free electron laser radiation that make the sources excellent for probing biological matter at an arbitrary wavelength, in a wide range of intensities and pulse durations are briefly discussed. A number of biophysical and biomedical applications of the new sources, currently considered among the most promising in the field, are presented. (author)

  4. Electron scattering from molecules and molecular aggregates of biological relevance

    Science.gov (United States)

    Gorfinkiel, Jimena D.; Ptasinska, Sylwia

    2017-09-01

    In this Topical Review we survey the current state of the art in the study of low energy electron collisions with biologically relevant molecules and molecular clusters. We briefly describe the methods and techniques used in the investigation of these processes and summarise the results obtained so far for DNA constituents and their model compounds, amino acids, peptides and other biomolecules. The applications of the data obtained is briefly described as well as future required developments.

  5. Biologically active and biomimetic dual gelatin scaffolds for tissue engineering.

    Science.gov (United States)

    Sánchez, P; Pedraz, J L; Orive, G

    2017-05-01

    We have designed, developed and optimized Genipin cross-linked 3D gelatin scaffolds that were biologically active and biomimetic, show a dual activity both for growth factor and cell delivery. Type B gelatin powder was dissolved in DI water. 100mg of genipin was dissolved in 10ml of DI water. Three genipin concentrations were prepared: 0.1%, 0.2% and 0.3% (w/v). Solutions were mixed at 40°C and under stirring and then left crosslinking for 72h. Scaffolds were obtained by punching 8 mm-cylinders into ethanol 70% solution for 10min and then freeze-drying. Scaffolds were biologically, biomechanically and morphologically evaluated. Cell adhesion and morphology of D1-Mesenchymal stem cells (MSCs) and L-929 fibroblast was studied. Vascular endothelial grwoth factor (VEGF) and Sonic hedgehog (SHH) were used as model proteins. Swelling ratio increased and younǵs module decreased along with the concentration of genipin. All scaffolds were biocompatible according to the toxicity test. MSC and L-929 cell adhesion improved in 0.2% of genipin, obtaining better results with MSCs. VEGF and SHH were released from the gels. This preliminary study suggest that the biologically active and dual gelatin scaffolds may be used for tissue engineering approaches like bone regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Transmission electron microscopy in molecular structural biology: A historical survey.

    Science.gov (United States)

    Harris, J Robin

    2015-09-01

    In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Experiential Engineering through iGEM--An Undergraduate Summer Competition in Synthetic Biology

    Science.gov (United States)

    Mitchell, Rudolph; Dori, Yehudit Judy; Kuldell, Natalie H.

    2011-01-01

    Unlike students in other engineering disciplines, undergraduates in biological engineering typically have limited opportunity to develop design competencies, and even fewer chances to implement their designed projects. The international Genetically Engineered Machines (iGEM) competition is a student Synthetic Biology competition that, in 2009,…

  8. Full-Authority Fault-Tolerant Electronic Engine Control System for Variable Cycle Engines.

    Science.gov (United States)

    1982-04-01

    hydraulic actuation system controlled on corrected speed by the digital controller through an Electro- Hydraulic Servo Valve ( EHSV ) and a vane position...RD-A12i 746 FULL-AUTHORITY FRULT-TOLERANT ELECTRONIC ENGINE CONTROL 1/2 SYSTEM FOR YARIAB..(U) GENERAL MOTORS CORP INDIANAPOLIS IN DETROIT DIESEL...RESOLUTION TEST CHART liafIONAL DuRtAu or SToAMONS -6 -A AFWAL-TR-82-2037 Full-Authority Fault-Tolerant - Electronic Engine Control System Sfor Variable

  9. 1st Global Conference on Biomedical Engineering & 9th Asian-Pacific Conference on Medical and Biological Engineering

    CERN Document Server

    Wang, Shyh-Hau; Yeh, Ming-Long

    2015-01-01

    This volume presents the proceedings of the 9th Asian-Pacific Conference on Medical and Biological Engineering (APCMBE 2014). The proceedings address a broad spectrum of topics from Bioengineering and Biomedicine, like Biomaterials, Artificial Organs, Tissue Engineering, Nanobiotechnology and Nanomedicine, Biomedical Imaging, Bio MEMS, Biosignal Processing, Digital Medicine, BME Education. It helps medical and biological engineering professionals to interact and exchange their ideas and experiences.

  10. A national facility for biological cryo-electron microscopy

    International Nuclear Information System (INIS)

    Saibil, Helen R.; Grünewald, Kay; Stuart, David I.

    2015-01-01

    This review provides a brief update on the use of cryo-electron microscopy for integrated structural biology, along with an overview of the plans for the UK national facility for electron microscopy being built at the Diamond synchrotron. Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback

  11. Engine modeling and control modeling and electronic management of internal combustion engines

    CERN Document Server

    Isermann, Rolf

    2014-01-01

    The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software developm...

  12. Engineering the Electronic Band Structure for Multiband Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, N.; Reichertz, L.A.; Yu, K.M.; Campman, K.; Walukiewicz, W.

    2010-07-12

    Using the unique features of the electronic band structure of GaNxAs1-x alloys, we have designed, fabricated and tested a multiband photovoltaic device. The device demonstrates an optical activity of three energy bands that absorb, and convert into electrical current, the crucial part of the solar spectrum. The performance of the device and measurements of electroluminescence, quantum efficiency and photomodulated reflectivity are analyzed in terms of the Band Anticrossing model of the electronic structure of highly mismatched alloys. The results demonstrate the feasibility of using highly mismatched alloys to engineer the semiconductor energy band structure for specific device applications.

  13. Teaching Electronics to Aeronautical Engineering Students by Developing Projects

    OpenAIRE

    Gil Sánchez, Luís; Masot Peris, Rafael; Alcañiz Fillol, Miguel

    2015-01-01

    (c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. Teaching electronics to an aerospace engineer with a very limited number of credits has been a major challenge for us. This goal has...

  14. Structured electron beams from nano-engineered cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Lueangaramwong, A. [NICADD, DeKalb; Mihalcea, D. [NICADD, DeKalb; Andonian, G. [RadiaBeam Tech.; Piot, P. [Fermilab

    2017-03-07

    The ability to engineer cathodes at the nano-scale have open new possibilities such as enhancing quantum eciency via surface-plasmon excitation, forming ultra-low-emittance beams, or producing structured electron beams. In this paper we present numerical investigations of the beam dynamics associated to this class of cathode in the weak- and strong-field regimes.We finally discuss the possible applications of some of the achievable cathode patterns when coupled with other phase space manipulations.

  15. Tissue Engineering a Biological Repair Strategy for Lumbar Disc Herniation

    Science.gov (United States)

    O'Connell, Grace D.; Leach, J. Kent; Klineberg, Eric O.

    2015-01-01

    Abstract The intervertebral disc is a critical part of the intersegmental soft tissue of the spinal column, providing flexibility and mobility, while absorbing large complex loads. Spinal disease, including disc herniation and degeneration, may be a significant contributor to low back pain. Clinically, disc herniations are treated with both nonoperative and operative methods. Operative treatment for disc herniation includes removal of the herniated material when neural compression occurs. While this strategy may have short-term advantages over nonoperative methods, the remaining disc material is not addressed and surgery for mild degeneration may have limited long-term advantage over nonoperative methods. Furthermore, disc herniation and surgery significantly alter the mechanical function of the disc joint, which may contribute to progression of degeneration in surrounding tissues. We reviewed recent advances in tissue engineering and regenerative medicine strategies that may have a significant impact on disc herniation repair. Our review on tissue engineering strategies focuses on cell-based and inductive methods, each commonly combined with material-based approaches. An ideal clinically relevant biological repair strategy will significantly reduce pain and repair and restore flexibility and motion of the spine. PMID:26634189

  16. Electron Bifurcation: Thermodynamics and Kinetics of Two-Electron Brokering in Biological Redox Chemistry.

    Science.gov (United States)

    Zhang, Peng; Yuly, Jonathon L; Lubner, Carolyn E; Mulder, David W; King, Paul W; Peters, John W; Beratan, David N

    2017-09-19

    How can proteins drive two electrons from a redox active donor onto two acceptors at very different potentials and distances? And how can this transaction be conducted without dissipating very much energy or violating the laws of thermodynamics? Nature appears to have addressed these challenges by coupling thermodynamically uphill and downhill electron transfer reactions, using two-electron donor cofactors that have very different potentials for the removal of the first and second electron. Although electron bifurcation is carried out with near perfection from the standpoint of energy conservation and electron delivery yields, it is a biological energy transduction paradigm that has only come into focus recently. This Account provides an exegesis of the biophysical principles that underpin electron bifurcation. Remarkably, bifurcating electron transfer (ET) proteins typically send one electron uphill and one electron downhill by similar energies, such that the overall reaction is spontaneous, but not profligate. Electron bifurcation in the NADH-dependent reduced ferredoxin: NADP + oxidoreductase I (Nfn) is explored in detail here. Recent experimental progress in understanding the structure and function of Nfn allows us to dissect its workings in the framework of modern ET theory. The first electron that leaves the two-electron donor flavin (L-FAD) executes a positive free energy "uphill" reaction, and the departure of this electron switches on a second thermodynamically spontaneous ET reaction from the flavin along a second pathway that moves electrons in the opposite direction and at a very different potential. The singly reduced ET products formed from the bifurcating flavin are more than two nanometers distant from each other. In Nfn, the second electron to leave the flavin is much more reducing than the first: the potentials are said to be "crossed." The eventually reduced cofactors, NADH and ferredoxin in the case of Nfn, perform crucial downstream redox

  17. Engineering the spin polarization of one-dimensional electrons

    Science.gov (United States)

    Yan, C.; Kumar, S.; Thomas, K.; See, P.; Farrer, I.; Ritchie, D.; Griffiths, J.; Jones, G.; Pepper, M.

    2018-02-01

    We present results of magneto-focusing on the controlled monitoring of spin polarization within a one-dimensional (1D) channel, and its subsequent effect on modulating the spin–orbit interaction (SOI) in a 2D GaAs electron gas. We demonstrate that electrons within a 1D channel can be partially spin polarized as the effective length of the 1D channel is varied in agreement with the theoretical prediction. Such polarized 1D electrons when injected into a 2D region result in a split in the odd-focusing peaks, whereas the even peaks remain unaffected (single peak). On the other hand, the unpolarized electrons do not affect the focusing spectrum and the odd and even peaks remain as single peaks, respectively. The split in odd-focusing peaks is evidence of direct measurement of spin polarization within a 1D channel, where each sub-peak represents the population of a particular spin state. Confirmation of the spin splitting is determined by a selective modulation of the focusing peaks due to the Zeeman energy in the presence of an in-plane magnetic field. We suggest that the SOI in the 2D regime is enhanced by a stream of polarized 1D electrons. The spatial control of spin states of injected 1D electrons and the possibility of tuning the SOI may open up a new regime of spin-engineering with application in future quantum information schemes.

  18. Fully printable, strain-engineered electronic wrap for customizable soft electronics.

    Science.gov (United States)

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-03-24

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.

  19. Fully printable, strain-engineered electronic wrap for customizable soft electronics

    Science.gov (United States)

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-03-01

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.

  20. Volume scanning electron microscopy for imaging biological ultrastructure.

    Science.gov (United States)

    Titze, Benjamin; Genoud, Christel

    2016-11-01

    Electron microscopy (EM) has been a key imaging method to investigate biological ultrastructure for over six decades. In recent years, novel volume EM techniques have significantly advanced nanometre-scale imaging of cells and tissues in three dimensions. Previously, this had depended on the slow and error-prone manual tasks of cutting and handling large numbers of sections, and imaging them one-by-one with transmission EM. Now, automated volume imaging methods mostly based on scanning EM (SEM) allow faster and more reliable acquisition of serial images through tissue volumes and achieve higher z-resolution. Various software tools have been developed to manipulate the acquired image stacks and facilitate quantitative analysis. Here, we introduce three volume SEM methods: serial block-face electron microscopy (SBEM), focused ion beam SEM (FIB-SEM) and automated tape-collecting ultramicrotome SEM (ATUM-SEM). We discuss and compare their capabilities, provide an overview of the full volume SEM workflow for obtaining 3D datasets and showcase different applications for biological research. © 2016 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  1. Electron probe analysis of biological fluids: Possibilities and limitations

    International Nuclear Information System (INIS)

    Roinel, N.

    1984-01-01

    Physical methods of investigation have become essential to investigations at the cellular or subcellular level. Nuclear magnetic resonance is the most recent and striking example, since it is not only a tool for fundamental physicists and organic chemists, but also an extraordinary powerful imaging tool for physicians. The absorption properties of X rays were used immediately after their discovery to image the bones of skeletons. Later, X rays were also found to be extremely efficient in the measurement of the elemental content of microvolumes irradiated by electron probes. The electron probe analyzer (EPA) was immediately adopted by numerous laboratories of metallurgy, geology, and mineral sciences. In the last fifteen years, since the use of this instrument was suggested for liquid analysis, and a preparative technique was developed, the EPA has been used by an increasing number of biological laboratories for measuring the concentrations of the elements contained in subnanoliter volumes of biological fluids. The so-called microdroplet technique has become a routine laboratory method, the only one able to measure the concentrations of an unlimited number of elements in a single 0.1-nl sample. This explains its use in fields as various as renal, reproductive, digestive, and plant physiology, zoology, etc. Several review papers discuss these applications. The possibilities and limitations of the technique are discussed below

  2. Engineering Low-Dimensional Nanostructures Towards Flexible Electronics

    Science.gov (United States)

    Byrley, Peter Samuel

    Flexible electronics have been proposed as the next generation of electronic devices. They have advantages over traditional electronics in that they use less material, are more durable and have greater versatility in their proposed applications. However, there are a variety of types of devices being developed that have specific engineering challenges. This dissertation addresses two of those challenges. The first challenge involves lowering contact resistance in MoS2 based flexible thin film transistor devices using a photochemical phase change method while the second addresses using silver nanowire networks as a replacement flexible electrode for indium tin oxide in flexible electronics. In this dissertation, a scalable method was developed for making monolayer MoS2 using ambient pressure chemical vapor deposition. These films were then characterized using spectroscopic techniques and atomic force microscopy. A photochemical phase change mechanism was then proposed to improve contact resistance in MoS2 based devices. The central hypothesis is that the controllable partial transition from a semiconducting 2H to metallic 1T phase can be realized in monolayer TMDs through photo-reduction in the presence of hole scavenging chemicals. Phase-engineering in monolayer TMDs would enable the fabrication of high-quality heterophase structures with the potential to improve carrier mobility and contact. Phase change as a result of the proposed photochemical method was confirmed using Raman spectroscopy, photoluminescence measurements, X-Ray photoelectron spectroscopy and other supporting data. Gold coated silver nanowires were then created to serve as flexible nanowire based electrodes by overcoming galvanic replacement in solution. This was confirmed using various forms of electron microscopy. The central hypothesis is that a thin gold coating will enable silver nanowire meshes to remain electrically stable in atmosphere and retain necessary low resistance values and

  3. Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering.

    Science.gov (United States)

    Henry, Jeffrey J D; Yu, Jian; Wang, Aijun; Lee, Randall; Fang, Jun; Li, Song

    2017-08-17

    Synthetic small diameter vascular grafts have a high failure rate, and endothelialization is critical for preventing thrombosis and graft occlusion. A promising approach is in situ tissue engineering, whereby an acellular scaffold is implanted and provides stimulatory cues to guide the in situ remodeling into a functional blood vessel. An ideal scaffold should have sufficient binding sites for biomolecule immobilization and a mechanical property similar to native tissue. Here we developed a novel method to blend low molecular weight (LMW) elastic polymer during electrospinning process to increase conjugation sites and to improve the mechanical property of vascular grafts. LMW elastic polymer improved the elasticity of the scaffolds, and significantly increased the amount of heparin conjugated to the micro/nanofibrous scaffolds, which in turn increased the loading capacity of vascular endothelial growth factor (VEGF) and prolonged the release of VEGF. Vascular grafts were implanted into the carotid artery of rats to evaluate the in vivo performance. VEGF treatment significantly enhanced endothelium formation and the overall patency of vascular grafts. Heparin coating also increased cell infiltration into the electrospun grafts, thus increasing the production of collagen and elastin within the graft wall. This work demonstrates that LMW elastic polymer blending is an approach to engineer the mechanical and biological property of micro/nanofibrous vascular grafts for in situ vascular tissue engineering.

  4. Low Voltage Transmission Electron Microscopy in Cell Biology.

    Science.gov (United States)

    Bendayan, Moise; Paransky, Eugene

    2015-07-01

    Low voltage transmission electron microscopy (LVTEM) was employed to examine biological tissues with accelerating voltages as low as 5kV. Tissue preparation was modified to take advantage of the low-voltage techniques. Treatments with heavy metals, such as post-fixation with osmium tetroxide, on block and counterstaining were omitted. Sections (40nm) were thinner than usual and generated highly contrasted images. General appearance of the cells remains similar to that of conventional TEM. New features were however revealed. The matrix of the pancreatic granules displays heterogeneity with partitions that may correspond to the inner-segregation of their secretory proteins. Mitochondria revealed the presence of the ATP synthase granules along their cristea. The nuclear dense chromatin displayed a honeycomb organization while distinct beads, nucleosomes, aligned along thin threads were seen in the dispersed chromatin. Nuclear pore protein complexes revealed their globular nature. The intercalated disks in cardiac muscle displayed their fine structural organization. These features correlate well with data described or predicted by cell and molecular biology. These new aspects are not revealed when thicker and conventionally osmicated tissue sections were examined by LVTEM, indicating that major masking effects are associated with standard TEM techniques. Immunogold was adapted to LVTEM further enhancing its potential in cell biology. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Query Log Analysis of an Electronic Health Record Search Engine

    Science.gov (United States)

    Yang, Lei; Mei, Qiaozhu; Zheng, Kai; Hanauer, David A.

    2011-01-01

    We analyzed a longitudinal collection of query logs of a full-text search engine designed to facilitate information retrieval in electronic health records (EHR). The collection, 202,905 queries and 35,928 user sessions recorded over a course of 4 years, represents the information-seeking behavior of 533 medical professionals, including frontline practitioners, coding personnel, patient safety officers, and biomedical researchers for patient data stored in EHR systems. In this paper, we present descriptive statistics of the queries, a categorization of information needs manifested through the queries, as well as temporal patterns of the users’ information-seeking behavior. The results suggest that information needs in medical domain are substantially more sophisticated than those that general-purpose web search engines need to accommodate. Therefore, we envision there exists a significant challenge, along with significant opportunities, to provide intelligent query recommendations to facilitate information retrieval in EHR. PMID:22195150

  6. Speed Control of General Purpose Engine with Electronic Governor

    Science.gov (United States)

    Sawut, Umerujan; Tohti, Gheyret; Takigawa, Buso; Tsuji, Teruo

    This paper presents a general purpose engine speed control system with an electronic governor in order to improve the current system with a mechanical governor which shows unstable characteristics by change of mecanical friction or A/F ratio (Air/Fuel ratio). For the control system above, there are problems that the feedback signal is only a crank angle because of cost and the controlled object is a general purpose engine which is strongly nonlinear. In order to overcome these problems, the system model is shown for the dynamic estimation of the amount of air flow and the robust controller is designed. That is, the proposed system includes the robust sliding-mode controller by the feedback signal of only a crank angle where Genetic Algorithm is applied for the controller design. The simulation and the experiments by MATLAB/Simulink are performed to show the effectiveness of our proposal.

  7. Three-Dimensional scanning transmission electron microscopy of biological specimens

    KAUST Repository

    De Jonge, Niels

    2010-01-18

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM). The specimen was a metallic replica of the biological structure comprising Pt nanoparticles 2-3 nm in diameter, with a high stability under electron beam radiation. The 3D dataset was processed by an automated deconvolution procedure. The lateral resolution was 1.1 nm, set by pixel size. Particles differing by only 10 nm in vertical position were identified as separate objects with greater than 20% dip in contrast between them. We refer to this value as the axial resolution of the deconvolution or reconstruction, the ability to recognize two objects, which were unresolved in the original dataset. The resolution of the reconstruction is comparable to that achieved by tilt-series transmission electron microscopy. However, the focal-series method does not require mechanical tilting and is therefore much faster. 3D STEM images were also recorded of the Golgi ribbon in conventional thin sections containing 3T3 cells with a comparable axial resolution in the deconvolved dataset. © 2010 Microscopy Society of America.

  8. Electronic digital computers their use in science and engineering

    CERN Document Server

    Alt, Franz L

    1958-01-01

    Electronic Digital Computers: Their Use in Science and Engineering describes the principles underlying computer design and operation. This book describes the various applications of computers, the stages involved in using them, and their limitations. The machine is composed of the hardware which is run by a program. This text describes the use of magnetic drum for storage of data and some computing. The functions and components of the computer include automatic control, memory, input of instructions by using punched cards, and output from resulting information. Computers operate by using numbe

  9. IEEE [Institute of Electrical and Electronics Engineers] standards and nuclear software quality engineering

    International Nuclear Information System (INIS)

    Daughtrey, T.

    1988-01-01

    Significant new nuclear-specific software standards have recently been adopted under the sponsorship of the American Nuclear Society and the American Society of Mechanical Engineers. The interest of the US Nuclear Regulatory Commission has also been expressed through their issuance of NUREG/CR-4640. These efforts all indicate a growing awareness of the need for thorough, referenceable expressions of the way to build in and evaluate quality in nuclear software. A broader professional perspective can be seen in the growing number of software engineering standards sponsored by the Institute of Electrical and Electronics Engineers (IEEE) Computer Society. This family of standards represents a systematic effort to capture professional consensus on quality practices throughout the software development life cycle. The only omission-the implementation phase-is treated by accepted American National Standards Institute or de facto standards for programming languages

  10. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function.

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  11. A national facility for biological cryo-electron microscopy.

    Science.gov (United States)

    Saibil, Helen R; Grünewald, Kay; Stuart, David I

    2015-01-01

    Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback.

  12. Metabolic engineering of Bacillus subtilis fueled by systems biology: Recent advances and future directions.

    Science.gov (United States)

    Liu, Yanfeng; Li, Jianghua; Du, Guocheng; Chen, Jian; Liu, Long

    By combining advanced omics technology and computational modeling, systems biologists have identified and inferred thousands of regulatory events and system-wide interactions of the bacterium Bacillus subtilis, which is commonly used both in the laboratory and in industry. This dissection of the multiple layers of regulatory networks and their interactions has provided invaluable information for unraveling regulatory mechanisms and guiding metabolic engineering. In this review, we discuss recent advances in the systems biology and metabolic engineering of B. subtilis and highlight current gaps in our understanding of global metabolism and global pathway engineering in this organism. We also propose future perspectives in the systems biology of B. subtilis and suggest ways that this approach can be used to guide metabolic engineering. Specifically, although hundreds of regulatory events have been identified or inferred via systems biology approaches, systematic investigation of the functionality of these events in vivo has lagged, thereby preventing the elucidation of regulatory mechanisms and further rational pathway engineering. In metabolic engineering, ignoring the engineering of multilayer regulation hinders metabolic flux redistribution. Post-translational engineering, allosteric engineering, and dynamic pathway analyses and control will also contribute to the modulation and control of the metabolism of engineered B. subtilis, ultimately producing the desired cellular traits. We hope this review will aid metabolic engineers in making full use of available systems biology datasets and approaches for the design and perfection of microbial cell factories through global metabolism optimization. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Engineering tradeoffs in miniaturization of electronics for very large detectors

    International Nuclear Information System (INIS)

    Larsen, R.S.

    1987-10-01

    The trend toward Application-Specific Integrated Circuits and similar systems-on-a-chip-technologies is fueling a new wave of innovation in detector electronics, just in time to address some of the problems being introduced by detectors which will approach a million channels of electronics. The cost-effectiveness of these technologies can be easily demonstrated, and the trend of the past twenty years of achieving more powerful electronics at a lower per-channel cost should receive a major impetus. The investment required in the new technologies will reshape the work force of most laboratories, by providing more and better tools, and by requiring training or retraining of significant numbers of personnel. The need for new instrumentation standards will arise at new levels in the detectors of the future. The laboratories must also invest heavily in integrating various computer aided engineering and computer aided design tools into a smoothly functioning system. They must also establish a new and different kind of working relationship with vendors and suppliers of both basic devices as well as standard packaged products. This paper discusses three concepts

  14. Electron reactions in model liquids and biological systems

    International Nuclear Information System (INIS)

    Bakale, G.; Gregg, E.C.

    1982-01-01

    Progress is reported in the following studies: (1) Field-dependent electron attachment; (2) Dependence of electron attachment rate on electron-acceptor dipole moment; (3) Electron attachment in i-octane/TMS mixtures; (4) Electron attachment/detachment equilibria; (5) Electron attachment to reversed micelles; (6) Electron attachment to chemical carcinogens; (7) Radiation-induced bacterial mutagenesis; and (8) Bacterial mutagenicity of nitrobenzene derivatives. 14 references

  15. Electron-beam-lithography (EBL)-engineered nanostructures for biosensing

    Science.gov (United States)

    Alexander, Troy A.; Wickenden, Alma E.

    2004-12-01

    Surface-Enhanced-Raman-Scattering (SERS) is potentially a very sensitive spectroscopic technique for the detection of biological agents (i.e., proteins, viruses or bacteria). However, since initial reports, its utility has not been realized. Its limited acceptance as a routine analysis technique for biological agents is largely due to the lack of reproducible SERS-active substrates. Most established SERS substrate fabrication schemes are based on self-assembly of the metallic (typically, Au, Ag, Pt, Pd or Cu) particles responsible for enhancement. Further, these protocols do not lend themselves to the stringent control over the enhancing feature shape, size, and placement on a nanometer scale. SERS can be made a more robust and attractive spectroscopic technique for biological agents by developing quantifiable, highly sensitive, and highly selective SERS-active substrates. Electron Beam Lithography (EBL), a semiconductor fabrication technique, can be utilized to address many of the obstacles which have limited the broad acceptance of SERS. Specifically, EBL can be employed to precisely control the shape, size and position (on a nanometer scale) of the SERS substrate enhancing features. Since Ashkin's seminal work in the early 1970s, the optical trapping phenomenon has been broadly accepted as a powerful tool to study micrometer-scale biological particles. Recently, research in our laboratory has demonstrated that it is possible to combine the Optical Trapping phenomenon and SERS to develop a high sensitivity spectroscopic technique for the detection of individual bacterial spores. Highly reproducible SERS-active substrates fabricated using EBL have been utilized with this novel spectroscopic technique to investigate the utility of SERS technique for the spectral discrimination of bacterial spores. The SERS substrate fabrication methodology, substrate reproducibility and SERS spectral reproducibility will be discussed.

  16. Integration of systems biology with bioprocess engineering: L: -threonine production by systems metabolic engineering of Escherichia coli.

    Science.gov (United States)

    Lee, Sang Yup; Park, Jin Hwan

    2010-01-01

    Random mutation and selection or targeted metabolic engineering without consideration of its impact on the entire metabolic and regulatory networks can unintentionally cause genetic alterations in the region, which is not directly related to the target metabolite. This is one of the reasons why strategies for developing industrial strains are now shifted towards targeted metabolic engineering based on systems biology, which is termed systems metabolic engineering. Using systems metabolic engineering strategies, all the metabolic engineering works are conducted in systems biology framework, whereby entire metabolic and regulatory networks are thoroughly considered in an integrated manner. The targets for purposeful engineering are selected after all possible effects on the entire metabolic and regulatory networks are thoroughly considered. Finally, the strain, which is capable of producing the target metabolite to a high level close to the theoretical maximum value, can be constructed. Here we review strategies and applications of systems biology successfully implemented on bioprocess engineering, with particular focus on developing L: -threonine production strains of Escherichia coli.

  17. Electron energy loss spectroscopy microanalysis and imaging in the transmission electron microscope: example of biological applications

    International Nuclear Information System (INIS)

    Diociaiuti, Marco

    2005-01-01

    This paper reports original results obtained in our laboratory over the past few years in the application of both electron energy loss spectroscopy (EELS) and electron spectroscopy imaging (ESI) to biological samples, performed in two transmission electron microscopes (TEM) equipped with high-resolution electron filters and spectrometers: a Gatan model 607 single magnetic sector double focusing EEL serial spectrometer attached to a Philips 430 TEM and a Zeiss EM902 Energy Filtering TEM. The primary interest was on the possibility offered by the combined application of these spectroscopic techniques with those offered by the TEM. In particular, the electron beam focusing available in a TEM allowed us to perform EELS and ESI on very small sample volumes, where high-resolution imaging and electron diffraction techniques can provide important structural information. I show that ESI was able to improve TEM performance, due to the reduced chromatic aberration and the possibility of avoiding the sample staining procedure. Finally, the analysis of the oscillating extended energy loss fine structure (EXELFS) beyond the ionization edges characterizing the EELS spectra allowed me, in a manner very similar to the extended X-ray absorption fine structure (EXAFS) analysis of the X-ray absorption spectra, to obtain short-range structural information for such light elements of biological interest as O or Fe. The Philips EM430 (250-300 keV) TEM was used to perform EELS microanalysis on Ca, P, O, Fe, Al and Si. The assessment of the detection limits of this method was obtained working with well-characterized samples containing Ca and P, and mimicking the actual cellular matrix. I applied EELS microanalysis to Ca detection in bone tissue during the mineralization process and to P detection in the cellular membrane of erythrocytes treated with an anti-tumoral drug, demonstrating that the cellular membrane is a drug target. I applied EELS microanalysis and selected area electron

  18. iBET: Immersive visualization of biological electron-transfer dynamics.

    Science.gov (United States)

    Nakano, C Masato; Moen, Erick; Byun, Hye Suk; Ma, Heng; Newman, Bradley; McDowell, Alexander; Wei, Tao; El-Naggar, Mohamed Y

    2016-04-01

    Recently, we presented a computational framework named VizBET to simulate and visualize biological electron-transfer (ET) dynamics. The visualization process was encapsulated as a plugin to the Visual Molecular Dynamics (VMD) software. However, the user's ability to understand complex, multidimensional ET pathways was severely limited when visualized in 2D on traditional computer monitors. To provide a more accurate representation with enhanced depth perception, we here present an extension of VizBET named iBET to render the VMD model of ET dynamics in a commodity virtual reality (VR) platform. The paper describes detailed procedures to export VMD models into the Unity game engine and render it in an Oculus Rift head mounted display. With the increasing availability of low-cost VR systems like the Rift and rich programmability of game engines, the iBET framework provides a powerful means to explore and understand not only biological ET processes but also a unique experiential tool for broad scientific communities. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Designing a 'neotissue' using the principles of biology, chemistry and engineering.

    Science.gov (United States)

    Nannaparaju, Madhusudhan; Oragui, Emeka; Khan, Wasim S

    2012-01-01

    The traditional methods of treating musculoskeletal injuries and disorders are not completely effective and have several limitations. Tissue engineering involves using the principles of biology, chemistry and engineering to design a 'neotissue' that augments a malfunctioning in vivo tissue. The main requirements for functional engineered tissue include reparative cellular components that proliferate on a scaffold grown within a bioreactor that provides specific biochemical and physical signals to regulate cell differentiation and tissue assembly. In this review we provide an overview of the biology of common musculoskeletal tissue and discuss their common pathologies. We also describe the commonly used stem cells, scaffolds and bioreactors and evaluate their role in issue engineering.

  20. 6th European Conference of the International Federation for Medical and Biological Engineering

    CERN Document Server

    Vasic, Darko

    2015-01-01

    This volume presents the Proceedings of the 6th European Conference of the International Federation for Medical and Biological Engineering (MBEC2014), held in Dubrovnik September 7 – 11, 2014. The general theme of MBEC 2014 is "Towards new horizons in biomedical engineering" The scientific discussions in these conference proceedings include the following themes: - Biomedical Signal Processing - Biomedical Imaging and Image Processing - Biosensors and Bioinstrumentation - Bio-Micro/Nano Technologies - Biomaterials - Biomechanics, Robotics and Minimally Invasive Surgery - Cardiovascular, Respiratory and Endocrine Systems Engineering - Neural and Rehabilitation Engineering - Molecular, Cellular and Tissue Engineering - Bioinformatics and Computational Biology - Clinical Engineering and Health Technology Assessment - Health Informatics, E-Health and Telemedicine - Biomedical Engineering Education

  1. A review on biological adaptation: with applications in engineering science

    Directory of Open Access Journals (Sweden)

    LiMin Luo

    2014-06-01

    Full Text Available Biological adaptation refers to that organisms change themselves at morphological, physiological, behavioral and molecular level to better survive in a changing environment. It includes phenotype adaptation and molecular adaptation. Biological adaptation is a driving force of evolution. Biological adaptation was described from Darwinian theory of evolution to the theory of molecular evolution in present paper. Adaptive control and adaptive filtering were briefly described also.

  2. Reformulating General Engineering and Biological Systems Engineering Programs at Virginia Tech

    Science.gov (United States)

    Lohani, Vinod K.; Wolfe, Mary Leigh; Wildman, Terry; Mallikarjunan, Kumar; Connor, Jeffrey

    2011-01-01

    In 2004, a group of engineering and education faculty at Virginia Tech received a major curriculum reform and engineering education research grant under the department-level reform (DLR) program of the NSF. This DLR project laid the foundation of sponsored research in engineering education in the Department of Engineering Education. The DLR…

  3. Accessing Nature’s diversity through metabolic engineering and synthetic biology [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jason R. King

    2016-03-01

    Full Text Available In this perspective, we highlight recent examples and trends in metabolic engineering and synthetic biology that demonstrate the synthetic potential of enzyme and pathway engineering for natural product discovery. In doing so, we introduce natural paradigms of secondary metabolism whereby simple carbon substrates are combined into complex molecules through “scaffold diversification”, and subsequent “derivatization” of these scaffolds is used to synthesize distinct complex natural products. We provide examples in which modern pathway engineering efforts including combinatorial biosynthesis and biological retrosynthesis can be coupled to directed enzyme evolution and rational enzyme engineering to allow access to the “privileged” chemical space of natural products in industry-proven microbes. Finally, we forecast the potential to produce natural product-like discovery platforms in biological systems that are amenable to single-step discovery, validation, and synthesis for streamlined discovery and production of biologically active agents.

  4. Accessing Nature’s diversity through metabolic engineering and synthetic biology

    Science.gov (United States)

    King, Jason R.; Edgar, Steven; Qiao, Kangjian; Stephanopoulos, Gregory

    2016-01-01

    In this perspective, we highlight recent examples and trends in metabolic engineering and synthetic biology that demonstrate the synthetic potential of enzyme and pathway engineering for natural product discovery. In doing so, we introduce natural paradigms of secondary metabolism whereby simple carbon substrates are combined into complex molecules through “scaffold diversification”, and subsequent “derivatization” of these scaffolds is used to synthesize distinct complex natural products. We provide examples in which modern pathway engineering efforts including combinatorial biosynthesis and biological retrosynthesis can be coupled to directed enzyme evolution and rational enzyme engineering to allow access to the “privileged” chemical space of natural products in industry-proven microbes. Finally, we forecast the potential to produce natural product-like discovery platforms in biological systems that are amenable to single-step discovery, validation, and synthesis for streamlined discovery and production of biologically active agents. PMID:27081481

  5. Introducing Molecular Biology to Environmental Engineers through Development of a New Course.

    Science.gov (United States)

    Oerther, Daniel B.

    2002-01-01

    Introduces a molecular biology course designed for environmental engineering majors using 16S ribosomal ribonucleic acid-targeted technology that allows students to identify and study microorganisms in bioreactor environments. (Contains 17 references.) (YDS)

  6. Engineering Design of an Adaptive Leg Prosthesis Using Biological Principles

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Dentel, Andy; Invarsdottir, Thorunn

    2010-01-01

    The biomimetic design process is explored through a design case: An adaptive leg prosthesis. The aim is to investigate if the biomimetic design process can be carried out with a minimum of biological knowledge and without using advanced design methods. In the design case biomimetic design was suc...... was successfully carried out using library search resulting in 14 biological analogies for the design problem 'shape adaption'. It is proposed that search results are handled using special cards describing the biological phenomena and the functional principles....

  7. Advancing the science of forest hydrology A challenge to agricultural and biological engineers

    Science.gov (United States)

    Devendra Amatya; Wayne Skaggs; Carl Trettin

    2009-01-01

    For more than a century, agricultural and biological engineers have provided major advances in science, engineering, and technology to increase food and fiber production to meet the demands of a rapidly growing global population. The land base for these technological advances has originated largely from forested lands, which have experienced dramatic declines over the...

  8. Mass determination based on electron scattering in electron probe X-ray microanalysis of thin biological specimens

    International Nuclear Information System (INIS)

    Linders, P.W.J.

    1984-01-01

    This thesis describes the development of a method for mass determination of thin biological objects by quantitative electron microscopy. The practical realization of the mass determination consists of photographical recording with subsequent densitometry. (Auth.)

  9. Biological production of monoethanolamine by engineered Pseudomonas putida S12

    NARCIS (Netherlands)

    Foti, M.J.; Médici, R.; Ruijssenaars, H.J.

    2013-01-01

    Pseudomonas putida S12 was engineered for the production of monoethanolamine (MEA) from glucose via the decarboxylation of the central metabolite l-serine, which is catalyzed by the enzyme l-serine decarboxylase (SDC).The host was first evaluated for its tolerance towards MEA as well as its

  10. Review of Microfluidic Photobioreactor Technology for Metabolic Engineering and Synthetic Biology of Cyanobacteria and Microalgae

    Directory of Open Access Journals (Sweden)

    Ya-Tang Yang

    2016-10-01

    Full Text Available One goal of metabolic engineering and synthetic biology for cyanobacteria and microalgae is to engineer strains that can optimally produce biofuels and commodity chemicals. However, the current workflow is slow and labor intensive with respect to assembly of genetic parts and characterization of production yields because of the slow growth rates of these organisms. Here, we review recent progress in the microfluidic photobioreactors and identify opportunities and unmet needs in metabolic engineering and synthetic biology. Because of the unprecedented experimental resolution down to the single cell level, long-term real-time monitoring capability, and high throughput with low cost, microfluidic photobioreactor technology will be an indispensible tool to speed up the development process, advance fundamental knowledge, and realize the full potential of metabolic engineering and synthetic biology for cyanobacteria and microalgae.

  11. Reverse engineering and identification in systems biology: strategies, perspectives and challenges.

    Science.gov (United States)

    Villaverde, Alejandro F; Banga, Julio R

    2014-02-06

    The interplay of mathematical modelling with experiments is one of the central elements in systems biology. The aim of reverse engineering is to infer, analyse and understand, through this interplay, the functional and regulatory mechanisms of biological systems. Reverse engineering is not exclusive of systems biology and has been studied in different areas, such as inverse problem theory, machine learning, nonlinear physics, (bio)chemical kinetics, control theory and optimization, among others. However, it seems that many of these areas have been relatively closed to outsiders. In this contribution, we aim to compare and highlight the different perspectives and contributions from these fields, with emphasis on two key questions: (i) why are reverse engineering problems so hard to solve, and (ii) what methods are available for the particular problems arising from systems biology?

  12. From Nanostructure to Nano Biosensor: Institute of Nano Electronic Engineering (INEE, UniMAP Experience

    Directory of Open Access Journals (Sweden)

    U Hashim

    2012-02-01

    Full Text Available Nanostructure is defined as something that has a physical dimension smaller than 100 nanometers, ranging from clusters and/or to dimensional layers of atoms. There are three most important nanostructures that are extensively studied and researched in various organizations including Institute of Nano Electronic Engineering (INEE in UniMAP. These include quantum dot, nanowire, and nanogap, which have been successfully designed and fabricated using in-house facilities available. These are subsequently used as a main sensing component in nanostructures based biosensor. This fabrication, characterization and testing job were done within four main interlinked laboratories namely microfabrication cleanroom, nanofabrication cleanroom, failure analysis laboratory and nano biochip laboratory.  Currently, development of Nano Biosensor is the main research focus in INEE. In principle, biosensor is an analytical device which converts a biological response into an electrical signal.   Keywords: Nanostructure, INEE , nanowire , nanogap and Nano Biosensor

  13. Micropropagation, genetic engineering, and molecular biology of Populus

    Science.gov (United States)

    N. B. Klopfenstein; Y. W. Chun; M. -S. Kim; M. A. Ahuja; M. C. Dillon; R. C. Carman; L. G. Eskew

    1997-01-01

    Thirty-four Populus biotechnology chapters, written by 85 authors, are comprised in 5 sections: 1) in vitro culture (micropropagation, somatic embryogenesis, protoplasts, somaclonal variation, and germplasm preservation); 2) transformation and foreign gene expression; 3) molecular biology (molecular/genetic characterization); 4) biotic and abiotic resistance (disease,...

  14. Harnessing systems biology approaches to engineer functional microvascular networks.

    Science.gov (United States)

    Sefcik, Lauren S; Wilson, Jennifer L; Papin, Jason A; Botchwey, Edward A

    2010-06-01

    Microvascular remodeling is a complex process that includes many cell types and molecular signals. Despite a continued growth in the understanding of signaling pathways involved in the formation and maturation of new blood vessels, approximately half of all compounds entering clinical trials will fail, resulting in the loss of much time, money, and resources. Most pro-angiogenic clinical trials to date have focused on increasing neovascularization via the delivery of a single growth factor or gene. Alternatively, a focus on the concerted regulation of whole networks of genes may lead to greater insight into the underlying physiology since the coordinated response is greater than the sum of its parts. Systems biology offers a comprehensive network view of the processes of angiogenesis and arteriogenesis that might enable the prediction of drug targets and whether or not activation of the targets elicits the desired outcome. Systems biology integrates complex biological data from a variety of experimental sources (-omics) and analyzes how the interactions of the system components can give rise to the function and behavior of that system. This review focuses on how systems biology approaches have been applied to microvascular growth and remodeling, and how network analysis tools can be utilized to aid novel pro-angiogenic drug discovery.

  15. Cell-Free Synthetic Biology: Engineering Beyond the Cell.

    Science.gov (United States)

    Perez, Jessica G; Stark, Jessica C; Jewett, Michael C

    2016-12-01

    Cell-free protein synthesis (CFPS) technologies have enabled inexpensive and rapid recombinant protein expression. Numerous highly active CFPS platforms are now available and have recently been used for synthetic biology applications. In this review, we focus on the ability of CFPS to expand our understanding of biological systems and its applications in the synthetic biology field. First, we outline a variety of CFPS platforms that provide alternative and complementary methods for expressing proteins from different organisms, compared with in vivo approaches. Next, we review the types of proteins, protein complexes, and protein modifications that have been achieved using CFPS systems. Finally, we introduce recent work on genetic networks in cell-free systems and the use of cell-free systems for rapid prototyping of in vivo networks. Given the flexibility of cell-free systems, CFPS holds promise to be a powerful tool for synthetic biology as well as a protein production technology in years to come. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  16. A discussion of molecular biology methods for protein engineering

    CSIR Research Space (South Africa)

    Zawaira, A

    2011-09-01

    Full Text Available A number of molecular biology techniques are available to generate variants from a particular start gene for eventual protein expression. The authors discuss the basic principles of these methods in a repertoire that may be used to achieve...

  17. Proceedings of 2011 International Conference on Electronic Engineering, Communication and Management

    CERN Document Server

    Lin, Sally

    2012-01-01

    This volume presents the main results of 2011 International Conference on Electronic  Engineering, Communication and Management (EECM2011) held December 24-25, 2011, Beijing China. The EECM2011 is an integrated conference providing a valuable opportunity for researchers, scholars and scientists to exchange their ideas face to face together. The main focus of the EECM 2011 and the present 2 volumes “Advances in Electronic Engineering, Communication and Management” is on Power Engineering, Electrical engineering applications, Electrical machines, as well as Communication and Information Systems Engineering.

  18. Proceedings of 2011 International Conference on Electronic Engineering, Communication and Management

    CERN Document Server

    Lin, Sally

    2012-01-01

      This volume presents the main results of 2011 International Conference on Electronic  Engineering, Communication and Management (EECM2011) held December 24-25, 2011, Beijing China. The EECM2011 is an integrated conference providing a valuable opportunity for researchers, scholars and scientists to exchange their ideas face to face together. The main focus of the EECM 2011 and the present 2 volumes “Advances in Electronic Engineering, Communication and Management” is on Power Engineering, Electrical engineering applications, Electrical machines, as well as Communication and Information Systems Engineering.

  19. Importance of systems biology in engineering microbes for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Aindrila; Redding, Alyssa M.; Rutherford, Becky J.; Keasling, Jay D.

    2009-12-02

    Microorganisms have been rich sources for natural products, some of which have found use as fuels, commodity chemicals, specialty chemicals, polymers, and drugs, to name a few. The recent interest in production of transportation fuels from renewable resources has catalyzed numerous research endeavors that focus on developing microbial systems for production of such natural products. Eliminating bottlenecks in microbial metabolic pathways and alleviating the stresses due to production of these chemicals are crucial in the generation of robust and efficient production hosts. The use of systems-level studies makes it possible to comprehensively understand the impact of pathway engineering within the context of the entire host metabolism, to diagnose stresses due to product synthesis, and provides the rationale to cost-effectively engineer optimal industrial microorganisms.

  20. Research and engineering assessment of biological solubilization of phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R.D.; McIlwain, M.E.; Losinski, S.J.; Taylor, D.D.

    1993-03-01

    This research and engineering assessment examined a microbial phosphate solubilization process as a method of recovering phosphate from phosphorus containing ore compared to the existing wet acid and electric arc methods. A total of 860 microbial isolates, collected from a range of natural environments were tested for their ability to solubilize phosphate from rock phosphate. A bacterium (Pseudomonas cepacia) was selected for extensive characterization and evaluation of the mechanism of phosphate solubilization and of process engineering parameters necessary to recover phosphate from rock phosphate. These studies found that concentration of hydrogen ion and production of organic acids arising from oxidation of the carbon source facilitated microbial solubilization of both pure chemical insoluble phosphate compounds and phosphate rock. Genetic studies found that phosphate solubilization was linked to an enzyme system (glucose dehydrogenase). Process-related studies found that a critical solids density of 1% by weight (ore to liquid) was necessary for optimal solubilization. An engineering analysis evaluated the cost and energy requirements for a 2 million ton per year sized plant, whose size was selected to be comparable to existing wet acid plants.

  1. Genetically engineered biological agents in therapy for systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Elena Aleksandrovna Aseeva

    2013-01-01

    Full Text Available Systemic lupus erythematosus (SLE is a prototype for chronic autoimmune disease. Its prevalence is 20 to 70 cases per 100,000 women and varies by race and ethnicity. Despite considerable progress in traditional therapy, many problems associated with the management of these patients need to be immediately solved: thus, 50-80% are found to have activity signs and/or frequent exacerbations and about 30% of the patients have to stop work; Class IV lupus nephritis increases the risk of terminalrenal failure. In the past 20 years great progress has been made in studying the pathogenesis of SLE: biological targets to affect drugs have been sought and fundamentally new therapeutic goals defined. Belimumab is the first genetically biological agent specially designed to treat SLE, which is rightly regarded as one of the most important achievements of rheumatology in the past 50 years.

  2. Surface Immobilized His-tagged Azurin as a Model Interface for the Investigation of Vectorial Electron Transfer in Biological Systems

    International Nuclear Information System (INIS)

    Casalini, Stefano; Berto, Marcello; Kovtun, Alessandro; Operamolla, Alessandra; Di Rocco, Giulia; Facci, Paolo; Liscio, Andrea; Farinola, Gianluca M.; Borsari, Marco; Bortolotti, Carlo A.

    2015-01-01

    A model system for the electrochemical investigation of vectorial electron transfer in biological systems was designed, assembled and characterized. Gold electrodes, functionalized with a -OCH 3 terminated, aromatic self-assembled monolayer, were used as a substrate for the adsorption of variants of copper-containing, redox metalloprotein azurin. The engineered azurin bears a polyhistidine tag at its C-terminus. Thanks to the presence of the solvent exposed tag, which chelates Cu 2+ ions in solution, we introduced an exogenous redox centre. The different reduction potentials of the two redox centres and their positioning with respect to the surface are such that electron transfer from the exogenous copper centre and the electrode is mediated by the native azurin active site, closely paralleling electron transfer processes in naturally occurring multicentre metalloproteins.

  3. Synthetic biology for engineering acetyl coenzyme a metabolism in yeast

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2014-01-01

    The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels, chemicals, and pharmaceuticals. The use of this cell factory for cost-efficient production of novel fuels and chemicals requires high yields and low by-product production. Many industrially interesting...... chemicals are biosynthesized from acetyl coenzyme A (acetyl-CoA), which serves as a central precursor metabolite in yeast. To ensure high yields in production of these chemicals, it is necessary to engineer the central carbon metabolism so that ethanol production is minimized (or eliminated) and acetyl......-CoA can be formed from glucose in high yield. Here the perspective of generating yeast platform strains that have such properties is discussed in the context of a major breakthrough with expression of a functional pyruvate dehydrogenase complex in the cytosol....

  4. Biotechnology and synthetic biology approaches for metabolic engineering of bioenergy crops.

    Science.gov (United States)

    Shih, Patrick M; Liang, Yan; Loqué, Dominique

    2016-07-01

    The Green Revolution has fuelled an exponential growth in human population since the mid-20th century. Due to population growth, food and energy demands will soon surpass supply capabilities. To overcome these impending problems, significant improvements in genetic engineering will be needed to complement breeding efforts in order to accelerate the improvement of agronomical traits. The new field of plant synthetic biology has emerged in recent years and is expected to support rapid, precise, and robust engineering of plants. In this review, we present recent advances made in the field of plant synthetic biology, specifically in genome editing, transgene expression regulation, and bioenergy crop engineering, with a focus on traits related to lignocellulose, oil, and soluble sugars. Ultimately, progress and innovation in these fields may facilitate the development of beneficial traits in crop plants to meet society's bioenergy needs. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  5. Advances in imaging and electron physics time resolved electron diffraction for chemistry, biology and material science

    CERN Document Server

    Hawkes, Peter W

    2014-01-01

    Advances in Imaging & Electron Physics merges two long-running serials-Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Contributions from leading authorities Informs and updates on all the latest developments in the field.

  6. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Laura R. Jarboe

    2010-01-01

    Full Text Available Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.

  7. Low-Cost Virtual Laboratory Workbench for Electronic Engineering

    Science.gov (United States)

    Achumba, Ifeyinwa E.; Azzi, Djamel; Stocker, James

    2010-01-01

    The laboratory component of undergraduate engineering education poses challenges in resource constrained engineering faculties. The cost, time, space and physical presence requirements of the traditional (real) laboratory approach are the contributory factors. These resource constraints may mitigate the acquisition of meaningful laboratory…

  8. Biomaterials — where biology, physics, chemistry, engineering and medicine meet

    Science.gov (United States)

    Hing, K. A.

    2008-03-01

    The success or failure of an implant material in the body depends on a complex interaction between a synthetic 'foreign body' and the 'host tissue'. These interactions occur at many levels from the sub-microscopic level, where subtle changes in the surface physio-chemistry can substantially alter the nature of the biomaterial-host tissue interface, through the microscopical level (e.g. sensitivity to surface topography) to the macrostructural level (e.g. dependence on scaffold porosity). Thus the factors that control these responses are not only biologically determined but also mechanically, physically and chemically mediated, although identifying where one starts and the other finishes can be difficult. Design of a successful medical device has therefore to call on expertise within a wide range of disciplines. In terms of both investigating the basic science behind the factors which orchestrate a biological response and developing research tools that enable study of these responses. However, a medical device must also meet the economic and practical demands of health care professionals who will ultimately be using it in the clinic. Bone graft substitute materials are used in orthopaedics as an alternative or adjunct to autografting, a practice where the patient 'donates' bone from a healthy site to aid bone repair at a damaged or diseased site. These materials are used in a wide range of procedures from total hip revision to spinal fusion and their evolution over the last 10 years illustrates how an interdisciplinary approach has benefited their development and may lead to further innovation in the future.

  9. Reproducibility of fluorescent expression from engineered biological constructs in E. coli

    OpenAIRE

    Beal, Jacob; Haddock-Angelli, Traci; Gershater, Markus; De Mora, Kim; Lizarazo, Meagan; Hollenhorst, Jim; Rettberg, Randy; Demling, Philipp; Hanke, Rene; Osthege, Michael; Schechtel, Anna; Sudarsan, Suresh; Zimmermann, Arne; Gabryelczyk, Bartosz; Ikonen, Martina

    2016-01-01

    We present results of the first large-scale interlaboratory study carried out in synthetic biology, as part of the 2014 and 2015 International Genetically Engineered Machine (iGEM) competitions. Participants at 88 institutions around the world measured fluorescence from three engineered constitutive constructs in E. coli. Few participants were able to measure absolute fluorescence, so data was analyzed in terms of ratios. Precision was strongly related to fluorescent strength, ranging from 1....

  10. 5th European Conference of the International Federation for Medical and Biological Engineering

    CERN Document Server

    European IFMBE MBEC : Cooperation for Effective Healthcare

    2012-01-01

    This volume presents the 5th European Conference of the International Federation for Medical and Biological Engineering (EMBEC),  held in Budapest, 14-18 September, 2011. The scientific discussion on the conference and in this conference proceedings include the following issues: - Signal & Image Processing - ICT - Clinical Engineering and Applications - Biomechanics and Fluid Biomechanics - Biomaterials and Tissue Repair - Innovations and Nanotechnology - Modeling and Simulation - Education and Professional

  11. Biologically improved nanofibrous scaffolds for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Bhaarathy, V. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Lee Kong Chian School of Medicine, Nanyang Technological University, 138673 (Singapore); Venugopal, J., E-mail: nnijrv@nus.edu.sg [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Gandhimathi, C. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Ponpandian, N.; Mangalaraj, D. [Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Ramakrishna, S. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore)

    2014-11-01

    Nanofibrous structure developed by electrospinning technology provides attractive extracellular matrix conditions for the anchorage, migration and differentiation of stem cells, including those responsible for regenerative medicine. Recently, biocomposite nanofibers consisting of two or more polymeric blends are electrospun more tidily in order to obtain scaffolds with desired functional and mechanical properties depending on their applications. The study focuses on one such an attempt of using copolymer Poly(L-lactic acid)-co-poly (ε-caprolactone) (PLACL), silk fibroin (SF) and Aloe Vera (AV) for fabricating biocomposite nanofibrous scaffolds for cardiac tissue engineering. SEM micrographs of fabricated electrospun PLACL, PLACL/SF and PLACL/SF/AV nanofibrous scaffolds are porous, beadless, uniform nanofibers with interconnected pores and obtained fibre diameter in the range of 459 ± 22 nm, 202 ± 12 nm and 188 ± 16 nm respectively. PLACL, PLACL/SF and PLACL/SF/AV electrospun mats obtained at room temperature with an elastic modulus of 14.1 ± 0.7, 9.96 ± 2.5 and 7.0 ± 0.9 MPa respectively. PLACL/SF/AV nanofibers have more desirable properties to act as flexible cell supporting scaffolds compared to PLACL for the repair of myocardial infarction (MI). The PLACL/SF and PLACL/SF/AV nanofibers had a contact angle of 51 ± 12° compared to that of 133 ± 15° of PLACL alone. Cardiac cell proliferation was increased by 21% in PLACL/SF/AV nanofibers compared to PLACL by day 6 and further increased to 42% by day 9. Confocal analysis for cardiac expression proteins myosin and connexin 43 was observed better by day 9 compared to all other nanofibrous scaffolds. The results proved that the fabricated PLACL/SF/AV nanofibrous scaffolds have good potentiality for the regeneration of infarcted myocardium in cardiac tissue engineering. - Highlights: • Fabricated nanofibrous scaffolds are porous, beadless and uniform structures. • PLACL/SF/AV nanofibers improve the

  12. Biologically improved nanofibrous scaffolds for cardiac tissue engineering

    International Nuclear Information System (INIS)

    Bhaarathy, V.; Venugopal, J.; Gandhimathi, C.; Ponpandian, N.; Mangalaraj, D.; Ramakrishna, S.

    2014-01-01

    Nanofibrous structure developed by electrospinning technology provides attractive extracellular matrix conditions for the anchorage, migration and differentiation of stem cells, including those responsible for regenerative medicine. Recently, biocomposite nanofibers consisting of two or more polymeric blends are electrospun more tidily in order to obtain scaffolds with desired functional and mechanical properties depending on their applications. The study focuses on one such an attempt of using copolymer Poly(L-lactic acid)-co-poly (ε-caprolactone) (PLACL), silk fibroin (SF) and Aloe Vera (AV) for fabricating biocomposite nanofibrous scaffolds for cardiac tissue engineering. SEM micrographs of fabricated electrospun PLACL, PLACL/SF and PLACL/SF/AV nanofibrous scaffolds are porous, beadless, uniform nanofibers with interconnected pores and obtained fibre diameter in the range of 459 ± 22 nm, 202 ± 12 nm and 188 ± 16 nm respectively. PLACL, PLACL/SF and PLACL/SF/AV electrospun mats obtained at room temperature with an elastic modulus of 14.1 ± 0.7, 9.96 ± 2.5 and 7.0 ± 0.9 MPa respectively. PLACL/SF/AV nanofibers have more desirable properties to act as flexible cell supporting scaffolds compared to PLACL for the repair of myocardial infarction (MI). The PLACL/SF and PLACL/SF/AV nanofibers had a contact angle of 51 ± 12° compared to that of 133 ± 15° of PLACL alone. Cardiac cell proliferation was increased by 21% in PLACL/SF/AV nanofibers compared to PLACL by day 6 and further increased to 42% by day 9. Confocal analysis for cardiac expression proteins myosin and connexin 43 was observed better by day 9 compared to all other nanofibrous scaffolds. The results proved that the fabricated PLACL/SF/AV nanofibrous scaffolds have good potentiality for the regeneration of infarcted myocardium in cardiac tissue engineering. - Highlights: • Fabricated nanofibrous scaffolds are porous, beadless and uniform structures. • PLACL/SF/AV nanofibers improve the

  13. The future of metabolic engineering and synthetic biology: towards a systematic practice.

    Science.gov (United States)

    Yadav, Vikramaditya G; De Mey, Marjan; Lim, Chin Giaw; Ajikumar, Parayil Kumaran; Stephanopoulos, Gregory

    2012-05-01

    Industrial biotechnology promises to revolutionize conventional chemical manufacturing in the years ahead, largely owing to the excellent progress in our ability to re-engineer cellular metabolism. However, most successes of metabolic engineering have been confined to over-producing natively synthesized metabolites in E. coli and S. cerevisiae. A major reason for this development has been the descent of metabolic engineering, particularly secondary metabolic engineering, to a collection of demonstrations rather than a systematic practice with generalizable tools. Synthetic biology, a more recent development, faces similar criticisms. Herein, we attempt to lay down a framework around which bioreaction engineering can systematize itself just like chemical reaction engineering. Central to this undertaking is a new approach to engineering secondary metabolism known as 'multivariate modular metabolic engineering' (MMME), whose novelty lies in its assessment and elimination of regulatory and pathway bottlenecks by re-defining the metabolic network as a collection of distinct modules. After introducing the core principles of MMME, we shall then present a number of recent developments in secondary metabolic engineering that could potentially serve as its facilitators. It is hoped that the ever-declining costs of de novo gene synthesis; the improved use of bioinformatic tools to mine, sort and analyze biological data; and the increasing sensitivity and sophistication of investigational tools will make the maturation of microbial metabolic engineering an autocatalytic process. Encouraged by these advances, research groups across the world would take up the challenge of secondary metabolite production in simple hosts with renewed vigor, thereby adding to the range of products synthesized using metabolic engineering. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Biological aspects of application of nanomaterials in tissue engineering

    Directory of Open Access Journals (Sweden)

    Markovic Dejan

    2016-01-01

    Full Text Available Millions of patients worldwide need surgery to repair or replace tissue that has been damaged through trauma or disease. To solve the problem of lost tissue, a major emphasis of tissue engineering (TE is on tissue regeneration. Stem cells and highly porous biomaterials used as cell carriers (scaffolds have an essential role in the production of new tissue by TE. Cellular component is important for the generation and establishment of the extracellular matrix, while a scaffold is necessary to determine the shape of the newly formed tissue and facilitate migration of cells into the desired location, as well as their growth and differentiation. This review describes the types, characteristics and classification of stem cells. Furthermore, it includes functional features of cell carriers - biocompatibility, biodegradability and mechanical properties of biomaterials used in developing state-of-the-art scaffolds for TE applications, as well as suitability for different tissues. Moreover, it explains the importance of nanotechnology and defines the challenges and the purpose of future research in this rapidly advancing field. [Projekat Ministarstva nauke Republike Srbije, br. 41030 i br. 172026

  15. Biomaterials-Based Electronics: Polymers and Interfaces for Biology and Medicine

    Science.gov (United States)

    Muskovich, Meredith; Bettinger, Christopher J.

    2012-01-01

    Advanced polymeric biomaterials continue to serve as a cornerstone of new medical technologies and therapies. The vast majority of these materials, both natural and synthetic, interact with biological matter without direct electronic communication. However, biological systems have evolved to synthesize and employ naturally-derived materials for the generation and modulation of electrical potentials, voltage gradients, and ion flows. Bioelectric phenomena can be interpreted as potent signaling cues for intra- and inter-cellular communication. These cues can serve as a gateway to link synthetic devices with biological systems. This progress report will provide an update on advances in the application of electronically active biomaterials for use in organic electronics and bio-interfaces. Specific focus will be granted to the use of natural and synthetic biological materials as integral components in technologies such as thin film electronics, in vitro cell culture models, and implantable medical devices. Future perspectives and emerging challenges will also be highlighted. PMID:23184740

  16. Fundamental Technical Elements of Freeze-fracture/Freeze-etch in Biological Electron Microscopy

    Science.gov (United States)

    Freeze-fracture/freeze-etch describes a process whereby specimens, typically biological or nanomaterial in nature, are frozen, fractured, and replicated to generate a carbon/platinum "cast" intended for examination by transmission electron microscopy. Specimens are subjected to u...

  17. Engineers’ Responsibilities for Global Electronic Waste: Exploring Engineering Student Writing Through a Care Ethics Lens

    Science.gov (United States)

    Campbell, Ryan C.; Wilson, Denise

    2016-01-01

    This paper provides an empirically informed perspective on the notion of responsibility using an ethical framework that has received little attention in the engineering-related literature to date: ethics of care. In this work, we ground conceptual explorations of engineering responsibility in empirical findings from engineering student’s writing on the human health and environmental impacts of “backyard” electronic waste recycling/disposal. Our findings, from a purposefully diverse sample of engineering students in an introductory electrical engineering course, indicate that most of these engineers of tomorrow associated engineers with responsibility for the electronic waste (e-waste) problem in some way. However, a number of responses suggested attempts to deflect responsibility away from engineers towards, for example, the government or the companies for whom engineers work. Still other students associated both engineers and non-engineers with responsibility, demonstrating the distributed/collective nature of responsibility that will be required to achieve a solution to the global problem of excessive e-waste. Building upon one element of a framework for care ethics adopted from the wider literature, these empirical findings are used to facilitate a preliminary, conceptual exploration of care-ethical responsibility within the context of engineering and e-waste recycling/disposal. The objective of this exploration is to provide a first step toward understanding how care-ethical responsibility applies to engineering. We also hope to seed dialogue within the engineering community about its ethical responsibilities on the issue. We conclude the paper with a discussion of its implications for engineering education and engineering ethics that suggests changes for educational policy and the practice of engineering. PMID:27368195

  18. EDUCATIONAL COMPLEX ON ELECTRICAL ENGINEERING AND ELECTRONICS BASED ON MODELING IN PROGRAM TINA

    Directory of Open Access Journals (Sweden)

    Vladimir A. Alekhin

    2014-01-01

    Full Text Available The educational complex on the electrical engineering and electronics has been developed. It contains a course of lectures and lecture notes in the electronic form, a new computer laboratory practical work and practical training. All electronic manuals are based on modeling of electric and electronic circuits in the new effective program TINA. The educational complex is being successfully used in educational process on internal and distant learning. 

  19. Electron Transfer Studies of Ruthenium(II) Complexes with Biologically Important Phenolic Acids and Tyrosine.

    Science.gov (United States)

    Rajeswari, Angusamy; Ramdass, Arumugam; Muthu Mareeswaran, Paulpandian; Rajagopal, Seenivasan

    2016-03-01

    The ruthenium(II) complexes having 2,2'-bipyridine and phenanthroline derivatives are synthesized and characterized. The photophysical properties of these complexes at pH 12.5 are studied. The electron transfer reaction of biologically important phenolic acids and tyrosine are studied using absorption, emission and transient absorption spectral techniques. Semiclassical theory is applied to calculate the rate of electron transfer between ruthenium(II) complexes and biologically important phenolic acids.

  20. On the analysis of complex biological supply chains: From Process Systems Engineering to Quantitative Systems Pharmacology.

    Science.gov (United States)

    Rao, Rohit T; Scherholz, Megerle L; Hartmanshenn, Clara; Bae, Seul-A; Androulakis, Ioannis P

    2017-12-05

    The use of models in biology has become particularly relevant as it enables investigators to develop a mechanistic framework for understanding the operating principles of living systems as well as in quantitatively predicting their response to both pathological perturbations and pharmacological interventions. This application has resulted in a synergistic convergence of systems biology and pharmacokinetic-pharmacodynamic modeling techniques that has led to the emergence of quantitative systems pharmacology (QSP). In this review, we discuss how the foundational principles of chemical process systems engineering inform the progressive development of more physiologically-based systems biology models.

  1. Methanol as electron donor for thermophilic biological sulfate and sulfite reduction

    NARCIS (Netherlands)

    Weijma, J.

    2000-01-01

    Sulfur oxyanions (e.g. sulfate, sulfite) can be removed from aqueous waste- and process streams by biological reduction with a suitable electron donor to sulfide, followed by partial chemical or biological oxidation of sulfide to elemental sulfur. The aim of the research described in this

  2. Can Man Control His Biological Evolution? A Symposium on Genetic Engineering. Genetic Engineering

    Science.gov (United States)

    Ramsey, Paul

    1972-01-01

    Presented are issues related to genetic engineering. Increased knowledge of techniques to manipulate genes are apt to create confusion about moral values in relation to unborn babies and other living organisms on earth. Human beings may use this knowledge to disturb the balance maintained by nature. (PS)

  3. Recent advances in synthetic biology for engineering isoprenoid production in yeast.

    Science.gov (United States)

    Vickers, Claudia E; Williams, Thomas C; Peng, Bingyin; Cherry, Joel

    2017-10-01

    Isoprenoids (terpenes/terpenoids) have many useful industrial applications, but are often not produced at industrially viable level in their natural sources. Synthetic biology approaches have been used extensively to reconstruct metabolic pathways in tractable microbial hosts such as yeast and re-engineer pathways and networks to increase yields. Here we review recent advances in this field, focusing on central carbon metabolism engineering to increase precursor supply, re-directing carbon flux for production of C10, C15, or C20 isoprenoids, and chemical decoration of high value diterpenoids (C20). We also overview other novel synthetic biology strategies that have potential utility in yeast isoprenoid pathway engineering. Finally, we address the question of what is required in the future to move the field forwards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Engineering Electrochemical Setups for Electron Microscopy of Liquid Processes

    DEFF Research Database (Denmark)

    Jensen, Eric; Burrows, Andrew

    This work focuses on creating tools for imaging liquid samples at atmospheric pressure and room temperature in two different electron microscopes; the scanning electron microscope (SEM) and the transmission electron microscope (TEM). The main focus of the project was the fabrication of the two sy......-SEM cell. In TEM, holography of graphene multi-layer sheets has been performed and the phase change per sheet has been determined as a step towards in-situ holography of liquid through graphene.......-transparent window and built-in electrodes was placed above a reservoir, sealing off the liquid from the vacuum, but allowing imaging through the window in the chip. In-situ electrochemical experiments have been performed with this setup: imaging the electron beam (e-beam) deposition of nickel on the window......This work focuses on creating tools for imaging liquid samples at atmospheric pressure and room temperature in two different electron microscopes; the scanning electron microscope (SEM) and the transmission electron microscope (TEM). The main focus of the project was the fabrication of the two...

  5. The emerging role of systems biology for engineering protein production in CHO cells.

    Science.gov (United States)

    Kuo, Chih-Chung; Chiang, Austin Wt; Shamie, Isaac; Samoudi, Mojtaba; Gutierrez, Jahir M; Lewis, Nathan E

    2017-12-06

    To meet the ever-growing demand for effective, safe, and affordable protein therapeutics, decades of intense efforts have aimed to maximize the quantity and quality of recombinant proteins produced in CHO cells. Bioprocessing innovations and cell engineering efforts have improved product titer; however, uncharacterized cellular processes and gene regulatory mechanisms still hinder cell growth, specific productivity, and protein quality. Herein, we summarize recent advances in systems biology and data-driven approaches aiming to unravel how molecular pathways, cellular processes, and extrinsic factors (e.g. media supplementation) influence recombinant protein production. In particular, as the available omics data for CHO cells continue to grow, predictive models and screens will be increasingly used to unravel the biological drivers of protein production, which can be used with emerging genome editing technologies to rationally engineer cells to further control the quantity, quality and affordability of many biologic drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A comparison of the role of beamwidth in biological and engineered sonar.

    Science.gov (United States)

    Todd, Bryan Donald; Mueller, Rolf

    2017-11-13

    Sonar is an important sensory modality for engineers as well as in nature. In engineering, sonar is the dominating modality for underwater sensing. In nature, biosonar is likely to have been a central factor behind the unprecedented evolutionary success of bats, a highly diverse group that accounts for over 20% of all mammal species. However, it remains unclear to what extent engineered and biosonar follow similar design and operational principles. In the current work, the key sonar design characteristic of beamwidth is examined in technical and biosonar. To this end, beamwidth data has been obtained for 23 engineered sonar systems and from numerical beampattern predictions for 151 emission and reception elements (noseleaves and ears) representing bat biosonar. Beamwidth data from these sources is compared to the beamwidth of a planar ellipsoidal transducer as a reference. The results show that engineered and biological both obey the basic physical limit on beamwidth as a function of the ratio of aperture size and wavelength. However, beyond that, the beamwidth data revealed very different behaviors between the engineered and the biological sonar systems. Whereas the beamwidths of the technical sonar systems were very close to the planar transducer limit, the biological samples showed a very wide scatter away from this limit. This scatter was as large, if not wider, than what was seen in a small reference data set obtained with random aluminum cones. A possible interpretation of these differences in the variability could be that whereas sonar engineers try to minimize beamwidth subject to constraints on device size, the evolutionary optimization of bat biosonar beampatterns has been directed at other factors that have left beamwidth as a byproduct. Alternatively, the biosonar systems may require beamwidth values that are larger than the physical limit and differ between species and their sensory ecological niches. © 2017 IOP Publishing Ltd.

  7. Tissue-electronics interfaces: from implantable devices to engineered tissues

    Science.gov (United States)

    Feiner, Ron; Dvir, Tal

    2018-01-01

    Biomedical electronic devices are interfaced with the human body to extract precise medical data and to interfere with tissue function by providing electrical stimuli. In this Review, we outline physiologically and pathologically relevant tissue properties and processes that are important for designing implantable electronic devices. We summarize design principles for flexible and stretchable electronics that adapt to the mechanics of soft tissues, such as those including conducting polymers, liquid metal alloys, metallic buckling and meandering architectures. We further discuss technologies for inserting devices into the body in a minimally invasive manner and for eliminating them without further intervention. Finally, we introduce the concept of integrating electronic devices with biomaterials and cells, and we envision how such technologies may lead to the development of bionic organs for regenerative medicine.

  8. JPRS Report, Science & Technology, USSR: Electronics & Electrical Engineering.

    Science.gov (United States)

    1988-02-23

    11, Nov 86) 20 ELECTROMAGNETIC COMPATIBILITY Melt-Through Characteristics of Walls of Metal Objects Struck by Lightning (N. R. Abramov , I. P...Jun 86) pp 22-27 [Article "by N. R. Abramov , I. P. Kuzhekin and V. P. Larionov, Moscow Power Engineering Institute] [Abstract] Existing methods of

  9. Directed evolution combined with synthetic biology strategies expedite semi-rational engineering of genes and genomes.

    Science.gov (United States)

    Kang, Zhen; Zhang, Junli; Jin, Peng; Yang, Sen

    2015-01-01

    Owing to our limited understanding of the relationship between sequence and function and the interaction between intracellular pathways and regulatory systems, the rational design of enzyme-coding genes and de novo assembly of a brand-new artificial genome for a desired functionality or phenotype are difficult to achieve. As an alternative approach, directed evolution has been widely used to engineer genomes and enzyme-coding genes. In particular, significant developments toward DNA synthesis, DNA assembly (in vitro or in vivo), recombination-mediated genetic engineering, and high-throughput screening techniques in the field of synthetic biology have been matured and widely adopted, enabling rapid semi-rational genome engineering to generate variants with desired properties. In this commentary, these novel tools and their corresponding applications in the directed evolution of genomes and enzymes are discussed. Moreover, the strategies for genome engineering and rapid in vitro enzyme evolution are also proposed.

  10. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  11. Information Technology in project-organized electronic and computer technology engineering education

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Nielsen, Jens Frederik Dalsgaard

    1999-01-01

    This paper describes the integration of IT in the education of electronic and computer technology engineers at Institute of Electronic Systems, Aalborg Uni-versity, Denmark. At the Institute Information Technology is an important tool in the aspects of the education as well as for communication...

  12. Synthesis and characterization of polyglycerols dendrimers for applications in tissue engineering biological

    International Nuclear Information System (INIS)

    Passos, E.D.; Queiroz, A.A.A. de

    2014-01-01

    Full text: Introduction: Over the last twenty years is the growing development in the manufacture of synthetic scaffold in tissue engineering applications. These new materials are based on polyglycerol dendrimers (PGLD's). PGLD's are highly functional polymers with hydroxymethyl side groups, fulfill all structural prerequisites to replace poly(ethylene glycol)s in medical applications. Furthermore, since these materials are based on naturally occurring compounds that degrades over time in the body and can be safely excreted. The objective of this work was the synthesis, physicochemical, biological characterization of HPGL's with potential use as scaffolds in tissue engineering. HPGL's with oligomeric cores, of diglycerol triglycerol and tetraglycerol was used. Theoretical and Experimental Simulation Details: The synthesis of PGLD procedures involves the etherification of glycerol through anionic polymerization of glycidol. The PGLD's were characterized by chromatographic techniques (SEC and HPLC), spectroscopic (FTIR, 1H-NMR and 13C - NMR) electrochemical (zeta potential) and thermal analysis (DSC and TGA) techniques. The structure- activity relationships (SAR's) of compound prototype and its analogs were studied to determine the generation number (G) of the molecule responsible for the biological activity on the adhesion and cell proliferation process. A detailed study of the structure of PGLD's of G=0-4 was performed using the Hyperchem 7. 5 and Gromacs 4 software packages. The biocompatibility studies were studied by scanning electron microscopy (SEM) and fluorescence microscopy (EPF) technique after PGLD (G=0-4) blood contact. The overall electro-negativity/total charge density, dipole moment, frontier orbital's (HOMO - LUMO) and electrostatic potential maps (EPM) were calculated. The most stable form of the resulting compounds was determined by estimating the hydration energy and energy conformation. Results and

  13. Biological denitrification using poly(butanediol succinate) as electron donor.

    Science.gov (United States)

    Shen, Zhiqiang; Yin, Yanan; Wang, Jianlong

    2016-07-01

    Poly(butanediol succinate) (PBS), a biodegradable polymer, was used as both solid carbon source and biofilm carrier for biological nitrate removal process, in which PBS was filled in a packed-bed bioreactor. The denitrification performance and the microbial diversity of biofilm attached on the surface of PBS were investigated. The experimental results showed that the volumetric denitrification rate was 0.60 kg m(-3) day(-1) when NO3-N loading rate was 0.63 kg m(-3) day(-1), and the average NO2-N concentration was below 0.20 mg L(-1). The effluent pH value decreased slightly from a range of 6.98-7.87 to 6.46-7.18. The analysis of microbial community structure of biofilm by pyrosequencing method showed that Proteobacteria was the most abundant phylum (89.87 %), and β-Proteobacteria represented the most abundant class. Among the 76 identified genera, Dechloromonas (10.26 %), Alicycliphilus (9.15 %), Azospira (8.92 %), and Sinobacteraceae-uncultured (8.75 %) were the abundant genera. PBS, as a promising alternative carbon source, is a suitable solid carbon source and biofilm carrier for nitrate removal.

  14. Enhancing gold recovery from electronic waste via lixiviant metabolic engineering in Chromobacterium violaceum

    Science.gov (United States)

    Tay, Song Buck; Natarajan, Gayathri; Rahim, Muhammad Nadjad bin Abdul; Tan, Hwee Tong; Chung, Maxey Ching Ming; Ting, Yen Peng; Yew, Wen Shan

    2013-01-01

    Conventional leaching (extraction) methods for gold recovery from electronic waste involve the use of strong acids and pose considerable threat to the environment. The alternative use of bioleaching microbes for gold recovery is non-pollutive and relies on the secretion of a lixiviant or (bio)chemical such as cyanide for extraction of gold from electronic waste. However, widespread industrial use of bioleaching microbes has been constrained by the limited cyanogenic capabilities of lixiviant-producing microorganisms such as Chromobacterium violaceum. Here we show the construction of a metabolically-engineered strain of Chromobacterium violaceum that produces more (70%) cyanide lixiviant and recovers more than twice as much gold from electronic waste compared to wild-type bacteria. Comparative proteome analyses suggested the possibility of further enhancement in cyanogenesis through subsequent metabolic engineering. Our results demonstrated the utility of lixiviant metabolic engineering in the construction of enhanced bioleaching microbes for the bioleaching of precious metals from electronic waste. PMID:23868689

  15. Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits

    OpenAIRE

    Altintas, Ferdi; Hardal, Ali Ü. C.; Müstecaplıoğlu, Özgür E.

    2014-01-01

    We propose a multilevel quantum heat engine with a working medium described by a generalized Rabi model which consists of a two-level system coupled to a single-mode bosonic field. The model is constructed to be a continuum limit of a quantum biological description of light-harvesting complexes so that it can amplify quantum coherence by a mechanism which is a quantum analog of classical Huygens clocks. The engine operates in a quantum Otto cycle where the working medium is coupled to classic...

  16. Engineering Physics of Superconducting Hot-Electron Bolometer Mixers

    NARCIS (Netherlands)

    Klapwijk, T.M.; Semenov, A. V.

    2017-01-01

    Superconducting hot-electron bolometers are presently the best performing mixing devices for the frequency range beyond 1.2 THz, where good-quality superconductor-insulator-superconductor devices do not exist. Their physical appearance is very simple: an antenna consisting of a normal metal,

  17. The mismeasure of machine: Synthetic biology and the trouble with engineering metaphors.

    Science.gov (United States)

    Boudry, Maarten; Pigliucci, Massimo

    2013-12-01

    The scientific study of living organisms is permeated by machine and design metaphors. Genes are thought of as the "blueprint" of an organism, organisms are "reverse engineered" to discover their functionality, and living cells are compared to biochemical factories, complete with assembly lines, transport systems, messenger circuits, etc. Although the notion of design is indispensable to think about adaptations, and engineering analogies have considerable heuristic value (e.g., optimality assumptions), we argue they are limited in several important respects. In particular, the analogy with human-made machines falters when we move down to the level of molecular biology and genetics. Living organisms are far more messy and less transparent than human-made machines. Notoriously, evolution is an opportunistic tinkerer, blindly stumbling on "designs" that no sensible engineer would come up with. Despite impressive technological innovation, the prospect of artificially designing new life forms from scratch has proven more difficult than the superficial analogy with "programming" the right "software" would suggest. The idea of applying straightforward engineering approaches to living systems and their genomes-isolating functional components, designing new parts from scratch, recombining and assembling them into novel life forms-pushes the analogy with human artifacts beyond its limits. In the absence of a one-to-one correspondence between genotype and phenotype, there is no straightforward way to implement novel biological functions and design new life forms. Both the developmental complexity of gene expression and the multifarious interactions of genes and environments are serious obstacles for "engineering" a particular phenotype. The problem of reverse-engineering a desired phenotype to its genetic "instructions" is probably intractable for any but the most simple phenotypes. Recent developments in the field of bio-engineering and synthetic biology reflect these

  18. Synthetic biology and metabolic engineering for marine carotenoids: new opportunities and future prospects.

    Science.gov (United States)

    Wang, Chonglong; Kim, Jung-Hun; Kim, Seon-Won

    2014-09-17

    Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations.

  19. Synthetic Biology and Metabolic Engineering for Marine Carotenoids: New Opportunities and Future Prospects

    Directory of Open Access Journals (Sweden)

    Chonglong Wang

    2014-09-01

    Full Text Available Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations.

  20. Synthetic Biology and Metabolic Engineering for Marine Carotenoids: New Opportunities and Future Prospects

    Science.gov (United States)

    Wang, Chonglong; Kim, Jung-Hun; Kim, Seon-Won

    2014-01-01

    Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations. PMID:25233369

  1. Proceedings of Synthetic Biology: Engineering, Evolution and Design (SEED) Conference 2015

    Energy Technology Data Exchange (ETDEWEB)

    Silver, Pamela [Harvard Univ., Cambridge, MA (United States); SEED 2015 Conference Chair; Flach, Evan [American Institute of Chemical Engineers; SEED 2015 Conference Organizer

    2016-10-27

    Synthetic Biology is an emerging discipline that seeks to accelerate the process of engineering biology. As such, the tools are broadly applicable to application areas, including chemicals and biofuels, materials, medicine and agriculture. A characteristic of the field is to look holistically at cellular design, from sensing and genetic circuitry to the manipulation of cellular processes and actuators, to controlling metabolism, to programming multicellular behaviors. Further, the types of cells that are manipulated are broad, from in vitro systems to microbes and fungi to mammalian and plant cells and living animals. Many of the projects in synthetic biology seek to move biochemical functions across organisms. The field is highly interdisciplinary with faculty and students spread across departments that focus on engineering (biological, chemical, electrical, mechanical, civil, computer science) and basic science (biology and systems biology, chemistry, physics). While there have been many one-off workshops and meeting on synthetic biology, the 2014 Synthetic Biology: Engineering, Evolution and Design (SEED) was the first of an annual conference series that serves as a reliable place to pull together the involved disciplines in order to organize and exchange advances in the science and technology in the field. Further, the SEED conferences have a strong focus on industry, with many companies represented and actively participating. A number of these companies have started major efforts in synthetic biology including large companies (e.g., Pfizer, Novartis, Dow, Dupont, BP, Total), smaller companies have recently gone public (e.g., Amyris, Gevo, Intrexon), and many start-ups (e.g., Teslagen, Refactored Materials, Pivot, Genomatica). There are a number of loosely affiliated Synthetic Biology Centers, including ones at MIT, Boston University, UCSD, UCSF, UC-Berkeley, Imperial College, Oxford, and ETH. SEED 2015 will serve as the primary meeting at which international

  2. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Chengdong Xiong

    2009-07-01

    Full Text Available Abstract In this study, we report the physico-chemical and biological properties of a novel biodegradable composite scaffold made of nano-hydroxyapatite and natural derived polymers of chitosan and carboxymethyl cellulose, namely, n-HA/CS/CMC, which was prepared by freeze-drying method. The physico-chemical properties of n-HA/CS/CMC scaffold were tested by infrared absorption spectra (IR, transmission electron microscope(TEM, scanning electron microscope(SEM, universal material testing machine and phosphate buffer solution (PBS soaking experiment. Besides, the biological properties were evaluated by MG63 cells and Mesenchymal stem cells (MSCs culture experiment in vitro and a short period implantation study in vivo. The results show that the composite scaffold is mainly formed through the ionic crossing-linking of the two polyions between CS and CMC, and n-HA is incorporated into the polyelectrolyte matrix of CS-CMC without agglomeration, which endows the scaffold with good physico-chemical properties such as highly interconnected porous structure, high compressive strength and good structural stability and degradation. More important, the results of cells attached, proliferated on the scaffold indicate that the scaffold is non-toxic and has good cell biocompatibility, and the results of implantation experiment in vivo further confirm that the scaffold has good tissue biocompatibility. All the above results suggest that the novel degradable n-HA/CS/CMC composite scaffold has a great potential to be used as bone tissue engineering material.

  3. Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Liu, Huan

    2011-07-15

    Lead sulfide colloidal quantum dot (CQD) solar cells with a solar power conversion efficiency of 5.6% are reported. The result is achieved through careful optimization of the titanium dioxide electrode that serves as the electron acceptor. Metal-ion-doped sol-gel-derived titanium dioxide electrodes produce a tunable-bandedge, well-passivated materials platform for CQD solar cell optimization. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. USSR Report, Electronics and Electrical Engineering, No. 104

    Science.gov (United States)

    1983-06-13

    metallic In on the Si side and transparent SnO layers on the I.e. side._ The magnitude of the photoelectric effect has been found to depend on the orienta...over the 293-353 K range subtending the transition of V0_ from semiconductor phase to metallic phase with attendant change of color. The maximum photo...electron-beam lighography eminently suitable for produc- tion of semiconductor circuits with superhigh packaging density. In this case picture

  5. Interdisciplinary research and education at the biology-engineering-computer science interface: a perspective.

    Science.gov (United States)

    Tadmor, Brigitta; Tidor, Bruce

    2005-09-01

    Progress in the life sciences, including genome sequencing and high-throughput experimentation, offers an opportunity for understanding biology and medicine from a systems perspective. This 'new view', which complements the more traditional component-based approach, involves the integration of biological research with approaches from engineering disciplines and computer science. The result is more than a new set of technologies. Rather, it promises a fundamental reconceptualization of the life sciences based on the development of quantitative and predictive models to describe crucial processes. To achieve this change, learning communities are being formed at the interface of the life sciences, engineering and computer science. Through these communities, research and education will be integrated across disciplines and the challenges associated with multidisciplinary team-based science will be addressed.

  6. Proceedings of the 8. Mediterranean Conference on Medical and Biological Engineering and Computing (Medicon '98)

    International Nuclear Information System (INIS)

    Christofides, Stelios; Pattichis, Constantinos; Schizas, Christos; Keravnou-Papailiou, Elpida; Kaplanis, Prodromos; Spyros, Spyrou; Christodoulides, George; Theodoulou, Yiannis

    1998-01-01

    Medicon '98 is the eighth in the series of regional meetings of the International Federation of Medical and Biological Engineering (IFMBE) in the Mediterranean. The goal of Medicon '98 is to provide updated information on the state of the art on medical and biological engineering and computing. Medicon '98 was held in Lemesos, Cyprus, between 14-17 June, 1998. The full papers of the proceedings were published on CD and consisted of 190 invited and submitted papers. A book of abstracts was also published in paper form and was available to all the participants. Twenty seven papers fall within the scope of INIS and are dealing with Nuclear Medicine,Computerized Tomography, Radiology, Radiotherapy, Magnetic Resonance Imaging and Personnel Dosimetry (eds)

  7. Polymer-Based Microfluidic Devices for Pharmacy, Biology and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Kerstin Ramser

    2012-07-01

    Full Text Available This paper reviews microfluidic technologies with emphasis on applications in the fields of pharmacy, biology, and tissue engineering. Design and fabrication of microfluidic systems are discussed with respect to specific biological concerns, such as biocompatibility and cell viability. Recent applications and developments on genetic analysis, cell culture, cell manipulation, biosensors, pathogen detection systems, diagnostic devices, high-throughput screening and biomaterial synthesis for tissue engineering are presented. The pros and cons of materials like polydimethylsiloxane (PDMS, polymethylmethacrylate (PMMA, polystyrene (PS, polycarbonate (PC, cyclic olefin copolymer (COC, glass, and silicon are discussed in terms of biocompatibility and fabrication aspects. Microfluidic devices are widely used in life sciences. Here, commercialization and research trends of microfluidics as new, easy to use, and cost-effective measurement tools at the cell/tissue level are critically reviewed.

  8. Engineering flat electronic bands in quasiperiodic and fractal loop geometries

    Energy Technology Data Exchange (ETDEWEB)

    Nandy, Atanu, E-mail: atanunandy1989@gmail.com; Chakrabarti, Arunava, E-mail: arunava_chakrabarti@yahoo.co.in

    2015-11-06

    Exact construction of one electron eigenstates with flat, non-dispersive bands, and localized over clusters of various sizes is reported for a class of quasi-one-dimensional looped networks. Quasiperiodic Fibonacci and Berker fractal geometries are embedded in the arms of the loop threaded by a uniform magnetic flux. We work out an analytical scheme to unravel the localized single particle states pinned at various atomic sites or over clusters of them. The magnetic field is varied to control, in a subtle way, the extent of localization and the location of the flat band states in energy space. In addition to this we show that an appropriate tuning of the field can lead to a re-entrant behavior of the effective mass of the electron in a band, with a periodic flip in its sign. - Highlights: • Exact construction of eigenstates with flat and dispersive bands is reported. • Competition between translational order and growth of aperiodicity is discussed. • The effect of magnetic field on the location of flat band states is shown. • Flux tunable re-entrant behavior of the effective mass of electron is studied.

  9. Recent Progress on Systems and Synthetic Biology Approaches to Engineer Fungi As Microbial Cell Factories.

    Science.gov (United States)

    Amores, Gerardo Ruiz; Guazzaroni, María-Eugenia; Arruda, Letícia Magalhães; Silva-Rocha, Rafael

    2016-04-01

    Filamentous fungi are remarkable organisms naturally specialized in deconstructing plant biomass and this feature has a tremendous potential for biofuel production from renewable sources. The past decades have been marked by a remarkable progress in the genetic engineering of fungi to generate industry-compatible strains needed for some biotech applications. In this sense, progress in this field has been marked by the utilization of high-throughput techniques to gain deep understanding of the molecular machinery controlling the physiology of these organisms, starting thus the Systems Biology era of fungi. Additionally, genetic engineering has been extensively applied to modify wellcharacterized promoters in order to construct new expression systems with enhanced performance under the conditions of interest. In this review, we discuss some aspects related to significant progress in the understating and engineering of fungi for biotechnological applications, with special focus on the construction of synthetic promoters and circuits in organisms relevant for industry. Different engineering approaches are shown, and their potential and limitations for the construction of complex synthetic circuits in these organisms are examined. Finally, we discuss the impact of engineered promoter architecture in the single-cell behavior of the system, an often-neglected relationship with a tremendous impact in the final performance of the process of interest. We expect to provide here some new directions to drive future research directed to the construction of high-performance, engineered fungal strains working as microbial cell factories.

  10. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli

    International Nuclear Information System (INIS)

    Whitaker, W. Brian; Bennett, R. Kyle

    2016-01-01

    Methanol is an attractive substrate for biological production of chemicals and fuels. Engineering methylotrophic Escherichia coli as a platform organism for converting methanol to metabolites is desirable. Prior efforts to engineer methylotrophic E. coli were limited by methanol dehydrogenases (Mdhs) with unfavorable enzyme kinetics. We engineered E. coli to utilize methanol using a superior NAD-dependent Mdh from Bacillus stearothermophilus and ribulose monophosphate (RuMP) pathway enzymes from B. methanolicus. Using 13 C-labeling, we demonstrate this E. coli strain converts methanol into biomass components. For example, the key TCA cycle intermediates, succinate and malate, exhibit labeling up to 39%, while the lower glycolytic intermediate, 3-phosphoglycerate, up to 53%. Multiple carbons are labeled for each compound, demonstrating a cycling RuMP pathway for methanol assimilation to support growth. In conclusion, by incorporating the pathway to synthesize the flavanone naringenin, we demonstrate the first example of in vivo conversion of methanol into a specialty chemical in E. coli.

  11. Synthetic Biology Approaches to Engineer Probiotics and Members of the Human Microbiota for Biomedical Applications.

    Science.gov (United States)

    Bober, Josef R; Beisel, Chase L; Nair, Nikhil U

    2018-03-12

    An increasing number of studies have strongly correlated the composition of the human microbiota with many human health conditions and, in several cases, have shown that manipulating the microbiota directly affects health. These insights have generated significant interest in engineering indigenous microbiota community members and nonresident probiotic bacteria as biotic diagnostics and therapeutics that can probe and improve human health. In this review, we discuss recent advances in synthetic biology to engineer commensal and probiotic lactic acid bacteria, bifidobacteria, and Bacteroides for these purposes, and we provide our perspective on the future potential of these technologies. 277 Expected final online publication date for the Annual Review of Biomedical Engineering Volume 20 is June 4, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  12. Dental pulp stem cells. Biology and use for periodontal tissue engineering.

    Science.gov (United States)

    Ashri, Nahid Y; Ajlan, Sumaiah A; Aldahmash, Abdullah M

    2015-12-01

    Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors.

  13. Dental pulp stem cells. Biology and use for periodontal tissue engineering

    Directory of Open Access Journals (Sweden)

    Nahid Y. Ashri

    2015-12-01

    Full Text Available Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors.

  14. Metabolic engineering and synthetic biology approaches driving isoprenoid production in Escherichia coli.

    Science.gov (United States)

    Wang, Chonglong; Zada, Bakht; Wei, Gongyuan; Kim, Seon-Won

    2017-10-01

    Isoprenoids comprise the largest family of natural organic compounds with many useful applications in the pharmaceutical, nutraceutical, and industrial fields. Rapid developments in metabolic engineering and synthetic biology have facilitated the engineering of isoprenoid biosynthetic pathways in Escherichia coli to induce high levels of production of many different isoprenoids. In this review, the stem pathways for synthesizing isoprene units as well as the branch pathways deriving diverse isoprenoids from the isoprene units have been summarized. The review also highlights the metabolic engineering efforts made for the biosynthesis of hemiterpenoids, monoterpenoids, sesquiterpenoids, diterpenoids, carotenoids, retinoids, and coenzyme Q 10 in E. coli. Perspectives and future directions for the synthesis of novel isoprenoids, decoration of isoprenoids using cytochrome P450 enzymes, and secretion or storage of isoprenoids in E. coli have also been included. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Novel engineered compound semiconductor heterostructures for advanced electronics applications

    Science.gov (United States)

    Stillman, Gregory E.; Holonyak, Nick, Jr.; Coleman, James J.

    1992-06-01

    To provide the technology base that will enable SDIO capitalization on the performance advantages offered through novel engineered multiple-lavered compound semiconductor structures, this project has focussed on three specific areas: (1) carbon doping of AlGaAs/GaAs and InP/InGaAs materials for reliable high frequency heterojunction bipolar transistors; (2) impurity induced layer disordering and the environmental degradation of AlxGal-xAs-GaAs quantum-well heterostructures and the native oxide stabilization of AlxGal-xAs-GaAs quantum well heterostructure lasers; and (3) non-planar and strained-layer quantum well heterostructure lasers and laser arrays. The accomplishments in this three year research are reported in fifty-six publications and the abstracts included in this report.

  16. Electronics and Software Engineer for Robotics Project Intern

    Science.gov (United States)

    Teijeiro, Antonio

    2017-01-01

    I was assigned to mentor high school students for the 2017 First Robotics Competition. Using a team based approach, I worked with the students to program the robot and applied my electrical background to build the robot from start to finish. I worked with students who had an interest in electrical engineering to teach them about voltage, current, pulse width modulation, solenoids, electromagnets, relays, DC motors, DC motor controllers, crimping and soldering electrical components, Java programming, and robotic simulation. For the simulation, we worked together to generate graphics files, write simulator description format code, operate Linux, and operate SOLIDWORKS. Upon completion of the FRC season, I transitioned over to providing full time support for the LCS hardware team. During this phase of my internship I helped my co-intern write test steps for two networking hardware DVTs , as well as run cables and update cable running lists.

  17. Engineering C4 photosynthesis into C3 chassis in the synthetic biology age.

    Science.gov (United States)

    Schuler, Mara L; Mantegazza, Otho; Weber, Andreas P M

    2016-07-01

    C4 photosynthetic plants outperform C3 plants in hot and arid climates. By concentrating carbon dioxide around Rubisco C4 plants drastically reduce photorespiration. The frequency with which plants evolved C4 photosynthesis independently challenges researchers to unravel the genetic mechanisms underlying this convergent evolutionary switch. The conversion of C3 crops, such as rice, towards C4 photosynthesis is a long-standing goal. Nevertheless, at the present time, in the age of synthetic biology, this still remains a monumental task, partially because the C4 carbon-concentrating biochemical cycle spans two cell types and thus requires specialized anatomy. Here we review the advances in understanding the molecular basis and the evolution of the C4 trait, advances in the last decades that were driven by systems biology methods. In this review we emphasise essential genetic engineering tools needed to translate our theoretical knowledge into engineering approaches. With our current molecular understanding of the biochemical C4 pathway, we propose a simplified rational engineering model exclusively built with known C4 metabolic components. Moreover, we discuss an alternative approach to the progressing international engineering attempts that would combine targeted mutagenesis and directed evolution. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  18. Integrating electron microscopy into nanoscience and materials engineering programs

    Science.gov (United States)

    Cormia, Robert D.; Oye, Michael M.; Nguyen, Anh; Skiver, David; Shi, Meng; Torres, Yessica

    2014-10-01

    Preparing an effective workforce in high technology is the goal of both academic and industry training, and has been the engine that drives innovation and product development in the United States for over a century. During the last 50 years, technician training has comprised a combination of two-year academic programs, internships and apprentice training, and extensive On-the-Job Training (OJT). Recently, and especially in Silicon Valley, technicians have four-year college degrees, as well as relevant hands-on training. Characterization in general, and microscopy in particular, is an essential tool in process development, manufacturing and QA/QC, and failure analysis. Training for a broad range of skills and practice is challenging, especially for community colleges. Workforce studies (SRI/Boeing) suggest that even four year colleges often do not provide the relevant training and experience in laboratory skills, especially design of experiments and analysis of data. Companies in high-tech further report difficulty in finding skilled labor, especially with industry specific experience. Foothill College, in partnership with UCSC, SJSU, and NASA-Ames, has developed a microscopy training program embedded in a research laboratory, itself a partnership between university and government, providing hands-on experience in advanced instrumentation, experimental design and problem solving, with real-world context from small business innovators, in an environment called `the collaboratory'. The program builds on AFM-SEM training at Foothill, and provides affordable training in FE-SEM and TEM through a cost recovery model. In addition to instrument and engineering training, the collaboratory also supports academic and personal growth through a multiplayer social network of students, faculty, researchers, and innovators.

  19. On the electron-positron cascade in AGN central engines

    Science.gov (United States)

    Ford, Alex; Keenan, Brett; Medvedev, Mikhail

    2016-03-01

    Processes around spinning supermassive black holes (BH) in active galactic nuclei (AGN) are believed to determine how relativistic jets are launched and how the BH energy is extracted. The key ``ingredient'' is the origin of plasma in BH magnetospheres. In order to explore the process of the electron-positron plasma production, we developed a numerical code which models a one-dimensional (along a magnetic field line) dynamics of the cascade. Our simulations show that plasma production is controlled by the spectrum of the ambient photon field, the B-field strength, the BH spin and mass. Implications of our results to the Galactic Center and AGNs are discussed.

  20. XI Scientific Conference Selected Issues of Electrical Engineering and Electronics (WZEE)

    CERN Document Server

    Mazur, Damian; Analysis and Simulation of Electrical and Computer Systems

    2015-01-01

    This book presents the selected results of the XI Scientific Conference Selected Issues of Electrical Engineering and Electronics (WZEE) which was held in Rzeszów and Czarna, Poland on September 27-30, 2013. The main aim of the Conference was to provide academia and industry to discuss and present the latest technological advantages and research results and to integrate the new interdisciplinary scientific circle in the field of electrical engineering, electronics and mechatronics. The Conference was organized by the Rzeszów Division of Polish Association of Theoretical and Applied Electrical Engineering (PTETiS) in cooperation with Rzeszów University of Technology, the Faculty of Electrical and Computer Engineering and Rzeszów University, the Faculty of Mathematics and Natural Sciences.  

  1. A short comparison of electron and proton transfer processes in biological systems

    International Nuclear Information System (INIS)

    Bertrand, Patrick

    2005-01-01

    The main differences between electron and proton transfers that take place in biological systems are examined. The relation between the distance dependence of the rate constant and the mass of the transferred particle is analyzed in detail. Differences between the two processes have important consequences at the experimental level, which are discussed. The various mechanisms that ensure the coupling between electron and proton transfers are briefly described

  2. 2. Brazilian Congress on Cell Biology and 7. Brazilian Colloquium on Electron Microscopy - Abstracts

    International Nuclear Information System (INIS)

    1980-01-01

    Immunology, virology, bacteriology, genetics and protozoology are some of the subjects treated in the 2. Brazilian Congress on Cell Biology. Studies using radioisotopic techniques and ultrastructural cytological studies are presented. Use of optical - and electron microscopy in some of these studies is discussed. In the 7. Brazilian Colloquium on Electron Microscopy, the application of this technique to materials science is discussed (failure analysis in metallurgy, energy dispersion X-ray analysis, etc). (I.C.R.) [pt

  3. Engineering Design and Fabrication of an Ampere-Class Superconducting Photocathode Electron Gun

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    2008-01-01

    Over the past three years, Advanced Energy Systems and Brookhaven National Laboratory (BNL) have been collaborating on the design of an Ampere- class superconducting photocathode electron gun. BNL performed the physics design of the overall system and RF cavity under prior programs. Advanced Energy Systems (AES) is currently responsible for the engineering design and fabrication of the electron gun under contract to BNL. We will report on the engineering design and fabrication status of the superconducting photocathode electron gun. The overall configuration of the cryomodule will be reviewed. The layout of the hermitic string, space frame, shielding package, and cold mass will be discussed. The engineering design of the gun cavity and removable cathode will be presented in detail and areas of technical risk will be highlighted. Finally, the fabrication sequence and fabrication status of the gun cavity will be discussed

  4. Nano-engineering of electron correlation in oxide superlattices

    Science.gov (United States)

    Laverock, J.; Gu, M.; Jovic, V.; Lu, J. W.; Wolf, S. A.; Qiao, R. M.; Yang, W.; Smith, K. E.

    2017-12-01

    Oxide heterostructures and superlattices (SLs) have attracted a great deal of attention in recent years owing to the rich exotic properties encountered at their interfaces. We focus on the potential of tunable correlated oxides by investigating the spectral function of the prototypical correlated metal SrVO3, using soft x-ray absorption spectroscopy and resonant inelastic soft x-ray scattering to access both unoccupied and occupied electronic states, respectively. We demonstrate a remarkable level of tunability in the spectral function of SrVO3 by varying its thickness within the SrVO3/SrTiO3 SL, showing that the effects of electron correlation can be tuned from dominating the energy spectrum in a strongly correlated Mott–Hubbard insulator, towards a correlated metal. We show that the effects of dimensionality on the correlated properties of SrVO3 are augmented by interlayer coupling, yielding a highly flexible correlated oxide that may be readily married with other oxide systems.

  5. Metal particle emissions in the exhaust stream of diesel engines: an electron microscope study.

    Science.gov (United States)

    Liati, Anthi; Schreiber, Daniel; Dimopoulos Eggenschwiler, Panayotis; Arroyo Rojas Dasilva, Yadira

    2013-12-17

    Scanning electron microscopy and transmission electron microscopy were applied to investigate the morphology, mode of occurrence and chemical composition of metal particles (diesel ash) in the exhaust stream of a small truck outfitted with a typical after-treatment system (a diesel oxidation catalyst (DOC) and a downstream diesel particulate filter (DPF)). Ash consists of Ca-Zn-P-Mg-S-Na-Al-K-phases (lube-oil related), Fe, Cr, Ni, Sn, Pb, Sn (engine wear), and Pd (DOC coating). Soot agglomerates of variable sizes (1-5 μm, exceptionally 13 μm), rarely engine wear and escape into the atmosphere.

  6. Superconductivity in engineered two-dimensional electron gases

    Science.gov (United States)

    Chubukov, Andrey V.; Kivelson, Steven A.

    2017-11-01

    We consider Kohn-Luttinger mechanism for superconductivity in a two-dimensional electron gas confined to a narrow well between two grounded metallic planes with two occupied subbands with Fermi momenta kF L>kF S . On the basis of a perturbative analysis, we conclude that non-s -wave superconductivity emerges even when the bands are parabolic. We analyze the conditions that maximize Tc as a function of the distance to the metallic planes, the ratio kF L/kF S , and rs, which measures the strength of Coulomb correlations. The largest attraction is in p -wave and d -wave channels, of which p wave is typically the strongest. For rs=O (1 ) we estimate that the dimensionless coupling λ ≈10-1 , but it likely continues increasing for larger rs (where we lose theoretical control).

  7. Building better bone: The weaving of biologic and engineering strategies for managing bone loss.

    Science.gov (United States)

    Schwartz, Andrew M; Schenker, Mara L; Ahn, Jaimo; Willett, Nick J

    2017-09-01

    Segmental bone loss remains a challenging clinical problem for orthopaedic trauma surgeons. In addition to the missing bone itself, the local tissues (soft tissue, vascular) are often highly traumatized as well, resulting in a less than ideal environment for bone regeneration. As a result, attempts at limb salvage become a highly expensive endeavor, often requiring multiple operations and necessitating the use of every available strategy (autograft, allograft, bone graft substitution, Masquelet, bone transport, etc.) to achieve bony union. A cost-sensitive, functionally appropriate, and volumetrically adequate engineered substitute would be practice-changing for orthopaedic trauma surgeons and these patients with difficult clinical problems. In tissue engineering and bone regeneration fields, numerous research efforts continue to make progress toward new therapeutic interventions for segmental bone loss, including novel biomaterial development as well as cell-based strategies. Despite an ever-evolving literature base of these new therapeutic and engineered options, there remains a disconnect with the clinical practice, with very few translating into clinical use. A symposium entitled "Building better bone: The weaving of biologic and engineering strategies for managing bone loss," was presented at the 2016 Orthopaedic Research Society Conference to further explore this engineering-clinical disconnect, by surveying basic, translational, and clinical researchers along with orthopaedic surgeons and proposing ideas for pushing the bar forward in the field of segmental bone loss. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1855-1864, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits

    Science.gov (United States)

    Altintas, Ferdi; Hardal, Ali Ü. C.; Müstecaplıoǧlu, Özgür E.

    2015-02-01

    We propose a multilevel quantum heat engine with a working medium described by a generalized Rabi model which consists of a two-level system coupled to a single-mode bosonic field. The model is constructed to be a continuum limit of a quantum biological description of light-harvesting complexes so that it can amplify quantum coherence by a mechanism which is a quantum analog of classical Huygens clocks. The engine operates in a quantum Otto cycle where the working medium is coupled to classical heat baths in the isochoric processes of the four-stroke cycle, while either the coupling strength or the resonance frequency is changed in the adiabatic stages. We found that such an engine can produce work with an efficiency close to the Carnot bound when it operates at low temperatures and in the ultrastrong-coupling regime. The interplay of the effects of quantum coherence and quantum correlations on the engine performance is discussed in terms of second-order coherence, quantum mutual information, and the logarithmic negativity of entanglement. We point out that the proposed quantum Otto engine can be implemented experimentally with modern circuit quantum electrodynamic systems where flux qubits can be coupled ultrastrongly to superconducting transmission-line resonators.

  9. Designing a Prototype LPG Injection Electronic Control Unit for a Carburetted Gasoline Engine

    Directory of Open Access Journals (Sweden)

    Barış ERKUŞ

    2015-07-01

    Full Text Available In this study, the originally carburetted gasoline engine was converted to gas-phase liquefied petroleum gas (LPG injection engine by using an after market LPG conversion kit's components except the electronic control unit (ECU. Instead of after market LPG injection ECU, the ECU which was designed considering the effects of  electromagnetic interference (EMI, was used for controlling injection. The designed ECU was tested in terms of EMI while the engine was being run and it was detected that the EMI noises could be suppressed as possible by taken measures. Designed ECU was used in performance tests at different engine conditions and the results obtained with LPG injection were compared with the results obtained with LPG carburetion. According to the performance test results, LPG injection ECU designed in this study could help to achieve low exhaust emissions and high engine performance.  

  10. Resonant enhancement in nanostructured thermoelectric performance via electronic thermal conductivity engineering

    Science.gov (United States)

    Patil, Urvesh; Muralidharan, Bhaskaran

    2017-01-01

    The use of an asymmetric broadening in the transport distribution, a characteristic of resonant structures, is proposed as a route to engineer a decrease in electronic thermal conductivity thereby enhancing the electronic figure of merit in nanostructured thermoelectrics. Using toy models, we first demonstrate that a decrease in thermal conductivity resulting from such an asymmetric broadening may indeed lead to an electronic figure of merit well in excess of 1000 in an idealized situation and in excess of 10 in a realistic situation. We then substantiate with realistic resonant structures designed using graphene nano-ribbons by employing a tight binding framework with edge correction that match density functional theory calculations under the local density approximation. The calculated figure of merit exceeding 10 in such realistic structures further reinforces the concept and sets a promising direction to use nano-ribbon structures to engineer a favorable decrease in the electronic thermal conductivity.

  11. Monitoring of biological odour filtration in closed environments with olfactometry and an electronic nose

    NARCIS (Netherlands)

    Willers, H.C.; Gijsel, de P.; Ogink, N.W.M.; Amico, D' A.; Martinelli, E.; Natale, Di C.; Ras, van N.; Waarde, van der J.

    2004-01-01

    Air treatment with a compact biological membrane filter, and air quality monitoring with an electronic nose were tested in the laboratory on air from a cage containing six mice. Additional analyses of air to and from the filter were performed using olfactometry and ammonia and hydrogen sulphide gas

  12. Biomaterials-based electronics: polymers and interfaces for biology and medicine.

    Science.gov (United States)

    Muskovich, Meredith; Bettinger, Christopher J

    2012-05-01

    Advanced polymeric biomaterials continue to serve as a cornerstone for new medical technologies and therapies. The vast majority of these materials, both natural and synthetic, interact with biological matter in the absence of direct electronic communication. However, biological systems have evolved to synthesize and utilize naturally-derived materials for the generation and modulation of electrical potentials, voltage gradients, and ion flows. Bioelectric phenomena can be translated into potent signaling cues for intra- and inter-cellular communication. These cues can serve as a gateway to link synthetic devices with biological systems. This progress report will provide an update on advances in the application of electronically active biomaterials for use in organic electronics and bio-interfaces. Specific focus will be granted to covering technologies where natural and synthetic biological materials serve as integral components such as thin film electronics, in vitro cell culture models, and implantable medical devices. Future perspectives and emerging challenges will also be highlighted. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Electron Transfer in Chemistry and Biology-The Primary Events in ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 12. Electron Transfer in Chemistry and Biology – The Primary Events in Photosynthesis. V Krishnan. General Article Volume 2 Issue 12 December 1997 pp 77-86. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. How to observe small biological objects in low voltage electron microscope

    Czech Academy of Sciences Publication Activity Database

    Nebesářová, Jana; Vancová, Marie

    2007-01-01

    Roč. 13, č. 3 (2007), s. 248-249 ISSN 1431-9276 R&D Projects: GA AV ČR 1QS600220501 Institutional research plan: CEZ:AV0Z60220518 Keywords : low voltage electron microscope * negative staining * flagella * Borrelia burgdorferi Subject RIV: EA - Cell Biology Impact factor: 1.941, year: 2007

  15. Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes

    International Nuclear Information System (INIS)

    Rhinow, Daniel; Bueenfeld, Matthias; Weber, Nils-Eike; Beyer, Andre; Goelzhaeuser, Armin; Kuehlbrandt, Werner; Hampp, Norbert; Turchanin, Andrey

    2011-01-01

    Ultrathin carbon nanomembranes (CNM) comprising crosslinked biphenyl precursors have been tested as support films for energy-filtered transmission electron microscopy (EFTEM) of biological specimens. Due to their high transparency CNM are ideal substrates for electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) of stained and unstained biological samples. Virtually background-free elemental maps of tobacco mosaic virus (TMV) and ferritin have been obtained from samples supported by ∼1 nm thin CNM. Furthermore, we have tested conductive carbon nanomembranes (cCNM) comprising nanocrystalline graphene, obtained by thermal treatment of CNM, as supports for cryoEM of ice-embedded biological samples. We imaged ice-embedded TMV on cCNM and compared the results with images of ice-embedded TMV on conventional carbon film (CC), thus analyzing the gain in contrast for TMV on cCNM in a quantitative manner. In addition we have developed a method for the preparation of vitrified specimens, suspended over the holes of a conventional holey carbon film, while backed by ultrathin cCNM. -- Research highlights: → We examine ultrathin carbon nanomembranes (CNM) as supports for biological TEM. → CNM comprise crosslinked biphenyl precursors. → CNM supports enable background-free elemental mapping of heavy and light elements. → We perform cryoEM of ice-embedded biological samples on graphene-like conductive CNM.

  16. EMT-inducing biomaterials for heart valve engineering: taking cues from developmental biology

    Science.gov (United States)

    Sewell-Loftin, M.K.; Chun, Young Wook; Khademhosseini, Ali; Merryman, W. David

    2012-01-01

    Although artificial prostheses for diseased heart valves have been around for several decades, viable heart valve replacements have yet to be developed due to their complicated nature. The majority of research in heart valve replacement technology seeks to improve decellularization techniques for porcine valves or bovine pericardium as an effort to improve current clinically used valves. The drawback of clinically used valves is that they are nonviable and thus do not grow or remodel once implanted inside patients. This is particularly detrimental for pediatric patients, who will likely need several reoperations over the course of their lifetimes to implant larger valves as the patient grows. Due to this limitation, additional biomaterials, both synthetic and natural in origin, are also being investigated as novel scaffolds for tissue engineered heart valves, specifically for the pediatric population. Here, we provide a brief overview of valves in clinical use as well as of the materials being investigated as novel tissue engineered heart valve scaffolds. Additionally, we focus on natural-based biomaterials for promoting cell behavior that is indicative of the developmental biology process that occurs in the formation of heart valves in utero, such as epithelial-to-mesenchymal transition or transformation (EMT). By engineering materials that promote native developmental biology cues and signaling, while also providing mechanical integrity once implanted, a viable tissue engineered heart valve may one day be realized. A viable tissue engineered heart valve, capable of growing and remodeling actively inside a patient, could reduce risks and complications associated with current valve replacement options and improve overall quality of life in the thousands of patients who received such valves each year, particularly for children. PMID:21751069

  17. EMT-inducing biomaterials for heart valve engineering: taking cues from developmental biology.

    Science.gov (United States)

    Sewell-Loftin, M K; Chun, Young Wook; Khademhosseini, Ali; Merryman, W David

    2011-10-01

    Although artificial prostheses for diseased heart valves have been around for several decades, viable heart valve replacements have yet to be developed due to their complicated nature. The majority of research in heart valve replacement technology seeks to improve decellularization techniques for porcine valves or bovine pericardium as an effort to improve current clinically used valves. The drawback of clinically used valves is that they are nonviable and thus do not grow or remodel once implanted inside patients. This is particularly detrimental for pediatric patients, who will likely need several reoperations over the course of their lifetimes to implant larger valves as the patient grows. Due to this limitation, additional biomaterials, both synthetic and natural in origin, are also being investigated as novel scaffolds for tissue-engineered heart valves, specifically for the pediatric population. Here, we provide a brief overview of valves in clinical use as well as of the materials being investigated as novel tissue-engineered heart valve scaffolds. Additionally, we focus on natural-based biomaterials for promoting cell behavior that is indicative of the developmental biology process that occurs in the formation of heart valves in utero, such as epithelial-to-mesenchymal transition or transformation. By engineering materials that promote native developmental biology cues and signaling, while also providing mechanical integrity once implanted, a viable tissue-engineered heart valve may one day be realized. A viable tissue-engineered heart valve, capable of growing and remodeling actively inside a patient, could reduce risks and complications associated with current valve replacement options and improve overall quality of life in the thousands of patients who received such valves each year, particularly for children.

  18. Distorted wave calculations for electron loss process induced by bare ion impact on biological targets

    International Nuclear Information System (INIS)

    Monti, J.M.; Tachino, C.A.; Hanssen, J.; Fojón, O.A.; Galassi, M.E.; Champion, C.; Rivarola, R.D.

    2014-01-01

    Distorted wave models are employed to investigate the electron loss process induced by bare ions on biological targets. The two main reactions which contribute to this process, namely, the single electron ionization as well as the single electron capture are here studied. In order to further assess the validity of the theoretical descriptions used, the influence of particular mechanisms are studied, like dynamic screening for the case of electron ionization and energy deposition on the target by the impacting projectile for the electron capture one. Results are compared with existing experimental data. - Highlights: ► Distorted wave models are used to investigate ion-molecule collisions. ► Differential and total cross-sections for capture and ionization are evaluated. ► The influence of dynamic screening is determined. ► Capture reaction dominates the mean energy deposited by the projectile on the target

  19. Defect engineering of the electronic transport through cuprous oxide interlayers

    KAUST Repository

    Fadlallah, Mohamed M.

    2016-06-03

    The electronic transport through Au–(Cu2O)n–Au junctions is investigated using first-principles calculations and the nonequilibrium Green’s function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects and anion substitution. For all Cu2O thicknesses the conductance is more enhanced by bulk-like (in contrast to near-interface) defects, with the exception of O vacancies and Cl substitutional defects. A similar transmission behavior results from Cu deficiency and N substitution, as well as from Cl substitution and N interstitials for thick Cu2O junctions. In agreement with recent experimental observations, it is found that N and Cl doping enhances the conductance. A Frenkel defect, i.e., a superposition of an O interstitial and O substitutional defect, leads to a remarkably high conductance. From the analysis of the defect formation energies, Cu vacancies are found to be particularly stable, in agreement with earlier experimental and theoretical work.

  20. Nanomaterial engineering and property studies in a transmission electron microscope.

    Science.gov (United States)

    Golberg, Dmitri; Costa, Pedro M F J; Wang, Ming-Sheng; Wei, Xianlong; Tang, Dai-Ming; Xu, Zhi; Huang, Yang; Gautam, Ujjal K; Liu, Baodan; Zeng, Haibo; Kawamoto, Naoyki; Zhi, Chunyi; Mitome, Masanori; Bando, Yoshio

    2012-01-10

    Modern methods of in situ transmission electron microscopy (TEM) allow one to not only manipulate with a nanoscale object at the nanometer-range precision but also to get deep insights into its physical and chemical statuses. Dedicated TEM holders combining the capabilities of a conventional high-resolution TEM instrument and atomic force -, and/or scanning tunneling microscopy probes become the powerful tools in nanomaterials analysis. This progress report highlights the past, present and future of these exciting methods based on the extensive authors endeavors over the last five years. The objects of interest are diverse. They include carbon, boron nitride and other inorganic one- and two-dimensional nanoscale materials, e.g., nanotubes, nanowires and nanosheets. The key point of all experiments discussed is that the mechanical and electrical transport data are acquired on an individual nanostructure level under ultimately high spatial, temporal and energy resolution achievable in TEM, and thus can directly be linked to morphological, structural and chemical peculiarities of a given nanomaterial. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Experimental study of hydraulic electronic unit injector in a hydraulic free piston engine

    International Nuclear Information System (INIS)

    Zhang, Shuanlu; Zhao, Zhenfeng; Zhao, Changlu; Zhang, Fujun; Wang, Shan

    2016-01-01

    Highlights: • A hydraulic electronic unit injector in HFPE is developed and the test bench is established. • Effect of drive pressure on injection delay of hydraulic electronic unit injector are investigated. • Cycle fuel injection quantity is tested online and off-line engine operation. • The BDC control results in HFPE based on feed-forward compensation are acceptable. • The energy flow in HFPE is analyzed and the hydraulic output energy is optimized. - Abstract: The fuel injection system in two stroke engine is very important, therefore the hydraulic electronic unit injector system is developed and the injection characteristics of hydraulic electronic unit injector are investigated. Firstly the HFPE and the hydraulic electronic unit injector working principle are analyzed, and then PID control strategy is built by engine demand. In order to validate the feasibility of hydraulic electronic unit injector, the prototype test bench is established. The specific measurement principle is presented. Further the injection characteristics, such as the effect of injection pressure on injection delay and the effect of engine frequency on injection delay, are analyzed. In order to optimize the engine stability performance, the BDC control based on fuel injection control is investigated. The load control based on fuel injection is also discussed and the BDC feedforward control with the load variation is investigated. Experiment results of stead engine operation shows that the hydraulic electronic unit injector system based on PID control can be satisfied with the engine operation demand. In addition, cycle fuel injection quantity is tested online and off-line engine operation. It is obvious that the fuel injection quantity is affected by the hydraulic pressure. The fuel injection quantity variation can be improved with decreasing the fluctuation of drive pressure or adopting more suitable oil common rail instead of connected with exhaust valve hydraulic drive oil

  2. Correlation between biological activity and electron transferring of bovine liver catalase: Osmolytes effects

    International Nuclear Information System (INIS)

    Tehrani, H. Sepasi; Moosavi-Movahedi, A.A.; Ghourchian, H.

    2013-01-01

    Highlights: • Proline increases ET in Bovine Liver Catalase (BLC) whereas histidine decreases it. • Proline also increased the biological activity, whereas histidine decreased it. • Electron transferring and biological activity for BLC are directly correlated. • Proline causes favorable ET for BLC shown by positive E 1/2 (E°′) and negative ΔG. • Histidine makes ET unfavorable for BLC, manifested by E 1/2 (E°′) 0. -- Abstract: Catalase is a crucial antioxidant enzyme that protects life against detrimental effects of H 2 O 2 by disproportionating it into water and molecular oxygen. Effect of proline as a compatible and histidine as a non compatible osmolyte on the electron transferring and midpoint potential of catalase has been investigated. Proline increases the midpoint potential (ΔE m > 0), therefore causing the ΔG ET to be less positive and making the electron transfer reaction more facile whereas histidine decreases the E m (ΔE m ET , thereby rendering the electron transfer reaction less efficient. These results indicate the inhibitory effect of histidine evident by a −37% decrease in the cathodic peak current compared to 16% increase in the case of proline indicative of activation. The insight paves the tedious way towards our ultimate goal of elucidating a correlation between biological activity and electron transferring

  3. BioCarian: search engine for exploratory searches in heterogeneous biological databases.

    Science.gov (United States)

    Zaki, Nazar; Tennakoon, Chandana

    2017-10-02

    There are a large number of biological databases publicly available for scientists in the web. Also, there are many private databases generated in the course of research projects. These databases are in a wide variety of formats. Web standards have evolved in the recent times and semantic web technologies are now available to interconnect diverse and heterogeneous sources of data. Therefore, integration and querying of biological databases can be facilitated by techniques used in semantic web. Heterogeneous databases can be converted into Resource Description Format (RDF) and queried using SPARQL language. Searching for exact queries in these databases is trivial. However, exploratory searches need customized solutions, especially when multiple databases are involved. This process is cumbersome and time consuming for those without a sufficient background in computer science. In this context, a search engine facilitating exploratory searches of databases would be of great help to the scientific community. We present BioCarian, an efficient and user-friendly search engine for performing exploratory searches on biological databases. The search engine is an interface for SPARQL queries over RDF databases. We note that many of the databases can be converted to tabular form. We first convert the tabular databases to RDF. The search engine provides a graphical interface based on facets to explore the converted databases. The facet interface is more advanced than conventional facets. It allows complex queries to be constructed, and have additional features like ranking of facet values based on several criteria, visually indicating the relevance of a facet value and presenting the most important facet values when a large number of choices are available. For the advanced users, SPARQL queries can be run directly on the databases. Using this feature, users will be able to incorporate federated searches of SPARQL endpoints. We used the search engine to do an exploratory search

  4. Electron processing at low energies: from basics to environmental and biological applications.

    Science.gov (United States)

    Illenberger, Eugen

    2006-10-01

    Electron initiated reactions play a key role in nearly any field of pure and applied sciences, in the gas phase as well as in condensed phases or at interfaces. This include substrate induced photochemistry, radiation damage of biological material (and, accordingly, the molecular mechanisms, how radio sensitizers used in tumour therapy operate), reactions induced by electrons in surface tunnelling microscopy (STM), or any kind of plasma used in industrial plasma processing. In each of these fields the electron-molecule interaction represents a key step within an eventually complex reaction sequence. A particularly interesting field is the interaction of electrons with molecules at energies below the level of electronic excitation. In this range many molecules exhibit large cross sections for resonant electron capture, often followed by the decomposition of the transient negative compound (M^-# ) according to e^- + M --> M^-# --> R + X^-.^ We report on such dissociative electron attachment (DEA) processes studied at different stages of aggregation, namely in single molecules under collision free conditions, in clusters formed by supersonic gas expansion, and on the surface of solids or in molecular nanofilms. In the meantime it has also been recognised that in the damage of living cells by high energy radiation the attachment of low energy secondary electrons to DNA is a key initial process leading to strand breaks. These secondary electrons are created along the ionisation track of the primary high-energy quantum. Apart from that, bio-molecular systems exhibit unique features in DEA, like bond and site selective decompositions.

  5. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering.

    Science.gov (United States)

    Jahnavi, S; Saravanan, U; Arthi, N; Bhuvaneshwar, G S; Kumary, T V; Rajan, S; Verma, R S

    2017-04-01

    Major challenge in heart valve tissue engineering for paediatric patients is the development of an autologous valve with regenerative capacity. Hybrid tissue engineering approach is recently gaining popularity to design scaffolds with desired biological and mechanical properties that can remodel post implantation. In this study, we fabricated aligned nanofibrous Bio-Hybrid scaffold made of decellularized bovine pericardium: polycaprolactone-chitosan with optimized polymer thickness to yield the desired biological and mechanical properties. CD44 + , αSMA + , Vimentin + and CD105 - human valve interstitial cells were isolated and seeded on these Bio-Hybrid scaffolds. Subsequent biological evaluation revealed interstitial cell proliferation with dense extra cellular matrix deposition that indicated the viability for growth and proliferation of seeded cells on the scaffolds. Uniaxial mechanical tests along axial direction showed that the Bio-Hybrid scaffolds has at least 20 times the strength of the native valves and its stiffness is nearly 3 times more than that of native valves. Biaxial and uniaxial mechanical studies on valve interstitial cells cultured Bio-Hybrid scaffolds revealed that the response along the axial and circumferential direction was different, similar to native valves. Overall, our findings suggest that Bio-Hybrid scaffold is a promising material for future development of regenerative heart valve constructs in children. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Enhanced identification of eligibility for depression research using an electronic medical record search engine.

    Science.gov (United States)

    Seyfried, Lisa; Hanauer, David A; Nease, Donald; Albeiruti, Rashad; Kavanagh, Janet; Kales, Helen C

    2009-12-01

    Electronic medical records (EMRs) have become part of daily practice for many physicians. Attempts have been made to apply electronic search engine technology to speed EMR review. This was a prospective, observational study to compare the speed and clinical accuracy of a medical record search engine vs. manual review of the EMR. Three raters reviewed 49 cases in the EMR to screen for eligibility in a depression study using the electronic medical record search engine (EMERSE). One week later raters received a scrambled set of the same patients including 9 distractor cases, and used manual EMR review to determine eligibility. For both methods, accuracy was assessed for the original 49 cases by comparison with a gold standard rater. Use of EMERSE resulted in considerable time savings; chart reviews using EMERSE were significantly faster than traditional manual review (p=0.03). The percent agreement of raters with the gold standard (e.g. concurrent validity) using either EMERSE or manual review was not significantly different. Using a search engine optimized for finding clinical information in the free-text sections of the EMR can provide significant time savings while preserving clinical accuracy. The major power of this search engine is not from a more advanced and sophisticated search algorithm, but rather from a user interface designed explicitly to help users search the entire medical record in a way that protects health information.

  7. A Multidisciplinary PBL Robot Control Project in Automation and Electronic Engineering

    Science.gov (United States)

    Hassan, Houcine; Domínguez, Carlos; Martínez, Juan-Miguel; Perles, Angel; Capella, Juan-Vicente; Albaladejo, José

    2015-01-01

    This paper presents a multidisciplinary problem-based learning (PBL) project consisting of the development of a robot arm prototype and the implementation of its control system. The project is carried out as part of Industrial Informatics (II), a compulsory third-year course in the Automation and Electronic Engineering (AEE) degree program at the…

  8. Engineering, Trade, and Technical Cluster. Task Analyses. Drafting and Design Technology, Precision Machining Technology, Electronics Technology.

    Science.gov (United States)

    Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum and Resource Center.

    Developed in Virginia, this publication contains task analysis guides to support selected tech prep programs that prepare students for careers in the engineering, trade, and technical cluster. Three occupations are profiled: drafting and design technology, precision machining technology, and electronics technology. Each guide contains the…

  9. Center for Electronics and Electrical Engineering Technical Bulletin covering center programs with 1984 CEEE events calendar

    Science.gov (United States)

    Mayo-Wells, J. F.

    1984-04-01

    A quarterly abstract journal covering the work of the National Bureau of Standards Center for Electronics and Electrical Engineering is presented. This issue covers the fourth quarter of calendar year 1983. Abstracts are provided by technical area for both published papers and papers approved by NBS for publication. Topics on semiconductors, signal processing, and electrical systems are discussed.

  10. Center for Electronics and Electrical Engineering Technical Bulletin covering center programs

    Science.gov (United States)

    Mayo-Wells, J. F.

    1984-06-01

    A quarterly abstract journal covering the work of the National Bureau of Standards Center for Electronics and Electrical Engineering is presented. The issue covers the third quarter of calendar year 1983. Abstracts are provided by technical area for both published papers and papers approved by NBS for publication. Topics include semiconductor technology, fast signal metrology and electrical power systems metrology.

  11. Vertical and Horizontal Integration of Laboratory Curricula and Course Projects across the Electronic Engineering Technology Program

    Science.gov (United States)

    Zhan, Wei; Goulart, Ana; Morgan, Joseph A.; Porter, Jay R.

    2011-01-01

    This paper discusses the details of the curricular development effort with a focus on the vertical and horizontal integration of laboratory curricula and course projects within the Electronic Engineering Technology (EET) program at Texas A&M University. Both software and hardware aspects are addressed. A common set of software tools are…

  12. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli.

    Science.gov (United States)

    Whitaker, W Brian; Jones, J Andrew; Bennett, R Kyle; Gonzalez, Jacqueline E; Vernacchio, Victoria R; Collins, Shannon M; Palmer, Michael A; Schmidt, Samuel; Antoniewicz, Maciek R; Koffas, Mattheos A; Papoutsakis, Eleftherios T

    2017-01-01

    Methanol is an attractive substrate for biological production of chemicals and fuels. Engineering methylotrophic Escherichia coli as a platform organism for converting methanol to metabolites is desirable. Prior efforts to engineer methylotrophic E. coli were limited by methanol dehydrogenases (Mdhs) with unfavorable enzyme kinetics. We engineered E. coli to utilize methanol using a superior NAD-dependent Mdh from Bacillus stearothermophilus and ribulose monophosphate (RuMP) pathway enzymes from B. methanolicus. Using 13 C-labeling, we demonstrate this E. coli strain converts methanol into biomass components. For example, the key TCA cycle intermediates, succinate and malate, exhibit labeling up to 39%, while the lower glycolytic intermediate, 3-phosphoglycerate, up to 53%. Multiple carbons are labeled for each compound, demonstrating a cycling RuMP pathway for methanol assimilation to support growth. By incorporating the pathway to synthesize the flavanone naringenin, we demonstrate the first example of in vivo conversion of methanol into a specialty chemical in E. coli. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. An expanded role for microbial physiology in metabolic engineering and functional genomics: moving towards systems biology

    DEFF Research Database (Denmark)

    Nielsen, Jens; Olsson, Lisbeth

    2002-01-01

    . With the progress in molecular biology it has become possible to optimize industrial fermentations through introduction of directed genetic modification - an approach referred to as metabolic engineering. Furthermore, as a consequence of large sequencing programs the complete genomic sequence has become available...... for an increasing number of microorganisms. This has resulted in substantial research efforts in assigning function to all identified open reading frames - referred to as functional genomics. In both metabolic engineering and functional genomics there is a trend towards application of a macroscopic view on cell......Microbial physiology has traditionally played a very important role in both fundamental research and in industrial applications of microorganisms. The classical approach in microbial physiology has been to analyze the role of individual components (genes or proteins) in the overall cell function...

  14. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    Science.gov (United States)

    Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens

    2015-11-15

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Reproducibility of Fluorescent Expression from Engineered Biological Constructs in E. coli.

    Directory of Open Access Journals (Sweden)

    Jacob Beal

    Full Text Available We present results of the first large-scale interlaboratory study carried out in synthetic biology, as part of the 2014 and 2015 International Genetically Engineered Machine (iGEM competitions. Participants at 88 institutions around the world measured fluorescence from three engineered constitutive constructs in E. coli. Few participants were able to measure absolute fluorescence, so data was analyzed in terms of ratios. Precision was strongly related to fluorescent strength, ranging from 1.54-fold standard deviation for the ratio between strong promoters to 5.75-fold for the ratio between the strongest and weakest promoter, and while host strain did not affect expression ratios, choice of instrument did. This result shows that high quantitative precision and reproducibility of results is possible, while at the same time indicating areas needing improved laboratory practices.

  16. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals

    DEFF Research Database (Denmark)

    Jullesson, David; David, Florian; Pfleger, Brian

    2015-01-01

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played...... an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine...... chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes....

  17. Electronic journals: Their use by teachers/researchers of engineering and social sciences

    Science.gov (United States)

    Martins, Fernanda; Machado, Diana; Fernandes, Alberto; Ribeiro, Fernanda

    2015-02-01

    Libraries must attend the needs of their different users. Academics are usually a particular kind of users with specific needs. Universities are environments where scientific communication is essential and where electronic format of journals is becoming more and more frequently used. This way it becomes increasingly important to understand how academics from different scientific areas use the available electronic resources. The aim of this study is to better understand the existing differences among the users of electronic journals in Engineering and Social Sciences. The research undertaken was mainly focused on the study of the use of electronic journals by teachers/researchers from the Faculties of Engineering and of Arts from the University of Porto, Portugal. In this study an international survey was used in order to characterize the levels of use and access of electronic journals by these communities. The ways of seeking and using scientific information, namely in terms frequency of access, the number of articles consulted, the use of databases and the preference of publishing in electronic journals were analyzed. A set of comparisons were established and results indicate an extensive use of the electronic format, regardless the faculty. However, some differences emerge when it comes to details. Such is the case of the usage rate of reference management software which is considerably more used by Engineering academics than Social Science ones. Generally, electronic journals meeting the information needs of its users and are increasingly used as a preferred means of research. Though, some particular differences in the use of them have emerged, when comparing academics from these two faculties.

  18. Electronic journals: Their use by teachers/researchers of engineering and social sciences

    International Nuclear Information System (INIS)

    Martins, Fernanda; Machado, Diana; Fernandes, Alberto; Ribeiro, Fernanda

    2015-01-01

    Libraries must attend the needs of their different users. Academics are usually a particular kind of users with specific needs. Universities are environments where scientific communication is essential and where electronic format of journals is becoming more and more frequently used. This way it becomes increasingly important to understand how academics from different scientific areas use the available electronic resources. The aim of this study is to better understand the existing differences among the users of electronic journals in Engineering and Social Sciences. The research undertaken was mainly focused on the study of the use of electronic journals by teachers/researchers from the Faculties of Engineering and of Arts from the University of Porto, Portugal. In this study an international survey was used in order to characterize the levels of use and access of electronic journals by these communities. The ways of seeking and using scientific information, namely in terms frequency of access, the number of articles consulted, the use of databases and the preference of publishing in electronic journals were analyzed. A set of comparisons were established and results indicate an extensive use of the electronic format, regardless the faculty. However, some differences emerge when it comes to details. Such is the case of the usage rate of reference management software which is considerably more used by Engineering academics than Social Science ones. Generally, electronic journals meeting the information needs of its users and are increasingly used as a preferred means of research. Though, some particular differences in the use of them have emerged, when comparing academics from these two faculties

  19. Teaching Sustainable Energy and Power Electronics to Engineering Students in a Laboratory Environment Using Industry-Standard Tools

    Science.gov (United States)

    Ochs, David S.; Miller, Ruth Douglas

    2015-01-01

    Power electronics and renewable energy are two important topics for today's power engineering students. In many cases, the two topics are inextricably intertwined. As the renewable energy sector grows, the need for engineers qualified to design such systems grows as well. In order to train such engineers, new courses are needed that highlight the…

  20. Photo-induced regeneration of hormones by electron transfer processes: Potential biological and medical consequences

    Energy Technology Data Exchange (ETDEWEB)

    Getoff, Nikola, E-mail: nikola.getoff@univie.ac.a [Section of Radiation Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna (Austria); Hartmann, Johannes [Department of Gynecologic Endocrinology and Reproduction, Medical University of Vienna, A-1090 Vienna (Austria); Schittl, Heike [Section of Radiation Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna (Austria); Gerschpacher, Marion [Department of Gynecologic Endocrinology and Reproduction, Medical University of Vienna, A-1090 Vienna (Austria); Quint, Ruth Maria [Section of Radiation Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna (Austria)

    2011-08-15

    Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated. The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light ({lambda}=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way. The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

  1. Photo-induced regeneration of hormones by electron transfer processes: Potential biological and medical consequences

    International Nuclear Information System (INIS)

    Getoff, Nikola; Hartmann, Johannes; Schittl, Heike; Gerschpacher, Marion; Quint, Ruth Maria

    2011-01-01

    Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated. The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light (λ=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way. The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

  2. Modelling low energy electron and positron tracks in biologically relevant media

    International Nuclear Information System (INIS)

    Blanco, F.; Munoz, A.; Almeida, D.; Ferreira da Silva, F.; Limao-Vieira, P.; Fuss, M.C.; Sanz, A.G.; Garcia, G.

    2013-01-01

    This colloquium describes an approach to incorporate into radiation damage models the effect of low and intermediate energy (0-100 eV) electrons and positrons, slowing down in biologically relevant materials (water and representative biomolecules). The core of the modelling procedure is a C++ computing programme named 'Low Energy Particle Track Simulation (LEPTS)', which is compatible with available general purpose Monte Carlo packages. Input parameters are carefully selected from theoretical and experimental cross section data and energy loss distribution functions. Data sources used for this purpose are reviewed showing examples of electron and positron cross section and energy loss data for interactions with different media of increasing complexity: atoms, molecules, clusters and condense matter. Finally, we show how such a model can be used to develop an effective dosimetric tool at the molecular level (i.e. nanodosimetry). Recent experimental developments to study the fragmentation induced in biologically material by charge transfer from neutrals and negative ions are also included. (authors)

  3. Cryo-electron tomography-the cell biology that came in from the cold.

    Science.gov (United States)

    Wagner, Jonathan; Schaffer, Miroslava; Fernández-Busnadiego, Rubén

    2017-09-01

    Cryo-electron tomography (cryo-ET) provides high-resolution 3D views into cells pristinely preserved by vitrification. Recent technical advances such as direct electron detectors, the Volta phase plate and cryo-focused ion beam milling have dramatically pushed image quality and expanded the range of cryo-ET applications. Cryo-ET not only allows mapping the positions and interactions of macromolecules within their intact cellular context, but can also reveal their in situ structure at increasing resolution. Here, we review how recent work using cutting-edge cryo-ET technologies is starting to provide fresh views into different aspects of cellular biology at an unprecedented level of detail. We anticipate that these developments will soon make cryo-ET a fundamental technique in cell biology. © 2017 Federation of European Biochemical Societies.

  4. Generalized Fokker-Planck theory for electron and photon transport in biological tissues: application to radiotherapy.

    Science.gov (United States)

    Olbrant, Edgar; Frank, Martin

    2010-12-01

    In this paper, we study a deterministic method for particle transport in biological tissues. The method is specifically developed for dose calculations in cancer therapy and for radiological imaging. Generalized Fokker-Planck (GFP) theory [Leakeas and Larsen, Nucl. Sci. Eng. 137 (2001), pp. 236-250] has been developed to improve the Fokker-Planck (FP) equation in cases where scattering is forward-peaked and where there is a sufficient amount of large-angle scattering. We compare grid-based numerical solutions to FP and GFP in realistic medical applications. First, electron dose calculations in heterogeneous parts of the human body are performed. Therefore, accurate electron scattering cross sections are included and their incorporation into our model is extensively described. Second, we solve GFP approximations of the radiative transport equation to investigate reflectance and transmittance of light in biological tissues. All results are compared with either Monte Carlo or discrete-ordinates transport solutions.

  5. The rise of nanotoxicology: A successful collaboration between engineering and biology

    Directory of Open Access Journals (Sweden)

    Kristen K. Comfort

    2016-07-01

    Full Text Available The field of nanotechnology has grown exponentially in the last decade, due to increasing capabilities in material science which allows for the precise and reproducible synthesis of nanomaterials (NMs. However, the unique physicochemical properties of NMs that make them attractive for nanotechnological applications also introduce serious health and safety concerns; thus giving rise to the field of nanotoxicology. Initial efforts focused on evaluating the toxic potential of NMs, however, it became clear that due to their distinctive characteristics it was necessary to design and develop new assessment metrics. Through a prolific collaboration, engineering practices and principles were applied to nanotoxicology in order to accurately evaluate NM behavior, characterize the nano-cellular interface, and measure biological responses within a cellular environment. This review discusses three major areas in which the field of nanotoxicology progressed as a result of a strong engineering-biology partnership: 1 the establishment of standardized characterization tools and techniques, 2 the examination of NM dosimetry and the development of mathematical, predictive models, and 3 the generation of physiologically relevant exposure systems that incorporate fluid dynamics and high-throughput mechanisms. The goal of this review is to highlight the multidisciplinary efforts behind the successes of nanotoxicology and celebrate the partnerships that have emerged from this research field.

  6. Employability of the Bachelor of Science in Electronics Engineering Graduates of Camarines Sur Polytechnic Colleges

    Directory of Open Access Journals (Sweden)

    Rizza T. Loquias

    2015-11-01

    Full Text Available The study determined the employment status of the graduates of BS Electronics Engineering from 1999 to 2011. It also addressed the relevance of the ECE program outcomes and school factors to their employability. Pertinent data were gathered using a questionnaire and the sample size of 180 was determined using Slovin’s formula. Findings revealed that the graduates are highly employable in a wide range of industry such as electronics manufacturing, electronics design, telecommunications, broadcasting, and data communications and ICT-related areas, were able to pass the licensure examinations and other certifications, currently enjoying regular permanent job positions as supervisors, production engineers, process engineers, educators and others, and are working for companies located in Metro Manila and industrial zones in Laguna and Cavite. A significant number work abroad as OFWs. Only a small number are employed in the province of Camarines Sur mainly due to the lack of electronics industries and employment opportunities in the area. The skills the graduates found most useful to their first jobs are critical thinking, problem solving, and communication skills. Suggestions were given such as the inclusion of industry-utilized software and enhancement of the OJT program, more hands-on activities in the curriculum, exposure to industry while studying, and job familiarization among others. The findings of the study can serve as basis for curriculum review and revision to meet the demands of the industry.

  7. Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy

    International Nuclear Information System (INIS)

    Nair, R. R.; Anissimova, S.; Novoselov, K. S.; Blake, P.; Blake, J. R.; Geim, A. K.; Zan, R.; Bangert, U.; Golovanov, A. P.; Morozov, S. V.; Latychevskaia, T.

    2010-01-01

    We demonstrate the application of graphene as a support for imaging individual biological molecules in transmission electron microscope (TEM). A simple procedure to produce free-standing graphene membranes has been designed. Such membranes are extremely robust and can support practically any submicrometer object. Tobacco mosaic virus has been deposited on graphene samples and observed in a TEM. High contrast has been achieved even though no staining has been applied.

  8. Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform.

    Science.gov (United States)

    Lee, Seung-Woo; Lee, Ki-Young; Song, Yong-Won; Choi, Won Kook; Chang, Joonyeon; Yi, Hyunjung

    2016-02-24

    Nondestructive assembly of a nanostructured enzyme platform is developed in combination of the specific biomolecular attraction and electrostatic coupling for highly efficient direct electron transfer (DET) of enzymes with unprecedented applicability and versatility. The biologically assembled conductive nanomesh enzyme platform enables DET-based flexible integrated biosensors and DET of eight different enzyme with various catalytic activities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. RGB color coded images in scanning electron microscopy of biological surfaces

    Czech Academy of Sciences Publication Activity Database

    Kofroňová, Olga; Benada, Oldřich

    2017-01-01

    Roč. 61, č. 3 (2017), s. 349-352 ISSN 0001-723X R&D Projects: GA MŠk(CZ) LO1509; GA ČR(CZ) GA16-20229S Institutional support: RVO:61388971 Keywords : Biological surfaces * Color image s * Scanning electron microscopy Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 0.673, year: 2016

  10. Teaching synthetic biology, bioinformatics and engineering to undergraduates: the interdisciplinary Build-a-Genome course.

    Science.gov (United States)

    Dymond, Jessica S; Scheifele, Lisa Z; Richardson, Sarah; Lee, Pablo; Chandrasegaran, Srinivasan; Bader, Joel S; Boeke, Jef D

    2009-01-01

    A major challenge in undergraduate life science curricula is the continual evaluation and development of courses that reflect the constantly shifting face of contemporary biological research. Synthetic biology offers an excellent framework within which students may participate in cutting-edge interdisciplinary research and is therefore an attractive addition to the undergraduate biology curriculum. This new discipline offers the promise of a deeper understanding of gene function, gene order, and chromosome structure through the de novo synthesis of genetic information, much as synthetic approaches informed organic chemistry. While considerable progress has been achieved in the synthesis of entire viral and prokaryotic genomes, fabrication of eukaryotic genomes requires synthesis on a scale that is orders of magnitude higher. These high-throughput but labor-intensive projects serve as an ideal way to introduce undergraduates to hands-on synthetic biology research. We are pursuing synthesis of Saccharomyces cerevisiae chromosomes in an undergraduate laboratory setting, the Build-a-Genome course, thereby exposing students to the engineering of biology on a genomewide scale while focusing on a limited region of the genome. A synthetic chromosome III sequence was designed, ordered from commercial suppliers in the form of oligonucleotides, and subsequently assembled by students into approximately 750-bp fragments. Once trained in assembly of such DNA "building blocks" by PCR, the students accomplish high-yield gene synthesis, becoming not only technically proficient but also constructively critical and capable of adapting their protocols as independent researchers. Regular "lab meeting" sessions help prepare them for future roles in laboratory science.

  11. Reverse engineering biological networks :applications in immune responses to bio-toxins.

    Energy Technology Data Exchange (ETDEWEB)

    Martino, Anthony A.; Sinclair, Michael B.; Davidson, George S.; Haaland, David Michael; Timlin, Jerilyn Ann; Thomas, Edward Victor; Slepoy, Alexander; Zhang, Zhaoduo; May, Elebeoba Eni; Martin, Shawn Bryan; Faulon, Jean-Loup Michel

    2005-12-01

    Our aim is to determine the network of events, or the regulatory network, that defines an immune response to a bio-toxin. As a model system, we are studying T cell regulatory network triggered through tyrosine kinase receptor activation using a combination of pathway stimulation and time-series microarray experiments. Our approach is composed of five steps (1) microarray experiments and data error analysis, (2) data clustering, (3) data smoothing and discretization, (4) network reverse engineering, and (5) network dynamics analysis and fingerprint identification. The technological outcome of this study is a suite of experimental protocols and computational tools that reverse engineer regulatory networks provided gene expression data. The practical biological outcome of this work is an immune response fingerprint in terms of gene expression levels. Inferring regulatory networks from microarray data is a new field of investigation that is no more than five years old. To the best of our knowledge, this work is the first attempt that integrates experiments, error analyses, data clustering, inference, and network analysis to solve a practical problem. Our systematic approach of counting, enumeration, and sampling networks matching experimental data is new to the field of network reverse engineering. The resulting mathematical analyses and computational tools lead to new results on their own and should be useful to others who analyze and infer networks.

  12. Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology.

    Science.gov (United States)

    Dvořák, Pavel; Nikel, Pablo I; Damborský, Jiří; de Lorenzo, Víctor

    2017-11-15

    Elimination or mitigation of the toxic effects of chemical waste released to the environment by industrial and urban activities relies largely on the catalytic activities of microorganisms-specifically bacteria. Given their capacity to evolve rapidly, they have the biochemical power to tackle a large number of molecules mobilized from their geological repositories through human action (e.g., hydrocarbons, heavy metals) or generated through chemical synthesis (e.g., xenobiotic compounds). Whereas naturally occurring microbes already have considerable ability to remove many environmental pollutants with no external intervention, the onset of genetic engineering in the 1980s allowed the possibility of rational design of bacteria to catabolize specific compounds, which could eventually be released into the environment as bioremediation agents. The complexity of this endeavour and the lack of fundamental knowledge nonetheless led to the virtual abandonment of such a recombinant DNA-based bioremediation only a decade later. In a twist of events, the last few years have witnessed the emergence of new systemic fields (including systems and synthetic biology, and metabolic engineering) that allow revisiting the same environmental pollution challenges through fresh and far more powerful approaches. The focus on contaminated sites and chemicals has been broadened by the phenomenal problems of anthropogenic emissions of greenhouse gases and the accumulation of plastic waste on a global scale. In this article, we analyze how contemporary systemic biology is helping to take the design of bioremediation agents back to the core of environmental biotechnology. We inspect a number of recent strategies for catabolic pathway construction and optimization and we bring them together by proposing an engineering workflow. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. SiGe-based re-engineering of electronic warfare subsystems

    CERN Document Server

    Lambrechts, Wynand

    2017-01-01

    This book equips readers with a thorough understanding of the applicability of new-generation silicon-germanium (SiGe) electronic subsystems for the military purposes of electronic warfare and defensive countermeasures. The theoretical and technical background is extensively explained and all aspects of the integration of SiGe as an enabling technology for maritime, land, and airborne (including space) electronic warfare are addressed, including research, design, development, and implementation. The coverage is supported by mathematical derivations, informative illustrations, practical examples, and case studies. While SiGe technology provides speed, performance, and price advantages in many markets, sharing of information on its use in electronic warfare systems has to date been limited, especially in developing nations. This book will therefore be warmly welcomed as an engineering guideline that focuses especially on the speed and reliability of current-generation SiGe circuits and highlights emerging innov...

  14. Direct observation of unstained wet biological samples by scanning-electron generation X-ray microscopy

    International Nuclear Information System (INIS)

    Ogura, Toshihiko

    2010-01-01

    Analytical tools of nanometre-scale resolution are indispensable in the fields of biology, physics and chemistry. One suitable tool, the soft X-ray microscope, provides high spatial resolution of visible light for wet specimens. For biological specimens, X-rays of water-window wavelength between carbon (284 eV; 4.3 nm) and oxygen (540 eV; 2.3 nm) absorption edges provide high-contrast imaging of biological samples in water. Among types of X-ray microscope, the transmission X-ray microscope using a synchrotron radiation source with diffractive zone plates offers the highest spatial resolution, approaching 15-10 nm. However, even higher resolution is required to measure proteins and protein complexes in biological specimens; therefore, a new type of X-ray microscope with higher resolution that uses a simple light source is desirable. Here we report a novel scanning-electron generation X-ray microscope (SGXM) that demonstrates direct imaging of unstained wet biological specimens. We deposited wet yeasts in the space between two silicon nitride (Si 3 N 4 ) films. A scanning electron beam of accelerating voltage 5 keV and current 1.6 nA irradiates the titanium (Ti)-coated Si 3 N 4 film, and the soft X-ray signal from it is detected by an X-ray photodiode (PD) placed below the sample. The SGXM can theoretically achieve better than 5 nm resolution. Our method can be utilized easily for various wet biological samples of bacteria, viruses, and protein complexes.

  15. A stochastic model of protein conformational dynamics and electronic-conformational coupling in biological energy transduction

    Science.gov (United States)

    Cartling, Bo

    1985-11-01

    The principles of biological energy transduction are discussed by means of a mathematical model of a donor-acceptor system of electron transfer enzymes in which electronic and conformational states are coupled. The internal nuclear motion of the enzymes is considered to be composed of transitions between local potential energy wells, which define conformational states, and vibrations within these. The conformational transitions are treated as a stochastic process of the diffusion type on a conformational potential energy surface. Dissipative processes are avoided by restricting electron transfer with respect to conformational states and molecular mechanisms of such electron gating are discussed. Different types of transient kinetics, determined by the relative rates of electronic and conformational transitions, are demonstrated in terms of probability density functions, which describe the probability for the system to be in different electronic and conformational states as a function of time. The experimental basis for the concepts and mechanisms introduced is discussed and further experiments are proposed. The applicability of the mathematical model to other systems is indicated.

  16. Electron transfer behaviour of biological macromolecules towards the single-molecule level

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Grubb, Mikala; Hansen, Allan Glargaard

    2003-01-01

    electron transfer (ET) function retained. In situ STM can also address the microscopic mechanisms for electron tunnelling through the biomolecules and offers novel notions such as coherent multi-ET between the substrate and tip via the molecular redox levels. This differs in important respects from...... is combined with state-of-the-art physical electrochemistry with emphasis on single-crystal, atomically planar electrode surfaces, in situ scanning tunnelling microscopy (STM) and other surface techniques. These approaches have brought bioelectrochemistry important steps forward towards the nanoscale...... electrochemical ET at a single metal/electrolyte interface. Similar data for a short oligonucleotide immobilized on Au(111) show that oligonucleotides can be characterized with comparable detail, with novel perspectives for addressing DNA electronic conduction mechanisms and for biological screening towards...

  17. How Power Electronics Engineers Should Write and Present Technical Papers in English

    Science.gov (United States)

    Akagi, Hirofumi

    This paper describes techniques that Japanese power electronics engineers can use to improve the quality of their technical papers written in English and the accompanying technical presentations. These techniques are based on the experience that the author has gained by participating in international conferences. Such techniques are important to discuss because the significant differences exist in writing and presentation styles between Japanese and American engineers. The author believes that such style differences are caused by differences between the Japanese and American cultures. The objective of this paper is to help Japanese engineers understand these cultural differences and improve their technical communication skills in English. The paper also includes some practical tips on writing and presentation techniques for improving the quality of their technical communications in English.

  18. From Nanostructure to Nano Biosensor: Institute of Nano Electronic Engineering (INEE), UniMAP Experience

    OpenAIRE

    Hashim, U; Foo, K L

    2011-01-01

    Nanostructure is defined as something that has a physical dimension smaller than 100 nanometers, ranging from clusters and/or to dimensional layers of atoms. There are three most important nanostructures that are extensively studied and researched in various organizations including Institute of Nano Electronic Engineering (INEE) in UniMAP. These include quantum dot, nanowire, and nanogap, which have been successfully designed and fabricated using in-house facilities available. These are subse...

  19. Theory of semiconductor junction devices a textbook for electrical and electronic engineers

    CERN Document Server

    Leck, J H

    1967-01-01

    Theory of Semiconductor Junction Devices: A Textbook for Electrical and Electronic Engineers presents the simplified numerical computation of the fundamental electrical equations, specifically Poisson's and the Hall effect equations. This book provides the fundamental theory relevant for the understanding of semiconductor device theory. Comprised of 10 chapters, this book starts with an overview of the application of band theory to the special case of semiconductors, both intrinsic and extrinsic. This text then describes the electrical properties of conductivity, semiconductors, and Hall effe

  20. An investigation of the performance of an electronic in-line pump system for diesel engines

    Science.gov (United States)

    Fan, Li-Yun; Zhu, Yuan-Xian; Long, Wu-Qiang; Ma, Xiu-Zhen; Xue, Ying-Ying

    2008-12-01

    WIT Electronic Fuel System Co., Ltd. has developed a new fuel injector, the Electronic In-line Pump (EIP) system, designed to meet China’s diesel engine emission and fuel economy regulations. It can be used on marine diesel engines and commercial vehicle engines through different EIP systems. A numerical model of the EIP system was built in the AMESim environment for the purpose of creating a design tool for engine application and system optimization. The model was used to predict key injection characteristics under different operating conditions, such as injection pressure, injection rate, and injection duration. To validate these predictions, experimental tests were conducted under the conditions that were modeled. The results were quite encouraging and in agreement with model predictions. Additional experiments were conducted to study the injection characteristics of the EIP system. These results show that injection pressure and injection quantity are insensitive to injection timing variations, this is due to the design of the constant velocity cam profile. Finally, injection quantity and pressure vs. pulse width at different cam speeds are presented, an important injection characteristic for EIP system calibration.

  1. Design and engineering of a man-made diffusive electron-transport protein.

    Science.gov (United States)

    Fry, Bryan A; Solomon, Lee A; Leslie Dutton, P; Moser, Christopher C

    2016-05-01

    Maquettes are man-made cofactor-binding oxidoreductases designed from first principles with minimal reference to natural protein sequences. Here we focus on water-soluble maquettes designed and engineered to perform diffusive electron transport of the kind typically carried out by cytochromes, ferredoxins and flavodoxins and other small proteins in photosynthetic and respiratory energy conversion and oxido-reductive metabolism. Our designs were tested by analysis of electron transfer between heme maquettes and the well-known natural electron transporter, cytochrome c. Electron-transfer kinetics were measured from seconds to milliseconds by stopped-flow, while sub-millisecond resolution was achieved through laser photolysis of the carbon monoxide maquette heme complex. These measurements demonstrate electron transfer from the maquette to cytochrome c, reproducing the timescales and charge complementarity modulation observed in natural systems. The ionic strength dependence of inter-protein electron transfer from 9.7×10(6) M(-1) s(-1) to 1.2×10(9) M(-1) s(-1) follows a simple Debye-Hückel model for attraction between +8 net charged oxidized cytochrome c and -19 net charged heme maquette, with no indication of significant protein dipole moment steering. Successfully recreating essential components of energy conversion and downstream metabolism in man-made proteins holds promise for in vivo clinical intervention and for the production of fuel or other industrial products. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines

    DEFF Research Database (Denmark)

    Scappin, Fabio; Stefansson, Sigurður H.; Haglind, Fredrik

    2012-01-01

    The aim of this paper is to derive a methodology suitable for energy system analysis for predicting the performance and NOx emissions of marine low speed diesel engines. The paper describes a zero-dimensional model, evaluating the engine performance by means of an energy balance and a two zone...... experimental data from two MAN B&W engines; one case being data subject to engine parameter changes corresponding to simulating an electronically controlled engine; the second case providing data covering almost all model input and output parameters. The first case of validation suggests that the model can...... predict specific fuel oil consumption and NOx emissions within the 95% confidence intervals given by the experimental measurements. The second validation confirms the capability of the model to match measured engine output parameters based on measured engine input parameters with a maximum 5% deviation....

  3. Microstructured surfaces engineered using biological templates: a facile approach for the fabrication of superhydrophobic surfaces

    Directory of Open Access Journals (Sweden)

    DUSAN LOSIC

    2008-10-01

    Full Text Available The fabrication of microstructured surfaces using biological templates was investigated with the aim of exploring of a facile and low cost approach for the fabrication of structured surfaces with superhydrophobic properties. Two soft lithographic techniques, i.e., replica moulding and nano-imprinting, were used to replicate the surfaces of a biological substrate. Leaves of the Agave plant (Agave attenuate, a cost-free biological template, were used as a model of a biosurface with superhydrophobic properties. The replication process was performed using two polymers: an elastomeric polymer, poly(dimethylsiloxane (PDMS, and a polyurethane (PU based, UV-curable polymer (NOA 60. In the first replication step, negative polymer replicas of the surface of leaves were fabricated, which were used as masters to fabricate positive polymer replicas by moulding and soft imprinting. The pattern with micro and nanostructures of the surface of the leaf possesses superhydrophobic properties, which was successfully replicated into both polymers. Finally, the positive replicas were coated with a thin gold film and modified with self-assembled monolayers (SAMs to verify the importance of the surface chemistry on the hydrophobic properties of the fabricated structures. Wetting (contact angle and structural (light microscopy and scanning electron microscopy characterisation was performed to confirm the hydrophobic properties of the fabricated surfaces (> 150°, as well as the precision and reproducibility of the replication process.

  4. Survey of French research in biological and medical engineering - aims, means, results

    International Nuclear Information System (INIS)

    Teissier, J.

    1975-01-01

    A review of the aims and means available is followed by an outline of the results of French research in biological and medical engineering. Most of the work undertaken has given very positive results from the scientific view-point, followed up by industrial applications. Scintigraphic image processing research has led to CINE 200. A study of heart output quantification in real time has produced a haemodynamic investigation system, the Sysconoram, now commercialized. The study of heart signal recording methods has led to a marketable and reliable system for the detection of pathological heart conditions. Research in neurosurgery on the use of pressure transducers in integrated technology, using a piezoelectric detector associated with a field effect amplifier, has enabled two types of extradural pressure transducer and one cervical intraventricular pressure transducer to be industrialized. Finally the study of a gamma detector combined with a light-amplifier tube has led to the development of camera giving quite exceptional results [fr

  5. Harnessing biological motors to engineer systems for nanoscale transport and assembly.

    Science.gov (United States)

    Goel, Anita; Vogel, Viola

    2008-08-01

    Living systems use biological nanomotors to build life's essential molecules--such as DNA and proteins--as well as to transport cargo inside cells with both spatial and temporal precision. Each motor is highly specialized and carries out a distinct function within the cell. Some have even evolved sophisticated mechanisms to ensure quality control during nanomanufacturing processes, whether to correct errors in biosynthesis or to detect and permit the repair of damaged transport highways. In general, these nanomotors consume chemical energy in order to undergo a series of shape changes that let them interact sequentially with other molecules. Here we review some of the many tasks that biomotors perform and analyse their underlying design principles from an engineering perspective. We also discuss experiments and strategies to integrate biomotors into synthetic environments for applications such as sensing, transport and assembly.

  6. Cryo-electron microscopy for structural analysis of dynamic biological macromolecules.

    Science.gov (United States)

    Murata, Kazuyoshi; Wolf, Matthias

    2018-02-01

    Since the introduction of what became today's standard for cryo-embedding of biological macromolecules at native conditions more than 30years ago, techniques and equipment have been drastically improved and the structure of biomolecules can now be studied at near atomic resolution by cryo-electron microscopy (cryo-EM) while capturing multiple dynamic states. Here we review the recent progress in cryo-EM for structural studies of dynamic biological macromolecules. We provide an overview of the cryo-EM method and introduce contemporary studies to investigate biomolecular structure and dynamics, including examples from the recent literature. Cryo-EM is a powerful tool for the investigation of biological macromolecular structures including analysis of their dynamics by using advanced image-processing algorithms. The method has become even more widely applicable with present-day single particle analysis and electron tomography. The cryo-EM method can be used to determine the three-dimensional structure of biomacromolecules in near native condition at close to atomic resolution, and has the potential to reveal conformations of dynamic molecular complexes. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. The integrative role of cryo electron microscopy in molecular and cellular structural biology.

    Science.gov (United States)

    Orlov, Igor; Myasnikov, Alexander G; Andronov, Leonid; Natchiar, S Kundhavai; Khatter, Heena; Beinsteiner, Brice; Ménétret, Jean-François; Hazemann, Isabelle; Mohideen, Kareem; Tazibt, Karima; Tabaroni, Rachel; Kratzat, Hanna; Djabeur, Nadia; Bruxelles, Tatiana; Raivoniaina, Finaritra; Pompeo, Lorenza di; Torchy, Morgan; Billas, Isabelle; Urzhumtsev, Alexandre; Klaholz, Bruno P

    2017-02-01

    After gradually moving away from preparation methods prone to artefacts such as plastic embedding and negative staining for cell sections and single particles, the field of cryo electron microscopy (cryo-EM) is now heading off at unprecedented speed towards high-resolution analysis of biological objects of various sizes. This 'revolution in resolution' is happening largely thanks to new developments of new-generation cameras used for recording the images in the cryo electron microscope which have much increased sensitivity being based on complementary metal oxide semiconductor devices. Combined with advanced image processing and 3D reconstruction, the cryo-EM analysis of nucleoprotein complexes can provide unprecedented insights at molecular and atomic levels and address regulatory mechanisms in the cell. These advances reinforce the integrative role of cryo-EM in synergy with other methods such as X-ray crystallography, fluorescence imaging or focussed-ion beam milling as exemplified here by some recent studies from our laboratory on ribosomes, viruses, chromatin and nuclear receptors. Such multi-scale and multi-resolution approaches allow integrating molecular and cellular levels when applied to purified or in situ macromolecular complexes, thus illustrating the trend of the field towards cellular structural biology. © 2016 The Authors. Biology of the Cell published by Wiley-VCH Verlag GmbH & Co. KGaA on behalf of Société Française des Microscopies and Société de Biologie Cellulaire de France.

  8. A Low Cost Implementation of an Existing Hands-on Laboratory Experiment in Electronic Engineering

    Directory of Open Access Journals (Sweden)

    Clement Onime

    2014-10-01

    Full Text Available In engineering the pedagogical content of most formative programmes includes a significant amount of practical laboratory hands-on activity designed to deliver knowledge acquisition from actual experience alongside traditional face-to-face classroom based lectures and tutorials; this hands-on aspect is not always adequately addressed by current e-learning platforms. An innovative approach to e-learning in engineering, named computer aided engineering education (CAEE is about the use of computer aids for the enhanced, interactive delivery of educational materials in different fields of engineering through two separate but related components; one for classroom and another for practical hands-on laboratory work. The component for hands-on laboratory practical work focuses on the use of mixed reality (video-based augmented reality tools on mobile devices/platforms. This paper presents the computer aided engineering education (CAEE implementation of a laboratory experiment in micro-electronics that highlights some features such as the ability to closely implement an existing laboratory based hands-on experiment with lower associated costs and the ability to conduct the experiment off-line while maintaining existing pedagogical contents and standards.

  9. Fuelling regulation with Electronic fuel injection for small spark ignition engine using Fuzzy Logic

    International Nuclear Information System (INIS)

    Shah, S.R.; Sahir, M.H.

    2004-01-01

    The use of Electronic Control systems in automotive applications gives the design engineer greater control over various processes compared with mechanical methods Examples of such electronic control systems are Electronic Fuel Injection (EFI), Traction Control Systems (TCS) and Anti-lock Braking Systems (ABS). In addition, the development of inexpensive and fast microcontrollers has remarkably improve, performance of passive and active safety systems of automobiles, without causing excessive increase in prices of vehicles -a favourable factor from the consumer's perspective. This paper deals with a possible electronic aid for the improvement of power control in a motorcycle. Controlling the speed and power of a motorcycle is difficult; especially on bumpy and uneven terrain. In this paper, the development of an EPI system is discussed, incorporating artificial intelligence to regulate the fuel supplied to the engine. It would minimize wheel slippage and jerky and sudden acceleration which potentially dangerous. It would also reduce production of large quantities of pollutant like hydrocarbons and carbon monoxide. Fuel consumption would also improve during stop-and-go traffic. (author)

  10. First accelerator test of vacuum components with laser-engineered surfaces for electron-cloud mitigation

    Science.gov (United States)

    Calatroni, Sergio; Garcia-Tabares Valdivieso, Elisa; Neupert, Holger; Nistor, Valentin; Perez Fontenla, Ana Teresa; Taborelli, Mauro; Chiggiato, Paolo; Malyshev, Oleg; Valizadeh, Reza; Wackerow, Stefan; Zolotovskaya, Svetlana A.; Gillespie, W. Allan; Abdolvand, Amin

    2017-11-01

    Electron cloud mitigation is an essential requirement for high-intensity proton circular accelerators. Among other solutions, laser engineered surface structures (LESS) present the advantages of having potentially a very low secondary electron yield (SEY) and allowing simple scalability for mass production. Two copper liners with LESS have been manufactured and successfully tested by monitoring the electron cloud current in a dipole magnet in the SPS accelerator at CERN during the 2016 run. In this paper we report on these results as well as the detailed experiments carried out on samples—such as the SEY and topography studies—which led to an optimized treatment in view of the SPS test and future possible use in the HL-LHC.

  11. Electron Bio-Imaging Centre (eBIC): the UK national research facility for biological electron microscopy.

    Science.gov (United States)

    Clare, Daniel K; Siebert, C Alistair; Hecksel, Corey; Hagen, Christoph; Mordhorst, Valerie; Grange, Michael; Ashton, Alun W; Walsh, Martin A; Grünewald, Kay; Saibil, Helen R; Stuart, David I; Zhang, Peijun

    2017-06-01

    The recent resolution revolution in cryo-EM has led to a massive increase in demand for both time on high-end cryo-electron microscopes and access to cryo-electron microscopy expertise. In anticipation of this demand, eBIC was set up at Diamond Light Source in collaboration with Birkbeck College London and the University of Oxford, and funded by the Wellcome Trust, the UK Medical Research Council (MRC) and the Biotechnology and Biological Sciences Research Council (BBSRC) to provide access to high-end equipment through peer review. eBIC is currently in its start-up phase and began by offering time on a single FEI Titan Krios microscope equipped with the latest generation of direct electron detectors from two manufacturers. Here, the current status and modes of access for potential users of eBIC are outlined. In the first year of operation, 222 d of microscope time were delivered to external research groups, with 95 visits in total, of which 53 were from unique groups. The data collected have generated multiple high- to intermediate-resolution structures (2.8-8 Å), ten of which have been published. A second Krios microscope is now in operation, with two more due to come online in 2017. In the next phase of growth of eBIC, in addition to more microscope time, new data-collection strategies and sample-preparation techniques will be made available to external user groups. Finally, all raw data are archived, and a metadata catalogue and automated pipelines for data analysis are being developed.

  12. Mechanical, Biological and Electrochemical Investigations of Advanced Micro/Nano Materials for Tissue Engineering and Energy Storage

    Science.gov (United States)

    Pu, Juan

    Various micro/nano materials have been extensively studied for applications in tissue engineering and energy storage. Tissue engineering seeks to repair or replace damaged tissue by integrating approaches from cellular/molecular biology and material chemistry/engineering. A major challenge is the consistent design of three-dimensional (3D) scaffolds that mimic the structure and biological functions of extracellular matrix (ECM), guide cell migration, provide mechanical support, and regulate cell activity. Electrospun micro/nanofibers have been investigated as promising tissue engineering scaffolds because they resemble native ECM and possess tunable surface morphologies. Supercapacitors, one of the energy storage devices, bridge the performance gap between rechargeable batteries and conventional capacitors. Active electrode materials of supercapacitors must possess high specific surface area, high conductivity, and good electrochemical properties. Carbon-based micro/nano-particles, such as graphene, activated carbon (AC), and carbon nanotubes, are commonly used as active electrode materials for storing charge in supercapacitors by the electrical double layer mechanism due to their high specific surface area and excellent conductivity. In this thesis, the mechanical properties of electrospun bilayer microfibrous membranes were investigated for potential applications in tissue engineering. Bilayer microfibrous membranes of poly(l-lactic acid) (PLLA) were fabricated by electrospinning using a parallel-disk mandrel configuration, which resulted in the sequential deposition of a layer with aligned fibers (AFL) across the two parallel disks and a layer with random fibers (RFL), both deposited by a single process step. The membrane structure and fiber alignment were characterized by scanning electron microscopy and two-dimensional fast Fourier transform. Because of the intricacies of the generated electric field, the bilayer membranes exhibited higher porosity than the

  13. Biologically inspired robotic inspectors: the engineering reality and future outlook (Keynote address)

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2005-04-01

    Human errors have long been recognized as a major factor in the reliability of nondestructive evaluation results. To minimize such errors, there is an increasing reliance on automatic inspection tools that allow faster and consistent tests. Crawlers and various manipulation devices are commonly used to perform variety of inspection procedures that include C-scan with contour following capability to rapidly inspect complex structures. The emergence of robots has been the result of the need to deal with parts that are too complex to handle by a simple automatic system. Economical factors are continuing to hamper the wide use of robotics for inspection applications however technology advances are increasingly changing this paradigm. Autonomous robots, which may look like human, can potentially address the need to inspect structures with configuration that are not predetermined. The operation of such robots that mimic biology may take place at harsh or hazardous environments that are too dangerous for human presence. Biomimetic technologies such as artificial intelligence, artificial muscles, artificial vision and numerous others are increasingly becoming common engineering tools. Inspired by science fiction, making biomimetic robots is increasingly becoming an engineering reality and in this paper the state-of-the-art will be reviewed and the outlook for the future will be discussed.

  14. Engineering Bacteria to Search for Specific Concentrations of Molecules by a Systematic Synthetic Biology Design Method.

    Science.gov (United States)

    Tien, Shin-Ming; Hsu, Chih-Yuan; Chen, Bor-Sen

    2016-01-01

    Bacteria navigate environments full of various chemicals to seek favorable places for survival by controlling the flagella's rotation using a complicated signal transduction pathway. By influencing the pathway, bacteria can be engineered to search for specific molecules, which has great potential for application to biomedicine and bioremediation. In this study, genetic circuits were constructed to make bacteria search for a specific molecule at particular concentrations in their environment through a synthetic biology method. In addition, by replacing the "brake component" in the synthetic circuit with some specific sensitivities, the bacteria can be engineered to locate areas containing specific concentrations of the molecule. Measured by the swarm assay qualitatively and microfluidic techniques quantitatively, the characteristics of each "brake component" were identified and represented by a mathematical model. Furthermore, we established another mathematical model to anticipate the characteristics of the "brake component". Based on this model, an abundant component library can be established to provide adequate component selection for different searching conditions without identifying all components individually. Finally, a systematic design procedure was proposed. Following this systematic procedure, one can design a genetic circuit for bacteria to rapidly search for and locate different concentrations of particular molecules by selecting the most adequate "brake component" in the library. Moreover, following simple procedures, one can also establish an exclusive component library suitable for other cultivated environments, promoter systems, or bacterial strains.

  15. Engineering Bacteria to Search for Specific Concentrations of Molecules by a Systematic Synthetic Biology Design Method.

    Directory of Open Access Journals (Sweden)

    Shin-Ming Tien

    Full Text Available Bacteria navigate environments full of various chemicals to seek favorable places for survival by controlling the flagella's rotation using a complicated signal transduction pathway. By influencing the pathway, bacteria can be engineered to search for specific molecules, which has great potential for application to biomedicine and bioremediation. In this study, genetic circuits were constructed to make bacteria search for a specific molecule at particular concentrations in their environment through a synthetic biology method. In addition, by replacing the "brake component" in the synthetic circuit with some specific sensitivities, the bacteria can be engineered to locate areas containing specific concentrations of the molecule. Measured by the swarm assay qualitatively and microfluidic techniques quantitatively, the characteristics of each "brake component" were identified and represented by a mathematical model. Furthermore, we established another mathematical model to anticipate the characteristics of the "brake component". Based on this model, an abundant component library can be established to provide adequate component selection for different searching conditions without identifying all components individually. Finally, a systematic design procedure was proposed. Following this systematic procedure, one can design a genetic circuit for bacteria to rapidly search for and locate different concentrations of particular molecules by selecting the most adequate "brake component" in the library. Moreover, following simple procedures, one can also establish an exclusive component library suitable for other cultivated environments, promoter systems, or bacterial strains.

  16. Biological evaluation of porous aliphatic polyurethane/hydroxyapatite composite scaffolds for bone tissue engineering.

    Science.gov (United States)

    Yang, Wanxun; Both, Sanne K; Zuo, Yi; Birgani, Zeinab Tahmasebi; Habibovic, Pamela; Li, Yubao; Jansen, John A; Yang, Fang

    2015-07-01

    Biomaterial scaffolds meant to function as supporting structures to osteogenic cells play a pivotal role in bone tissue engineering. Recently, we synthesized an aliphatic polyurethane (PU) scaffold via a foaming method using non-toxic components. Through this procedure a uniform interconnected porous structure was created. Furthermore, hydroxyapatite (HA) particles were introduced into this process to increase the bioactivity of the PU matrix. To evaluate the biological performances of these PU-based scaffolds, their influence on in vitro cellular behavior and in vivo bone forming capacity of the engineered cell-scaffold constructs was investigated in this study. A simulated body fluid test demonstrated that the incorporation of 40 wt % HA particles significantly promoted the biomineralization ability of the PU scaffolds. Enhanced in vitro proliferation and osteogenic differentiation of the seeded mesenchymal stem cells were also observed on the PU/HA composite. Next, the cell-scaffold constructs were implanted subcutaneously in a nude mice model. After 8 weeks, a considerable amount of vascularized bone tissue with initial marrow stroma development was generated in both PU and PU/HA40 scaffold. In conclusion, the PU/HA composite is a potential scaffold for bone regeneration applications. © 2014 Wiley Periodicals, Inc.

  17. Use of Mesothelial Cells and Biological Matrices for Tissue Engineering of Simple Epithelium Surrogates

    Directory of Open Access Journals (Sweden)

    Christian Claude Lachaud

    2015-08-01

    Full Text Available Tissue engineering technologies have progressed rapidly through last decades resulting in the manufacture of quite complex bioartificial tissues with potential use for human organ and tissue regeneration. The manufacture of avascular monolayered tissues such as simple squamous epithelia was initiated a few decades ago and is attracting increasing interest. Their relative morphostructural simplicity makes of their biomimetization a goal, which is currently accessible. The mesothelium is a simple squamous epithelium in nature and is the monolayered tissue lining the walls of large coelomic cavities (peritoneal, pericardial and pleural and internal organs housed inside. Interestedly, mesothelial cells can be harvested in clinically relevant numbers from several anatomical sources and not less important, they also display high transdifferentiation capacities and are low immunogenic, characteristics, which endow these cells with therapeutic interest. Their combination with a suitable scaffold (biocompatible, degradable and non-immunogenic may allow the manufacture of tailored serosal membranes biomimetics with potential spanning a wide range of therapeutic applications, principally for the regeneration of simple squamous-like epithelia such as the visceral and parietal mesothelium vascular endothelium and corneal endothelium among others. Herein, we review recent research progresses in mesothelial cells biology and their clinical sources. We make a particular emphasis on reviewing the different types of biological scaffolds suitable for the manufacture of serosal mesothelial membranes biomimetics. Finally, we also review progresses made in mesothelial cells-based therapeutic applications and propose some possible future directions.

  18. Nanodimensional and Nanocrystalline Apatites and Other Calcium Orthophosphates in Biomedical Engineering, Biology and Medicine

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin

    2009-11-01

    Full Text Available Recent developments in biomineralization have already demonstrated that nanosized particles play an important role in the formation of hard tissues of animals. Namely, the basic inorganic building blocks of bones and teeth of mammals are nanodimensional and nanocrystalline calcium orthophosphates (in the form of apatites of a biological origin. In mammals, tens to hundreds nanocrystals of a biological apatite were found to be combined into self-assembled structures under the control of various bioorganic matrixes. In addition, the structures of both dental enamel and bones could be mimicked by an oriented aggregation of nanosized calcium orthophosphates, determined by the biomolecules. The application and prospective use of nanodimensional and nanocrystalline calcium orthophosphates for a clinical repair of damaged bones and teeth are also known. For example, a greater viability and a better proliferation of various types of cells were detected on smaller crystals of calcium orthophosphates. Thus, the nanodimensional and nanocrystalline forms of calcium orthophosphates have a great potential to revolutionize the field of hard tissue engineering starting from bone repair and augmentation to the controlled drug delivery devices. This paper reviews current state of knowledge and recent developments of this subject starting from the synthesis and characterization to biomedical and clinical applications. More to the point, this review provides possible directions of future research and development.

  19. Removal of diclofenac from surface water by electron beam irradiation combined with a biological aerated filter

    Science.gov (United States)

    He, Shijun; Wang, Jianlong; Ye, Longfei; Zhang, Youxue; Yu, Jiang

    2014-12-01

    The degradation of DCF was investigated in aqueous solution by using electron beam (EB) technology. When the initial concentration was between 10 and 40 mg/L, almost 100% of the DCF was degraded at a dose of 0.5 kGy. However, only about 6.5% of DCF was mineralized even at 2 kGy according to total organic carbon (TOC) measurements. A combined process of EB and biological aerated filter (BAF) was therefore developed to enhance the treatment of DCF contaminated surface water. The effluent quality of combined process was substantially improved by EB pretreatment due to the degradation of DCF and related intermediates. Both irradiation and biological treatment reduced the toxicity of the treated water. The experimental results showed that EB is effective for removing DCF from artificial aqueous solution and real surface water.

  20. Nano-Bio Electrochemical Interfacing-Linking Cell Biology and Micro-Electronics

    Science.gov (United States)

    Shacham-Diamand, Y.; Popovtzer, R.; Rishpon, Y.

    Integration of biological substance within electronic devices is an innovative and challenging area combining recent progress in molecular biology and micro technology. First, we introduce the concept of integrating living cells with Micro Electro Mechanical Systems (MEMS). Following a brief overview on "whole cell based biosensors" we describe the design, fabrication, and process of a biocompatible electrochemical "Lab-on-a-Chip" system. Demonstrating the application of electrochemical interfacing based whole cell bio chips, we present two different configurations: a. integration of prokaryotic cells (bacteria) for water toxicity detection, and b. integration of eukaryotic cells (human colon cancer cells) for rapid evaluation of the effectiveness of drug treatments. Both applications, with either microbes or mammalian cells integrated onto MEMS based biochips with liquid volume in the range of 100 nL-1 μL, function well and yield a detectable signal much higher than noise level after few minutes.

  1. Emerging opportunities in structural biology with X-ray free-electron lasers

    Science.gov (United States)

    Schlichting, Ilme; Miao, Jianwei

    2012-01-01

    X-ray free-electron lasers (X-FELs) produce X-ray pulses with extremely brilliant peak intensity and ultrashort pulse duration. It has been proposed that radiation damage can be “outrun” by using an ultra intense and short X-FEL pulse that passes a biological sample before the onset of significant radiation damage. The concept of “diffraction-before-destruction” has been demonstrated recently at the Linac Coherent Light Source, the first operational hard X-ray FEL, for protein nanocrystals and giant virus particles. The continuous diffraction patterns from single particles allow solving the classical “phase problem” by the oversampling method with iterative algorithms. If enough data are collected from many identical copies of a (biological) particle, its three-dimensional structure can be reconstructed. We review the current status and future prospects of serial femtosecond crystallography (SFX) and single-particle coherent diffraction imaging (CDI) with X-FELs. PMID:22922042

  2. A geometric initial guess for localized electronic orbitals in modular biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Beckman, P. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of Chicago, IL (United States); Fattebert, J. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lau, E. Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Osei-Kuffuor, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-11

    Recent first-principles molecular dynamics algorithms using localized electronic orbitals have achieved O(N) complexity and controlled accuracy in simulating systems with finite band gaps. However, accurately deter- mining the centers of these localized orbitals during simulation setup may require O(N3) operations, which is computationally infeasible for many biological systems. We present an O(N) approach for approximating orbital centers in proteins, DNA, and RNA which uses non-localized solutions for a set of fixed-size subproblems to create a set of geometric maps applicable to larger systems. This scalable approach, used as an initial guess in the O(N) first-principles molecular dynamics code MGmol, facilitates first-principles simulations in biological systems of sizes which were previously impossible.

  3. Prospects and progress in the production of valuable carotenoids: Insights from metabolic engineering, synthetic biology, and computational approaches.

    Science.gov (United States)

    Sankari, Mohan; Rao, Priya Rajendra; Hemachandran, Hridya; Pullela, Phani Kumar; Doss C, George Priya; Tayubi, Iftikhar Aslam; Subramanian, Babu; Gothandam, K M; Singh, Pooja; Ramamoorthy, Siva

    2018-01-20

    Carotenoids are isoprenoid pigments synthesized exclusively by plants and microorganisms and play critical roles in light harvesting, photoprotection, attracting pollinators and phytohormone production. In recent years, carotenoids have been used for their health benefits due to their high antioxidant activity and are extensively utilized in food, pharmaceutical, and nutraceutical industries. Regulation of carotenoid biosynthesis occurs throughout the life cycle of plants, with vibrant changes in composition based on developmental needs and responses to external environmental stimuli. With advancements in metabolic engineering techniques, there has been tremendous progress in the production of industrially valuable secondary metabolites such as carotenoids. Application of metabolic engineering and synthetic biology has become essential for the successful and improved production of carotenoids. Synthetic biology is an emerging discipline; metabolic engineering approaches may provide insights into novel ideas for biosynthetic pathways. In this review, we discuss the current knowledge on carotenoid biosynthetic pathways and genetic engineering of carotenoids to improve their nutritional value. In addition, we investigated synthetic biological approaches for the production of carotenoids. Theoretical biology approaches that may aid in understanding the biological sciences are discussed in this review. A combination of theoretical knowledge and experimental strategies may improve the production of industrially relevant secondary metabolites. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Monitoring Chemical and Biological Electron Transfer Reactions with a Fluorogenic Vitamin K Analogue Probe.

    Science.gov (United States)

    Belzile, Mei-Ni; Godin, Robert; Durantini, Andrés M; Cosa, Gonzalo

    2016-12-21

    We report herein the design, synthesis, and characterization of a two-segment fluorogenic analogue of vitamin K, B-VK Q , prepared by coupling vitamin K 3 , also known as menadione (a quinone redox center), to a boron-dipyrromethene (BODIPY) fluorophore (a lipophilic reporter segment). Oxidation-reduction reactions, spectroelectrochemical studies, and enzymatic assays conducted in the presence of DT-diaphorase illustrate that the new probe shows reversible redox behavior on par with that of vitamin K, provides a high-sensitivity fluorescence signal, and is compatible with biological conditions, opening the door to monitor remotely (i.e., via imaging) redox processes in real time. In its oxidized form, B-VK Q is non-emissive, while upon reduction to the hydroquinone form, B-VK QH 2 , BODIPY fluorescence is restored, with emission quantum yield values of ca. 0.54 in toluene. Density functional theory studies validate a photoinduced electron transfer intramolecular switching mechanism, active in the non-emissive quinone form and deactivated upon reduction to the emissive dihydroquinone form. Our results highlight the potential of B-VK Q as a fluorogenic probe to study electron transfer and transport in model systems and biological structures with optimal sensitivity and desirable chemical specificity. Use of such a probe may enable a better understanding of the role that vitamin K plays in biological redox reactions ubiquitous in key cellular processes, and help elucidate the mechanism and pathological significance of these reactions in biological systems.

  5. The BIOSCI electronic newsgroup network for the biological sciences. Final report, October 1, 1992--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kristofferson, D.; Mack, D.

    1996-10-01

    This is the final report for a DOE funded project on BIOSCI Electronic Newsgroup Network for the biological sciences. A usable network for scientific discussion, major announcements, problem solving, etc. has been created.

  6. THREE-DIMENSIONAL OBSERVATIONS ON THICK BIOLOGICAL SPECIMENS BY HIGH VOLTAGE ELECTRON MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Tetsuji Nagata

    2011-05-01

    Full Text Available Thick biological specimens prepared as whole mount cultured cells or thick sections from embedded tissues were stained with histochemical reactions, such as thiamine pyrophosphatase, glucose-6-phosphatase, cytochrome oxidase, acid phosphatase, DAB reactions and radioautography, to observe 3-D ultrastructures of cell organelles producing stereo-pairs by high voltage electron microscopy at accerelating voltages of 400-1000 kV. The organelles demonstrated were Golgi apparatus, endoplasmic reticulum, mitochondria, lysosomes, peroxisomes, pinocytotic vesicles and incorporations of radioactive compounds. As the results, those cell organelles were observed 3- dimensionally and the relative relationships between these organelles were demonstrated.

  7. Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules

    Science.gov (United States)

    Zheng, Haoping

    2003-04-01

    The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with unchanged calculation precision. So the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule becomes a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the Ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), are presented. The reactive sites of the inhibitors are determined and explained. The precision of structure determination of inhibitors are tested theoretically.

  8. Quantitative analysis of biological fluids by electron probe and X ray spectrometry

    International Nuclear Information System (INIS)

    Girod, Chantal

    1986-01-01

    In order to know the kidney normal operation and to have an insight on cellular transport mechanisms and hormonal regulations at the nephron level, a technique based on the use of an electron probe has been developed for the elemental analysis of micro-volumes of biological fluids. This academic document reports applications of this technique on animals on which such fluids have been sampled at different levels of the nephron. As these samples are available in too small volumes to be dosed by conventional methods, they have been quantitatively analysed by using an electronic probe based analyser in order to determine concentrations of all elements with an atomic number greater than that of carbon. After a presentation of the implemented method and hardware, the author thus describes how an analysis is performed, and reports and discusses an example (analysis conditions, data acquisition, data processing, minimum detectable concentration, reasons for measurement scattering)

  9. Ultrastable gold substrates: Properties of a support for high-resolution electron cryomicroscopy of biological specimens

    Science.gov (United States)

    Russo, Christopher J.; Passmore, Lori A.

    2016-01-01

    Electron cryomicroscopy (cryo-EM) allows structure determination of a wide range of biological molecules and specimens. All-gold supports improve cryo-EM images by reducing radiation-induced motion and image blurring. Here we compare the mechanical and electrical properties of all-gold supports to amorphous carbon foils. Gold supports are more conductive, and have suspended foils that are not compressed by differential contraction when cooled to liquid nitrogen temperatures. These measurements show how the choice of support material and geometry can reduce specimen movement by more than an order of magnitude during low-dose imaging. We provide methods for fabrication of all-gold supports and preparation of vitrified specimens. We also analyse illumination geometry for optimal collection of high resolution, low-dose data. Together, the support structures and methods herein can improve the resolution and quality of images from any electron cryomicroscope. PMID:26592474

  10. Proceedings of the Joint Conference of Australasian College of Physical Scientists and Engineers in Medicine and IEAust College of Biomedical Engineers; Asia/Pacific Region of the IEEE Engineering in Medicine and Biology Society

    International Nuclear Information System (INIS)

    1996-01-01

    This is a celebration of the centenary of Rontgen''s discovery of Xrays. It is also the 50th anniversary of the first hospital physicist appointment in New Zealand. The historical element of the programme will complement the emphasis on current applications of the physical and engineering sciences to medicine and an anticipation of future developments. For the first time the Australasian College of Physical Scientists and Engineers in Medicine, together with the IEAust College of Biomedical Engineers, are joined by the Asia/Pacific Region of the IEEE Engineering in Medicine and Biology Society to make this a truly international conference. The proceedings include many papers on radiology and radiotherapy

  11. Implementation and use of cloud-based electronic lab notebook in a bioprocess engineering teaching laboratory.

    Science.gov (United States)

    Riley, Erin M; Hattaway, Holly Z; Felse, P Arthur

    2017-01-01

    Electronic lab notebooks (ELNs) are better equipped than paper lab notebooks (PLNs) to handle present-day life science and engineering experiments that generate large data sets and require high levels of data integrity. But limited training and a lack of workforce with ELN knowledge have restricted the use of ELN in academic and industry research laboratories which still rely on cumbersome PLNs for recordkeeping. We used LabArchives, a cloud-based ELN in our bioprocess engineering lab course to train students in electronic record keeping, good documentation practices (GDPs), and data integrity. Implementation of ELN in the bioprocess engineering lab course, an analysis of user experiences, and our development actions to improve ELN training are presented here. ELN improved pedagogy and learning outcomes of the lab course through stream lined workflow, quick data recording and archiving, and enhanced data sharing and collaboration. It also enabled superior data integrity, simplified information exchange, and allowed real-time and remote monitoring of experiments. Several attributes related to positive user experiences of ELN improved between the two subsequent years in which ELN was offered. Student responses also indicate that ELN is better than PLN for compliance. We demonstrated that ELN can be successfully implemented in a lab course with significant benefits to pedagogy, GDP training, and data integrity. The methods and processes presented here for ELN implementation can be adapted to many types of laboratory experiments.

  12. Hydrogen, metals, bifurcating electrons, and proton gradients: the early evolution of biological energy conservation.

    Science.gov (United States)

    Martin, William F

    2012-03-09

    Life is a persistent, self-specified set of far from equilibrium chemical reactions. In modern microbes, core carbon and energy metabolism are what keep cells alive. In very early chemical evolution, the forerunners of carbon and energy metabolism were the processes of generating reduced carbon compounds from CO(2) and the mechanisms of harnessing energy as compounds capable of doing some chemical work. The process of serpentinization at alkaline hydrothermal vents holds promise as a model for the origin of early reducing power, because Fe(2+) in the Earth's crust reduces water to H(2) and inorganic carbon to methane. The overall geochemical process of serpentinization is similar to the biochemical process of methanogenesis, and methanogenesis is similar to acetogenesis in that both physiologies allow energy conservation from the reduction of CO(2) with electrons from H(2). Electron bifurcation is a newly recognized cytosolic process that anaerobes use generate low potential electrons, it plays an important role in some forms of methanogenesis and, via speculation, possibly in acetogenesis. Electron bifurcation likely figures into the early evolution of biological energy conservation. Copyright © 2011. Published by Elsevier B.V.

  13. Optimising the cam profile of an electronic unit pump for a heavy-duty diesel engine

    International Nuclear Information System (INIS)

    Qiu, Tao; Dai, Hefei; Lei, Yan; Cao, Chunlei; Li, Xuchu

    2015-01-01

    For a fuel system with a tangent cam or a constant-velocity cam, the peak injection pressure continues to rise as the injection duration increases, but overly high peak pressures induce mechanical loads and wear, limiting the maximum engine speed and injection quantity. To improve the performance of an EUP (Electronic Unit Pump) fuel system for heavy-duty diesel engines, this work proposes a new pump cam, namely the constant-pressure cam. It helps the EUP run at a higher speed and deliver larger fuel quantities while maintaining a constant peak injection pressure, which improves the power of the heavy-duty diesel engine. A model based on the EUP was built to determine the three constraints for optimising the constant-pressure cam: 1) the pump pressure should equal the nozzle pressure; 2) the cam speed should decrease with the increase in the injection duration; and 3) the cam acceleration gradient should be zero. An EUP system was tested with the tangent cam and the optimised cam under different conditions. The experimental results show that the EUP system with the optimised cam delivers more injection quantity and runs at higher engine speeds while maintaining the same peak pressure as the tangent cam. - Highlights: • We propose a constant-pressure cam to improve the power of heavy-duty diesel engine. • We deduce three constraints for the CP (constant-peak pressure) cam based on a model. • The EUP system with the new cam works well under higher engine speed. • The peak pressure of the constant-pressure cam fuel system maintains high

  14. Implementation of Microelectronics Track in Electronics Engineering in a Philippines State University

    Directory of Open Access Journals (Sweden)

    Gil B. Barte

    2015-11-01

    Full Text Available The evolving trends in electronics continuous to attract students to take upElectronics Engineering.However, it also adds to discipline implementation complexities.Institutions of Higher Learning offering this program must adapt to this realities to avoid obsolescence. This paper looked at Batangas State University, in the Philippines,ongoingimplementation of the Microelectronics track under the Electronics Engineering (ECEProgram. It describes the restructuring done to the ECE curriculum to overcome the enormous complexity inherent in microelectronics design and the teaching pedagogy adopted to promote active learning. The ongoing program has produced encouraging outcomes:1students were able to design, and simulate complex gate CMOS circuits using EDA tools, in the four(4 course electives identified for the track; 2 the culture of independent learning among students improvement in students soft skills, communication skills, time-management and teamwork skill,; 3. useof free and web-based tools overcome the issue of high cost of license for EDA tools and seminar/training for continuous upgrading of faculty. Another encouraging outcome was the acceptance of the student-centered teaching approach used, Problem-Based Learning (PBL,in enhancing the students learning experience.

  15. X-rays in the Cryo-Electron Microscopy Era: Structural Biology's Dynamic Future.

    Science.gov (United States)

    Shoemaker, Susannah C; Ando, Nozomi

    2018-01-23

    Over the past several years, single-particle cryo-electron microscopy (cryo-EM) has emerged as a leading method for elucidating macromolecular structures at near-atomic resolution, rivaling even the established technique of X-ray crystallography. Cryo-EM is now able to probe proteins as small as hemoglobin (64 kDa) while avoiding the crystallization bottleneck entirely. The remarkable success of cryo-EM has called into question the continuing relevance of X-ray methods, particularly crystallography. To say that the future of structural biology is either cryo-EM or crystallography, however, would be misguided. Crystallography remains better suited to yield precise atomic coordinates of macromolecules under a few hundred kilodaltons in size, while the ability to probe larger, potentially more disordered assemblies is a distinct advantage of cryo-EM. Likewise, crystallography is better equipped to provide high-resolution dynamic information as a function of time, temperature, pressure, and other perturbations, whereas cryo-EM offers increasing insight into conformational and energy landscapes, particularly as algorithms to deconvolute conformational heterogeneity become more advanced. Ultimately, the future of both techniques depends on how their individual strengths are utilized to tackle questions at the frontiers of structural biology. Structure determination is just one piece of a much larger puzzle: a central challenge of modern structural biology is to relate structural information to biological function. In this perspective, we share insight from several leaders in the field and examine the unique and complementary ways in which X-ray methods and cryo-EM can shape the future of structural biology.

  16. Effects of Curriculum and Nonacademic Factors on Undergraduate Electronic Engineering Program Retention

    Science.gov (United States)

    Sulaiman, Munir

    Science, technology, engineering, and mathematics (STEM) programs in higher education institutions, particularly engineering programs, face challenges related to recruitment, retention, and graduation rates. The purpose of this study was to determine whether there are significant relationships among students' major preference, academic skills, nonacademic characteristics and perceptions, and retention to year 2 among students in electronic engineering, other STEM, and non STEM majors. The academic skills considered were study habits, intellectual interest, verbal and writing confidence, and academic assistance. The non-academic factors included academic support, family support, financial support, and student social integration into the campus environment. Tinto's theory of retention served as the theoretical framework. The research design was quantitative with a general linear method of analysis using responses to the College Student Inventory (CSI) survey as secondary data to determine the relationships among the independent variables (major and academic and non-academic factors) and dependent variable (retention). Participants were 3,575 first year undergraduate full-time students from three entering classes, 2012 to 2014. Findings suggested that student major and non-academic factors had no effect on student retention, but student study habits and seeking academic assistance were predictors of retention in each of the three groups of majors: engineering, other STEM majors, and nonSTEM majors. Strategies to help increase undergraduate students' study skills and help seeking behaviors may contribute to positive social change at HBCU institutions.

  17. Electron and Proton Transfer by the Grotthuss Mechanism in Aqueous Solution and in Biological Systems

    International Nuclear Information System (INIS)

    Horne, R.A.; Courant, R.A.; Johnson, D.S.

    1965-01-01

    TheFe ll -Fe III electron-exchange reaction and certain long-range biological redox reactions involve the transfer of electrons by a Grotthuss-type mechanism over water bridges. The Grotthuss mechanism is also responsible for the anomalously great electrical conductivity of acidic aqueous solutions. At ordinary pressures the rate-determining step of the Grotthuss mechanism is the rotation of H 2 O, or possibly H 3 O+, and not the actual proton flip itself. The Grotthuss mechanism is confined to the ''free'' rotatable monomeric water between the Frank-Wen clusters in liquid water and avoids areas of relative order. The concentration dependence of protonic conduction can be represented by an equation based upon a cube root of concentration extrapolation and containing Arrhenius terms in which the activation energies are those for the rotation of and the formation of ''holes'' in the solvent water. Thus chemical energy and/or electrical energy can be transmitted rapidly over relatively great distances by the Grotthuss mechanism. Such processes are involved in a variety of phenomena of biological significance, examples being muscular contraction and the chemistry of the respiratory pigments. (author) [fr

  18. Biological shielding design and qualification of concreting process for construction of electron beam irradiation facility

    International Nuclear Information System (INIS)

    Petwal, V.C.; Kumar, P.; Suresh, N.; Parchani, G.; Dwivedi, J.; Thakurta, A.C.

    2011-01-01

    A technology demonstration facility for irradiation of food and agricultural products is being set-up by RRCAT at Indore. The facility design is based on linear electron accelerator with maximum beam power of 10 kW and can be operated either in electron mode at 10 MeV or photon modes at 5/7.5 MeV. Biological shielding has been designed in accordance with NCRP 51 to achieve dose rate at all accessible points outside the irradiation vault less than the permissible limit of 0.1 mR/hr. In addition to radiation attenuation property, concrete must have satisfactory mechanical properties to meet the structural requirements. There are number of site specific variables which affect the structural, thermal and radiological properties of concrete, leading to considerable difference in actual values and design values. Hence it is essential to establish a suitable site and environmental specific process to cast the concrete and qualify the process by experimental measurement. For process qualification we have cast concrete test blocks of different thicknesses up to 3.25 m and evaluated the radiological and mechanical properties by radiometry, ultrasonic and mechanical tests. In this paper we describe the biological shielding design of the facility and analyse the results of tests carried out for qualification of the process. (author)

  19. Biological Applications and Transmission Electron Microscopy Investigations of Mesoporous Silica Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The research presented and discussed within involves the development of novel biological applications of mesoporous silica nanoparticles (MSN) and an investigation of mesoporous material by transmission electron microscopy (TEM). Mesoporous silica nanoparticles organically functionalized shown to undergo endocytosis in cancer cells and drug release from the pores was controlled intracellularly and intercellularly. Transmission electron microscopy investigations demonstrated the variety of morphologies produced in this field of mesoporous silica nanomaterial synthesis. A series of room-temperature ionic liquid (RTIL) containing mesoporous silica nanoparticle (MSN) materials with various particle morphologies, including spheres, ellipsoids, rods, and tubes, were synthesized. By changing the RTIL template, the pore morphology was tuned from the MCM-41 type of hexagonal mesopores to rotational moire type of helical channels, and to wormhole-like porous structures. These materials were used as controlled release delivery nanodevices to deliver antibacterial ionic liquids against Escherichia coli K12. The involvement of a specific organosiloxane function group, covalently attached to the exterior of fluorescein doped mesoporous silica nanoparticles (FITC-MSN), on the degree and kinetics of endocytosis in cancer and plant cells was investigated. The kinetics of endocystosis of TEG coated FITC-MSN is significantly quicker than FITC-MSN as determined by flow cytometry experiments. The fluorescence confocal microscopy investigation showed the endocytosis of TEG coated-FITC MSN triethylene glycol grafted fluorescein doped MSN (TEG coated-FITC MSN) into both KeLa cells and Tobacco root protoplasts. Once the synthesis of a controlled-release delivery system based on MCM-41-type mesoporous silica nanorods capped by disulfide bonds with superparamagnetic iron oxide nanoparticles was completed. The material was characterized by general methods and the dosage and kinetics of the

  20. Teaching strategies applied to teaching computer networks in Engineering in Telecommunications and Electronics

    Directory of Open Access Journals (Sweden)

    Elio Manuel Castañeda-González

    2016-07-01

    Full Text Available Because of the large impact that today computer networks, their study in related fields such as Telecommunications Engineering and Electronics is presented to the student with great appeal. However, by digging in content, lacking a strong practical component, you can make this interest decreases considerably. This paper proposes the use of teaching strategies and analogies, media and interactive applications that enhance the teaching of discipline networks and encourage their study. It is part of an analysis of how the teaching of the discipline process is performed and then a description of each of these strategies is done with their respective contribution to student learning.

  1. New versatile staining reagents for biological transmission electron microscopy that substitute for uranyl acetate.

    Science.gov (United States)

    Nakakoshi, Masamichi; Nishioka, Hideo; Katayama, Eisaku

    2011-12-01

    Aqueous uranyl acetate has been extensively used as a superb staining reagent for transmission electron microscopy of biological materials. However, recent regulation of nuclear fuel material severely restricts its use even for purely scientific purposes. Since uranyl salts are hazardous due to biological toxicity and remaining radioactivity, development of safe and non-radioactive substitutes is greatly anticipated. We examined two lanthanide salts, samarium triacetate and gadolinium triacetate, and found that 1-10% solution of these reagents was safe but still possess excellent capability for staining thin sections of plastic-embedded materials of animal and plant origin. Although post-fixation with osmium tetroxide was essential for high-contrast staining, post-staining with lead citrate could be eliminated if a slow-scan CCD camera is available for observation. These lanthanide salts can also be utilized as good negative-staining reagents to study supramolecular architecture of biological macromolecules. They were not as effective as a fixative of protein assembly, reflecting the non-hazardous nature of the reagents.

  2. Chitosan fibers with improved biological and mechanical properties for tissue engineering applications.

    Science.gov (United States)

    Albanna, Mohammad Z; Bou-Akl, Therese H; Blowytsky, Oksana; Walters, Henry L; Matthew, Howard W T

    2013-04-01

    The low mechanical properties of hydrogel materials such as chitosan hinder their broad utility for tissue engineering applications. Previous research efforts improved the mechanical properties of chitosan fiber through chemical and physical modifications; however, unfavorable toxicity effects on cells were reported. In this paper, we report the preparation of chitosan fibers with improved mechanical and biocompatibility properties. The structure-property relationships of extruded chitosan fibers were explored by varying acetic acid (AA) concentration, ammonia concentration, annealing temperature and degree of heparin crosslinking. Results showed that optimizing AA concentration to 2vol% improved fiber strength and stiffness by 2-fold. Extruding chitosan solution into 25wt% of ammonia solution reduced fiber diameters and improved fiber strength by 2-fold and stiffness by 3-fold, due to an increase in crystallinity as confirmed by XRD. Fiber annealing further reduced fiber diameter and improved fiber strength and stiffness as temperature increased. Chitosan fibers crosslinked with heparin had increased diameter but lower strength and stiffness properties and higher breaking strain values. When individual parameters were combined, further improvement in fiber mechanical properties was achieved. All mechanically improved fibers and heparin crosslinked fibers promoted valvular interstitial cells (VIC) attachment and growth over 10 day cultures. Our results demonstrate the ability to substantially improve the mechanical properties of chitosan fibers without adversely affecting their biological properties. The investigated treatments offer numerous advantages over previous physical/chemical modifications and thus are expected to expand the utility of chitosan fibers with tunable mechanical properties in various tissue engineering applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications

    International Nuclear Information System (INIS)

    Xu Tao; Binder, Kyle W; Albanna, Mohammad Z; Dice, Dennis; Zhao Weixin; Yoo, James J; Atala, Anthony

    2013-01-01

    Bioprinting is an emerging technique used to fabricate viable, 3D tissue constructs through the precise deposition of cells and hydrogels in a layer-by-layer fashion. Despite the ability to mimic the native properties of tissue, printed 3D constructs that are composed of naturally-derived biomaterials still lack structural integrity and adequate mechanical properties for use in vivo, thus limiting their development for use in load-bearing tissue engineering applications, such as cartilage. Fabrication of viable constructs using a novel multi-head deposition system provides the ability to combine synthetic polymers, which have higher mechanical strength than natural materials, with the favorable environment for cell growth provided by traditional naturally-derived hydrogels. However, the complexity and high cost associated with constructing the required robotic system hamper the widespread application of this approach. Moreover, the scaffolds fabricated by these robotic systems often lack flexibility, which further restrict their applications. To address these limitations, advanced fabrication techniques are necessary to generate complex constructs with controlled architectures and adequate mechanical properties. In this study, we describe the construction of a hybrid inkjet printing/electrospinning system that can be used to fabricate viable tissues for cartilage tissue engineering applications. Electrospinning of polycaprolactone fibers was alternated with inkjet printing of rabbit elastic chondrocytes suspended in a fibrin–collagen hydrogel in order to fabricate a five-layer tissue construct of 1 mm thickness. The chondrocytes survived within the printed hybrid construct with more than 80% viability one week after printing. In addition, the cells proliferated and maintained their basic biological properties within the printed layered constructs. Furthermore, the fabricated constructs formed cartilage-like tissues both in vitro and in vivo as evidenced by the

  4. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology.

    Science.gov (United States)

    Pandey, Ramesh Prasad; Parajuli, Prakash; Koffas, Mattheos A G; Sohng, Jae Kyung

    2016-01-01

    In this review, we address recent advances made in pathway engineering, directed evolution, and systems/synthetic biology approaches employed in the production and modification of flavonoids from microbial cells. The review is divided into two major parts. In the first, various metabolic engineering and system/synthetic biology approaches used for production of flavonoids and derivatives are discussed broadly. All the manipulations/engineering accomplished on the microorganisms since 2000 are described in detail along with the biosynthetic pathway enzymes, their sources, structures of the compounds, and yield of each product. In the second part of the review, post-modifications of flavonoids by four major reactions, namely glycosylations, methylations, hydroxylations and prenylations using recombinant strains are described. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Tuning Electronic Structure of Single Layer MoS2through Defect and Interface Engineering.

    Science.gov (United States)

    Chen, Yan; Huang, Shengxi; Ji, Xiang; Adepalli, Kiran; Yin, Kedi; Ling, Xi; Wang, Xinwei; Xue, Jianmin; Dresselhaus, Mildred; Kong, Jing; Yildiz, Bilge

    2018-03-27

    Transition-metal dichalcogenides (TMDs) have emerged in recent years as a special group of two-dimensional materials and have attracted tremendous attention. Among these TMD materials, molybdenum disulfide (MoS 2 ) has shown promising applications in electronics, photonics, energy, and electrochemistry. In particular, the defects in MoS 2 play an essential role in altering the electronic, magnetic, optical, and catalytic properties of MoS 2 , presenting a useful way to engineer the performance of MoS 2 . The mechanisms by which lattice defects affect the MoS 2 properties are unsettled. In this work, we reveal systematically how lattice defects and substrate interface affect MoS 2 electronic structure. We fabricated single-layer MoS 2 by chemical vapor deposition and then transferred onto Au, single-layer graphene, hexagonal boron nitride, and CeO 2 as substrates and created defects in MoS 2 by ion irradiation. We assessed how these defects and substrates affect the electronic structure of MoS 2 by performing X-ray photoelectron spectroscopy, Raman and photoluminescence spectroscopies, and scanning tunneling microscopy/spectroscopy measurements. Molecular dynamics and first-principles based simulations allowed us to conclude the predominant lattice defects upon ion irradiation and associate those with the experimentally obtained electronic structure. We found that the substrates can tune the electronic energy levels in MoS 2 due to charge transfer at the interface. Furthermore, the reduction state of CeO 2 as an oxide substrate affects the interface charge transfer with MoS 2 . The irradiated MoS 2 had a faster hydrogen evolution kinetics compared to the as-prepared MoS 2 , demonstrating the concept of defect controlled reactivity in this phase. Our findings provide effective probes for energy band and defects in MoS 2 and show the importance of defect engineering in tuning the functionalities of MoS 2 and other TMDs in electronics, optoelectronics, and

  6. Avoiding artefacts during electron microscopy of silver nanomaterials exposed to biological environments.

    Science.gov (United States)

    Chen, S; Goode, A E; Skepper, J N; Thorley, A J; Seiffert, J M; Chung, K F; Tetley, T D; Shaffer, M S P; Ryan, M P; Porter, A E

    2016-02-01

    Electron microscopy has been applied widely to study the interaction of nanomaterials with proteins, cells and tissues at nanometre scale. Biological material is most commonly embedded in thermoset resins to make it compatible with the high vacuum in the electron microscope. Room temperature sample preparation protocols developed over decades provide contrast by staining cell organelles, and aim to preserve the native cell structure. However, the effect of these complex protocols on the nanomaterials in the system is seldom considered. Any artefacts generated during sample preparation may ultimately interfere with the accurate prediction of the stability and reactivity of the nanomaterials. As a case study, we review steps in the room temperature preparation of cells exposed to silver nanomaterials (AgNMs) for transmission electron microscopy imaging and analysis. In particular, embedding and staining protocols, which can alter the physicochemical properties of AgNMs and introduce artefacts thereby leading to a misinterpretation of silver bioreactivity, are scrutinized. Recommendations are given for the application of cryogenic sample preparation protocols, which simultaneously fix both particles and diffusible ions. By being aware of the advantages and limitations of different sample preparation methods, compromises or selection of different correlative techniques can be made to draw more accurate conclusions about the data. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  7. Agent-based re-engineering of ErbB signaling: a modeling pipeline for integrative systems biology.

    Science.gov (United States)

    Das, Arya A; Ajayakumar Darsana, T; Jacob, Elizabeth

    2017-03-01

    Experiments in systems biology are generally supported by a computational model which quantitatively estimates the parameters of the system by finding the best fit to the experiment. Mathematical models have proved to be successful in reverse engineering the system. The data generated is interpreted to understand the dynamics of the underlying phenomena. The question we have sought to answer is that - is it possible to use an agent-based approach to re-engineer a biological process, making use of the available knowledge from experimental and modelling efforts? Can the bottom-up approach benefit from the top-down exercise so as to create an integrated modelling formalism for systems biology? We propose a modelling pipeline that learns from the data given by reverse engineering, and uses it for re-engineering the system, to carry out in-silico experiments. A mathematical model that quantitatively predicts co-expression of EGFR-HER2 receptors in activation and trafficking has been taken for this study. The pipeline architecture takes cues from the population model that gives the rates of biochemical reactions, to formulate knowledge-based rules for the particle model. Agent-based simulations using these rules, support the existing facts on EGFR-HER2 dynamics. We conclude that, re-engineering models, built using the results of reverse engineering, opens up the possibility of harnessing the power pack of data which now lies scattered in literature. Virtual experiments could then become more realistic when empowered with the findings of empirical cell biology and modelling studies. Implemented on the Agent Modelling Framework developed in-house. C ++ code templates available in Supplementary material . liz.csir@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  8. Reduction of secondary electron yield for E-cloud mitigation by laser ablation surface engineering

    Energy Technology Data Exchange (ETDEWEB)

    Valizadeh, R., E-mail: reza.valizadeh@stfc.ac.uk [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Malyshev, O.B. [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Wang, S. [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Department of Physics, Loughborough University, Loughborough LE11 3TU (United Kingdom); Sian, T. [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); The Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom); Cropper, M.D. [Department of Physics, Loughborough University, Loughborough LE11 3TU (United Kingdom); Sykes, N. [Micronanics Ltd., Didcot, Oxon OX11 0QX (United Kingdom)

    2017-05-15

    Highlights: • SEY below 1 can be achieved with Laser ablation surface engineering. • SEY <1 surface can be produced with different types of nanosecond lasers. • Both microstructure (groves) and nano-structures are playing a role in reducing SEY. - Abstract: Developing a surface with low Secondary Electron Yield (SEY) is one of the main ways of mitigating electron cloud and beam-induced electron multipacting in high-energy charged particle accelerators. In our previous publications, a low SEY < 0.9 for as-received metal surfaces modified by a nanosecond pulsed laser was reported. In this paper, the SEY of laser-treated blackened copper has been investigated as a function of different laser irradiation parameters. We explore and study the influence of micro- and nano-structures induced by laser surface treatment in air of copper samples as a function of various laser irradiation parameters such as peak power, laser wavelength (λ = 355 nm and 1064 nm), number of pulses per point (scan speed and repetition rate) and fluence, on the SEY. The surface chemical composition was determined by x-ray photoelectron spectroscopy (XPS) which revealed that heating resulted in diffusion of oxygen into the bulk and induced the transformation of CuO to sub-stoichiometric oxide. The surface topography was examined with high resolution scanning electron microscopy (HRSEM) which showed that the laser-treated surfaces are dominated by microstructure grooves and nanostructure features.

  9. Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines

    International Nuclear Information System (INIS)

    Scappin, Fabio; Stefansson, Sigurður H.; Haglind, Fredrik; Andreasen, Anders; Larsen, Ulrik

    2012-01-01

    The aim of this paper is to derive a methodology suitable for energy system analysis for predicting the performance and NO x emissions of marine low speed diesel engines. The paper describes a zero-dimensional model, evaluating the engine performance by means of an energy balance and a two zone combustion model using ideal gas law equations over a complete crank cycle. The combustion process is divided into intervals, and the product composition and flame temperature are calculated in each interval. The NO x emissions are predicted using the extended Zeldovich mechanism. The model is validated using experimental data from two MAN B and W engines; one case being data subject to engine parameter changes corresponding to simulating an electronically controlled engine; the second case providing data covering almost all model input and output parameters. The first case of validation suggests that the model can predict specific fuel oil consumption and NO x emissions within the 95% confidence intervals given by the experimental measurements. The second validation confirms the capability of the model to match measured engine output parameters based on measured engine input parameters with a maximum 5% deviation. - Highlights: ► A fast realistic model of a marine two-stroke low speed diesel engine was derived. ► The model is fast and accurate enough for future complex energy systems analysis. ► The effects of engine tuning were validated with experimental tests. ► The model was validated while constrained by experimental input and output data.

  10. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope

    Science.gov (United States)

    Wu, J.S.; Kim, A. M.; Bleher, R.; Myers, B.D.; Marvin, R. G.; Inada, H.; Nakamura, K.; Zhang, X.F.; Roth, E.; Li, S.Y.; Woodruff, T. K.; O'Halloran, T. V.; Dravid, Vinayak P.

    2013-01-01

    A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room- and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. PMID:23500508

  11. Oxygen diffusivity of biologic and synthetic scaffold materials for tissue engineering.

    Science.gov (United States)

    Valentin, Jolene E; Freytes, Donald O; Grasman, Jonathan M; Pesyna, Colin; Freund, John; Gilbert, Thomas W; Badylak, Stephen F

    2009-12-15

    Scaffolds for tissue engineering and regenerative medicine applications are commonly manufactured from synthetic materials, intact or isolated components of extracellular matrix (ECM), or a combination of such materials. After surgical implantation, the metabolic requirements of cells that populate the scaffold depend upon adequate gas and nutrient exchange with the surrounding microenvironment. The present study measured the oxygen transfer through three biologic scaffold materials composed of ECM including small intestinal submucosa (SIS), urinary bladder submucosa (UBS), and urinary bladder matrix (UBM), and one synthetic biomaterial, Dacron. The oxygen diffusivity was calculated from Fick's first law of diffusion. Each material permitted measurable oxygen diffusion. The diffusivity of SIS was found to be dependent on the direction of oxygen transfer; the oxygen transfer in the abluminal-to-luminal direction was significantly greater than the luminal-to-abluminal direction. The oxygen diffusivity of UBM and UBS were similar despite the presence of an intact basement membrane on the luminal surface of UBM. Dacron showed oxygen diffusivity values seven times greater than the ECM biomaterials. The current study showed that each material has unique oxygen diffusivity values, and these values may be dependent on the scaffold's ultrastructure.

  12. The EBI Search engine: providing search and retrieval functionality for biological data from EMBL-EBI.

    Science.gov (United States)

    Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Gur, Tamer; Cowley, Andrew; Li, Weizhong; Uludag, Mahmut; Pundir, Sangya; Cham, Jennifer A; McWilliam, Hamish; Lopez, Rodrigo

    2015-07-01

    The European Bioinformatics Institute (EMBL-EBI-https://www.ebi.ac.uk) provides free and unrestricted access to data across all major areas of biology and biomedicine. Searching and extracting knowledge across these domains requires a fast and scalable solution that addresses the requirements of domain experts as well as casual users. We present the EBI Search engine, referred to here as 'EBI Search', an easy-to-use fast text search and indexing system with powerful data navigation and retrieval capabilities. API integration provides access to analytical tools, allowing users to further investigate the results of their search. The interconnectivity that exists between data resources at EMBL-EBI provides easy, quick and precise navigation and a better understanding of the relationship between different data types including sequences, genes, gene products, proteins, protein domains, protein families, enzymes and macromolecular structures, together with relevant life science literature. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Preliminary report of biological intrusion studies at the Idaho National Engineering Laboratory subsurface disposal area

    International Nuclear Information System (INIS)

    Reynolds, T.D.; Arthur, W.J.

    1983-01-01

    As part of a larger study on the effects of biological intrusion of plants and animals into the soil cover placed over low-level radioactive wastes stored at the Idaho National Engineering Laboratory Subsurface Disposal Area (SDA), research was initiated in the summer of 1982 to determine the burrow characteristics and movement patterns of several small mammal species, and the rooting depths of various plants. The depth, length, and volume of burrows were determined for four small mammal species: deer mouse (Peromyscus maniculatus), Ord's kangaroo rat (Dipodomys ordii), montane vole (Microtus montanus), and Townsend's ground squirrel (Spermophilis townsendii). The latter species excavated the greatest mean burrow depth (39 cm), length (404 cm), and volume (14.8 1). Movement patterns of three species were determined by radiotelemetry. The mean area of use for P. maniculatus, D. ordii, and M. montanus was 2.3, 1.5, and 1.2 ha respectively. Limited data on rooting depths of various native and introduced plant species at the SDA were obtained by literature review and excavation. During FY-83, experiments will be conducted, using the information obtained from the first year of this study, to evaluate the impact of burrowing mammals and root intrusion on the integrity of the soil cover currently existing at the SDA. Details of these experimental studies are presented

  14. Morphology of Filamentous Fungi: Linking Cellular Biology to Process Engineering Using Aspergillus niger

    Science.gov (United States)

    Krull, Rainer; Cordes, Christiana; Horn, Harald; Kampen, Ingo; Kwade, Arno; Neu, Thomas R.; Nörtemann, Bernd

    In various biotechnological processes, filamentous fungi, e.g. Aspergillus niger, are widely applied for the production of high value-added products due to their secretion efficiency. There is, however, a tangled relationship between the morphology of these microorganisms, the transport phenomena and the related productivity. The morphological characteristics vary between freely dispersed mycelia and distinct pellets of aggregated biomass. Hence, advantages and disadvantages for mycel or pellet cultivation have to be balanced out carefully. Due to this inadequate understanding of morphogenesis of filamentous microorganisms, fungal morphology, along with reproducibility of inocula of the same quality, is often a bottleneck of productivity in industrial production. To obtain an optimisation of the production process it is of great importance to gain a better understanding of the molecular and cell biology of these microorganisms as well as the approaches in biochemical engineering and particle technique, in particular to characterise the interactions between the growth conditions, cell morphology, spore-hyphae-interactions and product formation. Advances in particle and image analysis techniques as well as micromechanical devices and their applications to fungal cultivations have made available quantitative morphological data on filamentous cells. This chapter provides the ambitious aspects of this line of action, focussing on the control and characterisation of the morphology, the transport gradients and the approaches to understand the metabolism of filamentous fungi. Based on these data, bottlenecks in the morphogenesis of A. niger within the complex production pathways from gene to product should be identified and this may improve the production yield.

  15. Synthetic Biology and Metabolic Engineering Approaches and Its Impact on Non-Conventional Yeast and Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Madhavan, Aravind [Biotechnology Division, National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum (India); Rajiv Gandhi Centre for Biotechnology, Trivandrum (India); Jose, Anju Alphonsa; Binod, Parameswaran; Sindhu, Raveendran, E-mail: sindhurgcb@gmail.com; Sukumaran, Rajeev K. [Biotechnology Division, National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum (India); Pandey, Ashok [Biotechnology Division, National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum (India); Center for Innovative and Applied Bioprocessing, Mohali, Punjab (India); Castro, Galliano Eulogio [Dpt. Ingeniería Química, Ambiental y de los Materiales Edificio, Universidad de Jaén, Jaén (Spain)

    2017-04-25

    The increasing fossil fuel scarcity has led to an urgent need to develop alternative fuels. Currently microorganisms have been extensively used for the production of first-generation biofuels from lignocellulosic biomass. Yeast is the efficient producer of bioethanol among all existing biofuels option. Tools of synthetic biology have revolutionized the field of microbial cell factories especially in the case of ethanol and fatty acid production. Most of the synthetic biology tools have been developed for the industrial workhorse Saccharomyces cerevisiae. The non-conventional yeast systems have several beneficial traits like ethanol tolerance, thermotolerance, inhibitor tolerance, genetic diversity, etc., and synthetic biology have the power to expand these traits. Currently, synthetic biology is slowly widening to the non-conventional yeasts like Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. Herein, we review the basic synthetic biology tools that can apply to non-conventional yeasts. Furthermore, we discuss the recent advances employed to develop efficient biofuel-producing non-conventional yeast strains by metabolic engineering and synthetic biology with recent examples. Looking forward, future synthetic engineering tools’ development and application should focus on unexplored non-conventional yeast species.

  16. Synthetic Biology and Metabolic Engineering Approaches and Its Impact on Non-Conventional Yeast and Biofuel Production

    Directory of Open Access Journals (Sweden)

    Raveendran Sindhu

    2017-04-01

    Full Text Available The increasing fossil fuel scarcity has led to an urgent need to develop alternative fuels. Currently microorganisms have been extensively used for the production of first-generation biofuels from lignocellulosic biomass. Yeast is the efficient producer of bioethanol among all existing biofuels option. Tools of synthetic biology have revolutionized the field of microbial cell factories especially in the case of ethanol and fatty acid production. Most of the synthetic biology tools have been developed for the industrial workhorse Saccharomyces cerevisiae. The non-conventional yeast systems have several beneficial traits like ethanol tolerance, thermotolerance, inhibitor tolerance, genetic diversity, etc., and synthetic biology have the power to expand these traits. Currently, synthetic biology is slowly widening to the non-conventional yeasts like Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. Herein, we review the basic synthetic biology tools that can apply to non-conventional yeasts. Furthermore, we discuss the recent advances employed to develop efficient biofuel-producing non-conventional yeast strains by metabolic engineering and synthetic biology with recent examples. Looking forward, future synthetic engineering tools’ development and application should focus on unexplored non-conventional yeast species.

  17. Synthetic Biology and Metabolic Engineering Approaches and Its Impact on Non-Conventional Yeast and Biofuel Production

    International Nuclear Information System (INIS)

    Madhavan, Aravind; Jose, Anju Alphonsa; Binod, Parameswaran; Sindhu, Raveendran; Sukumaran, Rajeev K.; Pandey, Ashok; Castro, Galliano Eulogio

    2017-01-01

    The increasing fossil fuel scarcity has led to an urgent need to develop alternative fuels. Currently microorganisms have been extensively used for the production of first-generation biofuels from lignocellulosic biomass. Yeast is the efficient producer of bioethanol among all existing biofuels option. Tools of synthetic biology have revolutionized the field of microbial cell factories especially in the case of ethanol and fatty acid production. Most of the synthetic biology tools have been developed for the industrial workhorse Saccharomyces cerevisiae. The non-conventional yeast systems have several beneficial traits like ethanol tolerance, thermotolerance, inhibitor tolerance, genetic diversity, etc., and synthetic biology have the power to expand these traits. Currently, synthetic biology is slowly widening to the non-conventional yeasts like Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. Herein, we review the basic synthetic biology tools that can apply to non-conventional yeasts. Furthermore, we discuss the recent advances employed to develop efficient biofuel-producing non-conventional yeast strains by metabolic engineering and synthetic biology with recent examples. Looking forward, future synthetic engineering tools’ development and application should focus on unexplored non-conventional yeast species.

  18. Compact opto-electronic engine for high-speed compressive sensing

    Science.gov (United States)

    Tidman, James; Weston, Tyler; Hewitt, Donna; Herman, Matthew A.; McMackin, Lenore

    2013-09-01

    The measurement efficiency of Compressive Sensing (CS) enables the computational construction of images from far fewer measurements than what is usually considered necessary by the Nyquist- Shannon sampling theorem. There is now a vast literature around CS mathematics and applications since the development of its theoretical principles about a decade ago. Applications include quantum information to optical microscopy to seismic and hyper-spectral imaging. In the application of shortwave infrared imaging, InView has developed cameras based on the CS single-pixel camera architecture. This architecture is comprised of an objective lens to image the scene onto a Texas Instruments DLP® Micromirror Device (DMD), which by using its individually controllable mirrors, modulates the image with a selected basis set. The intensity of the modulated image is then recorded by a single detector. While the design of a CS camera is straightforward conceptually, its commercial implementation requires significant development effort in optics, electronics, hardware and software, particularly if high efficiency and high-speed operation are required. In this paper, we describe the development of a high-speed CS engine as implemented in a lab-ready workstation. In this engine, configurable measurement patterns are loaded into the DMD at speeds up to 31.5 kHz. The engine supports custom reconstruction algorithms that can be quickly implemented. Our work includes optical path design, Field programmable Gate Arrays for DMD pattern generation, and circuit boards for front end data acquisition, ADC and system control, all packaged in a compact workstation.

  19. Analysis and optimization with ecological objective function of irreversible single resonance energy selective electron heat engines

    International Nuclear Information System (INIS)

    Zhou, Junle; Chen, Lingen; Ding, Zemin; Sun, Fengrui

    2016-01-01

    Ecological performance of a single resonance ESE heat engine with heat leakage is conducted by applying finite time thermodynamics. By introducing Nielsen function and numerical calculations, expressions about power output, efficiency, entropy generation rate and ecological objective function are derived; relationships between ecological objective function and power output, between ecological objective function and efficiency as well as between power output and efficiency are demonstrated; influences of system parameters of heat leakage, boundary energy and resonance width on the optimal performances are investigated in detail; a specific range of boundary energy is given as a compromise to make ESE heat engine system work at optimal operation regions. Comparing performance characteristics with different optimization objective functions, the significance of selecting ecological objective function as the design objective is clarified specifically: when changing the design objective from maximum power output into maximum ecological objective function, the improvement of efficiency is 4.56%, while the power output drop is only 2.68%; when changing the design objective from maximum efficiency to maximum ecological objective function, the improvement of power output is 229.13%, and the efficiency drop is only 13.53%. - Highlights: • An irreversible single resonance energy selective electron heat engine is studied. • Heat leakage between two reservoirs is considered. • Power output, efficiency and ecological objective function are derived. • Optimal performance comparison for three objective functions is carried out.

  20. Bottom-up engineering of biological systems through standard bricks: a modularity study on basic parts and devices.

    Directory of Open Access Journals (Sweden)

    Lorenzo Pasotti

    Full Text Available BACKGROUND: Modularity is a crucial issue in the engineering world, as it enables engineers to achieve predictable outcomes when different components are interconnected. Synthetic Biology aims to apply key concepts of engineering to design and construct new biological systems that exhibit a predictable behaviour. Even if physical and measurement standards have been recently proposed to facilitate the assembly and characterization of biological components, real modularity is still a major research issue. The success of the bottom-up approach strictly depends on the clear definition of the limits in which biological functions can be predictable. RESULTS: The modularity of transcription-based biological components has been investigated in several conditions. First, the activity of a set of promoters was quantified in Escherichia coli via different measurement systems (i.e., different plasmids, reporter genes, ribosome binding sites relative to an in vivo reference promoter. Second, promoter activity variation was measured when two independent gene expression cassettes were assembled in the same system. Third, the interchangeability of input modules (a set of constitutive promoters and two regulated promoters connected to a fixed output device (a logic inverter expressing GFP was evaluated. The three input modules provide tunable transcriptional signals that drive the output device. If modularity persists, identical transcriptional signals trigger identical GFP outputs. To verify this, all the input devices were individually characterized and then the input-output characteristic of the logic inverter was derived in the different configurations. CONCLUSIONS: Promoters activities (referred to a standard promoter can vary when they are measured via different reporter devices (up to 22%, when they are used within a two-expression-cassette system (up to 35% and when they drive another device in a functionally interconnected circuit (up to 44%. This paper

  1. An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology

    Science.gov (United States)

    Thompson, Rebecca F.; Walker, Matt; Siebert, C. Alistair; Muench, Stephen P.; Ranson, Neil A.

    2016-01-01

    Transmission electron microscopy (EM) is a versatile technique that can be used to image biological specimens ranging from intact eukaryotic cells to individual proteins >150 kDa. There are several strategies for preparing samples for imaging by EM, including negative staining and cryogenic freezing. In the last few years, cryo-EM has undergone a ‘resolution revolution’, owing to both advances in imaging hardware, image processing software, and improvements in sample preparation, leading to growing number of researchers using cryo-EM as a research tool. However, cryo-EM is still a rapidly growing field, with unique challenges. Here, we summarise considerations for imaging of a range of specimens from macromolecular complexes to cells using EM. PMID:26931652

  2. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    Science.gov (United States)

    Rodríguez-Fernández, Luis

    2010-09-01

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the accelerators are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.

  3. Do-it-yourself biology and electronic waste hacking: A politics of demonstration in precarious times.

    Science.gov (United States)

    Delgado, Ana; Callén, Blanca

    2017-02-01

    In recent years, there has been an explosion of do it yourself, maker and hacker spaces in Europe. Through makers and do-it-yourself initiatives, 'hacking' is moving into the everyday life of citizens. This article explores the collective and political nature of those hacks by reporting on empirical work on electronic waste and do-it-yourself biology hacking. Using Dewey's experimental approach to politics, we analyse hacks as 'inquiry' to see how they serve to articulate public and political action. We argue that do-it-yourself and makers' hacks are technical and political demonstrations. What do-it-yourself and makers' hacks ultimately demonstrate is that things can be done otherwise and that 'you' can also do it. In this sense, they have a potential viral effect. The final part of the article explores some potential shortcomings of such politics of demonstration.

  4. Can electronic search engines optimize screening of search results in systematic reviews: an empirical study

    Directory of Open Access Journals (Sweden)

    Clifford Tammy J

    2006-02-01

    Full Text Available Abstract Background Most electronic search efforts directed at identifying primary studies for inclusion in systematic reviews rely on the optimal Boolean search features of search interfaces such as DIALOG® and Ovid™. Our objective is to test the ability of an Ultraseek® search engine to rank MEDLINE® records of the included studies of Cochrane reviews within the top half of all the records retrieved by the Boolean MEDLINE search used by the reviewers. Methods Collections were created using the MEDLINE bibliographic records of included and excluded studies listed in the review and all records retrieved by the MEDLINE search. Records were converted to individual HTML files. Collections of records were indexed and searched through a statistical search engine, Ultraseek, using review-specific search terms. Our data sources, systematic reviews published in the Cochrane library, were included if they reported using at least one phase of the Cochrane Highly Sensitive Search Strategy (HSSS, provided citations for both included and excluded studies and conducted a meta-analysis using a binary outcome measure. Reviews were selected if they yielded between 1000–6000 records when the MEDLINE search strategy was replicated. Results Nine Cochrane reviews were included. Included studies within the Cochrane reviews were found within the first 500 retrieved studies more often than would be expected by chance. Across all reviews, recall of included studies into the top 500 was 0.70. There was no statistically significant difference in ranking when comparing included studies with just the subset of excluded studies listed as excluded in the published review. Conclusion The relevance ranking provided by the search engine was better than expected by chance and shows promise for the preliminary evaluation of large results from Boolean searches. A statistical search engine does not appear to be able to make fine discriminations concerning the relevance of

  5. Can electronic search engines optimize screening of search results in systematic reviews: an empirical study.

    Science.gov (United States)

    Sampson, Margaret; Barrowman, Nicholas J; Moher, David; Clifford, Tammy J; Platt, Robert W; Morrison, Andra; Klassen, Terry P; Zhang, Li

    2006-02-24

    Most electronic search efforts directed at identifying primary studies for inclusion in systematic reviews rely on the optimal Boolean search features of search interfaces such as DIALOG and Ovid. Our objective is to test the ability of an Ultraseek search engine to rank MEDLINE records of the included studies of Cochrane reviews within the top half of all the records retrieved by the Boolean MEDLINE search used by the reviewers. Collections were created using the MEDLINE bibliographic records of included and excluded studies listed in the review and all records retrieved by the MEDLINE search. Records were converted to individual HTML files. Collections of records were indexed and searched through a statistical search engine, Ultraseek, using review-specific search terms. Our data sources, systematic reviews published in the Cochrane library, were included if they reported using at least one phase of the Cochrane Highly Sensitive Search Strategy (HSSS), provided citations for both included and excluded studies and conducted a meta-analysis using a binary outcome measure. Reviews were selected if they yielded between 1000-6000 records when the MEDLINE search strategy was replicated. Nine Cochrane reviews were included. Included studies within the Cochrane reviews were found within the first 500 retrieved studies more often than would be expected by chance. Across all reviews, recall of included studies into the top 500 was 0.70. There was no statistically significant difference in ranking when comparing included studies with just the subset of excluded studies listed as excluded in the published review. The relevance ranking provided by the search engine was better than expected by chance and shows promise for the preliminary evaluation of large results from Boolean searches. A statistical search engine does not appear to be able to make fine discriminations concerning the relevance of bibliographic records that have been pre-screened by systematic reviewers.

  6. Theoretical description of protein field effects on electronic excitations of biological chromophores

    International Nuclear Information System (INIS)

    Varsano, Daniele; Caprasecca, Stefano; Coccia, Emanuele

    2017-01-01

    Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show

  7. Theoretical description of protein field effects on electronic excitations of biological chromophores

    Science.gov (United States)

    Varsano, Daniele; Caprasecca, Stefano; Coccia, Emanuele

    2017-01-01

    Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show

  8. Scanning transmission electron microscopy through-focal tilt-series on biological specimens.

    Science.gov (United States)

    Trepout, Sylvain; Messaoudi, Cédric; Perrot, Sylvie; Bastin, Philippe; Marco, Sergio

    2015-10-01

    Since scanning transmission electron microscopy can produce high signal-to-noise ratio bright-field images of thick (≥500 nm) specimens, this tool is emerging as the method of choice to study thick biological samples via tomographic approaches. However, in a convergent-beam configuration, the depth of field is limited because only a thin portion of the specimen (from a few nanometres to tens of nanometres depending on the convergence angle) can be imaged in focus. A method known as through-focal imaging enables recovery of the full depth of information by combining images acquired at different levels of focus. In this work, we compare tomographic reconstruction with the through-focal tilt-series approach (a multifocal series of images per tilt angle) with reconstruction with the classic tilt-series acquisition scheme (one single-focus image per tilt angle). We visualised the base of the flagellum in the protist Trypanosoma brucei via an acquisition and image-processing method tailored to obtain quantitative and qualitative descriptors of reconstruction volumes. Reconstructions using through-focal imaging contained more contrast and more details for thick (≥500 nm) biological samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Enhanced Physicochemical and Biological Properties of Ion-Implanted Titanium Using Electron Cyclotron Resonance Ion Sources

    Directory of Open Access Journals (Sweden)

    Csaba Hegedűs

    2016-01-01

    Full Text Available The surface properties of metallic implants play an important role in their clinical success. Improving upon the inherent shortcomings of Ti implants, such as poor bioactivity, is imperative for achieving clinical use. In this study, we have developed a Ti implant modified with Ca or dual Ca + Si ions on the surface using an electron cyclotron resonance ion source (ECRIS. The physicochemical and biological properties of ion-implanted Ti surfaces were analyzed using various analytical techniques, such as surface analyses, potentiodynamic polarization and cell culture. Experimental results indicated that a rough morphology was observed on the Ti substrate surface modified by ECRIS plasma ions. The in vitro electrochemical measurement results also indicated that the Ca + Si ion-implanted surface had a more beneficial and desired behavior than the pristine Ti substrate. Compared to the pristine Ti substrate, all ion-implanted samples had a lower hemolysis ratio. MG63 cells cultured on the high Ca and dual Ca + Si ion-implanted surfaces revealed significantly greater cell viability in comparison to the pristine Ti substrate. In conclusion, surface modification by electron cyclotron resonance Ca and Si ion sources could be an effective method for Ti implants.

  10. Ecological engineering to control bioclogging: an original field study coupling infiltration and biological measurements

    Science.gov (United States)

    Gette-bouvarot, Morgane; Mermillod-Blondin, Florian; Lassabatere, Laurent; Lemoine, Damien; Delolme, Cécile; Volatier, Laurence

    2014-05-01

    biomass, bacterial abundances, microbial enzymatic activities, EPS composition, and photosynthetic efficiency) with in situ hydraulic conductivity measurements (falling head method, five measures per enclosure at t0 and tf). Our results showed that some treatments could regulate benthic biofilm growth and improve infiltration rate. For instance, V. viviparus treatment resulted in a decrease in chlorophyll-a, EPS sugar and protein contents and an associated increase of infiltration rate, while it decreased in the control treatment. These results are very promising for the future development of ecological engineering solutions to prevent biological clogging in systems dedicated to infiltration. To our knowledge, this study is the first to highlight such potential role of macro-organisms under field conditions.

  11. Engineering in-plane silicon nanowire springs for highly stretchable electronics

    Science.gov (United States)

    Xue, Zhaoguo; Dong, Taige; Zhu, Zhimin; Zhao, Yaolong; Sun, Ying; Yu, Linwei

    2018-01-01

    Crystalline silicon (c-Si) is unambiguously the most important semiconductor that underpins the development of modern microelectronics and optoelectronics, though the rigid and brittle nature of bulk c-Si makes it difficult to implement directly for stretchable applications. Fortunately, the one-dimensional (1D) geometry, or the line-shape, of Si nanowire (SiNW) can be engineered into elastic springs, which indicates an exciting opportunity to fabricate highly stretchable 1D c-Si channels. The implementation of such line-shape-engineering strategy demands both a tiny diameter of the SiNWs, in order to accommodate the strains under large stretching, and a precise growth location, orientation and path control to facilitate device integration. In this review, we will first introduce the recent progresses of an in-plane self-assembly growth of SiNW springs, via a new in-plane solid-liquid-solid (IPSLS) mechanism, where mono-like but elastic SiNW springs are produced by surface-running metal droplets that absorb amorphous Si thin film as precursor. Then, the critical growth control and engineering parameters, the mechanical properties of the SiNW springs and the prospects of developing c-Si based stretchable electronics, will be addressed. This efficient line-shape-engineering strategy of SiNW springs, accomplished via a low temperature batch-manufacturing, holds a strong promise to extend the legend of modern Si technology into the emerging stretchable electronic applications, where the high carrier mobility, excellent stability and established doping and passivation controls of c-Si can be well inherited. Project supported by the National Basic Research 973 Program (No. 2014CB921101), the National Natural Science Foundation of China (No. 61674075), the National Key Research and Development Program of China (No. 2017YFA0205003), the Jiangsu Excellent Young Scholar Program (No. BK20160020), the Scientific and Technological Support Program in Jiangsu Province (No. BE

  12. Flexible biological arsenite oxidation utilizing NOxand O2as alternative electron acceptors.

    Science.gov (United States)

    Wang, Jie; Wan, Junfeng; Wu, Zihao; Li, Hongli; Li, Haisong; Dagot, Christophe; Wang, Yan

    2017-07-01

    The feasibility of flexible microbial arsenite (As III ) oxidation coupled with the reduction of different electron acceptors was investigated. The results indicated the acclimated microorganisms could oxidize As III with oxygen, nitrate and nitrite as the alternative electron acceptors. A series of batch tests were conducted to measure the kinetic parameters of As III oxidation and to evaluate the effects of environmental conditions including pH and temperature on the activity of biological As III oxidation dependent on different electron acceptors. Kinetic results showed that oxygen-dependent As III oxidation had the highest oxidation rate (0.59 mg As g -1  VSS min -1 ), followed by nitrate- (0.40 mg As g -1  VSS min -1 ) and nitrite-dependent As III oxidation (0.32 mg As g -1  VSS min -1 ). The kinetic data of aerobic As III oxidation were fitted well with the Monod kinetic model, while the Haldane substrate inhibition model was better applicable to describe the inhibition of anoxic As III oxidation. Both aerobic and anoxic As III oxidation performed the optimal activity at the near neutral pH. Besides, the optimal temperature for oxygen-, nitrate- and nitrite-dependent As III oxidation was 30 ± 1 °C, 40 ± 1 °C and 20 ± 1 °C, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Influence of Bicarbonate, Sulfate, and Electron Donors on Biological reduction of Uranium and Microbial Community Composition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wensui [ORNL; Zhou, Jizhong [ORNL; Wu, Weimin [ORNL; Yan, Tingfen [ORNL; Criddle, Craig [ORNL; Jardine, Philip M [ORNL; Gu, Baohua [ORNL

    2007-01-01

    A microcosm study was performed to investigate the effect of ethanol and acetate on uranium(VI) biological reduction and microbial community changes under various geochemical conditions. Each microcosm contained an uranium-contaminated sediment (up to 2.8 g U/kg) suspended in buffer with bicarbonate at concentrations of either 1 mM or 40 mM and sulfate at either 1.1 or 3.2 mM. Ethanol or acetate was used as an electron donor. Results indicate that ethanol yielded in significantly higher U(VI) reduction rates than acetate. A low bicarbonate concentration (1 mM) was favored for U(VI) bioreduction to occur in sediments, but high concentrations of bicarbonate (40 mM) and sulfate (3.2 mM) decreased the reduction rates of U(VI). Microbial communities were dominated by species from the Geothrix genus and Proteobacteria phylum in all microcosms. However, species in the Geobacteraceae family capable of reducing U(VI) were significantly enriched by ethanol and acetate in low bicarbonate buffer. Ethanol increased the population of unclassified Desulfuromonales, while acetate increased the population of Desulfovibrio. Additionally, species in the Geobacteraceae family were not enriched in high bicarbonate buffer, but the Geothrix and the unclassified Betaproteobacteria species were enriched. This study concludes that ethanol could be a better electron donor than acetate for reducing U(VI) under given experimental conditions, and electron donor and geoundwater geochemistry alter microbial communities responsible for U(VI) reduction.

  14. Influence of bicarbonate, sulfate, and electron donors on biological reduction of uranium and microbial community composition

    Energy Technology Data Exchange (ETDEWEB)

    Luo Wensui [Oak Ridge Inst. for Science and Education, TN (United States); Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Wu Wei-Min; Criddle, C.S. [Stanford Univ., CA (United States). Dept. of Civil and Environmental Engineering; Yan Tingfen [Oak Ridge Inst. for Science and Education, TN (United States); Jardine, P.M.; Gu Baohua [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Zhou Jizhong [Oklahoma Univ., Norman, OK (United States). Dept. of Botany and Microbiology

    2007-12-15

    A microcosm study was performed to investigate the effect of ethanol and acetate on uranium(VI) biological reduction and microbial community changes under various geochemical conditions. Each microcosm contained an uranium-contaminated sediment (up to 2.8 g U/kg) suspended in buffer with bicarbonate at concentrations of either 1 or 40 mM and sulfate at either 1.1 or 3.2 mM. Ethanol or acetate was used as an electron donor. Results indicate that ethanol yielded in significantly higher U(VI) reduction rates than acetate. A low bicarbonate concentration (1 mM) was favored for U(VI) bioreduction to occur in sediments, but high concentrations of bicarbonate (40 mM) and sulfate (3.2 mM) decreased the reduction rates of U(VI). Microbial communities were dominated by species from the Geothrix genus and Proteobacteria phylum in all microcosms. However, species in the Geobacteraceae family capable of reducing U(VI) were significantly enriched by ethanol and acetate in low-bicarbonate buffer. Ethanol increased the population of unclassified Desulfuromonales, while acetate increased the population of Desulfovibrio. Additionally, species in the Geobacteraceae family were not enriched in high-bicarbonate buffer, but the Geothrix and the unclassified Betaproteobacteria species were enriched. This study concludes that ethanol could be a better electron donor than acetate for reducing U(VI) under given experimental conditions, and electron donor and groundwater geochemistry alter microbial communities responsible for U(VI) reduction. (orig.)

  15. Flat-panel electronic displays: a triumph of physics, chemistry and engineering

    Science.gov (United States)

    Hilsum, Cyril

    2010-01-01

    This paper describes the history and science behind the development of modern flat-panel displays, and assesses future trends. Electronic displays are an important feature of modern life. For many years the cathode ray tube, an engineering marvel, was universal, but its shape was cumbersome and its operating voltage too high. The need for a flat-panel display, working at a low voltage, became imperative, and much research has been applied to this need. Any versatile flat-panel display will exploit an electro-optical effect, a transparent conductor and an addressing system to deliver data locally. The first need is to convert an electrical signal into a visible change. Two methods are available, the first giving emission of light, the second modulating ambient illumination. The most useful light-emitting media are semiconductors, historically exploiting III–V or II–VI compounds, but more recently organic or polymer semiconductors. Another possible effect uses gas plasma discharges. The modulating, or subtractive, effects that have been studied include liquid crystals, electrophoresis, electrowetting and electrochromism. A transparent conductor makes it possible to apply a voltage to an extended area while observing the results. The design is a compromise, since the free electrons that carry current also absorb light. The first materials used were metals, but some semiconductors, when heavily doped, give a better balance, with high transmission for a low resistance. Delivering data unambiguously to a million or so picture elements across the display area is no easy task. The preferred solution is an amorphous silicon thin-film transistor deposited at each cross-point in an X–Y matrix. Success in these endeavours has led to many applications for flat-panel displays, including television, flexible displays, electronic paper, electronic books and advertising signs. PMID:20123746

  16. Flat-panel electronic displays: a triumph of physics, chemistry and engineering.

    Science.gov (United States)

    Hilsum, Cyril

    2010-03-13

    This paper describes the history and science behind the development of modern flat-panel displays, and assesses future trends. Electronic displays are an important feature of modern life. For many years the cathode ray tube, an engineering marvel, was universal, but its shape was cumbersome and its operating voltage too high. The need for a flat-panel display, working at a low voltage, became imperative, and much research has been applied to this need. Any versatile flat-panel display will exploit an electro-optical effect, a transparent conductor and an addressing system to deliver data locally. The first need is to convert an electrical signal into a visible change. Two methods are available, the first giving emission of light, the second modulating ambient illumination. The most useful light-emitting media are semiconductors, historically exploiting III-V or II-VI compounds, but more recently organic or polymer semiconductors. Another possible effect uses gas plasma discharges. The modulating, or subtractive, effects that have been studied include liquid crystals, electrophoresis, electrowetting and electrochromism. A transparent conductor makes it possible to apply a voltage to an extended area while observing the results. The design is a compromise, since the free electrons that carry current also absorb light. The first materials used were metals, but some semiconductors, when heavily doped, give a better balance, with high transmission for a low resistance. Delivering data unambiguously to a million or so picture elements across the display area is no easy task. The preferred solution is an amorphous silicon thin-film transistor deposited at each cross-point in an X-Y matrix. Success in these endeavours has led to many applications for flat-panel displays, including television, flexible displays, electronic paper, electronic books and advertising signs.

  17. Defect formation and electronic structure regulated by strain engineering in ReS2

    Science.gov (United States)

    Min, Y. M.; Wang, A. Q.; Ren, X. M.; Liu, L. Z.; Wu, X. L.

    2018-01-01

    By using first-principles calculations, we investigated the monolayer ReS2 with vacancies under strain engineering, specifically focusing on its energy of formation, band gap, electron density of states, effective mass and optical properties. The calculated results disclose that S4 defect is more likely to form than other kinds of vacancies. Asymmetric deformation induced by strain makes its band structure transformation from direct band gap to indirect band gap. The analysis of the partial density of states indicates that the Re-d and S-p orbitals are the major components of the defect states, being different from MoS2, the defect states locate both above and below the Fermi level. Moreover, the effective mass was sensitive and anisotropic under the external strain. The reflection spectrum can be greatly tuned by the external strains, which indicates that the ReS2 monolayer has promising applications in nanoscale strain sensor and conductance-switch FETs.

  18. Molecular Biology: Conference on Genetic Engineering Techniques (2nd) Held in London (United Kingdom) on 20-21 November 1986.

    Science.gov (United States)

    1987-05-27

    A181 T5 MOLECULAR BIOLOGY CONFERENCE O GENETIC ENGINEERING 1/ TECNIQUES (2ND) HEL (U) OFFICE OF NAVAL RESEARCH LONDON (ENGLAND) C F ZOMZELY-NEURATH...represented both genetic diseases. For example, Hunting- academic and industrial organizations in ton’s Chorea, Cystic Fibrosis , and a 1:1 ratio...be cloned in available vicinity of the Huntington’s Chorea and vectors or easily analyzed by standard Cystic Fibrosis mutations in human, and 3

  19. Promoting convergence: The integrated graduate program in physical and engineering biology at Yale University, a new model for graduate education.

    Science.gov (United States)

    Noble, Dorottya B; Mochrie, Simon G J; O'Hern, Corey S; Pollard, Thomas D; Regan, Lynne

    2016-11-12

    In 2008, we established the Integrated Graduate Program in Physical and Engineering Biology (IGPPEB) at Yale University. Our goal was to create a comprehensive graduate program to train a new generation of scientists who possess a sophisticated understanding of biology and who are capable of applying physical and quantitative methodologies to solve biological problems. Here we describe the framework of the training program, report on its effectiveness, and also share the insights we gained during its development and implementation. The program features co-teaching by faculty with complementary specializations, student peer learning, and novel hands-on courses that facilitate the seamless blending of interdisciplinary research and teaching. It also incorporates enrichment activities to improve communication skills, engage students in science outreach, and foster a cohesive program cohort, all of which promote the development of transferable skills applicable in a variety of careers. The curriculum of the graduate program is integrated with the curricular requirements of several Ph.D.-granting home programs in the physical, engineering, and biological sciences. Moreover, the wide-ranging recruiting activities of the IGPPEB serve to enhance the quality and diversity of students entering graduate school at Yale. We also discuss some of the challenges we encountered in establishing and optimizing the program, and describe the institution-level changes that were catalyzed by the introduction of the new graduate program. The goal of this article is to serve as both an inspiration and as a practical "how to" manual for those who seek to establish similar programs at their own institutions. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):537-549, 2016. © 2016 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  20. Advanced photonic, electronic, and web engineering systems: WILGA Symposium, January 2013

    Science.gov (United States)

    Romaniuk, Ryszard S.

    2013-10-01

    The cycle of WILGA Symposia [wilga.ise.pw.edu.pl] on Photonics and Web Engineering, Advanced Electronic Systems, under the auspices of SPIE, IEEE, KEiT PAN and WEiTI PW was initiated in 1998 by a Research Team PERG/ELHEP ISE PW. The WILGA conferences take place two times a year and the participants are young scientists from this country and abroad. This paper debates chosen topical tracks and some papers presented during the 31 WILGA Multi-Conference, which took place on 8-10 February 2013 at the Faculty of WEiTI PW. The January conference was attended by around 100 persons. Here we discuss closer the subjects of biomedical photonics, electronics and informatics, as well as chosen aspects of applications of advanced photonic, electronic circuits and systems. The 32 nd WILGA Symposium took place on 27 May - 02 June 2013 in WUT WILGA resort near Warsaw. These two editions of WILGA Conferences - January and May have generated more than 250 articles, from which around 100 were chosen by the Symposium and Conference Committees to be published in this volume of Proc.SPIE. WILGA Symposium papers are traditionally submitted via the WILGA web page [wilga.ise.pw.edu.pl] to the SPIE Proceedings publishing system [spie.org]. Email for the correspondence is: photonics@ise.pw.edu.pl. All Wilga papers are published in journals Elektronika, IJET-PAN and in Proc.SPIE. Topical tracks of the symposium usually embrace, among others, new technologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium In its two editions a year is a summary of the development of numerable Ph.D. theses carried out in this country and this geographical region in the area of advanced electronic and photonic systems. It is also

  1. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications.

    Science.gov (United States)

    Sokolov, Anatoliy N; Tee, Benjamin C-K; Bettinger, Christopher J; Tok, Jeffrey B-H; Bao, Zhenan

    2012-03-20

    Skin is the body's largest organ and is responsible for the transduction of a vast amount of information. This conformable material simultaneously collects signals from external stimuli that translate into information such as pressure, pain, and temperature. The development of an electronic material, inspired by the complexity of this organ is a tremendous, unrealized engineering challenge. However, the advent of carbon-based electronics may offer a potential solution to this long-standing problem. In this Account, we describe the use of an organic field-effect transistor (OFET) architecture to transduce mechanical and chemical stimuli into electrical signals. In developing this mimic of human skin, we thought of the sensory elements of the OFET as analogous to the various layers and constituents of skin. In this fashion, each layer of the OFET can be optimized to carry out a specific recognition function. The separation of multimodal sensing among the components of the OFET may be considered a "divide and conquer" approach, where the electronic skin (e-skin) can take advantage of the optimized chemistry and materials properties of each layer. This design of a novel microstructured gate dielectric has led to unprecedented sensitivity for tactile pressure events. Typically, pressure-sensitive components within electronic configurations have suffered from a lack of sensitivity or long mechanical relaxation times often associated with elastomeric materials. Within our method, these components are directly compatible with OFETs and have achieved the highest reported sensitivity to date. Moreover, the tactile sensors operate on a time scale comparable with human skin, making them ideal candidates for integration as synthetic skin devices. The methodology is compatible with large-scale fabrication and employs simple, commercially available elastomers. The design of materials within the semiconductor layer has led to the incorporation of selectivity and sensitivity within

  2. E-MODULE DEVELOPMENT FOR THE SUBJECT OF MEASURING INSTRUMENTS AND MEASUREMENT IN ELECTRONICS ENGINEERING EDUCATION

    Directory of Open Access Journals (Sweden)

    Nuryake Fajaryati

    2016-09-01

    Full Text Available This study aims to develop an e-module as a medium of learning for the practice course of Measuring Instruments and Measurement in the Department of Electronics Engineering Education of Yogyakarta State University and to determine the feasibility of the e-module. This study employed a method of research and development. The development process was conducted through four phases by using the model of Lee and Owens which consisted of analysis phase, design phase, developing and implementation phase, as well as evaluation phase.The evaluation was conducted in several stages. Firstly, an alpha test for product validation was conducted by the experts on material and media. After that, a beta test was conducted by testing the product in small group users. The subjects of this study were the students of Electronics Engineering. The instruments used to collect the data were a validation sheet and questionnaires. The results of qualitative data were then modified into quantitative data with a range of 1 to 5, then they were converted with a rating scale to determine the feasibility of the medium. The results showed that based on the alpha test, the medium was in a very high quality. Meanwhile, in the beta test of the instructional aspect, in terms of material and evaluation and the multimedia aspect the e-module was respectively considered feasible and quite feasible. The four indicators namely text, image, animation and video were all generally considered feasible. In terms of usage aspect, the e-module was considered feasible where its two indicators, namely instructions and navigation, were generally regarded as very feasible by all respondents.

  3. Using Mathematics and Engineering to Solve Problems in Secondary Level Biology

    Science.gov (United States)

    Cox, Charles; Reynolds, Birdy; Schunn, Christian; Schuchardt, Anita

    2016-01-01

    There are strong classroom ties between mathematics and the sciences of physics and chemistry, but those ties seem weaker between mathematics and biology. Practicing biologists realize both that there are interesting mathematics problems in biology, and that viewing classroom biology in the context of another discipline could support students'…

  4. Electronic Engineering Notebook: A software environment for research execution, documentation and dissemination

    Science.gov (United States)

    Moerder, Dan

    1994-01-01

    The electronic engineering notebook (EEN) consists of a free form research notebook, implemented in a commercial package for distributed hypermedia, which includes utilities for graphics capture, formatting and display of LaTex constructs, and interfaces to the host operating system. The latter capability consists of an information computer-aided software engineering (CASE) tool and a means to associate executable scripts with source objects. The EEN runs on Sun and HP workstations. The EEN, in day-to-day use can be used in much the same manner as the sort of research notes most researchers keep during development of projects. Graphics can be pasted in, equations can be entered via LaTex, etc. In addition, the fact that the EEN is hypermedia permits easy management of 'context', e.g., derivations and data can contain easily formed links to other supporting derivations and data. The CASE tool also permits development and maintenance of source code directly in the notebook, with access to its derivations and data.

  5. Applications of Engineered DNA-Binding Molecules Such as TAL Proteins and the CRISPR/Cas System in Biology Research

    Directory of Open Access Journals (Sweden)

    Toshitsugu Fujita

    2015-09-01

    Full Text Available Engineered DNA-binding molecules such as transcription activator-like effector (TAL or TALE proteins and the clustered regularly interspaced short palindromic repeats (CRISPR and CRISPR-associated proteins (Cas (CRISPR/Cas system have been used extensively for genome editing in cells of various types and species. The sequence-specific DNA-binding activities of these engineered DNA-binding molecules can also be utilized for other purposes, such as transcriptional activation, transcriptional repression, chromatin modification, visualization of genomic regions, and isolation of chromatin in a locus-specific manner. In this review, we describe applications of these engineered DNA-binding molecules for biological purposes other than genome editing.

  6. 76 FR 72087 - Special Conditions: Diamond Aircraft Industries, Model DA-40NG; Electronic Engine Control (EEC...

    Science.gov (United States)

    2011-11-22

    ... turbine engine compressor variable geometry (VG): the VG function in itself is not an airplane function... is intended for turbine engine installations; however, the intent is applicable to piston engine...

  7. A Requirement Engineering Framework for Electronic Data Sharing of Health Care Data Between Organizations

    Science.gov (United States)

    Liu, Xia; Peyton, Liam; Kuziemsky, Craig

    Health care is increasingly provided to citizens by a network of collaboration that includes multiple providers and locations. Typically, that collaboration is on an ad-hoc basis via phone calls, faxes, and paper based documentation. Internet and wireless technologies provide an opportunity to improve this situation via electronic data sharing. These new technologies make possible new ways of working and collaboration but it can be difficult for health care organizations to understand how to use the new technologies while still ensuring that their policies and objectives are being met. It is also important to have a systematic approach to validate that e-health processes deliver the performance improvements that are expected. Using a case study of a palliative care patient receiving home care from a team of collaborating health organizations, we introduce a framework based on requirements engineering. Key concerns and objectives are identified and modeled (privacy, security, quality of care, and timeliness of service). And, then, proposed business processes which use new technologies are modeled in terms of these concerns and objectives to assess their impact and ensure that electronic data sharing is well regulated.

  8. An Interdisciplinary Approach for Biology, Technology, Engineering and Mathematics (BTEM to Enhance 21st Century Skills in Malaysia.

    Directory of Open Access Journals (Sweden)

    Lee Chuo Hiong

    2015-07-01

    Full Text Available An interdisciplinary approach for Biology, Technology, Engineering and Mathematics (BTEM is suggested to develop 21st century skills in the Malaysian context. BTEM allows students to master biological knowledge and at the same time to be adroit in other sub discipline skills. Students master factual knowledge of biology and skills of the 21st century simultaneously. The two main teaching and learning strategies applied in BTEM are problem-based learning and inquiry-based learning. Students are exposed to real world problems that require them to undergo inquiry processes to discover the inventive solutions. The content knowledge of biology adheres to the Malaysian Integrated Curriculum for Secondary Schools. The essence of engineering is inventive problem solving. Incorporation of information communication technologies in teaching and learning will be able to fulfil the needs of the current Net Generation. Mathematics plays an important role as computational tools, especially in analysing data. The highlighted 21st century skills in BTEM include digital literacy, inventive thinking, effective communication, high productivity, and spiritual and noble values.

  9. Dawning of a new era in TRP channel structural biology by cryo-electron microscopy.

    Science.gov (United States)

    Madej, M Gregor; Ziegler, Christine M

    2018-02-01

    Cryo-electron microscopy (cryo-EM) permits the determination of atomic protein structures by averaging large numbers of individual projection images recorded at cryogenic temperatures-a method termed single-particle analysis. The cryo-preservation traps proteins within a thin glass-like ice layer, making literally a freeze image of proteins in solution. Projections of randomly adopted orientations are merged to reconstruct a 3D density map. While atomic resolution for highly symmetric viruses was achieved already in 2009, the development of new sensitive and fast electron detectors has enabled cryo-EM for smaller and asymmetrical proteins including fragile membrane proteins. As one of the most important structural biology methods at present, cryo-EM was awarded in October 2017 with the Nobel Prize in Chemistry. The molecular understanding of Transient-Receptor-Potential (TRP) channels has been boosted tremendously by cryo-EM single-particle analysis. Several near-atomic and atomic structures gave important mechanistic insights, e.g., into ion permeation and selectivity, gating, as well as into the activation of this enigmatic and medically important membrane protein family by various chemical and physical stimuli. Lastly, these structures have set the starting point for the rational design of TRP channel-targeted therapeutics to counteract life-threatening channelopathies. Here, we attempt a brief introduction to the method, review the latest advances in cryo-EM structure determination of TRP channels, and discuss molecular insights into the channel function based on the wealth of TRP channel cryo-EM structures.

  10. Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization.

    Science.gov (United States)

    Whitaker, William B; Sandoval, Nicholas R; Bennett, Robert K; Fast, Alan G; Papoutsakis, Eleftherios T

    2015-06-01

    Synthetic methylotrophy is the development of non-native methylotrophs that can utilize methane and methanol as sole carbon and energy sources or as co-substrates with carbohydrates to produce metabolites as biofuels and chemicals. The availability of methane (from natural gas) and its oxidation product, methanol, has been increasing, while prices have been decreasing, thus rendering them as attractive fermentation substrates. As they are more reduced than most carbohydrates, methane and methanol, as co-substrates, can enhance the yields of biologically produced metabolites. Here we discuss synthetic biology and metabolic engineering strategies based on the native biology of aerobic methylotrophs for developing synthetic strains grown on methanol, with Escherichia coli as the prototype. Copyright © 2015. Published by Elsevier Ltd.

  11. Distinguishing Biologically Controlled Calcareous Biomineralization in Fossil Organisms Using Electron Backscatter Diffraction (EBSD)

    Science.gov (United States)

    Päßler, Jan-Filip; Jarochowska, Emilia; Bestmann, Michel; Munnecke, Axel

    2018-02-01

    Although carbonate-precipitating cyanobacteria are ubiquitous in aquatic ecosystems today, the criteria used to identify them in the geological record are subjective and rarely testable. Differences in the mode of biomineralization between cyanobacteria and eukaryotes, i.e. biologically induced calcification (BIM) vs. biologically controlled calcification (BCM), result in different crystallographic structures which might be used as a criterion to test cyanobacterial affinities. Cyanobacteria are often used as a ‘wastebasket taxon’, to which various microfossils are assigned. The lack of a testable criterion for the identification of cyanobacteria may bias their fossil record severely. We employed electron backscatter diffraction (EBSD) to investigate the structure of calcareous skeletons in two microproblematica widespread in Palaeozoic marine ecosystems: Rothpletzella, hypothesized to be a cyanobacterium, and an incertae sedis microorganism Allonema. We used a calcareous trilobite shell as a BCM reference. The mineralized structure of Allonema has a simple single-layered structure of acicular crystals perpendicular to the surface of the organism. The c-axes of these crystals are parallel to the elongation and thereby normal to the surface of the organism. EBSD pole figures and misorientation axes distribution reveal a fibre texture around the c-axis with a small degree of variation (up to 30°), indicating a highly ordered structure. A comparable pattern was found in the trilobite shell. This structure allows excluding biologically induced mineralization as the mechanism of shell formation in Allonema. In Rothpletzella, the c-axes of the microcrystalline sheath show a broader clustering compared to Allonema, but still reveal crystals tending to be perpendicular to the surface of the organism. The misorientation axes of adjacent crystals show an approximately random distribution. Rothpletzella also shares morphological similarities with extant cyanobacteria. We

  12. Distinguishing Biologically Controlled Calcareous Biomineralization in Fossil Organisms Using Electron Backscatter Diffraction (EBSD

    Directory of Open Access Journals (Sweden)

    Jan-Filip Päßler

    2018-02-01

    Full Text Available Although carbonate-precipitating cyanobacteria are ubiquitous in aquatic ecosystems today, the criteria used to identify them in the geological record are subjective and rarely testable. Differences in the mode of biomineralization between cyanobacteria and eukaryotes, i.e., biologically induced calcification (BIM vs. biologically controlled calcification (BCM, result in different crystallographic structures which might be used as a criterion to test cyanobacterial affinities. Cyanobacteria are often used as a “wastebasket taxon,” to which various microfossils are assigned. The lack of a testable criterion for the identification of cyanobacteria may bias their fossil record severely. We employed electron backscatter diffraction (EBSD to investigate the structure of calcareous skeletons in two microproblematica widespread in Palaeozoic marine ecosystems: Rothpletzella, hypothesized to be a cyanobacterium, and an incertae sedis microorganism Allonema. We used a calcareous trilobite shell as a BCM reference. The mineralized structure of Allonema has a simple single-layered structure of acicular crystals perpendicular to the surface of the organism. The c-axes of these crystals are parallel to the elongation and thereby normal to the surface of the organism. EBSD pole figures and misorientation axes distribution reveal a fiber texture around the c-axis with a small degree of variation (up to 30°, indicating a highly ordered structure. A comparable pattern was found in the trilobite shell. This structure allows excluding biologically induced mineralization as the mechanism of shell formation in Allonema. In Rothpletzella, the c-axes of the microcrystalline sheath show a broader clustering compared to Allonema, but still reveal crystals tending to be perpendicular to the surface of the organism. The misorientation axes of adjacent crystals show an approximately random distribution. Rothpletzella also shares morphological similarities with extant

  13. Engineering the electronic structure of zigzag graphene nanoribbons with periodic line defect

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarty, Chandrima; Mandal, Bikash; Sarkar, Pranab, E-mail: pranab.sarkar@visva-bharati.ac.in

    2017-01-30

    By using first principle calculations we have studied the magnetic, electronic and transport properties of zigzag-graphene nanoribbon (zGNR) with a topological line defect (LD) composed of pentagons and heptagons (5-7). We show that one can engineer the magnetic and electronic properties of the edge passivated zGNR with 5-7 LD through the variation of either the width of the zGNR or the position of the LD. Thus, one can have ferromagnetic behaviour in zGNR by introducing 5-7 LD close to one edge of the ribbon. One can tune the zGNR with 5-7 LD from semi-metallic to semi-metallic semiconductor either by increasing the width of the ribbon or by changing the position of the LD. We have also studied the effect of the doping on the degeneracy of the spin states of 4-4-LD-zGNR. The calculation of transport properties of N-doped 4-4-LD-zGNR reveals that it has high spin filtering efficiencies. The tuning of the spin polarization through the formation of 5-7 LD in zGNR holds a promise for its application in spintronic devices. - Highlights: • The magnetic and electronic properties of zGNR with 5-7 LD can be engineered through the variation of the width of zGNR and the position of LD. • Ferromagnetic behaviour in zGNR can be found by introducing 5-7 LD close to one edge of the ribbon. • Semi-metallic to semi-metallic semiconductor transition occurs by increasing the width of the ribbon or by changing the position of the LD. • There is significant effect of the doping on the degeneracy of the spin states of 4-4-LD-zGNR. • The transport properties calculation of N-doped 4-4-LD-zGNR reveals that it has high spin filtering efficiencies.

  14. Using Biographies of Outstanding Women in Bioengineering to Dispel Biology Teachers' Misperceptions of Engineers

    Science.gov (United States)

    Hoh, Yin Kiong

    2009-01-01

    The perception that engineers and scientists are intelligent Caucasian men who are socially inept and absent-minded people is prevalent among students of all levels, from elementary school to college. While the media may, by chance or choice, promote this image, the reality is that most engineers are men. These stereotypical images of engineers…

  15. Are Prompts Provided by Electronic Books as Effective for Teaching Preschoolers a Biological Concept as Those Provided by Adults?

    Science.gov (United States)

    Strouse, Gabrielle A.; Ganea, Patricia A.

    2016-01-01

    Research Findings: Prior research indicates that shared book reading is an effective method for teaching biological concepts to young children. Adult questioning during reading enhances children's comprehension. We investigated whether adult prompting during the reading of an electronic book enhanced children's understanding of a biological…

  16. Electron Cryo-Tomography of Vitreous Cryo-Sections : Towards Imaging Biological Nanomachines in their Cellular Environment

    NARCIS (Netherlands)

    Pierson, J.

    2011-01-01

    The field of biological electron microcopy (EM) has evolved into a reliable imaging technique for examining the ultrastructure of cells and their constituents at molecular, and, in some cases, atomic1, 2 resolution. Conventional EM techniques are being overshadowed by cryo-techniques, which ensure a

  17. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 6, is a collection of papers that discusses the role of integrated electronics in medical systems and the usage of biological mathematical models in biological systems. Other papers deal with the health care systems, the problems and methods of approach toward rehabilitation, as well as the future of biomedical engineering. One paper discusses the use of system identification as it applies to biological systems to estimate the values of a number of parameters (for example, resistance, diffusion coefficients) by indirect means. More particularly, the i

  18. Elevating Learner Achievement Using Formative Electronic Lab Assessments in the Engineering Laboratory: A Viable Alternative to Weekly Lab Reports

    Science.gov (United States)

    Chen, Baiyun; DeMara, Ronald F.; Salehi, Soheil; Hartshorne, Richard

    2018-01-01

    A laboratory pedagogy interweaving weekly student portfolios with onsite formative electronic laboratory assessments (ELAs) is developed and assessed within the laboratory component of a required core course of the electrical and computer engineering (ECE) undergraduate curriculum. The approach acts to promote student outcomes, and neutralize…

  19. Factors Related to Success in Electronic Mentoring of Female College Engineering Students by Mentors Working in Industry.

    Science.gov (United States)

    Carlsen, William S.; Single, Peg Boyle

    This paper reports findings from a comprehensive evaluation of the first national electronic mentoring program that matches female engineering students with mentors working in industry. The program being evaluated--MentorNet--uses a combination of on-line tools, computer databases, mentoring specialists, and campus and industrial contacts to…

  20. Project based education as motivation factor in undergraduate program in Electronics at Copenhagen University College of Engineering

    DEFF Research Database (Denmark)

    Friesel, Anna

    2012-01-01

    This paper summarizes the contents of our experience with project based courses and team work in the undergraduate program in Electronics. The main points of our program are described in this paper, where the leading idea is to combine theory with practical engineering projects. Our students work...

  1. Numerical Techniques for Chemical and Biological Engineers Using MATLAB A Simple Bifurcation Approach

    CERN Document Server

    Elnashaie, Said SEH; Affane, Chadia

    2007-01-01

    All reactive chemical and biological processes are highly nonlinear allowing for multiple steady states. This book addresses the bifurcation characteristics of chemical and biological processes as the general case and treats systems with a unique steady state as special cases. It includes a CD-ROM which contains nearly 100 MATLAB programs.

  2. Synthetic biology approaches in cancer immunotherapy, genetic network engineering, and genome editing.

    Science.gov (United States)

    Chakravarti, Deboki; Cho, Jang Hwan; Weinberg, Benjamin H; Wong, Nicole M; Wong, Wilson W

    2016-04-18

    Investigations into cells and their contents have provided evolving insight into the emergence of complex biological behaviors. Capitalizing on this knowledge, synthetic biology seeks to manipulate the cellular machinery towards novel purposes, extending discoveries from basic science to new applications. While these developments have demonstrated the potential of building with biological parts, the complexity of cells can pose numerous challenges. In this review, we will highlight the broad and vital role that the synthetic biology approach has played in applying fundamental biological discoveries in receptors, genetic circuits, and genome-editing systems towards translation in the fields of immunotherapy, biosensors, disease models and gene therapy. These examples are evidence of the strength of synthetic approaches, while also illustrating considerations that must be addressed when developing systems around living cells.

  3. Promoting convergence: The integrated graduate program in physical and engineering biology at Yale University, a new model for graduate education

    Science.gov (United States)

    Noble, Dorottya B.; Mochrie, Simon G. J.; O'Hern, Corey S.; Pollard, Thomas D.

    2016-01-01

    Abstract In 2008, we established the Integrated Graduate Program in Physical and Engineering Biology (IGPPEB) at Yale University. Our goal was to create a comprehensive graduate program to train a new generation of scientists who possess a sophisticated understanding of biology and who are capable of applying physical and quantitative methodologies to solve biological problems. Here we describe the framework of the training program, report on its effectiveness, and also share the insights we gained during its development and implementation. The program features co‐teaching by faculty with complementary specializations, student peer learning, and novel hands‐on courses that facilitate the seamless blending of interdisciplinary research and teaching. It also incorporates enrichment activities to improve communication skills, engage students in science outreach, and foster a cohesive program cohort, all of which promote the development of transferable skills applicable in a variety of careers. The curriculum of the graduate program is integrated with the curricular requirements of several Ph.D.‐granting home programs in the physical, engineering, and biological sciences. Moreover, the wide‐ranging recruiting activities of the IGPPEB serve to enhance the quality and diversity of students entering graduate school at Yale. We also discuss some of the challenges we encountered in establishing and optimizing the program, and describe the institution‐level changes that were catalyzed by the introduction of the new graduate program. The goal of this article is to serve as both an inspiration and as a practical “how to” manual for those who seek to establish similar programs at their own institutions. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):537–549, 2016. PMID:27292366

  4. Comparing Two Definitions of Work for a Biological Quantum Heat Engine

    International Nuclear Information System (INIS)

    Xu You-Yang; Zhao Shun-Cai; Liu Juan

    2015-01-01

    Systems of photosynthetic reaction centres have been modelled as heat engines, while it has also been reported that the efficiency and power of such heat engines can be enhanced by quantum interference — a trait that has attracted much interest. We compare two definitions of the work of such a photosynthetic heat engine, i.e. definition A used by Weimer et al. and B by Dorfman et al. We also introduce a coherent interaction between donor and acceptor (CIDA) to demonstrate a reversible energy transport. We show that these two definitions of work can impart contradictory results, that is, CIDA enhances the power and efficiency of the photosynthetic heat engine with definition B but not with A. Additionally, we find that both reversible and irreversible excitation-energy transport can be described with definition A, but definition B can only model irreversible transport. As a result, we conclude that definition A is more suitable for photosynthetic systems than definition B. (paper)

  5. Biology

    Indian Academy of Sciences (India)

    I am particularly happy that the Academy is bringing out this document by Professor M S. Valiathan on Ayurvedic Biology. It is an effort to place before the scientific community, especially that of India, the unique scientific opportunities that arise out of viewing Ayurveda from the perspective of contemporary science, its tools ...

  6. Extreme Band Engineering of III-Nitride Nanowire Heterostructures for Electronic and Photonic Application

    Science.gov (United States)

    Sarwar, ATM Golam

    Bottom-up nanowires are attractive for realizing semiconductor devices with extreme heterostructures because strain relaxation through the nanowire sidewalls allows the combination of highly lattice mismatched materials without creating dislocations. The resulting nanowires are used to fabricate light-emitting diodes (LEDs), lasers, solar cells, and sensors. The aim of this work is to investigate extreme heterostructures, which are impossible or very hard to realize in conventional planar films, exploiting the strain accommodation property of nanowires and engineer their band structure for novel electronic and photonic applications. To this end, in this thesis, III-Nitride semiconductor nanowires are investigated. In the first part of this work, a complete growth phase diagram of InN nanowires on silicon using plasma assisted molecular beam epitaxy is developed, and structural and optical characteristics are mapped as a function of growth parameters. Next, a novel up-side down pendeoepitaxial growth of InN forming mushroom-like microstructures is demonstrated and detail structural and optical characterizations are performed. Based on this, a method to grow strain-free large area single crystalline InN or thin film is proposed and the growth of InN on patterned GaN is investigated. The optimized growth conditions developed for InN are further used to grow InGaN nanowires graded over the whole composition range. Numerical energy band simulation is performed to better understand the effect of polarization charge on photo-carrier transport in these extremely graded nanowires. A novel photodetector device with negative differential photocurrent is demonstrated using the graded InGaN nanowires. In the second part of this thesis, polarization-induced nanowire light emitting diodes (PINLEDs) are investigated. The electrical and optical properties of the nanowire heterostructure are engineered and optimized for ultraviolet and deep ultraviolet applications. The electrical

  7. Synthetic biology of metabolism: using natural variation to reverse engineer systems.

    Science.gov (United States)

    Kliebenstein, Daniel J

    2014-06-01

    A goal of metabolic engineering is to take a plant and introduce new or modify existing pathways in a directed and predictable fashion. However, existing data does not provide the necessary level of information to allow for predictive models to be generated. One avenue to reverse engineer the necessary information is to study the genetic control of natural variation in plant primary and secondary metabolism. These studies are showing that any engineering model will have to incorporate information about 1000s of genes in both the nuclear and organellar genome to optimize the function of the introduced pathway. Further, these genes may interact in an unpredictable fashion complicating any engineering approach as it moves from the one or two gene manipulation to higher order stacking efforts. Finally, metabolic engineering may be influenced by a previously unrecognized potential for a plant to measure the metabolites within it. In combination, these observations from natural variation provide a beginning to help improve current efforts at metabolic engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. BioTCM-SE: a semantic search engine for the information retrieval of modern biology and traditional Chinese medicine.

    Science.gov (United States)

    Chen, Xi; Chen, Huajun; Bi, Xuan; Gu, Peiqin; Chen, Jiaoyan; Wu, Zhaohui

    2014-01-01

    Understanding the functional mechanisms of the complex biological system as a whole is drawing more and more attention in global health care management. Traditional Chinese Medicine (TCM), essentially different from Western Medicine (WM), is gaining increasing attention due to its emphasis on individual wellness and natural herbal medicine, which satisfies the goal of integrative medicine. However, with the explosive growth of biomedical data on the Web, biomedical researchers are now confronted with the problem of large-scale data analysis and data query. Besides that, biomedical data also has a wide coverage which usually comes from multiple heterogeneous data sources and has different taxonomies, making it hard to integrate and query the big biomedical data. Embedded with domain knowledge from different disciplines all regarding human biological systems, the heterogeneous data repositories are implicitly connected by human expert knowledge. Traditional search engines cannot provide accurate and comprehensive search results for the semantically associated knowledge since they only support keywords-based searches. In this paper, we present BioTCM-SE, a semantic search engine for the information retrieval of modern biology and TCM, which provides biologists with a comprehensive and accurate associated knowledge query platform to greatly facilitate the implicit knowledge discovery between WM and TCM.

  9. BioTCM-SE: A Semantic Search Engine for the Information Retrieval of Modern Biology and Traditional Chinese Medicine

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2014-01-01

    Full Text Available Understanding the functional mechanisms of the complex biological system as a whole is drawing more and more attention in global health care management. Traditional Chinese Medicine (TCM, essentially different from Western Medicine (WM, is gaining increasing attention due to its emphasis on individual wellness and natural herbal medicine, which satisfies the goal of integrative medicine. However, with the explosive growth of biomedical data on the Web, biomedical researchers are now confronted with the problem of large-scale data analysis and data query. Besides that, biomedical data also has a wide coverage which usually comes from multiple heterogeneous data sources and has different taxonomies, making it hard to integrate and query the big biomedical data. Embedded with domain knowledge from different disciplines all regarding human biological systems, the heterogeneous data repositories are implicitly connected by human expert knowledge. Traditional search engines cannot provide accurate and comprehensive search results for the semantically associated knowledge since they only support keywords-based searches. In this paper, we present BioTCM-SE, a semantic search engine for the information retrieval of modern biology and TCM, which provides biologists with a comprehensive and accurate associated knowledge query platform to greatly facilitate the implicit knowledge discovery between WM and TCM.

  10. Human or animal homograft: could they have a future as a biological scaffold for engineered heart valves?

    Science.gov (United States)

    Dainese, L; Biglioli, P

    2010-06-01

    Tissue-engineered heart valves (TEHVs) promise to be the ideal heart valve replacement: they have the potential to grow and repair within the host, to minimise inflammatory and immunological responses and to limit thromboembolism. Viable cells included in TEHVs can theoretically adapt to a growing and changing environment exactly as a native biological structure. This could be extremely important in case of paediatric applications, where reoperations are frequently required to replace failed valve substitutes or to accommodate the growth of the patient. At present time the biological matrix from allogenic or xenogenic decellularized valves represents an appropriate valve scaffold in TEHVs, showing theoretically an ability to grow and repair within the host. Viable cells included in extracellular valve matrix can theoretically adapt to a growing and changing environment like the native biological structure. The aim of this paper is to present a review concerning the use of homograft and allograft valves as an ideal substrate for cardiac engineered tissue valves that represent an exciting possibility for in situ regeneration and repair of heart valves.

  11. Electronic structure engineering in silicene via atom substitution and a new two-dimensional Dirac structure Si3C

    Science.gov (United States)

    Yin, Na; Dai, Ying; Wei, Wei; Huang, Baibiao

    2018-04-01

    A lot of efforts have been made towards the band gap opening in two-dimensional silicene, the silicon version of graphene. In the present work, the electronic structures of single atom doped (B, N, Al and P) and codoped (B/N and Al/P) silicene monolayers are systematically examined on the base of density functional electronic calculations. Our results demonstrate that single atom doping can realize electron or hole doping in the silicene; while codoping, due to the syergistic effects, results in finite band gap in silicene at the Dirac point without significantly degrading the electronic properties. In addition, the characteristic of band gap shows dependence on the doping concentration. Importantly, we predict a new two-dimensional Dirac structure, the graphene-like Si3C, which also shows linear band dispersion relation around the Fermi level. Our results demonstrates an important perspective to engineer the electronic and optical properties of silicene.

  12. Chitosan to Connect Biology to Electronics: Fabricating the Bio-Device Interface and Communicating Across This Interface

    Directory of Open Access Journals (Sweden)

    Eunkyoung Kim

    2014-12-01

    Full Text Available Individually, advances in microelectronics and biology transformed the way we live our lives. However, there remain few examples in which biology and electronics have been interfaced to create synergistic capabilities. We believe there are two major challenges to the integration of biological components into microelectronic systems: (i assembly of the biological components at an electrode address, and (ii communication between the assembled biological components and the underlying electrode. Chitosan possesses a unique combination of properties to meet these challenges and serve as an effective bio-device interface material. For assembly, chitosan’s pH-responsive film-forming properties allow it to “recognize” electrode-imposed signals and respond by self-assembling as a stable hydrogel film through a cathodic electrodeposition mechanism. A separate anodic electrodeposition mechanism was recently reported and this also allows chitosan hydrogel films to be assembled at an electrode address. Protein-based biofunctionality can be conferred to electrodeposited films through a variety of physical, chemical and biological methods. For communication, we are investigating redox-active catechol-modified chitosan films as an interface to bridge redox-based communication between biology and an electrode. Despite significant progress over the last decade, many questions still remain which warrants even deeper study of chitosan’s structure, properties, and functions.

  13. Biomimetic approaches for engineered organ chips and skin electronics for in vitro diagnostics

    Science.gov (United States)

    Suh, Kahp-Yang; Pang, Changhyun; Jang, Kyung-Jin; Kim, Hong Nam; Jiao, Alex; Hwang, Nathaniel S.; Kim, Min Sung; Kang, Do-Hyun; Kim, Deok-Ho

    2012-10-01

    Two kinds of biomimetic systems including engineered organ chip and flexible electronic sensor are presented. First, in vivo, renal tubular epithelial cells are exposed to luminal fluid shear stress (FSS) and a transepithelial osmotic gradient. In this study, we used a simple collecting-duct-on-a-chip to investigate the role of an altered luminal microenvironment in the translocation of aquaporin-2 (AQP2) and the reorganization of actin cytoskeleton (F-actin) in primary cultured inner medullary collecting duct (IMCD) cells of rat kidney. We demonstrate that several factors (i.e., luminal FSS, hormonal stimulation, transepithelial osmotic gradient) collectively exert a profound effect on the AQP2 trafficking in the collecting ducts, which is associated with actin cytoskeletal reorganization. Furthermore, with this kidney-mimicking chip, renal toxicity of cisplatin was tested under static and fluidic conditions, suggesting the physiological relevancy of fluidic environment compared to static culture. Second, we present a simple architecture for a flexible and highly sensitive strain sensor that enables the detection of pressure, shear and torsion. The device is based on two interlocked arrays of high-aspect-ratio Pt-coated polymeric nanofibres that are supported on thin polydimethylsiloxane layers. When different sensing stimuli are applied, the degree of interconnection and the electrical resistance of the sensor changes in a reversible, directional manner with specific, discernible strain-gauge factors. We show that the sensor can be used to monitor signals ranging from human heartbeats to the impact of a bouncing water droplet on a superhydrophobic surface.

  14. Conjugated π electron engineering of generalized stacking fault in graphene and h-BN

    Science.gov (United States)

    Ouyang, Bin; Chen, Cheng; Song, J.

    2018-03-01

    Generalized-stacking-fault energy (GSFE) serves as an important metric that prescribes dislocation behaviors in materials. In this paper, utilizing first-principle calculations and chemical bonding analysis, we studied the behaviors of generalized stacking fault in graphene and h-BN. It has been shown that the π bond formation plays a critical role in the existence of metastable stacking fault (MSF) in graphene and h-BN lattice along certain slip directions. Chemical functionalization was then proposed as an effective means to engineer the π bond, and subsequently MSF along dislocation slips within graphene and h-BN. Taking hydrogenation as a representative functionalization method, we demonstrated that, with the preferential adsorption of hydrogen along the slip line, π electrons along the slip would be saturated by adsorbed hydrogen atoms, leading to the moderation or elimination of MSF. Our study elucidates the atomic mechanism of MSF formation in graphene-like materials, and more generally, provides important insights towards predictive tuning of mechanic properties in two-dimensional nanomaterials.

  15. Safety leadership in the teaching laboratories of electrical and electronic engineering departments at Taiwanese Universities.

    Science.gov (United States)

    Wu, Tsung-Chih

    2008-01-01

    Safety has always been one of the principal goals in teaching laboratories. Laboratories cannot serve their educational purpose when accidents occur. The leadership of department heads has a major impact on laboratory safety, so this study discusses the factors affecting safety leadership in teaching laboratories. This study uses a mail survey to explore the perceived safety leadership in electrical and electronic engineering departments at Taiwanese universities. An exploratory factor analysis shows that there are three main components of safety leadership, as measured on a safety leadership scale: safety controlling, safety coaching, and safety caring. The descriptive statistics also reveals that among faculty, the perception of department heads' safety leadership is in general positive. A two-way MANOVA shows that there are interaction effects on safety leadership between university size and instructor age; there are also interaction effects between presence of a safety committee and faculty gender and faculty age. It is therefore necessary to assess organizational factors when determining whether individual factors are the cause of differing perceptions among faculty members. The author also presents advice on improving safety leadership for department heads at small universities and at universities without safety committees.

  16. Can Man Control His Biological Evolution? A Symposium on Genetic Engineering. Man's Responsibility to His Future

    Science.gov (United States)

    Hoagland, Hudson

    1972-01-01

    Biological evolution can be carried out in the laboratory. With new knowledge available in genetics, possibilities are raised that genetic characters can be transferred in the future to embryos according to a predetermined plan. (PS)

  17. Proceedings of the ninth annual conference of the IEEE Engineering in Medicine and Biology Society

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This book contains over 100 papers. Some of the titles are: Angular integrations and inter-projections correlation effects in CT reconstruction; Supercomputing environment for biomedical research; Program towards a computational molecular biology; Current problems in molecular biology computing; Signal averaging applied to positron emission tomography; First experimental results from a high spatial resolution PET prototype; and A coherent approach in computer-aided radiotherapy

  18. Suitability of a PLCL fibrous scaffold for soft tissue engineering applications: A combined biological and mechanical characterisation.

    Science.gov (United States)

    Laurent, Cédric P; Vaquette, Cédryck; Liu, Xing; Schmitt, Jean-François; Rahouadj, Rachid

    2018-04-01

    Poly(lactide-co-ε-caprolactone) (PLCL) has been reported to be a good candidate for tissue engineering because of its good biocompatibility. Particularly, a braided PLCL scaffold (PLL/PCL ratio = 85/15) has been recently designed and partially validated for ligament tissue engineering. In the present study, we assessed the in vivo biocompatibility of acellular and cellularised scaffolds in a rat model. We then determined its in vitro biocompatibility using stem cells issued from both bone marrow and Wharton Jelly. From a biological point of view, the scaffold was shown to be suitable for tissue engineering in all these cases. Secondly, while the initial mechanical properties of this scaffold have been previously reported to be adapted to load-bearing applications, we studied the evolution in time of the mechanical properties of PLCL fibres due to hydrolytic degradation. Results for isolated PLCL fibres were extrapolated to the fibrous scaffold using a previously developed numerical model. It was shown that no accumulation of plastic strain was to be expected for a load-bearing application such as anterior cruciate ligament tissue engineering. However, PLCL fibres exhibited a non-expected brittle behaviour after two months. This may involve a potential risk of premature failure of the scaffold, unless tissue growth compensates this change in mechanical properties. This combined study emphasises the need to characterise the properties of biomaterials in a pluridisciplinary approach, since biological and mechanical characterisations led in this case to different conclusions concerning the suitability of this scaffold for load-bearing applications.

  19. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.

    Science.gov (United States)

    Zhu, Hongli; Luo, Wei; Ciesielski, Peter N; Fang, Zhiqiang; Zhu, J Y; Henriksson, Gunnar; Himmel, Michael E; Hu, Liangbing

    2016-08-24

    goal of this study is to review the fundamental structures and chemistries of wood and wood-derived materials, which are essential for a wide range of existing and new enabling technologies. The scope of the review covers multiscale materials and assemblies of cellulose, hemicellulose, and lignin as well as other biomaterials derived from wood, in regard to their major emerging applications. Structure-properties-application relationships will be investigated in detail. Understanding the fundamental properties of these structures is crucial for designing and manufacturing products for emerging applications. Today, a more holistic understanding of the interplay between the structure, chemistry, and performance of wood and wood-derived materials is advancing historical applications of these materials. This new level of understanding also enables a myriad of new and exciting applications, which motivate this review. There are excellent reviews already on the classical topic of woody materials, and some recent reviews also cover new understanding of these materials as well as potential applications. This review will focus on the uniqueness of woody materials for three critical applications: green electronics, biological devices, and energy storage and bioenergy.

  20. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongli; Luo, Wei; Ciesielski, Peter N.; Fang, Zhiqiang; Zhu, J. Y.; Henriksson, Gunnar; Himmel, Michael E.; Hu, Liangbing

    2016-08-24

    goal of this study is to review the fundamental structures and chemistries of wood and wood-derived materials, which are essential for a wide range of existing and new enabling technologies. The scope of the review covers multiscale materials and assemblies of cellulose, hemicellulose, and lignin as well as other biomaterials derived from wood, in regard to their major emerging applications. Structure-properties-application relationships will be investigated in detail. Understanding the fundamental properties of these structures is crucial for designing and manufacturing products for emerging applications. Today, a more holistic understanding of the interplay between the structure, chemistry, and performance of wood and wood-derived materials is advancing historical applications of these materials. This new level of understanding also enables a myriad of new and exciting applications, which motivate this review. There are excellent reviews already on the classical topic of woody materials, and some recent reviews also cover new understanding of these materials as well as potential applications. This review will focus on the uniqueness of woody materials for three critical applications: green electronics, biological devices, and energy storage and bioenergy.

  1. Urban biomining meets printable electronics: end-to-end at destination biological recycling and reprinting

    Data.gov (United States)

    National Aeronautics and Space Administration — Space missions rely utterly on metallic components, from the spacecraft to electronics. Yet, metals add mass, and electronics have the additional problem of a...

  2. Engineering development of a short course in transportation planning for electronic delivery to DOTD : technical summary.

    Science.gov (United States)

    2000-12-01

    As part of an effort to establish a Louisiana professional Masters degree in Civil Engineering, with a concentration in transportation engineering, it has been proposed that a number of courses should be offered on different Louisiana campuses thr...

  3. International symposium on Electron-magnetic fields in mechatronics, electrical and electronique engineering

    CERN Document Server

    Krawczyk, Andrzej; Dolezel, Ivo

    2008-01-01

    Includes contributions on electromagnetic fields in electrical engineering which intends at joining theory and practice. This book helps the world-wide electromagnetic community, both academic and engineering, in understanding electromagnetism itself and its application to technical problems.

  4. Electronic Engineering Technology Program Exit Examination as an ABET and Self-Assessment Tool

    Science.gov (United States)

    Thomas, Gary; Darayan, Shahryar

    2018-01-01

    Every engineering, computing, and engineering technology program accredited by the Accreditation Board for Engineering and Technology (ABET) has formulated many and varied self-assessment methods. Methods used to assess a program for ABET accreditation and continuous improvement are for keeping programs current with academic and industrial…

  5. Systems biology and metabolic engineering of lactic acid bacteria for improved fermented foods

    NARCIS (Netherlands)

    Flahaut, N.A.L.; Vos, de W.M.

    2014-01-01

    Lactic acid bacteria have long been used in industrial dairy and other food fermentations that make use of their metabolic activities leading to products with specific organoleptic properties. Metabolic engineering is a rational approach to steer fermentations toward the production of desired

  6. Teaching Applied Genetics and Molecular Biology to Agriculture Engineers. Application of the European Credit Transfer System

    Science.gov (United States)

    Weiss, J.; Egea-Cortines, M.

    2008-01-01

    We have been teaching applied molecular genetics to engineers and adapted the teaching methodology to the European Credit Transfer System. We teach core principles of genetics that are universal and form the conceptual basis of most molecular technologies. The course then teaches widely used techniques and finally shows how different techniques…

  7. Enhancing the Internationalisation of Distance Education in the Biological Sciences: The DUNE Project and Genetic Engineering.

    Science.gov (United States)

    Leach, C. K.; And Others

    1997-01-01

    Describes the Distance Educational Network of Europe (DUNE) project that aims at enhancing the development of distance education in an international context. Highlights issues relating to the delivery of distance-learning courses in a transnational forum. Describes the genetic engineering course that aims at explaining the core techniques of…

  8. Radiation effects. Engineering handbook (methods of improving the radiation tolerance of electronics in space vehicles). Final report

    International Nuclear Information System (INIS)

    Holmes-siedle, A.; Freeman, R.

    1978-04-01

    Space radiation effects in electronic subsystems are discussed. Useful data from a wide range of sources are presented and methods which have been newly developed to provide engineering solutions to the problem of degradation of devices in space are described. The new developments include a simple model for analyzing space-charge buildup in MOS devices, a ranking scheme for CMOS - LSI circuits and improved dose transmission curves and tradeoff curves for spacecraft life against shield weight. A complete analysis of a piece of spacecraft equipment is given. Recommendations for future progress in hardness engineering are made

  9. Supporting information retrieval from electronic health records: A report of University of Michigan's nine-year experience in developing and using the Electronic Medical Record Search Engine (EMERSE).

    Science.gov (United States)

    Hanauer, David A; Mei, Qiaozhu; Law, James; Khanna, Ritu; Zheng, Kai

    2015-06-01

    This paper describes the University of Michigan's nine-year experience in developing and using a full-text search engine designed to facilitate information retrieval (IR) from narrative documents stored in electronic health records (EHRs). The system, called the Electronic Medical Record Search Engine (EMERSE), functions similar to Google but is equipped with special functionalities for handling challenges unique to retrieving information from medical text. Key features that distinguish EMERSE from general-purpose search engines are discussed, with an emphasis on functions crucial to (1) improving medical IR performance and (2) assuring search quality and results consistency regardless of users' medical background, stage of training, or level of technical expertise. Since its initial deployment, EMERSE has been enthusiastically embraced by clinicians, administrators, and clinical and translational researchers. To date, the system has been used in supporting more than 750 research projects yielding 80 peer-reviewed publications. In several evaluation studies, EMERSE demonstrated very high levels of sensitivity and specificity in addition to greatly improved chart review efficiency. Increased availability of electronic data in healthcare does not automatically warrant increased availability of information. The success of EMERSE at our institution illustrates that free-text EHR search engines can be a valuable tool to help practitioners and researchers retrieve information from EHRs more effectively and efficiently, enabling critical tasks such as patient case synthesis and research data abstraction. EMERSE, available free of charge for academic use, represents a state-of-the-art medical IR tool with proven effectiveness and user acceptance. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Electron Resonance Decay into a Biological Function: Decrease in Viability of E. coli Transformed by Plasmid DNA Irradiated with 0.5-18 eV Electrons.

    Science.gov (United States)

    Kouass Sahbani, S; Cloutier, P; Bass, A D; Hunting, D J; Sanche, L

    2015-10-01

    Transient negative ions (TNIs) are ubiquitous in electron-molecule scattering at low electron impact energies (0-20 eV) and are particularly effective in damaging large biomolecules. Because ionizing radiation generates mostly 0-20 eV electrons, TNIs are expected to play important roles in cell mutagenesis and death during radiotherapeutic cancer treatment, although this hypothesis has never been directly verified. Here, we measure the efficiency of transforming E. coli bacteria by inserting into the cells, pGEM-3ZfL(-) plasmid DNA that confers resistance to the antibiotic ampicillin. Before transformation, plasmids are irradiated with electrons of specific energies between 0.5 and 18 eV. The loss of transformation efficiency plotted as a function of irradiation energy reveals TNIs at 5.5 and 9.5 eV, corresponding to similar states observed in the yields of DNA double strand breaks. We show that TNIs are detectable in the electron-energy dependence of a biological process and can decrease cell viability.

  11. Biology versus engineering: the TMI accident as a case study in problems of dosimetry

    International Nuclear Information System (INIS)

    Aamodt, N.O.

    2000-01-01

    Contradictions between official results of studying impact on the environment arising from the Three-Mile-Island (TMI) accident in 1979 and scarce information about biological objects irradiation years later are considered. It is shown that some populations (public and animals) underwent radiation exposure by several orders exceeding the previously calculated doses, which is confirmed by cytogenetic and immune tests. The use of meteorological models, which do not consider complicated topography, gives rise to incorrect results. The situation that took shape around TMI provides a unique potentiality for biological dosimetry to demonstrate its efficiency and advantages in technical reconstruction of radiation exposure doses [ru

  12. Investigations in space-related molecular biology. [cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens

    Science.gov (United States)

    Fernandez-Moran, H.; Pritzker, A. N.

    1974-01-01

    Improved instrumentation and preparation techniques for high resolution, high voltage cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens are reported. Computer correlated ultrastructural and biochemical work on hydrated and dried cell membranes and related biological systems provided information on membrane organization, ice crystal formation and ordered water, RNA virus linked to cancer, lunar rock samples, and organometallic superconducting compounds. Apollo 11, 12, 14, and 15 specimens were analyzed

  13. Enhanced biological phosphorus removal. Carbon sources, nitrate as electron acceptor, and characterization of the sludge community

    Energy Technology Data Exchange (ETDEWEB)

    Christensson, M.

    1997-10-01

    Enhanced biological phosphorus removal (EBPR) was studied in laboratory scale experiments as well as in a full scale EBPR process. The studies were focused on carbon source transformations, the use of nitrate as an electron acceptor and characterisation of the microflora. A continuous anaerobic/aerobic laboratory system was operated on synthetic wastewater with acetate as sole carbon source. An efficient EBPR was obtained and mass balances over the anaerobic reactor showed a production of 1.45 g poly-{beta}-hydroxyalcanoic acids (PHA), measured as chemical oxygen demand (COD), per g of acetic acid (as COD) taken up. Furthermore, phosphate was released in the anaerobic reactor in a ratio of 0.33 g phosphorus (P) per g PHA (COD) formed and 0.64 g of glycogen (COD) was consumed per g of acetic acid (COD) taken up. Microscopic investigations revealed a high amount of polyphosphate accumulating organisms (PAO) in the sludge. Isolation and characterisation of bacteria indicated Acinetobacter spp. to be abundant in the sludge, while sequencing of clones obtained in a 16S rDNA clone library showed a large part of the bacteria to be related to the high mole % G+C Gram-positive bacteria and only a minor fraction to be related to the gamma-subclass of proteobacteria to which Acinetobacter belongs. Operation of a similar anaerobic/aerobic laboratory system with ethanol as sole carbon source showed that a high EBPR can be achieved with this compound as carbon source. However, a prolonged detention time in the anaerobic reactor was required. PHA were produced in the anaerobic reactor in an amount of 1.24 g COD per g of soluble DOC taken up, phosphate was released in an amount of 0.4-0.6 g P per g PHA (COD) produced and 0.46 g glycogen (COD) was consumed per g of soluble COD taken up. Studies of the EBPR in the UCT process at the sewage treatment plant in Helsingborg, Sweden, showed the amount of volatile fatty acids (VFA) available to the PAO in the anaerobic stage to be

  14. Molecular Cloning Designer Simulator (MCDS): All-in-one molecular cloning and genetic engineering design, simulation and management software for complex synthetic biology and metabolic engineering projects.

    Science.gov (United States)

    Shi, Zhenyu; Vickers, Claudia E

    2016-12-01

    Molecular Cloning Designer Simulator (MCDS) is a powerful new all-in-one cloning and genetic engineering design, simulation and management software platform developed for complex synthetic biology and metabolic engineering projects. In addition to standard functions, it has a number of features that are either unique, or are not found in combination in any one software package: (1) it has a novel interactive flow-chart user interface for complex multi-step processes, allowing an integrated overview of the whole project; (2) it can perform a user-defined workflow of cloning steps in a single execution of the software; (3) it can handle multiple types of genetic recombineering, a technique that is rapidly replacing classical cloning for many applications; (4) it includes experimental information to conveniently guide wet lab work; and (5) it can store results and comments to allow the tracking and management of the whole project in one platform. MCDS is freely available from https://mcds.codeplex.com.

  15. LPG gaseous phase electronic port injection on performance, emission and combustion characteristics of Lean Burn SI Engine

    Science.gov (United States)

    Bhasker J, Pradeep; E, Porpatham

    2016-08-01

    Gaseous fuels have always been established as an assuring way to lessen emissions in Spark Ignition engines. In particular, LPG resolved to be an affirmative fuel for SI engines because of their efficient combustion properties, lower emissions and higher knock resistance. This paper investigates performance, emission and combustion characteristics of a microcontroller based electronic LPG gaseous phase port injection system. Experiments were carried out in a single cylinder diesel engine altered to behave as SI engine with LPG as fuel at a compression ratio of 10.5:1. The engine was regulated at 1500 rpm at a throttle position of 20% at diverse equivalence ratios. The test results were compared with that of the carburetion system. The results showed that there was an increase in brake power output and brake thermal efficiency with LPG gas phase injection. There was an appreciable extension in the lean limit of operation and maximum brake power output under lean conditions. LPG injection technique significantly reduces hydrocarbon and carbon monoxide emissions. Also, it extremely enhances the rate of combustion and helps in extending the lean limit of LPG. There was a minimal increase of NOx emissions over the lean operating range due to higher temperature. On the whole it is concluded that port injection of LPG is best suitable in terms of performance and emission for LPG fuelled lean burn SI engine.

  16. Finite element analysis (FEA): applying an engineering method to functional morphology in anthropology and human biology.

    Science.gov (United States)

    Panagiotopoulou, O

    2009-01-01

    A fundamental research question for morphologists is how morphological variation in the skeleton relates to function. Traditional approaches have advanced our understanding of form-function relationships considerably but have limitations. Strain gauges can only record strains on a surface, and the geometry of the structure can limit where they can be bonded. Theoretical approaches, such as geometric abstractions, work well on problems with simple geometries and material properties but biological structures typically have neither of these. Finite element analysis (FEA) is a method that overcomes these problems by reducing a complex geometry into a finite number of elements with simple geometries. In addition, FEA allows strain to be modelled across the entire surface of the structure and throughout the internal structure. With advances in the processing power of computers, FEA has become more accessible and as such is becoming an increasingly popular tool to address questions about form-function relationships in development and evolution, as well as human biology generally. This paper provides an introduction to FEA including a review of the sequence of steps needed for the generation of biologically accurate finite element models that can be used for the testing of biological and functional morphology hypotheses.

  17. Recent developments in systems biology and metabolic engineering of plant microbe interactions

    Directory of Open Access Journals (Sweden)

    Vishal Kumar

    2016-09-01

    Full Text Available Microorganisms play a crucial role in the sustainability of the various ecosystems. The characterization of various interactions between microorganisms and other biotic factors is a necessary footstep to understand the association and functions of microbial communities. Among the different microbial interactions in an ecosystem, plant-microbe interaction plays an important role to balance the ecosystem. The present review explores plant microbe interactions using gene editing and system biology tools towards the comprehension in improvement of plant traits. Further, system biology tools like FBA, OptKnock and constrain based modeling helps in understanding such interactions as a whole. In addition, various gene editing tools have been summarized and a strategy has been hypothesized for the development of disease free plants. Furthermore, we have tried to summarize the predictions through data retrieved from various types of sources such as high throughput sequencing data (e.g. single nucleotide polymorphism (SNP detection, RNA-seq, proteomics and metabolic models have been reconstructed from such sequences for species communities. It is well known fact that systems biology approaches and modeling of biological networks will enable us to learn the insight of such network and will also help further in understanding these interactions.

  18. Convergent Inquiry in Science & Engineering: The Use of Atomic Force Microscopy in a Biology Class

    Science.gov (United States)

    Lee, Il-Sun; Byeon, Jung-Ho; Kwon, Yong-Ju

    2013-01-01

    The purpose of this study was to design a teaching method suitable for science high school students using atomic force microscopy. During their scientific inquiry procedure, high school students observed a micro-nanostructure of a biological sample, which is unobservable via an optical microscope. The developed teaching method enhanced students'…

  19. Continuous CS Analysis of Using the SIEM to Introduction to Computer Programming Education in the School of Engineering Evening Division at the Department of Electrical and Electronic Engineering

    Science.gov (United States)

    Dohi, Shinichi; Miyakawa, Osamu; Konno, Noriko

    In order to improve students’ motivation, the SIEM (School of Information Environment Method) which is the education method for the introduction of the computer programming education was developed. We focus on students’ motivation, and we have measured students’ motivation as the educational effects. After the SIEM was developed in the School of Information Environment, it applied to introduction to the computer programming education in the School of Engineering Evening Division at the Department of Electrical and Electronic Engineering. It is effective for the improvement of students’ motivation. By adding the Customer Satisfaction Analysis to the SIEM Analysis, it was able to clarify the priority level of the SIEM assessment item. In this paper, we describe results of the Customer Satisfaction Analysis.

  20. Elucidating the electron transport in semiconductors via Monte Carlo simulations: an inquiry-driven learning path for engineering undergraduates

    International Nuclear Information System (INIS)

    Adorno, Dominique Persano; Pizzolato, Nicola; Fazio, Claudio

    2015-01-01

    Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations. (paper)

  1. Food engineering and predictive microbiology: on the necessity to combine biological and physical kinetics.

    Science.gov (United States)

    Mafart, P

    2005-04-15

    Predictive microbiology is mainly applied in the area of risk assessment, but unusually regarded as a tool for the optimisation of processes, which needs the implementation of food engineering. Combination of predictive microbiology and food engineering allows both the assessment of a process in relation to risk and its optimisation. Intrinsic comparison between processes in relation to risk, on one hand, and the development of process optimisation tools on the other hand, necessitates the implementation of new concepts and the involvement of simplified and standard calculations based upon reference target strains and environmental conditions. Some conventional concepts related to heat treatments are extended, while some new ones related to bacterial growth are derived from the gamma concept of Marcel Zwietering.

  2. Development of a broad-host synthetic biology toolbox for Ralstonia eutropha and its application to engineering hydrocarbon biofuel production.

    Science.gov (United States)

    Bi, Changhao; Su, Peter; Müller, Jana; Yeh, Yi-Chun; Chhabra, Swapnil R; Beller, Harry R; Singer, Steven W; Hillson, Nathan J

    2013-11-13

    The chemoautotrophic bacterium Ralstonia eutropha can utilize H2/CO2 for growth under aerobic conditions. While this microbial host has great potential to be engineered to produce desired compounds (beyond polyhydroxybutyrate) directly from CO2, little work has been done to develop genetic part libraries to enable such endeavors. We report the development of a toolbox for the metabolic engineering of Ralstonia eutropha H16. We have constructed a set of broad-host-range plasmids bearing a variety of origins of replication, promoters, 5' mRNA stem-loop structures, and ribosomal binding sites. Specifically, we analyzed the origins of replication pCM62 (IncP), pBBR1, pKT (IncQ), and their variants. We tested the promoters P(BAD), T7, P(xyls/PM), P(lacUV5), and variants thereof for inducible expression. We also evaluated a T7 mRNA stem-loop structure sequence and compared a set of ribosomal binding site (RBS) sequences derived from Escherichia coli, R. eutropha, and a computational RBS design tool. Finally, we employed the toolbox to optimize hydrocarbon production in R. eutropha and demonstrated a 6-fold titer improvement using the appropriate combination of parts. We constructed and evaluated a versatile synthetic biology toolbox for Ralstonia eutropha metabolic engineering that could apply to other microbial hosts as well.

  3. Towards biologically relevant synthetic designer matrices in 3D bioprinting for tissue engineering and regenerative medicine

    KAUST Repository

    Costa, Rúben M.

    2017-05-12

    3D bioprinting is one of the most promising technologies in tissue engineering and regenerative medicine. As new printing techniques and bioinks are getting developed, new cellular constructs with high resolution and functionality arise. Different to bioinks of animal, algal or plant origin, synthesized bioinks are proposed as superior biomaterials because their characteristics are fully under control. In this review, we will highlight the potential of synthetic biomaterials to be used as bioinks in 3D bioprinting to produce functionally enhanced matrices.

  4. In Vitro Biological Evaluation of Electrospun Polycaprolactone/Gelatine Nanofibrous Scaffold for Tissue Engineering

    OpenAIRE

    Lim, Mim Mim; Sun, Tao; Sultana, Naznin

    2015-01-01

    The fabrication of biocompatible and biodegradable scaffolds which mimic the native extracellular matrix of tissues to promote cell adhesion and growth is emphasized recently. Many polymers have been utilized in scaffold fabrication, but there is still a need to fabricate hydrophilic nanosized fibrous scaffolds with an appropriate degradation rate for skin tissue engineering applications. In this study, nanofibrous scaffolds of a biodegradable synthetic polymer, polycaprolactone (PCL), and bl...

  5. Reverse engineering: A key component of systems biology to unravel global abiotic stress cross-talk

    Directory of Open Access Journals (Sweden)

    Swetlana eFriedel

    2012-12-01

    Full Text Available Understanding the global abiotic stress response is an important stepping stone for the development of universal stress tolerance in plants in the era of climate change. Although co-occurrence of several stress factors (abiotic and biotic in nature is found to be frequent, current attempts are poor to understand the complex physiological processes impacting plant growth under combinatory factors. In this review article, we discuss the recent advances of reverse engineering approaches that led to seminal discoveries of key candidate regulatory genes involved in cross-talk of abiotic stress responses and summarised the available tools of reverse-engineering and its relevant application. Among the universally induced regulators involved in various abiotic stress responses, we highlight the importance of (i abscisic acid (ABA and jasmonic acid (JA hormonal cross-talks and (ii the central role of WRKY transcription factors, potentially mediating both abiotic and biotic stress responses. Such interactome networks help not only to derive hypotheses but also play a vital role in identifying key regulatory targets and interconnected hormonal responses. To explore the full potential of gene network inference in the area of abiotic stress tolerance, we need to validate hypotheses by implementing time-dependent gene expression data from genetically engineered plants with modulated expression of target genes. We further propose to combine information on gene-by-gene interactions with data from physical interaction platforms such as protein-protein or transcription factor (TF-gene networks.

  6. Biomimeticity in tissue engineering scaffolds through synthetic peptide modifications-altering chemistry for enhanced biological response.

    Science.gov (United States)

    Sreejalekshmi, Kumaran G; Nair, Prabha D

    2011-02-01

    Biomimetic and bioactive biomaterials are desirable as tissue engineering scaffolds by virtue of their capability to mimic natural environments of the extracellular matrix. Biomimeticity has been achieved by the incorporation of synthetic short peptide sequences into suitable materials either by surface modification or by bulk incorporation. Research in this area has identified several novel synthetic peptide segments, some of them with cell-specific interactions, which may serve as potential candidates for use in explicit tissue applications. This review focuses on the developments and prospective directions of incorporating short synthetic peptide sequences onto scaffolds for tissue engineering, with emphasis on the chemistry of peptide immobilization and subsequent cell responses toward modified scaffolds. The article provides a decision-tree-type flow chart indicating the most probable cellular events on a given peptide-modified scaffold along with the consolidated list of synthetic peptide sequences, supports as well as cell types used in various tissue engineering studies, and aims to serve as a quick reference guide to peptide chemists and material scientists interested in the field. 2010 Wiley Periodicals, Inc.

  7. Holography and coherent diffraction with low-energy electrons: A route towards structural biology at the single molecule level

    Energy Technology Data Exchange (ETDEWEB)

    Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Escher, Conrad; Fink, Hans-Werner, E-mail: hwfink@physik.uzh.ch

    2015-12-15

    The current state of the art in structural biology is led by NMR, X-ray crystallography and TEM investigations. These powerful tools however all rely on averaging over a large ensemble of molecules. Here, we present an alternative concept aiming at structural analysis at the single molecule level. We show that by combining electron holography and coherent diffraction imaging estimations concerning the phase of the scattered wave become needless as the phase information is extracted from the data directly and unambiguously. Performed with low-energy electrons the resolution of this lens-less microscope is just limited by the De Broglie wavelength of the electron wave and the numerical aperture, given by detector geometry. In imaging freestanding graphene, a resolution of 2 Å has been achieved revealing the 660.000 unit cells of the graphene sheet from a single data set. Once applied to individual biomolecules the method shall ultimately allow for non-destructive imaging and imports the potential to distinguish between different conformations of proteins with atomic resolution. - Highlights: • Structural biology of single proteins. • Radiation damage-free imaging of individual biomolecules. • Holography. • Low-energy electrons. • Coherent diffraction and phase retrieval.

  8. Transmission microscopy of unmodified biological materials: comparative radiation dosages with electrons and ultrasoft X-ray photons

    International Nuclear Information System (INIS)

    Sayre, D.; Feder, R.; Spiller, E.; Kirz, J.; Kim, D.M.

    1977-01-01

    The minimum radiation dosage in a specimen consistent with transmission microscopy at resolution d and specimen thickness t is calculated for model specimens resembling biological materials in their natural state. The calculations cover 10 4 -10 7 eV electrons and 1.3-90 A photons in a number of microscopy modes. The results indicate that over a considerable part of the (t,d)-plane transmission microscopy on such specimens can be carried out at lower dosage with photons than with electrons. Estimates of the maximum resolutions obtainable with electrons and photons, consistent with structural survival of the specimen, are obtained, as are data on optimal operating conditions for microscopy with the two particles

  9. Surface engineered two-dimensional and quasi-one-dimensional nanomaterials for electronic and optoelectronic devices

    Science.gov (United States)

    Du, Xiang

    As the sizes of individual components in electronic and optoelectronic devices approach nano scale, the performance of the devices is often determined by surface properties due to their large surface-to-volume ratio. Surface phenomena have become one of the cornerstones in nanoelectronic industry. For this reason, research on the surface functionalization has been tremendous amount of growth over the past decades, and promises to be an increasingly important field in the future. Surface functionalization, as an effective technique to modify the surface properties of a material through a physical or chemical approach, exhibits great potential to solve the problems and challenges, and modulate the performance of nanomaterials based functional devices. Surface functionalization drives the developments and applications of modern electronic and optoelectronic devices fabricated by nanomaterials. In this thesis, I demonstrate two surface functionalization approaches, namely, surface transfer doping and H2 annealing, to effectively solve the problems and significantly enhance the performance of 2D (single structure black phosphorus (BP) and heterostructure graphene/Si Schottky junction), and quasi-1D (molybdenum trioxide (MoO 3) nanobelt) nanomaterials based functional devices, respectively. In situ photoelectron spectroscopy (PES) measurements were also carried out to explore the interfacial charge transfer occurring at the interface between the nanostructures and doping layers, and the gap states in MoO 3 thin films, which provides the underlying mechanism to understand and support our device measurement results. In the first part of this thesis, I will discuss the first surface functionalization approach, namely, surface transfer doping, to effectively modulate the ambipolar characteristics of 2D few-layer BP flakes based FETs. The ambipolar characteristics of BP transistors were effectively modulated through in situ surface functionalization with cesium carbonate (Cs2

  10. High Temperature "Smart" P3 Sensors and Electronics for Distributed Engine Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current engine control architectures impose limitations on the insertion of new control capabilities due to weight penalties and reliability issues related to...

  11. High Temperature "Smart" P3 Sensors and Electronics for Distributed Engine Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Current engine control architectures impose limitations on the insertion of new control capabilities due to weight penalties and reliability issues related to...

  12. Cryo-electron microscopy and X-ray crystallography: complementary approaches to structural biology and drug discovery.

    Science.gov (United States)

    Vénien-Bryan, Catherine; Li, Zhuolun; Vuillard, Laurent; Boutin, Jean Albert

    2017-04-01

    The invention of the electron microscope has greatly enhanced the view scientists have of small structural details. Since its implementation, this technology has undergone considerable evolution and the resolution that can be obtained for biological objects has been extended. In addition, the latest generation of cryo-electron microscopes equipped with direct electron detectors and software for the automated collection of images, in combination with the use of advanced image-analysis methods, has dramatically improved the performance of this technique in terms of resolution. While calculating a sub-10 Å resolution structure was an accomplishment less than a decade ago, it is now common to generate structures at sub-5 Å resolution and even better. It is becoming possible to relatively quickly obtain high-resolution structures of biological molecules, in particular large ones (>500 kDa) which, in some cases, have resisted more conventional methods such as X-ray crystallography or nuclear magnetic resonance (NMR). Such newly resolved structures may, for the first time, shed light on the precise mechanisms that are essential for cellular physiological processes. The ability to attain atomic resolution may support the development of new drugs that target these proteins, allowing medicinal chemists to understand the intimacy of the relationship between their molecules and targets. In addition, recent developments in cryo-electron microscopy combined with image analysis can provide unique information on the conformational variability of macromolecular complexes. Conformational flexibility of macromolecular complexes can be investigated using cryo-electron microscopy and multiconformation reconstruction methods. However, the biochemical quality of the sample remains the major bottleneck to routine cryo-electron microscopy-based determination of structures at very high resolution.

  13. ELECTRONIC EQUIPMENT TO MONITORIZE SOME BIOLOGICAL PROCESS OF ECONOMIC IMPORTANCE IN HONEYBEE COLONY AND ITS ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    A. SICEANU

    2007-10-01

    Full Text Available The electronic hive is the result of the scientific researches carried out between2003-2006 by a research project funded by MEdC through the National ProgramRELANSIN, being accomplished by Institute for Beekeeping Research andDevelopment –Bucharest in cooperation with the Polytechnics University fromBucharest –The Center for Electronic Technology and Interconnection Techniquesand the Radio Consult CompanyTo achieve the great complexity of the electronic model adapted to the hive –the“smart” hive, it was necessary to establish the all electronic details which to makepossible to monitorize some very important information from the bee colony andits environment with the help of the honeybees and which to eliminate the errorsthat may occur in the information collection process.Thus, the project aimed to conceive the electronic system in order to collectinformation from inside the hive and from environment too, to storage andtransmit it to a data basis by GSM network in order to be analyzed and processedby users.By this complex electronic system, composed by electronic equipment and thehoney bee colony, which is dynamic and strong related with natural evolution ofvegetation correlated with the climate factors, is possible to identify instantaneousor periodically a large palette of aggression factors as well naturals (acids rains,extreme temperatures, calamities as anthropic factors –accidental chemical orbiologic pollution. The obtained data, electronically quantified and taken out intothe data basis, could offer accurate information about the moisturized areas atdifferent time intervals.

  14. Developing optimal input design strategies in cancer systems biology with applications to microfluidic device engineering

    Directory of Open Access Journals (Sweden)

    Maiwald Thomas

    2009-10-01

    Full Text Available Abstract Background Mechanistic models are becoming more and more popular in Systems Biology; identification and control of models underlying biochemical pathways of interest in oncology is a primary goal in this field. Unfortunately the scarce availability of data still limits our understanding of the intrinsic characteristics of complex pathologies like cancer: acquiring information for a system understanding of complex reaction networks is time consuming and expensive. Stimulus response experiments (SRE have been used to gain a deeper insight into the details of biochemical mechanisms underlying cell life and functioning. Optimisation of the input time-profile, however, still remains a major area of research due to the complexity of the problem and its relevance for the task of information retrieval in systems biology-related experiments. Results We have addressed the problem of quantifying the information associated to an experiment using the Fisher Information Matrix and we have proposed an optimal experimental design strategy based on evolutionary algorithm to cope with the problem of information gathering in Systems Biology. On the basis of the theoretical results obtained in the field of control systems theory, we have studied the dynamical properties of the signals to be used in cell stimulation. The results of this study have been used to develop a microfluidic device for the automation of the process of cell stimulation for system identification. Conclusion We have applied the proposed approach to the Epidermal Growth Factor Receptor pathway and we observed that it minimises the amount of parametric uncertainty associated to the identified model. A statistical framework based on Monte-Carlo estimations of the uncertainty ellipsoid confirmed the superiority of optimally designed experiments over canonical inputs. The proposed approach can be easily extended to multiobjective formulations that can also take advantage of identifiability

  15. Electron Transfer in Chemistry and Biology – The Primary Events in ...

    Indian Academy of Sciences (India)

    molecular unit to another. This reaction, accompanied by proton and hydrogen atom trans- fers, occurs in a cascade in many biological processes, includ- ing photosynthesis. The key chemical steps involved in photo- synthesis and the many ...

  16. Dynamical 'in situ' observation of biological samples using variable pressure scanning electron microscope

    International Nuclear Information System (INIS)

    Nedela, V

    2008-01-01

    Possibilities of 'in-situ' observation of non-conductive biological samples free of charging artefacts in dynamically changed surrounding conditions are the topic of this work. The observed biological sample, the tongue of a rat, was placed on a cooled Peltier stage. We studied the visibility of topographical structure depending on transition between liquid and gas state of water in the specimen chamber of VP SEM.

  17. Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

    2012-07-25

    This report summarizes a 2011 workshop that addressed the potential role of rapid, time-resolved electron microscopy measurements in accelerating the solution of important scientific and technical problems. A series of U.S. Department of Energy (DOE) and National Academy of Science workshops have highlighted the critical role advanced research tools play in addressing scientific challenges relevant to biology, sustainable energy, and technologies that will fuel economic development without degrading our environment. Among the specific capability needs for advancing science and technology are tools that extract more detailed information in realistic environments (in situ or operando) at extreme conditions (pressure and temperature) and as a function of time (dynamic and time-dependent). One of the DOE workshops, Future Science Needs and Opportunities for Electron Scattering: Next Generation Instrumentation and Beyond, specifically addressed the importance of electron-based characterization methods for a wide range of energy-relevant Grand Scientific Challenges. Boosted by the electron optical advancement in the last decade, a diversity of in situ capabilities already is available in many laboratories. The obvious remaining major capability gap in electron microscopy is in the ability to make these direct in situ observations over a broad spectrum of fast (µs) to ultrafast (picosecond [ps] and faster) temporal regimes. In an effort to address current capability gaps, EMSL, the Environmental Molecular Sciences Laboratory, organized an Ultrafast Electron Microscopy Workshop, held June 14-15, 2011, with the primary goal to identify the scientific needs that could be met by creating a facility capable of a strongly improved time resolution with integrated in situ capabilities. The workshop brought together more than 40 leading scientists involved in applying and/or advancing electron microscopy to address important scientific problems of relevance to DOE’s research

  18. Genome Engineering of Stem Cells for Autonomously Regulated, Closed-Loop Delivery of Biologic Drugs

    Directory of Open Access Journals (Sweden)

    Jonathan M. Brunger

    2017-05-01

    Full Text Available Chronic inflammatory diseases such as arthritis are characterized by dysregulated responses to pro-inflammatory cytokines such as interleukin-1 (IL-1 and tumor necrosis factor α (TNF-α. Pharmacologic anti-cytokine therapies are often effective at diminishing this inflammatory response but have significant side effects and are used at high, constant doses that do not reflect the dynamic nature of disease activity. Using the CRISPR/Cas9 genome-engineering system, we created stem cells that antagonize IL-1- or TNF-α-mediated inflammation in an autoregulated, feedback-controlled manner. Our results show that genome engineering can be used successfully to rewire endogenous cell circuits to allow for prescribed input/output relationships between inflammatory mediators and their antagonists, providing a foundation for cell-based drug delivery or cell-based vaccines via a rapidly responsive, autoregulated system. The customization of intrinsic cellular signaling pathways in stem cells, as demonstrated here, opens innovative possibilities for safer and more effective therapeutic approaches for a wide variety of diseases.

  19. In Vitro Biological Evaluation of Electrospun Polycaprolactone/Gelatine Nanofibrous Scaffold for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Mim Mim Lim

    2015-01-01

    Full Text Available The fabrication of biocompatible and biodegradable scaffolds which mimic the native extracellular matrix of tissues to promote cell adhesion and growth is emphasized recently. Many polymers have been utilized in scaffold fabrication, but there is still a need to fabricate hydrophilic nanosized fibrous scaffolds with an appropriate degradation rate for skin tissue engineering applications. In this study, nanofibrous scaffolds of a biodegradable synthetic polymer, polycaprolactone (PCL, and blends of PCL with a natural polymer, gelatine (Ge, in three different compositions: 85 : 15, 70 : 30, and 50 : 50 were fabricated via an electrospinning technique. The nanofibrous scaffold prepared from 14% w/v PCL/Ge (70 : 30 exhibited more balanced properties of homogeneous nanofibres with an average fibre diameter of 155.60 ± 41.13 nm, 83% porosity, and surface roughness of 176.27 ± 2.53 nm. In vitro cell culture study using human skin fibroblasts (HSF demonstrated improved cell attachment with a flattened morphology on the PCL/Ge (70 : 30 nanofibrous scaffold and accelerated proliferation on day 3 compared to the PCL nanofibrous scaffold. These results show that the PCL/Ge (70 : 30 nanofibrous scaffold was more favourable and has the potential to be a promising scaffold for skin tissue engineering applications.

  20. A Novel Application of Synthetic Biology and Directed Evolution to Engineer Phage-based Antibiotics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meiye [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    The emergence of multiple drug resistant bacteria poses threats to human health, agriculture and food safety. Annually over 100,000 deaths and up to $20 billion loss to the U.S. economy are attributed to multiple drug resistant bacteria. With only four new chemical antibiotics in the drug development pipeline, we are in dire need of new solutions to address the emerging threat of multiple drug resistance. We propose a paradigm-changing approach to address the multi-drug resistant bacteria problem by utilizing Synthetic Biology (SynBio) methodologies to create and evolve “designer” bacteriophages or phages – viruses that specifically infect bacteria – to infect and kill newly emerging pathogenic bacterial strains WITHOUT the need for chemical antibiotics. A major advantage of using phage to combat pathogenic bacteria is that phages can co-evolve with their bacterial host, and Sandia can be the first in the world to establish an industrial scale Synthetic Biology pipeline for phage directed evolution for safe, targeted, customizable solution to bacterial drug resistance. Since there is no existing phage directed evolution effort within or outside of Sandia, this proposal is suitable as a high-risk LDRD effort to create the first pipeline for such an endeavor. The high potential reward nature of this proposal will be the immediate impact in decontamination and restoration of surfaces and infrastructure, with longer term impact in human or animal therapeutics. The synthetic biology and screening approaches will lead to fundamental knowledge of phage/bacteria co-evolution, making Sandia a world leader in directed evolution of bacteriophages.

  1. Three-dimensional electron microscopy of macromolecular assemblies: visualization of biological molecules in their native state

    National Research Council Canada - National Science Library

    Frank, J

    2006-01-01

    ... Clusters 2.8 Support Grids 33 33 3 Principle of Image Formation in the Transmission Electron Microscope 34 3.1 Introduction 34 3.2 The Weak-Phase Object Approximation 35 3.3 The Contrast Transfer...

  2. Biological versus chemical leaching of electronic waste for copper and gold recovery

    OpenAIRE

    Isildar , Arda

    2016-01-01

    The well-being of the society depends on a number of metals, including base metals, precious metals and increasingly rare earth elements (REE). The usage of these metals increased in numerous applications, including electrical and electronic equipment (EEE), and their interrupted supply is at stake. There is an increasing interest in the secondary sources of these metals, particularly waste electrical and electronic equipment (WEEE) in order to compensate their potential supply deficit. This ...

  3. Modification, Assembly and Characterization of Biological Evolved Electronic and Magnetic Hybrid Materials

    National Research Council Canada - National Science Library

    Belcher, Angela

    2003-01-01

    ... devices with higher storage capabilities and other such devices. We have successfully grown and optimized the process of synthesizing single crystal annealed wires of ZnS materials as well as CoPt wires grown on an engineered viral template...

  4. Engineered Breast Cancer Cell Spheroids Reproduce Biologic Properties of Solid Tumors.

    Science.gov (United States)

    Ham, Stephanie L; Joshi, Ramila; Luker, Gary D; Tavana, Hossein

    2016-11-01

    Solid tumors develop as 3D tissue constructs. As tumors grow larger, spatial gradients of nutrients and oxygen and inadequate diffusive supply to cells distant from vasculature develops. Hypoxia initiates signaling and transcriptional alterations to promote survival of cancer cells and generation of cancer stem cells (CSCs) that have self-renewal and tumor-initiation capabilities. Both hypoxia and CSCs are associated with resistance to therapies and tumor relapse. This study demonstrates that 3D cancer cell models, known as tumor spheroids, generated with a polymeric aqueous two-phase system (ATPS) technology capture these important biological processes. Similar to solid tumors, spheroids of triple negative breast cancer cells deposit major extracellular matrix proteins. The molecular analysis establishes presence of hypoxic cells in the core region and expression of CSC gene and protein markers including CD24, CD133, and Nanog. Importantly, these spheroids resist treatment with chemotherapy drugs. A combination treatment approach using a hypoxia-activated prodrug, TH-302, and a chemotherapy drug, doxorubicin, successfully targets drug resistant spheroids. This study demonstrates that ATPS spheroids recapitulate important biological and functional properties of solid tumors and provide a unique model for studies in cancer research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Expanding beyond canonical metabolism: Interfacing alternative elements, synthetic biology, and metabolic engineering

    Directory of Open Access Journals (Sweden)

    Kevin B. Reed

    2018-03-01

    Full Text Available Metabolic engineering offers an exquisite capacity to produce new molecules in a renewable manner. However, most industrial applications have focused on only a small subset of elements from the periodic table, centered around carbon biochemistry. This review aims to illustrate the expanse of chemical elements that can currently (and potentially be integrated into useful products using cellular systems. Specifically, we describe recent advances in expanding the cellular scope to include the halogens, selenium and the metalloids, and a variety of metal incorporations. These examples range from small molecules, heteroatom-linked uncommon elements, and natural products to biomining and nanotechnology applications. Collectively, this review covers the promise of an expanded range of elemental incorporations and the future impacts it may have on biotechnology.

  6. The EBI search engine: EBI search as a service-making biological data accessible for all.

    Science.gov (United States)

    Park, Young M; Squizzato, Silvano; Buso, Nicola; Gur, Tamer; Lopez, Rodrigo

    2017-07-03

    We present an update of the EBI Search engine, an easy-to-use fast text search and indexing system with powerful data navigation and retrieval capabilities. The interconnectivity that exists between data resources at EMBL-EBI provides easy, quick and precise navigation and a better understanding of the relationship between different data types that include nucleotide and protein sequences, genes, gene products, proteins, protein domains, protein families, enzymes and macromolecular structures, as well as the life science literature. EBI Search provides a powerful RESTful API that enables its integration into third-party portals, thus providing 'Search as a Service' capabilities, which are the main topic of this article. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. The EBI search engine: EBI search as a service—making biological data accessible for all

    Science.gov (United States)

    Park, Young M.; Squizzato, Silvano; Buso, Nicola; Gur, Tamer

    2017-01-01

    Abstract We present an update of the EBI Search engine, an easy-to-use fast text search and indexing system with powerful data navigation and retrieval capabilities. The interconnectivity that exists between data resources at EMBL–EBI provides easy, quick and precise navigation and a better understanding of the relationship between different data types that include nucleotide and protein sequences, genes, gene products, proteins, protein domains, protein families, enzymes and macromolecular structures, as well as the life science literature. EBI Search provides a powerful RESTful API that enables its integration into third-party portals, thus providing ‘Search as a Service’ capabilities, which are the main topic of this article. PMID:28472374

  8. Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives.

    Science.gov (United States)

    Karlovsky, Petr

    2011-08-01

    Deoxynivalenol (DON) is the major mycotoxin produced by Fusarium fungi in grains. Food and feed contaminated with DON pose a health risk to humans and livestock. The risk can be reduced by enzymatic detoxification. Complete mineralization of DON by microbial cultures has rarely been observed and the activities turned out to be unstable. The detoxification of DON by reactions targeting its epoxide group or hydroxyl on carbon 3 is more feasible. Microbial strains that de-epoxidize DON under anaerobic conditions have been isolated from animal digestive system. Feed additives claimed to de-epoxidize trichothecenes enzymatically are on the market but their efficacy has been disputed. A new detoxification pathway leading to 3-oxo-DON and 3-epi-DON was discovered in taxonomically unrelated soil bacteria from three continents; the enzymes involved remain to be identified. Arabidopsis, tobacco, wheat, barley, and rice were engineered to acetylate DON on carbon 3. In wheat expressing DON acetylation activity, the increase in resistance against Fusarium head blight was only moderate. The Tri101 gene from Fusarium sporotrichioides was used; Fusarium graminearum enzyme which possesses higher activity towards DON would presumably be a better choice. Glycosylation of trichothecenes occurs in plants, contributing to the resistance of wheat to F. graminearum infection. Marker-assisted selection based on the trichothecene-3-O-glucosyltransferase gene can be used in breeding for resistance. Fungal acetyltransferases and plant glucosyltransferases targeting carbon 3 of trichothecenes remain promising candidates for engineering resistance against Fusarium head blight. Bacterial enzymes catalyzing oxidation, epimerization, and less likely de-epoxidation of DON may extend this list in future.

  9. Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system.

    Science.gov (United States)

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2017-03-01

    For biosynthesis of gold nanoparticles different parts of a plant are used as they contain metabolites such as alkaloids, flavonoids, phenols, terpenoids, alcohols, sugars and proteins which act as reducing agents to produce nanoparticles. They also act as capping agent and stabilizer for them. They are used in medicine, agriculture and many other technologies. The attention is therefore focussed on all plant species which have either aroma or colour in their leaves, flowers or roots for the synthesis of nanoparticles because they all contain such chemicals which reduce the metal ions to metal nanoparticles. The size and morphology of gold nanoparticles is dependent on the biogenic-synthetic route, incubation time, temperature, concentration and pH of the solution. In this review, we have discussed the latest developments for the fabrication of gold nanoparticles from herbal extract, their characterization by UV-vis., Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, X-ray diffraction, atomic force microscopy, energy-dispersive X-ray spectroscopy, dynamic light scattering and Zeta Potential techniques. Their application in drug delivery, cancer treatment, catalysis and as antimicrobial agent has also been discussed. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. An engineered bacterium auxotrophic for an unnatural amino acid: a novel biological containment system

    Directory of Open Access Journals (Sweden)

    Yusuke Kato

    2015-09-01

    Full Text Available Biological containment is a genetic technique that programs dangerous organisms to grow only in the laboratory and to die in the natural environment. Auxotrophy for a substance not found in the natural environment is an ideal biological containment. Here, we constructed an Escherichia coli strain that cannot survive in the absence of the unnatural amino acid 3-iodo-L-tyrosine. This synthetic auxotrophy was achieved by conditional production of the antidote protein against the highly toxic enzyme colicin E3. An amber stop codon was inserted in the antidote gene. The translation of the antidote mRNA was controlled by a translational switch using amber-specific 3-iodo-L-tyrosine incorporation. The antidote is synthesized only when 3-iodo-L-tyrosine is present in the culture medium. The viability of this strain rapidly decreased with less than a 1 h half-life after removal of 3-iodo-L-tyrosine, suggesting that the decay of the antidote causes the host killing by activated colicin E3 in the absence of this unnatural amino acid. The contained strain grew 1.5 times more slowly than the parent strains. The escaper frequency was estimated to be 1.4 mutations (95% highest posterior density 1.1–1.8 per 105 cell divisions. This containment system can be constructed by only plasmid introduction without genome editing, suggesting that this system may be applicable to other microbes carrying toxin-antidote systems similar to that of colicin E3.

  11. Development of a Free-Electron Laser Center and Research in Medicine, Biology and Materials Science,

    Science.gov (United States)

    1992-05-14

    where enhanced nonproton ion movements can be observed during the photocycle ( Marinetti and Mauzerall, 1986). We do not have the possibility to measure...Biological Membranes. C.L. 17 Bolis, E.J.M. Helmreich and H. Passow, editors. Alan R. Liss Inc., NY 39-50. Marinetti , T., and D. Mauzerall 1986. Large

  12. Predicting Drug Use at Electronic Music Dance Events: Self-Reports and Biological Measurement

    Science.gov (United States)

    Johnson, Mark B.; Voas, Robert A.; Miller, Brenda A.; Holder, Harold D.

    2009-01-01

    Most information on the prevalence of drug use comes from self-report surveys. The sensitivity of such information is cause for concern about the accuracy of self-report measures. In this study, self-reported drug use in the last 48 hr is compared to results from biological assays of saliva samples from 371 young adults entering clubs. The…

  13. Challenges regarding the start-up of an anaerobic biological sulphate reactor using H2 and CO2 as electron donor and carbon sources

    CSIR Research Space (South Africa)

    Roux, SP

    2009-05-01

    Full Text Available Include neutralization and chemical precipitation as well as membrane dependent processes. Biological sulphate reduction is another, environmentally benign option but relies heavily on the availability of an economically viable electron donor...

  14. Biological properties of coral GFP-type proteins provide clues for engineering novel optical probes and biosensors

    Science.gov (United States)

    Salih, Anya; Larkum, Anthony W.; Cronin, Thomas W.; Wiedenmann, Joerg; Szymczak, Ron; Cox, Guy C.

    2004-06-01

    In recent years, a variety of Green Fluorescent Protein (GFP)-like pigments have been discovered from corals and other marine organisms. They are widely used to expand the range of available GFP-type proteins in imaging applications, such as in vivo markers for gene expression and protein localization studies, FRET-based (Förster resonance energy transfer) multicolor imaging and biosensors. They have known diverse optical and biochemical properties but their in vivo spectral properties and biological function in marine organisms is only beginning to be understood. We have investigated their spectral diversity, optical properties and cellular microstructure in corals of the Great Barrier Reef with the aim of elucidating their photo-biological function/s as well as to identify novel proteins suitable for GFP-based technologies. We found numerous spectral variants, with emissions covering almost the full range of the visible spectrum. Many of these GFP-like proteins, especially in corals from the more extreme habitats, such as sun-exposed shallows or in deep water, showed a range of light-related spectral characteristics: high photostability, spectral tuning for energy transfer and dynamic photo-induced transformation properties. Intra-cellularly they were organized into spectral donor-acceptor pairs or even arrays, tuned for FRET. Coral color proteins thus offer an exciting potential to expand the use of the available GFPs in bio-imaging applications and as a basis for improved protein engineering.

  15. Training mechanical engineering students to utilize biological inspiration during product development.

    Science.gov (United States)

    Bruck, Hugh A; Gershon, Alan L; Golden, Ira; Gupta, Satyandra K; Gyger, Lawrence S; Magrab, Edward B; Spranklin, Brent W

    2007-12-01

    The use of bio-inspiration for the development of new products and devices requires new educational tools for students consisting of appropriate design and manufacturing technologies, as well as curriculum. At the University of Maryland, new educational tools have been developed that introduce bio-inspired product realization to undergraduate mechanical engineering students. These tools include the development of a bio-inspired design repository, a concurrent fabrication and assembly manufacturing technology, a series of undergraduate curriculum modules and a new senior elective in the bio-inspired robotics area. This paper first presents an overview of the two new design and manufacturing technologies that enable students to realize bio-inspired products, and describes how these technologies are integrated into the undergraduate educational experience. Then, the undergraduate curriculum modules are presented, which provide students with the fundamental design and manufacturing principles needed to support bio-inspired product and device development. Finally, an elective bio-inspired robotics project course is present, which provides undergraduates with the opportunity to demonstrate the application of the knowledge acquired through the curriculum modules in their senior year using the new design and manufacturing technologies.

  16. Metabolic Engineering of Yeast and Plants for the Production of the Biologically Active Hydroxystilbene, Resveratrol

    Science.gov (United States)

    Jeandet, Philippe; Delaunois, Bertrand; Aziz, Aziz; Donnez, David; Vasserot, Yann; Cordelier, Sylvain; Courot, Eric

    2012-01-01

    Resveratrol, a stilbenic compound deriving from the phenyalanine/polymalonate route, being stilbene synthase the last and key enzyme of this pathway, recently has become the focus of a number of studies in medicine and plant physiology. Increased demand for this molecule for nutraceutical, cosmetic and possibly pharmaceutic uses, makes its production a necessity. In this context, the use of biotechnology through recombinant microorganisms and plants is particularly promising. Interesting results can indeed arise from the potential of genetically modified microorganisms as an alternative mechanism for producing resveratrol. Strategies used to tailoring yeast as they do not possess the genes that encode for the resveratrol pathway, will be described. On the other hand, most interest has centered in recent years, on STS gene transfer experiments from various origins to the genome of numerous plants. This work also presents a comprehensive review on plant molecular engineering with the STS gene, resulting in disease resistance against microorganisms and the enhancement of the antioxidant activities of several fruits in transgenic lines. PMID:22654481

  17. Characterization of mechanical and biological properties of 3-D scaffolds reinforced with zinc oxide for bone tissue engineering.

    Directory of Open Access Journals (Sweden)

    Pei Feng

    Full Text Available A scaffold for bone tissue engineering should have highly interconnected porous structure, appropriate mechanical and biological properties. In this work, we fabricated well-interconnected porous β-tricalcium phosphate (β-TCP scaffolds via selective laser sintering (SLS. We found that the mechanical and biological properties of the scaffolds were improved by doping of zinc oxide (ZnO. Our data showed that the fracture toughness increased from 1.09 to 1.40 MPam(1/2, and the compressive strength increased from 3.01 to 17.89 MPa when the content of ZnO increased from 0 to 2.5 wt%. It is hypothesized that the increase of ZnO would lead to a reduction in grain size and an increase in density of the strut. However, the fracture toughness and compressive strength decreased with further increasing of ZnO content, which may be due to the sharp increase in grain size. The biocompatibility of the scaffolds was investigated by analyzing the adhesion and the morphology of human osteoblast-like MG-63 cells cultured on the surfaces of the scaffolds. The scaffolds exhibited better and better ability to support cell attachment and proliferation when the content of ZnO increased from 0 to 2.5 wt%. Moreover, a bone like apatite layer formed on the surfaces of the scaffolds after incubation in simulated body fluid (SBF, indicating an ability of osteoinduction and osteoconduction. In summary, interconnected porous β-TCP scaffolds doped with ZnO were successfully fabricated and revealed good mechanical and biological properties, which may be used for bone repair and replacement potentially.

  18. The electronic structure engineering of organic dye sensitizers for solar cells: The case of JK derivatives.

    Science.gov (United States)

    Zhang, Cai-Rong; Ma, Jin-Gang; Zhe, Jian-Wu; Jin, Neng-Zhi; Shen, Yu-Lin; Wu, You-Zhi; Chen, Yu-Hong; Liu, Zi-Jiang; Chen, Hong-Shan

    2015-11-05

    The design and development of novel dye sensitizers are effective method to improve the performance of dye-sensitized solar cells (DSSCs) because dye sensitizers have significant influence on photo-to-current conversion efficiency. In the procedure of dye sensitizer design, it is very important to understand how to tune their electronic structures and related properties through the substitution of electronic donors, acceptors, and conjugated bridges in dye sensitizers. Here, the electronic structures and excited-state properties of organic JK dye sensitizers are calculated by using density functional theory (DFT) and time dependent DFT methods. Based upon the calculated results, we investigated the role of different electronic donors, acceptors, and π-conjugated bridges in the modification of electronic structures, absorption properties, as well as the free energy variations for electron injection and dye regeneration. In terms of the analysis of transition configurations and molecular orbitals, the effective chromophores which are favorable for electron injection in DSSCs are addressed. Meanwhile, considering the absorption spectra and free energy variation, the promising electronic donors, π-conjugated bridges, and acceptors are presented to design dye sensitizers. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Electron Transfer in Chemistry and Biology – The Primary Events in ...

    Indian Academy of Sciences (India)

    The ions are embedded in an environment (ligand. Box 2. A few examples of Electron Transfer Proteins. Protein. Metal ions. Cytochromes. Fe a, a3, b, c1, c, etc. cyt. aa3. Ferridoxins. Fe. Rubredoxins. Fe. Xanthine oxidase. Fe/Mo. Aldehyde oxidase. Fe/Mo. Succinate dehydrogenase. Stellacyanin, plastocyanin and azurin.

  20. Approaching an experimental electron density model of the biologically active trans -epoxysuccinyl amide group-Substituent effects vs. crystal packing

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Ming W.; Stewart, Scott G.; Sobolev, Alexandre N.; Dittrich, Birger; Schirmeister, Tanja; Luger, Peter; Hesse, Malte; Chen, Yu-Sheng; Spackman, Peter R.; Spackman, Mark A.; Grabowsky, Simon (Heinrich-Heine); (Freie); (UC); (Bremen); (JG-UM); (UWA)

    2017-01-24

    The trans-epoxysuccinyl amide group as a biologically active moiety in cysteine protease inhibitors such as loxistatin acid E64c has been used as a benchmark system for theoretical studies of environmental effects on the electron density of small active ingredients in relation to their biological activity. Here, the synthesis and the electronic properties of the smallest possible active site model compound are reported to close the gap between the unknown experimental electron density of trans-epoxysuccinyl amides and the well-known function of related drugs. Intramolecular substituent effects are separated from intermolecular crystal packing effects on the electron density, which allows us to predict the conditions under which an experimental electron density investigation on trans-epoxysuccinyl amides will be possible. In this context, the special importance of the carboxylic acid function in the model compound for both crystal packing and biological activity is revealed through the novel tool of model energy analysis.