WorldWideScience

Sample records for biological effects induced

  1. Electromagnetic field induced biological effects in humans.

    Science.gov (United States)

    Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J

    2015-01-01

    Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF

  2. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    Science.gov (United States)

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together

  3. STUDY ON THE RELATIONSHIP OF ARSENIC TRIOXIDE-INDUCED BIOLOGICAL EFFECTS AND DEGRADATIONOF PML PROTEINS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To understand whether arsenic trioxide (As2O3)-induced biological effects are associated with degradation of PML proteins. Methods Acute promyelocytic leukemia (APL) cell line NB4, acute T-lymphocytic leukemia cell line Jurkat, acute myeloid leukemia cell line U937, and chronic myelocytic leukemia blast crisis cell line K562 were used as in vitro models. In different cell lines, the As2O3-induced bio- logical effects were determined by cell growth, cell viability, cell morphology, and flow cytometry assay on sub- G1 cell content. The alteration of PML proteins was analyzed by immunofluorescence. Results In terms of growth inhibition and apoptosis induction, 1.0μmol/L As2O3 had different effects on different cell lines. However, degradation of PML proteins occurred in all the cell lines with As2O3 treatment. Conclusion As2O3-induced biological effects may be independent of PML protein degradation.

  4. The effect of green tea on radiation-induced late biological effect in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ho; Kim, Se Ra; Lee, Hae June; Jo, Sung Kee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    This study was performed to determine the effect of Green tea on the late biological effect of mice irradiated with 3 Gy of gamma-radiation. There were various findings including hematopoietic and lymphoid tumor, lung cancer, ovarian cancer and cancer of other lesions. Further studies are needed to characterize better the protective nature of active compounds.

  5. Crystallo-optic diagnostics method of the soft laser-induced effects in biological fluids

    Science.gov (United States)

    Skopinov, S. A.; Yakovleva, S. V.

    1991-05-01

    Presently, it is well known that individual cells"2 and higher organisms3'4 exhibit a marked response to soft laser irradiation in certain parts of the visible and near infrared spectral ranges. Broad clinical applications of laser therapy and slow progress in understanding of the physical, chemical and biological mechanisms of this phenomenon make the task to search new methods of objectivisation of laser-induces bioeffects very insistent. In this paper we give a short review of the methods of structural-optical diagnostics of the soft laser-induced effects in biofluids (blood and its fractions, saliva, juices, mucuses, exudations, etc.) and suggest their applications in experimental and clinical studies of the soft laser bioeffects.

  6. Biological Effects of Medicinal Plants on Induced Periodontitis: A Systematic Review

    Science.gov (United States)

    Pinto, Moara e Silva Conceição; di Lenardo, David

    2016-01-01

    Objective. The aim of this systematic review was to investigate the advances in the study of medicinal plants and their biologic effects on periodontitis in animal models. Study Design. A systematic search was conducted by three independent researchers, who screened articles published up to March/2016, to identify the studies that contained sufficient and clear information on the association of the medicinal plants and periodontitis in murine models. The searches were performed using PubMed, Cochrane, and Science Direct databases. Results. After a critical analysis of titles and abstracts, 30 studies were finally eligible for analysis. The studies presented a great diversity of the experiment designed regarding the methods of induced periodontitis and the evaluation of the medicinal plants efficacy. None of the studies described the possible toxic effects associated with the administration of the plant material to animals and whether they could prevent damage to organs caused by systemic effect of induced periodontitis. Gel-based formulations containing plant substances are seen as an interesting strategy to treat periodontitis. Conclusions. In this systematic review, the state-of-the-art knowledge on the medicinal plants and the induced periodontitis was critically evaluated and discussed from the experiment designed to the possible clinical application. PMID:27738432

  7. Protective Effect of Selected Medicinal Plants against Hydrogen Peroxide Induced Oxidative Damage on Biological Substrates

    Directory of Open Access Journals (Sweden)

    Namratha Pai Kotebagilu

    2014-01-01

    Full Text Available Oxidative stress is developed due to susceptibility of biological substrates to oxidation by generation of free radicals. In degenerative diseases, oxidative stress level can be reduced by antioxidants which neutralize free radicals. Primary objective of this work was to screen four medicinal plants, namely, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, for their antioxidant property using two biological substrates—RBC and microsomes. The antioxidative ability of three solvent extracts, methanol (100% and 80% and aqueous leaf extracts, was studied at different concentrations by thiobarbituric acid reactive substances method using Fenton’s reagent to induce oxidation in the substrates. The polyphenol and flavonoid content were analyzed to relate with the observed antioxidant effect of the extracts. The phytochemical screening indicated the presence of flavonoids, polyphenols, tannins, and β-carotene in the samples. In microsomes, 80% methanol extract of Canthium and Costus and, in RBC, 80% methanol extract of Costus showed highest inhibition of oxidation and correlated well with the polyphenol and flavonoid content. From the results it can be concluded that antioxidants from medicinal plants are capable of inhibiting oxidation in biological systems, suggesting scope for their use as nutraceuticals.

  8. Carbon Heavy-ion Radiation Induced Biological effects on Oryza sativa L.

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Li, Xishan; Gong, Ning; Meng, Qingmei; Liu, Jiawei; Wang, Ting

    2016-07-01

    Large number of researches on rice after spaceflights indicated that rice was a favorable model organism to study biological effects induced by space radiation. The stimulative effect could often be found on rice seedlings after irradiation by low-dose energetic heavy-ion radiation. Spaceflight also could induce stimulative effect on kinds of seeds. To further understand the mechanism of low-dose radiation biological effects and the dose range, the germinated rice seeds which were irradiated by different doses of carbon heavy-ion (0, 0.02, 0.1, 0.2, 1, 2, 5, 10, 15 and 20Gy, LET=27.3keV/µm) were used as materials to study. By investigating the variation of rice phenotype under different doses, we found that 2Gy radiation dose was a dividing point of the phenotypic variation. Transmission electron microscopy was used to observe the variation of mitochondria, chloroplast, endoplasmic reticulum, ribosome and nucleus in mesophyll cell of rice apical meristem at 24 hours after radiation with different doses. The cells were not apparently physiologically damaged when the dose of radiation was less than 2Gy. The number of chloroplast did not change significantly, but the number of mitochondria was significantly increased, and gathered around in the chloroplast and endoplasmic reticulum; the obvious lesion of chloroplast and mitochondria were found at the mesophyll cells when radiation dose was higher than 2Gy. The mitochondria were swelling and appearing blurred crest. The chloroplast and mitochondrial mutation rate increased significantly (p<0.01). These phenomena showed that cell biological changes may be the reasons of the stimulation and inhibition effects with the boundary of 2Gy. Since mitochondrial was an important organelle involved in the antioxidative systems, its dysfunction could result in the increase of reactive oxygen species and lipid peroxidation. We found that the growth stimulation induced by low-dose radiation mainly occurred at three-leaf stage along

  9. Biological effects induced by BSA-stabilized silica nanoparticles in mammalian cell lines.

    Science.gov (United States)

    Foldbjerg, Rasmus; Wang, Jing; Beer, Christiane; Thorsen, Kasper; Sutherland, Duncan S; Autrup, Herman

    2013-06-25

    Much of the concerns regarding engineered nanoparticle (NP) toxicity are based on knowledge from previous studies on particles in ambient air or occupational situations. E.g., the effects of exposure to silica dust particles have been studied intensely due to the carcinogenicity of crystalline silica. However, the increasing usage of engineered amorphous silica NPs has emphasized the need for further mechanistic insight to predict the consequences of exposure to the amorphous type of silica NPs. The present study focused on the in vitro biological effects following exposure to well-dispersed, BSA-stabilized, amorphous silica NPs whereas unmodified silica NPs where included for reasons of comparison. The cytotoxicity of the silica NPs was investigated in six different cell lines (A549, THP-1, CaCo-2, ASB-XIV, J-774A.1, and Colon-26) selected to explore the significance of organ and species sensitivity in vitro. Viability data demonstrated that macrophages were most sensitive to silica NP and interestingly, murine cell lines were generally found to be more sensitive than comparable human cell lines. Further studies were conducted in the human epithelial lung cell line, A549, to explore the molecular mechanism of silica toxicity. Generation of reactive oxygen species, one of the proposed toxicological mechanisms of NPs, was investigated in A549 cells by the dichlorofluorescin (DCF) assay to be significantly induced at NP concentrations above 113 μg/mL. However, induction of oxidative stress related pathways was not found after silica NP exposure for 24 h in gene array studies conducted in A549 cells at a relatively low NP concentration (EC20). Up-regulated genes (more than 2-fold) were primarily related to lipid metabolism and biosynthesis whereas down-regulated genes included several processes such as transcription, cell junction, extra cellular matrix (ECM)-receptor interaction and others. Thus, gene expression data proposes that several cellular processes other

  10. Role of ATP as a Key Signaling Molecule Mediating Radiation-Induced Biological Effects

    Science.gov (United States)

    Ohshima, Yasuhiro; Nakatsukasa, Hiroko; Tsukimoto, Mitsutoshi

    2017-01-01

    Adenosine triphosphate (ATP) serves as a signaling molecule for adaptive responses to a variety of cytotoxic agents and plays an important role in mediating the radiation stress-induced responses that serve to mitigate or repair the injurious effects of γ radiation on the body. Indeed, low doses of radiation may have a net beneficial effect by activating a variety of protective mechanisms, including antitumor immune responses. On the other hand, ATP signaling may be involved in the radiation resistance of cancer cells. Here, focusing on our previous work, we review the evidence that low-dose γ irradiation (0.25-0.5 Gy) induces release of extracellular ATP, and that the released ATP mediates multiple radiation-induced responses, including increased intracellular antioxidant synthesis, cell-mediated immune responses, induction of DNA damage repair systems, and differentiation of regulatory T cells.

  11. Role of ATP as a Key Signaling Molecule Mediating Radiation-Induced Biological Effects.

    Science.gov (United States)

    Kojima, Shuji; Ohshima, Yasuhiro; Nakatsukasa, Hiroko; Tsukimoto, Mitsutoshi

    2017-01-01

    Adenosine triphosphate (ATP) serves as a signaling molecule for adaptive responses to a variety of cytotoxic agents and plays an important role in mediating the radiation stress-induced responses that serve to mitigate or repair the injurious effects of γ radiation on the body. Indeed, low doses of radiation may have a net beneficial effect by activating a variety of protective mechanisms, including antitumor immune responses. On the other hand, ATP signaling may be involved in the radiation resistance of cancer cells. Here, focusing on our previous work, we review the evidence that low-dose γ irradiation (0.25-0.5 Gy) induces release of extracellular ATP, and that the released ATP mediates multiple radiation-induced responses, including increased intracellular antioxidant synthesis, cell-mediated immune responses, induction of DNA damage repair systems, and differentiation of regulatory T cells.

  12. Biological Effects of Acoustic Cavitation

    Science.gov (United States)

    2007-11-02

    rectified diffusion. 56 III. STABLE CAVITATION A. Introduction There are manv areas associated with the biological effects of ultrasound in which the...used said as cavitation indicators. Further, if clinical ultrasound systems are found to be inducing cavitation , either stable or transient, it will...O BIOLOGICAL EFFECTS OF ACOUSTIC CAVITATION by Lawrence A. Crum -- Physical Acoustics Research Laboratory Department of Physics and Astronomy ’ CTE

  13. Spaceflight-induced variation on biological traits and effective components of Cassia obtusifolia.

    Science.gov (United States)

    Mao, Ren-jun; Qi, Zhi-hong; Han, Rui-lian; Liu, Feng-hua; Liu, Yan; Liang, Zong-suo

    2015-07-01

    The dry seeds of Cassia obtusifolia were carried by the "ShenZhou 8" satellite and sowed after landing. Based on our pri- or study on SP1, the characteristics of plants growth, physiological index and content of effective components were examined. The results showed that the QC10, QC29 strains matured 5 d earlier compared with control. The plant height, across diameter and ground diameter of QC10, QC29, QC46 strains was superior to the control at whole growth period. The branch number increased ranging from 4 to 11 and the number of pods reached 321, 313,281, respectively, which was dramatically higher than the control (246). The yield of QC10, QC29, QC46 strains increased noticeably from 31.4 to 63.2 g. The 1000-seed-weight of QC10, QC29, QC46 strains was 25.86, 25.88, 24.06 g, while the control was 23.69 g. Compared to the control, the mass fraction of chlorophyll was enhanced 1.098, 1.016, 0.297 mg. There was no significant difference in aurantio-obtusin and chrysophanol content of seeds. Through two years research, three high-yield mutant strains were obtained. This study indicates that spaceflight-induced mutants could provide new germplasm for C. obtusifolia breeding and offers the theoretical basis for further utilization of spaceflight-induced mutation to breed high-quality C. obtusifolia strains.

  14. SU-E-T-549: Modeling Relative Biological Effectiveness of Protons for Radiation Induced Brain Necrosis

    Energy Technology Data Exchange (ETDEWEB)

    Mirkovic, D; Peeler, C; Grosshans, D; Titt, U; Taleei, R; Mohan, R [UT M.D. Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To develop a model of the relative biological effectiveness (RBE) of protons as a function of dose and linear energy transfer (LET) for induction of brain necrosis using clinical data. Methods: In this study, treatment planning information was exported from a clinical treatment planning system (TPS) and used to construct a detailed Monte Carlo model of the patient and the beam delivery system. The physical proton dose and LET were computed in each voxel of the patient volume using Monte Carlo particle transport. A follow-up magnetic resonance imaging (MRI) study registered to the treatment planning CT was used to determine the region of the necrosis in the brain volume. Both, the whole brain and the necrosis volumes were segmented from the computed tomography (CT) dataset using the contours drawn by a physician and the corresponding voxels were binned with respect to dose and LET. The brain necrosis probability was computed as a function of dose and LET by dividing the total volume of all necrosis voxels with a given dose and LET with the corresponding total brain volume resulting in a set of NTCP-like curves (probability as a function of dose parameterized by LET). Results: The resulting model shows dependence on both dose and LET indicating the weakness of the constant RBE model for describing the brain toxicity. To the best of our knowledge the constant RBE model is currently used in all clinical applications which may Result in increased rate of brain toxicities in patients treated with protons. Conclusion: Further studies are needed to develop more accurate brain toxicity models for patients treated with protons and other heavy ions.

  15. Biological studies on the effect of estrogen on experimentally induced asthma in mice.

    Science.gov (United States)

    El-Desouki, Nabila I; Tabl, Ghada A; Elkhodary, Yasmin A A

    2016-01-01

    This study evaluates the influence of estrogen hormone on the experimentally induced asthma in male mice. The animals were divided into four groups, with 20 mice in each group; group I (control mice) included mice that received no treatment, group II included mice that received intraperitoneal estrogen injection (0.25 mg/kg body weight (bw), twice on day 28 of the experiment), group III (asthmatic mice) included asthmatic mice that received intraperitoneal injection of two doses of ovalbumin (OVA; 2 µg of OVA mixed with 100 µg of aluminum potassium sulfate) on days 1 and 14 of the experiment and then challenged intranasally with a single dose of OVA (50 µg dissolved in 0.05 ml phosphate-buffered saline; PBS) on day 28 of the experiment, and group IV (asthmatic mice treated with estrogen) included asthma model male mice that received the estrogen (0.5 mg/kg bw in 40 ml PBS, twice on the day 28 of the experiment). The immunohistochemical studies observed a marked intensity of CD15 immunoreactivity in the lung tissues of asthma model mice. Physiological results recorded that the total and differential count of leukocytes in bronchoalveolar lavage fluid (BALF) of asthma model mice recorded a significant increase in the number of leukocytes especially in the number of eosinophil cells. The BALF of asthma model mice showed high levels of interleukins 4 and 5 (IL-4 and IL-5), and there was a significant decrease in both the levels of IL-4 and IL-5 in BALF of asthma model mice treated with estrogen. In conclusion, the obtained results indicated that the asthma is responsible for certain immunohistochemical and physiological alterations induced in lung tissues of mice. The administration of estrogen to asthmatic male mice could improve these changes. For this reason, the present findings support the possible role of estrogen in modulating the inflammatory effects caused by asthma in male mice and may be helpful to cure many asthmatic progressions.

  16. Biosensors for Real-Time Monitoring of Radiation-Induced Biologic Effects in Space

    Science.gov (United States)

    Baker, James R.; Balogh, Lajos; Majoros, Istvan; Keszler, Balazs; Myc, Andrzej; Kukowska-Latallo, Jolanta; Norris, Theodore; delaiglesia, Felix; Beeson, Nicholas W. (Compiler)

    2002-01-01

    This work seeks to develop cellular biosensors based on dendritic polymers. Nanoscale polymer structures less than 20 nm in diameter will be used as the basis of the biosensors. The structures will be designed to target into specific cells of an astronaut and be able to monitor health issues such as exposure to radiation. Multiple components can be assembled on the polymers including target directors, analytical devices (such as molecular probes), and reporting agents. The reporting will be accomplished through fluorescence signal monitoring, with the use of multispectral analysis for signal interpretation. These nanosensors could facilitate the success and increase the safety of extended space flight. The design and assembly of these devices has been pioneered at the Center for Biologic Nanotechnology in the University of Michigan. This period, synthesis of the test-bed biosensors continued. Studies were performed on the candidate fluorescent dyes to determine which might be suitable for the biosensor under development. Development continued on producing an artificial capillary bed as a tool for the use in the production of the fluorescence signal monitor. Work was also done on the in vitro multispectral analysis system, which uses the robotic microscope.

  17. Biosensors for Real-Time Monitoring of Radiation-Induced Biologic Effects in Space

    Science.gov (United States)

    Baker, James R., Jr.; Balogh, Lajos; Majoros, Istvan; Keszler, Balazs; Myc, Andrzej; Kukowska-Latallo, Jolanta; Norris, Theodore; delaIglesia, Felix; Beeson, Nicholas W. (Compiler)

    2002-01-01

    This proposal seeks to develop cellular biosensors based on dendritic polymers. Nanoscale polymer structures less than 20 nm in diameter will be used as the basis of the sensor/actuators. The structures will be designed to target into specific cells of an astronaut and be able to monitor health issues such as the exposure to radiation or infectious agents. Multiple components can be assembled on the polymers including target directors, analytical devices (such as molecular probes), magnetic particles and metals, and imaging agents. The design and assembly of these devices has been pioneered at the Center for Biologic Nanotechnology in the University of Michigan. These molecules would also be able to administer therapeutics in response to the needs of the astronaut, and act as actuators to remotely manipulate an astronaut as necessary to ensure their safety. The reporting will be accomplished either through fluorescence signal monitoring, with the use of multispectral analysis for signal interpretation, or through functional MRI. These nanosensors coupled to NEMS devices could facilitate the success and increase the safety of extended space flight.

  18. Low dose/low fluence ionizing radiation-induced biological effects: The role of intercellular communication and oxidative metabolism

    Science.gov (United States)

    Azzam, Edouard

    Mechanistic investigations have been considered critical to understanding the health risks of exposure to ionizing radiation. To gain greater insight in the biological effects of exposure to low dose/low fluence space radiations with different linear energy transfer (LET) properties, we examined short and long-term biological responses to energetic protons and high charge (Z) and high energy (E) ions (HZE particles) in human cells maintained in culture and in targeted and non-targeted tissues of irradiated rodents. Particular focus of the studies has been on mod-ulation of gene expression, proliferative capacity, induction of DNA damage and perturbations in oxidative metabolism. Exposure to mean doses of 1000 MeV/nucleon iron ions, by which a small to moderate proportion of cells in an exposed population is targeted through the nucleus by an HZE particle, induced stressful effects in the irradiated and non-irradiated cells in the population. Direct intercellular communication via gap-junctions was a primary mediator of the propagation of stressful effects from irradiated to non-irradiated cells. Compromised prolif-erative capacity, elevated level of DNA damage and oxidative stress evaluated by measurements of protein carbonylation, lipid peroxidation and activity of metabolic enzymes persisted in the progeny of irradiated and non-irradiated cells. In contrast, progeny of cells exposed to high or low doses from 150-1000 MeV protons retained the ability to form colonies and harbored similar levels of micronuclei, a surrogate form of DNA damage, as control, which correlated with normal reactive oxygen species (ROS) levels. Importantly, a significant increase in the spontaneous neoplastic transformation frequency was observed in progeny of bystander mouse embryo fibroblasts (MEFs) co-cultured with MEFs irradiated with energetic iron ions but not protons. Of particular significance, stressful effects were detected in non-targeted tissues of rats that received partial

  19. Decavanadate effects in biological systems.

    Science.gov (United States)

    Aureliano, Manuel; Gândara, Ricardo M C

    2005-05-01

    Vanadium biological studies often disregarded the formation of decameric vanadate species known to interact, in vitro, with high-affinity with many proteins such as myosin and sarcoplasmic reticulum calcium pump and also to inhibit these biochemical systems involved in energy transduction. Moreover, very few in vivo animal studies involving vanadium consider the contribution of decavanadate to vanadium biological effects. Recently, it has been shown that an acute exposure to decavanadate but not to other vanadate oligomers induced oxidative stress and a different fate in vanadium intracellular accumulation. Several markers of oxidative stress analyzed on hepatic and cardiac tissue were monitored after in vivo effect of an acute exposure (12, 24 h and 7 days), to a sub-lethal concentration (5 mM; 1 mg/kg) of two vanadium solutions ("metavanadate" and "decavanadate"). It was observed that "decavanadate" promote different effects than other vanadate oligomers in catalase activity, glutathione content, lipid peroxidation, mitochondrial superoxide anion production and vanadium accumulation, whereas both solutions seem to equally depress reactive oxygen species (ROS) production as well as total intracellular reducing power. Vanadium is accumulated in mitochondria in particular when "decavanadate" is administered. These recent findings, that are now summarized, point out the decameric vanadate species contributions to in vivo and in vitro effects induced by vanadium in biological systems.

  20. Quantum Effects in Biology

    Science.gov (United States)

    Mohseni, Masoud; Omar, Yasser; Engel, Gregory S.; Plenio, Martin B.

    2014-08-01

    List of contributors; Preface; Part I. Introduction: 1. Quantum biology: introduction Graham R. Fleming and Gregory D. Scholes; 2. Open quantum system approaches to biological systems Alireza Shabani, Masoud Mohseni, Seogjoo Jang, Akihito Ishizaki, Martin Plenio, Patrick Rebentrost, Alàn Aspuru-Guzik, Jianshu Cao, Seth Lloyd and Robert Silbey; 3. Generalized Förster resonance energy transfer Seogjoo Jang, Hoda Hossein-Nejad and Gregory D. Scholes; 4. Multidimensional electronic spectroscopy Tomáš Mančal; Part II. Quantum Effects in Bacterial Photosynthetic Energy Transfer: 5. Structure, function, and quantum dynamics of pigment protein complexes Ioan Kosztin and Klaus Schulten; 6. Direct observation of quantum coherence Gregory S. Engel; 7. Environment-assisted quantum transport Masoud Mohseni, Alàn Aspuru-Guzik, Patrick Rebentrost, Alireza Shabani, Seth Lloyd, Susana F. Huelga and Martin B. Plenio; Part III. Quantum Effects in Higher Organisms and Applications: 8. Excitation energy transfer in higher plants Elisabet Romero, Vladimir I. Novoderezhkin and Rienk van Grondelle; 9. Electron transfer in proteins Spiros S. Skourtis; 10. A chemical compass for bird navigation Ilia A. Solov'yov, Thorsten Ritz, Klaus Schulten and Peter J. Hore; 11. Quantum biology of retinal Klaus Schulten and Shigehiko Hayashi; 12. Quantum vibrational effects on sense of smell A. M. Stoneham, L. Turin, J. C. Brookes and A. P. Horsfield; 13. A perspective on possible manifestations of entanglement in biological systems Hans J. Briegel and Sandu Popescu; 14. Design and applications of bio-inspired quantum materials Mohan Sarovar, Dörthe M. Eisele and K. Birgitta Whaley; 15. Coherent excitons in carbon nanotubes Leonas Valkunas and Darius Abramavicius; Glossary; References; Index.

  1. Differential biologic effects of CPD and 6-4PP UV-induced DNA damage on the induction of apoptosis and cell-cycle arrest

    Directory of Open Access Journals (Sweden)

    Yasui Akira

    2005-10-01

    Full Text Available Abstract Background UV-induced damage can induce apoptosis or trigger DNA repair mechanisms. Minor DNA damage is thought to halt the cell cycle to allow effective repair, while more severe damage can induce an apoptotic program. Of the two major types of UV-induced DNA lesions, it has been reported that repair of CPD, but not 6-4PP, abrogates mutation. To address whether the two major forms of UV-induced DNA damage, can induce differential biological effects, NER-deficient cells containing either CPD photolyase or 6-4 PP photolyase were exposed to UV and examined for alterations in cell cycle and apoptosis. In addition, pTpT, a molecular mimic of CPD was tested in vitro and in vivo for the ability to induce cell death and cell cycle alterations. Methods NER-deficient XPA cells were stably transfected with CPD-photolyase or 6-4PP photolyase to specifically repair only CPD or only 6-4PP. After 300 J/m2 UVB exposure photoreactivation light (PR, UVA 60 kJ/m2 was provided for photolyase activation and DNA repair. Apoptosis was monitored 24 hours later by flow cytometric analysis of DNA content, using sub-G1 staining to indicate apoptotic cells. To confirm the effects observed with CPD lesions, the molecular mimic of CPD, pTpT, was also tested in vitro and in vivo for its effect on cell cycle and apoptosis. Results The specific repair of 6-4PP lesions after UVB exposure resulted in a dramatic reduction in apoptosis. These findings suggested that 6-4PP lesions may be the primary inducer of UVB-induced apoptosis. Repair of CPD lesions (despite their relative abundance in the UV-damaged cell had little effect on the induction of apoptosis. Supporting these findings, the molecular mimic of CPD, (dinucleotide pTpT could mimic the effects of UVB on cell cycle arrest, but were ineffective to induce apoptosis. Conclusion The primary response of the cell to UV-induced 6-4PP lesions is to trigger an apoptotic program whereas the response of the cell to CPD

  2. Study of energetic-particle-irradiation induced biological effect on Rhizopus oryzae through synchrotron-FTIR micro-spectroscopy

    Science.gov (United States)

    Liu, Jinghua; Qi, Zeming; Huang, Qing; Wei, Xiaoli; Ke, Zhigang; Fang, Yusheng; Tian, Yangchao; Yu, Zengliang

    2013-01-01

    Energetic particles exist ubiquitously and cause varied biological effects such as DNA strand breaks, lipid peroxidation, protein modification, cell apoptosis or death. An emerging biotechnology based on ion-beam technique has been developed to serve as an effective tool for mutation breeding of crops and microbes. In order to improve the effectiveness of ion-beam biotechnology for mutation breeding, it is indispensible to gain a better understanding of the mechanism of the interactions between the energetic ions and biological systems which is still elusive. A new trend is to conduct more comprehensive research which is based on micro-scaled observation of the changes of the cellular structures and compositions under the interactions. For this purpose, advanced synchrotron FTIR (s-FTIR) microscopy was employed to monitor the cellular changes of single fungal hyphae under irradiation of α-particles from 241Am. Intracellular contents of ROS, MDA, GSSG/GSH and activities of CAT and SOD were measured via biochemical assay. Ion-irradiation on Rhizopus oryzae causes localized vacuolation, autolysis of cell wall and membrane, lipid peroxidation, DNA damage and conformational changes of proteins, which have been clearly revealed by the s-FTIR microspectroscopy. The different changes of cell viability, SOD and CAT activities can be explained by the ROS-involved chemical reactions. Evidently, the elevated level of ROS in hyphal cells upon irradiation plays the key role in the caused biological effect. This study demonstrates that s-FTIR microspectroscopy is an effective tool to study the damage of fungal hyphae caused by ionizing radiation and it facilitates the exploit of the mechanism for the interactions between the energetic ions and biological systems.

  3. Effects of indirect actions and oxygen on relative biological effectiveness: estimate of DSB induction and conversion induced by gamma rays and helium ions.

    Science.gov (United States)

    Tsai, Ju-Ying; Chen, Fang-Hsin; Hsieh, Tsung-Yu; Hsiao, Ya-Yun

    2015-07-01

    Clustered DNA damage other than double-strand breaks (DSBs) can be detrimental to cells and can lead to mutagenesis or cell death. In addition to DSBs induced by ionizing radiation, misrepair of non-DSB clustered damage contributes extra DSBs converted from DNA misrepair via pathways for base excision repair and nucleotide excision repair. This study aimed to quantify the relative biological effectiveness (RBE) when DSB induction and conversion from non-DSB clustered damage misrepair were used as biological endpoints. The results showed that both linear energy transfer (LET) and indirect action had a strong impact on the yields for DSB induction and conversion. RBE values for DSB induction and maximum DSB conversion of helium ions (LET = 120 keV/μm) to (60)Co gamma rays were 3.0 and 3.2, respectively. These RBE values increased to 5.8 and 5.6 in the absence of interference of indirect action initiated by addition of 2-M dimethylsulfoxide. DSB conversion was ∼1-4% of the total non-DSB damage due to gamma rays, which was lower than the 10% estimate by experimental measurement. Five to twenty percent of total non-DSB damage due to helium ions was converted into DSBs. Hence, it may be possible to increase the yields of DSBs in cancerous cells through DNA repair pathways, ultimately enhancing cell killing.

  4. Dioxin exposure of human CD34+ hemopoietic cells induces gene expression modulation that recapitulates its in vivo clinical and biological effects.

    Science.gov (United States)

    Fracchiolla, Nicola Stefano; Todoerti, Katia; Bertazzi, Pier Alberto; Servida, Federica; Corradini, Paolo; Carniti, Cristiana; Colombi, Antonio; Cecilia Pesatori, Angela; Neri, Antonino; Deliliers, Giorgio Lambertenghi

    2011-04-28

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has a large number of biological effects, including skin, cardiovascular, neurologic diseases, diabetes, infertility, cancers and immunotoxicity. We analysed the in vitro TCDD effects on human CD34+ cells and tested the gene expression modulation by means of microarray analyses before and after TCDD exposure. We identified 257 differentially modulated probe sets, identifying 221 well characterized genes. A large part of these resulted associated to cell adhesion and/or angiogenesis and to transcription regulation. Synaptic transmission and visual perception functions, with the particular involvement of the GABAergic pathway were also significantly modulated. Numerous transcripts involved in cell cycle or cell proliferation, immune response, signal transduction, ion channel activity or calcium ion binding, tissue development and differentiation, female or male fertility or in several metabolic pathways were also affected after dioxin exposure. The transcriptional profile induced by TCDD treatment on human CD34+ cells strikingly reproduces the clinical and biological effects observed in individuals exposed to dioxin and in biological experimental systems. Our data support a role of dioxin in the neoplastic transformation of hemopoietic stem cells and in immune modulation processes after in vivo exposure, as indicated by the epidemiologic data in dioxin accidentally exposed populations, providing a molecular basis for it. In addition, TCDD alters genes associated to glucidic and lipidic metabolisms, to GABAergic transmission or involved in male and female fertility, thus providing a possible explanation of the diabetogenic, dyslipidemic, neurologic and fertility effects induced by TCDD in vivo exposure.

  5. Comparison of the biological effectiveness of 45 MeV C-ions and γ-rays in inducing early and late effects in normal human primary fibroblasts

    Science.gov (United States)

    Fratini, E.; Balduzzi, M.; Antonelli, F.; Sorrentino, E.; Esposito, G.; Cuttone, G.; Romano, F.; Dini, V.; Simone, G.; Belli, M.; Campa, A.; Tabocchini, M. A.

    2013-07-01

    Investigation of the mechanisms underlying the biological effects induced by densely ionizing radiation has relevant implications in both radiation protection and therapy. In particular, the possible advantages of hadrontherapy with respect to conventional radiotherapy in terms of high conformal tumor treatment and sparing of healthy tissues are well known. Further improvements are limited by lack of radiobiological knowledge, particularly about the specific cellular response to the damage induced by particles of potential interest for tumor treatment. This study compares early and late effects induced in AG01522 normal human primary fibroblasts by γ-rays and C-ions having E ˜ 45 MeV/u at the cell entrance, corresponding to LET (in water) ˜ 49 keV/μm. Different end points have been investigated, namely: cell killing and lethal mutation, evaluated as early and delayed reproductive cell death, respectively; chromosome damage, as measured by micronuclei induction (MN); DNA damage, in terms of DSB induction and repair, as measured by the H2AX phosphorylation/dephosphorylation kinetics. Linear dose-response relationships were found for cell killing and induction of lethal mutations, with RBEs of about 1.3 and 1.6 respectively, indicating that the presence of genomic instability is greater in the progeny of C-ions irradiated cells. H2AX phosphorylation/dephosphorylation kinetics have shown a maximum foci number at 30 min after irradiation, higher for γ-rays than for C-ions. However, in the first 12 h the fraction of residual γ-H2AX foci was higher for C-ions irradiated cells, indicating a lower removal rate, possibly related to multiple/more complex damage along the particle track, with respect to the sparse lesions produced by γ-rays. MN induction, observed after 72 h from irradiation, was also greater for C-ions. Overall, these data indicate a more severe DNA damage induced by 45 MeV/u C-ions with respect to γ-rays, likely responsible of an increased cellular

  6. Comparison of the biological effectiveness of 45 MeV C-ions and {gamma}-rays in inducing early and late effects in normal human primary fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Fratini, E. [Centro studi e ricerche e museo storico della fisica E. Fermi, Roma (Italy); Balduzzi, M. [ENEA, Roma, Italy and INFN, Sezione Roma1-Gruppo Collegato Sanita, Roma (Italy); Antonelli, F.; Sorrentino, E.; Esposito, G. [Istituto Superiore di Sanita, Roma, Italy and INFN, Sezione Roma1-Gruppo Collegato Sanita, Roma (Italy); Cuttone, G.; Romano, F. [INFN-LNS, Catania (Italy); Dini, V.; Simone, G.; Campa, A.; Tabocchini, M. A. [stituto Superiore di Sanita, Roma, Italy and INFN, Sezione Roma1-Gruppo Collegato Sanita, Roma (Italy); Belli, M. [INFN, Sezione Roma1-Gruppo Collegato Sanita, Roma (Italy)

    2013-07-18

    Investigation of the mechanisms underlying the biological effects induced by densely ionizing radiation has relevant implications in both radiation protection and therapy. In particular, the possible advantages of hadrontherapy with respect to conventional radiotherapy in terms of high conformal tumor treatment and sparing of healthy tissues are well known. Further improvements are limited by lack of radiobiological knowledge, particularly about the specific cellular response to the damage induced by particles of potential interest for tumor treatment. This study compares early and late effects induced in AG01522 normal human primary fibroblasts by {gamma}-rays and C-ions having E {approx} 45 MeV/u at the cell entrance, corresponding to LET (in water) {approx} 49 keV/{mu}m. Different end points have been investigated, namely: cell killing and lethal mutation, evaluated as early and delayed reproductive cell death, respectively; chromosome damage, as measured by micronuclei induction (MN); DNA damage, in terms of DSB induction and repair, as measured by the H2AX phosphorylation/dephosphorylation kinetics. Linear dose-response relationships were found for cell killing and induction of lethal mutations, with RBEs of about 1.3 and 1.6 respectively, indicating that the presence of genomic instability is greater in the progeny of C-ions irradiated cells. H2AX phosphorylation/dephosphorylation kinetics have shown a maximum foci number at 30 min after irradiation, higher for {gamma}-rays than for C-ions. However, in the first 12 h the fraction of residual {gamma}-H2AX foci was higher for C-ions irradiated cells, indicating a lower removal rate, possibly related to multiple/more complex damage along the particle track, with respect to the sparse lesions produced by {gamma}-rays. MN induction, observed after 72 h from irradiation, was also greater for C-ions. Overall, these data indicate a more severe DNA damage induced by 45 MeV/u C-ions with respect to {gamma}-rays, likely

  7. Radiation-induced bystander effect in healthy G{sub 0} human lymphocytes: Biological and clinical significance

    Energy Technology Data Exchange (ETDEWEB)

    Belloni, Paola; Latini, Paolo [Department of Agrobiology and Agrochemistry, University of Tuscia, Via San Camillo De Lellis, I-01100 Viterbo (Italy); Palitti, Fabrizio, E-mail: palitti@unitus.it [Department of Agrobiology and Agrochemistry, University of Tuscia, Via San Camillo De Lellis, I-01100 Viterbo (Italy)

    2011-08-01

    To study the bystander effects, G{sub 0} human peripheral blood lymphocytes were X-irradiated with 0.1, 0.5 and 3 Gy. After 24 h, cell-free conditioned media from irradiated cultures were transferred to unexposed lymphocytes. Following 48 h of medium transfer, viability, induction of apoptosis, telomere shortening, reactive oxygen species (ROS) levels and micronuclei (after stimulation) were analyzed. A statistically significant decrement in cell viability, concomitant with the loss of mitochondrial membrane potential, telomere shortening, increases in hydrogen peroxide (H{sub 2}O{sub 2}) and superoxide anion (O{sub 2}{sup -}) with depletion of intracellular glutathione (GSH) level, and higher frequencies of micronuclei, were observed in bystander lymphocytes incubated with medium from 0.5 and 3 Gy irradiated samples, compared to lymphocytes unexposed. Furthermore, no statistically significant difference between the response to 0.5 and 3 Gy of irradiation in bystander lymphocytes, was found. However, when lymphocytes were irradiated with 0.1 Gy, no bystander effect with regard to viability, apoptosis, telomere length, and micronuclei was observed, although a high production of ROS level persisted. Radiation in the presence of the radical scavenger dimethyl sulfoxide (DMSO) suppressed oxidative stress induced by 3 Gy of X-rays with the effective elimination of bystander effects, suggesting a correlation between ROS and bystander signal formation in irradiated cells. The data propose that bystander effect might be mostly due to the reactions of radiation induced free radicals on DNA, with the existence of a threshold at which the bystander signal is not operative (0.1 Gy dose of X-rays). Our results may have clinical implications for health risk associated with radiation exposure.

  8. The effect of alginates on deoxycholic-acid-induced changes in oesophageal mucosal biology at pH 4.

    Science.gov (United States)

    Dettmar, Peter W; Strugala, Vicki; Tselepis, Chris; Jankowski, Janusz A

    2007-01-01

    Long-standing gastro-oesophageal reflux disease (GORD) can give rise to Barrett's oesophagus (BM), a metaplastic condition and precursor to oesophageal adenocarcinoma (AC). Oesophageal cancer was once rare but is now the 5th biggest cancer killer in the U.K. Reflux of bile acids into the oesophagus is implicated in the progression to BM as bile acids at pH 4 have been shown to induce c-myc expression, an oncogene upregulated in BM and AC. In the present study we investigated the role of the biopolymer alginate on bile acid induced molecular changes in oesophageal cell lines. OE21, OE33 and TE-7 oesophageal cell lines were exposed to 100 microM deoxycholic acid at pH 4 in the presence or absence of alginates. Levels of c-myc, E-cadherin, beta-catenin and Tcf signalling were determined by Real-Time PCR, Western blotting, immunofluoresence and reporter assays. All alginates tested were able to prevent the induction of c-myc by acidified deoxycholic acid in vitro. The upstream effects of acidified deoxycholic acid on E-cadherin, beta-catenin and Tcf signalling were also suppressed by alginate. Therefore, we have demonstrated that reflux of bile acids into the oesophagus initiates a potentially damaging molecular cascade of events using an in vitro model and that a biopolymer, alginate, can protect against these effects.

  9. The oxidative potential and biological effects induced by PM10 obtained in Mexico City and at a receptor site during the MILAGRO Campaign.

    Science.gov (United States)

    Quintana, Raul; Serrano, Jesús; Gómez, Virginia; de Foy, Benjamin; Miranda, Javier; Garcia-Cuellar, Claudia; Vega, Elizabeth; Vázquez-López, Inés; Molina, Luisa T; Manzano-León, Natalia; Rosas, Irma; Osornio-Vargas, Alvaro R

    2011-12-01

    As part of a field campaign that studied the impact of Mexico City pollution plume at the local, sub-regional and regional levels, we studied transport-related changes in PM(10) composition, oxidative potential and in vitro toxicological patterns (hemolysis, DNA degradation). We collected PM(10) in Mexico City (T(0)) and at a suburban-receptor site (T(1)), pooled according to two observed ventilation patterns (T(0) → T(1) influence and non-influence). T(0) samples contained more Cu, Zn, and carbon whereas; T(1) samples contained more of Al, Si, P, S, and K (p < 0.05). Only SO(4)(-2) increased in T(1) during the influence periods. Oxidative potential correlated with Cu/Zn content (r = 0.74; p < 0.05) but not with biological effects. T(1) PM(10) induced greater hemolysis and T(0) PM(10) induced greater DNA degradation. Influence/non-influence did not affect oxidative potential nor biological effects. Results indicate that ventilation patterns had little effect on intrinsic PM(10) composition and toxicological potential, which suggests a significant involvement of local sources.

  10. The role of intercellular communication and oxidative metabolism in the propagation of ionizing radiation-induced biological effects

    Science.gov (United States)

    Autsavapromporn, Narongchai

    Coordinated interactions of specific molecular and biochemical processes are likely involved in the cellular responses to stresses induced by different ionizing radiations with distinctive linear energy transfer (LET) properties. Here, we investigated the roles and mechanisms of gap junction intercellular communication and oxidative metabolism in modulating cell killing and repair of potentially lethal damage (PLDR) in confluent AG1522 human fibroblasts exposed to 1 GeV protons (LET˜0.2 keV/μm), 137Cs γ rays (LET˜0.9 keV/μm), 241Am α particles (LET˜122 keV/μm) or 1 GeV/u iron ions (LET˜151 keV/μm) at doses by which all cells in the exposed cultures are irradiated. As expected, α-particles and iron ions were more effective than protons and γ rays at inducing cell killing. Holding γ- or proton-irradiated cells in the confluent state for several hours after irradiation promoted increased survival and decreased chromosomal damage. However, maintaining α-particle or iron ion-irradiated cells in the confluent state for various times prior to subculture resulted in increased rather than decreased lethality, and was associated with. persistent DNA damage and increased protein oxidation and lipid peroxidation. Inhibiting gap junction communication with 18-α-glycyrrhetinic acid or by knockdown of connexin43, a constitutive protein of junctional channels in these cells, protected against the toxic effects expressed in these cells during confluent holding. Up-regulation of antioxidant defense by ectopic over-expression of glutathione peroxidase, protected against cell killing by α-particles when cells were analyzed shortly after exposure. However, it did not attenuate the decrease in survival during confluent holding. Together, these findings indicate that the damaging effect of α particles results in oxidative stress, and the toxic effects in the hours following irradiation are amplified by intercellular communication, but the communicated molecule(s) is

  11. [Biological effect of wood dust].

    Science.gov (United States)

    Maciejewska, A; Wojtczak, J; Bielichowska-Cybula, G; Domańska, A; Dutkiewicz, J; Mołocznik, A

    1993-01-01

    The biological effect of exposure to wood dust depends on its composition and the content of microorganisms which are an inherent element of the dust. The irritant and allergic effects of wood dust have been recognised for a long time. The allergic effect is caused by the wood dust of subtropical trees, e.g. western red cedar (Thuja plicata), redwood (Sequoia sempervirens), obeche (Triplochiton scleroxylon), cocabolla (Dalbergia retusa) and others. Trees growing in the European climate such as: larch (Larix), walnut (Juglans regia), oak (Quercus), beech (Fagus), pine (Pinus) cause a little less pronounced allergic effect. Occupational exposure to irritative or allergic wood dust may lead to bronchial asthma, rhinitis, alveolitis allergica, DDTS (Organic dust toxic syndrome), bronchitis, allergic dermatitis, conjunctivitis. An increased risk of adenocarcinoma of the sinonasal cavity is an important and serious problem associated with occupational exposure to wood dust. Adenocarcinoma constitutes about half of the total number of cancers induced by wood dust. An increased incidence of the squamous cell cancers can also be observed. The highest risk of cancer applies to workers of the furniture industry, particularly those dealing with machine wood processing, cabinet making and carpentry. The cancer of the upper respiratory tract develops after exposure to many kinds of wood dust. However, the wood dust of oak and beech seems to be most carcinogenic. It is assumed that exposure to wood dust can cause an increased incidence of other cancers, especially lung cancer and Hodgkin's disease. The adverse effects of microorganisms, mainly mould fungi and their metabolic products are manifested by alveolitis allergica and ODTS. These microorganisms can induce aspergillomycosis, bronchial asthma, rhinitis and allergic dermatitis.

  12. Quantum Effects in Biological Systems

    CERN Document Server

    2016-01-01

    Since the last decade the study of quantum mechanical phenomena in biological systems has become a vibrant field of research. Initially sparked by evidence of quantum effects in energy transport that is instrumental for photosynthesis, quantum biology asks the question of how methods and models from quantum theory can help us to understand fundamental mechanisms in living organisms. This approach entails a paradigm change challenging the related disciplines: The successful framework of quantum theory is taken out of its low-temperature, microscopic regimes and applied to hot and dense macroscopic environments, thereby extending the toolbox of biology and biochemistry at the same time. The Quantum Effects in Biological Systems conference is a platform for researchers from biology, chemistry and physics to present and discuss the latest developments in the field of quantum biology. After meetings in Lisbon (2009), Harvard (2010), Ulm (2011), Berkeley (2012), Vienna (2013), Singapore (2014) and Florence (2015),...

  13. Cold-induced thermoregulation and biological aging.

    Science.gov (United States)

    Florez-Duquet, M; McDonald, R B

    1998-04-01

    Aging is associated with diminished cold-induced thermoregulation (CIT). The mechanisms accounting for this phenomenon have yet to be clearly elucidated but most likely reflect a combination of increased heat loss and decreased metabolic heat production. The inability of the aged subject to reduce heat loss during cold exposure is associated with diminished reactive tone of the cutaneous vasculature and, to a lesser degree, alterations in the insulative properties of body fat. Cold-induced metabolic heat production via skeletal muscle shivering thermogenesis and brown adipose tissue nonshivering thermogenesis appears to decline with age. Few investigations have directly linked diminished skeletal muscle shivering thermogenesis with the age-related reduction in cold-induced thermoregulatory capacity. Rather, age-related declines in skeletal muscle mass and metabolic activity are cited as evidence for decreased heat production via shivering. Reduced mass, GDP binding to brown fat mitochondria, and uncoupling protein (UCP) levels are cited as evidence for attenuated brown adipose tissue cold-induced nonshivering thermogenic capacity during aging. The age-related reduction in brown fat nonshivering thermogenic capacity most likely reflects altered cellular signal transduction rather than changes in neural and hormonal signaling. The discussion in this review focuses on how alterations in CIT during the life span may offer insight into possible mechanisms of biological aging. Although the preponderance of evidence presented here demonstrates that CIT declines with chronological time, the mechanism reflecting this attenuated function remains to be elucidated. The inability to draw definitive conclusions regarding biological aging and CIT reflects the lack of a clear definition of aging. It is unlikely that the mechanisms accounting for the decline in cold-induced thermoregulation during aging will be determined until biological aging is more precisely defined.

  14. Relative biological effectiveness of simulated solar particle event proton radiation to induce acute hematological change in the porcine model

    Science.gov (United States)

    Sanzari, Jenine K.; Wan, Steven X.; Diffenderfer, Eric S.; Cengel, Keith A.; Kennedy, Ann R.

    2014-01-01

    The present study was undertaken to determine relative biological effectiveness (RBE) values for simulated solar particle event (SPE) radiation on peripheral blood cells using Yucatan minipigs and electron-simulated SPE as the reference radiation. The results demonstrated a generally downward trend in the RBE values with increasing doses of simulated SPE radiation for leukocytes in the irradiated animals. The fitted RBE values for white blood cells (WBCs), lymphocytes, neutrophils, monocytes and eosinophils were above 1.0 in all three radiation dose groups at all time-points evaluated, and the lower limits of the 95% confidence intervals were > 1.0 in the majority of the dose groups at different time-points, which together suggest that proton-simulated SPE radiation is more effective than electron-simulated SPE radiation in reducing the number of peripheral WBCs, lymphocytes, neutrophils, monocytes and eosinophils, especially at the low end of the 5–10 Gy dose range evaluated. Other than the RBE values, the responses of leukocytes to electron-simulated SPE radiation and proton-simulated SPE radiation exposure are highly similar with respect to the time-course, the most radiosensitive cell type (the lymphocytes), and the shape of the dose–response curves, which is generally log-linear. These findings provide additional evidence that electron-simulated SPE radiation is an appropriate reference radiation for determination of RBE values for the simulated SPE radiations, and the RBE estimations using electron-simulated SPE radiation as the reference radiation are not complicated by other characteristics of the leukocyte response to radiation exposure. PMID:24027300

  15. Relative biological effectiveness of simulated solar particle event proton radiation to induce acute hematological change in the porcine model.

    Science.gov (United States)

    Sanzari, Jenine K; Wan, Steven X; Diffenderfer, Eric S; Cengel, Keith A; Kennedy, Ann R

    2014-03-01

    The present study was undertaken to determine relative biological effectiveness (RBE) values for simulated solar particle event (SPE) radiation on peripheral blood cells using Yucatan minipigs and electron-simulated SPE as the reference radiation. The results demonstrated a generally downward trend in the RBE values with increasing doses of simulated SPE radiation for leukocytes in the irradiated animals. The fitted RBE values for white blood cells (WBCs), lymphocytes, neutrophils, monocytes and eosinophils were above 1.0 in all three radiation dose groups at all time-points evaluated, and the lower limits of the 95% confidence intervals were > 1.0 in the majority of the dose groups at different time-points, which together suggest that proton-simulated SPE radiation is more effective than electron-simulated SPE radiation in reducing the number of peripheral WBCs, lymphocytes, neutrophils, monocytes and eosinophils, especially at the low end of the 5-10 Gy dose range evaluated. Other than the RBE values, the responses of leukocytes to electron-simulated SPE radiation and proton-simulated SPE radiation exposure are highly similar with respect to the time-course, the most radiosensitive cell type (the lymphocytes), and the shape of the dose-response curves, which is generally log-linear. These findings provide additional evidence that electron-simulated SPE radiation is an appropriate reference radiation for determination of RBE values for the simulated SPE radiations, and the RBE estimations using electron-simulated SPE radiation as the reference radiation are not complicated by other characteristics of the leukocyte response to radiation exposure.

  16. Biological Effectiveness of Antiproton Annihilation

    DEFF Research Database (Denmark)

    Maggiore, C.; Agazaryan, N.; Bassler, N.;

    2004-01-01

    from the annihilation of antiprotons produce an increase in ‘‘biological dose’’ in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct measurement of the biological effects of antiproton annihilation. The background, description, and status...

  17. The oxidative potential and biological effects induced by PM{sub 10} obtained in Mexico City and at a receptor site during the MILAGRO Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Quintana, Raul [Instituto Nacional de Cancerologia, Mexico City (Mexico); Serrano, Jesus [Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Mexico City (Mexico); Gomez, Virginia [Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Mexico City (Mexico); Foy, Benjamin de [Earth and Atmospheric Sciences, Saint Louis University, St. Louis, MO (United States); Miranda, Javier [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico City (Mexico); Garcia-Cuellar, Claudia [Instituto Nacional de Cancerologia, Mexico City (Mexico); Vega, Elizabeth [Instituto Mexicano del Petroleo, Mexico City (Mexico); Vazquez-Lopez, Ines [Instituto Nacional de Cancerologia, Mexico City (Mexico); Molina, Luisa T. [Molina Center for Energy and the Environment, CA (United States); Massachusetts Institute of Technology, Cambridge, MA (United States); Manzano-Leon, Natalia [Instituto Nacional de Cancerologia, Mexico City (Mexico); Rosas, Irma [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Mexico City (Mexico); Osornio-Vargas, Alvaro R., E-mail: osornio@ualberta.ca [Instituto Nacional de Cancerologia, Mexico City (Mexico); Department of Paediatrics, University of Alberta, 1048 RTF, 8308 114 St, Edmonton, AB T6G 2V2 (Canada)

    2011-12-15

    As part of a field campaign that studied the impact of Mexico City pollution plume at the local, sub-regional and regional levels, we studied transport-related changes in PM{sub 10} composition, oxidative potential and in vitro toxicological patterns (hemolysis, DNA degradation). We collected PM{sub 10} in Mexico City (T{sub 0}) and at a suburban-receptor site (T{sub 1}), pooled according to two observed ventilation patterns (T{sub 0} {yields} T{sub 1} influence and non-influence). T{sub 0} samples contained more Cu, Zn, and carbon whereas; T{sub 1} samples contained more of Al, Si, P, S, and K (p < 0.05). Only SO{sub 4}{sup -2} increased in T{sub 1} during the influence periods. Oxidative potential correlated with Cu/Zn content (r = 0.74; p < 0.05) but not with biological effects. T{sub 1} PM{sub 10} induced greater hemolysis and T{sub 0} PM{sub 10} induced greater DNA degradation. Influence/non-influence did not affect oxidative potential nor biological effects. Results indicate that ventilation patterns had little effect on intrinsic PM{sub 10} composition and toxicological potential, which suggests a significant involvement of local sources. - Highlights: > Transport-related changes in PM{sub 10} composition, oxidative potential and in vitro toxicity were studied. > Cu, Zn, and carbon levels were predominant in urban PM{sub 10}; receptor site PM{sub 10} was rich in soil elements. > SO{sub 4}{sup -2} was the only component increased in PM{sub 10} from the receptor during the influence periods. > PM{sub 10} oxidative potential correlates with Cu/Zn content but not with studied biological effects. > Ventilation patterns had little effect on PM{sub 10} composition and toxicity. - Mexico City ventilation patterns had little effect on the intrinsic PM{sub 10} composition and toxicological potential, which suggests a significant involvement of local sources as opposed to downwind transport.

  18. Effect of Organic Solvents and Biologically Relevant Ions on the Light-Induced DNA Cleavage by Pyrene and Its Amino and Hydroxy Derivatives

    Directory of Open Access Journals (Sweden)

    Hongtao Yu

    2002-09-01

    Full Text Available Abstract: Polycyclic aromatic hydrocarbons (PAHs are a class of carcinogenic compounds that are both naturally and artificially produced. Many PAHs are pro-carcinogens that require metabolic activation. Recently, it has been shown that PAH can induce DNA single strand cleavage and formation of PAH-DNA covalent adduct upon irradiation with UVA light. The light-induced DNA cleavage parallels phototoxicity in one instance. The DNA photocleavage efficiency depends on the structure of the PAHs. This article reports the effect of both organic solvents and the presence of biologically relevant ions, Na+, Mg2+, Ca2+, K+, Fe3+, Cu2+, Zn+2, Mn2+, and I-, on the light-induced DNA cleavage by pyrene, 1-hydroxypyrene and 1-aminopyrene. Since both 1-hydroxypyrene (0.6 μM and 1-aminopyrene (6 μM dissolve well in the minimum organic solvents used (2% methanol, dimethylsulfoxide, and dimethylformamide, increasing the amount of the organic solvent resulted in the decrease of the amount of DNA single strand cleavage caused by the combination effect of 1-hydroxy or 1-aminopyrene and UVA light. The result with the less watersoluble pyrene shows that increase of the amount of the organic solvent can increase the amount of DNA single strand DNA photocleavage cause by the combination of pyrene and UVA light. Therefore, there are two effects by the organic solvents: (i to dissolve PAH and (ii to quench DNA photocleavage. The presence of Fe3+ and Zn2+ enhances, while the presence of Ca2+ and Mn2+ inhibits the DNA photocleavage caused by 1-aminopyrene and UVA light. Other metal ions have minimal effect. This means that the effect of ions on DNA photocleavage by PAHs is complex. The presence of KI enhances DNA photocleavage. This indicates that the triplet-excited state of 1-aminopyrene is involved in causing DNA cleavage

  19. Biological effects of electromagnetic fields.

    Science.gov (United States)

    Macrì, M. A.; Di Luzio, Sr.; Di Luzio, S.

    2002-01-01

    Nowadays, concerns about hazards from electromagnetic fields represent an alarming source for human lives in technologically developed countries. We are surrounded by electromagnetic fields everywhere we spend our working hours, rest or recreational activities. The aim of this review is to summarize the biological effects due to these fields arising from power and transmission lines, electrical cable splices, electronic devices inside our homes and work-places, distribution networks and associated devices such as cellular telephones and wireless communication tower, etc. Special care has been reserved to study the biological effects of electromagnetic fields on cell lines of the mammalian immune system about which our research group has been working for several years.

  20. LASER-INDUCED PROCESS OF DEFROSTING IN BIOLOGICAL TISSUES AFTER IMPREGNATION BY NANOPARTICLES WITH ABNORMAL HIGH PHOTOTHERMAL EFFECT

    Directory of Open Access Journals (Sweden)

    Gulyaev, P.Y.

    2016-11-01

    Full Text Available Photothermal effect of laser radiation on frozen biotissues is essential for a number of modern technologies. For example, tissue cryopreservation has potentials for cryosurgery and other types of medical treatment using tissue cooling, frizzing and laser heating. In the present study the self-propagating high temperature (SHT synthesis and application of biofunctional nanoparticles (NPs using high photo-thermal effect for laser heating of frozen biotissues are considered. Starch stabilized aqueous solutions of KxMoO3 and HxMoO3 NPs demonstrate high absorption of laser radiation with the wavelengths of 1.56 μm being applied to pig skin containing small amounts of NPs. For hydrogen-molybdenum oxide bronze the thermal effect on pig skin is higher at 1.44 μm than at 1.56 μm. Laser heating of frozen pig’s ear previously modified by bronze NPs injection allows controlling temperature of irradiated tissue up to +1 oC. Subcutaneous tissue impregnation with NPs of the metallic oxide bronzes can be used for careful laser treatment of frozen ear tissue.

  1. Biological effectiveness of antiproton annihilation

    CERN Document Server

    Holzscheiter, Michael H.; Bassler, Niels; Beyer, Gerd; De Marco, John J.; Doser, Michael; Ichioka, Toshiyasu; Iwamoto, Keisuke S.; Knudsen, Helge V.; Landua, Rolf; Maggiore, Carl; McBride, William H.; Møller, Søren Pape; Petersen, Jorgen; Smathers, James B.; Skarsgard, Lloyd D.; Solberg, Timothy D.; Uggerhøj, Ulrik I.; Withers, H.Rodney; Vranjes, Sanja; Wong, Michelle; Wouters, Bradly G.

    2004-01-01

    We describe an experiment designed to determine whether or not the densely ionizing particles emanating from the annihilation of antiprotons produce an increase in “biological dose” in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct measurement of the biological effects of antiproton annihilation. The experiment has been approved by the CERN Research Board for running at the CERN Antiproton Decelerator (AD) as AD-4/ACE (Antiproton Cell Experiment) and has begun data taking in June of 2003. The background, description and the current status of the experiment are given.

  2. Biological effectiveness of antiproton annihilation

    DEFF Research Database (Denmark)

    Holzscheiter, M.H.; Agazaryan, N.; Bassler, Niels;

    2004-01-01

    We describe an experiment designed to determine whether or not the densely ionizing particles emanating from the annihilation of antiprotons produce an increase in ‘‘biological dose’’ in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct...... measurement of the biological effects of antiproton annihilation. The experiment has been approved by the CERN Research Board for running at the CERN Antiproton Decelerator (AD) as AD-4/ACE (Antiproton Cell Experiment) and has begun data taking in June of 2003. The background, description and the current...

  3. Low Pressure Radio-Frequency Oxygen Plasma Induced Oxidation of Titanium – Surface Characteristics and Biological Effects

    OpenAIRE

    Wan-Yu Tseng; Sheng-Hao Hsu; Chieh-Hsiun Huang; Yu-Chieh Tu; Shao-Chin Tseng; Hsuen-Li Chen; Min-Huey Chen; Wei-Fang Su; Li-Deh Lin

    2013-01-01

    OBJECTIVE: This research was designed to investigate the effects of low pressure radio-frequency (RF) oxygen plasma treatment (OPT) on the surface of commercially pure titanium (CP-Ti) and Ti6Al4V. Surface topography, elemental composition, water contact angle, cell viability, and cell morphology were surveyed to evaluate the biocompatibility of titanium samples with different lengths of OP treating time. MATERIALS AND METHODS: CP-Ti and Ti6Al4V discs were both classified into 4 groups: untre...

  4. Mechanistic Effects of Calcitriol in Cancer Biology

    Directory of Open Access Journals (Sweden)

    Lorenza Díaz

    2015-06-01

    Full Text Available Besides its classical biological effects on calcium and phosphorus homeostasis, calcitriol, the active vitamin D metabolite, has a broad variety of actions including anticancer effects that are mediated either transcriptionally and/or via non-genomic pathways. In the context of cancer, calcitriol regulates the cell cycle, induces apoptosis, promotes cell differentiation and acts as anti-inflammatory factor within the tumor microenvironment. In this review, we address the different mechanisms of action involved in the antineoplastic effects of calcitriol.

  5. Low pressure radio-frequency oxygen plasma induced oxidation of titanium--surface characteristics and biological effects.

    Directory of Open Access Journals (Sweden)

    Wan-Yu Tseng

    Full Text Available OBJECTIVE: This research was designed to investigate the effects of low pressure radio-frequency (RF oxygen plasma treatment (OPT on the surface of commercially pure titanium (CP-Ti and Ti6Al4V. Surface topography, elemental composition, water contact angle, cell viability, and cell morphology were surveyed to evaluate the biocompatibility of titanium samples with different lengths of OP treating time. MATERIALS AND METHODS: CP-Ti and Ti6Al4V discs were both classified into 4 groups: untreated, treated with OP generated by using oxygen (99.98% for 5, 10, and 30 min, respectively. After OPT on CP-Ti and Ti6Al4V samples, scanning probe microscopy, X-ray photoelectron spectrometry (XPS, and contact angle tests were conducted to determine the surface topography, elemental composition and hydrophilicity, respectively. The change of surface morphology was further studied using sputtered titanium on silicon wafers. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT assay and F-actin immunofluorescence stain were performed to investigate the viability and spreading behavior of cultivated MG-63 cells on the samples. RESULTS: The surface roughness was most prominent after 5 min OPT in both CP-Ti and Ti6Al4V, and the surface morphology of sputtered Ti sharpened after the 5 min treatment. From the XPS results, the intensity of Ti(°, Ti(2+, and Ti(3+ of the samples' surface decreased indicating the oxidation of titanium after OPT. The water contact angles of both CP-Ti and Ti6Al4V were increased after 5 min OPT. The results of MTT assay demonstrated MG-63 cells proliferated best on the 5 min OP treated titanium sample. The F-actin immunofluorescence stain revealed the cultivated cell number of 5 min treated CP-Ti/Ti6Al4V was greater than other groups and most of the cultivated cells were spindle-shaped. CONCLUSIONS: Low pressure RF oxygen plasma modified both the composition and the morphology of titanium samples' surface. The CP-Ti/Ti6Al4V

  6. A systems biology approach to investigate the effect of pH-induced gene regulation on solvent production by Clostridium acetobutylicum in continuous culture

    Directory of Open Access Journals (Sweden)

    Bahl Hubert

    2011-01-01

    Full Text Available Abstract Background Clostridium acetobutylicum is an anaerobic bacterium which is known for its solvent-producing capabilities, namely regarding the bulk chemicals acetone and butanol, the latter being a highly efficient biofuel. For butanol production by C. acetobutylicum to be optimized and exploited on an industrial scale, the effect of pH-induced gene regulation on solvent production by C. acetobutylicum in continuous culture must be understood as fully as possible. Results We present an ordinary differential equation model combining the metabolic network governing solvent production with regulation at the genetic level of the enzymes required for this process. Parameterizing the model with experimental data from continuous culture, we demonstrate the influence of pH upon fermentation products: at high pH (pH 5.7 acids are the dominant product while at low pH (pH 4.5 this switches to solvents. Through steady-state analyses of the model we focus our investigations on how alteration in gene expression of C. acetobutylicum could be exploited to increase butanol yield in a continuous culture fermentation. Conclusions Incorporating gene regulation into the model of solvent production by C. acetobutylicum enables an accurate representation of the pH-induced switch to solvent production to be obtained and theoretical investigations of possible synthetic-biology approaches to be pursued. Steady-state analyses suggest that, to increase butanol yield, alterations in the expression of single solvent-associated genes are insufficient; a more complex approach targeting two or more genes is required.

  7. [Biological effects of electromagnetic fields (author's transl)].

    Science.gov (United States)

    Bernhardt, J

    1979-08-01

    This résumé deals with thermal and nonthermal effects of electromagnetic fields on man. In consideration of two aspects a limitation is necessary. Firstly, there will be discussed only direct and immediate influences on biological cells and tissues, secondly, the treatment is limited to such phenomena, for which biophysical aproximations, based on experimental data, could be developed. Hazards for the human being may occur only by thermal effects within the microwave range. Regarding frequencies below approximately 30 kHz, excitation processes cannot be excluded in exceptional cases. Thermal effects are predominant, between 30 kHz and 100 kHz, before excitations can appear. Furthermore, by comparing the electrically and magnetically induced currents with the naturally flowing currents in man caused by the brain's and heart's electrical activity, a "lower boundaryline" was estimated. Regarding electric or magnetic field strengths undercutting this boundary-line, direct effects on the central nervous system may be excluded; other mechanisms should be responsible for demonstrated biological effects. The paper closes referring to some reports--presently discussed--on experimental findings of biological effects, which are observed as a result of the influence of electromagnetic fields of small field strengths.

  8. Quantum Effects in Biological Systems

    Science.gov (United States)

    Roy, Sisir

    2014-07-01

    The debates about the trivial and non-trivial effects in biological systems have drawn much attention during the last decade or so. What might these non-trivial sorts of quantum effects be? There is no consensus so far among the physicists and biologists regarding the meaning of "non-trivial quantum effects". However, there is no doubt about the implications of the challenging research into quantum effects relevant to biology such as coherent excitations of biomolecules and photosynthesis, quantum tunneling of protons, van der Waals forces, ultrafast dynamics through conical intersections, and phonon-assisted electron tunneling as the basis for our sense of smell, environment assisted transport of ions and entanglement in ion channels, role of quantum vacuum in consciousness. Several authors have discussed the non-trivial quantum effects and classified them into four broad categories: (a) Quantum life principle; (b) Quantum computing in the brain; (c) Quantum computing in genetics; and (d) Quantum consciousness. First, I will review the above developments. I will then discuss in detail the ion transport in the ion channel and the relevance of quantum theory in brain function. The ion transport in the ion channel plays a key role in information processing by the brain.

  9. Relative biological effectiveness of carbon ions for tumor control, acute skin damage and late radiation-induced fibrosis in a mouse model

    DEFF Research Database (Denmark)

    Sørensen, Brita Singers; Horsman, Michael Robert; Alsner, Jan;

    2015-01-01

    Background. The aim of the present study was to compare the biological effectiveness of carbon ions relative to x-rays between tumor control, acute skin reaction and late RIF of CDF1 mice. Material and methods. CDF1 mice with a C3H mouse mammary carcinoma implanted subcutaneously on the foot of t...

  10. STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES : II. EFFECT OF DESOXYRIBONUCLEASE ON THE BIOLOGICAL ACTIVITY OF THE TRANSFORMING SUBSTANCE.

    Science.gov (United States)

    McCarty, M; Avery, O T

    1946-01-31

    It has been shown that extremely minute amounts of purified preparations of desoxyribonuclease are capable of bringing about the complete and irreversible inactivation of the transforming substance of Pneumococcus Type III. The significance of the effect of the enzyme, and its bearing on the chemical nature of the transforming substance, together with certain considerations concerning the biological specificity of desoxyribonucleic acids in general, are discussed.

  11. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of schizophrenia, part 2: update 2012 on the long-term treatment of schizophrenia and management of antipsychotic-induced side effects.

    Science.gov (United States)

    Hasan, Alkomiet; Falkai, Peter; Wobrock, Thomas; Lieberman, Jeffrey; Glenthoj, Birte; Gattaz, Wagner F; Thibaut, Florence; Möller, Hans-Jürgen

    2013-02-01

    Abstract These updated guidelines are based on a first edition of the World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of schizophrenia published in 2006. For this 2012 revision, all available publications pertaining to the biological treatment of schizophrenia were reviewed systematically to allow for an evidence-based update. These guidelines provide evidence-based practice recommendations that are clinically and scientifically meaningful. They are intended to be used by all physicians diagnosing and treating people suffering from schizophrenia. Based on the first version of these guidelines, a systematic review of the MEDLINE/PUBMED database and the Cochrane Library, in addition to data extraction from national treatment guidelines, has been performed for this update. The identified literature was evaluated with respect to the strength of evidence for its efficacy and then categorised into six levels of evidence (A-F) and five levels of recommendation (1-5) ( Bandelow et al. 2008a ,b, World J Biol Psychiatry 9:242, see Table 1 ). This second part of the updated guidelines covers long-term treatment as well as the management of relevant side effects. These guidelines are primarily concerned with the biological treatment (including antipsychotic medication and other pharmacological treatment options) of adults suffering from schizophrenia.

  12. Biological effects of drilling wastes

    Energy Technology Data Exchange (ETDEWEB)

    Cranford, P. J. [Department of Fisheries and Oceans, Dartmouth, NS (Canada). Bedford Inst. of Oceanography

    2000-07-01

    An argument is made for the point of view that economic realities require that a sustainable fishery must co-exist with the offshore petroleum industry, and therefore to sustain the fishery comprehensive studies are needed to identify and minimize the impact of operational drilling wastes on fishery resources. Moreover, laboratory and field studies indicate that operational drilling platforms impact on fisheries at great distances, therefore studies should not be limited to the immediate vicinity of drilling sites. Studies on long-term exposure of resident organisms to low level contaminants and the chronic lethal and sublethal biological effects of production drilling wastes must be conducted under environmentally relevant conditions to ensure the validity of the results. Studies at the Bedford Institute of Oceanography on sea scallops (Placopecten magellanicus) shows them to be highly sensitive to impacts from drilling wastes. Results of these studies, integrated with toxicity data and information on the distribution and transport of drilling wastes have been used by regulatory agencies and industrial interests to develop scientifically sound and justifiable regulations. They also led to the development of practical, sensitive and cost-effective technologies that use resident resource species to detect environmental impacts at offshore production sites. 1 fig.

  13. Effects of secretive bone morphogenetic protein 2 induced by gene transfection on the biological changes of NIH3T3 cells

    Institute of Scientific and Technical Information of China (English)

    SUN Wei-bin; WANG Juan; LU Chun; TANG Gui-xia

    2005-01-01

    Background Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor beta superfamily, are powerful regulators of cartilage and bone formation. This study investigated the biological changes of NIH3T3 cells incubated with secretive BMP2 that was induced by gene transfection through transwell. Methods Eukaryonic expression vector (pcDNA3.1-B2) was transfered into NIH3T3 cells with SofastTM,a positive compound transfection agent. The positive cell clones were selected with G418. The cytoplasmic and extracellular expressions of BMP2 were determined by immunohistochemical stain and enzyme-linked immunosorbent assay. NIH3T3 cells were co-cultured with hBMP2 gene transfecting cells through transwell, and the ultrastructure, alkaline phosphatase activity and the expression of osteocalcin (the marker of osteogenetic differentiation) changes were observed. Results There were cytoplasmic and extracellular expressions of BMP2 in transfecting NIH3T3 cells. The ultrastructural changes, the high activity of alkaline phosphatase and the positive stain of osteocalcin suggested the osteogenetic differentiation tendency of NIH3T3 cells co-cultured with transfecting NIH3T3 cells. Conclusion Secretive BMP2 that is induced by gene transfection could promote the osteogenetic differentiation of fibroblast cells.

  14. Effects of distilled Phaseoli Semen rubra Herbal-Acupuncture on lipid composition, liver function, antioxidant capacity and molecular biological aspects in obese rats induced high fat diet

    Directory of Open Access Journals (Sweden)

    Ji, Jun Hwan

    2005-06-01

    Full Text Available Effects of Phaseoli Semen rubra Herbal-acupuncture at zusanli(ST-36, Quchi(LI-11 and Sanyinjiao(Sp-6 on lipid composition, liver function, oxidative capacity and molecular biological aspects were investigate in high fat diet induced obese rats. Forty male Sprague-Dawley rats weighing about 400g were divided into 4 groups according to body weight and raised four weeks with control, zusanli(ST-36, Quchi(LI-11 and Sanyinjiao(Sp-6 Herbal-acupuncture groups. 1. Plasma total cholesterol and LDL-cholesterol showed a low values in the (ST-36 and (LI-11 Herbal-acupuncture groups and HDL- cholesterol showed a high values in the (ST-36 Herbal-acupuncture groups. 2. Plasma triglyceride and glucose showed a low values in the (ST-36 and (LI-11 Herbal-acupuncture groups. 3. The contents of plasma free fatty acids showed a tendence to decrease in the Herbal-acupuncture groups, however in the Herbal-acupuncture groups, the values showed no significantly different. 4. The activities of AST and ALT showed no significantly different in all treatment groups. 5. The contents of plasma β-lipoprotein and free fatty acids showed a tendency to decrease in the Herbal-acupuncture groups compared to those of control group. In the Herbal-acupuncture groups, the values of (ST-36 and (LI-11 Herbal-acupuncture groups showed a low in the acupuncture groups. 6. Liver total cholesterol and triglyceride showed a low values in the (ST-36 and (LI-11 Herbal-acupuncture groups. 7. Contents of plasma TBARS showed a low values in the (ST-36 and (LI-11 Herbal-acupuncture groups, however contents of liver TBARS showed no significantly different among treatment groups. 8. Values of liver glutathione peroxidase and catalase activity showed a tendency to increase in the (ST-36 and (LI-11 Herbal-acupuncture groups. Values of liver super oxide dismutase activity showed a high in the (ST-36 Herbal-acupuncture groups compared to those of other groups. 9. Expression of apo-B mRNA in liver cell

  15. Authigenic minerals: Biologically influenced and induced organomineralization

    Science.gov (United States)

    Dupraz, Christophe

    2016-04-01

    Organominerals are minerals precipitated by interactions with organic matter without enzymatic control. Organomineralization of authigenic carbonate minerals depends on two key components: (1) the "carbonate alkalinity engine" impacting the calcium carbonate saturation index and (2) the organic matrix comprised of extracellular organic matter (EOM), which provides a template for carbonate nucleation. The alkalinity engine can be "intrinsic" when microbial metabolisms increase supersaturation or lower the kinetic barrier of precipitation, or "extrinsic" when the physicochemical environment creates the conditions for mineral formation. The organic matrix produced by various communities within the microbial mats is known to influence nucleation, morphology and mineralogy of minerals through binding of cations. By playing with these two key components, three types of authigenic minerals can be formed: (1) a purely physicochemical precipitation on an abiotic substrate, (2) a precipitation "influenced" by the presence of an organic matrix but resulting from a physicochemical forcing (environmentally driven), or (3) a "microbially-induced" precipitation, in which both supersaturation and organic matrix are resulting from microbial activity. In this keynote, we will review important processes involved in the precipitation of authigenic carbonate minerals in modern microbial mats and open the discussion on the potential use of authigenic carbonate minerals as biosignatures in the fossil record.

  16. Biological effects of high LET radiations

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masami [Nagasaki Univ. (Japan). Faculty of Pharmaceutical Sciences

    1997-03-01

    Biological effect of radiation is different by a kind of it greatly. Heavy ions were generally more effective in cell inactivation, chromosome aberration induction, mutation induction and neoplastic cell transformation induction than {gamma}-rays in SHE cells. (author)

  17. Correlation Effects in Biological Networks

    Directory of Open Access Journals (Sweden)

    A.A. Bagdasaryan

    2012-06-01

    Full Text Available Review of the complex network theory is presented and classification of such networks in accordance with the main statistical characteristics is considered. For the adjacency matrix of a real neural network the shortest distances for each pair of nodes as well as the node degree distribution and cluster coefficients are calculated. Comparison of the main statistical parameters with the random network is performed, and based on this, the conclusions about the correlation phenomena in biological system are made.

  18. Biological and biophysics aspects of metformin-induced effects: cortex mitochondrial dysfunction and promotion of toxic amyloid pre-fibrillar aggregates

    Science.gov (United States)

    Picone, Pasquale; Vilasi, Silvia; Librizzi, Fabio; Contardi, Marco; Nuzzo, Domenico; Caruana, Luca; Baldassano, Sara; Amato, Antonella; Mulè, Flavia; San Biagio, Pier Luigi; Giacomazza, Daniela; Di Carlo, Marta

    2016-01-01

    The onset of Alzheimer disease (AD) is influenced by several risk factors comprising diabetes. Within this context, antidiabetic drugs, including metformin, are investigated for their effect on AD. We report that in the C57B6/J mice, metformin is delivered to the brain where activates AMP-activated kinase (AMPK), its molecular target. This drug affects the levels of β-secretase (BACE1) and β-amyloid precursor protein (APP), promoting processing and aggregation of β-amyloid (Aβ), mainly in the cortex region. Moreover, metformin induces mitochondrial dysfunction and cell death by affecting the level and conformation of Translocase of the Outer Membrane 40 (TOM40), voltage-dependent anion-selective channels 1 (VDAC1) and hexokinase I (HKI), proteins involved in mitochondrial transport of molecules, including Aβ. By using biophysical techniques we found that metformin is able to directly interact with Aβ influencing its aggregation kinetics and features. These findings indicate that metformin induces different adverse effects, leading to an overall increase of the risk of AD onset. PMID:27509335

  19. Modelling biological and chemically induced precipitation of calcium phosphate in enhanced biological phosphorus removal systems.

    Science.gov (United States)

    Barat, R; Montoya, T; Seco, A; Ferrer, J

    2011-06-01

    The biologically induced precipitation processes can be important in wastewater treatment, in particular treating raw wastewater with high calcium concentration combined with Enhanced Biological Phosphorus Removal. Currently, there is little information and experience in modelling jointly biological and chemical processes. This paper presents a calcium phosphate precipitation model and its inclusion in the Activated Sludge Model No 2d (ASM2d). The proposed precipitation model considers that aqueous phase reactions quickly achieve the chemical equilibrium and that aqueous-solid change is kinetically governed. The model was calibrated using data from four experiments in a Sequencing Batch Reactor (SBR) operated for EBPR and finally validated with two experiments. The precipitation model proposed was able to reproduce the dynamics of amorphous calcium phosphate (ACP) formation and later crystallization to hydroxyapatite (HAP) under different scenarios. The model successfully characterised the EBPR performance of the SBR, including the biological, physical and chemical processes.

  20. Biological effect of penetration controlled irradiation with ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi; Shimizu, Takashi; Kikuchi, Masahiro; Kobayashi, Yasuhiko; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Yamashita, Takao

    1997-03-01

    To investigate the effect of local irradiation with ion beams on biological systems, technique for penetration controlled irradiation has been established. The range in a target was controlled by changing the distance from beam window in the atmosphere, and could be controlled linearly up to about 31 {mu}m in biological material. In addition, the effects of the penetration controlled irradiations with 1.5 MeV/u C and He ions were examined using tobacco pollen. The increased frequency of leaky pollen produced by ion beams suggests that the efficient pollen envelope damages would be induced at the range-end of ion beams. (author)

  1. Modeling drug- and chemical- induced hepatotoxicity with systems biology approaches

    Directory of Open Access Journals (Sweden)

    Sudin eBhattacharya

    2012-12-01

    Full Text Available We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of ‘toxicity pathways’ is described in the context of the 2007 US National Academies of Science report, Toxicity testing in the 21st Century: A Vision and A Strategy. Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically-based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity – a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular virtual tissue model of the liver lobule that combines molecular circuits in individual hepatocytes with cell-cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the AhR toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsymTM to understand drug-induced liver injury (DILI, the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological scales.

  2. Production and extraction of astaxanthin from Phaffia rhodozyma and its biological effect on alcohol-induced renal hypoxia in Carassius auratus.

    Science.gov (United States)

    Alesci, Alessio; Salvo, Andrea; Lauriano, Eugenia Rita; Gervasi, Teresa; Palombieri, Deborah; Bruno, Maurizio; Pergolizzi, Simona; Cicero, Nicola

    2015-01-01

    The effect of astaxanthin (3,3'-dihydroxy-s-carotene-4,4'-dione) on alcohol-induced morphological changes in Carassius auratus, as an experimental model, was determined. The yeast Phaffia rhodozyma was used as a source of astaxanthin. The animals were divided into three groups for 30 days: one group was treated with ethanol at a dose of 1.5% mixed in water, the second one with EtOH 1.5% and food enriched with astaxanthin from P. rhodozyma, and the third was a control group. After a sufficient experimental period, the samples were processed using light microscopy and evaluated by histomorphological and histochemical staining, and the data were supported by immunohistochemical analysis, using a wide range of antibodies, such as calbindin, vimentin and alpha-smooth muscle actin. The results show that the alcoholic damage in the kidney led to hypoxia. In contrast, the group fed with astaxanthin from P. rhodozyma showed a normal morphological picture, with better glomeruli organisation and the presence of the area of filtration. Furthermore, the immunohistochemistry has confirmed these results.

  3. Biological effects of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G. [SENES Oak Ridge Inc., Oak Ridge, TN (United States); Theodorakis, C.W.; Shugart, L.R. [Oak Ridge National Lab., Oak Ridge, TN (United States). Environmental Sciences Division

    1996-12-31

    Natural populations have always been exposed to background levels of ionizing radiation; however, with the event of the nuclear age, studies about the effects of higher-than-background levels of ionizing radiation on individuals or populations of organisms became important. Originally, concern was focused on survival after large, acute radiation doses, and numerous studies document the somatic and genetic effects of acute ionizing radiation. However, there is a growing realization that chronic long-term exposure to higher-than-background levels of environmental radiation is more likely than is large acute exposure. Less than 10% of the literature on ionizing radiation effects deals with chronic long-term effects, and very few studies involve natural populations. In 1977, mosquito fish, Gambusia affinis, were experimentally introduced into a 0,45 ha, decommissioned, radioactive waste pond where the measured dose at the sediment-water interface was 1,150 rad/year. One year later, the fecundity of the population had not changed significantly. Eighteen years later, studies of the fish showed an inverse correlation between DNA strand breakage and fecundity in the contaminated pond. More recent studies have provided evidence that genetic diversity of the fish has increased in the contaminated site. These fish also have a greater prevalence of certain DNA banding patterns. Individuals displaying these banding patterns have a higher fecundity and lower degree of DNA strand breakage than individuals with less common banding patterns. Gambusia affinis has apparently adapted to the high background radiation, successfully surviving for approximately 50 generations. 31 refs, 5 figs.

  4. Biological Effects of Low-Dose Exposure

    CERN Document Server

    Komochkov, M M

    2000-01-01

    On the basis of the two-protection reaction model an analysis of stochastic radiobiological effects of low-dose exposure of different biological objects has been carried out. The stochastic effects are the results published in the last decade: epidemiological studies of human cancer mortality, the yield of thymocyte apoptosis of mice and different types of chromosomal aberrations. The results of the analysis show that as dependent upon the nature of biological object, spontanous effect, exposure conditions and radiation type one or another form dose - effect relationship is realized: downwards concave, near to linear and upwards concave with the effect of hormesis included. This result testifies to the incomplete conformity of studied effects of 1990 ICRP recomendations based on the linear no-threshold hypothesis about dose - effect relationship. Because of this the methodology of radiation risk estimation recomended by ICRP needs more precisian and such quantity as collective dose ought to be classified into...

  5. Biological Effect of Magnetic Field in Mice

    Institute of Scientific and Technical Information of China (English)

    Zhao-Wei ZENG

    2005-01-01

    Objective: To study the biological effect of magnetic field in mice bodies. Method: With a piece of permanent magnet embeded in mice bodies beside the femoral artery and vein to measure the electrophoretic velocity(um/s). Result: The magnetic field in mice bodies on the experiment group that the electrophoretic velocity is faster more than control and free group.Conclusion:The magnetic field in animal's body can raise the negative electric charges on the surface of erythrocyte to improve the microcirculation, this is the biological effect of magnetic field.

  6. Biological effects of electric fields: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, L.E.; Phillips, R.D.

    1983-11-01

    An overview of the literature suggests tha electric-field exposure is an environmental agent/influence of relatively low potential toxicity to biological systems. Generally, many of the biological effects which have been reported are quite subtle and differences between exposed and unexposed subjects may be masked by normal biological variations. However, several recent reports indicate possibly more serious consequences from chronic exposure, emphasizing the need for more research in epidemiology and laboratory experiments. This paper presents a cursory overview of investigations on the biological consequences of exposure to ELF electromagnetic fields. Three important topics are discussed, including: 1) the general methodology of exposure experiments, including those elements which are critical for definitive studies in biological systems; 2) a brief discussion of epidemiological and clinical studies conducted to date; and 3) a somewhat more extensive examination of animal experiments representing major areas of investigation (behavior, biological rhythms, nervous and endocrine systems, bone growth and repair, cardiovascular system and blood chemistry, immunology, reproduction, growth and development mortality and pathology, cellular and membrane studies, and mutagenesis). A discussion of current concepts, possible mechanisms and future directions of research is presented. 110 references.

  7. Possible (enzymatic) routes and biological sites for metabolic reduction of BNP7787, a new protector against cisplatin-induced side-effects.

    NARCIS (Netherlands)

    Verschraagen, M.; Boven, E.; Torun, E; Hausheer, FH; Vijgh, van der WJ

    2004-01-01

    Disodium 2,2'-dithio-bis-ethane sulfonate (BNP7787) is under investigation as a potential new chemoprotector against cisplatin-induced nephrotoxicity. The selective protection of BNP7787 appears to arise from the preferential uptake of the drug in the kidneys, where BNP7787 would undergo intracellul

  8. Biological effectiveness of neutrons: Research needs

    Energy Technology Data Exchange (ETDEWEB)

    Casarett, G.W.; Braby, L.A.; Broerse, J.J.; Elkind, M.M.; Goodhead, D.T.; Oleinick, N.L.

    1994-02-01

    The goal of this report was to provide a conceptual plan for a research program that would provide a basis for determining more precisely the biological effectiveness of neutron radiation with emphasis on endpoints relevant to the protection of human health. This report presents the findings of the experts for seven particular categories of scientific information on neutron biological effectiveness. Chapter 2 examines the radiobiological mechanisms underlying the assumptions used to estimate human risk from neutrons and other radiations. Chapter 3 discusses the qualitative and quantitative models used to organize and evaluate experimental observations and to provide extrapolations where direct observations cannot be made. Chapter 4 discusses the physical principles governing the interaction of radiation with biological systems and the importance of accurate dosimetry in evaluating radiation risk and reducing the uncertainty in the biological data. Chapter 5 deals with the chemical and molecular changes underlying cellular responses and the LET dependence of these changes. Chapter 6, in turn, discusses those cellular and genetic changes which lead to mutation or neoplastic transformation. Chapters 7 and 8 examine deterministic and stochastic effects, respectively, and the data required for the prediction of such effects at different organizational levels and for the extrapolation from experimental results in animals to risks for man. Gaps and uncertainties in this data are examined relative to data required for establishing radiation protection standards for neutrons and procedures for the effective and safe use of neutron and other high-LET radiation therapy.

  9. Early mechanisms in radiation-induced biological damage

    Energy Technology Data Exchange (ETDEWEB)

    Powers, E.L.

    1983-01-01

    An introduction to the mechanisms of radiation action in biological systems is presented. Several questions about the nature of the radiation damage process are discussed, including recognition of the oxygen effects, dose-response relationships, and the importance of the hydroxyl radical. (ACR)

  10. FT-IR光谱在电离辐射作用于微生物研究中的应用%Application of FT-IR Spectroscopy in Study of Biological Effects on Microorganisms Induced by Ionizing Radiation

    Institute of Scientific and Technical Information of China (English)

    刘京华; 黄青

    2012-01-01

    傅里叶变换红外光谱(Fourier transform infrared spectroscopy,FT-IR)是一种很有用的生物分析检测技术,通过FT-IR光谱技术可以得到有关蛋白质、脂类、核酸和多糖等微生物和细胞各类组成成分的信息.基于同步辐射光源的显微FT-IR光谱具有更高的空间分辨率和更快的测量速度,因而在生物学研究中具有进行快速、实时、动态和无损检测等优势.本文介绍了FT-IR光谱技术在微生物及电离辐射作用于微生物引起的生物学效应研究中的应用,并对该领域未来研究的发展趋势进行了展望.%Fourier transform infrared (FT-IR) spectroscopy is a useful and powerful technique that can provide rich information on proteins,lipids,nucleic acids and carbohydrates in biological systems. Especially,the high-resolution synchrotron Fourier-transform infrared (SR-FTIR) microspectroscopy and imaging technique can be employed as an excellent tool for convenient,fast,non-invasive,and real-time monitoring of varied complicated processes occuring in a biological system. In this review,the authors discuss the recent progress on the application of FT-IR spectroscopy in the study of biological effects on microorganisms induced by ionizing radiation,and also give an outlook for the future FT-IR spectroscopy research in this field.

  11. Topical Day on Biological Effects of Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Baatout, S.; Jacquet, P.

    1997-05-15

    The topical day has been focussed on the potential effects of ionizing radiation on human health. A general overview on molecular and biophysical aspects of radiation, its effects on cells and organisms, and the contribution of radiobiology to radiation protection and risk assessment is given. The genetic effects of radiation and its effects on the developing organism, the effects of radiation on the cell cycle and the mechanisms of radiation induced apoptosis were also discussed.

  12. II. Biological studies of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.H.

    1948-05-24

    With the completion of the 184 inch cyclotron in Berkeley and the successful construction of a deflector system, it was possible to bring the 190 Mev deuteron and the 380 Mev alpha beams out into the air and to begin a study of the effects of high-energy deuteron beams by direct irradiation of biological specimens. The direct biological use of deuteron beams was attempted earlier in Berkeley by Marshak, MacLeish, and Walker in 1940. These and other investigators have been aware for some time of the potential usefulness of high energy particle beams for radio-biological studies and their suitability for biological investigations. R.R. Wilson advanced the idea of using fast proton beams to deliver radiation and intervening tissues. R.E. Zirkle pointed out that such particle beams may be focused or screened until a cross-section of the beam is small enough to study effects of irradiation under the microscope on single cells or on parts of single cells. This article gives an overview of the radiological use of high energy deuteron beams, including the following topics: potential uses of high energy particle beams; experiments on the physical properties of the beam; lethal effect of the deuteron beam on mice.

  13. Radiation-induced cardiovascular effects

    Science.gov (United States)

    Tapio, Soile

    Recent epidemiological studies indicate that exposure to ionising radiation enhances the risk of cardiovascular mortality and morbidity in a moderate but significant manner. Our goal is to identify molecular mechanisms involved in the pathogenesis of radiation-induced cardiovascular disease using cellular and mouse models. Two radiation targets are studied in detail: the vascular endothelium that plays a pivotal role in the regulation of cardiac function, and the myocardium, in particular damage to the cardiac mitochondria. Ionising radiation causes immediate and persistent alterations in several biological pathways in the endothelium in a dose- and dose-rate dependent manner. High acute and cumulative doses result in rapid, non-transient remodelling of the endothelial cytoskeleton, as well as increased lipid peroxidation and protein oxidation of the heart tissue, independent of whether exposure is local or total body. Proteomic and functional changes are observed in lipid metabolism, glycolysis, mitochondrial function (respiration, ROS production etc.), oxidative stress, cellular adhesion, and cellular structure. The transcriptional regulators Akt and PPAR alpha seem to play a central role in the radiation-response of the endothelium and myocardium, respectively. We have recently started co-operation with GSI in Darmstadt to study the effect of heavy ions on the endothelium. Our research will facilitate the identification of biomarkers associated with adverse cardiac effects of ionising radiation and may lead to the development of countermeasures against radiation-induced cardiac damage.

  14. The Biological Effects of Bilirubin Photoisomers.

    Science.gov (United States)

    Jasprova, Jana; Dal Ben, Matteo; Vianello, Eleonora; Goncharova, Iryna; Urbanova, Marie; Vyroubalova, Karolina; Gazzin, Silvia; Tiribelli, Claudio; Sticha, Martin; Cerna, Marcela; Vitek, Libor

    2016-01-01

    Although phototherapy was introduced as early as 1950's, the potential biological effects of bilirubin photoisomers (PI) generated during phototherapy remain unclear. The aim of our study was to isolate bilirubin PI in their pure forms and to assess their biological effects in vitro. The three major bilirubin PI (ZE- and EZ-bilirubin and Z-lumirubin) were prepared by photo-irradiation of unconjugated bilirubin. The individual photoproducts were chromatographically separated (TLC, HPLC), and their identities verified by mass spectrometry. The role of Z-lumirubin (the principle bilirubin PI) on the dissociation of bilirubin from albumin was tested by several methods: peroxidase, fluorescence quenching, and circular dichroism. The biological effects of major bilirubin PI (cell viability, expression of selected genes, cell cycle progression) were tested on the SH-SY5Y human neuroblastoma cell line. Lumirubin was found to have a binding site on human serum albumin, in the subdomain IB (or at a close distance to it); and thus, different from that of bilirubin. Its binding constant to albumin was much lower when compared with bilirubin, and lumirubin did not affect the level of unbound bilirubin (Bf). Compared to unconjugated bilirubin, bilirubin PI did not have any effect on either SH-SY5Y cell viability, the expression of genes involved in bilirubin metabolism or cell cycle progression, nor in modulation of the cell cycle phase. The principle bilirubin PI do not interfere with bilirubin albumin binding, and do not exert any toxic effect on human neuroblastoma cells.

  15. Biological effect of radiation on human

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Sil; Cho, Chul Koo; Lee, Su Jae [and others

    2000-04-01

    1. Adaptive response when 0.01 Gy was preirradiated before high challenging dose is induced in normal cell types such normal lymphocytes, primary keratinocytes, and L929 fibroblast cells but not in neoplastic cells such as L5178Y lymphoma cells, EL-4 lymphoma cells and 308 papilloma cells. 2. Heat shock protein (HSP) 25 and inducible HSP70 is responsible for the induction of adaptive response and radioresistance - cell cycle regulation, antiapoptotic molecule and PKC activation were involved. 3. Apoptosis was induced at most 5. hrs after irradiation in primary keratinocytes, in v-rasHa transformed keratinocytes, the maximum interval was 16 hrs, and in 308 papilloma cells, the maximum was 48 hrs. 4. PKC response by radiation is correlated with induction of apoptosis. 5. Rapid induction PKCdelta in primary keratinocytes and no response of PKC epsilon may involved in radiation induced apoptosis. 6. The rate of resorption was increased when radiation was given at 2.5 days after gestation. Early death including foetal death were highly expressed when radiation was given at 7.5 days after gestation. There are no difference in incidence of late death including embryonic death. 7. 2 Gy is the most effective dose in radiation induced teratogenesis in mouse model. 8. Growth retardation and small head was present when radiation was given at 5.5, 7.5, 11.5 and 15.5 days after gestation and small head showed high incidence at 11.5 days after gestation. 9. External malformation, internal malformation and skeletal malformation was induced when radiation was given at 7.5 days after gestation. 10. OGG1-mutated cells induced radiosensitive by G2/M cell cycle arrest. 11. Radiation induced G2/M phase cell cycle and correlated with radiosensitivity. 12. PKCalpha induced differentiation. 13. Radiation exposed cells showed carcinogenic effect. 14. Organ specific radiosensitivity was shown and protein expression was involved.

  16. Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure

    Energy Technology Data Exchange (ETDEWEB)

    Barillet, Sabrina, E-mail: sabrina.barillet@free.f [Laboratory of Radioecology and Ecotoxicology, IRSN (Institute for Radiological protection and Nuclear Safety), DEI/SECRE/LRE, Cadarache, Bat 186, BP 3, 13115 St-Paul-Lez-Durance cedex (France); Adam-Guillermin, Christelle, E-mail: christelle.adam-guillermin@irsn.f [Laboratory of Radioecology and Ecotoxicology, IRSN (Institute for Radiological protection and Nuclear Safety), DEI/SECRE/LRE, Cadarache, Bat 186, BP 3, 13115 St-Paul-Lez-Durance cedex (France); Palluel, Olivier, E-mail: olivier.palluel@ineris.f [Ecotoxicological Risk Assessment Unit, INERIS (National Institute for Industrial Environment and Risks), Parc technologique ALATA, 60 550 Verneuil-en-Halatte (France); Porcher, Jean-Marc, E-mail: jean-marc.porcher@ineris.f [Ecotoxicological Risk Assessment Unit, INERIS (National Institute for Industrial Environment and Risks), Parc technologique ALATA, 60 550 Verneuil-en-Halatte (France); Devaux, Alain, E-mail: alain.devaux@entpe.f [Universite de Lyon, INRA, EFPA-SA, Environmental Science Laboratory (LSE), ENTPE, 69518 Vaulx en Velin cedex (France)

    2011-02-15

    Because of its toxicity and its ubiquity within aquatic compartments, uranium (U) represents a significant hazard to aquatic species such as fish. In a previous study, we investigated some biological responses in zebrafish either exposed to depleted or to enriched U (i.e., to different radiological activities). However, results required further experiments to better understand biological responses. Moreover, we failed to clearly demonstrate a significant relationship between biological effects and U radiological activity. We therefore chose to herein examine U bioaccumulation and induced effects in zebrafish according to a chemical dose-response approach. Results showed that U is highly bioconcentrated in fish, according to a time- and concentration-dependent model. Additionally, hepatic antioxidant defenses, red blood cells DNA integrity and brain acetylcholinesterase activity were found to be significantly altered. Generally, the higher the U concentration, the sooner and/or the greater the effect, suggesting a close relationship between accumulation and effect. - Research highlights: Depleted U bioconcentration factor is of about 1000 in zebrafish exposed to 20 {mu}g/L. Hepatic antioxidant disorders are noticed as soon as the first hours of exposure. DNA damage is induced in red blood cells after 20 d of exposure to 500 {mu}g DU/L. The brain cholinergic system (AChE activity) is impacted. - This study demonstrates that U is highly bioaccumulated in fish, resulting in biological disorders such as hepatic oxidative stress as well as genotoxic and neurotoxic events.

  17. Printing biological solutions through laser-induced forward transfer

    Science.gov (United States)

    Duocastella, M.; Fernández-Pradas, J. M.; Domínguez, J.; Serra, P.; Morenza, J. L.

    2008-12-01

    Laser-induced forward transfer (LIFT) is a direct-writing technique adequate for the high-resolution printing of a wide range of materials, including biological molecules. In this article, the preparation through LIFT of microarrays of droplets from a solution containing rabbit antibody immunoglobulin G (IgG) is presented. The microarrays were prepared at different laser pulse energy conditions, obtaining microdroplets with a circular and well-defined contour. The transfer process has a double threshold: a minimum energy density required to generate an impulsion on the liquid film, and a minimum pulse energy, which corresponds to the onset for material ejection. In addition, it was demonstrated that the transfer process can be correctly described through a simple model which relates the energy density threshold with the amount of released material. Finally, a fluorescence assay was carried out in which the preservation of the activity of the transferred biomolecules was demonstrated.

  18. Bone-inducing Activity of Biological Piezoelectric Ceramic

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To simulate the piezoelectric effect of nature bone, two kinds of biological piezoelectric composite ceramics consisted of hydroxyapatite ( HA ) and lithium sodium potassium riobate (LNK) ceramic of which the ratio of HA/ LNK was 1: 10 and 5:5( wt/ wt ) were prepared. Their piezoelectric property and growth of apatite crystal in the ceramics surface were investigated. With the increase of LNK amount, piezoelectric activity increased correspondingly. By immersing the poled piezoelectric ceramics in simulated body fluid (SBF) at 36.5 ℃ for 7,14, and 21 days, apatite crystal was formed on negatively charged surfaces. After 21 days immersion in SBF,the thickest apatite crystal on the negatively charged surfaces increased to 3.337μm. The novel biological piezoelectric ceramics show an excellent piezoelectric property and superior potential bioactivity.

  19. Induced Pluripotent Stem Cell Technology in Regenerative Medicine and Biology

    Science.gov (United States)

    Pei, Duanqing; Xu, Jianyong; Zhuang, Qiang; Tse, Hung-Fat; Esteban, Miguel A.

    The potential of human embryonic stem cells (ESCs) for regenerative medicine is unquestionable, but practical and ethical considerations have hampered clinical application and research. In an attempt to overcome these issues, the conversion of somatic cells into pluripotent stem cells similar to ESCs, commonly termed nuclear reprogramming, has been a top objective of contemporary biology. More than 40 years ago, King, Briggs, and Gurdon pioneered somatic cell nuclear reprogramming in frogs, and in 1981 Evans successfully isolated mouse ESCs. In 1997 Wilmut and collaborators produced the first cloned mammal using nuclear transfer, and then Thomson obtained human ESCs from in vitro fertilized blastocysts in 1998. Over the last 2 decades we have also seen remarkable findings regarding how ESC behavior is controlled, the importance of which should not be underestimated. This knowledge allowed the laboratory of Shinya Yamanaka to overcome brilliantly conceptual and technical barriers in 2006 and generate induced pluripotent stem cells (iPSCs) from mouse fibroblasts by overexpressing defined combinations of ESC-enriched transcription factors. Here, we discuss some important implications of human iPSCs for biology and medicine and also point to possible future directions.

  20. The Biological Effects of Bilirubin Photoisomers.

    Directory of Open Access Journals (Sweden)

    Jana Jasprova

    Full Text Available Although phototherapy was introduced as early as 1950's, the potential biological effects of bilirubin photoisomers (PI generated during phototherapy remain unclear. The aim of our study was to isolate bilirubin PI in their pure forms and to assess their biological effects in vitro. The three major bilirubin PI (ZE- and EZ-bilirubin and Z-lumirubin were prepared by photo-irradiation of unconjugated bilirubin. The individual photoproducts were chromatographically separated (TLC, HPLC, and their identities verified by mass spectrometry. The role of Z-lumirubin (the principle bilirubin PI on the dissociation of bilirubin from albumin was tested by several methods: peroxidase, fluorescence quenching, and circular dichroism. The biological effects of major bilirubin PI (cell viability, expression of selected genes, cell cycle progression were tested on the SH-SY5Y human neuroblastoma cell line. Lumirubin was found to have a binding site on human serum albumin, in the subdomain IB (or at a close distance to it; and thus, different from that of bilirubin. Its binding constant to albumin was much lower when compared with bilirubin, and lumirubin did not affect the level of unbound bilirubin (Bf. Compared to unconjugated bilirubin, bilirubin PI did not have any effect on either SH-SY5Y cell viability, the expression of genes involved in bilirubin metabolism or cell cycle progression, nor in modulation of the cell cycle phase. The principle bilirubin PI do not interfere with bilirubin albumin binding, and do not exert any toxic effect on human neuroblastoma cells.

  1. Method for photo-altering a biological system to improve biological effect

    Science.gov (United States)

    Hill, Richard A.; Doiron, Daniel R.; Crean, David H.

    2000-08-01

    Photodynamic therapy is a new adjunctive therapy for filtration surgery that does not use chemotherapy agents or radiation, but uses pharmacologically-active sensitizing compounds to produce a titratable, localized, transient, post operative avascular conjunctiva. A photosensitizing agent in a biological system is selectively activated by delivering the photosensitive agent to the biological system and laser activating only a spatially selected portion of the delivered photosensitive agent. The activated portion of the photosensitive agent reacts with the biological system to obtain a predetermined biological effect. As a result, an improved spatial disposition and effectuation of the biological effect by the photosensitive agent in the biological system is achieved.

  2. Isoflavones: estrogenic activity, biological effect and bioavailability.

    Science.gov (United States)

    Vitale, Daniela Cristina; Piazza, Cateno; Melilli, Barbara; Drago, Filippo; Salomone, Salvatore

    2013-03-01

    Isoflavones are phytoestrogens with potent estrogenic activity; genistein, daidzein and glycitein are the most active isoflavones found in soy beans. Phytoestrogens have similarity in structure with the human female hormone 17-β-estradiol, which can bind to both alpha and beta estrogen receptors, and mimic the action of estrogens on target organs, thereby exerting many health benefits when used in some hormone-dependent diseases. Numerous clinical studies claim benefits of genistein and daidzein in chemoprevention of breast and prostate cancer, cardiovascular disease and osteoporosis as well as in relieving postmenopausal symptoms. The ability of isoflavones to prevent cancer and other chronic diseases largely depends on pharmacokinetic properties of these compounds, in particular absorption and distribution to the target tissue. The chemical form in which isoflavones occur is important because it influences their bioavailability and, therefore, their biological activity. Glucose-conjugated isoflavones are highly polar, water-soluble compounds. They are hardly absorbed by the intestinal epithelium and have weaker biological activities than the corresponding aglycone. Different microbial families of colon can transform glycosylated isoflavones into aglycones. Clinical studies show important differences between the aglycone and conjugated forms of genistein and daidzein. The evaluation of isoflavone metabolism and bioavailability is crucial to understanding their biological effects. Lipid-based formulations such as drug incorporation into oils, emulsions and self-microemulsifying formulations have been introduced to increase bioavailability. Complexation with cyclodextrin also represent a valid method to improve the physicochemical characteristics of these substances in order to be absorbed and distributed to target tissues. We review and discuss pharmacokinetic issues that critically influence the biological activity of isoflavones.

  3. Biological effects of fruit and vegetables

    DEFF Research Database (Denmark)

    Dragsted, L. O.; Krath, B.; Ravn-Haren, Gitte;

    2006-01-01

    , providing 600hairspg fruit and vegetables/d or in the controls a carbohydrate-rich drink to balance energy intake. Surrogate markers of oxidative damage to DNA, protein and lipids, enzymic defence and lipid metabolism were determined in blood and urine. It was found that a high intake of fruit......A strong and persistent effect of plant-derived foods on the prevention of lifestyle diseases has emerged from observational studies. Several groups of constituents in plants have been identified as potentially health promoting in animal studies, including cholesterol-lowering factors, antioxidants......, enzyme inducers, apoptosis inducers etc. In human intervention studies the dose levels achieved tend to be lower than the levels found to be effective in animals and sampling from target organs is often not possible. A controlled dietary human intervention study was performed with forty-three volunteers...

  4. Controlling the biological effects of spermine using a synthetic receptor.

    Science.gov (United States)

    Vial, Laurent; Ludlow, R Frederick; Leclaire, Julien; Pérez-Fernandez, Ruth; Otto, Sijbren

    2006-08-09

    Polyamines play an important role in biology, yet their exact function in many processes is poorly understood. Artificial host molecules capable of sequestering polyamines could be useful tools for studying their cellular function. However, designing synthetic receptors with affinities sufficient to compete with biological polyamine receptors remains a huge challenge. Binding affinities of synthetic hosts are typically separated by a gap of several orders of magnitude from those of biomolecules. We now report that a dynamic combinatorial selection approach can deliver a synthetic receptor that bridges this gap. The selected receptor binds spermine with a dissociation constant of 22 nM, sufficient to remove it from its natural host DNA and reverse some of the biological effects of spermine on the nucleic acid. In low concentrations, spermine induces the formation of left-handed DNA, but upon addition of our receptor, the DNA reverts back to its right-handed form. NMR studies and computer simulations suggest that the spermine complex has the form of a pseudo-rotaxane. The spermine receptor is a promising lead for the development of therapeutics or molecular probes for elucidating spermine's role in cell biology.

  5. BIOLOGICAL EFFECTS ON THE SOURCE OF GEONEUTRINOS

    DEFF Research Database (Denmark)

    Sleep, Norman H.; Bird, Dennis K.; Rosing, Minik T.

    2013-01-01

    Detection of antineutrinos from U and Th series decay within the Earth (geoneutrinos) constrains the absolute abundance of these elements. Marine detectors will measure the ratio over the mantle beneath the site and provide spatial averaging. The measured mantle Th/U may well be significantly below...... its bulk earth value of similar to 4; Pb isotope measurements on mantle-derived rocks yield low Th/U values, effectively averaged over geological time. The physics of the modern biological process is complicated, but the net effect is that much of the U in the mantle comes from subducted marine......, these elements behave similarly in the absence of life, where the elements occur as U(IV) and Th(IV), which do not significantly fractionate during igneous processes. Neither do they fractionate during weathering, as they are essentially insoluble in water in surface environments. Th(IV) and U(IV) remain...

  6. Hypoxia-inducible factor 3 biology: complexities and emerging themes.

    Science.gov (United States)

    Duan, Cunming

    2016-02-15

    The hypoxia-inducible factor (HIF) family has three distinct members in most vertebrates. All three HIFs consist of a unique and oxygen-labile α-subunit and a common and stable β-subunit. While HIF-1 and HIF-2 function as master regulators of the transcriptional response to hypoxia, much less is known about HIF-3. The HIF-3α gene gives rise to multiple HIF-3α variants due to the utilization of different promoters, different transcription initiation sites, and alternative splicing. These HIF-3α variants are expressed in different tissues, at different developmental stages, and are differentially regulated by hypoxia and other factors. Recent studies suggest that different HIF-3α variants have different and even opposite functions. There is strong evidence that full-length HIF-3α protein functions as an oxygen-regulated transcription activator and that it activates a unique transcriptional program in response to hypoxia. Many HIF-3α target genes have been identified. While some short HIF-3α variants act as dominant-negative regulators of HIF-1/2α actions, other HIF-3α variants can inhibit HIF-1/2α actions by competing for the common HIF-β. There are also a number of HIF-3α variants yet to be explored. Future studies of these naturally occurring HIF-3α variants will provide new and important insights into HIF biology and may lead to the development of new therapeutic strategies.

  7. Biological effects of space radiation and development of effective countermeasures

    Science.gov (United States)

    Kennedy, Ann R.

    2014-04-01

    As part of a program to assess the adverse biological effects expected from astronauts' exposure to space radiation, numerous different biological effects relating to astronauts' health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronauts' vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation.

  8. The biologically effective dose in inhalation nanotoxicology.

    Science.gov (United States)

    Donaldson, Ken; Schinwald, Anja; Murphy, Fiona; Cho, Wan-Seob; Duffin, Rodger; Tran, Lang; Poland, Craig

    2013-03-19

    In all branches of toxicology, the biologically effective dose (BED) is the fraction of the total dose of a toxin that actually drives any toxic effect. Knowledge of the BED has a number of applications including in building structure-activity relationships, the selection of metrics, the design of safe particles, and the determination of when a nanoparticle (NP) can be considered to be "new" for regulatory purposes. In particle toxicology, we define the BED as "the entity within any dose of particles in tissue that drives a critical pathophysiogically relevant form of toxicity (e.g., oxidative stress, inflammation, genotoxicity, or proliferation) or a process that leads to it." In conventional chemical toxicology, researchers generally use the mass as the metric to describe dose (such as mass per unit tissue or cells in culture) because of its convenience. Concentration, calculated from mass, may also figure in any description of dose. In the case of a nanoparticle dose, researchers use either the mass or the surface area. The mass of nanoparticles is not the only driver of their activity: the surfaces of insoluble particles interact with biological systems, and soluble nanoparticles can release factors that interact with these systems. Nanoparticle shape can modify activity. In this Account, we describe the current knowledge of the BED as it pertains to different NP types. Soluble toxins released by NPs represent one potential indicator of BED for wholly or partially soluble NPs composed of copper or zinc. Rapid dissolution of these NPs into their toxic ions in the acidic environment of the macrophage phagolysosome causes those ions to accumulate, which leads to lysosome destabilization and inflammation. In contrast, soluble NPs that release low toxicity ions, such as magnesium oxide NPs, are not inflammogenic. For insoluble NPs, ζ potential can serve as a BED measurement because the exposure of the particle surface to the acidic milieu of the phagolysosome and

  9. Cell Biology of Thiazide Bone Effects

    Science.gov (United States)

    Gamba, Gerardo; Riccardi, Daniela

    2008-09-01

    The thiazide-sensitive Na+:Cl- cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian kidney. The activity of NCC is not only related to salt metabolism, but also to calcium and magnesium homeostasis due to the inverse relationship between NCC activity and calcium reabsorption. Hence, the thiazide-type diuretics that specifically block NCC have been used for years, not only for treatment of hypertension and edematous disease, but also for the management of renal stone disease. Epidemiological studies have shown that chronic thiazide treatment is associated with higher bone mineral density and reduced risk of bone fractures, which can only partly be explained in terms of their effects on the kidney. In this regard, we have recently shown that NCC is expressed in bone cells and that inhibition of NCC in bone, either by thiazides or by reduction of NCC protein with specific siRNA, is associated with increased mineralization in vitro. These observations open a field of study to begin to understand the cell biology of the beneficial effects of thiazides in bone.

  10. Modeling of biological doses and mechanical effects on bone transduction

    CERN Document Server

    Rieger, Romain; Jennane, Rachid; 10.1016/j.jtbi.2011.01.003

    2012-01-01

    Shear stress, hormones like parathyroid and mineral elements like calcium mediate the amplitude of stimulus signal which affects the rate of bone remodeling. The current study investigates the theoretical effects of different metabolic doses in stimulus signal level on bone. The model was built considering the osteocyte as the sensing center mediated by coupled mechanical shear stress and some biological factors. The proposed enhanced model was developed based on previously published works dealing with different aspects of bone transduction. It describes the effects of physiological doses variations of Calcium, Parathyroid Hormone, Nitric Oxide and Prostaglandin E2 on the stimulus level sensed by osteocytes in response to applied shear stress generated by interstitial fluid flow. We retained the metabolic factors (Parathyroid Hormone, Nitric Oxide, and Prostaglandin E2) as parameters of bone cell mechanosensitivity because stimulation/inhibition of induced pathways stimulates osteogenic response in vivo. We t...

  11. What Makes Biology Learning Difficult and Effective: Students' Views

    Science.gov (United States)

    Cimer, Atilla

    2012-01-01

    The present study aims to determine the biological topics that students have difficulties learning, the reasons why secondary school students have difficulties in learning biology, and ways to improve the effectiveness of students' biology learning. For these purposes, a self-administered questionnaire including three open-ended questions was…

  12. Single cell induced optical confinement in biological lasers

    Science.gov (United States)

    Karl, M.; Dietrich, C. P.; Schubert, M.; Samuel, I. D. W.; Turnbull, G. A.; Gather, M. C.

    2017-03-01

    Biological single cell lasers have shown great potential for fundamental research and next generation sensing applications. In this study, the potential of fluorescent biological cells as refractive index landscapes and active optical elements is investigated using a combined Fourier- and hyperspectral imaging technique. We show that the refractive index contrast between cell and surrounding leads to 3D confinement of photons inside living cells. The Fourier- and real-space emission characteristics of these biological lasers are closely related and can be predicted from one another. Investigations of the lasing threshold for different energy and momentum position in Fourier-space give insight into the fundamental creation of longitudinal and transverse lasing modes within the cell. These findings corroborate the potential of living biological materials for precision engineering of photonic structures and may pave the way towards low threshold polariton lasing from single cells.

  13. Biologically based multistage modeling of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of

  14. The Biological Effects of Ivabradine in Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Graziano Riccioni

    2012-04-01

    Full Text Available A large number of studies in healthy and asymptomatic subjects, as well as patients with already established cardiovascular disease (CAD have demonstrated that heart rate (HR is a very important and major independent cardiovascular risk factor for prognosis. Lowering heart rate reduces cardiac work, thereby diminishing myocardial oxygen demand. Several experimental studies in animals, including dogs and pigs, have clarified the beneficial effects of ivabradine associated with HR lowering. Ivabradine is a selective inhibitor of the hyperpolarisation activated cyclic-nucleotide-gated funny current (If involved in pacemaker generation and responsiveness of the sino-atrial node (SAN, which result in HR reduction with no other apparent direct cardiovascular effects. Several studies show that ivabradine substantially and significantly reduces major risks associated with heart failure when added to guideline-based and evidence-based treatment. However the biological effect of ivabradine have yet to be studied. This effects can appear directly on myocardium or on a systemic level improving endothelial function and modulating immune cell migration. Indeed ivabradine is an ‘open-channel’ blocker of human hyperpolarization-activated cyclic nucleotide gated channels of type-4 (hHCN4, and a ‘closed-channel’ blocker of mouse HCN1 channels in a dose-dependent manner. At endothelial level ivabradine decreased monocyte chemotactin protein-1 mRNA expression and exerted a potent anti-oxidative effect through reduction of vascular NADPH oxidase activity. Finally, on an immune level, ivabradine inhibits the chemokine-induced migration of CD4-positive lymphocytes. In this review, we discuss the biological effects of ivabradine and highlight its effects on CAD.

  15. Biological Effects on the Source of Geoneutrinos

    Science.gov (United States)

    Sleep, Norman H.; Bird, Dennis K.; Rosing, Minik T.

    2013-11-01

    Detection of antineutrinos from U and Th series decay within the Earth (geoneutrinos) constrains the absolute abundance of these elements. Marine detectors will measure the ratio over the mantle beneath the site and provide spatial averaging. The measured mantle Th/U may well be significantly below its bulk earth value of 4; Pb isotope measurements on mantle-derived rocks yield low Th/U values, effectively averaged over geological time. The physics of the modern biological process is complicated, but the net effect is that much of the U in the mantle comes from subducted marine sediments and subducted upper oceanic crust. That is, U subducts preferentially relative to Th. Oxygen ultimately from photosynthesis oxidizes U(IV) to U(VI), which is soluble during weathering and sediment transport. Dissolved U(VI) reacts with FeO in the oceanic crust and organic carbon within sediments to become immobile U(IV). These deep marine rocks are preferentially subducted relative to Th(IV)-bearing continental margin rocks. Ferric iron from anoxygenic photosynthesis and oxygen in local oases likely mobilized some U during the Archean Era when there was very little O2 in the air. Conversely, these elements behave similarly in the absence of life, where the elements occur as U(IV) and Th(IV), which do not significantly fractionate during igneous processes. Neither do they fractionate during weathering, as they are essentially insoluble in water in surface environments. Th(IV) and U(IV) remain in solid clay-sized material. Overall, geoneutrino data constrain the masses of mantle chemical and isotopic domains recognized by studies of mantle-derived rocks and show the extent of recycling into the mantle over geological time.

  16. Neutron induced bystander effect among zebrafish embryos

    Science.gov (United States)

    Ng, C. Y. P.; Kong, E. Y.; Kobayashi, A.; Suya, N.; Uchihori, Y.; Cheng, S. H.; Konishi, T.; Yu, K. N.

    2015-12-01

    The present paper reported the first-ever observation of neutron induced bystander effect (NIBE) using zebrafish (Danio rerio) embryos as the in vivo model. The neutron exposure in the present work was provided by the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Chiba, Japan. Two different strategies were employed to induce NIBE, namely, through directly partnering and through medium transfer. Both results agreed with a neutron-dose window (20-50 mGy) which could induce NIBE. The lower dose limit corresponded to the threshold amount of neutron-induced damages to trigger significant bystander signals, while the upper limit corresponded to the onset of gamma-ray hormesis which could mitigate the neutron-induced damages and thereby suppress the bystander signals. Failures to observe NIBE in previous studies were due to using neutron doses outside the dose-window. Strategies to enhance the chance of observing NIBE included (1) use of a mono-energetic high-energy (e.g., between 100 keV and 2 MeV) neutron source, and (2) use of a neutron source with a small gamma-ray contamination. It appeared that the NASBEE facility used in the present study fulfilled both conditions, and was thus ideal for triggering NIBE.

  17. Electrically induced reorganization phenomena of liquid metal film printed on biological skin

    Science.gov (United States)

    Guo, Cangran; Yi, Liting; Yu, Yang; Liu, Jing

    2016-12-01

    Liquid metal has been demonstrated to be directly printable on biological skin as physiological measurement elements. However, many fundamental issues remained unclear so far. Here, we disclosed an intriguing phenomenon of electrically induced reorganization of liquid metal film. According to the experiments, when applying an external electric field to liquid metal films which were spray printed on biological skin, it would induce unexpected transformations of the liquid metals among different morphologies and configurations. These include shape shift from a large liquid metal film into a tiny sphere and contraction of liquid metal pool into spherical one. For comprehensively understanding the issues, the impacts of the size, voltage, orientations of the liquid metal electrodes, etc., were clarified. Further, effects of various substrates such as in vitro skin and in vivo skin affecting the liquid metal transformations were experimentally investigated. Compared to the intact tissues, the contraction magnitude of the liquid metal electrode appears weaker on in vivo skin of nude mice under the same electric field. The mechanisms lying behind such phenomena were interpreted through theoretical modeling. Lastly, typical applications of applying the current effect into practical elements such as electrical gating devices were also illustrated as an example. The present findings have both fundamental and practical values, which would help design future technical strategies in fabricating electronically controlled liquid metal electronics on skin.

  18. Biological Effects on Fruit Fly by N+ ion Beam Implantation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Mutation induced by low energy ion beam implantation has beenapplied widely both in plants and microbes. However, due to the vacuum limitation, such ion implantation into animals was never studied except for silkworm. In this study, Pupae of fruit fly were irradiated with different dosage N+ ions at energy 20 KeV to study the biological effect of ion beam on animal. The results showed a saddle-like curve exists between incubate rate and dosage. Damage of pupae by ion beam implantation was observed using scanning electron microscope. Some individuals with incomplete wing were obtained after implantation but no similar character was observed in their offspring. Furthermore, about 5.47% mutants with wide variation appeared in M1 generation. Therefore, ion beam implantation could be widely used for mutation breeding.

  19. Hydrodynamic collective effects of active proteins in biological membranes

    Science.gov (United States)

    Koyano, Yuki; Kitahata, Hiroyuki; Mikhailov, Alexander S.

    2016-08-01

    Lipid bilayers forming biological membranes are known to behave as viscous two-dimensional fluids on submicrometer scales; usually they contain a large number of active protein inclusions. Recently, it was shown [A. S. Mikhailov and R. Kapral, Proc. Natl. Acad. Sci. USA 112, E3639 (2015), 10.1073/pnas.1506825112] that such active proteins should induce nonthermal fluctuating lipid flows leading to diffusion enhancement and chemotaxislike drift for passive inclusions in biomembranes. Here, a detailed analytical and numerical investigation of such effects is performed. The attention is focused on the situations when proteins are concentrated within lipid rafts. We demonstrate that passive particles tend to become attracted by active rafts and are accumulated inside them.

  20. Interaction mechanisms and biological effects of static magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S.

    1994-06-01

    Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals, there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.

  1. Biologically Synthesized Gold Nanoparticles Ameliorate Cold and Heat Stress-Induced Oxidative Stress in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Xi-Feng Zhang

    2016-06-01

    Full Text Available Due to their unique physical, chemical, and optical properties, gold nanoparticles (AuNPs have recently attracted much interest in the field of nanomedicine, especially in the areas of cancer diagnosis and photothermal therapy. Because of the enormous potential of these nanoparticles, various physical, chemical, and biological methods have been adopted for their synthesis. Synthetic antioxidants are dangerous to human health. Thus, the search for effective, nontoxic natural compounds with effective antioxidative properties is essential. Although AuNPs have been studied for use in various biological applications, exploration of AuNPs as antioxidants capable of inhibiting oxidative stress induced by heat and cold stress is still warranted. Therefore, one goal of our study was to produce biocompatible AuNPs using biological methods that are simple, nontoxic, biocompatible, and environmentally friendly. Next, we aimed to assess the antioxidative effect of AuNPs against oxidative stress induced by cold and heat in Escherichia coli, which is a suitable model for stress responses involving AuNPs. The response of aerobically grown E. coli cells to cold and heat stress was found to be similar to the oxidative stress response. Upon exposure to cold and heat stress, the viability and metabolic activity of E. coli was significantly reduced compared to the control. In addition, levels of reactive oxygen species (ROS and malondialdehyde (MDA and leakage of proteins and sugars were significantly elevated, and the levels of lactate dehydrogenase activity (LDH and adenosine triphosphate (ATP significantly lowered compared to in the control. Concomitantly, AuNPs ameliorated cold and heat-induced oxidative stress responses by increasing the expression of antioxidants, including glutathione (GSH, glutathione S-transferase (GST, super oxide dismutase (SOD, and catalase (CAT. These consistent physiology and biochemical data suggest that AuNPs can ameliorate cold and

  2. SIX2 Effects on Wilms Tumor Biology

    Directory of Open Access Journals (Sweden)

    Janene Pierce

    2014-12-01

    Full Text Available Wilms tumor (WT blastema retains gene expression profiles characteristic of the multipotent nephron progenitor pool, or cap mesenchyme (CM, in the developing kidney. As a result, WT blastema and the CM are believed to represent contextual analogues of one another. Sine oculis homeobox 2 (SIX2 is a transcription factor expressed specifically in the CM, provides a critical mechanism for CM self-renewal, and remains persistently active in WT blastema, although its purpose in this childhood malignancy remains unclear. We hypothesized that SIX2, analogous to its function in development, confers a survival pathway to blastema, the putative WT stem cell. To test its functional significance in WT biology, wild-type SIX2 was overexpressed in the human WT cell line, WiT49. After validating this model, SIX2 effects on anchorage-independent growth, proliferation, invasiveness, canonical WNT pathway signaling, and gene expression of specific WNT pathway participants were evaluated. Relative to controls, WiT49 cells overexpressing SIX2 showed significantly enhanced anchorage-independent growth and early-passage proliferation representing surrogates of cell survival. Interestingly, overexpression of SIX2 generally repressed TCF/LEF-dependent canonical WNT signaling, which activates and coordinates both differentiation and stem pathways, but significantly heightened canonical WNT signaling through the survivin promoter, a mechanism that exclusively maintains the stem state. In summary, when overexpressed in a human WT cell line, SIX2 enhances cell survival and appears to shift the balance in WNT/β-catenin signaling away from a differentiation path and toward a stem cell survival path.

  3. Late biological effects from internal and external exposure

    Energy Technology Data Exchange (ETDEWEB)

    Adams, W.H.

    1985-01-01

    Information on late biological effects of radiation was obtained from the long-term medical followup of a small population of Marshallese accidentally exposed to radioactive fallout from a thermonuclear test in 1954. Endocrine data are compatible with a sequence of nonstochastic radiation effects. The ingestion of radioisotopes of iodine produced clinical thyroid hypofunction in children, biochemical evidence of thyroid dysfunction in some adults, thyroid adenomatous module formation, and, as a possible indirect effect of thyroid damage, at least two cases of pituitary adenoma. In contrast, the only evidence of a stochastic effect has been a real increase in thyroid cancers among the more highly exposed people of Rongelap, none of whom have evidence of residual disease. While three nonthyroidal cancers which are known to be inducible in humans by external irradiation have been documented in the exposed population, three similar cancers have occurred in an unexposed comparison population of Marshallese. Nonstochastic effects of radiation exposure may be common but subtle. In the Marshallese experience the morbidity of delayed nonstochastic effects far exceeds that of the stochastic. 20 refs., 5 figs., 1 tab.

  4. Shape changes induced by biologically active peptides and nerve growth factor in blood platelets of rabbits.

    Science.gov (United States)

    Gudat, F; Laubscher, A; Otten, U; Pletscher, A

    1981-11-01

    1 Nerve growth factor (NGF), substance P (SP) and thymopoietin all caused shape change reactions of rapid onset in rabbit platelets. NGF had the highest maximal effect, and SP the lowest EC50 (concentration causing half maximal shape change). The action of SP was reversible within 5 min, whereas that of NGF lasted for at least 1 h. A series of other peptides were inactive. 2 After preincubation of platelets with SP, a second application of SP no longer caused a shape change reaction, whereas the effect of NGF was not influenced. 3 An oxidized NGF-derivative without biological activity did not cause a shape change reaction, neither did epidermal growth factor. 4 Prostaglandin E1 (PGE1) and pretreatment of the platelets with 3% butanol, which counteract the shape changes caused by 5-hydroxytryptamine (5-HT) and adenosine 3',5'-diphosphate, also antagonized those induced by NGF and SP. Neither heparin nor methysergide, an antagonist of 5-HT-receptors, influenced the shape change induced by NGF or SP. The action of NGF was also antagonized by a specific antibody to NGF. 5 Thymopoietin, like the basic polypeptide polyornithine (mol. wt. 40,000) was not antagonized by PGE1 and butanol. Heparin, which counteracted the effect of polyornithine, did not influence that of thymopoietin. 6 In conclusion, different modes of action are involved in the shape change of blood platelets induced by polypeptides and proteins. SP and NGF may act by stimulating specific membrane receptors.

  5. Conjugated linoleic acid isomers: differences in metabolism and biological effects.

    Science.gov (United States)

    Churruca, Itziar; Fernández-Quintela, Alfredo; Portillo, Maria Puy

    2009-01-01

    The term conjugated linoleic acid (CLA) refers to a mixture of linoleic acid positional and geometric isomers, characterized by having conjugated double bonds, not separated by a methylene group as in linoleic acid. CLA isomers appear as a minor component of the lipid fraction, found mainly in meat and dairy products from cows and sheep. The most abundant isomer is cis-9,trans-11, which represents up to 80% of total CLA in food. These isomers are metabolized in the body through different metabolic pathways, but important differences, that can have physiological consequences, are observed between the two main isomers. The trans-10,cis-12 isomer is more efficiently oxidized than the cis-9,trans-11 isomer, due to the position of its double bounds. Interest in CLA arose in its anticarcinogenic action but there is an increasing amount of specific scientific literature concerning the biological effects and properties of CLA. Numerous biological effects of CLA are due to the separate action of the most studied isomers, cis-9,trans-11 and trans-10,cis-12. It is also likely that some effects are induced and/or enhanced by these isomers acting synergistically. Although the cis-9,trans-11 isomer is mainly responsible for the anticarcinogenic effect, the trans-10,cis-12 isomer reduces body fat and it is referred as the most effective isomer affecting blood lipids. As far as insulin function is concerned, both isomers seem to be responsible for insulin resistance in humans. Finally, with regard to the immune system it is not clear whether individual isomers of CLA could act similarly or differently.

  6. Effects of Individualized Assignments on Biology Achievement.

    Science.gov (United States)

    Kremer, Philip L.

    1983-01-01

    Compared detailed (favoring field dependence and induction) and nondetailed (favoring field dependence and deduction) assignments on biology achievement of grade 10 male students (N=95) over a seven-month period. Detailed assignments, employing pictorial and verbal block diagrams and high structure, significantly enhanced learning among some…

  7. The Biological Effects of Nonionizing Radiation.

    Science.gov (United States)

    1981-12-29

    surrounding C-12-81 normal tissues. According to N.W. Bleehan, this was the method used by Hippocrates , with the aid of a hot iron. Hippocrates , by the way, is...temporal pattern of desired increases of tempera - ture in the body; (2) the biological consequences of doing this must be established and evaluated

  8. Technology Rich Biology Labs: Effects of Misconceptions.

    Science.gov (United States)

    Kuech, Robert; Zogg, Gregory; Zeeman, Stephan; Johnson, Mark

    This paper describes a study conducted on the lab sections of the general biology course for non-science majors at the University of New England, and reports findings of student misconceptions about photosynthesis and the mass/carbon uptake during plant growth. The current study placed high technology analytic tools in the hands of introductory…

  9. Biological therapy induces expression changes in Notch pathway in psoriasis.

    Science.gov (United States)

    Skarmoutsou, Evangelia; Trovato, Chiara; Granata, Mariagrazia; Rossi, Giulio A; Mosca, Ambra; Longo, Valentina; Gangemi, Pietro; Pettinato, Maurizio; D'Amico, Fabio; Mazzarino, Maria Clorinda

    2015-12-01

    Psoriasis is a chronic inflammatory skin disease, characterized by hyperproliferation of keratinocytes and by skin infiltration of activated T cells. To date, the pathophysiology of psoriasis has not yet been fully elucidated. The Notch pathway plays a determinant role in cell fate determination, proliferation, differentiation, immune cell development and function. Many biological agents, used in the treatment of psoriasis, include TFN-α inhibitors, such as etanercept, adalimumab, and anti IL-12/IL-23 p40 antibody, such as ustekinumab. This study aimed to determine mRNA expression levels by real-time RT-PCR, and protein expression levels, analysed by Western blot and immunohistochemistry, of some components of the Notch pathway, such as NOTCH1, NOTCH2, JAGGED1, and HES1 after biological treatments in psoriatic patients. mRNA and protein levels of NOTCH1, NOTCH2, JAGGED1 and HES1 were upregulated in skin samples from untreated psoriatic patients compared with normal controls. Biological therapy showed to downregulate differently the protein expression levels of the molecules under study. Our study suggests that Notch pathway components might be a potential therapeutic target against psoriasis.

  10. Investigation of mitigating effect of colon-specific prodrugs of boswellic acid on 2,4,6-trinitrobenzene sulfonic acid-induced colitis in Wistar rats: Design, kinetics and biological evaluation

    Science.gov (United States)

    Sarkate, Ajinkya; Dhaneshwar, Suneela S

    2017-01-01

    AIM To develop a colon-targeting bioreversible delivery system for β-boswellic acid (BBA) and explore utility of its prodrugs in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats. METHODS Synthesis of 4 co-drugs of BBA with essential amino acids was achieved by CDI coupling, followed by their spectral characterization. In vitro kinetics were studied by HPLC in aqueous buffers, homogenates of gastrointestinal tract and fecal matter. In vivo kinetic studies were performed in Wistar rat plasma, urine and feces. The prodrugs were screened in TNBS-induced colitis modeled Wistar rats. Statistical significance was assumed at P rat fecal matter and homogenates of colon. In vivo studies of BBA with L-tryptophan (BT) authenticated colon-specific release of BBA. But, surprisingly substantial concentration of BBA was seen to reach the systemic circulation due to probable absorption through colonic mucosa. Site-specifically enhanced bioavailability of BBA could be achieved in colon, which resulted in demonstration of significant mitigating effect on TNBS-induced colitis in rats without inducing any adverse effects on stomach, liver and pancreas. Prodrug of BT was found to be 1.7% (P < 0.001) superior than sulfasalazine in reducing the inflammation to colon among all prodrugs tested. CONCLUSION The outcome of this study strongly suggests that these prodrugs might have dual applicability to inflammatory bowel disease and chronotherapy of rheumatoid arthritis. PMID:28275295

  11. Laser-Induced Biological-Tissues Photothermal Effect Based on RC Circuit Model%基于RC电路模型的激光诱导生物组织光热效应

    Institute of Scientific and Technical Information of China (English)

    李小霞; 何俊; 韩雪梅

    2013-01-01

    针对激光诱导生物组织温升预测问题提出了一种新的RC电路理论模型.根据基尔霍夫电压定律(KVL)推导了RC电路的系统函数和单位冲激响应,根据单位冲激响应和矩形输入信号的卷积得到RC电路的零状态响应模型,由激光照射下生物组织温度实验结果确定模型中的两个固定参数,提出了两种模型参数计算方法并进行模拟计算.理论计算与实验结果显示温度响应曲线一致,肝脏和肌肉组织峰值温度相对误差范围分别为-0.0557℃~-0.0025℃和0.0139℃~0.0641℃,温度曲线平均相对误差范围分别为0.55%~2.39%和0.38%~0.99%,这种方法较经典的Pennes生物热传输方程模型所需参数少,精度更高,为激光与生物组织光热效应研究提供了一种新方法.%A new theoretical model of an RC circuit is proposed for prediction problem of laser induced biological tissue temperature rise. The RC circuit system function and unit impulse response are deduced based on Kirchhoff's voltage law (KVL). Then RC circuit zero state response model is deduced from the convolution of unit impulse response and rectangle input signal. The two model constant parameters are calculated from experimental results of the laser irradiated bio-tissues temperature. Two model parameter calculation methods are proposed and simulated. Theoretical calculation and experimental results show that the temperature response curves are consistent. Relative error ranges of liver and muscle tissue peak temperature are -0.0557 ℃~-0.0025 ℃ and 0.0139 ℃ -0.0641℃ respectively, and average relative error ranges of the temperature curve are 0. 55% ~2. 39% and 0. 38% ~0. 99% respectively. This method needs less parameters and is more precise than classical Pennes bio-heat transfer equation model, which provides a new method for laser and bio-tissues photothermal effect research.

  12. Non-Thermal Effects Mobile Phones at Biological Objects

    OpenAIRE

    Ladislav Balogh

    2003-01-01

    The article deals with non-thermal effects of mobile phones on biological objects. Even though these effects are observed for longer period, there are not so far unequivocal results on obtained biological and biophysical results in this field. Biologicaleffects of electromagnetic field (EMF) depend on its character, its duration as well as on features of organism. As the receptors offield are not known (e.g. inputs of EMF into organism), its effects are judged only by non-specific reaction of...

  13. Generation of a tightly regulated doxycycline-inducible model for studying mouse intestinal biology.

    Science.gov (United States)

    Roth, Sabrina; Franken, Patrick; van Veelen, Wendy; Blonden, Lau; Raghoebir, Lalini; Beverloo, Berna; van Drunen, Ellen; Kuipers, Ernst J; Rottier, Robbert; Fodde, Riccardo; Smits, Ron

    2009-01-01

    To develop a sensitive and inducible system to study intestinal biology, we generated a transgenic mouse model expressing the reverse tetracycline transactivator rtTA2-M2 under control of the 12.4 kb murine Villin promoter. The newly generated Villin-rtTA2-M2 mice were then bred with the previously developed tetO-HIST1H2BJ/GFP model to assess inducibility and tissue-specificity. Expression of the histone H2B-GFP fusion protein was observed exclusively upon doxycycline induction and was uniformly distributed throughout the intestinal epithelium. The Villin-rtTA2-M2 was also found to drive transgene expression in the developing mouse intestine. Furthermore, we could detect transgene expression in the proximal tubules of the kidney and in a population of alleged gastric progenitor cells. By administering different concentrations of doxycycline, we show that the Villin-rtTA2-M2 system drives transgene expression in a dosage-dependent fashion. Thus, we have generated a novel doxycycline-inducible mouse model, providing a valuable tool to study the effect of different gene dosages on intestinal physiology and pathology.

  14. ICBEN review of research on the biological effects of noise 2011-2014.

    Science.gov (United States)

    Basner, Mathias; Brink, Mark; Bristow, Abigail; de Kluizenaar, Yvonne; Finegold, Lawrence; Hong, Jiyoung; Janssen, Sabine A; Klaeboe, Ronny; Leroux, Tony; Liebl, Andreas; Matsui, Toshihito; Schwela, Dieter; Sliwinska-Kowalska, Mariola; Sörqvist, Patrik

    2015-01-01

    The mandate of the International Commission on Biological Effects of Noise (ICBEN) is to promote a high level of scientific research concerning all aspects of noise-induced effects on human beings and animals. In this review, ICBEN team chairs and co-chairs summarize relevant findings, publications, developments, and policies related to the biological effects of noise, with a focus on the period 2011-2014 and for the following topics: Noise-induced hearing loss; nonauditory effects of noise; effects of noise on performance and behavior; effects of noise on sleep; community response to noise; and interactions with other agents and contextual factors. Occupational settings and transport have been identified as the most prominent sources of noise that affect health. These reviews demonstrate that noise is a prevalent and often underestimated threat for both auditory and nonauditory health and that strategies for the prevention of noise and its associated negative health consequences are needed to promote public health.

  15. Minocycline-induced clinical and biological lupus-like disease.

    Science.gov (United States)

    Tournigand, C; Généreau, T; Prudent, M; Diemert, M C; Herson, S; Chosidow, O

    1999-01-01

    A 14-year-old girl developed maculopapular rash, myalgias, arthralgias and myocarditis with elevated anti-nuclear and anti-double-stranded DNA antibodies. She was taking minocycline for acne and all symptoms resolved when this treatment was stopped. The patient has no evidence of disease one year after onset of symptoms. Clinicians should be aware of minocycline's responsibility in inducing lupus-like disease.

  16. Molecular dynamics study of accelerated ion-induced shock waves in biological media

    CERN Document Server

    de Vera, Pablo; Currell, Fred J; Solov'yov, Andrey V

    2016-01-01

    We present a molecular dynamics study of the effects of carbon- and iron-ion induced shock waves in DNA duplexes in liquid water. We use the CHARMM force field implemented within the MBN Explorer simulation package to optimize and equilibrate DNA duplexes in liquid water boxes of different sizes and shapes. The translational and vibrational degrees of freedom of water molecules are excited according to the energy deposited by the ions and the subsequent shock waves in liquid water are simulated. The pressure waves generated are studied and compared with an analytical hydrodynamics model which serves as a benchmark for evaluating the suitability of the simulation boxes. The energy deposition in the DNA backbone bonds is also monitored as an estimation of biological damage, something which lies beyond the possibilities of the analytical model.

  17. Effects of diesel exhaust on influenza-induced nasal inflammation

    Science.gov (United States)

    Title: Effects of Diesel Exhaust on Influenza-Induced Nasal Inflammation T L Noah, MD1,2, K Horvath, BS3, C Robinette, RN2, 0 Diaz Sanchez, PhD4 and I Jaspers, PhD1,2. 1UNC Dept. of Pediatrics, United States; 2UNC Center for Environmental Medicine, Asthma and Lung Biology, ...

  18. Iron diminishes the in vitro biological effect of vanadium.

    Science.gov (United States)

    Mechanistic pathways underlying inflammatory injury following exposures to vanadium-containing compounds are not defined. We tested the postulate that the in vitro biological effect of vanadium results from its impact on iron homeostasis. Human bronchial epithelial (HBE) cells ex...

  19. Critical appraisal: dental amalgam update--part II: biological effects.

    Science.gov (United States)

    Wahl, Michael J; Swift, Edward J

    2013-12-01

    Dental amalgam restorations have been controversial for over 150 years. In Part I of this Critical Appraisal, the clinical efficacy of dental amalgam was updated. Here in Part II, the biological effects of dental amalgam are addressed.

  20. The biological effects of ionising radiation on Crustaceans: A review

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Neil; Lerebours, Adélaïde [Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY (United Kingdom); Smith, Jim T. [School of Earth & Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, Hampshire PO1 3QL (United Kingdom); Ford, Alex T., E-mail: alex.ford@port.ac.uk [Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY (United Kingdom)

    2015-10-15

    Highlights: • We comprehensively review the effects of ionising radiation in crustaceans. • Current environmental radioprotection levels found to be inadequate in some cases. • Mutation is shown to be a sensitive endpoint of radiation exposure. • Lowest observed effect dose rate varies by orders of magnitude. - Abstract: Historic approaches to radiation protection are founded on the conjecture that measures to safeguard humans are adequate to protect non-human organisms. This view is disparate with other toxicants wherein well-developed frameworks exist to minimise exposure of biota. Significant data gaps for many organisms, coupled with high profile nuclear incidents such as Chernobyl and Fukushima, have prompted the re-evaluation of our approach toward environmental radioprotection. Elucidating the impacts of radiation on biota has been identified as priority area for future research within both scientific and regulatory communities. The crustaceans are ubiquitous in aquatic ecosystems, comprising greater than 66,000 species of ecological and commercial importance. This paper aims to assess the available literature of radiation-induced effects within this subphylum and identify knowledge gaps. A literature search was conducted pertaining to radiation effects on four endpoints as stipulated by a number of regulatory bodies: mortality, morbidity, reproduction and mutation. A major finding of this review was the paucity of data regarding the effects of environmentally relevant radiation doses on crustacean biology. Extremely few studies utilising chronic exposure durations or wild populations were found across all four endpoints. The dose levels at which effects occur was found to vary by orders of magnitude thus presenting difficulties in developing phyla-specific benchmark values and reference levels for radioprotection. Based on the limited data, mutation was found to be the most sensitive endpoint of radiation exposure, with mortality the least sensitive

  1. Hormesis [Biological Effects of Low Level Exposures (Belle)] and Dermatology

    OpenAIRE

    Thong, Haw-Yueh; Maibach, Howard I.

    2008-01-01

    Hormesis, or biological effects of low level exposures (BELLE), is characterized by nonmonotonic dose response which is biphasic, displaying opposite effects at low and high dose. Its occurrence has been documented across a broad range of biological models and diverse type of exposure. Since hormesis appears to be a relatively common phenomenon in many areas, the objective of this review is to explore its occurrence related to dermatology and its public health and risk assessment implication....

  2. Biological effects of exposure to magnetic resonance imaging: an overview

    OpenAIRE

    Formica Domenico; Silvestri Sergio

    2004-01-01

    Abstract The literature on biological effects of magnetic and electromagnetic fields commonly utilized in magnetic resonance imaging systems is surveyed here. After an introduction on the basic principles of magnetic resonance imaging and the electric and magnetic properties of biological tissues, the basic phenomena to understand the bio-effects are described in classical terms. Values of field strengths and frequencies commonly utilized in these diagnostic systems are reported in order to a...

  3. Confined Nystatin Polyenes in Nanopore Induce Biologic Ionic Selectivity

    Directory of Open Access Journals (Sweden)

    Khaoula Boukari

    2016-01-01

    Full Text Available Antifungal polyenes such as nystatin (or amphotericin B molecules play an important role in regulating ions permeability through membrane cell. The creation of self-assembled nanopores into the fungal lipid membranes permits the leakage and the selectivity of ions (i.e., blockage of divalent cations that cause the cell death. These abilities are thus of first interest to promote new biomimetic membranes with improved ionic properties. In the present work, we will use molecular dynamic simulations to interpret recent experimental data that showed the transfer of the nystatin action inside artificial nanopore in terms of ion permeability and selectivity. We will demonstrate that nystatin polyenes can be stabilized in a hydrophobic carbon nanotube, even at high concentration. The high potential interaction between the polyenes and the hydrophobic pore wall ensures the apparition of a hole inside the biomimetic nanopore that changes its intrinsic properties. The probability ratios of cation versus anion show interesting reproducibility of experimental measurements and, to a certain extent, opened the way for transferring biological properties in synthetic membranes.

  4. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wongkham, W. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K.; Inthanon, K. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wanichapichart, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Membrane Science and Technology Research Center, Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112 (Thailand); Anuntalabhochai, S. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-06-15

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  5. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    Science.gov (United States)

    Yu, L. D.; Wongkham, W.; Prakrajang, K.; Sangwijit, K.; Inthanon, K.; Thongkumkoon, P.; Wanichapichart, P.; Anuntalabhochai, S.

    2013-06-01

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  6. Biological Effects of the Great Oxidation Event

    Science.gov (United States)

    Schopf, J.

    2012-12-01

    Fossil evidence of photoautotrophy, documented in Precambrian sediments by stromatolites, stromatolitic microfossils, and carbon isotopic data consistent with autotrophic CO2-fixation, extends to ~3,500 Ma. Such data, however, are insufficient to establish the time of origin of O2-producing (cyanobacterial) photosynthesis from its anoxygenic, photosynthetic bacterial, evolutionary precursor. The oldest (Paleoarchean) stromatolites may have been formed by anoxygenic photoautotrophs, rather than the cyanobacteria that dominate Proterozoic and modern stromatolites. Unlike the cyanobacteria of Proterozoic microbial assemblages, the filamentous and coccoidal microfossils of Archean deposits may represent remnants of non-O2-producing prokaryotes. And although the chemistry of Archean organic matter shows it to be biogenic, its carbon isotopic composition is insufficient to differentiate between oxygenic and anoxygenic sources. Though it is well established that Earth's ecosystem has been based on autotrophy since its early stages and that O2-producing photosynthesis evolved earlier, perhaps much earlier, than the increase of atmospheric oxygen in the ~2,450 and ~2,320 Ma Great Oxidation Event (GOE), the time of origin of oxygenic photoautotrophy has yet to be established. Recent findings suggest that Earth's ecosystem responded more or less immediately to the GOE. The increase of atmospheric oxygen markedly affected ocean water chemistry, most notably by increasing the availability of biologically usable oxygen (which enabled the development of obligate aerobes, such as eukaryotes), and of nitrate, sulfate and hydrogen sulfide (the increase of H2S being a result of microbial reduction of sulfate), the three reactants that power the anaerobic basis of sulfur-cycling microbial sulfuretums. Fossil evidence of the earliest eukaryotes (widely accepted to date from ~1800 Ma and, arguably, ~2200 Ma) fit this scenario, but the most telling example of life's response to the GOE

  7. The research of biological effects induced by C-arm X ray acute scan%C形臂X光机急性扫描诱导的生物效应研究

    Institute of Scientific and Technical Information of China (English)

    杨博; 高宇巍; 杨澄; 李宏伟

    2014-01-01

    Objective To investigate the biological effects induced by C-arm X ray acute scan in mice.Methods 60 healthy male BALB/c mice were randomly divided into control group,single,four,eight and twelve times of C-arm X ray scan; there were 12 mice in each group.The mice were administered with different frequency of whole-body C-arm X ray scan; After 24 h of scan,malondialdehyde (MDA) and superoxide dismutase(SOD) were detected;Enzyme Linked Immuno Sorbent Assay (ELISA) was used to detect the level of IL-4 and IFN-γin serum.The apoptosis level of peripheral lymphocytes and bone marrow cells was analyzed by flow cytometry.Results Compared with control,more than eight times of scan increased MDA level by 2.39 and 3.49,but more than four times of scan decreased SOD level in thyroid by 19.23%,25.80% and 27.95%.More than four times of scan decreased the level of IFN-γ and IL-4 in the serum by 14.71% and 22.60%,22.99% and 44.05%,31.70% and 44.43%,but no influence on the ratio of IFN-γ/IL-4 was observed.More than eight and twelve times of scan increased apoptosis level in peripheral lymphocytes and bone marrow cells by 1.68,2.40 and 2.02.Conclusion Whith Multiple scan C-arm X ray changed oxidative level and immunological response.In addition,apoptosis was initiated to maintain genome stability.%目的 探讨研究C形臂X光机急性扫描对小鼠机体功能的影响.方法 健康雄性BALB/c小鼠60只随机分为对照组、单次、四次、八次和十二次扫描组,每组12只.对照组小鼠不扫描,其余组用C形臂X光机对小鼠进行全身扫描.在照射后24小时,采用生物化学方法检测小鼠甲状腺组织中超氧化物歧化酶(SOD)和丙二醛(MDA)的水平;采用酶联免疫吸附试验(ELISA)检测血清中IL-4和IFN-γ的变化;流式细胞仪检测各照射组小鼠外周血淋巴细胞和骨髓细胞的凋亡水平.结果 与对照组比较,小鼠甲状腺组织中的MDA水平在八次以上扫描后分别升高了2.39、3

  8. Lewisite: its chemistry, toxicology, and biological effects.

    Science.gov (United States)

    Goldman, M; Dacre, J C

    1989-01-01

    Lewisite is an organic arsenical war gas which is a vesicant with attendant toxicities due to its ability to combine with thiol groups which are essential for activity of a variety of enzymes. Although Lewisite has been designated as a "suspected carcinogen," the indictment is not supported by the available scientific evidence. Indeed, the unwarranted conclusion is based on one specific case history of a former German soldier whose lower right leg was exposed to liquid Lewisite in 1940 with subsequent development of intraepidermal squamous cell carcinoma, and the examination of death certificates of former workers at a Japanese factory that manufactured a variety of war gases including mustard gas, hydrocyanic acid, chloracetophenome, phosgene, diphenylcyanarsine and Lewisite. It is difficult to comprehend why Lewisite was selected out of this group of toxic chemicals as one of those responsible for respiratory cancer in these workers. It would appear to be a difficult task, indeed, to disengage a specific worker from one of the other of several gases at the workplace and assign a specific gas-induced death. The evidence that organic arsenicals are carcinogenic is weak. Although the weight of evidence is such that inorganic arsenical derivatives are considered weak mutagens, the evidence that organic arsenicals are mutagenic is poor. Recent examination of the mutagenic potential of Lewisite using the Ames test has shown that Lewisite is not mutagenic under these circumstances. While oral administration of arsenical compounds, whether inorganic or organic, does not induce teratogenicity except at very high dose levels which are associated with some degree of maternal toxicity, parenteral administration has been associated with teratogenicity but information of maternal toxicity has not always been available. Indeed, maternal toxicity should be considered as an important diagnostic tool in assessing whether a chemical is teratogenic. The significance of parenteral

  9. Magnetically induced QCD Kondo effect

    Science.gov (United States)

    Ozaki, Sho; Itakura, Kazunori; Kuramoto, Yoshio

    2016-10-01

    The "QCD Kondo effect" stems from the color exchange interaction in QCD with non-Abelian property, and can be realized in a high-density quark matter containing heavy-quark impurities. We propose a novel type of the QCD Kondo effect induced by a strong magnetic field. In addition to the fact that the magnetic field does not affect the color degrees of freedom, two properties caused by the Landau quantization in a strong magnetic field are essential for the "magnetically induced QCD Kondo effect"; (1) dimensional reduction to 1 +1 -dimensions, and (2) finiteness of the density of states for lowest energy quarks. We demonstrate that, in a strong magnetic field B , the scattering amplitude of a massless quark off a heavy quark impurity indeed shows a characteristic behavior of the Kondo effect. The resulting Kondo scale is estimated as ΛK≃√{eqB }αs1 /3exp {-4 π /Ncαslog (4 π /αs)} where αs and Nc are the fine structure constant of strong interaction and the number of colors in QCD, and eq is the electric charge of light quarks.

  10. Stochastic Effects in Computational Biology of Space Radiation Cancer Risk

    Science.gov (United States)

    Cucinotta, Francis A.; Pluth, Janis; Harper, Jane; O'Neill, Peter

    2007-01-01

    Estimating risk from space radiation poses important questions on the radiobiology of protons and heavy ions. We are considering systems biology models to study radiation induced repair foci (RIRF) at low doses, in which less than one-track on average transverses the cell, and the subsequent DNA damage processing and signal transduction events. Computational approaches for describing protein regulatory networks coupled to DNA and oxidative damage sites include systems of differential equations, stochastic equations, and Monte-Carlo simulations. We review recent developments in the mathematical description of protein regulatory networks and possible approaches to radiation effects simulation. These include robustness, which states that regulatory networks maintain their functions against external and internal perturbations due to compensating properties of redundancy and molecular feedback controls, and modularity, which leads to general theorems for considering molecules that interact through a regulatory mechanism without exchange of matter leading to a block diagonal reduction of the connecting pathways. Identifying rate-limiting steps, robustness, and modularity in pathways perturbed by radiation damage are shown to be valid techniques for reducing large molecular systems to realistic computer simulations. Other techniques studied are the use of steady-state analysis, and the introduction of composite molecules or rate-constants to represent small collections of reactants. Applications of these techniques to describe spatial and temporal distributions of RIRF and cell populations following low dose irradiation are described.

  11. Effects of Simulated Rare Earth Recycling Wastewaters on Biological Nitrification.

    Science.gov (United States)

    Fujita, Yoshiko; Barnes, Joni; Eslamimanesh, Ali; Lencka, Malgorzata M; Anderko, Andrzej; Riman, Richard E; Navrotsky, Alexandra

    2015-08-18

    Increasing rare earth element (REE) supplies by recycling and expanded ore processing will result in generation of new wastewaters. In some cases, disposal to a sewage treatment plant may be favored, but plant performance must be maintained. To assess the potential effects of such wastewaters on biological treatment, model nitrifying organisms Nitrosomonas europaea and Nitrobacter winogradskyi were exposed to simulated wastewaters containing varying levels of yttrium or europium (10, 50, and 100 ppm), and the extractant tributyl phosphate (TBP, at 0.1 g/L). Y and Eu additions at 50 and 100 ppm inhibited N. europaea, even when virtually all of the REE was insoluble. Provision of TBP with Eu increased N. europaea inhibition, although TBP alone did not substantially alter activity. For N. winogradskyi cultures, Eu or Y additions at all tested levels induced significant inhibition, and nitrification shut down completely with TBP addition. REE solubility was calculated using the previously developed MSE (Mixed-Solvent Electrolyte) thermodynamic model. The model calculations reveal a strong pH dependence of solubility, typically controlled by the precipitation of REE hydroxides but also likely affected by the formation of unknown phosphate phases, which determined aqueous concentrations experienced by the microorganisms.

  12. Biological function of activation-induced cytidine deaminase (AID

    Directory of Open Access Journals (Sweden)

    Ritu Kumar

    2014-10-01

    Full Text Available Activation-induced Cytidine Deaminase (AID is an essential regulator of B cell diversification, but its full range of action has until recently been an enigma. Based on homology, it was originally proposed to be an RNA-editing enzyme, but so far, no RNA substrates are known. Rather, it functions by deaminating cytidine, and in this manner, coupled with base-excision repair or mismatch repair machinery, it is a natural mutator. This allows it to play a central role in adaptive immunity, whereby it initiates the processes of class switch recombination and somatic hypermutation to help generate a diverse and high-affinity repertoire of immunoglobulin isotypes. More recently, it has been appreciated that methylated cytidine, already known as a key epigenetic mark on DNA controlling gene expression, can also be a target for AID modification. Coupled with repair machinery, this can facilitate the active removal of methylated DNA. This activity can impact the process of cellular reprogramming, including transition of a somatic cell to pluripotency, which requires major reshuffling of epigenetic memory. Thus, seemingly disparate roles for AID in controlling immune diversity and epigenetic memory have a common mechanistic basis. However, the very activity that is so useful for B cell diversity and cellular reprogramming is dangerous for the integrity of the genome. Thus, AID expression and activity is tightly regulated, and deregulation is associated with diseases including cancer. Here, we review the range of AID functions with a focus on its mechanisms of action and regulation. Major questions remain to be answered concerning how and when AID is targeted to specific loci and how this impacts development and disease.

  13. Biological function of activation-induced cytidine deaminase (AID).

    Science.gov (United States)

    Kumar, Ritu; DiMenna, Lauren J; Chaudhuri, Jayanta; Evans, Todd

    2014-01-01

    Activation-induced Cytidine Deaminase (AID) is an essential regulator of B cell diversification, but its full range of action has until recently been an enigma. Based on homology, it was originally proposed to be an RNA-editing enzyme, but so far, no RNA substrates are known. Rather, it functions by deaminating cytidine, and in this manner, coupled with base-excision repair or mismatch repair machinery, it is a natural mutator. This allows it to play a central role in adaptive immunity, whereby it initiates the processes of class switch recombination and somatic hypermutation to help generate a diverse and high-affinity repertoire of immunoglobulin isotypes. More recently, it has been appreciated that methylated cytidine, already known as a key epigenetic mark on DNA controlling gene expression, can also be a target for AID modification. Coupled with repair machinery, this can facilitate the active removal of methylated DNA. This activity can impact the process of cellular reprogramming, including transition of a somatic cell to pluripotency, which requires major reshuffling of epigenetic memory. Thus, seemingly disparate roles for AID in controlling immune diversity and epigenetic memory have a common mechanistic basis. However, the very activity that is so useful for B cell diversity and cellular reprogramming is dangerous for the integrity of the genome. Thus, AID expression and activity is tightly regulated, and deregulation is associated with diseases including cancer. Here, we review the range of AID functions with a focus on its mechanisms of action and regulation. Major questions remain to be answered concerning how and when AID is targeted to specific loci and how this impacts development and disease.

  14. Biological effects of atmospheric particles on human bronchial epithelial cells. Comparison with diesel exhaust particles.

    Science.gov (United States)

    Baulig, Augustin; Sourdeval, Matthieu; Meyer, Martine; Marano, Francelyne; Baeza-Squiban, Armelle

    2003-01-01

    Epidemiological studies have associated the increase of respiratory disorders with high levels of ambient particulate matter (PM) levels although the underlying biological mechanisms are unclear. PM are a complex mixture of particles with different origins but in urban areas, they mainly contain soots from transport like Diesel exhaust particles (DEP). In order to determine whether PM biological effects can be explained by the presence of DEP, the effects of urban PM, DEP and carbon black particles (CB) were compared on a human bronchial epithelial cell line (16-HBE14o-). Two types of PM were used : reference material (RPM) and PM with an aerodynamic diameter particles. However, DEP and to a lower extent PM inhibited cell proliferation, induced the release of a pro-inflammatory cytokine, GM-CSF, and generated a pro-oxidant state as shown by the increased intracellular peroxides production. By contrast, CB never induced such effects. Nevertheless CB are more endocytosed than DEP whereas PM are the less endocytosed particles. In conclusion, PM induced to a lower extent the same biological effects than DEP in 16-HBE cells suggesting that particle characteristics should be thoroughly considered in order to clearly correlate adverse effects of PM to their composition and to clarify the role of DEP in PM effects.

  15. Biological stress responses induced by alpha radiation exposure in Lemna minor

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoeck, A.; Horemans, N.; Van Hees, M.; Nauts, R. [Belgian Nuclear Research Centre SCK-CEN (Belgium); Knapen, D.; Blust, R. [University of Antwerp (Belgium)

    2014-07-01

    experiments Steinberg medium was selected for further dose-response experiments to analyse additional end-points like DNA-damage and enzymes involved in detoxification of reactive oxygen species. Finally, these results enable comparison of alpha radiation-induced effects at different levels of biological complexity from metabolic pathways to morphological growth effects. This research was supported by the Fund for Scientific Research (FWO-Vlaanderen, G.A040.11N) Document available in abstract form only. (authors)

  16. Biological variation in tPA-induced plasma clot lysis time

    NARCIS (Netherlands)

    S. Talens (Simone); J.J.M.C. Malfliet (Joyce); G. Rudež (Goran); H.M.H. Spronk (Henri); N.A.H. Janssen (Nicole); P. Meijer (Piet); C. Kluft (Cornelius); M.P.M. de Maat (Moniek); D.C. Rijken (Dingeman)

    2012-01-01

    textabstractHypofibrinolysis is a risk factor for venous and arterial thrombosis, and can be assessed by using a turbidimetric tPA-induced clot lysis time (CLT) assay. Biological variation in clot lysis time may affect the interpretation and usefulness of CLT as a risk factor for thrombosis. Suffici

  17. Biological and therapeutical effects of Radon

    Energy Technology Data Exchange (ETDEWEB)

    Deetjen, P. [Institute of Physiologie and Balneologie, University of Innsbruck (Austria)

    1998-12-31

    In spas with a somewhat elevated Radon{sup 222} (Rn) activity (between 300 and 3000 Bq/l), the empirical medicine ended - in all parts of the world - with the same list of indications. It mainly includes the more painful rheumatic diseases such as deformation or degeneration of the joints and non bacterial inflammation of muscles, tendons or joints; Morbus Bechterew and other diseases of the vertebral column like spondylosis, spondylarthrosis or osteochondrosis. While informer times these effects were seldom documented in an objective manner, in recent years several prospective randomized double-blind studies proved the pain reducing efficacy of Radon therapy in patients with cervical pain syndromes, with chronic polyarthritis or with Morbus Bechterew. Studies in experimental animal models have accumulated remarkable data in organs, tissue and cultured cells that provide a rationale to explain the observed effects of Radon therapy in patients. (author)

  18. Palytoxin and Analogs: Biological and Ecological Effects

    Directory of Open Access Journals (Sweden)

    Vítor Ramos

    2010-06-01

    Full Text Available Palytoxin (PTX is a potent marine toxin that was originally found in soft corals from tropical areas of the Pacific Ocean. Soon after, its occurrence was observed in numerous other marine organisms from the same ecological region. More recently, several analogs of PTX were discovered, remarkably all from species of the dinoflagellate genus Ostreopsis. Since these dinoflagellates are also found in other tropical and even in temperate regions, the formerly unsuspected broad distribution of these toxins was revealed. Toxicological studies with these compounds shows repeatedly low LD50 values in different mammals, revealing an acute toxic effect on several organs, as demonstrated by different routes of exposure. Bioassays tested for some marine invertebrates and evidences from environmental populations exposed to the toxins also give indications of the high impact that these compounds may have on natural food webs. The recognition of its wide distribution coupled with the poisoning effects that these toxins can have on animals and especially on humans have concerned the scientific community. In this paper, we review the current knowledge on the effects of PTX and its analogs on different organisms, exposing the impact that these toxins may have in coastal ecosystems.

  19. Linking exposure to environmental pollutants with biological effects

    DEFF Research Database (Denmark)

    Sørensen, Mette; Autrup, Herman; Møller, Peter

    2003-01-01

    Exposure to ambient air pollution has been associated with cancer. Ambient air contains a complex mixture of toxics, including particulate matter (PM) and benzene. Carcinogenic effects of PM may relate both to the content of PAH and to oxidative DNA damage generated by transition metals, benzene......, metabolism and inflammation. By means of personal monitoring and biomarkers of internal dose, biologically effective dose and susceptibility, it should be possible to characterize individual exposure and identify air pollution sources with relevant biological effects. In a series of studies, individual......, biological effects of air pollutants appear mainly related to oxidative stress via personal exposure and not to urban background levels. Future developments include personal time-resolved monitors for exposure to ultrafine PM and PM(2.5,) use of GPS, as well as genomics and proteomics based biomarkers....

  20. Induced Resistance as a Mechanism of Biological Control by Lysobacter enzymogenes Strain C3.

    Science.gov (United States)

    Kilic-Ekici, Ozlem; Yuen, Gary Y

    2003-09-01

    ABSTRACT Induced resistance was found to be a mechanism for biological control of leaf spot, caused by Bipolaris sorokiniana, in tall fescue (Festuca arundinacea) using the bacterium Lysobacter enzymogenes strain C3. Resistance elicited by C3 suppressed germination of B. sorokiniana conidia on the phylloplane in addition to reducing the severity of leaf spot. The pathogen-inhibitory effect could be separated from antibiosis by using heat-inactivated cells of C3 that retained no antifungal activity. Application of live or heat-killed cells to tall fescue leaves resulted only in localized resistance confined to the treated leaf, whereas treatment of roots resulted in systemic resistance expressed in the foliage. The effects of foliar and root applications of C3 were long lasting, as evidenced by suppression of conidial germination and leaf spot development even when pathogen inoculation was delayed 15 days after bacterial treatment. When C3 population levels and germination of pathogen conidia was examined on leaf segments, germination percentage was reduced on all segments from C3-treated leaves compared with segments from non-treated leaves, but no dose-response relationship typical of antagonism was found. Induced resistance by C3 was not host or pathogen specific; foliar application of heat-killed C3 cells controlled B. sorokiniana on wheat and also was effective in reducing the severity of brown patch, caused by Rhizoctonia solani, on tall fescue. Treatments of tall fescue foliage or roots with C3 resulted in significantly elevated peroxidase activity compared with the control.

  1. Secretion of biologically active interferon-gamma inducible protein-10 (IP-10 by Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Saucedo-Cardenas Odila

    2008-07-01

    Full Text Available Abstract Background Chemokines are a large group of chemotactic cytokines that regulate and direct migration of leukocytes, activate inflammatory responses, and are involved in many other functions including regulation of tumor development. Interferon-gamma inducible-protein-10 (IP-10 is a member of the C-X-C subfamily of the chemokine family of cytokines. IP-10 specifically chemoattracts activated T lymphocytes, monocytes, and NK cells. IP-10 has been described also as a modulator of other antitumor cytokines. These properties make IP-10 a novel therapeutic molecule for the treatment of chronic and infectious diseases. Currently there are no suitable live biological systems to produce and secrete IP-10. Lactococcus lactis has been well-characterized over the years as a safe microorganism to produce heterologous proteins and to be used as a safe, live vaccine to deliver antigens and cytokines of interest. Here we report a recombinant strain of L. lactis genetically modified to produce and secrete biologically active IP-10. Results The IP-10 coding region was isolated from human cDNA and cloned into an L. lactis expression plasmid under the regulation of the pNis promoter. By fusion to the usp45 secretion signal, IP-10 was addressed out of the cell. Western blot analysis demonstrated that recombinant strains of L. lactis secrete IP-10 into the culture medium. Neither degradation nor incomplete forms of IP-10 were detected in the cell or supernatant fractions of L. lactis. In addition, we demonstrated that the NICE (nisin-controlled gene expression system was able to express IP-10 "de novo" even two hours after nisin removal. This human IP-10 protein secreted by L. lactis was biological active as demonstrated by Chemotaxis assay over human CD3+T lymphocytes. Conclusion Expression and secretion of mature IP-10 was efficiently achieved by L. lactis forming an effective system to produce IP-10. This recombinant IP-10 is biologically active as

  2. Biological effects of stellar collapse neutrinos

    CERN Document Server

    Collar, J I

    1996-01-01

    Massive stars in their final stages of collapse radiate most of their binding energy in the form of MeV neutrinos. The recoil atoms that they produce in elastic scattering off nuclei in organic tissue create a radiation damage which is highly effective in the production of irreparable DNA harm, leading to cellular mutation, neoplasia and oncogenesis. Using a conventional model of the galaxy and of the collapse mechanism, the periodicity of nearby stellar collapses and the radiation dose are calculated. The possible contribution of this process to the paleontological record of mass extinctions is examined.

  3. New insight into the molecular mechanisms of the biological effects of DNA minor groove binders.

    Directory of Open Access Journals (Sweden)

    Xinbo Zhang

    Full Text Available BACKGROUND: Bisbenzimides, or Hoechst 33258 (H258, and its derivative Hoechst 33342 (H342 are archetypal molecules for designing minor groove binders, and widely used as tools for staining DNA and analyzing side population cells. They are supravital DNA minor groove binders with AT selectivity. H342 and H258 share similar biological effects based on the similarity of their chemical structures, but also have their unique biological effects. For example, H342, but not H258, is a potent apoptotic inducer and both H342 and H258 can induce transgene overexpression in in vitro studies. However, the molecular mechanisms by which Hoechst dyes induce apoptosis and enhance transgene overexpression are unclear. METHODOLOGY/PRINCIPAL FINDINGS: To determine the molecular mechanisms underlying different biological effects between H342 and H258, microarray technique coupled with bioinformatics analyses and multiple other techniques has been utilized to detect differential global gene expression profiles, Hoechst dye-specific gene expression signatures, and changes in cell morphology and levels of apoptosis-associated proteins in malignant mesothelioma cells. H342-induced apoptosis occurs in a dose-dependent fashion and is associated with morphological changes, caspase-3 activation, cytochrome c mitochondrial translocation, and cleavage of apoptosis-associated proteins. The antagonistic effect of H258 on H342-induced apoptosis indicates a pharmacokinetic basis for the two dyes' different biological effects. Differential global gene expression profiles induced by H258 and H342 are accompanied by unique gene expression signatures determined by DNA microarray and bioinformatics software, indicating a genetic basis for their different biological effects. CONCLUSIONS/SIGNIFICANCE: A unique gene expression signature associated with H342-induced apoptosis provides a new avenue to predict and classify the therapeutic class of minor groove binders in the drug

  4. Nanosilver – Harmful effects of biological activity

    Directory of Open Access Journals (Sweden)

    Anna Maria Świdwińska-Gajewska

    2014-12-01

    Full Text Available Nanosilver, also identified as colloidal silver, has been known and used for ages to combat diseases or prolong food freshness. It usually occurs in the form of a suspension consisting of particles of size < 100 nm. Due to its specific properties, silver nanoparticles are used in many technologies to produce medical devices, textiles, conductive materials or photovoltaic cells. The growing popularity of nanosilver applications increases the number of people occupationally exposed to this substance. Potential exposure routes for silver nanoparticles are through dermal, oral and inhalation pathways. Silver nanoparticles may be absorbed through the lungs, intestine, and through the skin into circulation and thus may reach such organs as the liver, kidney, spleen, brain, heart and testes. Nanosilver may cause mild eyes and skin irritations. It can also act as a mild skin allergen. Inhalation of silver nanoparticles mainly affects the lungs and liver. It has been demonstrated that silver nanoparticles may be genotoxic to mammalian cells. There are some alarming reports on the adverse effects of silver nanoparticles on reproduction of experimental animals. Exposure to silver nanoparticles may exert a neurotoxic effect and affect cognitive functions, causing the impairment of short-term and working memory. Maximum admissible concentration (MAC for the inhalable fraction of silver of 0.05 mg/m3 is currently binding in Poland. In light of toxicological studies of silver nanoparticles it seems reasonable to update the hygiene standards for silver with nanoparticles as a separate fraction. Med Pr 2014;65(6:831–845

  5. Chemical and biological oxidative effects of carbon black nanoparticles.

    Science.gov (United States)

    Koike, Eiko; Kobayashi, Takahiro

    2006-11-01

    Several studies show that ultrafine particles have a larger surface area than coarse particles, thus causing a greater inflammatory response. In this study, we investigated chemical and biological oxidative effects of nanoparticles in vitro. Carbon black (CB) nanoparticles with mean aerodynamic diameters of 14, 56, and 95nm were examined. The innate oxidative capacity of the CB nanoparticles was measured by consumption of dithiothreitol (DTT) in cell-free system. The expression of heme oxygenase-1 (HO-1) in rat alveolar type II epithelial cell line (SV40T2) and alveolar macrophages (AM) exposed to CB nanoparticles was measured by ELISA. DTT consumption of 14nm CB was higher than that of other CB nanoparticles having the same particle weight. However, DTT consumption was directly proportional to the particle surface area. HO-1 protein in SV40T2 cells was significantly increased by the 14nm and 56nm CB, however, 95nm CB did not affect. HO-1 protein in AM was significantly increased by the 14, 56, and 95nm CB. The increase in HO-1 expression was diminished by N-acetyl-l-cysteine (NAC) treatment of each CB nanoparticles before exposure although the difference between the effects of NAC-treated and untreated 14nm CB did not achieve significant. In conclusion, CB nanoparticles have innate oxidative capacity that may be dependent on the surface area. CB nanoparticles can induce oxidative stress in alveolar epithelial cells and AM that is more prominent with smaller particles. The oxidative stress may, at least partially, be mediated by surface function of particles.

  6. Tea polyphenols, their biological effects and potential molecular targets.

    Science.gov (United States)

    Chen, D; Milacic, V; Chen, M S; Wan, S B; Lam, W H; Huo, C; Landis-Piwowar, K R; Cui, Q C; Wali, A; Chan, T H; Dou, Q P

    2008-04-01

    Tea is the most popular beverage in the world, second only to water. Tea contains an infusion of the leaves from the Camellia sinensis plant rich in polyphenolic compounds known as catechins, the most abundant of which is (-)-EGCG. Although tea has been consumed for centuries, it has only recently been studied extensively as a health-promoting beverage that may act to prevent a number of chronic diseases and cancers. The results of several investigations indicate that green tea consumption may be of modest benefit in reducing the plasma concentration of cholesterol and preventing atherosclerosis. Additionally, the cancer-preventive effects of green tea are widely supported by results from epidemiological, cell culture, animal and clinical studies. In vitro cell culture studies show that tea polyphenols potently induce apoptotic cell death and cell cycle arrest in tumor cells but not in their normal cell counterparts. Green tea polyphenols were shown to affect several biological pathways, including growth factor-mediated pathway, the mitogen-activated protein (MAP) kinase-dependent pathway, and ubiquitin/proteasome degradation pathways. Various animal studies have revealed that treatment with green tea inhibits tumor incidence and multiplicity in different organ sites such as skin, lung, liver, stomach, mammary gland and colon. Recently, phase I and II clinical trials have been conducted to explore the anticancer effects of green tea in humans. A major challenge of cancer prevention is to integrate new molecular findings into clinical practice. Therefore, identification of more molecular targets and biomarkers for tea polyphenols is essential for improving the design of green tea trials and will greatly assist in a better understanding of the mechanisms underlying its anti-cancer activity.

  7. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  8. Third eye, the biological effects; 3. oeil, les effets biologiques

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2004-02-01

    The discovery of a third kind of photo-receptor cell in the human eye has permitted to better understand the biological effects of lighting, not only on the vision, but also on some nervous processes, like emotion, mood, stress, biological clock, etc.. This additional dimension has led the engineers of Philips Lighting company to launch a new indoor lighting concept named 'Carpe Diem'. This concept adapts both the illuminance and the color of a lighting system according to the type of work and to the expected stimulating effect. (J.S.)

  9. Radon exposure of the skin: I. Biological effects

    Energy Technology Data Exchange (ETDEWEB)

    Charles, M W [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2007-09-15

    Radon progeny can plate out on skin and give rise to exposure of the superficial epidermis from alpha emitters Po-218 (7.7 MeV, range {approx}66 {mu}m) and Po-214 (6 MeV, range {approx}44 {mu}m). Dose rates from beta/gamma emitters Pb-214 and Bi-214 are low and only predominate at depths in excess of the alpha range. This paper reviews the evidence for a causal link between exposure from radon and its progeny, and deterministic and stochastic biological effects in human skin. Radiation induced skin effects such as ulceration and dermal atrophy, which require irradiation of the dermis, are ruled out for alpha irradiation from radon progeny because the target cells are considerably deeper than the range of alpha particles. They have not been observed in man or animals. Effects such as erythema and acute epidermal necrosis have been observed in a few cases of very high dose alpha particle exposures in man and after acute high dose exposure in animals from low energy beta radiations with similar depth doses to radon progeny. The required skin surface absorbed doses are in excess of 100 Gy. Such effects would require extremely high levels of radon progeny. They would involve quite exceptional circumstances, way outside the normal range of radon exposures in man. There is no definitive identification of the target cells for skin cancer induction in animals or man. The stem cells in the basal layer which maintain the epidermis are the most plausible contenders for target cells. The majority of these cells are near the end of the range of radon progeny alpha particles, even on the thinnest body sites. The nominal depth of these cells, as recommended by the International Commission on Radiological Protection (ICRP), is 70 {mu}m. There is evidence however that some irradiation of the hair follicles and/or the deeper dermis, as well as the inter-follicular epidermis, is also necessary for skin cancer induction. Alpha irradiation of rodent skin that is restricted to the

  10. Plasma effects in electromagnetic field interaction with biological tissue

    Science.gov (United States)

    Sharma, R. P.; Batra, Karuna; Excell, Peter S.

    2011-02-01

    Theoretical analysis is presented of the nonlinear behavior of charge carriers in biological tissue under the influence of varying low-intensity electromagnetic (EM) field. The interaction occurs because of the nonlinear force arising due to the gradient of the EM field intensity acting on free electrons in the conduction band of proteins in metabolically active biological cell membrane receptors leading to a redistribution of charge carriers. Field dependence of the resulting dielectric constant is investigated by a suitable modification to include an additional electronic contribution term to the three-term Debye model. The exogenous EM field propagating in this nonlinear cellular medium satisfies the nonlinear Schrödinger equation and can be affected significantly. Resulting field effect can be substantially augmented and effective rectification/demodulation can occur. Possible implications of this modification on biological processes in white and grey matter are discussed.

  11. Biological Effects of Listeriolysin O: Implications for Vaccination

    Directory of Open Access Journals (Sweden)

    K. G. Hernández-Flores

    2015-01-01

    Full Text Available Listeriolysin O (LLO is a thiol-activated cholesterol-dependent pore-forming toxin and the major virulence factor of Listeria monocytogenes (LM. Extensive research in recent years has revealed that LLO exerts a wide array of biological activities, during the infection by LM or by itself as recombinant antigen. The spectrum of biological activities induced by LLO includes cytotoxicity, apoptosis induction, endoplasmic reticulum stress response, modulation of gene expression, intracellular calcium oscillations, and proinflammatory activity. In addition, LLO is a highly immunogenic toxin and the major target for innate and adaptive immune responses in different animal models and humans. Recently, the crystal structure of LLO has been published in detail. Here, we review the structure-function relationship for this fascinating microbial molecule, highlighting the potential uses of LLO in the fields of biomedicine and biotechnology, particularly in vaccination.

  12. Neutron exposures in human cells: bystander effect and relative biological effectiveness.

    Directory of Open Access Journals (Sweden)

    Isheeta Seth

    Full Text Available Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy, and irradiated-cell conditioned media (ICCM was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control, 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (p<0.0001. These data indicate that neutrons do not induce a bystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0 ± 0.13 for micronuclei and 5.8 ± 2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety.

  13. Challenges in Analyzing the Biological Effects of Resveratrol

    DEFF Research Database (Denmark)

    Erdogan, Cihan Süleyman; Vang, Ole

    2016-01-01

    The suggested health effects (e.g., disease prevention) of dietary bioactive compounds such as resveratrol are challenging to prove in comparison to man-made drugs developed for therapeutic purposes. Dietary bioactive compounds have multiple cellular targets and therefore have a variety of biolog...

  14. Adaptation hypothesis of biological effectiveness of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kudritsky, Yu.K.; Georgievsky, A.B.; Karpov, V.I.

    1993-12-31

    The adoptation hypothesis of biological effectiveness of ionizing radiations is based on the recognition of the invariability of general biological laws for radiobiology and on the comprehension of life evolution regularities and axiomatic principles of environment and biota unity. The ionizing radiation factor is essential for life which could not exist beyond the radiation field. The possibility of future development of the adaptation hypothesis serves as a basis for it`s transformation into the theoretical foundation of radiobiology. This report discusses the aspects of the adaptation theory.

  15. Histopathological And Biological Studies On The Role Of Soybean And Broad Bean AgainstRadiation Induce Damage In Rat Kidney

    Directory of Open Access Journals (Sweden)

    Hanaa Fathy Waer, **Abdel El ­ Rahman Mohamed Attia

    2002-09-01

    Full Text Available Most of the physiological and histological activities in the animal body are disturbed after exposure to ionizing radiation. These disturbances are either due to direct harmful effect of radiation on the biological systems or to the indirect effect of free radicals formed in the body after irradiation. There is growing evidence that the type of food plays an important role in the prevention of chronic diseases. The biological disturbance due to ionizing radiation makes search for ways of protecting living organisms essential for controlling the radiation hazards. Much of the world population relies on legumes, as a stable food. Legumes can affectively protect cells and tissues against damage. Our present study was conducted to investigate the hazardous effects of single dose !"#$%#&f the possible protective effect of feeding beans (broad beans and soybeans against radiation exposure. Histopathological, and biological changes of kidney function in irradiated, and bean fed animals were carried out. Animals were weighted and daily food intake was determined. The result obtained revealed that soybean is an extremely rich source of protein and fat as compared to faba bean. Radiations cause a reduction in food intake and weight gain. It causes great changes in the kidney glomeruli and collecting tubules. The recovery of the cells depend on the type of feeding so, feeding soybean gives a significant radiation protection and decreases the extent of changes induced by radiation

  16. The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump

    Directory of Open Access Journals (Sweden)

    J. C. McWilliams

    2007-10-01

    Full Text Available Using numerical simulations, we quantify the impact of changes in the ocean's biological pump on the air-sea balance of CO2 by fertilizing a small surface patch in the high-nutrient, low-chlorophyll region of the eastern tropical Pacific with iron. Decade-long fertilization experiments are conducted in a basin-scale, eddy-permitting coupled physical biogeochemical ecological model. In contrast to previous studies, we find that most of the dissolved inorganic carbon (DIC removed from the euphotic zone by the enhanced biological export is replaced by uptake of CO2 from the atmosphere. Atmospheric uptake efficiencies, the ratio of the perturbation in air-sea CO2 flux to the perturbation in export flux across 100 m, are 0.75 to 0.93 in our patch size-scale experiments. The atmospheric uptake efficiency is insensitive to the duration of the experiment. The primary factor controlling the atmospheric uptake efficiency is the vertical distribution of the enhanced biological production. Iron fertilization at the surface tends to induce production anomalies primarily near the surface, leading to high efficiencies. In contrast, mechanisms that induce deep production anomalies (e.g. altered light availability tend to have a low uptake efficiency, since most of the removed DIC is replaced by lateral and vertical transport and mixing. Despite high atmospheric uptake efficiencies, patch-scale iron fertilization of the ocean's biological pump tends to remove little CO2 from the atmosphere over the decadal timescale considered here.

  17. BIOLOGICAL EFFECTS OF TNF-BINDING VARIOLAVIRUS RECOMBINANT PROTEIN

    Directory of Open Access Journals (Sweden)

    I. A. Orlovskaya

    2012-01-01

    Full Text Available Abstract. This review presents a summary of our data concerning in vivo and in vitro effects of recombinant TNF-binding protein from variola virus (VARVCrmB upon TNF-induced functional changes of human and murine cells. VARV-CrmB protein blocks TNF-induced production of IL-1β and IL-6 by human mononuclear cells, and their in vitro oxidation-related metabolic (OM activity. VARV-CrmB protein restores TNF-induced reduction of BFU-E+CFU-E colony-forming activity and normalizes TNF-induced effects upon CFU-GM formation in a colony-forming model of human and murine bone morrow cells (BMC. VARV-CrmB protein displays a pronounced in vivo alleviation of LPS-induced endotoxic shock symptoms in SPF BALB/C mice thus significantly increasing survival of experimental animals. Moreover, VARV-CrmBprotein decreases intensity of collagen-induced arthritis at early terms. Application of VARV-CrmB protein results in normalization of TNF-induced increase of migratory and OM activity of murine leukocytes, and exerts corrective effects upon colony-forming ability of murine hematopoietic precursors. Skin application of VARV-CrmB protein decreases leukocyte migration from a skin scrap in afferent phase of DNCB-induced contact reaction, as well as “ear oedema” index. Our results demonstrate TNF-blocking properties of VARVCrmB protein. In summary, our data allow to consider a recombinant variola virus VARV-CrmB as a new potential TNF-antagonist. Its effects can be explained by its ability of neutralizing TNF-induced activation of oxidation-related metabolic, cytokine-producing and migratory functions of effector cells in therapy of pathological inflammatory processes.

  18. Effect of biologic agents on radiographic progression of rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Gabriel J Tobón

    2010-08-01

    Full Text Available Gabriel J Tobón1, Alain Saraux1,2, Valérie Devauchelle-Pensec1,21Immunology Laboratory, Morvan Hospital, Université de Bretagne Occidentale, Brest, France; 2Rheumatology Unit, Hôpital de la Cavale Blanche, CHU Brest, FranceAbstract: The treatment of rheumatoid arthritis (RA has benefited over the last few years from the introduction of biologic agents whose development was based on new insights into the immunological factors involved in the pathogenesis of RA and the development of joint damage. These biological agents have been proven effective in RA patients with inadequate responses to synthetic disease-modifying antirheumatic drugs (DMARDs. Preventing joint damage is now the primary goal of RA treatment, and guidelines exist for the follow-up of joint abnormalities. Most biologic agents produced high clinical and radiological response rates in patients with established or recent-onset RA. Thus, for the first time, obtaining a remission is a reasonable treatment goal in RA patients. Factors that are crucial to joint damage control are: early initiation of DMARDs, use of intensive treatments including biological agents, and close monitoring of clinical disease activity and radiographic progression. However, some patients remain unresponsive to all available treatments and continue to experience joint damage progression. A major objective now is to identify patients at high risk for severe joint damage, in order to tailor the treatment regimen to their specific needs.Keywords: rheumatoid arthritis, radiographic progression, biologics

  19. Predictive modeling of nanomaterial exposure effects in biological systems

    Directory of Open Access Journals (Sweden)

    Liu X

    2013-09-01

    Full Text Available Xiong Liu,1 Kaizhi Tang,1 Stacey Harper,2 Bryan Harper,2 Jeffery A Steevens,3 Roger Xu1 1Intelligent Automation, Inc., Rockville, MD, USA; 2Department of Environmental and Molecular Toxicology, School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA; 3ERDC Environmental Laboratory, Vicksburg, MS, USA Background: Predictive modeling of the biological effects of nanomaterials is critical for industry and policymakers to assess the potential hazards resulting from the application of engineered nanomaterials. Methods: We generated an experimental dataset on the toxic effects experienced by embryonic zebrafish due to exposure to nanomaterials. Several nanomaterials were studied, such as metal nanoparticles, dendrimer, metal oxide, and polymeric materials. The embryonic zebrafish metric (EZ Metric was used as a screening-level measurement representative of adverse effects. Using the dataset, we developed a data mining approach to model the toxic endpoints and the overall biological impact of nanomaterials. Data mining techniques, such as numerical prediction, can assist analysts in developing risk assessment models for nanomaterials. Results: We found several important attributes that contribute to the 24 hours post-fertilization (hpf mortality, such as dosage concentration, shell composition, and surface charge. These findings concur with previous studies on nanomaterial toxicity using embryonic zebrafish. We conducted case studies on modeling the overall effect/impact of nanomaterials and the specific toxic endpoints such as mortality, delayed development, and morphological malformations. The results show that we can achieve high prediction accuracy for certain biological effects, such as 24 hpf mortality, 120 hpf mortality, and 120 hpf heart malformation. The results also show that the weighting scheme for individual biological effects has a significant influence on modeling the overall impact of

  20. Effect of some botanical materials on certain biological aspects of the house fly, Musca domestica L

    Directory of Open Access Journals (Sweden)

    Nabawy A. I. Elkattan, Khalafalla S. Ahmed, Saadya M. Elbermawy and Rabab

    2011-04-01

    Full Text Available The effects of Lantana camara (leaves, Pelargonium zonale (leaves, Cupressus macrocarpa (leaves, Cyperus rotundus (whole plant and Acacia nilotica (seeds powders on some biological aspects of house fly, M. domestica L. were tested. The effects of three lethal concentrations LC25, LC50 and LC75 on the larval duration, pupation percent, pupal weight, pupal duration, adult emergence percent, sex ratio, adult longevity, and fecundity were determined. The induced malformed larvae, pupae and adults were recorded and photographed. The powders of the five plants were found to have promising effects in controlling this insect.

  1. Study on the Biological Effect of Bougainvillea Induced by Co60-γ Ray%Co60-γ射线诱变宝巾(Bougainvillea)的生物学效应研究

    Institute of Scientific and Technical Information of China (English)

    陈庭; 范雅文; 刘伟

    2012-01-01

    研究宝巾品种辐射处理后VM1代的生物学效应,为宝巾的辐射育种提供理论依据.以宝巾(B.Glabra)和毛宝巾(B.Spectabilis)为材料,通过不同剂量水平的Co60-γ射线处理,研究辐射剂量与其存活率、变异率的相关性,观察记录不同剂量下诱变株的生长表现,总结主要的变异性状类型.结果表明:在一定剂量Co60-γ射线范围内,辐射剂量和宝巾品种存活率呈负相关,和变异率呈正相关;毛宝巾的剂量敏感区域在50~150 Gy,而宝巾的剂量敏感区域可能在150~200 Gy,毛宝巾的辐射敏感性要高于宝巾;建立了毛宝巾剂量与存活率的线性回归方程:y=-0.409 8x+85.176,R2 =0.989 8,并由此计算毛宝巾的半致死剂量(LD50)为86 Gy;VM1代出现的各类叶变异性状主要为叶卷曲、叶残缺、叶皱缩、黄化叶等.%This paper studied the biological effect in VM1 generation of Bougainvillea varieties treated by Co60-γ ray and provided the theoretical reference for Bougainvillea irradiation breeding. The correlations of the dose and survival was studied,as well as variation rates by different dosage levels of Co60-γ ray with B. glabra and B. spectabilis. The growth performance for the variants was observed and recorded,and then the variation character types were generalized. The results showed that there is a negative correlation between dose and survival, but a positive between dose and variation rates. The radio sensitivity for B. spectabilis is superior to B. glabra. The regression equations were built with dose and survival for B. spectabilis: y= -0. 409 8x + 85. 176,R2=0. 989 8,calculating the half a lethal dose:86 Gy. In VM1 the leaf variations mainly were characterized by curly leaf,leaf deformity and leaf shrinkage,yellowing leaf,etc.

  2. Track Structure and the Biological Effectiveness of Accelerated Particles for the Induction of Chromosome Damage

    Science.gov (United States)

    George, K.; Hada, M.; Chappell, L.; Cucinotta, F. A.

    2011-01-01

    Track structure models predict that at a fixed value of LET, particles with lower charge number, Z will have a higher biological effectiveness compared to particles with a higher Z. In this report we investigated how track structure effects induction of chromosomal aberration in human cells. Human lymphocytes were irradiated in vitro with various energies of accelerated iron, silicon, neon, or titanium ions and chromosome damage was assessed in using three color FISH chromosome painting in chemically induced PCC samples collected a first cell division post irradiation. The LET values for these ions ranged from 30 to195 keV/micron. Of the particles studied, Neon ions have the highest biological effectiveness for induction of total chromosome damage, which is consistent with track structure model predictions. For complex-type exchanges 64 MeV/ u Neon and 450 MeV/u Iron were equally effective and induced the most complex damage. In addition we present data on chromosomes exchanges induced by six different energies of protons (5 MeV/u to 2.5 GeV/u). The linear dose response term was similar for all energies of protons suggesting that the effect of the higher LET at low proton energies is balanced by the production of nuclear secondaries from the high energy protons.

  3. Establishment of a semi-biological phantom model for the study of the effect of dose reducing measures on radiation-induced DNA double strand breaks in CT using the example of risk organ based tube current modulation; Etablierung eines semibiologischen Phantommodells zur Untersuchung des Effekts dosisreduzierender Massnahmen auf strahleninduzierte DNA-Doppelstrangbrueche in der CT am Beispiel der risikoorganbasierten Roehrenstrommodulation

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Matthias

    2013-12-12

    The number of computed tomography (CT) examinations has been rising during the last decades. Therefore techniques for dose reduction receive increasing attention. Risk organ-based tube current modulation (RCM) in CT is a new approach and works by lowering the tube current, while the tube is in front of the patient's body. Therefore it should lead to a dose reduction for radiosensitive organs like the female breast, the eye lenses and the thyroid gland. Biological radiation effects cannot be estimated by physical-based dose measurements. γ-H2AX is a sensitive marker for the determination of x-ray induced DNA double-strand breaks (DSB). Hence the aim of this study was to establish a biological phantom model based on the γ-H2AX immunofluorescence microscopy method and to investigate the effect of RCM on radiation induced DNA damages. The γ-H2AX method is based on the phosphorylation of the histone variant H2AX. The phosphorylated histone γ-H2AX can be visualised using antibodies and is specific for radiation induced DSB. Blood lymphocytes from healthy volunteers, skin fibroblasts (LN) and mammary epithelial cells (HMEpC-p) were placed in different positions of an Alderson-phantom and exposed to x-rays using a 128-slice dual-source CT scanner. Standard head, neck and chest-CT scan protocols either with or without risk-organ based tube current modulation were used. RCM reduces the tube current to 20 percent at an angle of 130 degree anterior to the body, whereas tube current is increased at an angle of 230 degree posterior to the body. Afterwards cells were isolated, fixed on slides und stained with specific primary γ-H2AX antibodies and fluorescent secondary antibodies. Tiny green dots (named foci) can be detected and quantified with a fluorescence microscope and represent distinct DSB. Non-irradiated samples served as controls and CT-induced DSB were calculated by subtraction of pre- from post-exposure values. In this study a semibiological phantom model

  4. A systems biology strategy reveals biological pathways and plasma biomarker candidates for potentially toxic statin-induced changes in muscle.

    Directory of Open Access Journals (Sweden)

    Reijo Laaksonen

    Full Text Available BACKGROUND: Aggressive lipid lowering with high doses of statins increases the risk of statin-induced myopathy. However, the cellular mechanisms leading to muscle damage are not known and sensitive biomarkers are needed to identify patients at risk of developing statin-induced serious side effects. METHODOLOGY: We performed bioinformatics analysis of whole genome expression profiling of muscle specimens and UPLC/MS based lipidomics analyses of plasma samples obtained in an earlier randomized trial from patients either on high dose simvastatin (80 mg, atorvastatin (40 mg, or placebo. PRINCIPAL FINDINGS: High dose simvastatin treatment resulted in 111 differentially expressed genes (1.5-fold change and p-value<0.05, while expression of only one and five genes was altered in the placebo and atorvastatin groups, respectively. The Gene Set Enrichment Analysis identified several affected pathways (23 gene lists with False Discovery Rate q-value<0.1 in muscle following high dose simvastatin, including eicosanoid synthesis and Phospholipase C pathways. Using lipidomic analysis we identified previously uncharacterized drug-specific changes in the plasma lipid profile despite similar statin-induced changes in plasma LDL-cholesterol. We also found that the plasma lipidomic changes following simvastatin treatment correlate with the muscle expression of the arachidonate 5-lipoxygenase-activating protein. CONCLUSIONS: High dose simvastatin affects multiple metabolic and signaling pathways in skeletal muscle, including the pro-inflammatory pathways. Thus, our results demonstrate that clinically used high statin dosages may lead to unexpected metabolic effects in non-hepatic tissues. The lipidomic profiles may serve as highly sensitive biomarkers of statin-induced metabolic alterations in muscle and may thus allow us to identify patients who should be treated with a lower dose to prevent a possible toxicity.

  5. Biological effects of exposure to magnetic resonance imaging: an overview

    Directory of Open Access Journals (Sweden)

    Formica Domenico

    2004-04-01

    Full Text Available Abstract The literature on biological effects of magnetic and electromagnetic fields commonly utilized in magnetic resonance imaging systems is surveyed here. After an introduction on the basic principles of magnetic resonance imaging and the electric and magnetic properties of biological tissues, the basic phenomena to understand the bio-effects are described in classical terms. Values of field strengths and frequencies commonly utilized in these diagnostic systems are reported in order to allow the integration of the specific literature on the bio-effects produced by magnetic resonance systems with the vast literature concerning the bio-effects produced by electromagnetic fields. This work gives an overview of the findings about the safety concerns of exposure to static magnetic fields, radio-frequency fields, and time varying magnetic field gradients, focusing primarily on the physics of the interactions between these electromagnetic fields and biological matter. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts, international safety guidelines are also cited.

  6. Current-Induced Effects in Nanoscale Conductors

    OpenAIRE

    2005-01-01

    We present an overview of current-induced effects in nanoscale conductors with emphasis on their description at the atomic level. In particular, we discuss steady-state current fluctuations, current-induced forces, inelastic scattering and local heating. All of these properties are calculated in terms of single-particle wavefunctions computed using a scattering approach within the static density-functional theory of many-electron systems. Examples of current-induced effects in atomic and mole...

  7. On the effect of prestrain and residual stress in thin biological membranes.

    Science.gov (United States)

    Rausch, Manuel K; Kuhl, Ellen

    2013-09-01

    Understanding the difference between ex vivo and in vivo measurements is critical to interpret the load carrying mechanisms of living biological systems. For the past four decades, the ex vivo stiffness of thin biological membranes has been characterized using uniaxial and biaxial tests with remarkably consistent stiffness parameters, even across different species. Recently, the in vivo stiffness was characterized using combined imaging techniques and inverse finite element analyses. Surprisingly, ex vivo and in vivo stiffness values differed by up to three orders of magnitude. Here, for the first time, we explain this tremendous discrepancy using the concept of prestrain. We illustrate the mathematical modeling of prestrain in nonlinear continuum mechanics through the multiplicative decomposition of the total elastic deformation into prestrain-induced and load-induced parts. Using in vivo measured membrane kinematics and associated pressure recordings, we perform an inverse finite element analysis for different prestrain levels and show that the resulting membrane stiffness may indeed differ by four orders of magnitude depending on the prestrain level. Our study motivates the hypothesis that prestrain is important to position thin biological membranes in vivo into their optimal operating range, right at the transition point of the stiffening regime. Understanding the effect of prestrain has direct clinical implications in regenerative medicine, medical device design, and and tissue engineering of replacement constructs for thin biological membranes.

  8. Advances in the biological effects of terahertz wave radiation.

    Science.gov (United States)

    Zhao, Li; Hao, Yan-Hui; Peng, Rui-Yun

    2014-01-01

    The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed.

  9. Advances in the biological effects of terahertz wave radiation

    Institute of Scientific and Technical Information of China (English)

    Li Zhao; Yan-Hui Hao; Rui-Yun Peng

    2014-01-01

    The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed.

  10. Effect of pH on biological phosphorus uptake.

    Science.gov (United States)

    Serralta, J; Ferrer, J; Borrás, L; Seco, A

    2006-12-05

    An anaerobic aerobic laboratory scale sequencing batch reactor (SBR) was operated to study the effect of pH on enhanced biological phosphorus removal. Seven steady states were achieved under different operating conditions. In all of them, a slight variation in the pH value was observed during anaerobic phase. However, pH rose significantly during aerobic phase. The increase observed was due to phosphorus uptake and carbon dioxide stripping. When pH was higher than 8.2-8.25 the phosphorus uptake rate clearly decreased. The capability of Activated Sludge Model No. 2d (ASM2d) and Biological Nutrient Removal Model No. 1 (BNRM1) to simulate experimental results was evaluated. Both models successfully characterized the enhanced biological phosphorus removal performance of the SBR. Furthermore, BNRM1 also reproduced the pH variations observed and the decrease in the phosphorus uptake rate. This model includes a switch function in the kinetic expressions to represent the pH inhibition in biological processes. The pH inhibition constants related to polyphosphate storage process were obtained by adjusting model predictions to measured phosphorus concentrations. On the other hand, pH inhibition should be included in ASM2d to accurately simulate experimental phosphorus evolution observed in an A/O SBR.

  11. Effect of Ceramic Scaffold Architectural Parameters on Biological Response

    Directory of Open Access Journals (Sweden)

    Maria Isabella eGariboldi

    2015-10-01

    Full Text Available Numerous studies have focused on the optimization of ceramic architectures to fulfill a variety of scaffold functional requirements and improve biological response. Conventional fabrication techniques, however, do not allow for the production of geometrically controlled, reproducible structures and often fail to allow the independent variation of individual geometric parameters. Current developments in additive manufacturing technologies suggest that 3D printing will allow a more controlled and systematic exploration of scaffold architectures. This more direct translation of design into structure requires a pipeline for design-driven optimization. A theoretical framework for systematic design and evaluation of architectural parameters on biological response is presented. Four levels of architecture are considered, namely (1 surface topography, (2 pore size and geometry, (3 porous networks and (4 macroscopic pore arrangement, including the potential for spatially varied architectures. Studies exploring the effect of various parameters within these levels are reviewed. This framework will hopefully allow uncovering of new relationships between architecture and biological response in a more systematic way, as well as inform future refinement of fabrication techniques to fulfill architectural necessities with a consideration of biological implications.

  12. Effect of Ceramic Scaffold Architectural Parameters on Biological Response.

    Science.gov (United States)

    Gariboldi, Maria Isabella; Best, Serena M

    2015-01-01

    Numerous studies have focused on the optimization of ceramic architectures to fulfill a variety of scaffold functional requirements and improve biological response. Conventional fabrication techniques, however, do not allow for the production of geometrically controlled, reproducible structures and often fail to allow the independent variation of individual geometric parameters. Current developments in additive manufacturing technologies suggest that 3D printing will allow a more controlled and systematic exploration of scaffold architectures. This more direct translation of design into structure requires a pipeline for design-driven optimization. A theoretical framework for systematic design and evaluation of architectural parameters on biological response is presented. Four levels of architecture are considered, namely (1) surface topography, (2) pore size and geometry, (3) porous networks, and (4) macroscopic pore arrangement, including the potential for spatially varied architectures. Studies exploring the effect of various parameters within these levels are reviewed. This framework will hopefully allow uncovering of new relationships between architecture and biological response in a more systematic way as well as inform future refinement of fabrication techniques to fulfill architectural necessities with a consideration of biological implications.

  13. Effect of radiation and fungal treatment on ligno celluloses and their biological activity

    Energy Technology Data Exchange (ETDEWEB)

    Lam, N.D.; Nagasawa, Naotsugu; Kume, Tamikazu E-mail: kume@taka.jaeri.go.jp

    2000-10-01

    Effects of high-dose irradiation and fungal treatment on some kinds of lignocellulose material were investigated in order to assess the potential effects of bioactive substances on plants. Each treatment and combination of treatments significantly altered the components of lignocellulose materials. Irradiation strongly affected all plant materials, causing a series of changes in physico-chemical parameters such as solubilization during solvent extraction and losses of fibre components. By these degradations, certain biologically active substances formed and acted as antagonists of auxin-induced growth.

  14. Intuitive biological thought: Developmental changes and effects of biology education in late adolescence.

    Science.gov (United States)

    Coley, John D; Arenson, Melanie; Xu, Yian; Tanner, Kimberly D

    2017-02-01

    A large body of cognitive research has shown that people intuitively and effortlessly reason about the biological world in complex and systematic ways. We addressed two questions about the nature of intuitive biological reasoning: How does intuitive biological thinking change during adolescence and early adulthood? How does increasing biology education influence intuitive biological thinking? To do so, we developed a battery of measures to systematically test three components of intuitive biological thought: anthropocentric thinking, teleological thinking and essentialist thinking, and tested 8th graders and university students (both biology majors, and non-biology majors). Results reveal clear evidence of persistent intuitive reasoning among all populations studied, consistent but surprisingly small differences between 8th graders and college students on measures of intuitive biological thought, and consistent but again surprisingly small influence of increasing biology education on intuitive biological reasoning. Results speak to the persistence of intuitive reasoning, the importance of taking intuitive knowledge into account in science classrooms, and the necessity of interdisciplinary research to advance biology education. Further studies are necessary to investigate how cultural context and continued acquisition of expertise impact intuitive biology thinking.

  15. Advances in dosimetry and biological predictors of radiation-induced esophagitis

    Science.gov (United States)

    Yu, Yang; Guan, Hui; Dong, Yuanli; Xing, Ligang; Li, Xiaolin

    2016-01-01

    Objective To summarize the research progress about the dosimetry and biological predictors of radiation-induced esophagitis. Methods We performed a systematic literature review addressing radiation esophagitis in the treatment of lung cancer published between January 2009 and May 2015 in the PubMed full-text database index systems. Results Twenty-eight eligible documents were included in the final analysis. Many clinical factors were related to the risk of radiation esophagitis, such as elder patients, concurrent chemoradiotherapy, and the intense radiotherapy regimen (hyperfractionated radiotherapy or stereotactic body radiotherapy). The parameters including Dmax, Dmean, V20, V30, V50, and V55 may be valuable in predicting the occurrence of radiation esophagitis in patients receiving concurrent chemoradiotherapy. Genetic variants in inflammation-related genes are also associated with radiation-induced toxicity. Conclusion Dosimetry and biological factors of radiation-induced esophagitis provide clinical information to decrease its occurrence and grade during radiotherapy. More prospective studies are warranted to confirm their prediction efficacy. PMID:26869804

  16. Biological dosimetry: the potential use of radiation-induced apoptosis in human T-lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Menz, R.; Andres, R.; Larsson, B.; Ozsahin, M.; Crompton, N.E.A. [Department of Life Sciences, Paul Scherrer Institute, CH-5232 Villigen-PSI (Switzerland); Trott, K. [St. Bartholemew`s and the Royal London School of Medicine and Dentistry, University of London (United Kingdom)

    1997-09-01

    An assay for biological dosimetry based on the induction of apoptosis in human T-lymphocytes is described. Radiation-induced apoptosis was assessed by flow cytometric identification of cells displaying apoptosis-associated DNA condensation. CD4 and CD8 T-lymphocytes were analysed. They were recognized on the basis of their cell-surface antigens. Four parameters were measured for both cell types: cell size, granularity, antigen immunofluorescence and DNA content. Apoptosis was quantified as the fraction of CD4-, or CD8-positive cells with a characteristic reduction of cell size and DNA content. At doses below 1 Gy, levels of radiation-induced apoptosis increased for up to 5 days after irradiation. Optimal dose discrimination was observed 4 days after irradiation, at which time the dose-response curves were linear, with a slope of 8% {+-} 0.5% per 0.1 Gy. In controlled, dose-response experiments the lowest dose level at which the radiation-induced apoptosis frequency was still significantly above control was 0.05 Gy. After 5 days post-irradiation incubation, intra- and interdonor variations were measured and found to be similar; thus, apoptotic levels depend more on the dose than on the donor. The results demonstrate the potential of this assay as a biological dosimeter. (orig.) With 5 figs., 2 tabs., 19 refs.

  17. Advances in dosimetry and biological predictors of radiation-induced esophagitis

    Directory of Open Access Journals (Sweden)

    Yu Y

    2016-01-01

    Full Text Available Yang Yu,1 Hui Guan,1 Yuanli Dong,1 Ligang Xing,2 Xiaolin Li2 1School of Medicine and Life Sciences, Shandong Academy of Medical Sciences, University of Jinan, Jinan, 2Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong Province, People’s Republic of China Objective: To summarize the research progress about the dosimetry and biological predictors of radiation-induced esophagitis.Methods: We performed a systematic literature review addressing radiation esophagitis in the treatment of lung cancer published between January 2009 and May 2015 in the PubMed full-text database index systems.Results: Twenty-eight eligible documents were included in the final analysis. Many clinical factors were related to the risk of radiation esophagitis, such as elder patients, concurrent chemoradiotherapy, and the intense radiotherapy regimen (hyperfractionated radiotherapy or stereotactic body radiotherapy. The parameters including Dmax, Dmean, V20, V30, V50, and V55 may be valuable in predicting the occurrence of radiation esophagitis in patients receiving concurrent chemoradiotherapy. Genetic variants in inflammation-related genes are also associated with radiation-induced toxicity.Conclusion: Dosimetry and biological factors of radiation-induced esophagitis provide clinical information to decrease its occurrence and grade during radiotherapy. More prospective studies are warranted to confirm their prediction efficacy. Keywords: lung cancer, esophagitis, radiation injuries, predictors

  18. Biological effects from electromagnetic field exposure and public exposure standards.

    Science.gov (United States)

    Hardell, Lennart; Sage, Cindy

    2008-02-01

    During recent years there has been increasing public concern on potential health risks from power-frequency fields (extremely low frequency electromagnetic fields; ELF) and from radiofrequency/microwave radiation emissions (RF) from wireless communications. Non-thermal (low-intensity) biological effects have not been considered for regulation of microwave exposure, although numerous scientific reports indicate such effects. The BioInitiative Report is based on an international research and public policy initiative to give an overview of what is known of biological effects that occur at low-intensity electromagnetic fields (EMFs) exposure. Health endpoints reported to be associated with ELF and/or RF include childhood leukaemia, brain tumours, genotoxic effects, neurological effects and neurodegenerative diseases, immune system deregulation, allergic and inflammatory responses, breast cancer, miscarriage and some cardiovascular effects. The BioInitiative Report concluded that a reasonable suspicion of risk exists based on clear evidence of bioeffects at environmentally relevant levels, which, with prolonged exposures may reasonably be presumed to result in health impacts. Regarding ELF a new lower public safety limit for habitable space adjacent to all new or upgraded power lines and for all other new constructions should be applied. A new lower limit should also be used for existing habitable space for children and/or women who are pregnant. A precautionary limit should be adopted for outdoor, cumulative RF exposure and for cumulative indoor RF fields with considerably lower limits than existing guidelines, see the BioInitiative Report. The current guidelines for the US and European microwave exposure from mobile phones, for the brain are 1.6 W/Kg and 2 W/Kg, respectively. Since use of mobile phones is associated with an increased risk for brain tumour after 10 years, a new biologically based guideline is warranted. Other health impacts associated with exposure to

  19. Biological effects of low level exposures to chemicals and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, E.J. (ed.)

    1992-01-01

    In May 1990 a group of scientists representing several federal agencies, the International Society of Regulatory Toxicology and Pharmacology, the private sector, and academia met to develop a strategy to encourage the study of the biological effects of low level exposures (BELLE) to chemical agents and radioactivity. A workshop was held in 1991 with seven invited speakers focusing on the toxicological implications of biological adaptations. The selection of topics and speakers was designed to consider critically the concept of hormesis, not only in a broad, conceptual manner, but also at the molecular and biochemical levels. These presentations offered a complementary perspective on the diverse range of molecular mechanisms that can become activated at low levels of toxicant exposure. In addition to chemical toxicology research, an overview of current research on Effects of low-dose radiation on the immune response' was presented as well as Cellular adaptation as an important response during chemical carcinogenesis'. The final presentation was devoted to biostatistical considerations when designing studies that address issues associated with the biological responses to low doses of chemicals and radiation, as well as issues in interpretation of the findings from such studies.

  20. Reduction theories elucidate the origins of complex biological rhythms generated by interacting delay-induced oscillations.

    Directory of Open Access Journals (Sweden)

    Ikuhiro Yamaguchi

    Full Text Available Time delay is known to induce sustained oscillations in many biological systems such as electroencephalogram (EEG activities and gene regulations. Furthermore, interactions among delay-induced oscillations can generate complex collective rhythms, which play important functional roles. However, due to their intrinsic infinite dimensionality, theoretical analysis of interacting delay-induced oscillations has been limited. Here, we show that the two primary methods for finite-dimensional limit cycles, namely, the center manifold reduction in the vicinity of the Hopf bifurcation and the phase reduction for weak interactions, can successfully be applied to interacting infinite-dimensional delay-induced oscillations. We systematically derive the complex Ginzburg-Landau equation and the phase equation without delay for general interaction networks. Based on the reduced low-dimensional equations, we demonstrate that diffusive (linearly attractive coupling between a pair of delay-induced oscillations can exhibit nontrivial amplitude death and multimodal phase locking. Our analysis provides unique insights into experimentally observed EEG activities such as sudden transitions among different phase-locked states and occurrence of epileptic seizures.

  1. The biological effects of five feline IFN-alpha subtypes.

    Science.gov (United States)

    Baldwin, Susan L; Powell, Tim D; Sellins, Karen S; Radecki, Steven V; Cohen, J John; Milhausen, Michael J

    2004-06-01

    IFN-alpha has been shown to induce both antiviral and antiproliferative activities in animals. This report describes the biological activity of five recently identified feline IFN-alpha subtypes expressed in the Chinese hamster ovary (CHO) cell line (rfeIFN-alpha1[CHO], rfeIFN-alpha2[CHO], rfeIFN-alpha3[CHO], rfeIFN-alpha5[CHO] and rfeIFN-alpha6[CHO]) and the feIFN-alpha6 subtype expressed in and purified from Pichia pastoris (rfeIFN-alpha6[P. pastoris]). The rfeIFN-alpha[CHO] subtypes were tested for antiviral activity against either Vesicular stomatitis virus (VSV) or feline calicivirus (FCV) infected feline embryonic fibroblast cell line (AH927) or Crandell feline kidney cell line (CRFK). Antiviral activity was induced against both VSV and FCV infected AH927 cells and VSV infected CRFK cells by all five of the rfeIFN-alpha[CHO] subtypes and rfeIFN-alpha6[P. pastoris]. In addition, the IFN-alpha inducible Mx gene (associated with antiviral activity) was upregulated in vivo 24 h following treatment with rfeIFN-alpha6[P. pastoris], compared to baseline levels seen prior to treatment. All of the rfeIFN-alpha[CHO] subtypes and rfeIFN-alpha6[P. pastoris] exhibited antiproliferative activity in the FeT-J cell line (an IL-2 independent feline T-cell line). Both necrosis and apoptosis were observed in rfeIFN-alpha6[P. pastoris]-treated FeT-J cells. The rfeIFN-alpha3[CHO] subtype consistently exhibited lower antiviral and antiproliferative activity compared to that observed with the other four rfeIFN-alpha[CHO] subtypes. In summary, this paper demonstrates that five previously described feIFN-alpha subtypes induce both antiviral and antiproliferative activities in vitro and are capable of upregulating the feMx gene in vivo.

  2. The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump

    Directory of Open Access Journals (Sweden)

    J. C. McWilliams

    2008-03-01

    Full Text Available Using numerical simulations, we quantify the impact of changes in the ocean's biological pump on the air-sea balance of CO2 by fertilizing a small surface patch in the high-nutrient, low-chlorophyll region of the eastern tropical Pacific with iron. Decade-long fertilization experiments are conducted in a basin-scale, eddy-permitting coupled physical/biogeochemical/ecological model. In contrast to previous studies, we find that most of the dissolved inorganic carbon (DIC removed from the euphotic zone by the enhanced biological export is replaced by uptake of CO2 from the atmosphere. Atmospheric uptake efficiencies, the ratio of the perturbation in air-sea CO2 flux to the perturbation in export flux across 100 m, integrated over 10 years, are 0.75 to 0.93 in our patch size-scale experiments. The atmospheric uptake efficiency is insensitive to the duration of the experiment. The primary factor controlling the atmospheric uptake efficiency is the vertical distribution of the enhanced biological production and export. Iron fertilization at the surface tends to induce production anomalies primarily near the surface, leading to high efficiencies. In contrast, mechanisms that induce deep production anomalies (e.g. altered light availability tend to have a low uptake efficiency, since most of the removed DIC is replaced by lateral and vertical transport and mixing. Despite high atmospheric uptake efficiencies, patch-scale iron fertilization of the ocean's biological pump tends to remove little CO2 from the atmosphere over the decadal timescale considered here.

  3. EFFECTS OF POLLUTANTS ON BIOLOGICAL SYSTEMS. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1980-10-01

    Planning a rational energy future requires anticipating the environmental consequences of various technologies. This is difficult to do with precision as the effects of pollutants are often determined by interactions between and among complex physical (abiotic) and biological (biotic) systems. A given pollutant may affect human beings through direct exposure or indirectly through inducing changes to biological systems which humans need to utilize. The concentration of a toxin in the food chain or the destruction of organisms necessary for the maintenance of high quality water are examples of indirect effects. Pollutants can be transformed and/or degraded as they establish residence in various components of an ecosystem. Anticipation and amelioration of pollutant effects involves the integration of a vast range of data. This data includes: (1) physical and chemical characterization cf the pollutant as it enters the environment; (2) determining effects on the various components (biotic and abiotic) within the context of the functioning ecosystem of interest; (3) transformation in movements and/or degradation of the pollutant within that ecosystem and within specific organisms and physical components; and (4) determining a detailed biochemical and biological picture of the interactions of pollutants with particular organisms and/or their cellular components judged salient for various processes. The major programs described below are designed to answer parts of the above fundamental questions relevant to pollutants generated by energy related technologies. Their emphasis is on anticipating consequences to the biological components of various ecosystems. The work ranges from studies involving parts of a single cell (the membranes) to studies involving the whole ecosystem (in the pelagic zone of a lake). The programs take advantage of expertise and technical abilities present at LBL. Two small exploratory projects which were of brief duration and not related to

  4. 研究剪应力生物效应时难以回避压力的联合效应∗%The Unavoidable Combined Effect of Shear Stress and Normal Pressure in Investigation of Biological Effects induced by Shear Stress

    Institute of Scientific and Technical Information of China (English)

    郝杨阳; 曹军; 殷小杰; 贡磊磊; 原会俊; 王岚; 梁日欣; 廖福龙

    2016-01-01

    Objective:In biomechanopharmacological research,flow chamber or blood vessel segment are fre-quently applied to study the biological effects of shear stress (SS).Flowing was driven by pressure difference,so the normal pressure is possibly involved in inducing the biological effects.So in attempt to investigate whether pres-sure could affect the biological effects,the effects of different levels of shear stress and pressure on cyclooxygenase-1(COX-1)mRNA and tissue type plasminogen activator enzyme(t-PA)mRNA in rabbit artery vessels was ex vivo observed.Method:By employing ex vivo arterial perfusion system,the rabbit artery perfusion model was estab-lished under different flow conditions of SS (1.5-20dyn/cm2 )and mean normal pressure (< 50 000dyn/cm2 ). And the expression of COX-1 mRNA and t-PA mRNA was measured by real-time PCR method.Results:When con-sidering the effect of SS on COX-1 mRNA and t-PA mRNA expression separately,under flow oondition of SS(1 .5-20dyn/cm2 )the detection results of real-time PCR of COX-1 mRNA and t-PA mRNA expression (y)showed increased and a significant positive correlation with SS(x),respectively,the linear equation was described:y=0.0261x+0.0886 (P<0.01)and y=0.2033x+1.2082 (P<0.01)accordingly.And we also found that SS(x)and pressure(y)had a significant combined effect on expression of COX-1 mRNA and t-PA mRNA,the binary quadratic equations were established :COX-1 mRNA = 0.3619-0.0389x+8.8645×10-7 y+0.0015x2+1.515×10-6 xy-3. 1759×10-10y2(P<0.01);t-PA mRNA = 2.9572-0.047x-6.5219×10-5y+0.01x2+2.2973×10-6xy+6.9716 ×10-10 y2 (P<0.01).Conclusion:The combined effects of SS and normal pressure should be considered in biomech-anopharmacological research.Our result demonstrates that binary quadratic equation is an effective description quan-titatively.%目的:生物力药理学研究常用流动小室或血管段观察剪应力的生物学效应;法向压力可能参与其中。本文探讨不同剪应力和压力对家兔离体

  5. Biological effects of pulsating magnetic fields: role of solitons

    CERN Document Server

    Brizhik, Larissa

    2014-01-01

    In this paper, we analyze biological effects produced by magnetic fields in order to elucidate the physical mechanisms, which can produce them. We show that there is a chierarchy of such mechanisms and that the mutual interplay between them can result in the synergetic outcome. In particular, we analyze the biological effects of magnetic fields on soliton mediated charge transport in the redox processes in living organisms. Such solitons are described by nonlinear systems of equations and represent electrons that are self-trapped in alpha-helical polypeptides due to the moderately strong electron-lattice interaction. They represent a particular type of disssipativeless large polarons in low-dimensional systems. We show that the effective mass of solitons in the is different from the mass of free electrons, and that there is a resonant effect of the magnetic fields on the dynamics of solitons, and, hence, on charge transport that accompanies photosynthesis and respiration. These effects can result in non-therm...

  6. Electromagnetically induced classical and quantum Lau effect

    Science.gov (United States)

    Qiu, Tianhui; Yang, Guojian; Xiong, Jun; Xu, Deqin

    2016-07-01

    We present two schemes of Lau effect for an object, an electromagnetically induced grating generated based on the electromagnetically induced effect. The Lau interference pattern is detected either directly in the way of the traditional Lau effect measurement with a classical thermal light being the imaging light, or indirectly and nonlocally in the way of two-photon coincidence measurement with a pair of entangled photons being the imaging light.

  7. Azadirachtin interacts with the tumor necrosis factor (TNF) binding domain of its receptors and inhibits TNF-induced biological responses.

    Science.gov (United States)

    Thoh, Maikho; Kumar, Pankaj; Nagarajaram, Hampathalu A; Manna, Sunil K

    2010-02-19

    The role of azadirachtin, an active component of a medicinal plant Neem (Azadirachta indica), on TNF-induced cell signaling in human cell lines was investigated. Azadirachtin blocks TNF-induced activation of nuclear factor kappaB (NF-kappaB) and also expression of NF-kappaB-dependent genes such as adhesion molecules and cyclooxygenase 2. Azadirachtin inhibits the inhibitory subunit of NF-kappaB (IkappaB alpha) phosphorylation and thereby its degradation and RelA (p65) nuclear translocation. It blocks IkappaB alpha kinase (IKK) activity ex vivo, but not in vitro. Surprisingly, azadirachtin blocks NF-kappaB DNA binding activity in transfected cells with TNF receptor-associated factor (TRAF)2, TNF receptor-associated death domain (TRADD), IKK, or p65, but not with TNFR, suggesting its effect is at the TNFR level. Azadirachtin blocks binding of TNF, but not IL-1, IL-4, IL-8, or TNF-related apoptosis-inducing ligand (TRAIL) with its respective receptors. Anti-TNFR antibody or TNF protects azadirachtin-mediated down-regulation of TNFRs. Further, in silico data suggest that azadirachtin strongly binds in the TNF binding site of TNFR. Overall, our data suggest that azadirachtin modulates cell surface TNFRs thereby decreasing TNF-induced biological responses. Thus, azadirachtin exerts an anti-inflammatory response by a novel pathway, which may be beneficial for anti-inflammatory therapy.

  8. Relative biological effectiveness of the boron neutron-capture beam for the inactivation of biological macromolecules

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Masahiro (Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.)

    1993-12-01

    The r.b.e. values of the boron neutron-capture beam (BNCB) for inactivation of yeast alcohol dehydrogenase (YADH) and the coenzyme NADH were determined in aqueous and air-saturated state. The r.b.e. value for YADH was 0.24 at a protein concentration of 0.2 mg/ml and that for NADH at the same concentration was 0.4. These r.b.e. values are less than unity in contrast to the r.b.e. values of BNCB for cell killing and mutagenesis which usually exceed 2. The small r.b.e. values for biological macromolecules is mainly explained from a relatively low yield of the radical species OH and H produced by high LET radiations compared to low LET radiations. Dithiothreitol protected YADH efficiently against inactivation by BNCB. It was suggested that radical repair process is the major cause of the observed radioprotective effect. (author).

  9. Distinct biological effects of different nanoparticles commonly used in cosmetics and medicine coatings

    Directory of Open Access Journals (Sweden)

    Yu Julia X

    2011-05-01

    Full Text Available Abstract Background Metal oxides in nanoparticle form such as zinc oxide and titanium dioxide now appear on the ingredient lists of household products as common and diverse as cosmetics, sunscreens, toothpaste, and medicine. Previous studies of zinc oxide and titanium dioxide in non-nanoparticle format using animals have found few adverse effects. This has led the FDA to classify zinc oxide as GRAS (generally recognized as safe for use as a food additive. However, there is no regulation specific for the use of these chemicals in nanoparticle format. Recent studies, however, have begun to raise concerns over the pervasive use of these compounds in nanoparticle forms. Unfortunately, there is a lack of easily-adaptable screening methods that would allow for the detection of their biological effects. Results We adapted two image-based assays, a fluorescence resonance energy transfer-based caspase activation assay and a green fluorescent protein coupled-LC3 assay, to test for the biological effects of different nanoparticles in a high-throughput format. We show that zinc oxide nanoparticles are cytotoxic. We also show that titanium dioxide nanoparticles are highly effective in inducing autophagy, a cellular disposal mechanism that is often activated when the cell is under stress. Conclusion We suggest that these image-based assays provide a method of screening for the biological effects of similar compounds that is both efficient and sensitive as well as do not involve the use of animals.

  10. Influence of sterilization on the mineralization of titanium implants induced by incubation in various biological model fluids.

    Science.gov (United States)

    Serro, A P; Saramago, B

    2003-11-01

    The aim of this work was to investigate the effect of the sterilization processes on the mineralization of titanium implants induced by incubation in various biological model fluids. Titanium samples were submitted to the following sterilization processes used for implant materials: steam autoclaving, glow discharge Ar plasma treatment and gamma-irradiation. The modification of the treated surfaces was evaluated by contact angle determinations, X-ray photoelectron spectroscopy (XPS), laser profilometry and X-ray diffraction. The most significant modifications were detected on the wettability: while the samples treated with Ar plasma became highly hydrophilic (water contact angle approximately 0 degrees), gamma-irradiation and steam sterilization induced an increase in the hydrophobicity. After being sterilized, the samples were incubated for one week in three biological model fluids: Hanks' Balanced Salt Solution, Kokubo's simulated body fluid (SBF) and a fluid, designated by SBF0, with the same composition of SBF but without buffer TRIS. The level of mineralization of the incubated Ti samples, assessed by dynamic contact angle analysis, scanning electron microscopy, electron dispersive spectroscopy and XPS, indicated that the early stages of mineralization are essentially independent of the sterilization method. In contrast, the incubating fluid plays a determinant role, SBFO being the most efficient medium for biomineralization of titanium.

  11. Benthic biological effects of seasonal hypoxia in a eutrophic estuary predate rapid coastal development

    Science.gov (United States)

    Bishop, Melanie J.; Powers, Sean P.; Porter, Hugh J.; Peterson, Charles H.

    2006-11-01

    Nutrient and organic loading associated with escalating human activities increases biological oxygen demand from microbial decomposition. In the Neuse River estuary, North Carolina, recurrent nuisance algal blooms, bottom-water hypoxic events, and fish kills during summers of the 1990s suggest that uncapped nutrient loading may have increased the frequency, duration, and/or spatial scope of important biological effects of hypoxia during summer, when persistent water column stratification can occur and microbial metabolism is greatest. We test the hypothesis that the severity of benthic biological effects of hypoxia in this estuary has increased over a 30-year period of dramatic human population growth in eastern North Carolina by comparing survival over summer of the benthic bivalve Macoma spp. between historical (1968-1970) and recent (1997-1998) years. Macoma is a demonstrated indicator of oxygen availability, the benthic biomass dominant in the Neuse and other temperate estuaries and the major prey link to higher trophic levels. All three historical summers exhibited patterns of collapse in Macoma populations indistinguishable from the recent summer of severe hypoxia (1997) but distinct from the modest changes documented during the mildly hypoxic summer of 1998. The only Macoma to survive any severely hypoxic summer were those in shallows where oxygen could be renewed by surface mixing. Thus, the biological effects of hypoxia observed in the Neuse River estuary in the late 1990s appear no more severe than 30 years before. Historic rates of organic loading to the Neuse River estuary may have been sufficient to induce widespread and intense hypoxia beneath the surface mixed layer, implying that even if algal blooms are diminished through nutrient reductions, the severity of biological effects of bottom-water hypoxia may not change detectably.

  12. Effect of Tramadol on Rabbit Uterine Contractile Activity Induced in Late Pregnancy.

    Science.gov (United States)

    Yakovleva, A A; Nazarova, L A; Prokopenko, V M; Pavlova, N G

    2017-01-01

    Effect of Tramadol infusion (5 mg/ml) on oxytocin-induced uterine contractile activity was studied in chronic experiment on female rabbits with different degrees of biological readiness for parturition. In case of sufficient biological readiness for parturition, Tramadol did not change the number of uterine contractions, but increased the amplitude and duration of each contraction against the background of increased creatine phosphate consumption by the myometrium. At the same time, Tramadol infusion to females without biological readiness for partirition suppressed induced uterine contractile activity by reducing the amplitude of each uterine contraction.

  13. Hydrodynamic collective effects of active proteins in biological membranes

    CERN Document Server

    Koyano, Yuki; Mikhailov, Alexander S

    2016-01-01

    Lipid bilayers forming biological membranes are known to behave as viscous 2D fluids on submicrometer scales; usually they contain a large number of active protein inclusions. Recently, it has been shown [Proc. Nat. Acad. Sci. USA 112, E3639 (2015)] that such active proteins should in- duce non-thermal fluctuating lipid flows leading to diffusion enhancement and chemotaxis-like drift for passive inclusions in biomembranes. Here, a detailed analytical and numerical investigation of such effects is performed. The attention is focused on the situations when proteins are concentrated within lipid rafts. We demonstrate that passive particles tend to become attracted by active rafts and are accumulated inside them.

  14. Current research on biological effects of low-level exposures

    Energy Technology Data Exchange (ETDEWEB)

    Sagan, L.A.

    1994-12-31

    Rather substantial numbers of industrial chemicals, pharmaceuticals, and radiation display U-shaped or seemingly paradoxical dose-response relationships. A limited listing of studies providing examples of data fitting the U-shaped curve has been published. This array suggests that the U-shaped response is broadly generalizable and therefore potentially of considerable significance in the toxicological and public health domains. In fact, in 1992 and 1993, three conferences (Japan, United States, and China) were held exclusively on the topic of the biological effects of low doses of chemicals and radioactivity with articular emphasis on U-shaped curves. Substantial efforts have been made at understanding this observation.

  15. Herbivore-induced plant volatiles to enhance biological control in agriculture.

    Science.gov (United States)

    Peñaflor, M F G V; Bento, J M S

    2013-08-01

    Plants under herbivore attack synthetize defensive organic compounds that directly or indirectly affect herbivore performance and mediate other interactions with the community. The so-called herbivore-induced plant volatiles (HIPVs) consist of odors released by attacked plants that serve as important cues for parasitoids and predators to locate their host/prey. The understanding that has been gained on the ecological role and mechanisms of HIPV emission opens up paths for developing novel strategies integrated with biological control programs with the aim of enhancing the efficacy of natural enemies in suppressing pest populations in crops. Tactics using synthetic HIPVs or chemically/genetically manipulating plant defenses have been suggested in order to recruit natural enemies to plantations or help guiding them to their host more quickly, working as a "synergistic" agent of biological control. This review discusses strategies using HIPVs to enhance biological control that have been proposed in the literature and were categorized here as: (a) exogenous application of elicitors on plants, (b) use of plant varieties that emit attractive HIPVs to natural enemies, (c) release of synthetic HIPVs, and (d) genetic manipulation targeting genes that optimize HIPV emission. We discuss the feasibility, benefits, and downsides of each strategy by considering not only field studies but also comprehensive laboratory assays that present an applied approach for HIPVs or show the potential of employing them in the field.

  16. Biology and systematics of gall-inducing triozids (Hemiptera: Psylloidea) associated with Psidium spp. (Myrtaceae).

    Science.gov (United States)

    Carneiro, René G S; Burckhardt, Daniel; Isaias, Rosy M S

    2013-01-01

    Psidium myrtoides (Myrtaceae) shelters the gall inducer Nothotrioza myrtoidis gen. et sp. n. (Hemiptera: Psylloidea) which is described and illustrated here. Nothotrioza belongs to the family Triozidae and is probably most closely related to Neolithus, a monotypic Neotropical genus associated with Sapiun (Euphorbiaceae). Three species are recognized within Nothotrioza: the type species N. myrtoidis sp. n. associated with Psidium myrtoides, N. cattleiani sp. n. (misidentified by Butignol & Pedrosa-Macedo as Neotrioza tavaresi) with Psidium cattleianum, and N. tavaresi (Crawford) comb. n. (from Neotrioza) with an unidentified species of Malpighiaceae, respectively. A lectotype is designated here for Neotrioza tavaresi. Also, the diversity of insect galls associated with P. myrtoides and the biology of N. myrtoidis were examined. N. myrtoidis presents five instars and an annual life cycle synchronised with the phenology of P. myrtoides. Gall size was proportional to the insect developmental stages, and rates of parasitism and mortality were 15.7 % and 29.8 %, respectively. The red colour is an important macroscopic diagnostic feature of the gall that could be associated with parasite-free condition of the galling insect. The biological features presented by the system Psidium myrtoides--Nothotrioza myrtoidis are in accordance with other systems involving sucking galling insects, however, it is exceptional by its univoltine life cycle associated with a perennial plant in the Neotropics. The galls induced by the three known Nothotrioza spp. are morphologically similar, i.e. closed, globoid and unilocular, as well as the opening mechanism for releasing the adults.

  17. Cellular burdens and biological effects on tissue level caused by inhaled radon progenies

    CERN Document Server

    Madas, Balázs G; Farkas, Árpád; Szőke, István

    2014-01-01

    In the case of radon exposure, the spatial distribution of deposited radioactive particles is highly inhomogeneous in the central airways. The objective of this research is to investigate the consequences of this heterogeneity regarding cellular burdens in the bronchial epithelium and to study the possible biological effects on tissue level. Applying a computational fluid dynamics program, the deposition distribution of inhaled radon daughters has been determined in a bronchial airway model for 23 minutes of work in the New Mexico uranium mine corresponding to 0.0129 WLM exposure. A numerical epithelium model based on experimental data has been utilized in order to quantify cellular hits and doses. Finally, a carcinogenesis model considering cell death induced cell cycle shortening has been applied to assess the biological responses. Computations present, that cellular dose may reach 1.5 Gy, which is several orders of magnitude higher than tissue dose. The results are in agreement with the histological findin...

  18. Chemotherapy-induced enterocutaneous fistula after perineal hernia repair using a biological mesh: a case report

    Directory of Open Access Journals (Sweden)

    Eriksen MH

    2014-01-01

    Full Text Available MH Eriksen, O Bulut Department of Surgical Gastroenterology, Hvidovre University Hospital, University of Copenhagen, Copenhagen, Denmark Abstract: This is the first reported case of an enterocutaneous fistula as a late complication to reconstruction of the pelvic floor with a Permacol™ mesh after a perineal hernia. A 70-year-old man had a reconstruction of the pelvic floor with a biological mesh because of a perineal hernia after laparoscopic abdominoperineal resection. Nine months after the perineal hernia operation, the patient had multiple metastases in both lungs and liver. The patient underwent chemotherapy, including bevacizumab, irinotecan, calcium folinate, and fluorouracil. Six weeks into chemotherapy, the patient developed signs of sepsis and complained of pain from the right buttock. Ultrasound examination revealed an abscess, which was drained, guided by ultrasound. A computed tomography scan showed a subcutaneous abscess cavity located in the right buttock with communication to the small bowel. Operative findings confirmed a perineal fistula from the distal ileum to perineum. A resection of the small bowel with primary anastomosis was performed. The postoperative course was complicated by fluid and electrolyte disturbances, but the patient was stabilized and finally discharged to a hospice for terminal care after 28 days of hospital stay. It seems that hernia repairs with biological meshes have lower erosion and infection rates compared with synthetic meshes, and so far, evidence suggests that biological grafts are safe and effective in the treatment of pelvic floor reconstruction. There have been no reports of enteric fistulas after pelvic reconstruction with biological meshes. However, the development of intestinal fistulas after chemotherapy with bevacizumab has been described in the literature. Our case report supports this association between bevacizumab and fistula formation among rectal cancer patients, as symptoms of a

  19. RANTES/CCL5 mediated-biological effects depend on the syndecan-4/PKCα signaling pathway

    Directory of Open Access Journals (Sweden)

    Loïc Maillard

    2014-09-01

    Full Text Available The perpetuation of angiogenesis is involved in certain chronic inflammatory diseases. The accelerated neovascularisation may result from an inflammatory status with a response of both endothelial cells and monocytes to inflammatory mediators such as chemokines. We have previously described in vitro and in vivo the pro-angiogenic effects of the chemokine Regulated on Activation, Normal T Cell Expressed and Secreted (RANTES/CCL5. The effects of RANTES/CCL5 may be related to its binding to G protein-coupled receptors and to proteoglycans such as syndecan-1 and -4. The aim of this study was to evaluate the functionality of syndecan-4 as a co-receptor of RANTES/CCL5 by the use of mutated syndecan-4 constructs. Our data demonstrate that site-directed mutations in syndecan-4 modify RANTES/CCL5 biological activities in endothelial cells. The SDC4S179A mutant, associated with an induced protein kinase C (PKCα activation, leads to higher RANTES/CCL5 pro-angiogenic effects, whereas the SDC4L188QQ and the SDC4A198del mutants, leading to lower phosphatidylinositol 4,5-bisphosphate (PIP2 binding or to lower PDZ protein binding respectively, are associated with reduced RANTES/CCL5 cellular effects. Moreover, our data highlight that the intracellular domain of SDC-4 is involved in RANTES/CCL5-induced activation of the PKCα signaling pathway and biological effect. As RANTES/CCL5 is involved in various physiopathological processes, the development of a new therapeutic strategy may be reliant on the mechanism by which RANTES/CCL5 exerts its biological activities, for example by targeting the binding of the chemokine to its proteoglycan receptor.

  20. Biological activity of selected plants with adaptogenic effect

    Directory of Open Access Journals (Sweden)

    Eva Ivanišová

    2016-05-01

    Full Text Available The aim of this study was to determine biological activity of plants with adaptogenic effect: Panax ginseng Mayer., Withania somnifera L., Eleuterococcus senticosus Rupr. et Maxim., Astragallus membranaceus Fisch. and Codonopsis pilosulae Franch. The antioxidant activity was detected by DPPH and phosphomolybdenum method, total polyphenol content with Folin – Ciocalteu reagent, flavonoids content by aluminium chloride method. The detection of antimicrobial activity was carried out by disc diffusion method against three species of Gram-negative bacteria: Escherichia coli CCM 3988, Salmonella enterica subsp. enterica CCM 3807, Yersinia enterocolitica CCM 5671 and two Gram-positive bacteria: Bacillus thuringiensis CCM 19, Stapylococcus aureus subsp. aureus CCM 2461. Results showed that plants with adaptogenic effect are rich for biologically active substances. The highest antioxidant activity by DPPH method was determined in the sample of Eleuterococcus senticosus (3.15 mg TEAC – Trolox equivalent antioxidant capacity per g of sample and by phosphomolybdenum method in the sample of Codonopsis pilosulae (188.79 mg TEAC per g of sample. In the sample of Panax ginseng was measured the highest content of total polyphenols (8.10 mg GAE – galic acid equivalent per g of sample and flavonoids (3.41 μg QE – quercetin equivalent per g of sample. All samples also showed strong antimicrobial activity with the best results in Panax ginseng and Withania somnifera in particular for species Yersinia enterocolitica CCM 5671 and Salmonella enterica subsp. enterica CCM 3807. The analyzed species of plant with high value of biological activity can be used more in the future, not only in food, but also in cosmetics and pharmaceutical industries.

  1. Information on biological health effects of ionizing radiation and radionuclides: the rule of a web site

    Energy Technology Data Exchange (ETDEWEB)

    Comte, A.; Gaillard-Lecanu, E.; Flury-Herard, A. [CEA Fontenay aux Roses, 92 (France); Ourly, F. [CEA Saclay, 91 - Gif sur Yvette (France); Hemidy, P.; Lallemand, J. [Electricite de France (EDF), Service de Radioprotection, 75 - Paris (France)

    2006-07-01

    sections (all the sheets are linked using hyper links): A main text titled ionizing radiation and health including following headings: general points - definitions (ionizing radiations, radionuclides, dose, health, deterministic effects, stochastic effects, low-doses..., biological mechanisms, radioinduced damages, early and late response Sheets that give an overall picture of the following major points: cell and DNA (DNA, replication, apoptosis, early effects due to high-dose exposures, late stochastic effects (radio-induced cancers, hereditary effects, low-doses, radionuclides and health (radionuclides, biokinetic, distribution, radiation protection: doses and units (ICRP, dose limitations, dose coefficients. Different rubrics: radionuclides: specific radiation sheets, including those selected for the part one (data sheets) adapted to the readership targeted, interviews of researchers, downloading: sheets, graphs and tables, references, glossary: biological and physical basic terms. Giving a total of more than 50 sheets, reported data are regularly updated. Prospects The list is not exhaustive. According to the requirements of nuclear industries, radionuclides will be regularly added to the current list (nuclear waste), as well as specific sheets (Web file). Currently in French, the data sheets and the web site will be partly available in English some time in 2006. (authors)

  2. Arsenic in the aquatic environment - speciation and biological effects

    Energy Technology Data Exchange (ETDEWEB)

    Landner, L. [Swedish Environmental Research Group (MFG)

    1998-03-01

    The present report is a contribution to EC Commission`s undertaking to review existing EC provisions on the substances for which Sweden has been granted transitional provisions. The provisions imply that Sweden may maintain more stringent regulations on four substances until the end of 1998. The present report deals with speciation and biological effects of arsenic in three types of aquatic environments - marine water, estuarine or brackish water and freshwater. The similarity between arsenate and phosphate and the interference in phosphorylation reactions is discussed. It is clear that in Scandinavian inland waters the concentration of phosphorous is on average lower than in most inland waters in continental Europe. However, in most inland waters phosphorus is the limiting factor for phytoplankton development and eutrophication, which means that there is a clear risk for detrimental effects in the great majority of inland waters, also eutrophic waters 167 refs, 27 figs, 12 tabs. Exemption Substances Project (Directive 89/677/EEC)

  3. Josephson Currents Induced by the Witten Effect

    Science.gov (United States)

    Nogueira, Flavio S.; Nussinov, Zohar; van den Brink, Jeroen

    2016-10-01

    We reveal the existence of a new type of topological Josephson effect involving type II superconductors and three-dimensional topological insulators as tunnel junctions. We predict that vortex lines induce a variant of the Witten effect that is the consequence of the axion electromagnetic response of the topological insulator: at the interface of the junction each flux quantum attains a fractional electrical charge of e /4 . As a consequence, if an external magnetic field is applied perpendicular to the junction, the Witten effect induces an ac Josephson effect in the absence of any external voltage. We derive a number of further experimental consequences and propose potential setups where these quantized, flux induced Witten effects may be observed.

  4. Quantifying biologically and physically induced flow and tracer dynamics in permeable sediments

    Directory of Open Access Journals (Sweden)

    F. J. R. Meysman

    2007-08-01

    Full Text Available Insight in the biogeochemistry and ecology of sandy sediments crucially depends on a quantitative description of pore water flow and the associated transport of various solutes and particles. We show that widely different problems can be modelled by the same flow and tracer equations. The principal difference between model applications concerns the geometry of the sediment-water interface and the pressure conditions that are specified along this boundary. We illustrate this commonality with four different case studies. These include biologically and physically induced pore water flows, as well as simplified laboratory set-ups versus more complex field-like conditions: [1] lugworm bio-irrigation in laboratory set-up, [2] interaction of bio-irrigation and groundwater seepage on a tidal flat, [3] pore water flow induced by rotational stirring in benthic chambers, and [4] pore water flow induced by unidirectional flow over a ripple sequence. The same two example simulations are performed in all four cases: (a the time-dependent spreading of an inert tracer in the pore water, and (b the computation of the steady-state distribution of oxygen in the sediment. Overall, our model comparison indicates that model development for sandy sediments is promising, but within an early stage. Clear challenges remain in terms of model development, model validation, and model implementation.

  5. Effect of Organic Loading on Rotating Biological Contactor Efficiency

    Directory of Open Access Journals (Sweden)

    Kossay K. Al-Ahmady

    2005-12-01

    Full Text Available Organic loading (weight per unit time per volume is useful for the design of rotating biological contactors (RBC and for comparison with the other processes such as activated sludge or oxidation ponds. The present study puts emphasis on the significance of this control or design parameter because it allows direct comparison of the RBC system's performance when operated under various circumstances and with different kinds of wastewater. The results of the paper proved that, the COD removal in rotating biological contactor systems is a function of the organic loading rate. However, each of the wastewater concentration and flow rate are also influence on the system efficiency but theirs impact can be combined by the effect of organic loading. The majority of COD removal (40-85 % of the total removal depending on the organic loading applied occurs in the first stages of the system. There is a strong correlation between the organic loading and the concentration of the suspended solids in the rotating biological contactor basin. At higher loadings higher concentrations noted. At a loading of about, (24 g/m2.d suspended solids were 225, 125, 35, and 25 mg/L in the first, second, third and, the fourth stage respectively. To achieve an effluent quality of (BOD < 25 mg/L, COD < 60 mg/L, the system must be operated on organic loadings of about (22 gBOD/m2.d and 65 gCOD/m2.d respectively. For nitrification process, the system must be designed to operate at organic loading of about (10 g/m2.d or less and, the reactor or basin volume should be designed to achieve a hydraulic loading of about (40 L/m2.d or less.

  6. Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet.

    Science.gov (United States)

    Wende, Kristian; Williams, Paul; Dalluge, Joe; Gaens, Wouter Van; Aboubakr, Hamada; Bischof, John; von Woedtke, Thomas; Goyal, Sagar M; Weltmann, Klaus-Dieter; Bogaerts, Annemie; Masur, Kai; Bruggeman, Peter J

    2015-06-06

    The mechanism of interaction of cold nonequilibrium plasma jets with mammalian cells in physiologic liquid is reported. The major biological active species produced by an argon RF plasma jet responsible for cell viability reduction are analyzed by experimental results obtained through physical, biological, and chemical diagnostics. This is complemented with chemical kinetics modeling of the plasma source to assess the dominant reactive gas phase species. Different plasma chemistries are obtained by changing the feed gas composition of the cold argon based RF plasma jet from argon, humidified argon (0.27%), to argon/oxygen (1%) and argon/air (1%) at constant power. A minimal consensus physiologic liquid was used, providing isotonic and isohydric conditions and nutrients but is devoid of scavengers or serum constituents. While argon and humidified argon plasma led to the creation of hydrogen peroxide dominated action on the mammalian cells, argon-oxygen and argon-air plasma created a very different biological action and was characterized by trace amounts of hydrogen peroxide only. In particular, for the argon-oxygen (1%), the authors observed a strong negative effect on mammalian cell proliferation and metabolism. This effect was distance dependent and showed a half life time of 30 min in a scavenger free physiologic buffer. Neither catalase and mannitol nor superoxide dismutase could rescue the cell proliferation rate. The strong distance dependency of the effect as well as the low water solubility rules out a major role for ozone and singlet oxygen but suggests a dominant role of atomic oxygen. Experimental results suggest that O reacts with chloride, yielding Cl2(-) or ClO(-). These chlorine species have a limited lifetime under physiologic conditions and therefore show a strong time dependent biological activity. The outcomes are compared with an argon MHz plasma jet (kinpen) to assess the differences between these (at least seemingly) similar plasma sources.

  7. Biological effects due to weak magnetic field on plants

    Science.gov (United States)

    Belyavskaya, N. A.

    2004-01-01

    magnetic field may cause different biological effects at the cellular, tissue and organ levels. They may be functionally related to systems that regulate plant metabolism including the intracellular Ca 2+ homeostasis. However, our understanding of very complex fundamental mechanisms and sites of interactions between weak magnetic fields and biological systems is still incomplete and still deserve strong research efforts.

  8. [DIRECTIONALITY OF THE BIOLOGICAL EFFECT OF DRINKING WATER].

    Science.gov (United States)

    Gibert, K K; Karasev, A K; Marasanov, A V; Stekhin, A A; Iakovleva, G V

    2015-01-01

    There have been performed the studies of the dimensional parameters of peroxide associates in drinking water, per- forming regulatory functions in cellular metabolism, that determine the character of the biological response of the human body to drinking water The direction of action of peroxide associates type Σ [(HO2-(*) ... OH-(*) (H2O) tp)]q, (where (H2O) tp is an associate with the tetragonal structure (Walrafen pentamer Is ice VI), q is the degree of association p--parameter of ion coordination) on the cellular structures of the organism is associated with their quantum properties, determining the macroscopic parameters of the electron wave packets. Research has confirmed the addressness of the nonlocal entering electron to certain cellular structures of the body, which is determined by the structural similarity of centers of condensation of electrons in the cells of systems and organs of the body with the parameters of the electron wave packets in the associates. Methodology for the estimation of the orientation of biological effect of the drinking water to the systems of the body on the base of the analysis of variations in heart rhythm under non-contact influence of water on the human body and its relationship with the dimensional parameters and peroxide activity of associates in drinking water can be suggested for the implementation of screening tests for drinking water quality, taking into account both the individualfeatures of responses of body systems to drinking water and its group action.

  9. Biological vs. physical mixing effects on benthic food web dynamics.

    Directory of Open Access Journals (Sweden)

    Ulrike Braeckman

    Full Text Available Biological particle mixing (bioturbation and solute transfer (bio-irrigation contribute extensively to ecosystem functioning in sediments where physical mixing is low. Macrobenthos transports oxygen and organic matter deeper into the sediment, thereby likely providing favourable niches to lower trophic levels (i.e., smaller benthic animals such as meiofauna and bacteria and thus stimulating mineralisation. Whether this biological transport facilitates fresh organic matter assimilation by the metazoan lower part of the food web through niche establishment (i.e., ecosystem engineering or rather deprives them from food sources, is so far unclear. We investigated the effects of the ecosystem engineers Lanice conchilega (bio-irrigator and Abra alba (bioturbator compared to abiotic physical mixing events on survival and food uptake of nematodes after a simulated phytoplankton bloom. The (13C labelled diatom Skeletonema costatum was added to 4 treatments: (1 microcosms containing the bioturbator, (2 microcosms containing the bio-irrigator, (3 control microcosms and (4 microcosms with abiotic manual surface mixing. Nematode survival and subsurface peaks in nematode density profiles were most pronounced in the bio-irrigator treatment. However, nematode specific uptake (Δδ(13C of the added diatoms was highest in the physical mixing treatment, where macrobenthos was absent and the diatom (13C was homogenised. Overall, nematodes fed preferentially on bulk sedimentary organic material rather than the added diatoms. The total C budget (µg C m(-2, which included TO(13C remaining in the sediment, respiration, nematode and macrobenthic uptake, highlighted the limited assimilation by the metazoan benthos and the major role of bacterial respiration. In summary, bioturbation and especially bio-irrigation facilitated the lower trophic levels mainly over the long-term through niche establishment. Since the freshly added diatoms represented only a limited food

  10. Universal laws in the force-induced unraveling of biological bonds

    Science.gov (United States)

    Pereverzev, Yuriy V.; Prezhdo, Oleg V.

    2007-01-01

    Universal laws in the force-induced unbinding of receptor-ligand complexes are established for a general functional dependence of the dissociation rate constant on the applied force and are detailed with the two-pathway model that describes the recently discovered biological catch bond. The relationships link the data obtained with constant and time-dependent forces in different regimes, provide common representation for the previously unrelated data sets, and, thereby, greatly facilitate analysis and interpretation of experiments. The universal laws are demonstrated with the monomeric and dimeric catch-slip bonds between P-selectins and P-selectin glycoprotein ligands-1, and the slip bond between E-selectin and sialyl Lewisx antigen.

  11. 3D Imaging of Nanoparticle Distribution in Biological Tissue by Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Gimenez, Y.; Busser, B.; Trichard, F.; Kulesza, A.; Laurent, J. M.; Zaun, V.; Lux, F.; Benoit, J. M.; Panczer, G.; Dugourd, P.; Tillement, O.; Pelascini, F.; Sancey, L.; Motto-Ros, V.

    2016-07-01

    Nanomaterials represent a rapidly expanding area of research with huge potential for future medical applications. Nanotechnology indeed promises to revolutionize diagnostics, drug delivery, gene therapy, and many other areas of research. For any biological investigation involving nanomaterials, it is crucial to study the behavior of such nano-objects within tissues to evaluate both their efficacy and their toxicity. Here, we provide the first account of 3D label-free nanoparticle imaging at the entire-organ scale. The technology used is known as laser-induced breakdown spectroscopy (LIBS) and possesses several advantages such as speed of operation, ease of use and full compatibility with optical microscopy. We then used two different but complementary approaches to achieve 3D elemental imaging with LIBS: a volume reconstruction of a sliced organ and in-depth analysis. This proof-of-concept study demonstrates the quantitative imaging of both endogenous and exogenous elements within entire organs and paves the way for innumerable applications.

  12. Novel Biological Approaches for Testing the Contributions of Single DSBs and DSB Clusters to the Biological Effects of High LET Radiation.

    Science.gov (United States)

    Mladenova, Veronika; Mladenov, Emil; Iliakis, George

    2016-01-01

    The adverse biological effects of ionizing radiation (IR) are commonly attributed to the generation of DNA double-strand breaks (DSBs). IR-induced DSBs are generated by clusters of ionizations, bear damaged terminal nucleotides, and frequently comprise base damages and single-strand breaks in the vicinity generating a unique DNA damage-clustering effect that increases DSB "complexity." The number of ionizations in clusters of different radiation modalities increases with increasing linear energy transfer (LET), and is thought to determine the long-known LET-dependence of the relative biological effectiveness (RBE). Multiple ionizations may also lead to the formation of DSB clusters, comprising two or more DSBs that destabilize chromatin further and compromise overall processing. DSB complexity and DSB-cluster formation are increasingly considered in the development of mathematical models of radiation action, which are then "tested" by fitting available experimental data. Despite a plethora of such mathematical models the ultimate goal, i.e., the "a priori" prediction of the radiation effect, has not yet been achieved. The difficulty partly arises from unsurmountable difficulties in testing the fundamental assumptions of such mathematical models in defined biological model systems capable of providing conclusive answers. Recently, revolutionary advances in methods allowing the generation of enzymatic DSBs at random or in well-defined locations in the genome, generate unique testing opportunities for several key assumptions frequently fed into mathematical modeling - including the role of DSB clusters in the overall effect. Here, we review the problematic of DSB-cluster formation in radiation action and present novel biological technologies that promise to revolutionize the way we address the biological consequences of such lesions. We describe new ways of exploiting the I-SceI endonuclease to generate DSB-clusters at random locations in the genome and describe the

  13. 21 CFR 601.26 - Reclassification procedures to determine that licensed biological products are safe, effective...

    Science.gov (United States)

    2010-04-01

    ... licensed biological products are safe, effective, and not misbranded under prescribed, recommended, or... Reclassification procedures to determine that licensed biological products are safe, effective, and not misbranded... for the reclassification of all biological products that have been classified into Category IIIA....

  14. Reactive Carbonyl Species In Vivo: Generation and Dual Biological Effects

    Directory of Open Access Journals (Sweden)

    Halyna M. Semchyshyn

    2014-01-01

    Full Text Available Reactive carbonyls are widespread species in living organisms and mainly known for their damaging effects. The most abundant reactive carbonyl species (RCS are derived from oxidation of carbohydrates, lipids, and amino acids. Chemical modification of proteins, nucleic acids, and aminophospholipids by RCS results in cytotoxicity and mutagenicity. In addition to their direct toxicity, modification of biomolecules by RCS gives rise to a multitude of adducts and cross links that are increasingly implicated in aging and pathology of a wide range of human diseases. Understanding of the relationship between metabolism of RCS and the development of pathological disorders and diseases may help to develop effective approaches to prevent a number of disorders and diseases. On the other hand, constant persistence of RCS in cells suggests that they perform some useful role in living organisms. The most beneficial effects of RCS are their establishment as regulators of cell signal transduction and gene expression. Since RCS can modulate different biological processes, new tools are required to decipher the precise mechanisms underlying dual effects of RCS.

  15. Effect of choline carboxylate ionic liquids on biological membranes.

    Science.gov (United States)

    Rengstl, Doris; Kraus, Birgit; Van Vorst, Matthew; Elliott, Gloria D; Kunz, Werner

    2014-11-01

    Choline carboxylates, ChCm, with m=2-10 and choline oleate are known as biocompatible substances, yet their influence on biological membranes is not well-known, and the effect on human skin has not previously been investigated. The short chain choline carboxylates ChCm with m=2, 4, 6 act as hydrotropes, solubilizing hydrophobic compounds in aqueous solution, while the longer chain choline carboxylates ChCm with m=8, 10 and oleate are able to form micelles. In the present study, the cytotoxicity of choline carboxylates was tested using HeLa and SK-MEL-28 cells. The influence of these substances on liposomes prepared from dipalmitoylphosphatidylcholine (DPPC) was also evaluated to provide insights on membrane interactions. It was observed that the choline carboxylates with a chain length of m>8 distinctly influence the bilayer, while the shorter ones had minimal interaction with the liposomes.

  16. Behavioural biology: an effective and relevant conservation tool.

    Science.gov (United States)

    Buchholz, Richard

    2007-08-01

    'Conservation behaviour' is a young discipline that investigates how proximate and ultimate aspects of the behaviour of an animal can be of value in preventing the loss of biodiversity. Rumours of its demise are unfounded. Conservation behaviour is quickly building a capacity to positively influence environmental decision making. The theoretical framework used by animal behaviourists is uniquely valuable to elucidating integrative solutions to human-wildlife conflicts, efforts to reintroduce endangered species and reducing the deleterious effects of ecotourism. Conservation behaviourists must join with other scientists under the multidisciplinary umbrella of conservation biology without giving up on their focus: the mechanisms, development, function and evolutionary history of individual differences in behaviour. Conservation behaviour is an increasingly relevant tool in the preservation of nature.

  17. Biological effects and equivalent doses in radiotherapy: a software solution

    CERN Document Server

    Voyant, Cyril; Roustit, Rudy; Biffi, Katia; Marcovici, Celine Lantieri

    2013-01-01

    The limits of TDF (time, dose, and fractionation) and linear quadratic models have been known for a long time. Medical physicists and physicians are required to provide fast and reliable interpretations regarding the delivered doses or any future prescriptions relating to treatment changes. We therefore propose a calculation interface under the GNU license to be used for equivalent doses, biological doses, and normal tumor complication probability (Lyman model). The methodology used draws from several sources: the linear-quadratic-linear model of Astrahan, the repopulation effects of Dale, and the prediction of multi-fractionated treatments of Thames. The results are obtained from an algorithm that minimizes an ad-hoc cost function, and then compared to the equivalent dose computed using standard calculators in seven French radiotherapy centers.

  18. Effect of Antimicrobial Peptide-Amide: Indolicidin on Biological Membranes

    Directory of Open Access Journals (Sweden)

    Attila Gergely Végh

    2011-01-01

    Full Text Available Indolicidin, a cationic antimicrobial tridecapeptide amide, is rich in proline and tryptophan residues. Its biological activity is intensively studied, but the details how indolicidin interacts with membranes are not fully understood yet. We report here an in situ atomic force microscopic study describing the effect of indolicidin on an artificial supported planar bilayer membrane of dipalmitoyl phosphatidylcholine (DPPC and on purple membrane of Halobacterium salinarum. Concentration dependent interaction of the peptide and membranes was found in case of DPPC resulting the destruction of the membrane. Purple membrane was much more resistant against indolicidin, probably due to its high protein content. Indolicidin preferred the border of membrane disks, where the lipids are more accessible. These data suggest that the atomic force microscope is a powerful tool in the study of indolicidin-membrane interaction.

  19. [The biological effect of fireproof ceramic fibers--literature review].

    Science.gov (United States)

    Krajnow, A

    1996-01-01

    The work presents reports, selected from the world literature, on the studies of biological effect of refractory ceramic fibres, carried out on experimental animals. The discrepancy between the results of studies performed may originate from differences in the distribution of fibre sizes or the durability of fibres in the organism and their surface properties which, in turn, depend on the chemical composition of fibres. In all studies discussed, ceramic fibres generally activated macrophages and they were characterised by a moderate fibrotic activity. A statistically significant increase in the incidence of tumor (mesothelioma) observed in several very important experimental studies may suggest that some types of refractory ceramic fibres show a similar carcinogenic potential to that of natural asbestos: crocidolite or chrysotile.

  20. Investigation on inhibition of biological effects of endothelin

    Institute of Scientific and Technical Information of China (English)

    田青; 赵东; 张继峰; 高连如; 刘胜昔; 杨军; 苏静怡; 张肇康; 汤健; 唐朝枢

    1996-01-01

    The effects of a series of substances on the biological function of endothelin (ET) are reported. The substances used are: synthetic inhibitors of endothelium derived relaxing factors (EDRFs), inhibitor of big-endothelin converting enzyme phosphoramidon, antiserum of endothelin, antagonists of endothelin A receptor BQ123 and JKC301, and two Chinese anti-snake venom herb medicines Lobelia radians Thumb and Taris polyphylla Smith var. chinensis (Franch) Hara. The results showed that inhibiting the production of nitric oxide (NO) could stimulate ET release from vascular endothelium, elevate plasma ET and increase blood pressure. These changes could be reversed by L-arginine (L-Arg), the substrate of nitric oxide synthase (NOS). The amount of ET released by arterial endothelium could be increased or inhibited by inhibiting or stimulating the synthesis of prostacyclin (PGI2). The plasma ET level and blood pressure in both SHR and WKY rats could be decreased by giving phosphoramidon (PhR). The above results i

  1. Effect of Computer Animations Upon Student's Achievement of Biology Education

    Directory of Open Access Journals (Sweden)

    Mehmet YAKIŞAN

    2009-08-01

    Full Text Available The prime purpose of this study is to investigate the effect of computer animation supported biology education upon students’ academic achievement. The study was participated by 97 pre service teachers studying in the first year of university. The data were collected by “Cell Achievement Test” There were control and experimental groups formed and the experimental group was taught with computer animations related with diffusion, osmosis, active transport, protein synthesis, mitosis and meiosis phenomena taking place in cell while the control group was taught with traditional method based on question and answer process. The data obtained were evaluated by t- test and represented by tables and graphs. The results of the study indicated significant differences between the academic achievements of control and experimental groups. The difference is in the favor of the experimental group which revealed the fact the computer animations caused a significant increase in the academic achievements of the students.

  2. Afferent Mechanisms of Microwave-Induced Biological Effects.

    Science.gov (United States)

    1987-08-12

    Department of Physics PINY, 333 Jay Street Arizona State University Brooklyn, NY 11201 Tempe, AZ 85287 Professor Stephen Cleary Professor C. C. Davis...Ithaca, NY 14853 Professor Ernest Albert Dr. Asher Sheppard Department of Anatomy Research Service 151 George Washington University J. L. Pettis

  3. Systems Biology and Birth Defects Prevention: Blockade of the Glucocorticoid Receptor Prevents Arsenic-Induced Birth Defects

    OpenAIRE

    Ahir, Bhavesh K.; Sanders, Alison P.; Julia E. Rager; Fry, Rebecca C.

    2013-01-01

    Background: The biological mechanisms by which environmental metals are associated with birth defects are largely unknown. Systems biology–based approaches may help to identify key pathways that mediate metal-induced birth defects as well as potential targets for prevention. Objectives: First, we applied a novel computational approach to identify a prioritized biological pathway that associates metals with birth defects. Second, in a laboratory setting, we sought to determine whether inhibiti...

  4. Biological Effectiveness and Application of Heavy Ions in Radiation Therapy Described by a Physical and Biological Model

    DEFF Research Database (Denmark)

    Olsen, Kjeld J.; Hansen, Johnny W.

    A description is given of the physical basis for applying track structure theory in the determination of the effectiveness of heavy-ion irradiation of single- and multi-hit target systems. It will be shown that for applying the theory to biological systems the effectiveness of heavy-ion irradiation...... simultaneously in therapy....

  5. Biological effects due to weak magnetic fields on plants

    Science.gov (United States)

    Belyavskaya, N.

    In the evolution process, living organisms have experienced the action of the Earth's magnetic field (MF) that is a natural component of our environment. It is known that a galactic MF induction does not exceed 0.1 nT, since investigations of weak magnetic field (WMF) effects on biological systems have attracted attention of biologists due to planning long-term space flights to other planets where the magnetizing force is near 10-5 Oe. However, the role of WMF and its influence on organisms' functioning are still insufficiently investigated. A large number of experiments with seedlings of different plant species placed in WMF has found that the growth of their primary roots is inhibited during the early terms of germination in comparison with control. The proliferation activity and cell reproduction are reduced in meristem of plant roots under WMF application. The prolongation of total cell reproductive cycle is registered due to the expansion of G phase in1 different plant species as well as of G phase in flax and lentil roots along with2 relative stability of time parameters of other phases of cell cycle. In plant cells exposed to WMF, the decrease in functional activity of genome at early prereplicate period is shown. WMF causes the intensification in the processes of proteins' synthesis and break-up in plant roots. Qualitative and quantitative changes in protein spectrum in growing and differentiated cells of plant roots exposed to WMF are revealed. At ultrastructural level, there are observed such ultrastructural peculiarities as changes in distribution of condensed chromatin and nucleolus compactization in nuclei, noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids in meristem cells of pea roots exposed to WMF. Mitochondria are the most sensitive organelle to WMF application: their size and relative volume in cells increase, matrix is electron

  6. Effect of a biological activated carbon filter on particle counts

    Institute of Scientific and Technical Information of China (English)

    Su-hua WU; Bing-zhi DONG; Tie-jun QIAO; Jin-song ZHANG

    2008-01-01

    Due to the importance of biological safety in drinking water quality and the disadvantages which exist in traditional methods of detecting typical microorganisms such as Cryptosporidium and Giardia,it is necessary to develop an alternative.Particle counts is a qualitative measurement of the amount of dissolved solids in water.The removal rate of particle counts was previously used as an indicator of the effectiveness of a biological activated carbon(BAC)filter in removing Cryptosporidium and Giardia.The particle counts in a BAC filter effluent over one operational period and the effects of BAC filter construction and operational parameters were investigated with a 10 m3/h pilot plant.The results indicated that the maximum particle count in backwash remnant water was as high as 1296 count/ml and it needed about 1.5 h to reduce from the maximum to less than 50 count/ml.During the standard filtration period,particle counts stay constant at less than 50 count/ml for 5 d except when influ-enced by sand filter backwash remnant water.The removal rates of particle counts in the BAC filter are related to characteristics of the carbon.For example,a columned carbon and a sand bed removed 33.3% and 8.5% of particles,respectively,while the particle counts in effluent from a cracked BAC filter was higher than that of the influent.There is no significant difference among particle removal rates with different filtration rates.High post-ozone dosage(>2 mg/L)plays an important role in particle count removal;when the dosage was 3 mg/L,the removal rates by carbon layers and sand beds decreased by 17.5% and increased by 9.5%,respectively,compared with a 2 mg/L dosage.

  7. LASER INDUCED THERMAL LENS EFFECT

    Institute of Scientific and Technical Information of China (English)

    沈俊; 黄孟才; 江景云; 施教芳

    1991-01-01

    The thermal lens effect has emerged in recent years as a novel ,highly sensitive tool for the study of the very weak molecular absorption of light energy,This paper discusses the theory and technique of the thermal lens measurement.Some opplications of the thermal lens measurement are described.A mode-mismatched dual-beam thermal lens experimental arragement with a modulated probe beam ,designed by the authors.for trace analysis is presented,and its detection limit was found to be 4.1×10-7 for Cu(Ⅱ) in ethanol and 80 mW excitation power.

  8. Multi-mutational model for cancer based on age-time patterns of radiation effects: 2. Biological aspects

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.L.; Pierce, P.A.

    1997-09-04

    Biological properties of relevance when modeling cancers induced in the atom bomb survivors include the wide distribution of the induced cancers across all organs, their biological indistinguishability from background cancers, their rates being proportional to background cancer rates, their rates steadily increasing over at least 50 years as the survivors age, and their radiation dose response being linear. We have successfully described this array of properties with a modified Armitage-Doll model using 5 to 6 somatic mutations, no intermediate growth, and the dose-related replacement of any one of these time-driven mutations by a radiation-induced mutation. Such a model is contrasted to prevailing models that use fewer mutations combined with intervening growth. While the rationale and effectiveness of our model is compelling for carcinogenesis in the atom bomb survivors, the lack of a promotional component may limit the generality of the model for other types of human carcinogenesis.

  9. [Adipogenic function and other biologic effects of insulin].

    Science.gov (United States)

    Pankov, Y A

    2016-01-01

    Studies on experimental animals with knockout of the insulin receptor gene Insr (in the whole body or in certain tissues) and/or related genes encoding proteins involved in realization of insulin signal transduction in target cells, have made an important contribution to the elucidation of insulin regulation of metabolism, particularly fat metabolism. Since the whole insulin secreted by b-cells, together with the products of gastrointestinal tract digestion of proteins, fats, and carbohydrates reach the liver, the latter is the first organ on which this hormone acts. The liver employs released amino acids for synthesis of proteins, including apoproteins for various lipoproteins. Glucose is used for synthesis of glycogen, fatty acids, and triglycerides, which enter all the organs in very low density lipoproteins (VLDL). The LIRKO mice with knockout of the Insr gene in the liver demonstrated inhibition of synthesis of macromolecular compounds from amino acids, glucose, and fatty acids. Low molecular weight substances demonstrated increased entry to circulation, and together with other disorders induced hyperglycemia. In LIRKO mice blood glucose levels and glucose tolerance demonstrated time-dependent normalization and at later stages the increase in glucose levels was replaced by hypoglycemia. These changes can be well explained if we take into consideration that one of the main functions of insulin consists in stimulation of energy accumulation by means of activation of triglyceride deposition in adipose tissue. FIRKO mice with selective knockout of adipose tissue Insr were characterized by decreased uptake of glucose in adipocytes, and its transformation into lipids. However, the level of body fat in animals remained normal, possibly due to preserved insulin receptor in the liver and insulin-induced activation of triglyceride production which maintained normal levels of body fat stores, the effective functioning of adipose tissue and secretion of leptin by

  10. Radiation effects analysis in a group of interventional radiologists using biological and physical dosimetry methods

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, M., E-mail: WEMLmirapas@iqn.upv.e [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Montoro, A.; Almonacid, M. [Radiation Protection Service, Hospital Universitario La Fe Valencia (Spain); Ferrer, S. [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Barquinero, J.F. [Biological Dosimetry Service, Unit of Anthropology, Department of Animal and Vegetable Biology and Ecology, Universitat Autonoma de Barcelona (UAB) (Spain); Tortosa, R. [Radiation Protection Service, Hospital Universitario La Fe Valencia (Spain); Verdu, G. [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Rodriguez, P. [Biological Dosimetry Service, Unit of Anthropology, Department of Animal and Vegetable Biology and Ecology, Universitat Autonoma de Barcelona (UAB) (Spain); Barrios, L.L. [Department of Physiology and Cellular Biology, Unit of Cellular Biology (UAB) (Spain); Villaescusa, J.I. [Radiation Protection Service, Hospital Universitario La Fe Valencia (Spain)

    2010-08-15

    excess radio-induced risk of leukemia in the group under study. Finally, the maximum radiological detriment in the group, evaluated as the total number of radio-induced cancers using physical dosimetry, has been of 2.18/1000 person-year (skin and leukemia), and using biological dosimetry of 9.20/1000 PY (leukemia). As a conclusion, this study has provided an assessment of the non-deterministic effects (rate of radio-induced cancer incidence) attributable to the group under study due to their professional activity.

  11. Hormetic effect induced by depleted uranium in zebrafish embryos.

    Science.gov (United States)

    Ng, C Y P; Cheng, S H; Yu, K N

    2016-06-01

    The present work studied the hormetic effect induced by uranium (U) in embryos of zebrafish (Danio rerio) using apoptosis as the biological endpoint. Hormetic effect is characterized by biphasic dose-response relationships showing a low-dose stimulation and a high-dose inhibition. Embryos were dechorionated at 4h post fertilization (hpf), and were then exposed to 10 or 100μg/l depleted uranium (DU) in uranyl acetate solutions from 5 to 6 hpf. For exposures to 10μg/l DU, the amounts of apoptotic signals in the embryos were significantly increased at 20 hpf but were significantly decreased at 24 hpf, which demonstrated the presence of U-induced hormesis. For exposures to 100μg/l DU, the amounts of apoptotic signals in the embryos were significantly increased at 20, 24 and 30 hpf. Hormetic effect was not shown but its occurrence between 30 and 48 hpf could not be ruled out. In conclusion, hormetic effect could be induced in zebrafish embryos in a concentration- and time-dependent manner.

  12. Synthesis and Biological Evaluation of Manassantin Analogues for Hypoxia-Inducible Factor 1α Inhibition.

    Science.gov (United States)

    Kwon, Do-Yeon; Lee, Hye Eun; Weitzel, Douglas H; Park, Kyunghye; Lee, Sun Hee; Lee, Chen-Ting; Stephenson, Tesia N; Park, Hyeri; Fitzgerald, Michael C; Chi, Jen-Tsan; Mook, Robert A; Dewhirst, Mark W; Lee, You Mie; Hong, Jiyong

    2015-10-08

    To cope with hypoxia, tumor cells have developed a number of adaptive mechanisms mediated by hypoxia-inducible factor 1 (HIF-1) to promote angiogenesis and cell survival. Due to significant roles of HIF-1 in the initiation, progression, metastasis, and resistance to treatment of most solid tumors, a considerable amount of effort has been made to identify HIF-1 inhibitors for treatment of cancer. Isolated from Saururus cernuus, manassantins A (1) and B (2) are potent inhibitors of HIF-1 activity. To define the structural requirements of manassantins for HIF-1 inhibition, we prepared and evaluated a series of manassantin analogues. Our SAR studies examined key regions of manassantin's structure in order to understand the impact of these regions on biological activity and to define modifications that can lead to improved performance and drug-like properties. Our efforts identified several manassantin analogues with reduced structural complexity as potential lead compounds for further development. Analogues MA04, MA07, and MA11 down-regulated hypoxia-induced expression of the HIF-1α protein and reduced the levels of HIF-1 target genes, including cyclin-dependent kinase 6 (Cdk6) and vascular endothelial growth factor (VEGF). These findings provide an important framework to design potent and selective HIF-1α inhibitors, which is necessary to aid translation of manassantin-derived natural products to the clinic as novel therapeutics for cancers.

  13. Mutagenic Effects of Iron Oxide Nanoparticles on Biological Cells.

    Science.gov (United States)

    Dissanayake, Niluka M; Current, Kelley M; Obare, Sherine O

    2015-09-30

    In recent years, there has been an increased interest in the design and use of iron oxide materials with nanoscale dimensions for magnetic, catalytic, biomedical, and electronic applications. The increased manufacture and use of iron oxide nanoparticles (IONPs) in consumer products as well as industrial processes is expected to lead to the unintentional release of IONPs into the environment. The impact of IONPs on the environment and on biological species is not well understood but remains a concern due to the increased chemical reactivity of nanoparticles relative to their bulk counterparts. This review article describes the impact of IONPs on cellular genetic components. The mutagenic impact of IONPs may damage an organism's ability to develop or reproduce. To date, there has been experimental evidence of IONPs having mutagenic interactions on human cell lines including lymphoblastoids, fibroblasts, microvascular endothelial cells, bone marrow cells, lung epithelial cells, alveolar type II like epithelial cells, bronchial fibroblasts, skin epithelial cells, hepatocytes, cerebral endothelial cells, fibrosarcoma cells, breast carcinoma cells, lung carcinoma cells, and cervix carcinoma cells. Other cell lines including the Chinese hamster ovary cells, mouse fibroblast cells, murine fibroblast cells, Mytilus galloprovincialis sperm cells, mice lung cells, murine alveolar macrophages, mice hepatic and renal tissue cells, and vero cells have also shown mutagenic effects upon exposure to IONPs. We further show the influence of IONPs on microorganisms in the presence and absence of dissolved organic carbon. The results shed light on the OPEN ACCESS Int. J. Mol. Sci. 2015, 16 23483 transformations IONPs undergo in the environment and the nature of the potential mutagenic impact on biological cells.

  14. Adverse motor effects induced by antiepileptic drugs.

    Science.gov (United States)

    Zaccara, G; Cincotta, M; Borgheresi, A; Balestrieri, F

    2004-09-01

    Cognitive effects of anti-epileptic drugs (AEDs) have been already extensively reported. In contrast, motor disturbances, frequently induced by these drugs, have not received similar attention. We review subjective and objective adverse motor effects of traditional and new AEDs. We discuss the methodological issues caused by the heterogeneous sources of information on drug adverse effects (controlled clinical studies, open studies, and case reports). We describe specific disturbances (vestibulocerebellar, dyskinesias, parkinsonism, tics, myoclonus, and tremor) as the effects of different AEDs on distinct motor circuitries. Finally, we summarize the role of sophisticated technical studies which provide a valuable insight into the specific or subtle effects of AEDs on the central nervous system.

  15. Gene expression profiling analysis of bisphenol A-induced perturbation in biological processes in ER-negative HEK293 cells.

    Science.gov (United States)

    Yin, Rong; Gu, Liang; Li, Min; Jiang, Cizhong; Cao, Tongcheng; Zhang, Xiaobai

    2014-01-01

    Bisphenol A (BPA) is an environmental endocrine disruptor which has been detected in human bodies. Many studies have implied that BPA exposure is harmful to human health. Previous studies mainly focused on BPA effects on estrogen receptor (ER)-positive cells. Genome-wide impacts of BPA on gene expression in ER-negative cells is unclear. In this study, we performed RNA-seq to characterize BPA-induced cellular and molecular impacts on ER-negative HEK293 cells. The microscopic observation showed that low-dose BPA exposure did not affect cell viability and morphology. Gene expression profiling analysis identified a list of differentially expressed genes in response to BPA exposure in HEK293 cells. These genes were involved in variable important biological processes including ion transport, cysteine metabolic process, apoptosis, DNA damage repair, etc. Notably, BPA up-regulated the expression of ERCC5 encoding a DNA endonuclease for nucleotide-excision repair. Further electrochemical experiment showed that BPA induced significant DNA damage in ER-positive MCF-7 cells but not in ER-negative HEK293 cells. Collectively, our study revealed that ER-negative HEK293 cells employed mechanisms in response to BPA exposure different from ER-positive cells.

  16. Gene expression profiling analysis of bisphenol A-induced perturbation in biological processes in ER-negative HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Rong Yin

    Full Text Available Bisphenol A (BPA is an environmental endocrine disruptor which has been detected in human bodies. Many studies have implied that BPA exposure is harmful to human health. Previous studies mainly focused on BPA effects on estrogen receptor (ER-positive cells. Genome-wide impacts of BPA on gene expression in ER-negative cells is unclear. In this study, we performed RNA-seq to characterize BPA-induced cellular and molecular impacts on ER-negative HEK293 cells. The microscopic observation showed that low-dose BPA exposure did not affect cell viability and morphology. Gene expression profiling analysis identified a list of differentially expressed genes in response to BPA exposure in HEK293 cells. These genes were involved in variable important biological processes including ion transport, cysteine metabolic process, apoptosis, DNA damage repair, etc. Notably, BPA up-regulated the expression of ERCC5 encoding a DNA endonuclease for nucleotide-excision repair. Further electrochemical experiment showed that BPA induced significant DNA damage in ER-positive MCF-7 cells but not in ER-negative HEK293 cells. Collectively, our study revealed that ER-negative HEK293 cells employed mechanisms in response to BPA exposure different from ER-positive cells.

  17. Effect of Sedimentation on Treated Greywater Through Rotating Biological Contactor

    Directory of Open Access Journals (Sweden)

    Ashfaque Ahmed Pathan

    2016-06-01

    Full Text Available The aim of this paper was to study the effect of sedimentation on effluent of a pilot scale Rotating Biological Contactor (RBC. The treated greywater was given three hours sedimentation period and samples were analyzed to observe the effect of sedimentations under variousflow rates. Greywater was separated from the black water and collected in the collection tank and then it was pumped to an overhead tank. This tank supplied a regulated continuous flow of greywater into the RBC chamber at the required flow rate ranging between 0.28 to 1.89 l/min. A pilot scale RBC simulator was developed and placed outside a hall of residence at National Center of Excellence in Analytical Chemistry, Sindh University, Jamshoro. The simulator was operated at the rotational speed of discs of 1.7 rpm. The disks were uneven and textured so as to encourage growth of bacteria on them. These discs were immersed about 40 percent in the greywater.The simulator produced effluent of significant quality and was found efficient in removal of BOD5, COD and TSS as 85%, 68% and 95% respectively.

  18. New Scientific Pearl about Biologic Effect of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    S. A. Alamdaran

    2008-01-01

    Full Text Available Soon after the discovery of X-ray by Rontgen in 1895, it became evident that radiation can cause some somatic damage to tissues. The hazards of X-ray exposure were clearly known when many large hospitals had radiology departments. The greatest increased in knowledge about X-ray risks had accrued from the dropping of the two atomic bombs in Japan in 1945 and some other atomic accident. For example, among the Japanese bomb survivors from Hiroshima and Nagasaki, there have been about 400 extra cancer deaths. These were the origin of radiology personnel and people fear from radiation exposure and resistant in against simple X-ray exam (radiophobia. However, new scientific data on the effects radiation on survivors, especially about biologic effect of ionizing rays, background radiation exposure, amount of endogenous radiation, hormosis phenomenon and comparison radiation risk with other risk over lifetime are still being continuously revised and risk estimates updated. Fundamentally, this risk is much"nlower than whatever already estimated and it is insignificant in diagnostic domain. Better perception of physician from these instances help to prevent of false radiophobia and to make proper use of diagnostic and therapeutic advantages of ionizing beam.

  19. [Effects of decitabine on biological behavior of U266 cells].

    Science.gov (United States)

    Wang, Mei-Fang; Yang, Lin-Hua; Dong, Chun-Xia; Zhang, Rui-Juan; Zhang, Jian-Hua; Guo, Zhi-Ping; Chen, Jian-Fang; Zhagn, Li; Feng, Da-Wei

    2011-08-01

    This study was aimed to explore the effects of decitabine on the biological behaviour of U266 cells in vitro so as to provide a new thinking and experiment basis, as well as new evidences for the pathogenesis of multiple myeloma. MTT and colony formation assays were used to evaluate the impact of decitabine on the ability of proliferation of U266 cells; flow cytometry was used to analyze the cell distribution in cell cycle; transwell chamber and matrigel assays were used to observe the ability of migration and invasion. The results indicated that decitabine could significantly suppress the proliferation of U266 cells in time-and dose-dependent manners. The flow cytometric analysis demonstrated that the cells in G(0)-G(1) phase significantly increased while the cells in S and G(2)/M phase decreased. The migration and matrigel invading tests showed that the number of cells moving into under chamber of transwell decreased after U266 cells treated with decitabine. It is concluded that decitabine may act as an effective drug for MM by inhibiting the proliferation, migration and invasion ability, and the specific mechanism needs to be deeply explored.

  20. Whack-A-Mole Model: Towards unified description of biological effect caused by radiation-exposure

    CERN Document Server

    Manabe, Yuichiro; Tsunoyama, Yuichi; Nakajima, Hiroo; Nakamura, Issei; Bando, Masako

    2014-01-01

    We present a novel model to estimate biological effects caused by artificial radiation exposure, Whack-a-mole (WAM) model. It is important to take account of the recovery effects during the time course of the cellular reactions. The inclusion of the dose-rate dependence is essential in the risk estimation of low dose radiation, while nearly all the existing theoretical models relies on the total dose dependence only. By analyzing the experimental data of the relation between the radiation dose and the induced mutation frequency of 5 organisms, mouse, drosophila, chrysanthemum, maize and tradescantia, we found that all the data can be reproduced by WAM model. Most remarkably, a scaling function, which is derived from WAM model, consistently accounts for the observed mutation frequencies of 5 organisms. This is the first rationale to account for the dose rate dependence as well as to give a unified understanding of a general feature of organisms.

  1. Effect of Emodin on Biological Behavior of Fibroblasts in Lupus Nephritis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To observe the effect of emodin on the biological behavior of human fibroblasts (FB) in culture of kidney in patients with lupus nephritis (LN). Methods: FB were isolated from kidney culture of LN patients, and the effect of emodin on 3 H-TdR incorporated rate of FB was observed. The apoptosis and c-myc gene expression were detected in the same way by flow cytometry. Results: Emodin could markedly inhibit the proliferation of human kidney FB, and inducing cell apoptosis through up-regulating c-myc gene expression in human renal FB. Conclusion: Emodin can inhibit proliferation and promote apoptosis of FB, which may be important in ameliorating interstitial fibrosis, and thus improve prognosis of LN.

  2. Whack-A-Mole Model: Towards a Unified Description of Biological Effects Caused by Radiation Exposure

    Science.gov (United States)

    Manabe, Yuichiro; Wada, Takahiro; Tsunoyama, Yuichi; Nakajima, Hiroo; Nakamura, Issei; Bando, Masako

    2015-04-01

    We present a novel model to for estimating biological effects caused by artificial radiation exposure, i.e., the Whack-A-Mole (WAM) model. It is important to take into account the recovery effects during the time course of cellular reactions. The inclusion of dose-rate dependence is essential in the risk estimation of low-dose radiation, while nearly all the existing theoretical models rely on the total dose dependence only. By analyzing experimental data of the relationship between the radiation dose and the induced mutation frequency of five organisms, namely, mouse, Drosophila, chrysanthemum, maize, Tradescantia, we found that all the data can be reproduced by the WAM model. Most remarkably, a scaling function, which is derived from the WAM model, consistently accounts for the observed mutation frequencies of the five organisms. This is the first rationale to account for the dose rate dependence as well as to provide a unified understanding of a general feature of organisms.

  3. 21 CFR 601.25 - Review procedures to determine that licensed biological products are safe, effective, and not...

    Science.gov (United States)

    2010-04-01

    ... biological products are safe, effective, and not misbranded under prescribed, recommended, or suggested... determine that licensed biological products are safe, effective, and not misbranded under prescribed, recommended, or suggested conditions of use. For purposes of reviewing biological products that have...

  4. Enhanced Biological Phosphorus Removal: Metabolic Insights and Salinity Effects

    NARCIS (Netherlands)

    Welles, L.

    2015-01-01

    Enhanced biological phosphorus removal (EBPR) is a biological process for efficient phosphate removal from wastewaters through intracellular storage of polyphosphate by polyphosphate-accumulating organisms (PAO) and subsequent removal of PAO from the system through wastage of sludge. In comparison t

  5. Sexual side effects induced by psychotropic drugs

    DEFF Research Database (Denmark)

    Kristensen, Ellids

    2002-01-01

    The majority of psychotropic drugs entail sexual side effects. The sexual side effects may reduce quality of life and may give rise to non-compliance. For example, 30-60 per cent of patients treated with antidepressants are known to develop a sexual dysfunction. However, some psychotropic drugs...... with no or very few sexual side effects have begun to emerge. The treatment of sexual side effects induced by psychotropic drugs may consist of: modified sexual habits, reduction in dosage, switching to another medication, possibly in combination with different psychotropic agents, other varieties...

  6. Current heating induced spin Seebeck effect

    Energy Technology Data Exchange (ETDEWEB)

    Schreier, Michael, E-mail: michael.schreier@wmi.badw.de; Roschewsky, Niklas; Dobler, Erich; Meyer, Sibylle; Huebl, Hans; Goennenwein, Sebastian T. B. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Gross, Rudolf [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, Technische Universität München, Garching (Germany)

    2013-12-09

    A measurement technique for the spin Seebeck effect is presented, wherein the normal metal layer used for its detection is exploited simultaneously as a resistive heater and thermometer. We show how the various contributions to the measured total signal can be disentangled, allowing to extract the voltage signal solely caused by the spin Seebeck effect. To this end, we performed measurements as a function of the external magnetic field strength and its orientation. We find that the effect scales linearly with the induced rise in temperature, as expected for the spin Seebeck effect.

  7. The effect of network biology on drug toxicology

    DEFF Research Database (Denmark)

    Gautier, Laurent; Taboureau, Olivier; Audouze, Karine Marie Laure

    2013-01-01

    it with bioinformatics. With this approach, the assessment of chemical safety can be done across multiple scales of complexity from molecular to cellular and system levels in human health. Network biology can be used at several levels of complexity. Areas covered: This review describes the strengths and limitations......Introduction: The high failure rate of drug candidates due to toxicity, during clinical trials, is a critical issue in drug discovery. Network biology has become a promising approach, in this regard, using the increasingly large amount of biological and chemical data available and combining...... of network biology. The authors specifically assess this approach across different biological scales when it is applied to toxicity. Expert opinion: There has been much progress made with the amount of data that is generated by various omics technologies. With this large amount of useful data, network...

  8. Occurrence and Potential Biological Effects of Amphetamine on Stream Communities.

    Science.gov (United States)

    Lee, Sylvia S; Paspalof, Alexis M; Snow, Daniel D; Richmond, Erinn K; Rosi-Marshall, Emma J; Kelly, John J

    2016-09-06

    The presence of pharmaceuticals, including illicit drugs in aquatic systems, is a topic of environmental significance because of their global occurrence and potential effects on aquatic ecosystems and human health, but few studies have examined the ecological effects of illicit drugs. We conducted a survey of several drug residues, including the potentially illicit drug amphetamine, at 6 stream sites along an urban to rural gradient in Baltimore, Maryland, U.S.A. We detected numerous drugs, including amphetamine (3 to 630 ng L(-1)), in all stream sites. We examined the fate and ecological effects of amphetamine on biofilm, seston, and aquatic insect communities in artificial streams exposed to an environmentally relevant concentration (1 μg L(-1)) of amphetamine. The amphetamine parent compound decreased in the artificial streams from less than 1 μg L(-1) on day 1 to 0.11 μg L(-1) on day 22. In artificial streams treated with amphetamine, there was up to 45% lower biofilm chlorophyll a per ash-free dry mass, 85% lower biofilm gross primary production, 24% greater seston ash-free dry mass, and 30% lower seston community respiration compared to control streams. Exposing streams to amphetamine also changed the composition of bacterial and diatom communities in biofilms at day 21 and increased cumulative dipteran emergence by 65% and 89% during the first and third weeks of the experiment, respectively. This study demonstrates that amphetamine and other biologically active drugs are present in urban streams and have the potential to affect both structure and function of stream communities.

  9. Examining the Effect of Multiple Writing Tasks on Year 10 Biology Students' Understandings of Cell and Molecular Biology Concepts

    Science.gov (United States)

    Hand, Brian; Hohenshell, Liesl; Prain, Vaughan

    2007-01-01

    This paper reports on a study that examined the cumulative effects on students' learning of science, and perceptions of the role of writing in learning, when the students engaged in multiple writing tasks with planning strategy support. The study was conducted with Year 10 biology students who completed two consecutive units on Cells and Molecular…

  10. Biologically Induced Hydrogen Production Drives High Rate/High Efficiency Microbial Electrosynthesis of Acetate from Carbon Dioxide

    NARCIS (Netherlands)

    Jourdin, Ludovic; Lu, Yang; Flexer, Victoria; Keller, Jurg; Freguia, Stefano

    2016-01-01

    Electron-transfer pathways occurring in biocathodes are still unknown. We demonstrate here that high rates of acetate production by microbial electrosynthesis are mainly driven by an electron flux from the electrode to carbon dioxide, occurring via biologically induced hydrogen, with (99±1)% elec

  11. Effect of induced aniseikonia on fixation performance.

    Science.gov (United States)

    Remole, A

    1988-01-01

    The purpose of the study was to determine to what extent induced aniseikonia affects fixation performance. Aniseikonia was induced in the vertical meridian only, whereas fixation alignment was monitored in the horizontal meridian. A previously developed technique based on the dependency of border enhancement bandwidth on fixation eccentricity was used to monitor deviations from central fixation during fusion. Stress on the fusion mechanism was supplied by controlled increments of forced horizontal vergence. It was found that deviation from central fixation in the horizontal meridian generally increases with increasing amounts of vertical aniseikonia. The effect is particularly pronounced for small amounts of aniseikonia.

  12. Protection against LPS-induced cartilage inflammation and degradation provided by a biological extract of Mentha spicata

    Directory of Open Access Journals (Sweden)

    Kott Laima S

    2010-05-01

    Full Text Available Abstract Background A variety of mint [Mentha spicata] has been bred which over-expresses Rosmarinic acid (RA by approximately 20-fold. RA has demonstrated significant anti-inflammatory activity in vitro and in small rodents; thus it was hypothesized that this plant would demonstrate significant anti-inflammatory activity in vitro. The objectives of this study were: a to develop an in vitro extraction procedure which mimics digestion and hepatic metabolism, b to compare anti-inflammatory properties of High-Rosmarinic-Acid Mentha spicata (HRAM with wild-type control M. spicata (CM, and c to quantify the relative contributions of RA and three of its hepatic metabolites [ferulic acid (FA, caffeic acid (CA, coumaric acid (CO] to anti-inflammatory activity of HRAM. Methods HRAM and CM were incubated in simulated gastric and intestinal fluid, liver microsomes (from male rat and NADPH. Concentrations of RA, CA, CO, and FA in simulated digest of HRAM (HRAMsim and CM (CMsim were determined (HPLC and compared with concentrations in aqueous extracts of HRAM and CM. Cartilage explants (porcine were cultured with LPS (0 or 3 μg/mL and test article [HRAMsim (0, 8, 40, 80, 240, or 400 μg/mL, or CMsim (0, 1, 5 or 10 mg/mL, or RA (0.640 μg/mL, or CA (0.384 μg/mL, or CO (0.057 μg/mL or FA (0.038 μg/mL] for 96 h. Media samples were analyzed for prostaglandin E2 (PGE2, interleukin 1β (IL-1, glycosaminoglycan (GAG, nitric oxide (NO and cell viability (differential live-dead cell staining. Results RA concentration of HRAMsim and CMsim was 49.3 and 0.4 μg/mL, respectively. CA, FA and CO were identified in HRAMsim but not in aqueous extract of HRAM. HRAMsim (≥ 8 μg/mL inhibited LPS-induced PGE2 and NO; HRAMsim (≥ 80 μg/mL inhibited LPS-induced GAG release. RA inhibited LPS-induced GAG release. No anti-inflammatory or chondroprotective effects of RA metabolites on cartilage explants were identified. Conclusions Our biological extraction procedure produces

  13. Determining environmental causes of biological effects: the need for a mechanistic physiological dimension in conservation biology

    OpenAIRE

    Seebacher, Frank; Craig E. Franklin

    2012-01-01

    The emerging field of Conservation Physiology links environmental change and ecological success by the application of physiological theory, approaches and tools to elucidate and address conservation problems. Human activity has changed the natural environment to a point where the viability of many ecosystems is now under threat. There are already many descriptions of how changes in biological patterns are correlated with environmental changes. The next important step is to determine the causa...

  14. Relative Biological Effectiveness and Peripheral Damage of Antiproton Annihilation

    CERN Multimedia

    Kavanagh, J N; Kaiser, F; Tegami, S; Schettino, G; Kovacevic, S; Hajdukovic, D; Welsch, C P; Currell, F J; Toelli, H T; Doser, M; Holzscheiter, M; Herrmann, R; Timson, D J; Alsner, J; Landua, R; Knudsen, H; Comor, J; Moller, S P; Beyer, G

    2002-01-01

    The use of ions to deliver radiation to a body for therapeutic purposes has the potential to be significant improvement over the use of low linear energy transfer (LET) radiation because of the improved energy deposition profile and the enhanced biological effects of ions relative to photons. Proton therapy centers exist and are being used to treat patients. In addition, the initial use of heavy ions such as carbon is promising to the point that new treatment facilities are planned. Just as with protons or heavy ions, antiprotons can be used to deliver radiation to the body in a controlled way; however antiprotons will exhibit additional energy deposition due to annihilation of the antiprotons within the body. The slowing down of antiprotons in matter is similar to that of protons except at the very end of the range beyond the Bragg peak. Gray and Kalogeropoulos estimated the additional energy deposited by heavy nuclear fragments within a few millimeters of the annihilation vertex to be approximately 30 MeV (...

  15. Biological effectiveness of neutron irradiation on animals and man

    Energy Technology Data Exchange (ETDEWEB)

    Straume, T.

    1982-11-01

    Neutron experiments on a highly radiosensitive in vivo system - oocytes in mice - provide new insight into the nature of the radiosensitive targets of these important cells. With the radiobiological literature as background, neutron data from animals and humans are integrated, and the controversial question of radiation protection standards for neutrons is addressed. Oocyte killing in juvenile mice by 0.43-MeV, /sup 252/Cf-fission, and 15 MeV neutrons, compared with that by /sup 60/Co gamma rays, yields unusually low neutron RBEs (relative biological effectiveness). At 0.1 rad of 0.43-MeV neutrons the RBE is only 1.8, contrasting greatly with values of 100 or more reported at low-doses for other endpoints. In mice just prior to birth, however, when oocytes are less radiosensitive, the neutron RBE is much higher, similar to values for most other mammalian endpoints. This dramatic change in neutron RBE with mouse age (occurring within 2 to 3 days) can be explained as the result of a shift from a less radiosensitive target (presumably nuclear DNA) to a much more radiosensitive one (probably the oocyte plasma membrane). Using various approaches, a value for the neutron Quality Factor (Q, a radiation protection standard) is estimated as 17 (+-100%), much lower than 100 which has been suggested. With the large uncertainty, 17 is not markedly different from the value of 10 presently in general use.

  16. Integrated Genomic Analysis of Diverse Induced Pluripotent Stem Cells from the Progenitor Cell Biology Consortium.

    Science.gov (United States)

    Salomonis, Nathan; Dexheimer, Phillip J; Omberg, Larsson; Schroll, Robin; Bush, Stacy; Huo, Jeffrey; Schriml, Lynn; Ho Sui, Shannan; Keddache, Mehdi; Mayhew, Christopher; Shanmukhappa, Shiva Kumar; Wells, James; Daily, Kenneth; Hubler, Shane; Wang, Yuliang; Zambidis, Elias; Margolin, Adam; Hide, Winston; Hatzopoulos, Antonis K; Malik, Punam; Cancelas, Jose A; Aronow, Bruce J; Lutzko, Carolyn

    2016-07-12

    The rigorous characterization of distinct induced pluripotent stem cells (iPSC) derived from multiple reprogramming technologies, somatic sources, and donors is required to understand potential sources of variability and downstream potential. To achieve this goal, the Progenitor Cell Biology Consortium performed comprehensive experimental and genomic analyses of 58 iPSC from ten laboratories generated using a variety of reprogramming genes, vectors, and cells. Associated global molecular characterization studies identified functionally informative correlations in gene expression, DNA methylation, and/or copy-number variation among key developmental and oncogenic regulators as a result of donor, sex, line stability, reprogramming technology, and cell of origin. Furthermore, X-chromosome inactivation in PSC produced highly correlated differences in teratoma-lineage staining and regulator expression upon differentiation. All experimental results, and raw, processed, and metadata from these analyses, including powerful tools, are interactively accessible from a new online portal at https://www.synapse.org to serve as a reusable resource for the stem cell community.

  17. Integrated Genomic Analysis of Diverse Induced Pluripotent Stem Cells from the Progenitor Cell Biology Consortium

    Directory of Open Access Journals (Sweden)

    Nathan Salomonis

    2016-07-01

    Full Text Available The rigorous characterization of distinct induced pluripotent stem cells (iPSC derived from multiple reprogramming technologies, somatic sources, and donors is required to understand potential sources of variability and downstream potential. To achieve this goal, the Progenitor Cell Biology Consortium performed comprehensive experimental and genomic analyses of 58 iPSC from ten laboratories generated using a variety of reprogramming genes, vectors, and cells. Associated global molecular characterization studies identified functionally informative correlations in gene expression, DNA methylation, and/or copy-number variation among key developmental and oncogenic regulators as a result of donor, sex, line stability, reprogramming technology, and cell of origin. Furthermore, X-chromosome inactivation in PSC produced highly correlated differences in teratoma-lineage staining and regulator expression upon differentiation. All experimental results, and raw, processed, and metadata from these analyses, including powerful tools, are interactively accessible from a new online portal at https://www.synapse.org to serve as a reusable resource for the stem cell community.

  18. Noise-induced symmetry breaking far from equilibrium and the emergence of biological homochirality

    Science.gov (United States)

    Jafarpour, Farshid; Biancalani, Tommaso; Goldenfeld, Nigel

    2017-03-01

    The origin of homochirality, the observed single-handedness of biological amino acids and sugars, has long been attributed to autocatalysis, a frequently assumed precursor for early life self-replication. However, the stability of homochiral states in deterministic autocatalytic systems relies on cross-inhibition of the two chiral states, an unlikely scenario for early life self-replicators. Here we present a theory for a stochastic individual-level model of autocatalytic prebiotic self-replicators that are maintained out of thermal equilibrium. Without chiral inhibition, the racemic state is the global attractor of the deterministic dynamics, but intrinsic multiplicative noise stabilizes the homochiral states. Moreover, we show that this noise-induced bistability is robust with respect to diffusion of molecules of opposite chirality, and systems of diffusively coupled autocatalytic chemical reactions synchronize their final homochiral states when the self-replication is the dominant production mechanism for the chiral molecules. We conclude that nonequilibrium autocatalysis is a viable mechanism for homochirality, without imposing additional nonlinearities such as chiral inhibition.

  19. Biological and physical induced oxygen dynamics in melting sea ice of the Fram Strait

    DEFF Research Database (Denmark)

    Glud, Ronnie; Rysgaard, Søren; Turner, Gavin

    2014-01-01

    We investigated the production, consumption, and exchange of O2 in melting sea ice to assess the biological- and physical-induced O2 turnover. The underside of the ice was covered with 5–20 cm3 large, buoyant algal aggregates. Their gross primary production amounted to 0.49 mmol C m−2 d−1, which...... that the aggregates were formed from agglutinated algae released from the melting ice. At the prevailing light conditions, the sea ice–encrusted communities were almost at metabolic balance, while the aggregates were net heterotrophic. Together, the two communities were responsible for an overall O2 consumption of 0.......32 mmol m−2 d−1. The sea ice–associated communities thereby represent a southward-drifting carbon source that is being exhausted by sea ice–affiliated food webs. The sea ice volume decreased rapidly, releasing meltwater at a rate 25 L m−2 d−1, but no surface melt ponds were formed. Aquatic eddy...

  20. Biological effects of IL-21 on different immune cells and its role in autoimmune diseases.

    Science.gov (United States)

    Gharibi, Tohid; Majidi, Jafar; Kazemi, Tohid; Dehghanzadeh, Rashedeh; Motallebnezhad, Morteza; Babaloo, Zohreh

    2016-02-01

    Interleukin-21 (IL-21) is a member of the common γ-chain cytokines with broad pleiotropic actions that affects different immune and nonimmune cells. IL-21 can affect differentiation, proliferation and function of T and B cells; it can also induce the maturation and enhance the cytotoxicity of CD8+ T cells and Natural killer (NK) cells. IL-21 exerts major effects on B-cell activation and differentiation or apoptosis during humoral immune responses and induces differentiation of naïve B cells and memory B cells into plasma cells. IL-21 also affects different subtypes of T cells including T helper-17 (TH17), T follicular helper (TFH) and regulatory T (Treg) cells and thereby promotes the development of autoimmune disorders and inflammatory diseases. Observations have shown that the blockade of IL-21 has therapeutic effects on various autoimmune diseases in animal models. A better understanding of the regulation of cell differentiation and stabilization by IL-21 in the context of each specific autoimmune disease or tissue-specific pathological microenvironments will be helpful in developing novel treatments to control autoimmune diseases. Herein, we review the biological effects of IL-21 on different immune cells and uncover the emerging role of this interesting cytokine in autoimmune diseases.

  1. Ion beam induced luminescence: Relevance to radiation induced bystander effects

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, S.B., E-mail: ahmad.rabilal@gmail.com [Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, Ontario (Canada); McNeill, F.E., E-mail: fmcneill@mcmaster.ca [Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, Ontario (Canada); Byun, S.H., E-mail: soohyun@mcmaster.ca [Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, Ontario (Canada); Prestwich, W.V., E-mail: prestwic@mcmaster.ca [Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, Ontario (Canada); Seymour, C., E-mail: seymouc@mcmaster.ca [Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, Ontario (Canada); Mothersill, C.E., E-mail: mothers@mcmaster.ca [Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, Ontario (Canada)

    2012-10-01

    The aim of this work is quantify the light emitted as a result of charged particle interaction in materials which may be of relevance to radiation induced 'bystander effects' studies. We have developed a system which employs single photon counting to measure the light emitted from samples irradiated under vacuum by a charged particle beam. The system uses a fast photomultiplier tube with a peak cathode response at 420 nm. It has been tested in a proof-of-principle experiment using polystyrene targets. Light output, as a result of irradiation, was measured. The luminescence yield appears to have a non-linear behavior with the incident ion fluence: it rises exponentially to an asymptotic value. The target was irradiated with beam energies varying from 1 to 2 MeV and showed saturation at or before an incident fluence rate of 3 Multiplication-Sign 10{sup 13} H{sup +}/cm{sup 2} s. The average saturation value for the photon output was found to be 40 Multiplication-Sign 10{sup 6} cps. Some measurements were performed using filters to study the emission at specific wavelengths. In the case of filtered light measurements, the photon output was found to saturate at 28 Multiplication-Sign 10{sup 3}, 10 Multiplication-Sign 10{sup 6}, and 35 Multiplication-Sign 10{sup 6} cps for wavelengths of 280 {+-} 5 nm, 320 {+-} 5 nm and 340 {+-} 5 nm respectively. The light output reaches a maximum value because of damage induced in the polymer. Our measurements indicate a 'damage cross section' of the order of 10{sup -14} cm{sup 2}. The average radiant intensity was found to increase at wavelengths of 280 and 320 nm when the proton energy was increased. This was not found to occur at 340 nm. In conclusion, the light emission at specific wavelengths was found to depend upon the incident proton fluence and the proton energy. The wavelengths of the emitted light measured in this study have significance for the understanding of radiation induced bystander effects.

  2. Biomonitoring of benzene and 1,3-butadiene exposure and early biological effects in traffic policemen.

    Science.gov (United States)

    Arayasiri, Manaswee; Mahidol, Chulabhorn; Navasumrit, Panida; Autrup, Herman; Ruchirawat, Mathuros

    2010-09-15

    The objective of this study was to determine benzene and 1,3-butadiene exposure through ambient air and personal air monitoring, as well as through biomarkers of exposure, and to evaluate the potential health risk of exposure through the use of biomarkers of early biological effects in central Bangkok traffic policemen. Ambient air concentrations of benzene and 1,3-butadiene at the roadsides were significantly higher than in police offices used as control sites (pbutadiene (median 3.08 microg/m(3)) than office policemen (median 6.17 microg/m(3) for benzene and 0.37 microg/m(3) for 1,3-butadiene) (pbutadiene metabolite, monohydroxy-butenyl mercapturic acid. Biomarkers of early biological effects, 8-hydroxy-2'-deoxyguanosine in leukocytes (8-OHdG), DNA-strand breaks, and DNA-repair capacity, measured as an increase in gamma ray-induced chromosome aberrations were significantly higher in traffic policemen than controls (pbutadiene exposure were significantly associated with 8-OHdG and olive tail moment at pbutadiene on DNA damage. These results indicated that traffic policemen, who are exposed to benzene and 1,3-butadiene at the roadside in central Bangkok, are potentially at a higher risk for development of diseases such as cancer than office policemen.

  3. Safety assessment and biological effects of a new cold processed SilEmulsion for dermatological purpose.

    Science.gov (United States)

    Raposo, Sara; Salgado, Ana; Gonçalves, Lídia; Pinto, Pedro C; Urbano, Manuela; Ribeiro, Helena M

    2013-01-01

    It is of crucial importance to evaluate the safety profile of the ingredients used in dermatological emulsions. A suitable equilibrium between safety and efficacy is a pivotal concern before the marketing of a dermatological product. The aim was to assess the safety and biological effects of a new cold processed silicone-based emulsion (SilEmulsion). The hazard, exposure, and dose-response assessment were used to characterize the risk for each ingredient. EpiSkin assay and human repeat insult patch tests were performed to compare the theoretical safety assessment to in vitro and in vivo data. The efficacy of the SilEmulsion was studied using biophysical measurements in human volunteers during 21 days. According to the safety assessment of the ingredients, 1,5-pentanediol was an ingredient of special concern since its margin of safety was below the threshold of 100 (36.53). EpiSkin assay showed that the tissue viability after the application of the SilEmulsion was 92 ± 6% and, thus considered nonirritant to the skin. The human studies confirmed that the SilEmulsion was not a skin irritant and did not induce any sensitization on the volunteers, being safe for human use. Moreover, biological effects demonstrated that the SilEmulsion increased both the skin hydration and skin surface lipids.

  4. Safety Assessment and Biological Effects of a New Cold Processed SilEmulsion for Dermatological Purpose

    Directory of Open Access Journals (Sweden)

    Sara Raposo

    2013-01-01

    Full Text Available It is of crucial importance to evaluate the safety profile of the ingredients used in dermatological emulsions. A suitable equilibrium between safety and efficacy is a pivotal concern before the marketing of a dermatological product. The aim was to assess the safety and biological effects of a new cold processed silicone-based emulsion (SilEmulsion. The hazard, exposure, and dose-response assessment were used to characterize the risk for each ingredient. EpiSkin assay and human repeat insult patch tests were performed to compare the theoretical safety assessment to in vitro and in vivo data. The efficacy of the SilEmulsion was studied using biophysical measurements in human volunteers during 21 days. According to the safety assessment of the ingredients, 1,5-pentanediol was an ingredient of special concern since its margin of safety was below the threshold of 100 (36.53. EpiSkin assay showed that the tissue viability after the application of the SilEmulsion was 92 ± 6% and, thus considered nonirritant to the skin. The human studies confirmed that the SilEmulsion was not a skin irritant and did not induce any sensitization on the volunteers, being safe for human use. Moreover, biological effects demonstrated that the SilEmulsion increased both the skin hydration and skin surface lipids.

  5. Adverse biological effects of Milan urban PM looking for suitable molecular markers of exposure

    Directory of Open Access Journals (Sweden)

    Mantecca Paride

    2012-01-01

    Full Text Available The results presented summarise the ones obtained in the coordinated research project Tosca, which extensively analysed the impact of Milan urban PM on human health. The molecular markers of exposure and effects of seasonally and size-fractionated PMs (summer and winter PM10, PM2.5 were investigated in in vitro (human lung cell lines and in vivo (mice systems. The results obtained by the analyses of cytotoxic, pro-inflammatory and genotoxic parameters demonstrate that the biological responses are strongly dependent upon the PM samples seasonal and dimensional variability, that ultimately reflect their chemical composition and source. In fact summer PM10, enriched in crustal elements and endotoxins, was the most cytotoxic and pro-inflammatory fraction, while fine winter PMs induced genotoxic effects and xenobiotic metabolizing enzymes (like CYP1B1 production, likely as a consequence of the higher content in combustion derived particles reach in PAHs and heavy toxic metals. These outcomes outline the need of a detailed knowledge of the PMs physico-chemical composition on a local scale, coupled with the biological hazard directly associated to PM exposure. Apparently this is the only way allowing scientists and police-makers to establish the proper relationships between the respirable PM quantity/quality and the health outcomes described by clinicians and epidemiologists.

  6. Biological actions and molecular effects of resveratrol, pterostilbene, and 3′-hydroxypterostilbene

    Directory of Open Access Journals (Sweden)

    Hui-Yun Tsai

    2017-01-01

    Full Text Available Stilbenes are a class of polyphenolic compounds, naturally found in a wide variety of dietary sources such as grapes, berries, peanuts, red wine, and some medicinal plants. There are several well-known stilbenes including trans-resveratrol, pterostilbene, and 3′-hydroxypterostilbene. The core chemical structure of stilbene compounds is 1,2-diphenylethylene. Recently, stilbenes have attracted extensive attention and interest due to their wide range of health-beneficial effects such as anti-inflammation, -carcinogenic, -diabetes, and -dyslipidemia activities. Moreover, accumulating in vitro and in vivo studies have reported that stilbene compounds act as inducers of multiple cell-death pathways such as apoptosis, cell cycle arrest, and autophagy for chemopreventive and chemotherapeutic agents in several types of cancer cells. The aim of this review is to highlight recent molecular findings and biological actions of trans-resveratrol, pterostilbene, and 3′-hydroxypterostilbene.

  7. Effects of demographic stochasticity on biological community assembly on evolutionary time scales

    KAUST Repository

    Murase, Yohsuke

    2010-04-13

    We study the effects of demographic stochasticity on the long-term dynamics of biological coevolution models of community assembly. The noise is induced in order to check the validity of deterministic population dynamics. While mutualistic communities show little dependence on the stochastic population fluctuations, predator-prey models show strong dependence on the stochasticity, indicating the relevance of the finiteness of the populations. For a predator-prey model, the noise causes drastic decreases in diversity and total population size. The communities that emerge under influence of the noise consist of species strongly coupled with each other and have stronger linear stability around the fixed-point populations than the corresponding noiseless model. The dynamics on evolutionary time scales for the predator-prey model are also altered by the noise. Approximate 1/f fluctuations are observed with noise, while 1/ f2 fluctuations are found for the model without demographic noise. © 2010 The American Physical Society.

  8. The effect of electrostatic microencapsulation process on biological properties of tumour cells.

    Science.gov (United States)

    Li, Nan; Xu, Xiao-Xi; Sun, Guang-Wei; Guo, Xin; Liu, Yang; Wang, Shu-Jun; Zhang, Ying; Yu, Wei-Ting; Wang, Wei; Ma, Xiao-Jun

    2013-01-01

    Microencapsulation is one of the promising strategies to develop a three-dimensional in vivo tumour-mimic model in cancer research. Although previous studies have shown that tumour cells grow well during the microencapsulated culture, it is still not clear whether the electrostatic encapsulation process has an important effect on cellular characteristics. In this study, we investigated cellular response against non-physiological stress factors existing in the electrostatic microencapsulation process, such as the high-voltage electrostatic field, suspension and nutrition-free status. Our results showed that these non-physiological stress factors did not significantly induce cellular apoptosis, and did not affect cellular adhesion and viability. Furthermore, no change was found about invasion and drug resistance of the tumour cells. The normal endoplasmic reticulum function might play a role in maintaining biological properties during the electrostatic microencapsulation process.

  9. Biological effects and photodegradation by TiO(2) of terpenes present in industrial wastewater.

    Science.gov (United States)

    Catanzaro, Irene; Avellone, Giuseppe; Marcì, Giuseppe; Saverini, Marghereth; Scalici, Lea; Sciandrello, Giulia; Palmisano, Leonardo

    2011-01-30

    The aim of this work was to study the biological effects of four monoterpenes, i.e. α-pinene, β-pinene, 3-carene and D-limonene present in the wastewater of a citrus transformation factory. The study was carried out by exposing V79 Chinese hamster cells to single terpene or to the mixture of four terpenes at concentrations corresponding to those in the wastewater evaluated by head space solid phase micro extraction and gas chromatography (HS-SPME-GC) analyses. Treatments with single or combined terpenes similarly affected cell vitality, but only the combined treatments induced the 6-thioguanine resistant mutants. Moreover the photocatalytic degradation of the four terpenes was successfully achieved with the photocatalyst TiO(2) Degussa P25 in both the actual effluent and in synthetic solutions.

  10. Propulsion Induced Effects (PIE) Test Program

    Science.gov (United States)

    Cappuccio, Gelsomina; Won, Mark J.

    1999-01-01

    The Propulsion Induced Effects (PIE) test program is being lead by NASA Ames for Configuration Aerodynamics (CA). Representatives from CA, Technology Integration (TI), Inlet, and the Nozzle ITD's are working with Ames in defining and executing this test program. The objective of the CA 4-14 milestone is to assess the propulsion/airframe integration characteristics of the Technology Concept Airplane (TCA) and design variations using computational and experimental methods. The experimental aspect includes static calibrations, transonic and supersonic wind tunnel testing. The test program will generate a comprehensive database that will include all appropriate wind tunnel corrections, with emphasis placed on establishing the propulsion induced effects on the flight performance of the TCA.

  11. The Effects of Ultrasound on Biological Systems: Site

    Science.gov (United States)

    El-Karmi, Anan M.

    vs. 18 minutes). This demonstrates that the biological effects of ultrasound are influenced by Ca^ {2+}. The larger increases in G _{rm t} and the time constants confirm other studies addressing the role of Ca ^{2+} in potentiating lipid peroxidation by free radicals, and the role of calcium ions in the formation of tight junctions.

  12. Development of radiation biological dosimetry and treatment of radiation-induced damaged tissue

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chul Koo; Kim, Tae Hwan; Lee, Yun Sil [and others

    2000-04-01

    Util now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline(triage) to be able to be treated the victims as fast as possible. We established the apoptotic fragment assay, PCC, comet assay, and micronucleus assay which was the significant relationship between dose and cell damages to evaluate the irradiated dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with chromosome dosimetry and micronucleus assay.

  13. Penetration and propagation into biological matter and biological effects of high-power ultra-wideband pulses: a review.

    Science.gov (United States)

    Schunck, Thérèse; Bieth, François; Pinguet, Sylvain; Delmote, Philippe

    2016-01-01

    Systems emitting ultra-wideband high power microwave (HP/UWB) pulses are developed for military and civilian applications. HP/UWB pulses typically have durations on the order of nanoseconds, rise times of picoseconds and amplitudes around 100 kV m(-1). This article reviews current research on biological effects from HP/UWB exposure. The different references were classified according to endpoints (cardiovascular system, central nervous system, behavior, genotoxicity, teratology …). The article also reviews the aspects of mechanisms of interactions and tissue damage as well as the numerical work that has been done for studying HP/UWB pulse propagation and pulse energy deposition inside biological tissues. The mechanisms proposed are the molecular conformation change, the modification of chemical reaction rates, membrane excitation and breakdown and direct electrical forces on cells or cell constituents, and the energy deposition. As regards the penetration of biological matter and the deposited energy, mainly computations were published. They have shown that the EM field inside the biological matter is strongly modified compared to the incident EM field and that the energy absorption for HP/UWB pulses occurs in the same way as for continuous waves. However, the energy carried by a HP/UWB pulse is very low and the deposited energy is low. The number of published studies dealing with the biological effects is small and only a few pointed out slight effects. It should be further noted that the animal populations used in the studies were not always large, the statistical analyses not always relevant and the teams involved in this research rather limited in number.

  14. Involvement of Nitric Oxide on Bothropoides insularis Venom Biological Effects on Murine Macrophages In Vitro.

    Directory of Open Access Journals (Sweden)

    Ramon R P P B de Menezes

    Full Text Available Viperidae venom has several local and systemic effects, such as pain, edema, inflammation, kidney failure and coagulopathy. Additionally, bothropic venom and its isolated components directly interfere on cellular metabolism, causing alterations such as cell death and proliferation. Inflammatory cells are particularly involved in pathological envenomation mechanisms due to their capacity of releasing many mediators, such as nitric oxide (NO. NO has many effects on cell viability and it is associated to the development of inflammation and tissue damage caused by Bothrops and Bothropoides venom. Bothropoides insularis is a snake found only in Queimada Grande Island, which has markedly toxic venom. Thus, the aim of this work was to evaluate the biological effects of Bothropoides insularis venom (BiV on RAW 264.7 cells and assess NO involvement. The venom was submitted to colorimetric assays to identify the presence of some enzymatic components. We observed that BiV induced H2O2 production and showed proteolytic and phospholipasic activities. RAW 264.7 murine macrophages were incubated with different concentrations of BiV and then cell viability was assessed by MTT reduction assay after 2, 6, 12 and 24 hours of incubation. A time- and concentration-dependent effect was observed, with a tendency to cell proliferation at lower BiV concentrations and cell death at higher concentrations. The cytotoxic effect was confirmed after lactate dehydrogenase (LDH measurement in the supernatant from the experimental groups. Flow cytometry analyses revealed that necrosis is the main cell death pathway caused by BiV. Also, BiV induced NO release. The inhibition of both proliferative and cytotoxic effects with L-NAME were demonstrated, indicating that NO is important for these effects. Finally, BiV induced an increase in iNOS expression. Altogether, these results demonstrate that B. insularis venom have proliferative and cytotoxic effects on macrophages, with

  15. Polarization effects in recoil-induced resonances

    Science.gov (United States)

    Lazebnyi, D. B.; Brazhnikov, D. V.; Taichenachev, A. V.; Yudin, V. I.

    2017-01-01

    The effect of the field polarization on the amplitude of recoil-induced resonances (RIRs) is considered for laser-cooled free atoms and for atoms in a working magneto-optical trap (MOT). For all closed dipole transitions, explicit analytical expressions are obtained for the polarization dependence of the resonance amplitudes within a perturbation theory. Optimal polarization conditions are found for the observation of resonances.

  16. Formalin-induced fluorescence reveals cell shape and morphology in biological tissue samples.

    Directory of Open Access Journals (Sweden)

    Ulrich Leischner

    Full Text Available Ultramicroscopy is a powerful tool to reveal detailed three-dimensional structures of large microscopical objects. Using high magnification, we observed that formalin induces fluorescence more in extra-cellular space and stains cellular structures negatively, rendering cells as dark objects in front of a bright background. Here, we show this effect on a three-dimensional image stack of a hippocampus sample, focusing on the CA1 region. This method, called FIF-Ultramicroscopy, allows for the three-dimensional observation of cellular structures in various tissue types without complicated staining techniques.

  17. Angiogenic effect induced by mineral fibres.

    Science.gov (United States)

    Carbonari, Damiano; Campopiano, Antonella; Ramires, Deborah; Strafella, Elisabetta; Staffolani, Sara; Tomasetti, Marco; Curini, Roberta; Valentino, Matteo; Santarelli, Lory; Amati, Monica

    2011-10-09

    Due to the toxic effect of asbestos, other materials with similar chemical-physical characteristics have been introduced to substitute it. We evaluate the angiogenic effect of certain asbestos substitute fibres such as glass fibres (GFs), ceramic fibres (CFs) and wollastonite fibres (WFs) and then compare angiogenic responses to those induced by crocidolite asbestos fibres (AFs). An in vitro model using human endothelial cells in small islands within a culture matrix of fibroblasts (Angio-Kit) was used to evaluate vessel formation. The release of IL-6, sIL-R6, IL-8, VEGF-A and their soluble receptors, sVEGFR-1, sVEGFR-2, was determined in the conditioning medium of Angio-Kit system after fibre treatment. ROS formation and cell viability were evaluated in cultured endothelial cells (HUVEC). To evaluate the involvement of intracellular mechanisms, EGFR signalling, ROS formation and nuclear factor-κB (NFκB) pathway were then inhibited by incubating HUVEC cells with AG1478, NAC and PDTC respectively, and the cytokine and growth factor release was analyzed in the culture medium after 7 days of fibre incubation. Among the mineral fibres tested, WFs markedly induced blood vessel formation which was associated with release of IL-6 and IL-8, VEGF-A and their soluble receptors. ROS production was observed in HUVEC after WFs treatment which was associated with cell cytotoxicity. The EGFR-induced ERK phosphorylation and ROS-mediated NFκB activation were involved in the cytokine and angiogenic factor release. However, only the EGFR activation was able to induce angiogenesis. The WFs are potential angiogenic agents that can induce regenerative cytokine and angiogenic factor production resulting in the formation of new blood vessels.

  18. Induced effects of advanced oxidation processes.

    Science.gov (United States)

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-02-07

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields.

  19. Essential Oils from Thyme (Thymus vulgaris): Chemical Composition and Biological Effects in Mouse Model.

    Science.gov (United States)

    Vetvicka, Vaclav; Vetvickova, Jana

    2016-12-01

    Thymus species are popular spices and contain volatile oils as main chemical constituents. Recently, plant-derived essential oils are gaining significant attention due to their significant biological activities. Seven different thymus-derived essential oils were compared in our study. First, we focused on their chemical composition, which was followed up by testing their effects on phagocytosis, cytokine production, chemotaxis, edema inhibition, and liver protection. We found limited biological activities among tested oils, with no correlation between composition and biological effects. Similarly, no oils were effective in every reaction. Based on our data, the tested biological use of these essential oils is questionable.

  20. Biologic effects of fenbendazole in rats and mice: a review.

    Science.gov (United States)

    Villar, David; Cray, Carolyn; Zaias, Julia; Altman, Norman H

    2007-11-01

    This review summarizes findings from toxicologic, carcinogenic, immunologic, and metabolic studies on fenbendazole (FBZ). Currently, FBZ is used to treat or prevent pinworm outbreaks in laboratory rodents. Because antiparasitic treatments usually are not part of experimental designs, interactions from the medication on the outcomes of ongoing experiments are a concern. At therapeutic levels, FBZ does not alter the total content of cytochromes P450 but does induce certain hepatic cytochrome P450 isoforms, namely 1A1, 1A2, and 2B1. Although expressed constitutively at low or undetectable levels, these isoforms particularly are known for bioactivating a number of procarcinogens. Lifetime studies in rats have shown that FBZ is not a carcinogen but that it may behave as a tumor promoter when given after certain initiators. Unlike in other animal species, FBZ treatment-associated myelosuppression has not been reported to occur in rodents. The few currently available immunologic studies in mice, including an autoimmune model, have not shown effects on selected immune responses. However, data from other animal species suggest that the ability of B and T lymphocytes to proliferate in the secondary immune response may be suppressed during treatment with FBZ.

  1. Effects of transforming growth interacting factor on biological behaviors of gastric carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Zhong-Liang Hu; Ji-Fang Wen; De-Sheng Xiao; Hui Zhen; Chun-Yan Fu

    2005-01-01

    AIM:Transforming growth interacting factor (TGIF) is an inhibitor of both transforming growth factor β (TGF-β) and retinoid signaling pathways. Moreover, the activation of MAPK pathway can prolong its half-life. However, its role in carcinogenesis is still unknown. Thus we attempted to investigate the effect of TGIF on biologic behaviors of gastric carcinoma cells.METHODS: Gastric carcinoma cell line, SGC-7901, was stably transfected with plasmid PcDNA3.1-TGIF. Western blotting and cell immunohistochemistry screening for the highly expressing clone of TGIF were employed. The growth of transfected cells was investigated by MTT and colonyformation assays, and apoptosis was measured by flow cytometry (FCM) and transmission electron microscopy.Tumorigenicity of the transfectant cells was also analyzed.RESULTS: TGIF had no effect on the proliferation, cell cycle and apoptosis of SGC-7901 cells, but cellular organelles of cells transfected with TGIF were richer than those of vector control or parental cells. Its clones were smaller than the control ones in plate efficiency, and its tumor tissues also had no obvious necrosis compared with the vector control or parental cells. Moreover, TGIF could resist TGF-β mediated growth inhibition.CONCLUSION: TGIF may induce differentiation of stomach neoplastic cells. In addition, TGIF can counteract the growth inhibition induced by TGF-β.

  2. Effect of Process-Oriented Guided-Inquiry Learning on Non-majors Biology Students' Understanding of Biological Classification

    Science.gov (United States)

    Wozniak, Breann M.

    The purpose of this study was to examine the effect of process-oriented guided-inquiry learning (POGIL) on non-majors college biology students' understanding of biological classification. This study addressed an area of science instruction, POGIL in the non-majors college biology laboratory, which has yet to be qualitatively and quantitatively researched. A concurrent triangulation mixed methods approach was used. Students' understanding of biological classification was measured in two areas: scores on pre and posttests (consisting of 11 multiple choice questions), and conceptions of classification as elicited in pre and post interviews and instructor reflections. Participants were Minnesota State University, Mankato students enrolled in BIOL 100 Summer Session. One section was taught with the traditional curriculum (n = 6) and the other section in the POGIL curriculum (n = 10) developed by the researcher. Three students from each section were selected to take part in pre and post interviews. There were no significant differences within each teaching method (p vs. M = 7.330 +/- .330; z =-1.729, p = .084) and the traditional group may have scored higher on the pretest than the posttest (M = 8.333 +/- .333 vs M = 7.333 +/- .333; z = -1.650 , p = .099). Two themes emerged after the interviews and instructor reflections: 1) After instruction students had a more extensive understanding of classification in three areas: vocabulary terms, physical characteristics, and types of evidence used to classify. Both groups extended their understanding, but only POGIL students could explain how molecular evidence is used in classification. 2) The challenges preventing students from understanding classification were: familiar animal categories and aquatic habitats, unfamiliar organisms, combining and subdividing initial groupings, and the hierarchical nature of classification. The POGIL students were the only group to surpass these challenges after the teaching intervention. This

  3. The biological effect of large single doses: a possible role for non-targeted effects in cell inactivation.

    Directory of Open Access Journals (Sweden)

    Marlon R Veldwijk

    Full Text Available BACKGROUND AND PURPOSE: Novel radiotherapy techniques increasingly use very large dose fractions. It has been argued that the biological effect of large dose fractions may differ from that of conventional fraction sizes. The purpose was to study the biological effect of large single doses. MATERIAL AND METHODS: Clonogenic cell survival of MCF7 and MDA-MB-231 cells was determined after direct X-ray irradiation, irradiation of feeder cells, or transfer of conditioned medium (CM. Cell-cycle distributions and the apoptotic sub-G1 fraction were measured by flow cytometry. Cytokines in CM were quantified by a cytokine antibody array. γH2AX foci were detected by immunofluorescence microscopy. RESULTS: The surviving fraction of MCF7 cells irradiated in vitro with 12 Gy showed an 8.5-fold decrease (95% c.i.: 4.4-16.3; P<0.0001 when the density of irradiated cells was increased from 10 to 50×10(3 cells per flask. Part of this effect was due to a dose-dependent transferrable factor as shown in CM experiments in the dose range 5-15 Gy. While no effect on apoptosis and cell cycle distribution was observed, and no differentially expressed cytokine could be identified, the transferable factor induced prolonged expression of γH2AX DNA repair foci at 1-12 h. CONCLUSIONS: A dose-dependent non-targeted effect on clonogenic cell survival was found in the dose range 5-15 Gy. The dependence of SF on cell numbers at high doses would represent a "cohort effect" in vivo. These results support the hypothesis that non-targeted effects may contribute to the efficacy of very large dose fractions in radiotherapy.

  4. Biological Characterization of Gene Response to Insulin-Induced Hypoglycemia in Mouse Retina.

    Directory of Open Access Journals (Sweden)

    Martine Emery

    Full Text Available Glucose is the most important metabolic substrate of the retina and maintenance of normoglycemia is an essential challenge for diabetic patients. Chronic, exaggerated, glycemic excursions could lead to cardiovascular diseases, nephropathy, neuropathy and retinopathy. We recently showed that hypoglycemia induced retinal cell death in mouse via caspase 3 activation and glutathione (GSH decrease. Ex vivo experiments in 661W photoreceptor cells confirmed the low-glucose induction of death via superoxide production and activation of caspase 3, which was concomitant with a decrease of GSH content. We evaluate herein retinal gene expression 4 h and 48 h after insulin-induced hypoglycemia. Microarray analysis demonstrated clusters of genes whose expression was modified by hypoglycemia and we discuss the potential implication of those genes in retinal cell death. In addition, we identify by gene set enrichment analysis, three important pathways, including lysosomal function, GSH metabolism and apoptotic pathways. Then we tested the effect of recurrent hypoglycemia (three successive 4h periods of hypoglycemia spaced by 48 h recovery on retinal cell death. Interestingly, exposure to multiple hypoglycemic events prevented GSH decrease and retinal cell death, or adapted the retina to external stress by restoring GSH level comparable to control situation. We hypothesize that scavenger GSH is a key compound in this apoptotic process, and maintaining "normal" GSH level, as well as a strict glycemic control, represents a therapeutic challenge in order to avoid side effects of diabetes, especially diabetic retinopathy.

  5. Radioprotection, biological effects of the radiations and security in the handling of radioactive material

    CERN Document Server

    Teran, M

    2000-01-01

    The development of the philosophy of the radioprotection is dependent on the understanding of the effects of the radiation in the man. Behind the fact that the radiation is able to produce biological damages there are certain factors with regard to the biological effects of the radiations that determine the boarding of the radioprotection topics.

  6. Microcodium: An extensive review and a proposed non-rhizogenic biologically induced origin for its formation

    Science.gov (United States)

    Kabanov, Pavel; Anadón, Pere; Krumbein, Wolfgang E.

    2008-04-01

    Microcodium has been previously described as a mainly Cenozoic calcification pattern ascribed to various organisms. A review of the available literature and our data reveal two peaks in Microcodium abundance; the Moscovian-early Permian and the latest Cretaceous-Paleogene. A detailed analysis of late Paleozoic and Cenozoic examples leads to the following new conclusions. Typical Microcodium-forming unilayered 'corn-cob' aggregates of elongated grains and thick multilayered (palisade) replacing structures cannot be linked to smaller-grained intracellular root calcifications, as became widely accepted after the work of Klappa [Klappa, C.F., 1979. Calcified filaments in Quaternary calcretes: organo-mineral interactions in the subaerial vadose environment. J. Sediment. Petrol. 49, 955-968.] Typical Microcodium is recognized from the early Carboniferous (with doubtful Devonian reports) to Quaternary as a biologically induced mineralization formed via dissolution/precipitation processes in various aerobic Ca-rich soil and subsoil terrestrial environments. Morphology and δ13C signatures of Microcodium suggest that neither plants, algae, or roots and root-associated mycorrhiza regulate the formation of these fossil structures. Non-recrystallized Microcodium grains basically consist of slender (1.5-4 μm) curved radiating monocrystalline prisms with occasionally preserved hyphae-like morphology. Thin (0.5-3 μm) hypha-like canals can also be observed. These supposed hyphae may belong to actinobacteria. However, thin fungal mycelia cannot be excluded. We propose a model of Microcodium formation involving a mycelial saprotrophic organism responsible for substrate corrosion and associated bacteria capable of consuming acidic metabolites and CaCO 3 reprecipitation into the Microcodium structures.

  7. Effect of Nicotinamide on Experimental Induced Diabetes

    Directory of Open Access Journals (Sweden)

    Q. Alenzi Faris

    2009-03-01

    Full Text Available Insulin dependent diabetes mellitus (IDDM results from irreversible loss of beta cells (β-cells of the pancreas. A Streptozotocin (STZ-induced diabetes in animal model mimics, in some aspects, recent onset IDDM. This study was conducted to investigate the effect of nicotinamide on experimentally-induced IDDM. Thirty Spraque Dawley rats were divided into 3 groups; a control group, a diabetic group which received an intraperitoneal (i.p. injection of 55 mg/kg STZ and a nicotinamide group (1g/kg/day which were dosed orally for 3 days followed by (i.p. STZ (55 mg/kg with the nicotinamide treatment continuing for an additional 14 days. Rats receiving STZ became diabetic after 2 weeks. This diabetic group showed hyperglycemia, and a very low level of C-peptide. Furthermore, pancreatic islets exhibited increased nitric oxide (NO production together with an increased apoptotic index (as detected by TUNEL and electron microscopy. Nicotinamide treatment prevented STZ-induced diabetes, it also antagonized an increase in NO, and inhibited β-cell apoptosis. Fasting blood glucose, serum insulin and serum C-peptide were all within the normal range in the nicotinamide group. The nicotinamide protection of β-cells may be facilitated via inhibition of apoptosis and nitric oxide generation. It is suggested that nicotinamide might be considered an effective agent for the prevention and treatment of IDDM in prediabetic, and early stages, of IDDM.

  8. Controlling the Biological Effects of Spermine Using a Synthetic Receptor

    NARCIS (Netherlands)

    Vial, Laurent; Ludlow, R. Frederick; Leclaire, Julien; Pérez-Fernández, Ruth; Otto, Sijbren

    2006-01-01

    Polyamines play an important role in biology, yet their exact function in many processes is poorly understood. Artificial host molecules capable of sequestering polyamines could be useful tools for studying their cellular function. However, designing synthetic receptors with affinities sufficient to

  9. The Biological Effects of Quadripolar Radiofrequency Sequential Application: A Human Experimental Study

    Science.gov (United States)

    Cornaglia, Antonia Icaro; Faga, Angela; Scevola, Silvia

    2014-01-01

    Abstract Objective: An experimental study was conducted to assess the effectiveness and safety of an innovative quadripolar variable electrode configuration radiofrequency device with objective measurements in an ex vivo and in vivo human experimental model. Background data: Nonablative radiofrequency applications are well-established anti-ageing procedures for cosmetic skin tightening. Methods: The study was performed in two steps: ex vivo and in vivo assessments. In the ex vivo assessments the radiofrequency applications were performed on human full-thickness skin and subcutaneous tissue specimens harvested during surgery for body contouring. In the in vivo assessments the applications were performed on two volunteer patients scheduled for body contouring surgery at the end of the study. The assessment methods were: clinical examination and medical photography, temperature measurement with thermal imaging scan, and light microscopy histological examination. Results: The ex vivo assessments allowed for identification of the effective safety range for human application. The in vivo assessments allowed for demonstration of the biological effects of sequential radiofrequency applications. After a course of radiofrequency applications, the collagen fibers underwent an immediate heat-induced rearrangement and were partially denaturated and progressively metabolized by the macrophages. An overall thickening and spatial rearrangement was appreciated both in the collagen and elastic fibers, the latter displaying a juvenile reticular pattern. A late onset in the macrophage activation after sequential radiofrequency applications was appreciated. Conclusions: Our data confirm the effectiveness of sequential radiofrequency applications in obtaining attenuation of the skin wrinkles by an overall skin tightening. PMID:25244081

  10. The central effect of biological Amines on immunosuppressive effect of restraint stress in rat

    Directory of Open Access Journals (Sweden)

    Zeraati F

    2000-10-01

    Full Text Available The effects of some histaminergic agents were evaluated on stress- induced immunosuppression in immunized nale rats. In rat immunized with sheep red blood cells ( SRBCs. Restraint stress (RS prevented the booster-induced rise in anti-SRBC antibody titre and cell immunity response. Intracerebroventicular (I.C>V injection of histamine (150 µg/rat induced a similar effect with RS. Pretreatment with chlorpheniramine (50 µg/rat reduced the inhibitory effect of Ras on immune function. Also histamine could inhibit the effect of RS on immune function. Also histamine could inhibitory the effect of chlorpheniramine when injected simultaneously. Pretreatment with ranidine (10 µg/rat had not a significant effect. Serotonin (3 µg/rat and dopamine (0.2 µg/rat could reverse the effects of chlorpheniromine when injected with chlorpheniramine (P<0.05. Epinephrine (0.2 µg/rat had not a significant effect. The results indicate that histamine mediates the immunosuppression of restraint stress by influencing the histamine H1 receptor in the brain and this effects of histamine may be modulated by serotoninergic and dopaminergic system.

  11. Nuclear effects in neutrino induced reactions

    CERN Document Server

    Vacas, M J Vicente; Geng, L S; Nieves, J; Valverde, M; Hirenzaki, S

    2008-01-01

    We discuss the relevance of nuclear medium effects in the analysis of some low and medium energy neutrino reactions of current interest. In particular, we study the Quasi-Elastic (QE) process, where RPA correlations and Final State Interactions (FSI) are shown to play a crucial role. We have also investigated the neutrino induced coherent pion production. We find a strong reduction of the cross section due to the distortion of the pion wave function and the modification of the production mechanisms in the nucleus. The sensitivity of the results to the axial $N\\Delta$ coupling $C_5^A(0)$ has been also investigated.

  12. Effects of hypoxia-inducible factor 1 on ischemic cerebrovascular disease

    Institute of Scientific and Technical Information of China (English)

    Yongjie Luo; Xiaoping Wang; Hongbin Sun

    2008-01-01

    Hypoxia-inducible factor I, a nuclear transcription factor, is induced by hypoxia. Hypoxia-inducible factor I, a heterodimeric DNA-binding protein, is composed of hypoxia-inducible factor 1α and hypoxia-inducible factor 1 β subunits, which are family members of the basic helix-loop-helix-PER, ARNT, SIM (PAS) protein. O2 concentration regulates hypoxia-inducible factor 1 activity via this subunit. Hypoxia-inducible factor 1α plays a major role in response to hypoxia and transcriptional activation, as well as in the target gene specificity of the DNA enhancer. Hypoxia-inducible factor 1β cannot be induced by hypoxia. This effect may be due to hypoxia-inducible factor 1 stability and activated conformation due to dimerization. Previous studies have shown that hypoxia-inducible factor 1 mRNA expression increases in the penumbra following ischemia/hypoxia. Hypoxia-inducible factor 1 plays an important role in brain tissue injury alter ischemia by affecting a series of target genes, elevating tolerance to hypoxia, and ensuring survival of neural cells. This article summarizes the structure, function, expression, regulatory mechanisms, biological effects, and significance of hypoxia-inducible factor 1 in patients with ischemic cerebrovascular disease. As a transcriptional activator, hypoxia- inducible factor 1 plays a key role in hypoxic responses by stabilizing the internal environment. It also has been shown to regulate the expression of several genes. The regulatory effects of hypoxia-inducible factor 1 in patients with ischemic cerebrovascular disease have been described. The present review re-examined the concept of brain protection at the level of gene regulation.

  13. Resurrecting the body: Has portmodernism had any effect on biology?

    Science.gov (United States)

    Gilbert, S F

    1995-01-01

    While postmodernism has had very little influence in biology (for reasons discussed in the paper), it can provide a framework for discussing the context in which biology is done. Here, four biological views of the body/self are contrasted: the neural, immunological, genetic, and phenotypic bodies. Each physical view of the body extrapolates into a different model of the body politic, and each posits a different relationship between bodies of knowledge. The neural view of the body models a body politic wherein society is defined by its culture and laws. The genetic view privileges views of polities based on ethnicity and race. The immune body extrapolates into polities that can defend themselves against other such polities. The phenotypic view of the body politic stands in opposition to these three major perspectives and integrates them without giving any predominance. The view of science as a "neural" body of knowledge contends that science is aperspectival and objective. The perspective of the "immune" body is that science exists to defend the interests of its creataors. The genetic view of science is that science is the basis of all culture. The extrapolation of the phenotypic body to science insists upon the utilitarian rationale for scientific interprises. In all instances, the genetic view of the body/body politic/body of science is presently in ascendance.

  14. Host-pathogen systems biology: logical modelling of hepatocyte growth factor and Helicobacter pylori induced c-Met signal transduction

    Directory of Open Access Journals (Sweden)

    Kähne Thilo

    2008-01-01

    Full Text Available Abstract Background The hepatocyte growth factor (HGF stimulates mitogenesis, motogenesis, and morphogenesis in a wide range of tissues, including epithelial cells, on binding to the receptor tyrosine kinase c-Met. Abnormal c-Met signalling contributes to tumour genesis, in particular to the development of invasive and metastatic phenotypes. The human microbial pathogen Helicobacter pylori can induce chronic gastritis, peptic ulceration and more rarely, gastric adenocarcinoma. The H. pylori effector protein cytotoxin associated gene A (CagA, which is translocated via a type IV secretion system (T4SS into epithelial cells, intracellularly modulates the c-Met receptor and promotes cellular processes leading to cell scattering, which could contribute to the invasiveness of tumour cells. Using a logical modelling framework, the presented work aims at analysing the c-Met signal transduction network and how it is interfered by H. pylori infection, which might be of importance for tumour development. Results A logical model of HGF and H. pylori induced c-Met signal transduction is presented in this work. The formalism of logical interaction hypergraphs (LIH was used to construct the network model. The molecular interactions included in the model were all assembled manually based on a careful meta-analysis of published experimental results. Our model reveals the differences and commonalities of the response of the network upon HGF and H. pylori induced c-Met signalling. As another important result, using the formalism of minimal intervention sets, phospholipase Cγ1 (PLCγ1 was identified as knockout target for repressing the activation of the extracellular signal regulated kinase 1/2 (ERK1/2, a signalling molecule directly linked to cell scattering in H. pylori infected cells. The model predicted only an effect on ERK1/2 for the H. pylori stimulus, but not for HGF treatment. This result could be confirmed experimentally in MDCK cells using a specific

  15. Overlapped optics induced perfect coherent effects

    Science.gov (United States)

    Li, Jian Jie; Zang, Xiao Fei; Mao, Jun Fa; Tang, Min; Zhu, Yi Ming; Zhuang, Song Lin

    2013-12-01

    For traditional coherent effects, two separated identical point sources can be interfered with each other only when the optical path difference is integer number of wavelengths, leading to alternate dark and bright fringes for different optical path difference. For hundreds of years, such a perfect coherent condition seems insurmountable. However, in this paper, based on transformation optics, two separated in-phase identical point sources can induce perfect interference with each other without satisfying the traditional coherent condition. This shifting illusion media is realized by inductor-capacitor transmission line network. Theoretical analysis, numerical simulations and experimental results are performed to confirm such a kind of perfect coherent effect and it is found that the total radiation power of multiple elements system can be greatly enhanced. Our investigation may be applicable to National Ignition Facility (NIF), Inertial Confined Fusion (ICF) of China, LED lighting technology, terahertz communication, and so on.

  16. Esomeprazole induced galactorrhea: a novel side effect.

    Science.gov (United States)

    Pipaliya, Nirav; Solanke, Dattatray; Rathi, Chetan; Patel, Ruchir; Ingle, Meghraj; Sawant, Prabha

    2016-02-01

    Proton pump inhibitors (PPIs) are one of the most frequently prescribed medications across the globe. Esomeprazole is the S-isomer of omeprazole, and it is currently the most widely prescribed PPI. The safety profile of esomeprazole is extremely favorable with only minor side effects, like headache and diarrhea, that are encountered in day to day practice. We report a case of a young female with symptoms of gastroesophageal reflux disease who developed galactorrhea after starting esomeprazole therapy. Resolution of galactorrhea after stopping the drug and self-rechallenge by the patient herself with reappearance of galactorrhea confirmed the culprit to be esomeprazole only. We postulate that esomeprazole may have a mild inhibitory effect on CYP3A4, which leads to decreased metabolism of estrogen, thereby increasing serum estrogen levels. Estrogen causes stimulation and production of prolactin release, which results in development of galactorrhea. This is the first case of esomeprazole induced galactorrhea, to the best of our knowledge.

  17. Biological effects of in vitro THz radiation exposure in human foetal fibroblasts.

    Science.gov (United States)

    De Amicis, Andrea; Sanctis, Stefania De; Cristofaro, Sara Di; Franchini, Valeria; Lista, Florigio; Regalbuto, Elisa; Giovenale, Emilio; Gallerano, Gian Piero; Nenzi, Paolo; Bei, Roberto; Fantini, Massimo; Benvenuto, Monica; Masuelli, Laura; Coluzzi, Elisa; Cicia, Cristina; Sgura, Antonella

    2015-11-01

    In recent years, terahertz (THz) radiation has been widely used in a variety of applications: medical, security, telecommunications and military areas. However, few data are available on the biological effects of this type of electromagnetic radiation and the reported results, using different genetic or cellular assays, are quite discordant. This multidisciplinary study focuses on potential genotoxic and cytotoxic effects, evaluated by several end-points, associated with THz radiation. For this purpose, in vitro exposure of human foetal fibroblasts to low frequency THz radiation (0.1-0.15THz) was performed using a Compact Free Electron Laser. We did not observe an induction of DNA damage evaluated by Comet assay, phosphorylation of H2AX histone or telomere length modulation. In addiction, no induction of apoptosis or changes in pro-survival signalling proteins were detected. Moreover, our results indicated an increase in the total number of micronuclei and centromere positive micronuclei induction evaluated by CREST analysis, indicating that THz radiation could induce aneugenic rather than clastogenic effects, probably leading to chromosome loss. Furthermore, an increase of actin polymerization observed by ultrastructural analysis after THz irradiation, supports the hypothesis that an abnormal assembly of spindle proteins could lead to the observed chromosomal malsegregation.

  18. Biological effects of radon in Drosophila; Efectos biologicos del radon en Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel P, A.E.; Tavera D, L.; Cruces M, M.P.; Arceo M, C.; Rosa D, M.E. de la

    1992-04-15

    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  19. Effect of leguminous cover crops on soil biological activity in pots of Citrus unshiu Marcovitch

    Directory of Open Access Journals (Sweden)

    Cristina Abbate

    2011-02-01

    Full Text Available Little is known about the effects of cover crops on soil properties in citrus orchards. To fill this gap, this work was aimed to determine the effects of leguminous cover crops on the chemical and biological properties of the soil and on the structure of the microbial community in pots of Citrus unshiu (Marcovitch. After amendment with cover crops, an increase in total organic C (TOC, total extractable C (TEC, and total N (TN contents were observed irrespective of the type of soil. Substrate induced respiration (SIR, and potentially mineralisable nitrogen (PMN, tested three times in one year, were higher in soils with leguminous cover crops while no significant differences were observed in protease and deaminase activity. The effect on the chemical and biochemical properties of the soil was more evident in plots containing Trifolium subterraneum. No changes were observed in the microbial communities studied (_-proteobacteria, _-proteobacteria, nitrogen-fixing, and ammonia oxidizers irrespective of the kind of cover crop or type of soil, neither were variations noted during the trial.

  20. Adverse effects of biologics: a network meta-analysis and Cochrane overview

    DEFF Research Database (Denmark)

    Singh, J. A.; Wells, G. A.; Christensen, Robin Daniel Kjersgaard

    2011-01-01

    Background Biologics are used for the treatment of rheumatoid arthritis and many other conditions. While the efficacy of biologics has been established, there is uncertainty regarding the adverse effects of this treatment. Since serious risks such as tuberculosis (TB) reactivation, serious...

  1. Gender Inequality in Biology Classes in China and Its Effects on Students' Short-Term Outcomes

    Science.gov (United States)

    Liu, Ning; Neuhaus, Birgit

    2014-01-01

    This study investigated gender inequality in biology lessons and analysed the effects of the observed inequality on students' short-term knowledge achievement, situational interest and students' evaluation of teaching (SET). Twenty-two biology teachers and 803 7th-grade students from rural and urban classrooms in China participated in the study.…

  2. A Study of the Probe Effect on the Apparent Image of Biological Atomic Force Microscopy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The probe effect on the apparent image of biological atomic force microscopy was explored in this study, and the potential of AFM in conformational study of gene related biological processes was illustrated by the specific nanostructural information of a new antitumor drug binding to DNA.

  3. Indirect ecological effects in invaded landscapes: Spillover and spillback from biological control agents to native analogues

    Science.gov (United States)

    Biological control remains an effective option for managing large-scale weed problems in natural areas. The predation or parasitism of biological control agents by other species present in the introduced range (biotic resistance) is well studied and is often cited as the cause for a lack of establis...

  4. Biological Effects of TMPRSS2/ERG Fusion Isoforms in Human Prostate Cancer

    Science.gov (United States)

    2009-02-01

    TITLE: Biological Effects of TMPRSS2/ERG Fusion Isoforms in Human Prostate Cancer PRINCIPAL INVESTIGATOR: Jianghua Wang, M.D...6 JAN 2009 / / /4. TITLE AND SUBTITLE Biological Effects of TMPRSS2/ERG Fusion Isoforms in Human Prostate Cancer 5a. CONTRACT NUMBER W81XWH...quantitative RT-PCR arrays we have identified candidate mediators of these phenotypic effects . We propose to extend these studies to primary prostate epithelial

  5. The Biological Effectiveness of Accelerated Particles for the Induction of Chromosome Damage: Track Structure Effects and Cytogenetic Signatures of High-LET Exposure

    Science.gov (United States)

    George, K.; Hada, M.; Chappell, L.; Cucinotta, F. A.

    2012-01-01

    Track structure models predict that at a fixed value of LET, particles with lower charge number, Z will have a higher biological effectiveness compared to particles with a higher Z. In this report we investigated how track structure effects induction of chromosomal aberration in human cells. Human lymphocytes were irradiated in vitro with various energies of accelerated iron, silicon, neon, or titanium ions and chromosome damage was assessed in using three color FISH chromosome painting in chemically induced PCC samples collected a first cell division post irradiation. The LET values for these ions ranged from 30 to 195 keV/micrometers. Of the particles studied, Neon ions have the highest biological effectiveness for induction of total chromosome damage, which is consistent with track structure model predictions. For complex-type exchanges 64 MeV/ u Neon and 450 MeV/u Iron were equally effective and induced the most complex damage. In addition we present data on chromosomes exchanges induced by six different energies of protons (5 MeV/u to 2.5 GeV/u). The linear dose response term was similar for all energies of protons suggesting that the effect of the higher LET at low proton energies is balanced by the production of nuclear secondaries from the high energy protons. All energies of protons have a much higher percentage of complex-type chromosome exchanges than gamma rays, signifying a cytogenetic signature for proton exposures.

  6. Integrated Network Analysis and Effective Tools in Plant Systems Biology

    Directory of Open Access Journals (Sweden)

    Atsushi eFukushima

    2014-11-01

    Full Text Available One of the ultimate goals in plant systems biology is to elucidate the genotype-phenotype relationship in plant cellular systems. Integrated network analysis that combines omics data with mathematical models has received particular attention. Here we focus on the latest cutting-edge computational advances that facilitate their combination. We highlight (1 network visualization tools, (2 pathway analyses, (3 genome-scale metabolic reconstruction, and (4 the integration of high-throughput experimental data and mathematical models. Multi-omics data that contain the genome, transcriptome, proteome, and metabolome and mathematical models are expected to integrate and expand our knowledge of complex plant metabolisms.

  7. Biological influences on hydrogen effects in steel in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Edyvean, R.G.J.; Benson, J.; Thomas, C.J. [Univ. of Sheffield (United Kingdom). Dept. of Chemical and Process Engineering; Beech, I.B. [Univ. of Portsmouth (United Kingdom). Dept. of Chemistry; Videla, H.A. [Univ. of La Plata (Argentina). Dept. of Chemistry

    1997-08-01

    Conditions conducive to the enhancement of corrosion-fatigue crack growth and of hydrogen embrittlement can be generated by the activity of sulfate-reducing bacterial. However, while the presence of bacteria encourages more hydrogen entry into susceptible metals when compared to similar levels of sulfide generated abiotically, corrosion-fatigue crack growth rates are slower in biological environments than the equivalent abiological environment. These results are discussed in the light of recent findings on the enhancement and inhibition of surface corrosion by bacterial biofilms.

  8. Review: Biological fertilization and its effect on medicinal and aromatic plants

    Directory of Open Access Journals (Sweden)

    KHALID ALI KHALID

    2012-11-01

    Full Text Available Khalid KA. 2012. Review: Biological fertilization and its effect on medicinal and aromatic plants. Nusantara Bioscience 4: 124-133. The need of increase food production in the most of developing countries becomes an ultimate goal to meet the dramatic expansion of their population. However, this is also associated many cases with a reduction of the areas of arable land which leaves no opinion for farmers but to increase the yield per unit area through the use of improved the crop varieties, irrigation and fertilization. The major problem facing the farmer is that he cannot afford the cost of these goods, particularly that of chemical fertilizers. Moreover, in countries where fertilizer production relies on imported raw materials, the costs are even higher for farmer and for the country. Besides this, chemical fertilizers production and utilization are considered as air, soil and water polluting operations. The utilization of bio-fertilizers is considered today by many scientists as a promising alternative, particularly for developing countries. Bio-fertilization is generally based on altering the rhizosphere flora, by seed or soil inoculation with certain organisms, capable of inducing beneficial effects on a compatible host. Bio-fertilizers mainly comprise nitrogen fixes (Rhizobium, Azotobacter, Azospirellum, Azolla or blue green algae, phosphate dissolvers or vesicular-arbuscular mycorrhizas and silicate bacteria. These organisms may affect their host plant by one or more mechanisms such as nitrogen fixation, production of growth promoting substances or organic acids, enhancing nutrient uptake or protection against plant pathogens. Growth characters, yield, essential oil and its constituents, fixed oil, carbohydrates, soluble sugars and nutrients contents of medicinal and aromatic plants were significantly affected by adding the biological fertilizers compared with recommended chemical fertilizers.

  9. Chemopreventive effect of natural dietary compounds on xenobiotic-induced toxicity

    Directory of Open Access Journals (Sweden)

    Jia-Ching Wu

    2017-01-01

    Full Text Available Contaminants (or pollutants that affect human health have become an important issue, spawning a myriad of studies on how to prevent harmful contaminant-induced effects. Recently, a variety of biological functions of natural dietary compounds derived from consumed foods and plants have been demonstrated in a number of studies. Natural dietary compounds exhibited several beneficial effects for the prevention of disease and the inhibition of chemically-induced carcinogenesis. Contaminant-induced toxicity and carcinogenesis are mostly attributed to the mutagenic activity of reactive metabolites and the disruption of normal biological functions. Therefore, the metabolic regulation of hazardous chemicals is key to reducing contaminant-induced adverse health effects. Moreover, promoting contaminant excretion from the body through Phase I and II metabolizing enzymes is also a useful strategy for reducing contaminant-induced toxicity. This review focuses on summarizing the natural dietary compounds derived from common dietary foods and plants and their possible mechanisms of action in the prevention/suppression of contaminant-induced toxicity.

  10. Boletus edulis biologically active biopolymers induce cell cycle arrest in human colon adenocarcinoma cells.

    Science.gov (United States)

    Lemieszek, Marta Kinga; Cardoso, Claudia; Ferreira Milheiro Nunes, Fernando Hermínio; Ramos Novo Amorim de Barros, Ana Isabel; Marques, Guilhermina; Pożarowski, Piotr; Rzeski, Wojciech

    2013-04-25

    The use of biologically active compounds isolated from edible mushrooms against cancer raises global interest. Anticancer properties are mainly attributed to biopolymers including mainly polysaccharides, polysaccharopeptides, polysaccharide proteins, glycoproteins and proteins. In spite of the fact that Boletus edulis is one of the widely occurring and most consumed edible mushrooms, antitumor biopolymers isolated from it have not been exactly defined and studied so far. The present study is an attempt to extend this knowledge on molecular mechanisms of their anticancer action. The mushroom biopolymers (polysaccharides and glycoproteins) were extracted with hot water and purified by anion-exchange chromatography. The antiproliferative activity in human colon adenocarcinoma cells (LS180) was screened by means of MTT and BrdU assays. At the same time fractions' cytotoxicity was examined on the human colon epithelial cells (CCD 841 CoTr) by means of the LDH assay. Flow cytometry and Western blotting were applied to cell cycle analysis and protein expression involved in anticancer activity of the selected biopolymer fraction. In vitro studies have shown that fractions isolated from Boletus edulis were not toxic against normal colon epithelial cells and in the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells. The best results were obtained in the case of the fraction designated as BE3. The tested compound inhibited cancer cell proliferation which was accompanied by cell cycle arrest in the G0/G1-phase. Growth inhibition was associated with modulation of the p16/cyclin D1/CDK4-6/pRb pathway, an aberration of which is a critical step in the development of many human cancers including colon cancer. Our results indicate that a biopolymer BE3 from Boletus edulis possesses anticancer potential and may provide a new therapeutic/preventive option in colon cancer chemoprevention.

  11. Induced hemocompatibility and bone formation as biological scaffold for cell therapy implant

    Directory of Open Access Journals (Sweden)

    Keng-Liang Ou

    2016-06-01

    Full Text Available Although stem cells can become almost any type of specialized cell in the human body and may have the potential to generate replacement cells for tissues and organs, the transplantation of these cells are hindered by immune rejection and teratoma formation. However, scientists have found a promising solution for these problems-they have discovered the ability to isolate stem cells from a patient’s umbilical cord blood or bone marrow. Even more recently, small stem cells, such as spore-like stem cells, Blastomere-Like Stem Cells (BLSCs, and Very-Small Embryonic-Like stem cells (VSELs isolated directly from the peripheral blood have beeninvestigated as a novel approach to stem cell therapy as they can be isolated directly from the peripheral blood. A newly-discovered population of multipotent stem cells in this class has been dubbed StemBios (SB cells. The potential therapeutic uses of such stem cells have been explored in many ways, one of which includes dental remodeling and construction. Using adult stem cells, scientists have engineered and cultivated teeth in mice that may one day be used for human implantation.It follows that such regeneration may be possible, to a certain degree, in human patients as well. This idea leads to the present study on the effect of SB cell therapy on early osseointegrationof dental implants. Titanium (Ti dental implants have been proven to be a reliable and predictable treatment for restoration of edentulous regions. The osseointegration process can be described in two stages: primary stability (mechanical stability and secondary stability (biological stability. The mechanical stabilization of the implant reflects the interaction between the bone density and the features of the implant designs and can be determined after implant insertion. Alternatively,the biological stabilization of the implant is a physiologic healing process. It is couple to the biological interaction between the external surface of the

  12. Biological effects of an impulse current according to laboratory researches of electroshock devices

    Directory of Open Access Journals (Sweden)

    Grigoryev О.A.

    2013-12-01

    Full Text Available The federal law "About Weapons" permits the use of electroshock devices if they are safe for people. We developed requirements for the procedure medical-biological testing on the safety of electroshock devices. We did an experimental study assessing medical-biological safety of electroshock devices. The assessment is based on a point system, which use ranges of biological effects. The experiments were performed in rabbits. We used 13 electroshock devices with different characteristics. Electroshock devices were made in Russia. We found that the response of a biological object to inrush current included convulsions, respiratory and cardiac activity. We analyzed the biological effects of pulsed current electroshock device obtained in experimental conditions. It is concluded that the characteristic clinical and physiological response to the action of electric current is pulsepolyparametric and depending on a combination of characteristics and condition of the electric impulse influence object.

  13. Clinical, biological, histological features and treatment of oral mucositis induced by radiation therapy: a literature review; Aspectos clinicos, biologicos, histopatologicos e tratamentos propostos para a mucosite oral induzida por radioterapia: revisao da literatura

    Energy Technology Data Exchange (ETDEWEB)

    Bonan, Paulo Rogerio Ferreti [Universidade Estadual de Montes Claros e Faculdades Unidas do Norte de Minas, MG (Brazil). Dept. de Odontologia]. E-mail: pbonan@yahoo.com; Lopes, Marcio Ajudarte; Almeida, Oslei Paes de [Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP (Brazil). Faculdade de Odontologia. Dept. de Diagnostico Oral; Alves, Fabio de Abreu [Hospital do Cancer AC Camargo, Sao Paulo, SP (Brazil). Dept. de Estomatologia

    2005-07-01

    The oral mucositis is a main side effect of radiotherapy on head and neck, initiating two weeks after the beginning of the treatment. It is characterized by sensation of local burning to intense pain, leading in several cases, to the interruption of the treatment. The purpose of this work is to review the main published studies that discuss the clinical, biological and histopathological features of oral mucositis induced by radiation therapy and to describe the main approaches recommended to prevent or to treat it. Although the clinical features of mucositis are intensively described in the literature, few studies address the histopathological alterations in oral mucositis and only recently, its biological processes have been investigated. The biological mechanisms involved in the radiation tissue damage have been only recently discussed and there is no consensus among treatment modalities. Yet, the progressive knowledge in the histopathology and biological characteristics of oral mucositis probably will lead to more effective in prevention and control strategies. (author)

  14. Effects of Oxidative Stress on Mesenchymal Stem Cell Biology

    Science.gov (United States)

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) are multipotent stem cells present in most fetal and adult tissues. Ex vivo culture-expanded MSCs are being investigated for tissue repair and immune modulation, but their full clinical potential is far from realization. Here we review the role of oxidative stress in MSC biology, as their longevity and functions are affected by oxidative stress. In general, increased reactive oxygen species (ROS) inhibit MSC proliferation, increase senescence, enhance adipogenic but reduce osteogenic differentiation, and inhibit MSC immunomodulation. Furthermore, aging, senescence, and oxidative stress reduce their ex vivo expansion, which is critical for their clinical applications. Modulation of sirtuin expression and activity may represent a method to reduce oxidative stress in MSCs. These findings have important implications in the clinical utility of MSCs for degenerative and immunological based conditions. Further study of oxidative stress in MSCs is imperative in order to enhance MSC ex vivo expansion and in vivo engraftment, function, and longevity. PMID:27413419

  15. Biological methanogenesis and the CO2 greenhouse effect

    Science.gov (United States)

    Guthrie, P. D.

    1986-01-01

    It is well established that plants tend to increase net photosynthesis under increased carbon dioxide. It is also well established that a large fraction of atmospheric methane is produced by microbial metabolism of organic sediments in paddies and freshwater wetlands, where a major source of organic debris is local plant growth. As CO2 increases, it may lead to increased methane production and a resulting enhancement of the expected greenhouse warming. A rough estimate of the present rate of this biologically mediated feedback on the climate system indicates that it might account for as much as 30 percent of the observed methane increase and speed up the greenhouse forcing by as much as 15 percent.

  16. Purification and biological effects of a C-type lectin isolated from Bothrops moojeni

    Directory of Open Access Journals (Sweden)

    PSF Barbosa

    2010-01-01

    Full Text Available Snake venom proteins from the C-type lectin family have very distinct biological activities despite their highly conserved primary structure, which is homologous to the carbohydrate recognition region of true C-type lectins. We purified a lectin-like protein (BmLec from Bothrops moojeni venom and investigated its effect on platelet aggregation, insulin secretion, antibacterial activity, and isolated kidney cells. The BmLec was purified using two chromatographic steps: affinity chromatography and reverse phase high performance liquid chromatography (HPLC. BmLec showed a dose-dependent platelet aggregation and significantly decreased the bacterial growth rate in approximately 15%. During scanning electron microscopy, the profile of Xanthomonas axonopodis pv. passiflorae treated with lectin disclosed a high vesiculation and membrane rupture. BmLec induced a strong and significant increase in insulin secretion at 2.8 and 16.7 mM glucose concentrations, and this effect was seen in the presence of EGTA in both experiments. BmLec (10 µg/mL increased the perfusion pressure, renal vascular resistance and urinary flow. The glomerular filtration rate and percentages of sodium, potassium and chloride tubular transport were reduced at 60 minutes of perfusion. Renal alterations caused by BmLec were completely inhibited by indomethacin in all evaluated parameters. In conclusion, the C-type lectin isolated from Bothrops moojeni affected platelet aggregation, insulin secretion, antibacterial activity and isolated kidney function.

  17. Biological Effects of Potato Plants Transformation with Glucose Oxidase Gene and their Resistance to Hyperthermia

    Directory of Open Access Journals (Sweden)

    O.I. Grabelnych

    2017-02-01

    Full Text Available It is known that regulation of plant tolerance to adverse environmental factors is connected with short term increase of the concentration of endogenous reactive oxygen species (ROS, which are signalling molecules for the induction of protective mechanisms. Introduction and expression of heterologous gox gene, which encodes glucose oxidase enzyme in plant genome, induce constantly higher content of hydrogen peroxide in plant tissues. It is not known how the introduction of native or modified gox gene affects the plant resistance to high-temperature stress, one of the most commonly used model for the study of stress response and thermal tolerance. In this study, we investigated biological effects of transformation and evaluated the resistance to temperature stress of potato plants with altered levels of glucose oxidase expression. Transformation of potato plants by gox gene led to the more early coming out from tuber dormancy of transformed plants and slower growth rate. Transformants containing the glucose oxidase gene were more sensitive to lethal thermal shock (50 °C, 90 min than the transformant with the empty vector (pBI or untransformed plants (CK. Pre-heating of plants at 37 °C significantly weakened the damaging effect of lethal thermal shock. This attenuation was more significant in the non-transformed plants.

  18. Dehydroepiandrosterone biosynthesis, metabolism, biological effects, and clinical use (analytical review

    Directory of Open Access Journals (Sweden)

    N. P. Goncharov

    2015-04-01

    Full Text Available The review presents the fundamental information on the metabolism of dehydroepiandrosterone (DHEA, its biological role and possibilities of its use for replacement therapy. There were studied species differences in the synthesis of DHEA in the adrenal cortex. It was found that DHEA and DHEA-sulfate are produced only by the adrenal glands of humans and monkeys, including lower monkeys. Their biosynthesis involves the following steps: cholesterol → pregnenolone → 17-hydroxypregnenolone → DHEA. The adrenal glands of other species, including rats and mice do not synthesize DHEA. At the same time, in certain brain structures not only in man and monkey, but also in other animals DHEA and its precursors are synthesized de novo which are denoted as neurosteroids. It was demonstrated that Purkinje cells which play an important role in memory formation and learning are mainly place neurosteroid formation in mammals and other vertebrates. To establish the relationship of age and the level of DHEA and other steroids we studied the dynamics of their levels at different periods of postnatal development of people. Peak concentration DHEA observed in aged 25–30 years. In the interval from 20 to 90 years in humans the level falls approximately for 90 %. Cortisol levels in blood does not vary with age, leading to an imbalance in the ratio of cortisol/DHEA. Proved a major role of DHEA as a source (precursor for the synthesis of biologically active sex steroids – testosterone, estradiol and estrone in peripheral tissues. This review presents the bioavailability of DHEA in various physiological and pathological processes in humans and animals. In animal experiments has shown a higher bioavailability of DHEA in transdermal administration as compared with oral administration as in this case there is no steroid rapid inactivation in the liver during its first passage. According to recent studies there is a pronounced dependence of bioavailability of DHEA

  19. Dehydroepiandrosterone biosynthesis, metabolism, biological effects, and clinical use (analytical review

    Directory of Open Access Journals (Sweden)

    N. P. Goncharov

    2015-01-01

    Full Text Available The review presents the fundamental information on the metabolism of dehydroepiandrosterone (DHEA, its biological role and possibilities of its use for replacement therapy. There were studied species differences in the synthesis of DHEA in the adrenal cortex. It was found that DHEA and DHEA-sulfate are produced only by the adrenal glands of humans and monkeys, including lower monkeys. Their biosynthesis involves the following steps: cholesterol → pregnenolone → 17-hydroxypregnenolone → DHEA. The adrenal glands of other species, including rats and mice do not synthesize DHEA. At the same time, in certain brain structures not only in man and monkey, but also in other animals DHEA and its precursors are synthesized de novo which are denoted as neurosteroids. It was demonstrated that Purkinje cells which play an important role in memory formation and learning are mainly place neurosteroid formation in mammals and other vertebrates. To establish the relationship of age and the level of DHEA and other steroids we studied the dynamics of their levels at different periods of postnatal development of people. Peak concentration DHEA observed in aged 25–30 years. In the interval from 20 to 90 years in humans the level falls approximately for 90 %. Cortisol levels in blood does not vary with age, leading to an imbalance in the ratio of cortisol/DHEA. Proved a major role of DHEA as a source (precursor for the synthesis of biologically active sex steroids – testosterone, estradiol and estrone in peripheral tissues. This review presents the bioavailability of DHEA in various physiological and pathological processes in humans and animals. In animal experiments has shown a higher bioavailability of DHEA in transdermal administration as compared with oral administration as in this case there is no steroid rapid inactivation in the liver during its first passage. According to recent studies there is a pronounced dependence of bioavailability of DHEA

  20. Studies of biological effects of fluoride stannous and UV short in Escherichia coli BH110

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira da C, R., E-mail: rogercosta1@hotmail.com [Federal Institute of Education, Science and Technology of Goias, Campus Uruacu, Rua Formosa Qd 28 e 29, Loteamento Santana, 76400-000 Uruacu, Goias (Brazil)

    2015-10-15

    Full text: The amount of UV rays on the Earth's surface has increased due to depletion of the ozone layer, and this has worried society, since these radiation although not considered ionizing can cause damage to biological membrane and especially to DNA. The DNA has cell repair mechanisms that can work in lesions caused by electromagnetic radiation such as ultraviolet -short (UV C)and agents causing oxidative stress, such as tin salts. Among the repair mechanisms can highlight the adaptive repair, which consists of smaller doses to cells pre-exposure of an oxidizing agent, and when these cells are exposed to larger doses of the agent even if there is a reduction in mortality rate which leads to complete that repair mechanisms are activated in the pre-exposure reducing cell mortality. Several publications have shown the genotoxic effects of stannous salts such as stannous fluoride (SnF{sub 2}), which shows the importance of the study, since these salts are widely used in industry as components in toothpastes and mouthwashes. So we check whether pretreatment with UV C is able to induce adaptive response reducing the cytotoxic effects caused by exposure of the strains to SnF{sub 2}. We use a strain of Escherichia coli BH110 (BH110 E. coli) deficient in three genes (fpg, nfo and xth) involved in the excision repair bases. To verify the induction of adaptive response to strain BH110 was exposed to various doses of UV C and then treated with SnF{sub 2} a concentration of 110 u M. Our results showed that the LD10 of strain BH110 is 20 J/m{sup 2} and pre-treatment with UV C does not seem to induce adaptive repair in BH110 strains. (Author)

  1. Sequestration of mitochondrial iron by silica particles initiates a biological effect.

    Science.gov (United States)

    Summary Inhalation of particulate matter has presented a challenge to human health for thousands of years. The underlying mechanism for biological effect following particle exposure is incompletely understood. We tested the postulate that particle sequestration of cell and mit...

  2. Effects of low power microwave radiation on biological activity of Collagenase enzyme and growth rate of S. Cerevisiae yeast

    Science.gov (United States)

    Alsuhaim, Hamad S.; Vojisavljevic, Vuk; Pirogova, E.

    2013-12-01

    Recently, microwave radiation, a type/subset of non-ionizing electromagnetic radiation (EMR) has been widely used in industry, medicine, as well as food technology and mobile communication. Use of mobile phones is rapidly growing. Four years from now, 5.1 billion people will be mobile phone users around the globe - almost 1 billion more mobile users than the 4.3 billion people worldwide using them now. Consequently, exposure to weak radiofrequency/microwave radiation generated by these devices is markedly increasing. Accordingly, public concern about potential hazards on human health is mounting [1]. Thermal effects of radiofrequency/microwave radiation are very well-known and extensively studied. Of particular interest are non-thermal effects of microwave exposures on biological systems. Nonthermal effects are described as changes in cellular metabolism caused by both resonance absorption and induced EMR and are often accompanied by a specific biological response. Non-thermal biological effects are measurable changes in biological systems that may or may not be associated with adverse health effects. In this study we studied non-thermal effects of low power microwave exposures on kinetics of L-lactate dehydrogenase enzyme and growth rate of yeast Saccharomyces Cerevisiae strains type II. The selected model systems were continuously exposed to microwave radiation at the frequency of 968MHz and power of 10dBm using the designed and constructed (custom made) Transverse Electro-Magnetic (TEM) cell [2]. The findings reveal that microwave radiation at 968MHz and power of 10dBm inhibits L-lactate dehydrogenase enzyme activity by 26% and increases significantly (15%) the proliferation rate of yeast cells.

  3. Spacetime Deformation-Induced Inertia Effects

    Directory of Open Access Journals (Sweden)

    Gagik Ter-Kazarian

    2012-01-01

    Full Text Available We construct a toy model of spacetime deformation-induced inertia effects, in which we prescribe to each and every particle individually a new fundamental constituent of hypothetical 2D, so-called master space (MS, subject to certain rules. The MS, embedded in the background 4D-spacetime, is an indispensable companion to the particle of interest, without relation to every other particle. The MS is not measurable directly, but we argue that a deformation (distortion of local internal properties of MS is the origin of inertia effects that can be observed by us. With this perspective in sight, we construct the alternative relativistic theory of inertia. We go beyond the hypothesis of locality with special emphasis on distortion of MS, which allows to improve essentially the standard metric and other relevant geometrical structures referred to a noninertial frame in Minkowski spacetime for an arbitrary velocities and characteristic acceleration lengths. Despite the totally different and independent physical sources of gravitation and inertia, this approach furnishes justification for the introduction of the weak principle of equivalence (WPE, that is, the universality of free fall. Consequently, we relate the inertia effects to the more general post-Riemannian geometry.

  4. Glyphosate accumulation, translocation, and biological effects in Coffea arabica after single and multiple exposures

    DEFF Research Database (Denmark)

    Schrübbers, Lars Christoph; Valverde, Bernal E.; Strobel, Bjarne W.

    2016-01-01

    . In this study, we investigated glyphosate translocation over time, and its concentration and biological effects after single and multiple simulated spray-drift exposures. Additionally, shikimic acid/glyphosate ratios were used as biomarkers for glyphosate binding to its target enzyme.Four weeks after...... of application, however, was more important regarding biological effects than the number of applications both in the greenhouse and in the field. In the field, berry yield, the most important biological response variable, was reduced 26% by the first out of four sequential applications of glyphosate at 64 g a...

  5. Construction of biological control strain of Trichoderma viride and study of their ability to induce plant disease resistance

    Institute of Scientific and Technical Information of China (English)

    LIU Shi-wang; GUO Ze-jian

    2004-01-01

    @@ Plant diseases heavily affct plant growth and crop yield even in modern agriculture. Control its difficult because pathogens mutate frequently, and this leads in frequent breaking of disease resistance in commercial cultivars. The excessive application of chemical pesticides is not only producing pesticideresistant pathogens, but it is harming the environment threatening the health of human beings.Therefore, the use of biological control agents (BCA) may provide an environmental friendly alternative to chemicals for plant disease control. Hypersensitive response (HR) and systemic acquired resistance (SAR) are the typical expressions of plant defense reactions. Once SAR is established,, the plants exhibits a broad-spectrum of disease resistance against pathogen attack. Researchers have identified elicitor proteins, such as elicitins and harpins, which activate plant defense reactions. It would be useful to explore the possibility of using biological control agents to induce a status of SAR in crop plants.

  6. Effect of Co-Existing Biologically Relevant Molecules and Ions on DNA Photocleavage Caused by Pyrene and its Derivatives

    Directory of Open Access Journals (Sweden)

    Hongtao Yu

    2005-04-01

    Full Text Available Inorganic ions, coenzymes, amino acids, and saccharides could co-exist with toxic environmental chemicals, such as polycyclic aromatic hydrocarbons (PAHs, in the cell. The presence of these co-existing chemicals can modulate the toxicity of the PAHs. One of the genotoxic effects by PAHs is light-induced cleavage, or photocleavage, of DNA. The effect of inorganic ions I-, Na+, Ca2+, Mg2+, Fe3+, Mn2+, Cu2+, and Zn2+ and biological molecules riboflavin, histidine, mannitol, nicotinamide adenine dinucleotide (NAD, glutathione, and glutamic acid on the DNA photocleavage by pyrene, 1-hydroxypyrene (1-HP, and 1-aminopyrene (1-AP, is studied. The non-transition metal ions Na+, Ca2+, and Mg2+, usually have very little inhibitory effects, while the transition metal ions Fe3+, Cu2+, and Zn2+ enhance, Mn2+ inhibits the DNA photocleavage. The effect by biological molecules is complex, depending on the photochemical reaction mechanisms of the compounds tested (1-AP, 1-HP and pyrene and on the chemical nature of the added biological molecules. Riboflavin, histidine, and mannitol enhance DNA photocleavage by all three compounds, except that mannitol has no effect on the photocleavage of DNA by pyrene. Glutathione inhibits the DNA photocleavage by 1-AP and 1-HP, but has no effect on that by pyrene. NAD enhances the DNA photocleavage by 1-AP, but has no effect on that by 1-HP and pyrene. Glutamic acid enhances the DNA photocleavage by 1-AP and pyrene, but inhibits that by 1-HP. These results show that the co-existing chemicals may have a profound effect on the toxicity of PAHs, or possibly on the toxicity of many other chemicals. Therefore, if one studies the toxic effects of PAHs or other toxic chemicals, the effect of the co-existing chemicals or ions needs to be considered.

  7. Professional development strategies for teaching urban biology teachers to use concept maps effectively

    Science.gov (United States)

    McGregor Petgrave, Dahlia M.

    Many teachers are not adequately prepared to help urban students who have trouble understanding conceptual ideas in biology because these students have little connection to the natural world. This study explored potential professional development strategies to help urban biology teachers use concept maps effectively with various topics in the biology curriculum. A grounded theory approach was used to develop a substantive professional development model for urban biology teachers. Qualitative data were collected through 16 semi-structured interviews of professional developers experienced in working with concept maps in the urban context. An anonymous online survey was used to collect quantitative data from 56 professional developers and teachers to support the qualitative data. The participants were from New York City, recruited through the NY Biology-Chemistry Professional Development Mentor Network and the NY Biology Teachers' Association. According to the participants, map construction, classroom applications, lesson planning, action research, follow-up workshops, and the creation of learning communities are the most effective professional development strategies. The interviewees also proposed English language learning strategies such as picture maps, native word maps, and content reading materials with underlined words. This study contributes to social change by providing a professional development model to use in planning workshops for urban teachers. Urban teachers improve their own conceptual understanding of biology while learning how to implement concept mapping strategies in the classroom. Students whose teachers are better prepared to teach biology in a conceptual manner have the potential of growing into more scientifically literate citizens.

  8. Bioaccumulation and biological effects in the earthworm Eisenia fetida exposed to natural and depleted uranium

    Energy Technology Data Exchange (ETDEWEB)

    Giovanetti, Anna, E-mail: anna.giovanetti@enea.i [ENEA, Institute of Radiation Protection, CR Casaccia Via Anguillarese 301, 00123 Rome (Italy); Fesenko, Sergey [International Atomic Energy Agency (IAEA), Agency' s Laboratories Seibersdorf, A-2444 Seibersdorf (Austria); Cozzella, Maria L. [ENEA, National Institute for Metrology of Ionizing Radiation, CR Casaccia Via Anguillarese 301, 00123 Rome (Italy); Asencio, Lisbet D. [Centro de Estudios Ambientales, Carretera a Castillo de Jagua, CP. 59350 C. Nuclear, Cienfuegos (Cuba); Sansone, Umberto [International Atomic Energy Agency (IAEA), Agency' s Laboratories Seibersdorf, A-2444 Seibersdorf (Austria)

    2010-06-15

    The accumulations of both natural (U) and depleted (DU) uranium in the earthworms (Eisenia fetida) were studied to evaluate corresponding biological effects. Concentrations of metals in the experimental soil ranged from 1.86 to 600 mg kg{sup -1}. Five biological endpoints: mortality, animals' weight increasing, lysosomal membrane stability by measuring the neutral red retention time (the NRRT), histological changes and genetic effects (Comet assay) were used to evaluate biological effects in the earthworms after 7 and 28 days of exposure. No effects have been observed in terms of mortality or weight reduction. Cytotoxic and genetic effects were identified at quite low U concentrations. For some of these endpoints, in particular for genetic effects, the dose (U concentration)-effect relationships have been found to be non-linear. The results have also shown a statistically significant higher level of impact on the earthworms exposed to natural U compared to depleted U.

  9. Biological Activities of QIAPI 1 as a Melanin Precursor and Its Therapeutic Effects in Wistar Rats Exposed to Arsenic Poisoning.

    Science.gov (United States)

    Solís-Herrera, Arturo; Ashraf, Ghulam M; del C A Esparza, María; Arias, Ruth I S; Bachurin, Sergei O; Barreto, George E; Aliev, Gjumrakch

    2015-01-01

    The chemical process initiated by QIAPI 1 has been deemed to be the most important biological reaction associated with human photosynthesis, and possibly neuroprotective effects under various inflammatory events. However, the detailed biological activities of QIAPI 1 as a melanin precursor are still unknown. In the present work, cytotoxicity test was done by MTT assay to determine cell viability of various cell lines (WI-38, A549, HS 683) like proliferation tests and its effect on cytokine production. Arsenic poisoning is an often-unrecognized cause of renal insufficiency. No prophylactic and/or therapeutic compounds have shown promising results against kidney diseases. The pathogenesis of Arsenic-induced nephropathy is not clear. Arsenic, as itself, does not degrade over time in the environment, and its accumulation may induce toxic effects. In this study, we also report the histological findings of the kidney in 3 groups of Wistar rats, a control group, a group exposed to arsenic in the water; and a group exposed to arsenic and treated with QIAPI 1 simultaneously. The findings of the current evidence indicates a potential therapeutic ability of QIAPI 1.

  10. Molecular biology methods in assessing radiation-induced hereditary risks in humans

    Energy Technology Data Exchange (ETDEWEB)

    Kiuru, A. [University of Helsinki, Department of Biosciences, Division of Genetics, Helsinki (Finland)

    2004-12-01

    Effort to predict the genetic consequences for humans of exposure to ionising radiation has been one of the most important issues of human genetics over the past 60 years. To date, there has been little experimental knowledge on the genetic risks of human exposure to ionising radiation. Radiation-induced deleterious hereditary effects have not been detected in human populations - not even among the offspring of atomic bomb survivors in Hiroshima and Nagasaki. This does not mean deleterious hereditary effects do not exist in humans, but rather that they are small and/or difficult to detect because the normal incidence of inherited abnormalities is quite high in the human population. Thus, assessment of radiation-induced hereditary risks in humans has been based on the common knowledge of human heredity and on animal experiments. However, recent data have suggested that hyper-variable tandem repeat minisatellite loci provide a useful and sensitive experimental approach for monitoring radiation-induced germline mutations in humans. In order to investigate the feasibility of the minisatellite mutation screening system in assessing radiation-induced hereditary risks in humans, we examined the amount of hereditary minisatellite mutations among the offspring of Estonian Chernobyl cleanup workers. The men studied received a median radiation dose of 109 mSv while working on the cleanup activities after the Chernobyl accident. We compared the minisatellite mutation rates of 155 children born to 147 Estonian Chernobyl cleanup workers after the accident to those of their 148 siblings born prior to it. In addition, 44 Estonian families, where the father had not been exposed to radiation, composed an additional control group. In all of these families, the paternity of the children was ascertained by using 5 minisatellite loci (APOB, HRAS, MCOB19, MCT118, and YNZ-22) in PCR-based analyses. Other 8 minisatellite loci (B6.7, CEB1, CEB15, CEB25, CEB36, MS1, MS31, and MS32) were used

  11. Protective effects of glucosamine hydrochloride against free radical-induced erythrocytes damage.

    Science.gov (United States)

    Jamialahmadi, Khadijeh; Arasteh, Omid; Matbou Riahi, Maryam; Mehri, Soghra; Riahi-Zanjani, Bamdad; Karimi, Gholamreza

    2014-07-01

    Glucosamine (GlcN) is an important precursor in the biochemical synthesis of glycosylated proteins and lipids in human body. It gains importance because of its contribution to human health and its multiple biological and therapeutic effects. In this study, the in vitro oxidative hemolysis of rat erythrocyte was used as a model to study the potential protective effect of glucosamine hydrochloride against free radical-induced damage of biological membranes. Glucosamine hydrochloride exhibited dose-dependent DPPH antioxidant activity. Oxidative hemolysis and lipid/protein peroxidation of erythrocytes induced by a water-soluble free radical initiator 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) were significantly suppressed by GlcN in a time and dose dependent manner. GlcN also prevented the depletion of cytosolic antioxidant glutathione (GSH) in erythrocytes. These results indicated that glucosamine hydrochloride efficiently protected erythrocytes against free radicals and it could be recommended as a pharmaceutical supplement to alleviate oxidative stress.

  12. Biological and hemodynamic effects of low doses of fludrocortisone and hydrocortisone, alone or in combination, in healthy volunteers with hypoaldosteronism.

    Science.gov (United States)

    Laviolle, B; Le Maguet, P; Verdier, M-C; Massart, C; Donal, E; Lainé, F; Lavenu, A; Pape, D; Bellissant, E

    2010-08-01

    Low doses of hydrocortisone (HC) and fludrocortisone (FC) administered together improve the prognosis after septic shock; however, there continues to be disagreement about the utility of FC for this indication. The biological and hemodynamic effects of HC (50 mg intravenously) and FC (50 microg orally) were assessed in 12 healthy male volunteers with saline-induced hypoaldosteronism in a placebo-controlled, randomized, double-blind, crossover study performed according to a 2 x 2 factorial design. HC and FC significantly decreased urinary sodium and potassium levels (from -58% at 4 h to -28% at 10 h and from -35% at 8 h to -24% at 12 h, respectively) with additive effects. At 4 h after administration, HC significantly increased cardiac output (+14%), decreased systemic vascular resistances (-14%), and slightly increased heart rate (+4 beats/min), whereas FC had no hemodynamic effect. At doses used in septic shock, HC induced greater mineralocorticoid effect than FC did. HC also induced transient systemic hemodynamic effects, whereas FC did not. New studies are required to better define the optimal dose of FC in septic shock.

  13. III. Biological effects of radiation from external and internal sources

    Energy Technology Data Exchange (ETDEWEB)

    Stone, R.S.

    1948-05-24

    This report focuses on the hemotological effects of total body irradiation from external and internal sources observed in patients treated for arthritis with radioactive phosphorus administered intravenously.

  14. Proximity effect-induced superconducting networks

    Science.gov (United States)

    Tsuchiya, S.; Tanda, S.

    2009-02-01

    We have studied proximity effect-induced superconductivity of micro wire networks in a magnetic field for investigating topological effects of the superconducting order parameter through Little-Parks oscillation. We prepared a regular honeycomb network, which has Pb-Au bilayer structure, by standard electron beam lithography and measured variation of superconducting transition temperature (Tc) in a magnetic field. We also fabricated a honeycomb network made of Pb monolayer and measured it in the same way. In the experimental results of the monolayer network, 2.06 ± 0.02 Gauss of periodic variation of Tc in a magnetic field was observed at around 7.2 K. The area estimated from this period is 10.04 μm2 and correspond to unit honeycomb enclosed by center of the wire. While, in the results of the bilayer network, 2.66 ± 0.04 Gauss of periodic variation of Tc in a magnetic field was observed at around 4.3 K because of the proximity effect. The area estimated from this period is 7.78 μm2 and correspond to unit honeycomb enclosed by edge of the wire. In the latter case, the superconducting current flows through edge of the wire since the order parameter can be considered to be more developed and inhomogeneous on the wire cross-section at around 4.3 K less than 7.2 K. Consequently, a novel network of paths flowing through the superconducting current, which consists of loops enclosed by edge of the wire, can be realized by controlling the proximity effect.

  15. Soil degradation effect on biological activity in Mediterranean calcareous soils

    Science.gov (United States)

    Roca-Pérez, L.; Alcover-Sáez, S.; Mormeneo, S.; Boluda, R.

    2009-04-01

    Soil degradation processes include erosion, organic matter decline, compaction, salinization, landslides, contamination, sealing and biodiversity decline. In the Mediterranean region the climatological and lithological conditions, together with relief on the landscape and anthropological activity are responsible for increasing desertification process. It is therefore considered to be extreme importance to be able to measure soil degradation quantitatively. We studied soil characteristics, microbiological and biochemical parameters in different calcareous soil sequences from Valencia Community (Easter Spain), in an attempt to assess the suitability of the parameters measured to reflect the state of soil degradation and the possibility of using the parameters to assess microbiological decline and soil quality. For this purpose, forest, scrubland and agricultural soil in three soil sequences were sampled in different areas. Several sensors of the soil biochemistry and microbiology related with total organic carbon, microbial biomass carbon, soil respiration, microorganism number and enzyme activities were determined. The results show that, except microorganism number, these parameters are good indicators of a soil biological activity and soil quality. The best enzymatic activities to use like indicators were phosphatases, esterases, amino-peptidases. Thus, the enzymes test can be used as indicators of soil degradation when this degradation is related with organic matter losses. There was a statistically significant difference in cumulative O2 uptake and extracellular enzymes among the soils with different degree of degradation. We would like to thank Spanish government-MICINN for funding and support (MICINN, project CGL2006-09776).

  16. Transient birefringence effects in electromagnetically induced transparency

    Energy Technology Data Exchange (ETDEWEB)

    Parshkov, O M [Yuri Gagarin State Technical University of Saratov, Saratov (Russian Federation)

    2015-11-30

    We report the results of numerical modelling of transient birefringence that arises as a result of electromagnetically induced transparency on degenerate quantum transitions between the states with J = 0, 1 and 2 in the presence of the Doppler broadening of spectral lines. It is shown that in the case of a linearly polarised control field, the effect of transient birefringence leads to a decay of the input circularly polarised probe pulse into separate linearly polarised pulses inside a medium. In the case of a circularly polarised control field, the effect of transient birefringence manifests itself in a decay of the input linearly polarised probe pulse into separate circularly polarised pulses. It is shown that the distance that a probe pulse has to pass in a medium before decaying into subpulses is considerably greater in the first case than in the second. The influence of the input probe pulse power and duration on the process of spatial separation into individual pulses inside a medium is studied. A qualitative analysis of the obtained results is presented. (nonlinear optical phenomena)

  17. Biologics-induced autoimmune renal disorders in chronic inflammatory rheumatic diseases: systematic literature review and analysis of a monocentric cohort.

    Science.gov (United States)

    Piga, Matteo; Chessa, Elisabetta; Ibba, Valentina; Mura, Valentina; Floris, Alberto; Cauli, Alberto; Mathieu, Alessandro

    2014-08-01

    The use of biologic drugs has been linked with the paradoxical development of systemic and organ specific autoimmune processes. The aim of this study was to describe the features of biologics-induced autoimmune renal disorders (AIRD) through a systematic review and a cohort study of 707 adult patients affected with Rheumatoid Arthritis (RA), Ankylosing Spondylitis (SA) and Psoriatic Arthritis (PsA). The literature search identified 2687 articles of which 21 were considered relevant for the present study, accounting for 26 case reports. The cohort analysis retrieved 3 cases. According to clinical manifestations and kidney histology the identified AIRD cases were classified as: a) glomerulonephritis associated with systemic vasculitis (GNSV), b) glomerulonephritis in lupus-like syndrome (GNLS), c) isolated autoimmune renal disorders (IARD). Twenty-two out of 29 cases with AIRD were reported in patients affected by RA, 5 in AS and 2 in PsA. The biologic drug most frequently associated with development of AIRD was Etanercept (15 cases, 51.7%), followed by Adalimumab (9 cases, 31.0%) and Infliximab (3 cases, 10.3%) while Tocilizumab and Abatacept were reported in 1 case (3.4%) for each. Thirteen out of 29 (44.8%) cases were classified as affected by IARD, 12 (41.3%) as GNSV and 4 (13.9%) as GNLS. Worse prognosis was associated with GNSV and lack of biologic withdrawal. Although rare, AIRD may be life-threatening and may lead to renal failure and death. If AIRD occurs, biologic drugs must be stopped and patient should be treated according to clinical manifestations and kidney biopsy findings.

  18. Hypoglycemic effect of Geranium ruizii Hieron. (pasuchaca) ethanolic extract on alloxan-induced hyperglycemia in rats.

    OpenAIRE

    Herrera Calderón, Oscar; Laboratorio de Fisiología y Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad Nacional San Luis Gonzaga, Ica, Perú; Unidad de Posgrado, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima, Perú; Chinchay Salazar, Rosa; Laboratorio de Fisiología y Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad Nacional San Luis Gonzaga, Ica, Perú;; Palomino Ormeño, Estela; Laboratorio de Fisiología y Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad Nacional San Luis Gonzaga, Ica, Perú;; Arango Valencia, Evelyn; Laboratorio de Fisiología y Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad Nacional San Luis Gonzaga, Ica, Perú;; Arroyo, Jorge; Laboratorio de Farmacología Experimental, Facultad de Medicina Humana, Universidad Nacional Mayor de San Marcos, Lima, Perú; Instituto de Investigaciones Clínicas, Universidad Nacional Mayor de San Marcos, Lima, Perú

    2015-01-01

    Introduction: Geranium ruizii Hieron. (pasuchaca) is a medicinal plant used by traditional medicine to lower glycemia, in Ancash, Peru. Objective: To determine the hypoglycemic effect of Geranium ruizii ethanolic extract on alloxan-induced hyperglycemia in rats. Design: Experimental. Setting: Laboratorio de Farmacología Experimental, Facultad de Medicina Humana, Universidad San Marcos, Lima, Peru. Biological material: Geranium ruizii, eight weeks female Holtzman rats 200 ± 20 g of body weight...

  19. Psychological Effects towards Humans Living in the Environment Made of Biological Concrete in Malaysia at 2015

    Directory of Open Access Journals (Sweden)

    Amirreza Talaiekhozani

    2017-01-01

    Full Text Available In day-to-day life concrete become a compulsory material in the construction field as to make it a real concern among researchers for producing concrete with improved properties. Biological method is one of the new methods to improve concrete properties. Although, much research about biological concrete has been carried out, but till now nobody has not studied for the psychological effects of using a house or offices made up of biological concrete. The aim of this study is to investigate and find out the person's opinion about staying in a house or offices made up of biological concrete. In this study, a questionnaire containing eight questions was prepared and distributed among 21 persons in Malaysia University of Technology including students, academic and non-academic staffs among which few of them was an expert in the field of biological concrete and others did not have any knowledge about the bioconcrete. Finally, the results obtained from the questionnaires were analyzed. The results showed that 81% of participants in this study would like to stay in a house or office made up of biological concrete. However, 38% of participants believe that staying in a house or office made of biological concrete can cause health related problems. The current research paper can be considered significant for architects and civil engineers to have the insight to look into the psychological aspects of using biological concrete for various applications in the field of construction.

  20. MICROWAVE SYSTEM FOR RESEARCH BIOLOGICAL EFFECTS ON LABORATORY ANIMALS

    OpenAIRE

    Kopylov, Alexei; Kruglik, Olga; Khlebopros, Rem

    2014-01-01

    This research is concerned with development of the microwave system for research the radiophysical microwave radiation effects on laboratory animals. The frequency was 1 GHz. The results obtained demonstrate the metabolic changes in mice under the electromagnetic field influence.

  1. Allergy and asthma: Effects of the exposure to particulate matter and biological allergens.

    Science.gov (United States)

    Baldacci, S; Maio, S; Cerrai, S; Sarno, G; Baïz, N; Simoni, M; Annesi-Maesano, I; Viegi, G

    2015-09-01

    The prevalence of asthma and allergies including atopy has increased during the past decades, particularly in westernized countries. The rapid rise in the prevalence of such diseases cannot be explained by genetic factors alone. Rapid urbanization and industrialization throughout the world have increased air pollution and population exposures, so that most epidemiologic studies are focusing on possible links between air pollution and respiratory diseases. Furthermore, a growing body of evidence shows that chemical air pollution may interact with airborne allergens enhancing the risk of atopic sensitization and exacerbation of symptoms in sensitized subjects. These phenomena are supported by current in vitro and animal studies showing that the combined exposure to air pollutants and allergens may have a synergistic or additive effect on asthma and allergies, although there is an insufficient evidence about this link at the population level. Further research is needed in order to elucidate the mechanisms by which pollutants and biological allergens induce damage in exposed subjects. The abatement of the main risk factors for asthma and allergic diseases may achieve huge health benefits. Thus, it is important to raise awareness of respiratory allergies as serious chronic diseases which place a heavy burden on patients and on society as a whole.

  2. Effects of barriers on chemical and biological properties of two dual resin cements.

    Science.gov (United States)

    Nocca, Giuseppina; Iori, Andrea; Rossini, Carlo; Martorana, Giuseppe E; Ciasca, Gabriele; Arcovito, Alessandro; Cordaro, Massimo; Lupi, Alessandro; Marigo, Luca

    2015-06-01

    The aim of this study was to investigate the degree of conversion, monomer release, and cytotoxicity of two dual-cure resin cements (Cement-One and SmartCem2), light-cured across two indirect restorative materials in an attempt to simulate in vitro the clinical conditions. The results obtained show that the degree of conversion was influenced by both barriers, but the effect of the composite material was greater than that of the ceramic one. The amount of monomers released from the polymerized materials in the absence of barriers was significantly lower than that released in the presence of either the ceramic or the composite barrier. However, a higher amount of monomers was released in the presence of the ceramic barrier. All materials, in all the experimental conditions employed, induced slight cytotoxicity (5-10%) on human pulp cells. Our examinations showed that the two resin cements had similar chemical and biological properties. The decreased degree of conversion of the dual-curing self-adhesive composite showed that the light-curing component of these materials has an important role in the polymerization process. In clinical practice, it is therefore important to pay attention to the thickness of the material used for the reconstruction.

  3. Preliminary study on the biological effects of MiR-144 in pulmonary injury in rats induced by nanosized SiO2%纳米二氧化硅致大鼠肺损伤中miR-144的作用

    Institute of Scientific and Technical Information of China (English)

    劳灿山; 张迎建; 李文超; 李明月; 杨红

    2015-01-01

    Objective To Investigate the biological effects of miR-144 in rats' pulmanory injury induced by nanosized SiO2 preliminarily.Method 150 healthy SD rats were divided into five groups randomly:the control group,the nanosized SiO2 groups of 6.25,12.5,25.0 mg/ml,and the microsized SiO2 group of 25.0 mg/ml,30 rats each group.Six rats were sacrificed for their pathological change on the 7th,15th,30th,60th and 90th day after exposure.The expression levels of mature miR-144 in lung tissue of the rats after instilled intracheally nanosized SiO2 at 90d was detected by Quantitative Reverse Transcription PCR.Target prediction for miR-144 was conducted by databases of Target-scan,microRNA.org and miRDB.Function-significant enrichment analysis and signal pathway analysis for predicted target genes were respectively conducted by the Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes,then target genes related to pulmonary fibrosis were screened out.Results The expression of miR-144 was up-regulated in lung tissue of rats exposed to nanosized SiO2.The result was consistent with the results of high-throughput sequencing Hiseq 2000.The target genes of miR-144 related to fibrosis or signal pathway involved in fibrosis were screened out.They are SMAD4,SMAD5,ADAMTS3,ADAMTS15 and ADAMTS19.Conclusion MiR-144 probably participate in the regulation of fibrosis,which may play an important role in pulmonary injury induced by nanosized SiO2.%目的 探索miR-144在纳米二氧化硅(SiO2)致大鼠肺损伤中的生物学作用.方法 150只健康雄性SD大鼠随机分生理盐水对照组和6.25、12.5、25.0 mg/ml纳米SiO2组及25.0 mg/ml微米SiO2组,每组30只,分别于染尘7、15、30、60、90 d后各处死6只,观察各时间点大鼠肺组织的病理改变.用实时荧光定量聚合酶链式反应(qRT-PCR)法检测大鼠经气管一次性灌注25 mg/ml纳米SiO290 d后肺组织中miR-144的表达水平;用Targetscan、microRNA.org及miRDB 3个数据库对miR-144

  4. The reduction of biological production induced by mesoscale mixing: a modelling study in the Benguela upwelling

    CERN Document Server

    Hernández-Carrasco, Ismael; Hernández-García, Emilio; Garçon, Veronique; López, Cristóbal

    2013-01-01

    Recent studies, both based on remote sensed data and coupled models, showed a reduction of biological productivity due to vigorous horizontal mixing in upwelling systems. In order to better understand this phenomenon, we have considered a system of oceanic flow in the Benguela area coupled with a simple biogeochemical model of Nutrient-Phyto-Zooplankton (NPZ) type. For the flow three different surface velocity fields are considered: one derived from satellite altimetry data, and the other two from a regional numerical model at two different spatial resolutions. We computed horizontal particle dispersion in terms of Lyapunov Exponents, and analyzed their correlations with phytoplankton concentrations. Our modelling approach confirms that in the south Benguela, there is a reduction of biological activity when stirring is increased. Two-dimensional offshore advection seems to be the dominant process involved. In the northern area, other factors not taken into account in our simulation are influencing the ecosyst...

  5. Experimental proposal for testing the Emergence of Environment Induced (EIN) Classical Selection rules with Biological Systems

    CERN Document Server

    Durt, Thomas

    2010-01-01

    According to the so-called Quantum Darwinist approach, the emergence of "classical islands" from a quantum background is assumed to obey a (selection) principle of maximal information. We illustrate this idea by considering the coupling of two oscillators (modes). As our approach suggests that the classical limit could have emerged throughout a long and progressive Evolution mechanism, it is likely that primitive living organisms behave in a "more quantum", "less classical" way than more evolved ones. This brings us to seriously consider the possibility to measure departures from classicality exhibited by biological systems. We describe an experimental proposal the aimed at revealing the presence of entanglement in the biophotonic radiation emitted by biological sources.

  6. A theoretical framework for biological control of soil-borne plant pathogens: Identifying effective strategies.

    Science.gov (United States)

    Cunniffe, Nik J; Gilligan, Christopher A

    2011-06-07

    We develop and analyse a flexible compartmental model of the interaction between a plant host, a soil-borne pathogen and a microbial antagonist, for use in optimising biological control. By extracting invasion and persistence thresholds of host, pathogen and biological control agent, performing an equilibrium analysis, and numerical investigation of sensitivity to parameters and initial conditions, we determine criteria for successful biological control. We identify conditions for biological control (i) to prevent a pathogen entering a system, (ii) to eradicate a pathogen that is already present and, if that is not possible, (iii) to reduce the density of the pathogen. Control depends upon the epidemiology of the pathogen and how efficiently the antagonist can colonise particular habitats (i.e. healthy tissue, infected tissue and/or soil-borne inoculum). A sharp transition between totally effective control (i.e. eradication of the pathogen) and totally ineffective control can follow slight changes in biologically interpretable parameters or to the initial amounts of pathogen and biological control agent present. Effective biological control requires careful matching of antagonists to pathosystems. For preventative/eradicative control, antagonists must colonise susceptible hosts. However, for reduction in disease prevalence, the range of habitat is less important than the antagonist's bulking-up efficiency.

  7. Recombinant paracoccin reproduces the biological properties of the native protein and induces protective Th1 immunity against Paracoccidioides brasiliensis infection.

    Directory of Open Access Journals (Sweden)

    Ana Claudia Paiva Alegre

    2014-04-01

    Full Text Available BACKGROUND: Paracoccin is a dual-function protein of the yeast Paracoccidioides brasiliensis that has lectin properties and N-acetylglucosaminidase activities. Proteomic analysis of a paracoccin preparation from P. brasiliensis revealed that the sequence matched that of the hypothetical protein encoded by PADG-3347 of isolate Pb-18, with a polypeptide sequence similar to the family 18 endochitinases. These endochitinases are multi-functional proteins, with distinct lectin and enzymatic domains. METHODOLOGY/PRINCIPAL FINDINGS: The multi-exon assembly and the largest exon of the predicted ORF (PADG-3347, was cloned and expressed in Escherichia coli cells, and the features of the recombinant proteins were compared to those of the native paracoccin. The multi-exon protein was also used for protection assays in a mouse model of paracoccidioidomycosis. CONCLUSIONS/SIGNIFICANCE: Our results showed that the recombinant protein reproduced the biological properties described for the native protein-including binding to laminin in a manner that is dependent on carbohydrate recognition-showed N-acetylglucosaminidase activity, and stimulated murine peritoneal macrophages to produce high levels of TNF-α and nitric oxide. Considering the immunomodulatory potential of glycan-binding proteins, we also investigated whether prophylactic administration of recombinant paracoccin affected the course of experimental paracoccidioidomycosis in mice. In comparison to animals injected with vehicle (controls, mice treated with recombinant paracoccin displayed lower pulmonary fungal burdens and reduced pulmonary granulomas. These protective effects were associated with augmented pulmonary levels of IL-12 and IFN-γ. We also observed that injection of paracoccin three days before challenge was the most efficient administration protocol, as the induced Th1 immunity was balanced by high levels of pulmonary IL-10, which may prevent the tissue damage caused by exacerbated

  8. Animal experiments on biological effects of mineral fibres.

    Science.gov (United States)

    Pott, F

    1980-01-01

    The papers presented in this session are summarized. Although asbestos fibres produce tumours in a number of animal species tested, rats appear to be the most susceptible, in terms of latent period and numbers of tumours produced. The deposition, translocation and clearance of different types of fibres in the lung have been investigated in a number of experiments, and it has been shown that many of them migrate more readily than was previously thought; their penetration into the gut was the object of further investigation. The syncarcinogenicity with asbestos of various substances, such as benzo[a]pyrene, N-nitrosodiethylamine, cigarette smoke or radiation, is described. Experiments on the different carcinogenicities of different fibres are summarized; although it is pointed out that there is much controversy in this area. A hypothesis is presented whereby the carcinogenic potency of a fibre is dependent on various size parameters, based on length, diameter and length:diameter ratio. On the basis of this hypothesis, the carcinogenic potency of short fibres may be weak, but many short fibres may induce a tumour as easily as a few long fibres. Finally, a plea is made for a far greater number of well-defined standard samples of asbestos and man-made mineral fibres than exists at present, since there are currently great difficulties in comparing and interpreting results.

  9. The chemical composition of ultrafine particles and associated biological effects at an alpine town impacted by wood burning.

    Science.gov (United States)

    Corsini, Emanuela; Vecchi, Roberta; Marabini, Laura; Fermo, Paola; Becagli, Silvia; Bernardoni, Vera; Caruso, Donatella; Corbella, Lorenza; Dell'Acqua, Manuela; Galli, Corrado L; Lonati, Giovanni; Ozgen, Senem; Papale, Angela; Signorini, Stefano; Tardivo, Ruggero; Valli, Gianluigi; Marinovich, Marina

    2017-02-25

    This work is part of the TOBICUP (TOxicity of BIomass Combustion generated Ultrafine Particles) project which aimed at providing the composition of ultrafine particles (UFPs, i.e. particles with aerodynamic diameter, dae, lower than 100nm) emitted by wood combustion and elucidating the related toxicity. Results here reported are from two ambient monitoring campaigns carried out at an alpine town in Northern Italy, where wood burning is largely diffused for domestic heating in winter. Wintertime and summertime UFP samples were analyzed to assess their chemical composition (i.e. elements, ions, total carbon, anhydrosugars, and polycyclic aromatic hydrocarbons) and biological activity. The induction of the pro-inflammatory cytokine interleukin-8 (IL-8) by UFPs was investigated in two human cells lines (A549 and THP-1) and in human peripheral blood leukocytes. In addition, UFP-induced oxidative stress and genotoxicity were investigated in A549 cells. Ambient UFP-related effects were compared to those induced by traffic-emitted particles (DEP) taken from the NIES reference material "vehicle exhaust particulates". Ambient air UFPs induced a dose-related IL-8 release in both A549 and THP-1 cells; the effect was more relevant on summer samples and in general THP-1 cells were more sensitive than A549 cells. On a weight basis our data did not support a higher biological activity of ambient UFPs compared to DEP. The production of IL-8 in the whole blood assay indicated that UFPs reached systemic circulation and activated blood leukocytes. Comet assay and γ-H2AX evaluation showed a significant DNA damage especially in winter UFPs samples compared to control samples. Our study showed that ambient UFPs can evoke a pulmonary inflammatory response by inducing a dose-related IL-8 production and DNA damage, with different responses to UFP samples collected in the summer and winter periods.

  10. Protective effects of L-selenomethionine on space radiation induced changes in gene expression.

    Science.gov (United States)

    Stewart, J; Ko, Y-H; Kennedy, A R

    2007-06-01

    Ionizing radiation can produce adverse biological effects in astronauts during space travel. Of particular concern are the types of radiation from highly energetic, heavy, charged particles known as HZE particles. The aims of our studies are to characterize HZE particle radiation induced biological effects and evaluate the effects of L-selenomethionine (SeM) on these adverse biological effects. In this study, microarray technology was used to measure HZE radiation induced changes in gene expression, as well as to evaluate modulation of these changes by SeM. Human thyroid epithelial cells (HTori-3) were irradiated (1 GeV/n iron ions) in the presence or in the absence of 5 microM SeM. At 6 h post-irradiation, all cells were harvested for RNA isolation. Gene Chip U133Av2 from Affymetrix was used for the analysis of gene expression, and ANOVA and EASE were used for a determination of the genes and biological processes whose differential expression is statistically significant. Results of this microarray study indicate that exposure to small doses of radiation from HZE particles, 10 and 20 cGy from iron ions, induces statistically significant differential expression of 196 and 610 genes, respectively. In the presence of SeM, differential expression of 77 out of 196 genes (exposure to 10 cGy) and 336 out of 610 genes (exposure to 20 cGy) is abolished. In the presence or in the absence of SeM, radiation from HZE particles induces differential expression of genes whose products have roles in the induction of G1/S arrest during the mitotic cell cycle, as well as heat shock proteins. Some of the genes, whose expressions were affected by radiation from HZE particles and were unchanged in irradiated cells treated with SeM, have been shown to have altered expression levels in cancer cells. The conclusions of this report are that radiation from HZE particles can induce differential expression of many genes, some of which are known to play roles in the same processes that have

  11. Effect of solids retention time and wastewater characteristics on biological phosphorus removal

    DEFF Research Database (Denmark)

    Henze, Mogens; Aspegren, H.; Jansen, J.l.C.

    2002-01-01

    The paper deals with the effect of wastewater, plant design and operation in relation to biological nitrogen and phosphorus removal and the possibilities to model the processes. Two Bio-P pilot plants were operated for 2.5 years in parallel receiving identical wastewater. The plants had SRT of 4...... with time which has importance in relation to modelling. The overall conclusion of the comparison between the two plants is that the biological phosphorus removal efficiency under practical operating conditions is affected by the SRT in the plant and the wastewater composition. Thus great care should...... in verification of models for Nitrogen and Enhanced Biological Phosphorus Removal....

  12. Nitric Oxide Is a Mediator of Antiproliferative Effects Induced by Proinflammatory Cytokines on Pancreatic Beta Cells

    Science.gov (United States)

    Quintana-Lopez, Laura; Blandino-Rosano, Manuel; Perez-Arana, Gonzalo; Lechuga-Sancho, Alfonso; Aguilar-Diosdado, Manuel

    2013-01-01

    Nitric oxide (NO) is involved in several biological processes. In type 1 diabetes mellitus (T1DM), proinflammatory cytokines activate an inducible isoform of NOS (iNOS) in β cells, thus increasing NO levels and inducing apoptosis. The aim of the current study is to determine the role of NO (1) in the antiproliferative effect of proinflammatory cytokines IL-1β, IFN-γ, and TNF-α on cultured islet β cells and (2) during the insulitis stage prior to diabetes onset using the Biobreeding (BB) rat strain as T1DM model. Our results indicate that NO donors exert an antiproliferative effect on β cell obtained from cultured pancreatic islets, similar to that induced by proinflammatory cytokines. This cytokine-induced antiproliferative effect can be reversed by L-NMMA, a general NOS inhibitor, and is independent of guanylate cyclase pathway. Assays using NOS isoform specific inhibitors suggest that the NO implicated in the antiproliferative effect of proinflammatory cytokines is produced by inducible NOS, although not in an exclusive way. In BB rats, early treatment with L-NMMA improves the initial stage of insulitis. We conclude that NO is an important mediator of antiproliferative effect induced by proinflammatory cytokines on cultured β cell and is implicated in β-cell proliferation impairment observed early from initial stage of insulitis. PMID:23840099

  13. Nitric Oxide Is a Mediator of Antiproliferative Effects Induced by Proinflammatory Cytokines on Pancreatic Beta Cells

    Directory of Open Access Journals (Sweden)

    Laura Quintana-Lopez

    2013-01-01

    Full Text Available Nitric oxide (NO is involved in several biological processes. In type 1 diabetes mellitus (T1DM, proinflammatory cytokines activate an inducible isoform of NOS (iNOS in β cells, thus increasing NO levels and inducing apoptosis. The aim of the current study is to determine the role of NO (1 in the antiproliferative effect of proinflammatory cytokines IL-1β, IFN-γ, and TNF-α on cultured islet β cells and (2 during the insulitis stage prior to diabetes onset using the Biobreeding (BB rat strain as T1DM model. Our results indicate that NO donors exert an antiproliferative effect on β cell obtained from cultured pancreatic islets, similar to that induced by proinflammatory cytokines. This cytokine-induced antiproliferative effect can be reversed by L-NMMA, a general NOS inhibitor, and is independent of guanylate cyclase pathway. Assays using NOS isoform specific inhibitors suggest that the NO implicated in the antiproliferative effect of proinflammatory cytokines is produced by inducible NOS, although not in an exclusive way. In BB rats, early treatment with L-NMMA improves the initial stage of insulitis. We conclude that NO is an important mediator of antiproliferative effect induced by proinflammatory cytokines on cultured β cell and is implicated in β-cell proliferation impairment observed early from initial stage of insulitis.

  14. Which chemicals drive biological effects in wastewater and recycled water?

    Science.gov (United States)

    Tang, Janet Y M; Busetti, Francesco; Charrois, Jeffrey W A; Escher, Beate I

    2014-09-01

    Removal of organic micropollutants from wastewater during secondary treatment followed by reverse osmosis and UV disinfection was evaluated by a combination of four in-vitro cell-based bioassays and chemical analysis of 299 organic compounds. Concentrations detected in recycled water were below the Australian Guidelines for Water Recycling. Thus the detected chemicals were considered not to pose any health risk. The detected pesticides in the wastewater treatment plant effluent and partially advanced treated water explained all observed effects on photosynthesis inhibition. In contrast, mixture toxicity experiments with designed mixtures containing all detected chemicals at their measured concentrations demonstrated that the known chemicals explained less than 3% of the observed cytotoxicity and less than 1% of the oxidative stress response. Pesticides followed by pharmaceuticals and personal care products dominated the observed mixture effects. The detected chemicals were not related to the observed genotoxicity. The large proportion of unknown toxicity calls for effect monitoring complementary to chemical monitoring.

  15. Biological effects of lysophosphatidic acid in the nervous system.

    Science.gov (United States)

    Frisca, Frisca; Sabbadini, Roger A; Goldshmit, Yona; Pébay, Alice

    2012-01-01

    Lysophosphatidic acid (LPA) is a bioactive lipid that regulates a broad range of cellular effects in various cell types, leading to a variety of responses in tissues, including in the nervous system. LPA and its receptors are found in the nervous system, with different cellular and temporal profiles. Through its ability to target most cells of the nervous system and its induction of pleiotropic effects, LPA mediates events during neural development and adulthood. In this review, we summarize the current knowledge on the effects of LPA in the nervous system, during development and adulthood, and in various pathologies of the nervous system. We also explore potential LPA intervention strategies for anti-LPA therapeutics.

  16. Electrical and Biological Effects of Transmission Lines: A Review.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jack M.

    1989-06-01

    This review describes the electrical properties of a-c and d-c transmission lines and the resulting effects on plants, animals, and people. Methods used by BPA to mitigate undesirable effects are also discussed. Although much of the information in this review pertains to high-voltage transmission lines, information on distribution lines and electrical appliances is included. The electrical properties discussed are electric and magnetic fields and corona: first for alternating-current (a-c) lines, then for direct current (d-c).

  17. Some features of irradiated chitosan and its biological effect

    Energy Technology Data Exchange (ETDEWEB)

    Hai, Le; Hien, Nguyen Quoc; Luan, Le Quang; Hanh, Truong Thi; Man, Nguyen Tan; Ha, Pham Thi Le; Thuy, Tran Thi [Nuclear Research Institute, VAEC, Dalat (Viet Nam); Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Preparation of chitosan oligomer by radiation degradation was carried out on the gamma Co-60 source. The radiation degradation yield (G{sub d}) of the chitosan was found to be of 1.03. The oligochitosan with 50% of dp>8 fraction was obtained by irradiating the 10% (w/v) chitosan solution in 5% acetic acid at 45 kGy for the chitosan having the initial viscometric average molecular weight, Mv=60,000. Irradiated chitosan showed higher antifungal effect than that of unirradiated one. Furthermore, the irradiated chitosan also showed the growth-promotion effect for plants. (author)

  18. Virulent and avirulent strains of Toxoplasma gondii which differ in their glycosylphosphatidylinositol content induce similar biological functions in macrophages.

    Directory of Open Access Journals (Sweden)

    Sebastian Niehus

    Full Text Available Glycosylphosphatidylinositols (GPIs from several protozoan parasites are thought to elicit a detrimental stimulation of the host innate immune system aside their main function to anchor surface proteins. Here we analyzed the GPI biosynthesis of an avirulent Toxoplasma gondii type 2 strain (PTG by metabolic radioactive labeling. We determined the biological function of individual GPI species in the PTG strain in comparison with previously characterized GPI-anchors of a virulent strain (RH. The GPI intermediates of both strains were structurally similar, however the abundance of two of six GPI intermediates was significantly reduced in the PTG strain. The side-by-side comparison of GPI-anchor content revealed that the PTG strain had only ∼ 34% of the protein-free GPIs as well as ∼ 70% of the GPI-anchored proteins with significantly lower rates of protein N-glycosylation compared to the RH strain. All mature GPIs from both strains induced comparable secretion levels of TNF-α and IL-12p40, and initiated TLR4/MyD88-dependent NF-κBp65 activation in macrophages. Taken together, these results demonstrate that PTG and RH strains differ in their GPI biosynthesis and possess significantly different GPI-anchor content, while individual GPI species of both strains induce similar biological functions in macrophages.

  19. Phytotoxicity effects and biological responses of Arabidopsis thaliana to 2,3,7,8-tetrachlorinated dibenzo-p-dioxin exposure.

    Science.gov (United States)

    Hanano, Abdulsamie; Almousally, Ibrahem; Shaban, Mouhnad

    2014-06-01

    Dioxins are persistent organic pollutants. Their bioaccumulation in the food chain makes dioxins a considerable risk for human health. The use of plants for removing toxic organic compounds, including dioxins, is a safe and efficient strategy. Herein we studied the toxicity effects and the biological responses in Arabidopsis thaliana to 2',3',7',8'-tetrachlorinated dibenzo-p-dioxin (TCDD) exposure. First, TCDD-induced toxicity was demonstrated using several parameters including, a decrease in seed germination, a loss in fresh weight with a striking decrease in chlorophyll content, but not in carotenoids, and an augmentation in the biomass of the lateral roots system, but not in the elongation of the primary root. Uptake of TCDD by Arabidopsis was confirmed. Responses to TCDD-exposure were marked by an enhanced level of hydrogen peroxide H2O2 production and a massive stimulation of anti-oxidative enzyme activities. Moreover, a significant variation in the transcript level of transcription factor genes, bHLH, MYB and AP2-EREBP was detected in Arabidopsis shoot and an up-regulation of WRKY, MYB and IAA was observed in the root. Our results illustrate the TCDD-induced toxicity effects and the biological responses of Arabidopsis to TCDD. Better understanding of the plants ability to detoxifydioxins would help to improve their use as a safe bioremediators.

  20. Backscatter radiation at tissue-titanium interfaces; Biological effects from diagnostic 65 kVp X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Rosengren, B. (Department of Radiation Sciences, Uppsala University (Sweden) Dept. of Oncology, University Hospital, Bergen (Norway)); Wulff, L. (Dept. of Oral and Maxillofacial Surgery, Central Hospital, Boden (Sweden)); Carlsson, E. (Department of Radiation Sciences, Uppsala University (Sweden)); Carlsson, J. (Department of Radiation Sciences, Uppsala University (Sweden)); Strid, K.G. (Dept. of Handicap Research, Goeteborg Univ. (Sweden)); Montelius, A. (Dept. of Hospital Physics, University Hospital, Uppsala (Sweden))

    1993-01-01

    The induced secondary electrons from a metal surface by diagnostic X-rays are thought to contribute to cell damage near the tissue-metal boundaries of metal implants. Titanium implants are becoming increasingly more popular for tissue reconstructions and it is rather often desirable to take radiographs of the operated area. In this study we compared the biological effects of radiation on cultured mammalian test cells grown on titanium plates with the radiation effects on cells that were grown on plastic control plates. In order to study the acute radiation effects on cell growth it was necessary to work with rather high radiation doses (0.7-5 Gy). Photon energies, suitable for diagnostic radiography in odontology, 65 kV, were applied. We found that the cells grown on titanium plates were, in terms of the applied dose in the surrounding culture medium, more sensitive to the irradiations than the cells growing on plastic plates. The survival curve for the cells on titanium had a steeper slope, showed no shoulder in the low-dose region and looked like curves normally obtained for high LET radiation. It was not possible to resolve to what degree the titanium-dependent changes were due to an increased dose near the titanium surface or to a change in the radiobiological effectiveness. Although there was a significant decrease in cellular survival near the metal, postoperative intraoral radiography after titanium implantations need not be excluded. The maximal doses given in odontological X-ray examinations are less than 1 mGy and, if the results in this study are applied, the biological effects near the titanium implant will correspond to biological effects in soft tissue of doses less than 20 mGy which is lower than the doses that give acute effects. The risk of acute healing disturbances are significant only at much higher radiation doses. (orig.).

  1. Nanoscaled biological gated field effect transistors for cytogenetic analysis

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Dimaki, Maria; Andersen, Karsten Brandt;

    2014-01-01

    Cytogenetic analysis is the study of chromosome structure and function, and is often used in cancer diagnosis, as many chromosome abnormalities are linked to the onset of cancer. A novel label free detection method for chromosomal translocation analysis using nanoscaled field effect transistors...

  2. Biological effects of ionizing radiations; Effets biologiques des rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Nenot, J.C. [CEA Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire]|[Commission Internationale de protection radiologique (France)]|[Association Internationale de Radiopathologie (France)

    1999-01-01

    Since ten years the ionizing radiations are more and more often used in various domains as medical, industrial or research sector. In the same way, these radiation impacts on the environment and the living organisms, have been studied intensively. The effects mechanism knowledge improved considerably and allowed to better protect the workers and the public. (A.L.B.)

  3. Biological Effects of Electromagnetic Fields on Cellular Growth

    Science.gov (United States)

    Eftekhari, Beheshte; Wilson, James; Masood, Samina

    2012-10-01

    The interaction of organisms with environmental magnetic fields at the cellular level is well documented, yet not fully understood. We review the existing experimental results to understand the physics behind the effects of ambient magnetic fields on the growth, metabolism, and proliferation of in vitro cell cultures. Emphasis is placed on identifying the underlying physical principles responsible for alterations to cell structure and behavior.

  4. Resource Letter BELFEF-1: Biological effects of low-frequency electromagnetic fields

    Science.gov (United States)

    Hafemeister, David

    1996-08-01

    This Resource Letter provides a guide to the literature on the interaction of extremely low-frequency electromagnetic field (ELF/EMF) interactions with biological matter, and on the possibility that such interactions could have a harmful effect on human health. Journal articles and books are cited for the following topics: ELF/EMF theoretical interactions with biological cells, organs and organisms, magnetic dipole interactions, sensing by animals, biomedical-biophysical experiments, epidemiology, and litigation-mitigation risk issues.

  5. Biological activities and health effects of terpenoids from marine fungi.

    Science.gov (United States)

    Kim, Se-Kwon; Li, Yong-Xin

    2012-01-01

    Recently, a great deal of interest has been developed by the consumers toward natural bioactive compounds as functional ingredients in the nutraceutical, cosmeceutical, and pharmaceutical products due to their various health beneficial effects. Hence, it can be suggested that bioactive functional ingredients from marine bioresources and their by-products are alternative sources for synthetic ingredients that can contribute to consumer's well-being, as a part of nutraceuticals and functional foods. Marine-derived fungi produce a vast array of secondary metabolites including terpenes, steroids, polyketides, peptides, alkaloids, and polysaccharides. These secondary metabolites serve many biopharmaceutical purposes. This chapter discusses about marine fungi-derived terpenoids and presents an overview of their beneficial health effects.

  6. Biological Effects of Nonionizing Electromagnetic Radiation. Volume IV. Number 3.

    Science.gov (United States)

    1980-03-01

    teratogenesis in mealworms (9-10 GHz at total power CENTRAL NERVOUS SYSTEM, BEHAVIOR, AND of 20-80 mW) and in mice (2,450 MHz, energy absorp- BLOOD: A PROGRESS...behavioral changes, diseases are discussed and three case reports dem- malaise, restlessness, sterilization, fetal damage, onstrating this problem are...April, 1979. exposure of Moscow Embassy employees in the causa - (7 refs) tion of any adverse health effects. Four studies to determine the health

  7. Biologic Effects of Dopamine on Tumor Vasculature in Ovarian Carcinoma

    Directory of Open Access Journals (Sweden)

    Myrthala Moreno-Smith

    2013-05-01

    Full Text Available Chronic sympathetic nervous system activation results in increased angiogenesis and tumor growth in orthotopic mouse models of ovarian carcinoma. However, the mechanistic effects of such activation on the tumor vasculature are not well understood. Dopamine (DA, an inhibitory catecholamine, regulates the functions of normal and abnormal blood vessels. Here, we examined whether DA, an inhibitory catecholamine, could block the effects of chronic stress on tumor vasculature and tumor growth. Exogenous administration of DA not only decreased tumor microvessel density but also increased pericyte coverage of tumor vessels following daily restraint stress in mice. Daily restraint stress resulted in significantly increased tumor growth in the SKOV3ip1 and HeyA8 ovarian cancer models. DA treatment blocked stress-mediated increases in tumor growth and increased pericyte coverage of tumor endothelial cells. Whereas the antiangiogenic effect of DA is mediated by dopamine receptor 2 (DR2, our data indicate that DA, through DR1, stimulates vessel stabilization by increasing pericyte recruitment to tumor endothelial cells. DA significantly stimulated migration of mouse 10T1/2 pericyte-like cells in vitro and increased cyclic adenosine mono-phosphate (cAMP levels in these cells. Moreover, DA or the DR1 agonist SKF 82958 increased platinum concentration in SKOV3ip1 tumor xenografts following cisplatin administration. In conclusion, DA stabilizes tumor blood vessels through activation of pericyte cAMP-protein kinase A signaling pathway by DR1. These findings could have implications for blocking the stimulatory effects of chronic stress on tumor growth.

  8. Radioactivity in the ocean: laws and biological effects

    Energy Technology Data Exchange (ETDEWEB)

    Hunsaker, C.T.

    1985-01-01

    This paper summarizes the literature on US laws and international agreements, experimental and monitoring data, and ongoing studies to provide background information for environmental assessment and regulatory compliance activities for ocean dumping of low-level radioactive waste. The Marine Protection, Research, and Sanctuaries Act is the major US legislation governing ocean disposal of radioactive waste. The major international agreement on ocean dumping is the Convention on the Prevention of Marine Pollution by Dumping of Wastes and other Matter. The United States ended its ocean dumping of radioactive wastes in 1970, but other countries have continued ocean dumping under international supervision in the northeast Atlantic. Monitoring of former US disposal sites has neither revealed significant effects on marine biota nor indicated a hazard to human health. Also, no effects on marine organisms have been found that could be attributed to routine discharges into the Irish Sea from the Windscale reprocessing plant. We must improve our ability to predict the oceanic carrying capacity and the fate and effects of ionizing radiation in the marine environment.

  9. Biological Effects of Culture Substrates on Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Yohei Hayashi

    2016-01-01

    Full Text Available In recent years, as human pluripotent stem cells (hPSCs have been commonly cultured in feeder-free conditions, a number of cell culture substrates have been applied or developed. However, the functional roles of these substrates in maintaining hPSC self-renewal remain unclear. Here in this review, we summarize the types of these substrates and their effect on maintaining hPSC self-renewal. Endogenous extracellular matrix (ECM protein expression has been shown to be crucial in maintaining hPSC self-renewal. These ECM molecules interact with integrin cell-surface receptors and transmit their cellular signaling. We discuss the possible effect of integrin-mediated signaling pathways on maintaining hPSC self-renewal. Activation of integrin-linked kinase (ILK, which transmits ECM-integrin signaling to AKT (also known as protein kinase B, has been shown to be critical in maintaining hPSC self-renewal. Also, since naïve pluripotency has been widely recognized as an alternative pluripotent state of hPSCs, we discuss the possible effects of culture substrates and integrin signaling on naïve hPSCs based on the studies of mouse embryonic stem cells. Understanding the role of culture substrates in hPSC self-renewal and differentiation enables us to control hPSC behavior precisely and to establish scalable or microfabricated culture technologies for regenerative medicine and drug development.

  10. [Effects and Biological Response on Bioremediation of Petroleum Contaminated Soil].

    Science.gov (United States)

    Yang, Qian; Wu, Man-li; Nie, Mai-qian; Wang, Ting-ting; Zhang, Ming-hui

    2015-05-01

    Bioaugmentation and biostimulation were used to remediate petroleum-contaminated soil which were collected from Zichang city in North of Shaanxi. The optimal bioremediation method was obtained by determining the total petroleum hydrocarbon(TPH) using the infrared spectroscopy. During the bioremediation, number of degrading strains, TPH catabolic genes, and soil microbial community diversity were determined by Most Probable Number (MPN), polymerase chain reaction (PCR) combined agarose electrophoresis, and PCR-denaturing gradient electrophoresis (DGGE). The results in different treatments showed different biodegradation effects towards total petroleum hydrocarbon (TPH). Biostimulation by adding N and P to soils achieved the best degradation effects towards TPH, and the bioaugmentation was achieved by inoculating strain SZ-1 to soils. Further analysis indicated the positive correlation between catabolic genes and TPH removal efficiency. During the bioremediation, the number of TPH and alkanes degrading strains was higher than the number of aromatic degrading strains. The results of PCR-DGGE showed microbial inoculums could enhance microbial community functional diversity. These results contribute to understand the ecologically microbial effects during the bioremediation of petroleum-polluted soil.

  11. DNA double-strand breaks as potential indicators for the biological effects of ionising radiation exposure from cardiac CT and conventional coronary angiography: a randomised, controlled study

    Energy Technology Data Exchange (ETDEWEB)

    Geisel, Dominik; Zimmermann, Elke; Rief, Matthias; Greupner, Johannes; Hamm, Bernd [Charite Medical School, Department of Radiology, Berlin (Germany); Laule, Michael; Knebel, Fabian [Charite Medical School, Department of Cardiology, Berlin (Germany); Dewey, Marc [Charite Medical School, Department of Radiology, Berlin (Germany); Charite, Institut fuer Radiologie, Berlin (Germany)

    2012-08-15

    To prospectively compare induced DNA double-strand breaks by cardiac computed tomography (CT) and conventional coronary angiography (CCA). 56 patients with suspected coronary artery disease were randomised to undergo either CCA or cardiac CT. DNA double-strand breaks were assessed in fluorescence microscopy of blood lymphocytes as indicators of the biological effects of radiation exposure. Radiation doses were estimated using dose-length product (DLP) and dose-area product (DAP) with conversion factors for CT and CCA, respectively. On average there were 0.12 {+-} 0.06 induced double-strand breaks per lymphocyte for CT and 0.29 {+-} 0.18 for diagnostic CCA (P < 0.001). This relative biological effect of ionising radiation from CCA was 1.9 times higher (P < 0.001) than the effective dose estimated by conversion factors would have suggested. The correlation between the biological effects and the estimated radiation doses was excellent for CT (r = 0.951, P < 0.001) and moderate to good for CCA (r = 0.862, P < 0.001). One day after radiation, a complete repair of double-strand breaks to background levels was found in both groups. Conversion factors may underestimate the relative biological effects of ionising radiation from CCA. DNA double-strand break assessment may provide a strategy for individualised assessments of radiation. (orig.)

  12. Vibration-induced coherence enhances the performance of a biological quantum heat engine

    CERN Document Server

    Chen, Hong-Bin; Chen, Yueh-Nan

    2016-01-01

    Photosynthesis has been the long-standing research interest due to its fundamental importance. Recently, studies on photosynthesis processes also inspire attention from thermodynamical aspect when considering photosynthetic apparatuses as biological quantum heat engines. Quantum coherence is shown to play a crucial role in enhancing the performance of these quantum heat engines. Based on the experimentally reported structure, we propose a quantum heat engine model with a non-Markovian vibrational mode. We show that one can obtain a performance enhancement easily for a wide range of parameters in the presence of the vibrational mode. Our results suggest new insights into the photosynthetic processes and a design principle mimicking natural organisms.

  13. Vibration-induced coherence enhancement of the performance of a biological quantum heat engine

    Science.gov (United States)

    Chen, Hong-Bin; Chiu, Pin-Yi; Chen, Yueh-Nan

    2016-11-01

    Photosynthesis has been a long-standing research interest due to its fundamental importance. Recently, studies on photosynthesis processes also have inspired attention from a thermodynamical aspect when considering photosynthetic apparatuses as biological quantum heat engines. Quantum coherence is shown to play a crucial role in enhancing the performance of these quantum heat engines. Based on the experimentally reported structure, we propose a quantum heat engine model with a non-Markovian vibrational mode. We show that one can obtain a performance enhancement easily for a wide range of parameters in the presence of the vibrational mode. Our results provide insights into the photosynthetic processes and a design principle mimicking natural organisms.

  14. Effect of biologic therapy on radiological progression in rheumatoid arthritis: what does it add to methotrexate?

    Directory of Open Access Journals (Sweden)

    Jones G

    2012-07-01

    Full Text Available Graeme Jones, Erica Darian-Smith, Michael Kwok, Tania WinzenbergMenzies Research Institute, University of Tasmania, Tasmania, AustraliaAbstract: There have been substantial advances in the treatment of rheumatoid arthritis in recent years. Traditional disease-modifying antirheumatic drugs (DMARDs have been shown to have small effects on the progression of radiographic damage. This quantitative overview summarizes the evidence for biologic DMARDS and radiographic damage either alone or in combination with methotrexate. Two outcomes were used (standardized mean difference and odds of progression. A total of 21 trials were identified of which 18 had useable data. For biologic monotherapy, tocilizumab, adalimumab, and etanercept were significantly better than methotrexate, with tocilizumab ranking first in both outcomes while golimumab was ineffective in both outcomes. For a biologic in combination with methotrexate compared with methotrexate alone, most therapies studied (etanercept, adalimumab, infliximab, certolizumab, tocilizumab, and rituximab were effective at slowing X-ray progression using either outcome, with infliximab ranking first in both outcomes. The exceptions to this were golimumab (no effect on standardized mean difference and abatacept (no effect on odds of progression. This effect was additional to methotrexate; thus, the overall benefit is moderate to large in magnitude, which is clearly of major clinical significance for sufferers of rheumatoid arthritis and supports the use of biologic DMARDs in those with a poor disease prognosis.Keywords: rheumatoid, trials, meta-analysis, radiographs, biologic, disease-modifying antirheumatic drugs, DMARDs

  15. EFFECTS OF 5E LEARNING CYCLE ON STUDENTS ACHIEVEMENT IN BIOLOGY AND CHEMISTRY

    Directory of Open Access Journals (Sweden)

    Patrick Osawaru Ajaja,

    2012-01-01

    Full Text Available The major purpose of this study was to determine the effects of learning cycle as an instructional strategy on biology andchemistry students achievement. To guide this study, six research hypotheses were stated and tested at 0.05 level ofsignificance. The design of this study was 2x2x3x6 Pre-test Post-test non-equivalent control group quasi experimental design.These included two instructional groups (experimental and control groups, sex (male and female, repeated testing (Pre,Post and follow-up tests, and six weeks of experience. The samples of the study included six senior secondary schools, 112science students, and 12 biology and chemistry teachers. The instruments used for this study were: teacher’s questionnaireon knowledge and use of learning cycle (KULC; and Biology and Chemistry Achievement Test (BCAT. The data collected wereanalyzed with simple percentage, Analysis of Covariance (ANCOVA and student t-test statistics. The major findings of thestudy included that only 30.43% and 26.31% of biology and chemistry teachers have the knowledge that learning cycle is aninstructional method; all the biology and chemistry teachers sampled have never used learning cycle as an instructionalmethod; learning cycle had a significant effect on students achievement in biology and chemistry; students taught withlearning cycle significantly achieved better in biology/chemistry Post-test than those taught with lecture method; the posttestscores of students in the learning cycle group increased over the period of experience; non-significant difference in Posttestscores between males and females taught with learning cycle; non-significant interaction effect between method andsex on achievement; and a significant higher retention of biology and chemistry knowledge by students taught with learningcycle than those taught with lecture method. It was concluded that the method seems an appropriate instructional modelthat could be used to solve the problems of

  16. Biological effect of non-ionizing radiations on microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Kikuo; Yamamoto, Takayoshi [Osaka Univ., Radioisotope Research Center, Suita, Osaka (Japan); Nakaoka, Yasuo [Osaka Univ., Graduate School of Engineering Science, Department of Biophysical Engineering, Toyonaka, Osaka (Japan)

    2000-05-01

    We studied the effect of extremely low frequency magnetic fields (ELF-MF) of 60-Hz and 500 mT on the growth and the mutation frequency of the budding yeast S.cerevisiae and on the behavior of the ciliate Paramecium multimicronucleatum. The growth rate and mutation frequencies of several strains of S.cerevisiae (wild type and radiation sensitive mutants, rad or rev) were examined but no significant difference was observed. Moreover, the behavior of P.multimicronucleatum under the ELF-MF was examined. When exposed to a vertical field of 0.6 T, the cells accumulated at the upper end of the cuvette. (author)

  17. Field application of the Numobag as a portable disposable isolation unit and for treating chemical, radiological or biologically induced wounds.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Keith A.; Felton, Robert; Vaughan, Courtenay Thomas

    2005-04-01

    Numotech Inc. has developed the Numobag{trademark}, a disposable, lightweight, wound healing device which produces Topical Hyperbaric Oxygen Therapy (THOT). The Numobag{trademark} is cost effective and has been clinically validated to heal large skin lesions rapidly and has proven to arrest wound advancement from several insidious forms of biological attack including dermal anthrax, small pox, necrotizing fasciitis etc. The Numobag{trademark} can treat mass casualties wounded by chemical/radiological burns or damaging biological exposures. The Numobag{trademark} can be a frontline tool as an isolation unit, reducing cross-contamination and infection of medical personnel. The heightened oxygen content kills organisms on the skin and in the wound, avoids expensive hospital trash disposal procedures, and helps the flesh heal. The Numobag{trademark} requires high purity oxygen. Numotech Inc. is teaming with Sandia National Laboratories and Spektr Conversion in Russia to develop a cost effective, portable, low power oxygen generator.

  18. Biological effect markers for exposure to carcinogenic compound and their relevance for risk assessment

    NARCIS (Netherlands)

    Delft, J.H.M. van; Baan, R.A.; Roza, L.

    1998-01-01

    In this review data are summarized on biomarkers that are used for biological effect monitoring of human populations exposed to genotoxic carcinogens. The biomarkers are DNA and protein adducts and cytogenetic effects. Most of these biomarkers are relevant for the process of carcinogenesis. Emphasis

  19. Oil spills: Biological effects. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The bibliography contains citations concerning the biological and ecological effects of oil spills. Citations discuss effects on microorganisms, plants, and animals. Damage assessment, ecological modeling, and environmental impact statements are included. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  20. Low power laser therapy — an introduction and a review of some biological effects

    OpenAIRE

    Thiel, Haymo

    1986-01-01

    This report gives a brief introduction to the characteristics of therapeutic low power laser devices. Absorption, tissue penetration and physiological mechanisms of laser irradiation are discussed. The biological effects of low power laser light are reviewed in the areas of collagen metabolism, woundhealing, inflammation and pain control. Contraindications, precautions and side effects of low power laser irradiation are discussed.

  1. Molecular and chemical features of the excreted extracellular polysaccharides in Induced Biological Soil Crusts of different ages

    Science.gov (United States)

    Rossi, Federico; Lanzhou, Chen; Liu, Yongding; Adessi, Alessandra; De Philippis, Roberto

    2014-05-01

    Biological Soil Crusts (BSCs) are complex microbial associations widely distributed in arid and semiarid environments. These microbial associations have recently been acknowledged as important in restoration ecology (Bowker 2007). The primary colonization of cyanobacteria and other crust organisms after events such as fire or cessation of plowing is considered critical for later vascular plant establishment, due to the control of seed germination and due to the complex pathways that BSCs are capable to establish between plants and crust organisms and exudates (Rossi et al. 2013). In a ten year study carried out in the hyper-arid region of Inner Mongolia (China), introduction of man - made BSCs (induced BSCs, IBSCs) proved to be effective in producing a shift of the ecosystem state from high abiotic to low abiotic stress, evidenced by an increase in photothrophic abundance and subshrub cover. The prerequisite for an efficient exploitation of crust organisms as soil colonizers is their capability to secrete large amount of exopolysaccharides (EPS) which are important, among the reasons, as they lead to soil and BSC stabilization and represent a noticeable source of C that can be respired by the crustal community. By these means, a deep chemical and physiological knowledge concerning these exudates is required. Notwithstanding the large amount of literature available, recently thoroughly reviewed by Mager and Thomas (2011), the chemical characteristics of EPS from BSCs, and in particular from IBSCs, have not been investigated yet. We analyzed the monosaccharidic composition and the molecular weight distribution of two EPS fractions, the more soluble fraction and the fraction more tightly bound to cells, extracted from IBSCs collected in the Inner Mongolian desert, inoculated in different years (namely 4, 6 and 8 years before the sampling), thus characterized by different developmental stages. We thereafter investigated the degradation processes involving EPS

  2. Biological implications of high-energy cosmic ray induced muon flux in the extragalactic shock model

    CERN Document Server

    Atri, Dimitra

    2011-01-01

    A ~ 62 My periodicity in fossil biodiversity has been observed in independent studies of paleobiology databases going back 542 My. The period and phase of this biodiversity cycle coincides with the motion of our solar system in the galactic disk that oscillates perpendicular to the galactic plane with an amplitude of about 70 parsecs and a period of 63.6 My. Our Galaxy is falling toward the Virgo cluster due to its gravitational pull, forming a galactic shock at the north end of our galaxy due to this motion, capable of accelerating particles and exposing our galaxy's northern side to a higher flux of cosmic rays. These high-energy particles strike the Earth's atmosphere initiating extensive air showers, ionizing the atmosphere by producing charged secondary particles. Secondary particles such as muons produced as a result of nuclear interactions are able to reach the ground, enhancing the biological radiation dose, causing DNA damage and increasing mutation rates, which can have serious biological implicatio...

  3. Aluminum-Induced Entropy in Biological Systems: Implications for Neurological Disease

    Directory of Open Access Journals (Sweden)

    Christopher A. Shaw

    2014-01-01

    Full Text Available Over the last 200 years, mining, smelting, and refining of aluminum (Al in various forms have increasingly exposed living species to this naturally abundant metal. Because of its prevalence in the earth’s crust, prior to its recent uses it was regarded as inert and therefore harmless. However, Al is invariably toxic to living systems and has no known beneficial role in any biological systems. Humans are increasingly exposed to Al from food, water, medicinals, vaccines, and cosmetics, as well as from industrial occupational exposure. Al disrupts biological self-ordering, energy transduction, and signaling systems, thus increasing biosemiotic entropy. Beginning with the biophysics of water, disruption progresses through the macromolecules that are crucial to living processes (DNAs, RNAs, proteoglycans, and proteins. It injures cells, circuits, and subsystems and can cause catastrophic failures ending in death. Al forms toxic complexes with other elements, such as fluorine, and interacts negatively with mercury, lead, and glyphosate. Al negatively impacts the central nervous system in all species that have been studied, including humans. Because of the global impacts of Al on water dynamics and biosemiotic systems, CNS disorders in humans are sensitive indicators of the Al toxicants to which we are being exposed.

  4. Catalytically and noncatalytically treated automobile exhaust: biological effects in rats

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, G.P. (Univ. of Cincinnati); Lewkowski, J.P.; Hastings, L.; Malanchuk, M.

    1977-12-01

    Chronic exposure to catalytically treated or noncatalytically treated automobile exhaust significantly depressed the spontaneous locomotor activity (SLA) of rats. Exposure to H/sub 2/SO/sub 4/ alone or CO at comparable levels did not alter the SLA. Exposure to noncatalytically treated exhaust resulted in significant reductions in growth rate and food and water intake. However, these effects were not evident in the exposure to catalytically treated exhaust or in the control H/sub 2/SO/sub 4/ and CO exposures. Blood acid-base analyses indicated that exposure to either catalytically treated exhaust or H/sub 2/SO/sub 4/ elicits a metabolic alkalosis, while exposure to CO alone results in a metabolic acidosis. All acid-base parameters were within the normal range several weeks after the termination of exposure.

  5. Beryllium uptake and related biological effects studied in THP-1 differentiated macrophages.

    Science.gov (United States)

    Ding, Jian; Lin, Lin; Hang, Wei; Yan, Xiaomei

    2009-11-01

    Investigation of cellular uptake of metal compounds is important in understanding metal-related toxicity and diseases. Inhalation of beryllium aerosols can cause chronic beryllium disease, a progressive, granulomatous fibrosis of the lung. Studies in laboratory animals and cultured animal cells indicate that alveolar macrophages take up beryllium compounds and participate in a hypersensitivity immune response to a beryllium-containing antigen. In the present work, human monocyte cell line THP-1 was induced with phorbol myristate acetate to differentiate into a macrophage. This cell with characteristics of human alveolar macrophages was employed to study cellular beryllium uptake and related biological effects. Morphological changes, phagocytosis of fluorescent latex beads, and cell surface CD14 expression were used to verify the successful differentiation of THP-1 monocytes into macrophages. An improved mass spectrometry method for quantitative analysis of intracellular beryllium as opposed to the traditional radioisotopic approach was developed using ICP-MS. The influence of the solubility of beryllium compounds, exposure duration, and beryllium concentration on the incorporation of beryllium was studied. Our data indicated that the uptake of particulate BeO was much more significant than that of soluble BeSO(4), suggesting the major cellular uptake pathway is phagocytosis. Nevertheless, subsequent DAPI nuclear staining and PARP cleavage study indicated that beryllium uptake had a negligible effect on the apoptosis of THP-1 macrophages compared to the unstimulated macrophage control. Meanwhile, no substantial variation of tumour necrosis factor-alpha production was observed for THP-1 macrophages upon beryllium exposure. These data imply alveolar macrophages could have some level of tolerance to beryllium and this may explain why most Be-exposed individuals remain healthy throughout life.

  6. Endothelin-2/Vasoactive Intestinal Contractor: Regulation of Expression via Reactive Oxygen Species Induced by CoCl22, and Biological Activities Including Neurite Outgrowth in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Eiichi Kotake-Nara

    2006-01-01

    Full Text Available This paper reviews the local hormone endothelin-2 (ET-2, or vasoactive intestinal contractor (VIC, a member of the vasoconstrictor ET peptide family, where ET-2 is the human orthologous peptide of the murine VIC. While ET-2/VIC gene expression has been observed in some normal tissues, ET-2 recently has been reported to act as a tumor marker and as a hypoxia-induced autocrine survival factor in tumor cells. A recently published study reported that the hypoxic mimetic agent CoCl2 at 200 µM increased expression of the ET-2/VIC gene, decreased expression of the ET-1 gene, and induced intracellular reactive oxygen species (ROS increase and neurite outgrowth in neuronal model PC12 cells. The ROS was generated by addition of CoCl2 to the culture medium, and the CoCl2-induced effects were completely inhibited by the antioxidant N-acetyl cysteine. Furthermore, interleukin-6 (IL-6 gene expression was up-regulated upon the differentiation induced by CoCl2. These results suggest that expression of ET-2/VIC and ET-1 mediated by CoCl2-induced ROS may be associated with neuronal differentiation through the regulation of IL-6 expression. CoCl2 acts as a pro-oxidant, as do Fe(II, III and Cu(II. However, some biological activities have been reported for CoCl2 that have not been observed for other metal salts such as FeCl3, CuSO4, and NiCl2. The characteristic actions of CoCl2 may be associated with the differentiation of PC12 cells. Further elucidation of the mechanism of neurite outgrowth and regulation of ET-2/VIC expression by CoCl2 may lead to the development of treatments for neuronal disorders.

  7. The effects of crocin and safranal on the yawning induced by intracerebroventricular injection of histamine in rats

    OpenAIRE

    Mina Taati; Amir Erfanparast; Esmaeal Tamaddonfard; Hamid Ghasemi

    2016-01-01

    Objective: Crocin and safranal, as the major constituents of saffron, have many biological activities. This study investigated the effects of crocin and safranal on yawning response induced by intracerebroventricular (i.c.v.) injection of histamine in rats. Materials and Methods: In ketamine/xylazine-anesthetized rats, a guide cannula was implanted in the right ventricle of the brain and yawning induced by i.c.v. injection of histamine. Crocin and safranal were intraperitoneally (i.p.) inject...

  8. Contrast-induced nephrotoxicity: possible synergistic effect of stress hyperglycemia.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2010-07-01

    Oxidative stress on the renal tubules has been implicated as a mechanism of injury in both stress hyperglycemia and contrast-induced nephrotoxicity. The purpose of this study was to determine whether the combination of these effects has a synergistic effect on accentuating renal tubular apoptosis and therefore increasing the risk of contrast-induced nephrotoxicity.

  9. Mechanisms of Hexachlorobenzene-induced Adverse Immune Effects

    NARCIS (Netherlands)

    Ezendam, Janine

    2004-01-01

    Hexachlorobenzene (HCB) is an environmental pollutant that can induce adverse immune effects in humans and rats. Brown Norway rats (BN) appeared to be very susceptible to HCB-induced immune effects. Oral exposure causes inflammatory skin and lung lesions, enlarged spleen and lymph nodes (LN) and ele

  10. Beneficial effect of Curcumin in Letrozole induced polycystic ovary syndrome

    Directory of Open Access Journals (Sweden)

    P. Sushma Reddy

    2016-04-01

    Conclusion: Curcumin showed beneficial effects in Letrozole induced PCOS in female Wistar rats. Its effect was comparable to that of Clomiphene citrate, most widely used treatment for ovulation induction in PCOS condition.

  11. [Quality of interior air: biological contaminants and their effects on health; bioaerosols and gathering techniques].

    Science.gov (United States)

    Bălan, Gabriela

    2007-01-01

    Indoor Air Quality: biological contaminants and health effects; airborne organisms and sampling instruments. Biological contaminants include bacteria, molds, viruses, animal dander and cat saliva, house dust, mites, cockroaches and pollen. Symptoms of health problems caused by biological pollutants include sneezing, watery eyes, coughing, shortness of breath, dizziness, lethargy, fevers. Children, elderly people with breathing problems, allergies and lung diseases are particularly susceptible to disease-causing biological agents in the indoor air. It is convenient to consider microbiological samplers for collecting organisms in air as falling into several broad categories. Many popular microbiological air samplers use the principle of impaction to trap the organisms by impacting them directly on to agar. Further distinct groups are the impingers, which operate by impinging organisms into liquid.

  12. Photomechanical ablation of biological tissue induced by focused femtosecond laser and its application for acupuncture

    Science.gov (United States)

    Hosokawa, Yoichiroh; Ohta, Mika; Ito, Akihiko; Takaoka, Yutaka

    2013-03-01

    Photomechanical laser ablation due to focused femtosecond laser irradiation was induced on the hind legs of living mice, and its clinical influence on muscle cell proliferation was investigated via histological examination and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis to examine the expression of the gene encoding myostatin, which is a growth repressor in muscle satellite cells. The histological examination suggested that damage of the tissue due to the femtosecond laser irradiation was localized on epidermis and dermis and hardly induced in the muscle tissue below. On the other hand, gene expression of the myostatin of muscle tissue after laser irradiation was suppressed. The suppression of myostatin expression facilitates the proliferation of muscle cells, because myostatin is a growth repressor in muscle satellite cells. On the basis of these results, we recognize the potential of the femtosecond laser as a tool for noncontact, high-throughput acupuncture in the treatment of muscle disease.

  13. Reparative Dentinogenesis Induced by Mineral Trioxide Aggregate: A Review from the Biological and Physicochemical Points of View

    Directory of Open Access Journals (Sweden)

    Takashi Okiji

    2009-01-01

    Full Text Available This paper aims to review the biological and physicochemical properties of mineral trioxide aggregate (MTA with respect to its ability to induce reparative dentinogenesis, which involves complex cellular and molecular events leading to hard-tissue repair by newly differentiated odontoblast-like cells. Compared with that of calcium hydroxide-based materials, MTA is more efficient at inducing reparative dentinogenesis in vivo. The available literature suggests that the action of MTA is attributable to the natural wound healing process of exposed pulps, although MTA can stimulate hard-tissue-forming cells to induce matrix formation and mineralization in vitro. Physicochemical analyses have revealed that MTA not only acts as a “calcium hydroxide-releasing” material, but also interacts with phosphate-containing fluids to form apatite precipitates. MTA also shows better sealing ability and structural stability, but less potent antimicrobial activity compared with that of calcium hydroxide. The clinical outcome of direct pulp capping and pulpotomy with MTA appears quite favorable, although the number of controled prospective studies is still limited. Attempts are being conducted to improve the properties of MTA by the addition of setting accelerators and the development of new calcium silicate-based materials.

  14. Subterranean, herbivore-induced plant volatile increases biological control activity of multiple beneficial nematode species in distinct habitats.

    Directory of Open Access Journals (Sweden)

    Jared G Ali

    Full Text Available While the role of herbivore-induced volatiles in plant-herbivore-natural enemy interactions is well documented aboveground, new evidence suggests that belowground volatile emissions can protect plants by attracting entomopathogenic nematodes (EPNs. However, due to methodological limitations, no study has previously detected belowground herbivore-induced volatiles in the field or quantified their impact on attraction of diverse EPN species. Here we show how a belowground herbivore-induced volatile can enhance mortality of agriculturally significant root pests. First, in real time, we identified pregeijerene (1,5-dimethylcyclodeca-1,5,7-triene from citrus roots 9-12 hours after initiation of larval Diaprepes abbreviatus feeding. This compound was also detected in the root zone of mature citrus trees in the field. Application of collected volatiles from weevil-damaged citrus roots attracted native EPNs and increased mortality of beetle larvae (D. abbreviatus compared to controls in a citrus orchard. In addition, field applications of isolated pregeijerene caused similar results. Quantitative real-time PCR revealed that pregeijerene increased pest mortality by attracting four species of naturally occurring EPNs in the field. Finally, we tested the generality of this root-zone signal by application of pregeijerene in blueberry fields; mortality of larvae (Galleria mellonella and Anomala orientalis again increased by attracting naturally occurring populations of an EPN. Thus, this specific belowground signal attracts natural enemies of widespread root pests in distinct agricultural systems and may have broad potential in biological control of root pests.

  15. Chemical and Molecular Biological Aspects of Alkylhydrazine-Induced Carcinogenesis in Human Cells in Vitro. Revised

    Science.gov (United States)

    1984-04-01

    DMH) and the metabolite methylazoxymethanol acetate ( MAMA ) have been shown to induce cancer in vivo in several species of rodents producing a variety of...The Pharmaceutical and Toxicological Research Institute (PTRI) I Co-Director, Developmental Chemotherapeutics, OSU Comprehensive Cancer Center...NNL[Methyl-l 4 C] I -dimethylhydrazine) of high specific activity Chapter III - Synthesis of (14 C] -labeled methylazoxymethanol 13 acetate ( MAMA ) of

  16. Synthesis and Biological Evaluation of Manassantin Analogues for Hypoxia-Inducible Factor 1α Inhibition

    OpenAIRE

    Kwon, Do-Yeon; Lee, Hye Eun; Weitzel, Douglas H.; PARK, KYUNGHYE; Lee, Sun Hee; Lee, Chen-Ting; Stephenson, Tesia N.; Park, Hyeri; Fitzgerald, Michael C.; Chi, Jen-Tsan; Mook, Robert A.; Dewhirst, Mark W.; Lee, You Mie; Hong, Jiyong

    2015-01-01

    To cope with hypoxia, tumor cells have developed a number of adaptive mechanisms mediated by hypoxia-inducible factor 1 (HIF-1) to promote angiogenesis and cell survival. Due to significant roles of HIF-1 in the initiation, progression, metastasis, and resistance to treatment of most solid tumors, a considerable amount of effort has been made to identify HIF-1 inhibitors for treatment of cancer. Isolated from Saururus cernuus, manassantins A (1) and B (2) are potent inhibitors of HIF-1 activi...

  17. Cardiometabolic risk in psoriasis: differential effects of biologic agents

    Directory of Open Access Journals (Sweden)

    Mariana J Kaplan

    2008-12-01

    Full Text Available Mariana J KaplanDepartment of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USAAbstract: Psoriasis is associated to an increased risk of cardiovascular (CV complications. Overall, the pathogenic mechanisms involved in premature CV complications in psoriasis appear to be complex and multifactorial, with traditional and nontraditional risk factors possibly contributing to the increased risk. Based on what is known about the pathogenesis of psoriasis and extrapolating the current knowledge on CV complications in other inflammatory diseases, studies are needed to investigate if appropriate control of the inflammatory, immunologic and metabolic disturbances present in psoriasis can prevent the development of this potentially lethal complication. It is clear that there is a great need for heightened awareness of the increased risk for vascular damage in patients with psoriasis. It is also crucial to closely monitor patients with psoriasis for CV risk factors including obesity, hypertension, diabetes, and hyperlipidemia. Whether treatment regimens that effectively manage systemic inflammation will lead to prevention of CV complications in psoriasis needs to be investigated. Clearly, studies should focus on establishing the exact mechanisms that determine CV risk in psoriasis so that appropriate preventive strategies and treatment guidelines can be established.Keywords: psoriasis, atherosclerosis, inflammation, vascular

  18. The biological effect and medical functions of the Infrared Rays

    Institute of Scientific and Technical Information of China (English)

    PANG Xiao-feng

    2001-01-01

    The quantum vibrational energy-spectra including high excited states of the protein molecules have been calculated by new theory of bio-energy transport along the protein molecules and its dynamic equation, discrete nonlinear Schrodinger equation, appropriate to the protein molecules on the basis of the level of molecular structure. This energy-spectra obtained are basically consistent with the experimental values by infrared absorption and radiated measurement of person's hands and laser-Raman spectrum from metabolically active E. Coli.. From this energy-spectra we know that the infrared lights with (1-3)x1000nm and (5-7)x1000nm wavelength can be absorbed by the protein molecules in the living systems.In accordance with the non-linear theory of the bio-energy transport we know that the energy of the infrared light absorbed by the proteins can result in vibrations of amide-I in amino acids and can facilitate the bio-energy transport along the protein molecular chains from one place to other for the growth of living bodies. This processe is non-thermal. This is just non-thermal effect of the infrared lights. According to the mechanism we explained further the medical functions of the infrared lights absorbed.

  19. Biological effects of exposure to intermediate neutron and repair mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Utsumi, Hiroshi; Sasaki, Masao [Kyoto Univ. (Japan); Onishi, Takeo; Onizuka, Masahiko

    2000-01-01

    An investigation was made on cytotoxic effects of neutron capture using chicken B-cell line mutants, DT40, KURO{sup -/-}, RAD54 {sup -/-} and KU70{sup -/-} / RAD54{sup -/-}. Suspensions of these cells were exposed to two times X-radiation at various doses and the cell surviving was evaluated. The sensitivity to radiation was highest in the double defective mutant, KU70{sup -/-} / RAD54{sup -/-} and followed by that of RAD54 {sup -/-}, a homologous recombination mutant, whereas KURO {sup -/-} cell, a non-homologous end-joining mutant showed a peculiar surviving curve composed of two phases and the cell was highly sensitive to a low-dose radiation. This indicates that there are two different DNA repair systems for double-strand breaks and the system for non-homologous end-joining repair can be involved in all phases of cell cycle, but the system for the homologous one is involved only in S-phase. Therefore, it was thought that variation of sensitivity to radiation exposure depending to the phase of cell cycle might explain the alternation of repair system depending to the phase progressing of cell cycle. It was thus likely that the recovery from radiation injury, which is still a black box might be explained with the double strand breaks of DNA. (M.N.)

  20. Bioaccumulation and biological effects of cigarette litter in marine worms

    Science.gov (United States)

    Wright, Stephanie L.; Rowe, Darren; Reid, Malcolm J.; Thomas, Kevin V.; Galloway, Tamara S.

    2015-01-01

    Marine debris is a global environmental issue. Smoked cigarette filters are the predominant coastal litter item; 4.5 trillion are littered annually, presenting a source of bioplastic microfibres (cellulose acetate) and harmful toxicants to marine environments. Despite the human health risks associated with smoking, little is known of the hazards cigarette filters present to marine life. Here we studied the impacts of smoked cigarette filter toxicants and microfibres on the polychaete worm Hediste diversicolor (ragworm), a widespread inhabitant of coastal sediments. Ragworms exposed to smoked cigarette filter toxicants in seawater at concentrations 60 fold lower than those reported for urban run-off exhibited significantly longer burrowing times, >30% weight loss, and >2-fold increase in DNA damage compared to ragworms maintained in control conditions. In contrast, ragworms exposed to smoked cigarette filter microfibres in marine sediment showed no significant effects. Bioconcentration factors for nicotine were 500 fold higher from seawater than from sediment. Our results illustrate the vulnerability of organisms in the water column to smoking debris and associated toxicants, and highlight the risks posed by smoked cigarette filter debris to aquatic life. PMID:26369692

  1. Systems Biology Reveals Cigarette Smoke-Induced Concentration-Dependent Direct and Indirect Mechanisms That Promote Monocyte-Endothelial Cell Adhesion.

    Science.gov (United States)

    Poussin, Carine; Laurent, Alexandra; Peitsch, Manuel C; Hoeng, Julia; De Leon, Hector

    2015-10-01

    Cigarette smoke (CS) affects the adhesion of monocytes to endothelial cells, a critical step in atherogenesis. Using an in vitro adhesion assay together with innovative computational systems biology approaches to analyze omics data, our study aimed at investigating CS-induced mechanisms by which monocyte-endothelial cell adhesion is promoted. Primary human coronary artery endothelial cells (HCAECs) were treated for 4 h with (1) conditioned media of human monocytic Mono Mac-6 (MM6) cells preincubated with low or high concentrations of aqueous CS extract (sbPBS) from reference cigarette 3R4F for 2 h (indirect treatment, I), (2) unconditioned media similarly prepared without MM6 cells (direct treatment, D), or (3) freshly generated sbPBS (fresh direct treatment, FD). sbPBS promoted MM6 cells-HCAECs adhesion following I and FD, but not D. In I, the effect was mediated at a low concentration through activation of vascular inflammation processes promoted in HCAECs by a paracrine effect of the soluble mediators secreted by sbPBS-treated MM6 cells. Tumor necrosis factor α (TNFα), a major inducer, was actually shed by unstable CS compound-activated TNFα-converting enzyme. In FD, the effect was triggered at a high concentration that also induced some toxicity. This effect was mediated through an yet unknown mechanism associated with a stress damage response promoted in HCAECs by unstable CS compounds present in freshly generated sbPBS, which had decayed in D unconditioned media. Aqueous CS extract directly and indirectly promotes monocytic cell-endothelial cell adhesion in vitro via distinct concentration-dependent mechanisms.

  2. Relative biological effectiveness of fast neutrons in a multiorgan assay for apoptosis in mouse.

    Science.gov (United States)

    Lee, Hae-June; Kim, Joong-Sun; Moon, Changjong; Kim, Jong-Choon; Jo, Sung-Kee; Kim, Sung-Ho

    2008-04-01

    This study compared the effects of high linear energy transfer (LET) fast neutrons on the induction of apoptosis in several tissue types (hair follicle, intestine crypt, testis) of ICR mouse exposed to low LET 60Co gamma-rays. The changes that occurred from 0 to 24 h after exposing the mice to either 2 Gy of gamma-rays (2 Gy/min) or 0.8 Gy of neutrons (94 mGy/min, 35 MeV) were examined. The maximum frequency of apoptosis was observed at 8 or 12 h after irradiation. The mice that had received 0-8 Gy of gamma-rays or 0-1.6 Gy of neutrons were examined 8 h after irradiation. The best-fitting dose-response curves were linear-quadratic, and there was a significant relationship between the number of apoptotic cells and the dose. The stained products in the TUNEL-positive cells or bodies correlated with the typical morphologic characteristics of apoptosis observed by optical microscopy. In the follicles showing an apoptosis frequency between 2 and 14 per hair follicle, the relative biological effectiveness (RBE) of the neutrons in the small and large follicles was 2.09 +/- 0.31 and 2.15 +/- 0.18, respectively. In the intestine crypts showing an apoptosis frequency between 1 and 3 per crypt, the RBE of the neutrons was 4.03 +/- 0.06 and 3.87 +/- 0.04 in the base and total crypts, respectively. The RBE of the neutrons in the seminiferous tubule showing an apoptosis frequency between 0.5 and 2 per tubule was 5.18 +/- 0.06. The results determined the time-response relations and the RBE for fast neutron-induced apoptosis in several organs at the same time. The differences in RBE observed between the high and low LET radiation and it is believed that the difference in the DSB repair capacity in hair follicle, intestine crypt, and seminiferous tubule cells plays a role in determining the RBE of the high-LET radiation for the induced apoptotic cell formation.

  3. Chemotherapy-induced enterocutaneous fistula after perineal hernia repair using a biological mesh

    DEFF Research Database (Denmark)

    Eriksen, Mh; Bulut, O

    2014-01-01

    This is the first reported case of an enterocutaneous fistula as a late complication to reconstruction of the pelvic floor with a Permacol™ mesh after a perineal hernia. A 70-year-old man had a reconstruction of the pelvic floor with a biological mesh because of a perineal hernia after laparoscopic...... abdominoperineal resection. Nine months after the perineal hernia operation, the patient had multiple metastases in both lungs and liver. The patient underwent chemotherapy, including bevacizumab, irinotecan, calcium folinate, and fluorouracil. Six weeks into chemotherapy, the patient developed signs of sepsis...... from the distal ileum to perineum. A resection of the small bowel with primary anastomosis was performed. The postoperative course was complicated by fluid and electrolyte disturbances, but the patient was stabilized and finally discharged to a hospice for terminal care after 28 days of hospital stay...

  4. Analysis of micro-composition of biological tissue by means of induced radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, C.A.; Dunn, R.W.

    1948-05-24

    The use of radioactive isotopes as tracers promises a wealth of information regarding the biochemical role of most elements and their components. Usually a radioactive sample of the element to be studied is administered to the plant or animal in a convenient form, and its distribution and rate of exchange are determined in later assays. This technique has, however, certain limitations, two of which will be discussed here: (1) radioactive isotopes are not generally useful for measurements of the concentration of elements in the body or its parts. They can be used only to give a measure of the rate of exchange of the elements and (2) the use of radioactive isotopes for tracer experiments requires that the radiation dose delivered to the tissue should be small in order not to disturb normal biological function.

  5. Effects of Magnetic Field on Biological Cells and Applications

    Science.gov (United States)

    Chen, Ching-Jen

    2001-03-01

    While there has been extensive research performed in the physics of magnetic fields and the physics and chemistry in life sciences, independent of each other, there has been a paucity of scientific research and development investigating the possible applications of magnetic fields in life sciences. The focus of this presentation is to present the stimulation mechanism by which magnetic fields affect (a) yeast cells (b) plant cells and (c) mammalian normal and cancer cells. Recently we have found that the Saccharomyces Cerevsa yeast growth increases by about 30to a 1 tesla field and the production of CO2 increases by about 30of yeast metabolism may be due to an increase in intercellular interaction and protein channel alignment, the introduction of an alteration in the DNA from the magnetic field exposure or a combination of these mechanisms. We also have found that the application of high magnetic fields (1 tesla and above) can have marked effects on the germination and growth of plants, especially corn, beans and peas. This finding has opened up the possibility of technology developments in botanical growth systems to accelerate seed germination and crop harvesting. Most recently we have investigated the application of high magnetic fields on leukemia, CaCoII and HEP G2 cancer cell lines. We found that when leukemia are exposed to a 12 tesla field for 2 hours has an increase in cell death by about 30that were not exposed to the magnetic field. Viability of CaCoII cells sandwiched between permanent magnets of maximum strength of 1.2 tesla was measured. A decrease in viable cells by 33unexposed cells. HSP 70 was measured for HEPG2 cells that were exposed to permanent magnetic field of 1.2 tesla for 40 minutes and for unexposed cells. It was found that the exposed cells produce 19 times more HSP70 compared to unexposed cells. Our results together with other investigators report suggest a strong evidence of a reduction in the cell growth rate for cancer cells when

  6. Millimeter Wave Induced BioEffects

    Science.gov (United States)

    2006-07-01

    Nebendahl K. 2000. The collection of body fluids. Ed. Krinke GJ. The laboratory rat . ISBN:0-12-426400-X pg. 491. Xiao-feng P, Anying Z. 2003... laboratory rat . Physiology & Behavior 47(5):963-991. Gowrishankar TR, Stewart DA, Martin GT, Weaver JC. 2004. Transport lattice models of heat...heat loading by exposure to radiofrequency radiation. Comparative Biochemistry and Physiology A 88(1):107-112. Gordon CJ. 1990. Thermal biology of the

  7. Allee effects in tritrophic food chains: some insights in pest biological control.

    Science.gov (United States)

    Costa, Michel Iskin da S; Dos Anjos, Lucas

    2016-12-01

    Release of natural enemies to control pest populations is a common strategy in biological control. However, its effectiveness is supposed to be impaired, among other factors, by Allee effects in the biological control agent and by the fact that introduced pest natural enemies interact with some native species of the ecosystem. In this work, we devise a tritrophic food chain model where the assumptions previously raised are proved correct when a hyperpredator attacks the introduced pest natural enemy by a functional response type 2 or 3. Moreover, success of pest control is shown to be related to the release of large amounts (i.e., inundative releases) of natural enemies.

  8. Study of complex matrix effect on solid phase microextraction for biological sample analysis.

    Science.gov (United States)

    Jiang, Ruifen; Xu, Jianqiao; Zhu, Fang; Luan, Tiangang; Zeng, Feng; Shen, Yong; Ouyang, Gangfeng

    2015-09-11

    Solid phase microextraction (SPME) has become a useful tool for in vivo monitoring the behavior of environmental organic pollutants in biological species due to its simplicity, relatively non-invasive, and cost-effective manner. However, the complex matrices in biological samples could significantly influence the extraction kinetic, and bias the quantification result. In this study, we investigated the effect of complex matrix on the extraction kinetic of SPME for biological sample analysis. Two sample matrices, phosphate-buffered saline (PBS) with bovine serum albumin (BSA) and agarose gel with BSA were used to simulate the biological fluid and tissue. Results showed that the addition of BSA significantly enhanced the mass transfer of organic compounds onto SPME fiber in both PBS buffer and gel sample. Enhancement factors ranging from 1.3 to 27, and 2.0 to 80 were found for all selected polyaromatic hydrocarbons (PAHs) in PBS buffer and agarose gel with BSA concentration of 0.1-5%, respectively. Then, an improved theoretical model was applied to quantify the observed enhancement effect, and the result showed that the predicted sampling time constant agreed well with the experimental one in complex matrix. Furthermore, a simplified equation was proposed for the real biological sample analysis.

  9. Biological effects of simulated microgravity on human umbilical vein endothelial cell line HUVEC-C

    Science.gov (United States)

    Liu, Ming; Cheng, Zhenlong; Liang, Shujian; Sun, Yeqing

    treatment groups of 48 hours. Moreover, 417 genes were up-regulated and 240 were downregulated after returned to normal conditions for 24h. Identification of these genes revealed that ActR/nB, tumor protein D52-like 1, EPAS1 and VEGF etc were involved c˜ in response to altered gravity. Our study documented that microgravity had reversible effect on cell proliferation and cell cycle on HUEVC-C. Along with treatment time prolonged, simulated microgravity induced cell apoptosis and had greater effect on proteomic level. These results suggested that genes and proteins concerned with cell proliferation, cell cycle and apoptosis were potential targets of microgravity, and simulated microgravity influenced biological properties of HUVEC-C cells by means of these microgravity sensitive genes and proteins. Our investigation would provide understanding to the microgravity effects on life systems.

  10. Radiation induced dynamic mutations and transgenerational effects.

    Science.gov (United States)

    Niwa, Ohtsura

    2006-01-01

    Many studies have confirmed that radiation can induce genomic instability in whole body systems. Although the molecular mechanisms underlying induced genomic instability are not known at present, this interesting phenomenon could be the manifestation of a cellular fail-safe system in which fidelity of repair and replication is down-regulated to tolerate DNA damage. Two features of genomic instability namely, delayed mutation and untargeted mutation, require two mechanisms of ;damage memory' and ;damage sensing, signal transduction and execution' to induce mutations at a non damaged-site. In this report, the phenomenon of transgenerational genomic instability and possible mechanisms are discussed using mouse data collected in our laboratory as the main bases.

  11. Nonlinear effects of the finite amplitude ultrasound wave in biological tissues

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Nonlinear effects will occur during the transmission of the finite amplitude wave in biological tissues.The theoretical prediction and experimental demonstration of the nonlinear effects on the propagation of the finite amplitude wave at the range of biomedical ultrasound frequency and intensity are studied.Results show that the efficiency factor and effective propagation distance will decrease while the attenuation coefficient increases due to the existence of nonlinear effects.The experimental results coincided quite well with the theory.This shows that the effective propagation distance and efficiency factor can be used to describe quantitatively the influence of nonlinear effects on the propagation of the finite amplitude sound wave in biological tissues.

  12. Fabrication of aggregation-induced emission based fluorescent nanoparticles and their biological imaging application: recent progress and perspectives

    Directory of Open Access Journals (Sweden)

    Bin Yang

    2016-06-01

    Full Text Available Aggregation-induced emission (AIE dyes have received wide-spread concern since their inception. Several types of AIE-based fluorescent nanoparticle (FNP have been developed, and the potential applications of these FNPs have also been explored. Recent studies of AIE-based FNPs in biological areas have suggested that they show promise as bio-materials for cell imaging and other biomedical applications. This article reviews recent progress in the synthesis of AIE-based FNPs via non-covalent, covalent and novel one-pot strategies, and the subsequent cell-imaging of those AIE-based FNPs. Many successes have been achieved, and there is still plenty of space for the development of AIE-based FNPs as new bio-materials.

  13. Waist circumference as a mediator of biological maturation effect on the motor coordination in children

    Science.gov (United States)

    Luz, Leonardo G.O.; Seabra, André; Padez, Cristina; Duarte, João P.; Rebelo-Gonçalves, Ricardo; Valente-dos-Santos, João; Luz, Tatiana D.D.; Carmo, Bruno C.M.; Coelho-e-Silva, Manuel

    2016-01-01

    Abstract Objective: The present study aimed to: 1) examine the association of biological maturation effect on performance at a motor coordination battery and 2) to assess whether the association between biological maturation and scores obtained in motor coordination tests is mediated by some anthropometric measurement. Methods: The convenience sample consisted of 73 male children aged 8 years old. Anthropometric data considered the height, body mass, sitting height, waist circumference, body mass index, fat mass and fat-free mass estimates. Biological maturation was assessed by the percentage of the predicted mature stature. Motor coordination was tested by the Körperkoordinationstest für Kinder. A partial correlation between anthropometric measurements, z-score of maturation and the motor coordination tests were performed, controlling for chronological age. Finally, causal mediation analysis was performed. Results: Height, body mass, waist circumference and fat mass showed a slight to moderate inverse correlation with motor coordination. Biological maturation was significantly associated with the balance test with backward walking (r=-0.34). Total mediation of the waist circumference was identified in the association between biological maturation and balance test with backward walking (77%). Conclusions: We identified an association between biological maturation and KTK test performance in male children and also verified that there is mediation of waist circumference. It is recommended that studies be carried out with female individuals and at other age ranges. PMID:26972616

  14. Effective identification of conserved pathways in biological networks using hidden Markov models.

    Directory of Open Access Journals (Sweden)

    Xiaoning Qian

    Full Text Available BACKGROUND: The advent of various high-throughput experimental techniques for measuring molecular interactions has enabled the systematic study of biological interactions on a global scale. Since biological processes are carried out by elaborate collaborations of numerous molecules that give rise to a complex network of molecular interactions, comparative analysis of these biological networks can bring important insights into the functional organization and regulatory mechanisms of biological systems. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we present an effective framework for identifying common interaction patterns in the biological networks of different organisms based on hidden Markov models (HMMs. Given two or more networks, our method efficiently finds the top matching paths in the respective networks, where the matching paths may contain a flexible number of consecutive insertions and deletions. CONCLUSIONS/SIGNIFICANCE: Based on several protein-protein interaction (PPI networks obtained from the Database of Interacting Proteins (DIP and other public databases, we demonstrate that our method is able to detect biologically significant pathways that are conserved across different organisms. Our algorithm has a polynomial complexity that grows linearly with the size of the aligned paths. This enables the search for very long paths with more than 10 nodes within a few minutes on a desktop computer. The software program that implements this algorithm is available upon request from the authors.

  15. Waist circumference as a mediator of biological maturation effect on the motor coordination in children

    Directory of Open Access Journals (Sweden)

    Leonardo G.O. Luz

    Full Text Available Abstract Objective: The present study aimed to: 1 examine the association of biological maturation effect on performance at a motor coordination battery and 2 to assess whether the association between biological maturation and scores obtained in motor coordination tests is mediated by some anthropometric measurement. Methods: The convenience sample consisted of 73 male children aged 8 years old. Anthropometric data considered the height, body mass, sitting height, waist circumference, body mass index, fat mass and fat-free mass estimates. Biological maturation was assessed by the percentage of the predicted mature stature. Motor coordination was tested by the Körperkoordinationstest für Kinder. A partial correlation between anthropometric measurements, z-score of maturation and the motor coordination tests were performed, controlling for chronological age. Finally, causal mediation analysis was performed. Results: Height, body mass, waist circumference and fat mass showed a slight to moderate inverse correlation with motor coordination. Biological maturation was significantly associated with the balance test with backward walking (r=-0.34. Total mediation of the waist circumference was identified in the association between biological maturation and balance test with backward walking (77%. Conclusions: We identified an association between biological maturation and KTK test performance in male children and also verified that there is mediation of waist circumference. It is recommended that studies be carried out with female individuals and at other age ranges.

  16. Preliminary investigation on the effects of biological and synthetic insecticides on large white butterfly (Pieris brassicae L. larvae

    Directory of Open Access Journals (Sweden)

    Klokočar-Šmit Zlata D.

    2007-01-01

    Full Text Available Control of cabbage pests is oriented towards the use of efficient but high-risk insecticides, some of them being endocrine disruptors. Biopesticides are more environment-friendly, operator-and consumers-safe, but they have low initial toxicity, low efficacy to advanced larval stages, and they require certain knowledge of pest and host biology. In our laboratory experiments we have investigated the effects of formulated synthetic pyrethroid cypermethrin (0.3 l/ha and biological products - formulations based on Bacillus thuringiensis subsp. kurstaki (2 and 3/ha and Spinosad (0.1 l/ha - on large white butterfly (Pieris brassicae L. larvae-instars 2, 3, 4 and 5. The effect of insecticides was inversely proportional to larval instars. Btk effect could be improved if tank-mixed with cypermethrin. The mixing of ready-made products allows a reduction 3 and 6 times compared with the recommended dose, still obtaining satisfactory results. Rate of leaf damage was reduced when tank mixtures were used. Use of two products in mixture would be of significance especially for control of advanced late instars late in season, when Btk action alone is insufficient. Spinosad was effective in inducing mortality and reducing leaf damage by all larval instars, therefore we assume that the dose could be reduced. Feeding rate and mortality are equally important parameters when assessing biopesticide efficacy. This strategy should also reduce the possibility of inducing resistance in pest population. It also tends to reduce the residues in commodities and is good solution in production of hygienic and health safe food.

  17. Effects of pico-to-nanometer-thin TiO2 coating on the biological properties of microroughened titanium.

    Science.gov (United States)

    Sugita, Yoshihiko; Ishizaki, Ken; Iwasa, Fuminori; Ueno, Takeshi; Minamikawa, Hajime; Yamada, Masahiro; Suzuki, Takeo; Ogawa, Takahiro

    2011-11-01

    The independent, genuine role of surface chemistry in the biological properties of titanium is unknown. Although microtopography has been established as a standard surface feature in osseous titanium implants, unfavorable behavior and reactions of osteogenic cells are still observed on the surfaces. To further enhance the biological properties of microfeatured titanium surfaces, this study tested the hypotheses that (1) the surface chemistry of microroughened titanium surfaces can be controllably varied by coating with a very thin layer of TiO(2), without altering the existing topographical and roughness features; and (2) the change in the surface chemistry affects the biological properties of the titanium substrates. Using a slow-rate sputter deposition of molten TiO(2) nanoparticles, acid-etched microroughened titanium surfaces were coated with a TiO(2) layer of 300-pm to 6.3-nm thickness that increased the surface oxygen levels without altering the existing microtopography. The attachment, spreading behavior, and proliferation of osteoblasts, which are considered to be significantly impaired on microroughened surfaces compared with relatively smooth surfaces, were considerably increased on TiO(2)-coated microroughened surfaces. The rate of osteoblastic differentiation was represented by the increased levels of alkaline phosphatase activity and mineral deposition as well as by the upregulated expression of bone-related genes. These biological effects were exponentially correlated with the thickness of TiO(2) and surface oxygen percentage, implying that even a picometer-thin TiO(2) coating is effective in rapidly increasing the biological property of titanium followed by an additional mild increase or plateau induced by a nanometer-thick coating. These data suggest that a super-thin TiO(2) coating of pico-to-nanometer thickness enhances the biological properties of the proven microroughened titanium surfaces by controllably and exclusively modulating their surface

  18. Biological and physical approaches to improve induced resistance against green mold of stored citrus fruit.

    Science.gov (United States)

    Arras, G; Dhallewin, G; Petretto, A; Marceddu, S; Loche, M; Agabbio, M

    2005-01-01

    Health and environmental concerns have point out the need to improve or change several manufacturing steps in the food chain. In this context particular attention should be given to the technologies involved in fruits and vegetables production. Nearly all fresh fruit and vegetables are subjected to different periods of storage and/or shelf-life before of their consumption. This implies the need to protect the commodities from microbial spoilage. Some Citrus species (e.g. lemon and grapefruit) may be stored for several months before consumption and then post-harvest treatments are essential to contain green (Penicillium digitatum) and blue (P. italicum) moulds. Alternative approaches to chemicals usually have a lower efficacy in containing rots but fulfill the consumer's expectation. Among the alternative strategies, the improvement of host natural resistance is promising. In this regard, we report some results concerning the use of biotic (yeast) and abiotic agents as inducers of phytoalexin (i.e. scoparone and/or scopoletin) accumulation in Citrus rind and its importance in the control of fungal decay. In all experiments the inducers were applied on fruits before or 24 h after inoculation with P. digitatum and the rot severity was monitored 7 days later. The accumulation of phytoalexins was monitored according to a standard methodology by HPLC. In all experiments a positive correlation was found between increase of the phytoalexin scoparone in host tissue and reduction of decay.

  19. Methods for studying and criteria for evaluating the biological effects of electric fields of industrial frequency

    Energy Technology Data Exchange (ETDEWEB)

    Savin, B.M.; Shandala, M.G.; Nikonova, K.V.; Morozov, Yu.A.

    1978-10-01

    Data are reviewed from a number of USSR research studies on the biological effects of electric power transmission lines of 1150 Kv and above. Effects on man, plants, animals, and terrestrial ecosystems are reported. Existing health standards in the USSR for the exposure of personnel working in electric fields are included. It is concluded that high-voltage electric fields have a harmful effect on man and his environment.

  20. Toxicological effects of the different substances in tobacco smoke on human embryonic development by a systems chemo-biology approach.

    Directory of Open Access Journals (Sweden)

    Bruno César Feltes

    Full Text Available The physiological and molecular effects of tobacco smoke in adult humans and the development of cancer have been well described. In contrast, how tobacco smoke affects embryonic development remains poorly understood. Morphological studies of the fetuses of smoking pregnant women have shown various physical deformities induced by constant fetal exposure to tobacco components, especially nicotine. In addition, nicotine exposure decreases fetal body weight and bone/cartilage growth in addition to decreasing cranial diameter and tibia length. Unfortunately, the molecular pathways leading to these morphological anomalies are not completely understood. In this study, we applied interactome data mining tools and small compound interaction networks to elucidate possible molecular pathways associated with the effects of tobacco smoke components during embryonic development in pregnant female smokers. Our analysis showed a relationship between nicotine and 50 additional harmful substances involved in a variety of biological process that can cause abnormal proliferation, impaired cell differentiation, and increased oxidative stress. We also describe how nicotine can negatively affect retinoic acid signaling and cell differentiation through inhibition of retinoic acid receptors. In addition, nicotine causes a stress reaction and/or a pro-inflammatory response that inhibits the agonistic action of retinoic acid. Moreover, we show that the effect of cigarette smoke on the developing fetus could represent systemic and aggressive impacts in the short term, causing malformations during certain stages of development. Our work provides the first approach describing how different tobacco constituents affect a broad range of biological process in human embryonic development.

  1. Protective effects of honokiol against methylglyoxal-induced osteoblast damage.

    Science.gov (United States)

    Suh, Kwang Sik; Chon, Suk; Choi, Eun Mi

    2016-01-25

    Honokiol is an active compound isolated from Magnolia officinalis that has been used without notable side effects in traditional medicine. We investigated the effects of honokiol against methylglyoxal (MG)-induced cytotoxicity in MC3T3-E1 osteoblast cells and the possible molecular mechanism(s) involved. The results showed that honokiol alleviated MG-induced cell death and the production of intracellular ROS, mitochondrial superoxide, cardiolipin peroxidation, and inflammatory cytokines. MG induction of the soluble receptor for advanced glycation end product (AGE) was reduced by pretreatment with honokiol. Furthermore, honokiol increased the levels of Nrf2 and increased the levels of glutathione and the activity of glyoxalase I. Pretreatment with honokiol prior to MG exposure reduced MG-induced mitochondrial dysfunction and alleviated MG-induced reduction of nitric oxide and PGC1α levels, suggesting that honokiol may induce mitochondrial biogenesis. It was concluded that honokiol could be useful in the attenuation of MG-induced cell damage.

  2. Applications of High Resolution Laser Induced Breakdown Spectroscopy for Environmental and Biological Samples

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z [ORNL; Labbe, Nicole [ORNL; Wagner, Rebekah J. [Pennsylvania State University, University Park, PA

    2013-01-01

    This chapter details the application of LIBS in a number of environmental areas of research such as carbon sequestration and climate change. LIBS has also been shown to be useful in other high resolution environmental applications for example, elemental mapping and detection of metals in plant materials. LIBS has also been used in phytoremediation applications. Other biological research involves a detailed understanding of wood chemistry response to precipitation variations and also to forest fires. A cross-section of Mountain pine (pinceae Pinus pungen Lamb.) was scanned using a translational stage to determine the differences in the chemical features both before and after a fire event. Consequently, by monitoring the elemental composition pattern of a tree and by looking for abrupt changes, one can reconstruct the disturbance history of a tree and a forest. Lastly we have shown that multivariate analysis of the LIBS data is necessary to standardize the analysis and correlate to other standard laboratory techniques. LIBS along with multivariate statistical analysis makes it a very powerful technology that can be transferred from laboratory to field applications with ease.

  3. Protective Effect of Morocco Carob Honey Against Lead-Induced Anemia and Hepato-Renal Toxicity

    Directory of Open Access Journals (Sweden)

    Aicha Fassi Fihri

    2016-06-01

    Full Text Available Background/Aims: Natural honey has many biological activities including protective effect against toxic materials. The aim of this study was to evaluate the protective effect of carob honey against lead-induced hepato-renal toxicity and lead-induced anemia in rabbits. Methods: Twenty four male rabbits were allocated into four groups six rabbits each; group 1: control group, received distilled water (0.1 ml / kg.b.wt /daily; group 2: received oral lead acetate (2 g/kg.b.wt/daily; group 3: treated with oral honey (1g /kg.b.wt/daily and oral lead (2 g/kg.b.wt/daily, and group 4: received oral honey (1 g/kg.b.wt/daily. Honey and lead were given daily during 24 days of experimentation. Laboratory tests and histopathological evaluations of kidneys were done. Results: Oral administration of lead induced hepatic and kidney injury and caused anemia during three weeks of the exposure. Treatment with honey prevented hepato-renal lead toxicity and ameliorated lead-induced anemia when honey was given to animals during lead exposure. Conclusion: It might be concluded that honey has a protective effect against lead-induced blood, hepatic and renal toxic effects.

  4. The effect of stereochemistry on the biological activity of natural phytotoxins, fungicides, insecticides and herbicides.

    Science.gov (United States)

    Evidente, Antonio; Cimmino, Alessio; Andolfi, Anna

    2013-02-01

    Phytotoxins are secondary microbial metabolites that play an essential role in the development of disease symptoms induced by fungi on host plants. Although phytotoxins can cause extensive-and in some cases devastating-damage to agricultural crops, they can also represent an important tool to develop natural herbicides when produced by fungi and plants to inhibit the growth and spread of weeds. An alternative strategy to biologically control parasitic plants is based on the use of plant and fungal metabolites, which stimulate seed germination in the absence of the host plant. Nontoxigenic fungi also produce bioactive metabolites with potential fungicide and insecticide activity, and could be applied for crop protection. All these metabolites represent important tools to develop eco-friendly pesticides. This review deals with the relationships between the biological activity of some phytotoxins, seed germination stimulants, fungicides and insecticides, and their stereochemistry.

  5. Predator interference effects on biological control: The "paradox" of the generalist predator revisited

    Science.gov (United States)

    Parshad, Rana D.; Bhowmick, Suman; Quansah, Emmanuel; Basheer, Aladeen; Upadhyay, Ranjit Kumar

    2016-10-01

    An interesting conundrum in biological control questions the efficiency of generalist predators as biological control agents. Theory suggests, generalist predators are poor agents for biological control, primarily due to mutual interference. However field evidence shows they are actually quite effective in regulating pest densities. In this work we provide a plausible answer to this paradox. We analyze a three species model, where a generalist top predator is introduced into an ecosystem as a biological control, to check the population of a middle predator, that in turn is depredating on a prey species. We show that the inclusion of predator interference alone, can cause the solution of the top predator equation to blow-up in finite time, while there is global existence in the no interference case. This result shows that interference could actually cause a population explosion of the top predator, enabling it to control the target species, thus corroborating recent field evidence. Our results might also partially explain the population explosion of certain species, introduced originally for biological control purposes, such as the cane toad (Bufo marinus) in Australia, which now functions as a generalist top predator. We also show both Turing instability and spatio-temporal chaos in the model. Lastly we investigate time delay effects.

  6. Biologically templated assembly of hybrid semiconducting nanomesh for high performance field effect transistors and sensors

    Science.gov (United States)

    Byeon, Hye-Hyeon; Lee, Seung-Woo; Lee, Eun-Hee; Kim, Woong; Yi, Hyunjung

    2016-10-01

    Delicately assembled composites of semiconducting nanomaterials and biological materials provide an attractive interface for emerging applications, such as chemical/biological sensors, wearable health monitoring devices, and therapeutic agent releasing devices. The nanostructure of composites as a channel and a sensing material plays a critical role in the performance of field effect transistors (FETs). Therefore, it is highly desirable to prepare elaborate composite that can allow the fabrication of high performance FETs and also provide high sensitivity and selectivity in detecting specific chemical/biological targets. In this work, we demonstrate that high performance FETs can be fabricated with a hydrodynamically assembled composite, a semiconducting nanomesh, of semiconducting single-walled carbon nanotubes (S-SWNTs) and a genetically engineered M13 phage to show strong binding affinity toward SWNTs. The semiconducting nanomesh enables a high on/off ratio (~104) of FETs. We also show that the threshold voltage and the channel current of the nanomesh FETs are sensitive to the change of the M13 phage surface charge. This biological gate effect of the phage enables the detection of biologically important molecules such as dopamine and bisphenol A using nanomesh-based FETs. Our results provide a new insight for the preparation of composite material platform for highly controllable bio/electronics interfaces.

  7. Biologically templated assembly of hybrid semiconducting nanomesh for high performance field effect transistors and sensors

    Science.gov (United States)

    Byeon, Hye-Hyeon; Lee, Seung-Woo; Lee, Eun-Hee; Kim, Woong; Yi, Hyunjung

    2016-01-01

    Delicately assembled composites of semiconducting nanomaterials and biological materials provide an attractive interface for emerging applications, such as chemical/biological sensors, wearable health monitoring devices, and therapeutic agent releasing devices. The nanostructure of composites as a channel and a sensing material plays a critical role in the performance of field effect transistors (FETs). Therefore, it is highly desirable to prepare elaborate composite that can allow the fabrication of high performance FETs and also provide high sensitivity and selectivity in detecting specific chemical/biological targets. In this work, we demonstrate that high performance FETs can be fabricated with a hydrodynamically assembled composite, a semiconducting nanomesh, of semiconducting single-walled carbon nanotubes (S-SWNTs) and a genetically engineered M13 phage to show strong binding affinity toward SWNTs. The semiconducting nanomesh enables a high on/off ratio (~104) of FETs. We also show that the threshold voltage and the channel current of the nanomesh FETs are sensitive to the change of the M13 phage surface charge. This biological gate effect of the phage enables the detection of biologically important molecules such as dopamine and bisphenol A using nanomesh-based FETs. Our results provide a new insight for the preparation of composite material platform for highly controllable bio/electronics interfaces. PMID:27762315

  8. Detection, Characterization, and Biological Effect of Quorum-Sensing Signaling Molecules in Peanut-Nodulating Bradyrhizobia

    Directory of Open Access Journals (Sweden)

    Walter Giordano

    2012-03-01

    Full Text Available Bacteria of the genus Bradyrhizobium are able to establish a symbiotic relationship with peanut (Arachis hypogaea root cells and to fix atmospheric nitrogen by converting it to nitrogenous compounds. Quorum sensing (QS is a cell-cell communication mechanism employed by a variety of bacterial species to coordinate behavior at a community level through regulation of gene expression. The QS process depends on bacterial production of various signaling molecules, among which the N-acylhomoserine lactones (AHLs are most commonly used by Gram-negative bacteria. Some previous reports have shown the production of QS signaling molecules by various rhizobia, but little is known regarding mechanisms of communication among peanut-nodulating strains. The aims of this study were to identify and characterize QS signals produced by peanut-nodulating bradyrhizobial strains and to evaluate their effects on processes related to cell interaction. Detection of AHLs in 53 rhizobial strains was performed using the biosensor strains Agrobacterium tumefaciens NTL4 (pZLR4 and Chromobacterium violaceum CV026 for AHLs with long and short acyl chains, respectively. None of the strains screened were found to produce AHLs with short acyl chains, but 14 strains produced AHLs with long acyl chains. These 14 AHL-producing strains were further studied by quantification of β-galactosidase activity levels (AHL-like inducer activity in NTL4 (pZLR4. Strains displaying moderate to high levels of AHL-like inducer activity were subjected to chemical identification of signaling molecules by high-performance liquid chromatography coupled to mass spectrometry (LC-MS/MS. For each AHL-producing strain, we found at least four different AHLs, corresponding to N-hexanoyl-DL-homoserine lactone (C6, N-(3-oxodecanoyl-L-homoserine lactone (3OC10, N-(3-oxododecanoyl-L-homoserine lactone (3OC12, and N-(3-oxotetradecanoyl-L-homoserine lactone (3OC14. Biological roles of 3OC10, 3OC12, and 3OC14 AHLs

  9. Biologically effective doses of postoperative radiotherapy in the prevention of keloids. Dose-effect relationship

    Energy Technology Data Exchange (ETDEWEB)

    Kal, H.B.; Veen, R.E. [University Medical Center Utrecht (Netherlands). Dept. of Radiotherapy

    2005-11-01

    Purpose: To review the recurrence rates of keloids after surgical excision followed by radiotherapy, and to answer the question whether after normalization of the dose, a dose-effect relationship could be derived. Material and Methods: A literature search was performed to identify studies dealing with the efficacy of various irradiation regimes for the prevention of keloids after surgery. Biologically effective doses (BEDs) of the various irradiation regimens were calculated using the linear-quadratic concept. A distinction between recurrence rates of keloids in the face and neck region and those in other parts of the body was made. Results: 31 reports were identified with PubMed with the search terms keloids, surgery, radiation therapy, radiotherapy. 13 reports were excluded, because no link could be found between recurrence rate and dose, or if less than ten patients per dose group. The recurrence rate for surgery only was 50-80%. For BED values >10 Gy the recurrence rate decreased as a function of BED. For BED values >30 Gy the recurrence rate was <10%. For a given dose, the recurrence rates of keloids in the sites with high stretch tension were not significantly higher than in sites without stretch tension. Conclusion: The results of this study indicate that for effectively treating keloids postoperatively, a relatively high dose must be applied in a short overall treatment time. The optimal treatment probably is an irradiation scheme resulting in a BED value of at least 30 Gy. A BED value of 30 Gy can be obtained with, for instance, a single acute dose of 13 Gy, two fractions of 8 Gy two fractions of 8 Gy or three fractions of 6 Gy, or a single dose of 27 Gy at low dose rate. The radiation treatment should be administered within 2 days after surgery. (orig.)

  10. Experimental evidence in support of the biological effects and physical basis of homeopathic potencies

    Directory of Open Access Journals (Sweden)

    Nirmal Sukul

    2012-09-01

    Full Text Available Background: Homeopathic potencies 12 cH and above cross the Avogadro number and, for this, do not contain any original drug molecules. Two major problems involved in the scientific study of potencies are (1 understanding the physical basis of potencies and (2 demonstrating the biological effects of potencies. The present study aims to address these questions. Methods and Results: In course of our experimental studies spanned over more than 30 years we have demonstrated significant effects of homeopathic potencies on man, animals and plants. We have also showed that potencies could be differentiated through their electronic spectra, and this difference in spectra can be attributed to the electron transfer interaction. In a molecular complex, electron of one molecule absorbs a quantum of visible radiation and is excited, not to a higher energy level of this molecule, but to one of the vacant high energy levels of the neighboring molecules. This process is known as electron or charge transfer interaction. This has been demonstrated in Iodine Ó© in two different solvents of CCl4 and aqueous ethanol (Sukul N C, Environ Ecol 17,866-872, 1999. We have further demonstrated that the effect of a homeopathic potency can be transmitted from one part of a plant to another, and also from one plant to another through water. I am presenting here a few selected cases of our experimental studies. Potentized Nux vomica significantly reduced ethanol consumption in rats by 73.7%and ethanol-induced sleep time in albino mice by 44.4%. Causticum 30 C and Rhus tox 30 C produced anti-inflamatory and anti-nocicptive effect on adjuvant arthritis in albino rats. Potentized homeopathic drugs reduced microfilaraemia by 28 to 100% and filariasis in two villages of West Bengal endemic for Bancroftian filaiasis. Potentized Cina and Thuja ameliorated trichinellosis in mice reducing larval population in muscles by 84% and 68%, respectively. Potencies of Agaricus and Nux

  11. Effects of tetrandrine on smooth muscle contraction induced by mediators in pulmonary hypertension

    Institute of Scientific and Technical Information of China (English)

    WANG Huai-Liang; ZHANG Xin-Hua; CHANG Tian-Hui

    2002-01-01

    AIM: In attempt to characterize tetrandrine on pulmonary hypertension, biological activities induced by a range of mediators implicated in the pathogenesis of pulmonary hypertension were investigated. METHODS: Pulmonary artery rings and tracheal segments were contracted with couples of bioactive substances in which a series experiments including effects of tetrandrine on calcium agonist, endothelin, thromboxane A2, angiotensin Ⅱ, neuropeptide Y, histamine, 5-methyl furmethide were performed, the influences of tetrandrine in the concentration of 1 to 30 μmol/L were investigated. RESULTS: Tetrandrine inhibited calcium agonist BayK8644, endothelin-1 and thromboxane A2 mimetic U46619, angiotensin Ⅱ- and neuropeptide Y-induced contractile responses with depression of the maximal contraction of pulmonary artery rings in a varying extent. Tetrandrine inhibited leukotriene E4-induced concentration-response curve in a competitive antagonist manner with a pKB of (5.29 + 0.11) without any influence leukotriene C4, leukotriene D4, histamine, and 5-methylfurmethide induced contractile responses of guinea pig trachea.CONCLUSION: Tetrandrine may produce multiple pharmacological effects against calcium channel antagonist,U46619, endothelin-1,angiotension Ⅱ, and neuropeptide Y induced vasoconstriction in rat pulmonary arteries in varying extent and inhibition of leukotriene E4 rather than C4, D4, histamine, and 5-methyl furmethide induced contractile responses on rat tracheal segments. These pharmacological characteristics are considered to contribute to its antihypertensive action during pulmonary hypertension.

  12. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Bakkal, B.H. [Department of Radiation Oncology, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Gultekin, F.A. [Department of General Surgery, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Guven, B. [Department of Biochemistry, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Turkcu, U.O. [Mugla School of Health Sciences, Mugla Sitki Kocman University, Mugla (Turkey); Bektas, S. [Department of Pathology, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Can, M. [Department of Biochemistry, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey)

    2013-09-27

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage.

  13. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats

    Directory of Open Access Journals (Sweden)

    B.H. Bakkal

    2013-09-01

    Full Text Available Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg. Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage.

  14. Immunogenicity induced by biologicals in the treatment of psoriasis and psoriatic arthritis: View of the problem

    Directory of Open Access Journals (Sweden)

    T. V. Korotaeva

    2015-01-01

    Full Text Available The present-day views of the immunogenicity of biological agents (BAs used to in the treatment of psoriasis and psoriatic arthritis are analyzed. The immunogenicity of these medicaments is noted to depend on their molecular structure, individual patient characteristics, and used treatment regimens. As this takes place, the primary structure of the drug and its posttranslation modifications during manufacture are key factors. It is pointed out that a number of antigenic structures may give rise to the body's BA antibodies – murine epitopes, idiotopes, and allotropes, neoantigens forming in the coupling area of hybrid proteins, nonlinear epitopes present in the aggregated preparations. BAs that tend to form large immune complexes with these antibodies are most immunogenic. The antibodies to most BAs, except drugs based on soluble tumor necrosis factor-α receptors (etanercept, are neutralizing, i.e. they affect the efficiency of therapy, particularly when used over a long period of time.The results of trials evaluating the impact of antibodies to BAs on their clinical value are considered. It is believed that immunogenicity is itself of great importance in respect to the occurrence of the escape phenomenon of a response to BA therapy and to its safety. Attention is drawn to immunogenicity diagnostic problems; at the same it is noted that none of the used laboratory diagnostic techniques can reveal individual BA antibody forms and isotypes. It is concluded that there is a need for further investigations to standardize optimal methods for diagnosing neutralizing antibodies, to elaborate criteria for predicting a response to therapy in terms of an immunogenicity factor, and to reveal pathogenetic mechanisms responsible for the production of antibodies to BAs. The design of novel medicaments with minimal immunogenicity will depend on whether these mechanisms are common to all drugs or specific.

  15. Effects of Developed Electronic Instructional Medium on Students' Achievement in Biology

    Science.gov (United States)

    Chinna, Nsofor Caroline; Dada, Momoh Gabriel

    2013-01-01

    The study investigated the effects of developed electronic instructional medium (video DVD instructional package) on students' achievement in Biology. It was guided by two research questions and two hypotheses, using a quasi-experimental, pretest-postest control group design. The sample comprised of 180 senior secondary, year two students from six…

  16. Static magnetic fields: A summary of biological interactions, potential health effects, and exposure guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S.

    1992-05-01

    Interest in the mechanisms of interaction and the biological effects of static magnetic fields has increased significantly during the past two decades as a result of the growing number of applications of these fields in research, industry and medicine. A major stimulus for research on the bioeffects of static magnetic fields has been the effort to develop new technologies for energy production and storage that utilize intense magnetic fields (e.g., thermonuclear fusion reactors and superconducting magnet energy storage devices). Interest in the possible biological interactions and health effects of static magnetic fields has also been increased as a result of recent developments in magnetic levitation as a mode of public transportation. In addition, the rapid emergence of magnetic resonance imaging as a new clinical diagnostic procedure has, in recent years, provided a strong rationale for defining the possible biological effects of magnetic fields with high flux densities. In this review, the principal interaction mechanisms of static magnetic fields will be described, and a summary will be given of the present state of knowledge of the biological, environmental, and human health effects of these fields.

  17. Biological effects from electric fields associated with high voltage transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    1983-11-01

    Efforts during the past year by the US Department of Energy and the Electric Power Research Institute-funded laboratories to investigate the biological effects from electric fields are described in resume form. Investigations generally have been summarized with objectives, accomplishments of the past year, and some indication of projected studies.

  18. The Effectiveness of a Virtual Field Trip (VFT) Module in Learning Biology

    Science.gov (United States)

    Haris, Norbaizura; Osman, Kamisah

    2015-01-01

    Virtual Field Trip is a computer aided module of science developed to study the Colonisation and Succession in Mangrove Swamps, as an alternative to the real field trip in Form for Biology. This study is to identify the effectiveness of the Virtual Field Trip (VFT) module towards the level of achievement in the formative test for this topic. This…

  19. Effectiveness of Blended Cooperative Learning Environment in Biology Teaching: Classroom Community Sense, Academic Achievement and Satisfaction

    Science.gov (United States)

    Yapici, I. Ümit

    2016-01-01

    The aim of this study was to examine the effect of Blended Cooperative Learning Environment (BCLE) in biology teaching on students' classroom community sense, their academic achievement and on their levels of satisfaction. In the study, quantitative and qualitative research methods were used together. The study was carried out with 30 students in…

  20. Biological assessment of effects of combined sewer overflows and storm water discharges.

    NARCIS (Netherlands)

    Lijklema, L.; Roijackers, R.M.M.; Cuppen, J.G.M.

    1989-01-01

    The biological effects of discharges from combined or separated sewer systems are difficult to assess or to predict due to variahilities in concentrations, environmental conditions, morphometry, susceptibility of organisms, seasonality and other factors. A general discussion of the problem results i

  1. Simulation of the radiation effects on biological objects; Simulation der Strahlenwirkung auf biologische Objekte

    Energy Technology Data Exchange (ETDEWEB)

    Bug, Marion; Nettelbeck, Heidi [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe ' Biologische Wirksamkeit Ionisierender Strahlung'

    2013-06-15

    The simulation of biological radiation effects by means of the electron transport in water and DNA and the cross sections for elastic scattering, electronic excitation, and ionization in electron collisions with tetrahydrofuran molecules is described, whereby the strand-breaking probabilities are determined. (HSI)

  2. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils

    NARCIS (Netherlands)

    Diepeningen, van A.D.; Vos, de O.J.; Korthals, G.W.; Bruggen, van A.H.C.

    2006-01-01

    A comparative study of organic and conventional arable farming systems was conducted in The Netherlands to determine the effect of management practices on chemical and biological soil properties and soil health. Soils from thirteen accredited organic farms and conventionally managed neighboring farm

  3. Effectiveness of the Biology PTechLS Module in a Felda Science Centre

    Science.gov (United States)

    Alias, Norlidah; DeWitt, Dorothy; Rahman, Mohd Nazri Abdul; Gelamdin, Rashidah Begum; Rauf, Rose Amnah Abd; Siraj, Saedah

    2014-01-01

    The PTechLS module combines learning styles with the use of technology to increase students' learning experience, especially in learning abstract concepts. The PTechLS module prototype was developed by Norlidah Alias (2010). The aim of this study is to evaluate the implementation effectiveness of the Biology PTechLS module in a Felda Learning…

  4. Why magnetic and electromagnetic effects in biology are irreproducible and contradictory?

    Science.gov (United States)

    Buchachenko, Anatoly

    2016-01-01

    The main source of magnetic and electromagnetic effects in biological systems is now generally accepted and demonstrated in this paper to be radical pair mechanism which implies pairwise generation of radicals in biochemical reactions. This mechanism was convincingly established for enzymatic adenosine triphosphate (ATP) and desoxynucleic acid (DNA) synthesis by using catalyzing metal ions with magnetic nuclei ((25)Mg, (43)Ca, (67)Zn) and supported by magnetic field effects on these reactions. The mechanism, is shown to function in medicine as a medical remedy or technology (trans-cranial magnetic stimulation, nuclear magnetic control of the ATP synthesis in heart muscle, the killing of cancer cells by suppression of DNA synthesis). However, the majority of magnetic effects in biology remain to be irreproducible, contradictory, and enigmatic. Three sources of such a state are shown in this paper to be: the presence of paramagnetic metal ions as a component of enzymatic site or as an impurity in an uncontrollable amount; the property of the radical pair mechanism to function at a rather high concentration of catalyzing metal ions, when at least two ions enter into the catalytic site; and the kinetic restrictions, which imply compatibility of chemical and spin dynamics in radical pair. It is important to keep in mind these factors to properly understand and predict magnetic effects in magneto-biology and biology itself and deliberately use them in medicine.

  5. Risk of serious adverse effects of biological and targeted drugs in patients with rheumatoid arthritis

    DEFF Research Database (Denmark)

    Tarp, Simon; Eric Furst, Daniel; Boers, Maarten

    2016-01-01

    OBJECTIVES: To determine possible differences in serious adverse effects among the 10 currently approved biological and targeted synthetic DMARDs (b/ts-DMARDs) for RA. METHODS: Systematic review in bibliographic databases, trial registries and websites of regulatory agencies identified randomized...... differences in rates of SAEs. Our data suggest caution should be taken when deciding among available drugs. SYSTEMATIC REVIEW REGISTRATION NUMBER: PROSPERO CRD42014014842....

  6. Effect of temperature on the biology of Paracoccus marginatus Williams and Granara de Willink (Homoptera: Pseudococcidae).

    Science.gov (United States)

    Abstract: Effect of temperature on the biology of Paracoccus marginatus was investigated. P. marginatus was able to develop and complete its life cycle at 18°, 20°, 25° and 30°C. At 15°, 34° and 35°C eggs hatched, but further development was arrested. Approximately 80 -90% of the eggs survived betw...

  7. Effective radii of deuteron induced reactions

    CERN Document Server

    Hashimoto, Shintaro; Ogata, Kazuyuki; Minomo, Kosho; Chiba, Satoshi

    2011-01-01

    The continuum-discretized coupled-channels method (CDCC) for exclusive reactions and the eikonal reaction theory (ERT) as an extension of CDCC to inclusive reactions are applied to deuteron induced reactions. The CDCC result reproduces experimental data on the reaction cross section for $d+^{58}$Ni scattering at 200 MeV/nucleon and ERT does data on the neutron-stripping cross section for inclusive $^7$Li$(d,n)$ reaction at 40 MeV. For deuteron induced reactions at 200 MeV/nucleon, target-dependence of the reaction, elastic-breakup, nucleon-stripping, nucleon-removal, complete- and incomplete-fusion cross sections is clearly explained by simple formulae. Accuracy of the Glauber model is also investigated.

  8. Biological effects of high-diluted substances and periodic table of elements

    Directory of Open Access Journals (Sweden)

    Cloe Taddei-Ferretti

    2012-09-01

    Full Text Available Background and Aims. There are several experimental evidences for the effects of high-diluted substances (see e.g. C. Taddei-Ferretti, A. Cotugno 1997, on effects of high-diluted drugs on the prevention and control of mice teratogenicity induced by purine derivatives; N.C. Sukul, C. Taddei-Ferretti, S.P. Sinha Babu, A. De, B. Nandi, A. Sukul, R. Dutta-Nag 2000, on high-diluted Nux vomica countering alcohol-induced loss of righting reflex in toads. Also the physical characterization and mechanism of action of high-diluted drugs have been studied (see e.g. N.C. Sukul, A. Sukul, High dilution effects: Physical and biochemical basis 2004. However, further experimental researches are needed to clarify how physical characteristics of a drug are linked to its global biological effects. Considerations on some high-diluted mineral remedies will be developer here. Methods. In Organon, sect. 119, S. Hahnemann writes: «As certainly each species of plants is different from every other one with regard to external appearance, way of life and growth, taste and smell, and as certainly each mineral, each salt is different from the others with regard to external, internal, physical and chemical qualities [...], so certainly all these vegetal and mineral substances have pathogenetic – and thus also curative – effects different among themselves [...]». This statement may be taken as basis for considering the characteristics of some elements, as ordered in the periodic table, in relation to those of some high-diluted mineral remedies. Conclusions. The elements were previously ordered in the periodic table according to the atomic weight chemically determined, and later more precisely according to the atomic number (number of protons. Then also the electronic configuration was taken into account: properties depending on atomic mass and deep electrons are not periodical, while chemical and several physical properties

  9. Age-dependent change in biological characteristics of stem cells in radiation-induced mammary carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Yoshiya; Nishimura, Mayumi; Kakinuma, Shizuko; Imaoka, Tatsuhiko [National Institute of Radiological Sciences, Anagawa, Chiba (Japan); Yasukawa-Barnes, Jane; Gould, Michael N.; Clifton, Kelly H. [Univ. of Wisconsin, Department of Human Oncology, Madison, WI (United States)

    2003-07-01

    If you ask what types of cells are the targets for carcinogenesis, a popular answer would be that cancer arises from stem cells. Stem cells are cells that are capable of both self-renewal and generation of differentiated progenies. If the hypothesis of 'cancer as stem cell disease' is correct, the risk of carcinogenesis should be a function of the number of stem cells and their responsiveness of carcinogen-induced damage. In the present study, we addressed the feasibility of this hypothesis using the rat mammary carcinogenesis model. One of the important conclusions emerging from studies on atomic bomb survivors concerns age-related changes in the susceptibility to breast cancer. The relative risk of breast cancer is very high among women exposed to ionizing radiation before or during puberty, and it decreases thereafter. Little information is available, however, on age-related changes in the radiobiological nature of mammary stem cells. We examined age-associated changes in the number of mammary stem-like cells (clonogens) and their susceptibility to radiation in terms of cell death and carcinogenic initiation frequency. The results were as follows. (1) During the prepubertal period, the total number of mammary clonogens per rat increased exponentially with a population doubling time of {approx}4 days. After puberty, the doubling time lengthened to {approx}30 days. The total number of clonogens in abdominal and inguinal mammary glands was {approx}200 in 2-week-old rats, while it was {approx}5600 in 8-week-old rats. (2) The survival curves of clonogenic cells after irradiation indicated that radiation sensitivity of the cells before and during puberty was much higher than after puberty. (3) The initiation frequency of the clonogens from prepubertal rats after 5 Gy irradiation was four times higher than that of the clonogens from post-pubertal rats. These results suggest that changes in the number of stem cells and their radiobiological characteristics

  10. Compounds Released from Biomass Deconstruction: Understanding Their Effect on Cellulose Enzyme Hydrolysis and Their Biological Activity

    Science.gov (United States)

    Djioleu, Angele Mezindjou

    The effect of compounds produced during biomass pretreatment on cellulolytic enzyme was investigated. Liquid prehydrolyzates were prepared by pretreating switchgrass using 24 combinations of temperature, time, and sulfuric acid concentration based on a full factorial design. Temperature was varied from 140°C to 180°C; time ranged from 10 to 40 min; and the sulfuric acid concentrations were 0.5% or 1% (v/v). Identified products in the prehydrolyzates included xylose, glucose, hydroxymethylfurfural (HMF), furfural, acetic acid, formic acid, and phenolic compounds at concentration ranging from 0 to 21.4 g/L. Pretreatment conditions significantly affected the concentrations of compounds detected in prehydrolyzates. When assayed in the presence of switchgrass prehydrolyzates against model substrates, activities of cellulase, betaglucosidase, and exoglucanase, were significantly reduced by at least 16%, 31.8%, and 57.8%, respectively, as compared to the control. A strong positive correlation between inhibition of betaglucosidase and concentration of glucose, acetic acid, and furans in prehydrolyzate was established. Exoglucanase inhibition correlated with the presence of phenolic compounds and acetic acid. The prehydrolyzate, prepared at 160°C, 30 min, and 1% acid, was fractionated by centrifugal partition chromatography (CPC) into six fractions; the inhibition effect of these fractions on betaglucosidase and exoglucanase was determined. The initial hydrolysis rate of cellobiose by betaglucosidase was significantly reduced by the CPC sugar-rich fraction; however, exoglucanase was deactivated by the CPC phenolic-rich fraction. Finally, biological activities of water-extracted compounds from sweetgum bark and their effect on cellulase was investigated. It was determined that 12% of solid content of the bark extract could be accounted by phenolic compounds with gallic acid identified as the most concentrated phytochemical. Sweetgum bark extract inhibited Staphylococcus

  11. Technical variability is greater than biological variability in a microarray experiment but both are outweighed by changes induced by stimulation.

    Directory of Open Access Journals (Sweden)

    Penelope A Bryant

    Full Text Available INTRODUCTION: A central issue in the design of microarray-based analysis of global gene expression is that variability resulting from experimental processes may obscure changes resulting from the effect being investigated. This study quantified the variability in gene expression at each level of a typical in vitro stimulation experiment using human peripheral blood mononuclear cells (PBMC. The primary objective was to determine the magnitude of biological and technical variability relative to the effect being investigated, namely gene expression changes resulting from stimulation with lipopolysaccharide (LPS. METHODS AND RESULTS: Human PBMC were stimulated in vitro with LPS, with replication at 5 levels: 5 subjects each on 2 separate days with technical replication of LPS stimulation, amplification and hybridisation. RNA from samples stimulated with LPS and unstimulated samples were hybridised against common reference RNA on oligonucleotide microarrays. There was a closer correlation in gene expression between replicate hybridisations (0.86-0.93 than between different subjects (0.66-0.78. Deconstruction of the variability at each level of the experimental process showed that technical variability (standard deviation (SD 0.16 was greater than biological variability (SD 0.06, although both were low (SD<0.1 for all individual components. There was variability in gene expression both at baseline and after stimulation with LPS and proportion of cell subsets in PBMC was likely partly responsible for this. However, gene expression changes after stimulation with LPS were much greater than the variability from any source, either individually or combined. CONCLUSIONS: Variability in gene expression was very low and likely to improve further as technical advances are made. The finding that stimulation with LPS has a markedly greater effect on gene expression than the degree of variability provides confidence that microarray-based studies can be used to

  12. Nano-sized titanium dioxide-induced splenic toxicity: a biological pathway explored using microarray technology.

    Science.gov (United States)

    Sheng, Lei; Wang, Ling; Sang, Xuezi; Zhao, Xiaoyang; Hong, Jie; Cheng, Shen; Yu, Xiaohong; Liu, Dong; Xu, Bingqing; Hu, Renping; Sun, Qingqing; Cheng, Jie; Cheng, Zhe; Gui, Suxin; Hong, Fashui

    2014-08-15

    Titanium dioxide nanoparticles (TiO2 NPs) have been widely used in various areas, and its potential toxicity has gained wide attention. However, the molecular mechanisms of multiple genes working together in the TiO2 NP-induced splenic injury are not well understood. In the present study, 2.5, 5, or 10mg/kg body weight TiO2 NPs were administered to the mice by intragastric administration for 90 consecutive days, their immune capacity in the spleen as well as the gene-expressed characteristics in the mouse damaged spleen were investigated using microarray assay. The findings showed that with increased dose, TiO2 NP exposure resulted in the increases of spleen indices, immune dysfunction, and severe macrophage infiltration as well as apoptosis in the spleen. Importantly, microarray data showed significant alterations in the expressions of 1041 genes involved in immune/inflammatory responses, apoptosis, oxidative stress, stress responses, metabolic processes, ion transport, signal transduction, cell proliferation/division, cytoskeleton and translation in the 10 mg/kg TiO2 NP-exposed spleen. Specifically, Cyp2e1, Sod3, Mt1, Mt2, Atf4, Chac1, H2-k1, Cxcl13, Ccl24, Cd14, Lbp, Cd80, Cd86, Cd28, Il7r, Il12a, Cfd, and Fcnb may be potential biomarkers of spleen toxicity following exposure to TiO2 NPs.

  13. Cell Hydration as a Biomarker for Estimation of Biological Effects of Nonionizing Radiation on Cells and Organisms

    Directory of Open Access Journals (Sweden)

    Sinerik Ayrapetyan

    2014-01-01

    Full Text Available “Changes in cell hydration” have been hypothesized as an input signal for intracellular metabolic cascade responsible for biological effects of nonionizing radiation (NIR. To test this hypothesis a comparative study on the impacts of different temperature and NIR (infrasound frequency mechanical vibration (MV, static magnetic field (SMF, extremely low frequency electromagnetic field (ELF EMF, and microwave (MW pretreated water on the hydration of barley seeds in its dormant and germination periods was performed. In dormant state temperature sensitivity (Q10 of seed hydration in distilled water (DW was less than 2, and it was nonsensitive to NIR treated DW, whereas during the germination period (48–72 hours seeds hydration exhibited temperature sensitivity Q10>2 and higher sensitivity to NIR treated DW. Obtained data allow us to suggest that the metabolic driving of intracellular water dynamics accompanied by hydrogen bonding and breaking is more sensitive to NIR-induced water structure changes in seed bathing aqua medium than the simple thermodynamic processes such as osmotic gradient driven water absorption by seeds in dormant state. Therefore, cell hydration is suggested to be a universal and extrasensitive biomarker for detection of biological effects of NIR on cells and organisms.

  14. Cell hydration as a biomarker for estimation of biological effects of nonionizing radiation on cells and organisms.

    Science.gov (United States)

    Ayrapetyan, Sinerik; De, Jaysankar

    2014-01-01

    "Changes in cell hydration" have been hypothesized as an input signal for intracellular metabolic cascade responsible for biological effects of nonionizing radiation (NIR). To test this hypothesis a comparative study on the impacts of different temperature and NIR (infrasound frequency mechanical vibration (MV), static magnetic field (SMF), extremely low frequency electromagnetic field (ELF EMF), and microwave (MW)) pretreated water on the hydration of barley seeds in its dormant and germination periods was performed. In dormant state temperature sensitivity (Q 10) of seed hydration in distilled water (DW) was less than 2, and it was nonsensitive to NIR treated DW, whereas during the germination period (48-72 hours) seeds hydration exhibited temperature sensitivity Q 10 > 2 and higher sensitivity to NIR treated DW. Obtained data allow us to suggest that the metabolic driving of intracellular water dynamics accompanied by hydrogen bonding and breaking is more sensitive to NIR-induced water structure changes in seed bathing aqua medium than the simple thermodynamic processes such as osmotic gradient driven water absorption by seeds in dormant state. Therefore, cell hydration is suggested to be a universal and extrasensitive biomarker for detection of biological effects of NIR on cells and organisms.

  15. Particle induced X-ray emission and ion dose distribution in a biological micro-beam: Geant4 Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Syed Bilal, E-mail: ahmadsb@mcmaster.ca [TAB-104D, Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1 (Canada); Thompson, Jeroen E., E-mail: Jeroen.thompson@gmail.com [Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1 (Canada); McNeill, Fiona E., E-mail: fmcneill@mcmaster.ca [Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1 (Canada); Byun, Soo Hyun, E-mail: soohyun@mcmaster.ca [Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1 (Canada); Prestwich, William V., E-mail: prestwic@mcmaster.ca [Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1 (Canada)

    2013-01-15

    The goal of a microbeam is to deliver a highly localized and small dose to the biological medium. This can be achieved by using a set of collimators that confine the charged particle beam to a very small spatial area of the order of microns in diameter. By using a system that combines an appropriate beam detection method that signals to a beam shut-down mechanism, a predetermined and counted number of energetic particles can be delivered to targeted biological cells. Since the shutter and the collimators block a significant proportion of the beam, there is a probability of the production of low energy X-rays and secondary electrons through interactions with the beam. There is little information in the biological microbeam literature on potential X-ray production. We therefore used Monte Carlo simulations to investigate the potential production of particle-induced X-rays and secondary electrons in the collimation system (which is predominantly made of tungsten) and the subsequent possible effects on the total absorbed dose delivered to the biological medium. We found, through the simulation, no evidence of the escape of X-rays or secondary electrons from the collimation system for proton energies up to 3 MeV as we found that the thickness of the collimators is sufficient to reabsorb all of the generated low energy X-rays and secondary electrons. However, if the proton energy exceeds 3 MeV our simulations suggest that 10 keV X-rays can escape the collimator and expose the overlying layer of cells and medium. If the proton energy is further increased to 4.5 MeV or beyond, the collimator can become a significant source of 10 keV and 59 keV X-rays. These additional radiation fields could have effects on cells and these results should be verified through experimental measurement. We suggest that researchers using biological microbeams at higher energies need to be aware that cells may be exposed to a mixed LET radiation field and be careful in their interpretation of

  16. Status of study on biological and toxicological effects of nanoscale materials

    Institute of Scientific and Technical Information of China (English)

    WANG; Bing; FENG; Weiyue; ZHAO; Yuliang; XING; Gengmei; CH

    2005-01-01

    Because the physical and chemical properties of nanosized materials mostly differ from the existing microsized materials, their potential impacts on human health and the environment will be topics under the serious discussions in press and in a number of international scientific journals. We analyze and summarize the existing data of the experimental study on the biological activities and adverse effects of nanoscale materials/particles including single wall carbon nanotubes, multi wall carbon nanotubes, titanium oxide and iron powders. Though some biological behaviors of nanoscale materials observed cannot be understood on the basis of the current knowledge, as the existing data are mostly preliminary, it is too early to make some exclusive conclusions on biological activities (or the toxicity) of any of nanoscale materials. The experimental techniques, the current topics, and the future research directions for this new research field are also discussed.

  17. Biological effects of mercury pollution. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The bibliography contains citations concerning biological and biochemical effects of mercury pollutants on humans, animals, and plants. References cover long-term and short-term experiments, biochemical reaction kinetics, pollution sources, and ecosystems. Mercury poisoning, metabolism, and related diseases are described. Carcinogenicity testing, health risk and assessment, and the effects on food chains are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  18. Biological effects of low-level exposures: a perspective from U.S. EPA scientists.

    OpenAIRE

    Davis, J M; Farland, W H

    1998-01-01

    Biological effects of low-level exposures (BELLE) may be very important in characterizing the potential health risks of environmental pollutants. Before some features of BELLE, such as effects that may be modulated by adaptive or defense mechanisms, can be taken into greater consideration in U.S. Environmental Protection Agency risk assessments, however adequate information on a toxicant's mode of action and answers to other questions are needed.

  19. Nano-sized titanium dioxide-induced splenic toxicity: A biological pathway explored using microarray technology

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Lei [Medical College of Soochow University, Suzhou 215123 (China); Wang, Ling [Library of Soochow University, Suzhou 215123 (China); Sang, Xuezi; Zhao, Xiaoyang; Hong, Jie; Cheng, Shen; Yu, Xiaohong; Liu, Dong; Xu, Bingqing; Hu, Renping; Sun, Qingqing; Cheng, Jie; Cheng, Zhe; Gui, Suxin [Medical College of Soochow University, Suzhou 215123 (China); Hong, Fashui, E-mail: Hongfsh_cn@sina.com [Medical College of Soochow University, Suzhou 215123 (China)

    2014-08-15

    Highlights: • Exposure to TiO{sub 2} NPs could be accumulated in the spleen. • Exposure to TiO{sub 2} NPs caused spleen lesions in mice. • Exposure to TiO{sub 2} NPs resulted in immune dysfunction in mice. • Exposure to TiO{sub 2} NPs caused alteration of 1041 genes expression of known function in the spleen. - Abstract: Titanium dioxide nanoparticles (TiO{sub 2} NPs) have been widely used in various areas, and its potential toxicity has gained wide attention. However, the molecular mechanisms of multiple genes working together in the TiO{sub 2} NP-induced splenic injury are not well understood. In the present study, 2.5, 5, or 10 mg/kg body weight TiO{sub 2} NPs were administered to the mice by intragastric administration for 90 consecutive days, their immune capacity in the spleen as well as the gene-expressed characteristics in the mouse damaged spleen were investigated using microarray assay. The findings showed that with increased dose, TiO{sub 2} NP exposure resulted in the increases of spleen indices, immune dysfunction, and severe macrophage infiltration as well as apoptosis in the spleen. Importantly, microarray data showed significant alterations in the expressions of 1041 genes involved in immune/inflammatory responses, apoptosis, oxidative stress, stress responses, metabolic processes, ion transport, signal transduction, cell proliferation/division, cytoskeleton and translation in the 10 mg/kg TiO{sub 2} NP-exposed spleen. Specifically, Cyp2e1, Sod3, Mt1, Mt2, Atf4, Chac1, H2-k1, Cxcl13, Ccl24, Cd14, Lbp, Cd80, Cd86, Cd28, Il7r, Il12a, Cfd, and Fcnb may be potential biomarkers of spleen toxicity following exposure to TiO{sub 2} NPs.

  20. Myocardial Structural and Biological Anomalies Induced by High Fat Diet in Psammomys obesus Gerbils.

    Directory of Open Access Journals (Sweden)

    Abdelhamid Sahraoui

    Full Text Available Psammomys obesus gerbils are particularly prone to develop diabetes and obesity after brief period of abundant food intake. A hypercaloric high fat diet has been shown to affect cardiac function. Here, we sought to determine whether a short period of high fat feeding might alter myocardial structure and expression of calcium handling proteins in this particular strain of gerbils.Twenty Psammomys obesus gerbils were randomly assigned to receive a normal plant diet (controls or a high fat diet. At baseline and 16-week later, body weight, plasma biochemical parameters (including lipid and carbohydrate levels were evaluated. Myocardial samples were collected for pathobiological evaluation.Sixteen-week high fat dieting resulted in body weight gain and hyperlipidemia, while levels of carbohydrates remained unchanged. At myocardial level, high fat diet induced structural disorganization, including cardiomyocyte hypertrophy, lipid accumulation, interstitial and perivascular fibrosis and increased number of infiltrating neutrophils. Myocardial expressions of pro-apoptotic Bax-to-Bcl-2 ratio, pro-inflammatory cytokines [interleukin (IL-1β and tumor necrosis factor (TNF-α], intercellular (ICAM1 and vascular adhesion molecules (VCAM1 increased, while gene encoding cardiac muscle protein, the alpha myosin heavy polypeptide (MYH6, was downregulated. Myocardial expressions of sarco(endoplasmic calcium-ATPase (SERCA2 and voltage-dependent calcium channel (Cacna1c decreased, while protein kinase A (PKA and calcium-calmodulin-dependent protein kinase (CaMK2D expressions increased. Myocardial expressions of ryanodine receptor, phospholamban and sodium/calcium exchanger (Slc8a1 did not change.We conclude that a relative short period of high fat diet in Psammomys obesus results in severe alterations of cardiac structure, activation of inflammatory and apoptotic processes, and altered expression of calcium-cycling determinants.

  1. RNA-sequencing analysis of TCDD-induced responses in zebrafish liver reveals high relatedness to in vivo mammalian models and conserved biological pathways.

    Directory of Open Access Journals (Sweden)

    Zhi-Hua Li

    Full Text Available TCDD is one of the most persistent environmental toxicants in biological systems and its effect through aryl hydrocarbon receptor (AhR has been well characterized. However, the information on TCDD-induced toxicity in other molecular pathways is rather limited. To fully understand molecular toxicity of TCDD in an in vivo animal model, adult zebrafish were exposed to TCDD at 10 nM for 96 h and the livers were sampled for RNA-sequencing based transcriptomic profiling. A total of 1,058 differently expressed genes were identified based on fold-change>2 and TPM (transcripts per million >10. Among the top 20 up-regulated genes, 10 novel responsive genes were identified and verified by RT-qPCR analysis on independent samples. Transcriptomic analysis indicated several deregulated pathways associated with cell cycle, endocrine disruptors, signal transduction and immune systems. Comparative analyses of TCDD-induced transcriptomic changes between fish and mammalian models revealed that proteomic pathway is consistently up-regulated while calcium signaling pathway and several immune-related pathways are generally down-regulated. Finally, our study also suggested that zebrafish model showed greater similarity to in vivo mammalian models than in vitro models. Our study indicated that the zebrafish is a valuable in vivo model in toxicogenomic analyses for understanding molecular toxicity of environmental toxicants relevant to human health. The expression profiles associated with TCDD could be useful for monitoring environmental dioxin and dioxin-like contamination.

  2. The role of cell hydration in realization of biological effects of non-ionizing radiation (NIR).

    Science.gov (United States)

    Ayrapetyan, Sinerik

    2015-09-01

    The weak knowledge on the nature of cellular and molecular mechanisms of biological effects of NIR such as static magnetic field, infrasound frequency of mechanical vibration, extremely low frequency of electromagnetic fields and microwave serves as a main barrier for adequate dosimetry from the point of Public Health. The difficulty lies in the fact that the biological effects of NIR depend not only on their thermodynamic characteristics but also on their frequency and intensity "windows", chemical and physical composition of the surrounding medium, as well as on the initial metabolic state of the organism. Therefore, only biomarker can be used for adequate estimation of biological effect of NIR on organisms. Because of the absence of such biomarker(s), organizations having the mission to monitor hazardous effects of NIR traditionally base their instruction on thermodynamic characteristics of NIR. Based on the high sensitivity to NIR of both aqua medium structure and cell hydration, it is suggested that cell bathing medium is one of the primary targets and cell hydration is a biomarker for NIR effects on cells and organisms. The purpose of this article is to present a short review of literature and our own experimental data on the effects of NIR on plants' seeds germination, microbe growth and development, snail neurons and heart muscle, rat's brain and heart tissues.

  3. Is ground cover vegetation an effective biological control enhancement strategy against olive pests?

    Directory of Open Access Journals (Sweden)

    Daniel Paredes

    Full Text Available Ground cover vegetation is often added or allowed to generate to promote conservation biological control, especially in perennial crops. Nevertheless, there is inconsistent evidence of its effectiveness, with studies reporting positive, nil or negative effects on pest control. This might arise from differences between studies at the local scale (e.g. orchard management and land use history, the landscape context (e.g. presence of patches of natural or semi-natural vegetation near the focal orchard, or regional factors, particularly climate in the year of the study. Here we present the findings from a long-term regional monitoring program conducted on four pest species (Bactrocera oleae, Prays oleae, Euphyllura olivina, Saissetia oleae in 2,528 olive groves in Andalusia (Spain from 2006 to 2012. Generalized linear mixed effect models were used to analyze the effect of ground cover on different response variables related to pest abundance, while accounting for variability at the local, landscape and regional scales. There were small and inconsistent effects of ground cover on the abundance of pests whilst local, landscape and regional variability explained a large proportion of the variability in pest response variables. This highlights the importance of local and landscape-related variables in biological control and the potential effects that might emerge from their interaction with practices, such as groundcover vegetation, implemented to promote natural enemy activity. The study points to perennial vegetation close to the focal crop as a promising alternative strategy for conservation biological control that should receive more attention.

  4. Is ground cover vegetation an effective biological control enhancement strategy against olive pests?

    Science.gov (United States)

    Paredes, Daniel; Cayuela, Luis; Gurr, Geoff M; Campos, Mercedes

    2015-01-01

    Ground cover vegetation is often added or allowed to generate to promote conservation biological control, especially in perennial crops. Nevertheless, there is inconsistent evidence of its effectiveness, with studies reporting positive, nil or negative effects on pest control. This might arise from differences between studies at the local scale (e.g. orchard management and land use history), the landscape context (e.g. presence of patches of natural or semi-natural vegetation near the focal orchard), or regional factors, particularly climate in the year of the study. Here we present the findings from a long-term regional monitoring program conducted on four pest species (Bactrocera oleae, Prays oleae, Euphyllura olivina, Saissetia oleae) in 2,528 olive groves in Andalusia (Spain) from 2006 to 2012. Generalized linear mixed effect models were used to analyze the effect of ground cover on different response variables related to pest abundance, while accounting for variability at the local, landscape and regional scales. There were small and inconsistent effects of ground cover on the abundance of pests whilst local, landscape and regional variability explained a large proportion of the variability in pest response variables. This highlights the importance of local and landscape-related variables in biological control and the potential effects that might emerge from their interaction with practices, such as groundcover vegetation, implemented to promote natural enemy activity. The study points to perennial vegetation close to the focal crop as a promising alternative strategy for conservation biological control that should receive more attention.

  5. Engineered nanoparticles of titanium dioxide (TIO2): Uptake and biological effects in a sea bass cell line.

    Science.gov (United States)

    Picchietti, S; Bernini, C; Stocchi, V; Taddei, A R; Meschini, R; Fausto, A M; Rocco, L; Buonocore, F; Cervia, D; Scapigliati, G

    2017-02-01

    With the rapid development of nanotechnology there has been a corresponding increase in the application of titanium dioxide nanoparticles (TiO2-NPs) in various consumer and industrial products, consequently their potential health hazards and environmental effects are considered an aspect of great concern. In the present study, in order to assess the impact of TiO2-NPs in the marine environment, the biological effects of TiO2-NPs on a sea bass cell line (DLEC) were investigated. Cells were exposed for 24 h to different concentrations of TiO2-NPs (1, 8, 40, 200 and 1000 μg/ml) or co-exposed with CdCl2 (Cd). The effects of UV light irradiation were also investigated in cells treated with TiO2-NPs and/or Cd. The internalization of TiO2-NPs and the morphological cell modifications induced by the treatments were examined by transmission and scanning electron microscopy, this latter coupled with energy dispersive X-ray spectroscopy (EDS) for particle element detection. In addition, the effects of controlled exposures were studied evaluating the cytotoxicity, the DNA damage and the expression of inflammatory genes. Our study indicates that TiO2-NPs were localized on the cell surface mainly as agglomerates revealed by EDS analysis and that they were uptaken by the cells inducing morphological changes. Photoactivation of TiO2-NPs and/or co-exposure with Cd affects ATP levels and it contributes to induce acute cellular toxicity in DLEC cells dependent on Ti concentration. The inflammatory potential and the DNA damage, this latter displayed through a caspase-3 independent apoptotic process, were also demonstrated. Overall our data suggest that the interaction of TiO2-NPs with marine water contaminants, such as cadmium, and the UV irradiation, may be an additional threat to marine organisms.

  6. Effects by periodontitis on pristane-induced arthritis in rats

    OpenAIRE

    Eriksson, Kaja; Lönnblom, Erik; Tour, Gregory; Kats, Anna; Mydel, Piotr; Georgsson, Pierre; Hultgren, Catharina; Kharlamova, Nastya; Norin, Ulrika; Jönsson, Jörgen; Lundmark, Anna; Hellvard, Annelie; Lundberg, Karin; Jansson, Leif; Holmdahl, Rikard

    2016-01-01

    Background An infection-immune association of periodontal disease with rheumatoid arthritis has been suggested. This study aimed to investigate the effect of pre-existing periodontitis on the development and the immune/inflammatory response of pristane-induced arthritis. Methods We investigated the effect of periodontitis induced by ligature placement and Porphyromonas gingivalis (P. gingivalis) infection, in combination with Fusobacterium nucleatum to promote its colonization, on the develop...

  7. In-plane magnetization-induced quantum anomalous Hall effect.

    Science.gov (United States)

    Liu, Xin; Hsu, Hsiu-Chuan; Liu, Chao-Xing

    2013-08-23

    The quantum Hall effect can only be induced by an out-of-plane magnetic field for two-dimensional electron gases, and similarly, the quantum anomalous Hall effect has also usually been considered for systems with only out-of-plane magnetization. In the present work, we predict that the quantum anomalous Hall effect can be induced by in-plane magnetization that is not accompanied by any out-of-plane magnetic field. Two realistic two-dimensional systems, Bi2Te3 thin film with magnetic doping and HgMnTe quantum wells with shear strains, are presented and the general condition for the in-plane magnetization-induced quantum anomalous Hall effect is discussed based on the symmetry analysis. Nonetheless, an experimental setup is proposed to confirm this effect, the observation of which will pave the way to search for the quantum anomalous Hall effect in a wider range of materials.

  8. Shape changes induced by biologically active peptides and nerve growth factor in blood platelets of rabbits.

    OpenAIRE

    Gudat, F; Laubscher, A.; Otten, U; Pletscher, A

    1981-01-01

    1 Nerve growth factor (NGF), substance P (SP) and thymopoietin all caused shape change reactions of rapid onset in rabbit platelets. NGF had the highest maximal effect, and SP the lowest EC50 (concentration causing half maximal shape change). The action of SP was reversible within 5 min, whereas that of NGF lasted for at least 1 h. A series of other peptides were inactive. 2 After preincubation of platelets with SP, a second application of SP no longer caused a shape change reaction, whereas ...

  9. Current heating induced spin Seebeck effect

    OpenAIRE

    Schreier, Michael; Roschewsky, Niklas; Dobler, Erich; Meyer, Sibylle; Huebl, Hans; Gross, Rudolf; Goennenwein, Sebastian T. B.

    2013-01-01

    A new measurement technique for the spin Seebeck effect is presented, wherein the normal metal layer used for its detection is exploited simultaneously as a resistive heater and thermometer. We show how the various contributions to the measured total signal can be disentangled, allowing to extract the voltage signal solely caused by the spin Seebeck effect. To this end we performed measurements as a function of the external magnetic field strength and its orientation. We find that the effect ...

  10. Protective Effect of Tempol against Cisplatin-Induced Ototoxicity.

    Science.gov (United States)

    Youn, Cha Kyung; Kim, Jun; Jo, Eu-Ri; Oh, Jeonghyun; Do, Nam Yong; Cho, Sung Il

    2016-11-18

    One of the major adverse effects of cisplatin chemotherapy is hearing loss. Cisplatin-induced ototoxicity hampers treatment because it often necessitates dose reduction, which decreases cisplatin efficacy. This study was performed to investigate the effect of Tempol on cisplatin-induced ototoxicity in an auditory cell line, House Ear Institute-Organ of Corti 1 (HEI-OC1). Cultured HEI-OC1 cells were exposed to 30 μM cisplatin for 24 h with or without a 2 h pre-treatment with Tempol. Cell viability was determined using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and apoptotic cells were identified using terminal deoxynucleotidyl transferase dUTP nick end labeling of nuclei (TUNEL) assay and flow cytometry. The effects of Tempol on cisplatin-induced cleaved poly(ADP-ribose) polymerase, cleaved caspase, and mitochondrial inducible nitric oxide synthase expression were evaluated using western blot analysis. Levels of intracellular reactive oxygen species (ROS) were measured to assess the effects of Tempol on cisplatin-induced ROS accumulation. Mitochondria were evaluated by confocal microscopy, and the mitochondrial membrane potential was measured to investigate whether Tempol protected against cisplatin-induced mitochondrial dysfunction. Cisplatin treatment decreased cell viability, and increased apoptotic features and markers, ROS accumulation, and mitochondrial dysfunction. Tempol pre-treatment before cisplatin exposure significantly inhibited all these cisplatin-induced effects. These results demonstrate that Tempol inhibits cisplatin-induced cytotoxicity in HEI-OC1, and could play a preventive role against cisplatin-induced ototoxicity.

  11. Protective Effect of Tempol against Cisplatin-Induced Ototoxicity

    Directory of Open Access Journals (Sweden)

    Cha Kyung Youn

    2016-11-01

    Full Text Available One of the major adverse effects of cisplatin chemotherapy is hearing loss. Cisplatin-induced ototoxicity hampers treatment because it often necessitates dose reduction, which decreases cisplatin efficacy. This study was performed to investigate the effect of Tempol on cisplatin-induced ototoxicity in an auditory cell line, House Ear Institute-Organ of Corti 1 (HEI-OC1. Cultured HEI-OC1 cells were exposed to 30 μM cisplatin for 24 h with or without a 2 h pre-treatment with Tempol. Cell viability was determined using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT assay and apoptotic cells were identified using terminal deoxynucleotidyl transferase dUTP nick end labeling of nuclei (TUNEL assay and flow cytometry. The effects of Tempol on cisplatin-induced cleaved poly(ADP-ribose polymerase, cleaved caspase, and mitochondrial inducible nitric oxide synthase expression were evaluated using western blot analysis. Levels of intracellular reactive oxygen species (ROS were measured to assess the effects of Tempol on cisplatin-induced ROS accumulation. Mitochondria were evaluated by confocal microscopy, and the mitochondrial membrane potential was measured to investigate whether Tempol protected against cisplatin-induced mitochondrial dysfunction. Cisplatin treatment decreased cell viability, and increased apoptotic features and markers, ROS accumulation, and mitochondrial dysfunction. Tempol pre-treatment before cisplatin exposure significantly inhibited all these cisplatin-induced effects. These results demonstrate that Tempol inhibits cisplatin-induced cytotoxicity in HEI-OC1, and could play a preventive role against cisplatin-induced ototoxicity.

  12. In vitro cultured cells as probes for space radiation effects on biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Meli, A.; Perrella, G.; Curcio, F.; Ambesi-Impiombato, F.S. [Dipartimento di Patologia e Medicina Sperimentale e Clinica, Universita di Udine, P.le S. Maria della Misericordia, 33100 Udine (Italy)

    1999-12-06

    Near future scenarios of long-term and far-reaching manned space missions, require more extensive knowledge of all possible biological consequences of space radiation, particularly in humans, on both a long-term and a short-term basis. In vitro cultured cells have significantly contributed to the tremendous advancement of biomedical research. It is therefore to be expected that simple biological systems such as cultured cells, will contribute to space biomedical sciences. Space represents a novel environment, to which life has not been previously exposed. Both microgravity and space radiation are the two relevant components of such an environment, but biological adaptive mechanisms and efficient countermeasures can significantly minimize microgravity effects. On the other hand, it is felt that space radiation risks may be more relevant and that defensive strategies can only stem from our deeper knowledge of biological effects and of cellular repair mechanisms. Cultured cells may play a key role in such studies. Particularly, thyroid cells may be relevant because of the exquisite sensitivity of the thyroid gland to radiation. In addition, a clone of differentiated, normal thyroid follicular cells (FRTL5 cells) is available in culture, which is well characterized and particularly fit for space research.

  13. Biological Effect of Ultraviolet Photocatalysis on Nanoscale Titanium with a Focus on Physicochemical Mechanism.

    Science.gov (United States)

    Wu, Jingyi; Zhou, Lei; Ding, Xianglong; Gao, Yan; Liu, Xiangning

    2015-09-15

    Physicochemical properties, regulated by various surface modifications, influence the biological performance of materials. The interaction between surface charge and biomolecules is key to understanding the mechanism of surface-tissue integration. The objective of this study was to evaluate the biological response to a nanoscale titanium surface after ultraviolet (UVC, λ = 250 ± 20 nm) irradiation and to analyze the effects via a physicochemical mechanism. The surface characteristics were evaluated by field-emission scanning electron microscopy, X-ray photoelectron spectroscopy, surface profilometry, and contact angle assay. In addition, we applied the zeta-potential, a direct method to measure the electrostatic charge on UV-treated and UV-untreated titanium nanotube surfaces. The effect of the Ti surface after UV treatment on the biological process was determined by analyzing bovine serum albumin (BSA) adsorption and osteoblast-like MG-63 early adhesion, morphology, cytoskeletal arrangement, proliferation, and focal adhesion. Compared to an anodized titanium nanotube coating, UV irradiation altered the contact angles on the control surface from 51.5° to 6.2° without changing the surface topography or roughness. Furthermore, titanium nanotubes after UV treatment showed a significant reduction in the content of acidic hydroxyl groups and held less negative charge than the anodized coating. With regard to the biological response, along with an enhanced capability to adsorb BSA, osteoblasts exhibited higher colonization and viability on the UV-treated material. The results suggest that UV treatment enhances the biocompatibility by reducing the electrostatic repulsion between biomaterials and biomolecules.

  14. Inhibitory Effects of Edaravone in β-Amyloid-Induced Neurotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Feng He

    2014-01-01

    Full Text Available Amyloid protein can damage nerve cells through a variety of biological mechanisms including oxidative stress, alterations in calcium homeostasis, and proapoptosis. Edaravone, a potent free radical scavenger possessing antioxidant effects, has been proved neuroprotective effect in stroke patients. The current study aimed to investigate the effects of EDA in an Aβ-induced rat model of AD, by studying Aβ1–40-induced voltage-gated calcium channel currents in hippocampal CA1 pyramidal neurons, learning and memory behavioral tests, the number of surviving cholinergic neurons in the basal forebrain, and the acetylcholine level in the hippocampus in this rat model of AD. The results showed that the Aβ1–40-induced increase of ICa can be inhibited by EDA in a dose-dependent manner. Treatment with EDA significantly improved Aβ1–40-induced learning and memory performance. Choline acetyltransferase positive cells in basal forebrain and acetylcholine content in the hippocampus were increased by the administration of EDA as compared with the non-EDA treated Aβ1–40 group. These results demonstrate that EDA can inhibit the neurotoxic effect of Aβ toxicity. Collectively, these findings suggest that EDA may serve as a potential complemental treatment strategy for AD.

  15. Airway remodeling assessed by high-resolution computed tomography in patients with asthma:relationship to biological markers in induced sputum

    Institute of Scientific and Technical Information of China (English)

    吴世满

    2013-01-01

    Objective To explore the significance of assessing asthma control by high-resolution computed tomography(HRCT) and biological markers in induced sputum.Methods Forty-eight patients with asthma(asthma group) and 10 healthy subjects(control group) were retrospectively analyzed.

  16. Genetic and functional analysis of a set of HIV-1 envelope genes obtained from biological clones with varying syncytium-inducing capacities.

    NARCIS (Netherlands)

    A.C. Andeweg (Arno); M. Groenink (Maarten); P. Leeflang; R.E.Y. de Goede; A.D.M.E. Osterhaus (Ab); M. Tersmette; M.L. Bosch (Marnix)

    1992-01-01

    textabstractTo study HIV-1 envelope-mediated syncytium formation we have amplified, cloned, expressed, and sequenced individual envelope genes from a set of eight biological HIV-1 clones. These clones were obtained from two patients and display either a syncytium-inducing (SI) or nonsyncytium-induci

  17. Wavelength mismatch effect in electromagnetically induced absorption

    Science.gov (United States)

    Bharti, Vineet; Wasan, Ajay; Natarajan, Vasant

    2016-07-01

    We present a theoretical investigation of the phenomenon of electromagnetically induced absorption (EIA) in a 4-level system consisting of vee and ladder subsystems. The four levels are coupled using one weak probe field, and two strong control fields. We consider an experimental realization using energy levels of Rb. This necessitates dealing with different conditions of wavelength mismatch-near-perfect match where all three wavelengths are approximately equal; partial mismatch where the wavelength of one control field is less than the other fields; and complete mismatch where all three wavelengths are unequal. We present probe absorption profiles with Doppler averaging at room temperature to account for experiments in a room temperature Rb vapor cell. Our analysis shows that EIA resonances can be studied using Rydberg states excited with diode lasers.

  18. Wavelength mismatch effect in electromagnetically induced absorption

    CERN Document Server

    Bharti, Vineet; Natarajan, Vasant

    2016-01-01

    We present a theoretical investigation of the phenomenon of electromagnetically induced absorption (EIA) in a 4-level system consisting of vee and ladder subsystems. The four levels are coupled using one weak probe field, and two strong control fields. We consider an experimental realization using energy levels of Rb. This necessitates dealing with different conditions of wavelength mismatch---near-perfect match where all three wavelengths are approximately equal; partial mismatch where the wavelength of one control field is less than the other fields; and complete mismatch where all three wavelengths are unequal. We present probe absorption profiles with Doppler averaging at room temperature to account for experiments in a room temperature Rb vapor cell. Our analysis shows that EIA resonances can be studied using Rydberg states excited with diode lasers.

  19. Bioaccumulation of selenium and induced biological effects in the filter feeding bivalve Corbicula fluminea: influence of ventilatory activity, selenium speciation and route of transfer; Bioaccumulation du selenium et effets biologiques induits chez le bivalve filtreur Corbicula fluminea: prise en compte de l'activite ventilatoire, de la speciation du selenium et de la voie de contamination

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, E

    2005-10-15

    Selenium is an essential micro-nutrient for most of living organisms. However, toxic effects in several ecosystems have been reported in the literature. Toxicity comprehension is difficult due to the complexity of Se oxidation states in the environment. The aim of this thesis work was to acquire knowledge on the physiological and environmental factors involved in bioaccumulation and toxicity processes in the freshwater filter-feeding bivalve C. fluminea. The aims were: i) to define what the factors involved in Se bioaccumulation processes in the bivalve are, ii) to characterize Se bioaccumulation at different biological organisation levels, iii) to investigate Se toxic effects. First experiments, carried out for short term exposure duration (3 days), have permitted to underline the importance of Se chemical speciation in bioaccumulation processes in C. fluminea. It has been shown that the organic form, seleno-methionine, was much more bio-available than the inorganic forms, selenite and selenate. Moreover, the route of transfer was determinant in those processes. Inorganic forms have been better extracted by trophic route, whereas seleno-methionine has been better extracted by the direct route. In our experimental conditions, ventilation of the bivalve has not been a limiting factor for Se bioaccumulation by the direct route, whereas it has been for bioaccumulation by the trophic route. Ventilation has been largely modified by the presence of dissolved selenite and seleno-methionine. We have shown that the kinetics of seleno-methionine bioaccumulation are much more fast than those of selenite. Moreover, when introduced as SeMet, internalized Se appeared to be relatively remanent in soft tissues of C. fluminea in comparison with Se internalized when introduced as selenite. Subcellular and molecular distributions of these forms were very different. Finally, it has been shown that seleno-methionine and selenite could generate weak alterations of the anti

  20. Protective Effects of Cilastatin against Vancomycin-Induced Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Blanca Humanes

    2015-01-01

    Full Text Available Vancomycin is a very effective antibiotic for treatment of severe infections. However, its use in clinical practice is limited by nephrotoxicity. Cilastatin is a dehydropeptidase I inhibitor that acts on the brush border membrane of the proximal tubule to prevent accumulation of imipenem and toxicity. The aim of this study was to investigate the potential protective effect of cilastatin on vancomycin-induced apoptosis and toxicity in cultured renal proximal tubular epithelial cells (RPTECs. Porcine RPTECs were cultured in the presence of vancomycin with and without cilastatin. Vancomycin induced dose-dependent apoptosis in cultured RPTECs, with DNA fragmentation, cell detachment, and a significant decrease in mitochondrial activity. Cilastatin prevented apoptotic events and diminished the antiproliferative effect and severe morphological changes induced by vancomycin. Cilastatin also improved the long-term recovery and survival of RPTECs exposed to vancomycin and partially attenuated vancomycin uptake by RPTECs. On the other hand, cilastatin had no effects on vancomycin-induced necrosis or the bactericidal effect of the antibiotic. This study indicates that cilastatin protects against vancomycin-induced proximal tubule apoptosis and increases cell viability, without compromising the antimicrobial effect of vancomycin. The beneficial effect could be attributed, at least in part, to decreased accumulation of vancomycin in RPTECs.

  1. Protective Effects of Cilastatin against Vancomycin-Induced Nephrotoxicity.

    Science.gov (United States)

    Humanes, Blanca; Jado, Juan Carlos; Camaño, Sonia; López-Parra, Virginia; Torres, Ana María; Álvarez-Sala, Luís Antonio; Cercenado, Emilia; Tejedor, Alberto; Lázaro, Alberto

    2015-01-01

    Vancomycin is a very effective antibiotic for treatment of severe infections. However, its use in clinical practice is limited by nephrotoxicity. Cilastatin is a dehydropeptidase I inhibitor that acts on the brush border membrane of the proximal tubule to prevent accumulation of imipenem and toxicity. The aim of this study was to investigate the potential protective effect of cilastatin on vancomycin-induced apoptosis and toxicity in cultured renal proximal tubular epithelial cells (RPTECs). Porcine RPTECs were cultured in the presence of vancomycin with and without cilastatin. Vancomycin induced dose-dependent apoptosis in cultured RPTECs, with DNA fragmentation, cell detachment, and a significant decrease in mitochondrial activity. Cilastatin prevented apoptotic events and diminished the antiproliferative effect and severe morphological changes induced by vancomycin. Cilastatin also improved the long-term recovery and survival of RPTECs exposed to vancomycin and partially attenuated vancomycin uptake by RPTECs. On the other hand, cilastatin had no effects on vancomycin-induced necrosis or the bactericidal effect of the antibiotic. This study indicates that cilastatin protects against vancomycin-induced proximal tubule apoptosis and increases cell viability, without compromising the antimicrobial effect of vancomycin. The beneficial effect could be attributed, at least in part, to decreased accumulation of vancomycin in RPTECs.

  2. Biological application of laser induced breakdown spectroscopy technique for determination of trace elements in hair.

    Science.gov (United States)

    Emara, Elshaimaa M; Imam, Hisham; Hassan, Mouyed A; Elnaby, Salah H

    2013-12-15

    Analysis of trace elements in mammalian hair has the potential to reveal retrospective information about an individual's nutritional status and exposure. As trace elements are incorporated into the hair during the growth process, longitudinal segments of the hair may reflect the body burden during growth. Using LIBS technique, Na, K, Ca, Mg, Si, Fe, Pb and Zn were detected in a single strand of horse hair. The results obtained through LIBS technique on hair samples were compared with the traditional technique (AAS) on digested acidified solution of the same samples. The effects of the experimental parameters on the emission lines were studied and the local thermodynamic equilibrium (LTE) in produced plasma was investigated. The transient plasma condition was verified at specific time region (1500-2000 ns) in the plasma evolution corresponding to its dynamic expanding characteristic. The relative mass concentrations of Fe and Zn were calculated by setting the concentration of C as the calibration. The information obtained from the trace elements' spectra of horse hair in this study substantiates the potential of hair as a biomarker.

  3. Effectiveness of biological surrogates for predicting patterns of marine biodiversity: a global meta-analysis.

    Directory of Open Access Journals (Sweden)

    Camille Mellin

    Full Text Available The use of biological surrogates as proxies for biodiversity patterns is gaining popularity, particularly in marine systems where field surveys can be expensive and species richness high. Yet, uncertainty regarding their applicability remains because of inconsistency of definitions, a lack of standard methods for estimating effectiveness, and variable spatial scales considered. We present a Bayesian meta-analysis of the effectiveness of biological surrogates in marine ecosystems. Surrogate effectiveness was defined both as the proportion of surrogacy tests where predictions based on surrogates were better than random (i.e., low probability of making a Type I error; P and as the predictability of targets using surrogates (R(2. A total of 264 published surrogacy tests combined with prior probabilities elicited from eight international experts demonstrated that the habitat, spatial scale, type of surrogate and statistical method used all influenced surrogate effectiveness, at least according to either P or R(2. The type of surrogate used (higher-taxa, cross-taxa or subset taxa was the best predictor of P, with the higher-taxa surrogates outperforming all others. The marine habitat was the best predictor of R(2, with particularly low predictability in tropical reefs. Surrogate effectiveness was greatest for higher-taxa surrogates at a <10-km spatial scale, in low-complexity marine habitats such as soft bottoms, and using multivariate-based methods. Comparisons with terrestrial studies in terms of the methods used to study surrogates revealed that marine applications still ignore some problems with several widely used statistical approaches to surrogacy. Our study provides a benchmark for the reliable use of biological surrogates in marine ecosystems, and highlights directions for future development of biological surrogates in predicting biodiversity.

  4. State-of-the-art exposure chamber for highly controlled and reproducible THz biological effects studies

    Science.gov (United States)

    Cerna, Cesario Z.; Elam, David P.; Echchgadda, Ibtissam; Sloan, Mark A.; Wilmink, Gerald J.

    2014-03-01

    Terahertz (THz) imaging and sensing technologies are increasingly being used at international airports for security screening purposes and at major medical centers for cancer and burn diagnosis. The emergence of new THz applications has directly resulted in an increased interest regarding the biological effects associated with this frequency range. Knowledge of THz biological effects is also desired for the safe use of THz systems, identification of health hazards, and development of empirically-based safety standards. In this study, we developed a state-of-the-art exposure chamber that allowed for highly controlled and reproducible studies of THz biological effects. This innovative system incorporated an industry grade cell incubator system that permitted a highly controlled exposure environment, where temperatures could be maintained at 37 °C +/- 0.1 °C, carbon dioxide (CO2) levels at 5% +/- 0.1%, and relative humidity (RH) levels at 95% +/- 1%. To maximize the THz power transmitted to the cell culture region inside the humid incubator, a secondary custom micro-chamber was fabricated and incorporated into the system. This micro-chamber shields the THz beam from the incubator environment and could be nitrogen-purged to eliminate water absorption effects. Additionally, a microscope that allowed for real-time visualization of the live cells before, during, and after THz exposure was integr