WorldWideScience

Sample records for biological effects dosimetry

  1. Dosimetry and biological effects of fast neutrons

    International Nuclear Information System (INIS)

    Zoetelief, J.

    1981-01-01

    This thesis contains studies on two types of cellular damage: cell reproductive death and chromosome aberrations induced by irradiation with X rays, gamma rays and fast neutrons of different energies. A prerequisite for the performance of radiobiological experiments is the determination of the absorbed dose with a sufficient degree of accuracy and precision. Basic concepts of energy deposition by ionizing radiation and practical aspects of neutron dosimetry for biomedical purposes are discussed. Information on the relative neutron sensitivity of GM counters and on the effective point of measurement of ionization chambers for dosimetry of neutron and photon beams under free-in-air conditions and inside phantoms which are used to simulate the biological objects is presented. Different methods for neutron dosimetry are compared and the experimental techniques used for the investigations of cell reproductive death and chromosome aberrations induced by ionizing radiation of different qualities are presented. Dose-effect relations for induction cell inactivation and chromsome aberrations in three cultured cell lines for different radiation qualities are presented. (Auth.)

  2. Neutron dosimetry in biology

    International Nuclear Information System (INIS)

    Sigurbjoernsson, B.; Smith, H.H.; Gustafsson, A.

    1965-01-01

    To study adequately the biological effects of different energy neutrons it is necessary to have high-intensity sources which are not contaminated by other radiations, the most serious of which are gamma rays. An effective dosimetry must provide an accurate measure of the absorbed dose, in biological materials, of each type of radiation at any reactor facility involved in radiobiological research. A standardized biological dosimetry, in addition to physical and chemical methods, may be desirable. The ideal data needed to achieve a fully documented dosimetry has been compiled by H. Glubrecht: (1) Energy spectrum and intensity of neutrons; (2) Angular distribution of neutrons on the whole surface of the irradiated object; (3) Additional undesired radiation accompanying the neutrons; (4) Physical state and chemical composition of the irradiated object. It is not sufficient to note only an integral dose value (e.g. in 'rad') as the biological effect depends on the above data

  3. Studies with encapsulated 125I sources: dosimetry for determination of relative biological effectiveness

    International Nuclear Information System (INIS)

    Goldhagen, P.; Freeman, M.L.; Hall, E.J.

    1981-01-01

    During the past year, members of this laboratory have measured the Relative Biological Effectiveness (RBE) of photons from encapsulated 125 I sources (mean energy = 28.33 keV) using 661.6 keV 137 Cs gamma rays as a standard for comparison. These experiments were performed at clinically relevant dose rates and used reduction of the reproductive viability of mammalian cells as an endpoint. This section will discuss how dosimetry problems special to 125 I influence the design of the apparatus and will describe the ionization chamber to be used for measuring dose rates from both 125 I and 137 Cs photons

  4. Biological dosimetry of irradiation accidents

    International Nuclear Information System (INIS)

    Durand, V.; Chambrette, V.; Le Roy, A.; Paillole, N.; Sorokine, I.; Voisin, P.

    1994-01-01

    The biological dosimetry in radiation protection allows to evaluate the received dose by a potentially irradiated person from biological markers such chromosomal abnormalities. The technologies of Hybridization In Situ by Fluorescence (F.I.S.H) allow the detection of steady chromosomal aberrations of translocation type

  5. Effect of contrast agent administration on consequences of dosimetry and biology in radiotherapy planning

    International Nuclear Information System (INIS)

    Lo, Ching-Jung; Yang, Pei-Ying; Chao, Tsi-Chian; Tu, Shu-Ju

    2015-01-01

    In the treatment planning of radiation therapy, patients may be administrated with contrast media in CT scanning to assist physicians for accurate delineation of the target or organs. However, contrast media are not used in patients during the treatment delivery. In particular, contrast media contain materials with high atomic numbers and dosimetric variations may occur between scenarios where contrast media are present in treatment planning and absent in treatment delivery. In this study we evaluate the effect of contrast media on the dosimetry and biological consequence. An analytical phantom based on AAPM TG 119 and five sets of CT images from clinical patients are included. Different techniques of treatment planning are considered, including 1-field AP, 2-field AP+PA, 4-field box, 7-field IMRT, and RapidArc. RapidArc is a recent technique of volumetric modulated arc therapy and is used in our study of contrast media in clinical scenarios. The effect of RapidArc on dosimetry and biological consequence for administration of contrast media in radiotherapy is not discussed previously in literature. It is shown that dose difference is reduced as the number of external beams is increased, suggesting RapidArc may be favored to be used in the treatment planning enhanced by contrast media. Linear trend lines are fitted for assessment of percent dose differences in the planning target volume versus concentrations of contrast media between plans where contrast media are present and absent, respectively

  6. Development of radiation biological dosimetry

    International Nuclear Information System (INIS)

    Cho, Chul Koo; Kim, Tae Hwan; Lee, Yun Sil; Son, Young Sook; Kim, Soo Kwan; Jang, Won Suk; Le, Sun Joo; Jee, Young Heun; Jung, Woo Jung

    1999-04-01

    Up until now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline (triage) to be able to be treated the victims as fast as possible. We established the premature chromosome condensation assay and apoptotic fragment assay which was the significant relationship between dose and cell damages to evaluate the irradiation dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with conventional chromosome aberration assay and micronuclei assay

  7. Development of radiation biological dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chul Koo; Kim, Tae Hwan; Lee, Yun Sil; Son, Young Sook; Kim, Soo Kwan; Jang, Won Suk; Le, Sun Joo; Jee, Young Heun; Jung, Woo Jung

    1999-04-01

    Up until now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline (triage) to be able to be treated the victims as fast as possible. We established the premature chromosome condensation assay and apoptotic fragment assay which was the significant relationship between dose and cell damages to evaluate the irradiation dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with conventional chromosome aberration assay and micronuclei assay.

  8. Analysis of MIR-18 results for physical and biological dosimetry: radiation shielding effectiveness in LEO

    International Nuclear Information System (INIS)

    Cucinotta, F.A.; Wilson, J.W.; Williams, J.R.; Dicello, J.F.

    2000-01-01

    We compare models of radiation transport and biological response to physical and biological dosimetry results from astronauts on the Mir space station. Transport models are shown to be in good agreement with physical measurements and indicate that the ratio of equivalent dose from the Galactic Cosmic Rays (GCR) to protons is about 3/2:1 and that this ratio will increase for exposures to internal organs. Two biological response models are used to compare to the Mir biodosimetry for chromosome aberration in lymphocyte cells; a track-structure model and the linear-quadratic model with linear energy transfer (LET) dependent weighting coefficients. These models are fit to in vitro data for aberration formation in human lymphocytes by photons and charged particles. Both models are found to be in reasonable agreement with data for aberrations in lymphocytes of Mir crew members: however there are differences between the use of LET dependent weighting factors and track structure models for assigning radiation quality factors. The major difference in the models is the increased effectiveness predicted by the track model for low charge and energy ions with LET near 10 keV/μm. The results of our calculations indicate that aluminum shielding, although providing important mitigation of the effects of trapped radiation, provides no protective effect from the galactic cosmic rays (GCR) in low-earth orbit (LEO) using either equivalent dose or the number of chromosome aberrations as a measure until about 100 g/cm 2 of material is used

  9. Radiation effects analysis in a group of interventional radiologists using biological and physical dosimetry methods

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, M., E-mail: WEMLmirapas@iqn.upv.e [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Montoro, A.; Almonacid, M. [Radiation Protection Service, Hospital Universitario La Fe Valencia (Spain); Ferrer, S. [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Barquinero, J.F. [Biological Dosimetry Service, Unit of Anthropology, Department of Animal and Vegetable Biology and Ecology, Universitat Autonoma de Barcelona (UAB) (Spain); Tortosa, R. [Radiation Protection Service, Hospital Universitario La Fe Valencia (Spain); Verdu, G. [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Rodriguez, P. [Biological Dosimetry Service, Unit of Anthropology, Department of Animal and Vegetable Biology and Ecology, Universitat Autonoma de Barcelona (UAB) (Spain); Barrios, L.L. [Department of Physiology and Cellular Biology, Unit of Cellular Biology (UAB) (Spain); Villaescusa, J.I. [Radiation Protection Service, Hospital Universitario La Fe Valencia (Spain)

    2010-08-15

    excess radio-induced risk of leukemia in the group under study. Finally, the maximum radiological detriment in the group, evaluated as the total number of radio-induced cancers using physical dosimetry, has been of 2.18/1000 person-year (skin and leukemia), and using biological dosimetry of 9.20/1000 PY (leukemia). As a conclusion, this study has provided an assessment of the non-deterministic effects (rate of radio-induced cancer incidence) attributable to the group under study due to their professional activity.

  10. The Latin American Biological Dosimetry Network (LBDNet)

    International Nuclear Information System (INIS)

    Garcia, O.; Lamadrid, A.I.; Gonzalez, J.E.; Romero, I.; Mandina, T.; Di Giorgio, M.; Radl, A.; Taja, M.R.; Sapienza, C.E.; Deminge, M.M.; Fernandez Rearte, J.; Stuck Oliveira, M.; Valdivia, P.; Guerrero-Carbajal, C.; Arceo Maldonado, C.; Cortina Ramirez, G.E.; Espinoza, M.; Martinez-Lopez, W.; Di Tomasso, M.

    2016-01-01

    Biological Dosimetry is a necessary support for national radiation protection programmes and emergency response schemes. The Latin American Biological Dosimetry Network (LBDNet) was formally founded in 2007 to provide early biological dosimetry assistance in case of radiation emergencies in the Latin American Region. Here are presented the main topics considered in the foundational document of the network, which comprise: mission, partners, concept of operation, including the mechanism to request support for biological dosimetry assistance in the region, and the network capabilities. The process for network activation and the role of the coordinating laboratory during biological dosimetry emergency response is also presented. This information is preceded by historical remarks on biological dosimetry cooperation in Latin America. A summary of the main experimental and practical results already obtained by the LBDNet is also included. (authors)

  11. The Latin American Biological Dosimetry Network (LBDNet).

    Science.gov (United States)

    García, O; Di Giorgio, M; Radl, A; Taja, M R; Sapienza, C E; Deminge, M M; Fernández Rearte, J; Stuck Oliveira, M; Valdivia, P; Lamadrid, A I; González, J E; Romero, I; Mandina, T; Guerrero-Carbajal, C; ArceoMaldonado, C; Cortina Ramírez, G E; Espinoza, M; Martínez-López, W; Di Tomasso, M

    2016-09-01

    Biological Dosimetry is a necessary support for national radiation protection programmes and emergency response schemes. The Latin American Biological Dosimetry Network (LBDNet) was formally founded in 2007 to provide early biological dosimetry assistance in case of radiation emergencies in the Latin American Region. Here are presented the main topics considered in the foundational document of the network, which comprise: mission, partners, concept of operation, including the mechanism to request support for biological dosimetry assistance in the region, and the network capabilities. The process for network activation and the role of the coordinating laboratory during biological dosimetry emergency response is also presented. This information is preceded by historical remarks on biological dosimetry cooperation in Latin America. A summary of the main experimental and practical results already obtained by the LBDNet is also included. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. The use of apoptosis in human lymphocytes peripheral as alternative methods in biological dosimetry of radiation effects from cobalt-60

    International Nuclear Information System (INIS)

    Lemes, Marisa

    1997-01-01

    Gamma rays affect cells in dose-response manner, resulting in cell death, as in cancer radiotherapy. The ionizing radiation acts by transferring energy, mainly by free radicals from water radiolysis that result in nucleic acid damage and other effects in lipids and proteins, The level of exposure is indirectly estimated by physical dosimetry, but the biological dosimetry can measure the direct radiation effect, mainly in post-dividing cells by classical cytogenetic approach. Recently, it was reported that irradiated cells develop an induced programmed death or apoptosis. With a biological dosimetric technique, we measured apoptotic cell fraction in 60 Co in vitro irradiated blood cells from voluntary healthy donors. The agarose gel electrophoresis showed a low sensitivity, because cell DNA presented the characteristic pattern only when the cells were exposed to 100 c Gy or more. Using a terminal DNA labeling technique we observed that the apoptotic cell fraction proportionally increases with irradiation. Similar sensitivity was observed when compared to classical cytogenetics (3 c Gy minimum detection level). These techniques are easier to perform, do not need cell culture and all cells, including interphase ones, can be analyzed, providing a good tool in biological dosimetry. (author)

  13. Calibration curves for biological dosimetry

    International Nuclear Information System (INIS)

    Guerrero C, C.; Brena V, M. . E-mail cgc@nuclear.inin.mx

    2004-01-01

    The generated information by the investigations in different laboratories of the world, included the ININ, in which settles down that certain class of chromosomal leisure it increases in function of the dose and radiation type, has given by result the obtaining of calibrated curves that are applied in the well-known technique as biological dosimetry. In this work is presented a summary of the work made in the laboratory that includes the calibrated curves for gamma radiation of 60 Cobalt and X rays of 250 k Vp, examples of presumed exposure to ionizing radiation, resolved by means of aberration analysis and the corresponding dose estimate through the equations of the respective curves and finally a comparison among the dose calculations in those people affected by the accident of Ciudad Juarez, carried out by the group of Oak Ridge, USA and those obtained in this laboratory. (Author)

  14. Dosimetry

    International Nuclear Information System (INIS)

    Rezende, D.A.O. de

    1976-01-01

    The fundamental units of dosimetry are defined, such as exposure rate, absorbed dose and equivalent dose. A table is given of relative biological effectiveness values for the different types of radiation. The relation between the roentgen and rad units is calculated and the concepts of physical half-life, biological half-life and effective half-life are discussed. Referring to internal dosimetry, a mathematical treatment is given to β particle-and γ radiation dosimetry. The absorbed dose is calculated and a practical example is given of the calculation of the exposure and of the dose rate for a gama source [pt

  15. DRDC Ottawa working standard for biological dosimetry

    International Nuclear Information System (INIS)

    Segura, T.M.; Prud'homme-Lalonde, L.; Thorleifson, E.; Lachapelle, S.; Mullins, D.; Qutob, S.; Wilkinson, D.

    2005-07-01

    This Standard provides quality assurance, quality control, and evaluation of the performance criteria for the purpose of accreditation of the Radiation Biology laboratory at Defence Research and Development Canada - Ottawa (DRDC Ottawa) using biological dosimetry to predict radiation exposure doses. The International Standard (ISO 19238) and the International Atomic Energy Association (IAEA) Technical Report Series No. 405 are used as guiding documents in preparation of this working document specific to the DRDC Ottawa Radiation Biology Laboratory. This Standard addresses: 1. The confidentiality of personal information, for the customer and the service laboratory; 2. The laboratory safety requirements; 3. The calibration sources and calibration dose ranges useful for establishing the reference dose-effect curves allowing the dose estimation from chromosome aberration frequency, and the minimum detection levels; 4. Transportation criteria for shipping of test samples to the laboratory; 5. Preparation of samples for analysis; 6. The scoring procedure for unstable chromosome aberrations used for biological dosimetry; 7. The criteria for converting a measured aberration frequency into an estimate of absorbed dose; 8. The reporting of results; 9. The quality assurance and quality control plan for the laboratory; and 10. Informative annexes containing examples of a questionnaire, instructions for customers, a data sheet for recording aberrations, a sample report and other supportive documents. (author)

  16. DRDC Ottawa working standard for biological dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Segura, T M; Prud' homme-Lalonde, L [Defence Research and Development Canada, Ottawa, Ontario (Canada); Thorleifson, E [Health Canada, Gatineau, Quebec (Canada); Lachapelle, S; Mullins, D [JERA Consulting (Canada); Qutob, S [Health Canada, Gatineau, Quebec (Canada); Wilkinson, D

    2005-07-15

    This Standard provides quality assurance, quality control, and evaluation of the performance criteria for the purpose of accreditation of the Radiation Biology laboratory at Defence Research and Development Canada - Ottawa (DRDC Ottawa) using biological dosimetry to predict radiation exposure doses. The International Standard (ISO 19238) and the International Atomic Energy Association (IAEA) Technical Report Series No. 405 are used as guiding documents in preparation of this working document specific to the DRDC Ottawa Radiation Biology Laboratory. This Standard addresses: 1. The confidentiality of personal information, for the customer and the service laboratory; 2. The laboratory safety requirements; 3. The calibration sources and calibration dose ranges useful for establishing the reference dose-effect curves allowing the dose estimation from chromosome aberration frequency, and the minimum detection levels; 4. Transportation criteria for shipping of test samples to the laboratory; 5. Preparation of samples for analysis; 6. The scoring procedure for unstable chromosome aberrations used for biological dosimetry; 7. The criteria for converting a measured aberration frequency into an estimate of absorbed dose; 8. The reporting of results; 9. The quality assurance and quality control plan for the laboratory; and 10. Informative annexes containing examples of a questionnaire, instructions for customers, a data sheet for recording aberrations, a sample report and other supportive documents. (author)

  17. About the factors distorting biological dosimetry results

    International Nuclear Information System (INIS)

    Mosseh, I.B.

    1999-01-01

    The row of chemical substances that have not mutagenic effect can strengthen ionising radiation induced cytogenetic effects. For example nitrite sodium and nitrate sodium reinforce mutagenic action of radiation and cause sensitized effect although they aren't mutagens. Presence of residual amount of herbicides in food products can have influence at level of aberration in human cells. It was investigated the influence of herbicide zencor at mutagenic action of radiation. This substance has weak mutagenic activity. In the case of combined action of zencor with irradiation antagonistic effect was observed. Mutation rate turns out to be lower than expected summary value. At the same time many foods products (tea, coffee, cacao, chocolate etc., which contain melanin) are antimutagens and can also change the frequency of radiation induced mutations. Taking of medicine distort the results of dose estimation. The frequency of chromosomal aberrations in blood lymphocytes after acute irradiation is considered to be adequate method of biological dosimetry. In the case of chronic irradiation this analysis becomes complicated with such processes as adaptation (selection and proliferation of cells with more radioresistant genotype) and the origin of genetic un stability which leads to higher radiosensitivity. The estimation of the level of point mutations is the most precise method of biological dosimetry because their existence is less exposed to modifications

  18. Dosimetry

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The purpose of ionizing radiation dosimetry is the measurement of the physical and biological consequences of exposure to radiation. As these consequences are proportional to the local absorption of energy, the dosimetry of ionizing radiation is based on the measurement of this quantity. Owing to the size of the effects of ionizing radiation on materials in all of these area, dosimetry plays an essential role in the prevention and the control of radiation exposure. Its use is of great importance in two areas in particular where the employment of ionizing radiation relates to human health: radiation protection, and medical applications. Dosimetry is different for various reasons: owing to the diversity of the physical characteristics produced by different kinds of radiation according to their nature (X- and γ-photons, electrons, neutrons,...), their energy (from several keV to several MeV), the orders of magnitude of the doses being estimated (a factor of about 10 5 between diagnostic and therapeutic applications); and the temporal and spatial variation of the biological parameters entering into the calculations. On the practical level, dosimetry poses two distinct yet closely related problems: the determination of the absorbed dose received by a subject exposed to radiation from a source external to his body (external dosimetry); and the determination of the absorbed dose received by a subject owing to the presence within his body of some radioactive substance (internal dosimetry)

  19. Extension of the biological effective dose to the MIRD schema and possible implications in radionuclide therapy dosimetry

    International Nuclear Information System (INIS)

    Baechler, Sebastien; Hobbs, Robert F.; Prideaux, Andrew R.; Wahl, Richard L.; Sgouros, George

    2008-01-01

    In dosimetry-based treatment planning protocols, patients with rapid clearance of the radiopharmaceutical require a larger amount of initial activity than those with slow clearance to match the absorbed dose to the critical organ. As a result, the dose-rate to the critical organ is higher in patients with rapid clearance and may cause unexpected toxicity compared to patients with slow clearance. In order to account for the biological impact of different dose-rates, radiobiological modeling is beginning to be applied to the analysis of radionuclide therapy patient data. To date, the formalism used for these analyses is based on kinetics derived from activity in a single organ, the target. This does not include the influence of other source organs to the dose and dose-rate to the target organ. As a result, only self-dose irradiation in the target organ contributes to the dose-rate. In this work, the biological effective dose (BED) formalism has been extended to include the effect of multiple source organ contributions to the net dose-rate in a target organ. The generalized BED derivation has been based on the Medical Internal Radionuclide Dose Committee (MIRD) schema assuming multiple source organs following exponential effective clearance of the radionuclide. A BED-based approach to determine the largest safe dose to critical organs has also been developed. The extended BED formalism is applied to red marrow dosimetry, as well as kidney dosimetry considering the cortex and the medulla separately, since both those organs are commonly dose limiting in radionuclide therapy. The analysis shows that because the red marrow is an early responding tissue (high α/β), it is less susceptible to unexpected toxicity arising from rapid clearance of high levels of administered activity in the marrow or in the remainder of the body. In kidney dosimetry, the study demonstrates a complex interplay between clearance of activity in the cortex and the medulla, as well as the initial

  20. MIRD Commentary: Proposed Name for a Dosimetry Unit Applicable to Deterministic Biological Effects-The Barendsen (Bd)

    International Nuclear Information System (INIS)

    Sgouros, George; Howell, R. W.; Bolch, Wesley E.; Fisher, Darrell R.

    2009-01-01

    The fundamental physical quantity for relating all biologic effects to radiation exposure is the absorbed dose, the energy imparted per unit mass of tissue. Absorbed dose is expressed in units of joules per kilogram (J/kg) and is given the special name gray (Gy). Exposure to ionizing radiation may cause both deterministic and stochastic biologic effects. To account for the relative effect per unit absorbed dose that has been observed for different types of radiation, the International Commission on Radiological Protection (ICRP) has established radiation weighting factors for stochastic effects. The product of absorbed dose in Gy and the radiation weighting factor is defined as the equivalent dose. Equivalent dose values are designated by a special named unit, the sievert (Sv). Unlike the situation for stochastic effects, no well-defined formalism and associated special named quantities have been widely adopted for deterministic effects. The therapeutic application of radionuclides and, specifically, -particle emitters in nuclear medicine has brought to the forefront the need for a well-defined dosimetry formalism applicable to deterministic effects that is accompanied by corresponding special named quantities. This commentary reviews recent proposals related to this issue and concludes with a recommendation to establish a new named quantity

  1. Establishing working standards of chromosome aberrations analysis for biological dosimetry

    International Nuclear Information System (INIS)

    Bui Thi Kim Luyen; Tran Que; Pham Ngoc Duy; Nguyen Thi Kim Anh; Ha Thi Ngoc Lien

    2015-01-01

    Biological dosimetry is an dose assessment method using specify bio markers of radiation. IAEA (International Atomic Energy Agency) and ISO (International Organization for Standardization) defined that dicentric chromosome is specify for radiation, it is a gold standard for biodosimetry. Along with the documents published by IAEA, WHO, ISO and OECD, our results of study on the chromosome aberrations induced by radiation were organized systematically in nine standards that dealing with chromosome aberration test and micronucleus test in human peripheral blood lymphocytes in vitro. This standard addresses: the reference dose-effect for dose estimation, the minimum detection levels, cell culture, slide preparation, scoring procedure for chromosome aberrations use for biodosimetry, the criteria for converting aberration frequency into absorbed dose, reporting of results. Following these standards, the automatic analysis devices were calibrated for improving biological dosimetry method. This standard will be used to acquire and maintain accreditation of the Biological Dosimetry laboratory in Nuclear Research Institute. (author)

  2. Biological effects of radiation and dosimetry in X-ray diagnostics of children

    International Nuclear Information System (INIS)

    Milkovic, Durdica; Beck, Natko; Kovac, Kornelija; Garaj-Vrhovac, Vera; Gajski, Goran

    2008-01-01

    The chest radiograms represent the basic radiological examinations of thorax. The basis for radiation protection especially in pediatrics is the exact determination of doses. The risk estimation of genome damages can be received in human peripheral blood lymphocytes using alkaline version of Comet Assay. The aim of this work was assessment and quantification of the level of DNA damage in peripheral blood lymphocytes of children during airways X-ray examinations of chest and to compare data to the dose of exposure. Doses were determined using thermoluminescence (TL) dosimetry and radiophotoluminescent (RPL) glass dosimetry system. Twenty children with pulmonary diseases, ages between 5 and 14 years were assessed. Dose measurements were conducted for poster-anterior (PA) projection on the forehead, thyroid gland, gonads, chest and back. We used a 150 kV Shimadzu CH-200 M X-ray unit. Peripheral blood samples were taken from children after and prior to X-ray exposure and were examined with the alkaline Comet Assay. Comet Assay is one of the standard techniques for assessing genome damage with variety applications in genotoxicity testing as well as fundamental research in DNA damage and repair. As a measure of DNA damage tail length was used, calculated from the centre of the head and presented in micrometers (μm). Mean value of group after irradiation was 14.04 ± 1.74 as opposed to mean value of group before irradiation that was 13.15 ± 1.33. Differences between mean tail lengths were statistically significant (P<0.05, ANOVA). In addition, correlation was found between doses in primary beam (measured on the back) and the ratio of tail length (DNA damage) before and after irradiation. Doses measured with TL and RPL dosimeters showed satisfactory agreement and both dosimetry methods are suitable for dosimetric measurements in X-ray diagnostics. (author)

  3. Biological dosimetry, scopes and limitations

    International Nuclear Information System (INIS)

    Guerrero C, C.; Brena V, M.

    1999-01-01

    The analysis of the aberrations in chromosomes is an alternative to establish the exposure dose to the radiation, when the information provided by the traditional physical methods is insufficient. There are diverse causes by which it can reached to apply an alternative system, such is the case of exposures of another persons to the management of radiation sources, which not carry physical dosemeter. Contrary case is to the occupational exposure personnel (OEP), what must to utilize some system for determining the exposure dose, even so can be needed the case for more information. In any case, the cells from the affected person are the alternative without the biological system be overlap to the physical, it is complementary. (Author)

  4. The status of the seventh report in the series Biological Effects of Ionizing Radiations and a revised dosimetry for the Radiation Effects Research Foundation's A-bomb studies

    International Nuclear Information System (INIS)

    Douple, Evan; Jostes, Rick

    2002-01-01

    Results of a National Academies workshop and feasibility study led US Governmental agencies to request the Board on Radiation Effects Research of the National Research Council to commence a risk assessment study in 1998 as the seventh report in the series Biological Effects of Ionizing Radiations (BEIR VII). Originally targeted for completion in the autumn of 2001, the study Potential Health Effects of Exposure to Low Dose, Low-LET Ionizing Radiation was extended until the autumn of 2003 at the request of the sponsors. Two factors contributing to this decision are discussed: a revised dosimetry to update DS86 for the Radiation Effects Research Foundation's A-bomb-survivor studies and the potential for new information to become available from low-dose studies that are under way. Epidemiological and biological data since BEIR V are being considered by a BEIR VII committee composed of 17 members. The committee's statement of task is reviewed along with the major recommendations of the recent National Research Council report on the status of DS86 - recommendations that are being implemented by US and Japan dosimetry working groups. (author)

  5. OEDIPE, a software for personalized Monte Carlo dosimetry and treatment planning optimization in nuclear medicine: absorbed dose and biologically effective dose considerations

    International Nuclear Information System (INIS)

    Petitguillaume, A.; Broggio, D.; Franck, D.; Desbree, A.; Bernardini, M.; Labriolle Vaylet, C. de

    2014-01-01

    For targeted radionuclide therapies, treatment planning usually consists of the administration of standard activities without accounting for the patient-specific activity distribution, pharmacokinetics and dosimetry to organs at risk. The OEDIPE software is a user-friendly interface which has an automation level suitable for performing personalized Monte Carlo 3D dosimetry for diagnostic and therapeutic radionuclide administrations. Mean absorbed doses to regions of interest (ROIs), isodose curves superimposed on a personalized anatomical model of the patient and dose-volume histograms can be extracted from the absorbed dose 3D distribution. Moreover, to account for the differences in radiosensitivity between tumoral and healthy tissues, additional functionalities have been implemented to calculate the 3D distribution of the biologically effective dose (BED), mean BEDs to ROIs, isoBED curves and BED-volume histograms along with the Equivalent Uniform Biologically Effective Dose (EUD) to ROIs. Finally, optimization tools are available for treatment planning optimization using either the absorbed dose or BED distributions. These tools enable one to calculate the maximal injectable activity which meets tolerance criteria to organs at risk for a chosen fractionation protocol. This paper describes the functionalities available in the latest version of the OEDIPE software to perform personalized Monte Carlo dosimetry and treatment planning optimization in targeted radionuclide therapies. (authors)

  6. Direct biological dosimetry in Chernobyl clear-up workers

    International Nuclear Information System (INIS)

    Maznik, N.A.; Vinnikov, V.A.; Rozdil'ski, S.I.

    1999-01-01

    Full text: In cases of large-scale radiological accidents like Chernobyl (1986) the estimation of somatic risk to exposed populations became a problem due to lack of direct physical dosimetry data. In such conditions the necessarily information can be obtained from biological dosimetry, firstly by chromosomal aberrations analysis in human peripheral blood lymphocytes. Conventional cytogenetic assay have been carried out in 130 persons recruited as clean-up workers ('liquidators') to the Chernobyl zone in 1986-87 yrs. Blood sampling was performed during 1 year post-irradiation, in 100 persons p to 0.5 year. The aberrations of choice for biological dosimetry were unstable chromosome exchanges (dicentrics and centric rings with accompanying acentric fragments). The dose calculations have been done using the linear term of the dose-response curve built with acute gamma-irradiation of blood in dose range up to 1 Gy. The distributions of biological doses were investigated in groups of liquidators with doses in documents ranging 17-140, 175-230, 250, 260-365, 440-1030 mSv and in the group of non-monitored persons. The weak correlation between monitored individual doses and biological doses was shown; the biological and physical dose distribution peculiarity in monitored groups is discussed. The distribution of individual aberration frequencies and the average yield of chromosomal exchanges in monitored and non-monitored liquidators were identical. The common cohort analysis (monitored and non-monitored persons) showed that the individual aberration yields distribution among liquidators was strictly randomised in accordance with Poissonian statistics. The cytogenetic dose estimations obtained can be of great value for somatic effects risk assessment in post-Chernobyl cohorts

  7. Cytogenetic biological dosimetry. Dose estimative in accidental exposure

    International Nuclear Information System (INIS)

    Santos, O.R. dos; Campos, I.M.A. de.

    1988-01-01

    The methodology of cytogenetic biological dosimetry is studied. The application in estimation of dose in five cases of accidental exposure is reported. An hematological study and culture of lymphocytes is presented. (M.A.C.) [pt

  8. Latinamerican Biological Dosimetry Network (LBDNET). International Biological Dosimetry intercomparison Program (exercise 2007-2008)

    International Nuclear Information System (INIS)

    Di Giorgio, Marina; Vallerga, Maria B.; Radl, A.; Taja, Maria R.

    2009-01-01

    This paper describes the International Biological Dosimetry Intercomparison Program (exercise 2007-2008) - developed within the framework of the IAEA regional project - RLA/9/054 (Establishment of national capabilities for response to radiological and nuclear emergency) whose general objectives are: assess reproducibility inter-laboratory; identify problems and provide the necessary modifications for collaborative work in accidental situations requiring activation of mutual assistance mechanisms which will form the basis of the Organization of LBDNET. This exercise involves the laboratories of the region: Argentina (laboratory support), Brazil, Chile, Cuba, Mexico, Peru and Uruguay and the laboratory of the Autonomous University of Barcelona-Espana (Joan Francesc Barquinero and staff). Finally, these countries will meet the next time for the drafting of a final report and later publication. (author)

  9. The method validation step of biological dosimetry accreditation process

    International Nuclear Information System (INIS)

    Roy, L.; Voisin, P.A.; Guillou, A.C.; Busset, A.; Gregoire, E.; Buard, V.; Delbos, M.; Voisin, Ph.

    2006-01-01

    One of the missions of the Laboratory of Biological Dosimetry (L.D.B.) of the Institute for Radiation and Nuclear Safety (I.R.S.N.) is to assess the radiological dose after an accidental overexposure suspicion to ionising radiation, by using radio-induced changes of some biological parameters. The 'gold standard' is the yield of dicentrics observed in patients lymphocytes, and this yield is converted in dose using dose effect relationships. This method is complementary to clinical and physical dosimetry, for medical team in charge of the patients. To obtain a formal recognition of its operational activity, the laboratory decided three years ago, to require an accreditation, by following the recommendations of both 17025 General Requirements for the Competence of Testing and Calibration Laboratories and 19238 Performance criteria for service laboratories performing biological dosimetry by cyto-genetics. Diagnostics, risks analysis were realized to control the whole analysis process leading to documents writing. Purchases, personnel department, vocational training were also included in the quality system. Audits were very helpful to improve the quality system. One specificity of this technique is that it is not normalized therefore apart from quality management aspects, several technical points needed some validations. An inventory of potentially influent factors was carried out. To estimate their real effect on the yield of dicentrics, a Placket-Burman experimental design was conducted. The effect of seven parameters was tested: the BUdr (bromodeoxyuridine), PHA (phytohemagglutinin) and colcemid concentration, the culture duration, the incubator temperature, the blood volume and the medium volume. The chosen values were calculated according to the uncertainties on the way they were measured i.e. pipettes, thermometers, test tubes. None of the factors has a significant impact on the yield of dicentrics. Therefore the uncertainty linked to their use was considered as

  10. The method validation step of biological dosimetry accreditation process

    Energy Technology Data Exchange (ETDEWEB)

    Roy, L.; Voisin, P.A.; Guillou, A.C.; Busset, A.; Gregoire, E.; Buard, V.; Delbos, M.; Voisin, Ph. [Institut de Radioprotection et de Surete Nucleaire, LDB, 92 - Fontenay aux Roses (France)

    2006-07-01

    One of the missions of the Laboratory of Biological Dosimetry (L.D.B.) of the Institute for Radiation and Nuclear Safety (I.R.S.N.) is to assess the radiological dose after an accidental overexposure suspicion to ionising radiation, by using radio-induced changes of some biological parameters. The 'gold standard' is the yield of dicentrics observed in patients lymphocytes, and this yield is converted in dose using dose effect relationships. This method is complementary to clinical and physical dosimetry, for medical team in charge of the patients. To obtain a formal recognition of its operational activity, the laboratory decided three years ago, to require an accreditation, by following the recommendations of both 17025 General Requirements for the Competence of Testing and Calibration Laboratories and 19238 Performance criteria for service laboratories performing biological dosimetry by cyto-genetics. Diagnostics, risks analysis were realized to control the whole analysis process leading to documents writing. Purchases, personnel department, vocational training were also included in the quality system. Audits were very helpful to improve the quality system. One specificity of this technique is that it is not normalized therefore apart from quality management aspects, several technical points needed some validations. An inventory of potentially influent factors was carried out. To estimate their real effect on the yield of dicentrics, a Placket-Burman experimental design was conducted. The effect of seven parameters was tested: the BUdr (bromodeoxyuridine), PHA (phytohemagglutinin) and colcemid concentration, the culture duration, the incubator temperature, the blood volume and the medium volume. The chosen values were calculated according to the uncertainties on the way they were measured i.e. pipettes, thermometers, test tubes. None of the factors has a significant impact on the yield of dicentrics. Therefore the uncertainty linked to their use was

  11. Non-invasive biological dosimetry of the skin

    International Nuclear Information System (INIS)

    Barton, S.; Marks, R.; Charles, M.W.; Wells, J.

    1986-01-01

    Investigations designed to identify a potential biological dosimetry technique to examine the effects of X-ray doses down to 0.1 Gy on human skin, are described. In a variety of parameters assessed, the most important changes observed were a significant depression in epidermal cell production in the basal layer after X-ray doses between 0.5 Gy and 1 Gy and a concomitant reduction in the desquamation rate of corneocytes after doses above 1 Gy. Changes in non-specific esterase (NSE) activity were also observed. Further work is described which applies these results to several non-invasive techniques which may have potential for routine application. Preliminary data from irradiated human skin are presented on the measurement of forced desquamation, the evaluation of NSE activity from hair samples and the evaluation of stratum corneum turnover time using the fluorescent dye, dansyl chloride. (author)

  12. Biological Effects of Ionizing Radiation

    Science.gov (United States)

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  13. Developments in biological dosimetry for the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Gale, K L; Boreham, D R; Maves, S; Morrison, D P [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    The purpose of this program is to develop methods for providing estimates of radiation exposure based on changes in the cells/tissues of exposed individuals. This work arises from the need for independent measures of exposure of workers when standard dose measurements are unavailable or questionable. The radiation-induced changes that we propose to measure have been correlated with carcinogenesis. It follows that the methods used should also provide indications of the likely biological consequences of radiation exposure for an individual. The consequences of radiation exposure lie in the resolution of the radiation effects at the cellular level. Accordingly, it is at the cellular level that our attention is directed. More precisely, since the consequences of most concern, cancer induction and the induction of inherited diseases, are the result of changes to the genetic material of cells (the DNA), it is the measurement of effects on DNA that are being investigated as possible dose meters. Individuals are unique in terms of their DNA and differ in their cellular capacities to repair the damage from an ionizing radiation dose. Because of these features, not only do biological dosimetry tools offer us a means of measuring a dose at the individual level but may also provide us with a measure of the ultimate risk associated with a given exposure. (author). 7 refs., 2 tabs., 4 figs.

  14. Developments in biological dosimetry for the nuclear industry

    International Nuclear Information System (INIS)

    Gale, K.L.; Boreham, D.R.; Maves, S.; Morrison, D.P.

    1995-01-01

    The purpose of this program is to develop methods for providing estimates of radiation exposure based on changes in the cells/tissues of exposed individuals. This work arises from the need for independent measures of exposure of workers when standard dose measurements are unavailable or questionable. The radiation-induced changes that we propose to measure have been correlated with carcinogenesis. It follows that the methods used should also provide indications of the likely biological consequences of radiation exposure for an individual. The consequences of radiation exposure lie in the resolution of the radiation effects at the cellular level. Accordingly, it is at the cellular level that our attention is directed. More precisely, since the consequences of most concern, cancer induction and the induction of inherited diseases, are the result of changes to the genetic material of cells (the DNA), it is the measurement of effects on DNA that are being investigated as possible dose meters. Individuals are unique in terms of their DNA and differ in their cellular capacities to repair the damage from an ionizing radiation dose. Because of these features, not only do biological dosimetry tools offer us a means of measuring a dose at the individual level but may also provide us with a measure of the ultimate risk associated with a given exposure. (author). 7 refs., 2 tabs., 4 figs

  15. Study on biological dosimetry of premature chromosome condensation technique

    International Nuclear Information System (INIS)

    Jiang Bo

    2005-01-01

    The premature chromosome condensation technique has been applied for biological dosimetry purpose. Premature chromo-some condensation was induced by incubating unstimulated human peripheral blood lymphocytes in the presence of okadaic acid or calyculin A (a phosphatase inhibitor) which eliminated the need for fusion with mitotic cells. It is now possible to examine the early damage induced by radiation. It is simple, exact when it combines with fluorecence in situ hybridization. (authors)

  16. Usefulness and limits of biological dosimetry based on cytogenetic methods

    International Nuclear Information System (INIS)

    Leonard, A.; Rueff, J.; Gerber, G. B.; Leonard, E. D.

    2005-01-01

    Damage from occupational or accidental exposure to ionising radiation is often assessed by monitoring chromosome aberrations in peripheral blood lymphocytes, and these procedures have, in several cases, assisted physicians in the management of irradiated persons. Thereby, circulating lymphocytes, which are in the G0 stage of the cell cycle are stimulated with a mitogenic agent, usually phytohaemagglutinin, to replicate in vitro their DNA and enter cell division, and are then observed for abnormalities. Comparison with dose response relationships obtained in vitro allows an estimate of exposure based on scoring: - Unstable aberrations by the conventional, well-established analysis of metaphases for chromosome abnormalities or for micronuclei; - So-called stable aberrations by the classical G-banding (Giemsa-Stain-banding) technique or by the more recently developed fluorescent in situ hybridisation (FISH) method using fluorescent-labelled probes for centromeres and chromosomes. Three factors need to be considered in applying such biological dosimetry: (1) Radiation doses in the body are often inhomogeneous. A comparison of the distribution of the observed aberrations among with that expected from a normal poisson distribution can allow conclusions to be made with regard to the inhomogeneity of exposure by means of the so-called contaminated poisson distribution method; however, its application requires a sufficiently large number of aberrations, i.e. an exposure to a rather large dose at a high dose rate. (2) Exposure can occur at a low dose rate (e.g. from spread or lost radioactive sources) rendering a comparison with in vitro exposure hazardous. Dose-effect relationships of most aberrations that were scored, such as translocations, follow a square law. Repair intervening during exposure reduces the quadratic component with decreasing dose rate as exposure is spread over a longer period of time. No valid solution for this problem has yet been developed, although

  17. Role of cytogenetic techniques in biological dosimetry of absorbed radiation

    International Nuclear Information System (INIS)

    Rao, B.S.

    2016-01-01

    In most of the radiation accidents, physical dosimetric information is rarely available. Further, most of the accidental exposures are non-uniform involving either partial body or localized exposure to significant doses. In such situations, physical dosimetry does not provide reliable dose estimate. It has now been realized that biological dosimetric techniques can play an important role in the assessment of absorbed dose. In recent years, a number of biological indicators of radiation have been identified. These include the kinetics of onset and persistence of prodromal syndromes (radiation sickness), cytogenetic changes in peripheral blood lymphocytes, hematological changes, biochemical indicators, ESR spectroscopy of biological samples, induction of gene mutations in red blood cells, cytogenetic and physiological changes in skin and neurophysiological changes. In general, dosimetric information is derived by a combination of several different methods, as they have potential to serve as prognostic indicators. The role of cytogenetic techniques in peripheral blood lymphocytes (PBL) as biological indicators of absorbed radiation is reviewed here

  18. Biological dosimetry study in differentiated thyroid carcinoma patients treated with 131Iodine

    International Nuclear Information System (INIS)

    Vallerga, Maria Belen

    2008-11-01

    Biological Dosimetry allows individual dose assessments based on the effect produced by ionizing radiation on a given biological parameter. The current biological endpoint being scored is chromosomal aberrations, relying on a lymphocytes culture from the patient's blood. The measured yield of chromosome aberrations is referred to a calibration curve obtaining the whole body dose. Different scenarios of overexposure can be taken into account by modifying the calculations leading to the dose estimate. Differentiated Thyroid Carcinoma patients undergo thyroidectomy followed by internal radiotherapy with 131 I. The treatment's success entails the delivery of a lethal dose to the tumour within the maximum tolerable dose to a critical organ (blood doses over 2 Gy could lead to bone marrow depression). Currently, there is no established agreement for the selection of radioiodine dosage. Historically, the empiric approach, based on clinical and biochemical data, has been recommended. Nevertheless, this method may not be associated with optimal outcomes. On the other hand, the dosimetric approach attempts to determine the maximum allowable activity to be administered, establishing its biokinetics by a diagnostic 131 I study. The methodology may be modified to further individualized treatment, however it requires validation. Biological dosimetry provides an independent measure of radiotherapy effect, as such it might aid in the validation process. Nonetheless, biological dosimetry has traditionally been applied in cases of external and accidental overexposure to ionizing radiation. Accordingly, it is mandatory to assess its value in medical internal incorporations (main objective of the present study). The applied treatment strategy comprises whole body dose assessment by biological and internal dosimetry in order to administer a personalized therapeutic activity. Overall, 20 patients with differentiated thyroid carcinoma were included in the study. For biological dosimetry

  19. Chromosome aberration analysis for biological dosimetry: a review

    International Nuclear Information System (INIS)

    Paul, S.F.D.; Venkatachalam, P.; Jeevanram, R.K.

    1996-01-01

    Among various biological dosimetry techniques, dicentric chromosome aberration method appears to be the method of choice in analysing accidental radiation exposure in most of the laboratories. The major advantage of this method is its sensitivity as the number of dicentric chromosomes present in control population is too small and more importantly radiation induces mainly dicentric chromosome aberration among unstable aberration. This report brings out the historical development of various cytogenetic methods, the basic structure of DNA, chromosomes and different forms of chromosome aberrations. It also highlights the construction of dose-response curve for dicentric chromosome and its use in the estimation of radiation dose. (author)

  20. Biological dosimetry: chromosomal aberration analysis for dose assessment

    International Nuclear Information System (INIS)

    1986-01-01

    In view of the growing importance of chromosomal aberration analysis as a biological dosimeter, the present report provides a concise summary of the scientific background of the subject and a comprehensive source of information at the technical level. After a review of the basic principles of radiation dosimetry and radiation biology basic information on the biology of lymphocytes, the structure of chromosomes and the classification of chromosomal aberrations are presented. This is followed by a presentation of techniques for collecting blood, storing, transporting, culturing, making chromosomal preparations and scaring of aberrations. The physical and statistical parameters involved in dose assessment are discussed and examples of actual dose assessments taken from the scientific literature are given

  1. An improved in vitro micronucleus assay to biological dosimetry

    International Nuclear Information System (INIS)

    Ocampo, Ivette Z.; Okazaki, Kayo; Vieira, Daniel P.

    2013-01-01

    The biological dosimetry is widely used to estimate the absorbed dose in people occupationally or accidentally exposed to the radiation for a better medical treatment, minimizing the harmful effects. Many techniques and methods have been proposed to detect and quantify the radioinduced lesions in genetic material, among them, the micronucleus (MN) assay. In the present study, we proposed an improved in vitro micronucleus technique that is rapid, sensitive and with minor cell manipulations. Assays were carried out with human tumor cells (MCF-7) seeded (3x10 4 cells) in slides placed into Petri dishes. Adherent cells were maintained with RPMI medium, supplemented with fetal calf serum, 1 % antibiotics, cytochalasin B (2 μg/mL), and incubated at 37 deg C in the presence of 5% CO2 for 72h. Cells were pre-treated for 24h with aminoguanidine, a nitric oxide synthase inhibitor. Nitric oxide is an intracellular free-radical, involved in DNA double-strand break repair mechanisms. After incubation, adherent cells on slides were briefly fixed with paraformaldehyde and stained with acridine orange (100 μg/mL) for analysis through fluorescence microscopy. Dye fluorescence permitted accurate discrimination between nuclei and micronuclei (bright green) and cytoplasm (red), and made possible a faster counting of binucleated cells. Aminoguanidine (2 mM) induced significant increase (p< 0.05) in frequencies of binucleated cells with micronuclei and in the number of micronuclei per binucleated cell. Data showed that proposed modifications permit to understand an early aspect of NO inhibition and suggested an improved protocol to MN assays. (author)

  2. Biological dosimetry of X-rays by micronuclei study

    International Nuclear Information System (INIS)

    Gomez, E.; Silva, A.; Navlet, J.

    1991-01-01

    Biological dosimetry consists of estimating absorbed doses for people exposed to radiation by mean biological methods. Several indicators used are based in hematological, biochemical an cytogenetics data, although nowadays without doubt, the cytogenetic method is considered to be the most reliable, in this case, the study of micronuclei in peripheral blood lymphocytes cytokinetic blocked can be related to absorbed dose through an experimental calibration curve. An experimental dose-response curve, using micronuclei assay for X-rays at 250 kVp, 43,79 rads/min and temperature 37 degree celsius has been produced. Experimental data is fitted to model Y=c+ α D+β D 2 where. Y is the number micronuclei per cell and D the dose. the curve is compared with those produced elsewhere

  3. Biological Dosimetry of X-rays by micronuclei study

    International Nuclear Information System (INIS)

    Gomez, E.; Silva, A.; Navlet, J.

    1991-01-01

    Biological dosimetry consists of estimating absorbed doses for people exposed to radiation by mean biological methods. Several indicators used are based in haematological, biochemical an cytogenetics data, although nowadays without doubt, the cytogenetic method is considered to be the most reliable, in this case, the study of micronuclei in peripheral blood lymphocytes citokinetics blocked can be related to absorbed dose through an experimental calibration curve. An experimental dose-response curve, using micronuclei assay for X-rays at 250 kVp, 43,79 rads/min and temperature 37 degree centigree has been produced. Experimental data is fitted to model Y=C+ αD+BD''2 where Y is the number of micronuclei per cell and D the dose. The curve is compared with those produced elsewhere. (Author) 24 refs

  4. Biological dosimetry of ionizing radiation by chromosomal aberration analysis

    International Nuclear Information System (INIS)

    Gonzalez-Castano, S.; Silva, A.; Navlet, J.

    1990-01-01

    Biological dosimetry consists of estimating absorbed doses for people exposed to radiation by mean biological methods. Several indicators used are based in haematological, biochemical, and cytogenetic data, although nowadays without doubt, the cytogenetic method is considered to be the most reliable. In this case, the study ol chromosomal aberrations, normally dicentric chromosomes, in peripheral lymphocytes can be related to absorbed dose through an experimental calibration curve. An experimental dose-response curve, using dicentric chromosomes analysis, X-rays at 300 kVp, 114 rad/min and temperature 37 degree celsius has been produced. Experimental data is fitted to model Y =α + β 1 D + β 2 D 2 , where Y is the number of dicentrics per cell and D the dose. The curve is compared with those produced elsewhere. (Author) 14 refs

  5. Biological dosimetry of ionizing radiation by chromosomal aberration analysis

    International Nuclear Information System (INIS)

    Navlet Armenta, J.M.; Gonzalez, S.; Silva, A.

    1990-01-01

    Biological dosimetry consists of estimating absorbed doses for people exposed to radiation by mean biological methods. Several indicators used are based in haemathological, biochemical, and cytogenetic data, although nowadays without doubt, the cytogenetic method is considered to be the most reliable. In this case, the study of chromosomal aberrations, normally dicentric chromosomes, in peripheral lymphocytes can be related to absorbed dose through an experimental calibration curve. An experimental dose-response curve using dicentric chromosomes analysis, X-rays at 300 kVp, 114 rad/min and temperature 37 o C has been produced. Experimental data is fitted to model Y = α+β 1 D+β 2 D 2 , where Y is the number of dicentrics per cell and D the dose. The curve is compared with those produced elsewhere. (Author)

  6. Radiation protection - Performance criteria for service laboratories performing biological dosimetry by cytogenetics

    International Nuclear Information System (INIS)

    2004-01-01

    This International Standard provides criteria for quality assurance and quality control, evaluation of the performance and the accreditation of biological dosimetry by cytogenetic service laboratories. This International Standard addresses: a) the confidentiality of personal information, for the customer and the service laboratory, b) the laboratory safety requirements, c) the calibration sources and calibration dose ranges useful for establishing the reference dose-effect curves allowing the dose estimation from chromosome aberration frequency, and the minimum detection levels, d) the scoring procedure for unstable chromosome aberrations used for biological dosimetry, e) the criteria for converting a measured aberration frequency into an estimate of absorbed dose, f) the reporting of results, g) the quality assurance and quality control, h) informative annexes containing examples of a questionnaire, instructions for customers, a data sheet for recording aberrations and a sample report

  7. Neutron dosimetry - A review

    Energy Technology Data Exchange (ETDEWEB)

    Baum, J W

    1955-03-29

    This review summarizes information on the following subjects: (1) physical processes of importance in neutron dosimetry; (2) biological effects of neutrons; (3) neutron sources; and (4) instruments and methods used in neutron dosimetry. Also, possible improvements in dosimetry instrumentation are outlined and discussed. (author)

  8. RENEB - Running the European Network of biological dosimetry and physical retrospective dosimetry.

    Science.gov (United States)

    Kulka, Ulrike; Abend, Michael; Ainsbury, Elizabeth; Badie, Christophe; Barquinero, Joan Francesc; Barrios, Lleonard; Beinke, Christina; Bortolin, Emanuela; Cucu, Alexandra; De Amicis, Andrea; Domínguez, Inmaculada; Fattibene, Paola; Frøvig, Anne Marie; Gregoire, Eric; Guogyte, Kamile; Hadjidekova, Valeria; Jaworska, Alicja; Kriehuber, Ralf; Lindholm, Carita; Lloyd, David; Lumniczky, Katalin; Lyng, Fiona; Meschini, Roberta; Mörtl, Simone; Della Monaca, Sara; Monteiro Gil, Octávia; Montoro, Alegria; Moquet, Jayne; Moreno, Mercedes; Oestreicher, Ursula; Palitti, Fabrizio; Pantelias, Gabriel; Patrono, Clarice; Piqueret-Stephan, Laure; Port, Matthias; Prieto, María Jesus; Quintens, Roel; Ricoul, Michelle; Romm, Horst; Roy, Laurence; Sáfrány, Géza; Sabatier, Laure; Sebastià, Natividad; Sommer, Sylwester; Terzoudi, Georgia; Testa, Antonella; Thierens, Hubert; Turai, Istvan; Trompier, François; Valente, Marco; Vaz, Pedro; Voisin, Philippe; Vral, Anne; Woda, Clemens; Zafiropoulos, Demetre; Wojcik, Andrzej

    2017-01-01

    A European network was initiated in 2012 by 23 partners from 16 European countries with the aim to significantly increase individualized dose reconstruction in case of large-scale radiological emergency scenarios. The network was built on three complementary pillars: (1) an operational basis with seven biological and physical dosimetric assays in ready-to-use mode, (2) a basis for education, training and quality assurance, and (3) a basis for further network development regarding new techniques and members. Techniques for individual dose estimation based on biological samples and/or inert personalized devices as mobile phones or smart phones were optimized to support rapid categorization of many potential victims according to the received dose to the blood or personal devices. Communication and cross-border collaboration were also standardized. To assure long-term sustainability of the network, cooperation with national and international emergency preparedness organizations was initiated and links to radiation protection and research platforms have been developed. A legal framework, based on a Memorandum of Understanding, was established and signed by 27 organizations by the end of 2015. RENEB is a European Network of biological and physical-retrospective dosimetry, with the capacity and capability to perform large-scale rapid individualized dose estimation. Specialized to handle large numbers of samples, RENEB is able to contribute to radiological emergency preparedness and wider large-scale research projects.

  9. New methodologies of biological dosimetry applied to human protection

    International Nuclear Information System (INIS)

    Catena, C.; Parasacchi, P.; Conti, D.; Righi, E.

    1995-04-01

    Biological dosimetry is a diagnostic methodology for the measurement of the individual dose absorbed in the case of accidental overexposition to ionizing radiation. It is demonstrated how in vitro radiobiological and chemobiological studies using cytogenetic methods (count of chromosomal aberrations and micronuclei) on human lymphocytes from healthy subjects and individuals undergoing radiotherapy or chemotherapy, as well as on lymphocytes of mammals other than man (comparative cytogenetics), can help to increase the basic radiobiological and chemobiological scientific information. Such information gives a valid contribution to understanding of the action of ionizing radiation or of pharmaceuticals on cells and, in return, can be of value to human radioprotection and chemoprotection. Cytogenetic studies can be summerized as follows: a) biodosimetry (estimate of dose received after accidental events); b) individual radiosensitivity (level of individual response); c) clinical radiobiology and chemobiology (individual response to radiopharmaceuticals, to radiotherapy and to chemopharmaceuticals); d) comparative radiobiology (cytogenetic studies on species other than man); e) animal model in the environmental surveillance

  10. Calibration Curves for Biological Dosimetry by Fluorescence In situ Hybridisation

    International Nuclear Information System (INIS)

    Stonati, L.; Durante, M.; Gensabella, G.; Gialanella, G.; Grossi, G.F.; Pugliese, M.; Scampoli, P.; Sgura, A.; Testa, A.; Tanzarella, C.

    2001-01-01

    Dose-response curves were measured for the induction of chromosomal aberrations in peripheral blood lymphocytes after acute exposure in vitro to 60 Co γ rays. Blood was obtained from four different healthy donors, and chromosomes were either observed at metaphase, following colcemid accumulation, or prematurely condensed by calyculin A. Cells were analysed in three different Italian laboratories. Chromosomes 1, 2, and 4 were painted, and simple-type interchanges between painted and non-painted chromosomes were scored in cells exposed in the dose range 0.1-3.0 Gy. The chemical-induced premature chromosome condensation method was also used combined with chromosome painting (chromosome 4 only) to determine calibration curves for high dose exposures (up to 20 Gy X rays). Calibration curves described in this paper will be used in our laboratories for biological dosimetry by fluorescence in situ hybridisation. (author)

  11. Biological dosimetry for mixed gamma-neutron field

    International Nuclear Information System (INIS)

    Brandao, J.O.C.; Santos, J.A.L.; Souza, P.L.G.; Lima, F.F.; Vilela, E.C.; Calixto, M.S.; Santos, N.

    2011-01-01

    There is increasing concern about airline crew members (about one million worldwide) exposed to measurable neutrons doses. Historically, cytogenetic biodosimetry assays have been based on quantifying asymmetrical chromosome alterations (dicentrics, centric rings and acentric fragments) in mitogen-stimulated T-lymphocytes in their first mitosis after radiation exposure. Increased levels of chromosome damage in peripheral blood lymphocytes are a sensitive indicator of radiation exposure and they are routinely exploited for assessing radiation absorbed dose after accidental or occupational exposure. Since radiological accidents are not common, not all nations feel that it is economically justified to maintain biodosimetry competence. However, dependable access to biological dosimetry capabilities is completely critical in event of an accident. In this paper the dose-response curve was measured for the induction of chromosomal alterations in peripheral blood lymphocytes after chronic exposure in vitro to mixed gamma-neutron field. Blood was obtained from one healthy donor and exposed to two mixed gamma-neutron field from sources 241 AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL - CRCN/NE - PE - Brazil). The evaluated absorbed doses were 0.2 Gy; 1.0 Gy and 2.5 Gy. The dicentric chromosomes were observed at metaphase, following colcemide accumulation and 1000 well-spread metaphases were analyzed for the presence of dicentrics by two experts after painted by giemsa 5%. The preliminary results showed a linear dependence between radiations absorbed dose and dicentric chromosomes frequencies. Dose-response curve described in this paper will contribute to the construction of calibration curve that will be used in our laboratory for biological dosimetry. (author)

  12. General guidelines for safe and expeditious international transport of samples subjected to biological dosimetry assessment.

    Science.gov (United States)

    Di Giorgio, Marina; Radl, Analía; Taja, María R; Bubniak, Ruth; Deminge, Mayra; Sapienza, Carla; Vázquez, Marina; Baciu, Florian; Kenny, Pat

    2014-06-01

    It has been observed that victims of accidental overexposures show better chance of survival if they receive medical treatment early. The increased risk of scenarios involving mass casualties has stimulated the scientific community to develop tools that would help the medical doctors to treat victims. The biological dosimetry has become a routine test to estimate the dose, supplementing physical and clinical dosimetry. In case of radiation emergencies, in order to provide timely and effectively biological dosimetry assistance it is essential to guarantee an adequate transport of blood samples in principal, for providing support to countries that do not have biodosimetry laboratories. The objective of the present paper is to provide general guidelines, summarised in 10 points, for timely and proper receiving and sending of blood samples under National and International regulations, for safe and expeditious international transport. These guidelines cover the classification, packaging, marking, labelling, refrigeration and documentation requirements for the international shipping of blood samples and pellets, to provide assistance missions with a tool that would contribute with the preparedness for an effective biodosimetric response in cases of radiological or nuclear emergencies. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Dosimetry in Interventional Radiology - Effective Dose Estimation

    International Nuclear Information System (INIS)

    Miljanic, S.; Buls, N.; Clerinx, P.; Jarvinen, H.; Nikodemova, D.; Ranogajec-Komor, M; D'Errico, F.

    2008-01-01

    Interventional radiological procedures can lead to significant radiation doses to patients and to staff members. In order to evaluate the personal doses with respect to the regulatory dose limits, doses measured by dosimeters have to be converted to effective doses (E). Measurement of personal dose equivalent Hp(10) using a single unshielded dosimeter above the lead apron can lead to significant overestimation of the effective dose, while the measurement with dosimeter under the apron can lead to underestimation. To improve the accuracy, measurements with two dosimeters, one above and the other under the apron have been suggested ( d ouble dosimetry ) . The ICRP has recommended that interventional radiology departments develop a policy that staff should wear two dosimeters. The aim of this study was to review the double dosimetry algorithms for the calculation of effective dose in high dose interventional radiology procedures. The results will be used to develop general guidelines for personal dosimetry in interventional radiology procedures. This work has been carried out by Working Group 9 (Radiation protection dosimetry of medical staff) of the CONRAD project, which is a Coordination Action supported by the European Commission within its 6th Framework Program.(author)

  14. Protocol for X-ray dosimetry and exposure arrangements employed in studies of late somatic effects in mammals

    International Nuclear Information System (INIS)

    Zoetelief, J.; Kogel, A.J. van der; Broerse, J.J.; Scarpa, G.; Dixon-Brown, A.

    1985-01-01

    A number of European laboratories studying the late effects of ionizing radiation in animals have established an effective cooperation within the European Late Effects Project Group (EULEP) since 1970. To facilitate the exchange of biological results several techniques, including quality control of the experimental animals, pathology and dosimetry, have to be standardized. The most important aspects of the procedures for X-irradiation and dosimetry of small animals are summarized. These include recommendations on irradiation conditions, dosimetry methods, characteristics of phantoms and factors affecting X-ray dosimetry. X-irradiation procedures employed by the participating institutes are described and the results of five X-ray dosimetry intercomparisons are reported. The introduction of a common dosimetry protocol has resulted in improvements in exposure arrangements and absolute dosimetry. (author)

  15. Development of radiation biological dosimetry and treatment of radiation-induced damaged tissue

    International Nuclear Information System (INIS)

    Cho, Chul Koo; Kim, Tae Hwan; Lee, Yun Sil

    2000-04-01

    Util now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline(triage) to be able to be treated the victims as fast as possible. We established the apoptotic fragment assay, PCC, comet assay, and micronucleus assay which was the significant relationship between dose and cell damages to evaluate the irradiated dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with chromosome dosimetry and micronucleus assay

  16. Development of radiation biological dosimetry and treatment of radiation-induced damaged tissue

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chul Koo; Kim, Tae Hwan; Lee, Yun Sil [and others

    2000-04-01

    Util now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline(triage) to be able to be treated the victims as fast as possible. We established the apoptotic fragment assay, PCC, comet assay, and micronucleus assay which was the significant relationship between dose and cell damages to evaluate the irradiated dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with chromosome dosimetry and micronucleus assay.

  17. Statistical issues in biological radiation dosimetry for risk assessment using stable chromosome aberrations

    International Nuclear Information System (INIS)

    Cologne, J.B.; Preston, D.L.

    1998-01-01

    Biological dosimeters are useful for epidemiologic risk assessment in populations exposed to catastrophic nuclear events and as a means of validating physical dosimetry in radiation workers. Application requires knowledge of the magnitude of uncertainty in the biological dose estimates and an understanding of potential statistical pitfalls arising from their use. This paper describes the statistical aspects of biological dosimetry in general and presents a detailed analysis in the specific case of dosimetry for risk assessment using stable chromosome aberration frequency. Biological dose estimates may be obtained from a dose-response curve, but negative estimates can result and adjustment must be made for regression bias due to imprecise estimation when the estimates are used in regression analyses. Posterior-mean estimates, derived as the mean of the distribution of true doses compatible with a given value of the biological endpoint, have several desirable properties: they are nonnegative, less sensitive to extreme skewness in the true dose distribution, and implicitly adjusted to avoid regression bias. The methods necessitate approximating the true-dose distribution in the population in which biological dosimetry is being applied, which calls for careful consideration of this distribution through other information. An important question addressed here is to what extent the methods are robust to misspecification of this distribution, because in many applications of biological dosimetry it cannot be characterized well. The findings suggest that dosimetry based solely on stable chromosome aberration frequency may be useful for population-based risk assessment

  18. Transient impedance changes in venous endothelial monolayers as a biological radiation dosimetry response

    Directory of Open Access Journals (Sweden)

    Erik Fossum Young

    2012-10-01

    Full Text Available In March of 2011, a magnitude 9.0 earthquake and subsequent 14 m-high tsunami caused major damage to the Fukushima Daiichi nuclear power plant in Japan.  While cancer incidence in the radiation-exposed population is a logical concern, the complex effects of radiation on the heart and cardiovascular system are also of interest.  Immediate and early vascular radiation effects could be exploited as a dosimetry modality.  To test whether non-coronary vasculature exhibited transient perturbation in barrier function, video microscopy studies and Electric Cell Substrate Impedance Sensing technology were used to probe very subtle changes in primary human vascular endothelium.  Human umbilical vein endothelial cell (HUVEC monolayers exhibit a transient, statistically significant decrease (P = 0.017 in monolayer resistance 3 h after irradiation with 5.0 Gy of g rays.  Radiation induced perturbations in HUVEC monolayer permeability are similar in magnitude and kinetics to those observed in coronary arterial endothelium.  Therefore, at least two types of vasculature respond to radiation on ECIS arrays with an early transient disruption in permeability.  The finding supports the use of early passage HUVECs for use in bioelectric dosimetry studies of vasculature and suggests that permeability of vessels could potentially serve as a biological dosimetry tool.

  19. MOSFET dosimetry: temperature effects in-vivo

    International Nuclear Information System (INIS)

    Yu, P.K.N.; Cheung, T.; Butson, M.J.; Cancer Services, Wollongong, NSW

    2004-01-01

    Full text: This note investigates temperature effects on dosimetry using a Metal Oxide Semiconductor Field Effect Transistor (MOSFET) for radiotherapy x-ray treatment. This was performed by analysing the dose response and threshold voltage outputs for MOSFET dosimeters as a function of ambient temperature. Results have shown the clinical semiconductor dosimetry system (CSDS) MOSFET provides stable dose measurements with temperatures varying from 15 deg C up to 40 deg C. Thus standard irradiations performed at room temperature can be directly compared to in-vivo dose assessments performed at near body temperature without a temperature correction function. The MOSFET dosimeter threshold voltage varies with temperature and this level is dependant on the dose history of the MOSFET dosimeter. However the variation can be accounted for in the measurement method. For accurate dosimetry the detector should be placed for approximately 60 seconds on a patient to allow thermal equilibrium before measurements are taken with the final reading performed whilst still attached to the patient or conversely left for approximately 120 seconds after removal from the patient if initial readout was measured at room temperature to allow temperature equilibrium to be established. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  20. Effects of temperature variation on MOSFET dosimetry

    International Nuclear Information System (INIS)

    Cheung Tsang; Butson, Martin J; Yu, Peter K N

    2004-01-01

    This note investigates temperature effects on dosimetry using a metal oxide semiconductor field effect transistor (MOSFET) for radiotherapy x-ray treatment. This was performed by analysing the dose response and threshold voltage outputs for MOSFET dosimeters as a function of ambient temperature. Results have shown that the clinical semiconductor dosimetry system (CSDS) MOSFET provides stable dose measurements with temperatures varying from 15 deg. C up to 40 deg. C. Thus standard irradiations performed at room temperature can be directly compared to in vivo dose assessments performed at near body temperature without a temperature correction function. The MOSFET dosimeter threshold voltage varies with temperature and this level is dependent on the dose history of the MOSFET dosimeter. However, the variation can be accounted for in the measurement method. For accurate dosimetry, the detector should be placed for approximately 60 s on a patient to allow thermal equilibrium before measurements are taken with the final reading performed whilst still attached to the patient or conversely left for approximately 120 s after removal from the patient if initial readout was measured at room temperature to allow temperature equilibrium to be established. (note)

  1. Calibration curves for biological dosimetry by drug-induced prematurely condensed chromosomes in human lymphocytes

    International Nuclear Information System (INIS)

    Kang, C. M.; Chung, H. C.; Cho, C. K.

    2002-01-01

    To develop the cytogenetic tool to detect chromosome damages after high dose exposure with 60 Coγ- rays, dose-response curves were measured for induction of prematurely condensed chromosomes (PCC) in peripheral lymphocytes. Blood was obtained from 10 different healthy donors, and given okadaic acid (OA) 500nM in cultured lymphocytes 1h after radiation exposure. Cells were analyzed by the frequencies of OA-induced PCC rings because it is difficult to obtain mitotic chromosomes using a conventional chromosome aberration (CA). PCC-rings were scored in cells exposed in the dose range of 0.2-16Gy. The frequency of the cells with PCC and the dose-response relationship for the yield of PCC rings were examined in the irradiated lymphocytes. The yield of PCC-rings increased with dose dependent-manner up to 16Gy. The observed dose-effect relationship for the percentage of cells with PCC-rings was calculated by linear-quadratic model. This technique can be applied to biological dosimetry of radiation exposures involving whole body irradiation to allow damaged chromosomes to be detected with great sensitivity. Detection of okadaic acid-induced PCC rings is a useful method up to 16Gy or more doses in estimating the absorbed doses of victims after high dose exposure. Calibration curves described in this paper will be used in our laboratory for biological dosimetry by PCC-ring after a high dose exposure

  2. Environmental dosimetry and radiation effects

    International Nuclear Information System (INIS)

    Woodhead, D.S.

    1997-01-01

    Specific assessment of the potential effects on wild organisms of increased radiation exposure arising from the authorized disposal of radioactive wastes to the environment requires two interrelated sets of information. First, an estimate is required of the incremental radiation exposure; and second, dose rate-response relationships are necessary to predict the potential impact of the estimated incremental exposure. Each of these aspects will be discussed in detail. (author)

  3. Biological Dosimetry of In Vitro Irradiation with Radionuclides : Comparison of Whole Blood, Lymphocyte and Buffy Coat Culture

    International Nuclear Information System (INIS)

    Kim, Jong Ho; Lee, Dong Soo; Choi, Chang Woon; Chung, June Key; Lee, Myung Chul; Koh, Chang Soon; Kim, Chong Soon; Kim, Hee Geun; Kang, Duck Won; Song, Myung Jae

    1995-01-01

    The purpose of this study was to establish mononuclear cell cultures such as lymphocytes or buffy coat for the biological dosimetry of in vitro irradiation of the radionuclide Tc-99m in order to exclude the effect of residual doses seen in the cultures of whole blood. Biological dosimetry of Tc-99m on cultured mononuclear cells at doses ranging from 0.05 to 6.00 Gy, by scoring unstable chromosomal aberrations(Ydr) observed in cultured lymphocytes, were performed using peripheral venous blood of healthy normal person. The results showed that; (1) In vitro irradiation of radioisotope in separated lymphocyte or buffy coat showed trace amount af residual doses of isotope after washing. Residual doses of isotopes are increased in proportion tn exposed time and irradiated dose without difference between I-131 anct Tc-99m. (2) We obtained these linear-quadratic dose response equations in lymphocyte and buffy coat culture after in vitro irradiation of Tc-99m, respectively (Ydr = 0,001949 D 2 +0,006279D+ 0.000185; Ydr= 0.002531 D 2 -0.003274 D+0.003488). In conclusion, the linear quadrstic dose response equation from in vitro irradiation of Tc-99m with lymphocyte and buffy coat culture was thought to be useful for assessing Tc-99m indueed biological effects. And mononuclear cell cultures seem to be the most appropriate experimental model for the assessment of biological dosimetry of internal irradiation of radionuclides.

  4. Biological effects

    International Nuclear Information System (INIS)

    Trott, K.R.

    1973-01-01

    Following an introduction into the field of cellular radiation effect considering the most important experimental results, the biological significance of the colony formation ability is brought out. The inactivation concept of stem cells does not only prove to be good, according to the present results, in the interpretation of the pathogenesis of acute radiation effects on moult tissue, it also enables chronicle radiation injuries to be interpreted through changes in the fibrous part of the organs. Radiation therapy of tumours can also be explained to a large extent by the radiation effect on the unlimited reproductiveness of tumour cells. The more or less similar dose effect curves for healthy and tumour tissue in practice lead to intermittent irradiation. The dependence of the intermittent doses and intervals on factors such as Elkind recovery, synchronisation, redistribution, reoxygenation, repopulation and regeneration are reviewed. (ORU/LH) [de

  5. Dosimetry using environmental and biological materials. Final report

    International Nuclear Information System (INIS)

    Haskell, E.; Kenner, G.; Hayes, R.

    1998-02-01

    This report summarizes a five year effort to improve the sensitivity and reliability of retrospective dosimetry methods, to collaborate with laboratories engaged in related research and to share the technology with startup laboratories seeking similar capabilities. This research program has focused on validation of electron paramagnetic resonance (EPR) as a dosimetry tool and on optimization of the technique by reducing the lower limits of detection, simplifying the process of sample preparation and analysis and speeding analysis to allow greater throughput in routine measurement situations. The authors have investigated the dosimetric signal of hard tissues in enamel, deorganified dentin, synthetic carbonated apatites and synthetic hydroxyapatite. This research has resulted in a total of 27 manuscripts which have been published, are in press, or have been submitted for publication. Of these manuscripts, 14 are included in this report and were indexed separately for inclusion in the data base

  6. Analysis and assessment of the detriment in interventional radiology using biological dosimetry methods

    International Nuclear Information System (INIS)

    Montoro, A.; Almonacid, M.; Villaescusa, J.I.; Barquinero, J.F.; Rodriguez, P.; Barrios, L.; Verdu, G.; Ramos, M.

    2006-01-01

    Interventional radiologist and staff members usually are exposed to high levels of scattered radiation. As a result, the exposition to radiation procedures can produce detrimental effects that we would have to know. Effective dose is the quantity that better estimates the radiation risk. For this study we have realized an estimation of the radiological detriment to exposed workers of the Hospital la Fe de Valencia. For it, have been used physical doses registered in detectors T.L.D., and doses estimated by biological dosimetry in lymphocytes of peripheral blood. There has been estimated for every case the probability of effect of skin cancer and of non-solid cancers (leukaemia, lymphoma and myeloma), being compared with the baseline probability of natural effect. Biological doses were obtained by extrapolating the yield of dicentrics and translocations to their respective dose -effect curves. The discrepancies observed between physically recorded doses and biological estimated doses indicate that workers did not always wear their dosimeters or the dosimeters were not always in the radiation field. Cytogenetic studies should be extended to more workers to assess the risk derived from their occupational exposure. (authors)

  7. Analysis and assessment of the detriment in interventional radiology using biological dosimetry methods

    Energy Technology Data Exchange (ETDEWEB)

    Montoro, A.; Almonacid, M.; Villaescusa, J.I. [Hospital Univ. la Fe de Valen cian, Servicio de Proteccion Radiologica, Valencia (Spain); Barquinero, J.F.; Rodriguez, P. [Universitat Autonom a de Barcelona, Servicio de Dosimetria Biologica, Unidad de Antropologia, Departamento de Biologia Animal, Vegetal y Ecologia., Barcelona (Spain); Barrios, L. [Universidad Autonoma de Barcelona, Dept. de Biologia Celular y Fisiologia. Unidad de Biologia Celular, Barcelona (Spain); Verdu, G.; Ramos, M. [Universidad Politecnica de Valencia, Dept. de Ingenieria Quimica y Nuclear, Valencia, (Spain)

    2006-07-01

    Interventional radiologist and staff members usually are exposed to high levels of scattered radiation. As a result, the exposition to radiation procedures can produce detrimental effects that we would have to know. Effective dose is the quantity that better estimates the radiation risk. For this study we have realized an estimation of the radiological detriment to exposed workers of the Hospital la Fe de Valencia. For it, have been used physical doses registered in detectors T.L.D., and doses estimated by biological dosimetry in lymphocytes of peripheral blood. There has been estimated for every case the probability of effect of skin cancer and of non-solid cancers (leukaemia, lymphoma and myeloma), being compared with the baseline probability of natural effect. Biological doses were obtained by extrapolating the yield of dicentrics and translocations to their respective dose -effect curves. The discrepancies observed between physically recorded doses and biological estimated doses indicate that workers did not always wear their dosimeters or the dosimeters were not always in the radiation field. Cytogenetic studies should be extended to more workers to assess the risk derived from their occupational exposure. (authors)

  8. Biological dosimetry of patients with differenced carcinoma of thyroid treated with Iodine-131

    International Nuclear Information System (INIS)

    Vallerga, M. B.; Rojo, A.M.; Taja, M.R.; Deluca, G.; Di Giorgio, M.; Fadel, A.; Cabrejas, M.; Valdivieso, C.

    2006-01-01

    aberrations it was considered absorbed dose to whole body. The obtained doses were compared by the different biological methods used. The evaluation by internal dosimetry of the data obtained tracer post-activity allowed to personalize the activity of I-131 to administer, starting from physical-mathematical models that consider the particular biokinetics of each patient (MIRD methodology). The doses estimated by the used biological dosemeters were consistent among them. It was discussed its scopes and limitations to be applied in the validation of the dosimetric estimation based on models, in order to administer a therapeutic dose protecting the patient of the adverse effects of the internal radiotherapy in organs that are not target of the same one. The acquired experience is considered of utility to give answer in cases of radioiodine incorporation in occupationally exposed personnel. (Author)

  9. Canadian Cytogenetic Emergency network (CEN) for biological dosimetry following radiological/nuclear accidents.

    Science.gov (United States)

    Miller, Susan M; Ferrarotto, Catherine L; Vlahovich, Slavica; Wilkins, Ruth C; Boreham, Douglas R; Dolling, Jo-Anna

    2007-07-01

    To test the ability of the cytogenetic emergency network (CEN) of laboratories, currently under development across Canada, to provide rapid biological dosimetry using the dicentric assay for triage assessment, that could be implemented in the event of a large-scale radiation/nuclear emergency. A workshop was held in May 2004 in Toronto, Canada, to introduce the concept of CEN and recruit clinical cytogenetic laboratories at hospitals across the country. Slides were prepared for dicentric assay analysis following in vitro irradiation of blood to a range of gamma-ray doses. A minimum of 50 metaphases per slide were analyzed by 41 people at 22 different laboratories to estimate the exposure level. Dose estimates were calculated based on a dose response curve generated at Health Canada. There were a total of 104 dose estimates and 96 (92.3%) of them fell within the expected range using triage scoring criteria. Half of the laboratories analyzed 50 metaphases in biological dosimetry. When this network is fully operational, it will be the first of its kind in Canada able to respond to radiological/nuclear emergencies by providing triage quality biological dosimetry for a large number of samples. This network represents an alternate expansion of existing international emergency biological dosimetry cytogenetic networks.

  10. Internal sources dosimetry

    International Nuclear Information System (INIS)

    Savio, Eduardo

    1994-01-01

    The absorbed dose, need of estimation in risk evaluation in the application of radiopharmaceuticals in Nuclear Medicine practice,internal dosimetry,internal and external sources. Calculation methodology,Marinelli model,MIRD system for absorbed dose calculation based on biological parameters of radiopharmaceutical in human body or individual,energy of emitted radiations by administered radionuclide, fraction of emitted energy that is absorbed by target body.Limitation of the MIRD calculation model. A explanation of Marinelli method of dosimetry calculation,β dosimetry. Y dosimetry, effective dose, calculation in organs and tissues, examples. Bibliography .

  11. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Marko, A.M.

    1981-05-01

    In this review radiation produced by the nuclear industry is placed into context with other sources of radiation in our world. Human health effects of radiation, derivation of standards and risk estimates are reviewed in this document. The implications of exposing the worker and the general population to radiation generated by nuclear power are assessed. Effects of radiation are also reviewed. Finally, gaps in our knowledge concerning radiation are identified and current research on biological effects, on environmental aspects, and on dosimetry of radiation within AECL and Canada is documented in this report. (author)

  12. Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, G S; Ritchie, R H; Sanders, F W; Reinhardt, P W; Auxier, J A; Wagner, E B; Callihan, A D; Morgan, K Z [Health Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1962-03-15

    The methods of dosimetry used for investigation of the doses received by the individuals exposed in the Yugoslav accident were essentially those used in connection with the Oak Ridge Y-12 accident. An outline of the general scheme is as follows: When fast neutrons enter the human body, most of these are moderated to thermal energy and a small fraction of these are captured by a (n, gamma) process in Na sup 2 sup 3 , giving rise to Na sup 2 sup 4 , which by virtue of its emission of high-energy gamma rays with a half life of 14.8 h, is easily detected. It has been shown that the probability of capture, making Na sup 2 sup 4 , is not a strong function of the energy of the fast neutrons and that the probability of capture for neutrons is higher in the fast region than in the thermal region. Thus, the uniform distribution of Na sup 2 sup 3 in the human body provides an excellent means of normalizing the neutron exposure of an individual. in particular, for a given neutron energy spectrum the fast neutron dose is proportional to the ratio Na sup 2 sup 4 /Na sup 2 sup 3 in the body or in the blood system. This method of normalization is quite important in the dosimetry of radiation accidents since no assumptions need be made about the exact location of an individual at the time of the energy release. The importance of this fact can be made clear by reference to the Y-12 accident where it was shown by calculation of the neutron dose based on the known number of fissions and the stated location of the individual that one of the surviving individuals would have received a dose several times the lethal value. To accomplish the measurements described, the zero power R sub B reactor was operated in two ranges of power level, 'low' power and 'high 'power. Neutron leakage spectrum was obtained by multigroup approximation of the Boltzmann transport equation. Prompt gamma rays from fission products, from capture in the moderator and fuel cladding as well as in tank walls are given

  13. Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, G S; Ritchie, R H; Sanders, F W; Reinhardt, P W; Auxier, J A; Wagner, E B; Callihan, A D; Morgan, K Z [Health Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1962-03-01

    The methods of dosimetry used for investigation of the doses received by the individuals exposed in the Yugoslav accident were essentially those used in connection with the Oak Ridge Y-12 accident. An outline of the general scheme is as follows: When fast neutrons enter the human body, most of these are moderated to thermal energy and a small fraction of these are captured by a (n, {gamma}) process in Na{sup 23}, giving rise to Na{sup 24}, which by virtue of its emission of high-energy gamma rays with a half life of 14.8 h, is easily detected. It has been shown that the probability of capture, making Na{sup 24}, is not a strong function of the energy of the fast neutrons and that the probability of capture for neutrons is higher in the fast region than in the thermal region. Thus, the uniform distribution of Na{sup 23} in the human body provides an excellent means of normalizing the neutron exposure of an individual. in particular, for a given neutron energy spectrum the fast neutron dose is proportional to the ratio Na{sup 24}/Na{sup 23} in the body or in the blood system. This method of normalization is quite important in the dosimetry of radiation accidents since no assumptions need be made about the exact location of an individual at the time of the energy release. The importance of this fact can be made clear by reference to the Y-12 accident where it was shown by calculation of the neutron dose based on the known number of fissions and the stated location of the individual that one of the surviving individuals would have received a dose several times the lethal value. To accomplish the measurements described, the zero power R{sub B} reactor was operated in two ranges of power level, 'low' power and 'high 'power. Neutron leakage spectrum was obtained by multigroup approximation of the Boltzman transport equation. Prompt gamma rays from fission products, from capture in the moderator and fuel cladding as well as in tank walls are given. A summary of the 4{pi

  14. Biological dosimetry studies for boron neutron capture therapy at the RA-1 research reactor facility

    International Nuclear Information System (INIS)

    Trivillin, Veronica A.; Heber, Elisa M.; Itoiz, Maria E.; Schwint, Amanda E.; Castillo, Jorge

    2004-01-01

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminescent dosimeters to characterize the BNCT facility developed at the RA-1 research reactor operated by the National Atomic Energy Commission in Buenos Aires. Biological dosimetry was performed employing the hamster cheek pouch oral cancer model previously validated for BNCT studies by our group. Results indicate that the RA-1 neutron source produces useful dose rates for BNCT studies but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications. (author)

  15. Biological in vivo dosimetry with an external measuring technique under application of a labelled DNA-precursor (iodine-125-desoxyuridine)

    International Nuclear Information System (INIS)

    Porschen, W.; Zamboglou, N.; Muehlensiepen, H.; Feinendegen, L.E.

    1976-01-01

    The depression of the incorporation rate of IDU in the whole body or in the bone marrow is a sensitive indicator for a whole-body irradiation. It was found that the maximum effect is observed some 4 hours after irradiation. For this reason, bone marrow cells were labelled in vitro with IDU 4 hours after whole-body irradiation. This method proved to be extraordinarily sensitive and resulted in reproducible effects which occurred already at doses below 5 rad. All the other biological methods of dosimetry known so far are less sensitive. Although the theory explaining these results is not yet fully clarified, this method of dosimetry appears to offer practical possibilities of application. (orig.) [de

  16. Biological and clinical dosimetry, July 1, 1964 to December 31, 1984. Final report

    International Nuclear Information System (INIS)

    Laughlin, J.S.; Zeitz, L.

    1986-01-01

    The goal was to develop systems for the determination of absorbed dose in biological research and clinical applications. The primary method under study is the local absorbed dose calorimeter. In addition, secondary dosimetric systems such as ionization chambers, chemical dosimeters and thermoluminescent dosimeters (TLD) are being developed and applied to provide an absolute basis for the evaluation and comparison of experiments, treatments and other procedures using radiation. In keeping with these objectives this project has accomplished significant advances in the following areas: (1) local absorbed dose calorimetry; (2) neutron dosimetry; (3) dosimetry of ultra-high intensity radiation sources; (4) solid state detector and germanium gamma camera program; (5) dosimetry for brachytherapy; and (6) ''non-isolated sensor'' calorimeters

  17. Latin-American Biological Dosimetry Network (LBDNET) Intercomparison Exercise. Evaluation through triage and conventional scoring criteria. Development of a new approach for statistical data analysis

    International Nuclear Information System (INIS)

    Di Giorgio, M.; Vallerga, M.B.; Radl, A.

    2011-01-01

    Biological Dosimetry is a necessary support for National Radiation Protection Programs and Emergency Response Schemes. A Latin-American Biological Dosimetry Network (LBDNET) has been constituted by the biological dosimetry laboratories from: Argentina, Brazil, Chile, Cuba, Mexico, Peru, and Uruguay (IAEA Regional Project RLA9/054, 2007). The biological dosimetry laboratory of Argentina organized an international biological dosimetry intercomparison for the analysis of some relevant parameters involved in dose assessment, to reinforce the response capability in accidental situations requiring the activation of mutual assistance mechanisms and thus, constituting the bases of the LBDNET organization. (authors)

  18. Role of accelerator mass spectrometry in biological dosimetry

    International Nuclear Information System (INIS)

    Felton, J.S.; Turteltaub, K.W.; Frantz, C.; Vogel, J.S.; Gledhill, B.L.

    1992-01-01

    Understanding risks from exposures to carcinogens and other chemicals depends upon measurement of their dose to target tissues and their reactivity with critical macromolecules. The authors have used AMS detection of radio-isotopes to assess doses and reactivities at low, environmentally relevant doses. Several biomedical investigations show the effectiveness of quantification of biologically important events at extremely high sensitivity with AMS. Specifically, they have measured the addition of environmental carcinogens such as 2-amino-3,8-dimethylimidazo[4,5-f]-quinoaxaline (MelQx), a chemical found in cooked food, to DNA at concentrations relevant to human exposure. Other low level detection problems in biology, such as immunoassay assessment of small environmental chemicals, is being developed with attomole sensitivity. AMS also aids the assessment of genotoxic risks from chemicals by quantifying the binding of labeled chemicals to DNA. The very toxic and potent carcinogen, tetrachlorodibenzo-p-dioxin (TCDD) was assessed for DNA binding, but no detectable radiocarbon-labeled TCDD was found associated with mouse liver DNA at less than systematically toxic levels. The data indicate that a mutation mechanism does not mediate TCDD carcinogenesis

  19. Development of radiological emergency preparedness and biological dosimetry technology

    Energy Technology Data Exchange (ETDEWEB)

    Han, Moon Hee; Kim, In Gyoo; Kim, Kook Chan; Kim, Eun Han; Suh, Kyung Suk; Hwang, Won Tae; Choi, Young Gil; Shim, Hae Won; Lee, Jeong Ho; Lee, Kang Suk

    1999-04-01

    Large-scale field tracer experiments have been conducted on Ulchin and Wolsung nuclear sites for the purpose of validating FADAS and of analyzing the environmental characteristics around the nuclear site. The most influential factor in atmospheric dispersion is the meteorological condition. During the experiment, meteorological data were measured on the release point and the selected positions among sampling points. Once radioactive materials are released to the atmosphere, members of public may be exposed through the environmental media such as air, soil and foods. Therefore, to protect the public, adequate countermeasures should be taken at due time for those exposure pathways. Both processes of justification and optimization are applied to a countermeasure simultaneously for decision-making. The work scope of biological research for the radiation protection had contained the search of biological microanalytic methods for the assessment of health effect by radiation and toxic agents, the standardization of human t-lymphocyte cell culture and polymerase chain reaction, T-cell clonal assay, and the quantification of mutation frequency in hypoxanthine (guanine) phosphoribosyl transferase (hprt) gene locus by single exposure or combined exposure. Especially, the polymerase chain reaction methods by usage of reverse transcriptase had been developed to analyze of gene product by {gamma} - radiation and chemical (pentachlorophenol) agent exposure, and investigate the point mutation in hprt gene locus of T-lymphocytes. (author)

  20. Development of radiological emergency preparedness and biological dosimetry technology

    International Nuclear Information System (INIS)

    Han, Moon Hee; Kim, In Gyoo; Kim, Kook Chan; Kim, Eun Han; Suh, Kyung Suk; Hwang, Won Tae; Choi, Young Gil; Shim, Hae Won; Lee, Jeong Ho; Lee, Kang Suk

    1999-04-01

    Large-scale field tracer experiments have been conducted on Ulchin and Wolsung nuclear sites for the purpose of validating FADAS and of analyzing the environmental characteristics around the nuclear site. The most influential factor in atmospheric dispersion is the meteorological condition. During the experiment, meteorological data were measured on the release point and the selected positions among sampling points. Once radioactive materials are released to the atmosphere, members of public may be exposed through the environmental media such as air, soil and foods. Therefore, to protect the public, adequate countermeasures should be taken at due time for those exposure pathways. Both processes of justification and optimization are applied to a countermeasure simultaneously for decision-making. The work scope of biological research for the radiation protection had contained the search of biological microanalytic methods for the assessment of health effect by radiation and toxic agents, the standardization of human t-lymphocyte cell culture and polymerase chain reaction, T-cell clonal assay, and the quantification of mutation frequency in hypoxanthine (guanine) phosphoribosyl transferase (hprt) gene locus by single exposure or combined exposure. Especially, the polymerase chain reaction methods by usage of reverse transcriptase had been developed to analyze of gene product by γ - radiation and chemical (pentachlorophenol) agent exposure, and investigate the point mutation in hprt gene locus of T-lymphocytes. (author)

  1. Biological effects of heavy particles

    International Nuclear Information System (INIS)

    Sabatier, L.; Martins, B.; Dutrillaux, B.

    1991-01-01

    The usual definitions of biological dose and biological dosimetry do not fit in case of particles with high linear energy transfer (LET). The dose corresponds to an average value which is not representative of the highly localized energy transfer due to heavy ions. Fortunately, up to now, a biological dosimetry following an exposure to high LET particles is necessary only for cosmonauts. In radiotherapy applications, one exactly knows the nature and energy of incident particle beams. The quality requirements for a good biodosimeter include reliable relation between dose and effect, weak sensitivity to individual variations, reliability and stability of acquired informations against the time delay between exposure and measurements. Nothing is better than the human lymphocyte to be used for measurements that fulfil these requirements. In the case of a manned spaceship, the irradiation dose corresponds to a wide range of radiation (protons, neutrons, heavy ions), and making a dosimetry as well as defining it are of current concern. As yet, there exist two possible definitions, which reduce the dose either to a proton or to a neutron equivalent one. However, such an approximation is not a faithful representation of the irradiation effects and in particular, the long-term effects may be quite different. In the future, it is reasonable to expect an evolution towards technics that enable identifying irradiated cells and quantifying precisely their radiation damage in order to reconstruct the spectrum of particles received by a given cosmonaut in a given time. Let us emphasize that the radiation hazards due to a short stay in space are quite minor, but in the case of a travel to Mars, they cannot be neglected [fr

  2. Activities developed by the biological dosimetry laboratory of the Autoridad Regulatoria Nuclear - ARN of Argentina

    International Nuclear Information System (INIS)

    Radl, A.; Sapienza, C.E.; Taja, M.R.; Bubniak, R.; Deminge, M.; Di Giorgio, M.

    2013-01-01

    Biological dosimetry (DB) allows to estimate doses absorbed in individuals exposed to ionizing radiation through the quantification of stable and unstable chromosome aberrations (SCA and UCA). The frequency of these aberrations is referred to a calibration dose response curve (in vitro) to determine the doses of the individual to the whole body. The DB is a necessary support for programs of national radiation protection and response systems in nuclear or radiological emergencies in the event of accidental or incidental, single overexposure or large scale. In this context the Laboratory of Dosimetry Biological (LDB) of the Authority Regulatory Nuclear (ARN) Argentina develops and applies different dosimeters cytogenetic from four decades ago. These dosimeters provide a fact more within the whole of the information necessary for an accidental, complementing the physical and clinical dosimetry exposure assessment. The most widely used in the DB biodosimetric method is the quantification of SCA (dicentrics and rings Central) from a sample of venous blood. The LDB is accredited for the trial, under rules IRAM 301: 2005 (ISO / IEC 17025: 2005) and ISO 19238:2004. Test applies to the immediate dosimetry evaluation of acute exposures, all or a large part of the body in the range 0,1-5 Gy. In this context the LDB is part of the Latin American network of DB (LBDNet), BioDoseNet-who and response system in radiological emergencies and nuclear IAEA-RANET, being enabled to summon the LBDNet if necessary

  3. Dosimetry of internal emitters

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The Dosimetry of Internal Emitter Program endeavors to refine the correlation between radiation dose and observed biological effects. The program is presently engaged in the development of studies that will demonstrate the applicability of microdosimetry models developed under the Microdosimetry of Internal Sources Program. The program also provides guidance and assistance to Pacific Northwest Laboratory's Biology Department in the dosimetric analysis of internally deposited radionuclides. This report deals with alpha particle dosimetry plutonium 239 inhalation, and in vitro studies of chromosomal observations

  4. Biological dosimetry by the triage dicentric chromosome assay - Further validation of international networking

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, Ruth C., E-mail: Ruth.Wilkins@hc-sc.gc.ca [Health Canada, Ottawa, ON K1A 0K9 (Canada); Romm, Horst; Oestreicher, Ursula [Bundesamt fur Strahlenschutz, 38226 Salzgitter (Germany); Marro, Leonora [Health Canada, Ottawa, ON K1A 0K9 (Canada); Yoshida, Mitsuaki A. [Biological Dosimetry Section, Dept. of Dose Assessment, Research Center for Radiation Emergency Medicine, NIRS, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Department Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564 (Japan); Suto, Y. [Biological Dosimetry Section, Dept. of Dose Assessment, Research Center for Radiation Emergency Medicine, NIRS, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Prasanna, Pataje G.S. [National Cancer Institute, Division of Cancer Treatment and Diagnosis, Radiation Research Program, 6130 Executive Blvd., MSC 7440, Bethesda, MD 20892-7440 (United States)

    2011-09-15

    Biological dosimetry is an essential tool for estimating radiation doses received to personnel when physical dosimetry is not available or inadequate. The current preferred biodosimetry method is based on the measurement of radiation-specific dicentric chromosomes in exposed individuals' peripheral blood lymphocytes. However, this method is labor-, time- and expertise-demanding. Consequently, for mass casualty applications, strategies have been developed to increase its throughput. One such strategy is to develop validated cytogenetic biodosimetry laboratory networks, both national and international. In a previous study, the dicentric chromosome assay (DCA) was validated in our cytogenetic biodosimetry network involving five geographically dispersed laboratories. A complementary strategy to further enhance the throughput of the DCA among inter-laboratory networks is to use a triage DCA where dose assessments are made by truncating the labor-demanding and time-consuming metaphase spread analysis to 20 - 50 metaphase spreads instead of routine 500 - 1000 metaphase spread analysis. Our laboratory network also validated this triage DCA, however, these dose estimates were made using calibration curves generated in each laboratory from the blood samples irradiated in a single laboratory. In an emergency situation, dose estimates made using pre-existing calibration curves which may vary according to radiation type and dose rate and therefore influence the assessed dose. Here, we analyze the effect of using a pre-existing calibration curve on assessed dose among our network laboratories. The dose estimates were made by analyzing 1000 metaphase spreads as well as triage quality scoring and compared to actual physical doses applied to the samples for validation. The dose estimates in the laboratory partners were in good agreement with the applied physical doses and determined to be adequate for guidance in the treatment of acute radiation syndrome.

  5. Preliminary study on biological dosimetry using alkaline single cell gel electrophoresis of human peripheral lymphocytes

    International Nuclear Information System (INIS)

    Liu Qingjie; Lu Xue; Feng Jiangbing; Chen Deqing; Chen Xiaosui

    2006-01-01

    Objective: To explore the feasibility of alkaline single cell gel electrophoresis (SCGE) in biological dosimetry of ionizing radiation. Methods: Normal peripheral blood samples from two healthy males were exposed to different doses coblat-60 gamma-rays, ranged from 0 to 5 Gy, and the tail length (TL) and Oliver tail moment (TM) of the lymphocytes were analyzed with SCGE. The dose-effect curves of TL and TM were fitted respectively. The TL and TM of lymphocytes for eight radiation workers were analyzed with SCGE, cumulative doses were estimated using the fitted TL and TM equations, and then compared with the recorded monitoring doses. Results: The TLs or TMs of normal human lymphocytes were increased with the irradiation doses, and its relationship can be fitted with a linear-quadratic equations: Y=13.59 + 20.87X - 2.27 X 2 for TL, and Y = 8.50 + 15.04X - 1.43X 2 for TM, respectively (Y denotes TL or TM value, X is radiation dose). The doses estimated with TM equation were closer to the recorded monitoring doses than that with TL equation. Conclusions: The TM in lymphocytes analyzed with SCGE is a promising radiation biological dosimeter. (authors)

  6. The use of the dicentric assay for biological dosimetry for radiation accidents in Bulgaria.

    Science.gov (United States)

    Hadjidekova, Valeria; Hristova, Rositsa; Ainsbury, Elizabeth A; Atanasova, Petya; Popova, Ljubomira; Staynova, Albena

    2010-02-01

    This paper details the construction of a 137Cs gamma calibration curve that has been established for dicentric assay and the testing and validation of the curve through biological dosimetry in three situations of suspected workplace overexposure that arose accidentally or through negligence or lack of appropriate safety measures. The three situations were: (1) suspected 137Cs contamination in a factory air supply; (2) suspected exposure to an industrial 192Ir source; and (3) accidental exposure of construction workers to radiation from a 60Co radiotherapy source in a hospital medical physics department. From a total of 24 potentially-exposed subjects, only one worker was found to have a statistically significant dose (0.16 Gy, 95% confidence intervals 0.02-0.43 Gy). In all other cases, the main function of the biological dosimetry was to reassure the subjects that any dose received was low.

  7. Mammalian spermatogenesis as a new system for biologic dosimetry of ionizing irradiation

    International Nuclear Information System (INIS)

    Hacker, U.; Schumann, J.; Goehde, W.

    1982-01-01

    The radiation induced reduction of the number of DNA synthesizing cells (spermatogonia) is described using the fast-working flow cytophotometer. Since there is no shoulder in the initial part of the dose response curve this model of biologic dosimetry is very sensitive. The D 50 value is 0.25 Gy; a radiation exposure of only 0.1 Gy can be detected. (Auth.)

  8. The Latin American Biological Dosimetry Network (LBDNet): Argentina, Brazil, Chile, Cuba, Mexico, Peru, Uruguay

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C.; Arceo M, C. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Di Giorgio, M.; Vallerga, M.; Radl, A. [Autoridad Regulatoria Nuclear, Av. del Libertador 8250, C1429 BNP CABA (Argentina); Taja, M.; Seoane, A.; De Luca, J. [Universidad Nacionald de La Plata, Av. 7 No. 1776, La Plata 1900, Buenos Aires (Argentina); Stuck O, M. [Instituto de Radioproteccion y Dosimetria, Av. Salvador Allende s/n, Recreio dos Bandeirantes, Rio de Janeiro (Brazil); Valdivia, P., E-mail: lbdnet@googlegroups.co [Comision Chilena de Energia, Amutanegui 95, Santiago Centro, Santiago (Chile)

    2010-10-15

    Biological dosimetry is a necessary support for national radiation protection programs and emergency response schemes. The Latin American Biological Dosimetry Network (LBDNet) was formally founded in 2007 for mutual assistance in case of radiation emergencies and for providing support to other Latin American countries that do not have bio dosimetry laboratories. In the frame of the IAEA Technical Cooperation Projects RLA/9/54 and RLA/9/61 the following activities have been performed: a) An international intercomparison exercise organized during 2007-2008 included six European countries and LBDNet laboratories. Relevant parameters related with dose assessment were evaluated through triage and conventional scoring criteria. A new approach for statistical data analysis was developed including assessment of inter-laboratory reproducibility and intra-laboratory repeatability. Overall, the laboratory performance was satisfactory for mutual cooperation purposes. b) In 2009, LBDNet and two European countries carried out a digital image intercomparison exercise involving dose assessment from metaphase images distributed electronically through internet. The main objectives were to evaluate scoring feasibility on metaphase images and time response. In addition a re-examination phase was considered in which the most controversial images were discussed jointly, this allowed for the development of a homogeneous scoring criteria within the network. c) A further exercise was performed during 2009 involving the shipment of biological samples for biological dosimetry assessment. The aim of this exercise was to test the timely and properly sending and receiving blood samples under national and international regulations. A total of 14 laboratories participated in this joint IAEA, PAHO and WHO. (Author)

  9. The Latin American Biological Dosimetry Network (LBDNet): Argentina, Brazil, Chile, Cuba, Mexico, Peru, Uruguay

    International Nuclear Information System (INIS)

    Guerrero C, C.; Arceo M, C.; Di Giorgio, M.; Vallerga, M.; Radl, A.; Taja, M.; Seoane, A.; De Luca, J.; Stuck O, M.; Valdivia, P.

    2010-10-01

    Biological dosimetry is a necessary support for national radiation protection programs and emergency response schemes. The Latin American Biological Dosimetry Network (LBDNet) was formally founded in 2007 for mutual assistance in case of radiation emergencies and for providing support to other Latin American countries that do not have bio dosimetry laboratories. In the frame of the IAEA Technical Cooperation Projects RLA/9/54 and RLA/9/61 the following activities have been performed: a) An international intercomparison exercise organized during 2007-2008 included six European countries and LBDNet laboratories. Relevant parameters related with dose assessment were evaluated through triage and conventional scoring criteria. A new approach for statistical data analysis was developed including assessment of inter-laboratory reproducibility and intra-laboratory repeatability. Overall, the laboratory performance was satisfactory for mutual cooperation purposes. b) In 2009, LBDNet and two European countries carried out a digital image intercomparison exercise involving dose assessment from metaphase images distributed electronically through internet. The main objectives were to evaluate scoring feasibility on metaphase images and time response. In addition a re-examination phase was considered in which the most controversial images were discussed jointly, this allowed for the development of a homogeneous scoring criteria within the network. c) A further exercise was performed during 2009 involving the shipment of biological samples for biological dosimetry assessment. The aim of this exercise was to test the timely and properly sending and receiving blood samples under national and international regulations. A total of 14 laboratories participated in this joint IAEA, PAHO and WHO. (Author)

  10. Main activities of the Latin American Network of Biological Dosimetry (LBDNet)

    International Nuclear Information System (INIS)

    Di Giorgio, M.; Vallerga, M.B.; Radl, A.; Taja, M.R.; Stuck Oliveira, M.; Valdivia, P.; Garcia Lima, O.; Lamadrid, A.; Gonzalez Mesa, J.E.; Romero Aguilera, I.; Mandina Cardoso, T.; Guerrero Carbajal, C.; Arceo Maldonado, C.; Espinoza, M.; Martinez Lopez, W.; Di Tomasso, M.; Barquinero, F.; Roy, L.

    2010-01-01

    The Latin American Biological Dosimetry Network (LBDNET) was constituted in 2007 for mutual assistance in case of a radiation emergency in the region supported by IAEA Technical Cooperation Projects RLA/9/054 and RLA/9/061. The main objectives are: a) to strengthen the technical capacities of Biological Dosimetry Services belonging to laboratories existing in the region (Argentine, Brazil, Chile, Cuba, Mexico, Peru and Uruguay) integrated in National Radiological Emergency Plans to provide a rapid biodosimetric response in a coordinated manner between countries and with RANET-IAEA/BioDoseNet-WHO, b) to provide support to other countries in the region lacking Biological Dosimetry laboratories, c) to consolidate the organization of the Latin American Biological Dosimetry Network for mutual assistance. The activities developed include technical meetings for protocols and chromosomal aberration scoring criteria unification, blood samples cultures exercises, chromosomal aberrations analysis at microscope, discussion of statistical methods and specialized software for dose calculation, the intercomparison between laboratory data after the analysis of slides with irradiated material and the intercomparison of the analysis of captured images distributed electronically in the WEB. The last exercise was the transportation of an irradiated human blood sample to countries inside and outside of the region. At the moment the exercises are concluded and they are pending to be published in reference journals. Results obtained show the capacity in the region for a biodosimetric response to a radiological accident. In the future the network will integrate techniques for high dose exposure evaluation and will enhance the interaction with other emergency systems in the region. (authors) [es

  11. Mammalian spermatogenesis as a new system for biologic dosimetry of ionizing irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, U; Schumann, J; Goehde, W [Muenster Univ. (Germany, F.R.). Radiologische Klinik

    1982-01-01

    The radiation induced reduction of the number of DNA synthesizing cells (spermatogonia) is described using the fast-working flow cytophotometer. Since there is no shoulder in the initial part of the dose response curve this model of biologic dosimetry is very sensitive. The D/sub 50/ value is 0.25 Gy; a radiation exposure of only 0.1 Gy can be detected.

  12. Towards Establishing Capacity for Biological Dosimetry at Ghana Atomic Energy Commission.

    Science.gov (United States)

    Achel, Daniel Gyingiri; Achoribo, Elom; Agbenyegah, Sandra; Adaboro, Rudolph M; Donkor, Shadrack; Adu-Bobi, Nana A K; Agyekum, Akwasi A; Akuamoa, Felicia; Tagoe, Samuel N; Kyei, Kofi A; Yarney, Joel; Serafin, Antonio; Akudugu, John M

    2016-01-01

    The aim of this study was not only to obtain basic technical prerequisites for the establishment of capacity of biological dosimetry at the Ghana Atomic Energy Commission (GAEC) but also to stimulate interest in biological dosimetry research in Ghana and Sub-Saharan Africa. Peripheral blood from four healthy donors was exposed to different doses (0-6 Gy) of gamma rays from a radiotherapy machine and lymphocytes were subsequently stimulated, cultured, and processed according to standard protocols for 48-50 h. Processed cells were analyzed for the frequencies of dicentric and centric ring chromosomes. Radiation dose delivered to the experimental model was verified using GafChromic® EBT films in parallel experiments. Basic technical prerequisites for the establishment of capacity of biological dosimetry in the GAEC have been realized and expertise in the dicentric chromosome assay consolidated. We successfully obtained preliminary cytogenetic data for a dose-response relationship of the irradiated blood lymphocytes. The data strongly indicate the existence of significant linear (α) and quadratic (β) components and are consistent with those published for the production of chromosome aberrations in comparable absorbed dose ranges.

  13. Biological effects of radiation

    International Nuclear Information System (INIS)

    2013-01-01

    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  14. Biological dosimetry of ionizing radiation: Evaluation of the dose with cytogenetic methodologies by the construction of calibration curves

    Science.gov (United States)

    Zafiropoulos, Demetre; Facco, E.; Sarchiapone, Lucia

    2016-09-01

    In case of a radiation accident, it is well known that in the absence of physical dosimetry biological dosimetry based on cytogenetic methods is a unique tool to estimate individual absorbed dose. Moreover, even when physical dosimetry indicates an overexposure, scoring chromosome aberrations (dicentrics and rings) in human peripheral blood lymphocytes (PBLs) at metaphase is presently the most widely used method to confirm dose assessment. The analysis of dicentrics and rings in PBLs after Giemsa staining of metaphase cells is considered the most valid assay for radiation injury. This work shows that applying the fluorescence in situ hybridization (FISH) technique, using telomeric/centromeric peptide nucleic acid (PNA) probes in metaphase chromosomes for radiation dosimetry, could become a fast scoring, reliable and precise method for biological dosimetry after accidental radiation exposures. In both in vitro methods described above, lymphocyte stimulation is needed, and this limits the application in radiation emergency medicine where speed is considered to be a high priority. Using premature chromosome condensation (PCC), irradiated human PBLs (non-stimulated) were fused with mitotic CHO cells, and the yield of excess PCC fragments in Giemsa stained cells was scored. To score dicentrics and rings under PCC conditions, the necessary centromere and telomere detection of the chromosomes was obtained using FISH and specific PNA probes. Of course, a prerequisite for dose assessment in all cases is a dose-effect calibration curve. This work illustrates the various methods used; dose response calibration curves, with 95% confidence limits used to estimate dose uncertainties, have been constructed for conventional metaphase analysis and FISH. We also compare the dose-response curve constructed after scoring of dicentrics and rings using PCC combined with FISH and PNA probes. Also reported are dose response curves showing scored dicentrics and rings per cell, combining

  15. The biological effectiveness of antiproton irradiation

    DEFF Research Database (Denmark)

    Holzscheiter, Michael H.; Bassler, Niels; Agazaryan, Nzhde

    2006-01-01

    ever measurements of the biological effectiveness of antiprotons. Materials and methods: V79 cells were suspended in a semi-solid matrix and irradiated with 46.7 MeV antiprotons, 48 MeV protons, or 60Co c-rays. Clonogenic survival was determined as a function of depth along the particle beams. Dose...... and particle fluence response relationships were constructed from data in the plateau and Bragg peak regions of the beams and used to assess the biological effectiveness. Results: Due to uncertainties in antiproton dosimetry we defined a new term, called the biologically effective dose ratio (BEDR), which...... has a higher relative biological effectiveness (RBE). Conclusion: We have produced the first measurements of the biological consequences of antiproton irradiation. These data substantiate theoretical predictions of the biological effects of antiproton annihilation within the Bragg peak, and suggest...

  16. Biological dosimetry, scopes and limitations; Dosimetria biologica, alcances y limitaciones

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C.; Brena V, M. [Departamento de Biologia, Instituto Nacional de Investigaciones Nucleares, C.P. 52045 Salazar, Estado de Mexico (Mexico)

    1999-07-01

    The analysis of the aberrations in chromosomes is an alternative to establish the exposure dose to the radiation, when the information provided by the traditional physical methods is insufficient. There are diverse causes by which it can reached to apply an alternative system, such is the case of exposures of another persons to the management of radiation sources, which not carry physical dosemeter. Contrary case is to the occupational exposure personnel (OEP), what must to utilize some system for determining the exposure dose, even so can be needed the case for more information. In any case, the cells from the affected person are the alternative without the biological system be overlap to the physical, it is complementary. (Author)

  17. A contribution to the study of the biological dosimetry in clinical radiopathology

    International Nuclear Information System (INIS)

    Eston, T.E. de.

    1983-01-01

    The effects of total body irradiation with different radiation doses from a 4MeV linear accelerator on organs and tissues of adult male rabbits were studied. Doses of 0.50, 2.00, 6.00 and 8.00 Gy were applied. Different organic parameters were evaluated before and after various periods of the post-irradiation time. Mortality did not occured for 0.50 or 2.00 Gy, but morbility was greater in comparison with the control; sexual potency was maintained. 'Impotentia colundi' occured with 6 Gy. A small loss of weight occured with 2.00 Gy and a higher loss for 6.00 Gy, with later recovery. Blood parameters varied even for lowest dose. Alterations were evident in the bone marrow activity for 2.00 and 6.00 Gy. Spermatides, spermatocytes and mature spermatozoids were affect even by low doses, the laters loosing motility. Significant difference was observed in the relation DNA/RNA for irradiated-and control animals. The results showed that T3 asssay could serve as 'biological indicator' of irradiation in a period of at least 7 hours and for doses of 4Gy or more. Using the kinetic method, an increase of glutamic oxalacetic transaminase (GOT) seric levels was observed for 6.00 Gy after 7 hours and a decrease for the glutamic pyruvic transaminase (GPT). Fasting glycemy and catecolamines urinary extraction were not statiscally significants. The study of chromosomal aberrations that occur in lymphocytes after 'in vitro' irradiation showed that this is at the present moment the most efficient method for biological dosimetry. (M.A.) [pt

  18. Conventional radiation-biological dosimetry using frequencies of unstable chromosome aberrations

    International Nuclear Information System (INIS)

    Ramalho, Adriana T.; Costa, Maria Lucia P.; Oliveira, Monica S.

    1998-01-01

    Frequency of chromosome aberrations detected by conventional cytogenetics is a very useful parameter in biological radiodosimetry. It can be used for estimating absorbed doses in individuals working with radioactive sources and individuals accidentally exposed to radiation. In the first case subjects wear physical dosimeters as a routine safety habit. The laboratory at the Institute of Radioprotection and Dosimetry (IRD, Brazil) has been using conventional cytogenetic analysis to complement data obtained by physical dosimetry since 1983. Until now, more than one hundred cases were investigated where individual physical dosimeters detected occupational exposure (above the safety limits allowed). In total, only 34% of these cases were confirmed by conventional cytogenetic dosimetry. Also, conventional cytogenetic analysis following the radiation accident of Goiania (Brazil) in 1987 have been used. Peripheral lymphocytes from 129 exposed or potentially exposed individuals were analyzed for the frequencies of unstable chromosomal aberrations (dicentrics, centric rings and acentrics fragments) to estimate absorbed radiation doses. During the emergency period, doses were estimated to help immediate medical treatment using in vitro calibration curves produced before the accident. Later on, doses were assessed once more using new in vitro calibration curves. A drawback of this technique is that unstable aberrations are lost after exposure. To investigate the mean lifespan of lymphocytes containing dicentric and ring aberrations, we have followed 15 victims of the Goiania accident over all these years. Results suggest that the disappearance of unstable aberrations is dose-dependent. This could explain the variation in the results found among studies in this field

  19. Conventional radiation-biological dosimetry using frequencies of unstable chromosome aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Ramalho, Adriana T.; Costa, Maria Lucia P.; Oliveira, Monica S. [Institute of Radioprotection and Dosimetry (IRD), National Commission of Nuclear Energy (CNEN), Av. Salvador Allende, Cx. P. 37750, Rio de Janeiro 22.780-160 (Brazil)

    1998-08-03

    Frequency of chromosome aberrations detected by conventional cytogenetics is a very useful parameter in biological radiodosimetry. It can be used for estimating absorbed doses in individuals working with radioactive sources and individuals accidentally exposed to radiation. In the first case subjects wear physical dosimeters as a routine safety habit. The laboratory at the Institute of Radioprotection and Dosimetry (IRD, Brazil) has been using conventional cytogenetic analysis to complement data obtained by physical dosimetry since 1983. Until now, more than one hundred cases were investigated where individual physical dosimeters detected occupational exposure (above the safety limits allowed). In total, only 34% of these cases were confirmed by conventional cytogenetic dosimetry. Also, conventional cytogenetic analysis following the radiation accident of Goiania (Brazil) in 1987 have been used. Peripheral lymphocytes from 129 exposed or potentially exposed individuals were analyzed for the frequencies of unstable chromosomal aberrations (dicentrics, centric rings and acentrics fragments) to estimate absorbed radiation doses. During the emergency period, doses were estimated to help immediate medical treatment using in vitro calibration curves produced before the accident. Later on, doses were assessed once more using new in vitro calibration curves. A drawback of this technique is that unstable aberrations are lost after exposure. To investigate the mean lifespan of lymphocytes containing dicentric and ring aberrations, we have followed 15 victims of the Goiania accident over all these years. Results suggest that the disappearance of unstable aberrations is dose-dependent. This could explain the variation in the results found among studies in this field

  20. EPR Dosimetry for ageing effect in NPP

    International Nuclear Information System (INIS)

    Choi, Hoon; Lim, Young Ki; Kim, Jong Seog; Jung, Sun Chul

    2005-01-01

    As one of the retrospective dosimetry method, EPR spectroscopy has been studied by many research up to theses days. As a dosimeter for EPR spectroscopy, Alanine is already a well known dosimeter in the field of radiation therapy and dose assessment in radiological accident by its characteristics as good linearity in a wide range of energy level and extremely low signal fading on time. Through technical document of IAEA, the EPR dosimetry method using alanine sample was published in 2000 after research by coordinated project on management of ageing of in-containment I and C cables. Although alanine sample is regarded as a good EPR dosimeter like above ageing assessment field, actually the assessment of radiation should be done at least for two fuel cycles, because of its relatively low irradiation environment in almost all spots in power plant. So, for getting more accurate detection value of radiation, another material is tested for being put in simultaneously inside the power plant with alanine. The test result for lithium formate monohydrate (HCO 2 LiH 2 0) was presented below for checking its possibility for being applied as EPR dosimeter for this project

  1. Effect of processor temperature on film dosimetry

    International Nuclear Information System (INIS)

    Srivastava, Shiv P.; Das, Indra J.

    2012-01-01

    Optical density (OD) of a radiographic film plays an important role in radiation dosimetry, which depends on various parameters, including beam energy, depth, field size, film batch, dose, dose rate, air film interface, postexposure processing time, and temperature of the processor. Most of these parameters have been studied for Kodak XV and extended dose range (EDR) films used in radiation oncology. There is very limited information on processor temperature, which is investigated in this study. Multiple XV and EDR films were exposed in the reference condition (d max. , 10 × 10 cm 2 , 100 cm) to a given dose. An automatic film processor (X-Omat 5000) was used for processing films. The temperature of the processor was adjusted manually with increasing temperature. At each temperature, a set of films was processed to evaluate OD at a given dose. For both films, OD is a linear function of processor temperature in the range of 29.4–40.6°C (85–105°F) for various dose ranges. The changes in processor temperature are directly related to the dose by a quadratic function. A simple linear equation is provided for the changes in OD vs. processor temperature, which could be used for correcting dose in radiation dosimetry when film is used.

  2. Biological dosimetry of heavy ion induced chromosome lesions in human peripheral blood lymphocytes of different healthy donors

    International Nuclear Information System (INIS)

    Groesser, T.; Rydberg, B.; Ritter, S.; Hessel, P.; Kraft, G.

    2003-01-01

    Full text: In the presented work the effect of sparsely ionizing X-rays or densely ionizing carbon ions on human peripheral blood lymphocytes (PBL) from healthy donors regarding the fluctuations in radiosensitivity within the same donor and between different donors was examined. This is not only of special interest for physicians and radiation biologists but also plays an important role in space flights because such fluctuations in the radiation response would reduce the accuracy of the biological dosimetry. In this context, biological changes in the aberration rate of metaphase cells as well as in cell proliferation and the mitotic index were measured. Since chromosome analyses are presently the most powerful biological method to quantify radiation exposure, the study focused on the measurements of chromosome aberrations in first-metaphase cells. The investigations showed that the aberration yield after 400 MeV/u carbon ion exposure (LET = 11 keV/micrometer) was higher than after X-irradiation. The aberration yield in first mitotic cells as well as the proportion of damaged cells was stable over the examined period up to 72h after exposure to X-rays or carbon ions. Furthermore, the results of the presented work revealed pronounced fluctuations in the measured parameters in the same donor as well as between different donors. If the dose effect curves of such parameters were used as calibration curves for radiation dose assessment these fluctuations will decrease their potential of use for dose estimation. This demonstrates that a general calibration curve for dose assessment might not be sufficiently precise and individual calibration curves might improve the accuracy of the biological dosimetry

  3. Development of technology for biological dosimetry -A study on the radiation and environmental safety-

    International Nuclear Information System (INIS)

    Lee, Kang Suk; Cheon, Ki Jeong; Kim, Kook Chan; Kim, Jin Kyu; Kim, Sang Bok; Kim, In Kyu; Park, Hyo Kook

    1994-07-01

    α-amylase showed a significant increase in its activity when exposed to radiation of 0.1 Gy. However it had no relationship with radiation dose. Enzyme activities in liver tissue showed similar changes to those in serum. Among others, changes in acid phosphatase activity were highly related to radiation dose. Of acute phase proteins in serum, CRP, ceruloplasmin and haptoglobin positively responded to radiation while albumin did negatively. ELISA proved to be an efficient method to detect changes in serum protein level. Finally the measurements of changes in APRs using ELISA could provide an useful tools for biological dosimetry. (Author)

  4. Metabolomics in Radiation-Induced Biological Dosimetry: A Mini-Review and a Polyamine Study

    Directory of Open Access Journals (Sweden)

    Changhyun Roh

    2018-05-01

    Full Text Available In this study, we elucidate that polyamine metabolite is a powerful biomarker to study post-radiation changes. Metabolomics in radiation biodosimetry, the application of a metabolomics analysis to the field of radiobiology, promises to increase the understanding of biological responses by ionizing radiation (IR. Radiation exposure triggers a complex network of molecular and cellular responses that impacts metabolic processes and alters the levels of metabolites. Such metabolites have potential as biomarkers for radiation dosimetry. Among metabolites, polyamine is one of many potential biomarkers to estimate radiation response. In addition, this review provides an opportunity for the understanding of a radiation metabolomics in biodosimetry and a polyamine case study.

  5. Chromosomal analysis and application of biological dosimetry in two cases of apparent over exposure

    International Nuclear Information System (INIS)

    Guerrero C, C.; Brena V, M.

    2002-01-01

    The gamma radiation calibration curve of 60 Co is used which was generated in the ININ Laboratory of Biology to calculate the exposure dose of two workers whose dosemeters marked values above of the limit allowed. The analysis indicates that in a first case, the aberrations frequency corresponded to the basal value, therefore there is not over exposure. The aberrations frequency of the second case is lightly above to the basal value and therefore the probability favors to what the physical dosimetry indicates. (Author)

  6. Bibliographical database of radiation biological dosimetry and risk assessment: Part 1, through June 1988

    Energy Technology Data Exchange (ETDEWEB)

    Straume, T.; Ricker, Y.; Thut, M.

    1988-08-29

    This database was constructed to support research in radiation biological dosimetry and risk assessment. Relevant publications were identified through detailed searches of national and international electronic databases and through our personal knowledge of the subject. Publications were numbered and key worded, and referenced in an electronic data-retrieval system that permits quick access through computerized searches on publication number, authors, key words, title, year, and journal name. Photocopies of all publications contained in the database are maintained in a file that is numerically arranged by citation number. This report of the database is provided as a useful reference and overview. It should be emphasized that the database will grow as new citations are added to it. With that in mind, we arranged this report in order of ascending citation number so that follow-up reports will simply extend this document. The database cite 1212 publications. Publications are from 119 different scientific journals, 27 of these journals are cited at least 5 times. It also contains reference to 42 books and published symposia, and 129 reports. Information relevant to radiation biological dosimetry and risk assessment is widely distributed among the scientific literature, although a few journals clearly dominate. The four journals publishing the largest number of relevant papers are Health Physics, Mutation Research, Radiation Research, and International Journal of Radiation Biology. Publications in Health Physics make up almost 10% of the current database.

  7. Bibliographical database of radiation biological dosimetry and risk assessment: Part 1, through June 1988

    International Nuclear Information System (INIS)

    Straume, T.; Ricker, Y.; Thut, M.

    1988-01-01

    This database was constructed to support research in radiation biological dosimetry and risk assessment. Relevant publications were identified through detailed searches of national and international electronic databases and through our personal knowledge of the subject. Publications were numbered and key worded, and referenced in an electronic data-retrieval system that permits quick access through computerized searches on publication number, authors, key words, title, year, and journal name. Photocopies of all publications contained in the database are maintained in a file that is numerically arranged by citation number. This report of the database is provided as a useful reference and overview. It should be emphasized that the database will grow as new citations are added to it. With that in mind, we arranged this report in order of ascending citation number so that follow-up reports will simply extend this document. The database cite 1212 publications. Publications are from 119 different scientific journals, 27 of these journals are cited at least 5 times. It also contains reference to 42 books and published symposia, and 129 reports. Information relevant to radiation biological dosimetry and risk assessment is widely distributed among the scientific literature, although a few journals clearly dominate. The four journals publishing the largest number of relevant papers are Health Physics, Mutation Research, Radiation Research, and International Journal of Radiation Biology. Publications in Health Physics make up almost 10% of the current database

  8. Effect of detection geometry on radon dosimetry

    International Nuclear Information System (INIS)

    Waheed, A.; Cherubini, R.; Moschini, G.; Lembo, L.

    1988-01-01

    Results are given here on the use of plastic track detectors for environmental alpha particle dosimetry. A simple method is presented for calculating the probability distribution for alpha particle registration in a rectangular detection geometry. The track density distributions obtained with CR39 and CN85 detectors in the laboratory are compared with the calculated distribution, and it is concluded that a rectangular geometry (axaxb) should be a better choice for a flat response of track registration. The maximum track registration rate for CR39 and CN85 is found respectively to be 4.95x10 3 /cm 2 hour and 3.14x10 3 /cm 2 hour. It is estimated that 1 track/cm 2 in CR39 represents around 1.14x10 10 alpha disintegrations/meter 3 of surrounding atmosphere. (author)

  9. Biological effect of radionuclides on plants

    International Nuclear Information System (INIS)

    Prister, B.S.; Khal'chenko, V.A.; Polyakova, V.Y.; Shevchenko, V.A.; Shejn, G.P.; Aleksakhin, R.M.

    1979-01-01

    Stated are dosimetry principles and given is an analysis of biological radionuclide effect on plants in aerial and root intakes. A comparative barley radiosensitivity characteristic depending on plant development phases during irradiation is given using LD 50 criteria. Considered is a possibility for using generalized bioinformation parameters as sensitive indications for estimating biological effects due to the influence of low radiation doses. On the grounds of data obtained generalization are forecasted probable losses of crops when getting radionuclides into plants during various vegetation periods

  10. Biological (DB) and internal dosimetry (DI) in patients with differentiated thyroid carcinoma (CaDT) treated with iodine 131

    International Nuclear Information System (INIS)

    Fadel, Ana M.; Chebel, G.; Oneto, A.; Di Giorgio, Marina; Vallerga, Maria B.; Taja, Maria R.; Radl, A.; Rojo, Ana M.; Deluca, G.; Levi de Cabrejas, Mariana; Cabrejas, Raul C.

    2009-01-01

    -dose tracers (to assess the contribution of therapeutic doses above) and the second shows, 8 days post-therapeutic dose (in this period most of the energy of 131 I is deposited in the body and it is possible to assess the biological effect that this produces absorbed dose). These samples were applied techniques cytogenetics, MN and FISH. It assumes: 1) uniform distribution of 131 I in the body, because the total thyroidectomy; 2) that in the absence of bone metastases that compromise bone marrow estimated average dose to the whole body can be considered an approximation appropriate dosage bone marrow. The technique FISH estimated equivalent dose active in bone marrow. Results: A comparison of the doses received by 3 cytogenetic tests applied indicates that these methods are consistent with each other. The absorbed dose to the whole body estimated by DB correlate with those estimated by DI, p 131 I to administer in patients with CaDiT. These results support the advantage of applying quantitative methods of DI, who consider the patient's own parameters, in order to customize their therapy, with respect to the empirical method. In this context, the DB provides evidence for the validation of the DI. Also, from a clinical point of view, the DB conducted on samples from patients with previous treatments, before a new therapeutic administration, would assess the status cytogenetic (radiation damage and repair capacity). The dosimetry presented clinical importance in reducing potential complications hematologic. In cases with cumulative doses higher than 1000 mCi, it would be useful to indicate the need to consider other schemes therapeutic alternative to the administration of 131 I, such as chemotherapy or radiotherapy, reducing morbidity. (author)

  11. Biological dosimetry in case of combined radiation injuries. Biologicheskaya dozimetriya pri kombinirovannykh radiatsionnykh porazheniyakh

    Energy Technology Data Exchange (ETDEWEB)

    Vladimirov, V G; Teslenko, V M

    1990-11-01

    The state of biological dosimetry methods and prospects for their development are considered. Attention is paid to biological indicators of radiation injuries caused by nuclear weapons. It is noted, that determination of the number of lymphocytes in the blood in case of combined radiation injuries should be concerned with great care and in each case the analysis results should reffered to critically and supported by the data from other investigations. Promissing are the methods related to dermination of reticulocyte number in the peripheral blood within the irradiation dose range, causing bone marrow form of radiation syndrome, method of leukocyte adhesion and some other methods based on the change of biophysical caracteristics of cell membranes. To increase the information efficiency it is necessary to combine these methods with the methods, based on genetic change registration, and to develop a combined method.

  12. Effects of dose fractionation on the response of alanine dosimetry

    International Nuclear Information System (INIS)

    Lundahl, Brad; Logar, John; Desrosiers, Marc; Puhl, James

    2014-01-01

    Alanine dosimetry is well established as a transfer standard and is becoming more prevalently used in routine dosimetry systems for radiation processing. Many routine measurement applications in radiation processing involve absorbed dose measurements resulting from fractioned exposures to ionizing radiation. Fractioning of absorbed dose is identified as an influence quantity (ISO/ASTM, 2013). This paper reports on study results of absorbed dose fractioning characteristics of alanine for gamma and high energy electron beam radiation sources. The results of this study indicate a radiation response difference due to absorbed dose fractioning in response can be observed after four fractionations for high-energy electron beams and no difference up to seven fractions for gamma rays using an ANOVA evaluation method. - Highlights: • Fractioning effects signaled in electron beam using an ANOVA at 6 equal increments. • Fractioning effects not signaled in gamma using an ANOVA up to 7 equal increments. • Insensitivity of alanine to dose fractioning indicates nominal impact on calibration

  13. Effects of water on fingernail electron paramagnetic resonance dosimetry.

    Science.gov (United States)

    Zhang, Tengda; Zhao, Zhixin; Zhang, Haiying; Zhai, Hezheng; Ruan, Shuzhou; Jiao, Ling; Zhang, Wenyi

    2016-09-01

    Electron paramagnetic resonance (EPR) is a promising biodosimetric method, and fingernails are sensitive biomaterials to ionizing radiation. Therefore, kinetic energy released per unit mass (kerma) can be estimated by measuring the level of free radicals within fingernails, using EPR. However, to date this dosimetry has been deficient and insufficiently accurate. In the sampling processes and measurements, water plays a significant role. This paper discusses many effects of water on fingernail EPR dosimetry, including disturbance to EPR measurements and two different effects on the production of free radicals. Water that is unable to contact free radicals can promote the production of free radicals due to indirect ionizing effects. Therefore, varying water content within fingernails can lead to varying growth rates in the free radical concentration after irradiation-these two variables have a linear relationship, with a slope of 1.8143. Thus, EPR dosimetry needs to be adjusted according to the water content of the fingernails of an individual. When the free radicals are exposed to water, the eliminating effect will appear. Therefore, soaking fingernail pieces in water before irradiation, as many researchers have previously done, can cause estimation errors. In addition, nails need to be dehydrated before making accurately quantitative EPR measurements. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  14. Bibliographical database of radiation biological dosimetry and risk assessment: Part 2

    International Nuclear Information System (INIS)

    Straume, T.; Ricker, Y.; Thut, M.

    1990-09-01

    This is part 11 of a database constructed to support research in radiation biological dosimetry and risk assessment. Relevant publications were identified through detailed searches of national and international electronic databases and through our personal knowledge of the subject. Publications were numbered and key worded, and referenced in an electronic data-retrieval system that permits quick access through computerized searches on authors, key words, title, year, journal name, or publication number. Photocopies of the publications contained in the database are maintained in a file that is numerically arranged by our publication acquisition numbers. This volume contains 1048 additional entries, which are listed in alphabetical order by author. The computer software used for the database is a simple but sophisticated relational database program that permits quick information access, high flexibility, and the creation of customized reports. This program is inexpensive and is commercially available for the Macintosh and the IBM PC. Although the database entries were made using a Macintosh computer, we have the capability to convert the files into the IBM PC version. As of this date, the database cites 2260 publications. Citations in the database are from 200 different scientific journals. There are also references to 80 books and published symposia, and 158 reports. Information relevant to radiation biological dosimetry and risk assessment is widely distributed within the scientific literature, although a few journals clearly predominate. The journals publishing the largest number of relevant papers are Health Physics, with a total of 242 citations in the database, and Mutation Research, with 185 citations. Other journals with over 100 citations in the database, are Radiation Research, with 136, and International Journal of Radiation Biology, with 132

  15. Biological dosimetry after criticality accidents. Intercomparison exercise in the Silene Reactor - France

    International Nuclear Information System (INIS)

    Di Giorgio, Marina; Vallerga, Maria B.; Taja, Maria R.

    2004-01-01

    The Institute of Radiation Protection and Nuclear Safety Institute (IRSN) organized an international biological dosimetry intercomparison, at the SILENE experimental reactor (Valduc, France), simulating different criticality scenarios: bare source 4 Gy, lead shield source 1 and 2 Gy and gamma pure 60 Co source 2 Gy. Fifteen laboratories were involved in this exercise, including the Argentine Biological Dosimetry Laboratory. The purposes of the intercomparison were: 1) To compare the unstable chromosome aberration (UCA) frequency observed by the different laboratories; and 2) To compare the dose estimation for gamma rays and neutrons. The objects of the present work were: I) To compare the mean frequency of UCA observed by the Argentine laboratory with the mean frequency observed by the participant laboratories as a whole. II) To compare the dose estimates performed by the Argentine lab with those estimated by the other laboratories involved in the second stage of the intercomparison. Overall, the mean frequencies of UCA and the correspondent 95% confidence limits obtained by the Argentine lab were consistent with the results obtained by the laboratories as a whole. For the gamma pure scenario, smaller variations were observed among laboratories in terms of dose (CV=18,2%) than in terms of frequency (CV=30,1%). For the mixed field scenarios, only four laboratories, including the Argentine lab, estimated gamma and neutron components of the total dose and just two (Argentine lab and lab 12) were in agreement with the given physical doses. The 1 Gy experiment presented lesser variations both in terms of frequency and dose than the other two scenarios. For the 4 and 2 Gy experiments, variations in neutron dose were more significant than variations in gamma dose, related to the magnitude of the dose. The results suggest that intercomparison exercises jointly with the accreditation of biological dosimetry by cytogenetic service laboratories, in compliance with ISO

  16. In-situ fluorescence hybridization applied to biological dosimetry: contribution of automation to the counting of radio-induced chromosome aberrations

    International Nuclear Information System (INIS)

    Germain Thomas Roy, Laurence

    1999-01-01

    The frequency of chromosome aberrations on peripheral blood lymphocytes is a dose indicator in the case of ionizing radiations over-exposure. Stable chromosome aberrations (translocations, insertions) are visualized after labelling of some chromosomes using the fluorescence in-situ hybridization (FISH). The study of the use of the FISH technique in biological dosimetry is done with dose-effect curves. It seems that a bias is introduced during the observation of chromosome aberrations involving only 3 pairs of chromosomes. In order to avoid this bias, it would be useful to test the feasibility of using the multi-FISH technique in biological dosimetry. Moreover, this type of chromosome aberration changes with the type of irradiation. It is thus important to define the aberrations to be considered when the FISH technique is used. In order to reduce the time of image analysis, the CYTOGEN system, developed by IMSTAR company (Paris, France) has been adapted to the needs of biological dosimetry. This system allows to localize automatically the metaphases on the slide, which reduces the observation time by 2 or 4. An automatic detection protocol for chromosome aberrations has been implemented. It comprises the image capture, the contours detection and the classification of some chromosome aberrations. The different steps of this protocol have been tested in order to check that no bias is introduced by the automation. However, because radio-induced aberrations are rare events, it seems that a totally automatic system is not foreseeable. A semi-automatic analysis is more suitable. The use of the Slit-Scan technology (Laboratory of applied physics, Heidelberg, Germany) in biological dosimetry has been studied too. This technique allows to analyze rapidly a huge number of chromosomes. A good correlation has been observed between the dicentric frequency measured automatically and by manual counting. The system is under development and should be adapted to the detection of

  17. Biological dosimetry in cases gives occupational high exposition to ionizing radiations

    International Nuclear Information System (INIS)

    Ramalho, Adriana T.; Costa, Maria Lucia P.; Oliveira, Monica S.; Silva, Francisco Cesar A.

    1998-01-01

    From 1983 the cytogenetics dosimetry method it has been used as routine in the IRD laboratory in the period 1983 at 1997 but a high exposition occupational case the physical dosimeters happened in Brazil they were investigated through the cytogenetics dosimetry technique. This technique is employ when the dosimetry personal marks a high dose to 100 mSv (0,1 Gy) that is the cut-off minimum detected in the dosimetry cytogenetics

  18. Calibration curves for biological dosimetry; Curvas de calibracion para dosimetria biologica

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C.; Brena V, M. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)]. E-mail cgc@nuclear.inin.mx

    2004-07-01

    The generated information by the investigations in different laboratories of the world, included the ININ, in which settles down that certain class of chromosomal leisure it increases in function of the dose and radiation type, has given by result the obtaining of calibrated curves that are applied in the well-known technique as biological dosimetry. In this work is presented a summary of the work made in the laboratory that includes the calibrated curves for gamma radiation of {sup 60} Cobalt and X rays of 250 k Vp, examples of presumed exposure to ionizing radiation, resolved by means of aberration analysis and the corresponding dose estimate through the equations of the respective curves and finally a comparison among the dose calculations in those people affected by the accident of Ciudad Juarez, carried out by the group of Oak Ridge, USA and those obtained in this laboratory. (Author)

  19. Biological dosimetry intercomparison exercise: an evaluation of Triage and routine mode results by robust methods

    International Nuclear Information System (INIS)

    Di Giorgio, M.; Vallerga, M.B.; Radl, A.; Taja, M.R.; Barquinero, J.F.; Seoane, A.; De Luca, J.; Guerrero Carvajal, Y.C.; Stuck Oliveira, M.S.; Valdivia, P.; García Lima, O.; Lamadrid, A.; González Mesa, J.; Romero Aguilera, I.; Mandina Cardoso, T.; Arceo Maldonado, C.; Espinoza, M.E.; Martínez López, W.; Lloyd, D.C.; Méndez Acuña, L.; Di Tomaso, M.V.; Roy, L.; Lindholm, C.; Romm, H.; Güçlü, I.

    2011-01-01

    Well-defined protocols and quality management standards are indispensable for biological dosimetry laboratories. Participation in periodic proficiency testing by interlaboratory comparisons is also required. This harmonization is essential if a cooperative network is used to respond to a mass casualty event. Here we present an international intercomparison based on dicentric chromosome analysis for dose assessment performed in the framework of the IAEA Regional Latin American RLA/9/054 Project. The exercise involved 14 laboratories, 8 from Latin America and 6 from Europe. The performance of each laboratory and the reproducibility of the exercise were evaluated using robust methods described in ISO standards. The study was based on the analysis of slides from samples irradiated with 0.75 (DI) and 2.5 Gy (DII). Laboratories were required to score the frequency of dicentrics and convert them to estimated doses, using their own dose-effect curves, after the analysis of 50 or 100 cells (triage mode) and after conventional scoring of 500 cells or 100 dicentrics. In the conventional scoring, at both doses, all reported frequencies were considered as satisfactory, and two reported doses were considered as questionable. The analysis of the data dispersion among the dicentric frequencies and among doses indicated a better reproducibility for estimated doses (15.6% for DI and 8.8% for DII) than for frequencies (24.4% for DI and 11.4% for DII), expressed by the coefficient of variation. In the two triage modes, although robust analysis classified some reported frequencies or doses as unsatisfactory or questionable, all estimated doses were in agreement with the accepted error of ±0.5 Gy. However, at the DI dose and for 50 scored cells, 5 out of the 14 reported confidence intervals that included zero dose and could be interpreted as false negatives. This improved with 100 cells, where only one confidence interval included zero dose. At the DII dose, all estimations fell within

  20. The Schwarzschild effect of the dosimetry film Kodak EDR 2.

    Science.gov (United States)

    Djouguela, A; Kollhoff, R; Rubach, A; Harder, D; Poppe, B

    2005-11-07

    The magnitude of the Schwarzschild effect or failure of the reciprocity law has been experimentally investigated for the dosimetry film EDR 2 from Kodak. When the dose rate applied to achieve a given dose was reduced by a factor of 12, the net optical density was reduced by up to 5%. The clinical importance of this effect is negligible as long as the films are calibrated at a value of the dose rate approximately representative of the dose rates occurring in the target volume, but in target regions of strongly reduced dose rate the Schwarzschild effect should be allowed for by a correction of the net optical density.

  1. Biological dosimetry in radiological protection: dose response curves elaboration for 60Co and 137Cs

    International Nuclear Information System (INIS)

    Silva, Marcia Augusta da

    1997-01-01

    Ionizing radiation sources for pacific uses are being extensively utilized by modern society and the applications of these sources have raised the probability of the occurrence of accidents. The accidental exposition to radiation creates a necessity of the development of methods to evaluate dose quantity. This data could be obtained by the measurement of damage caused by radiation in the exposed person. The radiation dose can be estimated in exposed persons through physical methods (physical dosimetry) but the biological methods can't be dispensed, and among them, the cytogenetic one that makes use of chromosome aberrations (dicentric and centric ring) formed in peripheral blood lymphocytes (PBL) exposed to ionizing radiation. This method correlates the frequency of radioinduced aberrations with the estimated absorbed dose, as in vitro as in vivo, which is called cytogenetic dosimetry. By the introduction of improved new techniques in culture, in the interpretation of aberrations in the different analysers of slides and by the adoption of different statistical programs to analyse the data, significant differences are observed among laboratories in dose-response curves (calibration curves). The estimation of absorbed dose utilizing other laboratory calibration curves may introduce some uncertainties, so the International Atomic Energy Agency (IAEA) advises that each laboratory elaborates your own dose-response curve for cytogenetic dosimetry. The results were obtained from peripheral blood lymphocytes of the healthy and no-smoking donors exposed to 60 Co and 137 Cs radiation, with dose rate of 5 cGy.min. -1 . Six points of dose were determined 20,50,100,200,300,400 cGy and the control not irradiated. The analysed aberrations were of chromosomic type, dicentric and centric ring. The dose response curve for dicentrics were obtained by frequencies weighted in liner-quadratic mathematic model and the equation resulted were for 60 Co: Y = (3 46 +- 2.14)10 -4 cGy -1 + (3

  2. Biological dosimetry in patients with differenced thyroid carcinoma treated with Iodine-131

    International Nuclear Information System (INIS)

    Vallerga, M.; Taja, Maria R.; Radl, A.; Rojo, Ana M.; Deluca, G.; Di Giogio, Marina; Fadel, A.; Chebel, G.; Oneto, A.; Cabrejas, Mariana

    2007-01-01

    The differentiated thyroid carcinoma (DTC), constitutes the 90 % of the thyroid gland cancers. 80% of patients are cured after the initial therapy and 12% remained disease-free after successive treatments. The 24 patients included in this study represent a sample of the aforementioned 12% and 8%, with recurrence in the first decade post-treatment (local disease and/or recurrence at distance). The internal radiotherapy with 131 I in patients with DTC is used within the therapeutic schema as a step post-thyroidectomy. The success of the therapy is to get a lethal dose in the tumor tissue, which depends on the therapeutic activity and the retention of 131 I, without exceeding the dose of tolerance in healthy tissues. The most widespread way of administration is the empirical prescription which considers the clinical and laboratory parameters for its determination. In this work, the treatment protocol applied incorporates assessment by biological (DB) and internal (DI) dosimetry for estimating absorbed dose to the whole body and bone marrow to manage a personalized therapeutic dose for each patient. The biological dose estimation is based on the quantification of chromosomal aberrations, which is often referred to a dose-response curve in which lymphocytes are irradiated in vitro with 131 I, allowing to determine the dose in vivo of circulating lymphocytes patients [es

  3. Biological dosimetry: the potential use of radiation-induced apoptosis in human T-lymphocytes

    International Nuclear Information System (INIS)

    Menz, R.; Andres, R.; Larsson, B.; Ozsahin, M.; Crompton, N.E.A.; Trott, K.

    1997-01-01

    An assay for biological dosimetry based on the induction of apoptosis in human T-lymphocytes is described. Radiation-induced apoptosis was assessed by flow cytometric identification of cells displaying apoptosis-associated DNA condensation. CD4 and CD8 T-lymphocytes were analysed. They were recognized on the basis of their cell-surface antigens. Four parameters were measured for both cell types: cell size, granularity, antigen immunofluorescence and DNA content. Apoptosis was quantified as the fraction of CD4-, or CD8-positive cells with a characteristic reduction of cell size and DNA content. At doses below 1 Gy, levels of radiation-induced apoptosis increased for up to 5 days after irradiation. Optimal dose discrimination was observed 4 days after irradiation, at which time the dose-response curves were linear, with a slope of 8% ± 0.5% per 0.1 Gy. In controlled, dose-response experiments the lowest dose level at which the radiation-induced apoptosis frequency was still significantly above control was 0.05 Gy. After 5 days post-irradiation incubation, intra- and interdonor variations were measured and found to be similar; thus, apoptotic levels depend more on the dose than on the donor. The results demonstrate the potential of this assay as a biological dosimeter. (orig.)

  4. Challenges of analysing suspected over exposed subjects using biological dosimetry at Sri Ramachandra University

    International Nuclear Information System (INIS)

    Vijayalakshimi, J.; Venkatachalam, P.; Solomon, F.D. Paul

    2016-01-01

    Biological dosimetry based on the analysis of dicentric chromosomes has become a routine component of the radiological protection programmes and has a valuable role to contribute in suspected over exposed subjects who perform diagnostic and therapeutic procedures. The Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, has been involved in the standardization of chromosomal aberration analysis as a biological dosimeter for investigating accidental ionising radiation exposure since 1998. Our laboratory has been accredited since 2007 by Atomic Energy Regulatory Board. The initial process was to establish the in vitro dose response curve for various type of low LET ionizing radiation. Since accreditation, a total of 61 subjects have been referred to Sri Ramachandra University from SRRC, Kalpakkam. Brief social/medical history and informed consent are being obtained prior to blood samplings. The dose estimates expressed in sievert (Sv) measured by Thermoluminescence badges was in the range of 0.05-2779.05 mSv. Chromosomal aberration assay was used for analysis which allows direct detection of aberration in peripheral blood lymphocytes. The test was performed as per the standard operating protocol on peripheral blood lymphocyte. Currently the dose response curve for the automated scoring process in under way and we hope to improve upon quality and turnaround time using the automation available. Future challenge would be to establish an in vitro dose response curve with automated scoring technique and developing inter-laboratory comparison of dose response generated using automation

  5. Use of FISH-translocations analyses for retrospective biological dosimetry: How stable are stable chromosome aberrations?

    International Nuclear Information System (INIS)

    Darroudi, F.

    2000-01-01

    Chromosome aberrations, in particular dicentrics, in peripheral blood lymphocytes are used to estimate the absorbed dose immediately following a radiation accident. However, difficulties for dose estimation arise with old exposures, due to a decline of cells containing unstable dicentric aberrations. The fluorescence in situ hybridisation (FISH) technique employing chromosome specific DNA libraries to 'paint' individual human chromosomes has opened new perspectives for rapid and reliable detection of stable chromosome aberrations such as translocations. The inherent stability of translocations over cell generations has enabled them to be used as a biodosemeter. However, due to the limited life of circulating T-lymphocytes, a level of uncertainty exists on the long-term persistence of stable translocations. The objectives of the present work are to present the current state of knowledge on the stability of translocations detected by FISH. The following aspects have been considered; (1) experience so far of retrospective biological dosimetry in humans following accidental and occupational over-exposure, (2) animal studies using mice and monkeys, (3) the influence of subsequent cell divisions on the yield and persistence of translocations following in vitro irradiation of human lymphocytes, and (4) the needs for further work to standardise and validate the use of FISH as a biological dosemeter, and to investigate the influence of various parameters such as radiation quality, dose rate and the discrimination of sub-types of translocations on persistence. (author)

  6. Solid State and Chemical Radiation Dosimetry in Medicine and Biology. Proceedings of a Symposium

    International Nuclear Information System (INIS)

    1967-01-01

    Proceedings of a Symposium organized by the IAEA and held in Vienna, 3-7 October 1966. The meeting was attended by 104 participants from 21 countries and three international organizations. Contents: Solid state dosimetry (17 papers); Chemical dosimetry (10 papers); Invited lectures (2 papers); General aspects and other methods of dosimetry (6 papers); Panel discussion on research and development needed in dosimetry. Each paper is in its original language (32 English, 2 French and 1 Spanish) and is preceded by an abstract in English and one in the original language, if this is not English. Discussions are in English. (author)

  7. Solid State and Chemical Radiation Dosimetry in Medicine and Biology. Proceedings of a Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1967-03-15

    Proceedings of a Symposium organized by the IAEA and held in Vienna, 3-7 October 1966. The meeting was attended by 104 participants from 21 countries and three international organizations. Contents: Solid state dosimetry (17 papers); Chemical dosimetry (10 papers); Invited lectures (2 papers); General aspects and other methods of dosimetry (6 papers); Panel discussion on research and development needed in dosimetry. Each paper is in its original language (32 English, 2 French and 1 Spanish) and is preceded by an abstract in English and one in the original language, if this is not English. Discussions are in English. (author)

  8. Foundations of ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    Denisenko, O.N.; Pereslegin, I.A.

    1985-01-01

    Foundations of dosimetry in application to radiotherapy are presented. General characteristics of ionizing radiations and main characteristics of ionizing radiation sources, mostly used in radiotherapy, are given. Values and units for measuring ionizing radiation (activity of a radioactive substance, absorbed dose, exposure dose, integral dose and dose equivalent are considered. Different methods and instruments for ionizing radiation dosimetry are discussed. The attention is paid to the foundations of clinical dosimetry (representation of anatomo-topographic information, choice of radiation conditions, realization of radiation methods, corrections for a configuration and inhomogeneity of a patient's body, account of biological factors of radiation effects, instruments of dose field formation, control of irradiation procedure chosen)

  9. Applications, dosimetry and biological interactions of static and time-varying magnetic fields

    International Nuclear Information System (INIS)

    Tenforde, T.S.

    1988-08-01

    The primary topics of this presentation include: (1) the applications of magnetic fields in research, industry, and medical technologies; (2) mechanisms of interaction of static and time-varying magnetic fields with living systems; (3) human health effects of exposure to static and time-varying magnetic fields in occupational, medical, and residential settings; and (4) recent advances in the dosimetry of extremely-low-frequency electromagnetic fields. The discussion of these topics is centered about two issues of considerable contemporary interest: (1) potential health effects of the fields used in magnetic resonance imaging and in vivo spectroscopy, and (2) the controversial issue of whether exposure to extremely-low-frequency (ELF) electromagnetic fields in the home and workplace leads to an elevated risk of cancer. 11 refs

  10. Effect of respiratory motion on internal radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Tianwu [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211 (Switzerland); Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211 (Switzerland); Geneva Neuroscience Center, Geneva University, Geneva CH-1205 (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen 9700 RB (Netherlands)

    2014-11-01

    Purpose: Estimation of the radiation dose to internal organs is essential for the assessment of radiation risks and benefits to patients undergoing diagnostic and therapeutic nuclear medicine procedures including PET. Respiratory motion induces notable internal organ displacement, which influences the absorbed dose for external exposure to radiation. However, to their knowledge, the effect of respiratory motion on internal radiation dosimetry has never been reported before. Methods: Thirteen computational models representing the adult male at different respiratory phases corresponding to the normal respiratory cycle were generated from the 4D dynamic XCAT phantom. Monte Carlo calculations were performed using the MCNP transport code to estimate the specific absorbed fractions (SAFs) of monoenergetic photons/electrons, the S-values of common positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Rb-82, Y-86, and I-124), and the absorbed dose of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) in 28 target regions for both the static (average of dynamic frames) and dynamic phantoms. Results: The self-absorbed dose for most organs/tissues is only slightly influenced by respiratory motion. However, for the lung, the self-absorbed SAF is about 11.5% higher at the peak exhale phase than the peak inhale phase for photon energies above 50 keV. The cross-absorbed dose is obviously affected by respiratory motion for many combinations of source-target pairs. The cross-absorbed S-values for the heart contents irradiating the lung are about 7.5% higher in the peak exhale phase than the peak inhale phase for different positron-emitting radionuclides. For {sup 18}F-FDG, organ absorbed doses are less influenced by respiratory motion. Conclusions: Respiration-induced volume variations of the lungs and the repositioning of internal organs affect the self-absorbed dose of the lungs and cross-absorbed dose between organs in internal radiation dosimetry. The dynamic

  11. Supporting Treatment Decisions in Patients with Differentiated Thyroid Carcinoma (DTC) under Radioiodine-131 Therapy: Role of Biological Dosimetry Assessment

    International Nuclear Information System (INIS)

    Fadel, A.M.; Chebel, G.M.; Di Giorgio, M.; Vallerga, M.B.; Taja, M.R.; Radl, A.; Bubniak, R.V.; Oneto, A.

    2010-01-01

    Radioiodine-131 therapy is applied in patients with differentiated thyroid carcinoma (DTC), within the therapeutic scheme following thyroidectomy, for the ablation of thyroid remnants and treatment of metastatic disease. Several approaches for the selection of a therapeutic dose were applied. The aim of this therapy is to achieve a lethal dose in the tumor tissue, without exceeding the dose of tolerance in healthy tissues (doses greater than 2 Gy in bone marrow could lead to myelotoxicity). In this work, the treatment protocol used incorporates the assessment by biological dosimetry (BD) for estimating doses to whole body and bone marrow, to tailor patient's treatment. Biological Dosimetry prospective studies conducted on samples from patients with cumulative activities, before and after each therapeutic administration, allows to evaluate DNA damage and repair capacity in peripheral blood lymphocytes. (authors)

  12. The biological effectiveness of antiproton irradiation

    International Nuclear Information System (INIS)

    Holzscheiter, Michael H.; Bassler, Niels; Agazaryan, Nzhde; Beyer, Gerd; Blackmore, Ewart; DeMarco, John J.; Doser, Michael; Durand, Ralph E.; Hartley, Oliver; Iwamoto, Keisuke S.; Knudsen, Helge V.; Landua, Rolf; Maggiore, Carl; McBride, William H.; Moller, Soren Pape; Petersen, Jorgen; Skarsgard, Lloyd D.; Smathers, James B.; Solberg, Timothy D.; Uggerhoj, Ulrik I.; Vranjes, Sanja; Withers, H. Rodney; Wong, Michelle; Wouters, Bradly G.

    2006-01-01

    Background and purpose: Antiprotons travel through tissue in a manner similar to that for protons until they reach the end of their range where they annihilate and deposit additional energy. This makes them potentially interesting for radiotherapy. The aim of this study was to conduct the first ever measurements of the biological effectiveness of antiprotons. Materials and methods: V79 cells were suspended in a semi-solid matrix and irradiated with 46.7 MeV antiprotons, 48 MeV protons, or 6 Co γ-rays. Clonogenic survival was determined as a function of depth along the particle beams. Dose and particle fluence response relationships were constructed from data in the plateau and Bragg peak regions of the beams and used to assess the biological effectiveness. Results: Due to uncertainties in antiproton dosimetry we defined a new term, called the biologically effective dose ratio (BEDR), which compares the response in a minimally spread out Bragg peak (SOBP) to that in the plateau as a function of particle fluence. This value was ∼3.75 times larger for antiprotons than for protons. This increase arises due to the increased dose deposited in the Bragg peak by annihilation and because this dose has a higher relative biological effectiveness (RBE). Conclusion: We have produced the first measurements of the biological consequences of antiproton irradiation. These data substantiate theoretical predictions of the biological effects of antiproton annihilation within the Bragg peak, and suggest antiprotons warrant further investigation

  13. Reconstruction of absorbed dose by methods biological dosimetry inhabitans living in Semipalatinsk Nuclear Test Site

    International Nuclear Information System (INIS)

    Abildinova, G.

    2010-01-01

    As a result perennial overland and atmospheric test the nucleus weapon on Semipalatinsk nucler test site (NTS) about 1,2 ml person were subjected to frequentative sharp and chronic irradiation in different range of doses. Besides a significant number of battle radioactive matters tests with radionuclei dispersion on soil surface and an atmosphere was realized also. All this activity has caused the significant radioactive contamination and damage to an environment, and the local population has received extra exposure to radiation. These circumstances have essentially complicated the economy development of the given region. Aim: Reconstruction of absorbed dose by modern methods biological dosimetry beside inhabitants living in region of influence Semipalatinsk NTS. The cytogenetically examination of population Semipalatinsk region, living in different zones radiation risk: s. Dolon, s. Sarzhal, s. Mostik. Installed that total frequency of chromosome aberrations forms 4,8/100; 2,1/100; 2,5/100 cells, accordingly. High level of chromosome aberrations is conditioned to account radiations markers - acentric fragments (2,1/100 cells in s. Dolon; 1,09/100 cells in s. Sarzhal; 0,79/100 cells in s. Mostik); dysenteric and ring chromosomes (0,6; 0,2; 0,11) and stable type chromosome aberrations (1,02; 0,3; 1,0, accordingly). Frequency and spectrum of chromosome aberrations are indicative of significant mutation action ionizing radiations on chromosome device of somatic cells. Studied dependency an cytogenetically of effects from dose of irradiation within before 0,5 Gr in vitro for calibrated curve standard when undertaking reconstruction efficient dose at the time of irradiations examined group of population. Dependency is described the model a*cos(x) 1 + sin (x), where x - correlation a dysenteric and ring chromosomes to acentric fragments. Dependence of cytogenetic parameters upon ESR-doses had been studied. Had been received dependences: for the total frequency of

  14. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with the design and measurement of physical parameters used in theory or to support biological experiments. The radiation biophysics program tests and uses the theoretical developments for experimental design, and provides information for further theoretical development through experiments on cellular systems

  15. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with design and measurement of those physical parameters used in the theory or to support biological experiments. The radiation biophysics program tests and makes use of the theoretical developments for experimental design. Also, this program provides information for further theoretical development through experiments on cellular systems

  16. The Utility of Lymphocyte Premature Chromosome Condensation Analysis for Biological Dosimetry Following Accidental Overexposure to Ionising Radiation

    International Nuclear Information System (INIS)

    Chambrette, V.; Laval, F.; Voisin, P.

    1999-01-01

    Premature chromosome condensation (PCC) appears to have a possible utility for biological dosimetry purposes. The PCC technique may be adapted for cases of suspicion of overexposure where sampling is performed at least one day after an accident. For this purpose, human blood samples were exposed in vitro to 60 Co (0.5 Gy.min -1 ) up to 4 Gy and the PCC technique was performed after 24 h, 48 h, and 72 h of DNA repair at 37 deg. C. Analysis of excess PCC fragments distribution showed an overdispersion and the dose-effect relationship was best characterised by linear regression. Radiation-induced damage was reduced to 32% between the first and the second day of repair and to 42% the following day. Statistical precision of the dose was found to be dependent on the irradiation dose and on the number of cells examined. The necessity to establish dose-response relationships after different periods of DNA repair is demonstrated, and the use of PCC excess fragments yield as a bioindicator should take this fact into account. (author)

  17. Biological radiation effects

    International Nuclear Information System (INIS)

    Kiefer, J.

    1989-01-01

    The book covers all aspects of biological radiation effects. The physical basis is dealt with in some detail, and the effects at the subcellular and the cellular level are discussed, taking into account modern developments and techniques. The effects on the human organism are reviewed, both from the point of view of applications in medicine as well as with regard to radiation hazards (teratogenic, gonadal and carcinogenic effects)

  18. Biological Effects of Radiation

    International Nuclear Information System (INIS)

    Jatau, B.D.; Garba, N.N.; Yusuf, A.M.; Yamusa, Y. A.; Musa, Y.

    2013-01-01

    In earlier studies, researchers aimed a single particle at the nucleus of the cell where DNA is located. Eighty percent of the cells shot through the nucleus survived. This contradicts the belief that if radiation slams through the nucleus, the cell will die. But the bad news is that the surviving cells contained mutations. Cells have a great capacity to repair DNA, but they cannot do it perfectly. The damage left behind in these studies from a single particle of alpha radiation doubled the damage that is already there. This proved, beyond a shadow of doubt, those there biological effects occur as a result of exposure to radiation, Radiation is harmful to living tissue because of its ionizing power in matter. This ionization can damage living cells directly, by breaking the chemical bonds of important biological molecules (particularly DNA), or indirectly, by creating chemical radicals from water molecules in the cells, which can then attack the biological molecules chemically. At some extent these molecules are repaired by natural biological processes, however, the effectiveness of this repair depends on the extent of the damage. The interaction of ionizing with the human body, arising either from external sources outside the body or from internal contamination of the body by radioactive materials, leads to the biological effects which may later show up as a clinical symptoms. Basically, this formed the baseline of this research to serve as a yardstick for creating awareness about radiation and its resulting effects.

  19. The biological response of plucked human hair to low-dose radiation: a measure of individual radiosensitivity and a technique for biological dosimetry

    International Nuclear Information System (INIS)

    Swain, D.

    1997-01-01

    It is often assumed that the effects of radiation are linear with dose and that high dose effects can be extrapolated to low dose levels. However, there are a variety of mechanisms which can alter the response at low doses. The most important of these relate to induced sensitivity or induced repair mechanisms. It is therefore important that this area is studied in more depth by looking at the molecular effects and damage to cells at low doses. It is well known that there are certain rare genetic syndromes which predispose individuals to cancer, e.g. ataxia telangiectasia. It is also probable that there is a large range of sensitivity in the natural variation of individuals to the risk of radiation-induced cancer. It is proposed that radiosensitivity is studied using stimulated lymphocytes from whole blood and the technique extended to look at the effects in cell cultures established from human hair. Radiation treatment of cell cultures established from plucked human hair has been previously advocated as a non-invasive technique for non-uniform biological dosimetry and it is proposed that these techniques are adapted to the use of hair to estimate individual radiosensitivity. The aim is to establish and optimize these techniques for culturing keratinocytes from plucked human hair follicles with a view to study biological markers for the subsequent assessment of radiosensitivity. Preliminary results are promising and suggest that the technique for culturing keratinocytes from hair presents a feasible approach. Results from this primary cell culture technique and results from the comparison of the micronuclei data obtained from the cell cultures and stimulated lymphocytes will be presented. (author)

  20. Variations of influence quantities in industrial irradiators and their effect on dosimetry performance

    International Nuclear Information System (INIS)

    Chu, R.D.H.

    1999-01-01

    Many environmental factors, including irradiation temperature, post-irradiation storage temperature, dose rate, relative humidity, oxygen content and the energy spectrum may affect the response of dosimetry systems used in industrial radiation processing. Although the effects of individual influence quantities have been extensively studied, the variations of these influence quantities in production irradiators and the complex relationships between the effects of different influence quantities make it difficult to assess the overall effect on the measurement uncertainty. In the development of new dosimetry systems it is important to know the effect of each influence quantity and developers of new dosimetry systems should perform studies over a wide range of irradiation conditions. Analysis parameters and manufacturing specifications should be chosen to minimize the effect of influence quantities in the environments where the dosimeters will be used. Because of possible relationships between different influence quantities, care must be taken to ensure that the response function determined in the calibration of the dosimetry system is applicable for the conditions in which the dosimeters will be used. Reference standard dosimetry systems which have been thoroughly studied and have known relationships between dose response and influence quantities should be used to verify the calibration of routine dosimetry systems under the actual conditions of use. Better understanding of the variations in influence quantities in industrial irradiators may be obtained by modeling or direct measurements and may provide improvements in the calibration of routine dosimetry system and reduction of the overall measurement uncertainty. (author)

  1. Light scattering by irradiated cells as a method of biological dosimetry

    International Nuclear Information System (INIS)

    Ostashevsky, J.

    1984-01-01

    Light scattering (LS) parameters between 350-500 nm wavelength have been studied for 2 groups of cells: 1) blood (BL) and thymus (TL) lymphocytes of rats and mice, and 2) Ehrlich ascite tumor (EAT) cells. LS measurements of freshly prepared cell suspensions have been made 24 hrs after x-ray irradiation of rodents (250 Kev, HVL = 2 mm Cu) at doses of 50-900 cGy. A steep (30% per Gy) linear (50-800 cGy for TL and 50-400 cGy for BL) dose-dependence was obtained for the increase in 90 0 -angle LS intensity. Increase in absorption (low-angle LS) was also linear (50-800 cGy for TL and BL) but less steep (9% per Gy). Irradiated cells were the same size as unirradiated. Changes in LS for TL and BL appear to follow the appearance of additional vacuoles which may become new internal smaller-size centers of LS. This suggestion is supported by direct observations of cells with dark-field microscopy. For EAT cells, both 90 0 and low angle LS had the same slope. This slope (4% per Gy) is much shallower than that for BL and TL, and quantitatively coincides with enlargement of area of EAT cells, which could explain LS changes. The difference in LS behavior of the two cellular groups reflects a difference in their early response to irradiation: interphase death for TL and BL, vs division delay for EAT cells. The above data suggest the fast and simple method of biological dosimetry

  2. The Relevance of Chromosome Aberration Yields for Biological Dosimetry After Low-Level Occupational Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bauchinger, M.; Schmid, E.; Hug, O. [Gesellschaft fuer Strahlenforschung, Institut fuer Biologie, Neuherberg, Federal Republic of Germany (Germany); Strahlenbiologisches Institut der Universitaet Muenchen, Federal Republic of Germany (Germany)

    1971-06-15

    The usefulness of chromosome analysis for biological dosimetry has been tested in two groups of persons occupationally exposed to radiation: (I) in nurses employed in gynaecological radiology, exposed especially when handling radium inserts; and (II) in nuclear industry workers, all of which were exposed to external gamma irradiation and some of them also to internal radiation after incorporation of various radionuclides. The total dose registered with personal dosimeters ranged in Group 1 from 0.1 to 91.1 rem accumulated over working periods of 0.1 to 13 years, and in Group II from 1.0 to 18.2 rem accumulated over 1 to 9 years. Compared with unexposed controls, both groups exhibit a significant increase of cells with chromosome aberrations as well as larger numbers of breaks per cell. Dicentrics and rings could be observed in some cells, providing good evidence for previous radiation exposure, since these types of aberrations are extremely rare events in unexposed individuals. No correlation between the aberration yields and the film badge values could be demonstrated in Group II. Also, in Group I the fluctuations from individual to individual are rather high. Nevertheless, a positive correlation to the ''dose'' was obtained. Even a sub-group of the nurses that had only been exposed to 20 rem showed significantly more aberrations than control persons. From the results obtained, type and frequency of chromosome aberrations may be considered an indicator of radiation exposure even at the low doses. The reasons for lack of correspondence of chromosome aberration yields and the results of personal monitoring procedures are discussed in detail. (author)

  3. Biological effects of hyperthermia

    International Nuclear Information System (INIS)

    Okumura, Hiroshi

    1980-01-01

    Biological effects of hyperthermia and application of hyperthermia to cancer therapy were outlined. As to independent effects of hyperthermia, heat sensitivity of cancer cells, targets of hyperthermia, thermal tolerance of cancer cells, effects of pH on hyperthermic cell survival, effects of hyperthermia on normal tissues, and possibility of clinical application of hyperthermia were described. Combined effect of hyperthermia and x-irradiation to enhance radiosensitivity of cancer cells, its mechanism, effects of oxygen on cancer cells treated with hyperthermia and irradiation, and therapeutic ratio of combined hyperthermia and irradiation were also described. Finally, sensitizers were mentioned. (Tsunoda, M.)

  4. Biological effectiveness of neutrons: Research needs

    Energy Technology Data Exchange (ETDEWEB)

    Casarett, G.W.; Braby, L.A.; Broerse, J.J.; Elkind, M.M.; Goodhead, D.T.; Oleinick, N.L.

    1994-02-01

    The goal of this report was to provide a conceptual plan for a research program that would provide a basis for determining more precisely the biological effectiveness of neutron radiation with emphasis on endpoints relevant to the protection of human health. This report presents the findings of the experts for seven particular categories of scientific information on neutron biological effectiveness. Chapter 2 examines the radiobiological mechanisms underlying the assumptions used to estimate human risk from neutrons and other radiations. Chapter 3 discusses the qualitative and quantitative models used to organize and evaluate experimental observations and to provide extrapolations where direct observations cannot be made. Chapter 4 discusses the physical principles governing the interaction of radiation with biological systems and the importance of accurate dosimetry in evaluating radiation risk and reducing the uncertainty in the biological data. Chapter 5 deals with the chemical and molecular changes underlying cellular responses and the LET dependence of these changes. Chapter 6, in turn, discusses those cellular and genetic changes which lead to mutation or neoplastic transformation. Chapters 7 and 8 examine deterministic and stochastic effects, respectively, and the data required for the prediction of such effects at different organizational levels and for the extrapolation from experimental results in animals to risks for man. Gaps and uncertainties in this data are examined relative to data required for establishing radiation protection standards for neutrons and procedures for the effective and safe use of neutron and other high-LET radiation therapy.

  5. Biological effectiveness of neutrons: Research needs

    International Nuclear Information System (INIS)

    Casarett, G.W.; Braby, L.A.; Broerse, J.J.; Elkind, M.M.; Goodhead, D.T.; Oleinick, N.L.

    1994-02-01

    The goal of this report was to provide a conceptual plan for a research program that would provide a basis for determining more precisely the biological effectiveness of neutron radiation with emphasis on endpoints relevant to the protection of human health. This report presents the findings of the experts for seven particular categories of scientific information on neutron biological effectiveness. Chapter 2 examines the radiobiological mechanisms underlying the assumptions used to estimate human risk from neutrons and other radiations. Chapter 3 discusses the qualitative and quantitative models used to organize and evaluate experimental observations and to provide extrapolations where direct observations cannot be made. Chapter 4 discusses the physical principles governing the interaction of radiation with biological systems and the importance of accurate dosimetry in evaluating radiation risk and reducing the uncertainty in the biological data. Chapter 5 deals with the chemical and molecular changes underlying cellular responses and the LET dependence of these changes. Chapter 6, in turn, discusses those cellular and genetic changes which lead to mutation or neoplastic transformation. Chapters 7 and 8 examine deterministic and stochastic effects, respectively, and the data required for the prediction of such effects at different organizational levels and for the extrapolation from experimental results in animals to risks for man. Gaps and uncertainties in this data are examined relative to data required for establishing radiation protection standards for neutrons and procedures for the effective and safe use of neutron and other high-LET radiation therapy

  6. Contribution of new cytogenetic techniques in the estimations of old irradiations in retrospective biological dosimetry

    International Nuclear Information System (INIS)

    Pouzoulet, F.

    2007-10-01

    The objective of this study was to answer three questions: if the translocations are steady: the results have shown that the translocations even if they are not obligatory steady can be used in retrospective dosimetry. Furthermore, it appeared important to consider the complex translocations in view of their relative stability and complementary information they bring ( quality of radiation, received dose). The second question is what contribution of the M-F.I.S.H. in the translocations analysis in comparison with the F.I.S.H.-3: we have shown that the M-F.I.S.H. would allow to raise the whole of doubt due to a partial genome observation. that has for effect to increase the precision of the analysis and that what ever be the received dose. The third question is if there are differences between the chromosomal aberrations generated by x radiation of 50 keV and by gamma radiation from cobalt-60: yes, the low energy photons generate more translocations than the photons coming from cobalt-60. But they generate less dicentrics. this difference comes from the way the energy is deposited that leads to a more important formation of complex and multiple translocations with the low energy photons. this could constitute a problem in the use of low energy photons in radiotherapy. it would seem that the simple translocations rate is not influenced by the photons energy. (N.C.)

  7. Standard Practice for Dosimetry of Proton Beams for use in Radiation Effects Testing of Electronics

    International Nuclear Information System (INIS)

    McMahan, Margaret A.; Blackmore, Ewart; Cascio, Ethan W.; Castaneda, Carlos; von Przewoski, Barbara; Eisen, Harvey

    2008-01-01

    Representatives of facilities that routinely deliver protons for radiation effect testing are collaborating to establish a set of standard best practices for proton dosimetry. These best practices will be submitted to the ASTM International for adoption

  8. Standard Practice for Dosimetry of Proton Beams for use in Radiation Effects Testing of Electronics

    Energy Technology Data Exchange (ETDEWEB)

    McMahan, Margaret A.; Blackmore, Ewart; Cascio, Ethan W.; Castaneda, Carlos; von Przewoski, Barbara; Eisen, Harvey

    2008-07-25

    Representatives of facilities that routinely deliver protons for radiation effect testing are collaborating to establish a set of standard best practices for proton dosimetry. These best practices will be submitted to the ASTM International for adoption.

  9. Collaborative Physical and Biological Dosimetry Studies for Neutron Capture Therapy at the RA-1 Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    David W. Nigg; Amanda E. Schwint; John K. Hartwell; Elisa M. Heber; Veronica Trivillin; Jorge Castillo; Luis Wentzeis; Patrick Sloan; Charles A. Wemple

    2004-10-01

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminiscent dosimeters to characterize the BNCT irradiation facility developed at the RA-1 research reactor operated by the Argentine National Atomic Energy Commission in Buenos Aires. Some biological scoping irradiations have also been completed using a small-animal (hamster) oral mucosa tumor model. Results indicate that the RA-1 neutron source produces useful dose rates but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications.

  10. Collaborative Physical and Biological Dosimetry Studies for Neutron Capture Therapy at the RA-1 Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, D.W.; Schwint, A.E.; Hartwell, J.K.; Heber, E.M.; Trivillin, V.; Castillo, J.; Wentzeis, L.; Sloan, P.; Wemple, C.A.

    2004-10-04

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminiscent dosimeters to characterize the BNCT irradiation facility developed at the RA-1 research reactor operated by the Argentine National Atomic Energy Commission in Buenos Aires. Some biological scoping irradiations have also been completed using a small-animal (hamster) oral mucosa tumor model. Results indicate that the RA-1 neutron source produces useful dose rates but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications.

  11. Dosimetry and health effects self-teaching curriculum: illustrative problems to supplement the user's manual for the Dosimetry and Health Effects Computer Code

    International Nuclear Information System (INIS)

    Runkle, G.E.; Finley, N.C.

    1983-03-01

    This document contains a series of sample problems for the Dosimetry and Health Effects Computer Code to be used in conjunction with the user's manual (Runkle and Cranwell, 1982) for the code. This code was developed at Sandia National Laboratories for the Risk Methodology for Geologic Disposal of Radioactive Waste program (NRC FIN A-1192). The purpose of this document is to familiarize the user with the code, its capabilities, and its limitations. When the user has finished reading this document, he or she should be able to prepare data input for the Dosimetry and Health Effects code and have some insights into interpretation of the model output

  12. Reproductive function and biological dosimetry prospective study of young thyroid differentiated cancer patients treated with I-131

    International Nuclear Information System (INIS)

    Di Giorgio, M.; Vallerga, M.B.; Taja, M.R.; Radl, A.; Chebel, Graciela; Fadel, Ana Maria; Gutierrez, Silvia; Normandi, Eduardo; Levalle, Oscar; Kundt, Miriam

    2011-01-01

    The administration of I-131 in the management of differentiated thyroid cancer (DTC) is a well established practice. As the spermatogonia is highly sensitive to radiation, large doses of internal radiation could result in adverse effects on reproductive function such as oligo/azoospermia and infertility. During spermiogenesis, mammalian chromatin undergoes replacement of nuclear histones by protamines, which yields a DNA sixfold more highly condensed in spermatozoa than in mitotic chromosomes. The structure of this highly packaged chromatin shows a low binding capacity for several fluorochromes and dyes such as chromomycin A3 (CMA3). The aim of this study is to assess the correlation between reproductive function (endocrine and exocrine testicular function, and levels of CMA3 stainability) and biological dosimetry in a prospective study of 4 young DTC patients treated with I-131. In this context, a background level of CMA3 binding in mature human sperm was established. It revealed a variable accessibility of CMA3 to the DNA that is dependant on packaging quality and thus, indicative of protamine deficiency. The identification of altered stainability suggests DNA damage as well as epigenetic effects, which may be indicators of male infertility. Transient impairment of spermatogenesis associated with an increase in FSH, an altered spermiogram and even azoospermia was observed after the administration of cumulative activities. Overall, testosterone levels were preserved, except in one case, which presented a drastically diminished value associated with an increase in LH level. As peripheral blood lymphocytes and spermatogonia have equivalent radiosensitivity (interphase death) we hypothesize that the knowledge of DNA damage recovery in peripheral lymphocytes could correlate with spermatogonia recovery and with FSH evolution. (authors)

  13. Reproductive function and biological dosimetry prospective study of young thyroid differentiated cancer patients treated with I-131

    International Nuclear Information System (INIS)

    Di Giorgio, Marina; Vallerga, Maria B.; Taja, Maria R.; Radl, Analia; Chebel, Graciela; Fadel, Ana M.; Gutierrez, Silvia; Normandi, Eduardo; Levalle, Oscar; Kundt, Miriam

    2008-01-01

    Full text: The administration of I-131 in the management of differentiated thyroid cancer (DTC) is a well established practice. As the spermatogonia is highly sensitive to radiation, large doses of internal radiation could result in adverse effects on reproductive function such as oligo/azoospermia and infertility. During spermiogenesis, mammalian chromatin undergoes replacement of nuclear histones by protamines, which yields a DNA sixfold more highly condensed in spermatozoa than in mitotic chromosomes. The structure of this highly packaged chromatin shows a low binding capacity for several fluoro chromes and dyes such as chromo mycin A 3 (CMA 3 ). The aim of this study is to assess the correlation between reproductive function (endocrine and exocrine testicular function, and levels of CMA 3 stainability) and biological dosimetry in a prospective study of 4 young DTC patients treated with I-131. In this context, a background level of CMA 3 binding in mature human sperm was established. It revealed a variable accessibility of CMA 3 to the DNA that is dependant on packaging quality and thus, indicative of protamine deficiency. The identification of altered stainability suggests DNA damage as well as epigenetic effects, which may be indicators of male infertility. Transient impairment of spermatogenesis associated with an increase in FSH, an altered spermiogram and even azoospermia was observed after the administration of cumulative activities. Overall, testosterone levels were preserved, except in one case, which presented a drastically diminished value associated with an increase in LH level. As peripheral blood lymphocytes and spermatogonia have equivalent radiosensitivity (interphase death) we hypothesize that the knowledge of DNA damage recovery in peripheral lymphocytes could correlate with spermatogonia recovery and with FSH evolution. Therefore, a prospective study on the decline of unstable chromosome aberrations is being conducted, considering the damage

  14. Topics in radiation dosimetry radiation dosimetry

    CERN Document Server

    1972-01-01

    Radiation Dosimetry, Supplement 1: Topics in Radiation Dosimetry covers instruments and techniques in dealing with special dosimetry problems. The book discusses thermoluminescence dosimetry in archeological dating; dosimetric applications of track etching; vacuum chambers of radiation measurement. The text also describes wall-less detectors in microdosimetry; dosimetry of low-energy X-rays; and the theory and general applicability of the gamma-ray theory of track effects to various systems. Dose equivalent determinations in neutron fields by means of moderator techniques; as well as developm

  15. Dosimetry; La dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Le Couteulx, I.; Apretna, D.; Beaugerie, M.F. [Electricite de France (EDF), 75 - Paris (France)] [and others

    2003-07-01

    Eight articles treat the dosimetry. Two articles evaluate the radiation doses in specific cases, dosimetry of patients in radiodiagnosis, three articles are devoted to detectors (neutrons and x and gamma radiations) and a computer code to build up the dosimetry of an accident due to an external exposure. (N.C.)

  16. THz waves: biological effects, industrial and medical

    International Nuclear Information System (INIS)

    Coutaz, J.L.; Garet, F.; Le Drean, Y.; Zhadobov, M.; Veyret, B.; Mounaix, P.; Caumes, J.P.; Gallot, G.; Gian Piero, Gallerano; Mouret, G.; Guilpin, J.C.

    2011-01-01

    Following the debates about body scanners installed in airports for passengers security control, the non-ionizing radiations (NIR) section of the French radiation protection society (SFR) has organized a conference day to take stock of the present day knowledge about the physical aspects and the biological effects of this frequency range as well as about their medical, and industrial applications (both civil and military). This document gathers the slides of the available presentations: 1 - introduction and general considerations about THz waves, the THz physical phenomenon among NIR (J.L. Coutaz); 2 - interaction of millimeter waves with living material: from dosimetry to biological impacts (Y. Le Drean and M. Zhadobov); 3 - Tera-Hertz: standards and recommendations (B. Veyret); 4 - THz spectro-imaging technique: status and perspectives (P. Mounaix); 5 - THz technology: seeing the invisible? (J.P. Caumes); 6 - Tera-Hertz: biological and medical applications (G. Gallot); 7 - Biological applications of THz radiation: a review of events and a glance to the future (G.P. Gallerano); 8 - Industrial and military applications - liquids and solids detection in the THz domain (F. Garet); 9 - THz radiation and its civil and military applications - gas detection and quantifying (G. Mouret); 10 - Body scanners and civil aviation security (J.C. Guilpin, presentation not available). (J.S.)

  17. Biological Dosimetry of X-rays by micronuclei study; Dosimetria Biologica de rayos-X mediante el estudio de micronucleos

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, E.; Silva, A.; Navlet, J.

    1991-07-01

    Biological dosimetry consists of estimating absorbed doses for people exposed to radiation by mean biological methods. Several indicators used are based in haematological, biochemical an cytogenetics data, although nowadays without doubt, the cytogenetic method is considered to be the most reliable, in this case, the study of micronuclei in peripheral blood lymphocytes citokinetics blocked can be related to absorbed dose through an experimental calibration curve. An experimental dose-response curve, using micronuclei assay for X-rays at 250 kVp, 43,79 rads/min and temperature 37 degree centigree has been produced. Experimental data is fitted to model Y=C+ {alpha}D+BD''2 where Y is the number of micronuclei per cell and D the dose. The curve is compared with those produced elsewhere. (Author) 24 refs.

  18. Biological Dosimetry of X-rays by micronuclei study; Dosimetria Biologica de rayos-X mediante el estudio de micronucleos

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, E; Silva, A; Navlet, J

    1991-07-01

    Biological dosimetry consists of estimating absorbed doses for people exposed to radiation by mean biological methods. Several indicators used are based in haematological, biochemical an cytogenetics data, although nowadays without doubt, the cytogenetic method is considered to be the most reliable, in this case, the study of micronuclei in peripheral blood lymphocytes citokinetics blocked can be related to absorbed dose through an experimental calibration curve. An experimental dose-response curve, using micronuclei assay for X-rays at 250 kVp, 43,79 rads/min and temperature 37 degree centigree has been produced. Experimental data is fitted to model Y=C+ {alpha}D+BD''2 where Y is the number of micronuclei per cell and D the dose. The curve is compared with those produced elsewhere. (Author) 24 refs.

  19. Biological effects of neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Ogiu, Toshiaki; Ohmachi, Yasushi; Ishida, Yuka [National Inst. of Radiological Sciences, Chiba (JP)] [and others

    2003-03-01

    Although the occasion to be exposed to neutrons is rare in our life, except for nuclear accidents like in the critical accident at Tokai-mura in 1999, countermeasures against accident should be always prepared. In the Tokai-mura accident, residents received less than 21 mSv of neutrons and gamma rays. The cancer risks and fetal effects of low doses of neutrons were matters of concern among residents. The purpose of this program is to investigate the relative biological effectiveness (RBE) for leukemias, and thereby to assess risks of neutrons. Animal experiments are planed to obtain the following RBEs: (1) RBE for the induction of leukemias in mice and (2) RBE for effects on fetuses. Cyclotron fast neutrons (10 MeV) and electrostatic accelerator-derived neutrons (2 MeV) are used for exposure in this program. Furthermore, cytological and cytogenetic analyses will be performed. (author)

  20. Cytogenetic techniques for biological indications and dosimetry of of radiation damages in humans

    International Nuclear Information System (INIS)

    Hadjidekova, V.

    2003-01-01

    The cytogenetic methods present a proved way for bio-monitoring and bio-dosimetry for persons, submitted to ionising radiation in occupational and emergency conditions. Their application complement and assist the evaluation of the physical dosimetry and takes in account the individual radiosensitivity of the organism. A comparative assessment is made of the cytogenetic markers for radiation damage of humans applied in Bulgaria. It is discussed the sensitivity of the methods and their development in the last years, as well as the basic concept for their application - the causal relationship between the frequency of the observation of cytogenetic markers in peripheral blood lymphocytes and the risk of oncological disease. The conventional analysis of dicentrics is recognised as a 'golden standard' for the quantitative assessment of the radiation damage. The long term persisting translocations reflect properly the cumulative dose burden from chronic exposure. The micronucleus test allows a quick screening of large groups of persons, working in ionising radiation environment. The combined application with centromeric DNA probe improves the sensitivity and presents a modern alternative of the bio-monitoring and bio-dosimetry. It is discussed the advantages of the different cytogenetic techniques and their optimised application for the assessment of the radiation impact on humans

  1. Effective dose to staff from interventional procedures: Estimations from single and double dosimetry

    International Nuclear Information System (INIS)

    Kuipers, G.; Velders, X. L.

    2009-01-01

    The exposure of 11 physicians performing interventional procedures was measured by means of two personal dosemeters. One personal dosemeter was worn outside the lead apron and an additional under the lead apron. The study was set up in order to determine the added value of a dosemeter worn under the lead apron. With the doses measured, the effective doses of the physicians were estimated using an algorithm for single dosimetry and two algorithms for double dosimetry. The effective doses calculated with the single dosimetry algorithm ranged from 0.11 to 0.85 mSv in 4 weeks. With the double dosimetry algorithms, the effective doses ranged from 0.02 mSv to 0.47 mSv. The statistical analysis revealed no significant differences in the accuracy of the effective doses calculated with single or double dosimetry algorithms. It was concluded that the effective dose cannot be considered a more accurate estimate when two dosemeters are used instead of one. (authors)

  2. Biological dosimetry of patients with differenced carcinoma of thyroid treated with Iodine-131; Dosimetria biologica de pacientes con carcinoma diferenciado de tiroides tratados con Iodo-131

    Energy Technology Data Exchange (ETDEWEB)

    Vallerga, M. B.; Rojo, A.M.; Taja, M.R.; Deluca, G.; Di Giorgio, M. [Autoridad Regulatoria Nuclear Av. Del Libertador 8250 (C1429BNP). Buenos Aires (Argentina); Fadel, A. [Hospital General de Agudos Dr. Carlos Durand Av. Diaz Velez 5044. Buenos Aires (Argentina); Cabrejas, M.; Valdivieso, C. [Hospital de Clfnicas Jose de San Martin Av. Cordoba 2351 (CP1120). Buenos Aires (Argentina)]. e-mail: mvallerg@cae.arn.gov.ar

    2006-07-01

    aberrations it was considered absorbed dose to whole body. The obtained doses were compared by the different biological methods used. The evaluation by internal dosimetry of the data obtained tracer post-activity allowed to personalize the activity of I-131 to administer, starting from physical-mathematical models that consider the particular biokinetics of each patient (MIRD methodology). The doses estimated by the used biological dosemeters were consistent among them. It was discussed its scopes and limitations to be applied in the validation of the dosimetric estimation based on models, in order to administer a therapeutic dose protecting the patient of the adverse effects of the internal radiotherapy in organs that are not target of the same one. The acquired experience is considered of utility to give answer in cases of radioiodine incorporation in occupationally exposed personnel. (Author)

  3. Fundamentals of Dosimetry. Chapter 3

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, E. M. [Universidade de São Paulo, São Paulo (Brazil)

    2014-09-15

    Determination of the energy imparted to matter by radiation is the subject of dosimetry. The energy deposited as radiation interacts with atoms of the material, as seen in the previous chapter. The imparted energy is responsible for the effects that radiation causes in matter, for instance, a rise in temperature, or chemical or physical changes in the material properties. Several of the changes produced in matter by radiation are proportional to the absorbed dose, giving rise to the possibility of using the material as the sensitive part of a dosimeter. Also, the biological effects of radiation depend on the absorbed dose. A set of quantities related to the radiation field is also defined within the scope of dosimetry. It will be shown in this chapter that, under special conditions, there are simple relations between dosimetric and field description quantities. Thus, the framework of dosimetry is the set of physical and operational quantities that are studied in this chapter.

  4. Biological effects of tritium

    International Nuclear Information System (INIS)

    Nieto, M.

    1985-01-01

    The aim of this project is to study the thermal effects on proliferation activity in the intestinal epithelium of the goldfish acclimated at different temperatures (stationary state). The cell division occurs only at certain phases of the circadian cycle when the proliferative activity is synchronized or trained by an environmental factor such as light-dark cycle. Another aspect of the project is the study of the biological effects, non-stochastic, on cell kinetics in animals chronically exposed to low dose rates or tritium and gamma rays from 60 CO, used as a standard radiation. The influence on the accumulated dose per cell and cycle cell in function of the duration of the cell cycle at different acclimation temperatures should be considered. To calculate the risk of tritium contamination from nuclear power plants (radiation exposure), the organic tissue-bond is of decisive importance due to the long turnover of the organic tissue-bond in organisms favouring transport of tritium to other organisms of the ecosystem and to man. (author)

  5. Use of unstable chromosome aberrations for biological dosimetry after the first postirradiation mitosis

    International Nuclear Information System (INIS)

    Doloy, M.T.; Malarbet, J.L.; Guedeney, G.; Bourguignon, M.; Leroy, A.; Reillaudou, M.; Masse, R.

    1991-01-01

    The loss of unstable chromosome aberrations after the first postirradiation mitosis makes their use difficult in radiation dosimetry. We describe here a method which, in a cell population observed at this stage, allows retrospective estimation of the frequencies of the unstable aberrations induced at the time of irradiation, and their use as a dosimeter. The laws controlling the behavior of unstable aberrations during mitosis were defined from a large-scale experiment on irradiated human lymphocytes. For cells undergoing the first, second, or third mitosis after irradiation, relationships were determined between the frequency, at irradiation time, of acentric fragments not arising from formation of dicentrics or rings, and the ratio of dicentrics and centric rings appearing without acentric fragments to the total number of dicentrics plus rings. On the basis of this ratio, the method described here provides an assessment of the postirradiation mitotic activity in a cell population. This assessment permitted estimation of the cell distribution and frequency of dicentrics plus centric rings, and of the frequency of acentric fragments at the time of irradiation. The use of this method for retrospective dosimetry after whole-body irradiation under various conditions of exposure is illustrated

  6. Cost effective distributed computing for Monte Carlo radiation dosimetry

    International Nuclear Information System (INIS)

    Wise, K.N.; Webb, D.V.

    2000-01-01

    Full text: An inexpensive computing facility has been established for performing repetitive Monte Carlo simulations with the BEAM and EGS4/EGSnrc codes of linear accelerator beams, for calculating effective dose from diagnostic imaging procedures and of ion chambers and phantoms used for the Australian high energy absorbed dose standards. The facility currently consists of 3 dual-processor 450 MHz processor PCs linked by a high speed LAN. The 3 PCs can be accessed either locally from a single keyboard/monitor/mouse combination using a SwitchView controller or remotely via a computer network from PCs with suitable communications software (e.g. Telnet, Kermit etc). All 3 PCs are identically configured to have the Red Hat Linux 6.0 operating system. A Fortran compiler and the BEAM and EGS4/EGSnrc codes are available on the 3 PCs. The preparation of sequences of jobs utilising the Monte Carlo codes is simplified using load-distributing software (enFuzion 6.0 marketed by TurboLinux Inc, formerly Cluster from Active Tools) which efficiently distributes the computing load amongst all 6 processors. We describe 3 applications of the system - (a) energy spectra from radiotherapy sources, (b) mean mass-energy absorption coefficients and stopping powers for absolute absorbed dose standards and (c) dosimetry for diagnostic procedures; (a) and (b) are based on the transport codes BEAM and FLURZnrc while (c) is a Fortran/EGS code developed at ARPANSA. Efficiency gains ranged from 3 for (c) to close to the theoretical maximum of 6 for (a) and (b), with the gain depending on the amount of 'bookkeeping' to begin each task and the time taken to complete a single task. We have found the use of a load-balancing batch processing system with many PCs to be an economical way of achieving greater productivity for Monte Carlo calculations or of any computer intensive task requiring many runs with different parameters. Copyright (2000) Australasian College of Physical Scientists and

  7. Cytogenetic biological dosimetry in radiological protection: chromosome aberration analysis in human lymphocyties

    International Nuclear Information System (INIS)

    Campos, I.M.A. de.

    1988-01-01

    The effects of ionizing radiation on chromosomes have been know for several decades and dose effect relationships are also fairly well established for several doses and dose rates. Apart from its biological significance, the interpretation of chromosome aberration frequency associated with human exposure to radiation plays an important role in dose assessment, particularly in cases where exposure is though to have occurred but no physical dose monitoring system was present. Based on the cytogenetic data obtained from seven cases of exposure to radiation the aberration frequency have been fitted to the quadratic function Y= αD + βD 2 as the dose response curves from literature. The dose equivalent estimate by frequency of chromosomic aberration found here was compared with 60 Co and 192 Ir already published curves obtained at almost similar dose rate together with some hematological data. (author) [pt

  8. Biological radiation effects

    International Nuclear Information System (INIS)

    Sejourne, Michele.

    1977-01-01

    This work examines ionizing radiations: what they are, where they come from, their actions and consequences, finally the norms and preventive measures necessary to avoid serious contamination, whether the individual or the population in general is involved. Man has always been exposed to natural irradiation, but owing to the growing use of ionizing radiations both in medicine and in industry, not to mention nuclear tests and their use as an argument of dissuasion, the irradiation of human beings is increasing daily. Radioactive contamination does remain latent, apart from acute cases, but this is where the danger lies since the consequences may not appear until long after the irradiation. Of all biological effects due to the action of radioelements the genetic risk is one of the most important, affecting the entire population and especially the generations to come. The risk of cancer and leukemia induction plays a substantial part also since a large number of people may be concerned, depending on the mode of contamination involved. All these long-term dangers do not of course exclude the various general or local effects to which the individual alone may be exposed and which sometimes constitute a threat to life. As a result the use of ionizing radiations must be limited and should only be involved if no other process can serve instead. The regulations governing radioelements must be stringent and their application strictly supervised for the better protection of man. This protection must be not only individual but also collective since pollution exists in air, water and land passes to plants and animals and finally reaches the last link in the food chain, man [fr

  9. Stopping powers for protons in materials of interest in dosimetry and in medical and biological applications

    International Nuclear Information System (INIS)

    Thwaites, D.I.

    1985-01-01

    Stopping powers are required for many radiation applications in medicine and biology. Their accuracy can be critical. Some published calculations for these situations have not included recent developments in stopping power theory or the body of work on deviations from additivity due to phase of chemical binding effects. These areas have recently been reviewed and mean excitation energies recommended for a range of materials of interest. Calculated stopping powers are presented for protons of 0.4 to 200 MeV taking the available information into account. The materials considered are Lucite, ICRU composition muscle and bone, A-150 plastic, a TE gas, acetylene and polystyrene and water and water vapour. With suitable corrections and suitable I values in the Bethe stopping power expression, accuracies of <2% can be achieved. (author)

  10. Dosimetry system 1986

    International Nuclear Information System (INIS)

    Woolson, William A.; Egbert, Stephen D.; Gritzner, Michael L.

    1987-01-01

    In May 1983, the authors proposed a dosimetry system for use by the Radiation Effects Research Foundation (RERF) that would incorporate the new findings and calculations of the joint United States - Japan working groups on the reassessment of A-bomb dosimetry. The proposed dosimetry system evolved from extensive discussions with RERF personnel, numerous meetings of the scientists from Japan and the United States involved in the dosimetry reassessment research, and requirements expressed by epidemiologists and radiobiologists on the various review panels. The dosimetry system proposed was based on considerations of the dosimetry requirements for the normal work of RERF and for future research in radiobiology, the computerized input data on A-bomb survivors available in the RERF data base, the level of detail, precision, and accuracy of various components of the dosimetric estimates, and the computer resources available at RERF in Hiroshima. These discussions and our own experience indicated that, in light of the expansion of computer and radiation technologies and the desire for more detail in the dosimetry, an entirely new approach to the dosimetry system was appropriate. This resulted in a complete replacement of the T65D system as distinguished from a simpler approach involving a renormalization of T65D parameters to reflect the new dosimetry. The proposed dosimetry system for RERF and the plan for implementation was accepted by the Department of Energy (DOE) Working Group on A-bomb Dosimetry chaired by Dr. R.F. Christy. The dosimetry system plan was also presented to the binational A-bomb dosimetry review groups for critical comment and was discussed at joint US-Japan workshop. A prototype dosimetry system incorporating preliminary dosimetry estimates and applicable to only a limited set of A-bomb survivors was installed on the RERF computer system in the fall of 1984. This system was successfully operated at RERF and provided an initial look at the impact of

  11. Biological radiation effects

    International Nuclear Information System (INIS)

    Koggl, D.; Dedenkov, A.N.

    1986-01-01

    All nowadays problems of radio biology are considered: types of ionizing radiations, their interaction with material; damage of molecular structures and their reparation; reaction of cells and their recovery from radiation damage; reaction of the whole organism and its separate systems. Particular attention is given to the problems of radiation carcinogenesis and radiation hazard for man

  12. Dosimetry in dentistry.

    Science.gov (United States)

    Asha, M L; Chatterjee, Ingita; Patil, Preeti; Naveen, S

    2015-01-01

    The purpose of this paper was to review various dosimeters used in dentistry and the cumulative results of various studies done with various dosimeters. Several relevant PubMed indexed articles from 1999 to 2013 were electronically searched by typing "dosimeters", "dosimeters in dentistry", "properties of dosimeters", "thermoluminescent and optically stimulated dosimeters", "recent advancements in dosimetry in dentistry." The searches were limited to articles in English to prepare a concise review on dental dosimetry. Titles and abstracts were screened, and articles that fulfilled the criteria of use of dosimeters in dental applications were selected for a full-text reading. Article was divided into four groups: (1) Biological effects of radiation, (2) properties of dosimeters, (3) types of dosimeters and (4) results of various studies using different dosimeters. The present review on dosimetry based on various studies done with dosimeters revealed that, with the advent of radiographic technique the effective dose delivered is low. Therefore, selection of radiological technique plays an important role in dental dose delivery.

  13. Quantum Effects in Biological Systems

    CERN Document Server

    2016-01-01

    Since the last decade the study of quantum mechanical phenomena in biological systems has become a vibrant field of research. Initially sparked by evidence of quantum effects in energy transport that is instrumental for photosynthesis, quantum biology asks the question of how methods and models from quantum theory can help us to understand fundamental mechanisms in living organisms. This approach entails a paradigm change challenging the related disciplines: The successful framework of quantum theory is taken out of its low-temperature, microscopic regimes and applied to hot and dense macroscopic environments, thereby extending the toolbox of biology and biochemistry at the same time. The Quantum Effects in Biological Systems conference is a platform for researchers from biology, chemistry and physics to present and discuss the latest developments in the field of quantum biology. After meetings in Lisbon (2009), Harvard (2010), Ulm (2011), Berkeley (2012), Vienna (2013), Singapore (2014) and Florence (2015),...

  14. Biology of ionizing radiation effects

    International Nuclear Information System (INIS)

    Ferradini, C.; Pucheault, J.

    1983-01-01

    The present trends in biology of ionizing radiation are reviewed. The following topics are investigated: interaction of ionizing radiations with matter; the radiolysis of water and aqueous solutions; properties of the free radicals intervening in the couples O 2 /H 2 O and H 2 O/H 2 ; radiation chemistry of biological compounds; biological effects of ionizing radiations; biochemical mechanisms involving free radicals as intermediates; applications (biotechnological applications, origins of life) [fr

  15. New solid-state effects used in neutron detection and dosimetry. 1

    International Nuclear Information System (INIS)

    Doerschel, B.; Hahn, G.

    1981-01-01

    A review is given of radiation effects on solids and their usability for personnel neutron dosimetry. Part 1 covers mechanical effects on the crystal lattice of solids (dislocations in copper foils and changes in the bulk modulus, unclear effects in quartz connected with changes in the oscillation frequency), thermal effects of metals embedded in type I superconductors (superheated colloid detectors) or other materials (superheated drop detectors)

  16. Concerted Uranium Research in Europe (CURE): toward a collaborative project integrating dosimetry, epidemiology and radiobiology to study the effects of occupational uranium exposure.

    Science.gov (United States)

    Laurent, Olivier; Gomolka, Maria; Haylock, Richard; Blanchardon, Eric; Giussani, Augusto; Atkinson, Will; Baatout, Sarah; Bingham, Derek; Cardis, Elisabeth; Hall, Janet; Tomasek, Ladislav; Ancelet, Sophie; Badie, Christophe; Bethel, Gary; Bertho, Jean-Marc; Bouet, Ségolène; Bull, Richard; Challeton-de Vathaire, Cécile; Cockerill, Rupert; Davesne, Estelle; Ebrahimian, Teni; Engels, Hilde; Gillies, Michael; Grellier, James; Grison, Stephane; Gueguen, Yann; Hornhardt, Sabine; Ibanez, Chrystelle; Kabacik, Sylwia; Kotik, Lukas; Kreuzer, Michaela; Lebacq, Anne Laure; Marsh, James; Nosske, Dietmar; O'Hagan, Jackie; Pernot, Eileen; Puncher, Matthew; Rage, Estelle; Riddell, Tony; Roy, Laurence; Samson, Eric; Souidi, Maamar; Turner, Michelle C; Zhivin, Sergey; Laurier, Dominique

    2016-06-01

    The potential health impacts of chronic exposures to uranium, as they occur in occupational settings, are not well characterized. Most epidemiological studies have been limited by small sample sizes, and a lack of harmonization of methods used to quantify radiation doses resulting from uranium exposure. Experimental studies have shown that uranium has biological effects, but their implications for human health are not clear. New studies that would combine the strengths of large, well-designed epidemiological datasets with those of state-of-the-art biological methods would help improve the characterization of the biological and health effects of occupational uranium exposure. The aim of the European Commission concerted action CURE (Concerted Uranium Research in Europe) was to develop protocols for such a future collaborative research project, in which dosimetry, epidemiology and biology would be integrated to better characterize the effects of occupational uranium exposure. These protocols were developed from existing European cohorts of workers exposed to uranium together with expertise in epidemiology, biology and dosimetry of CURE partner institutions. The preparatory work of CURE should allow a large scale collaborative project to be launched, in order to better characterize the effects of uranium exposure and more generally of alpha particles and low doses of ionizing radiation.

  17. Biological Effectiveness of Antiproton Annihilation

    DEFF Research Database (Denmark)

    Maggiore, C.; Agazaryan, N.; Bassler, N.

    2004-01-01

    from the annihilation of antiprotons produce an increase in ‘‘biological dose’’ in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct measurement of the biological effects of antiproton annihilation. The background, description, and status...

  18. Biological Effects of Neutron and Proton Irradiations. Vol. II. Proceedings of the Symposium on Biological Effects of Neutron Irradiations

    International Nuclear Information System (INIS)

    1964-01-01

    During recent years the interest in biological effects caused by neutrons has been increasing steadily as a result of the rapid development of neutron technology and the great number of neutron sources being used. Neutrons, because of their specific physical characteristics and biological effects, form a special type of radiation hazard but, at the same time, are a prospective tool for applied radiobiology. This Symposium, held in Brookhaven at the invitation of the United States Government from 7-11 October 1963, provided an opportunity for scientists to discuss the experimental information at present available on the biological action of neutrons and to evaluate future possibilities. It was a sequel to the Symposium on Neutron Detection, Dosimetry and Standardization, which was organized by the International Atomic Energy Agency in December 1962 at Harwell. The Symposium was attended by 128 participants from 17 countries and 6 international organizations. Fifty-four papers were presented. The following subjects were discussed in various sessions: (1) Dosimetry. Estimation of absorbed dose of neutrons in biological material. (2) Biological effects of high-energy protons. (3) Cellular and genetic effects. (4) Pathology of neutron irradiation, including acute and chronic radiation syndromes (mortality, anatomical and histological changes, biochemical and metabolic disturbances) and delayed consequences. (5) Relative biological effectiveness of neutrons evaluated by different biological tests. A Panel on Biophysical Considerations in Neutron Experimentation, with special emphasis on informal discussions, was organized during the Symposium. The views of the Panel are recorded in Volume II of the Proceedings. Many reports were presented on the important subject of the relative effectiveness of the biological action of neutrons, as well as on the general pathology of neutron irradiation and the cellular and genetic effects related to it. Three survey papers considered

  19. Effects of seed migration on post-implant dosimetry of prostate brachytherapy

    International Nuclear Information System (INIS)

    Gao, M.; Wang, J. Z.; Nag, S.; Gupta, N.

    2007-01-01

    Brachytherapy using permanent seed implants has been an effective treatment for prostate cancer. However, seeds will migrate after implant, thus making the evaluation of post-implant dosimetry difficult. In this study, we developed a computer program to simulate seed migration and analyzed dosimetric changes due to seed migration at various migration amounts. The study was based on 14 patients treated with Pd-103 at the James Cancer Hospital. Modeling of seed migration, including direction, distance as well as day of migration, was based on clinical observations. Changes of commonly used dosimetric parameters as a function of migration amount (2, 4, 6 mm respectively), prostate size (from 20 to 90 cc), and prostate region (central vs peripheral) were studied. Change of biological outcome (tumor control probability) due to migration was also estimated. Migration reduced prostate D90 to 99±2% of original value in 2 mm migration, and the reduction increased to 94±6% in 6 mm migration. The reduction of prostate dose led to a 14% (40%) drop in the tumor control probability for 2 mm (6 mm) migration, assuming radiosensitive tumors. However, migration has less effect on a prostate implanted with a larger number of seeds. Prostate V100 was less sensitive to migration than D90 since its mean value was still 99% of original value even in 6 mm migration. Migration also showed a different effect in the peripheral region vs the central region of the prostate, where the peripheral mean dose tended to drop more significantly. Therefore, extra activity implanted in the peripheral region during pre-plan can be considered. The detrimental effects of migration were more severe in terms of increasing the dose to normal structures, as rectum V50 may be 70% higher and urethra V100 may be 50% higher in the case of 6 mm migration. Quantitative knowledge of these effects is helpful in treatment planning and post-implant evaluation

  20. Dosimetry of fast neutrons

    International Nuclear Information System (INIS)

    Jahr, R.

    1975-03-01

    Following an explanation of the physical fundamentals of neutron dosimetry, the special needs in medicine and biology are gone into. It is shown that the dose equivalent used in radiation protection simplifies in an undue manner the complicated dependence of the biological effects. The reason for this is the fact that the RBE for heavy recoil nuclei, amongst others, depends on the energy and sort of particle, whereas it is approximately equal to one for electrons independent of the energy. It is thus necessary in the fields of biology and medicine to have additional information on energy spectra of the neutrons as well as of all charged secondary particles as a function of the position in the phantom. These are obtained partly by calculation and partly by special dosemeters. The accuracy achieved so far is 5%. (ORU/LH) [de

  1. Activities of Project 'Cooperation and development with Latin America and Iberian in Biological Dosimetry of Iberian Group of Radiation Protection Societies

    International Nuclear Information System (INIS)

    Nasazzi, Nora B.; Taja, Maria R.; Giorgio, Marina di; Garcia Lima, Omar; Lamadrid, Ana I.; Olivares, Pilar; Moreno, Mercedes; Prieto, Maria J.; Espinosa, Marco

    2001-01-01

    In 1996 the GRIAPRA Group (Latin American and Iberian Group of Radiation Protection Societies) was established with the participation of Argentina, Brazil, Cuba, Mexico, Peru, Portugal and Spain. In 1998 began the biennial Collaborative Working Project 'Cooperation and Development with Latin America in Biological Dosimetry', partially supported by the Extremadura Government, Spain, initially involving five countries: Argentina, Cuba, Peru, Portugal and Spain. The general aim of the project is to create an Latin American and Iberian Biological Dosimetry Laboratories Coordinated Group in order to: give mutual cooperation and to other countries if required, in the case of radiological accident; contribute to enhance the technical capabilities of the participant laboratories; promote the installment of laboratories on this field in countries that does not have it yet through the training of human resources and providing the necessary equipment and, finally, perform jointly research activities in biological dosimetry. The activities designed in order to accomplish the project specific aims for the 1998-2000 period have been achieved. Description and results are presented. (author)

  2. Dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Musilek, L.; Seda, J.; Trousil, J.

    1992-01-01

    The publication deals with a major field of ionizing radiation dosimetry, viz., integrating dosimetric methods, which are the basic means of operative dose determination. It is divided into the following sections: physical and chemical effects of ionizing radiation; integrating dosimetric methods for low radiation doses (film dosimetry, nuclear emulsions, thermoluminescence, radiophotoluminescence, solid-state track detectors, integrating ionization dosemeters); dosimetry of high ionizing radiation doses (chemical dosimetric methods, dosemeters based on the coloring effect, activation detectors); additional methods applicable to integrating dosimetry (exoelectron emission, electron spin resonance, lyoluminescence, etc.); and calibration techniques for dosimetric instrumentation. (Z.S.). 422 refs

  3. Biological radiation effects

    International Nuclear Information System (INIS)

    Gomes, R.A.

    1976-01-01

    The stages of processes leading to radiation damage are studied, as well as, the direct and indirect mechanics of its production. The radiation effects on nucleic acid and protein macro moleculas are treated. The physical and chemical factors that modify radiosensibility are analysed, in particular the oxygen effects, the sensibilization by analogues of nitrogen bases, post-effects, chemical protection and inherent cell factors. Consideration is given to restoration processes by excision of injured fragments, the bloching of the excision restoration processes, the restoration of lesions caused by ionizing radiations and to the restoration by genetic recombination. Referring to somatic effects of radiation, the early ones and the acute syndrome of radiation are discussed. The difference of radiosensibility observed in mammalian cells and main observable alterations in tissues and organs are commented. Referring to delayed radiation effects, carcinogeneses, alterations of life span, effects on growth and development, as well as localized effects, are also discussed [pt

  4. Biological effects of particle radiation

    International Nuclear Information System (INIS)

    Sakamoto, Kiyohiko

    1988-01-01

    Conventional radiations such as photons, gamma rays or electrons show several physical or biological disadvantages to bring tumors to cure, therefore, more and more attentions is being paid to new modalitie such as fast neutrons, protons, negative pions and heavy ions, which are expected to overcome some of the defects of the conventional radiations. Except for fast neutrons, these particle radiations show excellet physical dose localization in tissue, moreover, in terms of biological effects, they demonstrate several features compared to conventional radiations, namely low oxygen enhancement ratio, high value of relative biological effectiveness, smaller cellular recovery, larger therapeutic gain factor and less cell cycle dependency in radiation sensitivity. In present paper the biological effects of particle radiations are shown comparing to the effects of conventional radiations. (author)

  5. Synthesis, biological distribution and radiation dosimetry of Te-123m analogues of hexadecenoic acid

    International Nuclear Information System (INIS)

    Basmadjian, G.P.; Ice, R.D.; Mills, S.L.

    1982-01-01

    The synthesis and biological distribution of four Te-123m analogues of hexadecenoic acid in rats, rabbits and dogs were described for use as possible myocardial imaging agents. The heart-to-blood ratios ranged from 0.13 for 3-telluranonadecenoic acid in rats at 5 mins to 6.25 for 18-methyl-17-tellura-9-nonadecenoic acid in dogs at 24 hrs. The biological half-life of the Te-123m labelled fatty acids ranged from 26 to 583 hrs in the hearts of the test animals. These Te-123m fatty acids were retained in the heart longer than radioiodinated fatty acids and have acceptable absorbed doses to the various target organs. (U.K.)

  6. Assessment of radiation damage - the need for a multi-parametric and integrative approach with the help of both clinical and biological dosimetry

    International Nuclear Information System (INIS)

    Meineke, Viktor

    2008-01-01

    Full text: Accidental exposure to ionising radiation leads to a damage on different levels of the biological organization of the organism. Depending on exposure conditions, such as nature of radiation, time and affected organs and organ systems, the clinical endpoint of radiation damage and the resulting acute and chronic radiation syndromes may vary to a great extent. Exposure situations range from pure localised radiation scenarios and partial body exposures up to whole body exposures. Therefore clinical pictures vary from localized radiation injuries up to the extreme situation of a radiation-induced multi-organ involvement and failure requiring immediate, intensive and interdisciplinary medical treatment. These total different and complex clinical situations not only show up most different clinical diagnostic and therapeutic aspects but necessarily due to different levels of the underlying biological damage, biological indicators of effects may vary to a wide extent. This fact means that an exact assessment of the extent of radiation damage within individual patients can only be performed when taking into consideration both clinical signs and symptoms as well as different biological indicators. Among the clinical indicators, routine laboratory parameters such as blood counts and the documentation of clinical signs and symptoms (such as the METREPOL system) are the key parameters, whereas the dicentric assay, the gold standard for biological dosimetry, but also methods under development such as the gamma-H2Ax focus assay or the estimation of variations of gene expression have to be taken into account. Each method provides best results in different situations, or in other words, there are methods that work better in a specific exposure condition or at a given time of examination (e.g. time after exposure) than others. Some methods show up results immediately, others require days to weeks until results are available for clinical decision making. Therefore to

  7. Biological and clinical dosimetry. Progress report July 1, 1964-June 30, 1979

    International Nuclear Information System (INIS)

    Laughlin, J.S.; McDonald, J.C.

    1979-01-01

    The dosimetric studies at this laboratory were initiated with the primary goal of developing systems for the determination of absorbed dose in biological research and clinical applications. The primary method under study is the local absorbed dose calorimeter, a concept initiated and developed by J. S. Laughlin. In addition, secondary dosimetric systems such as ionization chambers, chemical dosimeters and thermoluminescent dosimeters (TLD) are being developed and applied to provide an absolute basis for the evaluation and comparison of experiments, treatments, and other procedures using radiation

  8. Biological radiation effects

    International Nuclear Information System (INIS)

    Russo, A.

    2000-01-01

    Everyone is exposed to a complex mix of electromagnetic fields (EMF) of different frequencies that permeate our environment. Exposures to these EMF are increasing significantly as technology advances unabated and new applications are found. Technological progress in the broadest sense of the word has always been associated with various hazards and risks, both perceived and real. The industrial, commercial and household application on EMF is no exception. Throughout the world, the general public is concerned that exposure to EMF from such sources as high voltage power lines, broadcasting networks, mobile telephones and their base stations could lead to adverse health consequences, especially in children. As a result, the construction of new power lines and broadcasting and mobile telephone network has met with considerable opposition in many countries. Public exposure to EMF is regulated by a variety of voluntary and legal limits, together with various national safety standards. Guidelines are designed to avoid all identified hazards, from short and long term exposure, recommended limits. The aim of this paper is to report the summary of the actual scientific knowledge about the potential health effects and hazards due to man made EMF and the new tendencies of the social and political choices [it

  9. Biological effects of nuclear weapons

    International Nuclear Information System (INIS)

    Frischauf, H.

    1983-01-01

    Prompt and delayed biological effects of nuclear weapons are discussed. The response to excess pressure on man is estimated, the acute radiation syndrome caused by different radiation doses and cancerogenous and genetic effects are described. Medical care after a nuclear explosion would be difficult and imperfect. (M.J.)

  10. Biological and sanitary effects of non ionizing radiations

    International Nuclear Information System (INIS)

    Brugere, H.; Hours, M.; Seze, R. de; Bernier, M.; Letertre, Th.; Aurengo, A.; Burais, N.; Bedja, M.; Merckel, O.; Decat, G.; Lagroye, I.; Perrin, A.; Poulletier de Gannes, F.; Aurengo, A.; Souques, M.; Cesarini, J.P.; Lagroye, I.; Aurengo, A.; Cesarini, J.P.

    2008-01-01

    The objective of this day was to encourage the collaborations, especially multidisciplinary, on the biological, clinical, epidemiological and dosimetry aspects. The different presentations are as follow: the magneto reception among animals; the health and radio frequencies foundation; expo-metry to radio frequency fields: dosemeters evaluation; the electro-optical probes as tool of hyper frequency dosimetry; characterisation of emissions produced by the low consumption fluo-compact lamps in the perspective of persons exposure; strong and weak points of epidemiology; numerical dosimetry in low frequency magnetic and/or electric field; exposure of the French population to the 50 Hz magnetic field: first results for the Ile-de-france and Rhone alpes areas; characterisation of the exposure to the very low frequency magnetic fields in the town of Champlan; measurement of the residential exposure of children to the extremely low frequency, very low frequency and radiofrequency (E.L.F., V.L.F. and R.F.) fields and modeling of the high voltage magnetic field face to the child leukemia; effects of radiofrequency signals of wireless communications on the young animals; study of combined effects of 2.45 GHz microwaves and a known mutagen on DNA by two different approaches; effects on the oxidizing stress of nervous cells exposure to an (enhanced data rates for GSM evolution) E.D.G.E. signal; is environmental epidemiology still a science; cardiac implants and exposure to 50 Hz electromagnetic fields in occupational environment; the tanning by artificial UV radiation: norms and legislation; mobiles phones, Wi Fi and other wireless communications; effects on health of 50-60 Hz electromagnetic fields; natural and artificial ultraviolet radiations: a proved risk. (N.C.)

  11. Development and performance evaluation of a dynamic phantom for biological dosimetry of moving targets

    Science.gov (United States)

    Gemmel, A.; Bert, C.; Saito, N.; von Neubeck, C.; Iancu, G.; K-Weyrather, W.; Durante, M.; Rietzel, E.

    2010-06-01

    A dynamic phantom has been developed to allow for measurement of 3D cell survival distributions and the corresponding distributions of the RBE-weighted dose (RBED) in the presence of motion. The phantom consists of two 96-microwell plates holding Chinese hamster ovary cells inside a container filled with culture medium and is placed on a movable stage. Basic biological properties of the phantom were investigated without irradiation and after irradiation with a carbon ion beam, using both a stationary (reference) exposure and exposure during motion of the phantom perpendicular to the beam with beam tracking. There was no statistically significant difference between plating efficiency measured in the microwells with and without motion (0.75) and values reported in the literature. Mean differences between measured and calculated cell survival for these two irradiation modes were within ±5% of the target dose of 6 Gy (RBE).

  12. Development and performance evaluation of a dynamic phantom for biological dosimetry of moving targets

    Energy Technology Data Exchange (ETDEWEB)

    Gemmel, A; Bert, C; Saito, N; Von Neubeck, C; Iancu, G; K-Weyrather, W; Durante, M; Rietzel, E, E-mail: alexander.ag.gemmel@siemens.co [GSI Helmholtzzentrum fuer Schwerionenforschung, Planckstr 1, 64291 Darmstadt (Germany)

    2010-06-07

    A dynamic phantom has been developed to allow for measurement of 3D cell survival distributions and the corresponding distributions of the RBE-weighted dose (RBED) in the presence of motion. The phantom consists of two 96-microwell plates holding Chinese hamster ovary cells inside a container filled with culture medium and is placed on a movable stage. Basic biological properties of the phantom were investigated without irradiation and after irradiation with a carbon ion beam, using both a stationary (reference) exposure and exposure during motion of the phantom perpendicular to the beam with beam tracking. There was no statistically significant difference between plating efficiency measured in the microwells with and without motion (0.75) and values reported in the literature. Mean differences between measured and calculated cell survival for these two irradiation modes were within {+-}5% of the target dose of 6 Gy (RBE).

  13. Analysis of the frequency of mutant T-helpers as a parameter for biological dosimetry

    International Nuclear Information System (INIS)

    Mel'nov, S.B.; Minenko, V.F.; Demidchik, E.P.

    1998-01-01

    It was made the attempt of quantitatively estimation of radiation damage by the frequency of mutant T-helpers, i.e. CD4+cells, depleted of T-cell receptor (TCR). The object of the study was lymphocytes of peripheral blood of children exposed to iodine radioisotopes therapy on medical indications. The examined group consisted of 36 patients 10 -21 years old, which were injected from 0,3 to 27,6 GBq of iodine 131. The time between exposition to iodine 131 and the investigation varied from 2 months to 3 years. The results gave evidence about the existence of direct relation between the frequency of mutant T-helpers and integrated dose. The character of the relation was described on the basis of mathematical processing. It was concluded that TCR-test can be used for restoration of the biological radiation dose

  14. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Heribanova, A.

    1995-01-01

    The basic principles and pathways of effects of ionizing radiation on living organisms and cells are outlined. The following topics are covered: effects of radiation on living matter (direct effects, radical or indirect effects, dual radiation action, and molecular biological theories); effects of radiation on cells and tissues (cell depletion, changes in the cytogenetic information, reparation mechanisms), dose-response relationship (deterministic effects, stochastic effects), and the effects of radiation on man (acute radiation sickness, acute local changes, fetus injuries, non-tumorous late injuries, malignant tumors, genetic changes). (P.A.). 3 tabs., 2 figs., 5 refs

  15. Advances in biomedical dosimetry

    International Nuclear Information System (INIS)

    1981-01-01

    Full text: Radiation dosimetry, the accurate determination of the absorbed dose within an irradiated body or a piece of material, is a prerequisite for all applications of ionizing radiation. This has been known since the very first radiation applications in medicine and biology, and increasing efforts are being made by radiation researchers to develop more reliable, effective and safe instruments, and to further improve dosimetric accuracy for all types of radiation used. Development of new techniques and instrumentation was particularly fast in the field of both medical diagnostic and therapeutic radiology. Thus, in Paris in October the IAEA held the latest symposium in its continuing series on dosimetry in medicine and biology. The last one was held in Vienna in 1975. High-quality dosimetry is obviously of great importance for human health, whether the objectives lie in the prevention and control of risks associated with the nuclear industry, in medical uses of radioactive substances or X-ray beams for diagnostic purposes, or in the application of photon, electron or neutron beams in radiotherapy. The symposium dealt with the following subjects: General aspects of dosimetry; Special physical and biomedical aspects; Determination of absorbed dose; Standardization and calibration of dosimetric systems; and Development of dosimetric systems. The forty or so papers presented and the discussions that followed them brought out a certain number of dominant themes, among which three deserve particular mention. - The recent generalization of the International System of Units having prompted a fundamental reassessment of the dosimetric quantities to be considered in calibrating measuring instruments, various proposals were advanced by the representatives of national metrology laboratories to replace the quantity 'exposure' (SI unit = coulomb/kg) by 'Kerma' or 'absorbed dose' (unit joule/kg, the special name of which is 'gray'), this latter being closer to the practical

  16. Proceedings of the III international workshop 'Actual problems of dosimetry (15 years after the Chernobyl accident)'

    International Nuclear Information System (INIS)

    Milyutin, A.A.; Chudakov, V.A.; Berezhnoj, A.V.

    2001-10-01

    Materials grouped to three main issues: normative, metrological and technical support of dosimetric and radiometric control; biological dosimetry and markers of radiation effects; monitoring and reconstruction of radiation doses at radiation accidents

  17. Biological dosimetry of local radiation accidents of skin: possible cytological and biochemical methods

    International Nuclear Information System (INIS)

    Potten, C.S.

    1986-01-01

    Skin erythema or skin reaction is a highly dose-dependent change in skin appearance. A few gray can usually be detected in humans but higher doses are usually required for experimental rodents. The disadvantages are that the end-point is subjective and the response strongly influenced by numerous physical and biological factors. Changes in the levels of pigmentation can be detected in the epidermis and possibly the hair follicles but generally these only become apparent after chronic exposures. The skin appendages, particularly the hair follicles, could represent sensitive systems for detecting radiation exposures, but the cyclic behaviour of the hair follicles is difficult to control or determine in an accident. Acute cell death can be measured in the follicle germ and changes in the thickness and appearance of the hair are easily detected: in severe cases there is loss of hair (epilation). The number of dead cells per follicle section increased at a rate of 2.9/Gy and doses of about 0.2Gy can be easily detected. The width of the hair is reduced by about 7-8%/Gy and this change, which results in a dysplastic hair is believed to be the consequences of cell death in the follicles. (author)

  18. Enhancing Cytogenetic Biological Dosimetry Capabilities of the Philippines for Nuclear Incident Preparedness.

    Science.gov (United States)

    Asaad, Celia O; Caraos, Gloriamaris L; Robles, Gerardo Jose M; Asa, Anie Day D C; Cobar, Maria Lucia C; Asaad, Al-Ahmadgaid

    2016-01-01

    The utility of a biological dosimeter based on the analysis of dicentrics is invaluable in the event of a radiological emergency wherein the estimated absorbed dose of an exposed individual is crucial in the proper medical management of patients. The technique is also used for routine monitoring of occupationally exposed workers to determine radiation exposure. An in vitro irradiation study of human peripheral blood lymphocytes was conducted to establish a dose-response curve for radiation-induced dicentric aberrations. Blood samples were collected from volunteer donors and together with optically stimulated luminescence (OSL) dosimeters and were irradiated at 0, 0.1, 0.25, 0.5, 0.75, 1, 2, 4, and 6 Gy using a cobalt-60 radiotherapy unit. Blood samples were cultured for 48 h, and the metaphase chromosomes were prepared following the procedure of the International Atomic Energy Agency's Emergency Preparedness and Response - Biodosimetry 2011 manual. At least 100 metaphases were scored for dicentric aberrations at each dose point. The data were analyzed using R language program. The results indicated that the distribution of dicentric cells followed a Poisson distribution and the dose-response curve was established using the estimated model, Y dic = 0.0003 (±0.0003) +0.0336 (±0.0115) × D + 0.0236 (±0.0054) × D 2 . In this study, the reliability of the dose-response curve in estimating the absorbed dose was also validated for 2 and 4 Gy using OSL dosimeters. The data were fitted into the constructed curve. The result of the validation study showed that the obtained estimate for the absorbed exposure doses was close to the true exposure doses.

  19. Biological effects of electromagnetic fields

    International Nuclear Information System (INIS)

    David, E.

    1993-01-01

    In this generally intelligible article, the author describes at first the physical fundamentals of electromagnetic fields and their basic biological significance and effects for animals and human beings before dealing with the discussion regarding limiting values and dangers. The article treats possible connections with leukaemia as well as ith melatonine production more detailed. (vhe) [de

  20. Evaluation of radiosensitivity and correlation between physical and biological dosimetry in a case of vascular radiology

    International Nuclear Information System (INIS)

    Montoro, A.; Sebastia, N.; Aparici, F.; Candela, C.; Soriano del Castillo, J. M.; Perez, J.; Gras, P.; Cervera, J.; Alonso, O.; Villaescusa, J. I.

    2013-01-01

    The threshold dose required to produce a deterministic effect or even differences in the degree of the effect produced vary between individuals due to idiopathic causes, at the age or underlying disease. According to this work based on the Society of Interventional Radiology and the Guidelines for patient radiation dose management greater than 60 minutes fluoroscopy time management it is an indirect indicator of a significant radiation dose. According to this guide, instructions post procedure in these cases included a follow-up of the patient. (Author)

  1. Biological in vivo dosimetry with external measurement using a labelled DNA precursor (125iododeoxyuridine)

    International Nuclear Information System (INIS)

    Porschen, W.; Zamboglou, N.; Muehlensiepen, H.; Feinendegen, L.E.

    1976-01-01

    The depression of the incorporation rate of ioddeoxyuridine in the whole body and in the bone marrow is a sensitive indicator for a whole-body-irradiation. It was found that the maximum effect occurs appr. 4 hours after the irradiation. This is why bone marrow cells were labelled with IDU in the test tube 4 hrs. after irradiation. This method showed an extraordinary sensitivity and resulted in reproducible effects occurring already with doses less than 5 rad. All dosemeter methods used until now have a lower sensitivity. (orig.) [de

  2. Biological effectiveness of antiproton annihilation

    DEFF Research Database (Denmark)

    Holzscheiter, M.H.; Agazaryan, N.; Bassler, Niels

    2004-01-01

    We describe an experiment designed to determine whether or not the densely ionizing particles emanating from the annihilation of antiprotons produce an increase in ‘‘biological dose’’ in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct...... measurement of the biological effects of antiproton annihilation. The experiment has been approved by the CERN Research Board for running at the CERN Antiproton Decelerator (AD) as AD-4/ACE (Antiproton Cell Experiment) and has begun data taking in June of 2003. The background, description and the current...

  3. Biological effectiveness of antiproton annihilation

    CERN Document Server

    Holzscheiter, Michael H.; Bassler, Niels; Beyer, Gerd; De Marco, John J.; Doser, Michael; Ichioka, Toshiyasu; Iwamoto, Keisuke S.; Knudsen, Helge V.; Landua, Rolf; Maggiore, Carl; McBride, William H.; Møller, Søren Pape; Petersen, Jorgen; Smathers, James B.; Skarsgard, Lloyd D.; Solberg, Timothy D.; Uggerhøj, Ulrik I.; Withers, H.Rodney; Vranjes, Sanja; Wong, Michelle; Wouters, Bradly G.

    2004-01-01

    We describe an experiment designed to determine whether or not the densely ionizing particles emanating from the annihilation of antiprotons produce an increase in “biological dose” in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct measurement of the biological effects of antiproton annihilation. The experiment has been approved by the CERN Research Board for running at the CERN Antiproton Decelerator (AD) as AD-4/ACE (Antiproton Cell Experiment) and has begun data taking in June of 2003. The background, description and the current status of the experiment are given.

  4. Development of the FISH technique for biological dosimetry applications in the Gregorio Maranon General University Hospital

    International Nuclear Information System (INIS)

    Moreno, M.; Jesus Prieto, M.; Olivares, P.; Gomez, M.; Herranz, R.

    1997-01-01

    Since 1989 cytogenetic analysis for dose estimation has been regularly used In the Gregorio Maranon General University Hospital (HGUGM) of Madrid on individuals suspected of having accidentally been exposed to ionizing radiation. The method used is the study of chromosomal aberrations found in lymphocytes of peripheral blood. The technique recommended by the IAEA in 1986 permits to establish a dicentrics/dose ratio through an effective dose calibration curve prepared in-vitro. This methodology of dose estimation presents serious limitations which can partially be eliminated by means of new molecular cytogenetic techniques, such as chromosomal painting through in-situ hybridization with fluorescence (FISH). At HGUGM, research work has been finished for standardization of the above mentioned technique including effective dose calibration curves, the utilization of adequate aberrations and the intercomparision of the results with other centres

  5. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    McLaughlin, W.L.; Boyd, A.W.; Chadwick, K.H.; McDonald, J.C.; Miller, A.

    1989-01-01

    Radiation processing is a relatively young industry with broad applications and considerable commercial success. Dosimetry provides an independent and effective way of developing and controlling many industrial processes. In the sterilization of medical devices and in food irradiation, where the radiation treatment impacts directly on public health, the measurements of dose provide the official means of regulating and approving its use. In this respect, dosimetry provides the operator with a means of characterizing the facility, of proving that products are treated within acceptable dose limits and of controlling the routine operation. This book presents an up-to-date review of the theory, data and measurement techniques for radiation processing dosimetry in a practical and useful way. It is hoped that this book will lead to improved measurement procedures, more accurate and precise dosimetry and a greater appreciation of the necessity of dosimetry for radiation processing. (author)

  6. Chromosomal analysis and application of biological dosimetry in two cases of apparent over exposure; Analisis cromosomico y aplicacion de la dosimetria biologica en dos casos de aparente sobreexposicion

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C.; Brena V, M. [Departamento de Biologia, ININ A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The gamma radiation calibration curve of {sup 60} Co is used which was generated in the ININ Laboratory of Biology to calculate the exposure dose of two workers whose dosemeters marked values above of the limit allowed. The analysis indicates that in a first case, the aberrations frequency corresponded to the basal value, therefore there is not over exposure. The aberrations frequency of the second case is lightly above to the basal value and therefore the probability favors to what the physical dosimetry indicates. (Author)

  7. Dosimetry Control: Technic and methods. Proceedings of the international workshop 'Actual problems of dosimetry'

    International Nuclear Information System (INIS)

    Lyutsko, A.M.; Nesterenko, V.B.; Chudakov, V.A.; Konoplya, E.F.; Milyutin, A.A.

    1997-10-01

    There is a number of unsolved problems of both dosimetric and radiometric control, questions of the biological dosimetry, reconstruction of dozes of irradiation of the population at radiation incidents, which require coordination of efforts of scientists in various areas of a science. The submitted materials are grouped on five units: dosimetry engineering, biological dosimetry and markers of radiation impact, dosimetry of a medical irradiation, normative and measurement assurance of the dosimetric control, monitoring and reconstruction of dozes at radiation incidents

  8. Dosimetry Service

    CERN Multimedia

    2006-01-01

    Cern Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page: http://cern.ch/rp-dosimetry Dosimetry Service is open every morning from 8.30 - 12.00. Closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after the use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel. 7 2155 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  9. The single cell gel electrophoresis: a potential tool for biological dosimetry

    International Nuclear Information System (INIS)

    Bhilwade, H.N.; Chaubey, R.C.; Rajagopalan, Rema

    2001-01-01

    In this paper, observations made on the effect of gamma radiation on DNA strand breaks in human leucocytes using alkaline comet assay are communicated. Human peripheral blood was collected from healthy volunteers and exposed in vitro to different doses of gamma radiation in the medium 0.125, 0.25, 0.50 and 1.0 Gy and high doses range of 2.04.0 and 8 Gy, using a 6 0C o Teletherapy machine at a dose rate of 0.668 Gy/min at 0 deg C in air. Migration of DNA fragments (TL) and tail moment (TM) was taken as the criteria of genetic damage and measured using the application software, SCGE-Pro, developed in our laboratory. Data were analyzed using one-way ANOVA for statistical significance. A dose dependent increase in the TL (p<0.001 ) and TM (p<0.001 ) was observed for DNA single strand breaks in the medium dose range, from 0.125 to 1.00 Gy dose. Similarly, data on DNA strand breaks from the high dose (e.g. 2 to 8 Gy) experiments also showed a significant increase in TL (p<0.001) and TM (p<0.001) at all the doses tested. The major finding of these experiments was the detection of DNA single strand breaks in human leucocytes, even at the lowest dose of 0.125 Gy. (author)

  10. Study of the effects of radon in three biological systems

    International Nuclear Information System (INIS)

    Tavera, L.; Balcazar, M.; Lopez, A.; Brena, M.; Rosa, M.E. De la; Villalobos P, R.

    2002-01-01

    The radon and its decay products are responsible of the 3/4 parts of the exposure of the persons to the environmental radiation. The discovery at the end of XIX Century of the illnesses, mainly of cancer, which appeared in the presence of radon, lead to an accelerated growing of the radon studies: monitoring, dosimetry, effects on the persons, etc. Several epidemiological studies of radon in miners and population in general have been realized; advancing in the knowledge about the concentration-lung cancer risk relationship, but with discrepancies in the results depending on the concentration levels. Therefor, studies which consuming time, efforts and money go on doing. The research of the radon effects in biological systems different to human, allows to realize studies in less time, in controlled conditions and generally at lower cost, generating information about the alpha radiation effects in the cellular field. Therefor it was decided to study the response of three biological systems exposed to radon: an unicellular bacteria Escherichia Coli which was exposed directly to alpha particles from an electrodeposited source for determining the sensitivity limit of the chose technique. A plant, Tradescantia, for studying the cytogenetic effect of the system exposed to controlled concentrations of radon. An insect, Drosophila Melanogaster, for studying the genetic effects and the accumulated effects in several generations exposed to radon. In this work the experimental settlements are presented for the expositions of the systems and the biological results commenting the importance of these. (Author)

  11. Biological dosimetry in astronauts

    International Nuclear Information System (INIS)

    Durante, M.

    1996-01-01

    Due to the unavoidable presence of ionizing radiation in space, astronauts are classified as radiation workers. I fact, dose rate in space is considerably higher than on earth. Radiation dose absorbed after one day in space is close to the dose received by all natural sources, excluding radon, in one year on earth. Large solar particle events can considerably increase this dose, and could even be life threatening for an inadequately protected crew

  12. Cellular dosimetry in nuclear medicine imaging: training

    International Nuclear Information System (INIS)

    Gardin, I.; Faraggi, M.; Stievenart, J.L.; Le Guludec, D.; Bok, B.

    1998-01-01

    The radionuclides used in nuclear medicine imaging emit not only diagnostically useful photons, but also energy electron emissions, responsible for dose heterogeneity at the cellular level. The mean dose delivered to the cell nucleus by electron emissions of 99m Tc, 123 I, 111 In, 67 Ga, and 201 Tl, has been calculated, for the cell nucleus, a cytoplasmic and a cell membrane distribution of radioactivity. This model takes into account both the self-dose which results from the radionuclide located in the target cell, and the cross-dose, which comes from the surrounding cells. The results obtained by cellular dosimetry (D cel ) have been compared with those obtained with conventional dosimetry (D conv ), by assuming the same amount of radioactivity per cell. Cellular dosimetry shows, for a cytoplasmic and a cell membrane distributions of radioactivity, that the main contribution to the dose to the cell nucleus, comes from the surrounding cells. On the other hand, for a cell nucleus distribution of radioactivity, the self-dose is not negligible and may be the main contribution. The comparison between cellular and conventional dosimetry shows that D cel /D conv ratio ranges from 0.61 and O.89, in case of a cytoplasmic and a cell membrane distributions of radioactivity, depending on the radionuclide and cell dimensions. Thus, conventional dosimetry slightly overestimates the mean dose to the cell nucleus. On the other hand, D cel /D conv ranges from 1.1 to 75, in case of a cell nucleus distribution of radioactivity. Conventional dosimetry may strongly underestimates the absorbed dose to the nucleus, when radioactivity is located in the nucleus. The study indicates that in nuclear medicine imaging, cellular dosimetry may lead to a better understanding of biological effects of radiopharmaceuticals. (authors)

  13. Amylase and blood cell-count hematological radiation-injury biomarkers in a rhesus monkey radiation model-use of multiparameter and integrated biological dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, W.F. [Uniformed Services University, Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)], E-mail: blakely@afrri.usuhs.mil; Ossetrova, N.I.; Manglapus, G.L.; Salter, C.A.; Levine, I.H.; Jackson, W.E.; Grace, M.B.; Prasanna, P.G.S.; Sandgren, D.J.; Ledney, G.D. [Uniformed Services University, Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)

    2007-07-15

    Effective medical management of suspected radiation exposure incidents requires the recording of dynamic medical data (clinical signs and symptoms), biological assessments of radiation exposure, and physical dosimetry in order to provide diagnostic information to the treating physician and dose assessment for personnel radiation protection records. The need to rapidly assess radiation dose in mass-casualty and population-monitoring scenarios prompted an evaluation of suitable biomarkers that can provide early diagnostic information after exposure. We investigated the utility of serum amylase and hematological blood-cell count biomarkers to provide early assessment of severe radiation exposures in a non-human primate model (i.e., rhesus macaques; n=8) exposed to whole-body radiation of {sup 60}Co-gamma rays (6.5 Gy, 40cGymin{sup -1}). Serum amylase activity was significantly elevated (12.3{+-}3.27- and 2.6{+-}0.058-fold of day zero samples) at 1 and 2-days, respectively, after radiation. Lymphocyte cell counts decreased ({<=}15% of day zero samples) 1 and 2 days after radiation exposure. Neutrophil cell counts increased at day one by 1.9({+-}0.38)-fold compared with levels before irradiation. The ratios of neutrophil to lymphocyte cell counts increased by 13({+-}2.66)- and 4.23({+-}0.95)-fold at 1 and 2 days, respectively, after irradiation. These results demonstrate that increases in serum amylase activity along with decreases of lymphocyte counts, increases in neutrophil cell counts, and increases in the ratio of neutrophil to lymphocyte counts 1 day after irradiation can provide enhanced early triage discrimination of individuals with severe radiation exposure and injury. Use of the biodosimetry assessment tool (BAT) application is encouraged to permit dynamic recording of medical data in the management of a suspected radiological casualty.

  14. The biological effects of radiation

    International Nuclear Information System (INIS)

    Sykes, D.A.

    1979-01-01

    The hazards of radiations to man are briefly covered in this paper. The natural background sources of radiations are stated and their resulting doses are compared to those received voluntarily by man. The basis of how radiations cause biological damage is given and the resulting somatic effects are shown for varying magnitude of dose. Risk estimates are given for cancer induction and genetic effects are briefly discussed. Finally four case studies of radiation damage to humans are examined exemplifying the symptoms of large doses of radiations [af

  15. Dicentric chromosome aberration analysis using giemsa and centromere specific fluorescence in-situ hybridization for biological dosimetry: An inter- and intra-laboratory comparison in Indian laboratories

    International Nuclear Information System (INIS)

    Bhavani, M.; Tamizh Selvan, G.; Kaur, Harpreet; Adhikari, J.S.; Vijayalakshmi, J.; Venkatachalam, P.; Chaudhury, N.K.

    2014-01-01

    To facilitate efficient handling of large samples, an attempt towards networking of laboratories in India for biological dosimetry was carried out. Human peripheral blood samples were exposed to 60 Co γ-radiation for ten different doses (0–5 Gy) at a dose rate of 0.7 and 2 Gy/min. The chromosomal aberrations (CA) were scored in Giemsa-stained and fluorescence in-situ hybridization with centromere-specific probes. No significant difference (p>0.05) was observed in the CA yield for given doses except 4 and 5 Gy, between the laboratories, among the scorers and also staining methods adapted suggest the reliability and validates the inter-lab comparisons exercise for triage applications. - Highlights: • This is the first report from India on Networking for Biological Dosimetry preparedness using dicentric chromosomal (DC) aberration assay. • There is no significant difference in the in vitro dose response curve (Slope, Intercept, Curvature) constructed among the two labs. • No significant variation in the scoring of DC aberrations between the scorers irrespective of labs. • The DC results obtained by the labs from the Giemsa stained metaphase preparations were confirmed with centromere specific-FISH for further reliability and validity

  16. Biological dosimetry of ionizing radiation by chromosomal aberration analysis; Dosimetria biologica de las radiaciones ionizantes mediante el analisis de aberraciones cromosomicas

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Castano, S.; Silva, A.; Navlet, J.

    1990-07-01

    Biological dosimetry consists of estimating absorbed doses for people exposed to radiation by mean biological methods. Several indicators used are based in haematological, biochemical, and cytogenetic data, although nowadays without doubt, the cytogenetic method is considered to be the most reliable. In this case, the study ol chromosomal aberrations, normally dicentric chromosomes, in peripheral lymphocytes can be related to absorbed dose through an experimental calibration curve. An experimental dose-response curve, using dicentric chromosomes analysis, X-rays at 300 kVp, 114 rad/min and temperature 37 degree celsius has been produced. Experimental data is fitted to model Y ={alpha} + {beta}{sub 1}D + {beta}{sub 2}D 2 , where Y is the number of dicentrics per cell and D the dose. The curve is compared with those produced elsewhere. (Author) 14 refs.

  17. Radiotherapy Based On α Emitting Radionuclides: Geant4 For Dosimetry And Micro-/Nano-Dosimetry

    International Nuclear Information System (INIS)

    Guatelli, Susanna

    2013-01-01

    Possible physics approaches to evaluate the efficacy of TAT are dosimetry, microdosimetry and nanodosimetry. Dosimetry is adequate when mean absorbed dose to a macroscopic target volume is important to understand the biological effect of radiation. General purpose Monte Carlo (MC) codes, based on condensed history approach, are a very useful, cost effective tool to solve dosimetric problems. The condensed history approach is based on the use of multiple scattering theories to calculate the energy losses and angular changes in the direction of the particle. The short α particle range and high LET make the microdosimetric approach more suitable than dosimetry to study TAT from first physics principles, as this approach takes into account the stochastic nature of energy deposition at cellular level

  18. Theoretical basis for dosimetry

    International Nuclear Information System (INIS)

    Carlsson, G.A.

    1985-01-01

    Radiation dosimetry is fundamental to all fields of science dealing with radiation effects and is concerned with problems which are often intricate as hinted above. A firm scientific basis is needed to face increasing demands on accurate dosimetry. This chapter is an attempt to review and to elucidate the elements for such a basis. Quantities suitable for radiation dosimetry have been defined in the unique work to coordinate radiation terminology and usage by the International Commission on Radiation Units and Measurements, ICRU. Basic definitions and terminology used in this chapter conform with the recent ''Radiation Quantities and Units, Report 33'' of the ICRU

  19. Biological effects of electromagnetic fields

    International Nuclear Information System (INIS)

    Gabriel, C.

    1996-01-01

    The effects of electromagnetic (em) fields on biological systems were first observed and exploited well over a century ago. Concern over the possible health hazards of human exposure to such fields developed much later. It is now well known that excessive exposure to em fields may have in undesirable biological consequences. Standards were introduced to determine what constitute an excessive exposure and how to avoid it. Current concern over the issue of hazards stems mainly from recent epidemiological studies of exposed populations and also from the results of laboratory experiments in which whole animals are exposed in vivo or tissue and cell cultures exposed in vitro to low levels of irradiation. The underlying fear is the possibility of a causal relationship between chronic exposure to low field levels and some forms of cancer. So far the evidence does not add up to a firm statement on the matter. At present it is not known how and at what level, if at all, can these exposure be harmful to human health. This state of affair does not provide a basis for incorporating the outcome of such research in exposure standards. This paper will give a brief overview of the research in this field and how it is evaluated for the purpose of producing scientifically based standards. The emphasis will be on the physical, biophysical and biological mechanisms implicated in the interaction between em fields and biological systems. Understanding such mechanisms leads not only to a more accurate evaluation of their health implications but also to their optimal utilization, under controlled conditions, in biomedical applications. (author)

  20. Dosimetry and effects of fetal irradiation from incorporated radionuclides

    International Nuclear Information System (INIS)

    Harrison, J.D.; Coffigny, H.; Henshaw, D.L.

    1993-01-01

    An important aspect of the assessment of risks from incorporated radionuclides is the possibility of intakes by pregnant women and in utero exposure of the developing fetus. The overall objective of the project is to provide experimental data for the development of dosimetric models and assessment of risk. Studies include measurements of 210 Po and 239/240 Pu in human fetal tissues and placentae, animal studies of the biokinetics of radionuclide transfer and effects. Animal biokinetic studies concentrate on comparing the uptake and distribution of Po-210, Pu-238 and Am-241 in rats and guinea pigs for different exposure conditions. The data are used, together with the human data, to develop dosimetric models. Objectives and results of the three contributions to the project for the reporting period are presented. (R.P.) 4 figs., 1 tab

  1. Physical basis for biological effect

    International Nuclear Information System (INIS)

    Goodhead, D.T.

    1987-01-01

    Absorbed dose, or particle fluence, alone, are poor predictors of the biological effectiveness of ionizing radiations. Various radiation 'quality' parameters have been proposed to account quantitatively for the differences due to type of radiation. These include LET, quality factor (Q), lineal energy, specific energy and Z 2 /β 2 . However, all of these have major shortcomings, largely because they fail to describe adequately the microscopic stochastic properties of radiation which are primarily responsible for their relative effectiveness. Most biophysical models of radiation action now agree that the biological effectiveness of radiations are to a large extent determined by their very localized spatial properties of energy deposition (perhaps DNA and associated structures) and that the probability of residual permanent cellular damage (after cellular repair) depends on the nature of this initial macromolecular damage. Common features of these models make it clear that major future advances in identifying critical physical parameters of radiations for general practical application, or to describe their fundamental mechanisms of action, require accurate knowledge of the spatial patterns of energy deposition down to distances of the order of nanometres. Therefore, adequate descriptions are required of the nature and spatial distribution of the initial charged particles and of the interaction-by-interaction structure of the ensuing charged particle tracks. Recent development and application of Monte Carlo track structure simulations have already made it possible to commence such analyses of radiobiological data. (author). 56 refs, 7 figs

  2. Low level radiation: biological effects

    International Nuclear Information System (INIS)

    Loken, M.K.

    1983-01-01

    It is imperative that physicians and scientists using radiations in health care delivery continue to assess the benefits derived, vs. potential risk, to patients and radiation workers being exposed to radiation in its various forms as part of our health delivery system. Insofar as possible we should assure our patients and ourselves that the benefits outweigh the potential hazards involved. Inferences as to the possible biological effects of low level radiation are generally based on extrapolations from those effects observed and measured following acute exposures to considerably higher doses of radiation. Thus, in order to shed light on the question of the possible biological effects of low level radiation, a wide variety of studies have been carried out using cells in culture and various species of plant and animal life. This manuscript makes reference to some of those studies with indications as to how and why the studies were done and the conclusions that might be drawn there from. In addition reference is made to the handling of this information by scientists, by environmentalists, and by the news media. Unfortunately, in many instances the public has been misled by what has been said and/or written. It is hoped that this presentation will provide an understandable and reasonable perspective on the various appropriate uses of radiation in our lives and how such uses do provide significant improvement in our health and in our quality of life

  3. Verification of motion induced thread effect during tomotherapy using gel dosimetry

    International Nuclear Information System (INIS)

    Edvardsson, Anneli; Ljusberg, Anna; Ceberg, Crister; Medin, Joakim; Ambolt, Lee; Nordström, Fredrik; Ceberg, Sofie

    2015-01-01

    The purpose of the study was to evaluate how breathing motion during tomotherapy (Accuray, CA, USA) treatment affects the absorbed dose distribution. The experiments were carried out using gel dosimetry and a motion device simulating respiratory-like motion (HexaMotion, ScandiDos, Uppsala, Sweden). Normoxic polyacrylamide gels (nPAG) were irradiated, both during respiratory-like motion and in a static mode. To be able to investigate interplay effects the static absorbed dose distribution was convolved with the motion function and differences between the dynamic and convolved static absorbed dose distributions were interpreted as interplay effects. The expected dose blurring was present and the interplay effects formed a spiral pattern in the lower dose volume. This was expected since the motion induced affects the preset pitch and the theoretically predicted thread effect may emerge. In this study, the motion induced thread effect was experimentally verified for the first time

  4. Calculated effects of backscattering on skin dosimetry for nuclear fuel fragments

    International Nuclear Information System (INIS)

    Aydarous, A. Sh

    2008-01-01

    The size of hot particles contained in nuclear fallout ranges from 10 nm to 20 μm for the worldwide weapons fallout. Hot particles from nuclear power reactors can be significantly bigger (100 μm to several millimetres). Electron backscattering from such particles is a prominent secondary effect in beta dosimetry for radiological protection purposes, such as skin dosimetry. In this study, the effect of electron backscattering due to hot particles contamination on skin dose is investigated. These include parameters such as detector area, source radius, source energy, scattering material and source density. The Monte-Carlo Neutron Particle code (MCNP4C) was used to calculate the depth dose distribution for 10 different beta sources and various materials. The backscattering dose factors (BSDF) were then calculated. A significant dependence is shown for the BSDF magnitude upon detector area, source radius and scatterers. It is clearly shown that the BSDF increases with increasing detector area. For high Z scatterers, the BSDF can reach as high as 40 and 100% for sources with radii 0.1 and 0.0001 cm, respectively. The variation of BSDF with source radius, source energy and source density is discussed. (authors)

  5. Proceedings of the V. international symposium 'Actual problems of dosimetry'; Materialy V mezhdunarodnogo simpoziuma 'Aktual'nye problemy dozimetrii'

    Energy Technology Data Exchange (ETDEWEB)

    Kundas, S P; Okeanov, A E [International A. Sakharov environmental univ., Minsk (Belarus); Shevchuk, V E [Komitet po problemam posledstvij katastrofy na Chernobyl' skoj AEhS pri Sovete Ministrov Respubliki Belarus' , Minsk (Belarus)

    2005-10-01

    The main topics of the workshop were: monitoring and reconstruction of radiation doses at radiation accidents, biological dosimetry and markers of radiation effects as well as normative, metrological and technical aspects of dosimetric and radiometric monitoring.

  6. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Gisone, Pablo; Perez, Maria R.

    2001-01-01

    It has been emphasised the importance of DNA as the main target for ionizing radiation, that can induce damage by its direct action on this molecule or by an indirect effect mediated by free-radicals generated by water radiolysis. Biological effects of ionizing radiation are influenced not only by the dose but also by the dose-rate and the radiation quality. Radiation induced damage, mainly DNA single and double strand breaks, is detected by molecular sensors which in turn trigger signalling cascades leading to cell cycle arrest to allow DNA repair or programmed cell death (apoptosis). Those effects related with cell death, named deterministic, exhibits a dose-threshold below which they are not observed. Acute radiation syndrome and radiological burns are examples of this kind of effects. Other radiation induced effects, called stochastic, are the consequence of cell transformation and do not exhibit a dose-threshold. This is the case of cancer induction and hereditary effects. The aim of this presentation is briefly describe the main aspects of deterministic and stochastic effects from the point of view of radiobiology and radio pathology. (author)

  7. The late biological effects of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-06-15

    Full text: The principal objective of the symposium was to review the current status of understanding of the late biological effects of ionizing radiation from external and internal sources. A second objective was to critically evaluate information obtained from epidemiological studies of human population groups as well as from animal experimentation in order to provide a solid scientific basis upon which problems of current concern, such as radiation protection standards and risk-benefit analysis, could be deliberated. Eighty-one papers were presented in 10 sessions which covered epidemiological studies of late effects in human populations exposed to internal and/or external ionizing radiation; quantitative and qualitative data from animal experimentation of late effects; methodological problems and modern approaches; factors influencing susceptibility or expression of late radiation injury; comparative evaluation of late effects induced by radiation and other environmental pollutants, and problems of risk assessment. In addition, there were two evening sessions for free discussion of problems of interpreting animal data, and of the epidemiological studies of occupationally exposed populations. Reports on atomic bomb survivors showed that these epidemiological studies are providing dependable data, such as dose-related excess infant mortality. The reports also revealed the need for consensus in the method employed in the interpretation of data. That was also the case with studies on occupationally exposed populations at Hanford plant, where disparate results were presented on radiation-induced neoplasia among radiation workers. These data are, however, considered not so significant in relative terms when compared to risks involved in other industries. It was recommended that national registry systems for the dosimetry and medical records of radiation workers be established and co-ordinated internationally in order to facilitate reliable epidemiological

  8. EPR dosimetry - present and future

    International Nuclear Information System (INIS)

    Regulla, D.F.

    1999-01-01

    In the past, IAEA has played a central role in stipulating research and development in EPR high-dose standardisation as well as co-ordinating and organising international dose intercomparison programs, within the Member States of the United Nations from the mid-seventies till today. The future tasks of EPR dosimetry seem to tend towards different subjects such as biomarkers, biological radiation effects, post-accident dose reconstruction in the environment, and retrospective human dosimetry. The latter may be considered a promising tool for epidemiology on the way to re-define radiation risk of man for chronicle radiation exposures, based on e.g. South Ural civil population and radiation workers. There are on-going international activities in the field of standardising high-level dosimetry by the American Standards on Testing and Materials (ASTM), and the International Organisation of Standards (ISO) as well as those of the International Commission on Radiation Units and Measurements (ICRU) considering the establishment of relevant recommendations concerning industrial radiation processing, but also human dose reconstruction. (author)

  9. EPR Dosimetry - Present and Future

    Energy Technology Data Exchange (ETDEWEB)

    Regulla, D.F. [GSF - National Research Centre for Environment and Health, Institute of Radiation Protection, 85764 Neuherberg (Germany)

    1999-07-01

    In the past, IAEA has played a central role in stipulating research and development in EPR high-dose standardisation as well as in coordinating and organising international dose intercomparison programs, within the Member States of the United Nations from the mid-seventies till today. The future tasks of EPR dosimetry seem to tend towards different subjects such as bio markers, biological radiation effects, post-accident dose reconstruction in the environment, and retrospective human dosimetry. The latter may be considered a promising tool for epidemiology on the way to re-define radiation risk of man for chronicle radiation exposures, based on e.g. South Ural civil population and radiation workers. There are on-going international activities in the field of standardising high-level dosimetry by the American Standards on Testing and Materials (Astm), and by the International Organisation of Standards (ISO). The International Commission on Radiation Units and Measurements (ICRU) is considering the establishment of relevant recommendations concerning industrial radiation processing, but also human dose reconstruction. (Author)

  10. EPR Dosimetry - Present and Future

    International Nuclear Information System (INIS)

    Regulla, D.F.

    1999-01-01

    In the past, IAEA has played a central role in stipulating research and development in EPR high-dose standardisation as well as in coordinating and organising international dose intercomparison programs, within the Member States of the United Nations from the mid-seventies till today. The future tasks of EPR dosimetry seem to tend towards different subjects such as bio markers, biological radiation effects, post-accident dose reconstruction in the environment, and retrospective human dosimetry. The latter may be considered a promising tool for epidemiology on the way to re-define radiation risk of man for chronicle radiation exposures, based on e.g. South Ural civil population and radiation workers. There are on-going international activities in the field of standardising high-level dosimetry by the American Standards on Testing and Materials (Astm), and by the International Organisation of Standards (ISO). The International Commission on Radiation Units and Measurements (ICRU) is considering the establishment of relevant recommendations concerning industrial radiation processing, but also human dose reconstruction. (Author)

  11. The effect of skin thickness determined using breast CT on mammographic dosimetry

    International Nuclear Information System (INIS)

    Huang Shihying; Boone, John M.; Yang, Kai; Kwan, Alexander L. C.; Packard, Nathan J.

    2008-01-01

    The effect of breast skin thickness on dosimetry in mammography was investigated. Breast computed tomography (CT) acquisition techniques, combined with algorithms designed for determining specific breast metrics, were useful for estimating skin thickness. A radial-geometry edge detection scheme was implemented on coronal reconstructed breast CT (bCT) images to measure the breast skin thickness. Skin thickness of bilateral bCT volume data from 49 women and unilateral bCT volume data from 2 women (10 healthy women and 41 women with BIRADS 4 and 5 diagnoses) was robustly measured with the edge detection scheme. The mean breast skin thickness (±inter-breast standard deviation) was found to be 1.45±0.30 mm. Since most current published normalized glandular dose (D gN ) coefficients are based on the assumption of a 4-mm breast skin thickness, the D gN values computed with Monte Carlo techniques will increase up to 18% due to the thinner skin layers (e.g., 6-cm 50% glandular breast, 28 kVp Mo-Mo spectrum). The thinner skin dimensions found in this study suggest that the current D gN values used for mammographic dosimetry lead to a slight underestimate in glandular dose

  12. Determination of effective dose for workers hemodynamics service using double dosimetry

    International Nuclear Information System (INIS)

    Ruiz Lopez, M. A.; Lobato Munoz, M.; Jodar Lopez, C. A.; Ramirez Ros, J. C.; Jerez Sainz, M. I.; Pamos Urena, M.; Carrasco Rodriguez, J. L.

    2013-01-01

    The use of an additional dosimeter at the level of the neck above the lead apron we can provide an indication of the dose in the head (the Crystal dose). In addition, it is possible to combine the two readings of the dosimeter to provide an improved estimate of the effective dose. In the hemodynamics service of our Hospital we have maintained a worker for 3 years with the double dosimetry read monthly. With the readings from these dosimeters will do following algorithms, several estimates of the effective dose to see if, with working conditions that occur in this service, it would be necessary to extend this practice to the rest of the workers to get a better estimation of effective dose. (Author)

  13. Biological dosimetry after criticality accidents. Intercomparison exercise in the Silene Reactor - France; Dosimetria biologica en accidentes de criticidad. Ejercicio de intercomparacion en el Reactor Silene - Francia

    Energy Technology Data Exchange (ETDEWEB)

    Di Giorgio, Marina; Vallerga, Maria B; Taja, Maria R [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina); arn gov ar, E-mail: mdigiorg@cae

    2004-07-01

    The Institute of Radiation Protection and Nuclear Safety Institute (IRSN) organized an international biological dosimetry intercomparison, at the SILENE experimental reactor (Valduc, France), simulating different criticality scenarios: bare source 4 Gy, lead shield source 1 and 2 Gy and gamma pure {sup 60}Co source 2 Gy. Fifteen laboratories were involved in this exercise, including the Argentine Biological Dosimetry Laboratory. The purposes of the intercomparison were: 1) To compare the unstable chromosome aberration (UCA) frequency observed by the different laboratories; and 2) To compare the dose estimation for gamma rays and neutrons. The objects of the present work were: I) To compare the mean frequency of UCA observed by the Argentine laboratory with the mean frequency observed by the participant laboratories as a whole. II) To compare the dose estimates performed by the Argentine lab with those estimated by the other laboratories involved in the second stage of the intercomparison. Overall, the mean frequencies of UCA and the correspondent 95% confidence limits obtained by the Argentine lab were consistent with the results obtained by the laboratories as a whole. For the gamma pure scenario, smaller variations were observed among laboratories in terms of dose (CV=18,2%) than in terms of frequency (CV=30,1%). For the mixed field scenarios, only four laboratories, including the Argentine lab, estimated gamma and neutron components of the total dose and just two (Argentine lab and lab 12) were in agreement with the given physical doses. The 1 Gy experiment presented lesser variations both in terms of frequency and dose than the other two scenarios. For the 4 and 2 Gy experiments, variations in neutron dose were more significant than variations in gamma dose, related to the magnitude of the dose. The results suggest that intercomparison exercises jointly with the accreditation of biological dosimetry by cytogenetic service laboratories, in compliance with ISO

  14. ESR Dosimetry

    International Nuclear Information System (INIS)

    Baffa, Oswaldo; Rossi, Bruno; Graeff, Carlos; Kinoshita, Angela; Chen Abrego, Felipe; Santos, Adevailton Bernardo dos

    2004-01-01

    ESR dosimetry is widely used for several applications such as dose assessment in accidents, medical applications and sterilization of food and other materials. In this work the dosimetric properties of natural and synthetic Hydroxyapatite, Alanine, and 2-Methylalanine are presented. Recent results on the use of a K-Band (24 GHz) ESR spectrometer in dosimetry are also presented

  15. Dosimetry Service

    CERN Multimedia

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 7 2155 http://cern.ch/rp-dosimetry

  16. Dosimetry Service

    CERN Multimedia

    Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service Tel. 7 2155 http://cern.ch/rp-dosimetry

  17. Dosimetry Service

    CERN Multimedia

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 72155 http://cern.ch/rp-dosimetry

  18. Alanine dosimetry for clinical applications. Proceedings

    International Nuclear Information System (INIS)

    Anton, M.

    2006-05-01

    The following topics are dealt with: Therapy level alanine dosimetry at the UK Nationational Physical Laboratory, alanine as a precision validation tool for reference dosimetry, composition of alanine pellet dosimeters, the angular dependence of the alanine ESR spectrum, the CIAE alanine dosimeter for radiotherapy level, a correction for temporal evolution effects in alanine dosimetry, next-generation services foe e-traceability to ionization radiation national standards, establishing e-traceability to HIST high-dose measurement standards, alanine dosimetry of dose delivery from clinical accelerators, the e-scan alanine dosimeter reader, alanine dosimetry at ISS, verification of the integral delivered dose for IMRT treatment in the head and neck region with ESR/alanine dosimetry, alanine dosimetry in helical tomotherapy beams, ESR dosimetry research and development at the University of Palermo, lithium formate as a low-dose EPR radiation dosimeter, sensitivity enhancement of alanine/EPR dosimetry. (HSI)

  19. Tritium biological effects and perspective of the biological study

    International Nuclear Information System (INIS)

    Komatsu, Kenshi

    1998-01-01

    Since tritium is an emitter of weak β-rays (5.7keV) and is able to bind to DNA, i.e., the most important genome component, the biological effects should be expected to be more profound than that of X-rays and γ-rays. When carcinogenesis, genetical effects and the detriments for fetus and embryo were used as a biological endpoint, most of tritium RBE (relative biological effectiveness) ranged from 1 to 2. The tritium risk in man could be calculated from these RBEs and γ-ray risk for human exposure, which are obtained mainly from the data on Atomic Bomb survivors. However, the exposure modality from environmental tritium should be a chronic irradiation with ultra low dose rate or a fractionated irradiation. We must estimate the tritium effect in man based on biological experiments alone, due to lack of such epidemiological data. Low dose rate experiment should be always accompanied by the statistical problem of data, since their biological effects are fairy low, and they should involve a possible repair system, such as adaptive response (or hormesis effect) and 'Kada effect' observed in bacteria. Here we discuss future works for the tritium assessment in man, such as (1) developing a high radiation sensitive assay system with rodent hybrid cells containing a single human chromosome and also (2) study on mammal DNA repair at molecular levels using a radiosensitive hereditary disease, Nijmegen Breakage Syndrome. (author)

  20. The effect of delta rays on the ionometric dosimetry of proton beams

    International Nuclear Information System (INIS)

    Casnati, E.; Baraldi, C.; Tartari, A.; Boccaccio, P.; Bonifazzi, C.; Singh, B.

    1998-01-01

    The interface effects arising in the measurement of absorbed dose by ionization chambers, owing to the inhomogeneity between the walls and the gas, have been evaluated by an analytical model. The geometrical situation considered here is appropriate for representing the behaviour of a plane-parallel ionization chamber exposed to a radiotherapeutic beam of protons. Two gases, dry air and tissue equivalent gas (methane based), as well as six materials commonly used in ionization chamber walls, i.e. graphite, A-150 tissue equivalent plastic, C-522 air equivalent plastic, nylon type 6, polymethyl methacrylate and polystyrene, have been examined. The analysis of the results shows that, within the limits of the detector dimensions and proton energies commonly used in the dosimetry of radiotherapeutic beams, these effects, if not taken into account in the measurement interpretation, can entail deviations of up to about 2% with respect to the correct absorbed dose in gas. (author)

  1. 11. International conference on solid radiation dosimetry

    International Nuclear Information System (INIS)

    Krylova, I.V.

    1996-01-01

    The main problems discussed during the international conference on solid radiation dosimetry which took place in June 1995 in Budapest are briefly considered. These are the basic physical processes, materials applied for dosimetry, special techniques, personnel monitoring, monitoring of environmental effects, large-dose dosimetry, clinic dosimetry, track detector used for dosimetry, dosimetry in archaeology and geology, equipment and technique for dosimetric measurements. The special attention was paid to superlinearity in the TLD-100 (LiF, Mg, Ti) response function when determining doses of gamma radiation, heavy charged particles, low-energy particle fluxes in particular. New theoretical models were considered

  2. A-bomb survivor dosimetry update

    International Nuclear Information System (INIS)

    Loewe, W.E.

    1982-06-01

    A-bomb survivor data have been generally accepted as applicable. Also, the initial radiations have tended to be accepted as the dominant radiation source for all survivors. There was general acceptance of the essential reliability of both the biological effects data and the causative radiation dose values. There are considerations casting doubt on these acceptances, but very little quantification of th implied uncertainties has been attempted. The exception was A-bomb survivor dosimetry, where free-field kerma values for initial radiations were thought to be accurate to about 30%, and doses to individual survivors were treated as effectively error-free. In 1980, a major challenge to the accepted A-bomb survivor dosimetry was announced, and was quickly followed by a succession of explanations and displays showing the soundness of that challenge. In fact, a complete replacement set of free-field kerma values was provided which was suitable for use in constructing an entire new dosimetry for Hiroshima and Nagasaki. The new values showed many changes greater than the accepted 30% uncertainty. An approximate new dosimetry was indeed constructed, and used to convert existing leukemia cause-and-effect data from the old to the new dose values, by way of assessing the impact

  3. Validation of an immunochemical assay for the detection of DNA damage as a tool for biological dosimetry of human exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Schans, G.P. van der; Timmerman, A.J.; Wojewodzka, M.; Zaim, J.

    1997-01-01

    A method for biological dosimetry based on the immunochemical detection of DNA damage in human white blood cells has been validated. To this end the method developed at TNO (Rijswijk, the Netherlands) was also set up at INCT (Warsaw, Poland). Blood samples of 11 individuals were irradiated with 0 or 5 Gy of 170 kV X-rays at INCT and analyzed both at INCT and TNO. It appeared that in both laboratories damage could be detected to the same extent. The average background level of DNA damage amounted to 1.0 Gy-eq with an interindividual standard deviation of 0.25 Gy. The contribution of the sample variance to the total variance is only 14%. The radiosensitivity showed only a variation of about 10% and can, therefore, be neglected in estimating the radiation dose from the amount of DNA damage detected. (author)

  4. Biological dosimetry to determine the UV radiation climate inside the MIR station and its role in vitamin D biosynthesis

    Science.gov (United States)

    Rettberg, P.; Horneck, G.; Zittermann, A.; Heer, M.

    1998-11-01

    The vitamin D synthesis in the human skin, is absolutely dependent on UVB radiation. Natural UVB from sunlight is normally absent in the closed environment of a space station like MIR. Therefore it was necessary to investigate the UV radiation climate inside the station resulting from different lamps as well as from occasional solar irradiation behind a UV-transparent quartz window. Biofilms, biologically weighting and integrating UV dosimeters successfully applied on Earth (e.g. in Antarctica) and in space (D-2, Biopan I) were used to determine the biological effectiveness of the UV radiation climate at different locations in the space station. Biofilms were also used to determine the personal UV dose of an individual cosmonaut. These UV data were correlated with the concentration of vitamin D in the cosmonaut's blood and the dietary vitamin D intake. The results showed that the UV radiation climate inside the Mir station is not sufficient for an adequate supply of vitamin D, which should therefore be secured either by vitamin D supplementat and/or by the regular exposure to special UV lamps like those in sun-beds. The use of natural solar UV radiation through the quartz window for `sunbathing' is dangerous and should be avoided even for short exposure periods.

  5. SU-F-T-445: Effect of Triaxial Cables and Microdetectors in Small Field Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Das, I; Andersen, A [Indiana University- School of Medicine, Indianapolis, IN (United States)

    2016-06-15

    Purpose: Advances in radiation treatment especially with smaller fields used in SRS, Gamma knife, Tomotherapy, Cyberknife, and IMRT, require a high degree of precision especially with microdetectors for small field dosimetry (Das et al, Med Ph, 35, 206, 2008; Alfonso et al, Med Phys, 35, 5179, 2008). Due to small signal, the triaxial cable becomes critical in terms of signal to noise ratio (SNR) which is studied with microdetectors. Methods: Six high quality triaxial cables, 9.1 meters long from different manufacturers without any defects were acquired along with 5 most popular microdetectors (microdiamond, plastic scintillators, SRS-diode, edge-diode and pinpoint). A dedicated electrometer was used for each combination except W1 which has its own supermax electrometer. A 6MV photon beam from Varian True beam with 100 MU at a 600 MU/min was used. Measurements were made at a depth of 5 cm in water phantom. Field sizes were varied from 0.5 cm to 10 cm square fields. Readings were taken with combination of cables and microdetectors. Results: Signal is dependent on the quality of the connectors, cables and types of microdetector. The readings varied from nC to pC depending on the type of microdetector. The net signal, S, (Sc-Sn), where Sc is signal with chamber and Sn is without chamber is a linear function of sensitive volume, v; (S = α+β•V), where α and β are constants. The standard deviation (SD) in 3 sets of reading with each combination of cable-detector was extremely low <0.02%. As expected the SD is higher in small fields (<3cm). Maximum estimated error was only ±0.2% in cables-detector combinations. Conclusion: The choice of cables has relatively small effect (±0.2%) with microdosimeter and should be accounted in overall error estimation in k value that is needed to convert ratio of reading to dose in small field dosimetry.

  6. SU-F-T-445: Effect of Triaxial Cables and Microdetectors in Small Field Dosimetry

    International Nuclear Information System (INIS)

    Das, I; Andersen, A

    2016-01-01

    Purpose: Advances in radiation treatment especially with smaller fields used in SRS, Gamma knife, Tomotherapy, Cyberknife, and IMRT, require a high degree of precision especially with microdetectors for small field dosimetry (Das et al, Med Ph, 35, 206, 2008; Alfonso et al, Med Phys, 35, 5179, 2008). Due to small signal, the triaxial cable becomes critical in terms of signal to noise ratio (SNR) which is studied with microdetectors. Methods: Six high quality triaxial cables, 9.1 meters long from different manufacturers without any defects were acquired along with 5 most popular microdetectors (microdiamond, plastic scintillators, SRS-diode, edge-diode and pinpoint). A dedicated electrometer was used for each combination except W1 which has its own supermax electrometer. A 6MV photon beam from Varian True beam with 100 MU at a 600 MU/min was used. Measurements were made at a depth of 5 cm in water phantom. Field sizes were varied from 0.5 cm to 10 cm square fields. Readings were taken with combination of cables and microdetectors. Results: Signal is dependent on the quality of the connectors, cables and types of microdetector. The readings varied from nC to pC depending on the type of microdetector. The net signal, S, (Sc-Sn), where Sc is signal with chamber and Sn is without chamber is a linear function of sensitive volume, v; (S = α+β•V), where α and β are constants. The standard deviation (SD) in 3 sets of reading with each combination of cable-detector was extremely low <0.02%. As expected the SD is higher in small fields (<3cm). Maximum estimated error was only ±0.2% in cables-detector combinations. Conclusion: The choice of cables has relatively small effect (±0.2%) with microdosimeter and should be accounted in overall error estimation in k value that is needed to convert ratio of reading to dose in small field dosimetry.

  7. Dosimetry methods

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, A.; Kovacs, A.

    2003-01-01

    Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application....

  8. A quantification of the effectiveness of EPID dosimetry and software-based plan verification systems in detecting incidents in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Bojechko, Casey; Phillps, Mark; Kalet, Alan; Ford, Eric C., E-mail: eford@uw.edu [Department of Radiation Oncology, University of Washington, 1959 N. E. Pacific Street, Seattle, Washington 98195 (United States)

    2015-09-15

    Purpose: Complex treatments in radiation therapy require robust verification in order to prevent errors that can adversely affect the patient. For this purpose, the authors estimate the effectiveness of detecting errors with a “defense in depth” system composed of electronic portal imaging device (EPID) based dosimetry and a software-based system composed of rules-based and Bayesian network verifications. Methods: The authors analyzed incidents with a high potential severity score, scored as a 3 or 4 on a 4 point scale, recorded in an in-house voluntary incident reporting system, collected from February 2012 to August 2014. The incidents were categorized into different failure modes. The detectability, defined as the number of incidents that are detectable divided total number of incidents, was calculated for each failure mode. Results: In total, 343 incidents were used in this study. Of the incidents 67% were related to photon external beam therapy (EBRT). The majority of the EBRT incidents were related to patient positioning and only a small number of these could be detected by EPID dosimetry when performed prior to treatment (6%). A large fraction could be detected by in vivo dosimetry performed during the first fraction (74%). Rules-based and Bayesian network verifications were found to be complimentary to EPID dosimetry, able to detect errors related to patient prescriptions and documentation, and errors unrelated to photon EBRT. Combining all of the verification steps together, 91% of all EBRT incidents could be detected. Conclusions: This study shows that the defense in depth system is potentially able to detect a large majority of incidents. The most effective EPID-based dosimetry verification is in vivo measurements during the first fraction and is complemented by rules-based and Bayesian network plan checking.

  9. Dosimetry in radionuclide therapy

    International Nuclear Information System (INIS)

    Riccabona, G.

    2001-01-01

    While it is known that therapeutic effects of radionuclides are due to absorbed radiation dose and to radiosensitivity, individual dosimetry in 'Gy' is practiced rarely in clinical Nuclear Medicine but 'doses' are described in 'mCi' or 'MBq', which is only indirectly related to 'Gy' in the target. To estimate 'Gy', the volume of the target, maximum concentration of the radiopharmaceutical in it and residence time should be assessed individually. These parameters can be obtained usually only with difficulty, involving possibly also quantitative SPET or PET, modern imaging techniques (sonography, CT, MRT), substitution of y- or positron emitting radiotracers for β - emitting radiopharmaceuticals as well as whole-body distribution studies. Residence time can be estimated by obtaining data on biological half-life of a comparable tracer and transfer of these data in the physical characteristics of the therapeutic agent. With all these possibilities for gross dosimetry the establishment of a dose-response-relation should be possible. As distribution of the radiopharmaceutical in lesions is frequently inhomogenous and microdosimetric conditions are difficult to assess in vivo as yet, it could be observed since decades that empirically set, sometimes 'fixed' doses (mCi or MBq) can also be successful in many diseases. Detailed dosimetric studies, however, are work- and cost-intensive. Nevertheless, one should be aware at a time when more sophisticated therapeutic possibilities in Nuclear Medicine arise, that we should try to estimate radiation dose (Gy) in our new methods even as differences in individual radiosensitivity cannot be assessed yet and studies to define individual radiosensitivity in lesions should be encouraged. (author)

  10. A method of dosimetry for synchrotron microbeam radiation therapy using radiochromic films and microdensitometry

    International Nuclear Information System (INIS)

    Crosbie, J. C.; Svalbe, I. D.; Lewis, R. A.

    2007-01-01

    Full text: Normal tissue displays an exceptional tolerance to high doses of radiation (hundreds of Gy) when delivered as a microplanar array of synchrotron-generated x-rays. Furthermore, MRT has been shown to cause significant tumour growth delay and in some case complete ablation. The biological effects of MRT on tissue are not fully understood. This is further complicated by difficulties in performing accurate dosimetry. The majority of dosimetry performed for MRT has been Monte Carlo simulations. The aim of this work was to utilise film dosimetry and microdensitometry to measure the peak-to-valley dose ratios (PVDRs) for synchrotron microbeam radiation therapy.

  11. Double dosimetry procedures for the determination of occupational effective dose in interventional radiology

    International Nuclear Information System (INIS)

    Jaervinen, H.; Buls, N.; Clerinx, P.; Miljanic, S.; Ranogajec-Komor, M.; Nikodemova, D.; D'Errico, F.

    2008-01-01

    Full text: In interventional radiology, for an accurate determination of occupational effective dose, measurements with two dosemeters ('double dosimetry', DD) have been recommended, one dosemeter located above and one under the protective apron. In this paper, based on an extensive literature search, the most recent algorithms developed for the determination of effective dose from the dosimeter readings have been compared for a few practical interventional procedures. Recommendations on the practices and algorithms are given on the basis of the results. For the comparison of algorithms, dosemeter readings and the effective dose were obtained both experimentally and by calculation. Further, data from published Monte Carlo calculations have been applied. The literature review has indicated that very few regulations for DD exist and the DD practices have not been harmonized. There is no firm consensus on the most suitable calculation algorithms. Single dosemeter (SD) measurements are still mostly used for the calculation of effective dose. Most DD and SD algorithms overestimate effective dose significantly, sometimes by over ten times. However, SD algorithms can significantly underestimate effective dose in certain interventional radiology conditions. Due to the possibility of underestimating effective dose, DD is generally recommended. The results suggest that there might not be a single DD algorithm which would be optimum for all interventional radiology procedures. However, the selection of a precise DD algorithm for each individual condition is not practical and compromises must be made. For accurate personnel dosimetry, the accuracy of the algorithm selected should be tested for typical local interventional radiology condition. Personnel dosemeters should be used in the recommended positions. The dosemeter above the apron should be on a collar and its reading also used to assess the risk of lens injuries. The dosemeter under the apron can be on the chest or

  12. Biological effects of single HZE-particles of the cosmic radiation: Free Flyer Biostack

    International Nuclear Information System (INIS)

    1989-01-01

    The Free Flyer Biostack is designed as a passive, longer term experiment for investigations into the dosimetry of cosmic HZE particles (high-charge energetic particles), the effects of single HZE particles on isolated biological samples, and the synergistic effects of conditions in space, as e.g. zero gravity and presence of a permanent, weakly ionizing component of the cosmic radiation. For the experiments summarized in this project report, the AgCl detector type developed in Frankfurt has been used, consisting of monocrystalline AgCl films, about 130-150 μm thick, and doped with 5000 ppm of Cd. (DG) With 9 figs [de

  13. Miniature semiconductor detectors for in vivo dosimetry

    International Nuclear Information System (INIS)

    Rosenfeld, A. B.; Cutajar, D.; Lerch, M. L. F.; Takacs, G.; Cornelius, I. M.; Yudelev, M.; Zaider, M.

    2006-01-01

    Silicon mini-semiconductor detectors are found in wide applications for in vivo personal dosimetry and dosimetry and Micro-dosimetry of different radiation oncology modalities. These applications are based on integral and spectroscopy modes of metal oxide semiconductor field effect transistor and silicon p-n junction detectors. The advantages and limitations of each are discussed. (authors)

  14. AN EXACT GOODNESS-OF-FIT TEST BASED ON THE OCCUPANCY PROBLEMS TO STUDY ZERO-INFLATION AND ZERO-DEFLATION IN BIOLOGICAL DOSIMETRY DATA.

    Science.gov (United States)

    Fernández-Fontelo, Amanda; Puig, Pedro; Ainsbury, Elizabeth A; Higueras, Manuel

    2018-01-12

    The goal in biological dosimetry is to estimate the dose of radiation that a suspected irradiated individual has received. For that, the analysis of aberrations (most commonly dicentric chromosome aberrations) in scored cells is performed and dose response calibration curves are built. In whole body irradiation (WBI) with X- and gamma-rays, the number of aberrations in samples is properly described by the Poisson distribution, although in partial body irradiation (PBI) the excess of zeros provided by the non-irradiated cells leads, for instance, to the Zero-Inflated Poisson distribution. Different methods are used to analyse the dosimetry data taking into account the distribution of the sample. In order to test the Poisson distribution against the Zero-Inflated Poisson distribution, several asymptotic and exact methods have been proposed which are focused on the dispersion of the data. In this work, we suggest an exact test for the Poisson distribution focused on the zero-inflation of the data developed by Rao and Chakravarti (Some small sample tests of significance for a Poisson distribution. Biometrics 1956; 12 : 264-82.), derived from the problems of occupancy. An approximation based on the standard Normal distribution is proposed in those cases where the computation of the exact test can be tedious. A Monte Carlo Simulation study was performed in order to estimate empirical confidence levels and powers of the exact test and other tests proposed in the literature. Different examples of applications based on in vitro data and also data recorded in several radiation accidents are presented and discussed. A Shiny application which computes the exact test and other interesting goodness-of-fit tests for the Poisson distribution is presented in order to provide them to all interested researchers. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Doses and biological effect of ionizing radiation

    International Nuclear Information System (INIS)

    Hrynkiewicz, A.

    1993-01-01

    The aim of the monograph is to review practical aspects of dosimetry. The work describes basic units which are used in dosimetry and natural as well as industrial sources of ionizing radiation. Information given in the monograph help in assessment of the radiation risk. 8 refs, 15 tabs

  16. Quantification of biologically effective environmental UV irradiance

    Science.gov (United States)

    Horneck, G.

    To determine the impact of environmental UV radiation on human health and ecosystems demands monitoring systems that weight the spectral irradiance according to the biological responses under consideration. In general, there are three different approaches to quantify a biologically effective solar irradiance: (i) weighted spectroradiometry where the biologically weighted radiometric quantities are derived from spectral data by multiplication with an action spectrum of a relevant photobiological reaction, e.g. erythema, DNA damage, skin cancer, reduced productivity of terrestrial plants and aquatic foodweb; (ii) wavelength integrating chemical-based or physical dosimetric systems with spectral sensitivities similar to a biological response curve; and (iii) biological dosimeters that directly weight the incident UV components of sunlight in relation to the effectiveness of the different wavelengths and to interactions between them. Most biological dosimeters, such as bacteria, bacteriophages, or biomolecules, are based on the UV sensitivity of DNA. If precisely characterized, biological dosimeters are applicable as field and personal dosimeters.

  17. Health and biological effects of non-ionizing radiations

    International Nuclear Information System (INIS)

    De Seze, R.; Souques, M.; Aurengo, A.; Bach, V.; Burais, N.; Cesarini, J.P.; Cherin, A.; Decobert, V.; Dubois, G.; Hours, M.; Lagroye, I.; Leveque, Ph.; Libert, J.P.; Lombard, J.; Loos, N.; Mir, L.; Perrin, A.; Poulletier De Gannes, F.; Thuroczy, G.; Wiart, J.; Lehericy, St.; Pelletier, A.; Marc-Vergnes, J.P.; Douki, Th.; Guibal, F.; Tordjman, I.; Gaillot de Saintignon, J.; Collard, J.F.; Scoretti, R.; Magne, I.; Veyret, B.; Katrib, J.

    2011-01-01

    This document gathers the slides of the available presentations given during this conference day on the biological and health effects of non-ionizing radiations. Sixteen presentations out of 17 are assembled in the document and deal with: 1 - NMR: biological effects and implications of Directive 2004/40 on electromagnetic fields (S. Lehericy); 2 - impact of RF frequencies from mobile telephone antennas on body homeostasis (A. Pelletier); 3 - expression of stress markers in the brain and blood of rats exposed in-utero to a Wi-Fi signal (I. Lagroye); 4 - people exposure to electromagnetic waves: the challenge of variability and the contribution of statistics to dosimetry (J. Wiart); 5 - status of knowledge about electromagnetic fields hyper-sensitivity (J.P. Marc-Vergnes; 6 - geno-toxicity of UV radiation: respective impact of UVB and UVA (T. Douki); 7 - National day of prevention and screening for skin cancers (F. Guibal); 8 - UV tan devices: status of knowledge about cancer risks (I. Tordjman, and J. Gaillot de Saintignon); 9 - modulation of brain activity during a tapping task after exposure to a 3000 μT magnetic field at 60 Hz (M. Souques and A. Legros); 10 - calculation of ELF electromagnetic fields in the human body by the finite elements method (R. Scoretti); 11 - French population exposure to the 50 Hz magnetic field (I. Magne); 12 - LF and static fields, new ICNIRP recommendations: what has changed, what remains (B. Veyret); 13 - risk assessment of low energy lighting systems - DELs and CFLs (J.P. Cesarini); 14 - biological effects to the rat of a chronic exposure to high power microwaves (R. De Seze); 15 - theoretical and experimental electromagnetic compatibility approaches of active medical implants in the 10-50 Hz frequency range: the case of implantable cardiac defibrillators (J. Katrib); French physicians and electromagnetic fields (M. Souques). (J.S.)

  18. Activities developed by the biological dosimetry laboratory of the Autoridad Regulatoria Nuclear - ARN of Argentina; Actividades desarrolladas por el laboratorio de dosimetria biologica de la Autoridad Regulatoria Nuclear de Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Radl, A.; Sapienza, C. E.; Taja, M. R.; Bubniak, R.; Deminge, M.; Di Giorgio, M., E-mail: csapienza@arn.gob.ar [Autoridad Regulatoria Nuclear (ARN), Buenos Aires (Argentina)

    2013-07-01

    Biological dosimetry (DB) allows to estimate doses absorbed in individuals exposed to ionizing radiation through the quantification of stable and unstable chromosome aberrations (SCA and UCA). The frequency of these aberrations is referred to a calibration dose response curve (in vitro) to determine the doses of the individual to the whole body. The DB is a necessary support for programs of national radiation protection and response systems in nuclear or radiological emergencies in the event of accidental or incidental, single overexposure or large scale. In this context the Laboratory of Dosimetry Biological (LDB) of the Authority Regulatory Nuclear (ARN) Argentina develops and applies different dosimeters cytogenetic from four decades ago. These dosimeters provide a fact more within the whole of the information necessary for an accidental, complementing the physical and clinical dosimetry exposure assessment. The most widely used in the DB biodosimetric method is the quantification of SCA (dicentrics and rings Central) from a sample of venous blood. The LDB is accredited for the trial, under rules IRAM 301: 2005 (ISO / IEC 17025: 2005) and ISO 19238:2004. Test applies to the immediate dosimetry evaluation of acute exposures, all or a large part of the body in the range 0,1-5 Gy. In this context the LDB is part of the Latin American network of DB (LBDNet), BioDoseNet-who and response system in radiological emergencies and nuclear IAEA-RANET, being enabled to summon the LBDNet if necessary.

  19. External dosimetry - Applications to radiation protection

    International Nuclear Information System (INIS)

    Faussot, Alain

    2011-01-01

    Dosimetry is the essential component of radiation protection. It allows to determine by calculation and measurement the absorbed dose value, i.e. the energy amounts deposited in matter by ionizing radiations. It deals also with the irradiation effects on living organisms and with their biological consequences. This reference book gathers all the necessary information to understand and master the external dosimetry and the metrology of ionizing radiations, from the effects of radiations to the calibration of radiation protection devices. The first part is devoted to physical dosimetry and allows to obtain in a rigorous manner the mathematical formalisms leading to the absorbed dose for different ionizing radiation fields. The second part presents the biological effects of ionizing radiations on living matter and the determination of a set of specific radiation protection concepts and data to express the 'risk' to develop a radio-induced cancer. The third part deals with the metrology of ionizing radiations through the standardized study of the methods used for the calibration of radiation protection equipments. Some practical exercises with their corrections are proposed at the end of each chapter

  20. Effects of temperature and ionization density in medical luminescence dosimetry using Al2O3:C

    International Nuclear Information System (INIS)

    Morgenthaler Edmund, J.

    2007-11-01

    A new system containing small crystals of aluminum oxide doped with carbon (Al 2 O 3 :C) attached to optical fiber cables has recently been introduced. During irradiation, the system monitors the radioluminescence (RL)from the crystals and after irradiation, an optically stimulated luminescence (OSL) signal can be read out by stimulating the crystal with light. This thesis applies the initial part and the total area of the resulting OSL decay curve for dosimetry measurements and investigates the effects of temperature and proton energy, i.e. ionization density, on the RL and OSL signals from Al 2 O 3 :C. In the temperature study, it was found that the OSL signal depends on both irradiation and stimulation temperature while the RL signal is effected only by the irradiation temperature. The initial OSL signal is increasing with temperature whereas the total OSL area is decreasing. Therefore, if the irradiation temperature is kept constant, one can find an integration time which provides an OSL signal independent of stimulation temperature. Overall, the RL and OSL signals vary between -0.2 to 0.6% per C. Thermal effects were simulated with a band structure model and indicated that the temperature effects are caused by the combined efforts of energetic shallow traps and thermal excitation from intermediate states in deeper traps. In the study of ionization density, we investigated protons with energies between 10 and 60 MeV (4.57 to 1.08 keV/μm in water). Experimentally, we observed that the initial OSL signalprovided a signal independent of linear energy transfer (LET) for allenergies at 0.3 Gy. The total OSL area showed an LET dependent behavior atall doses and energies. We used track structure theory (TST) to give possible explanations for the LET dependence of the OSL signal. From these calculations, we found that the initial OSL signal is, in general, not LET independent which makes Al2O3:C unsuitable for OSL proton dosimetry. The initial OSL signal can, however

  1. The relative biological effectiveness of I-125 and Pd-103

    International Nuclear Information System (INIS)

    Ling, C. Clifton; Li, William X.; Anderson, Lowell L.

    1995-01-01

    Purpose: To determine the relative biological effectiveness (RBE) of I-125 and Pd-103 relative to Co-60. Methods and Materials: A cell line REC:ras, derived from rat embryo cells, was used. Cells in exponential or plateau phase were irradiated at dose rates of about 0.07 Gy/h and 0.14 Gy/h. To circumvent the interface effect, cells were grown and irradiated on membranes made of cellulose acetate, which has an effective Z of 7.5. I-125 and Pd-103 seeds were placed in a custom designed template that yielded a homogeneous dose distribution in the plane of the cell culture. The dose rates of irradiation were measured by calibrated thermoluminescence dosimetry (TLD) chips. Results and Conclusions: Our measurements yielded an RBE of about 1.4 for I-125 at dose rates of about 0.07 Gy/h, and an RBE of about 1.9 for Pd-103 at dose rates of about 0.07 Gy/h and 0.14 Gy/h. The RBE of I-125 is similar to those measured by other investigators, the RBE for Pd-103 is being reported for the first time

  2. Techniques for radiation measurements: Micro-dosimetry and dosimetry

    International Nuclear Information System (INIS)

    Waker, A. J.

    2006-01-01

    Experimental Micro-dosimetry is concerned with the determination of radiation quality and how this can be specified in terms of the distribution of energy deposition arising from the interaction of a radiation field with a particular target site. This paper discusses various techniques that have been developed to measure radiation energy deposition over the three orders of magnitude of site-size; nano-meter, micrometer and millimetre, which radiation biology suggests is required to fully account for radiation quality. Inevitably, much of the discussion will concern the use of tissue-equivalent proportional counters and variants of this device, but other technologies that have been studied, or are under development, for their potential in experimental Micro-dosimetry are also covered. Through an examination of some of the quantities used in radiation metrology and dosimetry the natural link with Micro-dosimetric techniques will be shown and the particular benefits of using Micro-dosimetric methods for dosimetry illustrated. (authors)

  3. New radiation-induced effects in optical fibres feasible for dosimetry

    International Nuclear Information System (INIS)

    Tomashuk, A.L.; Golant, K.M.; Dianov, E.M.; Nikolin, I.V.; Zakharkin, I.I.; Stepanov, V.A.

    1999-01-01

    Three new radiation-induced effects in silica optical fibres suitable for dosimetry are proposed: 1) in fibres with a high-OH cladding and a low-OH core, ionizing radiation disrupts the O-H bonds to let hydrogen diffuse into the core. This results in an increase in the OH-group absorption band amplitude, 2) the polymers used to coat optical fibres consist of hydrogen to the extent of about 50 %. Energetic neutrons produce recoil protons in the fibre coating, which can ''stick'' in the core, turn into hydrogen, and enter the glass network in the form of OH-group, and 3) in N-doped silica fibres irradiated with thermal neutrons, the following reaction 7 N 14 ( 0 n 1 , 1 p 1 ) 6 C 14 occurs and produces protons with energy 620 keV. With this energy, propagation length of protons in silica is 7 μm which means that the escape of protons from a 50 μm core is very weak. In fact all 3 effects lead to the irreversible increase in the OH-group absorption bands, which is proportional to the absorbed dose. With the help of these effects, temperature and dose-rate independent measurements of high doses become possible

  4. Importance of the effective atomic number (Zeff) of TL materials for radiation dosimetry in clinical applications

    International Nuclear Information System (INIS)

    Gonzalez M, P.R.

    2008-01-01

    The electric power generation, it has been one of the radiation applications of bigger weight, mainly in developed countries. Another sector of more impact is without a doubt that of the medicine. However, for a sure operation with radiations, those international organisms of radiological safety, exist every time more precise detection systems. The thermoluminescent dosimetry is one of the more reliable methods for this purpose, for that several groups of investigators from different parts of the world, they have guided its investigations in the development of new TL materials. However, to avoid underestimate or overestimation of the measured dose with the use of these materials, it should take into account it effective atomic number (Z eff ) it is well known that some TL materials considered as equivalent to the tissue, presents smaller TL intensity when being irradiated with low energy photons, while the TL material known as not equivalent to the tissue, they present the supra sensitivity effect for this radiation type. Nowadays, the estimate of the Z eff has not been clear, in this work the Z eff is determined by means of the traditional methods and an own method is presented for its determination. The results of the TL signal of different materials, when being irradiated with photons of effective energy between 24 keV and 1.25 MeV and their relationship with their calculated Z eff are also presented. (Author)

  5. Overview of double dosimetry procedures for the determination of the effective dose to the interventional radiology staff

    International Nuclear Information System (INIS)

    Jaervinen, H.; Buls, N.; Clerinx, P.; Jansen, J.; Miljanic, S.; Nikodemova, D.; Ranogajec-Komor, M.; D'Errico, F.

    2008-01-01

    In interventional radiology, for an accurate determination of effective dose to the staff, measurements with two dosemeters have been recommended, one located above and one under the protective apron. Such 'double dosimetry' practices and the algorithms used for the determination of effective dose were reviewed in this study by circulating a questionnaire and by an extensive literature search. The results indicated that regulations for double dosimetry almost do not exist and there is no firm consensus on the most suitable calculation algorithms. The calculation of effective dose is mainly based on the single dosemeter measurements, in which either personal dose equivalent, directly, (dosemeter below the apron) or a fraction of personal dose equivalent (dosemeter above the apron) is taken as an assessment of effective dose. The most recent studies suggest that there might not be just one double dosimetry algorithm that would be optimum for all interventional radiology procedures. Further investigations in several critical configurations of interventional radiology procedures are needed to assess the suitability of the proposed algorithms. (authors)

  6. Dosimetry in life sciences

    International Nuclear Information System (INIS)

    1975-01-01

    The uses of radiation in medicine and biology have grown in scope and diversity to make the Radiological Sciences a significant factor in both research and medical practice. Of critical importance in the applications and development of biomedical and radiological techniques is the precision with which the dose may be determined at all points of interest in the absorbing medium. This has developed as a result of efficacy of investigations in clinical radiation therapy, concern for patient safety and diagnostic accuracy in diagnostic radiology and the advent of clinical trials and research into the use of heavily ionizing radiations in biology and medicine. Since the last IAEA Symposium on Dosimetry Techniques applied to Agriculture, Industry, Biology and Medicine, held in Vienna in 1972, it has become increasingly clear that advances in the techniques and hardware of biomedical dosimetry have been rapid. It is for these reasons that this symposium was organized in a concerted effort to focus on the problems, developments and areas of further research in dosimetry in the Life Sciences. (author)

  7. Dosimetry in life sciences

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-06-15

    The uses of radiation in medicine and biology have grown in scope and diversity to make the Radiological Sciences a significant factor in both research and medical practice. Of critical importance in the applications and development of biomedical and radiological techniques is the precision with which the dose may be determined at all points of interest in the absorbing medium. This has developed as a result of efficacy of investigations in clinical radiation therapy, concern for patient safety and diagnostic accuracy in diagnostic radiology and the advent of clinical trials and research into the use of heavily ionizing radiations in biology and medicine. Since the last IAEA Symposium on Dosimetry Techniques applied to Agriculture, Industry, Biology and Medicine, held in Vienna in 1972, it has become increasingly clear that advances in the techniques and hardware of biomedical dosimetry have been rapid. It is for these reasons that this symposium was organized in a concerted effort to focus on the problems, developments and areas of further research in dosimetry in the Life Sciences. (author)

  8. Biological effects of high LET radiations

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masami [Nagasaki Univ. (Japan). Faculty of Pharmaceutical Sciences

    1997-03-01

    Biological effect of radiation is different by a kind of it greatly. Heavy ions were generally more effective in cell inactivation, chromosome aberration induction, mutation induction and neoplastic cell transformation induction than {gamma}-rays in SHE cells. (author)

  9. Dosimetry in radioisotope placentography

    International Nuclear Information System (INIS)

    Sastry, K.G.K.; Reddy, A.R.; Nagaratnam, A.

    1976-01-01

    Radionuclide investigation of the placenta is being widely used in recent years for the diagnosis and management of vaginal bleeding in the third trimester of pregnancy. One is, therefore, concerned about the radiation exposure to the foetus during such procedures. In the present communication a precise method of estimation of radiation doses is presented. A concept termed 'effective absorbed dose constant' is utilized to enable the absorbed fractions and equilibrium absorbed dose constants to be more easily employed in radiation dose estimations. Tables of the effective absorbed dose constants for radionuclides like 131 I, 123 I, sup(113m)Tc, sup(99m)Tc, 67 Ga, and 51 Cr, are given for different masses and shapes. Masses of different organs of both mother and foetus at different periods of pregnancy and the biological turnover data for different radiopharmaceuticals are reviewed and typical values are presented. Radiation doses to different organs of both mother and foetus at the 30th week of pregnancy are finally estimated for 131 I-HSA, 123 I-SHA, sup(99m)Tc-HSA and sup(113m)In-chloride. The advantage of the effective absorbed dose constants in radiation dosimetry in general is discussed. The relative merits of different radiopharmaceuticals for placental investigations are brought out in comparison with antenatal pelvimetric and abdominal X-ray investigations, from the point of view of radiation doses. (author)

  10. A review of contributions of human tissue studies to biokinetics, bio-effects and dosimetry of plutonium in man

    International Nuclear Information System (INIS)

    Kathren, R. L.

    2004-01-01

    This paper briefly reviews the contributions made by human tissue studies to improved understanding of the biokinetics, dosimetry and potential bio-effects of plutonium in man. It includes consideration of tissue donations from both environmental and occupational populations, along with a brief history of human experience with plutonium and consideration of the bio-ethical aspects of post-mortem human tissue sampling. (authors)

  11. The effect of different dopant concentration of tailor-made silica fibers in radiotherapy dosimetry

    Science.gov (United States)

    Begum, Mahfuza; Mizanur Rahman, A. K. M.; Zubair, H. T.; Abdul-Rashid, H. A.; Yusoff, Z.; Begum, Mahbuba; Alkhorayef, M.; Alzimami, K.; Bradley, D. A.

    2017-12-01

    In thermoluminescence (TL) material dopant concentration has an important effect on their characteristics as a ;radiation-sensor;. The study investigates dosimetric properties of four different concentration (4 mol%, 5 mol%, 7 mol% and 25 mol%) tailor-made Ge-doped silica fibers. The intention is to seek development of alternative TL materials that offer exceptional advantages over existing passive systems of dosimetry, including improved spatial resolution, a water impervious nature and low cost. Photon beams (6 MV and 10 MV) from a clinical linear accelerator were used for irradiation of the fiber samples over radiation therapy doses, ranging from 0.5 Gy to 8 Gy. SEM-EDX analysis was also performed to investigate the homogeneity of distribution of Ge dopant concentration from the fiber samples. The results of measurement were also compared with two of the more commonly used standard TLDs, TLD-100 (LiF: Mg,Ti-7.5% 6LiF) and TLD-700 ((7LiF: Mg,Ti-99.9%7LiF) chips respectively. The TL intensity of the fiber samples was found to strongly depend on Ge dopant concentration, with samples showing enhanced TL yields with decreasing Ge dopant concentration. 4 mol% Ge-doped silica fiber provided the greatest response whereas the 25 mol% samples showed the least, indicative of the well-known concentration quenching effects All fiber TLDs provided linear dose response over the delivered radiotherapy dose-range, the fibers also showing a weak dependence on photon beam energies in comparing the TL yields at 6 and 10 MV. The fading behavior of the different concentration Ge doped TLD-materials were also measured over a period of thirty (30) days subsequent to irradiation. The relative sensitivity of the samples with respect to standard TLD-100 were found to be 0.37, 0.26, 0.13 and 0.02 in respect of the 4, 5, 7 and 25 mol% fibers. The primary dosimetry peak, which was by far the most prominent of any other feature covered by the glow curve, was found to be around 244 °C using

  12. Clinical dosimetry

    International Nuclear Information System (INIS)

    Rassow, J.

    1973-01-01

    The main point of this paper on clinical dosimetry which is to be understood here as application of physical dosimetry on accelerators in medical practice, is based on dosimetric methodics. Following an explanation of the dose parameters and description of the dose distribution important for clinical practice as well as geometric irradiation parameters, the significance of a series of physical parameters such as accelerator energy, surface energy of average stopping power etc. is dealt with in detail. Following a section on field homogenization with bremsstrahlung and electron radiation, details on dosimetry in clinical practice are given. Finally, a few problems of dosemeter or monitor calibration on accelerators are described. The explanations are supplemented by a series of diagrams and tables. (ORU/LH) [de

  13. Contribution of new cytogenetic techniques in the estimations of old irradiations in retrospective biological dosimetry; Apport des nouvelles techniques de cytogenetiques dans l'estimation des irradiations anciennes en dosimetrie biologique retrospective

    Energy Technology Data Exchange (ETDEWEB)

    Pouzoulet, F

    2007-10-15

    The objective of this study was to answer three questions: if the translocations are steady: the results have shown that the translocations even if they are not obligatory steady can be used in retrospective dosimetry. Furthermore, it appeared important to consider the complex translocations in view of their relative stability and complementary information they bring ( quality of radiation, received dose). The second question is what contribution of the M-F.I.S.H. in the translocations analysis in comparison with the F.I.S.H.-3: we have shown that the M-F.I.S.H. would allow to raise the whole of doubt due to a partial genome observation. that has for effect to increase the precision of the analysis and that what ever be the received dose. The third question is if there are differences between the chromosomal aberrations generated by x radiation of 50 keV and by gamma radiation from cobalt-60: yes, the low energy photons generate more translocations than the photons coming from cobalt-60. But they generate less dicentrics. this difference comes from the way the energy is deposited that leads to a more important formation of complex and multiple translocations with the low energy photons. this could constitute a problem in the use of low energy photons in radiotherapy. it would seem that the simple translocations rate is not influenced by the photons energy. (N.C.)

  14. Contribution of new cytogenetic techniques in the estimations of old irradiations in retrospective biological dosimetry; Apport des nouvelles techniques de cytogenetiques dans l'estimation des irradiations anciennes en dosimetrie biologique retrospective

    Energy Technology Data Exchange (ETDEWEB)

    Pouzoulet, F

    2007-10-15

    The objective of this study was to answer three questions: if the translocations are steady: the results have shown that the translocations even if they are not obligatory steady can be used in retrospective dosimetry. Furthermore, it appeared important to consider the complex translocations in view of their relative stability and complementary information they bring ( quality of radiation, received dose). The second question is what contribution of the M-F.I.S.H. in the translocations analysis in comparison with the F.I.S.H.-3: we have shown that the M-F.I.S.H. would allow to raise the whole of doubt due to a partial genome observation. that has for effect to increase the precision of the analysis and that what ever be the received dose. The third question is if there are differences between the chromosomal aberrations generated by x radiation of 50 keV and by gamma radiation from cobalt-60: yes, the low energy photons generate more translocations than the photons coming from cobalt-60. But they generate less dicentrics. this difference comes from the way the energy is deposited that leads to a more important formation of complex and multiple translocations with the low energy photons. this could constitute a problem in the use of low energy photons in radiotherapy. it would seem that the simple translocations rate is not influenced by the photons energy. (N.C.)

  15. Programme Biology - Health protection

    International Nuclear Information System (INIS)

    1975-01-01

    The scientific results for 1975, of the five-year Biology-Health Protection programme adopted in 1971, are presented in two volumes. In volume one, Research in Radiation Protection are developed exclusively, including the following topics: measurement and interpretation of radiation (dosimetry); transfer of radioactive nuclides in the constituents of the environment; hereditary effects of radiation; short-term effects (acute irradiation syndrome and its treatment); long-term effects and toxicology of radioactive elements. In volume, two Research on applications in Agriculture and Medicine are developed. It includes: mutagenesis; soil-plant relations; radiation analysis; food conservation; cell culture; radioentomology. Research on applications in Medicine include: Nuclear Medicine and Neutron Dosimetry

  16. Radiation dosimetry in radiotherapy with internal emitters

    International Nuclear Information System (INIS)

    Stabin, Michael G.

    1997-01-01

    Full text. Radiation dosimetry radionuclides are currently being labeled to various biological agents used in internal emitter radiotherapy. This talk will review the various technologies and types of radiolabel in current use, with focus on the characterization of the radiation dose to the various important tissues of the body. Methods for obtaining data, developing kinetic models, and calculating radiation doses will be reviewed. Monoclonal antibodies are currently being labeled with both alpha and beta emitting radionuclides in attempts to find effective agents against cancer. Several radionuclides are also being used as bone pain palliation agents. These agents must be studied in clinical trials to determine the biokinetics and radiation dosimetry prior to approval for general use. In such studies, it is important to ensure the collection of the appropriate kinds of data and to collect the data at appropriate time intervals. The uptake and retention of activity in all significant source organs and in excreta be measured periodically (with at least 2 data points phase of uptake or clearance). Then, correct dosimetry methods must be applied - the best available methods for characterizing the radionuclide kinetic and for estimating the dosimetry in the various organs of the body especially the marrow, should be used. Attempts are also under way to develop methods for estimating true patient-specific dosimetry. Cellular and animal studies are also. Valuable in evaluating the efficacy of the agents in shrinking or eliminating tumors; some results from such studies will also be discussed. The estimation of radiation doses to patients in therapy with internal emitters involves several complex phases of analysis. Careful attention to detail and the use of the best available methods are essential to the protection of the patient and a successful outcome

  17. Investigation of the effect of ionizing radiation on gene expression variation by the 'DNA chips': feasibility of a biological dosimeter

    International Nuclear Information System (INIS)

    Gruel, G.

    2005-01-01

    After having described the different biological effects of ionizing radiation and the different approaches to biological dosimetry, and introduced 'DNA chips' or DNA micro-arrays, the author reports the characterization of gene expression variations in the response of cells to a gamma irradiation. Both main aspects of the use DNA chips are investigated: fundamental research and diagnosis. This research thesis thus proposes an analysis of the effect of ionizing radiation using DNA chips, notably by comparing gene expression modifications measured in mouse irradiated lung, heart and kidney. It reports a feasibility study of bio-dosimeter based on expression profiles

  18. Advancements in accuracy of the alanine dosimetry system. Part 1. The effects of environmental humidity

    International Nuclear Information System (INIS)

    Sleptchonok, Olga F.; Nagy, Vitaly; Desrosiers, Marc F.

    2000-01-01

    A one-year study of the EPR signal of γ-irradiated ( 60 Co) L-α-alanine with simultaneous monitoring of the cavity Q-factor was undertaken. The widespread opinion that the EPR signal remains absolutely stable under normal laboratory storage conditions is inaccurate. At 0% humidity, the signal can be regarded as stable within ±1% of its initial value for 6 months for 1 and 10 kGy doses, but for only 3 months for 100 kGy. When stored at the same relative humidity values up to 60%, the fading rates for dosimeters irradiated to 1 and 10 kGy are similar, whereas signals of dosimeters irradiated to 100 kGy fade considerably faster for all humidities. The rates of fading increase with the relative humidity, especially above 60% R. H. Environmental humidity also deteriorates the accuracy of alanine dosimetry by changing the resonant cavity Q-factor. This is particularly important when irradiated alanine dosimeters are used as instrument calibration standards. Short-term changes in alanine EPR signal amplitudes were recorded upon removal of the irradiated dosimeters from their storage environments. The importance of an in situ standard to correct for measurement errors due to environmental effects is demonstrated. (author)

  19. Realising the European network of bio-dosimetry (RENEB)

    International Nuclear Information System (INIS)

    Kulka, U.; Ainsbury, L.; Atkinson, M.; Barquinero, J. F.; Barrios, L.; Beinke, C.; Bognar, G.; Cucu, A.; Darroudi, F.; Fattibene, P.; Gil, O.; Gregoire, E.; Hadjidekova, V.; Haghdoost, S.; Herranz, R.; Jaworska, A.; Lindholm, C.; Mkacher, R.; Moertl, S.; Montoro, A.; Moquet, J.; Moreno, M.; Ogbazghi, A.; Oestreicher, U.; Palitti, F.; Pantelias, G.; Popescu, I.; Prieto, M. J.; Romm, H.; Rothkamm, K.; Sabatier, L.; Sommer, S.; Terzoudi, G.; Testa, A.; Thierens, H.; Trompier, F.; Turai, I.; Vandersickel, V.; Vaz, P.; Voisin, P.; Vral, A.; Ugletveit, F.; Woda, C.; Wojcik, A.

    2012-01-01

    In Europe, a network for biological dosimetry has been created to strengthen the emergency preparedness and response capabilities in case of a large-scale nuclear accident or radiological emergency. Through the RENEB (Realising the European Network of bio-dosimetry) project, 23 experienced laboratories from 16 European countries will establish a sustainable network for rapid, comprehensive and standardised bio-dosimetry provision that would be urgently required in an emergency situation on European ground. The foundation of the network is formed by five main pillars: (1) the ad hoc operational basis, (2) a basis of future developments, (3) an effective quality-management system, (4) arrangements to guarantee long-term sustainability and (5) awareness of the existence of RENEB. RENEB will thus provide a mechanism for quick, efficient and reliable support within the European radiation emergency management. The scientific basis of RENEB will concurrently contribute to increased safety in the field of radiation protection. (authors)

  20. Magnetic resonance: safety measures and biological effects

    International Nuclear Information System (INIS)

    Gordillo, I.; Lafuente, J.; Fernandez, C.; Barbero, M.J.; Cascon, E.

    1997-01-01

    The biological effects of electromagnetic fields is currently a subject of great controversy. For this reason, magnetic resonance imaging (MRI) and spectroscopy are constantly under investigation. The source of the risk in MRI is associated with the three types of electromagnetic radiation to which the patient is exposed: the static magnetic field, variable (gradient) magnetic fields and radiofrequency fields. Each is capable of producing significant biological effects when employed at sufficient intensity. Patients exposed to risk sources are those situated within the lines of force of the magnetic field, ellipsoid lines that are arranged around the magnet, representing the strength of the surrounding field. To date, at the intensity normally utilized in MRI(<2T) and respecting the field limit recommendations established by the US Food and Drug Administration (FDA) for clinical use of this technique no adverse secondary biological effects have been reported. The known biological effects and other possible secondary effects are reviewed, and the recommended safety measures are discussed. (Author)

  1. Biological dosimetry - a Bayesian approach in the presentation of the uncertainty of the estimated dose in cases of exposure to low dose radiation

    International Nuclear Information System (INIS)

    Di Giorgio, Marina; Zaretzky, A.

    2010-01-01

    Biodosimetry laboratory experience has shown that there are limitations in the existing statistical methodology. Statistical difficulties generally occur due to the low number of aberrations leading to large uncertainties for dose estimation. Some problems derived from limitations of the classical statistical methodology, which requires that chromosome aberration yields be considered as something fixed and consequently provides a deterministic dose estimation and associated confidence limits. On the other hand, recipients of biological dosimetry reports, including medical doctors, regulators and the patients themselves may have a limited comprehension of statistics and of informed reports. Thus, the objective of the present paper is to use a Bayesian approach to present the uncertainty on the estimated dose to which a person could be exposed, in the case of low dose (occupational doses) radiation exposure. Such methodology will allow the biodosimetrists to adopt a probabilistic approach for the cytogenetic data analysis. At present, classical statistics allows to produce a confidence interval to report such dose, with a lower limit that could not detach from zero. In this situation it becomes difficult to make decisions as they could impact on the labor activities of the worker if an exposure exceeding the occupational dose limits is inferred. The proposed Bayesian approach is applied to occupational exposure scenario to contribute to take the appropriate radiation protection measures. (authors) [es

  2. Environmental dosimetry

    International Nuclear Information System (INIS)

    Gold, R.

    1977-01-01

    For more than 60 years, natural radiation has offered broad opportunities for basic research as evidenced by many fundamental discoveries. Within the last decade, however, dramatic changes have occurred in the motivation and direction of this research. The urgent need for economical energy sources entailing acceptably low levels of environmental impact has compelled the applied aspects of our radiation environment to become overriding considerations. It is within this general framework that state-of-the-art environmental dosimetry techniques are reviewed. Although applied motivation and relevance underscores the current milieu for both reactor and environmental dosimetry, a perhaps even more unifying force is the broad similarity of reactor and environmental radiation fields. In this review, a comparison of these two mixed radiation fields is presented stressing the underlying similarities that exist. On this basis, the evolution of a strong inner bond between dosimetry methods for both reactor and environmental radiation fields is described. The existence of this bond will be illustrated using representative examples of observed spectra. Dosimetry methods of particularly high applicability for both of these fields are described. Special emphasis is placed on techniques of high sensitivity and absolute accuracy which are capable of resolving the components of these mixed radiation fields

  3. Quantitative autoradiography of radionuclides in biological tissues by high resolution nuclear analysis: application in radio-toxicology and dosimetry

    International Nuclear Information System (INIS)

    Aubineau Laniece, I.

    1997-01-01

    In the framework of radiation damage on cells in living organisms an auto-radiograph, based on the STIC method, has been developed for the particles detection. This apparatus associates a thin scintillator with a photosensitive detector (CCD). The design and the performance of this well adapted tool for low activity biological samples study, are described. (A.L.B.)

  4. Personnel photographic film dosimetry

    International Nuclear Information System (INIS)

    Keirim-Markus, I.B.

    1981-01-01

    Technology of personnel photographic film dosimetry (PPD) based on the photographic effect of ionizing radiation is described briefly. Kinds of roentgen films used in PPD method are enumerated, compositions of a developer and fixing agents for these films are given [ru

  5. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  6. Biological Effects of Ionizing Radiation

    International Nuclear Information System (INIS)

    Durand, J.L.

    2000-01-01

    The aim of this work is to verify the existence of the adaptive response phenomenon induced by low doses of ionizing radiation in living cells.A wild-type yeast Saccharomyces cerevisiae (Baker's yeast) was chosen as the biological target.As a parameter to quantify the sensibility of the target to radiation, the Lethal Dose 50 (LD50 ) was observed. In our experimental condition a value of (60 ± 1) Gy was measured for LD50 with Dose Rate of (0.44 ± 0.03) Gy/min. The method employed to show up the adaptive response phenomenon consisted in exposing the sample to low ''conditioning'' doses, which would initiate these mechanisms. Later the samples with and without conditioning were exposed to higher ''challenging'' doses (such as LD50), and the surviving fractions were compared. In order to maximize the differences, the doses and the time between irradiations were varied. The best results were obtained with both a conditioning dose of (0.44 ± 0.03) Gy and a waiting time of 2 hs until the application of the challenging dose. Following this procedures the 80% of the conditioned samples has survived, after receiving the application of the LD50. The adaptive response phenomenon was also verified for a wide range of challenging doses

  7. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Experiments with small animals, tissue cultures, and inanimate materials help with understanding the effects of ionizing radiation that occur at the molecular level and cause the gross effects observed in man. Topics covered in this chapter include the following: Radiolysis of Water; Radiolysis of Organic Compounds; Radiolysis in Cells; Radiation Exposure and Dose Units; Dose Response Curves; Radiation Effects in Animals; Factors Affecting Health Risks. 8 refs., 3 figs., 5 tabs

  8. Bio-dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Hadjidekova, V.; Kristova, R.; Stainova, A.; Deleva, S.; Popova, L.; Georgieva, D.

    2013-01-01

    Full text: Introduction: The impact of ionizing radiation in medical, occupational and accidental human exposure leads to adverse side effects such as increased mortality and carcinogenesis. Information about the level of absorbed dose is important for risk assessment and for implementation of appropriate therapy. In most cases of actual or suspected exposure to ionizing radiation biological dosimetry is the only way to assess the absorbed dose. What you will learn: In this work we discuss the methods for biodosimetry and technological developments in their application in various emergency situations. The application of biological dosimetry and assessment of the influence of external factors in the conduct of epidemiological studies of radiation effects in protracted low-dose ionizing radiation on humans is presented. Discussion: The results of cytogenetic analysis and biological evaluation of absorbed dose based on the analysis of dicentrics in peripheral blood lymphocytes of five people injured in a severe radiation accident in Bulgaria in 2011 are presented. The assessed individual doses of the injured persons are in the range of 1.2 to 5,2 Gy acute homogeneous irradiation and are in line with the estimates of international experts. Conclusion: An algorithm to conduct a biological assessment of the dose in limited radiation accidents and in large scale radiation accidents with large number irradiated or suspected for exposure persons is proposed

  9. Biological effects of nuclear radiation

    International Nuclear Information System (INIS)

    Hotz, G.

    1975-01-01

    After a brief survey about the main radiobiological effects caused by ionizing radiation, human symptoms after irradiation and incorporation are shown. The special radiotoxic effect of radionuclides which are chemically associated with metabolism-specific elements such as calcium and potassium is shown and methods of treatment are indicated. (ORU) [de

  10. Biological effects of high-energy radiation

    International Nuclear Information System (INIS)

    Curtis, S.B.

    1976-01-01

    The biological effects of high-energy radiation are reviewed, with emphasis on the effects of the hadronic component. Proton and helium ion effects are similar to those of the more conventional and sparsely ionizing x- and γ-radiation. Heavy-ions are known to be more biologically effective, but the long term hazard from accumulated damage has yet to be assessed. Some evidence of widely varying but dramatically increased effectiveness of very high-energy (approximately 70 GeV) hadron beams is reviewed. Finally, the importance of the neutron component in many situations around high-energy accelerators is pointed out

  11. Biological effects of ionising radiation

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The paper reports the proceedings of a conference organised jointly by Friends of the Earth (U.K.) and Greenpeace (International). The aim of the conference was to discuss the effects of low level radiation, particularly on man, within the terms of dose/risk relationships. The topics discussed included: sources of radiation, radiation discharges from nuclear establishments, predictive modelling of radiation hazards, radiation effects at Hiroshima, low dose effects and ICRP dose limits, variation in sensitivity to radiation, and the link between childhood cancer and nuclear power. (U.K.)

  12. [Side effects of biologic therapies in psoriasis].

    Science.gov (United States)

    Altenburg, A; Augustin, M; Zouboulis, C C

    2018-04-01

    The introduction of biologics has revolutionized the treatment of moderate to severe plaque psoriasis. Due to the continuous expansion of biological therapies for psoriasis, it is particularly important to acknowledge efficacy and safety of the compounds not only in clinical trials but also in long-term registry-based observational studies. Typical side effects and significant risks of antipsoriatic biologic therapies considering psoriatic control groups are presented. A selective literature search was conducted in PubMed and long-term safety studies of the psoriasis registries PsoBest, PSOLAR and BADBIR were evaluated. To assess the long-term safety of biologics, the evaluation of the course of large patient cohorts in long-term registries is of particular medical importance. Newer biologic drugs seem to exhibit a better safety profile than older ones.

  13. Biological effects of electromagnetic fields

    African Journals Online (AJOL)

    2012-02-28

    Feb 28, 2012 ... radiofrequency emitting sources are radars, mobile phones and their base stations, ... and industrial applications, could have effect on living organisms. ...... Hazards of Electromagnetic Pollution (Msc Thesis). Department of ...

  14. Ghosting effect in Siemens electronic portal imaging devices (EPIDs) for step and shoot IMRT dosimetry

    International Nuclear Information System (INIS)

    Deshpande, S.; Vial, P.; Goozee, G.; Holloway, L.

    2010-01-01

    Full text: To assess the ghosting effect of a Siemens EPID (Optivue 1000: while acquiring IMRT fluence with step and shoot delivery. Six sets of segmented fields with 1,2,3,5, J( and 20 monitor units (MU) per segment were designed. Each set consisted of ten segments of equal MU and field size (J 0 x 10 cm 2 ) Standard single fields (non-segmented) of the same total MU as the segmented fields were also created (10-200 MU). EPID images for these fields were acquired with multi-frame acquisition mode. The integrated EPID response was determined as the mean central 20 x 21 pixel readout multiplied by the number of frames. The same fields wen measured with an ionization chamber at a depth of dose maximum in, solid water phantom. The total signal measured from the segmented fields was compared to the corresponding non-segmented fields. The ratio of EPID response between segmented and non-segmented delivery indicates an under-response for segmented fields by 5, 4, 2.5 and 2% for 1,2,3, and 5 MU per segment exposures respectively compared to ionisation chamber response (se Fig. I). The ratio was within 2% for 5 MU per segment and above. Th error bar in Fig. I indicate the intra-segment response variation. The Siemens EPID exhibited significant ghosting effect and variation in response for small M U segments. EPID dosimetry ( IMRT fields with less than 5 MU per segment requires corrections t maintain dose calibration accuracy to within 2%. (author)

  15. Progress report, Biology and Health Physics Division, April 1 to June 30, 1977

    International Nuclear Information System (INIS)

    Progress is reported in research on dosimetry and monitoring, environmental effects of thermal effluents, radionuclide migration, hydrology, radiation carcinogenesis, data manipulation of human health records, and biological radiation effects. (E.C.B.)

  16. Progress report, April 1 to June 30, 1976, Biology and Health Physics Division

    International Nuclear Information System (INIS)

    Preliminary results are reported on research covering such broad topics as dosimetry, radiation monitors and detectors, aquatic ecology, radionuclide migration, radiation carcinogenesis, the effects of radiation on human populations, and molecular biological radiation effects. (E.C.B.)

  17. Neutron personnel dosimetry

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1981-01-01

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments

  18. Biological effects of proton radiation: an update

    International Nuclear Information System (INIS)

    Girdhani, S.; Hlatky, L.; Sachs, R.

    2015-01-01

    Proton radiation provides significant dosimetric advantages when compared with gamma radiation due to its superior energy deposition characteristics. Although the physical aspects of proton radiobiology are well understood, biological and clinical endpoints are understudied. The current practice to assume the relative biological effectiveness of low linear energy transfer (LET) protons to be a generic value of about 1.1 relative to photons likely obscures important unrecognised differentials in biological response between these radiation qualities. A deeper understanding of the biological properties induced by proton radiation would have both radiobiological and clinical impact. This article briefly points to some of the literature pertinent to the effects of protons on tissue-level processes that modify disease progression, such as angiogenesis, cell invasion and cancer metastasis. Recent findings hint that proton radiation may, in addition to offering improved radio-therapeutic targeting, be a means to provide a new dimension for increasing therapeutic benefits for patients by manipulating these tissue-level processes. (authors)

  19. Biological Effects of Electromagnetic Fields

    Science.gov (United States)

    2006-11-27

    Warning stimuli, as well as learning material, i.e. the numbers to recall, were presented binaurally via earphones at an intensity of 65dB sound...ensued in a remarkable increase in the yield of ES-derived spontaneously beating cardiomyocytes. Figure 3 Effect of MF on...move the mucus along a surface layer of saline. This is very likely that the cilia, beating with the frequency about few tenth of Hertz, generate some

  20. Effect of inhomogeneous activity distributions and airway geometry on cellular doses in radon lung dosimetry

    International Nuclear Information System (INIS)

    Szoke, Istvan; Balashazy, Imre; Farkas, Arpad; Hofmann, Werner

    2007-01-01

    The human tracheobronchial system has a very complex structure including cylindrical airway ducts connected by airway bifurcation units. The deposition of the inhaled aerosols within the airways exhibits a very inhomogeneous pattern. The formation of deposition hot spots near the carinal ridge has been confirmed by experimental and computational fluid and particle dynamics (CFPD) methods. In spite of these observations, current radon lung dosimetry models apply infinitely long cylinders as models of the airway system and assume uniform deposition of the inhaled radon progenies along the airway walls. The aim of this study is to investigate the effect of airway geometry and non-uniform activity distributions within bronchial bifurcations on cellular dose distributions. In order to answer these questions, the nuclear doses of the bronchial epithelium were calculated in three different irradiation situations. (1) First, CFPD methods were applied to calculate the distribution of the deposited alpha-emitting nuclides in a numerically constructed idealized airway bifurcation. (2) Second, the deposited radionuclides were randomly distributed along the surface of the above-mentioned geometry. (3) Finally, calculations were made in cylindrical geometries corresponding to the parent and daughter branches of the bifurcation geometry assuming random nuclide activity distribution. In all three models, the same 218 Po and 214 Po surface activities per tissue volumes were assumed. Two conclusions can be drawn from this analysis: (i) average nuclear doses are very similar in all three cases (minor differences can be attributed to differences in the linear energy transfer (LET) spectra) and (ii) dose distributions are significantly different in all three cases, with the highest doses at the carinal ridge in case 3. (authors)

  1. Hematological dosimetry

    International Nuclear Information System (INIS)

    Fluery-Herard, A.

    1991-01-01

    The principles of hematological dosimetry after acute or protracted whole-body irradiation are reviewed. In both cases, over-exposure is never homogeneous and the clinical consequences, viz medullary aplasia, are directly associated with the mean absorbed dose and the seriousness and location of the overexposure. The main hematological data required to assess the seriousness of exposure are the following: repeated blood analysis, blood precursor cultures, as indicators of whole-body exposure; bone marrow puncture, medullary precursor cultures and medullary scintigraphy as indicators of the importance of a local over-exposure and capacity for spontaneous repair. These paraclinical investigations, which are essential for diagnosis and dosimetry, are also used for surveillance and for the main therapeutic issues [fr

  2. Biological effects of prenatal irradiation

    International Nuclear Information System (INIS)

    Streffer, Christian

    1997-01-01

    After large releases of radionuclides, exposure of the embryo or fetus can take place by external irradiation or uptake of radionuclies. The embryo and fetus are radiosensitive throughout prenatal development. The quality and extent of radiation effects depend on the development stage. During the preimplantation period (one to 10 days postconception, p.c.) a radiation exposure of at least 0.2 Gy can cause the death of the embryo. Malformations are only observed in rare cases when genetic predisposition exist. Macroscopic, anatomical malformations are induced only after irradiation during the major organogenesis (two to eight weeks p.c.). A radiation dose of about 0.2 Gy is a doubling dose for the malformation risks as extrapolated from experiments with rodents. The human embryo may be more radioresistant. During early fetogenesis (8-15 weeks p.c.) a high radiosensitivity exists for the developmental of the brain. Radiation doses of 1.0 Gy cause severe mental retardation in about 40% of the exposed fetuses. It must be taken into account that a radiation exposure during the fetal period can also induce cancer. It is generally assumed that the risk exists at about the same level as for children. (Author)

  3. Biological Effects Of Artificial Illumination

    Science.gov (United States)

    Corth, Richard

    1980-10-01

    We are increasingly being warned of the possible effects of so called "polluted" light, that is light that differs in spectral content from that of sunlight. We should be concerned, we are told, because all animals and plants have evolved under this natural daylight and therefore any difference between that illuminant and the artificial illuminants that are on the market today, is suspect. The usual presentation of the differences between the sunlight and the artificial illuminants are as shown in Figure 1. Here we are shown the spectral power distribution of sunlight and Cool White fluorescent light. The spectral power distributions of each have been normalized to some convenient wavelength so that each can be seen and easily compared on the same figure. But this presentation is misleading for one does not experience artificial illuminants at the same intensity as one experiences sunlight. Sunlight intensities are ordinarily found to be in the 8000 to 10,000 footcandle range whereas artificial illuminants are rarely experienced at intensity levels greater than 100 footcandles. Therefore a representative difference between the two types of illumination conditions is more accurately represented as in Figure 2. Thus if evolutionary adaptations require that humans and other animals be exposed to sunlight to ensure wellbeing, it is clear that one must be exposed to sunlight intensities. It is not feasible to expect that artificially illuminated environments will be lit to the same intensity as sunlight

  4. The Picture Superiority Effect and Biological Education.

    Science.gov (United States)

    Reid, D. J.

    1984-01-01

    Discusses learning behaviors where the "picture superiority effect" (PSE) seems to be most effective in biology education. Also considers research methodology and suggests a new research model which allows a more direct examination of the strategies learners use when matching up picture and text in efforts to "understand"…

  5. Biological effects on the source of geoneutrinos

    DEFF Research Database (Denmark)

    Sleep, Norman H.; Bird, Dennis K.; Rosing, Minik Thorleif

    2013-01-01

    its bulk earth value of similar to 4; Pb isotope measurements on mantle-derived rocks yield low Th/U values, effectively averaged over geological time. The physics of the modern biological process is complicated, but the net effect is that much of the U in the mantle comes from subducted marine...

  6. Biological effects of high strength electric fields. Second interim progress report, September 1976--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, R.D.; Kaune, W.T.

    1977-05-01

    This report describes progress made on the Project during the period of September 9, 1976 to March 31, 1977 towards the determination of the biological effects of high strength electric fields on small laboratory animals. The efforts to date can be divided into five categories: (1) the design, construction, and testing of a prototype and special studies exposure system; (2) the design and construction of exposure systems for rats and mice; (3) dosimetry; (4) experiments to determine the maximum field strength which does not produce corona discharge, ozone formation, shocks to the animal, hair stimulation, or a behavioral preference by rats to avoid exposure to the field; and (5) preparations for the biological screening experiments.

  7. The relative biological effectiveness of antiprotons

    DEFF Research Database (Denmark)

    Holzscheiter, Michael H.; Alsner, Jan; Bassler, Niels

    2016-01-01

    Background and purpose: Aside from the enhancement of physical dose deposited by antiprotons annihilating in tissue-like material compared to protons of the same range a further increase of biological effective dose has been demonstrated. This enhancement can be expressed in an increase of the re......Background and purpose: Aside from the enhancement of physical dose deposited by antiprotons annihilating in tissue-like material compared to protons of the same range a further increase of biological effective dose has been demonstrated. This enhancement can be expressed in an increase...... of the relative biological effectiveness (RBE) of antiprotons near the end of range. We have performed the first-ever direct measurement of the RBE of antiprotons both at rest and in flight. Materials and methods: Experimental data were generated on the RBE of an antiproton beam entering a tissue-like target...

  8. Biological Effects of Low-Dose Exposure

    CERN Document Server

    Komochkov, M M

    2000-01-01

    On the basis of the two-protection reaction model an analysis of stochastic radiobiological effects of low-dose exposure of different biological objects has been carried out. The stochastic effects are the results published in the last decade: epidemiological studies of human cancer mortality, the yield of thymocyte apoptosis of mice and different types of chromosomal aberrations. The results of the analysis show that as dependent upon the nature of biological object, spontanous effect, exposure conditions and radiation type one or another form dose - effect relationship is realized: downwards concave, near to linear and upwards concave with the effect of hormesis included. This result testifies to the incomplete conformity of studied effects of 1990 ICRP recomendations based on the linear no-threshold hypothesis about dose - effect relationship. Because of this the methodology of radiation risk estimation recomended by ICRP needs more precisian and such quantity as collective dose ought to be classified into...

  9. SU-E-T-665: Radiochromic Film Quenching Effect Reduction for Proton Beam Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Aldelaijan, S; Alzorkany, F; Moftah, B; Alrumayan, F [King Faisal Specialist Hospital & Research Centre, Riyadh (Saudi Arabia); Seuntjens, J [McGill University, Montreal, QC (Canada); Lewis, D [RCF Consulting, LLC, Monroe, CT (United States); Devic, S [McGill University, Montreal, QC (Canada); Jewish General Hospital, Montreal, QC (Canada)

    2015-06-15

    Purpose: Depending on the useful dose range in which radiochromic films operate, number of different radiochromic film models have been designed. The impact of different film models on quenching effect for percent depth dose (PDD) measurements in proton beams has been investigated. Methods: Calibrated PTW Markus ionization chamber was used to measure PDD and beam output for 26.5 MeV protons produced by CS30 cyclotron. An aluminum cylinder was added in front of the beam exit serving as a radiation shutter. The measured signal was normalized to a monitor chamber reading and subsequently scaled by ratio of water-to-air stopping powers at given depth, while the effective depth of measurements was scaled by ratios of material-to-water physical densities and CSDA ranges. Output was measured in water at 2.1 mm reference-depth in the plateau upstream from the Bragg peak. Following the TRS-398 reference dosimetry protocol for proton beams, the output was calibrated in water. Three radiochromic film models (EBT, EBT3 and HD-V2) were calibrated within Lexan phantom positioned at the same water-equivalent depth. Thicknesses of films sensitive layers were 34 µm, 30 µm and 8 µm, respectively. Small film pieces (1 x 2 cm{sup 2}) were positioned within polyethylene phantom along the beam central axis with an angulation of 5° for PDD measurements. Results: While the output of the proton beam was found to be around 7 Gy/sec, the actual value of the output per monitor chamber reading (2.32 Gy/nC) was used for reference-dose irradiations during film calibration. Dose ratios at the Bragg peak relative to the reference-depth were 3.88, 2.52, 2.19, and 2.02 for the Markus chamber, HD-V2, EBT3, and EBT film models, respectively. Conclusion: Results at hand suggest that quenching effect is reduced when a radiochromic film model with smaller sensitive layer thickness is used for PDD measurements in proton beams. David Lewis is the owner of RCF Consulting, LLC.

  10. A new metallic oxide semiconductor field effect transistor detector for use of in vivo dosimetry

    International Nuclear Information System (INIS)

    Qi Zhenyu; Deng Xiaowu; Huang Shaomin; Kang Dehua; Anatoly Rosenfeld

    2006-01-01

    Objective: To investigate the application of a recently developed metallic oxide semiconductor field effect transistor (MOSFET) detector for use in vivo dosimetry. Methods: The MOSFET detector was calibrated for X-ray beams of 8 MV and 15 MV, as well as electron beams with energy of 6,8,12 and 18 MeV. The dose linearity of the MOSFET detector was investigated for the doses ranging from 0 up to 50 Gy using 8 MV X-ray beams. Angular effect was evaluated as well in a cylindrical PMMA phantom by changing the beam entrance angle every 15 degree clockwise. The MOSFET detector was then used for a breast cancer patient in vivo dose measurement, after the treatment plan was verified in a water phantom using a NE-2571 ion chamber, in vivo measurements were performed in the first and last treatment, and once per week during the whole treatment. The measured doses were then compared with planning dose to evaluate the accuracy of each treatment. Results: The MOSFET detector represented a good energy response for X-ray beams of 8 MV and 15 MV, and for electron beams with energy of 6 MeV up to 18 MeV. With the 6 V bias, Dose linearity error of the MOSFET detector was within 3.0% up to approximately 50 Gy, which can be significantly reduced to 1% when the detector was calibrated before and after each measurement. The MOSFET response varied within 1.5% for angles from 270 degree to 90 degree. However, maximum error of 10.0% was recorded comparing MOSFET response between forward and backward direction. In vivo measurement for a breast cancer patient using 3DCRT showed that, the average dose deviation between measurement and calculation was 2.8%, and the maximum error was less then 5.0%. Conclusions: The new MOSFET detector, with its advantages of being in size, easy use, good energy response and dose linearity, can be used for in vivo dose measurement. (authors)

  11. Internal dosimetry, past and future

    International Nuclear Information System (INIS)

    Johnson, J.R.

    1989-03-01

    This paper is a review of the progress in the dosimetry of internally deposited radionuclides (internal dosimetry) since World War II. Previous to that, only naturally occurring radionuclides were available and only a limited number of studies of biokinetics and dosimetry were done. The main radionuclides studied were 226 Ra, 228 Ra, and 224 Ra but natural uranium was also studied mainly because of its toxic effect as a heavy metal, and not because it was radioactive. The effects of 226 Ra in bone, mainly from the radium dial painters, also formed the only bases for the radiotoxicity of radionuclides in bone for many years, and it is still, along with 224 Ra, the main source of information on the effects of alpha emitters in bone. The publications of the International Commission on Radiological Protection that have an impact on internal dosimetry are used as mileposts for this review. These series of publications, more than any other, represent a broad consensus of opinion within the radiation protection community at the time of their publication, and have formed the bases for radiation protection practice throughout the world. This review is not meant to be exhaustive; it is meant to be a personnel view of the evolution of internal dosimetry, and to present the author's opinion of what the future directions in internal dosimetry will be. 39 refs., 2 tabs

  12. Ionising radiation - physical and biological effects

    International Nuclear Information System (INIS)

    Holter, Oe.; Ingebretsen, F.; Parr, H.

    1979-01-01

    The physics of ionising radiation is briefly presented. The effects of ionising radiation on biological cells, cell repair and radiosensitivity are briefly treated, where after the effects on man and mammals are discussed and related to radiation doses. Dose limits are briefly discussed. The genetic effects are discussed separately. Radioecology is also briefly treated and a table of radionuclides deriving from reactors, and their radiation is given. (JIW)

  13. Effects of the interruption of the irradiation process on PMMA Harwell Industry Dosimetry Systems

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Paulo S.; Vasquez, Pablo A.S., E-mail: psantos@ipen.br, E-mail: pavsalva@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Nowadays, the use of dyed-polymethylmethacrylate dosimetry systems in measurements at industrial irradiations has been broadly, despite the use of alanine dosimeters. Accurate dosimetry measurements are essential for the sterilization applications of medical products as well as the preservation of food by ionizing radiation. Regulations in many countries require in-plant dosimetry to ensure that the specified radiation dose has been delivered to the product. Harwell commercial dosimeters commonly are built to work with measurements between 1 kGy to 50 kGy, this means that a same dosimeter could be used until reach these values. Radiation processing demands partial measurements of the absorbed dose to guarantee the final desired applied absorbed dose depending to the dose rate. In this sense, the total absorbed dose corresponds to the cumulative partial values. In this study, several dosimeters were irradiated at the Multipurpose Gamma Irradiation Facility at IPEN - CNEN/SP to evaluate the response to the interruption of the irradiation process in the total cumulative absorbed dose values considering statistical changes and some processing parameters. When studied the Harwell dyed-polymethylmethacrylate dosimeters Red 4034 and Amber 3042, applying processing interruptions, results shown a coefficient of variation under 7% for industrial irradiation conditions to the total cumulative absorbed dose. (author)

  14. Estimation of Biological Effects of Tritium.

    Science.gov (United States)

    Umata, Toshiyuki

    2017-01-01

    Nuclear fusion technology is expected to create new energy in the future. However, nuclear fusion requires a large amount of tritium as a fuel, leading to concern about the exposure of radiation workers to tritium beta radiation. Furthermore, countermeasures for tritium-polluted water produced in decommissioning of the reactor at Fukushima Daiichi Nuclear Power Station may potentially cause health problems in radiation workers. Although, internal exposure to tritium at a low dose/low dose rate can be assumed, biological effect of tritium exposure is not negligible, because tritiated water (HTO) intake to the body via the mouth/inhalation/skin would lead to homogeneous distribution throughout the whole body. Furthermore, organically-bound tritium (OBT) stays in the body as parts of the molecules that comprise living organisms resulting in long-term exposure, and the chemical form of tritium should be considered. To evaluate the biological effect of tritium, the effect should be compared with that of other radiation types. Many studies have examined the relative biological effectiveness (RBE) of tritium. Hence, we report the RBE, which was obtained with radiation carcinogenesis classified as a stochastic effect, and serves as a reference for cancer risk. We also introduce the outline of the tritium experiment and the principle of a recently developed animal experimental system using transgenic mouse to detect the biological influence of radiation exposure at a low dose/low dose rate.

  15. Neutron Dosimetry

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2001-01-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations. In 2000, R and D focused on the contiued investigation of the bubble detectors type BD-PND and BDT, in particular their sensitivity and temperature dependence; the updating of SCK-CEN's criticality dosemeter, the investigation of the characteristics of new thermoluminescent materials and their use in neutron dosemetry; and the investigation of neutron shielding

  16. Neutron Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Vanhavere, F

    2001-04-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations. In 2000, R and D focused on the contiued investigation of the bubble detectors type BD-PND and BDT, in particular their sensitivity and temperature dependence; the updating of SCK-CEN's criticality dosemeter, the investigation of the characteristics of new thermoluminescent materials and their use in neutron dosemetry; and the investigation of neutron shielding.

  17. Biologic effects of electromagnetic radiation and microwave

    International Nuclear Information System (INIS)

    Deng Hua

    2002-01-01

    Electromagnetic radiation and microwave exist mankind's environment widely. People realize they disserve authors' health when authors make use of them. Electromagnetic radiation is one of the major physic factors which injure people's health. A review of the biologic mechanism about electromagnetic radiation and microwave, their harmful effects to human body, problems in authors' research and the prospect

  18. Biological radiation effects and radioprotection standards

    International Nuclear Information System (INIS)

    Clerc, H.

    1991-03-01

    In this report, after recalling the mode of action of ionizing radiations, the notions of dose, dose equivalents and the values of natural irradiation, the author describes the biological radiation effects. Then he presents the ICRP recommendations and their applications to the french radioprotection system

  19. Study of biological effect of radiation

    International Nuclear Information System (INIS)

    Li Guisheng

    1992-01-01

    The some progress on the study of biological effect for protract exposure to low dose rate radiation is reported, and it is indicated that the potential risk of this exposure for the human health and the importance of the routine monitoring of radiation dose for various nuclear installations. The potential exposure to the low dose rate radiation would attract people's extra attention

  20. BIOLOGIC AND ECONOMIC EFFECTS OF INCLUDING DIFFERENT ...

    African Journals Online (AJOL)

    The biologic and economic effects of including three agro-industrial by-products as ingredients in turkey poult diets were investigated using 48 turkey poults in a completely randomised design experiment. Diets were formulated to contain the three by-products – wheat offal, rice husk and palm kernel meal, each at 20% level ...

  1. Progress report, Biology and Health Physics Division, October 1 to December 31, 1976

    International Nuclear Information System (INIS)

    Research results are reported on such topics as dosimetry, monitoring, biological impact of thermal effluents, radioecology and radiobiology, hydrology, waste management, neutron activation analysis, and data analysis for radiation effects on humans. (E.C.B.)

  2. Progress report, Biology and Health Physics Division, July 1 to September 30, 1975

    International Nuclear Information System (INIS)

    1975-11-01

    Interim results are reported for research in health physics, i.e. dosimetry, detectors, and monitoring; environmental research (limnology, radionuclide migration and kinetics; population research (radiation carcinogenesis, radiation effects in human populations); and biology (radiobiology). (E.C.B.)

  3. Estimation of dose ionizing radiation exposure by biological dosimetry; Estimación de dosis de exposición a radiaciones ionizantes mediante dosimetría biológica

    Energy Technology Data Exchange (ETDEWEB)

    Herranz Crespo, R.; Moreno Domene, M.; Prieto Rodríguez, M.J.; Lozano Barriuso, M.A.

    2014-07-01

    the Biological Dosimetry Laboratory of the Radiopathology Centre, at Hospital General Universitario Gregorio Marañón, is the only national laboratory accredited by UNE-EN ISO/IEC 17025:2005, and scope to ISO 19238:2004 (Radiation protection – Performance criteria for service laboratories performing biological dosimetry by citogenetics), for dose assessment by the dycentrics assay, has great experience with more than 100 real cases analyzed, and several population studies. This paper describes experience and results from more than 20 years of work under the Reference level II Centre for the attention of irradiated and/or contaminated people. [Spanish] El Laboratorio de Dosimetría Biológica, del Centro de Radiopatología del Hospital General Universitario Gregorio Marañón, es el único en España que dispone de acreditación internacional por la norma UNE-EN ISO/IEC 17025:2005 con alcance a la norma ISO 19238:2004 (Radiationprotection – Performance criteria for service laboratories performing biological dosimetry by citogenetics), para la realización de estimaciones dosimétricas mediante la técnica de dicéntricos, dispone de amplia experiencia en su aplicación en los 110 casos reales analizados, y en diferentes estudios de poblaciones españolas. En este trabajo se describe la experiencia del laboratorio y los resultados obtenidos en los más de 20 años de funcionamiento en el Centro de Referencia de nivel II para la atención a irradiados y/o contaminados por radiaciones ionizantes.

  4. Accidental and retrospective dosimetry using TL method

    International Nuclear Information System (INIS)

    Mesterházy, D.; Osvay, M.; Kovács, A.; Kelemen, A.

    2012-01-01

    Retrospective dosimetry is one of the most important tools of accidental dosimetry for dose estimation when dose measurement was not planned. In the affected area many objects can be applied as natural dosimeters. The paper discusses our recent investigations on various electronic components and common salt (NaCl) having useful thermoluminescence (TL) properties. Among materials investigated the electronic components of cell phones seem promising for retrospective dosimetry purposes, having high TL responses, proper glow curve peaks and the intensity of TL peaks vs. gamma dose received provided nearly linear response in the dose range of 10 mGy–1.5 Gy. - Highlights: ► Electronic components and common salt were investigated for accidental and retrospective dosimetry. ► SMD resistors seem promising for retrospective dosimetry purposes. ► Table salt can be used effectively for accidental dosimetry purposes, as well.

  5. Nuclear energy: biological effects and environmental impact

    International Nuclear Information System (INIS)

    Boonefaes, M.

    1987-01-01

    This thesis is concerned with the large development of nuclear power plants and the recent nuclear catastrophe which has made clear how the hazards resulting from radioactivity affect public health and the environment. Environmental effects of nuclear power plants operating in normal conditions are small, but to obtain nuclear power plants of reduced radioactivity, optimization of their design, construction, operation and waste processing plays a decisive role. Biological effects of ionizing radiations and environmental impacts of Nuclear Power plants are developed [fr

  6. The implications of the publication 92 of the ICRP for the neutron dosimetry

    International Nuclear Information System (INIS)

    Thomas, R.H.

    2004-01-01

    This article gives some comments on the neutron dosimetry in the publication 92 called 'Relative Biological Effectiveness, Quality factor and Radiation weighting factor'. the accent is put on the question of the weighting factor given to the radiation. (N.C.)

  7. Lunar biological effects and the magnetosphere.

    Science.gov (United States)

    Bevington, Michael

    2015-12-01

    The debate about how far the Moon causes biological effects has continued for two millennia. Pliny the Elder argued for lunar power "penetrating all things", including plants, fish, animals and humans. He also linked the Moon with tides, confirmed mathematically by Newton. A review of modern studies of biological effects, especially from plants and animals, confirms the pervasive nature of this lunar force. However calculations from physics and other arguments refute the supposed mechanisms of gravity and light. Recent space exploration allows a new approach with evidence of electromagnetic fields associated with the Earth's magnetotail at full moon during the night, and similar, but more limited, effects from the Moon's wake on the magnetosphere at new moon during the day. The disturbance of the magnetotail is perhaps shown by measurements of electric fields of up to 16V/m compared with the usual lunar biological effects, such as acute myocardial infarction, could help the development of strategies to reduce adverse effects for people sensitive to geomagnetic disturbance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Estimation of individual radiation doses determined by the biological dosimetry method at the inhabitants of the Chernobyl region

    International Nuclear Information System (INIS)

    Nikolaevich, L.N.

    1997-01-01

    The results obtained by the method of the chromosome aberration analysis in human peripheral blood lymphocytes are given. Hematologically healthy inhabitants of Vetka and Khoiniki districts in Gomel Region (80 adults and 38 children), as well as persons suffering from hemoblastosis (acute lymphoblastic leukemia, acute myeloblastic leukemia) were examined. 27258 metaphase cells being analysed. Only two-hit aberrations (dicentric and ring chromosomes with fragments and without them), specific disturbances in response to radiation effect, were tested for estimating an individual dose of ionizing radiation. The examined groups of adults and children were formed depending on the value of an individual radiation dose: 0 kGy; from 0 to 1,4 kGy and from 1,5 to 3,0 kGy. 39% of adults took the dose up to 1,5 kGy and about 9% did above 2,0 kGy. The tendency towards increasing the amount of aberrant lymphocytes in peripheral blood is observed in persons who took the dose above 2,0 kGy. Among children 52,6% took the doses from 1,5 to 3,0 kGy. No increase in the level of aberrant cells in comparison with the children from the 'zero group' was observed in those children. Apparently, in some cases slightly reduced radiation doses can be obtained by the data of the chromosome analysis method since with the time elimination of a portion of these cells with unstable chromosome aberrations takes place. Elimination of chromosome aberrations in lymphocytes can be caused by different infectious processes which are accompanied by a pronounced immune response inducing inclusion of lymphocytes with aberrations in mitosis and , as a result, disappearance of unstable mutations. However, together with elimination of old chromosome aberrations new ones, caused by ongoing radiation, emerge in people living in radio contaminated regions and thus, the radiation dose determined by the chromosome analysis method even increases with years that can favour rise in malignant tumors. The radiation dose

  9. Joint USNRC/EC consequence uncertainty study: The ingestion pathway, dosimetry and health effects expert judgment elicitations and results

    International Nuclear Information System (INIS)

    Harper, F.; Goossens, L.; Abbott, M.

    1996-01-01

    The US Nuclear Regulatory Commission (USNRC) and the European Commission (EC) have conducted a formal expert judgment elicitation jointly to systematically collect the quantitative information needed to perform consequence uncertainty analyses on a broad set of commercial nuclear power plants. Information from three sets of joint US/European expert panels was collected and processed. Information from the three sets of panels was collected in the following areas: in the phenomenological areas of atmospheric dispersion and deposition, in the areas of ingestion pathways and external dosimetry, and in the areas of health effects and internal dosimetry. This exercise has demonstrated that the uncertainty for particular issues as measured by the ratio of the 95th percentile to the 5th percentile can be extremely large (orders of magnitude), or rather small (factor of two). This information has already been used by many of the experts that were involved in this process in areas other than the consequence uncertainty field. The benefit to the field of radiological consequences is just beginning as the results of this study are published and made available to the consequence community

  10. Monte Carlo Investigation on the Effect of Heterogeneities on Strut Adjusted Volume Implant (SAVI) Dosimetry

    Science.gov (United States)

    Koontz, Craig

    Breast cancer is the most prevalent cancer for women with more than 225,000 new cases diagnosed in the United States in 2012 (ACS, 2012). With the high prevalence, comes an increased emphasis on researching new techniques to treat this disease. Accelerated partial breast irradiation (APBI) has been used as an alternative to whole breast irradiation (WBI) in order to treat occult disease after lumpectomy. Similar recurrence rates have been found using ABPI after lumpectomy as with mastectomy alone, but with the added benefit of improved cosmetic and psychological results. Intracavitary brachytherapy devices have been used to deliver the APBI prescription. However, inability to produce asymmetric dose distributions in order to avoid overdosing skin and chest wall has been an issue with these devices. Multi-lumen devices were introduced to overcome this problem. Of these, the Strut-Adjusted Volume Implant (SAVI) has demonstrated the greatest ability to produce an asymmetric dose distribution, which would have greater ability to avoid skin and chest wall dose, and thus allow more women to receive this type of treatment. However, SAVI treatments come with inherent heterogeneities including variable backscatter due to the proximity to the tissue-air and tissue-lung interfaces and variable contents within the cavity created by the SAVI. The dose calculation protocol based on TG-43 does not account for heterogeneities and thus will not produce accurate dosimetry; however Acuros, a model-based dose calculation algorithm manufactured by Varian Medical Systems, claims to accurately account for heterogeneities. Monte Carlo simulation can calculate the dosimetry with high accuracy. In this thesis, a model of the SAVI will be created for Monte Carlo, specifically using MCNP code, in order to explore the affects of heterogeneities on the dose distribution. This data will be compared to TG-43 and Acuros calculated dosimetry to explore their accuracy.

  11. The role of cell hydration in realization of biological effects of non-ionizing radiation (NIR).

    Science.gov (United States)

    Ayrapetyan, Sinerik

    2015-09-01

    The weak knowledge on the nature of cellular and molecular mechanisms of biological effects of NIR such as static magnetic field, infrasound frequency of mechanical vibration, extremely low frequency of electromagnetic fields and microwave serves as a main barrier for adequate dosimetry from the point of Public Health. The difficulty lies in the fact that the biological effects of NIR depend not only on their thermodynamic characteristics but also on their frequency and intensity "windows", chemical and physical composition of the surrounding medium, as well as on the initial metabolic state of the organism. Therefore, only biomarker can be used for adequate estimation of biological effect of NIR on organisms. Because of the absence of such biomarker(s), organizations having the mission to monitor hazardous effects of NIR traditionally base their instruction on thermodynamic characteristics of NIR. Based on the high sensitivity to NIR of both aqua medium structure and cell hydration, it is suggested that cell bathing medium is one of the primary targets and cell hydration is a biomarker for NIR effects on cells and organisms. The purpose of this article is to present a short review of literature and our own experimental data on the effects of NIR on plants' seeds germination, microbe growth and development, snail neurons and heart muscle, rat's brain and heart tissues.

  12. Dosimetry of internal emitting: principles and perspectives of the MIRD technology

    International Nuclear Information System (INIS)

    Ferro F, G.

    1999-01-01

    The development of the radiopharmaceutical technology have multiplied the number of radioisotopes with applications in therapeutical nuclear medicine so known as Directed radiotherapy. Assuming the radiation is capable to produce noxious effects in the biological systems, it is important to evaluate appropriately the risks and benefits of the administration of radioactive agents in the patient. The outstanding parameter in this evaluation is the absorbed dose, which is product of the radiation emitted by a radionuclide that is localized or distributed to the interior of the human body in study and whose its estimation helps to predict the efficacy of the treatment. The scheme generalized of MIRD, it was formulated from thirty years ago for evaluating the interior dosimetry at level of organs.The finality of this work is to show the basic principles of the MIRD methodology and its perspectives using innovator tools as the dosimetry for dynamic masses, in particular the personnel dosimetry for the organs of each patient, the dosimetry for the small structures inside the organs (sub organic dosimetry), the distributions of doses in three dimensions (S voxel), the dosimetry at cellular level and the quantitative acquisition of pharmaceutical data. (Author)

  13. Dosimetry for photo-coagulation by the use of autofluorescence

    Science.gov (United States)

    Brodzinski, T.

    1989-01-01

    A basic problem when using lasers in medicine is that of dosimetry. The definition of the terms dose, effective value etc. will be dealt with in Chapter 2. This chapter is intended to give an insight into the problems of basic dosimetry and its technical realization within the field of photocoagulation, an established method used to treat the retina, or some skin diseases. Until now the coagulation process was assessed to be completed when the irradiated area became blanched. However in terms of dosimetry, it must be possible to predict or at least to monitor the biological effect using well-defined parameters for the laser or in achieving an objective measure for a feedback loop. In the case of coagulation, a prediction in this form is not possible. There are two ways of pro- ceeding further see Fig. 1. One can either determine the physical effect, i.e. temperature, by some kind of sensors, or even better, use some biological effect as a direct measure of the effective dose applied.

  14. Progranulin and its biological effects in cancer.

    Science.gov (United States)

    Arechavaleta-Velasco, Fabian; Perez-Juarez, Carlos Eduardo; Gerton, George L; Diaz-Cueto, Laura

    2017-11-07

    Cancer cells have defects in regulatory mechanisms that usually control cell proliferation and homeostasis. Different cancer cells share crucial alterations in cell physiology, which lead to malignant growth. Tumorigenesis or tumor growth requires a series of events that include constant cell proliferation, promotion of metastasis and invasion, stimulation of angiogenesis, evasion of tumor suppressor factors, and avoidance of cell death pathways. All these events in tumor progression may be regulated by growth factors produced by normal or malignant cells. The growth factor progranulin has significant biological effects in different types of cancer. This protein is a regulator of tumorigenesis because it stimulates cell proliferation, migration, invasion, angiogenesis, malignant transformation, resistance to anticancer drugs, and immune evasion. This review focuses on the biological effects of progranulin in several cancer models and provides evidence that this growth factor should be considered as a potential biomarker and target in cancer treatment.

  15. Cytometric approaches to biological dosimetry

    International Nuclear Information System (INIS)

    Burger, G.

    1983-01-01

    Automatic cytometric techniques for detecting chromosomal aberrations are being tested but will not be used in routine examinations for some time to come. Automatic micronuclei counts are more promising but not sufficiently sensitive in the low dose range ( [de

  16. Radiation dosimetry

    International Nuclear Information System (INIS)

    Harper, M.W.; Thomas, B.; Conway, J.

    1977-01-01

    A dosemeter is described that is based on the TSCD principle (thermally stimulated current dosimetry). Basically this involves irradiating a responsive material and then heating it,whereby an electric current is produced. If the material is heated in an electric field the peak value of the thermally stimulated current or alternatively the total charge released by heating, can be related to the radiation dose received. The instrument described utilises a sheet coated with a thermoplastic polymer, such as a poly4-methylpent-l-ene. The polymer should have a softening point not lower than 150 0 C with an electrical resistivity of at least 10 16 chms/cm at 150 0 C. The polymer may also be PTFE. Heating should be in the range 150 0 C to 200 0 C and the electric field in the range 50 to 10,000V/mm. (U.K.)

  17. Electromagnetic effects - From cell biology to medicine.

    Science.gov (United States)

    Funk, Richard H W; Monsees, Thomas; Ozkucur, Nurdan

    2009-01-01

    In this review we compile and discuss the published plethora of cell biological effects which are ascribed to electric fields (EF), magnetic fields (MF) and electromagnetic fields (EMF). In recent years, a change in paradigm took place concerning the endogenously produced static EF of cells and tissues. Here, modern molecular biology could link the action of ion transporters and ion channels to the "electric" action of cells and tissues. Also, sensing of these mainly EF could be demonstrated in studies of cell migration and wound healing. The triggers exerted by ion concentrations and concomitant electric field gradients have been traced along signaling cascades till gene expression changes in the nucleus. Far more enigmatic is the way of action of static MF which come in most cases from outside (e.g. earth magnetic field). All systems in an organism from the molecular to the organ level are more or less in motion. Thus, in living tissue we mostly find alternating fields as well as combination of EF and MF normally in the range of extremely low-frequency EMF. Because a bewildering array of model systems and clinical devices exits in the EMF field we concentrate on cell biological findings and look for basic principles in the EF, MF and EMF action. As an outlook for future research topics, this review tries to link areas of EF, MF and EMF research to thermodynamics and quantum physics, approaches that will produce novel insights into cell biology.

  18. Biological effect of aerospace environment on alfalfa

    International Nuclear Information System (INIS)

    Zhang Yuexue; Liu Jielin; Han Weibo; Tang Fenglan; Hao Ruochao; Shang Chen; DuYouying; Li Jikai; Wang Changshan

    2009-01-01

    The biological effect of aerospace environment on two varieties of Medicago sativa L. was studied. In M 1 germination results showed that aerospace environment increased cell division and the number of micronucleus, changed germination rate, caused seedling aberrations. Cytogenetical and seedling aberration of Zhaodong showed more sensitivity than Longmu 803. Branches and fresh weight of Zhaodong had shown more serious damage than control and Longmu 803. (authors)

  19. Organ dosimetry

    International Nuclear Information System (INIS)

    Kaul, Dean C.; Egbert, Stephen D.; Otis, Mark D.; Kuhn, Thomas; Kerr, George D.; Eckerman, Keith F.; Cristy, Mark; Ryman, Jeffrey C.; Tang, Jabo S.; Maruyama, Takashi

    1987-01-01

    This chapter describes the technical approach, complicating factors, and sensitivities and uncertainties of calculations of doses to the organs of the A-bomb survivors. It is the object of the effort so described to provide data that enables the dosimetry system to determine the fluence, kerma, absorbed dose, and similar quantities in 14 organs and the fetus, specified as being of radiobiological interest. This object was accomplished through the use of adjoint Monte Carlo computations, which use a number of random particle histories to determine the relationship of incident neutrons and gamma rays to those transported to a target organ. The system uses these histories to correlate externally-incident energy- and angle-differential fluences with the fluence spectrum (energy differential only) within the target organ. In order for the system to work in the most efficient manner possible, two levels of data were provided. The first level, represented by approximately 6,000 random adjoint-particle histories, enables the computation of the fluence spectrum with sufficient precision to provide statistically reliable (± 6 %) mean doses within any given organ. With this limited history inventory, the system can be run rapidly for all survivors. Mean organ dose and dose uncertainty are obtainable in this mode. The second mode of operation enables the system to produce a good approximation to fluence spectrum within any organ or to produce the dose in each of an array of organ subvolumes. To be statistically reliable, this level of detail requires far more random histories, approximately 40,000 per organ. Thus, operation of the dosimetry system in this mode (i.e., with this data set) is intended to be on an as-needed, organ-specific basis, since the system run time is eight times that in the mean dose mode. (author)

  20. Cellular dosimetry

    International Nuclear Information System (INIS)

    Humm, J.L.; Chin, L.M.

    1989-01-01

    Radiation dose is a useful predictive parameter for describing radiation toxicity in conventional radiotherapy. Traditionally, in vitro radiation biology dose-effect relations are expressed in the form of cell survival curves, a semilog plot of cell survival versus dose. However, the characteristic linear or linear quadratic survival curve shape, for high- and low-LET radiations respectively, is only strictly valid when the radiation dose is uniform across the entire target population. With an external beam of 60 Co gamma rays or x-rays, a uniform field may be readily achievable. When radionuclides are incorporated into a cell milieu, several new problems emerge which can result in a departure from uniformity in energy deposition throughout a cell population. This nonuniformity can have very important consequences for the shape of the survival curve. Cases in which perturbations of source uniformity may arise include: 1. Elemental sources may equilibrate in the cell medium with partition coefficients between the extracellular, cytosol, and nuclear compartments. The effect of preferential cell internalization or binding to cell membrane of some radionuclides can increase or decrease the slope of the survival curve. 2. Radionuclides bound to antibodies, hormones, metabolite precursors, etc., may result in a source localization pattern characteristic of the carrier agent, i.e., the sources may bind to cell surface receptors or antigens, be internalized, bind to secreted antigen concentrated around a fraction of the cell population, or become directly incorporated into the cell DNA. We propose to relate the distribution of energy deposition in cell nuclei to biological correlates of cellular inactivation. The probability of each cell's survival is weighted by its individual radiation burden, and the summation of these probabilities for the cell population can be used to predict the number or fraction of cell survivors

  1. Updating the INDAC computer application of internal dosimetry

    International Nuclear Information System (INIS)

    Bravo Perez-Tinao, B.; Marchena Gonzalez, P.; Sollet Sanudo, E.; Serrano Calvo, E.

    2013-01-01

    The initial objective of this project is to expand the application INDAC currently used in internal dosimetry services of the Spanish nuclear power plants and Tecnatom for estimating the effective doses of internal dosimetry of workers in direct action. or in-vivo dosimetry. (Author)

  2. Project resumes: biological effects from electric fields associated with high-voltage transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    Abstracts of research projects are presented in the following areas: measurements and special facilities; cellular and subcellular studies; physiology; behavior; environmental effects; modeling, scaling and dosimetry; and high voltage direct current. (ACR)

  3. Sizewell B Power Station control dosimetry system

    International Nuclear Information System (INIS)

    Renn, G.

    1995-01-01

    Sizewell B Power Station is the first Pressurized Water Reactor (PWR) built in the UK for commercial electricity production. An effective control dosimetry system is a crucial tool, in allowing the station to assess its radiological performance against targets. This paper gives an overview of the control dosimetry system at Sizewell B and describes early operating experience with the system. (UK)

  4. The Biological Effects of Bilirubin Photoisomers

    Science.gov (United States)

    Jasprova, Jana; Dal Ben, Matteo; Vianello, Eleonora; Goncharova, Iryna; Urbanova, Marie; Vyroubalova, Karolina; Gazzin, Silvia; Tiribelli, Claudio; Sticha, Martin; Cerna, Marcela; Vitek, Libor

    2016-01-01

    Although phototherapy was introduced as early as 1950’s, the potential biological effects of bilirubin photoisomers (PI) generated during phototherapy remain unclear. The aim of our study was to isolate bilirubin PI in their pure forms and to assess their biological effects in vitro. The three major bilirubin PI (ZE- and EZ-bilirubin and Z-lumirubin) were prepared by photo-irradiation of unconjugated bilirubin. The individual photoproducts were chromatographically separated (TLC, HPLC), and their identities verified by mass spectrometry. The role of Z-lumirubin (the principle bilirubin PI) on the dissociation of bilirubin from albumin was tested by several methods: peroxidase, fluorescence quenching, and circular dichroism. The biological effects of major bilirubin PI (cell viability, expression of selected genes, cell cycle progression) were tested on the SH-SY5Y human neuroblastoma cell line. Lumirubin was found to have a binding site on human serum albumin, in the subdomain IB (or at a close distance to it); and thus, different from that of bilirubin. Its binding constant to albumin was much lower when compared with bilirubin, and lumirubin did not affect the level of unbound bilirubin (Bf). Compared to unconjugated bilirubin, bilirubin PI did not have any effect on either SH-SY5Y cell viability, the expression of genes involved in bilirubin metabolism or cell cycle progression, nor in modulation of the cell cycle phase. The principle bilirubin PI do not interfere with bilirubin albumin binding, and do not exert any toxic effect on human neuroblastoma cells. PMID:26829016

  5. Microwave radiation - Biological effects and exposure standards

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, I.R.

    1980-06-01

    The thermal and nonthermal effects of exposure to microwave radiation are discussed and current standards for microwave exposure are examined in light of the proposed use of microwave power transmission from solar power satellites. Effects considered include cataractogenesis at levels above 100 mW/sq cm, and possible reversible disturbances such as headaches, sleeplessness, irritability, fatigue, memory loss, cardiovascular changes and circadian rhythm disturbances at levels less than 10 mW/sq cm. It is pointed out that while the United States and western Europe have adopted exposure standards of 10 mW/sq cm, those adopted in other countries are up to three orders of magnitude more restrictive, as they are based on different principles applied in determining safe limits. Various aspects of the biological effects of microwave transmissions from space are considered in the areas of the protection of personnel working in the vicinity of the rectenna, interactions of the transmitted radiation with cardiac pacemakers, and effects on birds. It is concluded that thresholds for biological effects from short-term microwave radiation are well above the maximal power density of 1 mW/sq cm projected at or beyond the area of exclusion of a rectenna.

  6. SU-F-T-554: Dark Current Effect On CyberKnife Beam Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H; Chang, A [Soonchunhyang University Hospital, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: All RF linear accelerators produce dark current to varying degrees when an accelerating voltage and RF input is applied in the absence of electron gun injection. This study is to evaluate how dark current from the linear accelerator of CyberKnife affect the dose in the reference dosimetry. Methods: The G4 CyberKnife system with 6MV photon beam was used in this study. Using the ion chamber and the diode detector, the dose was measured in water with varying time delay between acquiring charges and staring beam-on after applying high-voltage into the linear accelerator. The dose was measured after the time delay with over the range of 0 to 120 seconds in the accelerating high-voltage mode without beam-on, applying 0, 10, 50, 100, and 200 MUs. For the measurements, the collimator of 60 mm was used and the detectors were placed at the depths of 10 cm with the source-to-surface distance of 80 cm. Results: The dark current was constant over time regardless of MU. The dose due to the dark current increased over time linearly with the R-squared value of 0.9983 up to 4.4 cGy for the time 120 seconds. In the dose rate setting of 720 MU/min, the relative dose when applying the accelerating voltage without beam-on was increased over time up to 0.6% but it was less than the leakage radiation resulted from the accelerated head. As the reference dosimetry condition, when 100 MU was delivered after 10 seconds time delay, the relative dose increased by 0.7% but 6.7% for the low MU (10 MU). Conclusion: In the dosimetry using CyberKnife system, the constant dark current affected to the dose. Although the time delay in the accelerating high-voltage mode without beam-on is within 10 seconds, the dose less than 100 cGy can be overestimated more than 1%.

  7. Bystander effect: Biological endpoints and microarray analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhry, M. Ahmad [Department of Medical Laboratory and Radiation Sciences, College of Nursing and Health Sciences, University of Vermont, 302 Rowell Building, Burlington, VT 05405 (United States) and DNA Microarray Facility, University of Vermont, Burlington, VT 05405 (United States)]. E-mail: mchaudhr@uvm.edu

    2006-05-11

    In cell populations exposed to ionizing radiation, the biological effects occur in a much larger proportion of cells than are estimated to be traversed by radiation. It has been suggested that irradiated cells are capable of providing signals to the neighboring unirradiated cells resulting in damage to these cells. This phenomenon is termed the bystander effect. The bystander effect induces persistent, long-term, transmissible changes that result in delayed death and neoplastic transformation. Because the bystander effect is relevant to carcinogenesis, it could have significant implications for risk estimation for radiation exposure. The nature of the bystander effect signal and how it impacts the unirradiated cells remains to be elucidated. Examination of the changes in gene expression could provide clues to understanding the bystander effect and could define the signaling pathways involved in sustaining damage to these cells. The microarray technology serves as a tool to gain insight into the molecular pathways leading to bystander effect. Using medium from irradiated normal human diploid lung fibroblasts as a model system we examined gene expression alterations in bystander cells. The microarray data revealed that the radiation-induced gene expression profile in irradiated cells is different from unirradiated bystander cells suggesting that the pathways leading to biological effects in the bystander cells are different from the directly irradiated cells. The genes known to be responsive to ionizing radiation were observed in irradiated cells. Several genes were upregulated in cells receiving media from irradiated cells. Surprisingly no genes were found to be downregulated in these cells. A number of genes belonging to extracellular signaling, growth factors and several receptors were identified in bystander cells. Interestingly 15 genes involved in the cell communication processes were found to be upregulated. The induction of receptors and the cell

  8. Bystander effect: Biological endpoints and microarray analysis

    International Nuclear Information System (INIS)

    Chaudhry, M. Ahmad

    2006-01-01

    In cell populations exposed to ionizing radiation, the biological effects occur in a much larger proportion of cells than are estimated to be traversed by radiation. It has been suggested that irradiated cells are capable of providing signals to the neighboring unirradiated cells resulting in damage to these cells. This phenomenon is termed the bystander effect. The bystander effect induces persistent, long-term, transmissible changes that result in delayed death and neoplastic transformation. Because the bystander effect is relevant to carcinogenesis, it could have significant implications for risk estimation for radiation exposure. The nature of the bystander effect signal and how it impacts the unirradiated cells remains to be elucidated. Examination of the changes in gene expression could provide clues to understanding the bystander effect and could define the signaling pathways involved in sustaining damage to these cells. The microarray technology serves as a tool to gain insight into the molecular pathways leading to bystander effect. Using medium from irradiated normal human diploid lung fibroblasts as a model system we examined gene expression alterations in bystander cells. The microarray data revealed that the radiation-induced gene expression profile in irradiated cells is different from unirradiated bystander cells suggesting that the pathways leading to biological effects in the bystander cells are different from the directly irradiated cells. The genes known to be responsive to ionizing radiation were observed in irradiated cells. Several genes were upregulated in cells receiving media from irradiated cells. Surprisingly no genes were found to be downregulated in these cells. A number of genes belonging to extracellular signaling, growth factors and several receptors were identified in bystander cells. Interestingly 15 genes involved in the cell communication processes were found to be upregulated. The induction of receptors and the cell

  9. THz waves: biological effects, industrial and medical; Les ondes THz: effets biologiques, applications industrielles et medicales

    Energy Technology Data Exchange (ETDEWEB)

    Coutaz, J.L.; Garet, F. [Universite de Savoie au Bourget du Lac, IMEP-LAHC, UMR CNRS 5130, 73 (France); Le Drean, Y.; Zhadobov, M. [Institut d' Electronique et des Telecommunications de Rennes, 35 (France); Veyret, B. [I.M.S., 33 - Pessac (France); Mounaix, P. [Laboratoire Ondes et Matiere d' Aquitaine, Universite de Bordeaux, 1 UMR 5798, 33 - Talence (France); Caumes, J.P. [ALPhANOV, 33 - Bordeaux (France); Gallot, G. [Ecole Polytechnique, Laboratoire d' Optique et Biosciences, CNRS UMR 7645, INSERM U696, 91 - Palaiseau (France); Gian Piero, Gallerano [ENEA, Frascati (Italy); Mouret, G. [Universite du Littoral Cote d' Opale - ULCO, 59 - Dunkerque (France); Guilpin, J.C. [Direction Generale de l' Aviation Civile, 94 - Bonneuil sur Marne (France)

    2011-07-01

    Following the debates about body scanners installed in airports for passengers security control, the non-ionizing radiations (NIR) section of the French radiation protection society (SFR) has organized a conference day to take stock of the present day knowledge about the physical aspects and the biological effects of this frequency range as well as about their medical, and industrial applications (both civil and military). This document gathers the slides of the available presentations: 1 - introduction and general considerations about THz waves, the THz physical phenomenon among NIR (J.L. Coutaz); 2 - interaction of millimeter waves with living material: from dosimetry to biological impacts (Y. Le Drean and M. Zhadobov); 3 - Tera-Hertz: standards and recommendations (B. Veyret); 4 - THz spectro-imaging technique: status and perspectives (P. Mounaix); 5 - THz technology: seeing the invisible? (J.P. Caumes); 6 - Tera-Hertz: biological and medical applications (G. Gallot); 7 - Biological applications of THz radiation: a review of events and a glance to the future (G.P. Gallerano); 8 - Industrial and military applications - liquids and solids detection in the THz domain (F. Garet); 9 - THz radiation and its civil and military applications - gas detection and quantifying (G. Mouret); 10 - Body scanners and civil aviation security (J.C. Guilpin, presentation not available). (J.S.)

  10. The effect of isotope on the dosimetry of inhaled plutonium oxide

    International Nuclear Information System (INIS)

    Guilmette, R.A.; Griffith, W.C.

    1991-01-01

    Results of experimental studies in which animals inhaled 238 PuO 2 or 239 PuO 2 aerosols have shown that the biokinetics and associated radiation dose patterns for these two isotopes differ significantly due to differences in in-vivo solubility caused by the 260-fold difference in specific activity between 238 PuO 2 and 239 PuO 2 . We have adapted a biokinetics and dosimetry model derived from results of the ITRI dog studies to humans and have calculated dose commitments and annual limits on intake (ALI) for both Pu isotopes. Our results show that the ALI calculated in this study is one-third that for class Y 238 Pu from ICRP 30, and one-half or equal to that for class Y 239 Pu, depending on how activity in the thoracic lymph nodes is treated dosimetrically

  11. The effects of variations in the density and composition of eye materials on ophthalmic brachytherapy dosimetry

    International Nuclear Information System (INIS)

    Asadi, Somayeh; Masoudi, Seyed Farhad; Shahriari, Majid

    2012-01-01

    In ophthalmic brachytherapy dosimetry, it is common to consider the water phantom as human eye anatomy. However, for better clinical analysis, there is a need for the dose determination in different parts of the eye. In this work, a full human eye is simulated with MCNP-4C code by considering all parts of the eye, i.e., the lens, cornea, retina, choroid, sclera, anterior chamber, optic nerve, and bulk of the eye comprising vitreous body and tumor. The average dose in different parts of this full model of the human eye is determined and the results are compared with the dose calculated in water phantom. The central axes depth dose and the dose in whole of the tumor for these 2 simulated eye models are calculated as well, and the results are compared.

  12. Radiobiology: Biologic effects of ionizing radiations

    International Nuclear Information System (INIS)

    Held, K.D.

    1987-01-01

    The biologic effects after exposure to ionizing radiation, such as cell death or tissue injury, result from a chain of complex physical, chemical, metabolic, and histologic events. The time scale of these radiation actions spans many orders of magnitude. The physical absorption of ionizing radiation occurs in about 10 -18 s, while late carcinogenic and genetic effects are expressed years or even generations later. Collectively, these effects form the science of radiobiology. Many of the concepts discussed in this chapter have been developed through the study of effects generated in tissues by external radiation sources, but they apply generally and often specifically to internally distributed radiopharmaceuticals which form the central topic of this book

  13. Personnel neutron dosimetry

    International Nuclear Information System (INIS)

    Hankins, D.

    1982-04-01

    This edited transcript of a presentation on personnel neutron discusses the accuracy of present dosimetry practices, requirements, calibration, dosemeter types, quality factors, operational problems, and dosimetry for a criticality accident. 32 figs

  14. Integration of new biological and physical retrospective dosimetry methods into EU emergency response plans - joint RENEB and EURADOS inter-laboratory comparisons.

    Science.gov (United States)

    Ainsbury, Elizabeth; Badie, Christophe; Barnard, Stephen; Manning, Grainne; Moquet, Jayne; Abend, Michael; Antunes, Ana Catarina; Barrios, Lleonard; Bassinet, Celine; Beinke, Christina; Bortolin, Emanuela; Bossin, Lily; Bricknell, Clare; Brzoska, Kamil; Buraczewska, Iwona; Castaño, Carlos Huertas; Čemusová, Zina; Christiansson, Maria; Cordero, Santiago Mateos; Cosler, Guillaume; Monaca, Sara Della; Desangles, François; Discher, Michael; Dominguez, Inmaculada; Doucha-Senf, Sven; Eakins, Jon; Fattibene, Paola; Filippi, Silvia; Frenzel, Monika; Georgieva, Dimka; Gregoire, Eric; Guogyte, Kamile; Hadjidekova, Valeria; Hadjiiska, Ljubomira; Hristova, Rositsa; Karakosta, Maria; Kis, Enikő; Kriehuber, Ralf; Lee, Jungil; Lloyd, David; Lumniczky, Katalin; Lyng, Fiona; Macaeva, Ellina; Majewski, Matthaeus; Vanda Martins, S; McKeever, Stephen W S; Meade, Aidan; Medipally, Dinesh; Meschini, Roberta; M'kacher, Radhia; Gil, Octávia Monteiro; Montero, Alegria; Moreno, Mercedes; Noditi, Mihaela; Oestreicher, Ursula; Oskamp, Dominik; Palitti, Fabrizio; Palma, Valentina; Pantelias, Gabriel; Pateux, Jerome; Patrono, Clarice; Pepe, Gaetano; Port, Matthias; Prieto, María Jesús; Quattrini, Maria Cristina; Quintens, Roel; Ricoul, Michelle; Roy, Laurence; Sabatier, Laure; Sebastià, Natividad; Sholom, Sergey; Sommer, Sylwester; Staynova, Albena; Strunz, Sonja; Terzoudi, Georgia; Testa, Antonella; Trompier, Francois; Valente, Marco; Hoey, Olivier Van; Veronese, Ivan; Wojcik, Andrzej; Woda, Clemens

    2017-01-01

    RENEB, 'Realising the European Network of Biodosimetry and Physical Retrospective Dosimetry,' is a network for research and emergency response mutual assistance in biodosimetry within the EU. Within this extremely active network, a number of new dosimetry methods have recently been proposed or developed. There is a requirement to test and/or validate these candidate techniques and inter-comparison exercises are a well-established method for such validation. The authors present details of inter-comparisons of four such new methods: dicentric chromosome analysis including telomere and centromere staining; the gene expression assay carried out in whole blood; Raman spectroscopy on blood lymphocytes, and detection of radiation-induced thermoluminescent signals in glass screens taken from mobile phones. In general the results show good agreement between the laboratories and methods within the expected levels of uncertainty, and thus demonstrate that there is a lot of potential for each of the candidate techniques. Further work is required before the new methods can be included within the suite of reliable dosimetry methods for use by RENEB partners and others in routine and emergency response scenarios.

  15. Dosimetry for radiation processing

    DEFF Research Database (Denmark)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both...... and sterilization dosimetry, optichromic dosimeters in the shape of small tubes for food processing, and ESR spectroscopy of alanine for reference dosimetry. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading...

  16. Biological effects data: Fluoride and sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    McMechan, K.J. (ed.); Holton, R.L.; Ulbricht, R.J.; Morgan , J.B.

    1975-04-01

    The Alumax Pacific Aluminum Corporation has proposed construction of an aluminum reduction facility near Youngs Bay at Warrenton, Oregon. This report comprises one part of the final report to Alumax on a research project entitled, Physical, Chemical and Biological Studies of Youngs Bay.'' It presents data pertaining to the potential biological effects of fluoride and sulfur dioxide, two potentially hazardous plant-stack emissions, on selected aquatic species of the area. Companion volumes provide a description of the physical characteristics the geochemistry, and the aquatic animals present in Youngs Bay and adjacent ecosystems. An introductory volume provides general information and maps of the area, and summarizes the conclusions of all four studies. The data from the two phases of the experimental program are included in this report: lethal studies on the effects of selected levels of fluoride and sulfur dioxide on the survival rate of eleven Youngs Bay faunal species from four phyla, and sublethal studies on the effects of fluoride and sulfur dioxide on the rate of primary production of phytoplankton. 44 refs., 18 figs., 38 tabs.

  17. Xenon preconditioning: molecular mechanisms and biological effects

    Directory of Open Access Journals (Sweden)

    Liu Wenwu

    2013-01-01

    Full Text Available Abstract Xenon is one of noble gases and has been recognized as an anesthetic for more than 50 years. Xenon possesses many of the characteristics of an ideal anesthetic, but it is not widely applied in clinical practice mainly because of its high cost. In recent years, numerous studies have demonstrated that xenon as an anesthetic can exert neuroprotective and cardioprotective effects in different models. Moreover, xenon has been applied in the preconditioning, and the neuroprotective and cardioprotective effects of xenon preconditioning have been investigated in a lot of studies in which some mechanisms related to these protections are proposed. In this review, we summarized these mechanisms and the biological effects of xenon preconditioning.

  18. Complete Biological Evaluation of Therapeutical Radiopharmaceuticals in Rodents, Laboratory Beagles and Veterinary Patients - Preclinical Distribution-, Kinetic-, Excretion-, Internal Dosimetry-, Radiotoxicological-, Radiation Safety- and Efficacy Data

    International Nuclear Information System (INIS)

    Balogh, L.; Domokos, M.; Polyak, A.; Thuroczy, J.; Janoki, G.

    2009-01-01

    The research and development of various novel therapeutical radiopharmaceuticals is a huge demand in many laboratories world-wide. Beside of multiple bone metastases pain-palliation and radiosynovectomy agents a number of specific radiopharmaceutical applicants mainly for oncological applications are in the pipeline. Numerous in vitro methods are available in the first line to test the radiolabelling efficiency, the possible radioactive and non-labelled impurities, the stability of the label at different conditions and mediums, and some specific characteristics of radiopharmaceutical applicants eg.: receptor binding assays, antigen-antibody assays. But, still before human clinical trials there are several questions to be solved in regards of toxicology, radiotoxicology, radiation safety and maybe most importantly the efficacy tasks. All these issues cannot be answered without animal tests. Several decades back animal tests in radiopharmacy meant only standard bioassays in a large number of healthy rodents. Later on pathological models eg.: human tumor xenografts in immunodeficient animals came-out and through them radiopharmaceutical tumor-uptake by the targets were available to evaluate in vivo as well. Xenografts are still popular and widely used models in the field but instead of wide-scaled bioassays nowadays repeated scintiscans or hybrid images (SPECT/CT, PET/CT) are more and more often used to answer kinetic-, excretion-, tumor uptake, internal dosimetry (Minimum Effective Dose, Maximum Tolerable Dose, critical organ doses, tumor doses) questions. Greater animals like laboratory Beagles are more closely in size, clinical and metabolic parameters to the human objects so playing a more perfect role of human medical doctor and especially veterinary patients. Easy to understand that many of the spontaneously occurring companion animal diseases are a good model of human pathological diseases. The need of a better diagnosis and treatment of that animals meets with

  19. Chemical dosimetry principles in high dose dosimetry

    International Nuclear Information System (INIS)

    Mhatre, Sachin G.V.

    2016-01-01

    In radiation processing, activities of principal concern are process validation and process control. The objective of such formalized procedures is to establish documentary evidence that the irradiation process has achieved the desired results. The key element of such activities is inevitably a well characterized reliable dosimetry system that is traceable to recognized national and international dosimetry standards. Only such dosimetry systems can help establish the required documentary evidence. In addition, industrial radiation processing such as irradiation of foodstuffs and sterilization of health careproducts are both highly regulated, in particular with regard to dose. Besides, dosimetry is necessary for scaling up processes from the research level to the industrial level. Thus, accurate dosimetry is indispensable

  20. Aqueous chemical dosimetry

    International Nuclear Information System (INIS)

    Matthews, R.W.

    1982-01-01

    Aqueous chemical dosimetry based on ceric and ferrous sulfate solutions and on a number of fluorescence-induced systems is reviewed. Particular attention is given to the factors affecting the response of these dosimeters to radiation and the corrections necessary for more accurate dosimetry under various irradiation conditions. The effect of cerous and ceric ion, oxygen, and sulfuric acid concentration on the ceric dosimeter is discussed together with the effects of temperature, energy of radiation, degraded energy spectra, and peroxysulfuric acids. Practical aspects of ceric/cerous dosimetry are given. Although ferrous sulfate solution is the most important and widely studied reference dosimeter, general agreement has not been reached on the ''best'' value for the molar extinction coefficient of ferric ions nor on the correction necessary to the G(Fe 3 - ) value for irradiations at temperatures significantly different from 25 0 C. New data are presented which indicate that the larger temperature coefficients given in the literature are more accurate. The ferrous sulfate system has been of great importance in establishing the primary radiolytic yields for 0.4 M sulfuric acid solution; it is shown how the failure to take into account the effect of oxygen and ferrous sulfate concentrations has led to erroneously high estimates of the zero solute concentration values in acid solutions. Some of the methods for extending the dose ranges measurable with ferrous sulfate-based solutions are reviewed. Substances which on irradiation give highly fluorescent products are among the most sensitive aqueous chemical dosimeters. These include benzoate and terephthalate solutions and the more recent coumarin and trimesate solutions. Advantages and disadvantages system are discussed. (author)

  1. External audit in radiotherapy dosimetry

    International Nuclear Information System (INIS)

    Thwaites, D.I.; Western General Hospital, Edinburgh

    1996-01-01

    Quality audit forms an essential part of any comprehensive quality assurance programme. This is true in radiotherapy generally and in specific areas such as radiotherapy dosimetry. Quality audit can independently test the effectiveness of the quality system and in so doing can identify problem areas and minimize their possible consequences. Some general points concerning quality audit applied to radiotherapy are followed by specific discussion of its practical role in radiotherapy dosimetry, following its evolution from dosimetric intercomparison exercises to routine measurement-based on-going audit in the various developing audit networks both in the UK and internationally. Specific examples of methods and results are given from some of these, including the Scottish+ audit group. Quality audit in radiotherapy dosimetry is now well proven and participation by individual centres is strongly recommended. Similar audit approaches are to be encouraged in other areas of the radiotherapy process. (author)

  2. Tritium dosimetry and standardization

    International Nuclear Information System (INIS)

    Balonov, M.I.

    1983-01-01

    Actual problem of radiation hygiene such as an evaluation of human irradiation hazard due to a contact with tritium compounds both in industrial and public spheres is under discussion. Sources of tritium release to environment are characterized. Methods of tritium radiation monitoring are discussed. Methods of dosimetry of internal human exposure resulted from tritium compounds are developed on the base of modern representations on metbolism and tritium radiobiological effect. A system of standardization of permissible intake of tritium compounds for personnel and persons of population is grounded. Some protection measures are proposed as applied to tritium overdosage

  3. Radiation Protection and Dosimetry An Introduction to Health Physics

    CERN Document Server

    Stabin, Michael G

    2007-01-01

    This comprehensive text provides an overview of all relevant topics in the field of radiation protection (health physics). Radiation Protection and Dosimetry serves as an essential handbook for practicing health physics professionals, and is also ideal as a teaching text for courses at the university level. The book is organized to introduce the reader to basic principles of radiation decay and interactions, to review current knowledge and historical aspects of the biological effects of radiation, and to cover important operational topics such as radiation shielding and dosimetry. In addition to presenting the most up to date treatment of the topics and references to the literature, most chapters contain numerical problems with their solutions for use in teaching or self assessment. One chapter is devoted to Environmental Health Physics, which was written in collaboration with leading professionals in the area.

  4. Medical radiation dosimetry theory of charged particle collision energy loss

    CERN Document Server

    McParland, Brian J

    2014-01-01

    Accurate radiation dosimetry is a requirement of radiation oncology, diagnostic radiology and nuclear medicine. It is necessary so as to satisfy the needs of patient safety, therapeutic and diagnostic optimisation, and retrospective epidemiological studies of the biological effects resulting from low absorbed doses of ionising radiation. The radiation absorbed dose received by the patient is the ultimate consequence of the transfer of kinetic energy through collisions between energetic charged particles and atoms of the tissue being traversed. Thus, the ability of the medical physicist to both measure and calculate accurately patient dosimetry demands a deep understanding of the physics of charged particle interactions with matter. Interestingly, the physics of charged particle energy loss has an almost exclusively theoretical basis, thus necessitating an advanced theoretical understanding of the subject in order to apply it appropriately to the clinical regime. ​ Each year, about one-third of the worl...

  5. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Science.gov (United States)

    2010-01-01

    ...) Methods and equipment for analysis of biological materials; (3) A system of fixed nuclear accident... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... 10 Energy 4 2010-01-01 2010-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304...

  6. Applications of gel dosimetry

    International Nuclear Information System (INIS)

    Ibbott, Geoffrey S

    2004-01-01

    Gel dosimetry has been examined as a clinical dosimeter since the 1950s. During the last two decades, however, a rapid increase in the number of investigators has been seen, and the body of knowledge regarding gel dosimetry has expanded considerably. Gel dosimetry is still considered a research project, and the introduction of this tool into clinical use is proceeding slowly. This paper will review the characteristics of gel dosimetry that make it desirable for clinical use, the postulated and demonstrated applications of gel dosimetry, and some complications, set-backs, and failures that have contributed to the slow introduction into routine clinical use

  7. External dosimetry sources and shielding

    International Nuclear Information System (INIS)

    Calisto, Washington

    1994-01-01

    A definition of external dosimetry r external sources dosimetry,physical and mathematical treatment of the interaction of gamma radiation with a minimal area in that direction. Concept of attenuation coefficient, cumulated effect by polyenergetic sources, exposition rate, units, cumulated dose,shielding, foton shielding, depth calculation, materials used for shielding.Beta shielding, consideration of range and maximum β energy , low stopping radiation by use of low Z shielding. Tables for β energy of β emitters, I (tau) factor, energy-range curves for β emitters in aqueous media, gamma attenuation factors for U, W and Pb. Y factor for bone tissue,muscle and air, build-up factors

  8. Biological radiation effects of Radon in Drosophila

    International Nuclear Information System (INIS)

    Pimentel P, A.E.

    1995-01-01

    In order to contribute to the knowledge on the effects of radon and its decay products, the aim of this investigation is to study the biological effects of radon using Drosophila melanogaster throught the somatic mutation and recombination test (SMART) and the analysis of some adaptative factors exposing larvaes to controlled radon atmosphers, considering that this insect could be used as biological monitor. Using the somatic mutation test a mutagenic effect was observed proportional to radon concentration, into an interval of 1 ± 0.3 to 111 ± 7.4 KBq/m 3 equivalent to doses under 0.0106 Gy. The correlation analysis gives a linear (r=0.80) relationship with a positive slope of 0.2217. The same happens when gamma rays are used in the interval of 1 to 20 Gy, given a linear dose-dependent effect (r=0.878) is obtained; nevetheless the slop is smaller (m=0.003) than for radon. Analysing the results of adaptative factors of the nine exposed generations, it was found that probably radon exposition induced dominant lethals during gametogenesis or/and a selection of the more component gamets of the treated individuals in larval state. It was reflected in the significant decrease on fecundity of the generation exposed. Nevertheless the laying eggs had an increase in egg-to-adult viability and the develop velocity was higher than in control for 3 KBq/m 3 , this suggest that radon concentrations used were able to induce repair mechanisms. These data agree with the Hormesis hypothesis that says: low doses have positive effects on health. It was not possible to obtain a dose-effect relationship except with the develop velocity where it was found a dose-effect inverse proportion. In conclusion, Drosophila melanogaster could be a good system to obtain in vivo damaged induction concentration dependent of radon and its decay products, as well as to study the effects in an exposed population by the analysis of adaptative factors. (Author)

  9. Biologically effective dose distribution based on the linear quadratic model and its clinical relevance

    International Nuclear Information System (INIS)

    Lee, Steve P.; Leu, Min Y.; Smathers, James B.; McBride, William H.; Parker, Robert G.; Withers, H. Rodney

    1995-01-01

    Purpose: Radiotherapy plans based on physical dose distributions do not necessarily entirely reflect the biological effects under various fractionation schemes. Over the past decade, the linear-quadratic (LQ) model has emerged as a convenient tool to quantify biological effects for radiotherapy. In this work, we set out to construct a mechanism to display biologically oriented dose distribution based on the LQ model. Methods and Materials: A computer program that converts a physical dose distribution calculated by a commercially available treatment planning system to a biologically effective dose (BED) distribution has been developed and verified against theoretical calculations. This software accepts a user's input of biological parameters for each structure of interest (linear and quadratic dose-response and repopulation kinetic parameters), as well as treatment scheme factors (number of fractions, fractional dose, and treatment time). It then presents a two-dimensional BED display in conjunction with anatomical structures. Furthermore, to facilitate clinicians' intuitive comparison with conventional fractionation regimen, a conversion of BED to normalized isoeffective dose (NID) is also allowed. Results: Two sample cases serve to illustrate the application of our tool in clinical practice. (a) For an orthogonal wedged pair of x-ray beams treating a maxillary sinus tumor, the biological effect at the ipsilateral mandible can be quantified, thus illustrates the so-called 'double-trouble' effects very well. (b) For a typical four-field, evenly weighted prostate treatment using 10 MV x-rays, physical dosimetry predicts a comparable dose at the femoral necks between an alternate two-fields/day and four-fields/day schups. However, our BED display reveals an approximate 21% higher BED for the two-fields/day scheme. This excessive dose to the femoral necks can be eliminated if the treatment is delivered with a 3:2 (anterio-posterior/posterio-anterior (AP

  10. Dosimetry for occupational exposure to cosmic radiation

    International Nuclear Information System (INIS)

    Bartlett, D.T.; McAulay, I.R.; Schrewe, U.J.

    1997-01-01

    Aircraft crew and frequent flyers are exposed to elevated levels of cosmic radiation of galactic and solar origin and secondary radiation produced in the atmosphere, aircraft structure, etc. This has been recognised for some time and estimates of the exposure of aircraft crew have been made previously and included in, for example, UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) publications. The recent increased interest has been brought about by several factors - the consideration that the relative biological effectiveness of the neutron component was being underestimated; the trend towards higher cruising altitudes for subsonic commercial aircraft and business jet aircraft; and most importantly, the recommendations of the International Commission on Radiological Protection (ICRP) in Publication 60, and the revision of the Euratom Basic Safety Standards Directive (BSS). In 1992, the European Dosimetry Group (EURADOS) established a Working Group to consider the exposure to cosmic radiation of aircraft crew, and the scientific and technical problems associated with radiation protection dosimetry for this occupational group. The Working Group was composed of fifteen scientists (plus a corresponding member) involved in this field of study and with knowledge of radiation measurement at aviation altitudes. This paper is based on the findings of this Working Group. (author)

  11. Effects of temperature and ionization density in medical luminescence dosimetry using Al{sub 2}O{sub 3}:C

    Energy Technology Data Exchange (ETDEWEB)

    Morgenthaler Edmund, J.

    2007-11-15

    A new system containing small crystals of aluminum oxide doped with carbon (Al{sub 2}O{sub 3}:C) attached to optical fiber cables has recently been introduced. During irradiation, the system monitors the radioluminescence (RL)from the crystals and after irradiation, an optically stimulated luminescence (OSL) signal can be read out by stimulating the crystal with light. This thesis applies the initial part and the total area of the resulting OSL decay curve for dosimetry measurements and investigates the effects of temperature and proton energy, i.e. ionization density, on the RL and OSL signals from Al{sub 2}O{sub 3}:C. In the temperature study, it was found that the OSL signal depends on both irradiation and stimulation temperature while the RL signal is effected only by the irradiation temperature. The initial OSL signal is increasing with temperature whereas the total OSL area is decreasing. Therefore, if the irradiation temperature is kept constant, one can find an integration time which provides an OSL signal independent of stimulation temperature. Overall, the RL and OSL signals vary between -0.2 to 0.6% per C. Thermal effects were simulated with a band structure model and indicated that the temperature effects are caused by the combined efforts of energetic shallow traps and thermal excitation from intermediate states in deeper traps. In the study of ionization density, we investigated protons with energies between 10 and 60 MeV (4.57 to 1.08 keV/mum in water). Experimentally, we observed that the initial OSL signalprovided a signal independent of linear energy transfer (LET) for allenergies at 0.3 Gy. The total OSL area showed an LET dependent behavior atall doses and energies. We used track structure theory (TST) to give possible explanations for the LET dependence of the OSL signal. From these calculations, we found that the initial OSL signal is, in general, not LET independent which makes Al2O3:C unsuitable for OSL proton dosimetry. The initial OSL

  12. Biological effects of deuterium - depleted water

    International Nuclear Information System (INIS)

    Stefanescu, I.; Titescu, Gh.; Croitoru, Cornelia; Saros-Rogobete, Irina

    2000-01-01

    Deuterium-depleted water (DDW) is represented by water that has an isotopic content smaller than 145 ppm D/(D + H). DDW production technique consists in the separation of deuterium from water by a continuous distillation process under pressure of about 133.3 mbar. The water used as raw material has a isotopic content of 145 ppm D/(D + H) and can be demineralized water, distillated water or condensed-steam. DDW results as a distillate with an isotopic deuterium content of 15-80 ppm, depending on the level we want to achieve. Beginning with 1996 the Institute of Cryogenics and Isotopic Technologies, DDW producer, co-operated with Romanian specialized institutes for studying the biological effects of DDW. The role of naturally occurring D in living organisms was examined by using DDW instead of natural water. These investigations led to the following conclusions: - DDW caused a tendency towards the increase of the basal tone, accompanied by the intensification of the vasoconstrictor effects of phenylefrine, noradrenaline and angiotensin; the increase of the basal tone and vascular reactivity produced by the DDW persists after the removal of the vascular endothelium; - Animals treated with DDW showed an increase of the resistance both to sublethal and lethal gamma radiation doses, suggesting a radioprotective action by the stimulation of non-specific immune defense mechanisms; - DDW stimulates immuno-defense reactions represented by the opsonic, bactericidal and phagocyte capacity of the immune system together with an increase in the number of poly-morphonuclear neutrophils; - Investigations regarding artificial reproduction of fish with DDW fecundated solutions confirmed favorable influence in embryo growth stage and resistance and following growth stages; - It was studied germination, growth and quantitative character variability in plants; one can remark the favorable influence of DDW on biological processes in plants in various ontogenetic stages. (authors)

  13. Food irradiation and its biological effects

    International Nuclear Information System (INIS)

    Shah, Alok; Nanjappa, C.; Chauhan, O.P.

    2014-01-01

    Irradiation of foods drew attention mostly in 1960s for disinfestation of food grains, spices and sprout inhibition in mainly potato and onion. γ-irradiation at 0.25 to 1 kGy dosage levels are usually used for irradiating grains, legumes, spices and sprout-prone vegetables. Irradiation of foods with in permissible dosage levels of 0.25 to 5 kGy is usually considered fairly safe from human consumption point of view not withstanding usual health concerns about its usage in foods. Irradiation of foods, in mostly solid or semi-solid form, at 5 kGy levels of γ-irradiation can achieve radicidation or, radiation equivalent of pasteurization and, if γ-irradiation is used at 10 kGy, it can achieve radappertization or, radiation equivalent of thermal commercial sterilization. However, the food industry uses γ-irradiation at 0.25 to 2 kGy only for mostly disinfestation of food grains/legumes, spices, sprout inhibition in potato and onion and, for surface sanitation of frozen fish, poultry and meat. Exposure to irradiation creates free radicals in foods that are capable of destroying some of the spoilage and pathogenic microflora but the same can also damage vitamins and enzymes besides creating some new harmful new chemical species, called unique radiolytic products (URPs), by combining with certain chemicals that a food may be laced with (like pesticides/fungicides). Exposure to high-energy electron beams are also known to create deleterious biological effects which may even lead to detection of trace amounts of radioactivity in the food. Some possible causes delineated for such harmful biological effects of irradiation include: irradiation induced vitamin deficiencies, the inactivity of enzymes in the foods, DNA damage and toxic radiolytic products in the foods. Irradiation, a non-thermal food preservation technique, has a role in salvaging enormous post harvest losses (25-30%) in developing economies to increase the per capita availability of foods. (author)

  14. Biological effects of radon in Drosophila

    International Nuclear Information System (INIS)

    Pimentel P, A.E.; Tavera D, L.; Cruces M, M.P.; Arceo M, C.; Rosa D, M.E. de la

    1992-04-01

    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  15. Effect of brachytherapy technique and patient characteristics on cervical cancer implant dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Anker, Christopher J., E-mail: chris.anker@hci.utah.edu [Department of Radiation Oncology, Huntsman Cancer Hospital, University of Utah, Salt Lake City, UT (United States); O' Donnell, Kristen [Department of Radiation Oncology, The University of Arizona, Tucson, AZ (United States); Boucher, Kenneth M. [Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT (United States); Gaffney, David K. [Department of Radiation Oncology, Huntsman Cancer Hospital, University of Utah, Salt Lake City, UT (United States)

    2013-01-01

    Our purpose was to evaluate the relationship between brachytherapy technique and patient characteristics on dose to organs-at-risk (OARs) in patients undergoing high dose rate (HDR) brachytherapy for cervical cancer. From 1998 to 2008, 31 patients with cervical cancer with full dosimetric data were identified who received definitive external-beam radiation and HDR brachytherapy with tandem and ovoid applicators. Doses were recorded at point A, the International Commission on Radiation Units and Measurements (ICRU)-38 rectal point, the ICRU-38 bladder point, the vaginal surface, and the pelvic sidewall. Generalized estimating equations were used to determine the significance of changes in OAR to point A dose ratios with differences in brachytherapy technique or patient characteristics. Patients underwent a median of 5 brachytherapy procedures (range, 3 to 5), with a total of 179 procedures for 31 patients. For all brachytherapy treatments, the average ratios between the doses for the rectal, bladder, vaginal surface, and pelvic sidewall reference points to those at point A were 0.49, 0.59, 1.15, and 0.17, respectively. In general, decreased OAR dose was associated with a lower stage, younger age, increased ovoid size, increased tandem length, and earlier implant number. Increased tandem curvature significantly increased bladder dose and decreased rectal dose. Intravenous anesthesia usage was not correlated with improved dosimetry. This study allowed identification of patient and procedure characteristics influencing OAR dosing. Although the advent of 3-dimensional (3D) image-guided brachytherapy will bring new advances in treatment optimization, the actual technique involved at the time of the brachytherapy implant procedure will remain important.

  16. Dosimetry in radiotherapy. V.1

    International Nuclear Information System (INIS)

    1988-01-01

    A series of symposia on dosimetry in medicine and biology have been held by the IAEA in co-operation with WHO. The present symposium was the first one focusing on ''Dosimetry in Radiotherapy''. The papers presented reflected the different steps in the calibration chain such as the calibration standards established by the National Standards Laboratories and the conversion of the reading of calibrated instruments to the desired quantity, i.e. absorbed dose to water at a reference point in the user's beam at the radiotherapy clinic. The programme further examined the procedures necessary for optimization of the treatment of the patient, such as treatment planning methods, dose distribution studies, new techniques of dose measurement, improvements in the physical dose distributions/conformation therapy and special problems involved in total body treatments. Results of quality assurance in radiotherapy were presented from local hospitals as well as from national and international studies. Refs, figs and tabs

  17. High level radiation dosimetry in biomedical research

    International Nuclear Information System (INIS)

    Inada, Tetsuo

    1979-01-01

    The physical and biological dosimetries relating to cancer therapy with radiation were taken up at the first place in the late intercomparison on high LET radiation therapy in Japan-US cancer research cooperative study. The biological dosimetry, the large dose in biomedical research, the high dose rate in biomedical research and the practical dosimeters for pulsed neutrons or protons are outlined with the main development history and the characteristics which were obtained in the relating experiments. The clinical neutron facilities in the US and Japan involved in the intercomparison are presented. Concerning the experimental results of dosimeters, the relation between the R.B.E. compared with Chiba (Cyclotron in National Institute of Radiological Sciences) and the energy of deuterons or protons used for neutron production, the survival curves of three cultured cell lines derived from human cancers, after the irradiation of 250 keV X-ray, cyclotron neutrons of about 13 MeV and Van de Graaff neutrons of about 2 MeV, the hatchability of dry Artemia eggs at the several depths in an absorber stack irradiated by 60 MeV proton beam of 40, 120 and 200 krad, the peak skin reaction of mouse legs observed at various sets of average and instantaneous dose rates, and the peak skin reaction versus three instantaneous dose rates at fixed average dose rate of 7,300 rad/min are shown. These actual data were evaluated numerically and in relation to the physical meaning from the viewpoint of the fundamental aspect of cancer therapy, comparing the Japanese measured values to the US data. The discussion record on the high dose rate effect of low LET particles on biological substances and others is added. (Nakai, Y.)

  18. Clinical dosimetry using mosfets

    International Nuclear Information System (INIS)

    Ramani, Ramaseshan; Russell, Stephen; O'Brien, Peter

    1997-01-01

    Purpose: The use of metal oxide-silicon field effect transistors (MOSFETs) as clinical dosimeters is demonstrated for a number of patients with targets at different clinical sites. Methods and Materials: Commercially available MOSFETs were characterized for energy response, angular dependency of response, and effect of accumulated dose on sensitivity and some inherent properties of MOSFETs. The doses determined both by thermoluminescence dosimetry (TLD) and MOSFETs in clinical situation were evaluated and compared to expected doses determined by calculation. Results: It was observed that a standard calibration of 0.01 Gy/mV gave MOSFET determined doses which agreed with expected doses to within 5% at the 95% confidence limit for photon beams from 6 to 25 MV and electron beams from 5 to 14 MeV. An energy-dependent variation in response of up to 28% was observed between two orientations of a MOSFET. The MOSFET doses compared very well with the doses estimated by TLDs, and the patients tolerated MOSFETs very well. A standard deviation of 3.9% between expected dose and MOSFET determined dose was observed, while for TLDs the standard deviation was 5.1%. The advantages and disadvantages of using MOSFETs for clinical dosimetry are discussed in detail. Conclusion: It was concluded that MOSFETs can be used as clinical dosimeters and can be a good alternative to TLDs. However, they have limitations under certain clinical situations

  19. Dosimetry at the Los Alamos Critical Experiments Facility: Past, present, and future

    International Nuclear Information System (INIS)

    Malenfant, R.E.

    1993-10-01

    Although the primary reason for the existence of the Los Alamos Critical Experiments Facility is to provide basic data on the physics of systems of fissile material, the physical arrangements and ability to provide sources of radiation have led to applications for all types of radiation dosimetry. In the broad definition of radiation phenomena, the facility has provided sources to evaluate biological effects, radiation shielding and transport, and measurements of basic parameters such as the evaluation of delayed neutron parameters. Within the last 15 years, many of the radiation measurements have been directed to calibration and intercomparison of dosimetry related to nuclear criticality safety. Future plans include (1) the new applications of Godiva IV, a bare-metal pulse assembly, for dosimetry (including an evaluation of neutron and gamma-ray room return); (2) a proposal to relocate the Health Physics Research Reactor from the Oak Ridge National Laboratory to Los Alamos, which will provide the opportunity to continue the application of a primary benchmark source to radiation dosimetry; and (3) a proposal to employ SHEBA, a low-enrichment solution assembly, for accident dosimetry and evaluation

  20. Ultraviolet radiation and its biological effects

    International Nuclear Information System (INIS)

    Rames, J.; Bencko, V.

    1993-01-01

    In connexion with contamination of the atmosphere with freons, the interest is increasing in geophysical and health aspects of 'ozone holes' - the seasonal incidence of increased intensity of UV radiation. Its biological effects depend on the intensity of the radiation, the exposure time and the wavelength. There is a wide range of various sorts of damage, local as well as general. In addition to skin pigmentation and symptoms produced by an elevated histamine blood level, also changes are found which may have more serious and permanent consequences: changes in the number and structure of Langerhans islets, changes of the peripheral capillary walls, dimerization of pyrimidine and thymine in DNA. These changes demonstrably contribute to the development of skin malignancies. After exposure of the eye, changes in pigmentation are found, and depending on the dose, possibly also development of conjunctivitis or retinal damage. Recently the interaction of UV radiation with arsenic was investigated. On the other side, therapeutic effects of UV radiation combined with chemotherapy are used in dermatology, eg., for inhibition of contact sensitization. (author) 42 refs

  1. Study on the tongue and groove effect of the elekta multileaf collimator using Monte Carlo simulation and film dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Haryanto, F.; Fippel, M.; Bakai, A.; Nuesslin, F. [Dept. of Medical Physics, Radiooncologic Univ. Clinic, Tuebingen (Germany)

    2004-01-01

    Background: nowadays, multileaf collimation of the treatment fields from medical linear accelerators is a common option. Due to the design of the leaf sides, the tongue and groove effect occurs for certain multileaf collimator applications such as the abutment of fields where the beam edges are defined by the sides of the leaves. Material and methods: in this study, the tongue and groove effect was measured for two pairs of irregular multileaf collimator fields that were matched along leaf sides in two steps. Measurements were made at 10 cm depth in a polystyrene phantom using Kodak EDR2 films for a photon beam energy of 6 MV on an elekta sli-plus accelerator. To verify the measurements, full Monte Carlo simulations were done. In the simulations, the design of the leaf sides was taken into account and one component module of BEAM code was modified to correctly simulate the elekta multileaf collimator. Results and conclusion: the results of measurements and simulations are in good agreement and within the tolerance of film dosimetry. (orig.)

  2. Internal Dosimetry Monitoring- Detection Limits for a Selected Set of Radionuclides and Their Translation Into Committed Effective Dose

    International Nuclear Information System (INIS)

    Brandl, A.; Hrnecek, E.; Steger, F.

    2004-01-01

    To harmonize the practice of internal dosimetry monitoring across the country, the Austrian Standards Institute is currently drafting a new set of standards which are concerned with occupational incorporation monitoring of individuals handling non-sealed radioactive material. This set of standards is expected to consist of three parts discussing the general necessity and frequency, the requirements for monitoring institutions, and the determination and rigorous calculation of committed effective dose after incorporation of radioactive material, respectively. Considerations of the requirements for routine monitoring laboratories have led to an evaluation of the detection limits for routine monitoring equipment. For a selected set of radionuclides, these detection limits are investigated in detail. The main emphasis is placed on the decay chains of naturally occurring radionuclides showing some significant potential for being out of equilibrium due to chemical processes in certain mining industries. The radionuclides considered in this paper are 226Ra, 228Ra, 228Th, 232Th, 234U, 235U, and 238U. Given the routine monitoring intervals of the Austrian Standard, these detection limits are translated into information on committed effective dose. This paper investigates whether routine monitoring equipment is sufficient to ensure compliance with EC directive 96/29/Euratom for this selected set of radionuclides. (Author) 9 refs

  3. Energy and entropy in radiation dosimetry and protection

    International Nuclear Information System (INIS)

    Oliveira, A.D.

    2006-01-01

    In this work we present and discuss a proposal to describe the degradation of the energy of photons when they interact with matter, which can be applied in radiation dosimetry and protection. Radiation dosimetry is founded in the well known physical approach of field theory as showed by Roesch and Rossi. Fluence and energy deposited are the most fundamental quantities in radiation dosimetry allowing us to calculate absorbed dose. One of the main characteristics of absorbed dose, sometimes ignored, is that it is an intensive quantity pushing radiation dosimetry into the field of statistical physics. In radiation dosimetry it is often used what we can call collective or macroscopic concepts, such as, for example, effective energy, beam quality or beam hardening and absorbed dose. Some of these concepts are trials to describe macroscopically and with simplicity what happens microscopically with a rather higher degree of complexity. In other words, is a tentative to make a bridge between the non continuous world of atoms and photons to the continuous world of radiation protection dosimetry. In computer simulations, that allow to known accurately the energy deposited in matter, absorbed dose (or fluence) is still a very useful and used quantity; however, some issues are still open problems, source of many discussions in conferences and journals in spite of the development of microdosimetry and nano-dosimetry. In spite of that, macroscopic quantities like absorbed dose are still important quantities. One of the important and controversial open question in biological effects at low doses is the linear no threshold concept (L.N.T.). In our opinion this problem is directly related with the problem mentioned above of the bridge between microscopic and macroscopic concepts. Actually, the extrapolation to low dose region is a good expression of the challenge we have to deal in order to make the connections between both worlds, the discrete micro-world to the continuous macro

  4. Biological effects of tritium and its behavior in the body. Ratio of biological effects (RBE)

    International Nuclear Information System (INIS)

    Takeda, Hiroshi

    1997-01-01

    Biological effects of radiation is known to depend not only on the radiation energy absorbed in the cells and the tissues of an organism, but also on ionization density. RBE, a biological effects ratio is used to correct the difference in absorbed dose due to the kind of nuclide. Determination of RBE has been carried out with end points of various biological effects as indicators for characterization of tritium effects. Recently, the tritium RBE was estimated from the indicators such as carcinogenesis, gene abnormalities, teratogenesis and gonadal abnormalities. The RBE values for HTO and 3 H-thymidine were in the range of 0.7-4.5 and 0.9-5.9. The varieties in RBE values were thought to be caused by the differences in the species or cell lines used, those in end points such as cell death, induction of mutagenesis and those in the kind of radiation as the control as well as the dose rate. Thus, there were various factors mediating RBE. (M.N.)

  5. E. Biological effects of radiation on man

    International Nuclear Information System (INIS)

    1976-01-01

    This report firstly summarises information on the biological hazards of radiation and their relation to radiation dose, and hence estimates the biological risks associated with nuclear power production. Secondly, it describes the basis and present status of radiation protection standards in the nuclear power industry

  6. Radiation dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, M.G.; Tagesson, M.; Ljungberg, M.; Strand, S.E.; Thomas, S.R.

    1999-01-01

    Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. A knowledge of the radiation dose received by different organs in the body is essential to an evaluation of the risks and benefits of any procedure. In this paper, current methods for internal dosimetry are reviewed, as they are applied in nuclear medicine. Particularly, the Medical Internal Radiation Dose (MIRD) system for dosimetry is explained, and many of its published resources discussed. Available models representing individuals of different age and gender, including those representing the pregnant woman are described; current trends in establishing models for individual patients are also evaluated. The proper design of kinetic studies for establishing radiation doses for radiopharmaceuticals is discussed. An overview of how to use information obtained in a dosimetry study, including that of the effective dose equivalent (ICRP 30) and effective dose (ICRP 60), is given. Current trends and issues in internal dosimetry, including the calculation of patient-specific doses and in the use of small scale and microdosimetry techniques, are also reviewed

  7. Thermoluminescence albedo-neutron dosimetry

    International Nuclear Information System (INIS)

    Strand, T.; Storruste, A.

    1986-10-01

    The report discusses neutron detection with respect to dosimetry and compares different thermoluminescent dosimetry materials for neutron dosimetry. Construction and calibration of a thermoluminescence albedo neutron dosemeter, developed by the authors, is described

  8. Thermoluminescence in medical dosimetry

    International Nuclear Information System (INIS)

    Rivera, T.

    2011-10-01

    The dosimetry by thermoluminescence (Tl) is applied in the entire world for the dosimetry of ionizing radiations specially to personal and medical dosimetry. This dosimetry method has been very interesting for measures in vivo because the Tl dosimeters have the advantage of being very sensitive in a very small volume and they are also equivalent to tissue and they do not need additional accessories (for example, cable, electrometer, etc.) The main characteristics of the diverse Tl materials to be used in the radiation measures and practical applications are: the Tl curve, the share homogeneity, the signal stability after the irradiation, precision and exactitude, the response in function with the dose and the energy influence. In this work a brief summary of the advances of the radiations dosimetry is presented by means of the thermally stimulated luminescence and its application to the dosimetry in radiotherapy. (Author)

  9. Radiographic film orientation in radiotherapy dosimetry

    International Nuclear Information System (INIS)

    Suchowerska, N.; Davison, A.; Drew, J.; Metcalfe, P.

    1996-01-01

    Since the discovery of x-rays, film has been used as a detection medium for radiation. More recently radiographic film has become established as a practical tool for the measurement of dose distribution in radiotherapy. The accuracy and reproducibility of film dosimetry depends on photon energy, processing conditions and film plane orientation. The relationship between photon energy, processing conditions and film dosimetry accuracy has been studied. The role of film plane orientation is still controversial. The current work aims to clarify the effects film plane orientation has on film dosimetry. Poster 205. (author)

  10. Experimental determination of the effective point of measurement for various detectors used in photon and electron beam dosimetry.

    Science.gov (United States)

    Looe, Hui Khee; Harder, Dietrich; Poppe, Björn

    2011-07-21

    The subject of this study is the 'shift of the effective point of measurement', Δz, well known as a method of correction compensating for the 'displacement effect' in photon and electron beam dosimetry. Radiochromic EBT 1 films have been used to measure the 'true' TPR curves of 6 and 15 MV photons and 6 and 9 MeV electrons in the solid water-equivalent material RW3. For the Roos and Markus chambers, the cylindrical 'PinPoint', 'Semiflex' and 'Rigid-Stem' chambers, the 2D-Array and the E-type silicon diode (all from PTW-Freiburg), the positions of the effective points of measurement have been determined by direct or indirect comparison between their TPR curves and those of the EBT 1 film. Both for the Roos and Markus chambers, we found Δz = (0.4 ± 0.1) mm, which confirms earlier experimental and Monte Carlo results, but means a shortcoming of the 'water-equivalent window thickness' formula. For the cylindrical chambers, the ratio Δz/r was observed to increase with r, confirming a recent Monte Carlo prediction by Tessier (2010 E2-CN-182, Paper no 147, IDOS, Vienna) as well as the experimental observations by Johansson et al (1978 IAEA Symp. Proc. (Vienna) IAEA-SM-222/35 pp 243-70). According to a theoretical consideration, the shift of the effective point of measurement from the reference point of the detector is caused by a gradient of the fluence of the ionizing particles. As the experiments have shown, the value of Δz depends on the construction of the detector, but remains invariant under changes of radiation quality and depth. Other disturbances, which do not belong to the class of 'gradient effects', are not corrected by shifting the effective point of measurement.

  11. Thin film tritium dosimetry

    Science.gov (United States)

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  12. Neutron personnel dosimetry considerations for fusion reactors

    International Nuclear Information System (INIS)

    Barton, T.P.; Easterly, C.E.

    1979-07-01

    The increasing development of fusion reactor technology warrants an evaluation of personnel neutron dosimetry systems to aid in the concurrent development of a radiation protection program. For this reason, current state of knowledge neutron dosimeters have been reviewed with emphasis placed on practical utilization and the problems inherent in each type of dosimetry system. Evaluations of salient parameters such as energy response, latent image instability, and minimum detectable dose equivalent are presented for nuclear emulsion films, track etch techniques, albedo and other thermoluminescent dosimetry techniques, electrical conductivity damage effects, lyoluminescence, thermocurrent, and thermally stimulated exoelectron emission. Brief summaries of dosimetry regulatory requirements and intercomparison study results help to establish compliance and recent trends, respectively. Spectrum modeling data generated by the Neutron Physics Division of Oak Ridge National Laboratory for the Princeton Tokamak Fusion Test Reactor (TFTR) Facility have been analyzed by both International Commission on Radiological Protection fluence to dose conversion factors and an adjoint technique of radiation dosimetry, in an attempt to determine the applicability of current neutron dosimetry systems to deuterium and tritium fusion reactor leakage spectra. Based on the modeling data, a wide range of neutron energies will probably be present in the leakage spectra of the TFTR facility, and no appreciable risk of somatic injury to occupationally exposed workers is expected. The relative dose contributions due to high energy and thermal neutrons indicate that neutron dosimetry will probably not be a serious limitation in the development of fusion power

  13. Accounting for biological effectiveness in radiological protection

    International Nuclear Information System (INIS)

    Dennis, J.A.

    1989-01-01

    Relative biological effectiveness (RBE) presents a practical problem to radiological protection when attempts are made to ensure that the assessed risks from different types of radiation and different modes of exposure to radiation are commensurate with one another. Unfortunately, the theoretical understanding of RBE is still in the stage of competing explanations and hypotheses. Furthermore, the division of the concept of dose equivalent into a set of concepts for risk assessment and another set for measurement and control has introduced conflicting requirements of a practical nature that are difficult to resolve. Many of those working in radiobiology and radiation protection have perceived the need to increase the quality factors for photon and neutron radiations. It may be more reasonable to change the quality factors for neutrons than for other radiations. The advantages and disadvantages of different methods for accommodating such changes within the dose-equivalent concepts are to be examined. The method of accommodating such a change that has the least practical disadvantages is to increase the quality factors for all secondary particles produced in tissue by neutron radiations by a constant factor. The only disadvantage would be the perception that the quality factors for these secondary particles were not treated in a consistent fashion for all types of ionising radiation. (author)

  14. Exposure Setup and Dosimetry for a Study on Effects of Mobile Communication Signals on Human Hematopoietic Stem Cells in vitro

    Directory of Open Access Journals (Sweden)

    M. Rohland

    2017-09-01

    Full Text Available In this paper we describe the design of an exposure setup used to study possible non-thermal effects due to the exposure of human hematopoietic stem cells to GSM, UMTS and LTE mobile communication signals. The experiments are performed under fully blinded conditions in a TEM waveguide located inside an incubator to achieve defined environmental conditions as required for the living cells. Chamber slides containing the cells in culture medium are placed on the septum of the waveguide. The environmental and exposure parameters such as signal power, temperatures, relative humidity and CO2 content of the surrounding atmosphere are monitored permanently during the exposure experiment. The power of the exposure signals required to achieve specific absorption rates of 0.5, 1, 2 and 4 W kg−1 are determined by numerical calculation of the field distribution inside the cell culture medium at 900 MHz (GSM, 1950 MHz (UMTS and 2535 MHz (LTE. The dosimetry is verified both with scattering parameter measurements on the waveguide with and without containers filled with cell culture medium and with temperature measurements with non-metallic probes in separate heating experiments.

  15. Effect of electron contamination of a 6 MV x-ray beam on near surface diode dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, C R; Mountford, P J; Moloney, A J [Medical Physics Directorate, University Hospital of North Staffordshire, Princes Road, Hartshill, Stoke-on-Trent, Staffordshire, ST4 7LN (United Kingdom)

    2006-12-21

    In critical organ in vivo x-ray dosimetry, the relative contaminating electron contribution to the total dose and total detector response outside the field will be different to the corresponding contributions at the central axis detector calibration position, mainly due to the effects of shielding in the linear accelerator head on the electron and x-ray energy spectrum. To investigate these contributions, the electron energy response of a Scanditronix PFD diode was measured using electrons with mean energies from 0.45 to 14.6 MeV, and the Monte Carlo code MCNP-4C was used to calculate the electron energy spectra on the central axis, and at 1 and 10 cm outside the edge of a 4 x 4, 10 x 10 and a 15 x 15 cm{sup 2} 6 MV x-ray field. The electron contribution to the total dose varied from about 8% on the central axis of the smallest field to about 76% at 10 cm outside the edge of the largest field. The electron contribution to the total diode response varied from about 7-8% on the central axis of all three fields to about 58% at 10 cm outside the edge of the smallest field. The results indicated that a near surface x-ray dose measurement with a diode outside the treatment field has to be interpreted with caution and requires knowledge of the relative electron contribution specific to the measurement position and field size.

  16. Biologically based multistage modeling of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of

  17. Biological applications of the Moessbauer effect

    International Nuclear Information System (INIS)

    Boulay, P.

    1968-12-01

    The applications of Moessbauer spectrometry in the fields of physics and chemistry have been increasing steadily since its discovery in 1958. Attempts have been made to find applications in biology. Two possibilities of investigation exist in this field: the study of mechanical or vibrational movements in certain animal organs, and the determination of the organic molecular structure in a biological context. An example is given of each of these possibilities. (author) [fr

  18. The Vinca dosimetry experiment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-03-15

    On 15 October 1958 there occurred a very brief uncontrolled run of the zero-power reactor at the Boris Kidric Institute of Nuclear Science, Vinca, near Belgrade, Yugoslavia. During this run six persons received various doses of radiation. They were subsequently given medical treatment of a novel kind at the Curie Hospital, Paris. In atomic energy operations to date, very few accidents involving excessive radiation exposure to human beings have occurred. In fact, the cases of acute radiation injury are limited to about 30 known high exposures, few of which were in the lethal or near-lethal range. Since direct experiment to determine the effects of ionizing radiation on man is unacceptable, information on these effects has to be based on a consideration of data relating to accidental exposures, viewed in the light of the much more extensive data obtained from experiments on animals. Therefore, any direct information on the effects of radiation on humans is very valuable. The international dosimetry project described in this report was carried out at Vinca, Yugoslavia, under the auspices of the International Atomic Energy Agency to determine the precise amount of radiation to which the persons had been exposed during the accident. These dosimetry data, together with the record of the carefully observed clinical effects, are of importance both for the scientific study of radiation effects on man and for the development of methods of therapy. The experiment and measurements were carried out at the end of April 1960. The project formed part of the Agency's research programme in the field of health and safety. The results of the experiment are made available through this report to all Member States.

  19. The Vinca dosimetry experiment

    International Nuclear Information System (INIS)

    1962-03-01

    On 15 October 1958 there occurred a very brief uncontrolled run of the zero-power reactor at the Boris Kidric Institute of Nuclear Science, Vinca, near Belgrade, Yugoslavia. During this run six persons received various doses of radiation. They were subsequently given medical treatment of a novel kind at the Curie Hospital, Paris. In atomic energy operations to date, very few accidents involving excessive radiation exposure to human beings have occurred. In fact, the cases of acute radiation injury are limited to about 30 known high exposures, few of which were in the lethal or near-lethal range. Since direct experiment to determine the effects of ionizing radiation on man is unacceptable, information on these effects has to be based on a consideration of data relating to accidental exposures, viewed in the light of the much more extensive data obtained from experiments on animals. Therefore, any direct information on the effects of radiation on humans is very valuable. The international dosimetry project described in this report was carried out at Vinca, Yugoslavia, under the auspices of the International Atomic Energy Agency to determine the precise amount of radiation to which the persons had been exposed during the accident. These dosimetry data, together with the record of the carefully observed clinical effects, are of importance both for the scientific study of radiation effects on man and for the development of methods of therapy. The experiment and measurements were carried out at the end of April 1960. The project formed part of the Agency's research programme in the field of health and safety. The results of the experiment are made available through this report to all Member States

  20. Advances in electron dosimetry

    International Nuclear Information System (INIS)

    Harder, D.

    1980-04-01

    Starting from the two most important interactions of electrons with matter, energy loss and scattering, a review is given of a number of effects which are important in electron dosimetry. For determining the absorbed dose in a phantom by means of ionization chambers, imformation is required on the electron spectrum at the location of the measurement, on the stopping powers of different materials and on disturbances such as the displacement of the effective point of measurements from the centre of the chamber. By means of figures and photographs of electron traces in bubble chambers, the origin of the formation of the absorbed dose maximum in a phantom is explained. It is shown, how by multiple scattering, the similarity of dose distributions in different media can be explained and how by Monte-Carlo calculations absorbed dose distributions in the surroundings of inhomogeneities (e.g. cavities) in a phantom can be determined. (orig.) [de

  1. Scientific days on electromagnetic fields: from dosimetry to human health - Conference proceedings; Journees scientifiques - Champs electromagnetiques: de la dosimetrie a la sante humaine - Recueil des resumes et presentations

    Energy Technology Data Exchange (ETDEWEB)

    Wiart, J.; Ghanmi, A.; Picon, O.; Conil, E.; Varsier, N.; Hadjem, A.; Sudret, B.; Magne, I.; Souques, M.; Gaudaire, F.; De Seze, R.; Jawad, O.; Lautru, D.; Dricot, J.M.; Horlin, F.; De Doncker, P.; Drissaoui, A.; Musy, F.; Nicolas, L.; Perrussel, R.; Scorretti, R.; Voyer, D.; Jala, M.; Moulines, E.; Levy-Leduc, C.; Mahfouz, Z.; Gati, A.; Fouad Hanna, V.; Leveque, P.; Arnaud-Cormos, D.; Zhadobov, M.; Jarrige, P.; Gaborit, G.; Kohler, S.; Ticaud, N.; Duvillaret, L.; Guelilia, Z.; Loison, R.; Gillard, R.; Laisne, A.; Favet, D.; Benadhira, R.; Mir, L.; Nadi, M.; Kourtiche, D.; Gazeau, F.; Wilhelm, C.; Delemotte, L.; Breton, M.; Tarek, M.; Marc-Vergnes, J.P.; Yardin, C.; Perrin, A.; Le Drean, Y.; Sauleau, R.; Lambrozo, J.; Selmaoui, B.; Ghosn, R.; Thuroczy, G.; Villegier, A.S.; Loos, N.; Brenet-Dufour, V.; Liabeuf, S.; Bach, V.; Moretti, D.; Lewis, N.; Garenne, A.; Poulletier De Gannes, F.; Haro, E.; Lagroye, I.; Bornat, Y.; Boutaib, Y.; Saighi, S.; Renaud, S.; Veyre, B.; Schuz, J.; Deltour, I.; Van Deventer, E.; Vecchia, P.; Merckel, O.; Bellaouel, A.; Demaret, P.; Donati, P.; Jovanovic, D.; Chauvin, S.; Desreumaux, J.P.; Fouquet, L.; Picard, D.; Massardier-Pilonchery, A.; Hours, M.; Bergeret, A.; Person, C.; Toutain, Y.; Butet, R.; Berrahma, K.; Balderelli, I.; Stelmaszyk, V.; Cretallaz, C.; Lamproglou, I.; Amourette, C.; Diserbo, M.; Fauquette, W.; Martigne, P.; Collin, A.; Lagroye, I.; Ait Aissa, S.; Hurtier, A.; Taxile, M.; Le Montagner, L.; Athane, A.; Duleu, S.; Percherancier, Y.; Geffard, M.; Ruffie, G.; Billaudel, B.; Veyret, B.; Pelletier, A.; Delanaud, S.; Libert, J.P.; Schunck, T.; Bieth, F.; Soubere Mahamoud, Y.; Le Quement, C.; Ferrand, G.; Le Guevel, R.; Carton, P.H.; Luong, M.; Tanvir, S.; Selmaoui, B.; Silva Pires-Antonietti, V.; Sonnet, P.; Pulvin, S.; Kuster, O.; Tetelin, C.

    2012-04-15

    This document brings together the available presentations (articles and slides) given at the URSI scientific days on electromagnetic fields: dosimetry, peoples' exposure, biological and health risks, risk management, and medical uses. 48 presentations are compiled in this document and deal with: 1 - Stochastic dosimetry: variability challenge; 2 - How to estimate the exposure to 50/60 Hz magnetic field in an epidemiological study?; 3 - Joint analysis of population exposure and radio coverage of GSM and UMTS mobile phone networks; 4 - Study of the specific energy absorption rate (SAR) sensitiveness to phone positions near the head for 2 GSM mobile phones; 5 - Statistical Study of SAR under Wireless Channel - Exposure in Indoor Environment; 6 - Uncertainty propagation in numerical dosimetry: how to reduce calculation costs?; 7 - Use of a simplified pregnant woman model for foetus exposure analysis; 8 - SAR estimation using multi-exposure with a mobile phone; 9 - State-of-the-art in experimental dosimetry (RF and pulses); 10 - Mm-waves dosimetry: issues, stakes and actual solutions; 11 - Use of DG-FDTD for a dosimetry calculation in a strongly multi-scale problem: determination of the eye-SAR near a HF/VHF vehicle-borne source; 12 - Dosimetric measurements with a fiber-type electro-optical sensor; 13 - Partial experimental evaluation of basic restrictions in the HF/VHF range; 14 - Repetitive trans-cranial magnetic stimulation Stimulation (rTMS) in psychiatry: present day situation and perspectives; 15 - Medical applications of electric fields; 16 - Measurements for life: new perspectives? 17 - Nano-particles and magnetic stimuli for medical imaging and therapy; 18 - Molecular Insights into electroporation and siRNA electro-transfer through model cell membranes; 19 - State of knowledge on electromagnetic fields hypersensitivity (HS-CEM); 20 - Experimentation methodology: from results to interpretation; 22 - Mm waves - update on biological effects at 40-60 GHz; 23

  2. Effects of different photobiomodulation dosimetries on temporomandibular dysfunction: a randomized, double-blind, placebo-controlled clinical trial.

    Science.gov (United States)

    Borges, Rosana Mengue Maggi; Cardoso, Daniela Steffen; Flores, Bianca Chuaste; da Luz, Raquel Dimer; Machado, Catiuci Roberta; Cerveira, Guilherme Pessoa; Daitx, Rodrigo Boff; Dohnert, Marcelo Baptista

    2018-05-30

    Changes involving temporomandibular joint, masticatory musculature, and associated structures characterize temporomandibular dysfunction (TMD). The analgesic and anti-inflammatory effect produced by photobiomodulation has contributed to pain relief and functional improvement. However, the parameters to be used have not yet been well established. The aim of this study is to compare the efficacy of three different photobiomodulation dosimetries in the treatment of patients with TMD. A randomized, double-blind, placebo-controlled clinical trial with 44 subjects divided into the groups 8 J/cm 2 (n = 11), 60 J/cm 2 (n = 11), 105 J/cm 2 (n = 11), and control (n = 11). Pain, symptom severity, and joint mobility were evaluated before and after a ten-session protocol of photobiomodulation with AlGaAs laser (830 nm), at a power density of 30 mW/cm 2 . The mouth opening increased in the 8-J/cm 2 group from 10.49 ± 4.68 to 15.40 ± 6.43 degrees, and in the right protrusion from 9.80 ± 4.2 to 12.56 ± 5.40 degrees after the intervention protocol (p < 0.05). All groups significantly decreased pain (p < 0.05). 830-nm laser photobiomodulation was effective in reducing TMD pain and symptoms at all doses tested. Only the doses of 8 J/cm 2 were effective regarding maximal opening and protrusion of the mandible.

  3. Computerized dosimetry management systems within EDF

    International Nuclear Information System (INIS)

    Daubert, G.

    1996-01-01

    EDF, using the ALARA approach, has embarked an ambitious project of optimising the doses received in its power plants. In directing its choice of actions and the effectiveness of such actions, the French operator is using a computerized personal and collective dosimetry management system. This system provides for ongoing monitoring of dosimetry at personal, site and unit level or indeed for the entire population of EDF nuclear power plants. (author)

  4. MO-B-BRB-04: 3D Dosimetry in End-To-End Dosimetry QA

    Energy Technology Data Exchange (ETDEWEB)

    Ibbott, G. [UT MD Anderson Cancer Center (United States)

    2016-06-15

    irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.

  5. Radiochromic film dosimetry

    International Nuclear Information System (INIS)

    Xu Zhiyong

    2002-01-01

    Radiochromic film dosimetry was developed to measure ionization irradiation dose for industry and medicine. At this time, there are no comprehensive guideline on the medical application, calibration method and densitometer system for medicine. The review gives update on Radiochromic film dosimetry used for medicine, including principles, film model and material, characteristics, calibration method, scanning densitometer system and medical application

  6. Nuclear accident dosimetry

    International Nuclear Information System (INIS)

    1982-01-01

    The film presents statistical data on criticality accidents. It outlines past IAEA activities on criticality accident dosimetry and the technical documents that resulted from this work. The film furthermore illustrates an international comparison study on nuclear accident dosimetry conducted at the Atomic Energy Research Establishment, Harwell, United Kingdom

  7. Personal dosimetry in Kazakhstan

    International Nuclear Information System (INIS)

    Khvoshnyanskaya, I.R.; Vdovichenko, V.G.; Lozbin, A.Yu.

    2003-01-01

    KATEP-AE Radiation Laboratory is the first organization in Kazakhstan officially licensed by the Kazakhstan Atomic Energy Committee to provide individual dosimetry services. The Laboratory was established according to the international standards. Nowadays it is the largest company providing personal dosimetry services in the Republic of Kazakhstan. (author)

  8. Nuclear accident dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-12-31

    The film presents statistical data on criticality accidents. It outlines past IAEA activities on criticality accident dosimetry and the technical documents that resulted from this work. The film furthermore illustrates an international comparison study on nuclear accident dosimetry conducted at the Atomic Energy Research Establishment, Harwell, United Kingdom

  9. A new correction method serving to eliminate the parabola effect of flatbed scanners used in radiochromic film dosimetry.

    Science.gov (United States)

    Poppinga, D; Schoenfeld, A A; Doerner, K J; Blanck, O; Harder, D; Poppe, B

    2014-02-01

    distributions of an open square photon field and an IMRT distribution. The algorithm presented in this study quantifies and corrects the parabola effect of EBT3 films scanned in commonly used commercial flatbed scanners at doses up to 5.2 Gy. It is easy to implement, and no additional work steps are necessary in daily routine film dosimetry.

  10. A new correction method serving to eliminate the parabola effect of flatbed scanners used in radiochromic film dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Poppinga, D., E-mail: daniela.poppinga@uni-oldenburg.de; Schoenfeld, A. A.; Poppe, B. [Medical Radiation Physics, Carl v. Ossietzky University, Oldenburg 26127, Germany and Department for Radiation Oncology, Pius Hospital, Oldenburg 26121 (Germany); Doerner, K. J. [Radiotherapy Department, General Hospital, Celle 29223 (Germany); Blanck, O. [CyberKnife Center Northern Germany, Güstrow 18273, Germany and Department for Radiation Oncology, University Clinic Schleswig-Holstein, Lübeck 23562 (Germany); Harder, D. [Medical Physics and Biophysics, Georg-August-University, Göttingen 37073 (Germany)

    2014-02-15

    scanner bed with 2D dose distributions of an open square photon field and an IMRT distribution. Conclusions: The algorithm presented in this study quantifies and corrects the parabola effect of EBT3 films scanned in commonly used commercial flatbed scanners at doses up to 5.2 Gy. It is easy to implement, and no additional work steps are necessary in daily routine film dosimetry.

  11. A new correction method serving to eliminate the parabola effect of flatbed scanners used in radiochromic film dosimetry

    International Nuclear Information System (INIS)

    Poppinga, D.; Schoenfeld, A. A.; Poppe, B.; Doerner, K. J.; Blanck, O.; Harder, D.

    2014-01-01

    scanner bed with 2D dose distributions of an open square photon field and an IMRT distribution. Conclusions: The algorithm presented in this study quantifies and corrects the parabola effect of EBT3 films scanned in commonly used commercial flatbed scanners at doses up to 5.2 Gy. It is easy to implement, and no additional work steps are necessary in daily routine film dosimetry

  12. IAEA activities related to radiation biology and health effects of radiation

    International Nuclear Information System (INIS)

    Wondergem, Jan; Rosenblatt, Eduardo

    2012-01-01

    The IAEA is involved in capacity building with regard to the radiobiological sciences in its member states through its technical cooperation programme. Research projects/programmes are normally carried out within the framework of coordinated research projects (CRPs). Under this programme, two CRPs have been approved which are relevant to nuclear/radiation accidents: (1) stem cell therapeutics to modify radiation-induced damage to normal tissue, and (2) strengthening biological dosimetry in IAEA member states. (note)

  13. 100 years of solid state dosimetry and radiation protection dosimetry

    International Nuclear Information System (INIS)

    Bartlett, David T.

    2008-01-01

    The use of solid state detectors in radiation dosimetry has passed its 100th anniversary. The major applications of these detectors in radiation dosimetry have been in personal dosimetry, retrospective dosimetry, dating, medical dosimetry, the characterization of radiation fields, and also in microdosimetry and radiobiology research. In this introductory paper for the 15th International Conference, I shall speak of the history of solid state dosimetry and of the radiation measurement quantities that developed at the same time, mention some landmark developments in detectors and applications, speak a bit more about dosimetry and measurement quantities, and briefly look at the past and future

  14. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst

    2009-01-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  15. Cross sections required for FMIT dosimetry

    International Nuclear Information System (INIS)

    Gold, R.; McElroy, W.N.; Lippincott, E.P.; Mann, F.M.; Oberg, D.L.; Roberts, J.H.; Ruddy, F.H.

    1980-01-01

    The Fusion Materials Irradiation Test (FMIT) facility, currently under construction, is designed to produce a high flux of high energy neutrons for irradiation effects experiments on fusion reactor materials. Characterization of the flux-fluence-spectrum in this rapidly varying neutron field requires adaptation and extension of currently available dosimetry techniques. This characterization will be carried out by a combination of active, passive, and calculational dosimetry. The goal is to provide the experimenter with accurate neutron flux-fluence-spectra at all positions in the test cell. Plans have been completed for a number of experimental dosimetry stations and provision for these facilities has been incorporated into the FMIT design. Overall needs of the FMIT irradiation damage program delineate goal accuracies for dosimetry that, in turn, create new requirements for high energy neutron cross section data. Recommendations based on these needs have been derived for required cross section data and accuracies

  16. Study of the effects of radon in three biological systems; Estudio de los efectos del radon en tres sistemas biologicos

    Energy Technology Data Exchange (ETDEWEB)

    Tavera, L. [Instituto Mexicano del Petroleo, Av. Eje Central Lazaro Cardenas No. 152, Edif. 23, Col. San Mateo Atepehuacan, 07730 Mexico D.F. (Mexico); Balcazar, M.; Lopez, A.; Brena, M. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Rosa, M.E. De la [Facultad de Quimica, UNAM, 04510 Mexico D.F. (Mexico); Villalobos P, R. [Centro de Estudios de la Atmosfera, UNAM, 04510 Mexico D.F. (Mexico)

    2002-07-01

    The radon and its decay products are responsible of the 3/4 parts of the exposure of the persons to the environmental radiation. The discovery at the end of XIX Century of the illnesses, mainly of cancer, which appeared in the presence of radon, lead to an accelerated growing of the radon studies: monitoring, dosimetry, effects on the persons, etc. Several epidemiological studies of radon in miners and population in general have been realized; advancing in the knowledge about the concentration-lung cancer risk relationship, but with discrepancies in the results depending on the concentration levels. Therefor, studies which consuming time, efforts and money go on doing. The research of the radon effects in biological systems different to human, allows to realize studies in less time, in controlled conditions and generally at lower cost, generating information about the alpha radiation effects in the cellular field. Therefor it was decided to study the response of three biological systems exposed to radon: an unicellular bacteria Escherichia Coli which was exposed directly to alpha particles from an electrodeposited source for determining the sensitivity limit of the chose technique. A plant, Tradescantia, for studying the cytogenetic effect of the system exposed to controlled concentrations of radon. An insect, Drosophila Melanogaster, for studying the genetic effects and the accumulated effects in several generations exposed to radon. In this work the experimental settlements are presented for the expositions of the systems and the biological results commenting the importance of these. (Author)

  17. Physical and biological dosimetry at the RA-3 facility for small animal irradiation: preliminary BNCT studies in an experimental model of oral cancer

    International Nuclear Information System (INIS)

    Pozzi, Emiliano; Miller, Marcelo; Thorp, Silvia I.; Heber, Elisa M.; Trivillin, Veronica A.; Zarza, Leandro; Estryk, Guillermo; Schwint, Amanda E.; Nigg, David W.

    2007-01-01

    Boron Neutron Capture Therapy (BNCT) is a binary treatment modality based on the capture reaction that occurs between thermal neutrons and boron-10 atoms that accumulate selectively in tumor tissue, emitting high linear energy transfer (LET), short range (5-9 microns) particles (alpha y 7 Li). Thus, BNCT would potentially target tumor tissue selectively, sparing normal tissue. Herein we evaluated the feasibility of treating experimental oral mucosa tumors with BNCT at RA-3 (CAE) employing the hamster cheek pouch oral cancer model and characterized the irradiation field at the RA-3 facility. We evaluated the therapeutic effect on tumor of BNCT mediated by BPA in the hamster cheek pouch oral cancer model and the potential radio toxic effects in normal tissue. We evidenced a moderate biological response in tumor, with no radio toxic effects in normal tissue following irradiations with no shielding for the animal body. Given the sub-optimal therapeutic response, we designed and built a 6 Li 2 CO 3 shielding for the body of the animal to increase the irradiation dose to tumor, without exceeding normal tissue radio tolerance. The measured absolute magnitude of thermal neutron flux and the characterization of the beam with and without the shielding in place, suggest that the irradiation facility in the thermal column of RA-3 would afford an excellent platform to perform BNCT studies in vitro and in vivo in small experimental animals. The present findings must be confirmed and extended by performing in vivo BNCT radiobiological studies in small experimental animals, employing the shielding device for the animal body. (author) [es

  18. Memory effects and systematic errors in the RL signal from fiber coupled Al2O3:C for medical dosimetry

    DEFF Research Database (Denmark)

    Damkjær, Sidsel Marie Skov; Andersen, Claus Erik

    2010-01-01

    This review describes 40 years of experience gained at Risø The radioluminescence (RL) signal from fiber coupled Al2O3:C can be used for real-time in vivo dosimetry during radiotherapy. RL generally provides measurements with a reproducibility of 2% (one standard deviation). However, we have...

  19. Ecological aspects od electromagnetic irradiation effects of biological objects

    International Nuclear Information System (INIS)

    Volobuev, A.P.; Donnik, I.M.; Alekseenko, N.N.

    2005-01-01

    General description of electromagnetic field effects on biological objects depending on its frequency properties is stated in the paper. Basic principles of low frequency field effect (10 -1 -0 2 Hz) are detailed. General and specific regularities of biological objects response to a low frequency field on subcell, cell, and system levels were considered taking into account their functional state. (author)

  20. Studying of ion implantation effect on the biology in China

    International Nuclear Information System (INIS)

    Yu Zengliang

    1993-04-01

    Since low energy ion effect on the biology was observed, the ion implantation as a new mutagenic source has been widely used in improving crops and modifying microbes in China. The basic phenomenon of ion implantation effect on the biology and analytical results are reported, and the examples of its application and its further development are shown

  1. European Society for Radiaton Biology - 19th annual meeting

    International Nuclear Information System (INIS)

    1986-01-01

    The proceedings contain 313 abstracts of papers. The topics covered include: biological radiation effects on lipids, hormones, fibroblasts, on bone healing, DNA repair, DNA synthesis, tumor cells, giant cell formation, on the lymphatic system, central nervous system and the hematopoietic system; determination of RBE; radioprotective agents; radiotherapy; dosimetry; radiation induced mutations; oxygen effects; radiosensitivity of tumor cells; hyperthermia and hypoxia effects on radiosensitivity; biological radiation effects on the growth of plants. (J.P.)

  2. Verification of the plan dosimetry for high dose rate brachytherapy using metal-oxide-semiconductor field effect transistor detectors

    International Nuclear Information System (INIS)

    Qi Zhenyu; Deng Xiaowu; Huang Shaomin; Lu Jie; Lerch, Michael; Cutajar, Dean; Rosenfeld, Anatoly

    2007-01-01

    The feasibility of a recently designed metal-oxide-semiconductor field effect transistor (MOSFET) dosimetry system for dose verification of high dose rate (HDR) brachytherapy treatment planning was investigated. MOSFET detectors were calibrated with a 0.6 cm 3 NE-2571 Farmer-type ionization chamber in water. Key characteristics of the MOSFET detectors, such as the energy dependence, that will affect phantom measurements with HDR 192 Ir sources were measured. The MOSFET detector was then applied to verify the dosimetric accuracy of HDR brachytherapy treatments in a custom-made water phantom. Three MOSFET detectors were calibrated independently, with the calibration factors ranging from 0.187 to 0.215 cGy/mV. A distance dependent energy response was observed, significant within 2 cm from the source. The new MOSFET detector has a good reproducibility ( 2 =1). It was observed that the MOSFET detectors had a linear response to dose until the threshold voltage reached approximately 24 V for 192 Ir source measurements. Further comparison of phantom measurements using MOSFET detectors with dose calculations by a commercial treatment planning system for computed tomography-based brachytherapy treatment plans showed that the mean relative deviation was 2.2±0.2% for dose points 1 cm away from the source and 2.0±0.1% for dose points located 2 cm away. The percentage deviations between the measured doses and the planned doses were below 5% for all the measurements. The MOSFET detector, with its advantages of small physical size and ease of use, is a reliable tool for quality assurance of HDR brachytherapy. The phantom verification method described here is universal and can be applied to other HDR brachytherapy treatments

  3. Information on biological health effects of ionizing radiation and radionuclides: the rule of a web site

    International Nuclear Information System (INIS)

    Comte, A.; Gaillard-Lecanu, E.; Flury-Herard, A.; Ourly, F.; Hemidy, P.; Lallemand, J.

    2006-01-01

    The purpose of this project is to provide a source of information on biological and health effects of radionuclides and ionizing radiation in an easy to use format. Reported work is made up of two distinct parts: data sheets for selected radionuclides and a web file. Data sheets: Specific radiation data sheets provide an overview of the properties, the environmental behaviour, the different pathways of human exposure and the biological and health consequences of selected radionuclides. Radionuclides that have been selected are those commonly dealt with in nuclear industry (and in other areas such as medicine) and released to the environment or naturally occurring (plutonium, tritium, carbon 14). Data sheets corresponding to the different radionuclides are based on the main sources of scientific information in dosimetry, epidemiology, radiobiology and radiation protection. These data sheets are intended for radiation protection specialists and physicians. They include: main physical and chemical characteristics, main radiation protection data: dose coefficients (public, workers), dose limits sources, total released estimate (nuclear industry, atmospheric tests, main pathway of human exposure and biological behaviour, biological and health effects, medical supervision, treatment a list of the main references, appendix providing accurate information. Web file: http://www-dsv.cea.fr/doc/carmin_ext/fond.php This web file provides a source of information on biological and health effects of ionizing radiation and biological basic knowledge of radiation protection. Available for consultation via Internet, compiled information provides, in a same file, subjects as varied as biological mechanisms, ionizing radiations action, biological and health effects, risk assessment This file is mainly intended to assist in informing and training of non-specialist readership (students, teaching on radiation protection basic knowledge. This electronic document is divided in three

  4. The program of international intercomparison of accident dosimetry

    International Nuclear Information System (INIS)

    2002-06-01

    The French institute of radioprotection and nuclear safety (IRSN) has carried out in June 2002 an international intercomparison program for the testing of the physical and biological accident dosimetry techniques. The intercomparison is jointly organized by the IRSN and the OECD-NEA with the sustain of the European commission and the collaboration of the CEA centre of Valduc (France). About 30 countries have participated to this program. Each country has supplied its own dosimeters and biological samples which have been irradiated using the Silene reactor of CEA-Valduc or a 60 Co source. These experiments allow to test the new dosimetric techniques that have been developed since the previous intercomparison program (1993) and to confirm or improve the performances of older techniques. Aside from the intercomparison exercise, this report makes a status of the known radiological accidents and of the effects of high doses of ionizing radiations on human health (symptoms, therapeutics). It explains the phenomenology of criticality accidents, the prevention means, and the history of such accidents up to the Tokai-Mura one in 1999. Finally, the dosimetry of criticality is presented with its physical and biological techniques. (J.S.)

  5. Radioiodine dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J R [Biomedical Research Branch, Health Sciences Div., Chalk River, Ontario (Canada). Chalk River Nuclear Lab.

    1981-01-01

    The estimation of individual doses for radiation protection and for risk assessment purposes from a radioiodine intake requires a knowledge of the distribution and retention of the radioiodine (primarily in the thyroid), and a knowledge of the average energy deposited in each organ of interest per radioactive decay (S-factors). This paper reviews a model for distribution and retention used previously for adults, and extends the model to include all ages. The extended model also includes the effects of stable iodine intakes on radioiodine uptakes explicitly. Included in the paper is a tabulation of existing adult S-factors for selected radioiodines and the extension of S-factors for the thyroid to all age groups. Finally, doses per unit intake are calculated and tabulated. A discussion and some calculations of the effects of stable iodine intake on committed doses are given.

  6. Radioiodine dosimetry

    International Nuclear Information System (INIS)

    Johnson, J.R.

    1981-01-01

    The estimation of individual doses for radiation protection and for risk assessment purposes from a radioiodine intake requires a knowledge of the distribution and retention of the radioiodine (primarily in the thyroid), and a knowledge of the average energy deposited in each organ of interest per radioactive decay (S-factors). This paper reviews a model for distribution and retention used previously for adults, and extends the model to include all ages. The extended model also includes the effects of stable iodine intakes on radioiodine uptakes explicitly. Included in the paper is a tabulation of existing adult S-factors for selected radioiodines and the extension of S-factors for the thyroid to all age groups. Finally, doses per unit intake are calculated and tabulated. A discussion and some calculations of the effects of stable iodine intake on committed doses are given. (author)

  7. Immunomodulatory Effects of Macrolide Antibiotics - Part 1 : Biological Mechanisms

    NARCIS (Netherlands)

    Altenburg, J.; de Graaff, C. S.; van der Werf, T. S.; Boersma, W. G.

    2011-01-01

    Macrolide antibiotics are well known for their antibacterial and anti-inflammatory properties. This article provides an overview of the biological mechanisms through which macrolides exert this 'double effect'. Their antibacterial effect consists of the inhibition of bacterial protein synthesis,

  8. Biological effects of accelerated boron, carbon, and neon ions

    International Nuclear Information System (INIS)

    Grigoryev, Yu.G.; Ryzhov, N.I.; Popov, V.I.

    1975-01-01

    The biological effects of accelerated boron, carbon, and neon ions on various biological materials were determined. The accelerated ions included 10 B, 11 B, 12 C, 20 Ne, 22 Ne, and 40 Ar. Gamma radiation and x radiation were used as references in the experiments. Among the biological materials used were mammalian cells and tissues, yeasts, unicellular algae (chlorella), and hydrogen bacteria. The results of the investigation are given and the biophysical aspects of the problem are discussed

  9. Effects of temperature and ionization density in medical luminescence dosimetry using Al2O3:C

    DEFF Research Database (Denmark)

    Edmund, Jens Morgenthaler

    2007-01-01

    temperature is kept constant, one can find an integration time which provides an OSL signal independent of stimulation temperature. Overall, the RL and OSL signals vary between -0.2 to 0.6% per C. Thermal effects were simulated with a band structure model and indicated that the temperature effects are caused...

  10. Health and dosimetry considerations in the ICRP 1990 formulation of effective dose

    International Nuclear Information System (INIS)

    Eckerman, K.F.

    1991-01-01

    The new recommendations of the International Commission on Radiological Protection contained in Publication 60 supersede those of Publication 26 issued in 1977. The recommendations are intended to assist national authorities in formulation of radiation protection guidance. Sufficient explanatory information is included to clearly note that radiation protection issues cannot be resolved on the basis of scientific considerations alone, but also require value judgements regarding the relative on the basis of scientific considerations alone, but also require value judgements regarding the relative importance of different kinds of risks and the balance between risk and benefit. Ionizing radiation causes both deterministic and stochastic effects in irradiated tissue. It is the aim of radiation protection to avoid deterministic effects by setting dose limits below their thresholds and to control exposures to limit the frequency of stochastic effects, believed to occur (albeit with low frequency) even at the lowest doses. Cancer induction and hereditary effects are the stochastic effects of concern

  11. Polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Baldock, C [Institute of Medical Physics, School of Physics, University of Sydney (Australia); De Deene, Y [Radiotherapy and Nuclear Medicine, Ghent University Hospital (Belgium); Doran, S [CRUK Clinical Magnetic Resonance Research Group, Institute of Cancer Research, Surrey (United Kingdom); Ibbott, G [Radiation Physics, UT M D Anderson Cancer Center, Houston, TX (United States); Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria, BC (Canada); Lepage, M [Centre d' imagerie moleculaire de Sherbrooke, Departement de medecine nucleaire et de radiobiologie, Universite de Sherbrooke, Sherbrooke, QC (Canada); McAuley, K B [Department of Chemical Engineering, Queen' s University, Kingston, ON (Canada); Oldham, M [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Schreiner, L J [Cancer Centre of South Eastern Ontario, Kingston, ON (Canada)], E-mail: c.baldock@physics.usyd.edu.au, E-mail: yves.dedeene@ugent.be

    2010-03-07

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. (topical review)

  12. Dosimetry of the respiratory tract

    International Nuclear Information System (INIS)

    Roy, M.

    1996-01-01

    A new dosimetric model of the human respiratory tract has been recently recommended by the International Commission on Radiological Protection, in ICRP Publication 66. This model was intended to update the previous lung model of the Task Group on Lung Dynamics that was adopted by ICRP in Publication 30. With this aim, extensive reviews of the available knowledge were made for anatomy and physiology of the respiratory tract and for deposition, clearance and biological effects of inhaled radionuclides. Finally, expanded dosimetry requirements resulted in a widely different approach from the former model. The main features of the new model are the followings: instead of calculating the average dose to the total mass of blood filled lung, the model takes account of differences in radiosensitivity of the venous respiratory tract tissues. It applies not only to adult workers but also to all members of the population, and provides reference values for children aged 3 months, 1, 5, 10, and 15 years, and adults. Deposition modelling of airborne gases and aerosols associates age dependent breathing rates, airway dimensions and physical activity, to particle size, density and chemical form of inhaled material. Clearance results of competition between mechanical transport clearance and absorption to blood. At each step of the calculation, adjustment guidance is provided to account for use of exact values of particle sizes and specific dissolution rates of inhaled material in order to calculate their own parameter of retention in the airways, and to assess accurately doses to the respiratory tract. Possible influence of smoking, of respiratory tract diseases and of eventual exposure to airborne toxicants is also addressed. (author)

  13. Study the Effect of Gamma Radiation on some Solid and Polymeric Materials and Its Possible Applications in Radiation Dosimetry

    International Nuclear Information System (INIS)

    El-Shawadfy, E.R.

    2015-01-01

    Dyed solid materials (films and gels) and dyed solutions dosimeters have wide-spread applications in radiation processing for installation process qualification and routine dose control for both gamma rays and electron beam irradiation. These film dosimeters have been introduced for low- and high-dose monitoring. The introduction of new types of dosimeters is due to the effort of seeking for more reliable, more stable, simpler and cheaper systems as routine dosimeters and/or label dosimeters. The main objective of this work is to study the possibility of preparing dyed solid polymeric materials (dyed films- dyed gels) and dyed solutions, and study the dosimetric studies for the prepared materials. The results obtained in this work can be summarized in the following: Section (1): Deals with the investigation of prepared three dosimetry systems based on Toludine Blue O (TBO) dye, to make them readily usable in high and low-radiation dosimetry applications (e.g. sterilization of medical products, sterilization of pharmaceutical products and polymer modification). This section is divided into three parts: Part I: This part includes the preparation and development of polymeric films for high-dose dosimetry applications, these films are based on poly (vinyl alcohol) dyed with TBO. These flexible plastic film dosimeters are bleached when exposed to gamma-ray photons (i.e. from blue to colorless) at λmax=633 nm. The radiation chemical yield (G-Value) for different concentrations of the dye as well as the dye with additive substances (chloral hydrate) was calculated. It was found that these films are highly stable for long time before and after irradiation under different storage conditions. The response of these films is not affected by humidity change in the range of relative humidity (0-56%). PVA films dyed with TBO are suitable in the dose range from 1-150 kGy. These properties suggest them to be useful for routine and dose mapping in sterilization range of radiation

  14. Biological effectiveness of /sup 67/Ga relative to external x-rays

    International Nuclear Information System (INIS)

    Rao, D.V.; Mylavarapu, V.B.; Govelitz, G.F.; Sastry, K.S.R.; Howell, R.W.

    1987-01-01

    As a consequence of electron-capture decay, /sup 67/Ga emits several low energy electrons. The dosimetry of such Auger-emitters in vivo is of considerable interest. The effects of /sup 67/Ga-citrate are investigated using gametogenesis in male and female mice as the experimental models. Spermatogonial cells in mouse testes and primary oocytes in mouse ovary are very sensitive to radiation. Damage caused to spermatogonial cells can be observed as reduced number of sperm heads after a defined period of time, whereas the reduction in the primary oocytes can be readily counted following simple histological procedures. The sperm head survival curve with internally administered /sup 67/Ga-citrate gave a D/sub o/ value of 42 cGy. This value for primary oocyte survival is found to be 4.5 cGy. With external 120 kVp X-rays, the corresponding D/sub o/ values are 67 cGy for the testis and 8.5 cGy for the ovary. The values of relative biological effectiveness are therefore 1.6 and 1.9 respectively. These observed higher RBE values suggest that the conventional MIRD procedure to calculate the absorbed doses is insufficient and the localized deposition of energy at the cellular level must be taken into consideration

  15. Scientific days on electromagnetic fields: from dosimetry to human health - Conference proceedings

    International Nuclear Information System (INIS)

    Wiart, J.; Ghanmi, A.; Picon, O.; Conil, E.; Varsier, N.; Hadjem, A.; Sudret, B.; Magne, I.; Souques, M.; Gaudaire, F.; De Seze, R.; Jawad, O.; Lautru, D.; Dricot, J.M.; Horlin, F.; De Doncker, P.; Drissaoui, A.; Musy, F.; Nicolas, L.; Perrussel, R.; Scorretti, R.; Voyer, D.; Jala, M.; Moulines, E.; Levy-Leduc, C.; Mahfouz, Z.; Gati, A.; Fouad Hanna, V.; Leveque, P.; Arnaud-Cormos, D.; Zhadobov, M.; Jarrige, P.; Gaborit, G.; Kohler, S.; Ticaud, N.; Duvillaret, L.; Guelilia, Z.; Loison, R.; Gillard, R.; Laisne, A.; Favet, D.; Benadhira, R.; Mir, L.; Nadi, M.; Kourtiche, D.; Gazeau, F.; Wilhelm, C.; Delemotte, L.; Breton, M.; Tarek, M.; Marc-Vergnes, J.P.; Yardin, C.; Perrin, A.; Le Drean, Y.; Sauleau, R.; Lambrozo, J.; Selmaoui, B.; Ghosn, R.; Thuroczy, G.; Villegier, A.S.; Loos, N.; Brenet-Dufour, V.; Liabeuf, S.; Bach, V.; Moretti, D.; Lewis, N.; Garenne, A.; Poulletier De Gannes, F.; Haro, E.; Lagroye, I.; Bornat, Y.; Boutaib, Y.; Saighi, S.; Renaud, S.; Veyre, B.; Schuz, J.; Deltour, I.; Van Deventer, E.; Vecchia, P.; Merckel, O.; Bellaouel, A.; Demaret, P.; Donati, P.; Jovanovic, D.; Chauvin, S.; Desreumaux, J.P.; Fouquet, L.; Picard, D.; Massardier-Pilonchery, A.; Hours, M.; Bergeret, A.; Person, C.; Toutain, Y.; Butet, R.; Berrahma, K.; Balderelli, I.; Stelmaszyk, V.; Cretallaz, C.; Lamproglou, I.; Amourette, C.; Diserbo, M.; Fauquette, W.; Martigne, P.; Collin, A.; Lagroye, I.; Ait Aissa, S.; Hurtier, A.; Taxile, M.; Le Montagner, L.; Athane, A.; Duleu, S.; Percherancier, Y.; Geffard, M.; Ruffie, G.; Billaudel, B.; Veyret, B.; Pelletier, A.; Delanaud, S.; Libert, J.P.; Schunck, T.; Bieth, F.; Soubere Mahamoud, Y.; Le Quement, C.; Ferrand, G.; Le Guevel, R.; Carton, P.H.; Luong, M.; Tanvir, S.; Selmaoui, B.; Silva Pires-Antonietti, V.; Sonnet, P.; Pulvin, S.; Kuster, O.; Tetelin, C.

    2012-04-01

    This document brings together the available presentations (articles and slides) given at the URSI scientific days on electromagnetic fields: dosimetry, peoples' exposure, biological and health risks, risk management, and medical uses. 48 presentations are compiled in this document and deal with: 1 - Stochastic dosimetry: variability challenge; 2 - How to estimate the exposure to 50/60 Hz magnetic field in an epidemiological study?; 3 - Joint analysis of population exposure and radio coverage of GSM and UMTS mobile phone networks; 4 - Study of the specific energy absorption rate (SAR) sensitiveness to phone positions near the head for 2 GSM mobile phones; 5 - Statistical Study of SAR under Wireless Channel - Exposure in Indoor Environment; 6 - Uncertainty propagation in numerical dosimetry: how to reduce calculation costs?; 7 - Use of a simplified pregnant woman model for foetus exposure analysis; 8 - SAR estimation using multi-exposure with a mobile phone; 9 - State-of-the-art in experimental dosimetry (RF and pulses); 10 - Mm-waves dosimetry: issues, stakes and actual solutions; 11 - Use of DG-FDTD for a dosimetry calculation in a strongly multi-scale problem: determination of the eye-SAR near a HF/VHF vehicle-borne source; 12 - Dosimetric measurements with a fiber-type electro-optical sensor; 13 - Partial experimental evaluation of basic restrictions in the HF/VHF range; 14 - Repetitive trans-cranial magnetic stimulation Stimulation (rTMS) in psychiatry: present day situation and perspectives; 15 - Medical applications of electric fields; 16 - Measurements for life: new perspectives? 17 - Nano-particles and magnetic stimuli for medical imaging and therapy; 18 - Molecular Insights into electroporation and siRNA electro-transfer through model cell membranes; 19 - State of knowledge on electromagnetic fields hypersensitivity (HS-CEM); 20 - Experimentation methodology: from results to interpretation; 22 - Mm waves - update on biological effects at 40-60 GHz; 23

  16. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both by international organizations (IAEA) and national laboratories have helped to improve the reliability of dose measurements. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading to traceable and reliable dosimetry are discussed. (author)

  17. European Society for Radiation Biology 21. annual meeting

    International Nuclear Information System (INIS)

    1988-01-01

    The volume contains about 100 abstracts of lectures presented to the conference covering a large variety of topics like: Radiobiology as a base for radiotherapy, radiation carcinogenesis and cellular effects, late and secondary effects of radiotherapy, radioprotection and radiosensitization, heavy ions in radiobiology and space research, microdosimetry and biological dosimetry, radiation effects on the mature and the developing central nervous system, DNA damage and repair and cellular mutations, the imact of radiation on the environment, free radicals in radiation biology

  18. Advances on radiation protection dosimetry research, development and services at AEOI

    International Nuclear Information System (INIS)

    Sohrabi, M.

    1993-01-01

    Radiation dosimetry is the main counterpart of an effective national radiation protection program to protect radiation workers, public and the environment against harmful effects of radiation. Research and development on radiation dosimetry are of vital needs to support national dosimetry services. The National Radiation Protection Department (NRPD) of the Atomic Energy Organization of Iran (AEOI) being a National Authority on radiation protection is also responsible for radiation dosimetry research, development and services. Some highlights of such activities at NRPD are reviewed and discussed

  19. Effectiveness of a biological control agent Palexorista gilvoides in ...

    African Journals Online (AJOL)

    ACSS

    Effectiveness of a biological control agent Palexorista gilvoides in controlling Gonometa podorcarpi in conifer ... gilvoides as a potential biological control agent for G. podocarpi. Field and laboratory studies further established that P. .... version for windows (SPSS, 2002). Results. Gonometa podocarpi was present in.

  20. Development of double dosimetry algorithm for assessment of effective dose to staff in interventional radiology

    International Nuclear Information System (INIS)

    Kim, Ji Young

    2011-02-01

    Medical staff involving interventional radiology(IR) procedures are significantly exposed to the scatter radiation because they stand in close proximity to the patient. Since modern IR techniques are often very complicated and require extended operation time, doses to IR workers tend to increase considerably. In general, the personal dose equivalent at 10 mm depth, H p (10), read from one dosimeter worn on the trunk of a radiation worker is assumed to be a good estimate of the effective dose and compared to the dose limits for regulatory compliance. This assumption is based on the exposure conditions that the radiation field is broad and rather homogeneous. However, IR workers usually wear protective clothing like lead aprons and thyroid shield which allow part of the body being exposed to much higher doses. To solve this problem, i.e. to adequately estimate the effective doses of IR workers, use of double dosimeters, one under the apron and one over the apron where unshielded part of the body exposed, was recommended. Several algorithms on the interpretation of the two dosimeter readings have been proposed. However, the dosimeter weighting factors applied to the algorithm differ significantly, which quests a question on the reliability of the algorithm. Moreover, there are some changes in the process of calculating the effective dose in the 2007 recommendations of the International Commission on Radiological Protection(ICRP): changes in the radiation weighting factors, tissue weighting factors and the computational reference phantoms. Therefore, this study attempts to set a new algorithm for interpreting two dosimeter readings to provide a proper estimate of the effective dose for IR workers, incorporating those changes in definition of effective dose. The effective doses were estimated using Monte Carlo simulations for various practical conditions based on the vogel reference phantom and the new tissue weighting factors. A quasi-effective dose, which is

  1. Development of double dosimetry algorithm for assessment of effective dose to staff in interventional radiology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Young

    2011-02-15

    Medical staff involving interventional radiology(IR) procedures are significantly exposed to the scatter radiation because they stand in close proximity to the patient. Since modern IR techniques are often very complicated and require extended operation time, doses to IR workers tend to increase considerably. In general, the personal dose equivalent at 10 mm depth, H{sub p}(10), read from one dosimeter worn on the trunk of a radiation worker is assumed to be a good estimate of the effective dose and compared to the dose limits for regulatory compliance. This assumption is based on the exposure conditions that the radiation field is broad and rather homogeneous. However, IR workers usually wear protective clothing like lead aprons and thyroid shield which allow part of the body being exposed to much higher doses. To solve this problem, i.e. to adequately estimate the effective doses of IR workers, use of double dosimeters, one under the apron and one over the apron where unshielded part of the body exposed, was recommended. Several algorithms on the interpretation of the two dosimeter readings have been proposed. However, the dosimeter weighting factors applied to the algorithm differ significantly, which quests a question on the reliability of the algorithm. Moreover, there are some changes in the process of calculating the effective dose in the 2007 recommendations of the International Commission on Radiological Protection(ICRP): changes in the radiation weighting factors, tissue weighting factors and the computational reference phantoms. Therefore, this study attempts to set a new algorithm for interpreting two dosimeter readings to provide a proper estimate of the effective dose for IR workers, incorporating those changes in definition of effective dose. The effective doses were estimated using Monte Carlo simulations for various practical conditions based on the vogel reference phantom and the new tissue weighting factors. A quasi-effective dose, which is

  2. Dosimetry of internal emitting: principles and perspectives of the MIRD technology; Dosimetria de emisores internos: principios y perspectivas de la metodologia MIRD

    Energy Technology Data Exchange (ETDEWEB)

    Ferro F, G [Gerencia de Aplicaciones Nucleares en la Salud, Instituto Nacional de Investigaciones Nucleares, Salazar, Estado de Mexico C.P. 52045 (Mexico)

    1999-07-01

    The development of the radiopharmaceutical technology have multiplied the number of radioisotopes with applications in therapeutical nuclear medicine so known as Directed radiotherapy. Assuming the radiation is capable to produce noxious effects in the biological systems, it is important to evaluate appropriately the risks and benefits of the administration of radioactive agents in the patient. The outstanding parameter in this evaluation is the absorbed dose, which is product of the radiation emitted by a radionuclide that is localized or distributed to the interior of the human body in study and whose its estimation helps to predict the efficacy of the treatment. The scheme generalized of MIRD, it was formulated from thirty years ago for evaluating the interior dosimetry at level of organs.The finality of this work is to show the basic principles of the MIRD methodology and its perspectives using innovator tools as the dosimetry for dynamic masses, in particular the personnel dosimetry for the organs of each patient, the dosimetry for the small structures inside the organs (sub organic dosimetry), the distributions of doses in three dimensions (S voxel), the dosimetry at cellular level and the quantitative acquisition of pharmaceutical data. (Author)

  3. Topical Day on Biological Effects of Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Baatout, S.; Jacquet, P.

    1997-05-15

    The topical day has been focussed on the potential effects of ionizing radiation on human health. A general overview on molecular and biophysical aspects of radiation, its effects on cells and organisms, and the contribution of radiobiology to radiation protection and risk assessment is given. The genetic effects of radiation and its effects on the developing organism, the effects of radiation on the cell cycle and the mechanisms of radiation induced apoptosis were also discussed.

  4. Topical Day on Biological Effects of Radiation

    International Nuclear Information System (INIS)

    Baatout, S.; Jacquet, P.

    1997-01-01

    The topical day has been focussed on the potential effects of ionizing radiation on human health. A general overview on molecular and biophysical aspects of radiation, its effects on cells and organisms, and the contribution of radiobiology to radiation protection and risk assessment is given. The genetic effects of radiation and its effects on the developing organism, the effects of radiation on the cell cycle and the mechanisms of radiation induced apoptosis were also discussed

  5. Effect of oxygen pressure on sensitivity of CR-39 used for astronauts radiation dosimetry

    International Nuclear Information System (INIS)

    Murai, T.; Yabe, S.; Nagamatsu, A.; Tawara, H.; Kumagai, H.; Miyazawa, Y.; Kitajo, K.; Kodaira, S.; Yasuda, N.

    2006-01-01

    The personal radiation dosimeters for astronauts are exposed to low-pressure oxygen gas (0.29 atmospheres) during extra-vehicle activities. CR-39 plastic track detectors are one of the typical passive dosimeters for space radiation monitoring. We investigated change in track formation sensitivity of the antioxidant-doped CR-39 plastic with which oxygen gas comes in contact at different pressures up to 2 atmospheres for 1h to 10 days. The oxygen effect on sensitivity was measured for the C, Si and Fe ions (10-200 keV/μm) from the HIMAC heavy ion accelerator. The sensitivity is obviously sensitive to oxygen pressure at heavy-ion exposures, but not sensitive to the experience of oxygen atmosphere before and after the ion exposures. The maximum sensitivity is obtained at 0.29 atmospheres. The present experimental data suggested that the effect depends on LET of incident particles. (author)

  6. The radioiodine problem following the Chernobyl accident: ecology, dosimetry and medical effects

    International Nuclear Information System (INIS)

    Zvonova, I.A.

    1991-01-01

    Following the Chernobyl accident radioisotopes of iodine constituted the main dose-forming factor among the people who stayed on in the radioactively contaminated areas, and in a number of places the effective doses to the thyroid gland were up to two orders of magnitude higher than the whole-body dose stemming from uniform internal and external irradiation. We consider the mechanisms involved in the radioiodine contribution to the doses in the human organism, depending on intake path, life style and social and ecological factors. We illustrate, by means of examples, thyroid gland dose distribution for various age groups in the population, and discuss the medical effects and predict the long-term risks for the population of exposure to radioisotopes of iodine. (author)

  7. Sci-Sat AM: Radiation Dosimetry and Practical Therapy Solutions - 01: Optimization of an organic field effect transistor for radiation dosimetry measurements

    Energy Technology Data Exchange (ETDEWEB)

    Syme, Alasdair [Dept of Radiation Oncology, Dalhousie University, QEII Health Sciences Centre (Canada)

    2016-08-15

    Purpose: To use Monte Carlo simulations to optimize the design of an organic field effect transistor (OFET) to maximize water-equivalence across the diagnostic and therapeutic photon energy ranges. Methods: DOSXYZnrc was used to simulate transport of mono-energetic photon beams through OFETs. Dose was scored in the dielectric region of devices and used for evaluating the response of the device relative to water. Two designs were considered: 1. a bottom-gate device on a substrate of polyethylene terephthalate (PET) with an aluminum gate, a dielectric layer of either PMMA or CYTOP (a fluorocarbon) and an organic semiconductor (pentacene). 2. a symmetric bilayer design was employed in which two polymer layers (PET and CYTOP) were deposited both below the gate and above the semiconductor to improve water-equivalence and reduce directional dependence. The relative thickness of the layers was optimized to maximize water-equivalence. Results: Without the bilayer, water-equivalence was diminished relative to OFETs with the symmetric bilayer at low photon energies (below 80 keV). The bilayer’s composition was designed to have one layer with an effective atomic number larger than that of water and the other with an effective atomic number lower than that of water. For the particular materials used in this study, a PET layer 0.1mm thick coupled with a CYTOP layer of 900 nm provided a device with a water-equivalence within 3% between 20 keV and 5 MeV. Conclusions: organic electronic devices hold tremendous potential as water-equivalent dosimeters that could be used in a wide range of applications without recalibration.

  8. Is Reintroduction Biology an Effective Applied Science?

    Science.gov (United States)

    Taylor, Gemma; Canessa, Stefano; Clarke, Rohan H; Ingwersen, Dean; Armstrong, Doug P; Seddon, Philip J; Ewen, John G

    2017-11-01

    Reintroduction biology is a field of scientific research that aims to inform translocations of endangered species. We review two decades of published literature to evaluate whether reintroduction science is evolving in its decision-support role, as called for by advocates of evidence-based conservation. Reintroduction research increasingly addresses a priori hypotheses, but remains largely focused on short-term population establishment. Similarly, studies that directly assist decisions by explicitly comparing alternative management actions remain a minority. A small set of case studies demonstrate full integration of research in the reintroduction decision process. We encourage the use of tools that embed research in decision-making, particularly the explicit consideration of multiple management alternatives because this is the crux of any management decisions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Film dosimetry analyses on the effect of gold shielding for Iodine-125 eye plaque therapy for choroidal melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Wu, A. (Department of Radiation Oncology, University of Pittsburgh, School of Medicine, Joint Radiation Oncology Center and Pittsburgh Cancer Institute, Pittsburgh, PA (USA)); Krasin, F. (Department of Radiation Oncology, Tufts University School of Medicine, New England Medical Center, Boston, MA (USA))

    1990-09-01

    One of the methods currently being used to treat choroidal melanoma employs an episcleral plaque containing I-125 radioactive seeds. However, comprehensive dosimetry studies on the plaque are scarce and controversial. For this work, we use film to study the dosimetry outside the lip of the gold shield of the eye plaque. This lip around the gold shield was made to protect the critical structures behind and adjacent to the lesion. Since the changes of energy spectrum of I-125 in tissue are negligible, film dosimetry seems to be a logical choice because of high spatial resolution required around the lip of the gold plaque. For this study, we first established an H and D curve with dose expressed in a unit of specific dose rate constant. This avoids absolute dose measurements. All film density measurements are made with a 1-mm aperture scan, normalized to the density at the prescription point for tumor of 3--5-mm apical height, i.e., 5 mm from the interior surface of sclera, and converted to percentage isodose curves. With a gold shield, it is found that when the plaque is placed against the optical nerve, the optical disk and macula, located at 2 mm outside the lip, on the exterior surface of sclera, may receive 85% of the prescription dose for a 12-mm plaque and 58% for a 16-mm plaque. For tumors of 8-mm apical height, the optical nerve would receive more than the prescription dose.

  10. Biological effects of nuclear war: Acute effects of radiation; the LD-50 value

    International Nuclear Information System (INIS)

    Ohkita, T.; Rotblat, J.

    1987-01-01

    Recent surveys carried out in Japan in connection with the reassessment of the dosimetry for long-term effects provided an opportunity for another look at the acute effects of radiation and a recalculation of the LD-50 value. The recalculation gave an LD-50 value which is two to three times lower than had been assumed before. It means that in a nuclear war the number of fatalities due to exposure to radiation would be considerably higher than thought hitherto. 11 refs, 5 figs, 2 tabs

  11. Report of the panel on practical problems in actinide biology

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Practical problems are classified as the need to make operational decisions, the need for regulatory assessment either of individual facilities or of generic actions, and the overt appearance of radiobiological effects in man or radioactivity in man or the environment. Topics discussed are as follows: simulated reactor accident; long term effects of low doses; effects of repeated exposures to actinides; inhaled uranium mine air contaminants; metabolism and dosimetry; environmental equilibrium models; patterns of alpha dosimetry; internal dose calculations; interfaces between actinide biology and environmental studies; removal of actinides deposited in the body; and research needs related to uranium isotopes

  12. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    International Nuclear Information System (INIS)

    Rathbone, Bruce A.

    2006-01-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL's Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL's Electronic Records & Information Capture Architecture (ERICA) database

  13. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2005-02-25

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database.

  14. Radiation therapy: dosimetry study of the effect of the composition of Pb alloys by PENELOPE

    Directory of Open Access Journals (Sweden)

    Jose McDonnell

    2011-02-01

    Full Text Available Radiotherapy is a widely used treatment for cancer. Currently applying the technique of Intensity Modulated Radiation Therapy, in which an important aspect is the modulation of the radiation beam to generate a non-uniform dose distribution in the tumor. One way to achieve the above non-uniform dose distribution is using solid compensators. In the market there are a number of materials used to manufacture compensators. Pb alloys on the market are: Cerromatrix, Rose, Wood, Newton, Darcet, whose compositions vary with respect to the composition of the lipowitz metal. This paper quantifies the dosimetric effects of the composition of commercial alloys, routinely used in radiotherapy. This quantification is important because of its impact on the total uncertainty of treatment accepted in the dosimetric calculations. To investigate the dosimetric effect of the composition of commercial alloys in the market we used the PENELOPE code, code that allows the simulation of radiation transport in different media by Monte Carlo method.The results show that there is a difference dosimetric respect lipowitz material, ranging from 7 % to 9 % for the materials investigated. These values indicate the importance of knowing exactly the dosimetric characteristics of the material used as compensator for their implications in the dose calculation.

  15. Application of monomer/polymer gel dosimetry to study the effects of tissue inhomogeneities on intensity-modulated radiation therapy (IMRT) dose distributions.

    Science.gov (United States)

    Vergote, Koen; De Deene, Yves; Claus, Filip; De Gersem, Werner; Van Duyse, Bart; Paelinck, Leen; Achten, Eric; De Neve, Wilfried; De Wagter, Carlos

    2003-04-01

    When planning an intensity-modulated radiation therapy (IMRT) treatment in a heterogeneous region (e.g. the thorax), the dose computation algorithm of a treatment planning system may need to account for these inhomogeneities in order to obtain a reliable prediction of the dose distribution. An accurate dose verification technique such as monomer/polymer gel dosimetry is suggested to verify the outcome of the planning system. The effects of low-density structures: (a) on narrow high-energy (18 MV) photon beams; and (b) on a class-solution IMRT treatment delivered to a thorax phantom have been examined using gel dosimetry. The used phantom contained air cavities that could be filled with water to simulate a homogeneous or heterogeneous configuration. The IMRT treatment for centrally located lung tumors was delivered on both cases, and gel derived dose maps were compared with computations by both the GRATIS and Helax-TMS planning system. Dose rebuildup due to electronic disequilibrium in a narrow photon beam is demonstrated. The gel measurements showed good agreement with diamond detector measurements. Agreement between measured IMRT dose maps and dose computations was demonstrated by several quantitative techniques. An underdosage of the planning target volume (PTV) was revealed. The homogeneity of the phantom had only a minor influence on the dose distribution in the PTV. An expansion of low-level isodoses in the lung volume was predicted by collapsed cone computations in the heterogeneous case. For the class-solution described, the dose in centrally located mediastinal tumors can be computed with sufficient accuracy, even when neglecting the lower lung density. Polymer gel dosimetry proved to be a valuable technique to verify dose calculation algorithms for IMRT in 3D in heterogeneous configurations.

  16. Solar ultraviolet radiation effects on biological systems

    International Nuclear Information System (INIS)

    Diffey, B.L.

    1991-01-01

    This extensive review discusses the topic under the following headings: ultraviolet climatology, molecular and cellular ultraviolet photobiology (absorption, photoproducts, repair), effects of solar UVR on aquatic life (phyto and zooplankton), plants and humans. The section on human effects includes tanning, photo-aging, non-melanoma and melanoma skin cancers and the effects of solar UVR on the eye. (UK)

  17. Solar ultraviolet radiation effects on biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Diffey, B.L. (Dryburn Hospital, Durham (UK). Regional Medical Physics Dept.)

    1991-03-01

    This extensive review discusses the topic under the following headings: ultraviolet climatology, molecular and cellular ultraviolet photobiology (absorption, photoproducts, repair), effects of solar UVR on aquatic life (phyto and zooplankton), plants and humans. The section on human effects includes tanning, photo-aging, non-melanoma and melanoma skin cancers and the effects of solar UVR on the eye. (UK).

  18. Individual neutron dosimetry

    International Nuclear Information System (INIS)

    Mauricio, C.L.P.

    1987-01-01

    The most important concepts and development in individual neutron dosimetry are presented, especially the dosimetric properties of the albedo technique. The main problem in albedo dosimetry is to calibrate the dosemeter in the environs of each neutron source. Some of the most used calibration techniques are discussed. The IRD albedo dosemeter used in the routine neutron individual monitoring is described in detail. Its dosimetric properties and calibration methods are discussed. (Author) [pt

  19. Trials to optimize dosimetry for 153Sm-EDTMP therapy to improve therapeutic effects

    International Nuclear Information System (INIS)

    Riccabona, G.; Moncayo-Naveda, R.; Oberlandstaetter, M.; Donnemiller, E.; Kendler, D.

    2001-01-01

    In a trial to improve results of therapy with 153 Sm-EDTMP for pain control in patients with disseminated bone metastases dosimetric studies were performed. Out of 30 treated patients 8 were selected for the study at random (5 breast Ca., 3 prostate Ca.). Whole body retention (WBR) of 99m Tc-DPD and 99m Tc-EDTMP was compared with WBR of 153 Sm-EDTMP. Volume of metastases and regional 99 m Tc-phosphonate uptake were assessed by SPECT and conjugated whole body scan data after phantom studies. Effective half-life was estimated also. Clinically results of pain control, side effects and changes of in vitro parameters were followed after therapy for up to 8 months. Therapy was performed in these patients with 55,5 MBq/kg body weight. Results showed an identical pattern of radioactivity distribution on 99 Tc-phosphonate and 153 Sm-EDTMP posttherapy scans, WBR of tracers and therapeutic agent was similar. Tumour volumes were 151-652 mL, count ratios metastases/normal bone 1,72-2,41, so that 6-50% of applied 153 Sm-EDTMP were concentrated in bone lesions. This gave dose estimates of 2,8-13,7 Gy in metastases. Evaluation of clinical results showed that the majority of very good results were observed in patients receiving > 10 Gy (n=3) while with lower doses only 1/4 responded very well. 1 patient was lost to follow-up due to death in the first month after therapy. Moderate and transient myelodepression (platelets) was seen in 3/7 patients without relation to Gy applied. As obviously 153 Sm concentration is not homogenous in bone metastases it can be assumed, that in border zones between tumour and bone 30-40 Gy can be delivered when 10 Gy are calculated for the whole lesion, which would explain the satisfactory therapeutic effect in our study. The dosimetric approach to 153 Sm-EDTMP therapy could necessitate the application of higher amounts of 153 Sm-EDTMP to reach adequate radiation doses in lesions without necessarily increasing risk of myelodepression and with even

  20. Effect of Cerebellum Radiation Dosimetry on Cognitive Outcomes in Children With Infratentorial Ependymoma

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Thomas E., E-mail: thomas.merchant@stjude.org [Division of Radiation Oncology, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Sharma, Shelly [Division of Radiation Oncology, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Xiong, Xiaoping; Wu, Shengjie [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Conklin, Heather [Department of Psychology, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2014-11-01

    Purpose: Cognitive decline is a recognized effect of radiation therapy (RT) in children treated for brain tumors. The importance of the cerebellum and its contribution to cognition have been recognized; however, the effect of RT on cerebellum-linked neurocognitive deficits has yet to be explored. Methods and Materials: Seventy-six children (39 males) at a median 3.3 years of age (range, 1-17 years old) were irradiated for infratentorial ependymoma from 1997 to 2008. The total prescribed dose was 54 to 59.4 Gy administered to the postoperative tumor bed with 5- or 10-mm clinical target volume margin. Age-appropriate cognitive and academic testing was performed prior to the start of RT and was then repeated at 6 months and annually throughout 5 years. The anterior and posterior cerebellum and other normal brain volumes were contoured on postcontrast, T1-weighted postoperative magnetic resonance images registered to treatment planning computed tomography images. Mean doses were calculated and used with time after RT and other clinical covariates to model their effect on neurocognitive test scores. Results: Considering only the statistically significant rates in longitudinal changes for test scores and models that included mean dose, there was a correlation between mean infratentorial dose and intelligence quotient (IQ; −0.190 patients/Gy/year; P=.001), math (−0.164 patients/Gy/year; P=.010), reading (−0.137 patients/Gy/year; P=.011), and spelling scores (−0.147 patients/Gy/year; P=.012), where Gy was measured as the difference between the mean dose received by an individual patient and the mean dose received by the patient group. There was a correlation between mean anterior cerebellum dose and IQ scores (−0.116 patients/Gy/year; P=.042) and mean posterior cerebellum dose and IQ (−0.150 patients/Gy/year; P=.002), math (−0.120 patients/Gy/year; P=.023), reading (−0.111 patients/Gy/year; P=.012), and spelling (−0.117 patients/Gy/year; P=.015

  1. Effect of Cerebellum Radiation Dosimetry on Cognitive Outcomes in Children With Infratentorial Ependymoma

    International Nuclear Information System (INIS)

    Merchant, Thomas E.; Sharma, Shelly; Xiong, Xiaoping; Wu, Shengjie; Conklin, Heather

    2014-01-01

    Purpose: Cognitive decline is a recognized effect of radiation therapy (RT) in children treated for brain tumors. The importance of the cerebellum and its contribution to cognition have been recognized; however, the effect of RT on cerebellum-linked neurocognitive deficits has yet to be explored. Methods and Materials: Seventy-six children (39 males) at a median 3.3 years of age (range, 1-17 years old) were irradiated for infratentorial ependymoma from 1997 to 2008. The total prescribed dose was 54 to 59.4 Gy administered to the postoperative tumor bed with 5- or 10-mm clinical target volume margin. Age-appropriate cognitive and academic testing was performed prior to the start of RT and was then repeated at 6 months and annually throughout 5 years. The anterior and posterior cerebellum and other normal brain volumes were contoured on postcontrast, T1-weighted postoperative magnetic resonance images registered to treatment planning computed tomography images. Mean doses were calculated and used with time after RT and other clinical covariates to model their effect on neurocognitive test scores. Results: Considering only the statistically significant rates in longitudinal changes for test scores and models that included mean dose, there was a correlation between mean infratentorial dose and intelligence quotient (IQ; −0.190 patients/Gy/year; P=.001), math (−0.164 patients/Gy/year; P=.010), reading (−0.137 patients/Gy/year; P=.011), and spelling scores (−0.147 patients/Gy/year; P=.012), where Gy was measured as the difference between the mean dose received by an individual patient and the mean dose received by the patient group. There was a correlation between mean anterior cerebellum dose and IQ scores (−0.116 patients/Gy/year; P=.042) and mean posterior cerebellum dose and IQ (−0.150 patients/Gy/year; P=.002), math (−0.120 patients/Gy/year; P=.023), reading (−0.111 patients/Gy/year; P=.012), and spelling (−0.117 patients/Gy/year; P=.015

  2. Effects of marine reserves on the reproductive biology and ...

    African Journals Online (AJOL)

    Effects of marine reserves on the reproductive biology and recruitment rates of commonly and rarely exploited limpets. ... For recruitment, we hypothesised that if recruits are attracted to adults or survive better ... AJOL African Journals Online.

  3. Influence of the 192Ir source decay on biological effect

    International Nuclear Information System (INIS)

    Wang Shunbao; Feng Ningyuan; Niu Wenzhe; Yang Yuhui; Guo Lei

    1994-01-01

    Biological effect of the 192 Ir high activity source on LA 795 tumor of mice and HCT-8 cells have been investigated when decay of the source power from 340.4 GBq to 81.4 GBq no marked difference was found between the two cell survival curves of HCT-8 cells and both of them compared with that of the X-ray irradiation the value of relative biological effect (0.1 survival) was 0.43. On the experiment of tumor LA 795 of mice, when the source power was 293.3 GBq and 96.2 GBq, no different biological effect can be seen between the two series of figures. The relative biological effect was 0.55-0.60 (tumor growth delay) comparing with those of X-ray irradiation

  4. Iron diminishes the in vitro biological effect of vanadium.

    Science.gov (United States)

    Mechanistic pathways underlying inflammatory injury following exposures to vanadium-containing compounds are not defined. We tested the postulate that the in vitro biological effect of vanadium results from its impact on iron homeostasis. Human bronchial epithelial (HBE) cells ex...

  5. Effect of Biological and Chemical Ripening Agents on the Nutritional ...

    African Journals Online (AJOL)

    Effect of Biological and Chemical Ripening Agents on the Nutritional and Metal Composition of Banana ( Musa spp ) ... Journal Home > Vol 18, No 2 (2014) > ... curcas leaf were used and compared with a control with no ripening agent.

  6. Fourth international radiopharmaceutical dosimetry symposium

    International Nuclear Information System (INIS)

    Schlafke-Stelson, A.T.; Watson, E.E.

    1986-04-01

    The focus of the Fourth International Radiopharmaceutical Dosimetry Symposium was to explore the impact of current developments in nuclear medicine on absorbed dose calculations. This book contains the proceedings of the meeting including the edited discussion that followed the presentations. Topics that were addressed included the dosimetry associated with radiolabeled monoclonal antibodies and blood elements, ultrashort-lived radionuclides, and positron emitters. Some specific areas of discussion were variations in absorbed dose as a result of alterations in the kinetics, the influence of radioactive contaminants on dose, dose in children and in the fetus, available instrumentation and techniques for collecting the kinetic data needed for dose calculation, dosimetry requirements for the review and approval of new radiopharmaceuticals, and a comparison of the effect on the thyroid of internal versus external irradiation. New models for the urinary blader, skeleton including the active marrow, and the blood were presented. Several papers dealt with the validity of traditional ''average-organ'' dose estimates to express the dose from particulate radiation that has a short range in tissue. These problems are particularly important in the use of monoclonal antibodies and agents used to measure intracellular functions. These proceedings have been published to provide a resource volume for anyone interested in the calculation of absorbed radiation dose

  7. JENDL Dosimetry File

    International Nuclear Information System (INIS)

    Nakazawa, Masaharu; Iguchi, Tetsuo; Kobayashi, Katsuhei; Iwasaki, Shin; Sakurai, Kiyoshi; Ikeda, Yujiro; Nakagawa, Tsuneo.

    1992-03-01

    The JENDL Dosimetry File based on JENDL-3 was compiled and integral tests of cross section data were performed by the Dosimetry Integral Test Working Group of the Japanese Nuclear Data Committee. Data stored in the JENDL Dosimetry File are the cross sections and their covariance data for 61 reactions. The cross sections were mainly taken from JENDL-3 and the covariances from IRDF-85. For some reactions, data were adopted from other evaluated data files. The data are given in the neutron energy region below 20 MeV in both of point-wise and group-wise files in the ENDF-5 format. In order to confirm reliability of the data, several integral tests were carried out; comparison with the data in IRDF-85 and average cross sections measured in fission neutron fields, fast reactor spectra, DT neutron fields and Li(d, n) neutron fields. As a result, it has been found that the JENDL Dosimetry File gives better results than IRDF-85 but there are some problems to be improved in future. The contents of the JENDL Dosimetry File and the results of the integral tests are described in this report. All of the dosimetry cross sections are shown in a graphical form. (author) 76 refs

  8. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    Otto, T.

    1999-01-01

    The Dosimetry and Calibration Section fulfils two tasks within CERN's Radiation Protection Group: the Individual Dosimetry Service monitors more than 5000 persons potentially exposed to ionizing radiation on the CERN sites, and the Calibration Laboratory verifies throughout the year, at regular intervals, over 1000 instruments, monitors, and electronic dosimeters used by RP Group. The establishment of a Quality Assurance System for the Individual Dosimetry Service, a requirement of the new Swiss Ordinance for personal dosimetry, put a considerable workload on the section. Together with an external consultant it was decided to identify and then describe the different 'processes' of the routine work performed in the dosimetry service. The resulting Quality Manual was submitted to the Federal Office for Public Health in Bern in autumn. The CERN Individual Dosimetry Service will eventually be officially endorsed after a successful technical test in March 1999. On the technical side, the introduction of an automatic development machine for gamma films was very successful. It processes the dosimetric films without an operator being present, and its built-in regeneration mechanism keeps the concentration of the processing chemicals at a constant level

  9. JENDL Dosimetry File

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, Masaharu; Iguchi, Tetsuo [Tokyo Univ. (Japan). Faculty of Engineering; Kobayashi, Katsuhei [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Iwasaki, Shin [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Sakurai, Kiyoshi; Ikeda, Yujior; Nakagawa, Tsuneo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1992-03-15

    The JENDL Dosimetry File based on JENDL-3 was compiled and integral tests of cross section data were performed by the Dosimetry Integral Test Working Group of the Japanese Nuclear Data Committee. Data stored in the JENDL Dosimetry File are the cross sections and their covariance data for 61 reactions. The cross sections were mainly taken from JENDL-3 and the covariances from IRDF-85. For some reactions, data were adopted from other evaluated data files. The data are given in the neutron energy region below 20 MeV in both of point-wise and group-wise files in the ENDF-5 format. In order to confirm reliability of the data, several integral tests were carried out; comparison with the data in IRDF-85 and average cross sections measured in fission neutron fields, fast reactor spectra, DT neutron fields and Li(d,n) neutron fields. As a result, it has been found that the JENDL Dosimetry File gives better results than IRDF-85 but there are some problems to be improved in future. The contents of the JENDL Dosimetry File and the results of the integral tests are described in this report. All of the dosimetry cross sections are shown in a graphical form.

  10. Study of radiation effects on some glasses and their applications in radiation dosimetry

    International Nuclear Information System (INIS)

    Mohammad, A.El.

    2008-01-01

    This thesis comprises a study of the X-ray diffraction, thermal, electrical, ESR and optical properties of lead lithium tetra borate glass. The objective of this thesis is to prepare glass dosimeter and study the effect of several gamma-irradiation doses on Lead lithium tetra borate glasses doped with Cu O. The two glasses were prepared from chemical reagents; Li 2 B 4 O 7 from ready package, lead and copper oxide were added in fixed Proportions. The glass melting was made in porcelain crucibles, using electrically heated furnace at temperature of 1000 -1100 degree C. The melts rapidly quenched in air by pressing between two stainless-steel plates mould kept at room temperature. The resultant glasses were colorless for LPTB and transparent greenish sheet of LPTB Cu glass about 0.8 mm thick and where polished to meet the requirements for optical and electrical measurements. The obtained results can be summarized as follows:- Density It is observed that, for unirradiated samples, the addition of copper to LPTB leads to the increase of the number of ions in the sample which decreases the inter-ionic distance. As a result, the molar volume of LPTB Cu decreased and consequently its density increased in the range of 10 ± 1 %. Irradiation with gamma rays is assumed to create displacements, electronic defects and /or breaks in the network bonds. Irradiation can cause the compaction of B 2 O 3 by breaking of the bonds between trigonal elements, allowing the formation of different configuration. Irradiating the LPTB glass with growing gamma doses up to 25 kGy decreased its molar volume with in 4.07 % and consequently increased the density with the same percentage. For the glass LPTB Cu, the effect of gamma rays appeared as a decrease in the molar volume and increase in density with the same percentage (12.9%). The addition traces of copper (0.01 weight %) to LPTB enhanced the effect of gamma radiation on it. Crystallization Behavior: - X-ray diffraction The results show

  11. Distinguishing between "function" and "effect" in genome biology.

    Science.gov (United States)

    Doolittle, W Ford; Brunet, Tyler D P; Linquist, Stefan; Gregory, T Ryan

    2014-05-09

    Much confusion in genome biology results from conflation of possible meanings of the word "function." We suggest that, in this connection, attention should be paid to evolutionary biologists and philosophers who have previously dealt with this problem. We need only decide that although all genomic structures have effects, only some of them should be said to have functions. Although it will very often be difficult or impossible to establish function (strictly defined), it should not automatically be assumed. We enjoin genomicists in particular to pay greater attention to parsing biological effects. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Practical applications of the new ICRP recommendation to external dosimetry

    International Nuclear Information System (INIS)

    Kraus, W.

    1992-01-01

    Focussing on external dosimetry for occupational exposure the consequences of the new quantities equivalent dose (radiation weighting factor), effective dose (tissue weighting factor) and the ICRU operational quantities for individual and area dosimetry are discussed. Despite some arguments against the new quantities they should be introduced as rapidly as possible to keep international uniformity in radiation protection monitoring. It is shown that they provide a conservative estimate of the effective dose for photons and neutrons. In photon dosimetry only minor changes of the conversion factors relating operational quantities to effective dose is observed. In neutron dosimetry the conversion factors change by a factor of up to 2. It is pointed out that there is a urgent need to calculate standardized conversion factors for field quantities -operational quantities- organ and effective dose in a joint effort of ICRP and ICRU. This includes standardization of calibration methods for individual dosimetry using suitable phantoms instead of the sphere. (author)

  13. UV EFFECTS IN TOOTH ENAMEL AND THEIR POSSIBLE APPLICATION IN EPR DOSIMETRY WITH FRONT TEETH

    Science.gov (United States)

    Sholom, S.; Desrosiers, M.; Chumak, V.; Luckyanov, N.; Simon, S.L.; Bouville, A.

    2009-01-01

    The effects of ultraviolet (UV) radiation on ionizing radiation biodosimetry were studied in human tooth enamel samples using the technique of electron paramagnetic resonance (EPR) in X-band. For samples in the form of grains, UV-specific EPR spectra were spectrally distinct from that produced by exposure to gamma radiation. From larger enamel samples, the UV penetration depth was determined to be in the 60–120 μm range. The difference in EPR spectra from UV exposure and from exposure to gamma radiation samples was found to be a useful marker of UV equivalent dose (defined as the apparent contribution to the gamma dose in mGy that results from UV radiation absorption) in tooth enamel. This concept was preliminarily tested on front teeth from inhabitants of the region of the Semipalatinsk Nuclear Test Site (Kazakhstan) who might have received some exposure to gamma radiation from the nuclear tests conducted there as well as from normal UV radiation in sunlight. The technique developed here to quantify and subtract the UV contribution to the measured tooth is currently limited to cumulative dose measurements with a component of UV equivalent dose equal to or greater than 300 mGy. PMID:20065706

  14. Organ-specific dosimetry in spinal radiography: an analysis of genetic and somatic effects

    International Nuclear Information System (INIS)

    Fickel, T.E.

    1988-01-01

    Radiation doses absorbed by the uterus, ovary, testicle and active bone marrow are computed for cervical, thoracic, lumbar, full spine and chest series performed under typical office conditions. Assuming a nonthreshold, linear relationship between dose and radiogenic effect, the computed tissue-specific doses are used to estimate the probability that each X-ray series might enhance the statistical probability of occurrence of an adult leukemia fatality of the irradiated patient; a childhood leukemia, mental retardation or cancer fatality as a result of fetal irradiation; or a variety of sex cell chromosomal aberrations in irradiated patients. It is concluded that the greatest hazard to active bone marrow, the uterus and the gonads is posed by lumbar and full spine radiography and that the need to adequately justify such exposure is mandatory; furthermore, in these series, irradiation of the ovary is 10 times as great as that of the testicle. Lumbar radiographic examinations can be made significantly safer by the elimination of the lumbosacral spot view

  15. Biological effects induced by low amounts of nuclear fission products

    International Nuclear Information System (INIS)

    Vasilenko, I.Ya.; Shishkin, V.F.; Khudyakova, N.V.

    1991-01-01

    The review deals with the problem of biological hazard of low radiation doses for animals and human beings taking into the danger of internal and external irradiation by nuclear fission products under conditions of enhancing anthropogenic radiation contamination of biosphere. An attention is paid to the estimation of life span carcinogenesis, genetic and delayed effects. A conclusion is made on a necessity of multiaspect investigation of biological importance of low radiation doses taking into account modifying effects of other environmental factors

  16. The Effect of Pro-Qura Case Volume on Post-Implant Prostate Dosimetry

    International Nuclear Information System (INIS)

    Merrick, Gregory S.; Lief, Jonathan H.; Grimm, Peter; Sylvester, John; Butler, Wayne M.; Allen, Zachariah A.

    2011-01-01

    Purpose: To evaluate the effect of prostate brachytherapy case volume on postimplant dosimetric quality in Pro-Qura proctored programs. Methods and Materials: From August 1999 to December 2008, the computed tomography datasets for 6,600 prostate implants performed by 129 brachytherapists were submitted to Pro-Qura for dosimetric analysis. Brachytherapists were divided into three roughly equal-sized terciles based on total case volume. Postimplant computed tomography scans were obtained at a median of 30 days. Excellent target coverage was defined by a V100 ≥90% and D90 ≥100% minimum prescribed peripheral dose. To determine if the number of excellent implants improved with increasing case numbers, each brachytherapist’s series of implants was bisected into early and late experience by a moveable critical point. Results: For the entire cohort, the mean V100 and D90 were 89.2% and 102.8%, respectively, with 47.7% of the implants scored as excellent. Brachytherapists in the highest-case tercile had a significantly greater fraction of excellent target coverage (57.9%) than did those in the two lower terciles (39.5% and 45.7%, p = 0.015). Twenty-one (25.6%) of the 82 brachytherapists with sufficient case volume for dosimetric improvement analyses demonstrated quality improvement over time. Although there was no significant difference between prostate volume and seed strength, the number of seeds used was significantly greater in adequate implants. Conclusions: The highest-volume brachytherapists were most likely to obtain excellent target coverage. We are encouraged that in general practice, nearly 48% of all implants were scored excellent. It is conceivable that with greater expert third-party involvement, an even greater percentage of cases with excellent target coverage will become reality.

  17. The Effect of Pro-Qura Case Volume on Post-Implant Prostate Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Merrick, Gregory S., E-mail: gmerrick@urologicresearchinstitute.org [Schiffler Cancer Center Wheeling Jesuit University, Wheeling, WV (United States); Lief, Jonathan H. [Schiffler Cancer Center Wheeling Jesuit University, Wheeling, WV (United States); Grimm, Peter [Prostate Cancer Treatment Center, Seattle, WA (United States); Sylvester, John [Lakewood Ranch Oncology, Bradenton, FL (United States); Butler, Wayne M.; Allen, Zachariah A. [Schiffler Cancer Center Wheeling Jesuit University, Wheeling, WV (United States)

    2011-12-01

    Purpose: To evaluate the effect of prostate brachytherapy case volume on postimplant dosimetric quality in Pro-Qura proctored programs. Methods and Materials: From August 1999 to December 2008, the computed tomography datasets for 6,600 prostate implants performed by 129 brachytherapists were submitted to Pro-Qura for dosimetric analysis. Brachytherapists were divided into three roughly equal-sized terciles based on total case volume. Postimplant computed tomography scans were obtained at a median of 30 days. Excellent target coverage was defined by a V100 {>=}90% and D90 {>=}100% minimum prescribed peripheral dose. To determine if the number of excellent implants improved with increasing case numbers, each brachytherapist's series of implants was bisected into early and late experience by a moveable critical point. Results: For the entire cohort, the mean V100 and D90 were 89.2% and 102.8%, respectively, with 47.7% of the implants scored as excellent. Brachytherapists in the highest-case tercile had a significantly greater fraction of excellent target coverage (57.9%) than did those in the two lower terciles (39.5% and 45.7%, p = 0.015). Twenty-one (25.6%) of the 82 brachytherapists with sufficient case volume for dosimetric improvement analyses demonstrated quality improvement over time. Although there was no significant difference between prostate volume and seed strength, the number of seeds used was significantly greater in adequate implants. Conclusions: The highest-volume brachytherapists were most likely to obtain excellent target coverage. We are encouraged that in general practice, nearly 48% of all implants were scored excellent. It is conceivable that with greater expert third-party involvement, an even greater percentage of cases with excellent target coverage will become reality.

  18. Interest of numerical dosimetry in radiation protection: mean of substitution or measurements consolidation?; Interet de la dosimetrie numerique en radioprotection: moyen de substitution ou de consolidation des mesures?

    Energy Technology Data Exchange (ETDEWEB)

    Lahaye, T.; Chau, Q. [Institut de Radioprotection et de Surete Nucleaire (IRSN/DPHD/SDOS), Service Dosimetrie, 92 - Fontenay-aux-Roses (France); Ferragut, A.; Gillot, J.Y. [SAPHYMO, 91 - Massy (France)

    2003-07-01

    The use of calculation codes allows to reduce the costs and the time limits. These codes brings to operators elements to reinforce their projected dosimetry. In the cases of accidental overexposure, the numerical dosimetry comes in complement of clinical and biological investigations to give an estimation as precise as possible of the received dose. For particular situations where it does not exist an adapted instrumentation, the numerical dosimetry can substitute to conventional techniques used by regulatory dosimetry (project for aviation personnel). (N.C.)

  19. Retrospective dosimetry by electronic paramagnetic resonance (EPR) in dental enamel

    International Nuclear Information System (INIS)

    Dubner, D.; Gisone, P.; Perez, M.R.; Davila, F.A.; Boveris, A.; Puntarulo, S.

    1998-01-01

    Biophysical dosimetry based on EPR in biological solid samples (like bone and teeth) or in organic materials (like textile fibres, sugar, etc.) is a complementary technique that could contribute, along with the biological dosimetry, to the retrospective evaluation of the absorbed dose in accidental situations. Dental enamel could be considered as the only tissue with structure and composition essentially constant over time: this characteristic feature allows its use as an index of radiation exposure since tooth retains indefinitely its radiation history. Samples of human molars were exposed to gamma-Rays (Co 60) with doses between 0,5 Gy to 10 Gy. After a chemical treatment of samples, enamel was removed by grinding with a dental drill and reduced to a fine powder. A characteristic EPR signal was detected at g=2.002. The dose effect curves were done using 20 mw of microwave power. Measurements were done both, with flat cells and disposable Pasteur pipettes allowing the use of lower amounts of sample. The intensity of the signal was proportional to the dose and linearity was verified in both cases. We discuss the applicability of this technique in evaluating radiation dose in accidental overexposures. (author) [es

  20. Current research in Canada on biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Marko, A.M.

    1980-05-01

    A survey of current research in Canada on the biological effects of ionizing radiation has been compiled. The list of projects has been classified according to structure (organizational state of the test system) as well as according to the type of effects. Using several assumptions, ballpark estimates of expenditures on these activities have been made. Agencies funding these research activities have been tabulated and the break-down of research in government laboratories and in academic institutions has been designated. Wherever possible, comparisons have been made outlining differences or similarities that exist between the United States and Canada concerning biological radiation research. It has been concluded that relevant research in this area in Canada is inadequate. Wherever possible, strengths and weaknesses in radiation biology programs have been indicated. The most promising course for Canada to follow is to support adequately fundamental studies of the biological effects of radiation. (auth)

  1. Biological effects of water reservoir radioactive contamination

    International Nuclear Information System (INIS)

    Mashneva, N.I.

    1983-01-01

    Radiation damage to fresh water fishes at early stages of ontogenesis is revealed only during the spawn incubation in a solution with 10 -5 to 10 -3 Cu/l radioactivity and at relatively high dosages exceeding 500-1000 rad. Damaging effect of a fission product mixture of 9, 30 and 100 day age as well as of several separate radionuclides on embryogenesis of freshwater fishes depends mainly on fish species, concentration, toxicity, chemical form of radionuclides in the residence medium, on peculiarities of metabolism between the aqueous medium and an organism, stage of the embryo development by the moment of radiation effect and duration of this effect

  2. Chernobyl Experience in the Field of Retrospective Dosimetry

    International Nuclear Information System (INIS)

    Chumak, V.; Bakhanova, E.

    2011-01-01

    Chernobyl accident, which occurred on April 26, 1986 at NPP located less than 150 km north of Kiev, is the largest nuclear accident ever. Unprecedented scale of the accident was determined not only by the amount of released activity, but also by a number of population and workers involved and, therefore, exposed to enhanced doses of ionizing radiation. Population of the 30-km exclusion zone numbering about 116,000 persons of all ages and both genders was evacuated within days and weeks after the accident, emergency workers called ''liquidators of the accident'' (males age 20-50) were involved into clean-up and recovery for 5 years and their number is estimated as 600,000, about 300,000 are Ukrainian citizens. Due to unexpected and excessively large scale accident, none of residents had personal dosimeters, personal dosimetry of liquidators was not total, dosimetry techniques and practices were far from the optimum. As a result, an acute need for retrospective dose assessment was dictated by radiation protection and research considerations. This need was responded by implementation of wide scale dose reconstruction efforts, which covered main exposed cohorts and encompassed broad variety of newly developed methods: analytical (time-and-motion), modeling, biological and physical (EPR spectroscopy of teeth, TL of quartz). The presentation summarizes vast experience accumulated by RCRM in the field of retrospective dosimetry of large cohorts of exposed population and professionals. These dose reconstruction projects were implemented, in particular, in the framework of epidemiological studies, designed to follow-up medical consequences of Chernobyl accident and study health effects of ionizing radiation, in particular, Ukrainian-American studies of cataracts and leukemia among liquidators. Over 25 years passed after Chernobyl accident a broad variety of retrospective dosimetry problems was addressed by the team of Research Center for Radiation Medicine AMS Ukraine. In

  3. Image in nuclear dosimetry using thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    Guinsburg, G.; Matsuoka, M.; Watanabe, S.

    1987-01-01

    A low cost methodology to produce images of internal sick organs by radioisotopic intake, is presented. Dosimetries of thermoluminescent material and Teflon (ratio:50%) in bidimensional matrix shape are used with a Pb collimator. This collimator-bidimensional matrix system was tested ''in vivo'' and in thyroid phantoms using 99m Tc. A comparative evaluation between this method and the scintigraphy one is presented. (M.A.C.) [pt

  4. Dosimetry and operation of irradiation facilities

    International Nuclear Information System (INIS)

    Vidal, P.E.

    1985-01-01

    The industrial use of ionizing radiation has required, from the very first, the measurement of delivered and absorbed doses; hence the necessity of providing dosimetric systems. Laboratories, scientists, industries and potential equipment manufacturers have all collaborated in this new field of activity. Dosimetric intercomparisons have been made by each industry at their own facilities and in collaboration with specialists, national organizations and the IAEA. Dosimetry has become a way of ensuring that treatment by irradiation has been carried out in accordance with the rules. It has become in effect assurance of quality. Routine dosimetry should determine a maximum and minimum dose. Numerous factors play a part in dosimetry. Industry is currently in possession of routine dosimetric systems that are sufficiently accurate, fairly easy to handle and reasonable in cost, thereby satisfying all the requirements of industry and the need for control. Dosimetry is important in the process of marketing irradiated products. The operator of an industrial irradiation facility bases his dosimetry on comparison with reference systems. Research aimed at simplifying the practice of routine dosimetry should be continued. New physical and chemical techniques will be incorporated into systems already in use. The introduction of microcomputers into the operation of radiation facilities has increased the value of dosimetry and made the conditions of treatment more widespread. Stress should be placed on research in several areas apart from reference systems, for example: dosimetric systems at temperatures from +8 deg. C to -45 deg. C, over the dose range 100 krad to a little more than 1 Mrad, liquids and fluidized solids carried at high speed through ducts, thin-film liquids circulating at a high flow rate, and various other problems. (author)

  5. Biological effects and hazards of radiation exposure

    International Nuclear Information System (INIS)

    Boas, J.F.; Solomon, S.B.

    1990-01-01

    Radiation induced carcinogenesis and mutagenesis form the main risk to health from exposure to low levels of radiation. This risk effects can be at least qualitatively understood by considering the effects of radiation on cell DNA. Whilst exposure to high levels of radiation results in a number of identifiable effects, exposure to low levels of radiation may result in effects which only manifest themselves after many years. Risk estimates for low levels of radiation have been derived on the basis of a number of assumptions. In the case of uranium mine workers a major hazard arises from the inhalation of radon daughters. Whilst the correlation between radon daughter exposure and lung cancer incidence is well established, the numerical value of the risk factor is the subject of controversy. ICRP 50 gives a value of 10 cases per 10 6 person-years at risk per WLM (range 5-15 x 10 -6 PYR -1 WLM -1 ). The effect of smoking on lung cancer incidence rates amongst miners is also controversial. Nevertheless, smoking by miners should be discouraged

  6. Biological effects in lymphocytes irradiated with 99mTc: determination of the curve dose-response

    International Nuclear Information System (INIS)

    Oliveira, Romero Marcilio Barros Matias de

    2002-08-01

    Biological dosimetry estimates the absorbed dose taking into account changes in biological parameters. The most used biological indicator of an exposition to ionizing radiation is the quantification of chromosomal aberrations of lymphocytes from irradiated individuals. The curves of dose versus induced biological effects, obtained through bionalyses, are used in used in retrospective evaluations of the dose, mainly in the case of accidents. In this research, a simple model for electrons and photons transports was idealized to simulate the irradiation of lymphocytes with 99m Tc, representing a system used for irradiation of blood cells. The objective of the work was to establish a curve of dose versus frequencies of chromosomal aberrations in lymphocytes of human blood. For the irradiation of blood samples micro spheres of human serum of albumin (HSAM) market with 99m Tc were used, allowing the irradiation of blood with different administered activities of 99m Tc, making possible the study the cytogenetical effects as a function of such activities. The conditions of irradiation in vivo using HSAM spheres marked with 99m Tc were simulated with MCNP 4C (Monte Carlo N-Particle) code to obtain the dose-response curve. Soft tissue composition was employed to simulate blood tissue and the analyses of the curve of dose versus biological effect showed a linear quadratic response of the unstable chromosomal aberrations. As a result, the response of dose versus chromosomal aberrations of blood irradiation with 99m Tc was best fitted by the curve Y=(8,99 ±2,06) x 1- -4 + (1,24 ±0,62) x 10 -2 D + (5,67 ± 0,64) x 10 -2 D 2 . (author)

  7. On the mechanism of the biological effect of ionizing radiation

    International Nuclear Information System (INIS)

    Margulis, M.A.; Margulis, I.M.

    2005-01-01

    The mechanisms of the biological effects of ionizing radiation (IR) and ultrasound (US) were considered. The current views on the nature of toxicity of IR, which is usually assigned to the formation of radicals in living tissues and to the straight-line collision of an ionizing particle with the DNA molecule, were analyzed. It was established that the amount of radicals formed in biological tissues in conditions of ultrasonically induced cavitation can be as large as that for IR; however, the biological effect of US is much softer as compared to IR. It was shown that the contribution of the indirect mechanism to the total biological effect of IR can be estimated by comparing US and IR in their chemical action; the contribution of the indirect mechanism to the biological effect of IR was found to be negligibly small. An alternative mechanism was proposed to explain the biological effect of IR. In accordance with the proposed model, IR with a high linear energy transfer (LET) value breaks through cell walls and biological membranes and causes damage to them, such that the cell can lose its regenerative capacity. Moreover, high-energy heavy ionizing particles perforate cytoplasm to form channels. Ionizing radiation with a low LET value (γ- and X-rays) causes multiple damages to biological membranes. Ionizing particles can also cause damages to membranes of mitochondria thus affecting the mechanism of cellular respiration, which will cause neoplastic diseases. The straight-line collision of an ionizing particle with a DNA molecule was found to be 5-7 orders of magnitude less probable as compared to the collision with a wall or membrane. It was shown that multiple perforations of cell walls and damages to membranes are characteristic only of ionizing particles, which have sufficiently long tracks, and do not occur upon exposure to ultrasonic waves, microwaves, UV radiation, and magnetic fields [ru

  8. Cost-effective pediatric head and body phantoms for computed tomography dosimetry and its evaluation using pencil ion chamber and CT dose profiler

    Directory of Open Access Journals (Sweden)

    A Saravanakumar

    2015-01-01

    Full Text Available In the present work, a pediatric head and body phantom was fabricated using polymethyl methacrylate (PMMA at a low cost when compared to commercially available phantoms for the purpose of computed tomography (CT dosimetry. The dimensions of head and body phantoms were 10 cm diameter, 15 cm length and 16 cm diameter, 15 cm length, respectively. The dose from a 128-slice CT machine received by the head and body phantom at the center and periphery were measured using a 100 mm pencil ion chamber and 150 mm CT dose profiler (CTDP. Using these values, the weighted computed tomography dose index (CTDIw and in turn the volumetric CTDI (CTDIv were calculated for various combinations of tube voltage and current-time product. A similar study was carried out using standard calibrated phantom and the results have been compared with the fabricated ones to ascertain that the performance of the latter is equivalent to that of the former. Finally, CTDIv measured using fabricated and standard phantoms were compared with respective values displayed on the console. The difference between the values was well within the limits specified by Atomic Energy Regulatory Board (AERB, India. These results indicate that the cost-effective pediatric phantom can be employed for CT dosimetry.

  9. Biological Effects of Individual Alpha Particles

    International Nuclear Information System (INIS)

    L. A. Braby; R. R. Ford

    2002-01-01

    In order to provide quantitative data on the mechanisms of intercellular communication leading to bystander effects in irradiated cell populations, a positive ion microbeam irradiation system was set up at Texas A and M University and the rate at which photobleached and active fluorescent molecules are exchanged between irradiated and unirradiated cells was studied. AG1522 human fibroblast cells were chosen as one of the lines in this study because they had been shown to be proficient at bystander effects, and because they exhibited scrape loading response and lindane inhibition of effects which suggest that gap junction communication was involved. Surprisingly, detailed measurements of recovery from photobleaching suggested that gap junction communication did not occur in these cells. More detailed studies with gap junction inhibitors and with immunohistochemistry assays for gap junctions seem to confirm that these cells do not communicate in this way. A cell line which does communicate by gap junctions, Clone 9, shows no change in communication rates before and after irradiation. Other techniques, such as assessment of nuclear cross section were developed to determine if bystander effects alter cell progression through the cell cycle and the growth of individual cells

  10. Biological effects of fruit and vegetables

    DEFF Research Database (Denmark)

    Dragsted, L. O.; Krath, B.; Ravn-Haren, Gitte

    2006-01-01

    A strong and persistent effect of plant-derived foods on the prevention of lifestyle diseases has emerged from observational studies. Several groups of constituents in plants have been identified as potentially health promoting in animal studies, including cholesterol-lowering factors, antioxidan...

  11. Fast neutron dosimetry: Progress summary

    International Nuclear Information System (INIS)

    DeLuca, P.M. Jr.

    1988-01-01

    The purpose was to investigate the radiological physics and biology of very low energy photons derived from a 1-GeV electron synchrotron storage ring. An extensive beam line and irradiation apparatus was designed, developed, and constructed. Dosimetry measurements required invention and testing of a miniature absolute calorimeter and a cell irradiation fixture suitable for scanning exposures under computer control. Measurements of the kerma factors of oxygen, aluminum and silicon for 14-20 MeV neutrons. Custom designed miniature proportional counters of cylindrical symmetry were employed in these determinations. The oxygen kerma factor was found significantly lower than values calculated from microscopic cross sections. We also tested Mg and Fe walled conventional spherical counters. The direct neutron-counting gas interaction is significant enough for these counters that a correction is needed. We also investigated the application of Nuclear Magnetic Resonance spectroscopy to radiation dosimetry. Our purpose was to take advantage of recent development of very high-field magnets, complex RF-pulse techniques for solvent suppression, and improved spectral analysis techniques

  12. Estimating Effective Dose from Phantom Dose Measurements in Atrial Fibrillation Ablation Procedures and Comparison of MOSFET and TLD Detectors in a Small Animal Dosimetry Setting

    Science.gov (United States)

    Anderson-Evans, Colin David

    effective dose was computed by summing the product of each organ dose and the corresponding tissue weighting factor from the ICRP publication 103. Further risk calculations were done according to the BEIR VII Phase 2 report to obtain relative and lifetime attributable risks of cancer for an average AF ablation procedure. The ED was computed separately for the biplane fluoroscopic and angiographic system's 'low' and 'normal fluoro' automated settings, yielding 27.9 mSv and 45.6 mSv respectively for an average procedure time of 88.2 minutes. The corresponding DAP was 48.7 Gy cm2 and 79.1 Gy cm2 for low and normal settings respectively. The independently measured DAP was found to be within 0.1 % of that measured by the fluoroscopy system's onboard flat panel detectors. DCCs were calculated to be 0.573 and 0.577 for the respective low and normal settings. The results proved to be very closely matched, which was to be expected. The calculated cancer risks were fairly low due to the age of most patients (less than 5 incidences of solid tumor per 100,000 exposed for liver colon and stomach; 100-300 incidences per 100,000 exposed for lungs), but concern remains that longer procedures could increase the risk of erythema or other serious skin injuries. The second section of this thesis study involves the quantification and distribution of radiation dose in small animals undergoing irradiation in an orthovoltage x-ray unit. Extensive research is being done with small animals, particularly mice and rats, in fields such as cancer therapy, radiation biology and radiological countermeasures. Results and conclusion are often drawn from research based solely on manufacturer's specifications of the delivered dose rate without independent verification or adequate understanding of the machines' capabilities. Accurate radiation dose information is paramount when conducting research in this arena. Traditional methods of dosimetry, namely thermoluminescence dosimeters (TLDs) are challenging and

  13. Experience with in vivo diode dosimetry for verifying radiotherapy dose delivery: Practical implementation of cost-effective approaches

    International Nuclear Information System (INIS)

    Thwaites, D.I.; Blyth, C.; Carruthers, L.; Elliott, P.A.; Kidane, G.; Millwater, C.J.; MacLeod, A.S.; Paolucci, M.; Stacey, C.

    2002-01-01

    A systematic programme of in vivo dosimetry using diodes to verify radiotherapy delivered doses began in Edinburgh in 1992. The aims were to investigate the feasibility of routine systematic use of diodes as part of a comprehensive QA programme, to carry out clinical pilot studies to assess the accuracy of dose delivery on each machine and for each site and technique, to identify and rectify systematic deviations, to assess departmental dosimetric precision and to compare to clinical requirements. A further aim was to carry out a cost-benefit evaluation based on the results from the pilot studies to consider how best to use diodes routinely

  14. Biological effects of fruit and vegetables.

    Science.gov (United States)

    Dragsted, Lars O; Krath, Britta; Ravn-Haren, Gitte; Vogel, Ulla B; Vinggaard, Anne Marie; Bo Jensen, Per; Loft, Steffen; Rasmussen, Salka E; Sandstrom, The late BrittMarie; Pedersen, Anette

    2006-02-01

    A strong and persistent effect of plant-derived foods on the prevention of lifestyle diseases has emerged from observational studies. Several groups of constituents in plants have been identified as potentially health promoting in animal studies, including cholesterol-lowering factors, antioxidants, enzyme inducers, apoptosis inducers etc. In human intervention studies the dose levels achieved tend to be lower than the levels found to be effective in animals and sampling from target organs is often not possible. A controlled dietary human intervention study was performed with forty-three volunteers, providing 600 g fruit and vegetables/d or in the controls a carbohydrate-rich drink to balance energy intake. Surrogate markers of oxidative damage to DNA, protein and lipids, enzymic defence and lipid metabolism were determined in blood and urine. It was found that a high intake of fruit and vegetables tends to increase the stability of lipids towards oxidative damage. Markers of oxidative enzymes indicate a steady increase in glutathione peroxidase (GPX1) activity in erythrocytes during intervention with fruit and vegetables but there is no effect on GPX1 transcription levels in leucocytes. No change occurs in glutathione-conjugating or -reducing enzyme activities in erythrocytes or plasma, and there are no effects on the transcription of genes involved in phase 2 enzyme induction or DNA repair in leucocytes. Fruit and vegetable intake decreases the level of total cholesterol and LDL-cholesterol, but does not affect sex hormones. In conclusion, it has been shown that total cholesterol and LDL-cholesterol, markers of peripheral lipid oxidation, and erythrocyte GPX1 activity are affected by high intakes of fruit and vegetables. This finding provides support for a protective role of dietary fruit and vegetables against CVD.

  15. Determination of effective dose for workers hemodynamics service using double dosimetry; Determinacion de la dosis efectiva para los trabajadores del servicio de hemodinamica usando doble dosimetria

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Lopez, M. A.; Lobato Munoz, M.; Jodar Lopez, C. A.; Ramirez Ros, J. C.; Jerez Sainz, M. I.; Pamos Urena, M.; Carrasco Rodriguez, J. L.

    2013-07-01

    The use of an additional dosimeter at the level of the neck above the lead apron we can provide an indication of the dose in the head (the Crystal dose). In addition, it is possible to combine the two readings of the dosimeter to provide an improved estimate of the effective dose. In the hemodynamics service of our Hospital we have maintained a worker for 3 years with the double dosimetry read monthly. With the readings from these dosimeters will do following algorithms, several estimates of the effective dose to see if, with working conditions that occur in this service, it would be necessary to extend this practice to the rest of the workers to get a better estimation of effective dose. (Author)

  16. Proposal for an experiment at the SIN: contribution on πE3-beam dosimetry. Measurement of particle spectra after pion absorption in biologically interesting nuclei

    International Nuclear Information System (INIS)

    Appel, H.; Boehmer, V.; Bueche, G.; Kluge, W.; Matthay, H.

    It is proposed to measure the energy spectra of light charged particles (protons, deuterons, tritons, 3 He- and 4 He-nuclei) and of neutrons, after the absorption of stopped pions in the biologically interesting hydrogen, oxygen, carbon, and nitrogen nuclei. In addition, the relative particle yield will be examined in tissue-like targets such as polyethylene, plexiglas, and water. Furthermore, it is proposed to measure the coincidence spectra of two particles emitted after absorption, as a function of the angle between their impulses. In the case of a pure three-body decay, these examinations may open the possibility of drawing conclusions about the heavy recoil nuclei arising during pion absorption. Particle energy and type will be determined by a combined time-of-flight/energy measurement with totally absorbent NaI or plastic detectors. The HF signal will serve as a start signal for time-of-flight measurements

  17. Nanosilver – Harmful effects of biological activity

    Directory of Open Access Journals (Sweden)

    Anna Maria Świdwińska-Gajewska

    2014-12-01

    Full Text Available Nanosilver, also identified as colloidal silver, has been known and used for ages to combat diseases or prolong food freshness. It usually occurs in the form of a suspension consisting of particles of size < 100 nm. Due to its specific properties, silver nanoparticles are used in many technologies to produce medical devices, textiles, conductive materials or photovoltaic cells. The growing popularity of nanosilver applications increases the number of people occupationally exposed to this substance. Potential exposure routes for silver nanoparticles are through dermal, oral and inhalation pathways. Silver nanoparticles may be absorbed through the lungs, intestine, and through the skin into circulation and thus may reach such organs as the liver, kidney, spleen, brain, heart and testes. Nanosilver may cause mild eyes and skin irritations. It can also act as a mild skin allergen. Inhalation of silver nanoparticles mainly affects the lungs and liver. It has been demonstrated that silver nanoparticles may be genotoxic to mammalian cells. There are some alarming reports on the adverse effects of silver nanoparticles on reproduction of experimental animals. Exposure to silver nanoparticles may exert a neurotoxic effect and affect cognitive functions, causing the impairment of short-term and working memory. Maximum admissible concentration (MAC for the inhalable fraction of silver of 0.05 mg/m3 is currently binding in Poland. In light of toxicological studies of silver nanoparticles it seems reasonable to update the hygiene standards for silver with nanoparticles as a separate fraction. Med Pr 2014;65(6:831–845

  18. Secondary standard dosimetry laboratory (SSDL)

    International Nuclear Information System (INIS)

    Md Saion bin Salikin.

    1983-01-01

    A secondary Standard Dosimetry Laboratory has been established in the Tun Ismail Research Centre, Malaysia as a national laboratory for reference and standardization purposes in the field of radiation dosimetry. This article gives brief accounts on the general information, development of the facility, programmes to be carried out as well as other information on the relevant aspects of the secondary standard dosimetry laboratory. (author)

  19. Electromagnetic field induced biological effects in humans.

    Science.gov (United States)

    Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J

    2015-01-01

    Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF

  20. Biological effect of radiation on human

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Sil; Cho, Chul Koo; Lee, Su Jae [and others

    2000-04-01

    1. Adaptive response when 0.01 Gy was preirradiated before high challenging dose is induced in normal cell types such normal lymphocytes, primary keratinocytes, and L929 fibroblast cells but not in neoplastic cells such as L5178Y lymphoma cells, EL-4 lymphoma cells and 308 papilloma cells. 2. Heat shock protein (HSP) 25 and inducible HSP70 is responsible for the induction of adaptive response and radioresistance - cell cycle regulation, antiapoptotic molecule and PKC activation were involved. 3. Apoptosis was induced at most 5. hrs after irradiation in primary keratinocytes, in v-rasHa transformed keratinocytes, the maximum interval was 16 hrs, and in 308 papilloma cells, the maximum was 48 hrs. 4. PKC response by radiation is correlated with induction of apoptosis. 5. Rapid induction PKCdelta in primary keratinocytes and no response of PKC epsilon may involved in radiation induced apoptosis. 6. The rate of resorption was increased when radiation was given at 2.5 days after gestation. Early death including foetal death were highly expressed when radiation was given at 7.5 days after gestation. There are no difference in incidence of late death including embryonic death. 7. 2 Gy is the most effective dose in radiation induced teratogenesis in mouse model. 8. Growth retardation and small head was present when radiation was given at 5.5, 7.5, 11.5 and 15.5 days after gestation and small head showed high incidence at 11.5 days after gestation. 9. External malformation, internal malformation and skeletal malformation was induced when radiation was given at 7.5 days after gestation. 10. OGG1-mutated cells induced radiosensitive by G2/M cell cycle arrest. 11. Radiation induced G2/M phase cell cycle and correlated with radiosensitivity. 12. PKCalpha induced differentiation. 13. Radiation exposed cells showed carcinogenic effect. 14. Organ specific radiosensitivity was shown and protein expression was involved.