WorldWideScience

Sample records for biological dose estimation

  1. Dose estimation by biological methods

    International Nuclear Information System (INIS)

    Guerrero C, C.; David C, L.; Serment G, J.; Brena V, M.

    1997-01-01

    The human being is exposed to strong artificial radiation sources, mainly of two forms: the first is referred to the occupationally exposed personnel (POE) and the second, to the persons that require radiological treatment. A third form less common is by accidents. In all these conditions it is very important to estimate the absorbed dose. The classical biological dosimetry is based in the dicentric analysis. The present work is part of researches to the process to validate the In situ Fluorescent hybridation (FISH) technique which allows to analyse the aberrations on the chromosomes. (Author)

  2. Cytogenetic biological dosimetry. Dose estimative in accidental exposure

    International Nuclear Information System (INIS)

    Santos, O.R. dos; Campos, I.M.A. de.

    1988-01-01

    The methodology of cytogenetic biological dosimetry is studied. The application in estimation of dose in five cases of accidental exposure is reported. An hematological study and culture of lymphocytes is presented. (M.A.C.) [pt

  3. Biological dose estimation for accidental supra-high dose gamma-ray exposure

    International Nuclear Information System (INIS)

    Chen, Y.; Yan, X.K.; Du, J.; Wang, Z.D.; Zhang, X.Q.; Zeng, F.G.; Zhou, P.K.

    2011-01-01

    To correctly estimate the biological dose of victims accidentally exposed to a very high dose of 60 Co gamma-ray, a new dose-effect curve of chromosomal dicentrics/multicentrics and rings in the supra-high dose range was established. Peripheral blood from two healthy men was irradiated in vitro with doses of 60 Co gamma-rays ranging from 6 to 22 Gy at a dose rate of 2.0 Gy/min. Lymphocytes were concentrated, cultured and harvested at 52 h, 68 h and 72 h. The numbers of dic + r were counted. The dose-effect curves were established and validated using comparisons with doses from the Tokai-mura accident and were then applied to two victims of supra-high dose exposure accident. The results indicated that there were no significant differences in chromosome aberration frequency among the different culture times from 52 h to 72 h. The 6-22 Gy dose-effect curve was fitted to a linear quadratic model Y = -2.269 + 0.776D - 7.868 x l0 -3 D 2 . Using this mathematic model, the dose estimates were similar to data from Tokai-mura which were estimated by PCC ring. Whole body average doses of 9.7 Gy and 18.1 Gy for two victims in the Jining accident were satisfactorily given. We established and successfully applied a new dose-effect curve of chromosomal dicentrics plus ring (dic + r) after 6-22 Gy γ-irradiation from a supra-high dose 60 Co gamma-ray accident.

  4. Biological dose estimation and comet analysis of the victims in a high dose 60Co radiation accident

    International Nuclear Information System (INIS)

    Chen Ying; Liu Xiulin; Luo Yisheng; Li You; Yao Bo

    2007-01-01

    Objective: To explore the methods of chromosome preparation in human peripheral blood and bone marrow after very high dose exposure and fit the dose-response curve of dicentrics and tings in the range of high doses over 6 Gy for estimating biological dose and detecting DNA damage in the victims of '10.21' accident. Methods: The samples of peripheral blood and bone marrow in 2 victims were collected to prepare chromosome mataphases and dicentrics (multicentrics) + rings were counted. The dose-response curve and equation of human blood irradiated between 6-22 Gy in vitro were established and applied to assess biological dose of 2 victims. In addition, their DNA damages were tested by alkaline single cell gel electrophoresis. Results: The dicentric + ring numbers of 4.47 per cell in victims B's peripheral blood lymphocytes and 9.15 per cell in victim A's bone marrow who had no mitosis in peripheral blood cell. The whole body average doses of victims B and A estimated by 6-22 Gy equation arrived at 9.4 Gy and 19.5 Gy, respectively. The serious DNA damages were expressed by small head and large tail comet figures. Conclusions: The biological doses of 2 victims estimated by 6-22 Gy dose-response curve have reached the levels of extreme grave bone marrow and intestinal ARS, respectively. (authors)

  5. Biological dose estimation in a radiation accident involving low-dose ...

    African Journals Online (AJOL)

    Blood specimens were collected from 8 people 18 days after they had been accidentally exposed to a 947,2 GBq iridium192 source during industrial application. The equivalent whole-body dose received at day 0 was estimated using a model based on quantitative and qualitative chromosome aberration analysis in ...

  6. Biological radiation dose estimation by chromosomal aberrations analysis in human peripheral blood (dose- effect curve)

    International Nuclear Information System (INIS)

    Al Achkar, W.

    2002-01-01

    In order to draw a dose-effect curve, blood from eight healthy people were studied. Samples were irradiated in tubes with 0.15-2.5 gray of gamma ray.Irradiated and control samples were incubated for cell cultures. Chromosomal aberrations from 67888 metaphases were scored. Curves from the total number of dicentrics, dicentrics+ rings and total numbers of breaks were drawn. The yield of chromosome aberrations is related to the dose used. These curves give a quick useful estimation of the accidentally radiation exposure. (author)

  7. Biological radiation dose estimation by chromosomal aberrations analysis in human peripheral blood (dose-effect curve)

    International Nuclear Information System (INIS)

    Al-Achkar, W.

    2001-09-01

    In order to draw a dose-effect curve, experimentally gamma ray induced chromosomal aberrations in human peripheral lymphocytes from eight healthy people were studied. Samples from 4 males and 4 females were irradiated in tubes with 0.15, 0.25, 0.5, 1, 1.5, 2, 2.5 gray of gamma ray (Co 60 at dose rate 0.3 Gy/min). Irradiated and control samples were incubated in 37 centigrade for 48 hours cell cultures. Cell cultures then were stopped and metaphases spread, Giemsa stained to score the induced chromosomal aberrations. Chromosomal aberrations from 67888 metaphases were scored. Curves from the total number of dicentrics, dicentrics + rings and total numbers of breaks in cell for each individual or for all people were drawn. An increase of all chromosomal aberrations types with the elevation of the doses was observed. The yield of chromosome aberrations is related to the dose used. These curves give a quick useful estimation of the accidentally radiation exposure. (author)

  8. Imprecision in estimates of dose from ingested 137Cs due to variability in human biological characteristics

    International Nuclear Information System (INIS)

    Schwarz, G.; Dunning, D.E. Jr.

    1982-01-01

    An attempt has been made to quantify the variability in human biological parameters determining dose to man from ingestion of a unit activity of soluble 137 Cs and the resulting imprecision in the predicted total-body dose commitment. The analysis is based on an extensive review of the literature along with the application of statistical methods to determine parameter variability, correlations between parameters, and predictive imprecision. The variability in the principal biological parameters (biological half-time and total-body mass) involved can be described by a geometric standard deviation of 1.2-1.5 for adults and 1.6-1.9 for children/ adolescents of age 0.1-18 yr. The estimated predictive imprecision (using a Monte Carlo technique) in the total-body dose commitment from ingested 137 Cs can be described by a geometric standard deviation on the order of 1.3-1.4, meaning that the 99th percentile of the predicted distribution of dose is within approximately 2.1 times the mean value. The mean dose estimate is 0.009 Sv/MBq (34 mrem/μ Ci) for children/adolescents and 0.01 Sv/MBq (38 mrem/μ Ci) for adults. Little evidence of age dependence in the total-body dose from ingested 137 Cs is observed. (author)

  9. Dose estimate of exposure to radioisotopes in molecular and cellular biology

    International Nuclear Information System (INIS)

    Onado, C.; Faretta, M.; Ubezio, P.

    1999-01-01

    A method for prospectively evaluating the annual equivalent doses and effective dose to biomedical researchers working with unsealed radioisotopes, and their classification, is presented here. Simplified formulae relate occupational data to a reasonable overestimate of the annual effective dose, and the equivalent doses to the hands and to the skin. The procedure, up to the classification of personnel and laboratories, can be made fully automatic, using a common spreadsheet on a personal computer. The method is based on occupational data, accounting for the amounts of each radioisotope used by a researcher, the time of exposure and the overall amounts employed in the laboratories where experiments are performed. The former data serve to forecast a contribution to the dose arising from a researcher's own work, the latter to a forecast of an 'environmental' contribution deriving simply from the presence in a laboratory where other people are working with radioisotopes. The estimates of the doses due to one's own radioisotope handling and to 'environment' were corrected for accidental exposure, considered as a linear function of the manipulated activity or of the time spent in the laboratories respectively, and summed up to give the effective dose. The effective dose associated with some common experiments in molecular and cellular biology is pre-evaluated by this method. (author)

  10. Environmental and biological monitoring in the estimation of absorbed doses of pesticides.

    Science.gov (United States)

    Aprea, Maria Cristina

    2012-04-25

    Exposure to pesticides affects most of the population, not only persons occupationally exposed. In a context of high variability of exposure, biological monitoring is important because of the various routes by which exposure can occur and because it assesses both occupational and non-occupational exposure. The main aim of this paper was to critically compare estimates of absorbed dose measured by environmental and biological monitoring in situations in which they could both be applied. The combination of exposure measurements and biological monitoring was found to provide extremely important information on the behaviour of employees, and on the proper use and effectiveness of personal protection equipment. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Dose estimation by biological methods; Estimacion de dosis por metodos biologicos

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C; David C, L; Serment G, J; Brena V, M [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The human being is exposed to strong artificial radiation sources, mainly of two forms: the first is referred to the occupationally exposed personnel (POE) and the second, to the persons that require radiological treatment. A third form less common is by accidents. In all these conditions it is very important to estimate the absorbed dose. The classical biological dosimetry is based in the dicentric analysis. The present work is part of researches to the process to validate the In situ Fluorescent hybridation (FISH) technique which allows to analyse the aberrations on the chromosomes. (Author)

  12. UNCERTAINTY ON RADIATION DOSES ESTIMATED BY BIOLOGICAL AND RETROSPECTIVE PHYSICAL METHODS.

    Science.gov (United States)

    Ainsbury, Elizabeth A; Samaga, Daniel; Della Monaca, Sara; Marrale, Maurizio; Bassinet, Celine; Burbidge, Christopher I; Correcher, Virgilio; Discher, Michael; Eakins, Jon; Fattibene, Paola; Güçlü, Inci; Higueras, Manuel; Lund, Eva; Maltar-Strmecki, Nadica; McKeever, Stephen; Rääf, Christopher L; Sholom, Sergey; Veronese, Ivan; Wieser, Albrecht; Woda, Clemens; Trompier, Francois

    2018-03-01

    Biological and physical retrospective dosimetry are recognised as key techniques to provide individual estimates of dose following unplanned exposures to ionising radiation. Whilst there has been a relatively large amount of recent development in the biological and physical procedures, development of statistical analysis techniques has failed to keep pace. The aim of this paper is to review the current state of the art in uncertainty analysis techniques across the 'EURADOS Working Group 10-Retrospective dosimetry' members, to give concrete examples of implementation of the techniques recommended in the international standards, and to further promote the use of Monte Carlo techniques to support characterisation of uncertainties. It is concluded that sufficient techniques are available and in use by most laboratories for acute, whole body exposures to highly penetrating radiation, but further work will be required to ensure that statistical analysis is always wholly sufficient for the more complex exposure scenarios.

  13. Biological dose estimation of partial body exposures in cervix cancer patients

    International Nuclear Information System (INIS)

    Di Giorgio, Marina; Nasazzi, Nora B.; Taja, Maria R.; Roth, B.; Sardi, M.; Menendez, P.

    2000-01-01

    At present, unstable chromosome aberrations analysis in peripheral blood lymphocytes is the most sensitive method to provide a biological estimation of the dose in accidental radiation over exposures. The assessment of the dose is particularly reliable in cases of acute, uniform, whole-body exposures or after irradiation of large parts of the body. However, the scenarios of most radiation accidents result in partial-body exposures or non-uniform dose distribution, leading to a differential exposure of lymphocytes in the body. Inhomogeneity produces a yield of dicentrics, which does not conform to a Poisson distribution, but is generally over dispersed. This arises because those lymphocytes in tissues outside the radiation field will not be damaged. Most of the lymphocytes (80 %) belong to the 'redistributional pool' (lymphatic tissues and other organs) and made recirculate into peripheral blood producing a mixed irradiated and unirradiated population of lymphocytes. So-called over dispersion, with a variance greater than the mean, can be taken as an indication of non-uniform exposure. The main factors operating in vivo partial-body irradiation may be the location and size of the irradiation field and, at high doses, various cellular reactions such as reduced blast transformation, mitotic delay or interphase death may contribute. For partial-body exposures, mathematical-statistical analysis of chromosome aberration data can be performed to derive a dose estimate for the irradiated fraction of the body, been more realistic than to quote a mean equivalent uniform whole body dose. The 'Contaminated Poisson' method of Dolphin or the Qdr method of Sasaki, both based on similar principles, can achieve this. Contaminated Poisson considers the over dispersed distribution of dicentrics among all the cells scored. The observed distribution is considered to be the sum of a Poisson distribution, which represents the irradiated fraction of the body, and the remaining unexposed

  14. Biological dose estimation for charged-particle therapy using an improved PHITS code coupled with a microdosimetric kinetic model

    International Nuclear Information System (INIS)

    Sato, Tatsuhiko; Watanabe, Ritsuko; Kase, Yuki; Niita, Koji; Sihver, Lembit

    2009-01-01

    High-energy heavy ions (HZE particles) have become widely used for radiotherapy of tumors owing to their high biological effectiveness. In the treatment planning of such charged-particle therapy, it is necessary to estimate not only physical but also biological dose, which is the product of physical dose and relative biological effectiveness (RBE). In the Heavy-ion Medical Accelerator in Chiba (HIMAC), the biological dose is estimated by a method proposed by Kanai et al., which is based on the linear-quadratic (LQ) model with its parameters α and β determined by the dose distribution in terms of the unrestricted linear energy transfer (LET). Thus, RBE is simply expressed as a function of LET in their model. However, RBE of HZE particles cannot be uniquely determined from their LET because of their large cross sections for high-energy δ-ray production. Hence, development of a biological dose estimation model that can explicitly consider the track structure of δ-rays around the trajectory of HZE particles is urgently needed. Microdosimetric quantities such as lineal energy y are better indexes for representing RBE of HZE particles in comparison to LET, since they can express the decrease of ionization densities around their trajectories due to the production of δ-rays. The difference of the concept between LET and y is illustrated in Figure 1. However, the use of microdosimetric quantities in computational dosimetry was severely limited because of the difficulty in calculating their probability densities (PDs) in macroscopic matter. We therefore improved the 3-dimensional particle transport simulation code PHITS, providing it with the capability of estimating the microdosimetric PDs in a macroscopic framework by incorporating a mathematical function that can instantaneously calculate the PDs around the trajectory of HZE particles with precision equivalent to a microscopic track-structure simulation. A new method for estimating biological dose from charged

  15. TLD estimation of absorbed dose for 131I on the surface of biological organs of REMCAL phantom

    International Nuclear Information System (INIS)

    Tandon, Pankaj; Gaur, P.K.; Bhatt, B.C.; Soni, P.S.

    2001-01-01

    In nuclear medicine, the accuracy of absorbed dose of an internally distributed radiopharmaceuticals estimated by the MIRD (medical internal radiation dose) method depends on the cumulated activity of the source organs and their mass. The usual method for obtaining the cumulated activities are: 1) direct measurements by a) positron emission tomography (PET) and b) single photon emission computed tomography (SPECT) 2) extrapolation from animal data and 3) calculations based on the mathematical biokinetic model. Among these methods, extrapolation of animal data to humans includes inevitable inaccuracy due to large interspecies metabolic differences with regard to the administered radiochemical. Biokinetic modeling requires adequate knowledge of various kinetic parameters, which is based on some biological assumptions. Direct measurements can provide cumulated distributions with fewer biological assumptions. But direct measurements of PET/SPECT are difficult to perform routinely. A method has been developed to obtain the surface dose of different biological organs by using TLDs. Here, a number of TLDs are placed just above the surface of the biological organs of the REMCAL Alderson human phantom filled with water. Firstly, investigation of the accuracy of this method by calibration studies using the said phantom, which is having the entire biological organ intact and simulate the organs as human body is done. These organs are filled with the known activity of the radioisotope. In the present study, estimation of radiation dose received by fifteen different target organs, when the known activity was filled in the three major organs of interest was carried out

  16. Fetal dose from radiotherapy photon beams: Physical basis, techniques to estimate radiation dose outside of the treatment field, biological effects and professional considerations

    International Nuclear Information System (INIS)

    Stovell, Marilyn; Blackwell, C. Robert

    1997-01-01

    Purpose/Objective: The presentation will review: 1. The physical basis of radiation dose outside of the treatment field. 2. Techniques to estimate and reduce fetal dose. 3. Clinical examples of fetal dose estimation and reduction. 4. Biological effects of fetal irradiation. 5. Professional considerations. Approximately 4000 women per year in the United States require radiotherapy during pregnancy. This report presents data and techniques that allow the medical physicist to estimate the radiation dose the fetus will receive and to reduce this dose with appropriate shielding. Out-of-beam data are presented for a variety of photon beams, including cobalt-60 gamma rays and x rays from 4 to 18 MV. Designs for simple and inexpensive to more complex and expensive types of shielding equipment are described. Clinical examples show that proper shielding can reduce the radiation dose to the fetus by 50%. In addition, a review of the biological aspects of irradiation enables estimates of the risks of lethality, growth retardation, mental retardation, malformation, sterility, cancer induction, and genetic defects to the fetus. A summary of professional considerations/recommendations is also provided as a guide for the radiation oncologist and medical physicist

  17. Biological dosimetry - a Bayesian approach in the presentation of the uncertainty of the estimated dose in cases of exposure to low dose radiation

    International Nuclear Information System (INIS)

    Di Giorgio, Marina; Zaretzky, A.

    2010-01-01

    Biodosimetry laboratory experience has shown that there are limitations in the existing statistical methodology. Statistical difficulties generally occur due to the low number of aberrations leading to large uncertainties for dose estimation. Some problems derived from limitations of the classical statistical methodology, which requires that chromosome aberration yields be considered as something fixed and consequently provides a deterministic dose estimation and associated confidence limits. On the other hand, recipients of biological dosimetry reports, including medical doctors, regulators and the patients themselves may have a limited comprehension of statistics and of informed reports. Thus, the objective of the present paper is to use a Bayesian approach to present the uncertainty on the estimated dose to which a person could be exposed, in the case of low dose (occupational doses) radiation exposure. Such methodology will allow the biodosimetrists to adopt a probabilistic approach for the cytogenetic data analysis. At present, classical statistics allows to produce a confidence interval to report such dose, with a lower limit that could not detach from zero. In this situation it becomes difficult to make decisions as they could impact on the labor activities of the worker if an exposure exceeding the occupational dose limits is inferred. The proposed Bayesian approach is applied to occupational exposure scenario to contribute to take the appropriate radiation protection measures. (authors) [es

  18. Estimation of absorbed dose and its biological effects in subjects undergoing neuro interventional radiological procedures

    International Nuclear Information System (INIS)

    Basheerudeen, Safa Abdul Syed; Subramanian, Vinodhini; Venkatachalam, Perumal; Joseph, Santosh; Selvam, Paneer; Jose, M.T.; Annalakshmi, O.

    2016-01-01

    Radiological imaging has many applications due to its non-invasiveness, rapid diagnosis of life threatening diseases, and shorter hospital stay which benefit patients of all age groups. However, these procedures are complicated and time consuming, which use repeated imaging views and radiation, thereby increasing patient dose, and collective effective dose to the background at low doses. The effects of high dose radiation are well established. However, the effects of low dose exposure remain to be determined. Therefore, investigating the effect on medically exposed individuals is an alternative source to understand the low dose effects of radiation. The ESD (Entrance Surface Dose) was recorded using Lithium borate based TL dosimeters to measure the doses received by the head, neck and shoulder of the study subjects (n = 70) who underwent procedures like cerebral angiography, coiling, stenting and embolization

  19. Application of biological effective dose (BED) to estimate the duration of symptomatic relief and repopulation dose equivalent in palliative radiotherapy and chemotherapy

    International Nuclear Information System (INIS)

    Jones, Bleddyn; Cominos, Matilda; Dale, Roger G.

    2003-01-01

    Purpose: To investigate the potential for mathematic modeling in the assessment of symptom relief in palliative radiotherapy and cytotoxic chemotherapy. Methods: The linear quadratic model of radiation effect with the overall treatment time and the daily dose equivalent of repopulation is modified to include the regrowth time after completion of therapy. Results: The predicted times to restore the original tumor volumes after treatment are dependent on the biological effective dose (BED) delivered and the repopulation parameter (K); it is also possible to estimate K values from analysis of palliative treatment response durations. Hypofractionated radiotherapy given at a low total dose may produce long symptom relief in slow-growing tumors because of their low α/β ratios (which confer high fraction sensitivity) and their slow regrowth rates. Cancers that have high α/β ratios (which confer low fraction sensitivity), and that are expected to repopulate rapidly during therapy, are predicted to have short durations of symptom control. The BED concept can be used to estimate the equivalent dose of radiotherapy that will achieve the same duration of symptom relief as palliative chemotherapy. Conclusion: Relatively simple radiobiologic modeling can be used to guide decision-making regarding the choice of the most appropriate palliative schedules and has important implications in the design of radiotherapy or chemotherapy clinical trials. The methods described provide a rationalization for treatment selection in a wide variety of tumors

  20. Dose estimation of heavy ion beam by microdosimetry. Examination of the method to estimate biological effect from physical measurement of radiation quality

    International Nuclear Information System (INIS)

    Kase, Yuki; Sakama, Makoto; Tsuzuki, Daigo; Abe, Kyoko; Saotome, Naoya; Matsufuji, Naruhiro; Kanai, Tatsuaki; Matsumoto, Kouki; Furusawa, Yoshiya

    2007-01-01

    The absorbed dose (AD) of heavy ion (HI) beam (here, carbon beam) in HI therapy (unit, EGy) (D st ) to exert the actual clinical effect is for the irradiation of tumors deep in the body and is thus estimated by AD corrected with the relative biological effectiveness (RBE) of clinical endpoint: i.e., the relation is expressed by the equation RBE=D st /D rad | same-effect (D rad is AD of the reference X-ray to yield the same effect as the HI used for the intended clinical endpoint). This paper describes the process of the estimation in the title with consideration of depth dependences of AD of HI in accordance to Bragg curve, and of biological AD as determined by colony assay of human salivary gland tumor cells: in NIRS, the desired AD in HI therapy is calculated by multiplying 1.5 to physically measured AD of HI at RBE 10% (10% survival of the cells). This factor has been obtained by microdosimetry of Heavy Ion Medical Accelerator in Chiba (HIMAC) ions in NIRS with a small spherical proportional counter (LET-1/2, Far West Technology) of the diameter 1.27 cm having the tissue equivalent plastic wall and chamber filled with 4.4 kPa of propane-based gas to make the tissue-equivalence size 1.0 μm diameter. The measuring principle is based on the microdosimetric kinetic model reported previously. The calculated dose is found to agree with AD in HI therapeutic planning within 10% fluctuation. (R.T.)

  1. In situ biological dose mapping estimates the radiation burden delivered to 'spared' tissue between synchrotron X-ray microbeam radiotherapy tracks.

    Directory of Open Access Journals (Sweden)

    Kai Rothkamm

    Full Text Available Microbeam radiation therapy (MRT using high doses of synchrotron X-rays can destroy tumours in animal models whilst causing little damage to normal tissues. Determining the spatial distribution of radiation doses delivered during MRT at a microscopic scale is a major challenge. Film and semiconductor dosimetry as well as Monte Carlo methods struggle to provide accurate estimates of dose profiles and peak-to-valley dose ratios at the position of the targeted and traversed tissues whose biological responses determine treatment outcome. The purpose of this study was to utilise γ-H2AX immunostaining as a biodosimetric tool that enables in situ biological dose mapping within an irradiated tissue to provide direct biological evidence for the scale of the radiation burden to 'spared' tissue regions between MRT tracks. Γ-H2AX analysis allowed microbeams to be traced and DNA damage foci to be quantified in valleys between beams following MRT treatment of fibroblast cultures and murine skin where foci yields per unit dose were approximately five-fold lower than in fibroblast cultures. Foci levels in cells located in valleys were compared with calibration curves using known broadbeam synchrotron X-ray doses to generate spatial dose profiles and calculate peak-to-valley dose ratios of 30-40 for cell cultures and approximately 60 for murine skin, consistent with the range obtained with conventional dosimetry methods. This biological dose mapping approach could find several applications both in optimising MRT or other radiotherapeutic treatments and in estimating localised doses following accidental radiation exposure using skin punch biopsies.

  2. The MIRD method of estimating absorbed dose

    International Nuclear Information System (INIS)

    Weber, D.A.

    1991-01-01

    The estimate of absorbed radiation dose from internal emitters provides the information required to assess the radiation risk associated with the administration of radiopharmaceuticals for medical applications. The MIRD (Medical Internal Radiation Dose) system of dose calculation provides a systematic approach to combining the biologic distribution data and clearance data of radiopharmaceuticals and the physical properties of radionuclides to obtain dose estimates. This tutorial presents a review of the MIRD schema, the derivation of the equations used to calculate absorbed dose, and shows how the MIRD schema can be applied to estimate dose from radiopharmaceuticals used in nuclear medicine

  3. Estimated neutron-activation data for TFTR. Part II. Biological dose rate from sample-materials activation

    International Nuclear Information System (INIS)

    Ku, L.; Kolibal, J.G.

    1982-06-01

    The neutron induced material activation dose rate data are summarized for the TFTR operation. This report marks the completion of the second phase of the systematic study of the activation problem on the TFTR. The estimations of the neutron induced activation dose rates were made for spherical and slab objects, based on a point kernel method, for a wide range of materials. The dose rates as a function of cooling time for standard samples are presented for a number of typical neutron spectrum expected during TFTR DD and DT operations. The factors which account for the variations of the pulsing history, the characteristic size of the object and the distance of observation relative to the standard samples are also presented

  4. Estimation of individual radiation doses determined by the biological dosimetry method at the inhabitants of the Chernobyl region

    International Nuclear Information System (INIS)

    Nikolaevich, L.N.

    1997-01-01

    The results obtained by the method of the chromosome aberration analysis in human peripheral blood lymphocytes are given. Hematologically healthy inhabitants of Vetka and Khoiniki districts in Gomel Region (80 adults and 38 children), as well as persons suffering from hemoblastosis (acute lymphoblastic leukemia, acute myeloblastic leukemia) were examined. 27258 metaphase cells being analysed. Only two-hit aberrations (dicentric and ring chromosomes with fragments and without them), specific disturbances in response to radiation effect, were tested for estimating an individual dose of ionizing radiation. The examined groups of adults and children were formed depending on the value of an individual radiation dose: 0 kGy; from 0 to 1,4 kGy and from 1,5 to 3,0 kGy. 39% of adults took the dose up to 1,5 kGy and about 9% did above 2,0 kGy. The tendency towards increasing the amount of aberrant lymphocytes in peripheral blood is observed in persons who took the dose above 2,0 kGy. Among children 52,6% took the doses from 1,5 to 3,0 kGy. No increase in the level of aberrant cells in comparison with the children from the 'zero group' was observed in those children. Apparently, in some cases slightly reduced radiation doses can be obtained by the data of the chromosome analysis method since with the time elimination of a portion of these cells with unstable chromosome aberrations takes place. Elimination of chromosome aberrations in lymphocytes can be caused by different infectious processes which are accompanied by a pronounced immune response inducing inclusion of lymphocytes with aberrations in mitosis and , as a result, disappearance of unstable mutations. However, together with elimination of old chromosome aberrations new ones, caused by ongoing radiation, emerge in people living in radio contaminated regions and thus, the radiation dose determined by the chromosome analysis method even increases with years that can favour rise in malignant tumors. The radiation dose

  5. Internal dose estimates

    International Nuclear Information System (INIS)

    Wrenn, M.E.

    1977-01-01

    Internal doses, the procedures for making them and their significance has been reviewed. Effects of uranium, radium, lead-210, polonium-210, thorium in man are analysed based on data from tables and plots. Dosimetry of some ingested nuclides and inhalation dose due to radon-222, radon-220 and their daugther products are discussed [pt

  6. Radiation dose estimates for radiopharmaceuticals

    International Nuclear Information System (INIS)

    Stabin, M.G.; Stubbs, J.B.; Toohey, R.E.

    1996-04-01

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms

  7. Biological Effects of Low-Dose Exposure

    CERN Document Server

    Komochkov, M M

    2000-01-01

    On the basis of the two-protection reaction model an analysis of stochastic radiobiological effects of low-dose exposure of different biological objects has been carried out. The stochastic effects are the results published in the last decade: epidemiological studies of human cancer mortality, the yield of thymocyte apoptosis of mice and different types of chromosomal aberrations. The results of the analysis show that as dependent upon the nature of biological object, spontanous effect, exposure conditions and radiation type one or another form dose - effect relationship is realized: downwards concave, near to linear and upwards concave with the effect of hormesis included. This result testifies to the incomplete conformity of studied effects of 1990 ICRP recomendations based on the linear no-threshold hypothesis about dose - effect relationship. Because of this the methodology of radiation risk estimation recomended by ICRP needs more precisian and such quantity as collective dose ought to be classified into...

  8. Weldon Spring historical dose estimate

    International Nuclear Information System (INIS)

    Meshkov, N.; Benioff, P.; Wang, J.; Yuan, Y.

    1986-07-01

    This study was conducted to determine the estimated radiation doses that individuals in five nearby population groups and the general population in the surrounding area may have received as a consequence of activities at a uranium processing plant in Weldon Spring, Missouri. The study is retrospective and encompasses plant operations (1957-1966), cleanup (1967-1969), and maintenance (1969-1982). The dose estimates for members of the nearby population groups are as follows. Of the three periods considered, the largest doses to the general population in the surrounding area would have occurred during the plant operations period (1957-1966). Dose estimates for the cleanup (1967-1969) and maintenance (1969-1982) periods are negligible in comparison. Based on the monitoring data, if there was a person residing continually in a dwelling 1.2 km (0.75 mi) north of the plant, this person is estimated to have received an average of about 96 mrem/yr (ranging from 50 to 160 mrem/yr) above background during plant operations, whereas the dose to a nearby resident during later years is estimated to have been about 0.4 mrem/yr during cleanup and about 0.2 mrem/yr during the maintenance period. These values may be compared with the background dose in Missouri of 120 mrem/yr

  9. Weldon Spring historical dose estimate

    Energy Technology Data Exchange (ETDEWEB)

    Meshkov, N.; Benioff, P.; Wang, J.; Yuan, Y.

    1986-07-01

    This study was conducted to determine the estimated radiation doses that individuals in five nearby population groups and the general population in the surrounding area may have received as a consequence of activities at a uranium processing plant in Weldon Spring, Missouri. The study is retrospective and encompasses plant operations (1957-1966), cleanup (1967-1969), and maintenance (1969-1982). The dose estimates for members of the nearby population groups are as follows. Of the three periods considered, the largest doses to the general population in the surrounding area would have occurred during the plant operations period (1957-1966). Dose estimates for the cleanup (1967-1969) and maintenance (1969-1982) periods are negligible in comparison. Based on the monitoring data, if there was a person residing continually in a dwelling 1.2 km (0.75 mi) north of the plant, this person is estimated to have received an average of about 96 mrem/yr (ranging from 50 to 160 mrem/yr) above background during plant operations, whereas the dose to a nearby resident during later years is estimated to have been about 0.4 mrem/yr during cleanup and about 0.2 mrem/yr during the maintenance period. These values may be compared with the background dose in Missouri of 120 mrem/yr.

  10. New risk estimates at low doses

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1992-01-01

    The age of molecular radiation epidemiology may be at hand. The techniques are available to establish with the degree of precision required to determine whether agent-specific mutations can be identified consistently. A concerted effort to examine radiation-induced changes in as many relevant genes as possible appears to be justified. Cancers in those exposed to low doses of ionizing radiation should be chosen for the investigation. Parallel studies of radiation-induced cancers in experimental animals would not only complement the human studies, but perhaps reveal approaches to extrapolation of risk estimates across species. A caveat should be added to this optimistic view of what molecular studies might contribute to the knotty problem of risk estimates at low doses. The suggestions are made by one with no expertise in the field of molecular biology

  11. Biological characterization of radiation exposure and dose estimates for inhaled uranium milling effluents. Annual progress report April 1, 1982-March 31, 1983

    International Nuclear Information System (INIS)

    Eidson, A.F.

    1984-05-01

    The problems addressed are the protection of uranium mill workers from occupational exposure to uranium through routine bioassay programs and the assessment of accidental worker exposures. Comparisons of chemical properties and the biological behavior of refined uranium ore (yellowcake) are made to identify important properties that influence uranium distribution patterns among organs. These studies will facilitate calculations of organ doses for specific exposures and associated health risk estimates and will identify important bioassay procedures to improve evaluations of human exposures. A quantitative analytical method for yellowcake was developed based on the infrared absorption of ammonium diuranate and U 3 O 8 mixtures in KBr. The method was applied to yellowcake samples obtained from six operating mills. The composition of yellowcake from the six mills ranged from nearly pure ammonium diuranate to nearly pure U 3 O 8 . The composition of yellowcake samples taken from lots from the same mill was only somewhat less variable. Because uranium mill workers might be exposed to yellowcake either by contamination of a wound or by inhalation, a study of retention and translocation of uranium after subcutaneous implantation in rats was done. The results showed that 49% of the implanted yellowcake cleared from the body with a half-time (T sub 1/2) in the body of 0.3 days, and the remainder was cleared with a T sub 1/2 of 11 to 30 days. Exposures of Beagle dogs by nose-only inhalation to aerosols of commercial yellowcake were completed. Biochemical indicators of kidney dysfunction that appeared in blood and urine 4 to 8 days after exposure to the more soluble yellowcake showed significant changes in dogs, but levels returned to normal by 16 days after exposure. No biochemical evidence of kidney dysfunction was observed in dogs exposed to the less soluble yellowcake form. 18 figures, 9 tables

  12. Estimation of exposed dose, 1

    International Nuclear Information System (INIS)

    Okajima, Shunzo

    1976-01-01

    Radioactive atomic fallouts in Nishiyama district of Nagasaki Prefecture are reported on the basis of the survey since 1969. In 1969, the amount of 137 Cs in the body of 50 inhabitants in Nishiyama district was measured using human counter, and was compared with that of non-exposured group. The average value of 137 Cs (pCi/kg) was higher in inhabitants in Nishiyama district (38.5 in men and 24.9 in females) than in the controls (25.5 in men and 14.9 in females). The resurvey in 1971 showed that the amount of 137 Cs was decreased to 76% in men and 60% in females. When the amount of 137 Cs in the body was calculated from the chemical analysis of urine, it was 29.0 +- 8.2 in men and 29.4 +- 26.2 in females in Nishiyama district, and 29.9 +- 8.2 in men and 29.4 +- 11.7 in females in the controls. The content of 137 Cs in soils and crops (potato etc.) was higher in Nishiyama district than in the controls. When the internal exposure dose per year was calculated from the amount of 137 Cs in the body in 1969, it was 0.29 mrad/year in men and 0.19 mrad/year in females. Finally, the internal exposure dose immediately after the explosion was estimated. (Serizawa, K.)

  13. Biological indicators for radiation absorbed dose: a review

    International Nuclear Information System (INIS)

    Paul, S.F.D.; Venkatachalam, P.; Jeevanram, R.K.

    1996-01-01

    Biological dosimetry has an important role to play in assessing the cumulative radiation exposure of persons working with radiation and also in estimating the true dose received during accidents involving external and internal exposure. Various biodosimetric methods have been tried to estimate radiation dose for the above purposes. Biodosimetric methods include cytogenetic, immunological and mutational assays. Each technique has certain advantages and disadvantages. We present here a review of each technique, the actual method used for detection of dose, the sensitivity of detection and its use in long term studies. (author)

  14. Isobio software: biological dose distribution and biological dose volume histogram from physical dose conversion using linear-quadratic-linear model.

    Science.gov (United States)

    Jaikuna, Tanwiwat; Khadsiri, Phatchareewan; Chawapun, Nisa; Saekho, Suwit; Tharavichitkul, Ekkasit

    2017-02-01

    To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL) model. The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR), and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD 2 ) was calculated using biological effective dose (BED) based on the LQL model. The software calculation and the manual calculation were compared for EQD 2 verification with pair t -test statistical analysis using IBM SPSS Statistics version 22 (64-bit). Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS) in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV) determined by D 90% , 0.56% in the bladder, 1.74% in the rectum when determined by D 2cc , and less than 1% in Pinnacle. The difference in the EQD 2 between the software calculation and the manual calculation was not significantly different with 0.00% at p -values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT) and 0.240, 0.320, and 0.849 for brachytherapy (BT) in HR-CTV, bladder, and rectum, respectively. The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.

  15. Bayesian estimation of dose rate effectiveness

    International Nuclear Information System (INIS)

    Arnish, J.J.; Groer, P.G.

    2000-01-01

    A Bayesian statistical method was used to quantify the effectiveness of high dose rate 137 Cs gamma radiation at inducing fatal mammary tumours and increasing the overall mortality rate in BALB/c female mice. The Bayesian approach considers both the temporal and dose dependence of radiation carcinogenesis and total mortality. This paper provides the first direct estimation of dose rate effectiveness using Bayesian statistics. This statistical approach provides a quantitative description of the uncertainty of the factor characterising the dose rate in terms of a probability density function. The results show that a fixed dose from 137 Cs gamma radiation delivered at a high dose rate is more effective at inducing fatal mammary tumours and increasing the overall mortality rate in BALB/c female mice than the same dose delivered at a low dose rate. (author)

  16. [Evaluation of Organ Dose Estimation from Indices of CT Dose Using Dose Index Registry].

    Science.gov (United States)

    Iriuchijima, Akiko; Fukushima, Yasuhiro; Ogura, Akio

    Direct measurement of each patient organ dose from computed tomography (CT) is not possible. Most methods to estimate patient organ dose is using Monte Carlo simulation with dedicated software. However, dedicated software is too expensive for small scale hospitals. Not every hospital can estimate organ dose with dedicated software. The purpose of this study was to evaluate the simple method of organ dose estimation using some common indices of CT dose. The Monte Carlo simulation software Radimetrics (Bayer) was used for calculating organ dose and analysis relationship between indices of CT dose and organ dose. Multidetector CT scanners were compared with those from two manufactures (LightSpeed VCT, GE Healthcare; SOMATOM Definition Flash, Siemens Healthcare). Using stored patient data from Radimetrics, the relationships between indices of CT dose and organ dose were indicated as each formula for estimating organ dose. The accuracy of estimation method of organ dose was compared with the results of Monte Carlo simulation using the Bland-Altman plots. In the results, SSDE was the feasible index for estimation organ dose in almost organs because it reflected each patient size. The differences of organ dose between estimation and simulation were within 23%. In conclusion, our estimation method of organ dose using indices of CT dose is convenient for clinical with accuracy.

  17. Estimated radiation dose from timepieces containing tritium

    International Nuclear Information System (INIS)

    McDowell-Boyer, L.M.

    1980-01-01

    Luminescent timepieces containing radioactive tritium, either in elemental form or incorporated into paint, are available to the general public. The purpose of this study was to estimate potential radiation dose commitments received by the public annually as a result of exposure to tritium which may escape from the timepieces during their distribution, use, repair, and disposal. Much uncertainty is associated with final dose estimates due to limitations of empirical data from which exposure parameters were derived. Maximum individual dose estimates were generally less than 3 μSv/yr, but ranged up to 2 mSv under worst-case conditions postulated. Estimated annual collective (population) doses were less than 5 person/Sv per million timepieces distributed

  18. Biological evidence of low ionizing radiation doses

    International Nuclear Information System (INIS)

    Mirsch, Johanna

    2017-01-01

    Throughout life, every person is constantly exposed to different types of ionising radiation, without even noticing the exposure. The mean radiation exposure for people living in Germany amounts to approximately 4 mSv per year and encompasses the exposure from natural and man-made sources. The risks associated with exposure to low doses of radiation are still the subject of intense and highly controversial discussions, emphasizing the social relevance of studies investigating the effects of low radiation doses. In this thesis, DNA double-strand breaks (DSBs) were analyzed within three projects covering different aspects. DSBs are among the most hazardous DNA lesions induced by ionizing radiation, because this type of damage can easily lead to the loss of genetic information. Consequently, the DSB presents a high risk for the genetic integrity of the cell. In the first project, extensive results uncovered the track structure of charged particles in a biological model tissue. This provided the first biological data that could be used for comparison with data that were measured or predicted using theoretical physical dosimetry methods and mathematical simulations. Charged particles contribute significantly to the natural radiation exposure and are used increasingly in cancer radiotherapy because they are more efficient in tumor cell killing than X- or γ-rays. The difference in the biological effects of high energy charged particles compared with X- or γ-rays is largely determined by the spatial distribution of their energy deposition and the track structure inducing a three-dimensional damage pattern in living cells. This damage pattern consists of cells directly hit by the particle receiving a high dose and neighboring cells not directly hit by primary particles but exposed to far-reaching secondary electrons (δ-electrons). These cells receive a much lower dose deposition in the order of a few mGy. The radial dose distribution of single particle tracks was

  19. Low dose irradiation and biological defense mechanisms

    International Nuclear Information System (INIS)

    Sugahara, Tsutomu; Sagan, L.A.; Aoyama, Takashi

    1992-01-01

    It has been generally accepted in the context of radiation protection that ionizing radiation has some adverse effect even at low doses. However, epidemiological studies of human populations cannot definitively show its existence or absence. Furthermore, recent studies of populations living in areas of different background radiation levels reported some decrease in adverse health effects at high background levels. Genetic studies of atomic bomb survivors failed to produce statistically significant findings on the mutagenic effects of ionizing radiation. A British study however, suggests that a father's exposure to low dose radiation on the job may increase his children's risk of leukemia. On the other hand, many experimental studies have raised the possibility that low doses of ionizing radiation may not be harmful or may even produce stimulating or adaptive responses. The term 'hormesis' has come to be used to describe these phenomena produced by low doses of ionizing radiation when they were beneficial for the organisms studied. At the end of the International Conference on Low Dose Irradiation one conclusion appeared to be justified: radiation produces an adaptive response, though it is not universally detected yet. The conference failed to obtain any consensus on risk assessment at low doses, but raised many problems to be dealt with by future studies. The editors therefore believe that the Proceedings will be useful for all scientists and people concerned with radiation protection and the biological effects of low-dose irradiation

  20. Estimation of dose from chromosome aberration rate

    International Nuclear Information System (INIS)

    Li Deping

    1990-01-01

    The methods and skills of evaluating dose from correctly scored shromsome aberration rate are presented, and supplemented with corresponding BASIC computer code. The possibility and preventive measures of excessive probability of missing score of the aberrations in some of the current routine score methods are discussed. The use of dose-effect relationship with exposure time correction factor G in evaluating doses and their confidence intervals, dose estimation in mixed n-γ exposure, and identification of high by nonuniform acute exposure to low LET radiation and its dose estimation are discussed in more detail. The difference of estimated dose due to whether the interaction between subleisoms produced by n and γ have been taken into account is examined. In fitting the standard dose-aberration rate curve, proper weighing of experiment points and comparison with commonly accepted values are emphasised, and the coefficient of variation σ y √y of the aberration rate y as a function of dose and exposure time is given. In appendix I and II, the dose-aberration rate formula is derived from dual action theory, and the time variation of subleisom is illustrated and in appendix III, the estimation of dose from scores of two different types of aberrations (of other related score) is illustrated. Two computer codes are given in appendix IV, one is a simple code, the other a complete code, including the fitting of standard curve. the skills of using compressed data storage, and the production of simulated 'data ' for testing the curve fitting procedure are also given

  1. Fetus dose estimate of a pregnant worker

    International Nuclear Information System (INIS)

    Castro, P.; Espana, M.L.; Sevillano, D.; Minguez, C.; Ferrer, C.; Lopez Franco, P.

    2006-01-01

    A female employee working in diagnostic radiology should take additional controls to protect the unborn child from ionizing radiations. The fetus is particularly sensitive to the effects of x-rays and, so, the determination of the equivalent dose to the unborn child is of interest for risk estimates from occupational exposures of the pregnant workers. The ian of this study is to develop a method for fetus dose estimate of a pregnant worker who participates in interventional radiology procedures. Factors for converting dosemeter readings to equivalent dose to the fetus have been measured using thermoluminescence dosimetry. Equivalent dose to the uterus is used to simulate the equivalent dose to the fetus during the first two months of pregnancy. Measurements at different depths are made to consider the variations in the position of the uterus between pregnant women. The normalized doses obtained are dependent on the beam quality. Accurate estimation of fetus doses due to occupational exposures can be made using the data provided in the current study. (Author)

  2. Mathematical model for evaluation of dose-rate effect on biological responses to low dose γ-radiation

    International Nuclear Information System (INIS)

    Ogata, H.; Kawakami, Y.; Magae, J.

    2003-01-01

    Full text: To evaluate quantitative dose-response relationship on the biological response to radiation, it is necessary to consider a model including cumulative dose, dose-rate and irradiation time. In this study, we measured micronucleus formation and [ 3 H] thymidine uptake in human cells as indices of biological response to gamma radiation, and analyzed mathematically and statistically the data for quantitative evaluation of radiation risk at low dose/low dose-rate. Effective dose (ED x ) was mathematically estimated by fitting a general function of logistic model to the dose-response relationship. Assuming that biological response depends on not only cumulative dose but also dose-rate and irradiation time, a multiple logistic function was applied to express the relationship of the three variables. Moreover, to estimate the effect of radiation at very low dose, we proposed a modified exponential model. From the results of fitting curves to the inhibition of [ 3 H] thymidine uptake and micronucleus formation, it was obvious that ED 50 in proportion of inhibition of [ 3 H] thymidine uptake increased with longer irradiation time. As for the micronuclei, ED 30 also increased with longer irradiation times. These results suggest that the biological response depends on not only total dose but also irradiation time. The estimated response surface using the three variables showed that the biological response declined sharply when the dose-rate was less than 0.01 Gy/h. These results suggest that the response does not depend on total cumulative dose at very low dose-rates. Further, to investigate the effect of dose-rate within a wider range, we analyzed the relationship between ED x and dose-rate. Fitted curves indicated that ED x increased sharply when dose-rate was less than 10 -2 Gy/h. The increase of ED x signifies the decline of the response or the risk and suggests that the risk approaches to 0 at infinitely low dose-rate

  3. Organ dose estimates for the Japanese atomic-bomb survivors

    International Nuclear Information System (INIS)

    Kerr, G.D.

    1978-10-01

    Recent studies concerning radiation risks to man by the Committee on Biological Effects of Ionizing Radiation of the National Academy of Sciences-National Research Council and the United Nations Scientific Committee on the Effects of Atomic Radiation have emphasized the need for estimates of dose to organs of the Japanese atomic-bomb survivors. Shielding of internal organs by the body has been investigated for fission-weapon gamma rays and neutrons, and ratios of mean absorbed dose in a number of organs to survivors' T65D assignments of tissue kerma in air are provided for adults. Ratios of mean absorbed dose to tissue kerma in air are provided also for the thyroid and active bone marrow of juveniles. These organ dose estimates for juveniles are of interest in studies of radiation risks due to an elevated incidence of leukemia and thyroid cancer in survivors exposed as children compared to survivors exposed as adults

  4. Biology of dose rate in brachytherapy

    International Nuclear Information System (INIS)

    Brenner, David J.

    1995-01-01

    Purpose: This course is designed for practitioners and beginners in brachytherapy. The aim is to review biological principles underlying brachytherapy, to understand why current treatment regimes are the way they are, and to discuss what the future may hold in store. Brachytherapy has a long history. It was suggested as long ago as 1903 by Alexander Graham Bell, and the optimal application of this technique has been a subject of debate ever since. 'Brachy' means 'short', and the essential features of conventional brachytherapy are: positioning of the source a short distance from, or in, the tumor, allowing good dose distributions; short overall treatment times, to counter tumor repopulation; low dose rate, enabling a good therapeutic advantage between tumor control and damage to late-responding tissue. The advantages of good dose distributions speak for themselves; in some situations, as we shall see, computer-based dose optimization can be used to improve them still further. The advantages of short overall times stem from the fact that accelerated repopulation of the tumor typically begins a few weeks after the start of a radiation treatment. If all the radiation can be crammed in before that time, the risks of tumor repopulation can be considerably reduced. In fact even external-beam radiotherapy is moving in this direction, with the use of highly accelerated protocols. The advantages of low dose rate stem from the differential response to fractionation of early- and late-responding tissues. Essentially, lowering the dose rate spares late-responding tissue more than it does early-responding tissue such as tumors. We shall also discuss some recent innovations in the context of the general principles that have been outlined. For example, High dose rate brachytherapy, particularly for the uterine cervix: Does it work? If so, when and why? Use of Ir-192 sources, with a half life of 70 days: Should corrections be made for changing biological effectiveness as the dose

  5. A Paradigm Shift in Low Dose Radiation Biology

    Directory of Open Access Journals (Sweden)

    Z. Alatas

    2015-08-01

    Full Text Available When ionizing radiation traverses biological material, some energy depositions occur and ionize directly deoxyribonucleic acid (DNA molecules, the critical target. A classical paradigm in radiobiology is that the deposition of energy in the cell nucleus and the resulting damage to DNA are responsible for the detrimental biological effects of radiation. It is presumed that no radiation effect would be expected in cells that receive no direct radiation exposure through nucleus. The risks of exposure to low dose ionizing radiation are estimated by extrapolating from data obtained after exposure to high dose radiation. However, the validity of using this dose-response model is controversial because evidence accumulated over the past decade has indicated that living organisms, including humans, respond differently to low dose radiation than they do to high dose radiation. Moreover, recent experimental evidences from many laboratories reveal the fact that radiation effects also occur in cells that were not exposed to radiation and in the progeny of irradiated cells at delayed times after radiation exposure where cells do not encounter direct DNA damage. Recently, the classical paradigm in radiobiology has been shifted from the nucleus, specifically the DNA, as the principal target for the biological effects of radiation to cells. The universality of target theory has been challenged by phenomena of radiation-induced genomic instability, bystander effect and adaptive response. The new radiation biology paradigm would cover both targeted and non-targeted effects of ionizing radiation. The mechanisms underlying these responses involve biochemical/molecular signals that respond to targeted and non-targeted events. These results brought in understanding that the biological response to low dose radiation at tissue or organism level is a complex process of integrated response of cellular targets as well as extra-cellular factors. Biological understanding of

  6. Dose estimation for space radiation protection

    International Nuclear Information System (INIS)

    Xu Feng; Xu Zhenhua; Huang Zengxin; Jia Xianghong

    2007-01-01

    For evaluating the effect of space radiation on human health, the dose was estimated using the models of space radiation environment, models of distribution of the spacecraft's or space suit's mass thickness and models of human body. The article describes these models and calculation methods. (authors)

  7. Estimation of Absorbed Dose in Occlusal Radiography

    International Nuclear Information System (INIS)

    Yoo, Young Ah; Choi, Karp Shick; Lee, Sang Han

    1990-01-01

    The purpose of this study was to estimate absorbed dose of each important anatomic site of phantom (RT-210 Head and Neck Section R, Humanoid Systems Co., U.S.A.) head in occlusal radiography. X-radiation dosimetry at 12 anatomic sites in maxillary anterior topography, maxillary posterior topography, mandibular anterior cross-section, mandibular posterior cross-section, mandibular anterior topographic, mandibular posterior topographic occlusal projection was performed with calcium sulfate thermoluminescent dosimeters under 70 Kvp and 15 mA, 1/4 second (8 inch cone ) and 1 second (16 inch cone) exposure time. The results obtained were as follows: Skin surface produced highest absorbed dose ranged between 3264 mrad and 4073 mrad but there was little difference between projections. In maxillary anterior topographic occlusal radiography, eyeballs, maxillary sinuses, and pituitary gland sites produced higher absorbed doses than those of other sites. In maxillary posterior topographic occlusal radiography, exposed eyeball site and exposed maxillary sinus site produced high absorbed doses. In mandibular anterior cross-sectional occlusal radiography, all sites were produced relatively low absorbed dose except eyeball sites. In Mandibular posterior cross-sectional occlusal radiography, exposed eyeball site and exposed maxillary sinus site were produced relatively higher absorbed doses than other sites. In mandibular anterior topographic occlusal radiography, maxillary sinuses, submandibular glands, and thyroid gland sites produced high absorbed doses than other sites. In mandibular posterior topographic occlusal radiography, submandibular gland site of the exposed side produced high absorbed dose than other sites and eyeball site of the opposite side produced relatively high absorbed dose.

  8. Abundance estimation and conservation biology

    Science.gov (United States)

    Nichols, J.D.; MacKenzie, D.I.

    2004-01-01

    Abundance is the state variable of interest in most population–level ecological research and in most programs involving management and conservation of animal populations. Abundance is the single parameter of interest in capture–recapture models for closed populations (e.g., Darroch, 1958; Otis et al., 1978; Chao, 2001). The initial capture–recapture models developed for partially (Darroch, 1959) and completely (Jolly, 1965; Seber, 1965) open populations represented efforts to relax the restrictive assumption of population closure for the purpose of estimating abundance. Subsequent emphases in capture–recapture work were on survival rate estimation in the 1970’s and 1980’s (e.g., Burnham et al., 1987; Lebreton et al.,1992), and on movement estimation in the 1990’s (Brownie et al., 1993; Schwarz et al., 1993). However, from the mid–1990’s until the present time, capture–recapture investigators have expressed a renewed interest in abundance and related parameters (Pradel, 1996; Schwarz & Arnason, 1996; Schwarz, 2001). The focus of this session was abundance, and presentations covered topics ranging from estimation of abundance and rate of change in abundance, to inferences about the demographic processes underlying changes in abundance, to occupancy as a surrogate of abundance. The plenary paper by Link & Barker (2004) is provocative and very interesting, and it contains a number of important messages and suggestions. Link & Barker (2004) emphasize that the increasing complexity of capture–recapture models has resulted in large numbers of parameters and that a challenge to ecologists is to extract ecological signals from this complexity. They offer hierarchical models as a natural approach to inference in which traditional parameters are viewed as realizations of stochastic processes. These processes are governed by hyperparameters, and the inferential approach focuses on these hyperparameters. Link & Barker (2004) also suggest that our attention

  9. Abundance estimation and Conservation Biology

    Directory of Open Access Journals (Sweden)

    Nichols, J. D.

    2004-06-01

    Full Text Available Abundance is the state variable of interest in most population–level ecological research and in most programs involving management and conservation of animal populations. Abundance is the single parameter of interest in capture–recapture models for closed populations (e.g., Darroch, 1958; Otis et al., 1978; Chao, 2001. The initial capture–recapture models developed for partially (Darroch, 1959 and completely (Jolly, 1965; Seber, 1965 open populations represented efforts to relax the restrictive assumption of population closure for the purpose of estimating abundance. Subsequent emphases in capture–recapture work were on survival rate estimation in the 1970’s and 1980’s (e.g., Burnham et al., 1987; Lebreton et al.,1992, and on movement estimation in the 1990’s (Brownie et al., 1993; Schwarz et al., 1993. However, from the mid–1990’s until the present time, capture–recapture investigators have expressed a renewed interest in abundance and related parameters (Pradel, 1996; Schwarz & Arnason, 1996; Schwarz, 2001. The focus of this session was abundance, and presentations covered topics ranging from estimation of abundance and rate of change in abundance, to inferences about the demographic processes underlying changes in abundance, to occupancy as a surrogate of abundance. The plenary paper by Link & Barker (2004 is provocative and very interesting, and it contains a number of important messages and suggestions. Link & Barker (2004 emphasize that the increasing complexity of capture–recapture models has resulted in large numbers of parameters and that a challenge to ecologists is to extract ecological signals from this complexity. They offer hierarchical models as a natural approach to inference in which traditional parameters are viewed as realizations of stochastic processes. These processes are governed by hyperparameters, and the inferential approach focuses on these hyperparameters. Link & Barker (2004 also suggest that

  10. Estimation of 18FDG doses's cost

    International Nuclear Information System (INIS)

    Hamza, Fatma; Amouri, W.; Jardak, I.; Kallel, F.; Charfeddine, S.; Guermazi, F.

    2013-01-01

    The cyclotron facility, essentially for medical use, is far from being a simple establishment of a dedicated device to accelerate particles producing a beta plus emitter radioelement. The cyclotron site encompasses more over all necessary equipments for the production and the quality control of considered radiotracer that 18 FDG is just one example. This facility is subject to strict standards in terms of radiopharmaceutical production, radiation level, pressure level and airflow resulting in the production of a drug submitted to the MA (Marketing Authorization). These multiple factors directly influence the final cost of the dose that remains to be reachable by the patient. The aim of this work is to estimate the cost of a dose of 18 FDG to ensure financial viability of the project while accessible to the patient. The cost of the facility will entail the following: buildings and utilities, equipment and operational cost. This calculation is possible only if we define in advance the type of cyclotron, which is bound to the market needs in particular the number of PET facilities, the number of scans per day and the radioactive decay of radioelement. Our study represents a simulation that considers some hypothesis. We assumed that the cyclotron is installed in Sousse and that the PET facilities number (positon emission tomography) is 6 in which 4 are located 2 hours away. For a PET scan, the average dose per patient is about 350 MBq (5 MBq/kg) and the exam duration is about 45 minutes. Each center performs 10 tests per day. In terms of fees, we considered device and building's cost, facility amortization, consumables (target, marking accessories), maintenance, remuneration expense and the annual electricity consumption. All our calculations have been reported to the number of working days per year. The estimates were made outside the customs duties and technical assistance that may last up to 2 years. Requirements and needs were estimated at 5.4 curies per day. For

  11. Estimation of Biological Effects of Tritium.

    Science.gov (United States)

    Umata, Toshiyuki

    2017-01-01

    Nuclear fusion technology is expected to create new energy in the future. However, nuclear fusion requires a large amount of tritium as a fuel, leading to concern about the exposure of radiation workers to tritium beta radiation. Furthermore, countermeasures for tritium-polluted water produced in decommissioning of the reactor at Fukushima Daiichi Nuclear Power Station may potentially cause health problems in radiation workers. Although, internal exposure to tritium at a low dose/low dose rate can be assumed, biological effect of tritium exposure is not negligible, because tritiated water (HTO) intake to the body via the mouth/inhalation/skin would lead to homogeneous distribution throughout the whole body. Furthermore, organically-bound tritium (OBT) stays in the body as parts of the molecules that comprise living organisms resulting in long-term exposure, and the chemical form of tritium should be considered. To evaluate the biological effect of tritium, the effect should be compared with that of other radiation types. Many studies have examined the relative biological effectiveness (RBE) of tritium. Hence, we report the RBE, which was obtained with radiation carcinogenesis classified as a stochastic effect, and serves as a reference for cancer risk. We also introduce the outline of the tritium experiment and the principle of a recently developed animal experimental system using transgenic mouse to detect the biological influence of radiation exposure at a low dose/low dose rate.

  12. Estimation of effective dose during hysterosalpingography procedures

    International Nuclear Information System (INIS)

    Alzimamil, K.; Babikir, E.; Alkhorayef, M.; Sulieman, A.; Alsafi, K.; Omer, H.

    2014-08-01

    Hysterosalpingography (HSG) is the most frequently used diagnostic tool to evaluate the endometrial cavity and fallopian tube by using conventional x-ray or fluoroscopy. Determination of the patient radiation doses values from x-ray examinations provides useful guidance on where best to concentrate efforts on patient dose reduction in order to optimize the protection of the patients. The aims of this study were to measure the patients entrance surface air kerma doses (ESA K), effective doses and to compare practices between different hospitals in Sudan. ESA K were measured for patient using calibrated thermo luminance dosimeters (TLDs, Gr-200A). Effective doses were estimated using National Radiological Protection Board (NRPB) software. This study was conducted in five radiological departments: Two Teaching Hospitals (A and D), two private hospitals (B and C) and one University Hospital (E). The mean ESD was 20.1 mGy, 28.9 mGy, 13.6 mGy, 58.65 mGy, 35.7, 22.4 and 19.6 mGy for hospitals A,B,C,D, and E), respectively. The mean effective dose was 2.4 mSv, 3.5 mSv, 1.6 mSv, 7.1 mSv and 4.3 mSv in the same order. The study showed wide variations in the ESDs with three of the hospitals having values above the internationally reported values. Number of x-ray images, fluoroscopy time, operator skills x-ray machine type and clinical complexity of the procedures were shown to be major contributors to the variations reported. Results demonstrated the need for standardization of technique throughout the hospital. The results also suggest that there is a need to optimize the procedures. Local DRLs were proposed for the entire procedures. (author)

  13. Improved dose estimates for nuclear criticality accidents

    International Nuclear Information System (INIS)

    Wilkinson, A.D.; Basoglu, B.; Bentley, C.L.; Dunn, M.E.; Plaster, M.J.; Dodds, H.L.; Yamamoto, T.

    1995-01-01

    Slide rules are improved for estimating doses and dose rates resulting from nuclear criticality accidents. The original slide rules were created for highly enriched uranium solutions and metals using hand calculations along with the decades old Way-Wigner radioactive decay relationship and the inverse square law. This work uses state-of-the-art methods and better data to improve the original slide rules and also to extend the slide rule concept to three additional systems; i.e., highly enriched (93.2 wt%) uranium damp (H/ 235 U = 10) powder (U 3 O 8 ) and low-enriched (5 wt%) uranium mixtures (UO 2 F 2 ) with a H/ 235 U ratio of 200 and 500. Although the improved slide rules differ only slightly from the original slide rules, the improved slide rules and also the new slide rules can be used with greater confidence since they are based on more rigorous methods and better nuclear data

  14. Biological responses to low dose rate gamma radiation

    International Nuclear Information System (INIS)

    Magae, Junji; Ogata, Hiromitsu

    2003-01-01

    Linear non-threshold (LNT) theory is a basic theory for radioprotection. While LNT dose not consider irradiation time or dose-rate, biological responses to radiation are complex processes dependent on irradiation time as well as total dose. Moreover, experimental and epidemiological studies that can evaluate LNT at low dose/low dose-rate are not sufficiently accumulated. Here we analyzed quantitative relationship among dose, dose-rate and irradiation time using chromosomal breakage and proliferation inhibition of human cells as indicators of biological responses. We also acquired quantitative data at low doses that can evaluate adaptability of LNT with statistically sufficient accuracy. Our results demonstrate that biological responses at low dose-rate are remarkably affected by exposure time, and they are dependent on dose-rate rather than total dose in long-term irradiation. We also found that change of biological responses at low dose was not linearly correlated to dose. These results suggest that it is necessary for us to create a new model which sufficiently includes dose-rate effect and correctly fits of actual experimental and epidemiological results to evaluate risk of radiation at low dose/low dose-rate. (author)

  15. Normal tissue dose-effect models in biological dose optimisation

    International Nuclear Information System (INIS)

    Alber, M.

    2008-01-01

    Sophisticated radiotherapy techniques like intensity modulated radiotherapy with photons and protons rely on numerical dose optimisation. The evaluation of normal tissue dose distributions that deviate significantly from the common clinical routine and also the mathematical expression of desirable properties of a dose distribution is difficult. In essence, a dose evaluation model for normal tissues has to express the tissue specific volume effect. A formalism of local dose effect measures is presented, which can be applied to serial and parallel responding tissues as well as target volumes and physical dose penalties. These models allow a transparent description of the volume effect and an efficient control over the optimum dose distribution. They can be linked to normal tissue complication probability models and the equivalent uniform dose concept. In clinical applications, they provide a means to standardize normal tissue doses in the face of inevitable anatomical differences between patients and a vastly increased freedom to shape the dose, without being overly limiting like sets of dose-volume constraints. (orig.)

  16. Biological dose assessment of 15 victims in Haerbin radiation accident

    International Nuclear Information System (INIS)

    Liu, Jian-xiang; Huang, Min-yan; Ruan, Jian-lei; Bai, Yu-shu; Xu, Su

    2008-01-01

    Full text: a) On July 5 and 8, 2005, Two patients with bone marrow suppression were successively hospitalized by the First Affiliated Hospital of Haerbin Medical University. Examination results showed that the patients seemed to get suspicious radiation disease. On July 13, 2005, a radioactive source was found in the patients' dwelling. The radiation source is Iridium-192 with 0.5 Ci(1.85 x 10 10 Bq) radioactivity. The radiation source is a metal bar which is a kind of radioactive industrial detection source for welding. The source is currently stored in the urban radioactive waste storehouse of Heilongjiang province. After finding the radioactive source on July 13, The Haerbin municipal government initiated an emergency response plan and developed medical rescue, radioactive source examination and case detection through organizing ministries involving health, environmental protection and public security. After receiving a report at 17:00 on July 14, 2005, Chinese Ministry of Health immediately sent experts to the spot for investigation, dose estimation and direction of patients' rescue. Health authority carried out physical examination twice on 113 residents within 30 meters to the source, among which 4 got radiation sickness, 5 showed abnormal hemotogram, and others showed no abnormal response. Of 4 patients with radiation sickness, one 81 year old patient has died of severe bone marrow form of sub acute radiation sickness coupled with lung infection and prostrate apparatus at 13:00 on Oct., 20. Two children have been treated in Beitaiping Road Hospital in Beijing, another patient has been treated in local hospital. b) Biological dosimetry using conventional chromosome aberration analysis in human peripheral blood lymphocytes has been shown as a reliable and useful tool in medical management of radiation accident victims. Peripheral blood lymphocytes of the victims were cultured using conventional culture medium with colchicine added at the beginning. Chromosome

  17. Estimation of absorbed doses on the basis of cytogenetic methods

    International Nuclear Information System (INIS)

    Shevchenko, V.A.; Rubanovich, A.V.; Snigiryova, G.P.

    1998-01-01

    Long-term studies in the field of radiation cytogenetics have resulted in the discovery of relationship between induction of chromosome aberrations and the type of ionizing radiation, their intensity and dose. This has served as a basis of biological dosimetry as an area of application of the revealed relationship, and has been used in the practice to estimate absorbed doses in people exposed to emergency irradiation. The necessity of using the methods of biological dosimetry became most pressing in connection with the Chernobyl accident in 1986, as well as in connection with other radiation situations that occurred in nuclear industry of the former USSR. The materials presented in our works demonstrate the possibility of applying cytogenetic methods for assessing absorbed doses in populations of different regions exposed to radiation as a result of accidents at nuclear facilities (Chernobyl, the village Muslymovo on the Techa river, the Three Mile Island nuclear power station in the USA where an accident occurred in 1979). Fundamentally, new possibilities for retrospective dose assessment are provided by the FISH-method that permits the assessment of absorbed doses after several decades since the exposure occurred. In addition, the application of this method makes it possible to restore the dynamics of unstable chromosome aberrations (dicentrics and centric rings), which is important for further improvement of the method of biological dosimetry based on the analysis of unstable chromosome aberrations. The purpose of our presentation is a brief description of the cytogenetic methods used in biological dosimetry, consideration of statistical methods of data analysis and a description of concrete examples of their application. (J.P.N.)

  18. Biological profiling and dose-response modeling tools ...

    Science.gov (United States)

    Through its ToxCast project, the U.S. EPA has developed a battery of in vitro high throughput screening (HTS) assays designed to assess the potential toxicity of environmental chemicals. At present, over 1800 chemicals have been tested in up to 600 assays, yielding a large number of concentration-response data sets. Standard processing of these data sets involves finding a best fitting mathematical model and set of model parameters that specify this model. The model parameters include quantities such as the half-maximal activity concentration (or “AC50”) that have biological significance and can be used to inform the efficacy or potency of a given chemical with respect to a given assay. All of this data is processed and stored in an online-accessible database and website: http://actor.epa.gov/dashboard2. Results from these in vitro assays are used in a multitude of ways. New pathways and targets can be identified and incorporated into new or existing adverse outcome pathways (AOPs). Pharmacokinetic models such as those implemented EPA’s HTTK R package can be used to translate an in vitro concentration into an in vivo dose; i.e., one can predict the oral equivalent dose that might be expected to activate a specific biological pathway. Such predicted values can then be compared with estimated actual human exposures prioritize chemicals for further testing.Any quantitative examination should be accompanied by estimation of uncertainty. We are developing met

  19. Dose estimation for paediatric cranial computed tomography

    International Nuclear Information System (INIS)

    Curci Daros, K.A.; Bitelli Medeiros, R.; Curci Daros, K.A.; Oliveira Echeimberg, J. de

    2006-01-01

    6.0 -1 +47(10)x10 -3 p cm -1 and ρ((p) 0,87(7)-0,007(7)p cm -1 respectively. As the exam protocol used 120 kV, 300 mAs, and slice thickness/spacing of 3/5 mm and 5/7 mm for the posterior fossa and supratentorial regions respectively, total calculated dose was 11.3(3.3) mGy. Eye region calculated dose was 0.4(0.1) mGy. Conclusion: Thermoluminescent dosimetry can be used in determining integral patient absorbed dose distribution in the three cranial regions under different X-ray exposure conditions. The proposed function permitted dose estimation in cranial paediatric exams independent of mAs because maximum T.L readings were determined in the supratentorial region, maintaining the above-mentioned operational and geometrical conditions. (authors)

  20. Dose estimation for paediatric cranial computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Curci Daros, K.A.; Bitelli Medeiros, R. [Sao Paulo Univ. Federal (Brazil); Curci Daros, K.A.; Oliveira Echeimberg, J. de [Centro Univ. Sao Camilo, Sao Paulo (Brazil)

    2006-07-01

    region defined by position 6.0dose was 11.3(3.3) mGy. Eye region calculated dose was 0.4(0.1) mGy. Conclusion: Thermoluminescent dosimetry can be used in determining integral patient absorbed dose distribution in the three cranial regions under different X-ray exposure conditions. The proposed function permitted dose estimation in cranial paediatric exams independent of mAs because maximum T.L readings were determined in the supratentorial region, maintaining the above-mentioned operational and geometrical conditions. (authors)

  1. Application of biological dose concept in dose optimization for conformal radiotherapy of prostate carcinoma

    International Nuclear Information System (INIS)

    Li Yunhai; Liao Yuan; Zhou Lijun; Pan Ziqiang; Feng Yan

    2003-01-01

    Objective: On basis of physical dose optimization, LQ model was used to investigate the difference between the curves of biological effective dose and physical isodose. The influence of applying the biological dose concept on three dimensional conformal radiotherapy of prostate carcinoma was discussed. Methods: Four treatment plannings were designed for physical dose optimization: three fields, four-box fields, five fields and six fields. Target dose uniformity and protection of the critical tissue-rectum were used as the principal standard for designing the treatment planning. Biological effective dose (BED) was calculated by LQ model. The difference between the BED curve drawn in the central layer and the physical isodose curve was studied. The difference between the adjusted physical dose (APD) and the physical dose was also studied. Results: Five field planning was the best in target dose uniformity and protection of the critical tissue-rectum. The physical dose was uniform in the target, but the biological effective doses revealed great discrepancy in the biological model. Adjusted physical dose distribution also displayed larger discrepancy than the physical dose unadjusted. Conclusions: Intensified Modulated Radiotherapy (IMRT) technique with inversion planning using biological dose concept may be much more advantageous to reach a high tumor control probability and low normal tissue complication probability

  2. Mathematical simulation of biologically equivalent doses for LDR-HDR

    International Nuclear Information System (INIS)

    Slosarek, K.; Zajusz, A.

    1996-01-01

    Based on the LQ model examples of biologically equivalent doses LDR, HDR and external beams were calculated. The biologically equivalent doses for LDR were calculated by appending to the LQ model the corrector for the time of repair of radiation sublethal damages. For radiation continuously delivered at a low dose rate the influence of sublethal damage repair time changes on biologically equivalent doses were analysed. For fractionated treatment with high dose rate the biologically equivalent doses were calculated by adding to the LQ model the formula of accelerated repopulation. For total biologically equivalent dose calculation for combine LDR-HDR-Tele irradiation examples are presented with the use of different parameters of the time of repair of sublethal damages and accelerated repopulation. The calculations performed show, that the same biologically equivalent doses can be obtained for different parameters of cell kinetics changes during radiation treatment. It also shows, that during biologically equivalent dose calculations for different radiotherapy schedules, ignorance of cell kinetics parameters can lead to relevant errors

  3. Biological effective doses in the intracavitary high dose rate brachytherapy of cervical cancer

    Directory of Open Access Journals (Sweden)

    Y. Sobita Devi

    2011-12-01

    Full Text Available Purpose: The aim of this study is to evaluate the decrease of biological equivalent dose and its correlation withlocal/loco-regional control of tumour in the treatment of cervical cancer when the strength of the Ir-192 high dose rate(HDR brachytherapy (BT source is reduced to single, double and triple half life in relation to original strength of10 Ci (~ 4.081 cGy x m2 x h–1. Material and methods: A retrospective study was carried out on 52 cervical cancer patients with stage II and IIItreated with fractionated HDR-BT following external beam radiation therapy (EBRT. International Commission onRadiation Units and Measurement (ICRU points were defined according to ICRU Report 38, using two orthogonal radiographimages taken by Simulator (Simulix HQ. Biologically effective dose (BED was calculated at point A for diffe -rent Ir-192 source strength and its possible correlation with local/loco-regional tumour control was discussed. Result: The increase of treatment time per fraction of dose due to the fall of dose rate especially in HDR-BT of cervicalcancer results in reduction in BED of 2.59%, 7.02% and 13.68% with single, double and triple half life reduction ofsource strength, respectively. The probabilities of disease recurrence (local/loco-regional within 26 months are expectedas 0.12, 0.12, 0.16, 0.39 and 0.80 for source strength of 4.081, 2.041, 1.020, 0.510 and 0.347 cGy x m2 x h–1, respectively.The percentages of dose increase required to maintain the same BED with respect to initial BED were estimated as1.71, 5.00, 11.00 and 15.86 for the dose rate of 24.7, 12.4, 6.2 and 4.2 Gy/hr at point A, respectively. Conclusions: This retrospective study of cervical cancer patients treated with HDR-BT at different Ir-192 sourcestrength shows reduction in disease free survival according to the increase in treatment time duration per fraction.The probable result could be associated with the decrease of biological equivalent dose to point A. Clinical

  4. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A.; Trofimov, Alexei [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2013-05-15

    Purpose: Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. Methods: For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor

  5. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions

    International Nuclear Information System (INIS)

    Zeng Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A.; Trofimov, Alexei

    2013-01-01

    Purpose: Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. Methods: For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor

  6. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions.

    Science.gov (United States)

    Zeng, Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A; Trofimov, Alexei

    2013-05-01

    Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor control probability

  7. Can results from animal studies be used to estimate dose or low dose effects in humans

    International Nuclear Information System (INIS)

    Thomas, J.M.; Eberhardt, L.L.

    1981-01-01

    A method has been devised to extrapolate biological equilibrium levels between animal species and subsequently to humans. Our initial premise was based on the observation that radionuclide retention is normally a function of metabolism so that direct or indirect measures could be described by a power law based on body weights of test animal species. However, we found that such interspecies comparisons ought to be based on the coefficient of the power equation rather than on the exponential parameter. The method is illustrated using retention data obtained from five non-ruminant species (including humans) that were fed radionuclides with different properties. It appears that biological equilibrium level for radionuclides in man can be estimated using data from mice, rats, and dogs. The need to extrapolate low-dose effects data obtained from small animals (usually rodents) to humans is not unique to radiation dosimetry or radiation protection problems. Therefore, some quantitative problems connected with estimating low-dose effects from other disciplines have been reviewed, both because of the concern about effects induced by the radionuclide moiety of a radiopharmaceutical and those of the nonradioactive component. The possibility of extrapolating low-dose effects calculated from animal studies to human is discussed

  8. Can results from animal studies be used to estimate dose or low dose effects in humans

    International Nuclear Information System (INIS)

    Thomas, J.M.; Eberhardt, L.L.

    1981-01-01

    We have devised a method to extrapolate biological equilibrium levels between animal species and subsequently to humans. Our initial premise was based on the observation that radionuclide retention is normally a function of metabolism so that direct or indirect measures could be described by a power law based on body weights of test animal species. However, we found that such interspecies comparisons ought to be based on the coefficient of the power equation rather than on the exponential parameter. The method is illustrated using retention data obtained from five non-ruminant species (including humans) that were fed radionuclides with different properties. It appears that biological equilibrium level for radionuclides in man can be estimated using data from mice, rats and dogs. The need to extrapolate low-dose effects data obtained from small animals (usually rodents) to humans is not unique to radiation dosimetry or radiation protection problems. Therefore, researchers have reviewed some quantitative problems connected with estimating low-dose effects from other disciplines, both because of the concern about effects induced by the radionuclide moiety of a radiopharmaceutical and those of the nonradioactive component. The possibility of extrapolating low-dose effects calculated from animal studies to humans is discussed

  9. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst

    2009-01-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  10. Predicted allowable doses to normal organs for biologically targeted radiotherapy

    International Nuclear Information System (INIS)

    O'Donoghue, J.A.; Wheldon, T.E.; Western Regional Hospital Board, Glasgow

    1988-01-01

    The authors have used Dale's extension to the ''linear quadratic'' (LQ) model (Dale, 1985) to evaluate ''equivalent doses'' in cases involving exponentially decaying dose rates. This analysis indicates that the dose-rate effect will be a significant determinant of allowable doses to organs such as liver, kidney and lung. These organ tolerance doses constitute independent constraints on the therapeutic intensity of biologically targeted radiotherapy in exactly the same way as for conventional external beam radiotherapy. In the context of marrow rescue they will in all likelihood constitute the dose-limiting side-effects and thus be especially important. (author)

  11. Validation of radiation dose estimations in VRdose: comparing estimated radiation doses with observed radiation doses

    International Nuclear Information System (INIS)

    Nystad, Espen; Sebok, Angelia; Meyer, Geir

    2004-04-01

    The Halden Virtual Reality Centre has developed work-planning software that predicts the radiation exposure of workers in contaminated areas. To validate the accuracy of the predicted radiation dosages, it is necessary to compare predicted doses to actual dosages. During an experimental study conducted at the Halden Boiling Water Reactor (HBWR) hall, the radiation exposure was measured for all participants throughout the test session, ref. HWR-681 [3]. Data from this experimental study have also been used to model tasks in the work-planning software and gather data for predicted radiation exposure. Two different methods were used to predict radiation dosages; one method used all radiation data from all the floor levels in the HBWR (all-data method). The other used only data from the floor level where the task was conducted (isolated data method). The study showed that the all-data method gave predictions that were on average 2.3 times higher than the actual radiation dosages. The isolated-data method gave predictions on average 0.9 times the actual dosages. (Author)

  12. Estimation of population dose from all sources in Japan

    International Nuclear Information System (INIS)

    Kusama, Tomoko; Nakagawa, Takeo; Kai, Michiaki; Yoshizawa, Yasuo

    1988-01-01

    The purposes of estimation of population doses are to understand the per-caput doses of the public member from each artificial radiation source and to determine the proportion contributed of the doses from each individual source to the total irradiated population. We divided the population doses into two categories: individual-related and source-related population doses. The individual-related population dose is estimated based on the maximum assumption for use in allocation of the dose limits for members of the public. The source-related population dose is estimated both to justify the sources and practices and to optimize radiation protection. The source-related population dose, therefore, should be estimated as realistically as possible. We investigated all sources that caused exposure to the population in Japan from the above points of view

  13. Strategies for Biologic Image-Guided Dose Escalation: A Review

    International Nuclear Information System (INIS)

    Sovik, Aste; Malinen, Eirik; Olsen, Dag Rune

    2009-01-01

    There is increasing interest in how to incorporate functional and molecular information obtained by noninvasive, three-dimensional tumor imaging into radiotherapy. The key issues are to identify radioresistant regions that can be targeted for dose escalation, and to develop radiation dose prescription and delivery strategies providing optimal treatment for the individual patient. In the present work, we review the proposed strategies for biologic image-guided dose escalation with intensity-modulated radiation therapy. Biologic imaging modalities and the derived images are discussed, as are methods for target volume delineation. Different dose escalation strategies and techniques for treatment delivery and treatment plan evaluation are also addressed. Furthermore, we consider the need for response monitoring during treatment. We conclude with a summary of the current status of biologic image-based dose escalation and of areas where further work is needed for this strategy to become incorporated into clinical practice

  14. The relative biological effectiveness of out-of-field dose

    International Nuclear Information System (INIS)

    Balderson, Michael; Koger, Brandon; Kirkby, Charles

    2016-01-01

    Purpose: using simulations and models derived from existing literature, this work investigates relative biological effectiveness (RBE) for out-of-field radiation and attempts to quantify the relative magnitudes of different contributing phenomena (spectral, bystander, and low dose hypersensitivity effects). Specific attention is paid to external beam radiotherapy treatments for prostate cancer. Materials and methods: using different biological models that account for spectral, bystander, and low dose hypersensitivity effects, the RBE was calculated for different points moving radially out from isocentre for a typical single arc VMAT prostate case. The RBE was found by taking the ratio of the equivalent dose with the physical dose. Equivalent doses were calculated by determining what physical dose would be necessary to produce the same overall biological effect as that predicted using the different biological models. Results: spectral effects changed the RBE out-of-field less than 2%, whereas response models incorporating low dose hypersensitivity and bystander effects resulted in a much more profound change of the RBE for out-of-field doses. The bystander effect had the largest RBE for points located just outside the edge of the primary radiation beam in the cranial caudal (z-direction) compared to low dose hypersensitivity and spectral effects. In the coplanar direction, bystander effect played the largest role in enhancing the RBE for points up to 8.75 cm from isocentre. Conclusions: spectral, bystander, and low dose hypersensitivity effects can all increase the RBE for out-of-field radiation doses. In most cases, bystander effects seem to play the largest role followed by low dose hypersensitivity. Spectral effects were unlikely to be of any clinical significance. Bystander, low dose hypersensitivity, and spectral effect increased the RBE much more in the cranial caudal direction (z-direction) compared with the coplanar directions. (paper)

  15. Biological effective dose studies in carcinoma of uterine cervix

    International Nuclear Information System (INIS)

    Yadav, Poonam; Ramasubramanian, V.

    2008-01-01

    Cancer of cervix is the second most common cancer worldwide among women. Several treatments related protocols of radiotherapy have been followed over few decades in its treatment for evaluating the response. These physical doses varying on the basics of fractionation size, dose rate and total dose needed to be indicated as biological effective dose (BED) to rationalize these treatments. The curative potential of radiation therapy in the management of carcinoma of the cervix is greatly enhanced by the use of intracavitary brachytherapy. Successful brachytherapy requires the high radiation dose to be delivered to the tumor where as minimum radiation dose reach to surrounding normal tissue. Present study is aimed to evaluate biologically effective dose in patients receiving high dose-rate brachytherapy plus external beam radiotherapy based on tumor cell proliferation values in cancer of the cervix patients. The study includes 30 patients' data as a retrospective analysis. In addition determine extent of a dose-response relationship existing between the biological effective dose at Point A and the bladder and rectum and the clinical outcomes

  16. Dosimetry in Interventional Radiology - Effective Dose Estimation

    International Nuclear Information System (INIS)

    Miljanic, S.; Buls, N.; Clerinx, P.; Jarvinen, H.; Nikodemova, D.; Ranogajec-Komor, M; D'Errico, F.

    2008-01-01

    Interventional radiological procedures can lead to significant radiation doses to patients and to staff members. In order to evaluate the personal doses with respect to the regulatory dose limits, doses measured by dosimeters have to be converted to effective doses (E). Measurement of personal dose equivalent Hp(10) using a single unshielded dosimeter above the lead apron can lead to significant overestimation of the effective dose, while the measurement with dosimeter under the apron can lead to underestimation. To improve the accuracy, measurements with two dosimeters, one above and the other under the apron have been suggested ( d ouble dosimetry ) . The ICRP has recommended that interventional radiology departments develop a policy that staff should wear two dosimeters. The aim of this study was to review the double dosimetry algorithms for the calculation of effective dose in high dose interventional radiology procedures. The results will be used to develop general guidelines for personal dosimetry in interventional radiology procedures. This work has been carried out by Working Group 9 (Radiation protection dosimetry of medical staff) of the CONRAD project, which is a Coordination Action supported by the European Commission within its 6th Framework Program.(author)

  17. Estimation of radiation risks at low dose

    International Nuclear Information System (INIS)

    1990-04-01

    The report presents a review of the effects caused by radiation in low doses, or at low dose rates. For the inheritable (or ''genetic''), as well as for the cancer producing effects of radiation, present evidence is consistent with: (a) a non-linear relationship between the frequency of at least some forms of these effects, with comparing frequencies caused by doses many times those received annually from natural sources, with those caused by lower doses; (b) a probably linear relationship, however, between dose and frequency of effects for dose rates in the region of that received from natural sources, or at several times this rate; (c) no evidence to indicate the existence of a threshold dose below which such effects are not produced, and a strong inference from the mode of action of radiation on cells at low dose rates that no such thresholds are likely to apply to the detrimental, cancer-producing or inheritable, effects resulting from unrepaired damage to single cells. 19 refs

  18. Coincidence in the dose estimation in a OEP by different methods

    International Nuclear Information System (INIS)

    Guerrero C, C.; Arceo M, C.; Brena V, M.

    2007-01-01

    The case of an apparent overexposure to radiation according to that indicated for the thermoluminescent dosemeter 81.59 mSv (TLD) of a occupationally exposed hard-working (POE), for that was practiced the study of biological dosimetry. The estimated dose was 0.12 Gy with which was proven the marked dose registration by the TLD dosemeter. It was concluded that both doses are the same ones. (Author)

  19. Radiation research contracts: Biological effects of small radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Hug, O [International Atomic Energy Agency, Division of Health, Safety and Waste Disposal, Vienna (Austria)

    1959-04-15

    To establish the maximum permissible radiation doses for occupational and other kinds of radiation exposure, it is necessary to know those biological effects which can be produced by very small radiation doses. This particular field of radiation biology has not yet been sufficiently explored. This holds true for possible delayed damage after occupational radiation exposure over a period of many years as well as for acute reactions of the organism to single low level exposures. We know that irradiation of less than 25 Roentgen units (r) is unlikely to produce symptoms of radiation sickness. We have, however, found indications that even smaller doses may produce certain instantaneous reactions which must not be neglected

  20. Estimation of radiation dose in Sakkara area

    International Nuclear Information System (INIS)

    Hussein, A.Z.; Hussein, M.I.; Abd El-Hady, M.L.

    1998-01-01

    Radon levels seem to be relatively high in some deeply seated caves at various sites in Egypt, apparently due to the U and Th contents in the rocks lining the burial places that are situated deep in the ground. The Sakkara area was examined, and a survey of the exposure rates, effective doses, radon daughter concentrations, and annual doses is presented in the tabular form. (P.A.)

  1. Estimation of radiation dose in Sakkara area

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, A Z; Hussein, M I [National Centre for Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo (Egypt); Abd El-Hady, M L [Physics Department, Faculty of Science, El Minia University, El-Minia (Egypt)

    1999-12-31

    Radon levels seem to be relatively high in some deeply seated caves at various sites in Egypt, apparently due to the U and Th contents in the rocks lining the burial places that are situated deep in the ground. The Sakkara area was examined, and a survey of the exposure rates, effective doses, radon daughter concentrations, and annual doses is presented in the tabular form. (P.A.) 1 tab., 6 refs.

  2. Estimation of light transport parameters in biological media using ...

    Indian Academy of Sciences (India)

    Estimation of light transport parameters in biological media using coherent backscattering ... backscattered light for estimating the light transport parameters of biological media has been investigated. ... Pramana – Journal of Physics | News.

  3. Ingestion of Nevada Test Site Fallout: Internal dose estimates

    International Nuclear Information System (INIS)

    Whicker, F.W.; Kirchner, T.B.; Anspaugh, L.R.

    1996-01-01

    This paper summarizes individual and collective dose estimates for the internal organs of hypothetical yet representative residents of selected communities that received measurable fallout from nuclear detonations at the Nevada Test Site. The doses, which resulted from ingestion of local and regional food products contaminated with over 20 radionuclides, were estimated with use of the PATHWAY food-chain-transport model to provide estimates of central tendency and uncertainty. The thyroid gland received much higher doses than other internal organs and tissues. In a avery few cases, infants might have received thyroid doses in excess of 1 Gy, depending on location, diet, and timing of fallout. 131 I was the primary thyroid dose contributor, and fresh milk was the main exposure pathway. With the exception of the thyroid, organ doses from the ingestion pathway were much smaller (<3%) than those from external gamma exposure to deposited fallout. Doses to residents living closest to the Nevada Test Site were contributed mainly by a few fallout events; doses to more distantly located people were generally smaller, but a greater number of events provided measurable contributions. The effectiveness of different fallout events in producing internal organ doses through ingestion varied dramatically with seasonal timing of the test, with maximum dose per unit fallout occurring for early summer depositions when milk cows were on pasture and fresh, local vegetables were used. Within specific communities, internal doses differed by age, sex, and lifestyle. Collective internal dose estimates for specific geographic areas are provided

  4. Natural radiation dose estimates from soils

    International Nuclear Information System (INIS)

    Silveira, M.A.G.R.; Moreira, H.; Medina, N.H.

    2009-01-01

    In this work the natural radiation from soils of southeastern Brazil has been studied. Soil samples from Interlagos, Sao Paulo; parks and Billings dam, in Sao Bernardo do Campo city; Santos, Sao Vicente and Sao Sebastiao beaches, Sao Paulo and sands from Ilha Grande beaches, Rio de Janeiro, were analyzed. The results show that the main contribution to the effective dose is due to elements of the 232 Th decay chain, with a smaller contribution from the radionuclide 40 K and the elements of the series of 238 U. The obtained values found in the studied regions, are around the average international dose due to external exposure to gamma rays (0.48 mSv/yr), except in Praia Preta, Ilha Grande, where the effective dose exceeds the average value. (author)

  5. Uncertainty of fast biological radiation dose assessment for emergency response scenarios.

    Science.gov (United States)

    Ainsbury, Elizabeth A; Higueras, Manuel; Puig, Pedro; Einbeck, Jochen; Samaga, Daniel; Barquinero, Joan Francesc; Barrios, Lleonard; Brzozowska, Beata; Fattibene, Paola; Gregoire, Eric; Jaworska, Alicja; Lloyd, David; Oestreicher, Ursula; Romm, Horst; Rothkamm, Kai; Roy, Laurence; Sommer, Sylwester; Terzoudi, Georgia; Thierens, Hubert; Trompier, Francois; Vral, Anne; Woda, Clemens

    2017-01-01

    Reliable dose estimation is an important factor in appropriate dosimetric triage categorization of exposed individuals to support radiation emergency response. Following work done under the EU FP7 MULTIBIODOSE and RENEB projects, formal methods for defining uncertainties on biological dose estimates are compared using simulated and real data from recent exercises. The results demonstrate that a Bayesian method of uncertainty assessment is the most appropriate, even in the absence of detailed prior information. The relative accuracy and relevance of techniques for calculating uncertainty and combining assay results to produce single dose and uncertainty estimates is further discussed. Finally, it is demonstrated that whatever uncertainty estimation method is employed, ignoring the uncertainty on fast dose assessments can have an important impact on rapid biodosimetric categorization.

  6. Occupational dose estimates for a monitored retrievable storage facility

    International Nuclear Information System (INIS)

    Harty, R.; Stoetzel, G.A.

    1986-06-01

    Occupational doses were estimated for radiation workers at the monitored retrievable storage (MRS) facility. This study provides an estimate of the occupational dose based on the current MRS facility design, examines the extent that various design parameters and assumptions affect the dose estimates, and identifies the areas and activities where exposures can be reduced most effectively. Occupational doses were estimated for both the primary storage concept and the alternate storage concept. The dose estimates indicate the annual dose to all radiation workers will be below the 5 rem/yr federal dose equivalent limit. However, the estimated dose to most of the receiving and storage crew (the workers responsible for the receipt, storage, and surveillance of the spent fuel and its subsequent retrieval), to the crane maintenance technicians, and to the cold and remote maintenance technicians is above the design objective of 1 rem/yr. The highest annual dose is received by the riggers (4.7 rem) in the receiving and storage crew. An indication of the extent to which various design parameters and assumptions affect the dose estimates was obtained by changing various design-based assumptions such as work procedures, background dose rates in radiation zones, and the amount of fuel received and stored annually. The study indicated that a combination of remote operations, increased shielding, and additional personnel (for specific jobs) or changes in operating procedures will be necessary to reduce worker doses below 1.0 rem/yr. Operations that could be made at least partially remote include the removal and replacement of the tiedowns, impact limiters, and personnel barriers from the shipping casks and the removal or installation of the inner closure bolts. Reductions of the background dose rates in the receiving/shipping and the transfer/discharge areas may be accomplished with additional shielding

  7. Dose uniformity estimations in the blood irradiator

    International Nuclear Information System (INIS)

    George, J.R.

    2002-01-01

    Use of irradiated blood in transfusions is recognized as the most effective way of preventing Graft Versus Host Disease (GVHD). This paper shows the study carried out in the dose rate variation for various source arrangements for optimising the source-sample chamber geometry, during the development of the Blood Irradiator, Bl-2000

  8. Modelling the Influence of Shielding on Physical and Biological Organ Doses

    CERN Document Server

    Ballarini, Francesca; Ferrari, Alfredo; Ottolenghi, Andrea; Pelliccioni, Maurizio; Scannicchio, Domenico

    2002-01-01

    Distributions of "physical" and "biological" dose in different organs were calculated by coupling the FLUKA MC transport code with a geometrical human phantom inserted into a shielding box of variable shape, thickness and material. While the expression "physical dose" refers to the amount of deposited energy per unit mass (in Gy), "biological dose" was modelled with "Complex Lesions" (CL), clustered DNA strand breaks calculated in a previous work based on "event-by-event" track-structure simulations. The yields of complex lesions per cell and per unit dose were calculated for different radiation types and energies, and integrated into a version of FLUKA modified for this purpose, allowing us to estimate the effects of mixed fields. As an initial test simulation, the phantom was inserted into an aluminium parallelepiped and was isotropically irradiated with 500 MeV protons. Dose distributions were calculated for different values of the shielding thickness. The results were found to be organ-dependent. In most ...

  9. Cellular vs. organ approaches to dose estimates

    International Nuclear Information System (INIS)

    Adelstein, S.J.; Kassis, A.I.; Sastry, K.S.R.

    1986-01-01

    The cellular distribution of tissue-incorporated radionuclides has generally been neglected in the dosimetry of internal emitters. Traditional dosimetry assumes homogeneous distribution of radionuclides in organs of interest, while presuming that the ranges of particulate radiations are large relative to typical cell diameters. The macroscopic distribution of dose thus calculated has generally served as a sufficient approximation for the energy deposited within radiosensitive sites. However, with the increasing utilization of intracellular agents, such as thallium-201, it has become necessary to examine the microscopic distribution of energy at the cellular level. This is particularly important in the instance of radionuclides that decay by electron capture or by internal conversion with the release of Auger and Coster-Kronig electrons. In many instances, these electrons are released as a dense shower of low-energy particles with ranges of subcellular dimensions. The high electron density in the immediate vicinity of the decaying atom produces a focal deposition of energy that far exceeds the average dose taken over several cell diameters. These studies point out the increasing need to take into account the microscopic distribution of dose on the cellular level as radionuclides distributed in cells become more commonplace, especially if the decay involves electron capture or internal conversion. As radiotracers are developed for the measurement of intracellular functions these factors should be given greater consideration. 16 references, 5 figures, 5 tables

  10. Nonparametric estimation of benchmark doses in environmental risk assessment

    Science.gov (United States)

    Piegorsch, Walter W.; Xiong, Hui; Bhattacharya, Rabi N.; Lin, Lizhen

    2013-01-01

    Summary An important statistical objective in environmental risk analysis is estimation of minimum exposure levels, called benchmark doses (BMDs), that induce a pre-specified benchmark response in a dose-response experiment. In such settings, representations of the risk are traditionally based on a parametric dose-response model. It is a well-known concern, however, that if the chosen parametric form is misspecified, inaccurate and possibly unsafe low-dose inferences can result. We apply a nonparametric approach for calculating benchmark doses, based on an isotonic regression method for dose-response estimation with quantal-response data (Bhattacharya and Kong, 2007). We determine the large-sample properties of the estimator, develop bootstrap-based confidence limits on the BMDs, and explore the confidence limits’ small-sample properties via a short simulation study. An example from cancer risk assessment illustrates the calculations. PMID:23914133

  11. Monte Carlo estimation of the absorbed dose in computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Woo; Youn, Han Bean; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    The purpose of this study is to devise an algorithm calculating absorbed dose distributions of patients based on Monte Carlo (MC) methods, and which includes the dose estimations due to primary and secondary (scattered) x-ray photons. Assessment of patient dose in computed tomography (CT) at the population level has become a subject of public attention and concern, and ultimate CT quality assurance and dose optimization have the goal of reducing radiation-induced cancer risks in the examined population. However, the conventional CT dose index (CTDI) concept is not a surrogate of risk but it has rather been designed to measure an average central dose. In addition, the CTDI or the dose-length product has showed troubles for helical CT with a wider beam collimation. Simple algorithms to estimate a patient specific CT dose based on the MCNP output data have been introduced. For numerical chest and head phantoms, the spatial dose distributions were calculated. The results were reasonable. The estimated dose distribution map can be readily converted into the effective dose. The important list for further studies includes the validation of the models with the experimental measurements and the acceleration of algorithms.

  12. Biphasic dose responses in biology, toxicology and medicine: Accounting for their generalizability and quantitative features

    International Nuclear Information System (INIS)

    Calabrese, Edward J.

    2013-01-01

    The most common quantitative feature of the hormetic-biphasic dose response is its modest stimulatory response which at maximum is only 30–60% greater than control values, an observation that is consistently independent of biological model, level of organization (i.e., cell, organ or individual), endpoint measured, chemical/physical agent studied, or mechanism. This quantitative feature suggests an underlying “upstream” mechanism common across biological systems, therefore basic and general. Hormetic dose response relationships represent an estimate of the peak performance of integrative biological processes that are allometrically based. Hormetic responses reflect both direct stimulatory or overcompensation responses to damage induced by relatively low doses of chemical or physical agents. The integration of the hormetic dose response within an allometric framework provides, for the first time, an explanation for both the generality and the quantitative features of the hormetic dose response. -- Highlights: •The hormetic stimulation is at maximum 30–60% greater than control responses. •Hormesis is a measure of biological performance and plasticity. •The hormetic response is evolutionary based and highly generalizable. -- This paper provides a biologically based explanation for the generalizability/quantitative features of the hormetic dose response, representing a fundamental contribution to the field

  13. Estimation of dose ionizing radiation exposure by biological dosimetry; Estimación de dosis de exposición a radiaciones ionizantes mediante dosimetría biológica

    Energy Technology Data Exchange (ETDEWEB)

    Herranz Crespo, R.; Moreno Domene, M.; Prieto Rodríguez, M.J.; Lozano Barriuso, M.A.

    2014-07-01

    the Biological Dosimetry Laboratory of the Radiopathology Centre, at Hospital General Universitario Gregorio Marañón, is the only national laboratory accredited by UNE-EN ISO/IEC 17025:2005, and scope to ISO 19238:2004 (Radiation protection – Performance criteria for service laboratories performing biological dosimetry by citogenetics), for dose assessment by the dycentrics assay, has great experience with more than 100 real cases analyzed, and several population studies. This paper describes experience and results from more than 20 years of work under the Reference level II Centre for the attention of irradiated and/or contaminated people. [Spanish] El Laboratorio de Dosimetría Biológica, del Centro de Radiopatología del Hospital General Universitario Gregorio Marañón, es el único en España que dispone de acreditación internacional por la norma UNE-EN ISO/IEC 17025:2005 con alcance a la norma ISO 19238:2004 (Radiationprotection – Performance criteria for service laboratories performing biological dosimetry by citogenetics), para la realización de estimaciones dosimétricas mediante la técnica de dicéntricos, dispone de amplia experiencia en su aplicación en los 110 casos reales analizados, y en diferentes estudios de poblaciones españolas. En este trabajo se describe la experiencia del laboratorio y los resultados obtenidos en los más de 20 años de funcionamiento en el Centro de Referencia de nivel II para la atención a irradiados y/o contaminados por radiaciones ionizantes.

  14. Dose estimation in embryo or fetus in external fields

    International Nuclear Information System (INIS)

    Gregori, Beatriz N.

    2001-01-01

    The embryo or the fetus can be irradiated as result of radiological procedures of diagnosis of therapy in where the beam effects directly on the same one or in tissues or peripherical organs. Some authors have suggested that in the first stages of the pregnancy the dose in ovaries can be the good estimated of the dose in embryo or fetus. In advanced conditions of the development, probably also in the early stage, is more appropriated to specify the dose in the embryo or fetus equal of the uterus. The dose in the uterus is a good estimated so much for external irradiation as for radionuclides incorporation

  15. Okadaic acid for radiation dose estimation using drug-induced premature chromosome condensation

    International Nuclear Information System (INIS)

    Wang Chunyan; Zhang Wei; Su Xu

    2005-01-01

    Objective: To establish simple biological method for high irradiation dose estimation using drug-induced prematurely condensed chromosomes (PCC) aberrations. Methods: Peripheral blood was taken from healthy adults and irradiated by 0, 1, 2, 5, 10, 15, 20 and 25 Gy 60 Co γ-rays. Then the blood samples were cultured for 48 hrs. One hr before the end of culture , okadaic acid was added into culture medium to induce PCC rings, which were counted for each dose point. Results: The yield of PCC rings was increased with the dose of radiation until 20 Gy. Within the range of 1 to 20 Gy, there was a good dose-response relationship between the yield of PCC rings and radiation dose. Conclusion: Compared with the analysis of frequency of dicentrics, the yield of PCC rings could be a good biodosimetry indicator for estimation of high dose irradiation. (authors)

  16. Dose Response Model of Biological Reaction to Low Dose Rate Gamma Radiation

    International Nuclear Information System (INIS)

    Magae, J.; Furikawa, C.; Hoshi, Y.; Kawakami, Y.; Ogata, H.

    2004-01-01

    It is necessary to use reproducible and stable indicators to evaluate biological responses to long term irradiation at low dose-rate. They should be simple and quantitative enough to produce the results statistically accurate, because we have to analyze the subtle changes of biological responses around background level at low dose. For these purposes we chose micronucleus formation of U2OS, a human osteosarcoma cell line, as indicators of biological responses. Cells were exposed to gamma ray in irradiation rom bearing 50,000 Ci 60Co. After irradiation, they were cultured for 24 h in the presence of cytochalasin B to block cytokinesis, and cytoplasm and nucleus were stained with DAPI and prospidium iodide, respectively. the number of binuclear cells bearing micronuclei was counted under a fluorescence microscope. Dose rate in the irradiation room was measured with PLD. Dose response of PLD is linear between 1 mGy to 10 Gy, and standard deviation of triplicate count was several percent of mean value. We fitted statistically dose response curves to the data, and they were plotted on the coordinate of linearly scale response and dose. The results followed to the straight line passing through the origin of the coordinate axes between 0.1-5 Gy, and dose and does rate effectiveness factor (DDREF) was less than 2 when cells were irradiated for 1-10 min. Difference of the percent binuclear cells bearing micronucleus between irradiated cells and control cells was not statistically significant at the dose above 0.1 Gy when 5,000 binuclear cells were analyzed. In contrast, dose response curves never followed LNT, when cells were irradiated for 7 to 124 days. Difference of the percent binuclear cells bearing micronucleus between irradiated cells and control cells was not statistically significant at the dose below 6 Gy, when cells were continuously irradiated for 124 days. These results suggest that dose response curve of biological reaction is remarkably affected by exposure

  17. Dose rate effect models for biological reaction to ionizing radiation in human cell lines

    International Nuclear Information System (INIS)

    Magae, Junji; Ogata, Hiromitsu

    2008-01-01

    , suggesting that dose rate effect predicted by MOE model is dependent on DNA repair system. Dose rate effect in a resting normal fibroblast cultured in serum-depleted medium also followed MOE model. In contrast, dose-rate effect was observed in these cell lines deficient of DNA repair system, when they were cultured for more than several month. This dose rate effect did not fit MOE model, and followed a model based on elimination of damaged cells. In conclusion, dose rate effect in growth inhibition and micronucleus formation in cultured cell lines is dependent on dose rate and irradiation time: In higher range of dose rates and short irradiation time, biological effect is determined by dose but not dose rate, and dose rate effect is not observed. In middle range of dose rates and irradiation time, dose rate effect is dependent on DNA repair system, and follows MOE model. In low range of dose-rates and irradiation time longer than several months, dose rate effect is mainly dependent on elimination of damaged cells, and biological effect is determined by dose rate rather than total dose. Our results suggest that dose rate and irradiation time should be included in estimation of long-term radiation risk at low dose rates. (author)

  18. Adult head CT scans: the uncertainties of effective dose estimates

    International Nuclear Information System (INIS)

    Gregory, Kent J.; Bibbo, Giovanni; Pattison, John E.

    2008-01-01

    Full Text: CT scanning is a high dose imaging modality. Effective dose estimates from CT scans can provide important information to patients and medical professionals. For example, medical practitioners can use the dose to estimate the risk to the patient, and judge whether this risk is outweighed by the benefits of the CT examination, while radiographers can gauge the effect of different scanning protocols on the patient effective dose, and take this into consideration when establishing routine scan settings. Dose estimates also form an important part of epidemiological studies examining the health effects of medical radiation exposures on the wider population. Medical physicists have been devoting significant effort towards estimating patient radiation doses from diagnostic CT scans for some years. The question arises: How accurate are these effective dose estimates? The need for a greater understanding and improvement of the uncertainties in CT dose estimates is now gaining recognition as an important issue (BEIR VII 2006). This study is an attempt to analyse and quantify the uncertainty components relating to effective dose estimates from adult head CT examinations that are calculated with four commonly used methods. The dose estimation methods analysed are the Nagel method, the ImpaCT method, the Wellhoefer method and the Dose-Length Product (DLP) method. The analysis of the uncertainties was performed in accordance with the International Standards Organisation's Guide to the Expression of Uncertainty in Measurement as discussed in Gregory et al (Australas. Phys. Eng. Sci. Med., 28: 131-139, 2005). The uncertainty components vary, depending on the method used to derive the effective dose estimate. Uncertainty components in this study include the statistical and other errors from Monte Carlo simulations, uncertainties in the CT settings and positions of patients in the CT gantry, calibration errors from pencil ionization chambers, the variations in the organ

  19. The biological effects of low doses of radiation: medical, biological and ecological aspects

    International Nuclear Information System (INIS)

    Gun-Aajav, T.; Ajnai, L.; Manlaijav, G.

    2007-01-01

    Full text: The results of recent studies show that low doses of radiation make many different structural and functional changes in a cell and these changes are preserved for a long time. This phenomenon is called as effects of low doses of radiation in biophysics, radiation biology and radiation medicine. The structural and functional changes depend on doses and this dependence has non-linear and bimodal behaviour. More detail, the radiation effect goes up and reaches its maximum (Low doses maximum) in low doses region, then it goes down and takes its stationary means (there is a negative effect in a few cases). With increases in doses and with further increases it goes up. It is established that low dose's maximum depends on physiological state of a biological object, radiation quality and dose rate. During the experiments another special date was established. This specialty is that many different physical and chemical factors are mutually connected and have synergetic behaviour. At present, researches are concentrating their attention on the following three directions: 1. Direct and indirect interaction of radiation's low doses: 2. Interpretation of its molecular mechanism, regulation of the positive effects and elaboration of ways o removing negative effects: 3. Application of the objective research results into practice. In conclusion the authors mention the current concepts on interpretation of low doses effect mechanism, forward their own views and emphasize the importance of considering low doses effects in researches of environmental radiation pollution, radiation medicine and radiation protection. (author)

  20. Dose estimates in Japan following the Chernobyl reactor accident

    International Nuclear Information System (INIS)

    Togawa, Orihiko; Homma, Toshimitsu; Iijima, Toshinori; Midorikawa, Yuji.

    1988-02-01

    Estimates have been made of the maximum individual doses and the collective doses in Japan following the Chernobyl reactor accident. Based on the measured data of ground deposition and radionuclide concentrations in air, raw milk, milk on sale and leafy vegetables, the doses from some significant radionuclides were calculated for 5 typical exposure pathways; cloudshine, groundshine, inhalation, ingestion of milk and leafy vegetables. The maximum effective dose equivalents for hypothetical individuals were calculated to be 1.8 mrem for adults, 3.7 mrem for children and 6.0 mrem for infants. The collective effective dose equivalent in Japan was estimated to be 5.8 x 10 4 man · rem; 0.50 mrem of the average dose per capita. (author)

  1. Dose estimation from residual and fallout radioactivity, 1

    International Nuclear Information System (INIS)

    Takeshita, Kenji

    1975-01-01

    External dose rates and cumulative doses for early entrants from areal surveys and simulated experiments are reviewed. The average cumulative doses to infinity at the hypocenters were 101 rad in Hiroshima and 32 rad in Nagasaki, with a variation of about 60 percent. Radioactive fallout areas nearly matched the ''black rain'' areas in Nagasaki and in Hiroshima. Radioactivity in the fallout areas was affected by radioactive decay and by the leaching and dissipation by rains. Considering these factors, the cumulative dose to infinity in the fallout area of Hiroshima was estimated to be 13 rad, excluding internal radiation doses from inhaled and ingested radionuclides. Attempts to estimate radiation dose from internally deposited radionuclides are also described. (auth.)

  2. Biological dosimetry: chromosomal aberration analysis for dose assessment

    International Nuclear Information System (INIS)

    1986-01-01

    In view of the growing importance of chromosomal aberration analysis as a biological dosimeter, the present report provides a concise summary of the scientific background of the subject and a comprehensive source of information at the technical level. After a review of the basic principles of radiation dosimetry and radiation biology basic information on the biology of lymphocytes, the structure of chromosomes and the classification of chromosomal aberrations are presented. This is followed by a presentation of techniques for collecting blood, storing, transporting, culturing, making chromosomal preparations and scaring of aberrations. The physical and statistical parameters involved in dose assessment are discussed and examples of actual dose assessments taken from the scientific literature are given

  3. Sample Based Unit Liter Dose Estimates

    International Nuclear Information System (INIS)

    JENSEN, L.

    2000-01-01

    The Tank Waste Characterization Program has taken many core samples, grab samples, and auger samples from the single-shell and double-shell tanks during the past 10 years. Consequently, the amount of sample data available has increased, both in terms of quantity of sample results and the number of tanks characterized. More and better data is available than when the current radiological and toxicological source terms used in the Basis for Interim Operation (BIO) (FDH 1999a) and the Final Safety Analysis Report (FSAR) (FDH 1999b) were developed. The Nuclear Safety and Licensing (NS and L) organization wants to use the new data to upgrade the radiological and toxicological source terms used in the BIO and FSAR. The NS and L organization requested assistance in producing a statistically based process for developing the source terms. This report describes the statistical techniques used and the assumptions made to support the development of a new radiological source term for liquid and solid wastes stored in single-shell and double-shell tanks. The results given in this report are a revision to similar results given in an earlier version of the document (Jensen and Wilmarth 1999). The main difference between the results in this document and the earlier version is that the dose conversion factors (DCF) for converting μCi/g or μCi/L to Sv/L (sieverts per liter) have changed. There are now two DCFs, one based on ICRP-68 and one based on ICW-71 (Brevick 2000)

  4. beta. and. gamma. -comparative dose estimates on Enewetak Atoll

    Energy Technology Data Exchange (ETDEWEB)

    Crase, K.W.; Gudiksen, P.H.; Robison, W.L. (California Univ., Livermore (USA). Lawrence Livermore National Lab.)

    1982-05-01

    Enewetak Atoll in the Pacific is used for atmospheric testing of U.S. nuclear weapons. Beta dose and ..gamma..-ray exposure measurements were made on two islands of the Enewetak Atoll during July-August 1976 to determine the ..beta.. and low energy ..gamma..-contribution to the total external radiation doses to the returning Marshallese. Measurements were made at numerous locations with thermoluminescent dosimeters (TLD), pressurized ionization chambers, portable NaI detectors, and thin-window pancake GM probes. Results of the TLD measurements with and without a ..beta..-attenuator indicate that approx. 29% of the total dose rate at 1 m in air is due to ..beta..- or low energy ..gamma..-contribution. The contribution at any particular site, however, is reduced by vegetation. Integral 30-yr external shallow dose estimates for future inhabitants were made and compared with external dose estimates of a previous large scale radiological survey. Integral 30-yr shallow external dose estimates are 25-50% higher than whole body estimates. Due to the low penetrating ability of the ..beta..'s or low energy ..gamma..'s, however, several remedial actions can be taken to reduce the shallow dose contribution to the total external dose.

  5. beta- and gamma-Comparative dose estimates on Eniwetok Atoll

    Energy Technology Data Exchange (ETDEWEB)

    Crase, K.W.; Gudiksen, P.H.; Robison, W.L.

    1982-05-01

    Eniwetok Atoll is one of the Pacific atolls used for atmospheric testing of U.S. nuclear weapons. Beta dose and gamma-ray exposure measurements were made on two islands of the Eniwetok Atoll during July-August 1976 to determine the beta and low energy gamma-contribution to the total external radiation doses to the returning Marshallese. Measurements were made at numerous locations with thermoluminescent dosimeters (TLD), pressurized ionization chambers, portable NaI detectors, and thin-window pancake GM probes. Results of the TLD measurements with and without a beta-attenuator indicate that approx. 29% of the total dose rate at 1 m in air is due to beta- or low energy gamma-contribution. The contribution at any particular site, however, is somewhat dependent on ground cover, since a minimal amount of vegetation will reduce it significantly from that over bare soil, but thick stands of vegetation have little effect on any further reductions. Integral 30-yr external shallow dose estimates for future inhabitants were made and compared with external dose estimates of a previous large scale radiological survey (En73). Integral 30-yr shallow external dose estimates are 25-50% higher than whole body estimates. Due to the low penetrating ability of the beta's or low energy gamma's, however, several remedial actions can be taken to reduce the shallow dose contribution to the total external dose.

  6. The points for attention in retrospective personal dose estimate

    International Nuclear Information System (INIS)

    Wang Wuan

    1994-01-01

    The points which the attention should be paid to in the retrospective personal dose estimate are discussed. They are representative of the dose data, truthfulness of the operation history, accuracy of the man-hour statistics, and rationality of the parameters selection

  7. Modified Exponential (MOE) Models: statistical Models for Risk Estimation of Low dose Rate Radiation

    International Nuclear Information System (INIS)

    Ogata, H.; Furukawa, C.; Kawakami, Y.; Magae, J.

    2004-01-01

    Simultaneous inclusion of dose and dose-rate is required to evaluate the risk of long term irradiation at low dose-rates, since biological responses to radiation are complex processes that depend both on irradiation time and total dose. Consequently, it is necessary to consider a model including cumulative dose,dose-rate and irradiation time to estimate quantitative dose-response relationship on the biological response to radiation. In this study, we measured micronucleus formation and (3H) thymidine uptake in U2OS, human osteosarcoma cell line, as indicators of biological response to gamma radiation. Cells were exposed to gamma ray in irradiation room bearing 50,000 Ci 60Co. After irradiation, they were cultured for 24h in the presence of cytochalasin B to block cytokinesis, and cytoplasm and nucleus were stained with DAPI and propidium iodide. The number of binuclear cells bearing a micronucleus was counted under a florescence microscope. For proliferation inhibition, cells were cultured for 48 h after the irradiation and (3h) thymidine was pulsed for 4h before harvesting. We statistically analyzed the data for quantitative evaluation of radiation risk at low dose/dose-rate. (Author)

  8. Interpretation of proton relative biological effectiveness using lesion induction, lesion repair, and cellular dose distribution

    International Nuclear Information System (INIS)

    Paganetti, H.

    2005-01-01

    Phenomenological biophysical models have been successfully used to estimate the relative biological effectiveness (RBE) of ions. The predictive power of these models is limited because they require measured dose-response data that are not necessarily available for all clinically relevant end points. Furthermore, input parameters often lack mechanistic interpretation. In order to link RBE to more fundamental biological parameters we combine the concepts of two well-established biophysical models, i.e., the phenomenological 'track structure' model and the more mechanistic 'lethal lesion/potentially lethal lesion' (LPL) model. We parametrize a relation between RBE, dose homogeneity in the cell nucleus and induction rates for different lesion types. The macroscopic dose-response relationship is described in the LPL model and the microscopic, subcellular, relationship is determined by the local dose deposition pattern. The formalism provides a framework for a mechanistic interpretation of RBE values

  9. Expedited Radiation Biodosimetry by Automated Dicentric Chromosome Identification (ADCI) and Dose Estimation.

    Science.gov (United States)

    Shirley, Ben; Li, Yanxin; Knoll, Joan H M; Rogan, Peter K

    2017-09-04

    Biological radiation dose can be estimated from dicentric chromosome frequencies in metaphase cells. Performing these cytogenetic dicentric chromosome assays is traditionally a manual, labor-intensive process not well suited to handle the volume of samples which may require examination in the wake of a mass casualty event. Automated Dicentric Chromosome Identifier and Dose Estimator (ADCI) software automates this process by examining sets of metaphase images using machine learning-based image processing techniques. The software selects appropriate images for analysis by removing unsuitable images, classifies each object as either a centromere-containing chromosome or non-chromosome, further distinguishes chromosomes as monocentric chromosomes (MCs) or dicentric chromosomes (DCs), determines DC frequency within a sample, and estimates biological radiation dose by comparing sample DC frequency with calibration curves computed using calibration samples. This protocol describes the usage of ADCI software. Typically, both calibration (known dose) and test (unknown dose) sets of metaphase images are imported to perform accurate dose estimation. Optimal images for analysis can be found automatically using preset image filters or can also be filtered through manual inspection. The software processes images within each sample and DC frequencies are computed at different levels of stringency for calling DCs, using a machine learning approach. Linear-quadratic calibration curves are generated based on DC frequencies in calibration samples exposed to known physical doses. Doses of test samples exposed to uncertain radiation levels are estimated from their DC frequencies using these calibration curves. Reports can be generated upon request and provide summary of results of one or more samples, of one or more calibration curves, or of dose estimation.

  10. Assay of micronuclei in peripheral blood lymphocytes as a biological indicator of radiation dose

    International Nuclear Information System (INIS)

    Sreedevi, B.; Rao, B.S.

    1994-01-01

    Chromosomal aberration analysis (CA) has regularly been used as a biological dosemeter to evaluate suspected overexposures to ionising radiations. Recently, the micronucleus (MN) assay has been suggested as an alternative method. An attempt has been made to explore the dose response parameters of MN assay in cytokinesis-blocked lymphocytes. Whole blood was irradiated with 60 Co gamma rays or 250 kV p X rays. A dose-dependent increase in micronuclei yield was observed. The dose response could be best described by a linear-quadratic relationship for both gamma rays and X rays. The α and β coefficients were found to be 1.9 x 10 -2 Gy -1 and 5.7 x 10 -2 Gy -2 for gamma rays and 6.3 x 10 -2 Gy -1 and 4.3 x 10 -2 Gy -2 for X rays, respectively. In the low dose region X rays were three times more efficient in inducing micronuclei. The background value derived for 25 samples from healthy individuals ranged from 6-18 micronuclei per 1000 cells, with a mean value of 12 ± 4 x 10 -3 . Biological dose estimates for individuals exposed in the range 0.1-1 Gy made by MN and CA methods yielded similar results for doses ≥ 0.5 Gy. Due to the uncertainties in the background incidence of MN, at present this technique cannot provide reliable estimates at low doses. (author)

  11. Estimation of inhalation doses from airborne releases using gross monitors

    International Nuclear Information System (INIS)

    Goldstein, N.P.

    1978-01-01

    Monitoring programs at most nuclear facilities involve continuous gross measurements supplemented by periodic isotopic analyses of release samples. The isotopic measurements are required to accurately assess the potential dose from the various effluent streams, but in between these measurements, one depends on the gross monitors to provide approximate indications of the dose. The effluent streams release a variety of nuclides, each with its own dose factor. This means that the relationship between the counting rate in a gross monitor and the potential dose of the effluent being monitored will depend on the isotopic composition of this release. If this composition changes, then the dose indicated by the gross monitor (calibrated for the original group of isotopes) may be significantly in error. The problem of indicating inhalation doses from gross monitoring of airborne releases is considered. In order for this type of monitor to accurately indicate dose, regardless of the isotopic makeup of a release, the analysis shows that its response to each isotope should be proportional to the dose factor of that isotope. These ideas are applied to the monitoring of air particulates using gross beta and gross gamma monitors. The study shows that the former more closely satisfies this condition and as a result, satisfactorily indicates the actual dose from reactor effluents, as determined from detailed isotopic data published in the literature. On the other hand, the gross gamma monitor, with its poorer fit to the condition, provided less than satisfactory accuracy in its dose estimates. In addition, a variety of other mathematical response functions were considered but their dose estimation capabilities were not much better than the straight beta response. The study shows that reasonably accurate dose estimates can be made using properly selected gross monitors, but that significant errors can result with improper ones. (author)

  12. Simplification of an MCNP model designed for dose rate estimation

    Science.gov (United States)

    Laptev, Alexander; Perry, Robert

    2017-09-01

    A study was made to investigate the methods of building a simplified MCNP model for radiological dose estimation. The research was done using an example of a complicated glovebox with extra shielding. The paper presents several different calculations for neutron and photon dose evaluations where glovebox elements were consecutively excluded from the MCNP model. The analysis indicated that to obtain a fast and reasonable estimation of dose, the model should be realistic in details that are close to the tally. Other details may be omitted.

  13. Simplification of an MCNP model designed for dose rate estimation

    Directory of Open Access Journals (Sweden)

    Laptev Alexander

    2017-01-01

    Full Text Available A study was made to investigate the methods of building a simplified MCNP model for radiological dose estimation. The research was done using an example of a complicated glovebox with extra shielding. The paper presents several different calculations for neutron and photon dose evaluations where glovebox elements were consecutively excluded from the MCNP model. The analysis indicated that to obtain a fast and reasonable estimation of dose, the model should be realistic in details that are close to the tally. Other details may be omitted.

  14. Collective effective dose equivalent, population doses and risk estimates from occupational exposures in Japan

    International Nuclear Information System (INIS)

    Maruyama, Takashi; Nishizawa, Kanae; Kumamoto, Yoshikazu; Iwai, Kazuo; Mase, Naomichi.

    1993-01-01

    Collective dose equivalent and population dose from occupational exposures in Japan, 1988 were estimated on the basis of a nationwide survey. The survey was conducted on annual collective dose equivalents by sex, age group and type of radiation work for about 0.21 million workers except for the workers in nuclear power stations. The data on the workers in nuclear power stations were obtained from the official report of the Japan Nuclear Safety Commission. The total number of workers including nuclear power stations was estimated to be about 0.26 million. Radiation works were subdivided as follows: medical works including dental; non-atomic energy industry; research and education; atomic energy industry and nuclear power station. For the determination of effective dose equivalent and population dose, organ or tissue doses were measured with a phantom experiment. The resultant doses were compared with the doses previously calculated using a chord length technique and with data from ICRP publications. The annual collective effective dose equivalent were estimated to be about 21.94 person·Sv for medical workers, 7.73 person·Sv for industrial workers, 0.75 person·Sv for research and educational workers, 2.48 person·Sv for atomic energy industry and 84.4 person ·Sv for workers in nuclear power station. The population doses were calculated to be about 1.07 Sv for genetically significant dose, 0.89 Sv for leukemia significant dose and 0.42 Sv for malignant significant dose. The population risks were estimated using these population doses. (author)

  15. Transmission dose estimation algorithm for in vivo dosimetry

    International Nuclear Information System (INIS)

    Yun, Hyong Geun; Shin, Kyo Chul; Huh, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan; Lee, Hyoung Koo

    2002-01-01

    Measurement of transmission dose is useful for in vivo dosimetry of QA purpose. The objective of this study is to develope an algorithm for estimation of tumor dose using measured transmission dose for open radiation field. Transmission dose was measured with various field size (FS), phantom thickness (Tp), and phantom chamber distance (PCD) with an acrylic phantom for 6 MV and 10 MV X-ray. Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 cc Farmer type ion chamber. Using measured data and regression analysis, an algorithm was developed for estimation of expected reading of transmission dose. Accuracy of the algorithm was tested with flat solid phantom with various settings. The algorithm consisted of quadratic function of log(A/P) (where A/P is area-perimeter ratio) and tertiary function of PCD. The algorithm could estimate dose with very high accuracy for open square field, with errors within ±0.5%. For elongated radiation field, the errors were limited to ±1.0%. The developed algorithm can accurately estimate the transmission dose in open radiation fields with various treatment settings

  16. Transmission dose estimation algorithm for in vivo dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyong Geun; Shin, Kyo Chul [Dankook Univ., Seoul (Korea, Republic of); Huh, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan [Seoul National Univ., Seoul (Korea, Republic of); Lee, Hyoung Koo [Catholic Univ., Seoul (Korea, Republic of)

    2002-07-01

    Measurement of transmission dose is useful for in vivo dosimetry of QA purpose. The objective of this study is to develope an algorithm for estimation of tumor dose using measured transmission dose for open radiation field. Transmission dose was measured with various field size (FS), phantom thickness (Tp), and phantom chamber distance (PCD) with an acrylic phantom for 6 MV and 10 MV X-ray. Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 cc Farmer type ion chamber. Using measured data and regression analysis, an algorithm was developed for estimation of expected reading of transmission dose. Accuracy of the algorithm was tested with flat solid phantom with various settings. The algorithm consisted of quadratic function of log(A/P) (where A/P is area-perimeter ratio) and tertiary function of PCD. The algorithm could estimate dose with very high accuracy for open square field, with errors within {+-}0.5%. For elongated radiation field, the errors were limited to {+-}1.0%. The developed algorithm can accurately estimate the transmission dose in open radiation fields with various treatment settings.

  17. Considerations on absorbed dose estimates based on different β-dose point kernels in internal dosimetry

    International Nuclear Information System (INIS)

    Uchida, Isao; Yamada, Yasuhiko; Yamashita, Takashi; Okigaki, Shigeyasu; Oyamada, Hiyoshimaru; Ito, Akira.

    1995-01-01

    In radiotherapy with radiopharmaceuticals, more accurate estimates of the three-dimensional (3-D) distribution of absorbed dose is important in specifying the activity to be administered to patients to deliver a prescribed absorbed dose to target volumes without exceeding the toxicity limit of normal tissues in the body. A calculation algorithm for the purpose has already been developed by the authors. An accurate 3-D distribution of absorbed dose based on the algorithm is given by convolution of the 3-D dose matrix for a unit cubic voxel containing unit cumulated activity, which is obtained by transforming a dose point kernel into a 3-D cubic dose matrix, with the 3-D cumulated activity distribution given by the same voxel size. However, beta-dose point kernels affecting accurate estimates of the 3-D absorbed dose distribution have been different among the investigators. The purpose of this study is to elucidate how different beta-dose point kernels in water influence on the estimates of the absorbed dose distribution due to the dose point kernel convolution method by the authors. Computer simulations were performed using the MIRD thyroid and lung phantoms under assumption of uniform activity distribution of 32 P. Using beta-dose point kernels derived from Monte Carlo simulations (EGS-4 or ACCEPT computer code), the differences among their point kernels gave little differences for the mean and maximum absorbed dose estimates for the MIRD phantoms used. In the estimates of mean and maximum absorbed doses calculated using different cubic voxel sizes (4x4x4 mm and 8x8x8 mm) for the MIRD thyroid phantom, the maximum absorbed doses for the 4x4x4 mm-voxel were estimated approximately 7% greater than the cases of the 8x8x8 mm-voxel. They were found in every beta-dose point kernel used in this study. On the other hand, the percentage difference of the mean absorbed doses in the both voxel sizes for each beta-dose point kernel was less than approximately 0.6%. (author)

  18. System for estimation of mean active bone marrow dose

    International Nuclear Information System (INIS)

    Ellis, R.E.; Healy, M.J.R.; Shleien, B.; Tucker, T.

    1975-09-01

    The exposure measurements, model and computer program for estimation of mean active bone marrow doses formerly employed in the 1962 British Survey of x-ray doses and proposed for application to x-ray exposure information obtained in the U.S. Public Health Service's X-Ray Exposure Studies (1966 and 1973) are described and evaluated. The method described is feasible for use to determine the mean active bone marrow doses to adults for examinations having a skin to source distance of 80 cm or less. For a greater SSD, as for example in chest x rays, a small correction in the calculation dose can be made

  19. Estimation of dose and exposure at sentinel node study

    International Nuclear Information System (INIS)

    Skopljak, A.; Kucukalic-Selimovic, E.; Beslic, N.; Begic, A.; Begovic-Hadzimuratovic, S.; Drazeta, Z.; Beganovic, A.

    2005-01-01

    The purpose of this study was to estimate the dose end exposure in staff involved in sentinel node procedure for breast cancer patients. The Institute of Nuclear Medicine in Sarajevo uses a protocol for lymphoscintigraphy of the sentinel node whereby 13 MBq of 9 9mT c nanocoll are used. In this study, we measured radiation doses and exposure of a nuclear medicine physician and a technologist, as well as a surgeon performing sentinel node lymphoscintigraphy and biopsy. Dose and exposure were calculated using the equation in which we have gamma constant for 9 9mT c. Calculations were made for different times of exposure and distance. In Table 1. we estimated the dose and exposure during sentinel node study. Radiation levels were very low and the most exposed hospital staff performing sentinel node study were nuclear medicine physicians. The doses on the hands of surgeons were negligible 8 hours after exposure.(author)

  20. Biological effect of Pulsed Dose Rate brachytherapy with stepping sources

    International Nuclear Information System (INIS)

    Limbergen, Erik F.M. van; Fowler, Jack F.

    1996-01-01

    Purpose: To explore the possible increase of radiation effect in tissues irradiated by pulsed brachytherapy (PDR), for local tissue dose-rates between those 'averaged over the whole pulse' and the instantaneous high dose rates close to the dwell positions. An earlier publication (Fowler and Mount 1992) had shown that, for dose rates (averaged for the duration of the pulse) up to 3 Gy/h, little change of isoeffect doses from continuous low dose rate (CLDR) are expected, unless larger doses per fraction than 1 Gy are used, and especially if components of very rapid repair are present with half-times of less than about 0.5 hours. However, local and transient dose rates close to stepping sources can be up to several Gy per minute. Methods: Calculations were done assuming the linear quadratic formula for radiation damage, in which only the dose-squared term is subject to repair, at a constant exponential rate. The formula developed by Dale for fractionated low-dose-rate radiotherapy was used. A constant overall time of 140 hours and constant total dose of 70 Gy were assumed throughout, the continuous low dose-rate of 0.5 Gy/h (CLDR) providing the unitary standard effects for each PDR condition. Effects of dose-rates ranging from 4 Gy/h to 120 Gy/h (HDR at 2 Gy/min) were studied, and T (1(2)) from 4 minutes to 1.5 hours. Results: Curves are presented relating the ratio of increased biological effect (proportional to log cell kill) calculated for PDR relative to CLDR. Ratios as high as 1.5 can be found for large doses per pulse (> 1 Gy) at high instantaneous dose-rates if T (1(2)) in tissues is as short as a few minutes. The major influences on effect are dose per pulse, half-time of repair in the tissue, and - when T (1(2)) is short - the instantaneous dose-rate. Maximum ratios of PDR/CLDR effect occur when the dose-rate is such that pulse duration is approximately equal to T (1(2)) of repair. Results are presented for late-responding tissues, the differences from CLDR

  1. A Web-Based System for Bayesian Benchmark Dose Estimation.

    Science.gov (United States)

    Shao, Kan; Shapiro, Andrew J

    2018-01-11

    Benchmark dose (BMD) modeling is an important step in human health risk assessment and is used as the default approach to identify the point of departure for risk assessment. A probabilistic framework for dose-response assessment has been proposed and advocated by various institutions and organizations; therefore, a reliable tool is needed to provide distributional estimates for BMD and other important quantities in dose-response assessment. We developed an online system for Bayesian BMD (BBMD) estimation and compared results from this software with U.S. Environmental Protection Agency's (EPA's) Benchmark Dose Software (BMDS). The system is built on a Bayesian framework featuring the application of Markov chain Monte Carlo (MCMC) sampling for model parameter estimation and BMD calculation, which makes the BBMD system fundamentally different from the currently prevailing BMD software packages. In addition to estimating the traditional BMDs for dichotomous and continuous data, the developed system is also capable of computing model-averaged BMD estimates. A total of 518 dichotomous and 108 continuous data sets extracted from the U.S. EPA's Integrated Risk Information System (IRIS) database (and similar databases) were used as testing data to compare the estimates from the BBMD and BMDS programs. The results suggest that the BBMD system may outperform the BMDS program in a number of aspects, including fewer failed BMD and BMDL calculations and estimates. The BBMD system is a useful alternative tool for estimating BMD with additional functionalities for BMD analysis based on most recent research. Most importantly, the BBMD has the potential to incorporate prior information to make dose-response modeling more reliable and can provide distributional estimates for important quantities in dose-response assessment, which greatly facilitates the current trend for probabilistic risk assessment. https://doi.org/10.1289/EHP1289.

  2. Fast skin dose estimation system for interventional radiology.

    Science.gov (United States)

    Takata, Takeshi; Kotoku, Jun'ichi; Maejima, Hideyuki; Kumagai, Shinobu; Arai, Norikazu; Kobayashi, Takenori; Shiraishi, Kenshiro; Yamamoto, Masayoshi; Kondo, Hiroshi; Furui, Shigeru

    2018-03-01

    To minimise the radiation dermatitis related to interventional radiology (IR), rapid and accurate dose estimation has been sought for all procedures. We propose a technique for estimating the patient skin dose rapidly and accurately using Monte Carlo (MC) simulation with a graphical processing unit (GPU, GTX 1080; Nvidia Corp.). The skin dose distribution is simulated based on an individual patient's computed tomography (CT) dataset for fluoroscopic conditions after the CT dataset has been segmented into air, water and bone based on pixel values. The skin is assumed to be one layer at the outer surface of the body. Fluoroscopic conditions are obtained from a log file of a fluoroscopic examination. Estimating the absorbed skin dose distribution requires calibration of the dose simulated by our system. For this purpose, a linear function was used to approximate the relation between the simulated dose and the measured dose using radiophotoluminescence (RPL) glass dosimeters in a water-equivalent phantom. Differences of maximum skin dose between our system and the Particle and Heavy Ion Transport code System (PHITS) were as high as 6.1%. The relative statistical error (2 σ) for the simulated dose obtained using our system was ≤3.5%. Using a GPU, the simulation on the chest CT dataset aiming at the heart was within 3.49 s on average: the GPU is 122 times faster than a CPU (Core i7-7700K; Intel Corp.). Our system (using the GPU, the log file, and the CT dataset) estimated the skin dose more rapidly and more accurately than conventional methods.

  3. Chest X ray effective doses estimation in computed radiography

    International Nuclear Information System (INIS)

    Abdalla, Esra Abdalrhman Dfaalla

    2013-06-01

    Conventional chest radiography is technically difficult because of wide in tissue attenuations in the chest and limitations of screen-film systems. Computed radiography (CR) offers a different approach utilizing a photostimulable phosphor. photostimulable phosphors overcome some image quality limitations of chest imaging. The objective of this study was to estimate the effective dose in computed radiography at three hospitals in Khartoum. This study has been conducted in radiography departments in three centres Advanced Diagnostic Center, Nilain Diagnostic Center, Modern Diagnostic Center. The entrance surface dose (ESD) measurement was conducted for quality control of x-ray machines and survey of operators experimental techniques. The ESDs were measured by UNFORS dosimeter and mathematical equations to estimate patient doses during chest X rays. A total of 120 patients were examined in three centres, among them 62 were males and 58 were females. The overall mean and range of patient dosed was 0.073±0.037 (0.014-0.16) mGy per procedure while the effective dose was 3.4±01.7 (0.6-7.0) mSv per procedure. This study compared radiation doses to patients radiographic examinations of chest using computed radiology. The radiation dose was measured in three centres in Khartoum- Sudan. The results of the measured effective dose showed that the dose in chest radiography was lower in computed radiography compared to previous studies.(Author)

  4. Estimates of bias and uncertainty in recorded external dose

    International Nuclear Information System (INIS)

    Fix, J.J.; Gilbert, E.S.; Baumgartner, W.V.

    1994-10-01

    A study is underway to develop an approach to quantify bias and uncertainty in recorded dose estimates for workers at the Hanford Site based on personnel dosimeter results. This paper focuses on selected experimental studies conducted to better define response characteristics of Hanford dosimeters. The study is more extensive than the experimental studies presented in this paper and includes detailed consideration and evaluation of other sources of bias and uncertainty. Hanford worker dose estimates are used in epidemiologic studies of nuclear workers. A major objective of these studies is to provide a direct assessment of the carcinogenic risk of exposure to ionizing radiation at low doses and dose rates. Considerations of bias and uncertainty in the recorded dose estimates are important in the conduct of this work. The method developed for use with Hanford workers can be considered an elaboration of the approach used to quantify bias and uncertainty in estimated doses for personnel exposed to radiation as a result of atmospheric testing of nuclear weapons between 1945 and 1962. This approach was first developed by a National Research Council (NRC) committee examining uncertainty in recorded film badge doses during atmospheric tests (NRC 1989). It involved quantifying both bias and uncertainty from three sources (i.e., laboratory, radiological, and environmental) and then combining them to obtain an overall assessment. Sources of uncertainty have been evaluated for each of three specific Hanford dosimetry systems (i.e., the Hanford two-element film dosimeter, 1944-1956; the Hanford multi-element film dosimeter, 1957-1971; and the Hanford multi-element TLD, 1972-1993) used to estimate personnel dose throughout the history of Hanford operations. Laboratory, radiological, and environmental sources of bias and uncertainty have been estimated based on historical documentation and, for angular response, on selected laboratory measurements

  5. Cardiac dose estimates from Danish and Swedish breast cancer radiotherapy during 1977-2001

    International Nuclear Information System (INIS)

    Taylor, Carolyn W.; Bronnum, Dorthe; Darby, Sarah C.; Gagliardi, Giovanna; Hall, Per; Jensen, Maj-Britt; McGale, Paul; Nisbet, Andrew; Ewertz, Marianne

    2011-01-01

    Background and purpose: To estimate target and cardiac doses from breast cancer radiotherapy in Denmark and in the Stockholm and Umea areas of Sweden during 1977-2001. Methods: Representative samples of irradiated women were identified from the databases of the Danish Breast Cancer Cooperative Group and the Swedish Nationwide Cancer Registry. Virtual simulation, computed tomography planning and manual planning were used to reconstruct radiotherapy regimens on a typical woman. Estimates of target dose and various measures of cardiac dose were derived from individual radiotherapy charts. Results: Doses were estimated in 681 Danish and 130 Swedish women. Mean heart dose for individual women varied from 1.6 to 14.9 Gray in Denmark and from 1.2 to 22.1 Gray in Sweden. In Denmark, mean target doses averaged across women increased from 40.6 to 53.8 Gray during 1977-2001 but, despite this, mean heart dose averaged across women remained around 6 Gy for left-sided and 2-3 Gray for right-sided radiotherapy. In Sweden mean target dose averaged across women increased from 38.7 to 46.6 Gray during 1977-2001, while mean heart dose averaged across women decreased from 12.0 to 7.3 Gray for left-sided and from 3.6 to 3.2 Gray for right-sided radiotherapy. Temporal trends for mean biologically effective dose [BED] to the heart, mean dose to the left anterior descending coronary artery, the right coronary artery and the circumflex coronary artery were broadly similar. Conclusions: Cardiac doses in Denmark were low relative to those in Sweden. In both countries, target dose increased during 1977-2001. Despite this, cardiac doses remained constant in Denmark and decreased in Sweden.

  6. Methodology for Estimating Ingestion Dose for Emergency Response at SRS

    CERN Document Server

    Simpkins, A A

    2002-01-01

    At the Savannah River Site (SRS), emergency response models estimate dose for inhalation and ground shine pathways. A methodology has been developed to incorporate ingestion doses into the emergency response models. The methodology follows a two-phase approach. The first phase estimates site-specific derived response levels (DRLs) which can be compared with predicted ground-level concentrations to determine if intervention is needed to protect the public. This phase uses accepted methods with little deviation from recommended guidance. The second phase uses site-specific data to estimate a 'best estimate' dose to offsite individuals from ingestion of foodstuffs. While this method deviates from recommended guidance, it is technically defensibly and more realistic. As guidance is updated, these methods also will need to be updated.

  7. Dose-response curve estimation: a semiparametric mixture approach.

    Science.gov (United States)

    Yuan, Ying; Yin, Guosheng

    2011-12-01

    In the estimation of a dose-response curve, parametric models are straightforward and efficient but subject to model misspecifications; nonparametric methods are robust but less efficient. As a compromise, we propose a semiparametric approach that combines the advantages of parametric and nonparametric curve estimates. In a mixture form, our estimator takes a weighted average of the parametric and nonparametric curve estimates, in which a higher weight is assigned to the estimate with a better model fit. When the parametric model assumption holds, the semiparametric curve estimate converges to the parametric estimate and thus achieves high efficiency; when the parametric model is misspecified, the semiparametric estimate converges to the nonparametric estimate and remains consistent. We also consider an adaptive weighting scheme to allow the weight to vary according to the local fit of the models. We conduct extensive simulation studies to investigate the performance of the proposed methods and illustrate them with two real examples. © 2011, The International Biometric Society.

  8. Dose Estimation from Daily and Weekly Dosimetry Data

    Energy Technology Data Exchange (ETDEWEB)

    Ostrouchov, G.

    2001-11-16

    Statistical analyses of data from epidemiologic studies of workers exposed to radiation have been based on recorded annual radiation doses (yearly dose of record). It is usually assumed that the dose values are known exactly, although it is generally recognized that the data contain uncertainty due to measurement error and bias. In our previous work with weekly data, a probability distribution was used to describe an individual's dose during a specific period of time and statistical methods were developed for estimating it from weekly film dosimetry data. This study showed that the yearly dose of record systematically underestimates doses for Oak Ridge National Laboratory (ORNL) workers. This could result in biased estimates of dose-response coefficients and their standard errors. The results of this evaluation raise serious questions about the suitability of the yearly dose of record for direct use in low-dose studies of nuclear industry workers. Here, we extend our previous work to use full information in Pocket meter data and develop the Data Synthesis for Individual Dose Estimation (DSIDE) methodology. Although the DSIDE methodology in this study is developed in the context of daily and weekly data to produce a cumulative yearly dose estimate, in principle it is completely general and can be extended to other time period and measurement combinations. The new methodology takes into account the ''measurement error'' that is produced by the film and pocket-meter dosimetry systems, the biases introduced by policies that lead to recording left-censored doses as zeros, and other measurement and recording practices. The DSIDE method is applied to a sample of dose histories obtained from hard copy dosimetry records at ORNL for the years 1945 to 1955. First, the rigorous addition of daily pocket-meter information shows that the negative bias is generally more severe than was reported in our work based on weekly film data only, however, the

  9. Dose Estimation from Daily and Weekly Dosimetry Data

    International Nuclear Information System (INIS)

    Ostrouchov, G.

    2001-01-01

    Statistical analyses of data from epidemiologic studies of workers exposed to radiation have been based on recorded annual radiation doses (yearly dose of record). It is usually assumed that the dose values are known exactly, although it is generally recognized that the data contain uncertainty due to measurement error and bias. In our previous work with weekly data, a probability distribution was used to describe an individual's dose during a specific period of time and statistical methods were developed for estimating it from weekly film dosimetry data. This study showed that the yearly dose of record systematically underestimates doses for Oak Ridge National Laboratory (ORNL) workers. This could result in biased estimates of dose-response coefficients and their standard errors. The results of this evaluation raise serious questions about the suitability of the yearly dose of record for direct use in low-dose studies of nuclear industry workers. Here, we extend our previous work to use full information in Pocket meter data and develop the Data Synthesis for Individual Dose Estimation (DSIDE) methodology. Although the DSIDE methodology in this study is developed in the context of daily and weekly data to produce a cumulative yearly dose estimate, in principle it is completely general and can be extended to other time period and measurement combinations. The new methodology takes into account the ''measurement error'' that is produced by the film and pocket-meter dosimetry systems, the biases introduced by policies that lead to recording left-censored doses as zeros, and other measurement and recording practices. The DSIDE method is applied to a sample of dose histories obtained from hard copy dosimetry records at ORNL for the years 1945 to 1955. First, the rigorous addition of daily pocket-meter information shows that the negative bias is generally more severe than was reported in our work based on weekly film data only, however, the amount of bias also varies

  10. Hygienic estimation of population doses due to stratospheric fallout

    International Nuclear Information System (INIS)

    Marej, A.N.; Knizhnikov, V.A.

    1980-01-01

    The hygienic estimation of external and internal irradiation of the USSR population due to stratospheric global fallouts of fission products after nuclear explosions and weapon tests, is carried out. Numerical values which characterize the dose-effect dependence in the case of radiation of marrow, bone tissue and whole body are presented. Values of mean individual and population doses of irradiation due to global fallouts within 1963-1975, types of injury and the number of mortal cases due to malignant neoplasms are presented. A conclusion is made that the contribution of radiation due to stratospheric fallouts in the mortality due to malignant neoplasms is insignificant. Annual radiation doses, conditioned by global fallouts within the period of 1963-1975 constitute but several percent from the dose of radiation of the natural radiation background. Results of estimation of genetic consequences of irradiation due to atmospheric fallouts are presented

  11. Radiation dose estimates for copper-64 citrate in man

    International Nuclear Information System (INIS)

    Crook, J.E.; Carlton, J.E.; Stabin, M.; Watson, E.

    1985-01-01

    Tumor imaging agents suitable for use with positron emission tomographs are constantly sought. We have performed studies with animal-tumor-bearing models that have demonstrated the rapid uptake of copper-64. The radiation dose estimates for man indicate that the intravenous administration of 7.0 mCi would result in radiation doses to the kidney of 9.8 to 10.5 rads with other organs receiving substantially less radiation. 5 refs., 3 tabs

  12. Radiation dose estimates for copper-64 citrate in man

    International Nuclear Information System (INIS)

    Crook, J.E.; Carlton, J.E.; Stabin, M.; Watson, E.

    1986-01-01

    Tumor imaging agents suitable for use with positron emission tomographs are constantly sought. The authors have performed studies with animal-tumor-bearing models that have demonstrated the rapid uptake of copper-64. The radiation dose estimates for man indicate that the intravenous administration of 7.0 mCi would result in radiation doses to the kidney of 9.8 to 10.5 rads with other organs receiving substantially less radiations. 5 references, 3 tables

  13. Estimation of population doses from stomach mass screening, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, T; Kato, Y; Maruyama, T [National Inst. of Radiological Sciences, Chiba (Japan); Kamata, R; Urahashi, S

    1977-06-01

    The population dose from mass photofluorography of stomach have been estimated on the basis of nation wide radiological survey. The number of photofluorographic examinations was 2.38 million for male and 1.74 million for female, with a total of 4.12 million. The gonad doses were determined with an ionization chamber, using a tissue equivalent phantom. The gonad dose for male was 10.4 mrad per examination and for female was 150 mrad per examination. The active bone marrow doses at 32 points of bone marrow in the whole body were measured with thermoluminescent dosimeter. The mean marrow dose per photofluorographic examination was 450 mrad for male and 390 mrad for female. The child expectancy factor and the leukemia significant factor were calculated based on the Vital Statistics 1975. The genetically significant dose (GSD) and per caput mean marrow dose (CMD) were calculated by the formulae presented from the United Nations Scientific Comittee of Effects of Atomic Radiation (UNSCEAR). The resultant GSD was 0.15 mrad per person per year. The CMD was 16.5 mrad per person per year. The leukemia significant dose (LSD) was determined by adopting a weight factor, that is leukemia significant factor. The resultant LSD was 14.5 mrad per person per year. These population doses were compared with those from diagnostic medical x-ray examinations in 1974.

  14. Time improvement of photoelectric effect calculation for absorbed dose estimation

    International Nuclear Information System (INIS)

    Massa, J M; Wainschenker, R S; Doorn, J H; Caselli, E E

    2007-01-01

    Ionizing radiation therapy is a very useful tool in cancer treatment. It is very important to determine absorbed dose in human tissue to accomplish an effective treatment. A mathematical model based on affected areas is the most suitable tool to estimate the absorbed dose. Lately, Monte Carlo based techniques have become the most reliable, but they are time expensive. Absorbed dose calculating programs using different strategies have to choose between estimation quality and calculating time. This paper describes an optimized method for the photoelectron polar angle calculation in photoelectric effect, which is significant to estimate deposited energy in human tissue. In the case studies, time cost reduction nearly reached 86%, meaning that the time needed to do the calculation is approximately 1/7 th of the non optimized approach. This has been done keeping precision invariant

  15. Estimation of effective dose equivalente from external irradiations

    International Nuclear Information System (INIS)

    Wakabayashi, T.

    1985-07-01

    A methodology for computing effective dose equivalent, derived from the computer code ALGAM: Monte Carlo Estimation of Internal Dose from Gamma-ray Sources in a Phantom Man, developed at Oak Ridge National Laboratory, is presented. The modified code was run for 12 different photon energy levels, from 0,010 Mev to 4.0 Mev, which provides computing the absorved dose, for these energy levels, in each one of the 97 organs of the original code. The code also was run for the principal energy levels used in the calibration of the dosimetric films. The results of the absorved doses per photon obtained for these levels of energy have been transformed in effective dose equivalents. (M.A.C.) [pt

  16. Single point estimation of phenytoin dosing: a reappraisal.

    Science.gov (United States)

    Koup, J R; Gibaldi, M; Godolphin, W

    1981-11-01

    A previously proposed method for estimation of phenytoin dosing requirement using a single serum sample obtained 24 hours after intravenous loading dose (18 mg/Kg) has been re-evaluated. Using more realistic values for the volume of distribution of phenytoin (0.4 to 1.2 L/Kg), simulations indicate that the proposed method will fail to consistently predict dosage requirements. Additional simulations indicate that two samples obtained during the 24 hour interval following the iv loading dose could be used to more reliably predict phenytoin dose requirement. Because of the nonlinear relationship which exists between phenytoin dose administration rate (RO) and the mean steady state serum concentration (CSS), small errors in prediction of the required RO result in much larger errors in CSS.

  17. Maximum likelihood estimation for cytogenetic dose-response curves

    International Nuclear Information System (INIS)

    Frome, E.L.; DuFrain, R.J.

    1986-01-01

    In vitro dose-response curves are used to describe the relation between chromosome aberrations and radiation dose for human lymphocytes. The lymphocytes are exposed to low-LET radiation, and the resulting dicentric chromosome aberrations follow the Poisson distribution. The expected yield depends on both the magnitude and the temporal distribution of the dose. A general dose-response model that describes this relation has been presented by Kellerer and Rossi (1972, Current Topics on Radiation Research Quarterly 8, 85-158; 1978, Radiation Research 75, 471-488) using the theory of dual radiation action. Two special cases of practical interest are split-dose and continuous exposure experiments, and the resulting dose-time-response models are intrinsically nonlinear in the parameters. A general-purpose maximum likelihood estimation procedure is described, and estimation for the nonlinear models is illustrated with numerical examples from both experimental designs. Poisson regression analysis is used for estimation, hypothesis testing, and regression diagnostics. Results are discussed in the context of exposure assessment procedures for both acute and chronic human radiation exposure

  18. Patient absorbed radiation doses estimation related to irradiation anatomy

    International Nuclear Information System (INIS)

    Soares, Flavio Augusto Penna; Soares, Amanda Anastacio; Kahl, Gabrielly Gomes

    2014-01-01

    Developed a direct equation to estimate the absorbed dose to the patient in x-ray examinations, using electric, geometric parameters and filtering combined with data from irradiated anatomy. To determine the absorbed dose for each examination, the entrance skin dose (ESD) is adjusted to the thickness of the patient's specific anatomy. ESD is calculated from the estimated KERMA greatness in the air. Beer-Lambert equations derived from power data mass absorption coefficients obtained from the NIST / USA, were developed for each tissue: bone, muscle, fat and skin. Skin thickness was set at 2 mm and the bone was estimated in the central ray of the site, in the anteroposterior view. Because they are similar in density and attenuation coefficients, muscle and fat are treated as a single tissue. For evaluation of the full equations, we chose three different anatomies: chest, hand and thigh. Although complex in its shape, the equations simplify direct determination of absorbed dose from the characteristics of the equipment and patient. The input data is inserted at a single time and total absorbed dose (mGy) is calculated instantly. The average error, when compared with available data, is less than 5% in any combination of device data and exams. In calculating the dose for an exam and patient, the operator can choose the variables that will deposit less radiation to the patient through the prior analysis of each combination of variables, using the ALARA principle in routine diagnostic radiology sector

  19. Automated dose estimation for lost or damaged dosimeters

    International Nuclear Information System (INIS)

    Thompson, W.L.; Deininger, R.J.

    1988-01-01

    This paper reports that some dosimetry vendors will compute doses for their customers' lost/damaged dosimeters based upon an average of recent dosimeter readings. However, the vendors usually require authorization from the customer for each such occurrence. Therefore, the tedious task of keeping track of the overdue status of each missing dosimeter and constantly notifying the vendor is still present. Also, depending on the monthly variability of a given person's doses, it may be more valid to use the employee's average dose, his/her highest dose over a recent period, an average dose of other employees with similar job duties for that period, or the maximum permissible dose. Thus, the task of estimating doses for lost/damaged dosimeters cannot be delegated to dosimetry vendor. Instead, the radiation safety department must sue the data supplied by the vendor as input for performing estimates. The process is performed automatically at the Medical Center Hospital of Vermont using a personal computer and a relational database

  20. Dose estimation of the THOR BNCT treatment room

    International Nuclear Information System (INIS)

    Hsu, F.Y.; Liu, H.M.; Yu, C.C.; Huang, Y.H.; Tsai, H.N.

    2006-01-01

    BNCT beam of Tsing Hua Open-pool Reactor (THOR) was designed and constructed since 1998. A treatment room for the newly modified THOR BNCT beam was constructed for the next clinical-stage trials in 2004. Dose distribution in a patient (or a phantom) is important as irradiated with the BNCT beam. The dose distributions for different type of radiations such as neutron and photons in the treatment room are strongly becoming the index or reference of success for a BNCT facility. An ART head phantom was placed in front of the THOR BNCT beam port and was irradiated. In each section of the head phantom, numbers of small holes are inside and separated uniformly. Dual detector: TLD-600 and TLD-700 chips were placed inside these holes within the phantom to distinct doses of neutron and photon. Besides, Dual-TLD chips were latticed placed in the horizontal plane of beam central axis, in the treatment room to estimate the spatial dose distribution of neutron and photon. Gold foils were assisted in TLD dose calibrations. Neutron and photon dose distributions in phantom and spatial dose distributions in the THOR BNCT treatment room were both estimated in this work. Testing and improvement in THOR BNCT beam were continuative during these years. Results of this work could be the reference and be helpful for the further clinical trials in nearly future. (author)

  1. Dose estimates in a loss of lead shielding truck accident.

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, Matthew L.; Osborn, Douglas M.; Weiner, Ruth F.; Heames, Terence John (Alion Science & Technology Albuquerque, NM)

    2009-08-01

    The radiological transportation risk & consequence program, RADTRAN, has recently added an updated loss of lead shielding (LOS) model to it most recent version, RADTRAN 6.0. The LOS model was used to determine dose estimates to first-responders during a spent nuclear fuel transportation accident. Results varied according to the following: type of accident scenario, percent of lead slump, distance to shipment, and time spent in the area. This document presents a method of creating dose estimates for first-responders using RADTRAN with potential accident scenarios. This may be of particular interest in the event of high speed accidents or fires involving cask punctures.

  2. Patient-specific dose estimation for pediatric chest CT

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P. [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Physics, Duke University, Durham, North Carolina 27710 (United States); and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Global Applied Science Laboratory, GE Healthcare, Waukesha, Wisconsin 53188 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Division of Pediatric Radiology, Duke University Medical Center, Durham North Carolina 27710 (United States)

    2008-12-15

    Current methods for organ and effective dose estimations in pediatric CT are largely patient generic. Physical phantoms and computer models have only been developed for standard/limited patient sizes at discrete ages (e.g., 0, 1, 5, 10, 15 years old) and do not reflect the variability of patient anatomy and body habitus within the same size/age group. In this investigation, full-body computer models of seven pediatric patients in the same size/protocol group (weight: 11.9-18.2 kg) were created based on the patients' actual multi-detector array CT (MDCT) data. Organs and structures in the scan coverage were individually segmented. Other organs and structures were created by morphing existing adult models (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. Organ and effective dose of these patients from a chest MDCT scan protocol (64 slice LightSpeed VCT scanner, 120 kVp, 70 or 75 mA, 0.4 s gantry rotation period, pitch of 1.375, 20 mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated to simulate radiation transport in the same CT system. The seven patients had normalized effective dose of 3.7-5.3 mSv/100 mAs (coefficient of variation: 10.8%). Normalized lung dose and heart dose were 10.4-12.6 mGy/100 mAs and 11.2-13.3 mGy/100 mAs, respectively. Organ dose variations across the patients were generally small for large organs in the scan coverage (<7%), but large for small organs in the scan coverage (9%-18%) and for partially or indirectly exposed organs (11%-77%). Normalized effective dose correlated weakly with body weight (correlation coefficient: r=-0.80). Normalized lung dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r=-0.99, heart: r=-0.93); these strong correlation relationships can be used to estimate patient-specific organ

  3. Radiation dose in cardiac SPECT/CT: An estimation of SSDE and effective dose

    International Nuclear Information System (INIS)

    Abdollahi, Hamid; Shiri, Isaac; Salimi, Yazdan; Sarebani, Maghsoud; Mehdinia, Reza; Deevband, Mohammad Reza; Mahdavi, Seied Rabi; Sohrabi, Ahmad; Bitarafan-Rajabi, Ahmad

    2016-01-01

    Aims: The dose levels for Computed Tomography (CT) localization and attenuation correction of Single Photon Emission Computed Tomography (SPECT) are limited and reported as Volume Computed Tomography Dose Index (CTDIvol) and Dose-Length Product (DLP). This work presents CT dose estimation from Cardiac SPECT/CT based on new American Association of Physicists in Medicine (AAPM) Size Specific Dose Estimation (SSDE) parameter, effective dose, organ doses and also emission dose from nuclear issue. Material and methods: Myocardial perfusion SPECT/CT for 509 patients was included in the study. SSDE, effective dose and organ dose were calculated using AAPM guideline and Impact-Dose software. Data were analyzed using R and SPSS statistical software. Spearman-Pearson correlation test and linear regression models were used for finding correlations and relationships among parameters. Results: The mean CTDIvol was 1.34 mGy ± 0.19 and the mean SSDE was 1.7 mGy ± 0.16. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The spearman test showed that correlation between body size and organ doses is significant except thyroid and red bone marrow. CTDIvol was strongly dependent on patient size, but SSDE was not. Emission dose was strongly dependent on patient weight, but its dependency was lower to effective diameter. Conclusion: The dose parameters including CTDIvol, DLP, SSDE, effective dose values reported here are very low and below the reference level. This data suggest that appropriate CT acquisition parameters in SPECT/CT localization and attenuation correction are very beneficial for patients and lowering cancer risks.

  4. Radiation dose in cardiac SPECT/CT: An estimation of SSDE and effective dose

    Energy Technology Data Exchange (ETDEWEB)

    Abdollahi, Hamid, E-mail: Hamid_rbp@yahoo.com [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shiri, Isaac [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Salimi, Yazdan [Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sarebani, Maghsoud; Mehdinia, Reza [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Deevband, Mohammad Reza [Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mahdavi, Seied Rabi [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Radiation Biology Research Center, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sohrabi, Ahmad [Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Bitarafan-Rajabi, Ahmad, E-mail: bitarafan@hotmail.com [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Nuclear Medicine, Rajaei Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-12-15

    Aims: The dose levels for Computed Tomography (CT) localization and attenuation correction of Single Photon Emission Computed Tomography (SPECT) are limited and reported as Volume Computed Tomography Dose Index (CTDIvol) and Dose-Length Product (DLP). This work presents CT dose estimation from Cardiac SPECT/CT based on new American Association of Physicists in Medicine (AAPM) Size Specific Dose Estimation (SSDE) parameter, effective dose, organ doses and also emission dose from nuclear issue. Material and methods: Myocardial perfusion SPECT/CT for 509 patients was included in the study. SSDE, effective dose and organ dose were calculated using AAPM guideline and Impact-Dose software. Data were analyzed using R and SPSS statistical software. Spearman-Pearson correlation test and linear regression models were used for finding correlations and relationships among parameters. Results: The mean CTDIvol was 1.34 mGy ± 0.19 and the mean SSDE was 1.7 mGy ± 0.16. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The spearman test showed that correlation between body size and organ doses is significant except thyroid and red bone marrow. CTDIvol was strongly dependent on patient size, but SSDE was not. Emission dose was strongly dependent on patient weight, but its dependency was lower to effective diameter. Conclusion: The dose parameters including CTDIvol, DLP, SSDE, effective dose values reported here are very low and below the reference level. This data suggest that appropriate CT acquisition parameters in SPECT/CT localization and attenuation correction are very beneficial for patients and lowering cancer risks.

  5. We can do better than effective dose for estimating or comparing low-dose radiation risks

    International Nuclear Information System (INIS)

    Brenner, D.J.

    2012-01-01

    The effective dose concept was designed to compare the generic risks of exposure to different radiation fields. More commonly these days, it is used to estimate or compare radiation-induced cancer risks. For various reasons, effective dose represents flawed science: for instance, the tissue-specific weighting factors used to calculate effective dose are a subjective mix of different endpoints; and the marked and differing age and gender dependencies for different health detriment endpoints are not taken into account. This paper suggests that effective dose could be replaced with a new quantity, ‘effective risk’, which, like effective dose, is a weighted sum of equivalent doses to different tissues. Unlike effective dose, where the tissue-dependent weighting factors are a set of generic, subjective committee-defined numbers, the weighting factors for effective risk are simply evaluated tissue-specific lifetime cancer risks per unit equivalent dose. Effective risk, which has the potential to be age and gender specific if desired, would perform the same comparative role as effective dose, be just as easy to estimate, be less prone to misuse, be more directly understandable, and would be based on solid science. An added major advantage is that it gives the users some feel for the actual numerical values of the radiation risks they are trying to control.

  6. Biological effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1994-01-01

    Few weeks ago, when the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) submitted to the U.N. General Assembly the UNSCEAR 1994 report, the international community had at its disposal a broad view of the biological effects of low doses of ionizing radiation. The 1994 report (272 pages) specifically addressed the epidemiological studies of radiation carcinogenesis and the adaptive responses to radiation in cells and organisms. The report was aimed to supplement the UNSCEAR 1993 report to the U.N. General Assembly- an extensive document of 928 pages-which addressed the global levels of radiation exposing the world population, as well as some issues on the effects of ionizing radiation, including: mechanisms of radiation oncogenesis due to radiation exposure, influence of the level of dose and dose rate on stochastic effects of radiation, hereditary effects of radiation effects on the developing human brain, and the late deterministic effects in children. Those two UNSCEAR reports taken together provide an impressive overview of current knowledge on the biological effects of ionizing radiation. This article summarizes the essential issues of both reports, although it cannot cover all available information. (Author)

  7. Biologically based modelling and simulation of carcinogenesis at low doses

    International Nuclear Information System (INIS)

    Ouchi, Noriyuki B.

    2003-01-01

    The process of the carcinogenesis is studied by computer simulation. In general, we need a large number of experimental samples to detect mutations at low doses, but in practice it is difficult to get such a large number of data. To satisfy the requirements of the situation at low doses, it is good to study the process of carcinogenesis using biologically based mathematical model. We have mainly studied it by using as known as 'multi-stage model'; the model seems to get complicated, as we adopt the recent new findings of molecular biological experiments. Moreover, the basic idea of the multi-stage model is based on the epidemiologic data of log-log variation of cancer incidence with age, it seems to be difficult to compare with experimental data of irradiated cell culture system, which has been increasing in recent years. Taking above into consideration, we concluded that we had better make new model with following features: 1) a unit of the target system is a cell, 2) the new information of the molecular biology can be easily introduced, 3) having spatial coordinates for checking a colony formation or tumorigenesis. In this presentation, we will show the detail of the model and some simulation results about the carcinogenesis. (author)

  8. Gamma-irradiated onions as a biological indicator of radiation dose

    International Nuclear Information System (INIS)

    Vaijapurkar, S.G.; Agarwal, Deepshikha; Chaudhuri, S.K.; Ram Senwar, Kana; Bhatnagar, P.K.

    2001-01-01

    Post-irradiation identification and dose estimation are required to assess the radiation-induced effects on living things in any nuclear emergency. In this study, radiation-induced morphological/cytological changes i.e., number of root formation and its length, shooting length, reduction in mitotic index, micronuclei formation and chromosomal aberrations in the root tip cells of gamma-irradiated onions at lower doses (50-2000 cGy) are reported. The capabilities of this biological species to store the radiation-induced information are also studied

  9. Current estimates of radiation risks and implications for dose limits

    International Nuclear Information System (INIS)

    Clarke, R.H.

    1989-01-01

    The publication of the 1988 report of UNSCEAR represents a major step forward in that there is an international consensus on the estimation of risk from exposure to ionising radiation. The estimates of fatal cancers in the UNSCEAR report are up to 4 times the values in the 1977 review. This paper will describe the reasons for the increase, the remaining uncertainties and the implications for dose limits in occupational and public exposure. (author)

  10. Radiation dose estimates for carbon-11-labelled PET tracers

    International Nuclear Information System (INIS)

    Aart, Jasper van der; Hallett, William A.; Rabiner, Eugenii A.; Passchier, Jan; Comley, Robert A.

    2012-01-01

    Introduction: Carbon-11-labelled positron emission tomography (PET) tracers commonly used in biomedical research expose subjects to ionising radiation. Dosimetry is the measurement of radiation dose, but also commonly refers to the estimation of health risk associated with ionising radiation. This review describes radiation dosimetry of carbon-11-labelled molecules in the context of current PET research and the most widely used regulatory guidelines. Methods: A MEDLINE literature search returned 42 articles; 32 of these were based on human PET data dealing with radiation dosimetry of carbon-11 molecules. Radiation burden expressed as effective dose and maximum absorbed organ dose was compared between tracers. Results: All but one of the carbon-11-labelled PET tracers have an effective dose under 9 μSv/MBq, with a mean of 5.9 μSv/MBq. Data show that serial PET scans in a single subject are feasible for the majority of radiotracers. Conclusion: Although differing in approach, the two most widely used regulatory frameworks (those in the USA and the EU) do not differ substantially with regard to the maximum allowable injected activity per PET study. The predictive validity of animal dosimetry models is critically discussed in relation to human dosimetry. Finally, empirical PET data are related to human dose estimates based on homogenous distribution, generic models and maximum cumulated activities. Despite the contribution of these models to general risk estimation, human dosimetry studies are recommended where continued use of a new PET tracer is foreseen.

  11. Estimation of dose in irradiated chicken bone by ESR method

    International Nuclear Information System (INIS)

    Tanabe, Hiroko; Hougetu, Daisuke

    1998-01-01

    The author studied the conditions needed to routinely estimate the radiation dose in chicken bone by repeated re-irradiation and measuring ESR signals. Chicken meat containing bone was γ-irradiated at doses of up to 3kGy, accepted as the commercially used dose. The results show that points in sample preparation and ESR measurement are as follows: Both ends of bone are cut off and central part of compact bone is used for experiment. To obtain accurate ESR spectrum, marrow should be scraped out completely. Sample bone fragments of 1-2mm particle size and ca.100mg are recommended to obtain stable and maximum signal. In practice, by re-irradiating up to 5kGy and extrapolating data of the signal intensity to zero using linear regression analysis, radiation dose is estimated. For example, in one experiment, estimated doses of chicken bones initially irradiated at 3.0kGy, 1.0kGy, 0.50kGy and 0.25kGy were 3.4kGy, 1.3kGy, 0.81kGy and 0.57kGy. (author)

  12. Maximum likelihood estimation for cytogenetic dose-response curves

    International Nuclear Information System (INIS)

    Frome, E.L; DuFrain, R.J.

    1983-10-01

    In vitro dose-response curves are used to describe the relation between the yield of dicentric chromosome aberrations and radiation dose for human lymphocytes. The dicentric yields follow the Poisson distribution, and the expected yield depends on both the magnitude and the temporal distribution of the dose for low LET radiation. A general dose-response model that describes this relation has been obtained by Kellerer and Rossi using the theory of dual radiation action. The yield of elementary lesions is kappa[γd + g(t, tau)d 2 ], where t is the time and d is dose. The coefficient of the d 2 term is determined by the recovery function and the temporal mode of irradiation. Two special cases of practical interest are split-dose and continuous exposure experiments, and the resulting models are intrinsically nonlinear in the parameters. A general purpose maximum likelihood estimation procedure is described and illustrated with numerical examples from both experimental designs. Poisson regression analysis is used for estimation, hypothesis testing, and regression diagnostics. Results are discussed in the context of exposure assessment procedures for both acute and chronic human radiation exposure

  13. Estimation of dose in dental radiology exams in critical regions

    International Nuclear Information System (INIS)

    Bonzoumet, S.P.J.; Braz, D.; Padilha, Lucas

    2005-01-01

    The objective of this paper is to estimate the values of doses, which are absorbed dose to the lens and thyroid in a dental X-ray. Thermoluminescence dosimeters were used, once they provide a reading of quality and effectiveness. This study was based on dental exams conducted in patients in order to estimate the dose that disperses to the lens of the eye and for the thyroid during an intraoral exam. Data collection took place in two institutions, one governmental, which had the device SELETRONIC 70X and other particular. This study showed that there is a considerable variation between the appliances. Using the appliance DABI 1070, there was a greater absorption of radiation in the right eye (values greater than 5 mGy) and a lower dose in the thyroid, and the Seletronic 70X presented an incidence of higher dose deposited in the skin and in other points there was a balance in the values. In the appliance SELETRONIC 70X, there was again a greater absorption of radiation in the right eye and a lower setting in the thyroid. The excessive dose, besides does not favor at all for the quality of radiograph, represents a risk for the patient who absorbs unnecessary and harmful radiation to the body

  14. Maximum likelihood estimation for cytogenetic dose-response curves

    Energy Technology Data Exchange (ETDEWEB)

    Frome, E.L; DuFrain, R.J.

    1983-10-01

    In vitro dose-response curves are used to describe the relation between the yield of dicentric chromosome aberrations and radiation dose for human lymphocytes. The dicentric yields follow the Poisson distribution, and the expected yield depends on both the magnitude and the temporal distribution of the dose for low LET radiation. A general dose-response model that describes this relation has been obtained by Kellerer and Rossi using the theory of dual radiation action. The yield of elementary lesions is kappa(..gamma..d + g(t, tau)d/sup 2/), where t is the time and d is dose. The coefficient of the d/sup 2/ term is determined by the recovery function and the temporal mode of irradiation. Two special cases of practical interest are split-dose and continuous exposure experiments, and the resulting models are intrinsically nonlinear in the parameters. A general purpose maximum likelihood estimation procedure is described and illustrated with numerical examples from both experimental designs. Poisson regression analysis is used for estimation, hypothesis testing, and regression diagnostics. Results are discussed in the context of exposure assessment procedures for both acute and chronic human radiation exposure.

  15. A new method for dosing uranium in biological media

    International Nuclear Information System (INIS)

    Henry, Ph.; Kobisch, Ch.

    1964-01-01

    This report describes a new method for dosing uranium in biological media based on measurement of alpha activity. After treatment of the sample with a mineral acid, the uranium is reduced to the valency four by trivalent titanium and is precipitated as phosphate in acid solution. The uranium is then separated from the titanium by precipitation as UF 4 with lanthanum as carrier. A slight modification, unnecessary in the case of routine analyses, makes it possible to eliminate other possible alpha emitters (thorium and transuranic elements). (authors) [fr

  16. Dose inhomogeneities at various levels of biological organization

    International Nuclear Information System (INIS)

    Bond, V.P.

    1988-01-01

    Dose inhomogeneities in both tumor and normal tissue, inherent to the application of boron neutron capture therapy (BNCT), can be the result not only of ununiform distribution of 10 B at various levels of biological organization, but also of the distribution of the thermal neutrons and of the energy depositions from more energetic neutrons and other radiations comprising the externally-applied beams. The severity of the problems resulting from such inhomogeneities, and approaches to evaluating them, are illustrated by three examples, at the macro, micro and intermediate levels

  17. GARDEC, Estimation of dose-rates reduction by garden decontamination

    International Nuclear Information System (INIS)

    Togawa, Orihiko

    2006-01-01

    1 - Description of program or function: GARDEC estimates the reduction of dose rates by garden decontamination. It provides the effect of different decontamination Methods, the depth of soil to be considered, dose-rate before and after decontamination and the reduction factor. 2 - Methods: This code takes into account three Methods of decontamination : (i)digging a garden in a special way, (ii) a removal of the upper layer of soil, and (iii) covering with a shielding layer of soil. The dose-rate conversion factor is defined as the external dose-rate, in the air, at a given height above the ground from a unit concentration of a specific radionuclide in each soil layer

  18. Developing milk industry estimates for dose reconstruction projects

    International Nuclear Information System (INIS)

    Beck, D.M.; Darwin, R.F.

    1991-01-01

    One of the most important contributors to radiation doses from hanford during the 1944-1947 period was radioactive iodine. Consumption of milk from cows that ate vegetation contaminated with iodine is likely the dominant pathway of human exposure. To estimate the doses people could have received from this pathway, it is necessary to reconstruct the amount of milk consumed by people living near Hanford, the source of the milk, and the type of feed that the milk cows ate. This task is challenging because the dairy industry has undergone radical changes since the end of World War 2, and records that document the impact of these changes on the study area are scarce. Similar problems are faced by researchers on most dose reconstruction efforts. The purpose of this work is to document and evaluate the methods used on the Hanford Environmental Dose Reconstruction (HEDR) Project to reconstruct the milk industry and to present preliminary results

  19. Estimate of absorbed dose received by individuals irradiated with neutrons

    International Nuclear Information System (INIS)

    Fonseca, E.S. da; Mauricio, C.L.P.

    1995-01-01

    An innovating methodology is proposed to estimate the absorbed dose received by individuals irradiated with neutrons in an accident, even in the case that the victim is not using any kind of neutron dosemeter. The method combines direct measurements of 24 Na and 32 P activated in the human body. The calculation method was developed using data taken from previously published papers and experimental measurements. Other irradiations results in different neutron spectra prove the validity of the methodology here proposed. Using a whole body counter to measure 24 Na activity, it is possible to evaluate neutron absorbed doses in the order of 140 μGy of very soft (thermal) spectra. For fast neutron fields, the lower limit for neutron dose detection increases, but the present method continues to be very useful in accidents, with higher neutron doses. (author). 5 refs., 1 fig., 4 tabs

  20. Estimates of effective dose in adult CT examinations

    International Nuclear Information System (INIS)

    Mohamed, Mustafa Awad Elhaj.

    2015-12-01

    The goal of study was to estimate effective dose (E) in adult CT examinations for Toshiba X64 slice using CT. Exp version 2.5 software in Sudan. Using of CT in medical diagnosis delivers radiation doses to patients that are higher than those from other radiological procedures. lack of optimized protocols could be an additional source of increased dose in developing countries. In order to achieve these objectives, data of CT-scanner has been collected from three hospitals ( ANH, ZSH and MMH). Data collected included equipment information and scan parameters for individual patients, who were used to asses. 300 adult patients underwent head, chest, abdomen-pelvis and peivis CT examinations. The CT1_w , CTD1_vol, DLP, patient effective dos and organ doses were estimated, using CT exposure parameters and CT Exp version 2.5 software. A large variation of mean effective dose and organ doses among hospitals was observed for similar CT examinations. These variations largely originated from different CT scanning protocols used in different hospitals and scan length. The mean effective dose in this study in the Brain, PNS, Chest, pulmonary, Abdomen-pelvis, Pelvis, KUB and CTU were 3.2 mSv, 2.6 mSv, 18.9 mSv 17.6 mSv 27.1 mSv, 11.2 mSv, 9.6 mSv and 23.7 mSv respectively, and organ equivalent, doses presented in this study in this study for the eye lens (for head), lungs and thymus ( for chest) , liver, kidney and small intest ( for abdomen t-pelvis), bladder, uterus and gonads ( for pelvis), were 62.9 mSv, 39.5 mSv, 34.1 mSv, 53.9 mSv, 52.6 mSv, 58.1 mSv, 37 mSv, and 34.6 mSv, respectively. These values were mostly comparable to and slightly higher than the values of effective doses reported from similar studies the United Kingdom, Tanzania, Australia, Canada and Sudan. It was concluded that patient effective dose and organ doses could be substantially minimized through careful selection of scanning parameters based on clinical indications of study, patient size, and body

  1. A PC program for estimating organ dose and effective dose values in computed tomography

    International Nuclear Information System (INIS)

    Kalender, W.A.; Schmidt, B.; Schmidt, M.; Zankl, M.

    1999-01-01

    Dose values in CT are specified by the manufacturers for all CT systems and operating conditions in phantoms. It is not trivial, however, to derive dose values in patients from this information. Therefore, we have developed a PC-based program which calculates organ dose and effective dose values for arbitrary scan parameters and anatomical ranges. Values for primary radiation are derived from measurements or manufacturer specifications; values for scattered radiation are derived from Monte Carlo calculations tabulated for standard anthropomorphic phantoms. Based on these values, organ doses can be computed by the program for arbitrary scan protocols in conventional and in spiral CT. Effective dose values are also provided, both with ICRP 26 and ICRP 60 tissue-weighting coefficients. Results for several standard CT protocols are presented in tabular form in this paper. In addition, potential for dose reduction is demonstrated, for example, in spiral CT and in quantitative CT. Providing realistic patient dose estimates for arbitrary CT protocols is relevant both for the physician and the patient, and it is particularly useful for educational and training purposes. The program, called WinDose, is now in use at the Erlangen University hospitals (Germany) as an information tool for radiologists and patients. Further extensions are planned. (orig.)

  2. Estimating monotonic rates from biological data using local linear regression.

    Science.gov (United States)

    Olito, Colin; White, Craig R; Marshall, Dustin J; Barneche, Diego R

    2017-03-01

    Accessing many fundamental questions in biology begins with empirical estimation of simple monotonic rates of underlying biological processes. Across a variety of disciplines, ranging from physiology to biogeochemistry, these rates are routinely estimated from non-linear and noisy time series data using linear regression and ad hoc manual truncation of non-linearities. Here, we introduce the R package LoLinR, a flexible toolkit to implement local linear regression techniques to objectively and reproducibly estimate monotonic biological rates from non-linear time series data, and demonstrate possible applications using metabolic rate data. LoLinR provides methods to easily and reliably estimate monotonic rates from time series data in a way that is statistically robust, facilitates reproducible research and is applicable to a wide variety of research disciplines in the biological sciences. © 2017. Published by The Company of Biologists Ltd.

  3. Around Semipalatinsk nuclear test site: Progress of dose estimations relevant to the consequences of nuclear tests

    International Nuclear Information System (INIS)

    Stepanenko, Valeriy F.; Hoshi, Masaharu; Bailiff, Ian K.

    2006-01-01

    by RLD and calculations. A possible explanation of the differences between ESR and RLD/calculations doses is the following: for interpretation of ESR data the shielding and behaviour' factors for investigated persons should be taken into account. The 'upper level' of the combination of 'shielding and behaviour' factors of dose reduction for inhabitants of Dolon' village of about 0.28 was obtained by comparing the individual ESR tooth enamel dose estimates with the calculated mean dose for this settlement. The biological dosimetry data related to the settlements near SNTS were presented at the Workshop. A higher incidence of unstable chromosome aberrations, micronucleus in lymphocytes, nuclear abnormalities of thyroid follicular cells, T-cell receptor mutations in peripheral blood were found for exposed areas (Dolan', Sarjal) in comparison with unexposed ones (Kokpekty). The significant greater frequency of stable translocations (results of analyses of chromosome aberrations in lymphocytes by the FISH technique) was demonstrated for Dolon' village in comparison with Chekoman (unexposed village). The elevated level of stable translocations in Dolon' corresponds to a dose of about 180 mSv, which is close to the results of ESR dosimetry for this village. The importance of investigating specific morphological types of thyroid nodules for dosimetry studies was pointed out. In general the 3rd Dosimetry Workshop has demonstrated remarkable progress in developing an international level of common approaches for retrospective dose estimations around the SNTS and in understanding the tasks for the future joint work in this direction. In the framework of a special session the problems of developing a database and registry in order to support epidemiological studies around SNTS were discussed. The results of investigation of psychological consequences of nuclear tests, which are expressed in the form of verbal behaviour, were presented at this session as well. (author)

  4. Estimating average glandular dose by measuring glandular rate in mammograms

    International Nuclear Information System (INIS)

    Goto, Sachiko; Azuma, Yoshiharu; Sumimoto, Tetsuhiro; Eiho, Shigeru

    2003-01-01

    The glandular rate of the breast was objectively measured in order to calculate individual patient exposure dose (average glandular dose) in mammography. By employing image processing techniques and breast-equivalent phantoms with various glandular rate values, a conversion curve for pixel value to glandular rate can be determined by a neural network. Accordingly, the pixel values in clinical mammograms can be converted to the glandular rate value for each pixel. The individual average glandular dose can therefore be calculated using the individual glandular rates on the basis of the dosimetry method employed for quality control in mammography. In the present study, a data set of 100 craniocaudal mammograms from 50 patients was used to evaluate our method. The average glandular rate and average glandular dose of the data set were 41.2% and 1.79 mGy, respectively. The error in calculating the individual glandular rate can be estimated to be less than ±3%. When the calculation error of the glandular rate is taken into consideration, the error in the individual average glandular dose can be estimated to be 13% or less. We feel that our method for determining the glandular rate from mammograms is useful for minimizing subjectivity in the evaluation of patient breast composition. (author)

  5. Skin dose estimation due to a contamination by a radionuclide β emitter: are doses equivalent good estimator of protection quantities?

    International Nuclear Information System (INIS)

    Bourgois, L.

    2011-01-01

    When handling radioactive β emitters, measurements in terms of personal dose equivalents H p (0.07) are used to estimate the equivalent dose limit to skin or extremities given by regulations. First of all, analytical expressions for individual dose equivalents H p (0.07) and equivalent doses to the extremities H skin are given for a point source and for contamination with a radionuclide β emitter. Second of all, operational quantities and protection quantities are compared. It is shown that in this case the operational quantities significantly overstate the protection quantities. For a skin contamination the ratio between operational quantities and protection quantities is 2 for a maximum β energy of 3 MeV and 90 for a maximum β energy of 150 keV. (author)

  6. Estimate of dose in interventional radiology: a study of cases

    International Nuclear Information System (INIS)

    Pinto, N.; Braz, D.; Lopes, R.; Vallim, M.; Padilha, L.; Azevedo, F.; Barroso, R.

    2006-01-01

    Values of absorbed dose taken by patients and professionals involved in interventional radiology can be significant mainly for the reason of these proceedings taking long time of fluoroscopy There are many methods to estimate and reduce doses of radiation in the interventional radiology, particularly because the fluoroscopy is responsible for the high dose contribution in the patient and in the professional. The aim of this work is the thermoluminescent dosimetry to estimate the dose values of the extremities of the professionals involved in the interventional radiology and the product dose-area was investigated using a Diamentor. This evaluation is particularly useful for proceedings that interest multiple parts of the organism. In this study were used thermoluminescent dosimeters (LiF:Mg, Ti - Harshaw) to estimate the dose values of the extremities of the professionals and to calibrate them. They were irradiated with X rays at 50 mGy, in Kerma in air and read in the reader Harshaw-5500. The product dose-area (D.A.P.) were obtained through the Diamentor (M2-P.T.W.) calibrated in Cgy.cm 2 fixed in the exit of the X-rays tube. The patients of these study were divided in three groups: individuals submitted to proceedings of embolization, individuals submitted to cerebral and renal arteriography and individuals submitted to proceedings of Transjungular Inthahepatic Porta Systemic Stent Shunt (TIPS). The texts were always carried out by the same group: radiologist doctor), an auxiliary doctor and a nursing auxiliary. The section of interventional radiology has an Angiostar Plus Siemens equipment type arc C, in which there is trifocal Megalix X-ray tube and a intensifier of image from Sirecon 40-4 HDR/33 HDR. In this work the dose estimated values were 137.25 mSv/year for the doctors, 40.27 mSv/year for the nursing and 51.95 mSv/year for the auxiliary doctor and they are below the rule, but in this study it was not taken in consideration the emergency texts as they were

  7. Estimation of eye lens doses received by pediatric interventional cardiologists.

    Science.gov (United States)

    Alejo, L; Koren, C; Ferrer, C; Corredoira, E; Serrada, A

    2015-09-01

    Maximum Hp(0.07) dose to the eye lens received in a year by the pediatric interventional cardiologists has been estimated. Optically stimulated luminescence dosimeters were placed on the eyes of an anthropomorphic phantom, whose position in the room simulates the most common irradiation conditions. Maximum workload was considered with data collected from procedures performed in the Hospital. None of the maximum values obtained exceed the dose limit of 20 mSv recommended by ICRP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Exposures at low doses and biological effects of ionizing radiations

    International Nuclear Information System (INIS)

    Masse, R.

    2000-01-01

    Everyone is exposed to radiation from natural, man-made and medical sources, and world-wide average annual exposure can be set at about 3.5 mSv. Exposure to natural sources is characterised by very large fluctuations, not excluding a range covering two orders of magnitude. Millions of inhabitants are continuously exposed to external doses as high as 10 mSv per year, delivered at low dose rates, very few workers are exposed above the legal limit of 50 mSv/year, and referring to accidental exposures, only 5% of the 116 000 people evacuated following the Chernobyl disaster encountered doses above 100 mSv. Epidemiological survey of accidentally, occupationally or medically exposed groups have revealed radio-induced cancers, mostly following high dose-rate exposure levels, only above 100 mSv. Risk coefficients were derived from these studies and projected into linear models of risk (linear non-threshold hypothesis: LNT), for the purpose of risk management following exposures at low doses and low dose-rates. The legitimacy of this approach has been questioned, by the Academy of sciences and the Academy of medicine in France, arguing: that LNT was not supported by Hiroshima and Nagasaki studies when neutron dose was revisited; that linear modelling failed to explain why so many site-related cancers were obviously nonlinearly related to the dose, and especially when theory predicted they ought to be; that no evidence could be found of radio-induced cancers related to natural exposures or to low exposures at the work place; and that no evidence of genetic disease could be shown from any of the exposed groups. Arguments were provided from cellular and molecular biology helping to solve this issue, all resulting in dismissing the LNT hypothesis. These arguments included: different mechanisms of DNA repair at high and low dose rate; influence of inducible stress responses modifying mutagenesis and lethality; bystander effects allowing it to be considered that individual

  9. Estimating effective doses to children from CT examinations

    International Nuclear Information System (INIS)

    Heron, J.C.L.

    2000-01-01

    Full text: Assessing doses to patients in diagnostic radiology is an integral part of implementing optimisation of radiation protection. Sources of normalised data are available for estimating doses to adults undergoing CT examinations, but for children this is not the case. This paper describes a simple method for estimating effective doses arising from paediatric CT examinations. First the effective dose to an adult is calculated, having anatomically matched the scanned regions of the child and the adult and also matched the irradiation conditions. A conversion factor is then applied to the adult effective dose, based on the region of the body being scanned - head, upper or lower trunk. This conversion factor is the child-to-adult ratio of the ratios of effective dose per entrance air kerma (in the absence of the patient) at the FAD. The values of these conversion factors were calculated by deriving effective dose per entrance air kerma at the FAD for new-born, 1, 5, 10, 15 and adult phantoms using four projections (AP, PA, left and right laterals) over a range of beam qualities and FADs.The program PCXMC was used for this purpose. Results to date suggest that the conversion factors to give effective doses for children undergoing CT examinations of the upper trunk are approximately 1.3, 1.2, 1.15, 1.1 and 1.05 for ages 0, 1, 5, 10 and 15 years respectively; CT of the lower trunk - 1.4, 1.3, 1.2, 1.2, 1.1; and CT of the head - 2.3, 2.0, 1.5, 1.3, 1.1. The dependence of these factors on beam quality (HVL from 4 to 10 mm Al) is less than 10%, with harder beams resulting in slightly smaller conversion factors. Dependence on FAD is also less than 10%. Major sources of uncertainties in the conversion factors include matching anatomical regions across the phantoms, and the presence of beam divergence in the z-direction when deriving the factors. The method described provides a simple means of estimating effective doses arising from paediatric CT examinations with

  10. Natural radioactivity and estimated dose in Brazilian tobacco products

    International Nuclear Information System (INIS)

    Oliveira, Aline S.G.R. de; Damatto, Sandra R.

    2017-01-01

    Tobacco products contain significant concentrations of natural radionuclides from 238 U and 232 Th series. The consumption of these products increases the internal dose of radiation due to the inhalation of the natural radionuclides. Studies from literature emphasize that tobacco products have measurable concentrations of 210 Po and 210 Pb, and may contribute significantly to the increase of internal radiation dose and a large number of lung cancer in smokers. The objectives of this work were to determine the concentrations (Bq/kg) of the radionuclides 226 Ra, 228 Ra, 210 Pb and 210 Po and calculate the internal doses of radiation due to the consumption of these products. In the present work 71 samples were analyzed, consisting of cigars, unflavored and flavored cigarettes, straw cigarettes, cigars and roll smoke. The samples were purchased in Brazilian popular commercial establishments. The analytical techniques employed were the gross alpha and beta measurement after radiochemical separation for the radionuclides 226 Ra, 228 Ra, 210 Pb and alpha spectrometry for 210 Po. The internal radiation doses were calculated with the activity concentrations determined and using the ICRP Publication 119 dose coefficients. An annual consumption of 3,650 kg of tobacco products was considered. The inhalation rates of each radionuclide followed the rates of the current literature. The estimated mean annual dose varied from 76 to 263μSv/y for the tobacco product studied in this work. (author)

  11. I-125 seed dose estimates in heterogeneous phantom

    International Nuclear Information System (INIS)

    Branco, Isabela S.L.; Antunes, Paula C.G.; Cavalieri, Tassio A.; Moura, Eduardo S.; Zeituni, Carlos A.; Yoriyaz, Helio

    2015-01-01

    Brachytherapy plays an important role in the healing process involving tumors in a variety of diseases. Several studies are currently conducted to examine the heterogeneity effects of different tissues and organs in brachytherapy clinical situations and a great effort has been made to incorporate new methodologies to estimate doses with greater accuracy. The objective of this study is to contribute to the assessment of heterogeneous effects on dose due to I-125 brachytherapy source in the presence of different materials with different densities and chemical compositions. The study was performed in heterogeneous phantoms using materials that simulate human tissues. Among these is quoted: breast, fat, muscle, lungs (exhaled and inhaled) and bones with different densities. Monte Carlo simulations for dose calculation in these phantoms were held and subsequently validated. The model 6711 I-125 seed was considered because it is widely used as a brachytherapy permanent implant and the one used in clinics and hospitals in Brazil. Thermoluminescent dosimeters TLD-700 (LiF: Mg, Ti) were simulated for dose assess. Several tissue configurations and positioning of I-125 sources were studied by simulations for future dose measurements. The methodology of this study so far shall be suitable for accurate dosimetric evaluation for different types of brachytherapy treatments, contributing to brachytherapy planning systems complementation allowing a better assessment of the dose actually delivered to the patient. (author)

  12. Natural radioactivity and estimated dose in Brazilian tobacco products

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Aline S.G.R. de; Damatto, Sandra R., E-mail: aline.oliveira@ipen.br, E-mail: damatto@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Tobacco products contain significant concentrations of natural radionuclides from {sup 238}U and {sup 232}Th series. The consumption of these products increases the internal dose of radiation due to the inhalation of the natural radionuclides. Studies from literature emphasize that tobacco products have measurable concentrations of {sup 210}Po and {sup 210}Pb, and may contribute significantly to the increase of internal radiation dose and a large number of lung cancer in smokers. The objectives of this work were to determine the concentrations (Bq/kg) of the radionuclides {sup 226}Ra, {sup 228}Ra, {sup 210}Pb and {sup 210}Po and calculate the internal doses of radiation due to the consumption of these products. In the present work 71 samples were analyzed, consisting of cigars, unflavored and flavored cigarettes, straw cigarettes, cigars and roll smoke. The samples were purchased in Brazilian popular commercial establishments. The analytical techniques employed were the gross alpha and beta measurement after radiochemical separation for the radionuclides {sup 226}Ra, {sup 228}Ra, {sup 210}Pb and alpha spectrometry for {sup 210}Po. The internal radiation doses were calculated with the activity concentrations determined and using the ICRP Publication 119 dose coefficients. An annual consumption of 3,650 kg of tobacco products was considered. The inhalation rates of each radionuclide followed the rates of the current literature. The estimated mean annual dose varied from 76 to 263μSv/y for the tobacco product studied in this work. (author)

  13. I-125 seed dose estimates in heterogeneous phantom

    Energy Technology Data Exchange (ETDEWEB)

    Branco, Isabela S.L.; Antunes, Paula C.G.; Cavalieri, Tassio A.; Moura, Eduardo S.; Zeituni, Carlos A.; Yoriyaz, Helio, E-mail: isabela.slbranco@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Brachytherapy plays an important role in the healing process involving tumors in a variety of diseases. Several studies are currently conducted to examine the heterogeneity effects of different tissues and organs in brachytherapy clinical situations and a great effort has been made to incorporate new methodologies to estimate doses with greater accuracy. The objective of this study is to contribute to the assessment of heterogeneous effects on dose due to I-125 brachytherapy source in the presence of different materials with different densities and chemical compositions. The study was performed in heterogeneous phantoms using materials that simulate human tissues. Among these is quoted: breast, fat, muscle, lungs (exhaled and inhaled) and bones with different densities. Monte Carlo simulations for dose calculation in these phantoms were held and subsequently validated. The model 6711 I-125 seed was considered because it is widely used as a brachytherapy permanent implant and the one used in clinics and hospitals in Brazil. Thermoluminescent dosimeters TLD-700 (LiF: Mg, Ti) were simulated for dose assess. Several tissue configurations and positioning of I-125 sources were studied by simulations for future dose measurements. The methodology of this study so far shall be suitable for accurate dosimetric evaluation for different types of brachytherapy treatments, contributing to brachytherapy planning systems complementation allowing a better assessment of the dose actually delivered to the patient. (author)

  14. Comparing different methods for estimating radiation dose to the conceptus

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Rendon, X.; Dedulle, A. [KU Leuven, Department of Imaging and Pathology, Division of Medical Physics and Quality Assessment, Herestraat 49, box 7003, Leuven (Belgium); Walgraeve, M.S.; Woussen, S.; Zhang, G. [University Hospitals Leuven, Department of Radiology, Leuven (Belgium); Bosmans, H. [KU Leuven, Department of Imaging and Pathology, Division of Medical Physics and Quality Assessment, Herestraat 49, box 7003, Leuven (Belgium); University Hospitals Leuven, Department of Radiology, Leuven (Belgium); Zanca, F. [KU Leuven, Department of Imaging and Pathology, Division of Medical Physics and Quality Assessment, Herestraat 49, box 7003, Leuven (Belgium); GE Healthcare, Buc (France)

    2017-02-15

    To compare different methods available in the literature for estimating radiation dose to the conceptus (D{sub conceptus}) against a patient-specific Monte Carlo (MC) simulation and a commercial software package (CSP). Eight voxel models from abdominopelvic CT exams of pregnant patients were generated. D{sub conceptus} was calculated with an MC framework including patient-specific longitudinal tube current modulation (TCM). For the same patients, dose to the uterus, D{sub uterus}, was calculated as an alternative for D{sub conceptus}, with a CSP that uses a standard-size, non-pregnant phantom and a generic TCM curve. The percentage error between D{sub uterus} and D{sub conceptus} was studied. Dose to the conceptus and percent error with respect to D{sub conceptus} was also estimated for three methods in the literature. The percentage error ranged from -15.9% to 40.0% when comparing MC to CSP. When comparing the TCM profiles with the generic TCM profile from the CSP, differences were observed due to patient habitus and conceptus position. For the other methods, the percentage error ranged from -30.1% to 13.5% but applicability was limited. Estimating an accurate D{sub conceptus} requires a patient-specific approach that the CSP investigated cannot provide. Available methods in the literature can provide a better estimation if applicable to patient-specific cases. (orig.)

  15. Radiation Dose Assesment And Risk Estimation During Extracorporeal Shock Wave Lithotripsy

    International Nuclear Information System (INIS)

    Sulieman, A.; Ibrahim, A.A.; Osman, H.; Yousef, M.

    2011-01-01

    Extracorporeal shockwave lithotripsy (ESWL) is considered the gold standard for calculi fragmentation. The aims of this study are to measure the entrance surface dose (ESD) using thermo-luminescence dosimeter (TLDs) and to estimate the probability of carcinogenesis during ESWL procedure. The study was carried out at two centers (Group A, 50 patients) and (Group B, 25 patients). The mean ESD and effective doses were 36 mGy and 34 mSv. The results show that the probability of carcinogenesis is a tiny value 100 per million patients) but the main biological effect is occurring due to the accumulative impact of radiation.

  16. Estimation of population doses from chest mass screening, 1975

    International Nuclear Information System (INIS)

    Hashizume, Tadashi; Maruyama, Takashi

    1977-01-01

    The population doses in mass photofluorography of the chest were estimated on the basis of nation-wide radiological survey. A total frequency of photofluorographic examinations for the chest mass survey was 18.3 million for males and 15.0 million for females, with a total of 33.3 million. Mass surveys of the chest during the school age are carried out only at the time of admission into the primary school (5 or 6 years old) and at the second class of the junior high school (13 or 14 years old). The gonad doses were determined with an ionization chamber placed at the position of gonad in tissue-equivalent phantoms. The active bone marrow was subdivided into 72 elements. The dose contribution to the marrow arising from the particular exposure conditions was calculated at each site within the elements, using the depth-dose curves experimentally determined and the proportion of the total active bone marrow present at that site. The resultant genetically significant dose for males and females was 0.07 and 0.025 mrad per person per year, respectively, with a total of 0.032 mrad per person per year. The per Caput mean marrow dose for male and female was 5.5 and 4.2 mrad per year, respectively, with a total of 9.7 mrad per year. The leukemia significant dose was calculated from the per Caput mean marrow dose by adopting weighting factor, that is leukemia significant factor. The resultant leukemia significant factor for male and female was 5.2 and 4.1 mrad per person per year, respectively. (auth.)

  17. External dose estimates for future Bikini Atoll inhabitants

    International Nuclear Information System (INIS)

    Gudiksen, P.H.; Crites, T.R.; Robison, W.L.

    1976-01-01

    To evaluate the potential radiation doses that may be received by the returning Bikinians, we surveyed the residual radioactivity on Bikini and Eneu Islands in June of 1975. An integral part of the survey included measurements of gamma-ray exposure rates which are used to estimate external gamma-ray doses. The survey showed that on Bikini Island the rates are highly variable: values near the shores are generally of the order of 10 to 20 μR/h, while those within the interior average about 40 μR/h with a range of roughly 30 to 100 μR/h. Eneu Island, however, is characterized by more or less uniformly distributed gamma radiation levels of less than 10 μR/h over the entire island. These data, in conjunction with population statistics and expected life styles, allowed us to estimate the potential external gamma-ray doses associated with proposed housing locations along the lagoon road and within the interior portions of Bikini Island as well as along the lagoon side of Eneu Island. As expected, living on Eneu Island results in the lowest doses: 0.12 rem during the first year and 2.9 rem during 30 years. The highest values, 0.28 rem during the first year and 5.9 rem over 30 years, may potentially be received by inhabitants living within the interior of Bikini Island. Other options under consideration produce intermediate values

  18. Estimating adolescent sleep need using dose-response modeling.

    Science.gov (United States)

    Short, Michelle A; Weber, Nathan; Reynolds, Chelsea; Coussens, Scott; Carskadon, Mary A

    2018-04-01

    This study will (1) estimate the nightly sleep need of human adolescents, (2) determine the time course and severity of sleep-related deficits when sleep is reduced below this optimal quantity, and (3) determine whether sleep restriction perturbs the circadian system as well as the sleep homeostat. Thirty-four adolescents aged 15 to 17 years spent 10 days and nine nights in the sleep laboratory. Between two baseline nights and two recovery nights with 10 hours' time in bed (TIB) per night, participants experienced either severe sleep restriction (5-hour TIB), moderate sleep restriction (7.5-hour TIB), or no sleep restriction (10-hour TIB) for five nights. A 10-minute psychomotor vigilance task (PVT; lapse = response after 500 ms) and the Karolinska Sleepiness Scale were administered every 3 hours during wake. Salivary dim-light melatonin onset was calculated at baseline and after four nights of each sleep dose to estimate circadian phase. Dose-dependent deficits to sleep duration, circadian phase timing, lapses of attention, and subjective sleepiness occurred. Less TIB resulted in less sleep, more lapses of attention, greater subjective sleepiness, and larger circadian phase delays. Sleep need estimated from 10-hour TIB sleep opportunities was approximately 9 hours, while modeling PVT lapse data suggested that 9.35 hours of sleep is needed to maintain optimal sustained attention performance. Sleep restriction perturbs homeostatic and circadian systems, leading to dose-dependent deficits to sustained attention and sleepiness. Adolescents require more sleep for optimal functioning than typically obtained.

  19. Problems in radiation absorbed dose estimation from positron emitters

    International Nuclear Information System (INIS)

    Powell, G.F.; Harper, P.V.; Reft, C.S.; Chen, C.T.; Lathrop, K.A.

    1986-01-01

    The positron emitters commonly used in clinical imaging studies for the most part are short-lived, so that when they are distributed in the body the radiation absorbed dose is low even though most of the energy absorbed is from the positrons themselves rather than the annihilation radiation. These considerations do not apply to the administration pathway for a radiopharmaceutical where the activity may be highly concentrated for a brief period rather than distributed in the body. Thus, high local radiation absorbed doses to the vein for an intravenous administration and to the upper airways during administration by inhalation can be expected. For these geometries, beta point source functions (FPS's) have been employed to estimate the radiation absorbed dose in the present study. Physiologic measurements were done to determine other exposure parameters for intravenous administration of O-15 and Rb-82 and for administration of O-15-CO 2 by continuous breathing. Using FPS's to calculate dose rates to the vein wall from O-15 and Rb-82 injected into a vein having an internal radius of 1.5 mm yielded dose rates of 0.51 and 0.46 (rad x g/μCi x h), respectively. The dose gradient in the vein wall and surrounding tissues was also determined using FPS's. Administration of O-15-CO 2 by continuous breathing was also investigated. Using ultra-thin thermoluninescent dosimeters (TLD's) having the effective thickness of normal tracheal mucosa, experiments were performed in which 6 dosimeters were exposed to known concentrations of O-15 positrons in a hemicylindrical tracheal phantom having an internal radius of 0.96 cm and an effective length of 14 cm. The dose rate for these conditions was 3.4 (rads/h)/(μCi/cm 3 ). 15 references, 7 figures, 6 tables

  20. Radiation dose to technologists per nuclear medicine examination and estimation of annual dose.

    Science.gov (United States)

    Bayram, Tuncay; Yilmaz, A Hakan; Demir, Mustafa; Sonmez, Bircan

    2011-03-01

    Conventional diagnostic nuclear medicine applications have been continuously increasing in most nuclear medicine departments in Turkey, but to our knowledge no one has studied the doses to technologists who perform nuclear medicine procedures. Most nuclear medicine laboratories do not have separate control rooms for technologists, who are quite close to the patient during data acquisition. Technologists must therefore stay behind lead shields while performing their task if they are to reduce the radiation dose received. The aim of this study was to determine external radiation doses to technologists during nuclear medicine procedures with and without a lead shield. Another aim was to investigate the occupational annual external radiation doses to Turkish technologists. This study used a Geiger-Müller detector to measure dose rates to technologists at various distances from patients (0.25, 0.50, 1, and 2 m and behind a lead shield) and determined the average time spent by technologists at these distances. Deep-dose equivalents to technologists were obtained. The following conventional nuclear medicine procedures were considered: thyroid scintigraphy performed using (99m)Tc pertechnetate, whole-body bone scanning performed using (99m)Tc-methylene diphosphonate, myocardial perfusion scanning performed using (99m)Tc-methoxyisobutyl isonitrile, and (201)Tl (thallous chloride) and renal scanning performed using (99m)Tc-dimercaptosuccinic acid. The measured deep-dose equivalent to technologists per procedure was within the range of 0.13 ± 0.05 to 0.43 ± 0.17 μSv using a lead shield and 0.21 ± 0.07 to 1.01 ± 0.46 μSv without a lead shield. Also, the annual individual dose to a technologist performing only a particular scintigraphic procedure throughout a year was estimated. For a total of 95 clinical cases (71 patients), effective external radiation doses to technologists were found to be within the permissible levels. This study showed that a 2-mm lead shield

  1. Estimation of effective dose for children in interventional cardiology

    Directory of Open Access Journals (Sweden)

    S. S. Sarycheva

    2017-01-01

    Full Text Available This study is devoted to the estimation of effective dose for children undergoing interventional cardiology examinations. The conversion coefficients (CC from directly measured dose area product (DAP value to effective dose (ED were calculated within the approved effective dose assessment methodology (Guidelines 2.6.1. 2944-11. The CC, Ed K , [mSv / (Gy • cm2] for newborn infants and children of 1, 5, 10 and 15 years old (main(range were calculated as 2.5 (1.8-3.2; 1.1 (0.8-1.3; 0.6 (0.4-0.7; 0.4 (0.3-0.5; and 0,22 (0,18-0,30 respectively. A special Finnish computer program PCXMC 2.0 was used for calculating the dose CC. The series of calculations were made for different values of the physical and geometrical parameters based on their real-existing range of values. The value of CC from DAP to ED were calculated for all pediatric age groups. This work included 153 pediatric interventional studies carried out in two hospitals of the city of St. Petersburg for the period of one year from the summer of 2015. The dose CC dependency from the patient’s age and parameters of the examinations were under the study. The dependence from the beam quality (filtration and tube voltage and age of the patient were found. The younger is the patient, stronger is the filtration and higher is the voltage, the higher is the CC value. The CC in the younger (newborn and older (15 years age groups are different by the factor of 10. It was shown that the changes of the geometric parameters (in the scope of their real existing range have small effect on the value of the effective dose, not exceed 30-50% allowable for radiation protection purpose. The real values of effective doses of children undergoing cardiac interventions were estimated. In severe cases, the values of ED can reach several tens of mSv.

  2. HASCAL -- A system for estimating contamination and doses from incidents at worldwide nuclear facilities

    International Nuclear Information System (INIS)

    Sjoreen, A.L.

    1995-01-01

    The Hazard Assessment System for Consequence Analysis (HASCAL) is being developed to support the analysis of radiological incidents anywhere in the world for the Defense Nuclear Agency (DNA). HASCAL is a component of the Hazard Prediction and Assessment Capability (HPAC), which is a comprehensive nuclear, biological, and chemical hazard effects planning and forecasting modeling system that is being developed by DNA. HASCAL computes best-guess estimates of the consequences of radiological incidents. HASCAL estimates the amount of radioactivity released, its atmospheric transport and deposition, and the resulting radiological doses

  3. Estimation of internal dose from radiocesium and phantom

    International Nuclear Information System (INIS)

    Uchiyama, Masafumi; Nakamura, Yuji

    1994-01-01

    A complicated model describing the movement of a radionuclide in both the natural environment and socioeconomical systems is usually used to estimate the internal dose to the public in terms of collective dose, taking demographic data into account. The result can be certified for reliability in some compartments of the model. One of the compartments is the body content. In the case of radiocesium, the individual body burden can be measured using a whole-body counter. The measurement must be calibrated with a phantom. The public is composed of individuals of various ages. Accordingly, the whole-body counter should be calibrated with a set of phantoms approximating individuals of different body sizes. Relationships between counting efficiency and body size were analyzed on 137 Cs 134 Cs or 40 K incorporated into the whole-body using a set of phantoms. Four sizes covering average Japanese physiques from infant to adult male, were chosen to prepare an anthropomorphic phantom system. The distribution of 137 Cs in aquatic solution was homogeneous through the phantom. A whole-body counter at the National Institute of Radiological Sciences, was used at a rate of 5 cm per minute in a scanning mode. The measurements were carried out in an iron room. Relations were analyzed between counting efficiency and some anthropometric parameters. The best fit was given by a linear equation of both reciprocals of height in cm and weight in kg, with a correlation coefficient of 1.00 for 137 Cs. The result indicates that radioactivity of 137 Cs can be determined for individuals with different anthropometric parameters using the whole-body counter system. This means that effective equivalent doses for individuals can be computed accurately from the measurements. Further, an estimate on the body content from an dose estimation model using measurements of radioactivity in environmental substances can be evaluated by comparing the body burden measured. (J.P.N.)

  4. Estimation of radiation dose received by the victims in a Chinese radiation accident

    International Nuclear Information System (INIS)

    Zhang, Liangan; Xu, Zhiyong; Jia, Delin; Dai, Guangfu

    2002-01-01

    In April 1999, a radiation accident happened in Henan province, China. In this accident, A 60 Co ex-service therapy radiation source was purchased by a waster purchase company, then some persons break the lead pot and taken out the stainless steel drawer with the radiation source, then sell the drawer to another small company, and the buyer reserved the drawer in his bed room until all of his family members shoot their cookies. During the event, seven persons received overdose exposure, the dose rang is about 1.0 - 6.0Gy, especially, all of the buyer family members meet with bad radiation damage. In order to assess the accident consequences and cure the patients of the bad radiation damage, it is necessary to estimate the doses of the Victims in the accident. In the dose reconstruction of the accident victims, we adopted biologic dose method, experiment-simulating method with an anthropomorphic phantom, and theory simulating method with Monte Carlo to estimate the doses of the victims. In this paper, the frame of the accident and the Monte Carlo method in our work will be described, the main dose results of the three methods mentioned above will be reported and a comparison analysis will be presented

  5. A Monte Carlo estimation of effective dose in chest tomosynthesis

    International Nuclear Information System (INIS)

    Sabol, John M.

    2009-01-01

    calculated to be 0.124 mSv (ICRP60) [0.134 mSv (ICRP103)]. This is less than 75% of that predicted by scaling of the PA mA s ratio. This lower dose was due to changes in the focal-spot-to-skin distance, effective changes in collimation with projection angle, rounding down of the mA s step, and variations in organ exposure to the primary x-ray beam for each view. Large errors in dose estimation can occur if these factors are not accurately modeled. Conclusions: The effective dose of a chest examination with this chest tomosynthesis system is about twice that of a two-view chest examination and less than 2% of the published average values for thoracic CT. It is shown that complete consideration of the tomosynthesis acquisition technique and geometry is required for accurate determination of the effective dose to the patient. Tomosynthesis provides three-dimensional imaging at a dose level comparable to a two-view chest x-ray examination and may provide a low dose alternative to thoracic CT for obtaining depth information in chest imaging.

  6. Estimation of population doses from diagnostic medical examinations in Japan, 1974. II. Estimation of genetically significant dose

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, T; Maruyama, T; Kumamoto, Y [National Inst. of Radiological Sciences, Chiba (Japan)

    1976-03-01

    The genetically significant dose from radiographic and fluoroscopic examination in Japan has been estimated based on a 1974 nation wide survey of randomly sampled hospitals and clinics. The gonad dose during x-ray diagnosis was determined with an ionization chamber placed at the positions of ovary and testis in a Rando phantom. The instrumented phantom was irradiated with medical diagnostic x-rays on the basis of the exposure data on the patients selected in the nation wide survey. In the calculation of the genetically significant dose, the child expectancy of the patients that undergo each particular type of examination was assumed to be same as that of the general population. The resultant genetically significant dose was 11.1 and 5.43 mrad per person per year for radiography and fluoroscopy, respectively. These values were compared with those of 1960 and 1969. Though the number of examinations per year shows a yearly increase, the genetically significant dose is gradually on the decrease. This may be due to technical improvements in medical radiological practices.

  7. Cytogenetical dose estimation for 3 severely exposed patients in the JCO criticality accident in Tokai-mura

    International Nuclear Information System (INIS)

    Hayata, Isamu; Kanda, Reiko; Minamihisamatsu, Masako; Furukawa, Akira; Sasaki, Masao S.

    2001-01-01

    A dose estimation by chromosome analysis was performed on the 3 severely exposed patients in the Tokai-mura criticality accident. Drastically reduced lymphocyte counts suggested that the whole-body dose of radiation which they had been exposed to was unprecedentedly high. Because the number of lymphocytes in the white blood cells in two patients was very low, we could not culture and harvest cells by the conventional method. To collect the number of lymphocytes necessary for chromosome preparation, we processed blood samples by a modified method, called the high-yield chromosome preparation method. With this technique, we could culture and harvest cells, and then make air-dried chromosome slides. We applied a new dose-estimation method involving an artificially induced prematurely condensed ring chromosome, the PCC-ring method, to estimate an unusually high dose with a short time. The estimated doses by the PCC-ring method were in fairly good accordance with those by the conventional dicentric and ring chromosome (Dic + R) method. The biologically estimated dose was comparable with that estimated by a physical method. As far as we know, the estimated dose of the most severely exposed patient in the present study is the highest recorded among that chromosome analyses have been able to estimate in humans. (author)

  8. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    Science.gov (United States)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low-dose

  9. Dose estimation of interventional cardiologists in different body regions

    International Nuclear Information System (INIS)

    Borba, Iana Q. de; Luz, Renata M. da; Capaverde, Alexandre S.; Silva, Ana M. Marques da; Caramori, Paulo Ricardo Avancini

    2015-01-01

    Interventional radiology is one of the medical specialties that provides the highest doses to professionals, widely used in cardiology, being called interventional cardiology. In order to contribute to the optimization of occupational radiation protection in interventional cardiology procedures, the aim of this study is to evaluate the dose estimation received in different body regions by physicians in interventional cardiology procedures. Two physicians were followed, named as A and B, during one month period, performing a total of 127 procedures (70 for A and 57 for B) of interventional cardiology. During the procedures, dosimeters in different body regions beyond the full-body dosimeter were positioned. The results showed the highest values for the estimated dose received by workers were in the right wrist and left side face regions, for the physician A, and in the left knee and left side face, for the physician B. Results demonstrate the importance of using individual protection equipment by physicians in interventional cardiology, including lead glasses, besides monitoring dosimeters for other body regions, such as wrist, face and knee. (author)

  10. The estimation of occupational effective dose in diagnostic radiology with two dosimeters

    International Nuclear Information System (INIS)

    Niklason, L.T.; Marx, M.V.; Chan, Heang-Ping

    1994-01-01

    Annual effective dose limits have been proposed by national and international radiation protection committees. Radiation protection agencies must decide upon a method of converting the radiation dose measured from dosimeters to an estimate of effective dose. A proposed method for the estimation of effective dose from the radiation dose to two dosimeters is presented. Correction factors are applied to an over-apron collar dose and an under-apron dose to estimate the effective dose. Correction factors are suggested for two cases, both with and without a thyroid shield. Effective dose may be estimated by the under-apron dose plus 6% of the over-collar dose if a thyroid shield is not worn or plus 2% of the over-collar dose if a thyroid shield is worn. This method provides a reasonable estimate of effective dose that is independent of lead apron thickness and accounts for the use of a thyroid shield. 17 refs., 3 tabs

  11. A distributed approach for parameters estimation in System Biology models

    International Nuclear Information System (INIS)

    Mosca, E.; Merelli, I.; Alfieri, R.; Milanesi, L.

    2009-01-01

    Due to the lack of experimental measurements, biological variability and experimental errors, the value of many parameters of the systems biology mathematical models is yet unknown or uncertain. A possible computational solution is the parameter estimation, that is the identification of the parameter values that determine the best model fitting respect to experimental data. We have developed an environment to distribute each run of the parameter estimation algorithm on a different computational resource. The key feature of the implementation is a relational database that allows the user to swap the candidate solutions among the working nodes during the computations. The comparison of the distributed implementation with the parallel one showed that the presented approach enables a faster and better parameter estimation of systems biology models.

  12. Early estimates of UK radiation doses from the Chernobyl reactor

    International Nuclear Information System (INIS)

    Fry, F.A.; Clarke, R.H.; O'Riordan, M.C.

    1986-01-01

    The plume of radioactive material from the Chernobyl reactor accident passed over the United Kingdom and will increase the radiation dose to the population in the coming year. The increase above the normal annual dose from natural radiation, averaged over persons of all ages, will be about 15% in the north and 1% in the south of the country. Averaged over all ages and areas, the increase will be about 4%. This excess dose will decrease substantially in subsequent years. The accident at the nuclear power station in Chernobyl, near Kiev, on or after 26 April 1986, led to substantial quantities of radioactive material being released to the atmosphere. Wind initially transported the material towards northern and western Europe. Activity was first detected in the southern United Kingdom, some ∼ 2,000 km away, on 2 May. The National Radiological Protection Board (NRPB), the operators of nuclear installations and the regulating authorities, had anticipated this eventuality and had intensified their normal programmes of environmental monitoring. During the following days many measurements were made and a considerable amount of data was generated throughout the country. NRPB was assigned responsibility for collating and evaluating these results; the initial information is used here to make a preliminary estimate of the radiation doses to the population of the United Kingdom

  13. Estimation of the genetically significant dose resulting from diagnostic radiology

    International Nuclear Information System (INIS)

    Angerstein, W.

    1978-01-01

    Based on the average gonad dose received per examination or per film and on the frequency of x-ray examinations (36 million per annum), the mean annual gonad dose to individuals in the GDR has been determined to be 33 mR. Considering different age groups of patients and the fact that the gonad dose to children is often significantly reduced in comparison to adults, estimates of the genetically significant dose (GSD) range from 7 to 19 mR per annum. Examinations of women have accounted for about 66 per cent of the GSD. The highest contribution to the GSD result from examinations of the following organs: kidneys, colon, bile duct (only in women), lumbar spine, pelois, hips, and proximal femur. Despite their high frequency, examinations of the stomach account for only about 3 per cent of the GSD. All thorax examinations (nearly 10,000,000 per annum) contribute less than 0.5 per cent, and the most frequent x-ray examinations of the skeletal system, skull, cervical spine, and teeth account for less than 3 per cent. The GSD values obtained are comparable with those from countries such as India, Japan, Netherlands, USSR, and USA. (author)

  14. Influence of TLD position on the estimate of fetal dose

    International Nuclear Information System (INIS)

    Majola, J.; Jamieson, T.J.

    1995-11-01

    This report examines the adequacy of the practice of using a single dosimeter worn at the front of the body as an estimate of the dose received by nuclear medicine technologies. In order to investigate this, a group of approximately 50 technologists at 9 different hospitals were double-badged, i.e. provided with front and back dosimeters, and the ratio of front to back dose computed. Both aggregate data and hospital-specific data are presented and accompanied by several forms of statistical analysis. Apparent trends and possible explanations are discussed. Recommendations are provided for additional studies relating to the badging of nuclear medicine technologists. (author). 125 refs., 15 tabs., 13 figs

  15. Influence of TLD position on the estimate of fetal dose

    Energy Technology Data Exchange (ETDEWEB)

    Majola, J; Jamieson, T J [Science Applications International Corp., Ottawa, ON (Canada)

    1995-11-01

    This report examines the adequacy of the practice of using a single dosimeter worn at the front of the body as an estimate of the dose received by nuclear medicine technologies. In order to investigate this, a group of approximately 50 technologists at 9 different hospitals were double-badged, i.e. provided with front and back dosimeters, and the ratio of front to back dose computed. Both aggregate data and hospital-specific data are presented and accompanied by several forms of statistical analysis. Apparent trends and possible explanations are discussed. Recommendations are provided for additional studies relating to the badging of nuclear medicine technologists. (author). 125 refs., 15 tabs., 13 figs.

  16. Development of dose rate estimation system for FBR maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Iizawa, Katsuyuki [Japan Nuclear Cycle Development Inst., Tsuruga Head Office, International Cooperation and Technology Development Center, Tsuruga, Fukui (Japan); Takeuchi, Jun; Yoshikawa, Satoru [Hitachi Engineering Company, Ltd., Hitachi, Ibaraki (Japan); Urushihara, Hiroshi [Ibaraki Hitachi Information Service Co., Ltd., Omika, Ibaraki (Japan)

    2001-09-01

    During maintenance activities on the primary sodium cooling system by an FBR Personnel radiation exposure arises mainly from the presence of radioactive corrosion products (CP). A CP behavior analysis code, PSYCHE, and a radiation shielding calculation code, QAD-CG, have been developed and applied to investigate the possible reduction of radiation exposure of workers. In order to make these evaluation methods more accessible to plant engineers, the user interface of the codes has been improved and an integrated system, including visualization of the calculated gamma-ray radiation dose-rate map, has been developed. The system has been verified by evaluating the distribution of the radiation dose-rate within the Monju primary heat transport system cells from the estimated saturated CP deposition and distribution which would be present following about 20 cycles of full power operation. (author)

  17. Development of dose rate estimation system for FBR maintenance

    International Nuclear Information System (INIS)

    Iizawa, Katsuyuki; Takeuchi, Jun; Yoshikawa, Satoru; Urushihara, Hiroshi

    2001-01-01

    During maintenance activities on the primary sodium cooling system by an FBR Personnel radiation exposure arises mainly from the presence of radioactive corrosion products (CP). A CP behavior analysis code, PSYCHE, and a radiation shielding calculation code, QAD-CG, have been developed and applied to investigate the possible reduction of radiation exposure of workers. In order to make these evaluation methods more accessible to plant engineers, the user interface of the codes has been improved and an integrated system, including visualization of the calculated gamma-ray radiation dose-rate map, has been developed. The system has been verified by evaluating the distribution of the radiation dose-rate within the Monju primary heat transport system cells from the estimated saturated CP deposition and distribution which would be present following about 20 cycles of full power operation. (author)

  18. Revision of risk estimates and implications for dose limits

    International Nuclear Information System (INIS)

    Clarke, R.H.

    1989-01-01

    It has been apparent for some time that our estimates of the risks associated with exposure to ionizing radiation must be increased above those values reported by UNSCEAR in 1977 an dused by ICRP to form their present recommendations. NRPB foresaw some of these changes and introduced interim advice within the UK to restrict exposures of wordkers and members of the public to levels below the existing limits. Since that advice was given, UNSCEAR has produced a 1988 report reviewing human data to provide new estimates of risks associated with exposure at high doses and high doserates. These risk figures are up to 4 times higher than when UNSCEAR reported in 1977. In this paper, the reasons for the changes in the estimates of risk will be described and the current NRPB guidelines for risk factors for protection purposes will be presented. The implications of these new risk factors for the setting of dose limits will then be discussed. (Author). 10 refs.; 2 tabs

  19. Biological impact of high-dose and dose-rate radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Maliev, V.; Popov, D. [Russian Academy of Science, Vladicaucas (Russian Federation); Jones, J.; Gonda, S. [NASA -Johnson Space Center, Houston (United States); Prasad, K.; Viliam, C.; Haase, G. [Antioxida nt Research Institute, Premier Micronutrient Corporation, Novato (United States); Kirchin, V. [Moscow State Veterinary and Biotechnology Acade my, Moscow (Russian Federation); Rachael, C. [University Space Research Association, Colorado (United States)

    2006-07-01

    Experimental anti-radiation vaccine is a power tool of immune - prophylaxis of the acute radiation disease. Existing principles of treatment of the acute radiation dis ease are based on a correction of developing patho-physiological and biochemical processes within the first days after irradiation. Protection from radiation is built on the general principles of immunology and has two main forms - active and passive immunization. Active immunization by the essential radiation toxins of specific radiation determinant (S.D.R.) group allows significantly reduce the lethality and increase duration of life among animals that are irradiated by lethal and sub-lethal doses of gamma radiation.The radiation toxins of S.D.R. group have antigenic properties that are specific for different forms of acute radiation disease. Development of the specific and active immune reaction after intramuscular injection of radiation toxins allows optimize a manifestation of a clinical picture and stabilize laboratory parameters of the acute radiation syndromes. Passive immunization by the anti-radiation serum or preparations of immune-globulins gives a manifestation of the radioprotection effects immediately after this kind of preparation are injected into organisms of mammals. Providing passive immunization by preparations of anti-radiations immune-globulins is possible in different periods of time after radiation. Providing active immunization by preparations of S.D.R. group is possible only to achieve a prophylaxis goal and form the protection effects that start to work in 18 - 35 days after an injection of biological active S.D.R. substance has been administrated. However active and passive immunizations by essential anti-radiation toxins and preparations of gamma-globulins extracted from a hyper-immune serum of a horse have significantly different medical prescriptions for application and depend on many factors like a type of radiation, a power of radiation, absorption doses, a time of

  20. Biological impact of high-dose and dose-rate radiation exposure

    International Nuclear Information System (INIS)

    Maliev, V.; Popov, D.; Jones, J.; Gonda, S.; Prasad, K.; Viliam, C.; Haase, G.; Kirchin, V.; Rachael, C.

    2006-01-01

    Experimental anti-radiation vaccine is a power tool of immune - prophylaxis of the acute radiation disease. Existing principles of treatment of the acute radiation dis ease are based on a correction of developing patho-physiological and biochemical processes within the first days after irradiation. Protection from radiation is built on the general principles of immunology and has two main forms - active and passive immunization. Active immunization by the essential radiation toxins of specific radiation determinant (S.D.R.) group allows significantly reduce the lethality and increase duration of life among animals that are irradiated by lethal and sub-lethal doses of gamma radiation.The radiation toxins of S.D.R. group have antigenic properties that are specific for different forms of acute radiation disease. Development of the specific and active immune reaction after intramuscular injection of radiation toxins allows optimize a manifestation of a clinical picture and stabilize laboratory parameters of the acute radiation syndromes. Passive immunization by the anti-radiation serum or preparations of immune-globulins gives a manifestation of the radioprotection effects immediately after this kind of preparation are injected into organisms of mammals. Providing passive immunization by preparations of anti-radiations immune-globulins is possible in different periods of time after radiation. Providing active immunization by preparations of S.D.R. group is possible only to achieve a prophylaxis goal and form the protection effects that start to work in 18 - 35 days after an injection of biological active S.D.R. substance has been administrated. However active and passive immunizations by essential anti-radiation toxins and preparations of gamma-globulins extracted from a hyper-immune serum of a horse have significantly different medical prescriptions for application and depend on many factors like a type of radiation, a power of radiation, absorption doses, a time of

  1. Estimate of ovarian dose and entrance skin dose in uterine artery embolization procedures

    International Nuclear Information System (INIS)

    Silva, Marcia C.; Nasser, Felipe; Affonso, Breno B.; Araujo Junior, Raimundo T.; Zlotnik, Eduardo; Messina, Marcos L.; Baracat, Edmund C.

    2010-01-01

    The goal of this study was to estimate the ovarian dose and entrance skin dose (ESD) of patients who underwent uterine artery embolization (UAE) procedure. To achieve this, 49 UAE procedures were accompanied where the parameters of image acquisition were recorded for the calculation of the DEP from the output of the X-ray tube. The estimation of the ovarian dose was carried out by the insertion of a vaginal probe containing 3 TLD's. The obtained values were compared with the results of other authors and a higher value of ovarian dose (28,97 cGy) and ESD (403,57 cGy) was found in this work. Analysis of the results allowed to observe that this result was obtained mainly as a result of the high number of arteriography series and the frames/second rates employed. Following on from these observations, the protocol of EMUT was altered reducing the frames/seg rate from 2 to 1. Efforts with a view to reducing the number of arteriography series also became part of the next proceedings. (author)

  2. Dosing of cytotoxic chemotherapy: impact of renal function estimates on dose.

    Science.gov (United States)

    Dooley, M J; Poole, S G; Rischin, D

    2013-11-01

    Oncology clinicians are now routinely provided with an estimated glomerular filtration rate on pathology reports whenever serum creatinine is requested. The utility of using this for the dose determination of renally excreted drugs compared with other existing methods is needed to inform practice. Renal function was determined by [Tc(99m)]DTPA clearance in adult patients presenting for chemotherapy. Renal function was calculated using the 4-variable Modification of Diet in Renal Disease (4v-MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), Cockcroft and Gault (CG), Wright and Martin formulae. Doses for renal excreted cytotoxic drugs, including carboplatin, were calculated. The concordance of the renal function estimates according to the CKD classification with measured Tc(99m)DPTA clearance in 455 adults (median age 64.0 years: range 17-87 years) for the 4v-MDRD, CKD-EPI, CG, Martin and Wright formulae was 47.7%, 56.3%, 46.2%, 56.5% and 60.2%, respectively. Concordance for chemotherapy dose for these formulae was 89.0%, 89.5%, 85.1%, 89.9% and 89.9%, respectively. Concordance for carboplatin dose specifically was 66.4%, 71.4%, 64.0%, 73.8% and 73.2%. All bedside formulae provide similar levels of concordance in dosage selection for the renal excreted chemotherapy drugs when compared with the use of a direct measure of renal function.

  3. Estimation Of Effective Dose In Ingestion Of Food Crops For 137Cs

    International Nuclear Information System (INIS)

    Angeleska, A.; Dimitrieska-Stojkovic, E.; Uzunov, R.; Hajrulai-Musliu, Z.; Stojanovska-Dimzoska, B.; Jankuloski, D.; Crceva-Nikolovska, R.

    2015-01-01

    The interaction of the ionizing radiation with the human body leads to various biological effects which afterwards can be manifested as clinical symptoms. The nature and the seriousness of the symptoms depend on the absorbed dose, as well as the dose rate, and many diseases which were supposed to be effectively managed if information for the radiation level of an environment was available. The knowledge of the concentration of radioactivity of our environment is of essential relevance in the assessment of the dose that is accumulated in the population, as well as for the formation of the basis for estimation of the level of radioactive contamination or contamination in the environment in future. Taking into consideration the relevance of the distribution and the transfer of radionuclides from the soil to the crops, this work was aimed to estimate the effective dose in ingestion of separate crops for 137Cs. The effective dose was determined by means of already known transfer factors from the soil to the plants and measured concentrations of activities of soil from specific locations in the surrounding of the city of Skopje. The agricultural crops used for analysis are the most commonly applied crops (vegetables, legumes, root crops) in Republic of Macedonia. The radiometric analysis of these samples was conducted by applying a spectrometer for gamma-rays with Germanium with high purity (HPGe). The estimated effective dose would apply for adults who ingested the mentioned crops which were produced at the mentioned locations, that is, in the region of Skopje. These data can be the basis for estimation of risk for radioactive contamination of the population, received by ingestion of produced food. (author).

  4. Comparison of internal dose estimates obtained using organ-level, voxel S value, and Monte Carlo techniques

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, Joshua, E-mail: grimes.joshua@mayo.edu [Department of Physics and Astronomy, University of British Columbia, Vancouver V5Z 1L8 (Canada); Celler, Anna [Department of Radiology, University of British Columbia, Vancouver V5Z 1L8 (Canada)

    2014-09-15

    Purpose: The authors’ objective was to compare internal dose estimates obtained using the Organ Level Dose Assessment with Exponential Modeling (OLINDA/EXM) software, the voxel S value technique, and Monte Carlo simulation. Monte Carlo dose estimates were used as the reference standard to assess the impact of patient-specific anatomy on the final dose estimate. Methods: Six patients injected with{sup 99m}Tc-hydrazinonicotinamide-Tyr{sup 3}-octreotide were included in this study. A hybrid planar/SPECT imaging protocol was used to estimate {sup 99m}Tc time-integrated activity coefficients (TIACs) for kidneys, liver, spleen, and tumors. Additionally, TIACs were predicted for {sup 131}I, {sup 177}Lu, and {sup 90}Y assuming the same biological half-lives as the {sup 99m}Tc labeled tracer. The TIACs were used as input for OLINDA/EXM for organ-level dose calculation and voxel level dosimetry was performed using the voxel S value method and Monte Carlo simulation. Dose estimates for {sup 99m}Tc, {sup 131}I, {sup 177}Lu, and {sup 90}Y distributions were evaluated by comparing (i) organ-level S values corresponding to each method, (ii) total tumor and organ doses, (iii) differences in right and left kidney doses, and (iv) voxelized dose distributions calculated by Monte Carlo and the voxel S value technique. Results: The S values for all investigated radionuclides used by OLINDA/EXM and the corresponding patient-specific S values calculated by Monte Carlo agreed within 2.3% on average for self-irradiation, and differed by as much as 105% for cross-organ irradiation. Total organ doses calculated by OLINDA/EXM and the voxel S value technique agreed with Monte Carlo results within approximately ±7%. Differences between right and left kidney doses determined by Monte Carlo were as high as 73%. Comparison of the Monte Carlo and voxel S value dose distributions showed that each method produced similar dose volume histograms with a minimum dose covering 90% of the volume (D90

  5. Radiation Dose Estimation for Pediatric Patients Undergoing Cardiac Catheterization

    Science.gov (United States)

    Wang, Chu

    Patients undergoing cardiac catheterization are potentially at risk of radiation-induced health effects from the interventional fluoroscopic X-ray imaging used throughout the clinical procedure. The amount of radiation exposure is highly dependent on the complexity of the procedure and the level of optimization in imaging parameters applied by the clinician. For cardiac catheterization, patient radiation dosimetry, for key organs as well as whole-body effective, is challenging due to the lack of fixed imaging protocols, unlike other common X-ray based imaging modalities. Pediatric patients are at a greater risk compared to adults due to their greater cellular radio-sensitivities as well as longer remaining life-expectancy following the radiation exposure. In terms of radiation dosimetry, they are often more challenging due to greater variation in body size, which often triggers a wider range of imaging parameters in modern imaging systems with automatic dose rate modulation. The overall objective of this dissertation was to develop a comprehensive method of radiation dose estimation for pediatric patients undergoing cardiac catheterization. In this dissertation, the research is divided into two main parts: the Physics Component and the Clinical Component. A proof-of-principle study focused on two patient age groups (Newborn and Five-year-old), one popular biplane imaging system, and the clinical practice of two pediatric cardiologists at one large academic medical center. The Physics Component includes experiments relevant to the physical measurement of patient organ dose using high-sensitivity MOSFET dosimeters placed in anthropomorphic pediatric phantoms. First, the three-dimensional angular dependence of MOSFET detectors in scatter medium under fluoroscopic irradiation was characterized. A custom-made spherical scatter phantom was used to measure response variations in three-dimensional angular orientations. The results were to be used as angular dependence

  6. Perspectives on radiation dose estimates for A-bomb survivors

    International Nuclear Information System (INIS)

    Loewe, W.E.

    1986-12-01

    Four decades after the actual events, quantitative characterization of the radiation fields at Hiroshima and Nagasaki continues to be sought, with high accuracy a goal justified by the unique contribution to radiation protection standards that is represented by the medical records of exposed survivors. The most recent effort is distinguished by its reliance on computer modeling and concomitant detail, and by its decentralized direction, both internationally and internally to the US and Japan, with resultant ongoing peer review and wide scope of inquiry. A new system for individual dose estimation has been agreed upon, and its scientific basis has been elaborated in the literature as well as in a comprehensive treatise to be published in the Spring of 1987. In perspective, this new system appears to be an unusually successful achievement that offers the expectation of reliable estimates with the desired accuracy. Some aspects leading to this expectation, along with a caveat, are discussed here. 4 refs., 8 figs., 3 tabs

  7. Perspectives on radiation dose estimates for A-bomb survivors

    International Nuclear Information System (INIS)

    Loewe, W.E.

    1987-01-01

    For decades after the actual events, quantitative characterization of the radiation fields at Hiroshima and Nagasaki continues to be sought, with high accuracy a goal justified by the unique contribution to radiation protection standards that is represented by the medical records of exposed survivors. The most recent effort is distinguished by its reliance on computer modelling and concomitant detail, and by its decentralized direction, both internationally and internally to the U.S. and Japan, with resultant ongoing peer review and wide scope of inquiry. A new system for individual dose estimation has been agreed upon, and its scientific basis has been elaborated in the literature as well as in a comprehensive treatise to be published in the Spring of 1987. In perspective, this new system appears to be an unusually successful achievement that offers the expectation of reliable estimates with the desired accuracy. Some aspects leading to this expectation, along with a caveat, are discussed here

  8. 324 Building life cycle dose estimates for planned work

    International Nuclear Information System (INIS)

    Landsman, S.D.; Peterson, C.A.; Thornhill, R.E.

    1995-09-01

    This report describes a tool for use by organizational management teams to plan, manage, and oversee personnel exposures within their organizations. The report encompasses personnel radiation exposures received from activities associated with the B-Cell Cleanout Project, Surveillance and Maintenance Project, the Mk-42 Project, and other minor activities. It is designed to provide verifiable Radiological Performance Reports. The primary area workers receive radiation exposure is the Radiochemical Engineering Complex airlock. Entry to the airlock is necessary for maintenance of cranes and other equipment, and to set up the rail system used to move large pieces of equipment and shipping casks into and out of the airlock. Transfers of equipment and materials from the hot cells in the complex to the airlock are required to allow dose profiles of waste containers, shuffling of waste containers to allow grouting activities to go on, and to allow maintenance of in-cell cranes. Both DOE and the Pacific Northwest Laboratory (PNL) are currently investing in state-of-the-art decontamination equipment. Challenging goals for exposure reduction were established for several broad areas of activity. Exposure estimates and goals developed from these scheduled activities will be compared against actual exposures for scheduled and unscheduled activities that contributed to exposures received by personnel throughout the year. Included in this report are life cycle exposure estimates by calendar year for the B-Cell Cleanout project, a three-year estimate of exposures associated with Surveillance and Maintenance, and known activities for Calendar Year (CY) 1995 associated with several smaller projects. These reports are intended to provide a foundation for future dose estimates, by year, requiring updating as exposure conditions change or new avenues of approach to performing work are developed

  9. 324 Building life cycle dose estimates for planned work

    Energy Technology Data Exchange (ETDEWEB)

    Landsman, S.D.; Peterson, C.A.; Thornhill, R.E.

    1995-09-01

    This report describes a tool for use by organizational management teams to plan, manage, and oversee personnel exposures within their organizations. The report encompasses personnel radiation exposures received from activities associated with the B-Cell Cleanout Project, Surveillance and Maintenance Project, the Mk-42 Project, and other minor activities. It is designed to provide verifiable Radiological Performance Reports. The primary area workers receive radiation exposure is the Radiochemical Engineering Complex airlock. Entry to the airlock is necessary for maintenance of cranes and other equipment, and to set up the rail system used to move large pieces of equipment and shipping casks into and out of the airlock. Transfers of equipment and materials from the hot cells in the complex to the airlock are required to allow dose profiles of waste containers, shuffling of waste containers to allow grouting activities to go on, and to allow maintenance of in-cell cranes. Both DOE and the Pacific Northwest Laboratory (PNL) are currently investing in state-of-the-art decontamination equipment. Challenging goals for exposure reduction were established for several broad areas of activity. Exposure estimates and goals developed from these scheduled activities will be compared against actual exposures for scheduled and unscheduled activities that contributed to exposures received by personnel throughout the year. Included in this report are life cycle exposure estimates by calendar year for the B-Cell Cleanout project, a three-year estimate of exposures associated with Surveillance and Maintenance, and known activities for Calendar Year (CY) 1995 associated with several smaller projects. These reports are intended to provide a foundation for future dose estimates, by year, requiring updating as exposure conditions change or new avenues of approach to performing work are developed.

  10. Biological dosimetry in radiological protection: dose response curves elaboration for 60Co and 137Cs

    International Nuclear Information System (INIS)

    Silva, Marcia Augusta da

    1997-01-01

    Ionizing radiation sources for pacific uses are being extensively utilized by modern society and the applications of these sources have raised the probability of the occurrence of accidents. The accidental exposition to radiation creates a necessity of the development of methods to evaluate dose quantity. This data could be obtained by the measurement of damage caused by radiation in the exposed person. The radiation dose can be estimated in exposed persons through physical methods (physical dosimetry) but the biological methods can't be dispensed, and among them, the cytogenetic one that makes use of chromosome aberrations (dicentric and centric ring) formed in peripheral blood lymphocytes (PBL) exposed to ionizing radiation. This method correlates the frequency of radioinduced aberrations with the estimated absorbed dose, as in vitro as in vivo, which is called cytogenetic dosimetry. By the introduction of improved new techniques in culture, in the interpretation of aberrations in the different analysers of slides and by the adoption of different statistical programs to analyse the data, significant differences are observed among laboratories in dose-response curves (calibration curves). The estimation of absorbed dose utilizing other laboratory calibration curves may introduce some uncertainties, so the International Atomic Energy Agency (IAEA) advises that each laboratory elaborates your own dose-response curve for cytogenetic dosimetry. The results were obtained from peripheral blood lymphocytes of the healthy and no-smoking donors exposed to 60 Co and 137 Cs radiation, with dose rate of 5 cGy.min. -1 . Six points of dose were determined 20,50,100,200,300,400 cGy and the control not irradiated. The analysed aberrations were of chromosomic type, dicentric and centric ring. The dose response curve for dicentrics were obtained by frequencies weighted in liner-quadratic mathematic model and the equation resulted were for 60 Co: Y = (3 46 +- 2.14)10 -4 cGy -1 + (3

  11. Towards biologically conformal radiation therapy (BCRT): Selective IMRT dose escalation under the guidance of spatial biology distribution

    International Nuclear Information System (INIS)

    Yang Yong; Xing Lei

    2005-01-01

    It is well known that the spatial biology distribution (e.g., clonogen density, radiosensitivity, tumor proliferation rate, functional importance) in most tumors and sensitive structures is heterogeneous. Recent progress in biological imaging is making the mapping of this distribution increasingly possible. The purpose of this work is to establish a theoretical framework to quantitatively incorporate the spatial biology data into intensity modulated radiation therapy (IMRT) inverse planning. In order to implement this, we first derive a general formula for determining the desired dose to each tumor voxel for a known biology distribution of the tumor based on a linear-quadratic model. The desired target dose distribution is then used as the prescription for inverse planning. An objective function with the voxel-dependent prescription is constructed with incorporation of the nonuniform dose prescription. The functional unit density distribution in a sensitive structure is also considered phenomenologically when constructing the objective function. Two cases with different hypothetical biology distributions are used to illustrate the new inverse planning formalism. For comparison, treatments with a few uniform dose prescriptions and a simultaneous integrated boost are also planned. The biological indices, tumor control probability (TCP) and normal tissue complication probability (NTCP), are calculated for both types of plans and the superiority of the proposed technique over the conventional dose escalation scheme is demonstrated. Our calculations revealed that it is technically feasible to produce deliberately nonuniform dose distributions with consideration of biological information. Compared with the conventional dose escalation schemes, the new technique is capable of generating biologically conformal IMRT plans that significantly improve the TCP while reducing or keeping the NTCPs at their current levels. Biologically conformal radiation therapy (BCRT

  12. The role of dose inhomogeneity in biological models of dose response

    International Nuclear Information System (INIS)

    Crawford-Brown, D.J.

    1989-01-01

    The paper focuses on the semi-empirical functions proposed by NAS (1980), ICRP (1977), in which terms for initiation and cell killing appear. The extent is not to produce a new model of carcinogenesis, or to reanalyse existing epidemiological data, but to explore whether an existing extrapolation function (proposed by the NAS) can be shown to have coherent theoretical support, while at the same time reproducing (however reasonably) the features of epidemiological data. Attention is restricted to irradiation by high LET radiations such as alpha particles, which may produce large inhomogeneities in both emission density and dose in cellular populations. Particular interest is directed towards epidemiological studies of uranium miners (Hornung and Meinhardt, 1987) and persons injected with 224 Ra (Spiess and Mays, 1970), although the results of the radium dial studies are included since they are discussed in the NAS report. Both populations are characterized by large uncertainties in dose estimation (mean organ dose) and by highly inhomogeneous patterns of irradiation within a single organ (Arnold and Jee, 1959; Diel, 1978; Singh, Bennettee and Wrenn, 1987; Rowland and Marshall, 1959). (author)

  13. Influence of radioactive contaminants on absorbed dose estimates for radiopharmaceuticals

    International Nuclear Information System (INIS)

    Watson, E.E.; Stabin, M.G.

    1986-01-01

    Several popular radiopharmaceutical products contain low levels of radioactive contaminants. These contaminants increase the radiation absorbed dose to the patient without any increased benefit and, in some cases, with a decrease in image quality. The importance of a contaminant to the radiation dosimetry picture is a function of 1) the contaminant level, 2) the physical half-life of the contaminant, 3) the organ uptake and the biological half-time of the contaminant in the various body systems, and 4) the decay mode, energy, etc. of the contaminant. The general influence of these parameters is discussed in this paper; families of curves are included that reflect the changing importance of contaminant dosimetry with respect to the primary radionuclide as a function of these variables. Several specific examples are also given of currently used radiopharmaceutical products which can contain radioactive contaminants (I-123, In-111, Tl-201, Ir-191m, Rb-82, Au-195m). 7 references, 8 figures, 4 tables

  14. Radiation dose and biological effects to mouse testis from sodium 32P-phosphate

    International Nuclear Information System (INIS)

    Mian, T.A.; Glenn, H.J.; Haynie, T.P.; Meistrich, M.L.

    1982-01-01

    Radiation dose to mouse testis was estimated to be about 1.65 rad per μCi of intravenously injected 32 P. This high dose to the organ was due to the incorporation of this isotope into the macromolecules of the testis. Up to 30% of the total testis activity was in DNA molecules. Biologic effects on mouse testis from 32 P were determined by testis weight loss and the decrease in the number of sperm heads in the testis. Number of sperm heads reached a minimum of 1.3% of control 36 days after injection of 3.5 μCi/g body weight of 32 P. Significant decreases in sperm head counts were observed after as little as 0.2 μCi/g body weight of 32 P. (author)

  15. Low dose effects of ionizing radiations in in vitro and in vivo biological systems: a multi-scale approach study

    International Nuclear Information System (INIS)

    Antoccia, A.; Berardinelli, F.; Argazzi, E.; Balata, M.; Bedogni, R.

    2011-01-01

    Long-term biological effects of low-dose radiation are little known nowadays and its carcinogenic risk is estimated on the assumption that risk remains linearly proportional to the radiation dose down to low-dose levels. However in the last 20 years this hypothesis has gradually begun to seem in contrast with a huge collection of experimental evidences, which has shown the presence of plethora of non-linear phenomena (including hypersensitivity and induced radioresistance, adaptive response, and non-targeted phenomena like bystander effect and genomic instability) occurring after low-dose irradiation. These phenomena might imply a non-linear behaviour of cancer risk curves in the low-dose region and question the validity of the Linear No-Threshold (LNT) model currently used for cancer risk assessment through extrapolation from existing high-dose data. Moreover only few information is available regarding the effects induced on cryo preserved cells by multi-year background radiation exposure, which might induce a radiation-damage accumulation, due to the inhibition of cellular repair mechanisms. In this framework, the multi-year Excalibur (Exposure effects at low doses of ionizing radiation in biological culture) experiment, funded by INFN-CNS5, has undertaken a multi-scale approach investigation on the biological effects induced in in vitro and in vivo biological systems, in culture and cryo preserved conditions, as a function of radiation quality (X/γ-rays, protons, He-4 ions of various energies) and dose, with particular emphasis on the low-dose region and non-linear phenomena, in terms of different biological endpoints.

  16. SU-F-P-19: Fetal Dose Estimate for a High-Dose Fluoroscopy Guided Intervention Using Modern Data Tools

    Energy Technology Data Exchange (ETDEWEB)

    Moirano, J [University of Washington, Seattle, WA (United States)

    2016-06-15

    Purpose: An accurate dose estimate is necessary for effective patient management after a fetal exposure. In the case of a high-dose exposure, it is critical to use all resources available in order to make the most accurate assessment of the fetal dose. This work will demonstrate a methodology for accurate fetal dose estimation using tools that have recently become available in many clinics, and show examples of best practices for collecting data and performing the fetal dose calculation. Methods: A fetal dose estimate calculation was performed using modern data collection tools to determine parameters for the calculation. The reference point air kerma as displayed by the fluoroscopic system was checked for accuracy. A cumulative dose incidence map and DICOM header mining were used to determine the displayed reference point air kerma. Corrections for attenuation caused by the patient table and pad were measured and applied in order to determine the peak skin dose. The position and depth of the fetus was determined by ultrasound imaging and consultation with a radiologist. The data collected was used to determine a normalized uterus dose from Monte Carlo simulation data. Fetal dose values from this process were compared to other accepted calculation methods. Results: An accurate high-dose fetal dose estimate was made. Comparison to accepted legacy methods were were within 35% of estimated values. Conclusion: Modern data collection and reporting methods ease the process for estimation of fetal dose from interventional fluoroscopy exposures. Many aspects of the calculation can now be quantified rather than estimated, which should allow for a more accurate estimation of fetal dose.

  17. Radiation doses to patients in computed tomography including a ready reckoner for dose estimation

    International Nuclear Information System (INIS)

    Szendroe, G.; Axelsson, B.; Leitz, W.

    1995-11-01

    The radiation burden from CT-examinations is still growing in most countries and has reached a considerable part of the total from medical diagnostic x-ray procedures. Efforts for avoiding excess radiation doses are therefore especially well motivated within this field. A survey of CT-examination techniques practised in Sweden showed that standard settings for the exposure variables are used for the vast majority of examinations. Virtually no adjustments to the patient's differences in anatomy have been performed - even for infants and children on average the same settings have been used. The adjustment of the exposure variables to the individual anatomy offers a large potential of dose savings. Amongst the imaging parameters, a change of the radiation dose will primarily influence the noise. As a starting point it is assumed that, irrespective of the patient's anatomy, the same level of noise can be accepted for a certain diagnostic task. To a large extent the noise level is determined by the number of photons that are registered in the detector. Hence, for different patient size and anatomy, the exposure should be adjusted so that the same transmitted photon fluence is achieved. An appendix with a ready reckoner for dose estimation for CT-scanners used in Sweden is attached. 7 refs, 5 figs, 8 tabs

  18. Comparison in the determination of absorbed dose by biological and physical methods to patients in treatment of cardiac intervention

    International Nuclear Information System (INIS)

    Guerrero C, C.; Arceo M, C.

    2014-10-01

    The use of less invasive procedures, lower risk and quick recovery as cardiac intervention have proven to be an efficient alternative to reestablish the correct bloodstream of the patient. In this case the patient is subjected to values of absorbed dose above to which is subjected in a study with X-rays for medical diagnosis, and this can cause radiation injuries to the skin. The target organ, in this case can be exposed to doses of 2 Gy above. Different methods to estimate the dose were use, physical by Radiochromic film, as biological by dicentric analysis. Both methods provided additional information demonstrating thus the risk in the target organ and the patient. The most reliable biological indicator of exposure to ionizing radiation is the study of chromosomal aberrations, specifically dicentric in human lymphocytes. This test allowed establishing the exposure dose depending of the damage. (Author)

  19. Rapid detection of chromosome rearrangement in medical diagnostic X-ray workers by using fluorescence in situ hybridization and study on dose estimation

    International Nuclear Information System (INIS)

    Wang Zhiquan; Sun Yuanming; Li Jin

    1998-01-01

    Objective: Biological doses were estimated for medical diagnostic X-ray workers. Methods: Chromosome rearrangements in X-ray workers were analysed by fluorescence in situ hybridization (FISH) with composite whole chromosome paintings number 4 and number 7. Results: The frequency of translocation in medical diagnostic X-ray workers was much higher than that in control group (P<0.01). The biological doses to individual X-ray workers were calculated by their translocation frequency. The translocation frequencies of both FISH and G-banding were in good agreement. Conclusion: The biological doses to X-ray workers are estimated by FISH first when their dosimetry records are not documented

  20. Development of internal dose calculation model and the data base updated IDES (Internal Dose Estimation System)

    International Nuclear Information System (INIS)

    Hongo, Shozo; Yamaguchi, Hiroshi; Takeshita, Hiroshi; Iwai, Satoshi.

    1994-01-01

    A computer program named IDES is developed by BASIC language for a personal computer and translated to C language of engineering work station. The IDES carries out internal dose calculations described in ICRP Publication 30 and it installs the program of transformation method which is an empirical method to estimate absorbed fractions of different physiques from ICRP Referenceman. The program consists of three tasks: productions of SAF for Japanese including children, productions of SEE, Specific Effective Energy, and calculation of effective dose equivalents. Each task and corresponding data file appear as a module so as to meet future requirement for revisions of the related data. Usefulness of IDES is discussed by exemplifying the case that 5 age groups of Japanese intake orally Co-60 or Mn-54. (author)

  1. Chernobyl source term, atmospheric dispersion, and dose estimation

    International Nuclear Information System (INIS)

    Gudiksen, P.H.; Harvey, T.F.; Lange, R.

    1988-02-01

    The Chernobyl source term available for long-range transport was estimated by integration of radiological measurements with atmospheric dispersion modeling, and by reactor core radionuclide inventory estimation in conjunction with WASH-1400 release fractions associated with specific chemical groups. These analyses indicated that essentially all of the noble gases, 80% of the radioiodines, 40% of the radiocesium, 10% of the tellurium, and about 1% or less of the more refractory elements were released. Atmospheric dispersion modeling of the radioactive cloud over the Northern Hemisphere revealed that the cloud became segmented during the first day, with the lower section heading toward Scandinavia and the uppper part heading in a southeasterly direction with subsequent transport across Asia to Japan, the North Pacific, and the west coast of North America. The inhalation doses due to direct cloud exposure were estimated to exceed 10 mGy near the Chernobyl area, to range between 0.1 and 0.001 mGy within most of Europe, and to be generally less than 0.00001 mGy within the US. The Chernobyl source term was several orders of magnitude greater than those associated with the Windscale and TMI reactor accidents, while the 137 Cs from the Chernobyl event is about 6% of that released by the US and USSR atmospheric nuclear weapon tests. 9 refs., 3 figs., 6 tabs

  2. Radiation dose estimates and hazard evaluations for inhaled airborne radionuclides: Final report

    International Nuclear Information System (INIS)

    Mewhinney, J.A.

    1987-09-01

    The project objective was to conduct confirmatory research on physical chemical characteristics of aerosols produced during manufacture of mixed plutonium and uranium oxide nuclear fuel, to determine the radiation dose distribution in tissues of animals after inhalation exposure to representative aerosols of these materials, and to provide estimates of the relationship of radiation dose and biological response in animals after such inhalation exposure. The first chapter summarizes the physical chemical characterization of samples of aerosols collected from gloveboxes at industrial facilities during normal operations. This chapter provides insights into key aerosol characteristics which are of potential importance in determining the biological fate of specific radionuclides contained in the particulates that would be inhaled by humans following accidental release. The second chapter describes the spatial and temporal distribution of radiation dose in tissues of three species of animals exposed to representative aerosols collected from the industrial facilities. These inhalation studies provide a basis for comparison of the influence of physical chemical form of the inhaled particulates and the variability among species of animal in the radiation dose to tissue. The third chapter details to relationship between radiation dose and biological response in rats exposed to two aerosol forms each at three levels of initial pulmonary burden. This study, conducted over the lifespan of the rats and assuming results to be applicable to humans, indicates that the hazard to health due to inhalation of these industrial aerosols is not different than previously determined for laboratory produced aerosol of PuO 2 . Each chapter is processed separately for the data base

  3. Doses and risk estimates to the human conceptus due to internal prenatal exposure to radioactive caesium

    International Nuclear Information System (INIS)

    Kalef-Ezra, J.A.

    1997-01-01

    The 1986 nuclear reactor accident at Chernobyl resulted in widespread internal contamination by radioactive caesium. The aim of the present study was to estimate the doses to embryos/fetus in Greece attributed to maternal 134 Cs and 137 Cs intake and the consequent health risks to their offspring. In pregnant women the concentration of total-body caesium (TBCs) was lower than in age-matched non-pregnant women measured during the same month. A detailed study of intake and retention in the members of one family carried out during the three years that followed the accident indicated that the biological half-time of caesium in the women decreased by a factor of two shortly after conception. Then at partus, there was an increase in the biological half-time, reaching a value similar to that before conception. The total-body potassium concentration was constant over the entire period. Doses to the embryo/fetus due to maternal intake was estimated to be about 150 μGy maximally in those conceived between November 1986 and March 1987. When conception took place later, the prenatal dose followed an exponential reduction with a half-time of about 170 d. These prenatal doses do not exceed the doses from either the natural internal potassium, or from the usual external background sources. The risks attributed to maternal 134 Cs and 137 Cs intake were considerably lower than levels that would justify consideration of termination of a pregnancy. In the absence of these data however, 2500 otherwise wanted pregnancies in Greece were terminated following the Chernobyl accident. (author)

  4. Aspects of pre-dose and other luminescence phenomena in quartz absorbed dose estimation

    International Nuclear Information System (INIS)

    Adamiec, G.

    2000-01-01

    The understanding of all luminescence processes occurring in quartz is of paramount importance in the further development of robust absorbed dose estimation techniques (for the purpose of dating and retrospective dosimetry). The findings presented in this thesis, aid future improvements of absorbed dose estimation techniques using quartz by presenting investigations in the following areas: 1) interpretation of measurement results, 2) numerical modelling of luminescence in quartz, 3) phenomena needing inclusion in future physical models of luminescence. In the first part, the variability of properties of single quartz grains is examined. Through empirical and theoretical considerations, investigations are made of various problems of measurements of luminescence using multi-grain aliquots, and specifically areas where the heterogeneity of the sample at the inter-grain level may be misinterpreted at the multi-grain-aliquot level. The results obtained suggest that the heterogeneity of samples is often overlooked, and that such differences can have a profound influence on the interpretation of measurement results. Discussed are the shape of TL glow curves, OSL decay curves, dose response curves (including consequences for using certain signals as proxies for others), normalisation procedures and D E estimation techniques. Further, a numerical model of luminescence is proposed, which includes multiple R-centres and is used to describe the pre-dose sensitisation in quartz. The numerical model exhibits a broad-scale behaviour observed experimentally in a sample of annealed quartz. The shapes of TAC for lower (20 Gy) and higher doses (1 kGy) and the evolution with temperature of the isothermal sensitisation curves are qualitatively matched for the empirical and numerical systems. In the third area, a preliminary investigation of the properties of the '110 deg. C peak' in the 550 nm emission band, in annealed quartz is presented. These properties are in sharp contrast with

  5. An estimate of cosmic dose component around Kudankulam site

    International Nuclear Information System (INIS)

    Vijayakumar, B.; Thomas, G.; Rajan, P.S.; Selvi, B.S.; Balamurugan, M.; Ravi, P.M.; Tripathi, R.M.

    2015-01-01

    Natural ionizing radiation pervades the whole environment and enters human lives in a wide variety of ways. It arises from natural processes such as the decay of terrestrially deposited radionuclides in the earth, and artificial processes like the use of X-rays in medicine. Thus, radiation can be classified as natural and artificial depending on its origin. Natural sources include cosmic rays, terrestrial gamma radiation, radon and its decay products in air and various radio nuclides found naturally in food and drink. Cosmic rays reach the earth from outer space. Artificial sources include medical X-rays, therapeutic use of radioisotopes, fallout from past weapon tests, discharges from nuclear industry, industrial gamma rays and use of radioisotopes in consumer products. This paper attempts to estimate the natural cosmic dose component around Kudankulam Nuclear Power Plant site in the south eastern coast of India. (author)

  6. Use of doubling doses for the estimation of genetic risks

    International Nuclear Information System (INIS)

    Searle, A.G.

    1977-01-01

    Doubling dose estimates derived from radiation experiments in mice are proving of great value for the assessment of genetic hazards to man from extra radiation exposure because they allow the latest information on mutation frequencies and the incidence of genetic disease in man to be used in the assessment process. The similarity in spectra of 'spontaneous' and induced mutations increases coincidence in the validity of this approach. Data on rates of induction of dominant and recessive mutations, translocations and X-chromosome loss are used to derive doubling doses for chronic exposures to both low and high-LET radiations. Values for γ and X-rays, derived from both male and female germ-cells, fall inside a fairly small range and it is felt that the use of an overall figure of 100 rads is justifiable for protection purposes. Values for neutrons and α-particles, obtained from male germ-cells, varied according to neutron energy etc. but clustered around a value of 5 rads for fission neutrons

  7. Estimation of effective dose from radionuclides contained in misch metal

    International Nuclear Information System (INIS)

    Furuta, Etsuko; Aburai, Tamaru; Nisizawa, Kunihide

    2003-01-01

    Radionuclides contained in three kinds of misch metal products and two kinds of ingots were analyzed using a Ge (Li) semiconductor detector. Lanthanum-138 ( 138 La) and several daughter nuclides derived from thorium and uranium series were detected in all samples. All misch metal products and ingots were determined to be radioactive consumer products (RCP), although they have not been regarded as RCP in Japan. 138 La showed the highest nuclide content rate of all the radionuclides, and the lanthanum metal ingots displayed the highest specific activity at 720 mBq·g -1 . The maximum external effective dose was estimated to be at 3.7 mSv when a metal match was carried for 8,760 hours at 1 mm from the skin. The calculated effective dose under some conditions exceeded 10 μSv per year. This value corresponded to the exemption standard proposed by the UK's National Radiological Protection Board. Individuals working with large amounts of RCP should be appropriately protected. (author)

  8. Combining Radiation Epidemiology With Molecular Biology-Changing From Health Risk Estimates to Therapeutic Intervention.

    Science.gov (United States)

    Abend, Michael; Port, Matthias

    2016-08-01

    The authors herein summarize six presentations dedicated to the key session "molecular radiation epidemiology" of the ConRad meeting 2015. These presentations were chosen in order to highlight the promise when combining conventional radiation epidemiology with molecular biology. Conventional radiation epidemiology uses dose estimates for risk predictions on health. However, combined with molecular biology, dose-dependent bioindicators of effect hold the promise to improve clinical diagnostics and to provide target molecules for potential therapeutic intervention. One out of the six presentations exemplified the use of radiation-induced molecular changes as biomarkers of exposure by measuring stabile chromosomal translocations. The remaining five presentations focused on molecular changes used as bioindicators of the effect. These bioindicators of the effect could be used for diagnostic purposes on colon cancers (genomic instability), thyroid cancer (CLIP2), or head and neck squamous cell cancers. Therapeutic implications of gene expression changes were examined in Chernobyl thyroid cancer victims and Mayak workers.

  9. A kinematic model to estimate effective dose of radioactive substances in a human body

    Science.gov (United States)

    Sasaki, S.; Yamada, T.

    2013-05-01

    The great earthquake occurred in the north-east area in Japan in March 11, 2011. Facility system to control Fukushima Daiichi nuclear power station was completely destroyed by the following giant tsunami. From the damaged reactor containment vessels, an amount of radioactive substances had leaked and diffused in the vicinity of this station. Radiological internal exposure became a serious social issue both in Japan and all over the world. The present study provides an easily understandable, kinematic-based model to estimate the effective dose of radioactive substances in a human body by simplifying the complicated mechanism of metabolism. International Commission on Radiological Protection (ICRP) has developed a sophisticated model, which is well-known as a standard method to calculate the effective dose for radiological protection. However, owing to that ICRP method is fine, it is rather difficult for non-professional people of radiology to gasp the whole images of the movement and the influences of radioactive substances in a human body. Therefore, in the present paper we propose a newly-derived and easily-understandable model to estimate the effective dose. The present method is very similar with the traditional and conventional tank model in hydrology. Ingestion flux of radioactive substances corresponds to rain intensity and the storage of radioactive substances to the water storage in a basin in runoff analysis. The key of the present method is to estimate the energy radiated in the radioactive nuclear disintegration of an atom by using classical theory of β decay and special relativity for various kinds of radioactive atoms. The parameters used in this model are only physical half-time and biological half-time, and there are no operational parameters or coefficients to adjust our theoretical runoff to ICRP. Figure shows the time-varying effective dose with ingestion duration, and we can confirm the validity of our model. The time-varying effective dose with

  10. Low doses of ionizing radiation: Biological effects and regulatory control. Invited papers and discussions. Proceedings of an international conference

    International Nuclear Information System (INIS)

    1998-01-01

    The levels and biological effects resulting from exposure to ionizing radiation are continuously reviewed by the United Nations Committee on the Effects of Atomic Radiation (UNSCEAR). Since its creation in 1928, the International Commission on Radiological Protection (ICRP) has issued recommendations on protection against ionizing radiation. The UNSCEAR estimates and the ICRP recommendations have served as the basis for national and international safety standards on radiation safety, including those developed by the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO). Concerning health effects of low doses of ionizing radiation, the international standards are based on the plausible assumption that, above the unavoidable background radiation dose, the probability of effects increases linearly with dose, i.e. on a 'linear, no threshold' (LNT) assumption. However, in recent years the biological estimates of health effects of low doses of ionizing radiation and the regulatory approach to the control of low level radiation exposure have been much debated. To foster information exchange on the relevant issues, an International Conference on Low Doses of Ionizing Radiation: Biological Effects and Regulatory Control, jointly sponsored by the IAEA and WHO in co-operation with UNSCEAR, was held from 17-21 November 1997 at Seville, Spain. These Proceedings contain the invited special reports, keynote papers, summaries of discussions, session summaries and addresses presented at the opening and closing of the Conference

  11. Estimating skin sensitization potency from a single dose LLNA.

    Science.gov (United States)

    Roberts, David W

    2015-04-01

    Skin sensitization is an important aspect of safety assessment. The mouse local lymph node assay (LLNA) developed in the 1990 s is an in vivo test used for skin sensitization hazard identification and characterization. More recently a reduced version of the LLNA (rLLNA) has been developed as a means of identifying, but not quantifying, sensitization hazard. The work presented here is aimed at enabling rLLNA data to be used to give quantitative potency information that can be used, inter alia, in modeling and read-across approaches to non-animal based potency estimation. A probit function has been derived enabling estimation of EC3 from a single dose. This has led to development of a modified version of the rLLNA, whereby as a general principle the SI value at 10%, or at a lower concentration if 10% is not testable, is used to calculate the EC3. This version of the rLLNA has been evaluated against a selection of chemicals for which full LLNA data are available, and has been shown to give EC3 values in good agreement with those derived from the full LLNA. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Clinical applicability of biologically effective dose calculation for spinal cord in fractionated spine stereotactic body radiation therapy

    International Nuclear Information System (INIS)

    Lee, Seung Heon; Lee, Kyu Chan; Choi, Jinho; Ahn, So Hyun; Lee, Seok Ho; Sung, Ki Hoon; Kil, Se Hee

    2015-01-01

    The aim of the study was to investigate whether biologically effective dose (BED) based on linear-quadratic model can be used to estimate spinal cord tolerance dose in spine stereotactic body radiation therapy (SBRT) delivered in 4 or more fractions. Sixty-three metastatic spinal lesions in 47 patients were retrospectively evaluated. The most frequently prescribed dose was 36 Gy in 4 fractions. In planning, we tried to limit the maximum dose to the spinal cord or cauda equina less than 50% of prescription or 45 Gy 2/2 . BED was calculated using maximum point dose of spinal cord. Maximum spinal cord dose per fraction ranged from 2.6 to 6.0 Gy (median 4.3 Gy). Except 4 patients with 52.7, 56.4, 62.4, and 67.9 Gy 2/2 , equivalent total dose in 2-Gy fraction of the patients was not more than 50 Gy 2/2 (12.1–67.9, median 32.0). The ratio of maximum spinal cord dose to prescription dose increased up to 82.2% of prescription dose as epidural spinal cord compression grade increased. No patient developed grade 2 or higher radiation-induced spinal cord toxicity during follow-up period of 0.5 to 53.9 months. In fractionated spine SBRT, BED can be used to estimate spinal cord tolerance dose, provided that the dose per fraction to the spinal cord is moderate, e.g. < 6.0 Gy. It appears that a maximum dose of up to 45–50 Gy 2/2 to the spinal cord is tolerable in 4 or more fractionation regimen

  13. Dose-stochastic radiobiological effect relationship in model of two reactions and estimation of radiation risk

    International Nuclear Information System (INIS)

    Komochkov, M.M.

    1997-01-01

    The model of dose-stochastic effect relationship for biological systems capable of self-defence under danger factor effect is developed. A defence system is realized in two forms of organism reaction, which determine innate μ n and adaptive μ a radiosensitivities. The significances of μ n are determined by host (inner) factors; and the significances of μ a , by external factors. The possibilities of adaptive reaction are determined by the coefficient of capabilities of the defence system. The formulas of the dose-effect relationship are the solutions of differential equations of assumed process in the defence system of organism. The model and formulas have been checked both at cell and at human levels. Based on the model and personal monitoring data, the estimation of radiation risk at the Joint Institute for Nuclear Research is done

  14. A theoretical approach to the problem of dose-volume constraint estimation and their impact on the dose-volume histogram selection

    International Nuclear Information System (INIS)

    Schinkel, Colleen; Stavrev, Pavel; Stavreva, Nadia; Fallone, B. Gino

    2006-01-01

    This paper outlines a theoretical approach to the problem of estimating and choosing dose-volume constraints. Following this approach, a method of choosing dose-volume constraints based on biological criteria is proposed. This method is called ''reverse normal tissue complication probability (NTCP) mapping into dose-volume space'' and may be used as a general guidance to the problem of dose-volume constraint estimation. Dose-volume histograms (DVHs) are randomly simulated, and those resulting in clinically acceptable levels of complication, such as NTCP of 5±0.5%, are selected and averaged producing a mean DVH that is proven to result in the same level of NTCP. The points from the averaged DVH are proposed to serve as physical dose-volume constraints. The population-based critical volume and Lyman NTCP models with parameter sets taken from literature sources were used for the NTCP estimation. The impact of the prescribed value of the maximum dose to the organ, D max , on the averaged DVH and the dose-volume constraint points is investigated. Constraint points for 16 organs are calculated. The impact of the number of constraints to be fulfilled based on the likelihood that a DVH satisfying them will result in an acceptable NTCP is also investigated. It is theoretically proven that the radiation treatment optimization based on physical objective functions can sufficiently well restrict the dose to the organs at risk, resulting in sufficiently low NTCP values through the employment of several appropriate dose-volume constraints. At the same time, the pure physical approach to optimization is self-restrictive due to the preassignment of acceptable NTCP levels thus excluding possible better solutions to the problem

  15. Optimizing CT radiation dose based on patient size and image quality: the size-specific dose estimate method

    Energy Technology Data Exchange (ETDEWEB)

    Larson, David B. [Stanford University School of Medicine, Department of Radiology, Stanford, CA (United States)

    2014-10-15

    The principle of ALARA (dose as low as reasonably achievable) calls for dose optimization rather than dose reduction, per se. Optimization of CT radiation dose is accomplished by producing images of acceptable diagnostic image quality using the lowest dose method available. Because it is image quality that constrains the dose, CT dose optimization is primarily a problem of image quality rather than radiation dose. Therefore, the primary focus in CT radiation dose optimization should be on image quality. However, no reliable direct measure of image quality has been developed for routine clinical practice. Until such measures become available, size-specific dose estimates (SSDE) can be used as a reasonable image-quality estimate. The SSDE method of radiation dose optimization for CT abdomen and pelvis consists of plotting SSDE for a sample of examinations as a function of patient size, establishing an SSDE threshold curve based on radiologists' assessment of image quality, and modifying protocols to consistently produce doses that are slightly above the threshold SSDE curve. Challenges in operationalizing CT radiation dose optimization include data gathering and monitoring, managing the complexities of the numerous protocols, scanners and operators, and understanding the relationship of the automated tube current modulation (ATCM) parameters to image quality. Because CT manufacturers currently maintain their ATCM algorithms as secret for proprietary reasons, prospective modeling of SSDE for patient populations is not possible without reverse engineering the ATCM algorithm and, hence, optimization by this method requires a trial-and-error approach. (orig.)

  16. Biological effects of radiation and estimation of risk to radiation workers

    International Nuclear Information System (INIS)

    Murthy, M.S.S.

    1987-01-01

    The biological effects of radiation have three stages: physical, chemical and biological. A precise mathematical description of biological effects and of one-to-one correspondence between the initial energy absorption and final effect has not been possible, because several factors are involved in biological effects and their manifestation period varies from less than one second to several years. The mechanism of biological radiation effects is outlined. The two groups of these effects are (1) immediate and (2) delayed. The main aim of radiation protection programme is to eliminate the risk of non-stochastic effects to an acceptable level. The mean annual dose for 30,000 radiation workers in India is 2.7 m Sv. Estimated risk of fatal cancer from this dose is about 50 cases of cancer per year per million workers which is well below the ICRP standard for safe occupation stipulated at fatality rate less than or equal to 100 per year per milion workers. When compared with risk in other occupations, the risk to radiation workers is much less. (M.G.B.)

  17. Spatial accuracy of 3D reconstructed radioluminographs of serial tissue sections and resultant absorbed dose estimates

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, I.A.; Flynn, A.A.; Pedley, R.B.; Green, A.J.; El-Emir, E.; Dearling, J.L.J.; Boxer, G.M.; Boden, R.; Begent, R.H.J. [Cancer Research UK Targeting and Imaging Group, Department of Oncology, Royal Free and University College Medical School, Royal Free Campus, London (United Kingdom)

    2002-10-21

    Many agents using tumour-associated characteristics are deposited heterogeneously within tumour tissue. Consequently, tumour heterogeneity should be addressed when obtaining information on tumour biology or relating absorbed radiation dose to biological effect. We present a technique that enables radioluminographs of serial tumour sections to be reconstructed using automated computerized techniques, resulting in a three-dimensional map of the dose-rate distribution of a radiolabelled antibody. The purpose of this study is to assess the reconstruction accuracy. Furthermore, we estimate the potential error resulting from registration misalignment, for a range of beta-emitting radionuclides. We compare the actual dose-rate distribution with that obtained from the same activity distribution but with manually defined translational and rotational shifts. As expected, the error produced with the short-range {sup 14}C is much larger than that for the longer range {sup 90}Y; similarly values for the medium range {sup 131}I are between the two. Thus, the impact of registration inaccuracies is greater for short-range sources. (author)

  18. Isoeffective dose: a concept for biological weighting of absorbed dose in proton and heavier-ion therapies

    CERN Document Server

    Wambersie, A; Menzel, H G; Gahbauer, R; DeLuca, P M; Hendry, J H; Jones, D T L

    2011-01-01

    When reporting radiation therapy procedures, International Commission on Radiation Units and Measurements (ICRU) recommends specifying absorbed dose at/in all clinically relevant points and/or volumes. In addition, treatment conditions should be reported as completely as possible in order to allow full understanding and interpretation of the treatment prescription. However, the clinical outcome does not only depend on absorbed dose but also on a number of other factors such as dose per fraction, overall treatment time and radiation quality radiation biology effectiveness (RBE). Therefore, weighting factors have to be applied when different types of treatments are to be compared or to be combined. This had led to the concept of `isoeffective absorbed dose', introduced by ICRU and International Atomic Energy Agency (IAEA). The isoeffective dose D(IsoE) is the dose of a treatment carried out under reference conditions producing the same clinical effects on the target volume as those of the actual treatment. It i...

  19. Biological effects in lymphocytes irradiated with 99mTc: determination of the curve dose-response

    International Nuclear Information System (INIS)

    Oliveira, Romero Marcilio Barros Matias de

    2002-08-01

    Biological dosimetry estimates the absorbed dose taking into account changes in biological parameters. The most used biological indicator of an exposition to ionizing radiation is the quantification of chromosomal aberrations of lymphocytes from irradiated individuals. The curves of dose versus induced biological effects, obtained through bionalyses, are used in used in retrospective evaluations of the dose, mainly in the case of accidents. In this research, a simple model for electrons and photons transports was idealized to simulate the irradiation of lymphocytes with 99m Tc, representing a system used for irradiation of blood cells. The objective of the work was to establish a curve of dose versus frequencies of chromosomal aberrations in lymphocytes of human blood. For the irradiation of blood samples micro spheres of human serum of albumin (HSAM) market with 99m Tc were used, allowing the irradiation of blood with different administered activities of 99m Tc, making possible the study the cytogenetical effects as a function of such activities. The conditions of irradiation in vivo using HSAM spheres marked with 99m Tc were simulated with MCNP 4C (Monte Carlo N-Particle) code to obtain the dose-response curve. Soft tissue composition was employed to simulate blood tissue and the analyses of the curve of dose versus biological effect showed a linear quadratic response of the unstable chromosomal aberrations. As a result, the response of dose versus chromosomal aberrations of blood irradiation with 99m Tc was best fitted by the curve Y=(8,99 ±2,06) x 1- -4 + (1,24 ±0,62) x 10 -2 D + (5,67 ± 0,64) x 10 -2 D 2 . (author)

  20. Radioactivity levels of basic foodstuffs and dose estimates in Sudan

    International Nuclear Information System (INIS)

    Hemada, H. E. F.

    2009-03-01

    In this work a comprehensive study was carried out for the determination of different radionuclides activities in foodstuff consumed and evaluation of dose levels in different food stuffs were collected from eight States in Sudan (cereals, vegetables, meat, fruits, milk, and fermented milk, baby milk, cans, spices, additives, others). The concentrations of different radionuclides in the food samples were determined by gamma spectrometry using an HPGe detector. Radionuclides observed include: Bi-212, Bi-214, Cs-134, Cs-137, K-40, Pb-212, Pb-214, Ra-224, Ra-226, Th-228, Ac-228, TI-208, Th-232, and U-238. The activity concentration of these radionuclides were found in the following ranges: 0.51 - 19.42 Bq/Kg, 0.47 - 12.13 Bq/kg, 0.5 - 1.29 Bq/kg, 0.001 - 3.41 Bq/kg, 19.25 -2521.82 Bq/kg, 0.08 - 6.84 Bq/kg, 0.02 - 6.87 Bq/kg, 6.08 - 32.02 Bq/kg, 0.03 - 21. 53 Bq/kg, 0.92 - 26.77 Bq/kg, 0.91 - 1200 Bq/kg, 0.14 - 2.58 Bq/Kg, 0.03 - 9.65 Bq/kg, 0.03 - 9.65 Bq/kg and 0.82 - 5.27 Bq/kg respectively. High concentrations were typically found in portulaca, the lowest concentrations were found in barley and bread additives. The annual effective dose due to the different foodstuff estimated was found to be 2.78±0.44 mSv/y and 1.18±mSv/y for age categories 7-12 y and> 17y respectively. (Author)

  1. Somatic cell genetics of uranium miners and plutonium workers. A biological dose-response indicator

    International Nuclear Information System (INIS)

    Brandom, W.F.; Bloom, A.D.; Bistline, R.W.; Saccomanno, G.

    1978-01-01

    Two populations of underground uranium miners and plutonium workers work in the state of Colorado, United States of America. We have explored the prevalence of structural chromosome aberrations in peripheral blood lymphocytes as a possible biological indicator of absorbed radiation late-effects in these populations. The uranium miners are divided into four exposure groups expressed in Working Level Months (WLM), the plutonium workers into six groups with estimated 239 Pu burdens expressed in nCi. Comparison of chromosome aberration frequency data between controls, miners, and plutonium workers demonstrate: (1) a cytogenetic response to occupational ionizing radiation at low estimated doses; and (2) an increasing monotonic dose-response in the prevalence of complex (all exchange) or total aberrations in all exposure groups in these populations. We also compared trends in the prevalence of aberrations per exposure unit (WLM and nCi) in each exposure subgroup for each population. In the uranium miners, the effects per WLM seem to decrease monotonically with increasing dose, whereas in the Pu workers the change per nCi appears abrupt, with all exposure groups over 1.3 nCi (minimum detectable level) having essentially similar rates. The calculations of aberrations per respective current maximum permissible dose (120 WLM and 40 nCi) for the two populations yield 4.8 X 10 -2 /100 cells for uranium miners and 90.6 X 10 -2 /100 cells for Pu workers. Factors which may have influenced this apparent 20-fold increase in the effectiveness of plutonium in the production of complex aberrations (9-fold increase in total aberrations) are discussed. (author)

  2. Review of low dose-rate epidemiological studies and biological mechanisms of dose-rate effects on radiation induced carcinogenesis

    International Nuclear Information System (INIS)

    Iwasaki, Toshiyasu; Otsuka, Kensuke; Yoshida, Kazuo

    2015-01-01

    Radiation protection system adopts the linear non-threshold model with using dose and dose-rate effectiveness factor (DDREF). The dose-rate range where DDREF is applied is below 100 mGy per hour, and it is regarded that there are no dose-rate effects at very low dose rate, less than of the order of 10 mGy per year, even from the biological risk evaluation model based on cellular and molecular level mechanisms for maintenance of genetic integrity. Among low dose-rate epidemiological studies, studies of residents in high natural background areas showed no increase of cancer risks at less than about 10 mGy per year. On the other hand, some studies include a study of the Techa River cohort suggested the increase of cancer risks to the similar degree of Atomic bomb survivor data. The difference of those results was supposed due to the difference of dose rate. In 2014, International Commission on Radiological Protection opened a draft report on stem cell biology for public consultations. The report proposed a hypothesis based on the new idea of stem cell competition as a tissue level quality control mechanism, and suggested that it could explain the dose-rate effects around a few milligray per year. To verify this hypothesis, it would be needed to clarify the existence and the lowest dose of radiation-induced stem cell competition, and to elucidate the rate of stem cell turnover and radiation effects on it. As for the turnover, replenishment of damaged stem cells would be the important biological process. It would be meaningful to collect the information to show the difference of dose rates where the competition and the replenishment would be the predominant processes. (author)

  3. CY 1995 radiation dose reconciliation report and resulting CY 1996 dose estimate for the 324 nuclear facility

    International Nuclear Information System (INIS)

    Landsman, S.D.; Thornhill, R.E.; Peterson, C.A.

    1996-04-01

    In this report, the dose estimate for CY 1995 is reconciled by month wih actual doses received. Results of the reconciliation were used to revise estimates of worker dose for CY 1996. Resulting dose estimate for the facility is also included. Support for two major programs (B-Cell Cleanout and Surveillance and Maintenance) accounts for most of the exposure received by workers in the faility. Most of the expousre received by workers comes from work in the Radiochemical Engineering Complex airlock. In spite of schedule and work scope changes during CY 1995, dose estimates were close to actual exposures received. A number of ALARA measures were taken throughout the year; exposure reduction due to those was 20.6 Man-Rem, a 28% reduction from the CY 1995 estimate. Baseline estimates for various tasks in the facility were used to compile the CY 1996 dose estimate of 45.4 Man-Rem; facility goal for CY 1996 is to reduce worker dose by 20%, to 36.3 Man-Rem

  4. Quantitative analysis of biological responses to low dose-rate γ-radiation, including dose, irradiation time, and dose-rate

    International Nuclear Information System (INIS)

    Magae, J.; Furukawa, C.; Kawakami, Y.; Hoshi, Y.; Ogata, H.

    2003-01-01

    Full text: Because biological responses to radiation are complex processes dependent on irradiation time as well as total dose, it is necessary to include dose, dose-rate and irradiation time simultaneously to predict the risk of low dose-rate irradiation. In this study, we analyzed quantitative relationship among dose, irradiation time and dose-rate, using chromosomal breakage and proliferation inhibition of human cells. For evaluation of chromosome breakage we assessed micronuclei induced by radiation. U2OS cells, a human osteosarcoma cell line, were exposed to gamma-ray in irradiation room bearing 50,000 Ci 60 Co. After the irradiation, they were cultured for 24 h in the presence of cytochalasin B to block cytokinesis, cytoplasm and nucleus were stained with DAPI and propidium iodide, and the number of binuclear cells bearing micronuclei was determined by fluorescent microscopy. For proliferation inhibition, cells were cultured for 48 h after the irradiation and [3H] thymidine was pulsed for 4 h before harvesting. Dose-rate in the irradiation room was measured with photoluminescence dosimeter. While irradiation time less than 24 h did not affect dose-response curves for both biological responses, they were remarkably attenuated as exposure time increased to more than 7 days. These biological responses were dependent on dose-rate rather than dose when cells were irradiated for 30 days. Moreover, percentage of micronucleus-forming cells cultured continuously for more than 60 days at the constant dose-rate, was gradually decreased in spite of the total dose accumulation. These results suggest that biological responses at low dose-rate, are remarkably affected by exposure time, that they are dependent on dose-rate rather than total dose in the case of long-term irradiation, and that cells are getting resistant to radiation after the continuous irradiation for 2 months. It is necessary to include effect of irradiation time and dose-rate sufficiently to evaluate risk

  5. Comparison of internal radiation doses estimated by MIRD and voxel techniques for a ''family'' of phantoms

    International Nuclear Information System (INIS)

    Smith, T.

    2000-01-01

    The aim of this study was to use a new system of realistic voxel phantoms, based on computed tomography scanning of humans, to assess its ability to specify the internal dosimetry of selected human examples in comparison with the well-established MIRD system of mathematical anthropomorphic phantoms. Differences in specific absorbed fractions between the two systems were inferred by using organ dose estimates as the end point for comparison. A ''family'' of voxel phantoms, comprising an 8-week-old baby, a 7-year-old child and a 38-year-old adult, was used and a close match to these was made by interpolating between organ doses estimated for pairs of the series of six MIRD phantoms. Using both systems, doses were calculated for up to 22 organs for four radiopharmaceuticals with widely differing biodistribution and emission characteristics (technetium-99m pertechnetate, administered without thyroid blocking; iodine-123 iodide; indium-111 antimyosin; oxygen-15 water). Organ dose estimates under the MIRD system were derived using the software MIRDOSE 3, which incorporates specific absorbed fraction (SAF) values for the MIRD phantom series. The voxel system uses software based on the same dose calculation formula in conjunction with SAF values determined by Monte Carlo analysis at the GSF of the three voxel phantoms. Effective doses were also compared. Substantial differences in organ weights were observed between the two systems, 18% differing by more than a factor of 2. Out of a total of 238 organ dose comparisons, 5% differed by more than a factor of 2 between the systems; these included some doses to walls of the GI tract, a significant result in relation to their high tissue weighting factors. Some of the largest differences in dose were associated with organs of lower significance in terms of radiosensitivity (e.g. thymus). In this small series, voxel organ doses tended to exceed MIRD values, on average, and a 10% difference was significant when all 238 organ doses

  6. Biological effects of low-dose ionizing radiation exposure; Biologische Wirkungen niedriger Dosen ionisierender Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst (comps.)

    2009-07-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  7. Estimation of the fetal dose by dose measurement during an irradiation of a parotid tumor; Estimation de la dose foetale par mesure de dose lors d'une irradiation d'une tumeur de la parotide

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, V.; Graff-Cailleaud, P.; Peiffert, D. [Centre Alexis-Vautrin, 54 - Vandoeuvre-les-Nancy (France); Noel, A. [Institut National Polytechnique de Lorraine, CRAN CNRS UMR-7039, 54 - Vandoeuvre-les-Nancy (France)

    2006-11-15

    The irradiation of a five months pregnant patient has been made for a right parotid attack. In conformation with the legislative texts relative to radiation protection ( publication 84 of the ICRP) an estimation of the dose received for the fetus has been led by dose measurement on phantom. With the dose limit ( 100 mGy) recommended in the publication 84 of the ICRP neither modification of the treatment nor abortion was necessary. (N.C.)

  8. The D1 method: career dose estimation from a combination of historical monitoring data and a single year's dose data

    International Nuclear Information System (INIS)

    Sont, W.N.

    1995-01-01

    A method is introduced to estimate career doses from a combination of historical monitoring data and a single year's dose data. This method, called D1 eliminates the bias arising from incorporating historical dose data from times when occupational doses were generally much higher than they are today. Doses calculated by this method are still conditional on the preservation of the status quo in the effectiveness of radiation protection. The method takes into account the variation of the annual dose, and of the probability of being monitored, with the time elapsed since the start of a career. It also allows for the calculation of a standard error of the projected career dose. Results from recent Canadian dose data are presented. (author)

  9. Patterns of Care for Biologic-Dosing Outliers and Nonoutliers in Biologic-Naive Patients with Rheumatoid Arthritis.

    Science.gov (United States)

    Delate, Thomas; Meyer, Roxanne; Jenkins, Daniel

    2017-08-01

    Although most biologic medications for patients with rheumatoid arthritis (RA) have recommended fixed dosing, actual biologic dosing may vary among real-world patients, since some patients can receive higher (high-dose outliers) or lower (low-dose outliers) doses than what is recommended in medication package inserts. To describe the patterns of care for biologic-dosing outliers and nonoutliers in biologic-naive patients with RA. This was a retrospective, longitudinal cohort study of patients with RA who were not pregnant and were aged ≥ 18 and 110% of the approved dose in the package insert at any time during the study period. Baseline patient profiles, treatment exposures, and outcomes were collected during the 180 days before and up to 2 years after biologic initiation and compared across index biologic outlier groups. Patients were followed for at least 1 year, with a subanalysis of those patients who remained as members for 2 years. This study included 434 RA patients with 1 year of follow-up and 372 RA patients with 2 years of follow-up. Overall, the vast majority of patients were female (≈75%) and had similar baseline characteristics. Approximately 10% of patients were outliers in both follow-up cohorts. ETN patients were least likely to become outliers, and ADA patients were most likely to become outliers. Of all outliers during the 1-year follow-up, patients were more likely to be a high-dose outlier (55%) than a low-dose outlier (45%). Median 1- and 2-year adjusted total biologic costs (based on wholesale acquisition costs) were higher for ADA and ETA nonoutliers than for IFX nonoutliers. Biologic persistence was highest for IFX patients. Charlson Comorbidity Index score, ETN and IFX index biologic, and treatment with a nonbiologic disease-modifying antirheumatic drug (DMARD) before biologic initiation were associated with becoming high- or low-dose outliers (c-statistic = 0.79). Approximately 1 in 10 study patients with RA was identified as a

  10. Estimates of radiation doses from various sources of exposure

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter provides an overview of radiation doses to individuals and to the collective US population from various sources of ionizing radiation. Summary tables present doses from various sources of ionizing radiation. Summary tables present doses from occupational exposures and annual per capita doses from natural background, the healing arts, nuclear weapons, nuclear energy and consumer products. Although doses from non-ionizing radiation are not as yet readily available in a concise form, the major sources of non-ionizing radiation are listed

  11. Dose dependence on stochastic radiobiological effect in radiation risk estimation

    International Nuclear Information System (INIS)

    Komochkov, M.M.

    1999-01-01

    The analysis of the results in dose -- effect relationship observation has been carried out on the cell and organism levels, with the aim to obtain more precise data on the risk coefficients at low doses. The results are represented by two contrasting groups of dose dependence on effect: a downwards concave and a J-shaped curve. Both types of dependence are described by the equation solutions of an assumed unified protective mechanism, which comprises two components: constitutive and adaptive or inducible ones. The latest data analysis of the downwards concave dependence curves shows a considerable underestimation of radiation risk in all types of cancer, except leukemia, for a number of critical groups in a population, at low doses comparing to the ICRP recommendations. With the dose increase, the decrease of the effect value per dose unit is observed. It may be possibly related to the switching of the activity of the adaptive protective mechanism, with some threshold dose values being exceeded

  12. Biological influence from low dose and low-dose rate radiation

    International Nuclear Information System (INIS)

    Magae, Junji

    2007-01-01

    Although living organisms have defense mechanisms for radioadaptive response, the influence is considered to vary qualitatively and quantitatively for low dose and high dose, as well as for low-dose rate and high-dose rate. This article describes the bioresponse to low dose and low-dose rate. Among various biomolecules, DNA is the most sensitive to radiation, and accurate replication of DNA is an essential requirement for the survival of living organisms. Also, the influence of active enzymes resulted from the effect of radiation on enzymes in the body is larger than the direct influence of radiation on the body. After this, the article describes the carcinogenic risk by low-dose radiation, and then so-called Hormesis effect to create cancer inhibition effect by stimulating active physiology. (S.K.)

  13. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Science.gov (United States)

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos

    2010-09-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent™ x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  14. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos [Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, TX 78229 (United States); Cheng, Chih-Yao, E-mail: shic@uthscsa.ed [Radiation Oncology Department, Oklahoma University Health Science Center, Oklahoma, OK 73104 (United States)

    2010-09-21

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V{sub 100} reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as

  15. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    International Nuclear Information System (INIS)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos; Cheng, Chih-Yao

    2010-01-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V 100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  16. Use of normalized total dose to represent the biological effect of fractionated radiotherapy

    International Nuclear Information System (INIS)

    Flickinger, J.C.; Kalend, A.

    1990-01-01

    There are currently a number of radiobiological models to account for the effects of dose fractionation and time. Normalized total dose (NTD) is not another new model but is a previously reported, clinically useful form in which to represent the biological effect, determined by any specific radiobiological dose-fractionation model, of a course of radiation using a single set of standardized, easily understood terminology. The generalized form of NTD reviewed in this paper describes the effect of a course of radiotherapy administered with nonstandard fractionation as the total dose of radiation in Gy that could be administered with a given reference fractionation such as 2 Gy per fraction, 5 fractions per week that would produce an equivalent biological effect (probability of complications or tumor control) as predicted by a given dose-fractionation formula. The use of normalized total dose with several different exponential and linear-quadratic dose-fraction formulas is presented. (author). 51 refs.; 1 fig.; 1 tab

  17. Use of normalized total dose to represent the biological effect of fractionated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Flickinger, J C; Kalend, A [Pittsburgh University School of Medicine (USA). Department of Radiation Oncology Pittsburg Cancer Institute (USA)

    1990-03-01

    There are currently a number of radiobiological models to account for the effects of dose fractionation and time. Normalized total dose (NTD) is not another new model but is a previously reported, clinically useful form in which to represent the biological effect, determined by any specific radiobiological dose-fractionation model, of a course of radiation using a single set of standardized, easily understood terminology. The generalized form of NTD reviewed in this paper describes the effect of a course of radiotherapy administered with nonstandard fractionation as the total dose of radiation in Gy that could be administered with a given reference fractionation such as 2 Gy per fraction, 5 fractions per week that would produce an equivalent biological effect (probability of complications or tumor control) as predicted by a given dose-fractionation formula. The use of normalized total dose with several different exponential and linear-quadratic dose-fraction formulas is presented. (author). 51 refs.; 1 fig.; 1 tab.

  18. Estimation of biological effects of phytocenosis radioactive contamination

    International Nuclear Information System (INIS)

    Suvorova, L.I.; Smirnov, E.G.; Shejn, G.N.

    1990-01-01

    Biological effects of argicultural field contamination in the Chernobyl NPP 30-km zone in the period of 1986-1988 are studies. Depth of some kings of herbs is noted in spite of natural phytocenosis high stability. It is revealed that increased mutageneous effect is observed for seeds from phytocenosis subjected to radiation factor effects. The genetic radiation effects at cell level will be observed in the nearest years as the radiation factor will not disappear in the 30-km zone (chronic irradiation of plants in the dose range from 0.1x10 -4 up to 0.1 Gy/day). These injuries visually will not effect greatly on natural populations

  19. A phenomenological biological dose model for proton therapy based on linear energy transfer spectra.

    Science.gov (United States)

    Rørvik, Eivind; Thörnqvist, Sara; Stokkevåg, Camilla H; Dahle, Tordis J; Fjaera, Lars Fredrik; Ytre-Hauge, Kristian S

    2017-06-01

    The relative biological effectiveness (RBE) of protons varies with the radiation quality, quantified by the linear energy transfer (LET). Most phenomenological models employ a linear dependency of the dose-averaged LET (LET d ) to calculate the biological dose. However, several experiments have indicated a possible non-linear trend. Our aim was to investigate if biological dose models including non-linear LET dependencies should be considered, by introducing a LET spectrum based dose model. The RBE-LET relationship was investigated by fitting of polynomials from 1st to 5th degree to a database of 85 data points from aerobic in vitro experiments. We included both unweighted and weighted regression, the latter taking into account experimental uncertainties. Statistical testing was performed to decide whether higher degree polynomials provided better fits to the data as compared to lower degrees. The newly developed models were compared to three published LET d based models for a simulated spread out Bragg peak (SOBP) scenario. The statistical analysis of the weighted regression analysis favored a non-linear RBE-LET relationship, with the quartic polynomial found to best represent the experimental data (P = 0.010). The results of the unweighted regression analysis were on the borderline of statistical significance for non-linear functions (P = 0.053), and with the current database a linear dependency could not be rejected. For the SOBP scenario, the weighted non-linear model estimated a similar mean RBE value (1.14) compared to the three established models (1.13-1.17). The unweighted model calculated a considerably higher RBE value (1.22). The analysis indicated that non-linear models could give a better representation of the RBE-LET relationship. However, this is not decisive, as inclusion of the experimental uncertainties in the regression analysis had a significant impact on the determination and ranking of the models. As differences between the models were

  20. Biological effects of very low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Evseev, V.S.

    1987-01-01

    The paper deals with a qualitative microdosimetric analysis of a new radiobiological phenomenon (physiological reaction of the cell as a whole to very low doses of ionizing radiations). The analysis is aimed at identifying the type of the primary interaction of radiation with the cell and finding its place in the cell

  1. Biological effects of low doses of radiation at low dose rate

    International Nuclear Information System (INIS)

    1996-05-01

    The purpose of this report was to examine available scientific data and models relevant to the hypothesis that induction of genetic changes and cancers by low doses of ionizing radiation at low dose rate is a stochastic process with no threshold or apparent threshold. Assessment of the effects of higher doses of radiation is based on a wealth of data from both humans and other organisms. 234 refs., 26 figs., 14 tabs

  2. Radiobiological impact of dose calculation algorithms on biologically optimized IMRT lung stereotactic body radiation therapy plans

    International Nuclear Information System (INIS)

    Liang, X.; Penagaricano, J.; Zheng, D.; Morrill, S.; Zhang, X.; Corry, P.; Griffin, R. J.; Han, E. Y.; Hardee, M.; Ratanatharathom, V.

    2016-01-01

    The aim of this study is to evaluate the radiobiological impact of Acuros XB (AXB) vs. Anisotropic Analytic Algorithm (AAA) dose calculation algorithms in combined dose-volume and biological optimized IMRT plans of SBRT treatments for non-small-cell lung cancer (NSCLC) patients. Twenty eight patients with NSCLC previously treated SBRT were re-planned using Varian Eclipse (V11) with combined dose-volume and biological optimization IMRT sliding window technique. The total dose prescribed to the PTV was 60 Gy with 12 Gy per fraction. The plans were initially optimized using AAA algorithm, and then were recomputed using AXB using the same MUs and MLC files to compare with the dose distribution of the original plans and assess the radiobiological as well as dosimetric impact of the two different dose algorithms. The Poisson Linear-Quadatric (PLQ) and Lyman-Kutcher-Burman (LKB) models were used for estimating the tumor control probability (TCP) and normal tissue complication probability (NTCP), respectively. The influence of the model parameter uncertainties on the TCP differences and the NTCP differences between AAA and AXB plans were studied by applying different sets of published model parameters. Patients were grouped into peripheral and centrally-located tumors to evaluate the impact of tumor location. PTV dose was lower in the re-calculated AXB plans, as compared to AAA plans. The median differences of PTV(D 95% ) were 1.7 Gy (range: 0.3, 6.5 Gy) and 1.0 Gy (range: 0.6, 4.4 Gy) for peripheral tumors and centrally-located tumors, respectively. The median differences of PTV(mean) were 0.4 Gy (range: 0.0, 1.9 Gy) and 0.9 Gy (range: 0.0, 4.3 Gy) for peripheral tumors and centrally-located tumors, respectively. TCP was also found lower in AXB-recalculated plans compared with the AAA plans. The median (range) of the TCP differences for 30 month local control were 1.6 % (0.3 %, 5.8 %) for peripheral tumors and 1.3 % (0.5 %, 3.4 %) for centrally located tumors. The lower

  3. Dose prescription complexity versus tumor control probability in biologically conformal radiotherapy

    International Nuclear Information System (INIS)

    South, C. P.; Evans, P. M.; Partridge, M.

    2009-01-01

    The technical feasibility and potential benefits of voxel-based nonuniform dose prescriptions for biologically heterogeneous tumors have been widely demonstrated. In some cases, an ''ideal'' dose prescription has been generated by individualizing the dose to every voxel within the target, but often this voxel-based prescription has been discretized into a small number of compartments. The number of dose levels utilized and the methods used for prescribing doses and assigning tumor voxels to different dose compartments have varied significantly. The authors present an investigation into the relationship between the complexity of the dose prescription and the tumor control probability (TCP) for a number of these methods. The linear quadratic model of cell killing was used in conjunction with a number of modeled tumors heterogeneous in clonogen density, oxygenation, or proliferation. Models based on simple mathematical functions, published biological data, and biological image data were investigated. Target voxels were assigned to dose compartments using (i) simple rules based on the initial biological distribution, (ii) iterative methods designed to maximize the achievable TCP, or (iii) methods based on an ideal dose prescription. The relative performance of the simple rules was found to depend on the form of heterogeneity of the tumor, while the iterative and ideal dose methods performed comparably for all models investigated. In all cases the maximum achievable TCP was approached within the first few (typically two to five) compartments. Results suggest that irrespective of the pattern of heterogeneity, the optimal dose prescription can be well approximated using only a few dose levels but only if both the compartment boundaries and prescribed dose levels are well chosen.

  4. Simple approximation for estimating centerline gamma absorbed dose rates due to a continuous Gaussian plume

    International Nuclear Information System (INIS)

    Overcamp, T.J.; Fjeld, R.A.

    1987-01-01

    A simple approximation for estimating the centerline gamma absorbed dose rates due to a continuous Gaussian plume was developed. To simplify the integration of the dose integral, this approach makes use of the Gaussian cloud concentration distribution. The solution is expressed in terms of the I1 and I2 integrals which were developed for estimating long-term dose due to a sector-averaged Gaussian plume. Estimates of tissue absorbed dose rates for the new approach and for the uniform cloud model were compared to numerical integration of the dose integral over a Gaussian plume distribution

  5. Effective dose estimation to patients and staff during urethrography procedures

    International Nuclear Information System (INIS)

    Sulieman, A.; Barakat, H.; Alkhorayef, M.; Babikir, E.; Dalton, A.; Bradley, D.

    2015-10-01

    Medical-related radiation is the largest source of controllable radiation exposure to humans and it accounts for more than 95% of radiation exposure from man-made sources. Few data were available worldwide regarding patient and staff dose during urological ascending urethrography (ASU) procedure. The purposes of this study are to measure patient and staff entrance surface air kerma dose (ESAK) during ASU procedure and evaluate the effective doses. A total of 243 patients and 145 staff (Urologist) were examined in three Hospitals in Khartoum state. ESAKs were measured for patient and staff using thermoluminescent detectors (TLDs). Effective doses (E) were calculated using published conversion factors and methods recommended by the national Radiological Protection Board (NRPB). The mean ESAK dose for patients and staff dose were 7.79±6.7 mGy and 0.161±0.30 mGy per procedures respectively. The mean and range of the effective dose was 1.21 mSv per procedure. The radiation dose in this study is comparable with previous studies except Hospital C. It is obvious that high patient and staff exposure is due to the lack of experience and protective equipment s. Interventional procedures remain operator dependent; therefore continuous training is crucial. (Author)

  6. Effective dose estimation to patients and staff during urethrography procedures

    Energy Technology Data Exchange (ETDEWEB)

    Sulieman, A. [Prince Sattam bin Abdulaziz University, College of Applied Medical Sciences, Radiology and Medical Imaging Department, P. O- Box 422, Alkharj 11942 (Saudi Arabia); Barakat, H. [Neelain University, College of Science and Technology, Medical Physics Department, Khartoum (Sudan); Alkhorayef, M.; Babikir, E. [King Saud University, College of Applied Sciences, Radiological Sciences Department, P. O. Box 10219, Riyadh 11433 (Saudi Arabia); Dalton, A.; Bradley, D. [University of Surrey, Centre for Nuclear and Radiation Physics, Department of Physics, Surrey, GU2 7XH Guildford (United Kingdom)

    2015-10-15

    Medical-related radiation is the largest source of controllable radiation exposure to humans and it accounts for more than 95% of radiation exposure from man-made sources. Few data were available worldwide regarding patient and staff dose during urological ascending urethrography (ASU) procedure. The purposes of this study are to measure patient and staff entrance surface air kerma dose (ESAK) during ASU procedure and evaluate the effective doses. A total of 243 patients and 145 staff (Urologist) were examined in three Hospitals in Khartoum state. ESAKs were measured for patient and staff using thermoluminescent detectors (TLDs). Effective doses (E) were calculated using published conversion factors and methods recommended by the national Radiological Protection Board (NRPB). The mean ESAK dose for patients and staff dose were 7.79±6.7 mGy and 0.161±0.30 mGy per procedures respectively. The mean and range of the effective dose was 1.21 mSv per procedure. The radiation dose in this study is comparable with previous studies except Hospital C. It is obvious that high patient and staff exposure is due to the lack of experience and protective equipment s. Interventional procedures remain operator dependent; therefore continuous training is crucial. (Author)

  7. Evaluation of experimental animal biological state at exposure to low-dose ionizing radiation

    International Nuclear Information System (INIS)

    Rozanov, V.A.; Rejtarova, T.Je.; Chernyikov, G.B.; Timoshevs'ka, Je.V.; Kozozojeva, O.O.

    1997-01-01

    New approaches to quantitative evaluation of ionizing radiation absorbed dose within the low-dose range (up to 400 mGy) according to the degree of the organism biological response was developed. The purpose of the stage of the work published in Communication 1 is to evaluate the shifts in the animal behaviour and cellular composition of the blood at irradiation by the dose of 100,200 and 400 mGy. Distinct dose dependence of behaviour reactions and hematological indices within the dose range of 100-400 mGy was not noted

  8. The biological bases of the dose-effect relationship

    International Nuclear Information System (INIS)

    Lafuma, J.

    2001-01-01

    In radiation protection, the recent data in epidemiology, in animal experimentation and on the base researches are no more compatible with a linear dose-effect relationship without threshold and do not account for the radiological risks at low doses. The cancers should be accelerated by radiations as any pathology linked to the ageing and for which threshold exit. Relative to the genetic risk it is known today that the natural exposure that lasts for several generations has not lead excess of hereditary illness as it was to be feared in 1959 for several countries. Considering that for populations the exposure levels induced by human activities have already been, under these ones of average natural exposures the genetic risk can be negligible and it is the somatic risk alone, with its thresholds that has to be into account. (N.C.)

  9. Biological changes in experimental animals after irradiation with sublethal doses

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Dae Seong; Park, Yong Dae; Jin, Chang Hyun; Byun, Myung Woo; Jeong, Il Yun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2008-05-15

    The objective of the present study was to investigate general clinical aspects such as weekly body weight and blood changes, and weekly food intake in gamma-irradiated C57BL/6j male mice fed AIN-76A purified rodent diet for 14 weeks. The mice were whole-body irradiated with 0, 2, 4 and 6 Gy of gamma-rays (Gammacell 40 Exactor, {sup 137}Cs, MDS Nordion) at a dose rate of 1.8 {sub c}Gy per second. The mean body weight change of 6 Gy-irradiated mice significantly decreased when compared to that of the non-irradiated control mice. Moreover, high dose of radiation resulted in decreased levels of AST, ALT, but in increased levels of total cholersterol, triglyceride, HDL-C in mice.

  10. Personal dose estimations for Olympic Dam's first year of production

    International Nuclear Information System (INIS)

    Sonter, M.; Hondros, J.

    1989-01-01

    Underground development activities have been underway at Olympic Dam since 1983; commercial ore extraction commenced in early 1988; and the metallurgical treatment plant commenced operation in mid 1988. Detailed and extensive radiation monitoring programs have been in place since commencement of activities and have enabled detailed individual assessment of personal doses. Results are shown, in histogram form, of doses to full and part-time underground mine workers pre-1988 and for calendar 1988; and projected annual doses to treatment plant workers for the period July 1988 to July 1989. Comments are included on the dose calculation assumptions applying in mine and mill and on the degree of conservatism of these assumptions. The doses presented show compliance with the limits quoted in the Australian code of practice; they compare well with other underground uranium mines, and they indicate effective pursuit of the 'alara' principle. 7 figs., 1 tab

  11. Estimation of pneumonitis risk in three-dimensional treatment planning using dose-volume histogram analysis

    International Nuclear Information System (INIS)

    Oetzel, Dieter; Schraube, Peter; Hensley, Frank; Sroka-Perez, Gabriele; Menke, Markus; Flentje, Michael

    1995-01-01

    Purpose: Investigations to study correlations between the estimations of biophysical models in three dimensional (3D) treatment planning and clinical observations are scarce. The development of clinically symptomatic pneumonitis in the radiotherapy of thoracic malignomas was chosen to test the predictive power of Lyman's normal tissue complication probability (NTCP) model for the assessment of side effects for nonuniform irradiation. Methods and Materials: In a retrospective analysis individual computed-tomography-based 3D dose distributions of a random sample of (46(20)) patients with lung/esophageal cancer were reconstructed. All patients received tumor doses between 50 and 60 Gy in a conventional treatment schedule. Biological isoeffective dose-volume histograms (DVHs) were used for the calculation of complication probabilities after applying Lyman's and Kutcher's DVH-reduction algorithm. Lung dose statistics were performed for single lung (involved ipsilateral and contralateral) and for the lung as a paired organ. Results: In the lung cancer group, about 20% of the patients (9 out of 46) developed pneumonitis 3-12 (median 7.5) weeks after completion of radiotherapy. For the majority of these lung cancer patients, the involved ipsilateral lung received a much higher dose than the contralateral lung, and the pneumonitis patients had on average a higher lung exposure with a doubling of the predicted complication risk (38% vs. 20%). The lower lung exposure for the esophagus patients resulted in a mean lung dose of 13.2 Gy (lung cancer: 20.5 Gy) averaged over all patients in correlation with an almost zero complication risk and only one observed case of pneumonitis (1 out of 20). To compare the pneumonitis risk estimations with observed complication rates, the patients were ranked into bins of mean ipsilateral lung dose. Particularly, in the bins with the highest patient numbers, a good correlation was achieved. Agreement was not reached for the lung functioning as

  12. Biological effects of low doses of ionising radiation

    International Nuclear Information System (INIS)

    Osmak, M.

    1998-01-01

    A study was performed with the aim to examine whether the progeny of cells that had been repeatedly irradiated with low doses of gamma rays will change their sensitivity to cytotoxic agents. Four mammalian cell lines were used in the experiment. It was found that the progeny of cells irradiated in this way do not change their sensitivity to gamma rays but would change their sensitivity to various cytostatics drugs. (A.K.)

  13. The biological basis for dose limitation to the skin

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1992-01-01

    Ionizing radiation may cause deterministic effects and cancer. It has been the policy to base dose limits for radiation protection of the skin on the prevention of deterministic effects (1). In the case of cancer in general, dose limitation for radiation protection is based on limiting excess cancer mortality to low levels of radiation. Since skin cancers are seldom lethal, the general radiation protection standards will protect against an increase in excess mortality from skin cancer. However, with the dose limits selected to prevent deterministic effects, there is a significant probability of an excess incidence of skin cancer occurring as a result of exposure during a working lifetime. The induction of skin cancer by radiation is influenced significantly by subsequent exposure to ultraviolet radiation (UVR) from sunlight. This finding raises not only interesting questions about the mechanisms involved, but also about the differences in risk of skin cancer in different populations. The amount and distribution of melanin in the skin determines the degree of the effect of UVR. This paper discusses the mechanisms of the induction of both deterministic and stochastic effects in skin exposed to radiation in relation to radiation protection. (author)

  14. Biologically effective dose distribution based on the linear quadratic model and its clinical relevance

    International Nuclear Information System (INIS)

    Lee, Steve P.; Leu, Min Y.; Smathers, James B.; McBride, William H.; Parker, Robert G.; Withers, H. Rodney

    1995-01-01

    Purpose: Radiotherapy plans based on physical dose distributions do not necessarily entirely reflect the biological effects under various fractionation schemes. Over the past decade, the linear-quadratic (LQ) model has emerged as a convenient tool to quantify biological effects for radiotherapy. In this work, we set out to construct a mechanism to display biologically oriented dose distribution based on the LQ model. Methods and Materials: A computer program that converts a physical dose distribution calculated by a commercially available treatment planning system to a biologically effective dose (BED) distribution has been developed and verified against theoretical calculations. This software accepts a user's input of biological parameters for each structure of interest (linear and quadratic dose-response and repopulation kinetic parameters), as well as treatment scheme factors (number of fractions, fractional dose, and treatment time). It then presents a two-dimensional BED display in conjunction with anatomical structures. Furthermore, to facilitate clinicians' intuitive comparison with conventional fractionation regimen, a conversion of BED to normalized isoeffective dose (NID) is also allowed. Results: Two sample cases serve to illustrate the application of our tool in clinical practice. (a) For an orthogonal wedged pair of x-ray beams treating a maxillary sinus tumor, the biological effect at the ipsilateral mandible can be quantified, thus illustrates the so-called 'double-trouble' effects very well. (b) For a typical four-field, evenly weighted prostate treatment using 10 MV x-rays, physical dosimetry predicts a comparable dose at the femoral necks between an alternate two-fields/day and four-fields/day schups. However, our BED display reveals an approximate 21% higher BED for the two-fields/day scheme. This excessive dose to the femoral necks can be eliminated if the treatment is delivered with a 3:2 (anterio-posterior/posterio-anterior (AP

  15. Estimating the Absorbed Dose to Critical Organs During Dual X-ray Absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari-Dizaji, M.; Sharafi, A. A.; Larijani, B.; Mokhlesian, N.; Hasanzadeh, H. [Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2008-04-15

    Objective : The purpose of this study is to estimate a patient's organ dose (effective dose) during performance of dual X-ray absorptiometry by using the correlations derived from the surface dose and the depth doses in an anthropomorphic phantom. Materials and Methods : An anthropomorphic phantom was designed and TLDs (Thermoluminescent Dosimeters) were placed at the surface and these were also inserted at different depths of the thyroid and uterus of the anthropomorphic phantom. The absorbed doses were measured on the phantom for the spine and femur scan modes. The correlation coefficients and regression functions between the absorbed surface dose and the depth dose were determined. The derived correlation was then applied for 40 women patients to estimate the depth doses to the thyroid and uterus. Result : There was a correlation between the surface dose and depth dose of the thyroid and uterus in both scan modes. For the women's dosimetry, the average surface doses of the thyroid and uterus were 1.88 {mu}Gy and 1.81 Gy, respectively. Also, the scan center dose in the women was 5.70 Gy. There was correlation between the thyroid and uterus surface doses, and the scan center dose. Conclusion : We concluded that the effective dose to the patient's critical organs during dual X-ray absorptiometry can be estimated by the correlation derived from phantom dosimetry.

  16. Estimating the Absorbed Dose to Critical Organs During Dual X-ray Absorptiometry

    International Nuclear Information System (INIS)

    Mokhtari-Dizaji, M.; Sharafi, A. A.; Larijani, B.; Mokhlesian, N.; Hasanzadeh, H.

    2008-01-01

    Objective : The purpose of this study is to estimate a patient's organ dose (effective dose) during performance of dual X-ray absorptiometry by using the correlations derived from the surface dose and the depth doses in an anthropomorphic phantom. Materials and Methods : An anthropomorphic phantom was designed and TLDs (Thermoluminescent Dosimeters) were placed at the surface and these were also inserted at different depths of the thyroid and uterus of the anthropomorphic phantom. The absorbed doses were measured on the phantom for the spine and femur scan modes. The correlation coefficients and regression functions between the absorbed surface dose and the depth dose were determined. The derived correlation was then applied for 40 women patients to estimate the depth doses to the thyroid and uterus. Result : There was a correlation between the surface dose and depth dose of the thyroid and uterus in both scan modes. For the women's dosimetry, the average surface doses of the thyroid and uterus were 1.88 μGy and 1.81 Gy, respectively. Also, the scan center dose in the women was 5.70 Gy. There was correlation between the thyroid and uterus surface doses, and the scan center dose. Conclusion : We concluded that the effective dose to the patient's critical organs during dual X-ray absorptiometry can be estimated by the correlation derived from phantom dosimetry

  17. Coincidence in the dose estimation in a OEP by different methods; Coincidencia en la estimacion de dosis en un POE por diferentes metodos

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C.; Arceo M, C.; Brena V, M. [ININ, Km. 36.5, Carretera Mexico-Toluca, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: cgc@nuclear.inin.mx

    2007-07-01

    The case of an apparent overexposure to radiation according to that indicated for the thermoluminescent dosemeter 81.59 mSv (TLD) of a occupationally exposed hard-working (POE), for that was practiced the study of biological dosimetry. The estimated dose was 0.12 Gy with which was proven the marked dose registration by the TLD dosemeter. It was concluded that both doses are the same ones. (Author)

  18. The estimation of effective doses using measurement of several relevant physical parameters from radon exposures

    International Nuclear Information System (INIS)

    Ridzikova, A; Fronka, A.; Maly, B.; Moucka, L.

    2003-01-01

    In the present investigation, we will be study the dose relevant factors from continual monitoring in real homes into account getting more accurate estimation of 222 Rn the effective dose. The dose relevant parameters include the radon concentration, the equilibrium factor (f), the fraction (fp) of unattached radon decay products and real time occupancy people in home. The result of the measurement are the time courses of radon concentration that are based on estimation effective doses together with assessment of the real time occupancy people indoor. We found out by analysis that year effective dose is lower than effective dose estimated by ICRP recommendation from the integral measurement that included only average radon concentration. Our analysis of estimation effective doses using measurement of several physical parameters was made only in one case and for the better specification is important to measure in different real occupancy houses. (authors)

  19. Biological effect of low-dose application beta-radiation on the gingival mucosa of dogs

    International Nuclear Information System (INIS)

    Ippolitov, Yu.A.; Kovtun, N.N.; Timofeev, L.V.

    1999-01-01

    Biological effect of low-dose application beta-radiation on the gingival mucosa of dogs is studied. Obtained data illustrate the interactions between tissues in local exposure of live tissue to beta-radiation and determine the threshold total dose as 400 sGy. Higher doses lead to secondary changes in the gingival mucosa after which the tissue barrier does not recover [ru

  20. Estimation of doses to patients with chronic radiation sickness from external occupational exposure

    International Nuclear Information System (INIS)

    Jia Delin; Dai Guangfu

    1991-01-01

    The doses to patients with chronic radiation sickness who had engaged in diagnostic radiology have been estimated according to the radiation work load, type and capacity of X-ray equipment, protection conditions, data of nationwide survey on doses to X-ray workers in China, or the data of dose monitoring in working places. Based on the activities of radium sources, time taken up in performing radium therapy, distance to radium sources and radiation work load, the doses to patients who had engaged in radium therapy have been estimated. The results of estimated average doses for 29 cases of chronic radiation sickness are given. Their average red marrow dose, trunk dose and effective dose equivalent are 1.3 Gy, 1.2 Gy and 1.6 Sv, respectively

  1. Estimation of relative biological effectiveness for low energy protons using cytogenetic end points in mammalian cells

    International Nuclear Information System (INIS)

    Bhat, N.N.; Nairy, Rajesh; Chaurasia, Rajesh; Desai, Utkarsha; Shirsath, K.B.; Anjaria, K.B.; Sreedevi, B.

    2013-01-01

    A facility has been designed and developed to facilitate irradiation of biological samples to proton beam using folded tandem ion accelerator (FOTIA) at BARC. The primary proton beam from the accelerator was diffused using gold foil and channelled through a drift tube. Scattered beam was monitored and calibrated. Uniformity and dosimetry studies were conducted to calibrate the setup for precise irradiation of mammalian cells. Irradiation conditions and geometry were optimized for mammalian cells and other biological samples in thin layer. The irradiation facility is housed in a clean air laminar flow to help exposure of samples in aseptic conditions. The set up has been used for studying various radiobiological endpoints in many biological model systems. CHO, MCF-7, A-549 and INT-407 cell lines were studied in the present investigation using micronucleus (MN) induction as an indicator of radiation damage. The mammalian cells grown on petri plates to about 40 % confluence (log phase) were exposed to proton beam of known doses in the range of 0.1 to 2 Gy. The dose estimation was done based on specific ionization in cell medium. Studies were also conducted using 60 Co gamma radiation to compare the results. Linear quadratic response was observed for all the cell lines when exposed to 60 Co gamma radiation. In contrast, linear response was observed for proton beam. In addition, very significant increase in the MN yield was observed for proton beam compared to 60 Co gamma radiation. Estimated α and β values for CHO cells is found to be 0.02±0.003 Gy-1 and 0.042±0.006 Gy-2 respectively for 60 Co gamma radiation. For proton beam, estimated α for linear fit is found to be 0.37±0.011 Gy-1. Estimated RBE was found to be in the range of 4-8 for all the cell lines and dose ranges studied. In conclusion, the proton irradiation facility developed for mammalian cells has helped to study various radiobiological endpoints. In this presentation, facility description, MN as

  2. Contribution of the modulation of intensity and the optimization to deliver a dose adapted to the biological heterogeneities

    International Nuclear Information System (INIS)

    Kubs, F.

    2007-10-01

    The recent progress in functional imaging by Positron Emission Tomography (TEP) opens new perspectives in the delineation of target volumes in radiotherapy. The functional data is major; we can intend to adapt the irradiation doses on the tumor activity (TA) and to perform a dose escalation. Our objectives were (i) to characterize the TEP threshold, by quantifying the uncertainties of the target volume contour according to the lesion size and the threshold contour level, (ii) to set up the geometry suited to perform a high-precision irradiation based on the TA, (iii) to estimate the dosimetric impact of this new protocol and (iv) to verify that dosimetry is perfectly distributed. Three original phantoms were specially created to satisfy the constraints met, as well as two virtual phantoms containing 3 dose levels (dose level 3 = TA). Our results showed the importance of the effect threshold-volume on the planning in radiotherapy. To use this irradiation method, the diameter of 1 cm for the third level was able to be reached. A dose escalation of 20 Gy was possible between the second (70 Gy) and the third level (90 Gy). The dosimetric impact estimated on two real cases was suitable - increase of COIN (conformal index) from 0.6 to 0.8 and decrease of NTCP (normal tissue complication probability) of a factor 5 -. In absolute and relative dosimetry, the clinical tolerances were respected. So all the treatment process, going from the diagnosis with the TEP to reveal the TA, to the patient treatment made beforehand on phantom, and going through the ballistic and the dose calculation, was estimated and validated according to our objective to adapt the irradiation to the biological heterogeneities. However such high doses should be carefully estimated before being prescribed clinically and progress is also expected in imaging, because the minimal size which we can irradiate is on the limit of the resolution TEP. (author)

  3. Biological dose assessment by cytogenetic dosimetry in the Goianian radiation accident

    International Nuclear Information System (INIS)

    Ramalho, A.T.; Nascimento, A.C.H.; Bellido, P.

    1989-01-01

    During the recent Goianian radiation accident, 112 exposed or potentially exposed individuals were analyzed for the frequencies of chromosomal aberrations (dicentrics and rings) in their lymphocytes, for estimation of the absorbed radiation dose. Of these, 29 subjects had dose estimates exceeding 0.5 Gy, 21 exceeded 1.0 Gy and eight exceeded 4.0 Gy. None of the estimates exceeded 7.0 Gy. (author)

  4. SU-E-T-86: A Systematic Method for GammaKnife SRS Fetal Dose Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Geneser, S; Paulsson, A; Sneed, P; Braunstein, S; Ma, L [UCSF Comprehensive Cancer Center, San Francisco, CA (United States)

    2015-06-15

    Purpose: Estimating fetal dose is critical to the decision-making process when radiation treatment is indicated during pregnancy. Fetal doses less than 5cGy confer no measurable non-cancer developmental risks but can produce a threefold increase in developing childhood cancer. In this study, we estimate fetal dose for a patient receiving Gamma Knife stereotactic radiosurgery (GKSRS) treatment and develop a method to estimate dose directly from plan details. Methods: A patient underwent GKSRS on a Perfexion unit for eight brain metastases (two infratentorial and one brainstem). Dose measurements were performed using a CC13, head phantom, and solid water. Superficial doses to the thyroid, sternum, and pelvis were measured using MOSFETs during treatment. Because the fetal dose was too low to accurately measure, we obtained measurements proximally to the isocenter, fitted to an exponential function, and extrapolated dose to the fundus of the uterus, uterine midpoint, and pubic synthesis for both the preliminary and delivered plans. Results: The R-squared fit for the delivered doses was 0.995. The estimated fetal doses for the 72 minute preliminary and 138 minute delivered plans range from 0.0014 to 0.028cGy and 0.07 to 0.38cGy, respectively. MOSFET readings during treatment were just above background for the thyroid and negligible for all inferior positions. The method for estimating fetal dose from plan shot information was within 0.2cGy of the measured values at 14cm cranial to the fetal location. Conclusion: Estimated fetal doses for both the preliminary and delivered plan were well below the 5cGy recommended limit. Due to Pefexion shielding, internal dose is primarily governed by attenuation and drops off exponentially. This is the first work that reports fetal dose for a GK Perfexion unit. Although multiple lesions were treated and the duration of treatment was long, the estimated fetal dose remained very low.

  5. SU-E-T-86: A Systematic Method for GammaKnife SRS Fetal Dose Estimation

    International Nuclear Information System (INIS)

    Geneser, S; Paulsson, A; Sneed, P; Braunstein, S; Ma, L

    2015-01-01

    Purpose: Estimating fetal dose is critical to the decision-making process when radiation treatment is indicated during pregnancy. Fetal doses less than 5cGy confer no measurable non-cancer developmental risks but can produce a threefold increase in developing childhood cancer. In this study, we estimate fetal dose for a patient receiving Gamma Knife stereotactic radiosurgery (GKSRS) treatment and develop a method to estimate dose directly from plan details. Methods: A patient underwent GKSRS on a Perfexion unit for eight brain metastases (two infratentorial and one brainstem). Dose measurements were performed using a CC13, head phantom, and solid water. Superficial doses to the thyroid, sternum, and pelvis were measured using MOSFETs during treatment. Because the fetal dose was too low to accurately measure, we obtained measurements proximally to the isocenter, fitted to an exponential function, and extrapolated dose to the fundus of the uterus, uterine midpoint, and pubic synthesis for both the preliminary and delivered plans. Results: The R-squared fit for the delivered doses was 0.995. The estimated fetal doses for the 72 minute preliminary and 138 minute delivered plans range from 0.0014 to 0.028cGy and 0.07 to 0.38cGy, respectively. MOSFET readings during treatment were just above background for the thyroid and negligible for all inferior positions. The method for estimating fetal dose from plan shot information was within 0.2cGy of the measured values at 14cm cranial to the fetal location. Conclusion: Estimated fetal doses for both the preliminary and delivered plan were well below the 5cGy recommended limit. Due to Pefexion shielding, internal dose is primarily governed by attenuation and drops off exponentially. This is the first work that reports fetal dose for a GK Perfexion unit. Although multiple lesions were treated and the duration of treatment was long, the estimated fetal dose remained very low

  6. Estimation of organ doses of patient undergoing hepatic chemoembolization procedures

    International Nuclear Information System (INIS)

    Jaramillo, G.W.; Kramer, R.; Khoury, H.J.; Barros, V.S.M.; Andrade, G.

    2015-01-01

    The aim of this study is to evaluate the organ doses of patients undergoing hepatic chemoembolization procedures performed in two hospitals in the city of Recife-Brazil. Forty eight patients undergoing fifty hepatic chemoembolization procedures were investigated. For the 20 cases with PA projection only, organ and tissue absorbed doses as well as radiation risks were calculated. For this purpose organs and tissues dose to KAP conversion coefficients were calculated using the mesh-based phantom series FASH and MASH coupled to the EGSnrc Monte Carlo code. Clinical, dosimetric and irradiations parameters were registered for all patients. The maximum organ doses found were 1.72 Gy, 0.65Gy, 0.56 Gy and 0.33 Gy for skin, kidneys, adrenals and liver, respectively. (authors)

  7. Estimation of doses to patients from ''complex'' conventional X-ray examinations

    International Nuclear Information System (INIS)

    Calzado, A.; Vano, E.; Moran, P.; Ruiz, S.; Gonzalez, L.; Castellote, C.

    1991-01-01

    A numerical method has been developed to estimate organ doses and effective dose-equivalent for patients undergoing three 'complex' examinations (barium meal, barium enema and intravenous urography). The separation of radiological procedures into a set of standard numerical views is based on the use of Monte Carlo conversion factors and measurements within a Remab phantom. Radiation doses measured in a phantom for such examinations were compared with predictions of the ''numerical'' method. Dosimetric measurements with thermoluminescent dosemeters attached to the patient's skin along with measurements of the dose-area product during the examination have enabled the derivation of organ doses and to estimate effective dose-equivalent. Mean frequency weighted values of dose-area product, energy imparted to the patient, doses to a set of organs and effective dose-equivalent in the area of Madrid are reported. Comparisons of results with those from similar surveys in other countries were made. (author)

  8. Requirements for estimation of doses from contaminants dispersed by a 'dirty bomb' explosion in an urban area.

    Science.gov (United States)

    Andersson, K G; Mikkelsen, T; Astrup, P; Thykier-Nielsen, S; Jacobsen, L H; Hoe, S C; Nielsen, S P

    2009-12-01

    The ARGOS decision support system is currently being extended to enable estimation of the consequences of terror attacks involving chemical, biological, nuclear and radiological substances. This paper presents elements of the framework that will be applied in ARGOS to calculate the dose contributions from contaminants dispersed in the atmosphere after a 'dirty bomb' explosion. Conceptual methodologies are presented which describe the various dose components on the basis of knowledge of time-integrated contaminant air concentrations. Also the aerosolisation and atmospheric dispersion in a city of different types of conceivable contaminants from a 'dirty bomb' are discussed.

  9. Estimation of lens dose of radioactive isotopes using ED3

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ha Jin; Ju, Yong Jin; Jang, Han; Kang, Kyeong Won; Chung, Woon Kwan [Chosun University, Gwangju (Korea, Republic of); Dong, Kyung Rae [Gwangju Health University, Gwangju (Korea, Republic of); Choi, Eun Jin; Kwak, Jong Gil [Dongshin University Graduate School, Naju (Korea, Republic of); Ryu, Jae Kwang [Asan Medical Center, Seoul (Korea, Republic of)

    2017-03-15

    It is suggested that the dose limit recommended in the Enforcement Decree of Korea's Nuclear Safety Act should not exceed 150 mSv per year for radiation workers. Recently, however, ICRP 118 report has suggested that the threshold dose of the lens should be reduced to 0.2⁓0.5 Gy and the mean dose should not exceed 50 mSv per year for an average of 20 mSv over 5 years. Based on these contents, '1'2'3I, '9'9mTc, and '1'8F-FDG, which are radioisotope drugs that are used directly by radiation workers in the nuclear medicine department in Korea are expected to receive a large dose of radiation in the lens in distribution and injection jobs to administer them to patients. The ED3 Active Extremity Dosimeter was used to measure the dose of the lens in the nuclear medicine and radiation workers and how much of the dose was received per 1 mCi.

  10. Convolution-based estimation of organ dose in tube current modulated CT

    Science.gov (United States)

    Tian, Xiaoyu; Segars, W. Paul; Dixon, Robert L.; Samei, Ehsan

    2016-05-01

    Estimating organ dose for clinical patients requires accurate modeling of the patient anatomy and the dose field of the CT exam. The modeling of patient anatomy can be achieved using a library of representative computational phantoms (Samei et al 2014 Pediatr. Radiol. 44 460-7). The modeling of the dose field can be challenging for CT exams performed with a tube current modulation (TCM) technique. The purpose of this work was to effectively model the dose field for TCM exams using a convolution-based method. A framework was further proposed for prospective and retrospective organ dose estimation in clinical practice. The study included 60 adult patients (age range: 18-70 years, weight range: 60-180 kg). Patient-specific computational phantoms were generated based on patient CT image datasets. A previously validated Monte Carlo simulation program was used to model a clinical CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). A practical strategy was developed to achieve real-time organ dose estimation for a given clinical patient. CTDIvol-normalized organ dose coefficients ({{h}\\text{Organ}} ) under constant tube current were estimated and modeled as a function of patient size. Each clinical patient in the library was optimally matched to another computational phantom to obtain a representation of organ location/distribution. The patient organ distribution was convolved with a dose distribution profile to generate {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} values that quantified the regional dose field for each organ. The organ dose was estimated by multiplying {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} with the organ dose coefficients ({{h}\\text{Organ}} ). To validate the accuracy of this dose estimation technique, the organ dose of the original clinical patient was estimated using Monte Carlo program with TCM profiles explicitly modeled. The

  11. Radiation research contracts: Biological effects of small radiation doses

    International Nuclear Information System (INIS)

    Hug, O.

    1959-01-01

    According to its Statute the IAEA has to fulfil a dual function - to help individual countries in solving their specific problems and to undertake tasks in the common interest of all its Member States. With this latter aim in mind the Agency has placed a number of research contracts with national research institutes. The purpose and scope of two of them is described below by the scientists responsible for their execution. The Agency has contributed to this work by putting at the institutes' disposal scientists from its own staff apparatus and financial aid.IAEA placed a research contract concerning the effects of small radiation doses on cells, in particular on nervous cells, with the Pharmacological Institute of the University of Vienna. This Institute appeared well suited to deal with the problem owing to the type of its previous research work. The Director, Prof. Franz Bruecke, and his collaborator Dr. Otto Kraupp, have long been interested in the functioning of the nervous system and in the influence of different drugs upon it. It was particularly fortunate that the electrical properties and functions of cells had been measured by a method specially developed at this Institute. From the above mentioned observations one could expect that instantaneous reactions of cells to radiation would also lead to changes of the electrical status. Consequently, this method is now being applied to the research undertaken for IAEA. Different cells of plants and animals, ranging from algae to muscle fibres of mammals, were chosen as objects. So far changes of potentials-had been observed only during irradiation with very high doses. During these investigations another useful test for small radiation doses was developed, namely the measurement of the through-flow of an artificial blood solution through the blood vessels of an intestinal loop. It was observed that a few seconds after irradiation the flow rate diminishes, and returns to its normal level only when irradiation ends

  12. Radiation research contracts: Biological effects of small radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Hug, O

    1959-01-15

    According to its Statute the IAEA has to fulfil a dual function - to help individual countries in solving their specific problems and to undertake tasks in the common interest of all its Member States. With this latter aim in mind the Agency has placed a number of research contracts with national research institutes. The purpose and scope of two of them is described below by the scientists responsible for their execution. The Agency has contributed to this work by putting at the institutes' disposal scientists from its own staff apparatus and financial aid.IAEA placed a research contract concerning the effects of small radiation doses on cells, in particular on nervous cells, with the Pharmacological Institute of the University of Vienna. This Institute appeared well suited to deal with the problem owing to the type of its previous research work. The Director, Prof. Franz Bruecke, and his collaborator Dr. Otto Kraupp, have long been interested in the functioning of the nervous system and in the influence of different drugs upon it. It was particularly fortunate that the electrical properties and functions of cells had been measured by a method specially developed at this Institute. From the above mentioned observations one could expect that instantaneous reactions of cells to radiation would also lead to changes of the electrical status. Consequently, this method is now being applied to the research undertaken for IAEA. Different cells of plants and animals, ranging from algae to muscle fibres of mammals, were chosen as objects. So far changes of potentials-had been observed only during irradiation with very high doses. During these investigations another useful test for small radiation doses was developed, namely the measurement of the through-flow of an artificial blood solution through the blood vessels of an intestinal loop. It was observed that a few seconds after irradiation the flow rate diminishes, and returns to its normal level only when irradiation ends

  13. Estimation of the transit dose component in high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Garcia Romero, A.; Millan Cebrian, E.; Lozano Flores, F.J.; Lope Lope, R.; Canellas Anoz, M.

    2001-01-01

    Current high dose rate brachytherapy (HDR) treatment planning systems usually calculate dose only from source stopping positions (stationary component), but fails to account for the administered dose when the source is moving (dynamic component or transit dose). Numerical values of this transit dose depends upon the source velocity, implant geometry, source activity and prescribed dose. In some HDR treatments using particular geometry the transit dose cannot be ignored because it increases the dose at the prescriptions points and also could increase potential late tissue complications as predicted by the linear quadratic model. International protocols recommend to verify this parameter. The aim of this paper has been to establish a procedure for the transit dose calculation for the Gammamed 12i equipment at the RT Department in the Clinical University Hospital (Zaragoza-Spain). A numeric algorithm was implemented based on a dynamic point approximation for the moving HDR source and the calculated results for the entrance-exit transit dose was compared with TLD measurements made in some discrete points. (author) [es

  14. Method of estimating patient skin dose from dose displayed on medical X-ray equipment with flat panel detector

    International Nuclear Information System (INIS)

    Fukuda, Atsushi; Koshida, Kichiro; Togashi, Atsuhiko; Matsubara, Kousuke

    2004-01-01

    The International Electrotechnical Commission (IEC) has stipulated that medical X-ray equipment for interventional procedures must display radiation doses such as air kerma in free air at the interventional reference point and dose area product to establish radiation safety for patients (IEC 60601-2-43). However, it is necessary to estimate entrance skin dose for the patient from air kerma for an accurate risk assessment of radiation skin injury. To estimate entrance skin dose from displayed air kerma in free air at the interventional reference point, it is necessary to consider effective energy, the ratio of the mass-energy absorption coefficient for skin and air, and the backscatter factor. In addition, since automatic exposure control is installed in medical X-ray equipment with flat panel detectors, it is necessary to know the characteristics of control to estimate exposure dose. In order to calculate entrance skin dose under various conditions, we investigated clinical parameters such as tube voltage, tube current, pulse width, additional filter, and focal spot size, as functions of patient body size. We also measured the effective energy of X-ray exposure for the patient as a function of clinical parameter settings. We found that the conversion factor from air kerma in free air to entrance skin dose is about 1.4 for protection. (author)

  15. ESTIMATION OF THE CONVERSION COEFFICIENTS FROM DOSE-AREA PRODUCT TO EFFECTIVE DOSE FOR BARIUM MEAL EXAMINATIONS FOR ADULT PATIENTS

    Directory of Open Access Journals (Sweden)

    A. V. Vodovatov

    2018-01-01

    Full Text Available Fluoroscopic examinations of the upper gastro-intestinal tract and, especially, barium meal examinations, are commonly performed in a majority of hospitals. These examinations are associated both with substantial individual patient doses and contribution to the collective dose from medical exposure. Effective dose estimation for this type of examinations is complicated due to: 1 the necessity to simulate the moving X-ray irradiation field; 2 differences in study structure for the individual patients; 3 subjectivity of the operators; and 4 differences in the X-ray equipment. The aim of the current study was to estimate conversion coefficients from dose-area product to effective dose for barium meal examinations for the over couch and under couch exposure conditions. The study was based on data collected in the X-ray unit of the surgical department of the St-Petersburg Mariinsky hospital. A model of patient exposure during barium meal examination was developed based on the collected data on fluoroscopy protocols and adult patient irradiation geometry. Conversion coefficients were calculated using PCXMC 2.0 software. Complete examinations were converted into a set of typical fluoroscopy phases and X-ray images, specified by the examined anatomical region and the projection of patient exposure. Conversion coefficients from dose-area product to effective dose were calculated for each phase of the examination and for the complete examination. The resulting values of the conversion coefficients are comparable with published data. Variations in the absolute values of the conversion coefficients can be explained by differences in clinical protocols, models for the estimation of the effective dose and parameters of barium meal examinations. The proposed approach for estimation of effective dose considers such important features of fluoroscopic examinations as: 1 non-uniform structure of examination, 2 significant movement of the X-ray tube within a single

  16. Estimated neutron dose to embryo and foetus during commercial flight

    International Nuclear Information System (INIS)

    Chen, J.; Lewis, B. J.; Bennett, L. G. I.; Green, A. R.; Tracy, B. L.

    2005-01-01

    A study has been carried out to assess the radiation exposure from cosmic-ray neutrons to the embryo and foetus of pregnant aircrew and air travellers in consideration of the radiation exposure from cosmic-ray neutrons to the embryo and foetus. A Monte Carlo analysis was performed to determine the equivalent dose from neutrons to the brain and body of an embryo at 8 weeks and to the foetus at the 3, 6 and 9 month periods. Neutron fluence-to-absorbed dose conversion coefficients for the foetal brain and for the entire foetal body (isotropic irradiation geometry) have been determined at the four developmental stages. The equivalent dose rate to the foetus during commercial flights has been further evaluated considering the fluence-to-absorbed dose conversion coefficients, a neutron spectrum measured at an altitude of 11.3 km and an ICRP-92 radiation-weighting factor for neutrons. This study indicates that the foetus can exceed the annual dose limit of 1 mSv for the general public after, for example, 15 round trips on commercial trans-Atlantic flights. (authors)

  17. Physics must join with biology in better assessing risk from low-dose irradiation

    International Nuclear Information System (INIS)

    Feinendegen, L. E.; Neumann, R. D.

    2005-01-01

    This review summarises the complex response of mammalian cells and tissues to low doses of ionising radiation. This thesis encompasses induction of DNA damage, and adaptive protection against both renewed damage and against propagation of damage from the basic level of biological organisation to the clinical expression of detriment. The induction of DNA damage at low radiation doses apparently is proportional to absorbed dose at the physical/chemical level. However, any propagation of such damage to higher levels of biological organisation inherently follows a sigmoid function. Moreover, low-dose-induced inhibition of damage propagation is not linear, but instead follows a dose-effect function typical for adaptive protection, after an initial rapid rise it disappears at doses higher than ∼0.1-0.2 Gy to cells. The particular biological response duality at low radiation doses precludes the validity of the linear-no-threshold hypothesis in the attempt to relate absorbed dose to cancer. In fact, theory and observation support not only a lower cancer incidence than expected from the linear-no-threshold hypothesis, but also a reduction of spontaneously occurring cancer, a hormetic response, in the healthy individual. (authors)

  18. NIRS external dose estimation system for Fukushima residents after the Fukushima Dai-ichi NPP accident

    Science.gov (United States)

    Akahane, Keiichi; Yonai, Shunsuke; Fukuda, Shigekazu; Miyahara, Nobuyuki; Yasuda, Hiroshi; Iwaoka, Kazuki; Matsumoto, Masaki; Fukumura, Akifumi; Akashi, Makoto

    2013-04-01

    The great east Japan earthquake and subsequent tsunamis caused Fukushima Dai-ichi Nuclear Power Plant (NPP) accident. National Institute of Radiological Sciences (NIRS) developed the external dose estimation system for Fukushima residents. The system is being used in the Fukushima health management survey. The doses can be obtained by superimposing the behavior data of the residents on the dose rate maps. For grasping the doses, 18 evacuation patterns of the residents were assumed by considering the actual evacuation information before using the survey data. The doses of the residents from the deliberate evacuation area were relatively higher than those from the area within 20 km radius. The estimated doses varied from around 1 to 6 mSv for the residents evacuated from the representative places in the deliberate evacuation area. The maximum dose in 18 evacuation patterns was estimated to be 19 mSv.

  19. Estimation of patient dose in mammography screening examinations

    International Nuclear Information System (INIS)

    Suzuki, S.; Fujii, S.; Orito, T.; Asada, Y.; Koga, S.; Horita, K.; Kido, C.

    1996-01-01

    Mammography is one of the most effective examinations for detecting breast carcinoma. Although the dose is usually much higher than that in other types of X-ray examination, that is accepted by the patient because for fears of suffering cancer. Benefit of relatively high doses derived from mammographic examinations is considered to well exceed the risk of cancer induction by radiation exposure. The purpose of this study is to investigate patient dose of mammography in Japan by questionnaire sent to 531 institutions selected from whole Japan and direct measurements carried out in 28 hospitals in Aichi Prefecture. The user's guide in mammography published by NCRP and Quality Assurance Program of American College of Radiology were used to assess the exposure and image quality of mammogram. (author)

  20. Estimation dose of secondary neutrons in proton therapy

    International Nuclear Information System (INIS)

    Urban, T.

    2014-01-01

    Most of proton therapy centers for cancer treatment are still based on the passive scattering, in some of them there is system of the active scanning installed as well. The aim of this study is to compare secondary neutron doses in and around target volumes in proton therapy for both treatment techniques and for different energies and profile of incident proton beam. The proton induced neutrons have been simulated in the very simple geometry of tissue equivalent phantom (imitate the patient) and scattering and scanning nozzle, respectively. In simulations of the scattering nozzle, different types of scattering filters and brass collimators have been used as well. 3D map of neutron doses in and around the chosen/potential target volume in the phantom/patient have been evaluated and compared in the context of the dose deposited in the target volume. Finally, the simulation results have been compared with published data. (author)

  1. Age- and sex-dependent model for estimating radioiodine dose to a normal thyroid

    International Nuclear Information System (INIS)

    Killough, G.G.; Eckerman, K.F.

    1985-01-01

    This paper describes the derivation of an age- and sex-dependent model of radioiodine dosimetry in the thyroid and the application of the model to estimating the thyroid dose for each of 4215 patients who were exposed to 131 I in diagnostic and therapeutic procedures. The model was made to conform to these data requirements by the use of age-specific estimates of the biological half-time of iodine in the thyroid and an age- and sex-dependent representation of the mass of the thyroid. Also, it was assumed that the thyroid burden was maximum 24 hours after administration (the 131 I dose is not critically sensitive to this assumption). The metabolic model is of the form A(t) = K[exp(-μ 1 t) - exp(-μ 2 t)] (μCi), where μ 1 = lambda/sub r/ + lambda/sub i//sup b/ (i = 1, 2), lambda/sub r/ is the radiological decay-rate coefficient, and lambda/sub i//sup b/ are biological removal rate coefficients. The values of lambda/sub i//sup b/ are determined by solving a nonlinear equation that depends on assumptions about the time of maximum uptake and the eventual biological loss rate (through which age dependence enters). The value of K may then be calculated from knowledge of the uptake at a particular time. The dosimetric S-factor (rad/μCi-day) is based on specific absorbed fractions for photons of energy ranging from 0.01 to 4.0 MeV for thyroid masses from 1.29 to 19.6 g; the functional form of the S-factor also involves the thyroid mass explicitly, through which the dependence on age and sex enters. An analysis of sensitivity of the model to uncertainties in the thyroid mass and the biological removal rate for several age groups is reported. The model could prove useful in the dosimetry of very short-lived radioiodines. Tables of age- and sex-dependent coefficients are provided to enable readers to make their own calculations. 12 refs., 5 figs., 4 tabs

  2. Irradiation in helical scanner: doses estimation, parameters choice

    International Nuclear Information System (INIS)

    Cordoliani, Y.S.; Boyer, B.; Jouan, E.; Beauvais, H.

    2001-01-01

    The new generation of helical scanners improves the diagnosis abilities and the service done to the patients. The rational use allows to give the patients a ratio benefit/risk far better than the almost medical examinations. It is particularly true for over sixty years old aged people, that have a null genetic risk and a practically null carcinogen risk; However, for young adults and children, it is necessary to banish any useless irradiation and limit exposure to the strict necessary for the diagnosis. It is necessary to develop a radiation protection culture, possible by the radiation doses index display and doses benchmarks knowledge. (N.C.)

  3. Size-specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Bria M.; Brady, Samuel L., E-mail: samuel.brady@stjude.org; Kaufman, Robert A. [Department of Radiological Sciences, St Jude Children' s Research Hospital, Memphis, Tennessee 38105 (United States); Mirro, Amy E. [Department of Biomedical Engineering, Washington University, St Louis, Missouri 63130 (United States)

    2014-07-15

    Purpose: To investigate the correlation of size-specific dose estimate (SSDE) with absorbed organ dose, and to develop a simple methodology for estimating patient organ dose in a pediatric population (5–55 kg). Methods: Four physical anthropomorphic phantoms representing a range of pediatric body habitus were scanned with metal oxide semiconductor field effect transistor (MOSFET) dosimeters placed at 23 organ locations to determine absolute organ dose. Phantom absolute organ dose was divided by phantom SSDE to determine correlation between organ dose and SSDE. Organ dose correlation factors (CF{sub SSDE}{sup organ}) were then multiplied by patient-specific SSDE to estimate patient organ dose. The CF{sub SSDE}{sup organ} were used to retrospectively estimate individual organ doses from 352 chest and 241 abdominopelvic pediatric CT examinations, where mean patient weight was 22 kg ± 15 (range 5–55 kg), and mean patient age was 6 yrs ± 5 (range 4 months to 23 yrs). Patient organ dose estimates were compared to published pediatric Monte Carlo study results. Results: Phantom effective diameters were matched with patient population effective diameters to within 4 cm; thus, showing appropriate scalability of the phantoms across the entire pediatric population in this study. IndividualCF{sub SSDE}{sup organ} were determined for a total of 23 organs in the chest and abdominopelvic region across nine weight subcategories. For organs fully covered by the scan volume, correlation in the chest (average 1.1; range 0.7–1.4) and abdominopelvic region (average 0.9; range 0.7–1.3) was near unity. For organ/tissue that extended beyond the scan volume (i.e., skin, bone marrow, and bone surface), correlation was determined to be poor (average 0.3; range: 0.1–0.4) for both the chest and abdominopelvic regions, respectively. A means to estimate patient organ dose was demonstrated. Calculated patient organ dose, using patient SSDE and CF{sub SSDE}{sup organ}, was compared to

  4. Dose estimation for the eye lens dealing with radioactive wastes

    International Nuclear Information System (INIS)

    Krause, A.; Lorenz, B.; Wuertemberger, M.

    2013-01-01

    A significant reduction of the dose limit for the lens of the eye is currently discussed in international committees. The ICRP had recommended a reduction from 150 mSv to 20 mSv, the IAEA-BSS have already adopted this value and the Euratom-BSS propose this too. In the practice of radiation protection the compliance with the limit for the lens of the eye has played a minor role so far. This was in practice assured by the compliance with the limit for the effective dose. With a possible stipulation of a much lower value in the Radiation Protection Ordinance (StrlSchV), the question of compliance arises again. When handling radioactive waste where often gamma radiation is dominant it may happen that the (unshielded) eye region is much more exposed as the location of the (shielded) personal dosimeter. A theoretical study of typical GNS-workplaces in radioactive waste management has shown that up to a factor of 4 higher exposures may occur. A generic assessment under very conservative assumptions that was done first did not allow for the conclusion that the compliance of the new dose limit for the lens of the eye is given by complying with the limit for the effective dose. To get a more reliable basis the exposure situation will now be investigated by measurements that are carried out with specific TLDs provided by the MPA Dortmund. (orig.)

  5. Internal dose estimation by bio-assay techniques

    International Nuclear Information System (INIS)

    Sawant, Pramilla D.

    2016-01-01

    Radiation exposure, both external and internal, can occur to radiation workers during the operation of various nuclear fuel cycle facilities and radiation facilities. The assessment of radiation doses to workers, routinely or potentially exposed to radiation, through intake of radionuclide is an integral part of the radiation protection programme. Internal dose is the radiation exposure that results from the intake of radioactive materials into the body by inhalation, ingestion, absorption through the skin or via wounds. Assessment of radiation doses arising from the intake of radioactive material by the workers is termed as internal exposure assessment. Unlike external exposure, internal exposure cannot be measured directly. Its evaluation is based on the calculation of the intake of radionuclide either from direct measurements (e.g, external monitoring of whole body or of specific organs and tissues) or indirect measurements (e.g. radioactivity in urine, faeces, breath or samples from the working environment) (ICRP Pub. 78, 1997 and NRPB-W60, 2004). Another method of internal dose assessment is based on the measurement of airborne radionuclides in the working areas of the facility and the worker's occupancy in those areas

  6. WE-B-304-00: Point/Counterpoint: Biological Dose Optimization

    International Nuclear Information System (INIS)

    2015-01-01

    The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor control probability (TCP) with an acceptable normal tissue complication probability (NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. It has been suggested that treatment planning evaluation and optimization would be more effective if they were biologically and not dose/volume based, and this is the claim debated in this month’s Point/Counterpoint. After a brief overview of biologically and DVH based treatment planning by the Moderator Colin Orton, Joseph Deasy (for biological planning) and Charles Mayo (against biological planning) will begin the debate. Some of the arguments in support of biological planning include: this will result in more effective dose distributions for many patients DVH-based measures of plan quality are known to have little predictive value there is little evidence that either D95 or D98 of the PTV is a good predictor of tumor control sufficient validated outcome prediction models are now becoming available and should be used to drive planning and optimization Some of the arguments against biological planning include: several decades of experience with DVH-based planning should not be discarded we do not know enough about the reliability and errors associated with biological models the radiotherapy community in general has little direct experience with side by side comparisons of DVH vs biological metrics and outcomes it is unlikely that a clinician would accept extremely cold regions in a CTV or hot regions in a PTV, despite having acceptable TCP values Learning Objectives: To understand dose/volume based treatment planning and its potential limitations To understand biological metrics such as EUD, TCP, and NTCP To understand biologically based treatment planning and its potential limitations

  7. Dose estimative in operators during petroleum wells logging with nuclear wireless probes through computer modelling

    International Nuclear Information System (INIS)

    Souza, Edmilson Monteiro de; Silva, Ademir Xavier da; Lopes, Ricardo T.; Correa, Samanda Cristine Arruda; Rocha, Paula L.F.

    2011-01-01

    This paper evaluates the absorbed dose and the effective dose on operators during the petroleum well logging with nuclear wireless that uses gamma radiation sources. To obtain the data, a typical scenery of a logging procedure will be simulated with MCNPX Monte Carlo code. The simulated logging probe was the Density Gamma Probe - TRISOND produced by Robertson Geolloging. The absorbed dose values were estimated through the anthropomorphic simulator in male voxel MAX. The effective dose values were obtained using the ICRP 103

  8. Major cost savings associated with biologic dose reduction in patients with inflammatory arthritis.

    LENUS (Irish Health Repository)

    Murphy, C L

    2015-01-01

    The purpose of this study was to explore whether patients with Inflammatory Arthritis (IA) (Rheumatoid Arthritis (RA), Psoriatic Arthritis (PsA) or Ankylosing Spondylitis (AS)) would remain in remission following a reduction in biologic dosing frequency and to calculate the cost savings associated with dose reduction. This prospective non-blinded non-randomised study commenced in 2010. Patients with Inflammatory Arthritis being treated with a biologic agent were screened for disease activity. A cohort of those in remission according to standardized disease activity indices (DAS28 < 2.6, BASDAI < 4) was offered a reduction in dosing frequency of two commonly used biologic therapies (etanercept 50 mg once per fortnight instead of weekly, adalimumab 40 mg once per month instead of fortnightly). Patients were assessed for disease activity at 3, 6, 12, 18 and 24 months following reduction in dosing frequency. Cost saving was calculated. 79 patients with inflammatory arthritis in remission were recruited. 57% had rheumatoid arthritis (n = 45), 13% psoriatic arthritis (n = 10) and 30% ankylosing spondylitis (n = 24). 57% (n = 45) were taking etanercept and 43% (n = 34) adalimumab. The percentage of patients in remission at 24 months was 56% (n = 44). This resulted in an actual saving to the state of approximately 600,000 euro over two years. This study demonstrates the reduction in biologic dosing frequency is feasible in Inflammatory Arthritis. There was a considerable cost saving at two years. The potential for major cost savings in biologic usage should be pursued further.

  9. Patient absorbed radiation doses estimation related to irradiation anatomy; Estimativa de dose absorvida pelo paciente relacionada a anatomia irradiada

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Flavio Augusto Penna; Soares, Amanda Anastacio; Kahl, Gabrielly Gomes, E-mail: prof.flavio@gmail.com, E-mail: amanda-a-soares@hotmail.com, E-mail: gabriellygkahl@gmail.com [Instituto Federal de Eduacao, Ciencia e Tecnologia de Santa Catarina (IFSC), Florianopolis, SC (Brazil)

    2014-07-01

    Developed a direct equation to estimate the absorbed dose to the patient in x-ray examinations, using electric, geometric parameters and filtering combined with data from irradiated anatomy. To determine the absorbed dose for each examination, the entrance skin dose (ESD) is adjusted to the thickness of the patient's specific anatomy. ESD is calculated from the estimated KERMA greatness in the air. Beer-Lambert equations derived from power data mass absorption coefficients obtained from the NIST / USA, were developed for each tissue: bone, muscle, fat and skin. Skin thickness was set at 2 mm and the bone was estimated in the central ray of the site, in the anteroposterior view. Because they are similar in density and attenuation coefficients, muscle and fat are treated as a single tissue. For evaluation of the full equations, we chose three different anatomies: chest, hand and thigh. Although complex in its shape, the equations simplify direct determination of absorbed dose from the characteristics of the equipment and patient. The input data is inserted at a single time and total absorbed dose (mGy) is calculated instantly. The average error, when compared with available data, is less than 5% in any combination of device data and exams. In calculating the dose for an exam and patient, the operator can choose the variables that will deposit less radiation to the patient through the prior analysis of each combination of variables, using the ALARA principle in routine diagnostic radiology sector.

  10. Automated parameter estimation for biological models using Bayesian statistical model checking.

    Science.gov (United States)

    Hussain, Faraz; Langmead, Christopher J; Mi, Qi; Dutta-Moscato, Joyeeta; Vodovotz, Yoram; Jha, Sumit K

    2015-01-01

    Probabilistic models have gained widespread acceptance in the systems biology community as a useful way to represent complex biological systems. Such models are developed using existing knowledge of the structure and dynamics of the system, experimental observations, and inferences drawn from statistical analysis of empirical data. A key bottleneck in building such models is that some system variables cannot be measured experimentally. These variables are incorporated into the model as numerical parameters. Determining values of these parameters that justify existing experiments and provide reliable predictions when model simulations are performed is a key research problem. Using an agent-based model of the dynamics of acute inflammation, we demonstrate a novel parameter estimation algorithm by discovering the amount and schedule of doses of bacterial lipopolysaccharide that guarantee a set of observed clinical outcomes with high probability. We synthesized values of twenty-eight unknown parameters such that the parameterized model instantiated with these parameter values satisfies four specifications describing the dynamic behavior of the model. We have developed a new algorithmic technique for discovering parameters in complex stochastic models of biological systems given behavioral specifications written in a formal mathematical logic. Our algorithm uses Bayesian model checking, sequential hypothesis testing, and stochastic optimization to automatically synthesize parameters of probabilistic biological models.

  11. The significance of neuroendocrine system state in estimation of nonstochastic effects of small doses of internal irradiation. (An experimental study)

    International Nuclear Information System (INIS)

    Dedov, V.I.; Norets, T.A.; Stepanenko, V.F.; Dedenkov, A.N.

    1987-01-01

    Data on long-term complex investigations of nonstochastic effects of low doses of internal irradiation on the level of a whole organism are presented. Experiments have been carried out with mongrel rats of both sexes and different ages up to the moment of introduction of radioactive compounds. Action of relatively and uniformly distributing in the organism radiactive compounds of selenium - 75 and sulfur - 35, which were introduced once intravenously in quantities forming absorbed doses in average on the whole body and ovaries (0.5 Gy), on endocrine glands and critical organs (up to 1.0 Gy) has been used as models of internal radiation. Data, testifying to the fact that the neuroendocrinal system, despite the existing opinion, is sensitive to action of low doses of internal irradiation compared with the recommended one as an ultimate permissible one for nonstochastic effects ( 0.5 Sv), that permits to suggest for using factors of the functional state of the neuroendocrine system as an informative and sensitive criterium of estimation of biological action of low doses of internal radiation, have been obtained. These factors along with doses on critical organs permit to estimate the degree of dangerous action of different radionuclides on the organism level. Dynamic studying of activity factors of the neuroendocrine system with simultaneous analysis of the state of harmonically dependent processes permits to estimate functional possibilities of irradiated organism, its viability, especially under conditions requiring increased stress, as well as to take into account such factors modifying a biological effect as age, animal sex, the character of absorbed dose distribution

  12. Uncertainties in effective dose estimates of adult CT head scans: The effect of head size

    International Nuclear Information System (INIS)

    Gregory, Kent J.; Bibbo, Giovanni; Pattison, John E.

    2009-01-01

    Purpose: This study is an extension of a previous study where the uncertainties in effective dose estimates from adult CT head scans were calculated using four CT effective dose estimation methods, three of which were computer programs (CT-EXPO, CTDOSIMETRY, and IMPACTDOSE) and one that involved the dose length product (DLP). However, that study did not include the uncertainty contribution due to variations in head sizes. Methods: The uncertainties due to head size variations were estimated by first using the computer program data to calculate doses to small and large heads. These doses were then compared with doses calculated for the phantom heads used by the computer programs. An uncertainty was then assigned based on the difference between the small and large head doses and the doses of the phantom heads. Results: The uncertainties due to head size variations alone were found to be between 4% and 26% depending on the method used and the patient gender. When these uncertainties were included with the results of the previous study, the overall uncertainties in effective dose estimates (stated at the 95% confidence interval) were 20%-31% (CT-EXPO), 15%-30% (CTDOSIMETRY), 20%-36% (IMPACTDOSE), and 31%-40% (DLP). Conclusions: For the computer programs, the lower overall uncertainties were still achieved when measured values of CT dose index were used rather than tabulated values. For DLP dose estimates, head size variations made the largest (for males) and second largest (for females) contributions to effective dose uncertainty. An improvement in the uncertainty of the DLP method dose estimates will be achieved if head size variation can be taken into account.

  13. Uncertainties in effective dose estimates of adult CT head scans: The effect of head size

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, Kent J.; Bibbo, Giovanni; Pattison, John E. [Department of Medical Physics, Royal Adelaide Hospital, Adelaide, South Australia 5000 (Australia) and School of Electrical and Information Engineering (Applied Physics), University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Division of Medical Imaging, Women' s and Children' s Hospital, North Adelaide, South Australia 5006 (Australia) and School of Electrical and Information Engineering (Applied Physics), University of South Australia, Mawson Lakes, South Australia 5095 (Australia); School of Electrical and Information Engineering (Applied Physics), University of South Australia, Mawson Lakes, South Australia 5095 (Australia)

    2009-09-15

    Purpose: This study is an extension of a previous study where the uncertainties in effective dose estimates from adult CT head scans were calculated using four CT effective dose estimation methods, three of which were computer programs (CT-EXPO, CTDOSIMETRY, and IMPACTDOSE) and one that involved the dose length product (DLP). However, that study did not include the uncertainty contribution due to variations in head sizes. Methods: The uncertainties due to head size variations were estimated by first using the computer program data to calculate doses to small and large heads. These doses were then compared with doses calculated for the phantom heads used by the computer programs. An uncertainty was then assigned based on the difference between the small and large head doses and the doses of the phantom heads. Results: The uncertainties due to head size variations alone were found to be between 4% and 26% depending on the method used and the patient gender. When these uncertainties were included with the results of the previous study, the overall uncertainties in effective dose estimates (stated at the 95% confidence interval) were 20%-31% (CT-EXPO), 15%-30% (CTDOSIMETRY), 20%-36% (IMPACTDOSE), and 31%-40% (DLP). Conclusions: For the computer programs, the lower overall uncertainties were still achieved when measured values of CT dose index were used rather than tabulated values. For DLP dose estimates, head size variations made the largest (for males) and second largest (for females) contributions to effective dose uncertainty. An improvement in the uncertainty of the DLP method dose estimates will be achieved if head size variation can be taken into account.

  14. Testing the Capacity of the National Biological Dose Response Plan (NBDRP) EX40801

    Science.gov (United States)

    2009-11-01

    Blood Collection All donors were volunteers that willingly responded to an advertising call for participation in a research proposal approved by...Scorers from the same laboratory are shown in the same colour . In Figure 2, the dose estimates based on QuickScan are shown. Figure 3 shows the doses

  15. Effects of exposure imprecision on estimation of the benchmark dose

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Esben; Keiding, Niels; Grandjean, Philippe

    2004-01-01

    In regression analysis failure to adjust for imprecision in the exposure variable is likely to lead to underestimation of the exposure effect. However, the consequences of exposure error for determination of safe doses of toxic substances have so far not received much attention. The benchmark...... approach is one of the most widely used methods for development of exposure limits. An important advantage of this approach is that it can be applied to observational data. However, in this type of data, exposure markers are seldom measured without error. It is shown that, if the exposure error is ignored......, then the benchmark approach produces results that are biased toward higher and less protective levels. It is therefore important to take exposure measurement error into account when calculating benchmark doses. Methods that allow this adjustment are described and illustrated in data from an epidemiological study...

  16. PTTL Dose Re-estimation Applied to Quality Control in TLD-100 Based Personal Dosimetry

    International Nuclear Information System (INIS)

    Muniz, J.L.; Correcher, V.; Delgado, A.

    1999-01-01

    A new method for quality control of dose performance in Personal Dosimetry using TLD-100 is presented. This method consists of the application of dose reassessment techniques based on phototransferred thermoluminescence (PTTL). Reassessment is achieved through a second TL readout of the dosemeters worn by the controlled workers, after a reproducible UV exposure. Recent refinements in the PTTL technique developed in our laboratory allow reassessing doses as low as 0.2 mSv, thus extending the reassessment capability to the entire dose range that must be monitored in personal dosimetry. After a one month exposure, even purely environmental doses can be reassessed. This method can be applied for either re-estimation of single doses or of the total dose accumulated after a number of exposures and dose measurements. Several tests to reconfirm low doses in normal working conditions for personal dosimetry have been performed. Each test consisted of several cycles of exposure and TL evaluations and a final PTTL re-estimation of the total accumulated dose in those cycles. The results obtained always showed very good agreement between the sum of the partial doses and the total reassessed dose. The simplicity of the method and the possibility of re-evaluating the doses assessed to the workers employing their own dosemeters are advantageous features to be considered in designing systems for the determination of real performance in personal dosimetry. (author)

  17. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement

    International Nuclear Information System (INIS)

    Ngwa, Wilfred; Makrigiorgos, G Mike; Berbeco, Ross I

    2010-01-01

    Tumor vascular disrupting agents (VDAs) represent a promising approach to the treatment of cancer, in view of the tumor vasculature's pivotal role in tumor survival, growth and metastasis. VDAs targeting the tumor's dysmorphic endothelial cells can cause selective and rapid occlusion of the tumor vasculature, leading to tumor cell death from ischemia and extensive hemorrhagic necrosis. In this study, the potential for applying gold nanoparticles (AuNPs) as VDAs, during brachytherapy, is examined. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the endothelial dose enhancement caused by radiation-induced photo/Auger electrons originating from AuNPs targeting the tumor endothelium. The endothelial dose enhancement factor (EDEF), representing the ratio of the dose to the endothelium with and without gold nanoparticles was calculated for different AuNP local concentrations, and endothelial cell thicknesses. Four brachytherapy sources were investigated, I-125, Pd-103, Yb-169, as well as 50 kVp x-rays. The results reveal that, even at relatively low intra-vascular AuNP concentrations, ablative dose enhancement to tumor endothelial cells due to photo/Auger electrons from the AuNPs can be achieved. Pd-103 registered the highest EDEF values of 7.4-271.5 for local AuNP concentrations ranging from 7 to 350 mg g -1 , respectively. Over the same concentration range, I-125, 50 kVp and Yb-169 yielded values of 6.4-219.9, 6.3-214.5 and 4.0-99.7, respectively. Calculations of the EDEF as a function of endothelial cell thickness showed that lower energy sources like Pd-103 reach the maximum EDEF at smaller thicknesses. The results also reveal that the highest contribution to the EDEF comes from Auger electrons, apparently due to their shorter range. Overall, the data suggest that ablative dose enhancement to tumor endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs as adjuvants to brachytherapy, with

  18. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Ngwa, Wilfred; Makrigiorgos, G Mike; Berbeco, Ross I, E-mail: mmakrigiorgos@lroc.harvard.ed [Department of Radiation Oncology, Division of Medical Physics and Biophysics, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115 (United States)

    2010-11-07

    Tumor vascular disrupting agents (VDAs) represent a promising approach to the treatment of cancer, in view of the tumor vasculature's pivotal role in tumor survival, growth and metastasis. VDAs targeting the tumor's dysmorphic endothelial cells can cause selective and rapid occlusion of the tumor vasculature, leading to tumor cell death from ischemia and extensive hemorrhagic necrosis. In this study, the potential for applying gold nanoparticles (AuNPs) as VDAs, during brachytherapy, is examined. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the endothelial dose enhancement caused by radiation-induced photo/Auger electrons originating from AuNPs targeting the tumor endothelium. The endothelial dose enhancement factor (EDEF), representing the ratio of the dose to the endothelium with and without gold nanoparticles was calculated for different AuNP local concentrations, and endothelial cell thicknesses. Four brachytherapy sources were investigated, I-125, Pd-103, Yb-169, as well as 50 kVp x-rays. The results reveal that, even at relatively low intra-vascular AuNP concentrations, ablative dose enhancement to tumor endothelial cells due to photo/Auger electrons from the AuNPs can be achieved. Pd-103 registered the highest EDEF values of 7.4-271.5 for local AuNP concentrations ranging from 7 to 350 mg g{sup -1}, respectively. Over the same concentration range, I-125, 50 kVp and Yb-169 yielded values of 6.4-219.9, 6.3-214.5 and 4.0-99.7, respectively. Calculations of the EDEF as a function of endothelial cell thickness showed that lower energy sources like Pd-103 reach the maximum EDEF at smaller thicknesses. The results also reveal that the highest contribution to the EDEF comes from Auger electrons, apparently due to their shorter range. Overall, the data suggest that ablative dose enhancement to tumor endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs as adjuvants to

  19. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement

    Science.gov (United States)

    Ngwa, Wilfred; Makrigiorgos, G. Mike; Berbeco, Ross I.

    2010-11-01

    Tumor vascular disrupting agents (VDAs) represent a promising approach to the treatment of cancer, in view of the tumor vasculature's pivotal role in tumor survival, growth and metastasis. VDAs targeting the tumor's dysmorphic endothelial cells can cause selective and rapid occlusion of the tumor vasculature, leading to tumor cell death from ischemia and extensive hemorrhagic necrosis. In this study, the potential for applying gold nanoparticles (AuNPs) as VDAs, during brachytherapy, is examined. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the endothelial dose enhancement caused by radiation-induced photo/Auger electrons originating from AuNPs targeting the tumor endothelium. The endothelial dose enhancement factor (EDEF), representing the ratio of the dose to the endothelium with and without gold nanoparticles was calculated for different AuNP local concentrations, and endothelial cell thicknesses. Four brachytherapy sources were investigated, I-125, Pd-103, Yb-169, as well as 50 kVp x-rays. The results reveal that, even at relatively low intra-vascular AuNP concentrations, ablative dose enhancement to tumor endothelial cells due to photo/Auger electrons from the AuNPs can be achieved. Pd-103 registered the highest EDEF values of 7.4-271.5 for local AuNP concentrations ranging from 7 to 350 mg g-1, respectively. Over the same concentration range, I-125, 50 kVp and Yb-169 yielded values of 6.4-219.9, 6.3-214.5 and 4.0-99.7, respectively. Calculations of the EDEF as a function of endothelial cell thickness showed that lower energy sources like Pd-103 reach the maximum EDEF at smaller thicknesses. The results also reveal that the highest contribution to the EDEF comes from Auger electrons, apparently due to their shorter range. Overall, the data suggest that ablative dose enhancement to tumor endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs as adjuvants to brachytherapy, with lower

  20. Treatment planning for heavy ion radiotherapy: calculation and optimization of biologically effective dose

    International Nuclear Information System (INIS)

    Kraemer, M.; Scholz, M.

    2000-09-01

    We describe a novel approach to treatment planning for heavy ion radiotherapy based on the local effect model (LEM) which allows to calculate the biologically effective dose not only for the target region but for the entire irradiation volume. LEM is ideally suited to be used as an integral part of treatment planning code systems for active dose shaping devices like the GSI raster scan system. Thus, it has been incorporated into our standard treatment planning system for ion therapy (TRiP). Single intensity modulated fields can be optimized with respect to homogeneous biologically effective dose. The relative biological effectiveness (RBE) is calculated separately for each voxel of the patient CT. Our radiobiologically oriented code system is in use since 1995 for the planning of irradiation experiments with cell cultures and animals such as rats and minipigs. Since 1997 it is in regular and successful use for patient treatment planning. (orig.)

  1. Rapid analysis of key radionuclides in urine and estimation of internal dose for nuclear accident emergency

    International Nuclear Information System (INIS)

    Zhao Shuquan; Hu Heping; Wu Mingyu; Zhu Guoying; Huang Shibin; Liu Shiming

    2005-01-01

    Objective: To estimate the internal doses of a Chinese visiting scholar in the Chernobyl accident. Methods: The contents of 134 Cs and 137 Cs in urine were measured using a Ge(Li) γ-spectrometer. Their internal doses were estimated according to ICRP reports. Dose review of 131I was performed referring to UNSCEAR 2000 report. Results: The effective dose equivalent from 134 Cs, 137 Cs and 131 I were 66 μSv, 88 μSv and 1728 μSv respectively. Their summation was 1.9 mSv. Conclusion: The internal dose from 131 I was 10 times higher than that from 134 Cs and 137 Cs. So, the earlier estimation of internal doses for 131 I is significant in evaluation on radiation injuries of a nuclear reactor accident. (authors)

  2. Proof of concept and dose estimation with binary responses under model uncertainty.

    Science.gov (United States)

    Klingenberg, B

    2009-01-30

    This article suggests a unified framework for testing Proof of Concept (PoC) and estimating a target dose for the benefit of a more comprehensive, robust and powerful analysis in phase II or similar clinical trials. From a pre-specified set of candidate models, we choose the ones that best describe the observed dose-response. To decide which models, if any, significantly pick up a dose effect, we construct the permutation distribution of the minimum P-value over the candidate set. This allows us to find critical values and multiplicity adjusted P-values that control the familywise error rate of declaring any spurious effect in the candidate set as significant. Model averaging is then used to estimate a target dose. Popular single or multiple contrast tests for PoC, such as the Cochran-Armitage, Dunnett or Williams tests, are only optimal for specific dose-response shapes and do not provide target dose estimates with confidence limits. A thorough evaluation and comparison of our approach to these tests reveal that its power is as good or better in detecting a dose-response under various shapes with many more additional benefits: It incorporates model uncertainty in PoC decisions and target dose estimation, yields confidence intervals for target dose estimates and extends to more complicated data structures. We illustrate our method with the analysis of a Phase II clinical trial. Copyright (c) 2008 John Wiley & Sons, Ltd.

  3. Cytogenetic biodosimetry to estimate radiation doses received in accidental radiological exposures

    International Nuclear Information System (INIS)

    AIsbeih, Ghazi

    2014-01-01

    The tremendous applications of nuclear technologies in various aspects of life increase the probability of over exposure due to involuntary or premeditated nuclear accidents. National radiation-protection preparedness requires adequate estimate of dose received for efficient medical assistance of victims. Cytogenetic biodosimetry is an ISO and IAEA standardized biotechnology technique. We have established a reference biological dosimetry laboratory to boost the nation's ability to respond to sporadic and mass radiation casualty incidents and to assess the magnitude of radiation overexposure. Accurate calculation of radiation doses received will result in evidence based treatment decisions and better management of valuable emergency resources. It will also contribute to the 'National Radiation Protection Program' by playing a role in nuclear emergency plans. The cytogenetic method is standardized and scalable. In addition to diagnosis of over exposure, it provides triage capability for rapid stratification of patients who need more specialized medical care. It can also detect false positives and false negatives exposure particularly in cases of legal allegations

  4. Rat skin carcinogenesis as a basis for estimating risks at low doses and dose rates of various types of radiation

    International Nuclear Information System (INIS)

    Burns, F.J.; Vanderlaan, M.; Strickland, P.; Albert, R.E.

    1976-01-01

    The recovery rate, age dependence and latent period for tumor induction in rat skin were measured for single and split doses of radiation, and the data were analyzed in terms of a general model in an attempt to estimate the expected tumor response for various types of radiation given at low dose rates for long periods of time. The dorsal skin of male rats was exposed to electrons, x rays, or protons in either single or split doses for several doses and the tumor responses were compared during 80 weeks of observation. A two stage model incorporating a reversible or recoverable mode was developed and various parameters in the model, including recovery rate, dose-response coefficients, and indices of age sensitivity, were evaluated experimentally. The measured parameters were then utilized to calculate expected tumor responses for exposure periods extending for duration of life. The calculations indicated that low dose rates could be markedly ( 1 / 100 to 1 / 1000 ) less effective in producing tumors than the same dose given in a short or acute exposure, although the magnitude of the reduction in effectiveness declines as the dose declines

  5. Generation of Composite Dose and Biological Effective Dose (BED) Over Multiple Treatment Modalities and Multistage Planning Using Deformable Image Registration

    International Nuclear Information System (INIS)

    Zhang, Geoffrey; Huang, T-C; Feygelman, Vladimir; Stevens, Craig; Forster, Kenneth

    2010-01-01

    Currently there are no commercially available tools to generate composite plans across different treatment modalities and/or different planning image sets. Without a composite plan, it may be difficult to perform a meaningful dosimetric evaluation of the overall treatment course. In this paper, we introduce a method to generate composite biological effective dose (BED) plans over multiple radiotherapy treatment modalities and/or multistage plans, using deformable image registration. Two cases were used to demonstrate the method. Case I was prostate cancer treated with intensity-modulated radiation therapy (IMRT) and a permanent seed implant. Case II involved lung cancer treated with two treatment plans generated on two separate computed tomography image sets. Thin-plate spline or optical flow methods were used as appropriate to generate deformation matrices. The deformation matrices were then applied to the dose matrices and the resulting physical doses were converted to BED and added to yield the composite plan. Cell proliferation and sublethal repair were considered in the BED calculations. The difference in BED between normal tissues and tumor volumes was accounted for by using different BED models, α/β values, and cell potential doubling times. The method to generate composite BED plans presented in this paper provides information not available with the traditional simple dose summation or physical dose summation. With the understanding of limitations and uncertainties of the algorithms involved, it may be valuable for the overall treatment plan evaluation.

  6. Estimation of eye absorbed doses in head & neck radiotherapy practices using thermoluminescent detectors

    Directory of Open Access Journals (Sweden)

    Gh Bagheri

    2011-09-01

    Full Text Available  Determination of eye absorbed dose during head & neck radiotherapy is essential to estimate the risk of cataract. Dose measurements were made in 20 head & neck cancer patients undergoing 60Co radiotherapy using LiF(MCP thermoluminescent dosimeters. Head & neck cancer radiotherapy was delivered by fields using SAD & SSD techniques. For each patient, 3 TLD chips were placed on each eye. Head & neck dose was about 700-6000 cGy in 8-28 equal fractions. The range of eye dose is estimated to be (3.49-639.1 mGy with a mean of maximum dose (98.114 mGy, which is about 3 % of head & neck dose. Maximum eye dose was observed for distsnces of about 3 cm from edge of the field to eye.

  7. Dose estimation in embryo or fetus in external fields; Estimacion de dosis en embrion o feto

    Energy Technology Data Exchange (ETDEWEB)

    Gregori, Beatriz N [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina)

    2001-07-01

    The embryo or the fetus can be irradiated as result of radiological procedures of diagnosis of therapy in where the beam effects directly on the same one or in tissues or peripherical organs. Some authors have suggested that in the first stages of the pregnancy the dose in ovaries can be the good estimated of the dose in embryo or fetus. In advanced conditions of the development, probably also in the early stage, is more appropriated to specify the dose in the embryo or fetus equal of the uterus. The dose in the uterus is a good estimated so much for external irradiation as for radionuclides incorporation.

  8. Estimation of the total absorbed dose by quartz in retrospective conditions

    International Nuclear Information System (INIS)

    Correcher, V.; Delgado, A.

    2003-01-01

    The estimation of the total absorbed dose is of great interest in areas affected by a radiological accident when no conventional dosimetric systems are available. This paper reports about the usual methodology employed in dose reconstruction from the thermoluminescence (TL) properties of natural quartz, extracted from selected ceramic materials (12 bricks) picked up in the Chernobyl area. It has been possible to evaluate doses under 50mGy after more than 11 years later since the radiological accident happened. The main advance of this fact is the reduction of the commonly accepted limit dose estimation more than 20 times employing luminescence methods. (Author) 11 refs

  9. Estimating confidence intervals in predicted responses for oscillatory biological models.

    Science.gov (United States)

    St John, Peter C; Doyle, Francis J

    2013-07-29

    The dynamics of gene regulation play a crucial role in a cellular control: allowing the cell to express the right proteins to meet changing needs. Some needs, such as correctly anticipating the day-night cycle, require complicated oscillatory features. In the analysis of gene regulatory networks, mathematical models are frequently used to understand how a network's structure enables it to respond appropriately to external inputs. These models typically consist of a set of ordinary differential equations, describing a network of biochemical reactions, and unknown kinetic parameters, chosen such that the model best captures experimental data. However, since a model's parameter values are uncertain, and since dynamic responses to inputs are highly parameter-dependent, it is difficult to assess the confidence associated with these in silico predictions. In particular, models with complex dynamics - such as oscillations - must be fit with computationally expensive global optimization routines, and cannot take advantage of existing measures of identifiability. Despite their difficulty to model mathematically, limit cycle oscillations play a key role in many biological processes, including cell cycling, metabolism, neuron firing, and circadian rhythms. In this study, we employ an efficient parameter estimation technique to enable a bootstrap uncertainty analysis for limit cycle models. Since the primary role of systems biology models is the insight they provide on responses to rate perturbations, we extend our uncertainty analysis to include first order sensitivity coefficients. Using a literature model of circadian rhythms, we show how predictive precision is degraded with decreasing sample points and increasing relative error. Additionally, we show how this method can be used for model discrimination by comparing the output identifiability of two candidate model structures to published literature data. Our method permits modellers of oscillatory systems to confidently

  10. The biological response of plucked human hair to low-dose radiation: a measure of individual radiosensitivity and a technique for biological dosimetry

    International Nuclear Information System (INIS)

    Swain, D.

    1997-01-01

    It is often assumed that the effects of radiation are linear with dose and that high dose effects can be extrapolated to low dose levels. However, there are a variety of mechanisms which can alter the response at low doses. The most important of these relate to induced sensitivity or induced repair mechanisms. It is therefore important that this area is studied in more depth by looking at the molecular effects and damage to cells at low doses. It is well known that there are certain rare genetic syndromes which predispose individuals to cancer, e.g. ataxia telangiectasia. It is also probable that there is a large range of sensitivity in the natural variation of individuals to the risk of radiation-induced cancer. It is proposed that radiosensitivity is studied using stimulated lymphocytes from whole blood and the technique extended to look at the effects in cell cultures established from human hair. Radiation treatment of cell cultures established from plucked human hair has been previously advocated as a non-invasive technique for non-uniform biological dosimetry and it is proposed that these techniques are adapted to the use of hair to estimate individual radiosensitivity. The aim is to establish and optimize these techniques for culturing keratinocytes from plucked human hair follicles with a view to study biological markers for the subsequent assessment of radiosensitivity. Preliminary results are promising and suggest that the technique for culturing keratinocytes from hair presents a feasible approach. Results from this primary cell culture technique and results from the comparison of the micronuclei data obtained from the cell cultures and stimulated lymphocytes will be presented. (author)

  11. Dosimetric Aspects of Personnel Skin Contamination by Radionuclides - Estimate of a Skin Dose, Monitoring and Interpretation of Results

    International Nuclear Information System (INIS)

    Husak, V.; Kleinbauer, K.

    2001-01-01

    Full text: On the basis of a critical comparison of literary data, tables are compiled of beta and gamma dose rate in mSvh -1 (kBqcm -1 ) to the basal layer of the skin at 0.07 mm depth from contamination by 75 radionuclides unsealed sources; radioactive substances are assumed to reside on the skin surface. The residence time needed for the estimate of the skin dose is calculated assuming that a residual activity per unit area of any radionuclide on the skin, which could not be removed by the repeated careful decontamination, is supposed to be eliminated with the biological half-life of 116 h as a consequence of the natural sloughing off of the skin. Radionuclides are divided into five groups according to the dose estimate in mSv (kBqcm -2 ): ≥250 (e.g. 32 P, 89 Sr, 137 Cs/ 137m Ba), 100-250 (e.g. 90 Y, 131 I, 186 Re), 10-100 (e.g. 35 S, 67 Ga, 200 Tl), 1-10 (e.g. 18 F, 51 Cr, 99m Tc), ≤1 (e.g. 63 Ni, 144 Pr, 238 U). If it is possible, doses can be determined more precisely by measuring the effective half-life of the residual activity on the contaminated area. Our dose estimates are approximately valid on the condition that, after decontamination, residual activity of radionuclides persists predominantly in the superficial layers of epidermis. This and further uncertainties connected with the dose assessment are discussed. Our tables can help to determine easily rough values of doses to personnel in contamination incidents and to interpret them in relation to regulatory derived limits. This work was supported by State Office for Nuclear Safety in Prague. (author)

  12. Radiation dose estimation from foods due to the accident of TEPCO Fukushima Daiichi Nuclear Power Station

    International Nuclear Information System (INIS)

    Yamaguchi, Ichiro

    2012-01-01

    Explained are the purpose of dose assessment, its methods, actual radionuclide levels in food, amounts of food intake, dose estimated hitherto, dose in the future, dose estimated by total food studies, and problems of assessing the dose from food, all of which Tokyo Electric Power Company (TEPCO) Power Station Accident has raised. Dose derived from food can be estimated by the radioactivity measured in each food material and in its combined amounts or in actually cooked food. Amounts of radioactive materials ingested in the body can be measured externally or by bioassay. Japan MHLW published levels of radioactivity in vegetables', fruits, marine products and meats from Mar. 2011, of which time course pattern has been found different each other within and between month(s). Dose due to early exposure in the Accident can be estimated by the radioactivity levels above and data concerning the amounts of food intake summarized by National Institute of Health and Nutrition in 2010 and other institutions. For instance, the thyroid tissue equivalent dose by I-131 in a 1 year old child is estimated to be 1.1-5 mSv depending on the assumed data for calculation, in the first month after the Accident when ICRP tissue equivalent dose coefficient 3.7 x 10-6 Sv/Bq is used. In the future (later than Apr. 2012), new standard limits of radiocesium levels in milk/its products and foods for infant and in other general foods are to be defined 50 and 100 Bq/kg, respectively. The distribution of committed effective doses by radiocesium (mSv/y food intake) are presented as an instance, where it is estimated by 1 million stochastic simulations using 2 covariates of Cs-134, -137 levels (as representative nuclides under regulation) in food and of daily food intake. In dose prediction, conjecturing the behavior of environmental radionuclides and the time of resume of primary industries would be necessary. (T.T.)

  13. Estimation of population doses from diagnostic medical examinations in Japan, 1974. IV. Dose estimation of fetus exposed in utero to diagnostic x rays

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, T; Maruyama, T; Kumamoto, Y [National Inst. of Radiological Sciences, Chiba (Japan)

    1976-07-01

    In fetus exposed in utero to diagnostic x rays for the medical examinations of the mother, the absorbed dose has been estimated on the basis of a 1974 nation wide radiological survey. The results of the survey showed that the number of radiographs per year connected with pregnant women was 0.32 million for chest examination excluding mass surveys. 0.29 million for obstetrical examinations including pelvimetry, and 0.21 million for abdominal and pelvic examinations with a total of 0.82 million. The dose absorbed in the fetus was measured with an ionization chamber placed at the hypothetical center of the fetus in an ''average woman'' Rando phantom in which a maternal body was simulated by adding MixDp materials. ''The collective dose'' to the fetus in the pregnant women receiving a given type of examination was calculated from the number of radiographs per year connected with the pregnant women and the fetal doses. The percapita mean marrow dose (CMD), the leukemia significant dose (LSD) and the genetically significant dose (GSD) for the fetus were determined from the collective dose, taking into account the birth expectancy, the child expectancy, life expectancy and significant factor for the fetus. The collective dose to the fetus was estimated to be 9.3 x 10/sup 4/ man rad per year. The resultant values of CMD, LSD and GSD were 0.81 mrad per year, 0.79 mrad per person per year and 1.44 mrad per person per year, respectively.

  14. Estimation of the collective dose in the Portuguese population due to medical procedures in 2010

    International Nuclear Information System (INIS)

    Teles, Pedro; Vaz, Pedro; Sousa, M. Carmen de; Paulo, Graciano; Santos, Joana; Pascoal, Ana; Cardoso, Gabriela; Santos, Ana Isabel; Lanca, Isabel; Matela, Nuno; Janeiro, Luis; Sousa, Patrick; Carvoeiras, Pedro; Parafita, Rui; Simaozinho, Paula

    2013-01-01

    In a wide range of medical fields, technological advancements have led to an increase in the average collective dose in national populations worldwide. Periodic estimations of the average collective population dose due to medical exposure is, therefore of utmost importance, and is now mandatory in countries within the European Union (article 12 of EURATOM directive 97/ 43). Presented in this work is a report on the estimation of the collective dose in the Portuguese population due to nuclear medicine diagnostic procedures and the Top 20 diagnostic radiology examinations, which represent the 20 exams that contribute the most to the total collective dose in diagnostic radiology and interventional procedures in Europe. This work involved the collaboration of a multidisciplinary taskforce comprising representatives of all major Portuguese stakeholders (universities, research institutions, public and private health care providers, administrative services of the National Healthcare System, scientific and professional associations and private service providers). This allowed us to gather a comprehensive amount of data necessary for a robust estimation of the collective effective dose to the Portuguese population. The methodology used for data collection and dose estimation was based on European Commission recommendations, as this work was performed in the framework of the European wide Dose Datamed II project. This is the first study estimating the collective dose for the population in Portugal, considering such a wide national coverage and range of procedures and consisting of important baseline reference data. The taskforce intends to continue developing periodic collective dose estimations in the future. The estimated annual average effective dose for the Portuguese population was of 0.080±0.017 mSv caput -1 for nuclear medicine exams and of 0.96±0.68 mSv caput -1 for the Top 20 diagnostic radiology exams. (authors)

  15. Effective dose and organ doses estimation taking tube current modulation into account with a commercial software package

    International Nuclear Information System (INIS)

    Lopez-Rendon, X.; Bosmans, H.; Zanca, F.; Oyen, R.

    2015-01-01

    To evaluate the effect of including tube current modulation (TCM) versus using the average mAs in estimating organ and effective dose (E) using commercial software. Forty adult patients (24 females, 16 males) with normal BMI underwent chest/abdomen computed tomography (CT) performed with TCM at 120 kVp, reference mAs of 110 (chest) and 200 (abdomen). Doses to fully irradiated organs (breasts, lungs, stomach, liver and ovaries) and E were calculated using two versions of a dosimetry software: v.2.0, which uses the average mAs, and v.2.2, which accounts for TCM by implementing a gender-specific mAs profile. Student's t-test was used to assess statistically significant differences between organ doses calculated with the two versions. A statistically significant difference (p < 0.001) was found for E on chest and abdomen CT, with E being lower by 4.2 % when TCM is considered. Similarly, organ doses were also significantly lower (p < 0.001): 13.7 % for breasts, 7.3 % for lungs, 9.1 % for the liver and 8.5 % for the stomach. Only the dose to the ovaries was higher with TCM (11.5 %). When TCM is used, for the stylized phantom, the doses to lungs, breasts, stomach and liver decreased while the dose to the ovaries increased. (orig.)

  16. Effective dose and organ doses estimation taking tube current modulation into account with a commercial software package

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Rendon, X. [KU Leuven, Department of Imaging and Pathology, Division of Medical Physics and Quality Assessment, Herestraat 49, box 7003, Leuven (Belgium); Bosmans, H.; Zanca, F. [KU Leuven, Department of Imaging and Pathology, Division of Medical Physics and Quality Assessment, Herestraat 49, box 7003, Leuven (Belgium); University Hospitals Leuven, Department of Radiology, Leuven (Belgium); Oyen, R. [University Hospitals Leuven, Department of Radiology, Leuven (Belgium)

    2015-07-15

    To evaluate the effect of including tube current modulation (TCM) versus using the average mAs in estimating organ and effective dose (E) using commercial software. Forty adult patients (24 females, 16 males) with normal BMI underwent chest/abdomen computed tomography (CT) performed with TCM at 120 kVp, reference mAs of 110 (chest) and 200 (abdomen). Doses to fully irradiated organs (breasts, lungs, stomach, liver and ovaries) and E were calculated using two versions of a dosimetry software: v.2.0, which uses the average mAs, and v.2.2, which accounts for TCM by implementing a gender-specific mAs profile. Student's t-test was used to assess statistically significant differences between organ doses calculated with the two versions. A statistically significant difference (p < 0.001) was found for E on chest and abdomen CT, with E being lower by 4.2 % when TCM is considered. Similarly, organ doses were also significantly lower (p < 0.001): 13.7 % for breasts, 7.3 % for lungs, 9.1 % for the liver and 8.5 % for the stomach. Only the dose to the ovaries was higher with TCM (11.5 %). When TCM is used, for the stylized phantom, the doses to lungs, breasts, stomach and liver decreased while the dose to the ovaries increased. (orig.)

  17. Estimated effects on radiation doses from alternatives in a spent fuel transportation system

    International Nuclear Information System (INIS)

    Schneider, K.J.; Ross, W.A.; Smith, R.I.

    1988-07-01

    This paper contains the results of a study of estimated radiation doses to the public and workers from the transport of spent fuel from commercial nuclear power reactors to a geologic repository. A postulated reference rail/legal-weight truck transportation system is defined that would use current transportation technology, and provide a breakdown of activities and time/distance/dose-rate estimates for each activity within the system. Collective doses are estimated for each of the major activities at the reactor site, in transit, and at the repository receiving facility. Annual individual doses to the maximally exposed individuals or groups of individuals are also estimated. The dose-reduction potentials and costs are estimated for a total of 17 conceptual alternatives and subalternatives to the postulated reference system. Most of the alternatives evaluated are estimated to provide both cost and dose reductions. The major conclusion is that the potential exists for significant future reductions in radiation doses to the public and workers and for reductions in costs compared to those based on a continuation of past practices in the US

  18. Estimated effects on radiation doses from alternatives in a spent fuel transportation system

    International Nuclear Information System (INIS)

    Schneider, K.J.; Ross, W.A.; Smith, R.I.

    1988-01-01

    This paper contains the results of a study of estimated radiation doses to the public and workers from the transport of spent fuel from commercial nuclear power reactors to a geologic repository. A postulated reference rail/legal-weight truck transportation system is defined that would use current transportation technology, and provide a breakdown of activities and time/distance/dose-rate estimates for each activity within the system. Collective doses are estimated for each of the major activities at the reactor site, in transit, and at the repository receiving facility. Annual individual doses to the maximally exposed individuals or groups of individuals also estimated. The dose-reduction potentials and costs are estimated for a total of 17 conceptual alternatives and subalternatives to the postulated reference system. Most of the alternatives evaluated are estimated to provide both cost and dose reductions. The major conclusion is that the potential exists for significant future reductions in radiation doses to the public and workers and for reductions in costs compared to those based on a continuation of past practices in the U.S

  19. Year 2000 estimated population dose for the Tennessee Valley region

    International Nuclear Information System (INIS)

    Fletcher, J.F.; Strauch, S.; Siegel, G.R.; Witherspoon, J.P.

    1976-01-01

    A comprehensive study has recently been completed of the potential regional radiological dose in the Tennessee and Cumberland river basins in the year 2000, resulting from the operation of nuclear facilities. This study, sponsored jointly by the U.S. Energy Research and Development Administration and the Tennessee Valley Authority, was performed by the Hanford Engineering Development Laboratory (HEDL), the Oak Ridge National Laboratory (ORNL), and the Atmospheric Turbulence and Diffusion Laboratory (ATDL). This study considered the operation in the year 2000 of 33,000 MWe of nuclear capacity within the study area, and of 110,000 MWe in adjacent areas, together with supporting nuclear fuel fabrication and reprocessing facilities. Air and water transport models used and methods for calculating nuclide concentrations on the ground are discussed

  20. Dose estimation with the help of food chain compartment models

    International Nuclear Information System (INIS)

    Murzin, N.V.

    1987-01-01

    Food chain chamber models for calculation of human irradiation doses are considered. Chamber models are divided into steady-state (SSCM) and dynamic (DCM) ones according to the type of interaction between chambers. SSCM are built on the ground of the postulate about steady-static equilibrium presence within organism-environment system. DCM are based on two main assumptions: 1) food chain may be divided into several interacting chambers, between which radionuclides exchange occurs. Radionuclide specific activity in all parts of the chamber is identical at any instant of time; 2) radionuclide losses by the chamber are proportional to radionuclide specific activity in the chamber. The construction principles for economic chamber model are considered

  1. IDEAS: estimation of committed dose from incorporation monitoring data

    International Nuclear Information System (INIS)

    Hurtgen, C.

    2006-01-01

    This project addresses specific problems and issues encountered in the nuclear industry, and other users of radioactive materials, in the area of internal dose assessment. The innovative aspects relate mainly to the development and application of new methods, rather than the acquisition of new knowledge or information on biokinetics and internal dosimetry. The project has three main scientific/technological objectives: (1) the creation of a database of well-documented cases, and the filling during and after the project to provide a source of basic information about internal exposure for a large number of radionuclides; (2) the development of a general philosophy for the evaluation of monitoring data from the practical experience of the scientific community; (3) the definition of general guidelines according to the general philosophy

  2. Effect of edema, relative biological effectiveness, and dose heterogeneity on prostate brachytherapy

    International Nuclear Information System (INIS)

    Wang, Jian Z.; Mayr, Nina A.; Nag, Subir; Montebello, Joseph; Gupta, Nilendu; Samsami, Nina; Kanellitsas, Christos

    2006-01-01

    Many factors influence response in low-dose-rate (LDR) brachytherapy of prostate cancer. Among them, edema, relative biological effectiveness (RBE), and dose heterogeneity have not been fully modeled previously. In this work, the generalized linear-quadratic (LQ) model, extended to account for the effects of edema, RBE, and dose heterogeneity, was used to assess these factors and their combination effect. Published clinical data have shown that prostate edema after seed implant has a magnitude (ratio of post- to preimplant volume) of 1.3-2.0 and resolves exponentially with a half-life of 4-25 days over the duration of the implant dose delivery. Based on these parameters and a representative dose-volume histogram (DVH), we investigated the influence of edema on the implant dose distribution. The LQ parameters (α=0.15 Gy -1 and α/β=3.1 Gy) determined in earlier studies were used to calculate the equivalent uniform dose in 2 Gy fractions (EUD 2 ) with respect to three effects: edema, RBE, and dose heterogeneity for 125 I and 103 Pd implants. The EUD 2 analysis shows a negative effect of edema and dose heterogeneity on tumor cell killing because the prostate edema degrades the dose coverage to tumor target. For the representative DVH, the V 100 (volume covered by 100% of prescription dose) decreases from 93% to 91% and 86%, and the D 90 (dose covering 90% of target volume) decrease from 107% to 102% and 94% of prescription dose for 125 I and 103 Pd implants, respectively. Conversely, the RBE effect of LDR brachytherapy [versus external-beam radiotherapy (EBRT) and high-dose-rate (HDR) brachytherapy] enhances dose effect on tumor cell kill. In order to balance the negative effects of edema and dose heterogeneity, the RBE of prostate brachytherapy was determined to be approximately 1.2-1.4 for 125 I and 1.3-1.6 for 103 Pd implants. These RBE values are consistent with the RBE data published in the literature. These results may explain why in earlier modeling studies

  3. Estimating dose painting effects in radiotherapy: a mathematical model.

    Directory of Open Access Journals (Sweden)

    Juan Carlos López Alfonso

    Full Text Available Tumor heterogeneity is widely considered to be a determinant factor in tumor progression and in particular in its recurrence after therapy. Unfortunately, current medical techniques are unable to deduce clinically relevant information about tumor heterogeneity by means of non-invasive methods. As a consequence, when radiotherapy is used as a treatment of choice, radiation dosimetries are prescribed under the assumption that the malignancy targeted is of a homogeneous nature. In this work we discuss the effects of different radiation dose distributions on heterogeneous tumors by means of an individual cell-based model. To that end, a case is considered where two tumor cell phenotypes are present, which we assume to strongly differ in their respective cell cycle duration and radiosensitivity properties. We show herein that, as a result of such differences, the spatial distribution of the corresponding phenotypes, whence the resulting tumor heterogeneity can be predicted as growth proceeds. In particular, we show that if we start from a situation where a majority of ordinary cancer cells (CCs and a minority of cancer stem cells (CSCs are randomly distributed, and we assume that the length of CSC cycle is significantly longer than that of CCs, then CSCs become concentrated at an inner region as tumor grows. As a consequence we obtain that if CSCs are assumed to be more resistant to radiation than CCs, heterogeneous dosimetries can be selected to enhance tumor control by boosting radiation in the region occupied by the more radioresistant tumor cell phenotype. It is also shown that, when compared with homogeneous dose distributions as those being currently delivered in clinical practice, such heterogeneous radiation dosimetries fare always better than their homogeneous counterparts. Finally, limitations to our assumptions and their resulting clinical implications will be discussed.

  4. Estimation of annual radiation dose received by some industrial workers

    International Nuclear Information System (INIS)

    Garg, Ajay; Chauhan, R.P.; Kumar, Sushil

    2013-01-01

    Radon and its progeny in the atmosphere, soil, ground water, oil and gas deposits contributes the largest fraction of the natural radiation dose to populations, enhanced interest exhibited in tracking its concentration is thus fundamental for radiation protection. The combustion of coal in various industrial units like thermal power plants. National fertilizer plants, paper mill etc. results in the release of some natural radioactivity to the atmosphere through formation of fly ash and bottom ash or slag. This consequent increases the radioactivity in soil, water and atmosphere around thermal power plants. Keeping this in mind the measurements of radon, thoron and their progeny concentration in the environment of some industrial units has been carried out using solid state nuclear track detectors (SSNTD). The specially designed twin cup dosimeter used here consists two chambers of cylindrical geometry separated by a wall in the middle with each having length of 4.5 cm and radius of 3.1 cm. This dosimeter employs three SSNTDs out of which two detectors were placed in each chamber and a third one was placed on the outer surface of the dosimeter. One chamber is fitted with glass fiber filter so that radon and thoron both can diffuse into the chamber while in other chamber, a semi permeable membrane is used. The membrane mode measures the radon concentration alone as it can diffuse through the membrane but suppresses the thoron. The twin cup dosimeter also has a provision for bare mode enabling it to register tracks due to radon, thoron and their progeny in total. Therefore, using this dosimeter we can measure the individual concentration of radon, thoron, and their progeny at the same time. The annual effective doses received by the workers in some industrial units has been calculated. The results indicate some higher levels in coal handling and fly ash area of the plants. (author)

  5. The estimation of radiation effective dose from diagnostic medical procedures in general population of northern Iran

    International Nuclear Information System (INIS)

    Shabestani Monfared, A.; Abdi, R.

    2006-01-01

    The risks of low-dose Ionizing radiation from radiology and nuclear medicine are not clearly determined. Effective dose to population is a very important factor in risk estimation. The study aimed to determine the effective dose from diagnostic radiation medicine in a northern province of Iran. Materials and Methods: Data about various radiologic and nuclear medicine procedures were collected from all radiology and nuclear medicine departments In Mazandaran Province (population = 2,898,031); and using the standard dosimetry tables, the total dose, dose per examination, and annual effective dose per capita as well as the annual gonadal dose per capita were estimated. Results: 655,730 radiologic examinations in a year's period, lead to 1.45 mSv, 0.33 mSv and 0.31 mGy as average effective dose per examination, annual average effective dose to member of the public, and annual average gonadal dose per capita, respectively. The frequency of medical radiologic examinations was 2,262 examinations annually per 10,000 members of population. However, the total number of nuclear medicine examinations in the same period was 7074, with 4.37 mSv, 9.6 μSv and 9.8 μGy, as average effective dose per examination, annual average effective dose to member of the public and annual average gonadal dose per caput, respectively. The frequency of nuclear medicine examination was 24 examinations annually per 10,000 members of population. Conclusion: The average effective dose per examination was nearly similar to other studies. However, the average annual effective dose and annual average gonadal dose per capita were less than the similar values in other reports, which could be due to lesser number of radiation medicine examinations in the present study

  6. Age- and sex-dependent model for estimating radioiodine dose to a normal thyroid

    International Nuclear Information System (INIS)

    Killough, G.G.; Eckerman, K.F.

    1986-01-01

    This paper describes the derivation of an age- and sex-dependent model of radioiodine dosimetry in the thyroid and the application of the model to estimating the thyroid dose for each of 4215 patients who were exposed to 131 I in diagnostic and therapeutic procedures. In most cases, the available data consisted of the patient's age at the time of administration, the patient's sex, the quantity of activity administered, the clinically-determined uptake of radioiodine by the thyroid, and the time after administration at which the uptake was determined. The metabolic model is of the form A(t) = K[exp(-μ 1 t) -exp(-μ 2 t)] (μCi), where μ 1 = λ/sub r/ - λ/sub i//sup b/ (i = 1, 2), λ/sub r/ is the radiological decay-rate coefficient, and λ/sub i//sup b/ are biological removal rate coefficients. The values of λ/sub i//sup b/ are determined by solving a nonlinear equation that depends on assumptions about the time or maximum uptake an the eventual biological loss rate (through which age dependence enters). The value of K may then be calculated from knowledge of the uptakes at a particular time. The dosimetric S-factor (rad/μCi-day) is based on specific absorbed fractions for photons of energy ranging from 0.01 to 4.0 MeV for thyroid masses from 1.29 to 19.6 g; the functional form of the S-factor also involves the thyroid mass explicitly, through which the dependence on age and sex enters. An analysis of sensitivity of the model to uncertainties in the thyroid mass and the biological removal rate for several age groups is reported. 12 references, 5 figures, 5 tables

  7. TLD personnel monitoring dose estimation- extending the upper limit of the dose range

    International Nuclear Information System (INIS)

    Popli, K.L.; Sathian, Deepa; Divakaran, T.; Massand, O.P.

    2001-01-01

    TLD personnel monitoring was introduced in the year 1975 in India and at present nearly 41,000 radiation workers are being monitored by 13 monitoring laboratories all over India. The BARC- TLD being used for personnel monitoring is based on CaSO 4 :Dy embedded in PTFE and semi-automatic TL reader using hot N 2 Gas for heating the dosimeters. This reader has the range to measure γ dose from ten μSv to 3 μSv and x-ray dose form 1 μ Sv to 0.3 Sv due to the higher sensitivity of CaSO 4 : Dy to lower energy photons (20keV-50 keV) generated by diagnostic x-ray units. The x-ray radiation workers are at present nearly 35% of the total radiation workers monitored and this number is expected to grow as more and more number of x-ray workers are covered under this service. The upper limit of the x-ray dose range of the instrument is 0.3 Sv, whereas in the past one year it has been observed that at least 25% of the total overexposures reported in case of x-ray workers have recorded the dose more than 0.3 Sv. This paper presents the technique developed to extend the upper limit of the range from 0.3 Sv to 1 Sv for x-rays and 10 Sv for γ rays

  8. Estimation of background radiation doses for the Peninsular Malaysia's population by ESR dosimetry of tooth enamel.

    Science.gov (United States)

    Rodzi, Mohd; Zhumadilov, Kassym; Ohtaki, Megu; Ivannikov, Alexander; Bhattacharjee, Deborshi; Fukumura, Akifumi; Hoshi, Masaharu

    2011-08-01

    Background radiation dose is used in dosimetry for estimating occupational doses of radiation workers or determining radiation dose of an individual following accidental exposure. In the present study, the absorbed dose and the background radiation level are determined using the electron spin resonance (ESR) method on tooth samples. The effect of using different tooth surfaces and teeth exposed with single medical X-rays on the absorbed dose are also evaluated. A total of 48 molars of position 6-8 were collected from 13 district hospitals in Peninsular Malaysia. Thirty-six teeth had not been exposed to any excessive radiation, and 12 teeth had been directly exposed to a single X-ray dose during medical treatment prior to extraction. There was no significant effect of tooth surfaces and exposure with single X-rays on the measured absorbed dose of an individual. The mean measured absorbed dose of the population is 34 ± 6.2 mGy, with an average tooth enamel age of 39 years. From the slope of a regression line, the estimated annual background dose for Peninsular Malaysia is 0.6 ± 0.3 mGy y(-1). This value is slightly lower than the yearly background dose for Malaysia, and the radiation background dose is established by ESR tooth measurements on samples from India and Russia.

  9. A new approach to the estimation of radiopharmaceutical radiation dose distributions

    International Nuclear Information System (INIS)

    Hetherington, E.L.R.; Wood, N.R.

    1975-03-01

    For a photon energy of 150 keV, the Monte Carlo technique of photon history simulation was used to obtain estimates of the dose distribution in a human phantom for three activity distributions relevant to diagnostic nuclear medicine. In this preliminary work, the number of photon histories considered was insufficient to produce complete dose contours and the dose distributions are presented in the form of colour-coded diagrams. The distribution obtained illustrate an important deficiency in the MIRD Schema for dose estimation. Although the Schema uses the same mathematical technique for calculating photon doses, the results are obtained as average values for the whole body and for complete organs. It is shown that the actual dose distributions, particularly those for the whole body may, differ significantly from the average value calculated using the MIRD Schema and published absorbed fractions. (author)

  10. Estimation of absorbed dose in cell nuclei due to DNA-bound /sup 3/H

    Energy Technology Data Exchange (ETDEWEB)

    Saito, M; Ishida, M R; Streffer, C; Molls, M

    1985-04-01

    The average absorbed dose due to DNA-bound /sup 3/H in a cell nucleus was estimated by a Monte Carlo simulation for a model nucleus which was assumed to be spheroidal. The volume of the cell nucleus was the major dose-determining factor for cell nuclei which have the same DNA content and the same specific activity of DNA. This result was applied to estimating the accumulated dose in the cell nuclei of organs of young mice born from mother mice which ingested /sup 3/H-thymidine with drinking water during pregnancy. The values of dose-modifying factors for the accumulated dose due to DNA-bound /sup 3/H compared to the dose due to an assumed homogenous distribution of /sup 3/H in organ were found to be between about 2 and 6 for the various organs.

  11. The integral biologically effective dose to predict brain stem toxicity of hypofractionated stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Clark, Brenda G.; Souhami, Luis; Pla, Conrado; Al-Amro, Abdullah S.; Bahary, Jean-Paul; Villemure, Jean-Guy; Caron, Jean-Louis; Olivier, Andre; Podgorsak, Ervin B.

    1998-01-01

    Purpose: The aim of this work was to develop a parameter for use during fractionated stereotactic radiotherapy treatment planning to aid in the determination of the appropriate treatment volume and fractionation regimen that will minimize risk of late damage to normal tissue. Materials and Methods: We have used the linear quadratic model to assess the biologically effective dose at the periphery of stereotactic radiotherapy treatment volumes that impinge on the brain stem. This paper reports a retrospective study of 77 patients with malignant and benign intracranial lesions, treated between 1987 and 1995, with the dynamic rotation technique in 6 fractions over a period of 2 weeks, to a total dose of 42 Gy prescribed at the 90% isodose surface. From differential dose-volume histograms, we evaluated biologically effective dose-volume histograms and obtained an integral biologically-effective dose (IBED) in each case. Results: Of the 77 patients in the study, 36 had target volumes positioned so that the brain stem received more than 1% of the prescribed dose, and 4 of these, all treated for meningioma, developed serious late damage involving the brain stem. Other than type of lesion, the only significant variable was the volume of brain stem exposed. An analysis of the IBEDs received by these 36 patients shows evidence of a threshold value for late damage to the brain stem consistent with similar thresholds that have been determined for external beam radiotherapy. Conclusions: We have introduced a new parameter, the IBED, that may be used to represent the fractional effective dose to structures such as the brain stem that are partially irradiated with stereotactic dose distributions. The IBED is easily calculated prior to treatment and may be used to determine appropriate treatment volumes and fractionation regimens minimizing possible toxicity to normal tissue

  12. Low doses of ionizing radiation: Biological effects and regulatory control. Contributed papers

    International Nuclear Information System (INIS)

    1997-11-01

    The International Atomic Energy Agency and the World Health Organization, in cooperation with the United Nations Scientific Committee on the Effects of Atomic Radiation, organized an international conference on Low Doses of Ionizing Radiation: Biological Effects and Regulatory Control, held in seville, Spain, from 17 to 21 November 1997. This technical document contains concise papers submitted to the conference

  13. Low doses of ionizing radiation: Biological effects and regulatory control. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The International Atomic Energy Agency and the World Health Organization, in cooperation with the United Nations Scientific Committee on the Effects of Atomic Radiation, organized an international conference on Low Doses of Ionizing Radiation: Biological Effects and Regulatory Control, held in seville, Spain, from 17 to 21 November 1997. This technical document contains concise papers submitted to the conference. Refs, figs, tabs.

  14. Biological dosimetry of ionizing radiation: Evaluation of the dose with cytogenetic methodologies by the construction of calibration curves

    Science.gov (United States)

    Zafiropoulos, Demetre; Facco, E.; Sarchiapone, Lucia

    2016-09-01

    In case of a radiation accident, it is well known that in the absence of physical dosimetry biological dosimetry based on cytogenetic methods is a unique tool to estimate individual absorbed dose. Moreover, even when physical dosimetry indicates an overexposure, scoring chromosome aberrations (dicentrics and rings) in human peripheral blood lymphocytes (PBLs) at metaphase is presently the most widely used method to confirm dose assessment. The analysis of dicentrics and rings in PBLs after Giemsa staining of metaphase cells is considered the most valid assay for radiation injury. This work shows that applying the fluorescence in situ hybridization (FISH) technique, using telomeric/centromeric peptide nucleic acid (PNA) probes in metaphase chromosomes for radiation dosimetry, could become a fast scoring, reliable and precise method for biological dosimetry after accidental radiation exposures. In both in vitro methods described above, lymphocyte stimulation is needed, and this limits the application in radiation emergency medicine where speed is considered to be a high priority. Using premature chromosome condensation (PCC), irradiated human PBLs (non-stimulated) were fused with mitotic CHO cells, and the yield of excess PCC fragments in Giemsa stained cells was scored. To score dicentrics and rings under PCC conditions, the necessary centromere and telomere detection of the chromosomes was obtained using FISH and specific PNA probes. Of course, a prerequisite for dose assessment in all cases is a dose-effect calibration curve. This work illustrates the various methods used; dose response calibration curves, with 95% confidence limits used to estimate dose uncertainties, have been constructed for conventional metaphase analysis and FISH. We also compare the dose-response curve constructed after scoring of dicentrics and rings using PCC combined with FISH and PNA probes. Also reported are dose response curves showing scored dicentrics and rings per cell, combining

  15. Estimates of Radiation Dose Rates Near Large Diameter Sludge Containers in T Plant

    CERN Document Server

    Himes, D A

    2002-01-01

    Dose rates in T Plant canyon during the handling and storage of large diameter storage containers of K Basin sludge were estimated. A number of different geometries were considered from which most operational situations of interest can be constructed.

  16. A method of estimating conceptus doses resulting from multidetector CT examinations during all stages of gestation

    International Nuclear Information System (INIS)

    Damilakis, John; Tzedakis, Antonis; Perisinakis, Kostas; Papadakis, Antonios E.

    2010-01-01

    Purpose: Current methods for the estimation of conceptus dose from multidetector CT (MDCT) examinations performed on the mother provide dose data for typical protocols with a fixed scan length. However, modified low-dose imaging protocols are frequently used during pregnancy. The purpose of the current study was to develop a method for the estimation of conceptus dose from any MDCT examination of the trunk performed during all stages of gestation. Methods: The Monte Carlo N-Particle (MCNP) radiation transport code was employed in this study to model the Siemens Sensation 16 and Sensation 64 MDCT scanners. Four mathematical phantoms were used, simulating women at 0, 3, 6, and 9 months of gestation. The contribution to the conceptus dose from single simulated scans was obtained at various positions across the phantoms. To investigate the effect of maternal body size and conceptus depth on conceptus dose, phantoms of different sizes were produced by adding layers of adipose tissue around the trunk of the mathematical phantoms. To verify MCNP results, conceptus dose measurements were carried out by means of three physical anthropomorphic phantoms, simulating pregnancy at 0, 3, and 6 months of gestation and thermoluminescence dosimetry (TLD) crystals. Results: The results consist of Monte Carlo-generated normalized conceptus dose coefficients for single scans across the four mathematical phantoms. These coefficients were defined as the conceptus dose contribution from a single scan divided by the CTDI free-in-air measured with identical scanning parameters. Data have been produced to take into account the effect of maternal body size and conceptus position variations on conceptus dose. Conceptus doses measured with TLD crystals showed a difference of up to 19% compared to those estimated by mathematical simulations. Conclusions: Estimation of conceptus doses from MDCT examinations of the trunk performed on pregnant patients during all stages of gestation can be made

  17. Estimating the whole-body exposure annual dose of radiation workers of petroleum nuclear well logging

    International Nuclear Information System (INIS)

    Tian Yizong; Gao Jianzheng; Liu Wenhong

    2006-01-01

    Objective: By imitating experiment of radioactive sources being installed, to estimate the annual whole-body exposure dose of radiation workers of petroleum nuclear determining wells; Methods: To compre the values of the theory, imitating experiment and γ individual dose monitor calculations. Results: The three values measured above tally with one anather. Conclusion: The annual whole-body exposure doses of radiation workers of petroleum nuclear determining wells are no more than 5 mSv. (authors)

  18. SU-F-P-44: A Direct Estimate of Peak Skin Dose for Interventional Fluoroscopy Procedures

    International Nuclear Information System (INIS)

    Weir, V; Zhang, J

    2016-01-01

    Purpose: There is an increasing demand for medical physicist to calculate peak skin dose (PSD) for interventional fluoroscopy procedures. The dose information (Dose-Area-Product and Air Kerma) displayed in the console cannot directly be used for this purpose. Our clinical experience shows that the use of the existing methods may overestimate or underestimate PSD. This study attempts to develop a direct estimate of PSD from the displayed dose metrics. Methods: An anthropomorphic torso phantom was used for dose measurements for a common fluoroscopic procedure. Entrance skin doses were measured with a Piranha solid state point detector placed on the table surface below the torso phantom. An initial “reference dose rate” (RE) measurement was conducted by comparing the displayed dose rate (mGy/min) to the dose rate measured. The distance from table top to focal spot was taken as the reference distance (RD at the RE. Table height was then adjusted. The displayed air kerma and DAP were recorded and sent to three physicists to estimate PSD. An inverse square correction was applied to correct displayed air kerma at various table heights. The PSD estimated by physicists and the PSD by the proposed method were then compared with the measurements. The estimated DAPs were compared to displayed DAP readings (mGycm2). Results: The difference between estimated PSD by the proposed method and direct measurements was less than 5%. For the same set of data, the estimated PSD by each of three physicists is different from measurements by ±52%. The DAP calculated by the proposed method and displayed DAP readings in the console is less than 20% at various table heights. Conclusion: PSD may be simply estimated from displayed air kerma or DAP if the distance between table top and tube focal spot or if x-ray beam area on table top is available.

  19. SU-F-P-44: A Direct Estimate of Peak Skin Dose for Interventional Fluoroscopy Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Weir, V [Baylor Scott and White Healthcare System, Dallas, TX (United States); Zhang, J [University of Kentucky, Lexington, KY (United States)

    2016-06-15

    Purpose: There is an increasing demand for medical physicist to calculate peak skin dose (PSD) for interventional fluoroscopy procedures. The dose information (Dose-Area-Product and Air Kerma) displayed in the console cannot directly be used for this purpose. Our clinical experience shows that the use of the existing methods may overestimate or underestimate PSD. This study attempts to develop a direct estimate of PSD from the displayed dose metrics. Methods: An anthropomorphic torso phantom was used for dose measurements for a common fluoroscopic procedure. Entrance skin doses were measured with a Piranha solid state point detector placed on the table surface below the torso phantom. An initial “reference dose rate” (RE) measurement was conducted by comparing the displayed dose rate (mGy/min) to the dose rate measured. The distance from table top to focal spot was taken as the reference distance (RD at the RE. Table height was then adjusted. The displayed air kerma and DAP were recorded and sent to three physicists to estimate PSD. An inverse square correction was applied to correct displayed air kerma at various table heights. The PSD estimated by physicists and the PSD by the proposed method were then compared with the measurements. The estimated DAPs were compared to displayed DAP readings (mGycm2). Results: The difference between estimated PSD by the proposed method and direct measurements was less than 5%. For the same set of data, the estimated PSD by each of three physicists is different from measurements by ±52%. The DAP calculated by the proposed method and displayed DAP readings in the console is less than 20% at various table heights. Conclusion: PSD may be simply estimated from displayed air kerma or DAP if the distance between table top and tube focal spot or if x-ray beam area on table top is available.

  20. Development of transmission dose estimation algorithm for in vivo dosimetry in high energy radiation treatment

    International Nuclear Information System (INIS)

    Yun, Hyong Geun; Shin, Kyo Chul; Hun, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan; Lee, Hyoung Koo

    2004-01-01

    In vivo dosimetry is very important for quality assurance purpose in high energy radiation treatment. Measurement of transmission dose is a new method of in vivo dosimetry which is noninvasive and easy for daily performance. This study is to develop a tumor dose estimation algorithm using measured transmission dose for open radiation field. For basic beam data, transmission dose was measured with various field size (FS) of square radiation field, phantom thickness (Tp), and phantom chamber distance (PCD) with a acrylic phantom for 6 MV and 10 MV X-ray. Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 cc Farmer type ion chamber. By using regression analysis of measured basic beam data, a transmission dose estimation algorithm was developed. Accuracy of the algorithm was tested with flat solid phantom with various thickness in various settings of rectangular fields and various PCD. In our developed algorithm, transmission dose was equated to quadratic function of log(A/P) (where A/P is area-perimeter ratio) and the coefficients of the quadratic functions were equated to tertiary functions of PCD. Our developed algorithm could estimate the radiation dose with the errors within ±0.5% for open square field, and with the errors within ±1.0% for open elongated radiation field. Developed algorithm could accurately estimate the transmission dose in open radiation fields with various treatment settings of high energy radiation treatment. (author)

  1. Studies on the reference Korean and estimation of radiation exposure dose

    International Nuclear Information System (INIS)

    Kim, Y.J.; Lee, K.S.; Chun, K.J.; Kim, J.B.; Chung, G.H.; Kim, S.R.

    1982-01-01

    For the purpose of establishment of Reference Korean and estimation of internal and external exposure doses in the Reference Korean, we have surveyed reference values for Koreans such as physical standards including height, weight, and body surface area, food consumption rate of daily intake of radioactive substances and exposure dose from natural radiation. (Author)

  2. Dose estimation from food intake due to the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    Yamaguchi, Ichiro; Terada, Hiroshi; Kunugita, Naoki; Takahashi, Kunihiko

    2013-01-01

    Since the Fukushima Daiichi nuclear power plant accident, concerns have arisen about the radiation safety of food raised at home and abroad. Therefore, many measures have been taken to address this. To evaluate the effectiveness of these measures, dose estimation due to food consumption has been attempted by various methods. In this paper, we show the results of dose estimation based on the monitoring data of radioactive materials in food published by the Ministry of Health, Labour and Welfare. The Radioactive Material Response Working Group in the Food Sanitation Subcommittee of the Pharmaceutical Affairs and Food Sanitation Council reported such dose estimation results on October 31, 2011 using monitoring data from immediately after the accident through September, 2011. Our results presented in this paper were the effective dose and thyroid equivalent dose integrated up to December 2012 from immediately after the accident. The estimated results of committed effective dose by age group derived from the radioiodine and radiocesium in food after the Fukushima Daiichi nuclear power plant accident showed the highest median value (0.19 mSv) in children 13-18 years of age. The highest 95% tile value, 0.33 mSv, was shown in the 1-6 years age range. These dose estimations from food can be useful for evaluation of radiation risk for individuals or populations and for radiation protection measures. It would also be helpful for the study of risk management of food in the future. (author)

  3. Answers to questions about updated estimates of occupational radiation doses at Three Mile Island, Unit 2

    International Nuclear Information System (INIS)

    1983-12-01

    The purpose of this question and answer report is to provide a clear, easy-to-understand explanation of revised radiation dose estimates which workers are likely to receive over the course of the cleanup at Three Mile Island, Unit 2, and of the possible health consequences to workers of these new estimates. We will focus primarily on occupational dose, although pertinent questions about public health and safety will also be answered

  4. Maxine: A spreadsheet for estimating dose from chronic atmospheric radioactive releases

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, Tim [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bell, Evaleigh [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, Kenneth [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-24

    MAXINE is an EXCEL© spreadsheet, which is used to estimate dose to individuals for routine and accidental atmospheric releases of radioactive materials. MAXINE does not contain an atmospheric dispersion model, but rather doses are estimated using air and ground concentrations as input. Minimal input is required to run the program and site specific parameters are used when possible. Complete code description, verification of models, and user’s manual have been included.

  5. Estimation of Dose Received in Decommissioning of Phosphate Acid Factory-Petro Kimia Gresik

    International Nuclear Information System (INIS)

    Lubis, Erwansyah; Heru Umbara; Agus Gindo S

    2007-01-01

    The estimation of dose received in decommissioning of Phosphate Acid Factory-Petro Kimia Gresik (PAF-PKG) was carried out. The external dose estimated base on the radiation rate in each working area of zona-1, 2, 3 and 4. The internal dose estimated base on the radionuclides activity and diameter of particulate exist in each working area. The calculation of the internal dose was carried out by LUDEP 2.0 computer code. The results indicated that in the normal activity of decommissioning, the effective dose will received by the worker per year were 0.27 mSv in zona-1, 1.23 mSv in zona-2, 1.37 mSv in zona-3 and 11.85 mSv in zona-4. The internal dose received when a worse accident happens in decommissioning activity is 21.06 mSv for lung organ or 4.2 % of the dose limit for that organ. Based on the discussion above, indicated that in the decommissioning of PAF-PKG the dose received by the workers is far lower than the dose limit. (author)

  6. Estimation of outdoor and indoor effective dose and excess lifetime cancer risk from Gamma dose rates in Gonabad, Iran

    Energy Technology Data Exchange (ETDEWEB)

    Jafaria, R.; Zarghania, H.; Mohammadia, A., E-mail: rvzreza@gmail.com [Paramedical faculty, Birjand University of Medical Sciences, Birjand (Iran, Islamic Republic of)

    2017-07-01

    Background gamma irradiation in the indoor and outdoor environments is a major concern in the world. The study area was Gonabad city. Three stations and buildings for background radiation measurement of outdoor and indoor were randomly selected and the Geiger-Muller detector (X5C plus) was used. All dose rates on display of survey meter were recorded and mean of all data in each station and buildings was computed and taken as measured dose rate of that particular station. The average dose rates of background radiation were 84.2 nSv/h for outdoor and 108.6 nSv/h for indoor, maximum and minimum dose rates were 88.9 nSv/h and 77.7 nSv/h for outdoor measurements and 125.4 nSv/h and 94.1 nSv/h for indoor measurements, respectively. Results show that the annual effective dose is 0.64 mSv, which compare to global level of the annual effective dose 0.48 mSv is high. Estimated excess lifetime cancer risk was 2.24×10{sup -3} , indicated that it is large compared to the world average value of 0.25×10{sup -3}. (author)

  7. Use of virtual reality to estimate radiation dose rates in nuclear plants

    International Nuclear Information System (INIS)

    Augusto, Silas C.; Mol, Antonio C.A.; Jorge, Carlos A.F.; Couto, Pedro M.

    2007-01-01

    Operators in nuclear plants receive radiation doses during several different operation procedures. A training program capable of simulating these operation scenarios will be useful in several ways, helping the planning of operational procedures so as to reduce the doses received by workers, and to minimize operations' times. It can provide safe virtual operation training, visualization of radiation dose rates, and estimation of doses received by workers. Thus, a virtual reality application, a free game engine, has been adapted to achieve the goals of this project. Simulation results for Argonauta research reactor of Instituto de Engenharia Nuclear are shown in this paper. A database of dose rate measurements, previously performed by the radiological protection service, has been used to display the dose rate distribution in the region of interest. The application enables the user to walk in the virtual scenario, displaying at all times the dose accumulated by the avatar. (author)

  8. Estimation of population doses from diagnostic medical examinations in Japan, 1974. III. Per caput mean marrow dose and leukemia significant dose

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, T; Maruyama, T; Kumamoto, Y [National Inst. of Radiological Sciences, Chiba (Japan)

    1976-03-01

    The mean per capita marrow dose and leukemia-significant dose from radiographic and fluoroscopic examinations in Japan have been estimated based on a 1974 nation wide survey of randomly sampled hospitals and clinics. To determine the mean marrow dose to an individual from a certain exposure of a given type of examination, the active marrow in the whole body was divided into 119 parts for an adult and 103 for a child. Dosimetric points on which the individual marrow doses were determined were set up in the center of each marrow part. The individual marrow doses at the dosimetric points in the beams of practical diagnostic x-rays were calculated on the basis of the exposure data on the patients selected in the nation wide survey, using depth dose curves experimentally determined for diagnostic x-rays. The mean individual marrow dose was averaged over the active marrow by summing, for each dosimetric point, the product of the fraction of active marrow exposed and the individual marrow dose at the dosimetric point. The leukemia significant dose was calculated by adopting a weighting factor that is, a leukemia significant factor. The factor was determined from the shape of the time-incidence curve for radiation-induced leukemia from the Hiroshima A-bomb and from the survival statistics for the average population. The resultant mean per capita marrow dose from radiographic and fluoroscopic examination was 37.0 and 70.0 mrad/person/year, respectively, with a total of 107.05 mrad/person/year. The leukemia significant dose was 32.1 mrad/person/year for radiographic examination and 61.2 mrad/person/year, with a total of 93.3. These values were compared with those of 1960 and 1969.

  9. Consideration of the usefulness of a size-specific dose estimate in pediatric CT examination.

    Science.gov (United States)

    Tsujiguchi, Takakiyo; Obara, Hideki; Ono, Shuichi; Saito, Yoko; Kashiwakura, Ikuo

    2018-04-05

    Computed tomography (CT) has recently been utilized in various medical settings, and technological advances have resulted in its widespread use. However, medical radiation exposure associated with CT scans accounts for the largest share of examinations using radiation; thus, it is important to understand the organ dose and effective dose in detail. The CT dose index and dose-length product are used to evaluate the organ dose. However, evaluations using these indicators fail to consider the age and body type of patients. In this study, we evaluated the effective dose based on the CT examination data of 753 patients examined at our hospital using the size-specific dose estimate (SSDE) method, which can calculate the exposure dose with consideration of the physique of a patient. The results showed a large correlation between the SSDE conversion factor and physique, with a larger exposure dose in patients with a small physique when a single scan is considered. Especially for children, the SSDE conversion factor was found to be 2 or more. In addition, the patient exposed to the largest dose in this study was a 10-year-old, who received 40.4 mSv (five series/examination). In the future, for estimating exposure using the SSDE method and in cohort studies, the diagnostic reference level of SSDE should be determined and a low-exposure imaging protocol should be developed to predict the risk of CT exposure and to maintain the quality of diagnosis with better radiation protection of patients.

  10. Estimation of staff lens doses during interventional procedures. Comparing cardiology, neuroradiology and interventional radiology

    International Nuclear Information System (INIS)

    Vano, E.; Sanchez, R.M.; Fernandez, J.M.

    2015-01-01

    The purpose of this article is to estimate lens doses using over apron active personal dosemeters in interventional catheterisation laboratories (cardiology IC, neuroradiology IN and radiology IR) and to investigate correlations between occupational lens doses and patient doses. Active electronic personal dosemeters placed over the lead apron were used on a sample of 204 IC procedures, 274 IN and 220 IR (all performed at the same university hospital). Patient dose values (kerma area product) were also recorded to evaluate correlations with occupational doses. Operators used the ceiling-suspended screen in most cases. The median and third quartile values of equivalent dose Hp(10) per procedure measured over the apron for IC, IN and IR resulted, respectively, in 21/67, 19/44 and 24/54 μSv. Patient dose values (median/third quartile) were 75/128, 83/176 and 61/159 Gy cm 2 , respectively. The median ratios for dosemeters worn over the apron by operators ( protected by the ceiling-suspended screen) and patient doses were 0.36; 0.21 and 0.46 μSv Gy -1 cm -2 , respectively. With the conservative approach used (lens doses estimated from the over apron chest dosemeter) we came to the conclusion that more than 800 procedures y -1 and per operator were necessary to reach the new lens dose limit for the three interventional specialties. (authors)

  11. Estimation of the absorbed dose in gamma irradiated food containing bone by electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Basfar, A.A.; Abdel Rehim, F.

    1997-01-01

    The use of electron spin resonance (ESR) spectroscopy to accurately evaluate the absorbed dose to radiationprocessed bones (and thus meats) is examined. The exposure of foodstuffs containing bone to a dose of ionizing radiation results in the formation of long lived free radicals which give rise to characteristics ESR signals. The yield of radicals was found to be proportional to absorbed dose. Additive re-irradiation of previously irradiated bone was used to estimate the absorbed dose in the irradiated chicken bone. Simple non-linear rational equation was found to fit to the data and yields good dose estimates for irradiated bone in the range of doses (1.0 - 5.0 kGy). Decay of the ESR signal intensity was monitored at different dose levels (2.0 and 7.0 kGy) up to 22 days. The absorbed dose in irradiated chicken (2.Om 3.0 and 6.0 kGy) was assessed at 2, 6 and 12 days after irradiation. Relatively good results were obtained when measurements were made within the following days (up to 12 days) after irradiation. The ability of the dose additive method to provide accurate dose assessments is tested here

  12. Estimating effective dose to pediatric patients undergoing interventional radiology procedures using anthropomorphic phantoms and MOSFET dosimeters.

    Science.gov (United States)

    Miksys, Nelson; Gordon, Christopher L; Thomas, Karen; Connolly, Bairbre L

    2010-05-01

    The purpose of this study was to estimate the effective doses received by pediatric patients during interventional radiology procedures and to present those doses in "look-up tables" standardized according to minute of fluoroscopy and frame of digital subtraction angiography (DSA). Organ doses were measured with metal oxide semiconductor field effect transistor (MOSFET) dosimeters inserted within three anthropomorphic phantoms, representing children at ages 1, 5, and 10 years, at locations corresponding to radiosensitive organs. The phantoms were exposed to mock interventional radiology procedures of the head, chest, and abdomen using posteroanterior and lateral geometries, varying magnification, and fluoroscopy or DSA exposures. Effective doses were calculated from organ doses recorded by the MOSFET dosimeters and are presented in look-up tables according to the different age groups. The largest effective dose burden for fluoroscopy was recorded for posteroanterior and lateral abdominal procedures (0.2-1.1 mSv/min of fluoroscopy), whereas procedures of the head resulted in the lowest effective doses (0.02-0.08 mSv/min of fluoroscopy). DSA exposures of the abdomen imparted higher doses (0.02-0.07 mSv/DSA frame) than did those involving the head and chest. Patient doses during interventional procedures vary significantly depending on the type of procedure. User-friendly look-up tables may provide a helpful tool for health care providers in estimating effective doses for an individual procedure.

  13. A novel approach for estimating ingested dose associated with paracetamol overdose.

    Science.gov (United States)

    Zurlinden, Todd J; Heard, Kennon; Reisfeld, Brad

    2016-04-01

    In cases of paracetamol (acetaminophen, APAP) overdose, an accurate estimate of tissue-specific paracetamol pharmacokinetics (PK) and ingested dose can offer health care providers important information for the individualized treatment and follow-up of affected patients. Here a novel methodology is presented to make such estimates using a standard serum paracetamol measurement and a computational framework. The core component of the computational framework was a physiologically-based pharmacokinetic (PBPK) model developed and evaluated using an extensive set of human PK data. Bayesian inference was used for parameter and dose estimation, allowing the incorporation of inter-study variability, and facilitating the calculation of uncertainty in model outputs. Simulations of paracetamol time course concentrations in the blood were in close agreement with experimental data under a wide range of dosing conditions. Also, predictions of administered dose showed good agreement with a large collection of clinical and emergency setting PK data over a broad dose range. In addition to dose estimation, the platform was applied for the determination of optimal blood sampling times for dose reconstruction and quantitation of the potential role of paracetamol conjugate measurement on dose estimation. Current therapies for paracetamol overdose rely on a generic methodology involving the use of a clinical nomogram. By using the computational framework developed in this study, serum sample data, and the individual patient's anthropometric and physiological information, personalized serum and liver pharmacokinetic profiles and dose estimate could be generated to help inform an individualized overdose treatment and follow-up plan. © 2015 The British Pharmacological Society.

  14. Estimation of the optimal dosing regimen of escitalopram in dogs: A dose occupancy study with [11C]DASB.

    Science.gov (United States)

    Taylor, Olivia; Van Laeken, Nick; Polis, Ingeborgh; Dockx, Robrecht; Vlerick, Lise; Dobbeleir, Andre; Goethals, Ingeborg; Saunders, Jimmy; Sadones, Nele; Baeken, Chris; De Vos, Filip; Peremans, Kathelijne

    2017-01-01

    Although the favourable characteristics of escitalopram as being the most selective serotonin reuptake inhibitor and having an increased therapeutic efficacy via binding on an additional allosteric binding site of the serotonin transporter, its dosing regimen has not yet been optimized for its use in dogs. This study aimed to estimate the optimal dosing frequency and the required dose for achieving 80% occupancy of the serotonin transporters in the basal ganglia. The dosing frequency was investigated by determining the elimination half-life after a four day oral pre-treatment period with 0.83 mg/kg escitalopram (3 administrations/day) and a subsequent i.v. injection 0.83 mg/kg. Blood samples were taken up to 12 hours after i.v. injection and the concentration of escitalopram in plasma was analysed via LC-MSMS. The dose-occupancy relationship was then determined by performing two PET scans in five adult beagles: a baseline PET scan and a second scan after steady state conditions were achieved following oral treatment with a specific dose of escitalopram ranging from 0.5 to 2.5 mg/kg/day. As the elimination half-life was determined to be 6.7 hours a dosing frequency of three administrations a day was proposed for the second part of the study. Further it was opted for a treatment period of four days, which well exceeded the minimum period to achieve steady state conditions. The optimal dosing regimen to achieve 80% occupancy in the basal ganglia and elicit a therapeutic effect, was calculated to be 1.85 mg/kg/day, divided over three administrations. Under several circumstances, such as insufficient response to other SSRIs, concurrent drug intake or in research studies focused on SERT, the use of escitalopram can be preferred over the use of the already for veterinary use registered fluoxetine, however, in case of long-term treatment with escitalopram, regularly cardiac screening is recommended.

  15. Doses due to tritium releases by NET - data base and relevant parameters on biological tritium behaviour

    International Nuclear Information System (INIS)

    Diabate, S.; Strack, S.

    1990-12-01

    This study gives an overview on the current knowledge about the behaviour of tritium in plants and in food chains in order to evaluate the ingestion pathway modelling of existing computer codes for dose estimations. The tritium uptake and retention by plants standing at the beginning of the food chains is described. The different chemical forms of tritium, which may be released into the atmosphere (HT, HTO and tritiated organics), and incorporation of tritium into organic material of plants are considered. Uptake and metabolism of tritiated compounds in animals and man are reviewed with particular respect to organically bound tritium and its significance for dose estimations. Some basic remarks on tritium toxicity are also included. Furthermore, a choice of computer codes for dose estimations due to chronic or accidental tritium releases has been compared with respect to the ingestion pathway. (orig.) [de

  16. Necessary accuracy of dose estimation during cohort epidemiologic study after irradiation

    International Nuclear Information System (INIS)

    Orlov, M.Yu.; Stepanenko, V.F.; Khoshi, M.; Takada, Dzh.

    2003-01-01

    Effect of breadth of dose ranges on values of radiation risk was estimated. Ratios of observed numbers of mortalities because of leukemia in the cohort in 1950 - 1974 under deferent radiation dose to expected number of mortalities in this cohort only under background radiation were used as degree of risk. Data of cooperative Japan-American Program LSS (Life Span Study) were applied in the researches. It is established that required for the risk assessment with uncertainty 20 - 30 % the accuracy of dose estimation comprises 30 - 35 % in the range 1 - 5 rad and 5 - 10 % in the range 5 - 30 rad [ru

  17. Estimates of effective equivalent dose commitments for Slovene population following the Chernobyl accident

    International Nuclear Information System (INIS)

    Kanduc, M.; Jovanowic, O.; Kuhar, B.

    2004-01-01

    This paper shows the estimates of effective equivalent dose commitments for the two groups of Slovene population, 5 years old children and adults. Doses were calculated on the basis of the ICRP 30 methodology, first from the measurements of the concentrations of the radionuclides in air, water and food samples and then compared with the results of the measurements of radionuclides in composite samples of the prepared food, taken in the kindergarten nearby. Results show that there is certain degree of conservatism hidden in the calculation of the doses on the basis of measurements of the activity concentration in the elements of the biosphere and is estimated to be roughly 50%. (author)

  18. Estimation dose in patients of nuclear medicine. Implementation of a calculi program and methodology

    International Nuclear Information System (INIS)

    Prieto, C.; Espana, M.L.; Tomasi, L.; Lopez Franco, P.

    1998-01-01

    Our hospital is developing a nuclear medicine quality assurance program in order to comply with medical exposure Directive 97/43 EURATOM and the legal requirements established in our legislation. This program includes the quality control of equipment and, in addition, the dose estimation in patients undergoing nuclear medicine examinations. This paper is focused in the second aspect, and presents a new computer program, developed in our Department, in order to estimate the absorbed dose in different organs and the effective dose to the patients, based upon the data from the ICRP publication 53 and its addendum. (Author) 16 refs

  19. Analysis of data on radon monitoring and dose estimates for uranium mines

    International Nuclear Information System (INIS)

    Khan, A.H.; Srivastava, G.K.; Jha, Shankar; Sagar, D.V.

    1994-01-01

    Radon progeny are the major contributors to the radiation dose to uranium miners. Monitoring for radon and gamma radiation is an integral part of radiation protection in such mines. Data for equilibrium equivalent radon and the estimated mean annual doses are presented in this paper for Jaduguda uranium mine from 1986 to 1992. The 1992 data for Jaduguda and Bhatin mines are compared. The average annual effective dose for uranium miners is estimated at around 15.5 mSv. (author). 1 ref., 2 figs

  20. Biological evidence of low ionizing radiation doses; Biologischer Nachweis niedriger Dosen ionisierender Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Mirsch, Johanna

    2017-03-17

    Throughout life, every person is constantly exposed to different types of ionising radiation, without even noticing the exposure. The mean radiation exposure for people living in Germany amounts to approximately 4 mSv per year and encompasses the exposure from natural and man-made sources. The risks associated with exposure to low doses of radiation are still the subject of intense and highly controversial discussions, emphasizing the social relevance of studies investigating the effects of low radiation doses. In this thesis, DNA double-strand breaks (DSBs) were analyzed within three projects covering different aspects. DSBs are among the most hazardous DNA lesions induced by ionizing radiation, because this type of damage can easily lead to the loss of genetic information. Consequently, the DSB presents a high risk for the genetic integrity of the cell. In the first project, extensive results uncovered the track structure of charged particles in a biological model tissue. This provided the first biological data that could be used for comparison with data that were measured or predicted using theoretical physical dosimetry methods and mathematical simulations. Charged particles contribute significantly to the natural radiation exposure and are used increasingly in cancer radiotherapy because they are more efficient in tumor cell killing than X- or γ-rays. The difference in the biological effects of high energy charged particles compared with X- or γ-rays is largely determined by the spatial distribution of their energy deposition and the track structure inducing a three-dimensional damage pattern in living cells. This damage pattern consists of cells directly hit by the particle receiving a high dose and neighboring cells not directly hit by primary particles but exposed to far-reaching secondary electrons (δ-electrons). These cells receive a much lower dose deposition in the order of a few mGy. The radial dose distribution of single particle tracks was

  1. On the uncertainties in effective dose estimates of adult CT head scans

    International Nuclear Information System (INIS)

    Gregory, Kent J.; Bibbo, Giovanni; Pattison, John E.

    2008-01-01

    Estimates of the effective dose to adult patients from computed tomography (CT) head scanning can be calculated using a number of different methods. These estimates can be used for a variety of purposes, such as improving scanning protocols, comparing different CT imaging centers, and weighing the benefits of the scan against the risk of radiation-induced cancer. The question arises: What is the uncertainty in these effective dose estimates? This study calculates the uncertainty of effective dose estimates produced by three computer programs (CT-EXPO, CTDosimetry, and ImpactDose) and one method that makes use of dose-length product (DLP) values. Uncertainties were calculated in accordance with an internationally recognized uncertainty analysis guide. For each of the four methods, the smallest and largest overall uncertainties (stated at the 95% confidence interval) were: 20%-31% (CT-EXPO), 15%-28% (CTDosimetry), 20%-36% (ImpactDose), and 22%-32% (DLP), respectively. The overall uncertainties for each method vary due to differences in the uncertainties of factors used in each method. The smallest uncertainties apply when the CT dose index for the scanner has been measured using a calibrated pencil ionization chamber

  2. Ladtap XL Version 2017: A Spreadsheet For Estimating Dose Resulting From Aqueous Releases

    Energy Technology Data Exchange (ETDEWEB)

    Minter, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jannik, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-15

    LADTAP XL© is an EXCEL© spreadsheet used to estimate dose to offsite individuals and populations resulting from routine and accidental releases of radioactive materials to the Savannah River. LADTAP XL© contains two worksheets: LADTAP and IRRIDOSE. The LADTAP worksheet estimates dose for environmental pathways including external exposure resulting from recreational activities on the Savannah River and internal exposure resulting from ingestion of water, fish, and invertebrates originating from the Savannah River. IRRIDOSE estimates offsite dose to individuals and populations from irrigation of foodstuffs with contaminated water from the Savannah River. In 2004, a complete description of the LADTAP XL© code and an associated user’s manual was documented in LADTAP XL©: A Spreadsheet for Estimating Dose Resulting from Aqueous Release (WSRC-TR-2004-00059) and revised input parameters, dose coefficients, and radionuclide decay constants were incorporated into LADTAP XL© Version 2013 (SRNL-STI-2011-00238). LADTAP XL© Version 2017 is a slight modification to Version 2013 with minor changes made for more user-friendly parameter inputs and organization, updates in the time conversion factors used within the dose calculations, and fixed an issue with the expected time build-up parameter referenced within the population shoreline dose calculations. This manual has been produced to update the code description, verification of the models, and provide an updated user’s manual. LADTAP XL© Version 2017 has been verified by Minter (2017) and is ready for use at the Savannah River Site (SRS).

  3. Estimation of the absorbed dose in radiation-processed food. Pt.2

    International Nuclear Information System (INIS)

    Desrosiers, M.F.

    1991-01-01

    The use of electron paramagnetic resonance spectroscopy to accurately evaluate the absorbed dose to radiation-processed bones (and thus meats) is examined. Additive re-irradiation of the bone produces a reproducible response function which can be used to evaluate the initial dose by back-extrapolation. It was found that an exponential fit (vs linear or polynomial) to the data provides improved accuracy of the estimated dose. These data as well as the protocol for the additive dose method are presented. (author)

  4. Estimation of the population dose from medical X-ray diagnostic examination in Shandong province, China

    International Nuclear Information System (INIS)

    Su Xieming

    1985-01-01

    The exposure doses on the examinated body surface for verious types of X-ray diagnostic examanition in Shandong Province were surveyed. The collective effective dose equivalent in per million population were calculated with the measured results, the ratios of orga absorbed doses to irradiated surface exposure doses and the frequencies of X-ray examination in Shandong Province. The result was 326 man.Sv per million total population in 1980, of which chest fluoroscopies. lumbar spine radiographies and G.I. examination were estimated to be about 78, 9 and 5 precent, respectively

  5. Using optically stimulated electrons from quartz for the estimation of natural doses

    DEFF Research Database (Denmark)

    Ankjærgaard, Christina; Murray, A.S.; Denby, Phil M.

    2009-01-01

    A flow-through Geiger-Müller pancake electron detector attachment has been fitted to a standard Risø TL/OSL reader enabling optically stimulated electrons (OSE) to be measured simultaneously with optically stimulated luminescence (OSL). Using this detector, OSE and OSL measurements from natural......, a dose recovery test shows that OSE can successfully recover a laboratory dose of 300 Gy given before any laboratory thermal treatment, for preheating temperatures between 160 and 260 °C. Furthermore, for the first time natural OSE decay curves are detected and these signals are used to estimate a burial...... dose using the single-aliquot regenerative-dose (SAR) procedure. Finally, a comparative study of the equivalent doses estimated using both OSE and OSL from 10 quartz samples are presented, and it is shown that OSE has a significant potential in retrospective dosimetry....

  6. Estimation of 1945 to 1957 food consumption. Hanford Environmental Dose Reconstruction Project: Draft

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.M.; Bates, D.J.; Marsh, T.L.

    1993-03-01

    This report details the methods used and the results of the study on the estimated historic levels of food consumption by individuals in the Hanford Environmental Dose Reconstruction (HEDR) study area from 1945--1957. This period includes the time of highest releases from Hanford and is the period for which data are being collected in the Hanford Thyroid Disease Study. These estimates provide the food-consumption inputs for the HEDR database of individual diets. This database will be an input file in the Hanford Environmental Dose Reconstruction Integrated Code (HEDRIC) computer model that will be used to calculate the radiation dose. The report focuses on fresh milk, eggs, lettuce, and spinach. These foods were chosen because they have been found to be significant contributors to radiation dose based on the Technical Steering Panel dose decision level.

  7. Estimation of 1945 to 1957 food consumption. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.M.; Bates, D.J.; Marsh, T.L.

    1993-07-01

    This report details the methods used and the results of the study on the estimated historic levels of food consumption by individuals in the Hanford Environmental Dose Reconstruction (HEDR) study area from 1945--1957. This period includes the time of highest releases from Hanford and is the period for which data are being collected in the Hanford Thyroid Disease Study. These estimates provide the food-consumption inputs for the HEDR database of individual diets. This database will be an input file in the Hanford Environmental Dose Reconstruction Integrated Code (HEDRIC) computer model that will be used to calculate the radiation dose. The report focuses on fresh milk, eggs, lettuce, and spinach. These foods were chosen because they have been found to be significant contributors to radiation dose based on the Technical Steering Panel dose decision level.

  8. Improvements on a patient-specific dose estimation system in nuclear medicine examination

    International Nuclear Information System (INIS)

    Chuang, K. S.; Lu, J. C.; Lin, H. H.; Dong, S. L.; Yang, H. J.; Shih, C. T.; Lin, C. H.; Yao, W. J.; Ni, Y. C.; Jan, M. L.; Chang, S. J.

    2014-01-01

    The purpose of this paper is to develop a patient-specific dose estimation system in nuclear medicine examination. A dose deposition routine to store the deposited energy of the photons during their flights was embedded in the widely used SimSET Monte Carlo code and a user-friendly interface for reading PET and CT images was developed. Dose calculated on ORNL phantom was used to validate the accuracy of this system. The ratios of S value for 99m Tc, 18 F and 131 I computed by this system to those obtained with OLINDA for various organs were ranged from 0.93 to 1.18, which were comparable to that obtained from MCNPX2.6 code (0.88-1.22). Our system developed provides opportunity for tumor dose estimation which cannot be known from the MIRD. The radiation dose can provide useful information in the amount of radioisotopes to be administered in radioimmunotherapy. (authors)

  9. Development of the methodology for estimation of dose from a source

    International Nuclear Information System (INIS)

    Golebaone, E.M.

    2012-04-01

    The geometry of a source plays an important role when determining which method to apply in order to accurately estimate dose from a source. If wrong source geometry is used the dose received may be underestimated or overestimated therefore this may lead to wrong decision in dealing with the exposure situation. In this project moisture density gauge was used to represent a point source in order to demonstrate the key parameters to be used when estimating dose from point source. The parameters to be considered are activity of the source, the ambient dose rate, gamma constant for the radionuclide, as well as the transport index on the package of the source. The distance from the source, and the time spent in the radiation field must be known in order to calculate the dose. (author)

  10. Estimation of foetal brain dose from I-131 in the foetal thyroid

    International Nuclear Information System (INIS)

    O'Hare, N.J.; Murphy, D.; Malone, J.F.; Gilligan, P.

    1997-01-01

    The ingestion of I-131 by pregnant women can have consequences for the developing foetus, in particular brain function. As the foetal thyroid accumulates iodine from the twelfth week of gestation onwards, the determination of foetal brain dose resulting from such I-131 accumulation is essential. Normal dosimetric methods fail to treat the case of the foetus. Using an approximation method based on the MIRD approach, a foetal dose estimation scheme is developed to allow the determination of foetal brain dose from foetal thyroid irradiation. Dose values are obtained for the foetus based on the maternal intake of I-131. It was found that the choice of biokinetic model for the mother/foetus has a large impact on the determined dose estimate. (author)

  11. Effect of tube current modulation for dose estimation using a simulation tool on body CT examination

    International Nuclear Information System (INIS)

    Kawaguchi, Ai; Matsunaga, Yuta; Kobayashi, Masanao; Suzuki, Shoichi; Matsubara, Kosuke; Chida, Koichi

    2015-01-01

    The purpose of this study was to evaluate the effect of tube current modulation for dose estimation of a body computed tomography (CT) examination using a simulation tool. The authors also compared longitudinal variations in tube current values between iterative reconstruction (IR) and filtered back-projection (FBP) reconstruction algorithms. One hundred patients underwent body CT examinations. The tube current values around 10 organ regions were recorded longitudinally from tube current information. The organ and effective doses were simulated by average tube current values and longitudinal modulated tube current values. The organ doses for the bladder and breast estimated by longitudinal modulated tube current values were 20 % higher and 25 % lower than those estimated using the average tube current values, respectively. The differences in effective doses were small (mean, 0.7 mSv). The longitudinal variations in tube current values were almost the same for the IR and FBP algorithms. (authors)

  12. An estimate of the doubling dose of ionizing radiation for humans

    International Nuclear Information System (INIS)

    Neel, J.V.

    1990-01-01

    All accumulated data on the children of Hiroshima and Nagasaki survivors have been analyzed employing the revised procedures for estimating gonadal radiation exposures that became effective in 1986. The basic statistical procedure employed has been to obtain a linear regression of indicator on the combined gonadal exposures of the parents. There is no statistically significant regression of indicator on dose for any of the indicators; however, it is accepted that some mutations were produced in the survivors of the bombings. The implications of the data for the genetic doubling dose of radiation for humans have been explored. The appropriate dose rate factor to be applied in extrapolating to the effect of chronic radiation is 2. This leads to a doubling dose estimate for the chronic irradiation of humans of between 3.4 and 4.5 Sv. The error is large but indeterminate, but the estimate is based on conservative assumptions. (3 tabs.)

  13. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    Energy Technology Data Exchange (ETDEWEB)

    Alva-Sánchez, Héctor, E-mail: halva@ciencias.unam.mx [Unidad de Imagen Molecular PET/CT, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877 Col. La Fama, 14269, México D.F. (Mexico); Reynoso-Mejía, Alberto [Unidad de Imagen Molecular PET/CT, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877 Col. La Fama, 14269, México D.F., Mexico and Departamento de Neuroimagen, Instituto Nacional de (Mexico); Casares-Cruz, Katiuzka; Taboada-Barajas, Jesús [Departamento de Neuroimagen, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877 Col. La Fama, 14269, México D.F. (Mexico)

    2014-11-07

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.

  14. Estimation of staff doses in complex radiological examinations using a Monte Carlo computer code

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2007-01-01

    The protection of medical personnel in interventional radiology is an important issue of radiological protection. The irradiation of the worker is largely non-uniform, and a large part of his body is shielded by a lead apron. The estimation of effective dose (E) under these conditions is difficult and several approaches are used to estimate effective dose involving such a protective apron. This study presents a summary from an extensive series of simulations to determine scatter-dose distribution around the patient and staff effective dose from personal dosimeter readings. The influence of different parameters (like beam energy and size, patient size, irradiated region, worker position and orientation) on the staff doses has been determined. Published algorithms that combine readings of an unshielded and a shielded dosimeter to estimate effective dose have been applied and a new algorithm, that gives more accurate dose estimates for a wide range of situations was proposed. A computational approach was used to determine the dose distribution in the worker's body. The radiation transport and energy deposition was simulated using the MCNP4B code. The human bodies of the patient and radiologist were generated with the Body Builder anthropomorphic model-generating tool. The radiologist is protected with a lead apron (0.5 mm lead equivalent in the front and 0.25 mm lead equivalent in the back and sides) and a thyroid collar (0.35 mm lead equivalent). The lower-arms of the worker were folded to simulate the arms position during clinical examinations. This realistic situation of the folded arms affects the effective dose to the worker. Depending on the worker position and orientation (and of course the beam energy), the difference can go up to 25 percent. A total of 12 Hp(10) dosimeters were positioned above and under the lead apron at the neck, chest and waist levels. Extra dosimeters for the skin dose were positioned at the forehead, the forearms and the front surface of

  15. Estimation of radionuclide ingestion: Lessons from dose reconstruction for fallout from the Nevada Test Site

    International Nuclear Information System (INIS)

    Breshears, D.D.; Whicker, F.W.; Kirchner, T.B.; Anspaugh, L.R.

    1994-01-01

    The United States conducted atmospheric testing of nuclear devices at the Nevada Test Site from 1951 through 1963. In 1979 the U.S. Department of Energy established the Off-Site Radiation Exposure Review Project to compile a data base related to health effects from nuclear testing and to reconstruct doses to public residing off of the Nevada Test Site. This project is the most comprehensive dose reconstruction project to date, and, since similar assessments are currently underway at several other locations within and outside the U.S., lessons from ORERP can be valuable. A major component of dose reconstruction is estimation of dose from radionuclide ingestion. The PATHWAY food-chain model was developed to estimate the amount of radionuclides ingested. For agricultural components of the human diet, PATHWAY predicts radionuclide concentrations and quantities ingested. To improve accuracy and model credibility, four components of model analysis were conducted: estimation of uncertainty in model predictions, estimation of sensitivity of model predictions to input parameters, and testing of model predictions against independent data (validation), and comparing predictions from PATHWAY with those from other models. These results identified strengths and weaknesses in the model and aided in establishing the confidence associated with model prediction, which is a critical component risk assessment and dose reconstruction. For fallout from the Nevada Test Site, by far, the largest internal doses were received by the thyroid. However, the predicted number of fatal cancers from ingestion dose was generally much smaller than the number predicted from external dose. The number of fatal cancers predicted from ingestion dose was also orders of magnitude below the normal projected cancer rate. Several lessons were learned during the study that are relevant to other dose reconstruction efforts

  16. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    International Nuclear Information System (INIS)

    Alva-Sánchez, Héctor; Reynoso-Mejía, Alberto; Casares-Cruz, Katiuzka; Taboada-Barajas, Jesús

    2014-01-01

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens

  17. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    Science.gov (United States)

    Alva-Sánchez, Héctor; Reynoso-Mejía, Alberto; Casares-Cruz, Katiuzka; Taboada-Barajas, Jesús

    2014-11-01

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.

  18. Center of cancer systems biology second annual workshop--tumor metronomics: timing and dose level dynamics.

    Science.gov (United States)

    Hahnfeldt, Philip; Hlatky, Lynn; Klement, Giannoula Lakka

    2013-05-15

    Metronomic chemotherapy, the delivery of doses in a low, regular manner so as to avoid toxic side effects, was introduced over 12 years ago in the face of substantial clinical and preclinical evidence supporting its tumor-suppressive capability. It constituted a marked departure from the classic maximum-tolerated dose (MTD) strategy, which, given its goal of rapid eradication, uses dosing sufficiently intense to require rest periods between cycles to limit toxicity. Even so, upfront tumor eradication is frequently not achieved with MTD, whereupon a de facto goal of longer-term tumor control is often pursued. As metronomic dosing has shown tumor control capability, even for cancers that have become resistant to the same drug delivered under MTD, the question arises whether it may be a preferable alternative dosing approach from the outset. To date, however, our knowledge of the coupled dynamics underlying metronomic dosing is neither sufficiently well developed nor widely enough disseminated to establish its actual potential. Meeting organizers thus felt the time was right, armed with new quantitative approaches, to call a workshop on "Tumor Metronomics: Timing and Dose Level Dynamics" to explore prospects for gaining a deeper, systems-level appreciation of the metronomics concept. The workshop proved to be a forum in which experts from the clinical, biologic, mathematical, and computational realms could work together to clarify the principles and underpinnings of metronomics. Among other things, the need for significant shifts in thinking regarding endpoints to be used as clinical standards of therapeutic progress was recognized. ©2013 AACR.

  19. Biological UV-doses and the effect on an ozone layer depletion

    International Nuclear Information System (INIS)

    Dahlback, A.; Henriksen, T.

    1988-08-01

    Effective UV-doses were calculated based on the integrated product of the biological action spectrum and the solar radiation. The calculations included absorption and scattering of UV-radiation in the atmosphere, both for normal ozone conditions as well as for a depleted ozone layer. The effective annual UV-dose increases by approximately 4% per degree of latitude towards the equator. An ozone depletion of 1% increases the annual UV-dose by approximately 1% at 60 o N. A large depletion of 50% over Scandinavia (60 o N) would give this region an effective UV-dose similar to that obtained, with normal ozone conditions, at a latitude of 40 o N (California or the Mediterranean countries). The Antarctic ozone hole increases the annual UV-dose by 20 to 25% which is a similar increase as that attained by moving 5 to 6 degrees of latitude nearer the equator. The annual UV-dose on higher latitudes is mainly determined by the summer values of ozone. Both the ozone values and the effective UV-doses vary from one year to another (within ±4%). No positive or negative trend is observed for Scandinavia from 1978 to 1988

  20. TU-AB-BRC-09: Fast Dose-Averaged LET and Biological Dose Calculations for Proton Therapy Using Graphics Cards

    International Nuclear Information System (INIS)

    Wan, H; Tseung, Chan; Beltran, C

    2016-01-01

    Purpose: To demonstrate fast and accurate Monte Carlo (MC) calculations of proton dose-averaged linear energy transfer (LETd) and biological dose (BD) on a Graphics Processing Unit (GPU) card. Methods: A previously validated GPU-based MC simulation of proton transport was used to rapidly generate LETd distributions for proton treatment plans. Since this MC handles proton-nuclei interactions on an event-by-event using a Bertini intranuclear cascade-evaporation model, secondary protons were taken into account. The smaller contributions of secondary neutrons and recoil nuclei were ignored. Recent work has shown that LETd values are sensitive to the scoring method. The GPU-based LETd calculations were verified by comparing with a TOPAS custom scorer that uses tabulated stopping powers, following recommendations by other authors. Comparisons were made for prostate and head-and-neck patients. A python script is used to convert the MC-generated LETd distributions to BD using a variety of published linear quadratic models, and to export the BD in DICOM format for subsequent evaluation. Results: Very good agreement is obtained between TOPAS and our GPU MC. Given a complex head-and-neck plan with 1 mm voxel spacing, the physical dose, LETd and BD calculations for 10"8 proton histories can be completed in ∼5 minutes using a NVIDIA Titan X card. The rapid turnover means that MC feedback can be obtained on dosimetric plan accuracy as well as BD hotspot locations, particularly in regards to their proximity to critical structures. In our institution the GPU MC-generated dose, LETd and BD maps are used to assess plan quality for all patients undergoing treatment. Conclusion: Fast and accurate MC-based LETd calculations can be performed on the GPU. The resulting BD maps provide valuable feedback during treatment plan review. Partially funded by Varian Medical Systems.

  1. Influence of variations in dose and dose rates on biological effects of inhaled beta-emitting radionuclides

    International Nuclear Information System (INIS)

    McClellan, R.O.; Benjamin, S.A.; Boecker, B.B.; Hahn, F.F.; Hobbs, C.H.; Jones, R.K.; Lundgren, D.L.

    1976-01-01

    The biological effects of inhaled β-emitting radionuclides, 90 Y, 91 Y, 144 Ce and 90 Sr, are being investigated in beagle dogs that received single acute exposures at 12 to 14 months of age. The aerosols studied have included 91 YC1 3 , 144 CeC1 3 , 90 SrC1 2 , and 90 Y, 91 Y, 144 Ce or 90 Sr in aluminosilicate particles. Thus, 91 YCl 3 , 144 CeCl 3 and the aluminosilicate containing radionuclide particles all resulted in significant exposures to lung; 91 YC1 3 , 144 CeC1 3 an 90 SrC1 2 resulted in significant exposures to bone; 91 YC1 3 and 144 CeC1 3 resulted in significant exposures to liver. The higher initial doserate exposures have been more effective than low dose-rate exposures on a per-rad basis in producing early effects. To date ( 144 CeO 2 , it was observed that, on a μCi initial lung burden per kilogram body weight basis, mice did not develop pulmonary tumours whereas beagle dogs did. To fid out the reason for this observation mice have been repeatedly exposed by inhalation to 144 CeO 2 to maintain lung burdens of 144 Ce that resulted in radiation dose rates similar to that observed in beagle dogs. Several of the repeatedly exposed mice developed malignant pulmonary tumours. Thus, with similar dose rates and cumulative doses to the lung, mice and dogs responded in a similar manner to chronic β radiation

  2. TU-AB-BRC-09: Fast Dose-Averaged LET and Biological Dose Calculations for Proton Therapy Using Graphics Cards

    Energy Technology Data Exchange (ETDEWEB)

    Wan, H; Tseung, Chan; Beltran, C [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: To demonstrate fast and accurate Monte Carlo (MC) calculations of proton dose-averaged linear energy transfer (LETd) and biological dose (BD) on a Graphics Processing Unit (GPU) card. Methods: A previously validated GPU-based MC simulation of proton transport was used to rapidly generate LETd distributions for proton treatment plans. Since this MC handles proton-nuclei interactions on an event-by-event using a Bertini intranuclear cascade-evaporation model, secondary protons were taken into account. The smaller contributions of secondary neutrons and recoil nuclei were ignored. Recent work has shown that LETd values are sensitive to the scoring method. The GPU-based LETd calculations were verified by comparing with a TOPAS custom scorer that uses tabulated stopping powers, following recommendations by other authors. Comparisons were made for prostate and head-and-neck patients. A python script is used to convert the MC-generated LETd distributions to BD using a variety of published linear quadratic models, and to export the BD in DICOM format for subsequent evaluation. Results: Very good agreement is obtained between TOPAS and our GPU MC. Given a complex head-and-neck plan with 1 mm voxel spacing, the physical dose, LETd and BD calculations for 10{sup 8} proton histories can be completed in ∼5 minutes using a NVIDIA Titan X card. The rapid turnover means that MC feedback can be obtained on dosimetric plan accuracy as well as BD hotspot locations, particularly in regards to their proximity to critical structures. In our institution the GPU MC-generated dose, LETd and BD maps are used to assess plan quality for all patients undergoing treatment. Conclusion: Fast and accurate MC-based LETd calculations can be performed on the GPU. The resulting BD maps provide valuable feedback during treatment plan review. Partially funded by Varian Medical Systems.

  3. Average fetal depth in utero: data for estimation of fetal absorbed radiation dose

    International Nuclear Information System (INIS)

    Ragozzino, M.W.; Breckle, R.; Hill, L.M.; Gray, J.E.

    1986-01-01

    To estimate fetal absorbed dose from radiographic examinations, the depth from the anterior maternal surface to the midline of the fetal skull and abdomen was measured by ultrasound in 97 pregnant women. The relationships between fetal depth, fetal presentation, and maternal parameters of height, weight, anteroposterior (AP) thickness, gestational age, placental location, and bladder volume were analyzed. Maternal AP thickness (MAP) can be estimated from gestational age, maternal height, and maternal weight. Fetal midskull and abdominal depths were nearly equal. Fetal depth normalized to MAP was independent or nearly independent of maternal parameters and fetal presentation. These data enable a reasonable estimation of absorbed dose to fetal brain, abdomen, and whole body

  4. Cardiac-Specific Conversion Factors to Estimate Radiation Effective Dose From Dose-Length Product in Computed Tomography.

    Science.gov (United States)

    Trattner, Sigal; Halliburton, Sandra; Thompson, Carla M; Xu, Yanping; Chelliah, Anjali; Jambawalikar, Sachin R; Peng, Boyu; Peters, M Robert; Jacobs, Jill E; Ghesani, Munir; Jang, James J; Al-Khalidi, Hussein; Einstein, Andrew J

    2018-01-01

    This study sought to determine updated conversion factors (k-factors) that would enable accurate estimation of radiation effective dose (ED) for coronary computed tomography angiography (CTA) and calcium scoring performed on 12 contemporary scanner models and current clinical cardiac protocols and to compare these methods to the standard chest k-factor of 0.014 mSv·mGy -1 cm -1 . Accurate estimation of ED from cardiac CT scans is essential to meaningfully compare the benefits and risks of different cardiac imaging strategies and optimize test and protocol selection. Presently, ED from cardiac CT is generally estimated by multiplying a scanner-reported parameter, the dose-length product, by a k-factor which was determined for noncardiac chest CT, using single-slice scanners and a superseded definition of ED. Metal-oxide-semiconductor field-effect transistor radiation detectors were positioned in organs of anthropomorphic phantoms, which were scanned using all cardiac protocols, 120 clinical protocols in total, on 12 CT scanners representing the spectrum of scanners from 5 manufacturers (GE, Hitachi, Philips, Siemens, Toshiba). Organ doses were determined for each protocol, and ED was calculated as defined in International Commission on Radiological Protection Publication 103. Effective doses and scanner-reported dose-length products were used to determine k-factors for each scanner model and protocol. k-Factors averaged 0.026 mSv·mGy -1 cm -1 (95% confidence interval: 0.0258 to 0.0266) and ranged between 0.020 and 0.035 mSv·mGy -1 cm -1 . The standard chest k-factor underestimates ED by an average of 46%, ranging from 30% to 60%, depending on scanner, mode, and tube potential. Factors were higher for prospective axial versus retrospective helical scan modes, calcium scoring versus coronary CTA, and higher (100 to 120 kV) versus lower (80 kV) tube potential and varied among scanner models (range of average k-factors: 0.0229 to 0.0277 mSv·mGy -1 cm -1 ). Cardiac k

  5. ESR dating of elephant teeth and radiation dose rate estimation in soil

    International Nuclear Information System (INIS)

    Taisoo Chong; Ohta, Hiroyuki; Nakashima, Yoshiyuki; Iida, Takao; Saisho, Hideo

    1989-01-01

    Chemical analysis of 238 U, 232 Th and 40 K in the dentine as well as enamel of elephant tooth fossil has been carried out in order to estimate the internal absorbed dose rate of the specimens, which was estimated to be (39±4) mrad/y on the assumption of early uptake model of radionuclides. The external radiation dose rate in the soil including the contribution from cosmic rays was also estimated to be (175±18) mrad/y with the help of γ-ray spectroscopic techniques of the soil samples in which the specimens were buried. The 60 Co γ-ray equivalent accumulated dose of (2±0.2) x 10 4 rad for the tooth enamel gave ''ESR age'' of (9±2) x 10 4 y, which falls in the geologically estimated range between 3 x 10 4 and 30 x 10 4 y before the present. (author)

  6. Can results from animal studies be used to estimate dose or low-dose effects in humans

    International Nuclear Information System (INIS)

    Thomas, J.M.; Eberhardt, L.L.

    1980-09-01

    A method has been developed based on animal data which appears useful in predicting biological equilibrium level for radionuclides in humans. It is shown that measures of whole-body retention, plasma concentration, short-term toxicity and cancer incidence can be projected, at least in limited circumstances, for some elements and organic compounds. Some of the procedures used for extrapolation in other fields as well as those from radiobiology are reviewed, the similarity procedure developed discussed, and a review provided of some of the issues in low-dose-effect modelling and the extrapolation of those data to humans

  7. Estimation of breast dose and cancer risk in chest and abdomen CT procedures

    International Nuclear Information System (INIS)

    Eltahir, Suha Abubaker Ali

    2013-05-01

    The use of CT in medical diagnosis delivers radiation doses to patents that are higher than those from other radiological procedures. Lack of optimized protocols be an additional source of increased dose in developing countries. The aims of this study are first, to measure patient doses during CT chest and abdomen procedures, second, to estimate the radiation dose to the breast, and third to quantify the radiation risks during the procedures. Patient doses from two common CT examinations were obtained from four hospitals in Khartoum.The patient doses were estimated using measurement of CT dose indexes (CTDI), exposure-related parameters, and the IMPACT spreadsheet based on NRPB conversion factors. A large variation of mean organ doses among hospitals was observed for similar CT examinations. These variations largely originated from different CT scanning protocols used in different hospitals and scanner type. The largest range was found for CT of the chest, for which the dose varied from 2.3 to 47 (average 24.7) mSv and for abdomen CT, it was 1.6 to 18.8 (average 10.2) mSv. Radiation dose to the breast ranged from 1.6 to 32.9 mSv for the chest and 1.1 to 13.2 mSv for the abdomen. The radiation risk per procedure was high. The obtained values were mostly higher than the values of organ doses reported from the other studies. It was concluded that current clinical chest and abdomen protocols result in variable radiation doses to the breast. The magnitude of exposure may have implications for imaging strategies.(Author)

  8. Dose estimation in CT exams of the abdomen based on values of DLP

    International Nuclear Information System (INIS)

    Kikuti, C.F.; Medeiros, R.B.; Salvadori, P.S.; Costa, D.M.C; D'lppolito, G.

    2013-01-01

    One of the challenges of multidetector computerized tomography is to minimize the risk of ionizing radiation using optimized protocols since higher doses are necessary to obtain high image quality. It was also noted that, due to the geometry in image acquisition using MDCT becomes necessary to estimate dose values consistent with the hypothesis clinically and with the specificities of the tomographic equipment. The aim of this study was to estimate the doses in abdomen exams from the data recorded on the MDCT console and dimensions obtained from DICOM images of patients undergoing different clinical protocols. Were collected, from the image DICOM of 101 exams, values of the dose length product (DLP) provided by Philips Health Care - Brilliance 64 equipment console, in order to relate them with the dose values obtained by means of thermoluminescent dosimeters ( TLD ) of CasSo 4 :Mn placed on the surface of a cylindrical simulator abdomen acrylic manufactured under the technical - operational conditions for a typical abdomen exam. From the data obtained, it was possible to find a factor of 1.16 ( 5 % ) indicating that the DLP values Brilliance 64 console underestimate the doses and this should be used with correction factor to estimate the total dose of the patient. (author)

  9. Estimation of frequency, population doses and stochastic risks in brachytherapy in Japan, 1983

    International Nuclear Information System (INIS)

    Maruyama, Takashi; Kumamoto, Yoshikazu; Noda, Yutaka; Nishizawa, Kanae; Furuya, Yoshiro; Iwai, Kazuo.

    1988-01-01

    Based on the replies to a questionnaire distributed throughout Japan in 1983, genetically significant dose (GSD), per Caput mean bone marrow dose (CMD), leukemogenically significant dose (LSD), malignantly significant dose (MSD), and per Caput effective dose equivalent (EDE) from using small sealed radiation sources for radiotherapy were estimated. Annual frequencies of brachytherapy were estimated to be 2.6 x 10 3 for men and 36.3 x 10 3 for women, with a total of 38.9 x 10 3 . The annual frequencies of using afterloading technique were 0.3 x 10 3 for men and 18.8 x 10 3 for women, with a total of 19.1 x 10 3 . The annual population doses per person were 7.9 nGy for GSD, 118 μGy for CMD, 19.3 μGy for LSD, 172 μGy for MSD, and 428 μGy for EDE. The annual collective effective dose equivalent was estimated to be 5.13 x 10 4 man Sv. (Namekawa, K.)

  10. Estimation of four-dimensional dose distribution using electronic portal imaging device in radiation therapy

    International Nuclear Information System (INIS)

    Mizoguchi, Asumi; Arimura, Hidetaka; Shioyama, Yoshiyuki

    2013-01-01

    We are developing a method to evaluate four-dimensional radiation dose distribution in a patient body based upon the animated image of EPID (electronic portal imaging device) which is an image of beam-direction at the irradiation. In the first place, we have obtained the image of the dose which is emitted from patient body at therapy planning using therapy planning CT image and dose evaluation algorism. In the second place, we have estimated the emission dose image at the irradiation using EPID animated image which is obtained at the irradiation. In the third place, we have got an affine transformation matrix including respiratory movement in the body by performing linear registration on the emission dose image at therapy planning to get the one at the irradiation. In the fourth place, we have applied the affine transformation matrix on the therapy planning CT image and estimated the CT image 'at irradiation'. Finally we have evaluated four-dimensional dose distribution by calculating dose distribution in the CT image 'at irradiation' which has been estimated for each frame of the EPID animated-image. This scheme may be useful for evaluating therapy results and risk management. (author)

  11. Estimated collective effective dose to the population from nuclear medicine examinations in Slovenia

    International Nuclear Information System (INIS)

    Skrk, Damijan; Zontar, Dejan

    2013-01-01

    A national survey of patient exposure from nuclear medicine diagnostic procedures was performed by Slovenian Radiation Protection Administration in order to estimate their contribution to the collective effective dose to the population of Slovenia. A set of 36 examinations with the highest contributions to the collective effective dose was identified. Data about frequencies and average administered activities of radioisotopes used for those examinations were collected from all nuclear medicine departments in Slovenia. A collective effective dose to the population and an effective dose per capita were estimated from the collected data using dose conversion factors. The total collective effective dose to the population from nuclear medicine diagnostic procedures in 2011 was estimated to 102 manSv, giving an effective dose per capita of 0.05 mSv. The comparison of results of this study with studies performed in other countries indicates that the nuclear medicine providers in Slovenia are well aware of the importance of patient protection measures and of optimisation of procedures

  12. RADTRAD: A simplified model for RADionuclide Transport and Removal And Dose estimation

    International Nuclear Information System (INIS)

    Humphreys, S.L.; Miller, L.A.; Monroe, D.K.; Heames, T.J.

    1998-04-01

    This report documents the RADTRAD computer code developed for the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Reactor Regulation (NRR) to estimate transport and removal of radionuclides and dose at selected receptors. The document includes a users' guide to the code, a description of the technical basis for the code, the quality assurance and code acceptance testing documentation, and a programmers' guide. The RADTRAD code can be used to estimate the containment release using either the NRC TID-14844 or NUREG-1465 source terms and assumptions, or a user-specified table. In addition, the code can account for a reduction in the quantity of radioactive material due to containment sprays, natural deposition, filters, and other natural and engineered safety features. The RADTRAD code uses a combination of tables and/or numerical models of source term reduction phenomena to determine the time-dependent dose at user-specified locations for a given accident scenario. The code system also provides the inventory, decay chain, and dose conversion factor tables needed for the dose calculation. The RADTRAD code can be used to assess occupational radiation exposures, typically in the control room; to estimate site boundary doses; and to estimate dose attenuation due to modification of a facility or accident sequence

  13. Development of mathematical model for estimation of entrance surface dose in mammography

    International Nuclear Information System (INIS)

    Abdelgani, Yassir Mohammed Tahir

    2013-05-01

    Computer simulation is a convenient and frequently used tool in the study of x-ray mammography, for the design of novel detector systems, the evaluation of dose deposition, x-ray technique optimization, and other applications. An important component in the simulation process is the accurate computer generation of x-ray spectra. A computer model for the generation of x-ray spectra in the mammographic energy rang from 18 keV to 40 ke V has been developed by Boone et al. Due to the lack of QC and dose measurement tools, in addition to unavailability of medical physics, a mathematical tool was developed for estimation of patient exposure and entrance dose. The proposed model require no assumptions concerning the physics of x-ray production in an x-ray tube, but rather makes use of x-ray spectra recently measured experimentally by John M Boone (Department of Radiology, University of California). Using experimental dose measurements for specific tube voltage and tube current the generated x-ray spectra were calibrated. The spectrum calibration factors show a tube voltage dependency. From the calibrated x-ray spectrum, the exposure and entrance dose were estimated for different k Vp and m A. Results show good agreement between the measured and estimated values for tube voltage between 18 to 45 k Vp with a good correlation of nearly 1 and equal slope. The maximum estimated different between the measured and the simulated dose is approximately equal to 0.07%.(Author)

  14. Estimation of the Radon-induced Dose for Russia's Population: Methods and Results

    International Nuclear Information System (INIS)

    Marenny, A.M.; Savkin, M.N.; Shinkarev, S.M.

    2000-01-01

    A model is proposed for inferring the radon-induced annual average collective and personal doses, as well as the dose distribution of the population, all over Russia from selective radon monitoring in some regions of Russia. The model assumptions and the selective radon monitoring results that underlie the numerical estimates obtained for different population groups are presented. The current estimate of the collective radon-induced dose received by the population of Russia (148,100,000 as of 1996) is about 130,000 man Sv, of which 55,000 man Sv is for the rural population (27% of the total population) and 75,000 man Sv for the urban population (73% of the total). The average radon-induced personal dose in Russia is estimated to be about 0.87 mSv. About 1,000,000 people receive annual doses above 10 mSv, including some 200,000 people who receive doses above 20 mSv annually. The ways of making the current estimates more accurate are outlined. (author)

  15. Estimation of organ and effective dose due to Compton backscatter security scans

    International Nuclear Information System (INIS)

    Hoppe, Michael E.; Schmidt, Taly Gilat

    2012-01-01

    Purpose: To estimate organ and effective radiation doses due to backscatter security scanners using Monte Carlo simulations and a voxelized phantom set. Methods: Voxelized phantoms of male and female adults and children were used with the GEANT4 toolkit to simulate a backscatter security scan. The backscatter system was modeled based on specifications available in the literature. The simulations modeled a 50 kVp spectrum with 1.0 mm-aluminum-equivalent filtration and a previously measured exposure of approximately 4.6 μR at 30 cm from the source. Photons and secondary interactions were tracked from the source until they reached zero kinetic energy or exited from the simulation’s boundaries. The energy deposited in the phantoms’ respective organs was tallied and used to calculate total organ dose and total effective dose for frontal, rear, and full scans with subjects located 30 and 75 cm from the source. Results: For a full screen, all phantoms’ total effective doses were below the established 0.25 μSv standard, with an estimated maximum total effective dose of 0.07 μSv for full screen of a male child. The estimated maximum organ dose due to a full screen was 1.03 μGy, deposited in the adipose tissue of the male child phantom when located 30 cm from the source. All organ dose estimates had a coefficient of variation of less than 3% for a frontal scan and less than 11% for a rear scan. Conclusions: Backscatter security scanners deposit dose in organs beyond the skin. The effective dose is below recommended standards set by the Health Physics Society (HPS) and the American National Standards Institute (ANSI) assuming the system provides a maximum exposure of approximately 4.6 μR at 30 cm.

  16. Variability in dose estimates associated with the food-chain transport and ingestion of selected radionuclides

    International Nuclear Information System (INIS)

    Hoffman, F.O.; Gardner, R.H.; Eckerman, K.F.

    1982-06-01

    Dose predictions for the ingestion of 90 Sr and 137 Cs, using aquatic and terrestrial food chain transport models similar to those in the Nuclear Regulatory Commission's Regulatory Guide 1.109, are evaluated through estimating the variability of model parameters and determining the effect of this variability on model output. The variability in the predicted dose equivalent is determined using analytical and numerical procedures. In addition, a detailed discussion is included on 90 Sr dosimetry. The overall estimates of uncertainty are most relevant to conditions where site-specific data is unavailable and when model structure and parameter estimates are unbiased. Based on the comparisons performed in this report, it is concluded that the use of the generic default parameters in Regulatory Guide 1.109 will usually produce conservative dose estimates that exceed the 90th percentile of the predicted distribution of dose equivalents. An exception is the meat pathway for 137 Cs, in which use of generic default values results in a dose estimate at the 24th percentile. Among the terrestrial pathways of exposure, the non-leafy vegetable pathway is the most important for 90 Sr. For 90 Sr, the parameters for soil retention, soil-to-plant transfer, and internal dosimetry contribute most significantly to the variability in the predicted dose for the combined exposure to all terrestrial pathways. For 137 Cs, the meat transfer coefficient the mass interception factor for pasture forage, and the ingestion dose factor are the most important parameters. The freshwater finfish bioaccumulation factor is the most important parameter for the dose prediction of 90 Sr and 137 Cs transported over the water-fish-man pathway

  17. Biological effects in lymphocytes irradiated with {sup 99m}Tc: determination of the curve dose-response; Efeitos biologicos em linfocitos irradiados com {sup 99m}Tc: determinacao da curva dose-resposta

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Romero Marcilio Barros Matias de

    2002-08-01

    Biological dosimetry estimates the absorbed dose taking into account changes in biological parameters. The most used biological indicator of an exposition to ionizing radiation is the quantification of chromosomal aberrations of lymphocytes from irradiated individuals. The curves of dose versus induced biological effects, obtained through bionalyses, are used in used in retrospective evaluations of the dose, mainly in the case of accidents. In this research, a simple model for electrons and photons transports was idealized to simulate the irradiation of lymphocytes with {sup 99m} Tc, representing a system used for irradiation of blood cells. The objective of the work was to establish a curve of dose versus frequencies of chromosomal aberrations in lymphocytes of human blood. For the irradiation of blood samples micro spheres of human serum of albumin (HSAM) market with {sup 99m} Tc were used, allowing the irradiation of blood with different administered activities of {sup 99m} Tc, making possible the study the cytogenetical effects as a function of such activities. The conditions of irradiation in vivo using HSAM spheres marked with {sup 99m} Tc were simulated with MCNP 4C (Monte Carlo N-Particle) code to obtain the dose-response curve. Soft tissue composition was employed to simulate blood tissue and the analyses of the curve of dose versus biological effect showed a linear quadratic response of the unstable chromosomal aberrations. As a result, the response of dose versus chromosomal aberrations of blood irradiation with {sup 99m} Tc was best fitted by the curve Y=(8,99 {+-}2,06) x 1-{sup -4} + (1,24 {+-}0,62) x 10{sup -2} D + (5,67 {+-} 0,64) x 10{sup -2} D{sup 2}. (author)

  18. Radiation exposure to examiners and patients during therapeutic ERCP: Dose optimisation and risk estimation

    International Nuclear Information System (INIS)

    Sulieman, A.; Kappas, K.; Theodorou, K.; Paroutoglou, G.; Kapatenakis, A.; Kapsoritakis, A.; Potamianos, S.; Vlychou, M.; Fezoulidis, I.

    2008-01-01

    Aim: This study intended to optimise the radiation dose during therapeutic ERCP, and to estimate the risk for examiners and patients, to compare the doses based on available data obtained by other researchers and reference levels recommended by international organizations, and to evaluate the technique applied in order to reduce patient and examiners doses. Materials and Methods: 153 patients were studied in two Gastroenterology Departments, (group A, 111; group B, 42). Thermoluminescent dosimeters (TLD) were used to measure the staff and patients entrance surface dose (ESD) at different body sites. Results: The mean ESD, exit and thyroid surface dose per procedure was estimated to be 68.75 mGy, 3.45 mGy and 0.67 mGy, respectively. The mean patient effective dose was 3.44 mSv, and the cancer risk per procedure was estimated to be 190 x10 -6 . The effective dose for the first, second and third examiner was 0.4 μSv, 0.2 μSv and 5.0 μSv, respectively. Conclusion: The patient dose can be optimized by the presence of two experienced examiners and reduction of radiographic images. The examiners should use a wrap around lead apron since the highest dose originating from the X-ray tube, is incident on their side and back. The current formulae, which exist, underestimate the effective dose to the examiners, when they are applied for ERCP procedures. For both patients and examiners, our results were up to 60% lower compared to the lowest values found in previous studies. (authors)

  19. Age- and sex-specific estimation of dose to a normal thyroid from clinical administration of iodine-131

    International Nuclear Information System (INIS)

    Killough, G.G.; Eckerman, K.F.

    1986-09-01

    This report describes the derivation of an age- and sex-dependent model of radioiodine dosimetry in the thyroid and the application of the model to estimating the thyroid dose for each of 4215 patients who were exposed to 131 I in diagnostic and therapeutic procedures. In most cases, the data available consisted of the patient's age at the time of administration, the patient's sex, the quantity of activity administered, the clinically determined uptake of radioiodine by the thyroid, and the time after administration at which the uptake was determined. The model was made to conform to these data requirements by the use of age-specific estimates of the biological half-time of iodine in the thyroid and an age- and sex-dependent representation of the mass of the thyroid. Also, it was assumed that the thyroid burden was maximum at 24 hours after administration (the 131 I dose is not critically sensitive to this assumption). The metabolic model is of the form A(t) = K x (exp(-μ 1 t) - exp(-μ 2 t)) μCi where μ/sub i/ = λ/sub r/ + λ/sub i//sup b/ (i = 1, 2), λ/sub r/ is the radiological decay-rate coefficient, and the λ/sub i//sup b/ are biological removal-rate coefficients. The values of λ/sub i//sup b/ are determined by solving a nonlinear equation that depends on assumptions about the time of maximum uptake and the eventual biological loss rate (through which age dependence enters). An addendum (Appendix C) extends the method to other radioiodines and gives age- and sex-dependent dose conversion factors for most isotopes

  20. A practical and transferable methodology for dose estimation in irradiated spices based on thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    D'Oca, M.C.; Bartolotta, A.; Cammilleri, C.; Giuffrida, S.; Parlato, A.; Di Stefano, V.

    2008-01-01

    Full text: Among the industrial applications of ionizing radiation, the treatment of food for preservation purposes is a worldwide recognized tool, provided that proper and validated identification methods are available and used. The thermoluminescence (TL) dosimetry is the physical method validated by the European Committee for Standardization for food from which silicate minerals can be isolated, such as spices and aromatic herbs. The aim of this work was to set up a reasonably simple procedure, alternative to the recommended one, for the identification of irradiated spices and to estimate at the same time the original dose in the irradiated product, using TL and the additive dose method, even after months storage. We have already shown that the additive dose method can be applied with TL dosimetry, if the TL response of the silicate specimen after extraction is always added to the response after each irradiation; the applied added doses were higher than 1 kGy, that can however give saturation problems. The new proposed methodology makes use of added doses lower than 600 Gy; the entire process can be completed within few hours and a linear fit can be utilized. The method was applied to the silicates extracted from oregano samples soon after the radiation treatment (original dose: 2 - 3 - 5 kGy), and after one year storage at room conditions in the dark (original dose: 1-2 kGy). The procedure allows the identification of irradiated samples, without any false positive, together with an estimation of the dose range

  1. Estimation of dose distribution in occupationally exposed individuals to FDG-{sup 18}F

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Isabelle V. Batista de; Cabral, Manuela O. Monteiro; Vieira, Jose Wilson, E-mail: ilacerda.bolsista@cnen.gov.br, E-mail: manuela.omc@gmail.com [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Oliveira, Mercia Liane de; Andrade Lima, Fernando R. de, E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2014-07-01

    The use of unsealed radiation sources in nuclear medicine can lead to important incorporation of radionuclides, especially for occupationally exposed individuals (OEIs) during production and handling of radiopharmaceuticals. In this study, computer simulation was proposed as an alternative methodology for evaluation of the absorbed dose distribution and for the effective dose value in OEIs. For this purpose, the Exposure Computational Model (ECM) which is named as FSUP (Female Adult Mesh - supine) were used. This ECM is composed of: voxel phantom FASH (Female Adult MeSH) in the supine position, the MC code EGSnrc and an algorithm simulator of general internal source. This algorithm was modified to adapt to specific needs of the positron emission from FDG-{sup 18}F. The obtained results are presented as absorbed dose/accumulated activity. To obtain the absorbed dose distribution it was necessary to use accumulative activity data from the in vivo bioassay. The absorbed dose distribution and the value of estimated effective dose in this study did not exceed the limits for occupational exposure. Therefore, the creation of a database with the distribution of accumulated activity is suggested in order to estimate the absorbed dose in radiosensitive organs and the effective dose for OEI in similar environment. (author)

  2. Exposure dose estimation of nursing personnel and visitors following "1"2"5I brachytherapy

    International Nuclear Information System (INIS)

    Nakazato, Kazuhisa; Kikuchi, Hirosumi; Hotta, Harumi; Nishizawa, Kunihide

    2007-01-01

    An automated access management system to the controlled sickrooms for "1"2"5I brachytherapy was developed. The system consists of access control and video surveillance units. The patients implanted "1"2"5I seeds were isolated for about 20 h after surgery in the controlled sickrooms. The maximum doses and dose rates of the nurses and visitors were estimated by using the legal upper limit activity of 1,300 MBq, the measured longest staying time, and the shortest distance between the patients and individuals. Video analysis revealed activities of the nurses, patients, and visitors in the controlled sickroom, and relationships between the access frequency and staying time. The nurses' measured doses ranged from 1 to 3 μSv, and averaged 1.6 μSv. The nurses' maximum dose and dose rate were 16 μSv and 5.6 nSv·h"-"1·MBq"-"1. The visitors' maximum dose and dose rate were 6 μSv and 2.6 nSv·h"-"1·MBq"-"1. The nurses and visitors' exposure doses per patient were estimated to be negligible compared with the annual limit of the public. (author)

  3. Estimation of dose distribution in occupationally exposed individuals to FDG-18F

    International Nuclear Information System (INIS)

    Lacerda, Isabelle V. Batista de; Cabral, Manuela O. Monteiro; Vieira, Jose Wilson

    2014-01-01

    The use of unsealed radiation sources in nuclear medicine can lead to important incorporation of radionuclides, especially for occupationally exposed individuals (OEIs) during production and handling of radiopharmaceuticals. In this study, computer simulation was proposed as an alternative methodology for evaluation of the absorbed dose distribution and for the effective dose value in OEIs. For this purpose, the Exposure Computational Model (ECM) which is named as FSUP (Female Adult Mesh - supine) were used. This ECM is composed of: voxel phantom FASH (Female Adult MeSH) in the supine position, the MC code EGSnrc and an algorithm simulator of general internal source. This algorithm was modified to adapt to specific needs of the positron emission from FDG- 18 F. The obtained results are presented as absorbed dose/accumulated activity. To obtain the absorbed dose distribution it was necessary to use accumulative activity data from the in vivo bioassay. The absorbed dose distribution and the value of estimated effective dose in this study did not exceed the limits for occupational exposure. Therefore, the creation of a database with the distribution of accumulated activity is suggested in order to estimate the absorbed dose in radiosensitive organs and the effective dose for OEI in similar environment. (author)

  4. Dose-response relationships and risk estimates for the induction of cancer due to low doses of low-LET radiation

    International Nuclear Information System (INIS)

    Elaguppillai, V.

    1981-01-01

    Risk estimates for radiation-induced cancer at low doses can be obtained only by extrapolation from the known effects at high doses and high dose rates, using a suitable dose-response model. The applicability of three different models, linear, sublinear and supralinear, are discussed in this paper. Several experimental studies tend to favour a sublinear dose-response model (linear-quadratic model) for low-LET radiation. However, human epidemiological studies do not exclude any of the dose-response relationships. The risk estimates based on linear and linear quadratic dose-response models are compared and it is concluded that, for low-LET radiation, the linear dose-response model would probably over-estimate the actual risk of cancer by a factor of two or more. (author)

  5. Biological clearance and committed dose equivalent in pulmonary region from inhaled radioaerosols for lung scanning

    Energy Technology Data Exchange (ETDEWEB)

    Soni, P.S.; Sharma, S.M.; Raghunath, B.; Somasundaram, S.

    1987-01-01

    Biological clearance half-lives (Tsub(b)) of different /sup 99/Tcsup(m)-labelled compounds from each lung have been determined, after administering the radioaerosol to normal subjects using the BARC dry aerosol generation and inhalation system. Based on these experimental clearance half-lives, the committed dose equivalent to the lungs has been computed using both the ICRP lung model and MIRD-11 values.

  6. Biological clearance and committed dose equivalent in pulmonary region from inhaled radioaerosols for lung scanning

    International Nuclear Information System (INIS)

    Soni, P.S.; Sharma, S.M.; Raghunath, B.; Somasundaram, S.

    1987-01-01

    Biological clearance half-lives (Tsub(b)) of different 99 Tcsup(m)-labelled compounds from each lung have been determined, after administering the radioaerosol to normal subjects using the BARC dry aerosol generation and inhalation system. Based on these experimental clearance half-lives, the committed dose equivalent to the lungs has been computed using both the ICRP lung model and MIRD-11 values. (author)

  7. The influence of low doses of ionizing radiation on biological systems

    International Nuclear Information System (INIS)

    Kwiecinska, T.

    1986-11-01

    Recent results concerning possible beneficial effects of low doses of ionizing radiation on biological systems are summarized. It is also pointed out on the basis of existing evidence that harmful effects on living organisms take place not only in the case of excess but also in the case of deficiency of ionizing radiation. Possibility of using radio-enhanced ultralow luminescence for studying hormesis phenomena is discussed. 24 refs., 4 figs. (author)

  8. Measurement and estimation of maximum skin dose to the patient for different interventional procedures

    International Nuclear Information System (INIS)

    Cheng Yuxi; Liu Lantao; Wei Kedao; Yu Peng; Yan Shulin; Li Tianchang

    2005-01-01

    Objective: To determine the dose distribution and maximum skin dose to the patient for four interventional procedures: coronary angiography (CA), hepatic angiography (HA), radiofrequency ablation (RF) and cerebral angiography (CAG), and to estimate the definitive effect of radiation on skin. Methods: Skin dose was measured using LiF: Mg, Cu, P TLD chips. A total of 9 measuring points were chosen on the back of the patient with two TLDs placed at each point, for CA, HA and RF interventional procedures, whereas two TLDs were placed on one point each at the postero-anterior (PA) and lateral side (LAT) respectively, during the CAG procedure. Results: The results revealed that the maximum skin dose to the patient was 1683.91 mGy for the HA procedure with a mean value of 607.29 mGy. The maximum skin dose at the PA point was 959.3 mGy for the CAG with a mean value of 418.79 mGy; While the maximum and the mean doses at the LAT point were 704 mGy and 191.52 mGy, respectively. For the RF procedure the maximum dose was 853.82 mGy and the mean was 219.67 mGy. For the CA procedure the maximum dose was 456.1 mGy and the mean was 227.63 mGy. Conclusion: All the measured dose values in this study are estimated ones which could not provide the accurate maximum value because it is difficult to measure using a great deal of TLDs. On the other hand, the small area of skin exposed to high dose could be missed as the distribution of the dose is successive. (authors)

  9. Low doses of ionizing radiation: Relationship between biological benefit and damage induction. A synopsis

    International Nuclear Information System (INIS)

    Feinendegen, L.E.

    2005-01-01

    Absorption of ionizing radiation in biological tissue stochastically interacts with constituent atoms and molecules and always generates energy deposition (track) events accompanied by bursts of reactive oxygen species (ROS). These ROS are quite similar to those ROS that arise abundantly and constantly by normal oxidative metabolism. ROS effects from either source need attention when assessing radiation-induced alterations in biological structure and function. Endogenous ROS alone induce about 10 6 DNA oxyadducts per cell per day compared to about 5x10 -3 total DNA damage per average cell per day from background radiation exposure (1 mGy per year). At this background level, the corresponding ratio of probabilities of endogenous versus radiogenic DNA double strand breaks (DSBs) per cell per day is about 103 with some 25-40 % of low-LET caused radiogenic DNA-DSBs being of the multi-damage-site type. Radiogenic DNA damage increases in proportion to absorbed dose over a certain dose range. By evolution, tissues possess physiological mechanisms of protection against an array of potentially toxic agents, externally from the environment and endogenously from metabolism, mainly against the abundantly and constantly produced ROS. Ad hoc protection operates at a level that is genetically determined. Following small to moderate perturbation of cell-tissue homeostasis by a toxic impact, adaptive responses develop with a delay and may last from hours to weeks, even months, and aim at protecting the system against renewed insults. Protective responses encompass defense by scavenging mechanisms, DNA repair, damage removal largely by apoptosis and immune responses, as well as changes in cell proliferation. Acute low-dose irradiation below about 0.2 Gy can not only disturb cell-tissue homeostasis but also initiate adaptived protection that appears with a delay of hours and may last from less than a day to months. The balance between damage production and adaptive protection favors

  10. Report of task group on the biological basis for dose limitation in the skin

    International Nuclear Information System (INIS)

    1989-08-01

    Researchers have drawn attention to what they consider inconsistencies in the manner in which ICRP have considered skin in relation to the effective dose equivalent. They urge that the dose to the skin should be considered routinely for inclusion in the effective dose equivalent in the context of protection of individuals and population groups. They note that even with a weighting factor of only 0.01 that the dose to the skin can be a significant contributor to the effective dose equivalent including skin for practical exposure conditions. In the case of many exposures the risk to the skin can be ignored but exposure in an uniformly contaminated cloud that might occur with 85 Kr the dose to the skin could contribute 60% of the stochastic risk if included in the effective dose equivalent with a W T of 0.01. Through the years and even today the same questions about radiation effects in the skin and dosimetry keep being asked. This report collates the available data and current understanding of radiation effects on the skin, and may make it possible to estimate risks more accurately and to improve the approach to characterizing skin irradiations. 294 refs., 29 figs

  11. Biological monitoring to determine worker dose in a butadiene processing plant

    Energy Technology Data Exchange (ETDEWEB)

    Bechtold, W.E.; Hayes, R.B. [National Cancer Inst., Bethesda, MD (United States)

    1995-12-01

    Butadiene (BD) is a reactive gas used extensively in the rubber industry and is also found in combustion products. Although BD is genotoxic and acts as an animal carcinogen, the evidence for carcinogenicity in humans is limited. Extrapolation from animal studies on BD carcinogenicity to risk in humans has been controversial because of uncertainties regarding relative biologic exposure and related effects in humans vs. experimental animals. To reduce this uncertainty, a study was designed to characterize exposure to BD at a polymer production facility and to relate this exposure to mutational and cytogenetic effects. Biological monitoring was used to better assess the internal dose of BD received by the workers. Measurement of 1,2-dihydroxy-4-(N-acetylcysteinyl) butane (M1) in urine served as the biomarker in this study. M1 has been shown to correlate with area monitoring in previous studies. Most studies that relate exposure to a toxic chemical with its biological effects rely on exposure concentration as the dose metric; however, exposure concentration may or may not reflect the actual internal dose of the chemical.

  12. Metabolomics identifies a biological response to chronic low-dose natural uranium contamination in urine samples.

    Science.gov (United States)

    Grison, Stéphane; Favé, Gaëlle; Maillot, Matthieu; Manens, Line; Delissen, Olivia; Blanchardon, Eric; Banzet, Nathalie; Defoort, Catherine; Bott, Romain; Dublineau, Isabelle; Aigueperse, Jocelyne; Gourmelon, Patrick; Martin, Jean-Charles; Souidi, Maâmar

    2013-01-01

    Because uranium is a natural element present in the earth's crust, the population may be chronically exposed to low doses of it through drinking water. Additionally, the military and civil uses of uranium can also lead to environmental dispersion that can result in high or low doses of acute or chronic exposure. Recent experimental data suggest this might lead to relatively innocuous biological reactions. The aim of this study was to assess the biological changes in rats caused by ingestion of natural uranium in drinking water with a mean daily intake of 2.7 mg/kg for 9 months and to identify potential biomarkers related to such a contamination. Subsequently, we observed no pathology and standard clinical tests were unable to distinguish between treated and untreated animals. Conversely, LC-MS metabolomics identified urine as an appropriate biofluid for discriminating the experimental groups. Of the 1,376 features detected in urine, the most discriminant were metabolites involved in tryptophan, nicotinate, and nicotinamide metabolic pathways. In particular, N -methylnicotinamide, which was found at a level seven times higher in untreated than in contaminated rats, had the greatest discriminating power. These novel results establish a proof of principle for using metabolomics to address chronic low-dose uranium contamination. They open interesting perspectives for understanding the underlying biological mechanisms and designing a diagnostic test of exposure.

  13. Estimates of radiation doses and cancer risk from food intake in Korea

    International Nuclear Information System (INIS)

    Moon, Eun Kyeong; Lee, Won Jin; Ha, Wi Ho; Seo, Song Won; Jin, Young Woo; Jeong, Kyu Hwan; Yoon, Hae Jung; Kim, Hyoung Soo; Hwang, Myung Sil; Choi, Hoon

    2016-01-01

    After the Fukushima Daiichi nuclear power plant accident, a widespread public concern for radiation exposure through the contamination of domestic or imported food has continued worldwide. Because the internal exposure from contaminated food is an important consideration for human health effect, some studies for estimating radiation doses and cancer risk from the Fukushima nuclear accident have been conducted in several countries (1). The aims of the study is to estimate internal radiation dose and lifetime risks of cancer from food ingestion in Korean population. Our findings suggest no discernible increase n radiation doses or excess fatal cancer risk from food ingestion at this stage in Korea, and provide scientific evidence of the risk communication with general public associated with low-dose radiation exposure.

  14. Long-term intercomparison of Spanish environmental dosimetry services. Study of transit dose estimations

    International Nuclear Information System (INIS)

    Duch, Ma Amor; Carlos Saez-Vergara, Jose; Ginjaume, Merce; Gomez, Candelas; Maria Gonzalez-Leiton, Ana; Herrero, Javier; Jose de Lucas, Ma; Rodriguez, Rafael; Marugan, Immaculada; Salas, Rosario

    2008-01-01

    This paper presents the layout and results of a three-year follow-up of a national intercomparison campaign organized on a voluntary basis among the Spanish Laboratories in charge of environmental monitoring at and in the vicinity of Spanish nuclear installations. The dosemeters were exposed in the field at an environmental reference station with a known ambient dose equivalent, and controlled meteorological parameters. The study aimed at verifying the consistency of the different laboratories in estimating the ambient dose equivalent in realistic fields and to evaluate the influence of two different procedures to estimate the transit dose during the transfer of the dosemeters both from and to the dosimetric laboratory and the monitored site. All the results were within 20% of the reference doses for all the dosemeters tested, and in most cases they were within 10%

  15. Estimates of radiation doses and cancer risk from food intake in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Eun Kyeong; Lee, Won Jin [Korea University, Seoul (Korea, Republic of); Ha, Wi Ho; Seo, Song Won; Jin, Young Woo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Jeong, Kyu Hwan [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Yoon, Hae Jung; Kim, Hyoung Soo; Hwang, Myung Sil [Ministry of Food and Drug Safety, Cheongju (Korea, Republic of); Choi, Hoon [Wonkwang University, Iksan (Korea, Republic of)

    2016-04-15

    After the Fukushima Daiichi nuclear power plant accident, a widespread public concern for radiation exposure through the contamination of domestic or imported food has continued worldwide. Because the internal exposure from contaminated food is an important consideration for human health effect, some studies for estimating radiation doses and cancer risk from the Fukushima nuclear accident have been conducted in several countries (1). The aims of the study is to estimate internal radiation dose and lifetime risks of cancer from food ingestion in Korean population. Our findings suggest no discernible increase n radiation doses or excess fatal cancer risk from food ingestion at this stage in Korea, and provide scientific evidence of the risk communication with general public associated with low-dose radiation exposure.

  16. Definition of the dose(tempo)-distribution in the biological irradiation-facility of the RIVM

    International Nuclear Information System (INIS)

    Bader, F.J.M.

    1990-02-01

    The RIVM biological irradiation facility (BBF) for the irradiation of biological samples and small animals is a self shielded device and can be safely operated in an existing laboratory environment. There are two 137 Cs sources (15TBq) in a bilateral geometry to give maximum dose uniformity. The easily accessible irradiation chamber is housed in a rotating lead shielding. The dosimetry of BBF was performed by the Dosimetry Section of the RIVM. Experiments were made to determine the absorbed dose in plastic tubes filled with water and the dose distribution over the tube-holder. Separate experiments were made to determine the absorbed dose during the rotation of the irradiation chamber and to check the irradiation timer. For the experiments LiF:Mg,Ti (TLD-100) extruded ribbons were used. The TLDs were calibrated in a collimated beam of 137 Cs gamma rays. The determination of the absorbed dose in water was based on a users biological irradiation set up. The TLDs were individually sealed in thin plastic foil and put in plastic tubes filled for 1/3 with water. The tubes were vertically placed in the tube-holder and placed in the centre of the irradiation chamber. The results show that the absorbed dose in water (determined on January 1, 1990) is equal to 0.97 Gy/timer-unit, with a total uncertainty of 7 percent (1σ). During the rotation of the irradiation chamber the absorbed dose (determined on January 1, 1990) is equal to 0.38 Gy, with a total uncertainty of 15 percent (1σ). The variation of the dose distribution was determined at 15 different measurement points distributed over the tube-holder. The dosis in the measurement point in the centre of the tube-holder was taken as reference value. The maximum observed deviation over the other 14 measurement points amounts to -16 percent of it. The BBF-timer was checked against a special timer. The results indicate that within a range from 2-11 'timer-units' no differences are present. (author). 6 refs.; 6 figs.; 3 fotos

  17. Patient-specific radiation dose and cancer risk estimation in CT: Part II. Application to patients

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Toncheva, Greta; Yoshizumi, Terry T.; Frush, Donald P. [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Medical Physics Graduate Program, Department of Physics, and Department of Biomedical Engineering, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Duke Radiation Dosimetry Laboratory, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Duke Radiation Dosimetry Laboratory, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Division of Pediatric Radiology, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2011-01-15

    Purpose: Current methods for estimating and reporting radiation dose from CT examinations are largely patient-generic; the body size and hence dose variation from patient to patient is not reflected. Furthermore, the current protocol designs rely on dose as a surrogate for the risk of cancer incidence, neglecting the strong dependence of risk on age and gender. The purpose of this study was to develop a method for estimating patient-specific radiation dose and cancer risk from CT examinations. Methods: The study included two patients (a 5-week-old female patient and a 12-year-old male patient), who underwent 64-slice CT examinations (LightSpeed VCT, GE Healthcare) of the chest, abdomen, and pelvis at our institution in 2006. For each patient, a nonuniform rational B-spine (NURBS) based full-body computer model was created based on the patient's clinical CT data. Large organs and structures inside the image volume were individually segmented and modeled. Other organs were created by transforming an existing adult male or female full-body computer model (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. A Monte Carlo program previously developed and validated for dose simulation on the LightSpeed VCT scanner was used to estimate patient-specific organ dose, from which effective dose and risks of cancer incidence were derived. Patient-specific organ dose and effective dose were compared with patient-generic CT dose quantities in current clinical use: the volume-weighted CT dose index (CTDI{sub vol}) and the effective dose derived from the dose-length product (DLP). Results: The effective dose for the CT examination of the newborn patient (5.7 mSv) was higher but comparable to that for the CT examination of the teenager patient (4.9 mSv) due to the size-based clinical CT protocols at our institution, which employ lower scan techniques for smaller

  18. Dose rate estimates from irradiated light-water-reactor fuel assemblies in air

    International Nuclear Information System (INIS)

    Lloyd, W.R.; Sheaffer, M.K.; Sutcliffe, W.G.

    1994-01-01

    It is generally considered that irradiated spent fuel is so radioactive (self-protecting) that it can only be moved and processed with specialized equipment and facilities. However, a small, possibly subnational, group acting in secret with no concern for the environment (other than the reduction of signatures) and willing to incur substantial but not lethal radiation doses, could obtain plutonium by stealing and processing irradiated spent fuel that has cooled for several years. In this paper, we estimate the dose rate at various distances and directions from typical pressurized-water reactor (PWR) and boiling-water reactor (BWR) spent-fuel assemblies as a function of cooling time. Our results show that the dose rate is reduced rapidly for the first ten years after exposure in the reactor, and that it is reduced by a factor of ∼10 (from the one year dose rate) after 15 years. Even for fuel that has cooled for 15 years, a lethal dose (LD50) of 450 rem would be received at 1 m from the center of the fuel assembly after several minutes. However, moving from 1 to 5 m reduces the dose rate by over a factor of 10, and moving from 1 to 10 m reduces the dose rate by about a factor of 50. The dose rates 1 m from the top or bottom of the assembly are considerably less (about 10 and 22%, respectively) than 1 m from the center of the assembly, which is the direction of the maximum dose rate

  19. Uncertainties in estimating heart doses from 2D-tangential breast cancer radiotherapy

    DEFF Research Database (Denmark)

    Laugaard Lorenzen, Ebbe; Brink, Carsten; Taylor, Carolyn W.

    2016-01-01

    BACKGROUND AND PURPOSE: We evaluated the accuracy of three methods of estimating radiation dose to the heart from two-dimensional tangential radiotherapy for breast cancer, as used in Denmark during 1982-2002. MATERIAL AND METHODS: Three tangential radiotherapy regimens were reconstructed using CT......-based planning scans for 40 patients with left-sided and 10 with right-sided breast cancer. Setup errors and organ motion were simulated using estimated uncertainties. For left-sided patients, mean heart dose was related to maximum heart distance in the medial field. RESULTS: For left-sided breast cancer, mean...... to the uncertainty of estimates based on individual CT-scans. For right-sided breast cancer patients, mean heart dose based on individual CT-scans was always

  20. Radiochemical separation and effective dose estimation due to ingestion of 90Sr

    International Nuclear Information System (INIS)

    Ilic, Z.; Vidic, A.; Deljkic, D.; Sirko, D.; Zovko, E.; Samek, D.

    2009-01-01

    Since 2007. Institute for Public Health of Federation of Bosnia and Herzegovina-Radiation Protection Centre, within the framework of monitoring of radioactivity of environment carried out measurement of specific activity of 90 Sr content in selected food and water samples. The paper described the methods of measurement and radiochemical separation. Presented results, as average values of specific activity of 90 Sr, were used for estimation of effective dose due to ingestion of 90 Sr for 2007. and 2008. Estimated effective dose for 2007. due to ingestion of 90 Sr for adults was 1,36 μSv and 2,03 μSv for children (10 year old), and for 2008. 0,67 μSv (adults) and 1,01 μSv (children 10 year old). Estimated effective doses for 2007. and 2008. are varied because of different average specific activity radionuclide 90 Sr in selected samples of food, their number, species and origin. (author) [sr

  1. Calculational techniques for estimating population doses from radioactivity in natural gas from nuclearly stimulated wells

    International Nuclear Information System (INIS)

    Barton, C.J.; Moore, R.E.; Rohwer, P.S.; Kaye, S.V.

    1975-01-01

    Techniques for estimating radiation doses from exposure to combustion products of natural gas obtained from wells created by use of nuclear explosives were first developed in the Gasbuggy Project. These techniques were refined and extended by development of a number of computer codes in studies related to the Rulison Project, the second in the series of joint government-industry efforts to demonstrate the feasibility of increasing natural gas production from low-permeability rock formations by use of nuclear explosives. These techniques are described and dose estimates that illustrate their use are given. These dose estimation studies have been primarily theoretical, but we have tried to make our hypothetical exposure conditions correspond as closely as possible with conditions that could exist if nuclearly stimulated natural gas is used commercially. (author)

  2. Impact of dose-distribution uncertainties on rectal ntcp modeling I: Uncertainty estimates

    International Nuclear Information System (INIS)

    Fenwick, John D.; Nahum, Alan E.

    2001-01-01

    A trial of nonescalated conformal versus conventional radiotherapy treatment of prostate cancer has been carried out at the Royal Marsden NHS Trust (RMH) and Institute of Cancer Research (ICR), demonstrating a significant reduction in the rate of rectal bleeding reported for patients treated using the conformal technique. The relationship between planned rectal dose-distributions and incidences of bleeding has been analyzed, showing that the rate of bleeding falls significantly as the extent of the rectal wall receiving a planned dose-level of more than 57 Gy is reduced. Dose-distributions delivered to the rectal wall over the course of radiotherapy treatment inevitably differ from planned distributions, due to sources of uncertainty such as patient setup error, rectal wall movement and variation in the absolute rectal wall surface area. In this paper estimates of the differences between planned and treated rectal dose-distribution parameters are obtained for the RMH/ICR nonescalated conformal technique, working from a distribution of setup errors observed during the RMH/ICR trial, movement data supplied by Lebesque and colleagues derived from repeat CT scans, and estimates of rectal circumference variations extracted from the literature. Setup errors and wall movement are found to cause only limited systematic differences between mean treated and planned rectal dose-distribution parameter values, but introduce considerable uncertainties into the treated values of some dose-distribution parameters: setup errors lead to 22% and 9% relative uncertainties in the highly dosed fraction of the rectal wall and the wall average dose, respectively, with wall movement leading to 21% and 9% relative uncertainties. Estimates obtained from the literature of the uncertainty in the absolute surface area of the distensible rectal wall are of the order of 13%-18%. In a subsequent paper the impact of these uncertainties on analyses of the relationship between incidences of bleeding

  3. Organ doses for reference pediatric and adolescent patients undergoing computed tomography estimated by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Lee, Choonsik; Kim, Kwang Pyo; Long, Daniel J.; Bolch, Wesley E.

    2012-01-01

    Purpose: To establish an organ dose database for pediatric and adolescent reference individuals undergoing computed tomography (CT) examinations by using Monte Carlo simulation. The data will permit rapid estimates of organ and effective doses for patients of different age, gender, examination type, and CT scanner model. Methods: The Monte Carlo simulation model of a Siemens Sensation 16 CT scanner previously published was employed as a base CT scanner model. A set of absorbed doses for 33 organs/tissues normalized to the product of 100 mAs and CTDI vol (mGy/100 mAs mGy) was established by coupling the CT scanner model with age-dependent reference pediatric hybrid phantoms. A series of single axial scans from the top of head to the feet of the phantoms was performed at a slice thickness of 10 mm, and at tube potentials of 80, 100, and 120 kVp. Using the established CTDI vol - and 100 mAs-normalized dose matrix, organ doses for different pediatric phantoms undergoing head, chest, abdomen-pelvis, and chest-abdomen-pelvis (CAP) scans with the Siemens Sensation 16 scanner were estimated and analyzed. The results were then compared with the values obtained from three independent published methods: CT-Expo software, organ dose for abdominal CT scan derived empirically from patient abdominal circumference, and effective dose per dose-length product (DLP). Results: Organ and effective doses were calculated and normalized to 100 mAs and CTDI vol for different CT examinations. At the same technical setting, dose to the organs, which were entirely included in the CT beam coverage, were higher by from 40 to 80% for newborn phantoms compared to those of 15-year phantoms. An increase of tube potential from 80 to 120 kVp resulted in 2.5-2.9-fold greater brain <