WorldWideScience

Sample records for biological degradation pollutants

  1. Water pollution biology

    Energy Technology Data Exchange (ETDEWEB)

    Mason, C.F. [University of Essex, Colchester (United Kingdom). Dept. of Biology

    1996-12-31

    Chapter 4 of this book describes the effects of major types of pollutants on aquatic life. These are: organic pollution, eutrophication, acidification, toxic chemicals, oil, and radioactivity. The review includes an description of some of the methods of assessing the biological impacts of pollution. 50 refs., 8 figs., 3 tabs.

  2. Indoor biological pollution

    International Nuclear Information System (INIS)

    Inside buildings - besides the umpteen toxic substances emanating from materials and appliances used daily for the most assorted activities - there are may be a number of different pathogenic micro-organisms able to cause diseases and respiratory system infections. Indoor pollution caused by biological agents may be due not only to living microorganisms, but also to dead ones or to the produce of their metabolism as well as to allergens. The most efficient precautionary measure against biological agents is to ventilate the rooms one lives in. In case of air-conditioning, it's good rule to keep air pipes dry and clean, renewing filters at regular intervals in order to avoid fungi and bacteria from settling in

  3. Biology and Water Pollution Control.

    Science.gov (United States)

    Warren, Charles E.

    Within this text, the reader is attuned to the role biology can and should play in combating the alarming increase in water pollution. Both the urgency of the problem and the biological techniques that are being developed to cope with the water pollution crisis are scrutinized; what is and is not known about the problem is explained; past,…

  4. Degradation of air polluted by organic compounds

    International Nuclear Information System (INIS)

    According to the Mexican standard NOM-010-STPS-1994 it has been established concentrations of maximum permissible levels in workable air for styrene in the range 420-1710 mg/m3 and for xylene between 218-870 mg/m3. In this work it is studied a biological treatment (bio filtration) for air polluted by xylene and styrene where the microorganisms are adhered at synthetic fiber, these degrade to the organic compounds that across in gaseous state and they are mineralized toward CO2 and H2O. The characteristics of temperature, p H, concentration of organic compound and mineral parameters, as well as, the biomass quantity have been optimized for that bio filters efficiency were greater than those reported in other works. (Author)

  5. Biological monitors of air pollution

    International Nuclear Information System (INIS)

    Direct biological monitoring of air pollution was introduced about 30 years ago. Although still under development, the application of biological monitors, or indicators, may provide important information on the levels, availability, and pathways of a variety of pollutants including heavy metals and other toxic trace elements in the air. A survey is given of the most frequently used biomonitors, such as herbaceous plants, tree leaves or needles, bryophytes, and lichens, with their possible advantages and/or limitations. In addition to using naturally-occurring biomonitors, a possibility of employing ''transplanted'' species in the study areas, for instance grasses grown in special containers in standard soils or lichens transplanted with their natural substrate to an exposition site, is also mentioned. Several sampling and washing procedures are reported. The important of employing nuclear analytical methods, especially instrumental neutron activation analysis, for multielemental analysis of biomonitors as a pre-requisite for unlocking the information contained in chemical composition of monitor's tissues, such as apportionment of emission sources using multivariate statistical procedures, is also outlined. (author). 32 refs, 2 figs

  6. Biocarrier composition for and method of degrading pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Fliermans, C.B.

    1994-01-01

    The present invention relates to biocarrier compositions that attract and bond pollutant-degrading antigens that will degrade the pollutants. Biocarriers are known generally as a variety of inert or semi-inert compounds or structures having the ability to sequester (attract), hold and biomagnify (enhance) specific microorganisms within their structure. Glass or polystyrene beads are the most well known biocarriers. The biocarrier, which is preferably in the form of glass microspheres, is coated with an antibody or group of antibodies that attract and react specifically with certain pollutant-degrading antigens. The antibody, once bonded to the biocarrier, is used by the composition to attract and bond those pollutant-degrading antigens. Each antibody is specific for an antigen that is specific for a given pollutant. The resulting composition is subsequently exposed to an environment contaminated with pollutants for degradation. In the preferred use, the degrading composition is formed and then injected directly into or near a plume or source of contamination.

  7. Photochemically enhanced microbial degradation of environmental pollutants

    International Nuclear Information System (INIS)

    Biodegradation of persistent halogenated organic pollutants is of great interest from the viewpoint of its potential use to cleanup the contaminated sites and industrial waste streams on-site (i.e., in situ remediation). Recent studies have shown that lignin-degrading white rot fungi possess capabilities to degrade a variety of highly recalcitrant and toxic compounds. On the other hand, photodegradation by sunlight or ultraviolet light (UV) has not been considered as a potential technology to detoxify the contaminated sites, in spite of the availability of extensive research data, because of its limited reaching ability to subsurface locations. In view of the urgent needs for the development of technology to deal with mounting problems of toxic wastes, the authors have decided to experiment with the ideas of combining photochemical and microbial technologies. The main obstacle in developing such simultaneous combination systems has been the susceptibilities of microorganisms in general to UV irradiation. To overcome this problem, the authors have developed an ultraviolet- and fungicide-resistant strain of white rot fungus and now report their results

  8. Fluid extraction-biological degradation of organic wastes

    International Nuclear Information System (INIS)

    The Institute of Gas Technology (IGT) Fluid Extraction-Biological Degradation (FEBD) Process extracts hydrocarbon contaminants from soil and then biologically degrades the pollutants in aerobic bioreactors. The FEBD process has the potential to be an environmentally benign means of safely and economically degrading pollutants by overcoming bioavailability limitations of the pollutants in soil. The process consists of three stages; extraction, separation, and biodegradation. Contaminants are first removed from the soil by solubilization in supercritical carbondioxide in an above-ground extraction vessel. The hydrocarbon contaminants are then collected in a separation solvent, and clean CO2 is recycled to the extraction stage. Separation solvent containing the organic wastes is sent to the biodegradation stage where the wastes are converted to CO2, water, and biomass. All stages of the FEBD process have been successfully demonstrated. The extraction stage of the FEBD process relies on the unique properties of supercritical fluids (SCF) to remove organic contaminants from soil. An SCF is a compound at conditions exceeding its critical temperature and pressure. Fluids in the supercritical range have viscosities and diffusivities between liquids and gases with densities close to those of liquids. Supercritical fluids have the solution characteristics of liquids with better mass transfer capabilities. Extraction and separation are easily controlled because changes in the pressure (density) of an SCF can be used to change the solvation ability of the fluid

  9. Degradation of pollutants and elimination of pathogens of waste water by adsorption of accelerated electrons

    International Nuclear Information System (INIS)

    This report presents a position of the pollutants degradation of the industrial residual waters, it intends a method that consists on making pass residual water, treated biologically by a packed column with activated carbon. The carbon retains the pollutants and the water goes out with a purity that allows the reuse. In simultaneous form to the adsorption of pollutants are made pass electrons through the column of carbon, the electrons will destroy to the polluting adsorbed in the carbon; the pollutants degrade until CO2 that escapes as gas. The active sites of the carbon are empty and clever to be occupied by other pollutants. This process is continuous and it is repeated while water is passing by the column and electrons through this. (Author)

  10. The Effect of Soil-Physical Properties on Microbiological Oil Degradation in Diesel Oil Polluted Soil

    OpenAIRE

    Lund, Willy; Møldrup, P.

    1996-01-01

    The effect of basic soil-physical properties such as soil texture, soil-water content, effective oxygen diffusivity and permeability on biological oil degradation in two artificially polluted soils was investigated. Experiments were carried out during a six months period in large-scale laboratory lysimeters using packed soils with an initial oil content of 1.5% and using two different strategies for water, nitrogen and phosphorus application. A significant oil degradation was obtained only in...

  11. Engineering dioxygenases for efficient degradation of environmental pollutants.

    Science.gov (United States)

    Furukawa, K

    2000-06-01

    Dioxygenases have recently been engineered to improve their capabilities for environmental pollutant degradation. The techniques used to achieve this include in vitro DNA shuffling and subunit or domain exchanges between dioxygenases of different bacterial origins. Such evolved enzymes acquire novel and enhanced degradation capabilities of xenobiotic compounds, such as polychlorinated biphenyls, trichloroethylene and a variety of aromatic compounds. Hybrid strains in which the evolved genes are integrated into the chromosomal operons exhibit efficient degradation of xenobiotic chlorinated compounds. PMID:10851151

  12. Biological degradation of chernozems under irrigation

    Directory of Open Access Journals (Sweden)

    Oksana Naydyonova

    2014-12-01

    Full Text Available We studied the changes in the state of microbial cenosis of Ukraine’s chernozems under irrigation. Considerable part of Ukraine’s chernozems is located in the areas where humidification is insufficient and unstable. Irrigation is a soil-reclamation measure for chernozems of Ukrainian Forest-steppe and Steppe which enables getting the assured yield, especially vegetable and fodder crops. At the same time, irrigation is a powerful anthropogenic factor that affects the soil, causes a significant transformation of many of its properties and regimes including biological ones. Often these changes are negative. The purpose of our investigation was to identify changes in the state of microbial cenoses of chernozem soils under irrigation which depend on such factors as the quality of irrigation water, the duration and intensity of irrigation, the initial properties of soil, the structure of crop rotation, usage of fertilizing systems and agroameliorative techniques. We identified direction and evaluated a degree of changes in biological properties of chernozems under influence of irrigation in different agro-irrigational and soil-climatic conditions. In the long-term stationary field experiments we identified the following biological indices of irrigated soils and their non-irrigated analogues: a number of microorganisms which belong to main ecological-trophic groups, activity of soil enzymes (dehydrogenase, invertase, phenol oxidase, soil phytotoxic activity, cellulose destroying capacity of soil, indices of oligotrophy and mineralization, summary biological index (SBI and index of biological degradation (BDI. Results of researches showed that irrigation unbalanced the soil ecosystem and stipulated the forming of microbial cenosis with new parameters. Long-term intensive irrigation of typical chernozem (Kharkiv Region with fresh water under condition of 4-fields vegetable crop rotation led to the degradation changes of its microbial cenosis such as

  13. Metagenomics for the discovery of pollutant degrading enzymes.

    Science.gov (United States)

    Ufarté, Lisa; Laville, Élisabeth; Duquesne, Sophie; Potocki-Veronese, Gabrielle

    2015-12-01

    Organic pollutants, including xenobiotics, are often persistent and toxic organic compounds resulting from human activities and released in large amounts into terrestrial, fluvial and marine environments. However, some microbial species which are naturally exposed to these compounds in their own habitat are capable of degrading a large range of pollutants, especially poly-aromatic, halogenated and polyester molecules. These microbes constitute a huge reservoir of enzymes for the diagnosis of pollution and for bioremediation. Most are found in highly complex ecosystems like soils, activated sludge, compost or polluted water, and more than 99% have never been cultured. Meta-omic approaches are thus well suited to retrieve biocatalysts from these environmental samples. In this review, we report the latest advances in functional metagenomics aimed at the discovery of enzymes capable of acting on different kinds of polluting molecules. PMID:26526541

  14. Cleaning of polluted water using biological techniques

    International Nuclear Information System (INIS)

    Ground-water at many Danish locations has been polluted by organic substances. This pollution has taken place in relation to leaks or spills of, for example, petrol from leaky tanks or oil separators. The article describes a new biological technique for the purification of ground-water polluted by petrol and diesel oils leaked at a petrol station. The technique involves decompostion by bacteria. During decompostion the biomass in the filter increases and carbon dioxide and water is produced, so there is no waste product from this process. The two units consist of an oil-separator which separates the diesel oil and petrol from the water, and a bio-filter which is constructed as an aired-through inverted filter to which nutrient salts are continually added. The filter-material used is in the form of plastic rings on which the oil-decomposing bacteria grow and reproduce themselves. The system is further described. It is claimed that the bio-filter can decompose 7 kg of petrol and diesel oil in one week, larger ones decompose more. The servicelife of the system is expected to be 4-6 years. Current installation costs are 20.000 - 100.000 Danish kroner, according to size. (AB)

  15. Air pollutants degrade floral scents and increase insect foraging times

    Science.gov (United States)

    Fuentes, Jose D.; Chamecki, Marcelo; Roulston, T.'ai; Chen, Bicheng; Pratt, Kenneth R.

    2016-09-01

    Flowers emit mixtures of scents that mediate plant-insect interactions such as attracting insect pollinators. Because of their volatile nature, however, floral scents readily react with ozone, nitrate radical, and hydroxyl radical. The result of such reactions is the degradation and the chemical modification of scent plumes downwind of floral sources. Large Eddy Simulations (LES) are developed to investigate dispersion and chemical degradation and modification of floral scents due to reactions with ozone, hydroxyl radical, and nitrate radical within the atmospheric surface layer. Impacts on foraging insects are investigated by utilizing a random walk model to simulate insect search behavior. Results indicate that even moderate air pollutant levels (e.g., ozone mixing ratios greater than 60 parts per billion on a per volume basis, ppbv) substantially degrade floral volatiles and alter the chemical composition of released floral scents. As a result, insect success rates of locating plumes of floral scents were reduced and foraging times increased in polluted air masses due to considerable degradation and changes in the composition of floral scents. Results also indicate that plant-pollinator interactions could be sensitive to changes in floral scent composition, especially if insects are unable to adapt to the modified scentscape. The increase in foraging time could have severe cascading and pernicious impacts on the fitness of foraging insects by reducing the time devoted to other necessary tasks.

  16. Roles of protein ubiquitination and degradation kinetics in biological oscillations.

    Directory of Open Access Journals (Sweden)

    Lida Xu

    Full Text Available Protein ubiquitination and degradation play important roles in many biological functions and are associated with many human diseases. It is well known that for biochemical oscillations to occur, proper degradation rates of the participating proteins are needed. In most mathematical models of biochemical reactions, linear degradation kinetics has been used. However, the degradation kinetics in real systems may be nonlinear, and how nonlinear degradation kinetics affects biological oscillations are not well understood. In this study, we first develop a biochemical reaction model of protein ubiquitination and degradation and calculate the degradation rate against the concentration of the free substrate. We show that the protein degradation kinetics mainly follows the Michaelis-Menten formulation with a time delay caused by ubiquitination and deubiquitination. We then study analytically how the Michaelis-Menten degradation kinetics affects the instabilities that lead to oscillations using three generic oscillation models: 1 a positive feedback mediated oscillator; 2 a positive-plus-negative feedback mediated oscillator; and 3 a negative feedback mediated oscillator. In all three cases, nonlinear degradation kinetics promotes oscillations, especially for the negative feedback mediated oscillator, resulting in much larger oscillation amplitudes and slower frequencies than those observed with linear kinetics. However, the time delay due to protein ubiquitination and deubiquitination generally suppresses oscillations, reducing the amplitude and increasing the frequency of the oscillations. These theoretical analyses provide mechanistic insights into the effects of specific proteins in the ubiquitination-proteasome system on biological oscillations.

  17. Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Naresh eSinghal

    2016-05-01

    Full Text Available Global water scarcity is driving the need for identifying new water source. Wastewater could be a potential water resource if appropriate treatment technologies could be developed. One of the barriers to obtaining high quality water from wastewater arises from the presence of organic micropollutants, which are biologically active at trace levels. Removal of these compounds from wastewater by current physico-chemical technologies is prohibitively expensive. While biological treatment processes are comparatively cheap, current systems are not capable of degrading the wide range of organic micropollutants present in wastewater. As current wastewater treatment processes were developed for treating conventional pollutants present at mg/L levels, degrading the ng/L levels of micropollutants will require a different approach to system design and operation. In this paper we discuss strategies that could be employed to develop biological wastewater treatment systems capable of degrading organic micropollutants.

  18. The Practice of Water Pollution Biology.

    Science.gov (United States)

    Mackenthun, Kenneth M.

    Water pollution techniques and practices, including data analysis, interpretation and display are described in this book intended primarily for the biologist inexperienced in this work, and for sanitary engineers, chemists, and water pollution control administrators. The characteristics of aquatic environments, their biota, and the effects of…

  19. Aerobic Microbial Degradation of Chlorochromate Compounds Polluting the Environment

    International Nuclear Information System (INIS)

    Eight soil and sludge samples which have been polluted with petroleum wastes for more than 41 years were used for isolation of adapted indigenous microbial communities able to mineralize the chloro aromatic compounds [3-chlorobenzoic acid (3-CBA), 2,4-dichlorophenol (2,4-DCP), 2,6-dichlorophenol indole phenol (2,6-DCPP) and 1,2,4-trichlorobenzene (1,2,4-TCB)] and use them as a sole carbon and energy sources. From these communities, the most promising bacterial strain MAM-24 which has the ability to degrade the four chosen aromatic compounds was isolated and identified by comparative sequence analysis for its 16S-rRNA coding genes and it was identified as Bacillus mucilaginosus HQ 013329. Degradation percentage was quantified by HPLC. Degradation products were identified by GC-MS analysis which revealed that the isolated strain and its mutant dechlorinated the four chloro aromatic compounds in the first step forming acetophenone which is considered as the corner stone of the intermediate compounds

  20. Bioremediation of soil polluted with crude oil and its derivatives: Microorganisms, degradation pathways, technologies

    Directory of Open Access Journals (Sweden)

    Beškoski Vladimir P.

    2012-01-01

    Full Text Available The contamination of soil and water with petroleum and its products occurs due to accidental spills during exploitation, transport, processing, storing and use. In order to control the environmental risks caused by petroleum products a variety of techniques based on physical, chemical and biological methods have been used. Biological methods are considered to have a comparative advantage as cost effective and environmentally friendly technologies. Bioremediation, defined as the use of biological systems to destroy and reduce the concentrations of hazardous waste from contaminated sites, is an evolving technology for the removal and degradation of petroleum hydrocarbons as well as industrial solvents, phenols and pesticides. Microorganisms are the main bioremediation agents due to their diverse metabolic capacities. In order to enhance the rate of pollutant degradation the technology optimizes the conditions for the growth of microorganisms present in soil by aeration, nutrient addition and, if necessary, by adding separately prepared microorganisms cultures. The other factors that influence the efficiency of process are temperature, humidity, presence of surfactants, soil pH, mineral composition, content of organic substance of soil as well as type and concentration of contaminant. This paper presents a review of our ex situ bioremediation procedures successfully implemented on the industrial level. This technology was used for treatment of soils contaminated by crude oil and its derivatives originated from refinery as well as soils polluted with oil fuel and transformer oil.

  1. Structural Biology of Pectin Degradation by Enterobacteriaceae

    OpenAIRE

    Abbott, D. Wade; Boraston, Alisdair B.

    2008-01-01

    Pectin is a structural polysaccharide that is integral for the stability of plant cell walls. During soft rot infection, secreted virulence factors from pectinolytic bacteria such as Erwinia spp. degrade pectin, resulting in characteristic plant cell necrosis and tissue maceration. Catabolism of pectin and its breakdown products by pectinolytic bacteria occurs within distinct cellular environments. This process initiates outside the cell, continues within the periplasmic space, and culminates...

  2. Policy Tools for Managing Biological Pollution Risks from Trade

    OpenAIRE

    Reeling, Carson J.; Horan, Richard D.

    2015-01-01

    The spread of infectious livestock diseases can be considered a form of “biological pollution.” Prior literature asserts trade-related biological pollution externalities arise from trade in contaminated goods. However, this literature ignores (i) importers’ ability to reduce disease spillovers via private risk management choices and (ii) the potential for strategic interactions to arise when an importer’s risk management measures simultaneously protect himself and others. This paper explores ...

  3. Radiation-induced degradation of water pollutants - state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Getoff, N. [Vienna Univ. (Austria). Inst. fuer Theoretische Chemie und Strahlenchemie]|[Ludwig-Boltzmann-Institut fuer Veterinaermedizinische Endokrinologie, Vienna (Austria)

    1996-04-01

    The radiation-induced decomposition of biological resistant pollutants in drinking as well as in wastewater is briefly reviewed. First, some important units, definitions etc., radiation sources, as well as dose-depth curves in water as functions of the electron energy and {sup 60}Co-{gamma}-rays are mentioned. Following is a schematical presentation of water radiolysis and of characteristics of primary free radicals. Then the degradation of some aliphatic and aromatic chlorinated compounds in the presence of air is presented. Some spectroscopic and kinetic data of transients resulting from chlorinated phenols are also quoted in order to illustrate and to explain the rather complicated degradation mechanisms. In this respect the synergistic effect of radiation and oxygen as well as that of ozone is also discussed. Finally, a scheme for technical application of high energy electron beam is presented. (author).

  4. Biological activities of radiation-degraded carrageenan

    International Nuclear Information System (INIS)

    Carrageenans were irradiated in solid state to doses 50-1000 kGy in air at ambient temperature. Changes in their molecular weight and functional properties with respect to their FT-IR and UV spectra were evaluated. Irradiation of carrageenans resulted in a rapid decrease of molecular weight indicating main chain scission in their polymeric structures. Formations of some compounds were evident by new absorption peaks in their UV and FT-IR spectra and quantitative analyses of the FT-IR spectra which, in addition, support that there is a breakdown in the carrageenan structure. Irradiated carrageenans were investigated for their plant growth-promoting activity. Carrageenans were added to the nutrient solutions for rice seedlings under non-circulating hydroponics cultivation. Irradiated carrageenan induced weight gain in treated rice seedlings. Maximum weight gain was obtained with KC irradiated at 100 kGy while treatment with IC at 500 kGy. IC exhibited less growth promoting properties than KC. The growth of fungi on the roots disappeared with treatment of IC and KC irradiated at 500 kGy. Growth promotion of some leafy vegetables was also observed with application of degraded KC. The carrageenan molecule has been broken down to smaller molecule (s) or compound (s) that can be absorbed effectively as nourishment factors and anti-microbial agents by plants. (author)

  5. Biological activities of radiation-degraded carrageenan

    Energy Technology Data Exchange (ETDEWEB)

    Relleve, Lorna; Dela Rosa, Alumanda; ABAD, Lucille; Aranilla, Charito; Aliganga, Anne Kathrina [Philippine Nuclear Research Institute, Quezon City (Philippines); Yoshii, Fumio; Kume, Tamikazu; Nagasawa, Naotsugu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Carrageenans were irradiated in solid state to doses 50-1000 kGy in air at ambient temperature. Changes in their molecular weight and functional properties with respect to their FT-IR and UV spectra were evaluated. Irradiation of carrageenans resulted in a rapid decrease of molecular weight indicating main chain scission in their polymeric structures. Formations of some compounds were evident by new absorption peaks in their UV and FT-IR spectra and quantitative analyses of the FT-IR spectra which, in addition, support that there is a breakdown in the carrageenan structure. Irradiated carrageenans were investigated for their plant growth-promoting activity. Carrageenans were added to the nutrient solutions for rice seedlings under non-circulating hydroponics cultivation. Irradiated carrageenan induced weight gain in treated rice seedlings. Maximum weight gain was obtained with KC irradiated at 100 kGy while treatment with IC at 500 kGy. IC exhibited less growth promoting properties than KC. The growth of fungi on the roots disappeared with treatment of IC and KC irradiated at 500 kGy. Growth promotion of some leafy vegetables was also observed with application of degraded KC. The carrageenan molecule has been broken down to smaller molecule (s) or compound (s) that can be absorbed effectively as nourishment factors and anti-microbial agents by plants. (author)

  6. MSW: From pollution/degradation source to resource

    Directory of Open Access Journals (Sweden)

    Francesca Pirlone

    2016-08-01

    Full Text Available Municipal Solid Waste is one of the biggest challenges that cities are facing: MSW is considered of the main sources of energy consumption, urban degradation and pollution. This paper defines the major negative effects of MSW on cities and proposes new solutions to guide waste policies. Most contemporary waste management efforts are focused at regional government level and based on high tech waste disposal by methods such as landfill and incineration. However, these methods are becoming increasingly expensive, energy inefficient and pollutant: waste disposal is not sustainable and will have negative implications for future generations. In this paper are proposed all the principle solutions that could be undertaken. New policy instruments are presented updating and adapting policies and encouraging innovation for less wasteful systems. Waste management plans are fundamental to increase the ability of urban areas to effectively adapt to waste challenges. These plans have to give an outline of waste streams and treatment options and provide a scenario for the following years that significantly reduce landfills and incinerators in favor of prevention, reuse and recycling. The key aim of an urban waste management plan is to set out the work towards a zero waste economy as part of the transition to a sustainable economy. Other questions remain still opened: How to change people’s behavior? What is the role of environmental education and risk perception? It is sure that the involvement of the various stakeholders and the wider public in the planning process should aim at ensuring acceptance of the waste policy.

  7. Linking exposure to environmental pollutants with biological effects

    DEFF Research Database (Denmark)

    Sørensen, Mette; Autrup, Herman; Møller, Peter;

    2003-01-01

    Exposure to ambient air pollution has been associated with cancer. Ambient air contains a complex mixture of toxics, including particulate matter (PM) and benzene. Carcinogenic effects of PM may relate both to the content of PAH and to oxidative DNA damage generated by transition metals, benzene......, metabolism and inflammation. By means of personal monitoring and biomarkers of internal dose, biologically effective dose and susceptibility, it should be possible to characterize individual exposure and identify air pollution sources with relevant biological effects. In a series of studies, individual...... setting, biological effects of air pollutants appear mainly related to oxidative stress via personal exposure and not to urban background levels. Future developments include personal time-resolved monitors for exposure to ultrafine PM and PM(2.5,) use of GPS, as well as genomics and proteomics based...

  8. Radiation degradation of alginate and some results of biological effect of degraded alginate on plants

    International Nuclear Information System (INIS)

    Radiation degradation yields (Gd) of alginate in aqueous solution with different concentration were determined by viscometry method. The relationship between Gd and the alginate concentration was found out as: Gd=33.5 x C-0.68, with C% (w/v) and dry alginate referred to C=100%. An empirical equation for preparing degraded alginate with the desired low viscometry average molecular weight (Mv) by radiation was proposed. Alginate extracted directly horn seaweed'Sagassum, degraded by radiation was used for field experiments and results of the biological effect on plants (tea, carrot, chrysanthemum) were presented. (author)

  9. Radiation degradation of alginate and some results of biological effect of degraded alginate on plants

    Energy Technology Data Exchange (ETDEWEB)

    Hien, N.Q.; Hai, L.; Luan, L.Q.; Hanh, T.T. [Nuclear Research Institute, Dalat (Viet Nam); Nagasawa, Naotsugu; Yoshii, Fumio; Makuuchi, Keizo; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Radiation degradation yields (Gd) of alginate in aqueous solution with different concentration were determined by viscometry method. The relationship between Gd and the alginate concentration was found out as: Gd=33.5 x C{sup -0.68}, with C% (w/v) and dry alginate referred to C=100%. An empirical equation for preparing degraded alginate with the desired low viscometry average molecular weight (Mv) by radiation was proposed. Alginate extracted directly horn seaweed'Sagassum, degraded by radiation was used for field experiments and results of the biological effect on plants (tea, carrot, chrysanthemum) were presented. (author)

  10. Influence of mussel biological variability on pollution biomarkers.

    Science.gov (United States)

    González-Fernández, Carmen; Albentosa, Marina; Campillo, Juan A; Viñas, Lucía; Fumega, José; Franco, Angeles; Besada, Victoria; González-Quijano, Amelia; Bellas, Juan

    2015-02-01

    This study deals with the identification and characterization of biological variables that may affect some of the biological responses used as pollution biomarkers. With this aim, during the 2012 mussel survey of the Spanish Marine Pollution monitoring program (SMP), at the North-Atlantic coast, several quantitative and qualitative biological variables were measured (corporal and shell indices, gonadal development and reserves composition). Studied biomarkers were antioxidant enzymatic activities (CAT, GST, GR), lipid peroxidation (LPO) and the physiological rates integrated in the SFG biomarker (CR, AE, RR). Site pollution was considered as the chemical concentration in the whole tissues of mussels. A great geographical variability was observed for the biological variables, which was mainly linked to the differences in food availability along the studied region. An inverse relationship between antioxidant enzymes and the nutritional status of the organism was evidenced, whereas LPO was positively related to nutritional status and, therefore, with higher metabolic costs, with their associated ROS generation. Mussel condition was also inversely related to CR, and therefore to SFG, suggesting that mussels keep an "ecological memory" from the habitat where they have been collected. No overall relationship was observed between pollution and biomarkers, but a significant overall effect of biological variables on both biochemical and physiological biomarkers was evidenced. It was concluded that when a wide range of certain environmental factors, as food availability, coexist in the same monitoring program, it determines a great variability in mussel populations which mask the effect of contaminants on biomarkers. PMID:25483414

  11. Biological effects of air pollution in Sao Paulo and Cubatao

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, G.M.S.; Saldiva, P.H.; Pasqualucci, C.A.; Massad, E.; Martins M de, E.; Zin, W.A.; Cardoso, W.V.; Criado, P.M.; Komatsuzaki, M.; Sakae, R.S. (Instituto do Coracao, Faculdade de Medicina da USP, Sao Paulo (Brazil))

    1989-08-01

    Rats were used as biological indicators of air quality in two heavily polluted Brazilian towns: Sao Paulo and Cubatao. They were exposed for 6 months to ambient air in areas where the pollution was known to be severe. The following parameters were studied and compared to those of control animals: respiratory mechanics, mucociliary transport, morphometry of respiratory epithelium and distal air spaces, and general morphological alterations. The results showed lesions of the distal and upper airways in rats exposed in Cubatao, whereas the animals from Sao Paulo showed only alterations of the upper airways but of greater intensity than those observed in the Cubatao group. There are both qualitative and quantitative differences in the pollutants of these places: in Sao Paulo automobile exhaust gases dominate and in Cubatao the pollution is due mainly to particulates of industrial sources. The correlation of the pathological findings with the pollutants is discussed and it is concluded that biological indicators are useful to monitor air pollutions which reached dangerous levels in Sao Paulo and Cubatao.

  12. River Pollution: Part II. Biological Methods for Assessing Water Quality.

    Science.gov (United States)

    Openshaw, Peter

    1984-01-01

    Discusses methods used in the biological assessment of river quality and such indicators of clean and polluted waters as the Trent Biotic Index, Chandler Score System, and species diversity indexes. Includes a summary of a river classification scheme based on quality criteria related to water use. (JN)

  13. Degradation of air polluted by organic compounds; Degradacion de aire contaminado por compuestos organicos

    Energy Technology Data Exchange (ETDEWEB)

    Santoyo O, E.L.; Lizama S, B.E. [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, 56000 Toluca (Mexico); Vazquez A, O.; Luna C, P.C.; Arredondo H, S. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    According to the Mexican standard NOM-010-STPS-1994 it has been established concentrations of maximum permissible levels in workable air for styrene in the range 420-1710 mg/m{sup 3} and for xylene between 218-870 mg/m{sup 3}. In this work it is studied a biological treatment (bio filtration) for air polluted by xylene and styrene where the microorganisms are adhered at synthetic fiber, these degrade to the organic compounds that across in gaseous state and they are mineralized toward CO{sub 2} and H{sub 2}O. The characteristics of temperature, p H, concentration of organic compound and mineral parameters, as well as, the biomass quantity have been optimized for that bio filters efficiency were greater than those reported in other works. (Author)

  14. Effective degradation of refractory organic pollutants in landfill leachate by electro-peroxone treatment

    International Nuclear Information System (INIS)

    Highlights: • Landfill leachate concentrate is effectively treated by a novel E-peroxone process. • E-peroxone process combines ozonation with electrolysis to drive peroxone reaction. • H2O2 is electro-generated in situ from O2 in sparged gas from an ozone generator. • Hydroxyl radicals are produced from sparged O3 and electro-generated H2O2. • Refractory organic pollutants can be effectively mineralized in E-peroxone process. -- Abstract: A novel electrochemically driven process (E-peroxone) was employed to treat landfill leachate concentrates that were generated from reverse osmosis of biologically pretreated leachate. In the E-peroxone system, O3 was produced from O2 using an ozone generator. The O2 and O3 gas mixture from the ozone generator was then sparged into a reactor that had a carbon–polytetrafluorethylene (carbon–PTFE) cathode, which can convert O2 to H2O2 effectively. The in situ generated H2O2 then reacted with the sparged O3 to produce a very powerful oxidant ·OH, thus achieving synergy of O3 and H2O2 (i.e., peroxone) on organic pollutant degradation. Up to 87% of the total organic carbon (TOC) was removed from the leachate concentrates after 4 h of the E-peroxone process. In comparison, ozonation, conventional peroxone (using externally added H2O2), and electro-Fenton treatment removed only 45%, 65%, and 71% TOC, respectively, under similar reaction conditions in 4 h. The results indicate that the E-peroxone process may provide a convenient and effective alternative to conventional advanced oxidation processes for degrading refractory organic pollutants in wastewater

  15. New Photocatalysis for Effective Degradation of Organic Pollutants in Water

    Science.gov (United States)

    Zarei Chaleshtori, M.; Saupe, G. B.; Masoud, S.

    2009-12-01

    The presence of harmful compounds in water supplies and in the discharge of wastewater from chemical industries, power plants, and agricultural sources is a topic of global concern. The processes and technologies available at the present time for the treatment of polluted water are varied that include traditional water treatment processes such as biological, thermal and chemical treatment. All these water treatment processes, have limitations of their own and none is cost effective. Advanced oxidation processes have been proposed as an alternative for the treatment of this kind of wastewater. Heterogeneous photocatalysis has recently emerged as an efficient method for purifying water. TiO2 has generally been demonstrated to be the most active semiconductor material for decontamination water. One significant factor is the cost of separation TiO2, which is generally a powder having a very small particle size from the water after treatment by either sedimentation or ultrafiltration. The new photocatalyst, HTiNbO5, has been tested to determine whether its photocatalytic efficiency is good enough for use in photocatalytic water purification since it has high surface area and relatively large particle size. The larger particle sizes of the porous materials facilitate catalyst removal from a solution, after purification has taken place. It can be separated from water easily than TiO2, a significant technical improvement that might eliminate the tedious final filtration necessary with a slurry. These materials are characterized and tested as water decontamination photocatalysts. The new catalyst exhibited excellent catalytic activity, but with a strong pH dependence on the photo efficiency. These results suggest that elimination of the ion exchange character of the catalyst may greatly improve its performance at various pHs. This new research proposes to study the effects of a topotactic dehydration reaction on these new porous material catalysts.

  16. Isolation and Screening of Hydrocarbon Degrading Bacterial Strains for Bioremediation of Petroleum Pollution in Qatar

    OpenAIRE

    Al Disi, Zulfa Ali

    2013-01-01

    Pollution, due to activities related to the oil industry, represents a serious threat to the natural environment. The application of biotechnological methods provides much safer and sustainable alternatives for bioremediation of polluted areas, using microorganisms. Several techniques for the isolation of hydrocarbon degrading bacteria have been investigated and published worldwide. A wide range of bilogical activities was shown. However, local hydrocarbon degrading strains and the factors af...

  17. Photoactive chitosan: A step towards a green strategy for pollutant degradation

    OpenAIRE

    Walalawela, Niluksha; Greer, Alexander

    2014-01-01

    This article is a highlight of the paper by Ferrari et al. in this issue of Photochemistry and Photobiology. It describes the innovative use of rose bengal-conjugated chitosan as a reusable green catalyst that photo-degrades phenolic compounds in aqueous media, and thereby has decontamination potential of polluted waters. Whether a next-generation photoactive polymer that produces singlet oxygen is a solution to pollutant degradation can be argued. It is as yet unclear what ...

  18. Radiation degradation of carbohydrates and their biological activities for plants

    Energy Technology Data Exchange (ETDEWEB)

    Kume, T.; Nagasawa, N.; Matsuhashi, S. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment] [and others

    2000-03-01

    Radiation effects on carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to improve the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities such as anti-bacterial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Pectic fragments obtained from degraded pectin induced the phytoalexins such as glyceollins in soybean and pisatin in pea. The irradiated chitosan shows the higher elicitor activity for pisatin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. Kappa and iota carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa irradiated at 100 kGy. Some radiation degraded carbohydrates suppressed the damage of heavy metals on plants. The effects of irradiated carbohydrates on transportation of heavy metals have been investigated by PETIS (Positron Emitting Tracer Imaging System) and autoradiography using {sup 48}V and {sup 62}Zn. (author)

  19. Radiation degradation of carbohydrates and their biological activities for plants

    International Nuclear Information System (INIS)

    Radiation effects on carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to improve the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities such as anti-bacterial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Pectic fragments obtained from degraded pectin induced the phytoalexins such as glyceollins in soybean and pisatin in pea. The irradiated chitosan shows the higher elicitor activity for pisatin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. Kappa and iota carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa irradiated at 100 kGy. Some radiation degraded carbohydrates suppressed the damage of heavy metals on plants. The effects of irradiated carbohydrates on transportation of heavy metals have been investigated by PETIS (Positron Emitting Tracer Imaging System) and autoradiography using 48V and 62Zn. (author)

  20. Microbial degradation of street dust polycyclic aromatic hydrocarbons in microcosms simulating diffuse pollution of urban soil

    DEFF Research Database (Denmark)

    Johnsen, Anders R; de Lipthay, Julia R; Sørensen, Søren J;

    2006-01-01

    Diffuse pollution with polycyclic aromatic hydrocarbons (PAHs) of topsoil in urban regions has caused increasing concerns in recent years. We simulated diffuse pollution of soil in microcosms by spiking sandy topsoil (A-horizon) and coarse, mineral subsoil (C-horizon) with street dust (PM63...... the persistence and low bioaccessibility of 5- and 6-ring PAHs in diffusely polluted soil.......) isolated from municipal street sweepings from central Copenhagen. The microbial communities adapted to PAH degradation in microcosms spiked with street dust in both A-horizon and C-horizon soils, in spite of low PAH-concentrations. The increased potential for PAH degradation was demonstrated on several...

  1. Enrichment of degrading microbes and bioremediation of petrochemical contaminants in polluted soil

    International Nuclear Information System (INIS)

    Soil at a site near Zibo City, China, is polluted with hydrocarbons at concentrations up to 200 g kg-1 dry soil. Samples contained 107 microbial cells g-1 dry soil, and the concentration of aerobic degradation bacteria is 107 cells g-1 dry soil. The most active species were Xanthomonas, Bacillus and Hyphomicrobium. The nitrogen and phosphorus contents of the polluted soil are typically 0.1 %, and are sufficient to sustain natural or enhanced biodegradation. The BAC (Biological Activated Carbon) system was used to enrich indigenous microbes to enhance bioremediation rates in the laboratory. The BAC used the large surface area and sorption characteristics to fix bacteria and media, and effectively culture and enrich the microbes. Effluent from the BAC system contained up to 4 x 1011 cells ml-1, and was introduced to the contaminated soil to enhance biodegradation. The results indicated that the natural biodegradation rate of the petroleum hydrocarbons is lower than the BAC enhanced bioremediation rate, 1.7% as opposed to 42% in 32 days. (Author)

  2. Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility

    OpenAIRE

    Díaz Fernández, Eduardo

    2004-01-01

    Although most organisms have detoxification abilities (i.e mineralization, transformation and/or immobilization of pollutants), microorganisms, particularly bacteria, play a crucial role in biogeochemical cycles and in sustainable development of the biosphere. Next to glucosyl residues, the benzene ring is the most widely distributed unit of chemical structure in nature, and many of the aromatic compounds are major environmental pollutants. Bacteria have developed strategies fo...

  3. ROLE OF FUNGAL LIGNINOLYTIC ENZYMES IN POLLUTANT DEGRADATION

    Science.gov (United States)

    Lignin-degrading fungi have potential applications in programs for organopollutant biotreatment. he metabolic pathways that they employ for ligninolysis appear to have unusual xenobiotic capabilities, and there is some preliminary evidence that their extracellular lignin peroxida...

  4. Assessing the response of degradative biofilms to groundwater pollutants

    OpenAIRE

    Keasling, Jay D.

    2002-01-01

    There is limited knowledge of interspecies interactions in biofilm communities. In this study, Pseudomonas sp. GJ1, a 2-chloroethanol (2-CE) degrading organism, and Pseudomonas putida DMP1, a p-cresol degrader, produced distinct biofilms in response to model mixed waste streams comprised of 2-CE and various p-cresol concentrations. The two organisms maintained a commensal relationship, with DMP1 mitigating the inhibitory effects of p-cresol on GJ1. A triple labeling technique compatible with ...

  5. [The distribution and natural degradation of cyanide in goldmine waste-solid and polluted soil].

    Science.gov (United States)

    Li, S; Zheng, B; Zhu, J; Wang, B

    2001-05-01

    The farmland and river were seriously polluted by cyanide because one goldmine tailing dam collapsed in 1995. 3 and 4 years after the accident, the cyanide distribution in the polluted farmland and the abandoned tailing dam was studied. The results indicated that natural degradation of cyanide in soil section was slower than in natural water body. The cyanide transference in soil section was similar to freely soluble salts. In arid and semiarid area, cyanide can be highly enriched in the salt shell which content degrading 4 years even higher than the fresh tailing slurry. One side the viscidity layer in the soil section can partly prevent cyanide transference to groundwater, on the other side the result can cause the cyanide highly enrich in the viscidity layer. According to character of cyanide natural degradation in soil the measurement of prevention and cure soil pollution by goldmine tailing dam collapsing was brought forward. PMID:11507898

  6. Degradation of environment pollutant dyes using phytosynthesized metal nanocatalysts

    Science.gov (United States)

    MeenaKumari, M.; Philip, Daizy

    2015-01-01

    We present for the first time biogenic reduction and stabilization of gold and silver ions at room temperature using fruit juice of Punica granatum. The formation, morphology and crystalline structure of the synthesized nanoparticles are determined using UV-Visible, XRD and TEM. An attempt to reveal the partial role of phenolic hydroxyls in the reduction of Au3+ and Ag+ is done through FTIR analysis. The synthesized nanoparticles are used as potential catalysts in the degradation of a cationic phenothiazine dye, an anionic mono azo dye and a cationic fluorescent dye. The calculated values of percentage removal of dyes and the rate constants from pseudo first order kinetic data fit give a comparative study on degradation of organic dyes in presence of prepared gold and silver nanoparticles.

  7. Bacterial degradation of naproxen--undisclosed pollutant in the environment.

    Science.gov (United States)

    Wojcieszyńska, Danuta; Domaradzka, Dorota; Hupert-Kocurek, Katarzyna; Guzik, Urszula

    2014-12-01

    The presence of non-steroidal anti-inflammatory drugs (NSAIDs) in the environment is an emerging problem due to their potential influence on human health and biocenosis. This is the first report on the biotransformation of naproxen, a polycyclic NSAID, by a bacterial strain. Stenotrophomonas maltophilia KB2 transformed naproxen within 35 days with about 28% degradation efficiency. Under cometabolic conditions with glucose or phenol as a carbon source degradation efficiency was 78% and 40%, respectively. Moreover, in the presence of naproxen phenol monooxygenase, naphthalene dioxygenase, hydroxyquinol 1,2-dioxygenase and gentisate 1,2-dioxygenase were induced. This suggests that degradation of naproxen occurs by its hydroxylation to 5,7,8-trihydroxynaproxen, an intermediate that can be cleaved by hydroxyquinol 1,2-dioxygenase. The cleavage product is probably further oxidatively cleaved by gentisate 1,2-dioxygenase. The obtained results provide the basis for the use of cometabolic systems in the bioremediation of polycyclic NSAID-contaminated environments. PMID:25026371

  8. Radiolytic degradation of chlorophenols for their removal from polluted waters

    International Nuclear Information System (INIS)

    The efficiency of radiation induced decomposition of chlorophenols depends substantially on the radiation dose used and the presence of specific scavengers in the irradiated samples. Due to the use of HPLC for decomposition control, it was shown that the increase of radiation dose results in gradual elimination of chlorine atoms from the chlorophenol molecules. The efficiency of radiolytic degradation of phenol and chlorophenols was monitored by rever-sed-phase HPLC. Prior to the chromatography the products of radiolytic degradation were preconcentrated using solid-phase extraction with phenyl columns. The most difficult to decompose is a simple phenol, which is also a product of radiolysis of lower chlorophenols. Doses up to 2.0 kGy have not decomposed it completely in experimental conditions used. Degradation of chlorophenols in synthetic aqueous solutions takes place at doses from 0.2 to 2.0 kGy at ppm level of substrates depending on the number of chlorine atoms in the molecule, however, for river water matrix containing scavengers such as carbonates or oxygen it requires larger doses

  9. Degradation of Organic Pollutants in Water by Catalytic Ozonation

    Institute of Scientific and Technical Information of China (English)

    LI Xin; YAO Jun-hai; QI Jing-yao

    2007-01-01

    Different series of transition metal catalysts supported on Al2O3 were prepared by the impregnation method. The catalytic activity was measured in a batch reactor with ozone as the oxidizing reagent. The experimental results indicate that Cu/Al2O3 has a very effective catalytic activity during the ozonation of organic pollutants in water. The optimum conditions for preparing Cu/Al2O3 were systematically investigated with the orthogonal testing method. Furthermore, the results also show that the surface properties of catalyst are not compulsory for effective oxidation.

  10. Microbial degradation. Mass transfer in the system pollutant - water - sediment; Mikrobieller Abbau. Massentransfer im System Schadstoff - Wasser - Sediment

    Energy Technology Data Exchange (ETDEWEB)

    Tiehm, Andreas [Technologiezentrum Wasser (TZW), Karlsruhe (Germany). Abt. Umweltbiotechnologie und Altlasten; Kranzioch, Irene; Stoll, Claudia

    2011-09-15

    The microbial degradation of pollutants in the aquatic environment essentially is influenced by the prevailing redox conditions and mass exchange processes (bioavailability). Within a new project, the Technologiezentrum Wasser TZW (Karlsruhe, Federal Republic of Germany) deals with the microbial conversion under dynamic conditions such as those expected in the area of the Three Gorges Dam at the Yangtze River. In particular, molecular-biological methods (PCR, polymerase chain reaction and DGGE Denatured gradient gel electrophoresis) are used for a targeted monitoring and further developed. The focus of the investigation initially focuses on the degradation of halogenated substances which are used as main substances for understanding the mass exchange between sediment and water as well as the microbial conversion processes. An enhanced understanding of the process and the compilation of the dynamic sales performance can be defined as a target.

  11. Photocatalytic Degradation of Persistent and Toxic Organic Pollutants and its Mechanism

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jincai; Jimmy Yu; TAO Shen; WANG Wanhong; CHEN Chuncheng

    2007-01-01

    @@ Persistent and toxic organic pollutants are serious environmental concerns in many parts of the world. These pollutants are often difficult to deal with using conventional treatment processes. Photocatalysis is an emerging technology which uses environmentally-friendly oxidants (oxygen, hydrogen peroxide, ozone),photocatalysts (titanium dioxide, ferrous ions or its complexes) and ultraviolet (UV) radiation to degrade and mineralize the toxic organic pollutants. The major drawback is that photocatalytic processes need to be activated by ultraviolet light, which accounts for only about 4% of the incoming solar energy; the overall reaction efficiency is still very low.

  12. Radiation Induced Degradation of Organic Pollutants in Waters and Wastewaters.

    Science.gov (United States)

    Wojnárovits, László; Takács, Erzsébet

    2016-08-01

    In water treatment by ionizing radiation, and also in other advanced oxidation processes, the main goal is to destroy, or at least to deactivate harmful water contaminants: pharmaceutical compounds, pesticides, surfactants, health-care products, etc. The chemical transformations are mainly initiated by hydroxyl radicals, and the reactions of the formed carbon centered radicals with dissolved oxygen basically determine the rate of oxidation. The concentration of the target compounds is generally very low as compared to the concentration of such natural 'impurities' as chloride and carbonate/bicarbonate ions or the dissolved humic substances (generally referred to as dissolved organic carbon), which consume the majority of the hydroxyl radicals. The different constituents compete for reacting with radicals initiating the degradation. This manuscript discusses the radiation chemistry of this complex system. It includes the reactions of the primary water radiolysis intermediates (hydroxyl radical, hydrated electron/hydrogen atom), the reactions of radicals that form in radical transfer reactions (dichloride-, carbonate- and sulfate radical anions) and also the contribution to the degradation of organic compounds of such additives as hydrogen peroxide, ozone or persulfate. PMID:27573402

  13. Catalytical degradation of relevant pollutants from waters using magnetic nanocatalysts

    Science.gov (United States)

    Nadejde, C.; Neamtu, M.; Schneider, R. J.; Hodoroaba, V.-D.; Ababei, G.; Panne, U.

    2015-10-01

    The catalytic efficiency of two magnetically responsive nanocatalysts was evaluated for the degradation of Reactive Black 5 (RB5) and Reactive Yellow 84 (RY84) azo dyes using hydrogen peroxide as oxidant under very mild conditions (atmospheric pressure, room temperature). In order to obtain the nanocatalysts, the surface of magnetite (Fe3O4) nanoparticles, prepared by a co-precipitation method, was further modified with ferrous oxalate, a highly sensitive non-hazardous reducing agent. The sensitized nanomaterials were characterized by X-ray diffraction, scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy and vibrating sample magnetometry, and used in the catalytic wet hydrogen peroxide oxidation (CWHPO) of RB5 and RY84, in laboratory-scale experiments. The effect of important variables such as catalyst dosage, H2O2 concentration, and contact time was studied in the dye degradation kinetics. The results showed that it was possible to remove up to 99.7% dye in the presence of 20 mM H2O2 after 240 min of oxidation for a catalyst concentration of 10 g L-1 at 25 °C and initial pH value of 9.0. CWHPO of reactive dyes using sensitized magnetic nanocatalysts can be a suitable pre-treatment method for complete decolorization of effluents from textile dyeing and finishing processes, once the optimum operating conditions are established.

  14. Recent development of VUV-based processes for air pollutants degradation

    Directory of Open Access Journals (Sweden)

    Haibao eHuang

    2016-03-01

    Full Text Available As air pollution become more and more serious nowadays, it is essential to find out a way to efficiently degrade the air pollutants. Vacuum ultraviolet (VUV-based processes are an emerging and promising technologies for environmental remediation such as air cleaning, wastewater treatment and air/water disinfection. With VUV irradiation, photolysis, photocatalyst is and ozone-assisted oxidation are involved at the same time, resulting in the fast degradation of air pollutants because of their strong oxidizing capacity. The mechanisms of how the oxidants are produced and reacted are discussed in this review. This paper mainly focuses on the three VUV-based oxidation processes including VUV photolysis, VUV combined with ozone-assisted oxidation and VUV-PCO with emphasis on their mechanisms and applications. Also, the outlooks of these processes are outlined in this paper.

  15. Radiation degradation of aromatic pollutants exit in wastewater and ph dependence

    CERN Document Server

    Takriti, S

    2002-01-01

    The effect of gamma radiation on the degradation of phenol (hydroxybenzene), resorcinol (1,3 dihydroxybenzen) and hydroquinone (1,4 dihydroxybenzen) exit in waste water was investigated. The concentrations of these pollutants as well as the irradiated solution ph were studied. The results showed that the phenol is very resistance against the radiation doses comparing the other phenol compounds. Phenol was also a product of radiolysis of resorcinol and hydroquinone. On the other hand, the acid phase of the irradiation sample increased the degradation rate of pollutants. Spectrophotometer (UV-VIS) and chromatography (HPLC) were used to monitor the analysis of the radiation product solution. The results illustrated the existing of many substances such as organic alcohol, aldehyde, ketone and acidic functional groups as a final radiation products. The degradation of benzene, monochlorobenzene (CB) and 1,2 dichlorobenzene (1,2 DCB) exit in waste water by gamma irradiation was investigated. The effect of the irradi...

  16. Research program on the biological effects of oil pollution

    International Nuclear Information System (INIS)

    A national research program on the biological effects of oil pollution (FOBO) was initiated by the Norwegian Ministry of Environment in October 1983 in the light of the increasing oil exploration and production activity in the North Sea and northern Norwegian waters. Ambitions were high and five main fields of research were suggested: Seabirds, fish (incl. salmon), marine mammals, the littoral zone and plankton. However, due to the lack of interest on the part of other potential financers, e.g. the Ministry of Fisheries and the oil companies, to participate, the four-year programme had to be limited to the following three topics: Seabirds around bruding colonies and at sea; Higher plants along the shoreline; The littoral zone. The program ran from the autumn of 1985 to the end of 1989 and this report summarizes the main results and conclusions of each project. 95 refs., 52 figs., 9 tabs

  17. Radiation degradation of aromatic pollutants exit in wastewater and ph dependence

    International Nuclear Information System (INIS)

    The effect of gamma radiation on the degradation of phenol (hydroxybenzene), resorcinol (1,3 dihydroxybenzen) and hydroquinone (1,4 dihydroxybenzen) exit in waste water was investigated. The concentrations of these pollutants as well as the irradiated solution ph were studied. The results showed that the phenol is very resistance against the radiation doses comparing the other phenol compounds. Phenol was also a product of radiolysis of resorcinol and hydroquinone. On the other hand, the acid phase of the irradiation sample increased the degradation rate of pollutants. Spectrophotometer (UV-VIS) and chromatography (HPLC) were used to monitor the analysis of the radiation product solution. The results illustrated the existing of many substances such as organic alcohol, aldehyde, ketone and acidic functional groups as a final radiation products. The degradation of benzene, monochlorobenzene (CB) and 1,2 dichlorobenzene (1,2 DCB) exit in waste water by gamma irradiation was investigated. The effect of the irradiated solution composition was studied. The results showed that the benzene is very resistance against the radiation doses comparing to other chlorobenzene. However, the existence of oxidizing substances in the irradiation phase leads to increase the degradation rate of pollutants. The dechlorination of CB and 1,2 DCB that is a result of the hydrated electron reaction with studied compounds was observed. Chromatography (HPLC) and spectrophotometer (UV-VIS) were used to monitor the analysis of the radiation product solution. The results illustrated the existing of many species as a final radiation product. On the other, the irradiation phase containing scavengers such as methanol and ethanol requires large doses to decompose the pollutants, while the oxidizing phase accelerates the degradation. (author)

  18. Dechlorination progress of chlorinated organic pollutants degraded by use of ionizing radiation in aqueous solutions

    International Nuclear Information System (INIS)

    Kinetics and mechanisms of dechlorination of chlorinated organic pollutants induced by ionizing radiation were described in this article. The progress on the dechlorination of chlorophenols, polychlorinated biphenyl, trichloroethylene, and perchloroethylene involved in radiolysis was also reviewed. In oxidative condition, hydroxyl radical (·OH) would attack chlorophenol to form ·OH-adducts, which could be dechlorinated gradually. However, chlorophenol can be directly reduced by hydrated electron (eaq-) to release Cl-. It was found that radiolytic degradation of polychlorinated biphenyls in organic solvent would release chlorine atoms gradually by chain reactions and the final products were Cl- and biphenyl. Trichloroethylene and tetrachloroethylene mainly reacted with ·OH with the final products of CO2, HCOOH and HCI. As conclusion, the reductive dechlorination of chlorinated organic pollutants possesses advantages of high degradation efficiency, simple products and relatively low radiation dose compared with the oxidation methods. (authors)

  19. Degradation of persistent organic pollutants by Fenton's reagent facilitated by microwave or high-intensity ultrasound.

    Science.gov (United States)

    Cravotto, G; di Carlo, S; Tumiatti, V; Roggero, C; Bremner, H D

    2005-07-01

    Microwave (MW) and high-intensity ultrasound (US) have emerged as powerful techniques for the elimination of persistent organic pollutants (POPs) that constitute a major health hazard, whether by direct exposure or through accumulation in biota. In order to achieve decontamination, POPs should be completely mineralized to CO2, H2O and smaller amounts of inorganic ions, or at least converted to less harmful chemical species. Under US or MW irradiation rapid degradation of aromatic halides, halogenated phenols and polychlorinated biphenyls in polluted waters was achieved at neutral pH in the presence of a moderate excess (5-30 eq) of Fenton's reagent. Acidification with acetic acid (pH 2.0-2.3) did not affect the process, but sulphuric acid (pH 1.7-2.0) facilitated complete degradation. Thus, compared to conventional methods, US and MW processes are faster and much more efficient. PMID:16080327

  20. DYNAMICS OF RESTORATION OF BIOLOGICAL PROPERTIES OF BLACK SOILS POLLUTED WITH OIL

    Directory of Open Access Journals (Sweden)

    Kutuzova I. V.

    2014-12-01

    Full Text Available Negative impact of oil on biological properties of soils right after pollution is shown in the article. Eventually, there is their restoration. However, even in some years after pollution, the biological properties of soils aren't restored completely

  1. Degradation of pollutants and elimination of pathogens of waste water by adsorption of accelerated electrons; Degradacion de contaminantes y eliminacion de patogenos de aguas residuales por adsorcion de electrones acelerados

    Energy Technology Data Exchange (ETDEWEB)

    Martinez M, I

    1991-10-15

    This report presents a position of the pollutants degradation of the industrial residual waters, it intends a method that consists on making pass residual water, treated biologically by a packed column with activated carbon. The carbon retains the pollutants and the water goes out with a purity that allows the reuse. In simultaneous form to the adsorption of pollutants are made pass electrons through the column of carbon, the electrons will destroy to the polluting adsorbed in the carbon; the pollutants degrade until CO{sub 2} that escapes as gas. The active sites of the carbon are empty and clever to be occupied by other pollutants. This process is continuous and it is repeated while water is passing by the column and electrons through this. (Author)

  2. Selenium: environmental significance, pollution, and biological treatment technologies.

    Science.gov (United States)

    Tan, Lea Chua; Nancharaiah, Yarlagadda V; van Hullebusch, Eric D; Lens, Piet N L

    2016-01-01

    Selenium is an essential trace element needed for all living organisms. Despite its essentiality, selenium is a potential toxic element to natural ecosystems due to its bioaccumulation potential. Though selenium is found naturally in the earth's crust, especially in carbonate rocks and volcanic and sedimentary soils, about 40% of the selenium emissions to atmospheric and aquatic environments are caused by various industrial activities such as mining-related operations. In recent years, advances in water quality and pollution monitoring have shown that selenium is a contaminant of potential environmental concern. This has practical implications on industry to achieve the stringent selenium regulatory discharge limit of 5μgSeL(-1) for selenium containing wastewaters set by the United States Environmental Protection Agency. Over the last few decades, various technologies have been developed for the treatment of selenium-containing wastewaters. Biological selenium reduction has emerged as the leading technology for removing selenium from wastewaters since it offers a cheaper alternative compared to physico-chemical treatments and is suitable for treating dilute and variable selenium-laden wastewaters. Moreover, biological treatment has the advantage of forming elemental selenium nanospheres which exhibit unique optical and spectral properties for various industrial applications, i.e. medical, electrical, and manufacturing processes. However, despite the advances in biotechnology employing selenium reduction, there are still several challenges, particularly in achieving stringent discharge limits, the long-term stability of biogenic selenium and predicting the fate of bioreduced selenium in the environment. This review highlights the significance of selenium in the environment, health, and industry and biotechnological advances made in the treatment of selenium contaminated wastewaters. The challenges and future perspectives are overviewed considering recent

  3. Sonochemical degradation of the pharmaceutical fluoxetine: Effect of parameters, organic and inorganic additives and combination with a biological system

    Energy Technology Data Exchange (ETDEWEB)

    Serna-Galvis, Efraím A.; Silva-Agredo, Javier [Grupo de Investigación en Remediación Ambiental y Biocatálisis, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Giraldo-Aguirre, Ana L. [Grupo de Diseño y Formulación de Medicamentos, Cosméticos y Afines (DYFOMECO), Facultad de Química Farmacéutica, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Torres-Palma, Ricardo A., E-mail: ricardo.torres@udea.edu.co [Grupo de Investigación en Remediación Ambiental y Biocatálisis, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2015-08-15

    Fluoxetine (FLX), one of the most widely used antidepressants in the world, is an emergent pollutant found in natural waters that causes disrupting effects on the endocrine systems of some aquatic species. This work explores the total elimination of FLX by sonochemical treatment coupled to a biological system. The biological process acting alone was shown to be unable to remove the pollutant, even under favourable conditions of pH and temperature. However, sonochemical treatment (600 kHz) was shown to be able to remove the pharmaceutical. Several parameters were evaluated for the ultrasound application: the applied power (20–60 W), dissolved gas (air, Ar and He), pH (3–11) and initial concentration of fluoxetine (2.9–162.0 μmol L{sup −1}). Additionally, the presence of organic (1-hexanol and 2-propanol) and inorganic (Fe{sup 2+}) compounds in the water matrix and the degradation of FLX in a natural mineral water were evaluated. The sonochemical treatment readily eliminates FLX following a kinetic Langmuir. After 360 min of ultrasonic irradiation, 15% mineralization was achieved. Analysis of the biodegradability provided evidence that the sonochemical process transforms the pollutant into biodegradable substances, which can then be mineralized in a subsequent biological treatment. - Highlights: • The pharmaceutical fluoxetine was effectively eliminated upon ultrasonic action. • Ultrasonic power, dissolved gas, pH and concentration of fluoxetine were evaluated. • Fe{sup 2+}, sodium nitrate or nitric acid had a positive effect on the FLX degradation. • More hydrophobic or volatile compounds than fluoxetine diminished the efficiency. • A sonochemical-biological combined process led to the total mineralization of FLX.

  4. Sonochemical degradation of the pharmaceutical fluoxetine: Effect of parameters, organic and inorganic additives and combination with a biological system

    International Nuclear Information System (INIS)

    Fluoxetine (FLX), one of the most widely used antidepressants in the world, is an emergent pollutant found in natural waters that causes disrupting effects on the endocrine systems of some aquatic species. This work explores the total elimination of FLX by sonochemical treatment coupled to a biological system. The biological process acting alone was shown to be unable to remove the pollutant, even under favourable conditions of pH and temperature. However, sonochemical treatment (600 kHz) was shown to be able to remove the pharmaceutical. Several parameters were evaluated for the ultrasound application: the applied power (20–60 W), dissolved gas (air, Ar and He), pH (3–11) and initial concentration of fluoxetine (2.9–162.0 μmol L−1). Additionally, the presence of organic (1-hexanol and 2-propanol) and inorganic (Fe2+) compounds in the water matrix and the degradation of FLX in a natural mineral water were evaluated. The sonochemical treatment readily eliminates FLX following a kinetic Langmuir. After 360 min of ultrasonic irradiation, 15% mineralization was achieved. Analysis of the biodegradability provided evidence that the sonochemical process transforms the pollutant into biodegradable substances, which can then be mineralized in a subsequent biological treatment. - Highlights: • The pharmaceutical fluoxetine was effectively eliminated upon ultrasonic action. • Ultrasonic power, dissolved gas, pH and concentration of fluoxetine were evaluated. • Fe2+, sodium nitrate or nitric acid had a positive effect on the FLX degradation. • More hydrophobic or volatile compounds than fluoxetine diminished the efficiency. • A sonochemical-biological combined process led to the total mineralization of FLX

  5. bioremediation of some environmental pollutants by the biological activity of fungi

    International Nuclear Information System (INIS)

    Sharkia governorate is an important area of egypt because it include an important places, economically and scientifically as 10th of Ramadan City which is the biggest industrial City and the nuclear reactor of the Egyptian Atomic Energy Authority (EAEA). so that this study was conducted for isolation of some fungal bioremediators of the famous pollutants as some of heavy metals Mn+2 and Co+2 and some of the polycyclic aromatic hydrocarbons (PAHs)as textile direct dyes (orange,pink,red and black) regarding the aim of this study, which was conducted for isolation of some fungal bioremediators and study the bioremediation efficiency in the most suitable conditions for a success to attain bioremediation process of some dangerous heavy metals and / or toxic, carcinogenic and mutagenic textile dyes, in addition to the biological pathways for the uptake of heavy metals and dyes accumulation and/or degradation and after finishing this study, it can be concluded that; the fungal microfolora of each polluted sites is best bioremediators for these sites

  6. Allochthonous bioaugmentation in ex situ treatment of crude oil-polluted sediments in the presence of an effective degrading indigenous microbiome

    KAUST Repository

    Fodelianakis, Stylianos

    2015-04-01

    Oil-polluted sediment bioremediation depends on both physicochemical and biological parameters, but the effect of the latter cannot be evaluated without the optimization of the former. We aimed in optimizing the physicochemical parameters related to biodegradation by applying an ex-situ landfarming set-up combined with biostimulation to oil-polluted sediment, in order to determine the added effect of bioaugmentation by four allochthonous oil-degrading bacterial consortia in relation to the degradation efficiency of the indigenous community. We monitored hydrocarbon degradation, sediment ecotoxicity and hydrolytic activity, bacterial population sizes and bacterial community dynamics, characterizing the dominant taxa through time and at each treatment. We observed no significant differences in total degradation, but increased ecotoxicity between the different treatments receiving both biostimulation and bioaugmentation and the biostimulated-only control. Moreover, the added allochthonous bacteria quickly perished and were rarely detected, their addition inducing minimal shifts in community structure although it altered the distribution of the residual hydrocarbons in two treatments. Therefore, we concluded that biodegradation was mostly performed by the autochthonous populations while bioaugmentation, in contrast to biostimulation, did not enhance the remediation process. Our results indicate that when environmental conditions are optimized, the indigenous microbiome at a polluted site will likely outperform any allochthonous consortium.

  7. A strategy for xenobiotic removal using photocatalytic treatment, microbial degradation or integrated photocatalytic-biological process

    OpenAIRE

    Lapertot, Miléna

    2006-01-01

    According to the limited natural resources and due to the risks of anthropogenic pollution, it appears necessary to react efficiently in order to remove existing contaminations and avoid the creation of new ones. Therefore, the purpose of this thesis is to propose a sustainable strategy for treating problematic pollutants with the most adequate process. First, an overview of the different treatment processes has been given. In particular, biological, photocatalytic and integrated biological-p...

  8. A strategy for xenobiotic removal using photocatalytic treatment, microbial degradation or integrated photocatalytic-biological process

    OpenAIRE

    Lapertot, Miléna; Pulgarin, César

    2007-01-01

    According to the limited natural resources and due to the risks of anthropogenic pollution, it appears necessary to react efficiently in order to remove existing contaminations and avoid the creation of new ones. Therefore, the purpose of this thesis is to propose a sustainable strategy for treating problematic pollutants with the most adequate process. First, an overview of the different treatment processes has been given. In particular, biological, photocatalytic and integrated biological-p...

  9. Behavior of pollutant-degrading microorganisms in aquifers: Predictions for genetically engineered organisms

    Science.gov (United States)

    Krumme, M.L.; Smith, R.L.; Egestorff, J.; Thiem, S.M.; Tiedje, J.M.; Timmis, K.N.; Dwyer, D.F.

    1994-01-01

    Bioremediation via environmental introductions of degradative microorganisms requires that the microbes survive in substantial numbers and effect an increase in the rate and extent of pollutant removal. Combined field and microcosm studies were used to assess these abilities for laboratory-grown bacteria. Following introduction into a contaminated aquifer, viable cells of Pseudomonas sp. B13 were present in the contaminant plume for 447 days; die-off was rapid in pristine areas. In aquifer microcosms, survival of B13 and FR120, a genetically engineered derivative of B13 having enhanced catabolic capabilities for substituted aromatics, was comparable to B13 field results; both bacteria degraded target pollutants in microcosms made with aquifer samples from the aerobic zone of the pollutant plume. Results suggest that field studies with nonrecombinant microorganisms may be coupled to laboratory studies with derivative strains to estimate their bioremediative efficacy. Furthermore, laboratory strains of bacteria can survive for extended periods of time in nature and thus may have important bioremediative applications. ?? 1994 American Chemical Society.

  10. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation.

    Science.gov (United States)

    Wei, Mingyu; Gao, Long; Li, Jun; Fang, Jia; Cai, Wenxuan; Li, Xiaoxia; Xu, Aihua

    2016-10-01

    Graphitic carbon nitride supported on activated carbon (g-C3N4/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C3N4 was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C3N4 to CO was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C3N4/AC catalyst within 20min with PMS, while g-C3N4+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C3N4 loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO and SO4(-)) in AO7 oxidation was proposed in the system. The CO groups play a key role in the process; while the exposure of more N-(C)3 group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants. PMID:27214000

  11. One-Dimensional Nanostructured TiO2 for Photocatalytic Degradation of Organic Pollutants in Wastewater

    Directory of Open Access Journals (Sweden)

    Ting Feng

    2014-01-01

    Full Text Available The present paper reviews the progress in the synthesis of one-dimensional (1D TiO2 nanostructures and their environmental applications in the removal of organic pollutants. According to the shape, 1D TiO2 nanostructures can be divided into nanorods, nanotubes, nanowires/nanofibers, and nanobelts. Each of them can be synthesized via different technologies, such as sol-gel template method, chemical vapor deposition, and hydrothermal method. These methods are discussed in this paper, and the recent development of the synthesis technologies is also presented. Furthermore, the organic pollutants, degradation using the synthesized 1D TiO2 nanostructures is studied as an important application of photocatalytic oxidation (PCO. The 1D nanostructured TiO2 exhibited excellent photocatalytic activity in a PCO process, and the mechanism of photocatalytic degradation of organic pollutants is also discussed. Moreover, the modification of 1D TiO2 nanostructures using metal ions, metal oxide, or inorganic element can further enhance the photocatalytic activity of the photocatalyst. This phenomenon can be explained by the suppression of e−-h+ pairs recombination rate, increased specific surface area, and reduction of band gap. In addition, 1D nanostructured TiO2 can be further constructed as a film or membrane, which may extend its practical applications.

  12. Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions

    International Nuclear Information System (INIS)

    A circulating photocatalytic reactor was used for removing aliphatic and aromatic organic pollutants in refinery wastewater. The TiO2 added wastewater samples, while saturating with air, were irradiated with an immersed mercury UV lamp (400 W, 200-550 nm). Optimal catalyst concentration, fluid pH and temperature were obtained at amounts of near 100 mg L-1, 3 and 318 K, respectively. A maximum reduction in chemical oxygen demand of more than 90% was achieved after about 4 h irradiation and hence, 73% after about only 90 min; significant pollutant removal was also achievable in the other conditions. The identification of the organic pollutants, provided by means of a GC/MS and a GC analysis systems, equipped with headspace injection technique, showed that the major compounds were different fractions of petroleum aliphatic hydrocarbons (up to C10) and the well-known aromatic compounds such as benzene, toluene and ethylbenzene. The results showed a high efficiency degradation of all of these pollutants

  13. Enhanced biological degradation of crude oil in a Spitsbergen tundra site

    International Nuclear Information System (INIS)

    A series of oil-contaminated tundra plots on Spitsbergen was treated with combinations of five different fertilizer additives. Both organic and mineral nutrient sources were used, alone or in combination. Biological degradation of oil was recorded in all of the plots. The extent of degradation depended on the type of fertilizer added. The local conditions influence oil degradation significantly, as well as the effect of the fertilizer. Urea, SkogAN (a slow releasing fertilizer), and a blend of fish meals all give high degrees of oil degradation. Both the microbial parameters and the total heterotrophic respiration are influenced by the addition of fertilizers. 6 refs., 13 figs., 3 tabs

  14. Appetite for danger - genetic potential for PCP degradation at historically polluted groundwater sites

    Science.gov (United States)

    Mikkonen, Anu; Yläranta, Kati; Tiirola, Marja; Romantschuk, Martin; Sinkkonen, Aki

    2016-04-01

    Pentachlorophenol (PCP) is a priority pollutant of exclusively anthropogenic origin. Formerly used commonly in timber preservatives, PCP has persisted at polluted groundwater sites decades after its use was banned, typically as the last detectable contaminant component. Notorious for its toxicity and poor biodegradability, little is known about the genetic potential and pathways for PCP degradation in the environment. The only fully characterized mineralization pathway is initiated by the enzyme coded by chromosomal pcpB gene, previously detected in PCP degrading Sphingomonadaceae bacteria isolated at two continents. However, there is no information about the abundance or diversity of any PCP degradation related gene at contaminated sites in situ. Our aim was to assess whether pcpB and/or sphingomonads seem to play a role in in situ degradation of PCP, by studying whether pcpB i) is detectable at chlorophenol-polluted groundwater sediments, ii) responds to PCP concentration changes, and iii) shows correlation with the abundance of sphingomonads or a specific sphingomonad genus. Novel protocols for quantification and profiling of pcpB, with primers covering full known diversity, were developed and tested at two sites in Finland with well-documented long-term chlorophenol contamination history: Kärkölä and Pursiala. High throughput sequencing complemented characterization of the total bacterial community and pcpB gene pool. The relative abundance of pcpB in bacterial community was associated with spatial variability in groundwater PCP concentration in Pursiala, and with temporal differences in groundwater PCP concentration in Kärkölä. T-RFLP fingerprinting results indicated and Ion Torrent PGM and Sanger sequencing confirmed the presence of a single phylotype of pcpB at both geographically distant, historically contaminated sites, matching the one detected previously in Canadian bioreactor clones and Kärkölä bioreactor isolates. Sphingomonad abundance

  15. Application of ionizing radiation for degradation of organic pollutants in waters and wastes

    International Nuclear Information System (INIS)

    Anthropogenic organic pollutants of natural waters discharged to environment in municipal and industrial wastes can be removed by the use of various technologies. Among numerous chemical technologies of advanced oxidation a particular effectiveness is exhibited by methods based on use of ionizing radiation (γ, electron beam) demonstrated already both in batch processes and in flow installations and also in a mobile treatment installation. Their application is based on interaction of primary products of radiolysis of water (hydroxyl and hydrogen radicals, solvated electrons), among which hydroxyl radicals are the strongest oxidants known to occur in water. A crucial role in the radiation-induced degradation of water pollutants in oxygenated solutions play also peroxyl radicals formed. A favourable increase of effectiveness for some of these processes can be also achieved by carrying them in the presence of ozone. Besides presentation of the state-of -art of this technology for treatment of water and wastes, a results of own research on application of this technology is given, which was focused on examination of radiolytic degradation of chlorophenols and selected chloroorganic pesticides. (author)

  16. Photocatalytic activity of porous multiwalled carbon nanotube-TiO2 composite layers for pollutant degradation.

    Science.gov (United States)

    Zouzelka, Radek; Kusumawati, Yuly; Remzova, Monika; Rathousky, Jiri; Pauporté, Thierry

    2016-11-01

    TiO2 nanoparticles are suitable building blocks nanostructures for the synthesis of porous functional thin films. Here we report the preparation of films using brookite, P25 titania and anatase pristine nanoparticles and of nanocomposite layers combining anatase nanoparticles and multi-walled carbon nanotube (MWCNT) at various concentrations. The structure and phase composition of the layers were characterized by X-ray diffraction and Raman spectroscopy. Their morphology and texture properties were determined by scanning electron microscopy and krypton adsorption experiments, respectively. Additionally to a strong absorption in the UV range, the composites exhibited light absorption in the visible range as well. The photocatalytic performance of the layers was tested in the degradation of aqueous solutions of 4-chlorophenol serving as a model of an eco-persistent pollutant. Besides the determination of the decrease in the concentration of 4-chlorophenol, also the formation of intermediate degradation products, namely hydroquinone and benzoquinone, was followed. The presence of MWCNTs had a beneficial effect on the photocatalytic performance, a marked increase in the photocatalytic degradation rate constant being observed even at very low concentrations of MWCNTs. Compared to a P25 reference layer, the first order rate reaction constant increased by about 100% for the composite films containing MWCNTs at concentrations above 0.6 wt%. The key parameters for the enhancement of the photocatalytic performance are discussed. The presence of carbon nanotubes influences beneficially the degradation of 4-chlorophenol by an attack of the primarily photoproduced hydroxyl radicals onto the 4-chlorophenol molecules. The degradation due to the direct charge transfer is practically not influenced at all. PMID:27262272

  17. Radiation degradation of biological waste (aflatoxins) produced in food laboratory

    International Nuclear Information System (INIS)

    Many filamentous fungi can produce secondary metabolites, called mycotoxins, which can be found in food and agricultural products. One of the main genera of myco toxigenic fungi related to the food chain is the Aspergillus spp. There are over 400 mycotoxins described in the literature, the most common the aflatoxins B1, B2, G1 and G2. The mycotoxins are commonly found in foods and are considered one of the most dangerous contaminants. The aflatoxin B1 is classified in group one by the International Agency of Research on Cancer. Aflatoxins resisting for more than one hour in autoclave making it necessary to other means of degradation of these toxins. This work aimed to observe the effects of gamma radiation of 60Co and electron beams in the degradation of aflatoxins and compare the damage caused on the morphology of the Aspergillus flavus. The fungus was grown on potato dextrose agar (PDA) for 10 days and was subsequently transferred to coconut agar medium, and maintained for 14 days at 25 degree C. After this step the coconut agar was ground to become a homogeneous pasty and was irradiated with doses of 2.5, 5.0, 10 and 20 kGy. The samples used in scanning electron microscopy were irradiated with doses of 0, 2.5, 5.0, 10 and 20 kGy with sources of 60Co and electron beams. Irradiation with electron accelerator showed a slightly higher degradation to gamma radiation, reducing 29.93 %, 34.50 %, 52.63 % and 72.30 % for doses of 2.5, 5.0, 10 and 20 kGy, respectively. The Scanning Electron Microscopy showed that doses of 2.5 to 10 kGy did not cause damage to the fungus, but with a dose of 20 kGy it can be observed fungal damage to structures. (author)

  18. BIOLOGICAL DEGRADATION OF CYANIDE BY NITROGEN-FIXING CYANOBACTERIA

    Science.gov (United States)

    This study examined the ability of nitrogen-fixing Anabaena to biodegrade cyanide in batch reactors. ixed second-order constants were obtained that described the biologically-mediated decrease in cyanide for reactors containing initial cyanide concentrations of 3 ppm. or Anabaena...

  19. Heavy-metal air pollution study using biological indicators and nuclear analytical methods

    International Nuclear Information System (INIS)

    The development of industry and the increase in vehicle road traffic are responsible for the ever-growing environmental pollution by toxic elements. Some biological organisms strongly accumulate certain heavy toxic elements and thus can be considered as indicators of the environmental pollution. In this work different types of biological indicators were collected in almost all main cities and industrial zones of Vietnam. They were subsequently analysed by different modern analytical methods. The concentration of different elements and their correlation matrices may provide valuable information on the nature and sources of pollution (author)

  20. Some achievements of the Committee H "Soil Pollution, Degradation and Remediation"

    Science.gov (United States)

    Bech, J.

    2012-04-01

    The Soil System Sciences (SSS) Division, created by J. Weber in 2002 in the EGU, consists of 12 Committees, which cover significant topics of basic and applied Soil Science. One of them is the Committee H, dedicated to "Soil Pollution, Degradation and Remediation". This Committee had been active since 2004, and has organised 14 Sessions (i.e. SSS7, 2004, Nice, SSSS7, 2005, Vienna, SSS17, 2006, Vienna, etc. . . until SSS9.1, 2012, the present session). The title of the SSS7 Session (2004, Nice) was the same as the Committee "Soil pollution, degradation and remediation" and received 30 Contributions. The present Session SSS9.1 has received 40 Contributions. Since 2004 the 14 Sessions have included more than 400 Contributions (Oral and Poster) by applicants from more than 40 countries (european and extraeuropean). A good number of these contributions ("in extenso" papers) have been published in international journals. A selection of complete originals from these Sessions have been published in five Special Issues of the Journal of Geochemical Exploration, i.e.: Trace elements in Soils: baseline levels and imbalance (2008), Selenium and Iodine anomalies in Soils and health (2010), Pedogeochemical Mapping of Potentially Toxic Elements (2011), Reclamation of Mining Site Soils (2012) and "Phytoremediation of Polluted Soils" (in press). I conclude this overview our Committee H's work between 2003 and 2012 with a brief discussion of several examples. Finally, I would like to thank the founder of the SSS Division Prof. Dr. J. Weber for his outstanding work, as well as his successors Profs. T. Miano and A. Cerdà for continuing his excellent work.

  1. Radiation degradation of biological residues (Aflatoxins) produced in food laboratory

    International Nuclear Information System (INIS)

    Some molds have the capacity to produce substances that are toxic and generally cancer-causing agents, such as aflatoxins, that stand between the most important carcinogenic substances (class one of the agents which are certainly carcinogenous for human people according to the International Agency for Research on Cancer). Aspergillus spp. is present in world-wide distribution, with predominance in tropical and subtropical regions growing in any substratum. The aim of this work is establish a minimum dose of radiation that degrades aflatoxins produced by fungi Aspergillus spp. The Aspergillus spp. colonies will be cultivated in coconut agar medium and the samples will be conditioned in appropriate bags for irradiation treatment of contaminated material and processed in the Gammacell 220 with dose of 20 kGy. (author)

  2. Influence of different biological factors on the character of biodegradation of oil pollution soils

    OpenAIRE

    Lifshits, S. H.; Chalaya, O. N.; Glaznetsova, Ju. S.; Zueva, I. N.; Лифшиц, С. Х.; Чалая, О. Н.; Глязнецова, Ю. С.; Зуева, И. Н.

    2012-01-01

    The results of laboratory and field experiments on remediation of oil pollution soils showed that for the effective restoration of soils it is possible to recommend performing works with the application of microorganism-plant complexes i.e. combining introduction into contaminated soil of hydrocarbon degradating bacteria with plant seeding.

  3. Degradation of benzalkonium chloride coupling photochemical advanced oxidation technologies with biological processes

    International Nuclear Information System (INIS)

    The combination of Advanced Oxidation Technologies (AOTs) and biological processes can be visualized as a very successful technological option for treatment of effluents, because it combines high oxidizing technologies with a conventional, low-cost and well-established treatment technology.Photochemical AOTs, like UV-C with or without H2O2, photo-Fenton (PF, UV/H2O2/Fe(II-III)) and UV/TiO2 heterogeneous photo catalysis involve the generation and use of powerful oxidizing species, mainly the hydroxyl radical.In almost all AOTs, it is possible to use sunlight. Benzalkonium chloride (dodecyldimetylbencylammonium chloride, BKC) is a widely used surfactant, which has many industrial applications.Due to its antibacterial effect, it cannot be eliminated from effluents by a biological treatment, and the complexity of its chemical structure makes necessary the use of drastic oxidizing treatments to achieve complete mineralization and to avoid the formation of byproducts even more toxic than the initial compound.In this study, different alternatives for BKC treatment using photochemical AOTs followed by bio catalytic techniques are presented.Three AOTs were tested: a) UV-C (254 nm, germicide lamp) with and without H2O2, b) PF (366 nm), c) UV/TiO2 (254 and 366 nm). PF at a 15:1:1 H2O2total/BKC0/Fe0 molar ratio at 55 degree C was the most efficient treatment in order to decrease the tensioactivity and the total organic carbon of the solution . The biocatalysis was studied in a reactor fitted with a biofilm of microorganisms coming from a sludge-water treatment plant. To evaluate the maximal BKC concentration that could be allowed to ingress to the biological reactor after the AOT treatment, the toxicity of solutions of different BKC concentrations was analyzed. The study of the relevant parameters of both processes and their combination allowed to establish the preliminary conditions for optimizing the pollutant degradation

  4. A comparison between Ce(III) and Ce(IV) ions in photocatalytic degradation of organic pollutants

    Institute of Scientific and Technical Information of China (English)

    程强; 施薇; 段炼; 孙彬哲; 李晓霞; 徐爱华

    2015-01-01

    Nano cerium oxides are efficient photocatalysts for pollutants degradation with highly dispersed Ce(III) ions as the sug-gested active species to promote the reaction, while Ce(IV) species do not behave as a catalyst. In this paper, to understand the mechanism of Ce-based photocatalysts, we studied the comparison of simple cerium ions, Ce(III) and Ce(IV) in aqueous solution for organic pollutants degradation under UV irradiation. Orange II (AOII), methyl orange, andp-nitrophenol were selected as the target pollutants. The formation and contribution of reactive oxygen species, the kinetics of Ce(IV) photoreduction and Ce(III) photooxida-tion, and the influence of solution pH were investigated in detail. It was found that at low pH Ce(IV) ions showed a higher activity for hydroxyl radicals production and AOII degradation than Ce(III) ions, which could be attributed to its fast reduction rate to Ce(III). However, its activity dramatically decreased when solution pH increased, and was also strongly influenced by the type of pollutants; while Ce(III) exhibited high degradation efficiency of all the tested pollutants over a wide pH range.

  5. Nanomaterial based detection and degradation of biological and chemical contaminants in a microfluidic system

    Science.gov (United States)

    Jayamohan, Harikrishnan

    Monitoring and remediation of environmental contaminants (biological and chemical) form the crux of global water resource management. There is an extant need to develop point-of-use, low-power, low-cost tools that can address this problem effectively with minimal environmental impact. Nanotechnology and microfluidics have made enormous advances during the past decade in the area of biosensing and environmental remediation. The "marriage" of these two technologies can effectively address some of the above-mentioned needs. In this dissertation, nanomaterials were used in conjunction with microfluidic techniques to detect and degrade biological and chemical pollutants. In the first project, a point-of-use sensor was developed for detection of trichloroethylene (TCE) from water. A self-organizing nanotubular titanium dioxide (TNA) synthesized by electrochemical anodization and functionalized with photocatalytically deposited platinum (Pt/TNA) was applied to the detection. The morphology and crystallinity of the Pt/TNA sensor was characterized using field emission scanning electron microscope, energy dis- persive x-ray spectroscopy, and X-ray diffraction. The sensor could detect TCE in the concentrations ranging from 10 to 1000 ppm. The room-temperature operation capability of the sensor makes it less power intensive and can potentially be incorporated into a field-based sensor. In the second part, TNA synthesized on a foil was incorporated into a flow-based microfluidic format and applied to degradation of a model pollutant, methylene blue. The system was demonstrated to have enhanced photocatalytic performance at higher flow rates (50-200 muL/min) over the same microfluidic format with TiO2 nanoparticulate (commercial P25) catalyst. The microfluidic format with TNA catalyst was able to achieve 82% fractional conversion of 18 mM methylene blue in comparison to 55% in the case of the TiO2 nanoparticulate layer at a flow rate of 200 L/min. The microfluidic device was

  6. Radiation degradation of polysaccharides and induced biological activity

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, Naotsugu; Yoshii, Fumio; Makuuchi Keizo; Kume Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Mitomo, Hiroshi [Gunma Univ., Kiryu (Japan). Faculty of Engineering

    1999-09-01

    Relationship between irradiation effect of polysaccharides and induced biological activity for plants has been investigated. Sodium alginate was irradiated by gamma-rays from a Co-60 source in liquid state (aqueous solution) and in solid state (powder form). Measurement of molecular weight and analysis of UV spectra of irradiated sodium alginate have been carried out. The molecular weight was decreased by irradiation in both conditions. New absorbance peak derived from double bond or/and carbonyl group was appeared at close to 267 nm by irradiation in UV spectra. It was found that alginate having molecular weight about 10,000 is most suitable to used as growth promoter in plants. To obtain the molecular weight of 10,000 by irradiation, the necessary doses are 100 kGy in liquid state and 500 kGy in solid state, respectively. (author)

  7. Manganese oxyhydroxide and oxide nanofibers for high efficiency degradation of organic pollutants

    International Nuclear Information System (INIS)

    Ultrathin MnOOH nanofibers were synthesized on a large scale from diluted Mn(NO3)2 aqueous solution at room temperature. These MnOOH nanofibers were shape-reservedly converted into Mn3O4 and MnO2 nanofibers by post-heat treatment in air at 400 deg. C and 600 deg. C for 1 h, respectively. The morphology and crystalline structures of the nanofibers were characterized by electronic microscopes and x-ray diffraction. These nanofibers had good crystalline structures. These nanofibers were in bundles with a diameter of 25 nm composed of 3-5 nm fine crystalline nanofibers. The Mn3O4 nanofibers had a specific surface area of 71 m2 g-1 and demonstrated highly catalytic degradation of the organic pollutant methylene blue with the assistance of H2O2 at room temperature.

  8. Thickness-dependent photocatalytic performance of graphite oxide for degrading organic pollutants under visible light.

    Science.gov (United States)

    Oh, Junghoon; Chang, Yun Hee; Kim, Yong-Hyun; Park, Sungjin

    2016-04-20

    Photocatalysts use sustainable solar light energy to trigger various catalytic reactions. Metal-free nanomaterials have been suggested as cost-effective and environmentally friendly photocatalysts. In this work, we propose thickness-controlled graphite oxide (GO) as a metal-free photocatalyst, which is produced by exfoliating thick GO particles via stirring and sonication. All GO samples exhibit photocatalytic activity for degrading an organic pollutant, rhodamine B under visible light, and the thickest sample shows the best catalytic performance. UV-vis-NIR diffuse reflectance absorption spectra indicate that thicker GO samples absorb more vis-NIR light than thinner ones. Density-functional theory calculations show that GO has a much smaller band gap than that of single-layer graphene oxide, and thus suggest that the largely-reduced band gap is responsible for this trend of light absorption. PMID:27040040

  9. Attenuation of landfill leachate by UK Triassic sandstone aquifer materials. 2. Sorption and degradation of organic pollutants in laboratory columns

    Science.gov (United States)

    Thornton, Steven F.; Bright, Mildred I.; Lerner, David N.; Tellam, John H.

    2000-05-01

    The sorption and degradation of dissolved organic matter (DOM) and 13 organic micropollutants (BTEX, aromatic hydrocarbons, chloro-aromatic and -aliphatic compounds, and pesticides) in acetogenic and methanogenic landfill leachate was studied in laboratory columns containing Triassic sandstone aquifer materials from the English Midlands. Solute sorption and degradation relationships were evaluated using a simple transport model. Relative to predictions, micropollutant sorption was decreased up to eightfold in acetogenic leachate, but increased up to sixfold in methanogenic leachate. This behaviour reflects a combination of interactions between the micropollutants, leachate DOM and aquifer mineral fraction. Sorption of DOM was not significant. Degradation of organic fractions occurred under Mn-reducing and SO 4-reducing conditions. Degradation of some micropollutants occurred exclusively under Mn-reducing conditions. DOM and benzene were not significantly degraded under the conditions and time span (up to 280 days) of the experiments. Most micropollutants were degraded immediately or after a lag phase (32-115 days). Micropollutant degradation rates varied considerably (half-lives of 8 to >2000 days) for the same compounds (e.g., TeCE) in different experiments, and for compounds (e.g., naphthalene, DCB and TeCA) within the same experiment. Degradation of many micropollutants was both simultaneous and sequential, and inhibited by the utilisation of different substrates. This mechanism, in combination with lag phases, controls micropollutant degradation potential in these systems more than the degradation rate. These aquifer materials have a potentially large capacity for in situ bioremediation of organic pollutants in landfill leachate and significant degradation may occur in the Mn-reducing zones of leachate plumes. However, degradation of organic pollutants in acetogenic leachate may be limited in aquifers with low pH buffering capacity and reducible Mn oxides

  10. Enhanced catalytic oxidation ability of ternary layered double hydroxides for organic pollutants degradation.

    Science.gov (United States)

    Fahel, Jean; Kim, Sanghoon; Durand, Pierrick; André, Erwan; Carteret, Cédric

    2016-05-10

    Co(2+) and Cu(2+) substituted MgAl layered double hydroxides with an M(2+)/M(3+) atomic ratio of 2.0 were synthesized by a co-precipitation method and fully characterized using various techniques including powder X-ray diffraction, ICP-AES analysis, FT-IR, DR UV-Vis spectroscopy, N2 adsorption-desorption and transmission electron microscopy. The materials revealed a good crystallinity with no phase impurity and successful substitution of cobalt and copper ions in the framework of binary LDH with the target ratio of metals in the sheet. The adsorption characteristics (kinetic and isotherm) and the catalytic oxidation of organic pollutants, methylene blue (cationic dye) and orange II (anionic) were carried out to investigate a potential use of LDH materials as catalysts. In particular, Co3Cu1Al2 LDH exhibited an excellent catalytic activity towards catalytic dye degradation, especially for orange II with good stability and reusability over several times. Furthermore, this LDH material showed good catalytic performance for several chlorophenol compounds, suggesting its practical application in wastewater treatment. Therefore, layered double hydroxides substituted with Co(2+) and Cu(2+) could be promising candidates in various applications, such as the abatement of organic pollutants. PMID:27097543

  11. Mapping the Compositions of Zinc Tantalate for Optimum Photocatalytic Performance in Degradation of Organic Pollutants

    Institute of Scientific and Technical Information of China (English)

    WANG Yun-Jian; HUANG Xin-Song; LI Li-Ping; LI Guang-She

    2012-01-01

    This work aims at mapping the compositions of zinc tantalate for optimum photocatalytic performance in degradation of organic pollutants. Three zinc tantalates, low-temperature form ZnTa2O6 (LT-ZnTa2O6), high-temperature form ZnTa2O6 (HT-ZnTa2O6), and Zn3Ta2O8 were prepared by solid state method. Photocatalytic activities of these zinc tantalates were tested for the degradation of methyl orange under UV irradiation and compared with Sr2Ta2O7, an efficient catalyst previously reported. It is found that the photocatalytic activity of these tantalates follows such a sequence: LT-ZnTa2O6 〉 Sr2Ta2O7 〉 HT-ZnTa2O6 〉 Zn3Ta2O8, in which LT-ZnTa2O6 shows an optimum activity at least twice higher than Sr2Ta2O7. This photocatalytic performance was revealed to primarily originate from the formation of ·OH radicals as indicated by photo- luminescence measurements. The synergistic effects of chemical compositions, crystal structure, and band structure on photocatalytic performances were discussed.

  12. Solar photo-ozonation: A novel treatment method for the degradation of water pollutants.

    Science.gov (United States)

    Chávez, Ana M; Rey, Ana; Beltrán, Fernando J; Álvarez, Pedro M

    2016-11-01

    The decomposition of aqueous ozone by UV-vis radiation has been investigated with focus on the impact of ozone photolysis on the degradation of water pollutants during solar ozonation processes. The apparent first-order rate constants of the decomposition of ozone (kobs) have been determined at various pHs in the 4-9 range using radiation of different wavelengths in the UV-vis range. It was found that UVA-visible radiation (λ>320nm) highly enhanced ozone decomposition, especially at pH 4, for which kobs was three-folded with respect to the process in the absence of radiation. Hydrogen peroxide was identified as a main intermediate of ozone photo-decomposition at pH 4. Experiments of degradation of oxalic acid by ozone showed that solar irradiation brings about an increase in the hydroxyl radical to ozone exposures ratio (Rct). Finally, photo-ozonation (λ>300nm) was shown advantageous over single ozonation in the mineralization of a selection of emerging contaminants (metoprolol, ibuprofen, N,N-diethyl-meta-toluamide and clofibric acid) in both ultrapure water and a synthetic secondary effluent. Thus, TOC removal in 2-h treatments increased from 10 to 25% in the absence of radiation to about 50% in the presence of radiation. PMID:27258212

  13. Antibacterial Activity within Degradation Products of Biological Scaffolds Composed of Extracellular Matrix

    OpenAIRE

    BRENNAN, ELLEN P.; Reing, Janet; CHEW, DOUGLAS; MYERS-IRVIN, JULIE M.; YOUNG, E.J.; Badylak, Stephen F.

    2006-01-01

    Biological scaffolds composed of extracellular matrix (ECM) have been shown to be resistant to deliberate bacterial contamination in preclinical in vivo studies. The present study evaluated the degradation products resulting from the acid digestion of ECM scaffolds for antibacterial effects against clinical strains of Staphylococcus aureus and Escherichia coli. The ECM scaffolds were derived from porcine urinary bladder (UBM-ECM) and liver (L-ECM). These biological scaffolds were digested wit...

  14. Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation

    OpenAIRE

    R Michael Lehman; Cynthia A. Cambardella; Diane E. Stott; Veronica Acosta-Martinez; Manter, Daniel K; Buyer, Jeffrey S.; Jude E. Maul; Smith, Jeffrey L.; Harold P. Collins; Halvorson, Jonathan J.; Kremer, Robert J.; Lundgren, Jonathan G.; Tom F. Ducey; Jin, Virginia L.; Douglas L. Karlen

    2015-01-01

    Our objective is to provide an optimistic strategy for reversing soil degradation by increasing public and private research efforts to understand the role of soil biology, particularly microbiology, on the health of our world’s soils. We begin by defining soil quality/soil health (which we consider to be interchangeable terms), characterizing healthy soil resources, and relating the significance of soil health to agroecosystems and their functions. We examine how soil biology influences soi...

  15. Phytoecological indicators for biological recultivation of soils polluted with oil in the Absheron peninsula

    OpenAIRE

    E. M. Gurbanov; A. A. Akhundova

    2009-01-01

    Phytoecological indicators of polluted soils of Amirov Oil-and-Gas Production Department (Garadag district, Baku) were studied. Phytocenological and biomorphological analysis of flora was done with the aim of further biological rehabilitation of Absheron peninsula. Oil products (black oil, boring waters, etc.) pollution turns the plant cover into a dead mass. Decontamination of soil and rehabilitation of microbial community improve the soil’s fertility. Wild and cultured plant indicators may ...

  16. Phytoecological indicators for biological recultivation of soils polluted with oil in the Absheron peninsula

    Directory of Open Access Journals (Sweden)

    E. M. Gurbanov

    2009-07-01

    Full Text Available Phytoecological indicators of polluted soils of Amirov Oil-and-Gas Production Department (Garadag district,Baku were studied. Phytocenological and biomorphological analysis of flora was done with the aim of further biological rehabilitation of Absheron peninsula. Oil products (black oil, boring waters, etc. pollution turns the plant cover into a dead mass. Decontamination of soil and rehabilitation of microbial community improve the soil’s fertility. Wild and cultured plant indicators may be used in biopurification of the soils polluted with oil products. Sowing of the fodder crops followed by the technical remediation forms the clean areas of higher productivity.

  17. Degradation of Some Textile Dyes using Biological and Physical Treatments

    International Nuclear Information System (INIS)

    A total of twenty samples composed of ten samples of decaying eucalyptus leaves and ten soil samples were collected from El-Kanater El-Khairia district. All isolates were purified and identified to the species level. They found to be belonging to two main genera: Aspergillus sp. and Penicillium sp. The obtained fungal isolates were screened for testing their ability to decolorize Isolan dyes. The strain Aspergillus niger ES-5 was chosen for its highest ability to decolorize the four Isolan dyes. The biological decolorization of the textile metal azo dye was investigated under co-metabolic conditions. The decolorization capacity of the strain was influenced by the presence and/or absence of media components. The majority of decolorization was growth related, where resulted in 90.4%, 99.6%, 95.0% and 94.6% for I.Y, I.R, I.N and I.G, respectively after 72 h, only 2.5, 1.3, 1.4 and 3.0% for I.Y, I.R, I.N and I.G, respectively were desorbed, while negligible decolorization was detected using extracellular fluid (ECF) as well as using dead pellets. The addition of the dye to fungal cultures didn’t affect the extracellular GOD production while intracellular GOD production exhibited a different profile. Pictures of the mycelia represent dye uptake over the 72 h period of decolorization. The metal detection using Energy Dispersive X-ray Spectroscopy (EDS) of the outer fungal mycelium wall and ECF were both below detection level after the decolorization process took place. Thus, decolorization process and the removal of the elements by A. niger ES-5 involve initial adsorption followed by entrapment of the adsorbed dye inside the fungal biomass. Gamma rays increase color intensity in I.Y, while the other three Isolan dyes showed negative decolorization efficiency till 2.5 kGy after which, slow increase in the decolorization was observed.

  18. Relationship between Mineral Soil Surface Area and the Biological Degradation of Biosolids Added to Soil

    Directory of Open Access Journals (Sweden)

    Dongqi Wen

    2015-12-01

    Full Text Available Geochemical and biological processes that operate in the soil matrix and on the soil surface are important to the degradation of biosolids in soil. Due to the large surface area of soils it is assumed that the microbial ecology is associated with mineral soil surface area. The total mineral surface areas were determined for soils from eight different fields selected from a long term study (1972–2006 of annual biosolids application to 41 fields in central Illinois varying in size from 3.6 to 66 ha. The surface areas for the soils varied from 1 to 9 m2/g of soil. The biological degradation rates for the eight soils were determined using a biological degradation rate model (DRM and varied from 0.02 to 0.20/year−1. Regression analysis revealed that the degradation rate was positively associated with mineral soil surface area (1 m2/g produces 0.018 year−1 increase in the degradation rate. The annual soil sequestration rate was calculated to increase from 1% to 6% when the soil total surface area increased from 1 to 9 m2/g of soil. Therefore, land application of biosolids is an effective way to enhance carbon sequestration in soils and reduce greenhouse gas emissions.

  19. Preliminary degradation process study of infectious biological waste in a 5 k W thermal plasma equipment

    International Nuclear Information System (INIS)

    This work is a preliminary study of infectious biological waste degradation process by thermal plasma and was made in Thermal Plasma Applications Laboratory of Environmental Studies Department of the National Institute of Nuclear Research (ININ). Infectious biological waste degradation process is realized by using samples such polyethylene, cotton, glass, etc., but the present study scope is to analyze polyethylene degradation process with mass and energy balances involved. Degradation method is realized as follow: a polyethylene sample is put in an appropriated crucible localized inside a pyrolysis reactor chamber, the plasma jet is projected to the sample, by the pyrolysis phenomena the sample is degraded into its constitutive particles: carbon and hydrogen. Air was utilized as a recombination gas in order to obtain the higher percent of CO2 if amount of O2 is greater in the recombination gas, the CO generation is reduced. The effluent gases of exhaust pyrolysis reactor through are passed through a heat exchanger to get cooled gases, the temperature water used is 15 Centigrade degrees. Finally the gases was tried into absorption tower with water as an absorbent fluid. Thermal plasma degradation process is a very promising technology, but is necessary to develop engineering process area to avail all advantages of thermal plasma. (Author)

  20. Variability of Biological Degradation of Aromatic Hydrocarbons in an Aerobic Aquifer Determined by Laboratory Batch Experiments

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Christensen, Thomas Højlund

    1994-01-01

    The biological aerobic degradation of 7 aromatic hydrocarbons (benzene, toluene, o-xylene, p-dichlorobenzene, o-dichlorobenzene, naphthalene and biphenyl) was studied for 149 days in replicate laboratory batch experiments with groundwater and sediment from 8 localities representing a 15 m × 30 m...

  1. Degradative Enzymes from the Pharmacy or Health Food Store: Interesting Examples for Introductory Biology Laboratories

    Science.gov (United States)

    Deutch, Charles E.

    2007-01-01

    Degradative enzymes in over-the-counter products from pharmacies and health food stores provide good examples of biological catalysis. These include [beta]-galactosidase in Lactaid[TM], [alpha]-galactosidase in Beano[R], [alpha]-amylase and proteases in digestive aids, and proteases in contact lens cleaners. These enzymes can be studied…

  2. EM-TECHNOLOGY APPLICATION FOR MUNICIPAL WASTEWATERS PURIFICATION FROM BIOLOGICAL POLLUTANTS

    Directory of Open Access Journals (Sweden)

    Oksana Vovk

    2011-03-01

    Full Text Available Abstract. This article is devoted to the problem of municipal waste waters purification. The present daysituation with waste water treatment facilities in Ukraine, existed methods of waste waters purification andsearch for new ones are described. Much attention is paid to such kind of pollutants as microbiological andbacterial. A comparatively new method of sewage waters purification from biological contaminants andpossibilities to apply this method in Ukraine is presented in the article.Keywords: biological pollutants, disinfection, effective microorganisms, EM-technology, treatmentfacilities, wastewaters.

  3. Degradation of trace concentrations of the persistent groundwater pollutant 2,6-dichlorobenzamide (BAM) in bioaugmented rapid sand filters.

    Science.gov (United States)

    Albers, Christian Nyrop; Feld, Louise; Ellegaard-Jensen, Lea; Aamand, Jens

    2015-10-15

    Groundwater is an important drinking water resource. Yet, this resource is threatened by pollution from chemicals, such as pesticides and their degradation products. To investigate the potential for remediation of groundwater polluted by trace concentrations of the pesticide residue 2,6-dichlorobenzamide (BAM), we established a pilot waterworks including two sand filters. The waterworks treated groundwater polluted with 0.2 μg/L BAM at flow conditions typical for rapid sand filters. Bioaugmentation of the sand filter with a specific BAM-degrading bacterium (Aminobacter sp. MSH1) resulted in significant BAM degradation to concentrations below the legal threshold level (0.1 μg/L), and this without adverse effects on other sand filter processes such as ammonium and iron oxidation. However, efficient degradation for more than 2-3 weeks was difficult to maintain due to loss of MSH1-bacteria, especially during backwashing. By limiting backwash procedures, the period of degradation was prolonged, but bacteria (and hence degradation activity) were still lost with time. Protozoa were observed to grow in the filters to a density that contributed significantly to the general loss of bacteria from the filters. Additionally, the concentration of easily assimilable organic carbon (AOC) in the remediated water may have been too low to sustain a sufficient population of degrader bacteria in the filter. This study shows that scaling up is not trivial and shortcomings in transferring degradation rates obtained in batch experiments to a rapid sand filter system are discussed. Further optimization is necessary to obtain and control more temporally stable systems for water purification. However, for the first time outside the laboratory and at realistic conditions a potential for the biodegradation of recalcitrant micropollutants in bioaugmented rapid sand filters is shown. PMID:26125500

  4. Particulate pollutants are capable to 'degrade' epicuticular waxes and to decrease the drought tolerance of Scots pine (Pinus sylvestris L.).

    Science.gov (United States)

    Burkhardt, Juergen; Pariyar, Shyam

    2014-01-01

    Air pollution causes the amorphous appearance of epicuticular waxes in conifers, usually called wax 'degradation' or 'erosion', which is often correlated with tree damage symptoms, e.g., winter desiccation. Previous investigations concentrated on wax chemistry, with little success. Here, we address the hypothesis that both 'wax degradation' and decreasing drought tolerance of trees may result from physical factors following the deposition of salt particles onto the needles. Pine seedlings were sprayed with dry aerosols or 50 mM solutions of different salts. The needles underwent humidity changes within an environmental scanning electron microscope, causing salt expansion on the surface and into the epistomatal chambers. The development of amorphous wax appearance by deliquescent salts covering tubular wax fibrils was demonstrated. The minimum epidermal conductance of the sprayed pine seedlings increased. Aerosol deposition potentially 'degrades' waxes and decreases tree drought tolerance. These effects have not been adequately considered thus far in air pollution research. PMID:23791043

  5. Long-Term Progressive Degradation of the Biological Capability of Titanium

    Directory of Open Access Journals (Sweden)

    Hajime Minamikawa

    2016-02-01

    Full Text Available Titanium undergoes time-dependent degradation in biological capability, or “biological aging”. It is unknown whether the biological aging of titanium occurs beyond four weeks and whether age-related changes are definitely associated with surface hydrophilicity. We therefore measured multiple biological parameters of bone marrow-derived osteoblasts cultured on newly prepared, one-month-old, three-month-old, and six-month-old acid-etched titanium surfaces, as well as the hydrophilicity of these surfaces. New surfaces were superhydrophilic with a contact angle of ddH2O of 0°, whereas old surfaces were all hydrophobic with the contact angle of around 90°. Cell attachment, cell spread, cell density, and alkaline phosphatase activity were highest on new surfaces and decreased in a time-dependent manner. These decreases persisted and remained significant for most of the biological parameters up to six-months. While the number of attached cells was negatively correlated with hydrophilicity, the other measured parameters were not. The biological capability of titanium continues to degrade up to six months of aging, but these effects are not directly associated with time-dependent reductions in hydrophilicity. A full understanding of the biological aging will help guide regulatory improvements in implant device manufacturing and develop countermeasures against this phenomenon in order to improve clinical outcomes.

  6. The Complete Multipartite Genome Sequence of Cupriavidus necator JMP134, a Versatile Pollutant Degrader

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios; Perez-Pantoja, Danilo; Ledger, Thomas; Mavromatis, Kostantinos; Anderson, Iain J.; Ivanova, Natalia N.; Hooper, Sean D.; Lapidus, Alla; Lucas, Susan; Gonzalez, Bernardo; Kyrpides, Nikos C.

    2010-02-01

    Cupriavidus necator JMP134 (formerly Ralstonia eutropha JMP134) is a Gram-negative {beta}-proteobacterium able to degrade a variety of chloroaromatic compounds and chemically-related pollutants. It was originally isolated based on its ability to use 2,4 dichlorophenoxyacetic acid (2,4-D) as a sole carbon and energy source [1]. In addition to 2,4-D, this strain can also grow on a variety of aromatic substrates, such as 4-chloro-2-methylphenoxyacetate (MCPA), 3-chlorobenzoic acid (3-CB) [2], 2,4,6-trichlorophenol [3], and 4-fluorobenzoate [4]. The genes necessary for 2,4-D utilization have been identified. They are located in two clusters on plasmid pPJ4: tfd{sub I} and tfd{sub II} [5,6,7,8]. The sequence and analysis of plasmid pJP4 was reported and a congruent model for bacterial adaptation to chloroaromatic pollutants was proposed [9]. According to this model, catabolic gene clusters assemble in a modular manner into broad-host-range plasmid backbones by means of repeated chromosomal capture events. Cupriavidus and related Burkholderia genomes are typically multipartite, composed of two large replicons (chromosomes) accompanied by classical plasmids. Previous work with Burkholderia xenovorans LB400 revealed a differential gene distribution with core functions preferentially encoded by the larger chromosome and secondary functions by the smaller [10]. It has been proposed that the secondary chromosomes in many bacteria originated from ancestral plasmids which, in turn, had been the recipient of genes transferred earlier from ancestral primary chromosomes [11]. The existence of multiple Cupriavidus and Burkholderia genomes provides the opportunity for comparative studies that will lead to a better understanding of the evolutionary mechanisms for the formation of multipartite genomes and the relation with biodegradation abilities.

  7. Strong Impact on the Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Community of a PAH-Polluted Soil but Marginal Effect on PAH Degradation when Priming with Bioremediated Soil Dominated by Mycobacteria

    DEFF Research Database (Denmark)

    Johnsen, Anders R.; Schmidt, Stine; Hybholdt, Trine K.;

    2007-01-01

    with a high capacity for PAH degradation. The culturable PAH-degrading community of the bioremediated primer soil was dominated by Mycobacterium spp. A microcosm containing pristine soil artificially polluted with PAHs and primed with bioremediated soil showed a fast, 100- to 1,000-fold increase in...... incubation. A nonprimed control microcosm containing pristine soil artificially polluted with PAHs showed only small increases in the numbers of culturable PAH degraders and no pdo1 genes. Initial PAH degradation rates were highest in the primed microcosm, but later, the degradation rates were comparable in......Bioaugmentation of soil polluted with polycyclic aromatic hydrocarbons (PAHs) is often disappointing because of the low survival rate and low activity of the introduced degrader bacteria. We therefore investigated the possibility of priming PAH degradation in soil by adding 2% of bioremediated soil...

  8. Treatment of Slightly Polluted Wastewater in an Oil Refinery Using a Biological Aerated Filter Process

    Institute of Scientific and Technical Information of China (English)

    XIE Wenyu; ZHONG Li; CHEN Jianjun

    2007-01-01

    The slightly polluted wastewater from oil refinery contains some COD, oil pollutants and suspended solids (SS). A small-scale fixed film biological aerated filter (BAF) process was used to treat the wastewater. The influences of hydraulic retention time (HRT), air/water volume flow ratio and backwashing cycle on treatment efficiencies were investigated. The wastewater was treated by the BAF process under optimal conditions: the HRT of backwashing cycle of every 4-7 days. The results showed that the average removal efficiency of COD, oil pollutants and SS was 84.5%, 94.0% and 83.4%, respectively. And the average effluent concentration of COD, oil pollutants and SS was 12.5, 0.27, 14.5the BAF process is a suitable and highly efficient method to treat the wastewater.

  9. Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation

    Directory of Open Access Journals (Sweden)

    R. Michael Lehman

    2015-01-01

    Full Text Available Our objective is to provide an optimistic strategy for reversing soil degradation by increasing public and private research efforts to understand the role of soil biology, particularly microbiology, on the health of our world’s soils. We begin by defining soil quality/soil health (which we consider to be interchangeable terms, characterizing healthy soil resources, and relating the significance of soil health to agroecosystems and their functions. We examine how soil biology influences soil health and how biological properties and processes contribute to sustainability of agriculture and ecosystem services. We continue by examining what can be done to manipulate soil biology to: (i increase nutrient availability for production of high yielding, high quality crops; (ii protect crops from pests, pathogens, weeds; and (iii manage other factors limiting production, provision of ecosystem services, and resilience to stresses like droughts. Next we look to the future by asking what needs to be known about soil biology that is not currently recognized or fully understood and how these needs could be addressed using emerging research tools. We conclude, based on our perceptions of how new knowledge regarding soil biology will help make agriculture more sustainable and productive, by recommending research emphases that should receive first priority through enhanced public and private research in order to reverse the trajectory toward global soil degradation.

  10. Variability of Biological Degradation of Phenolic Hydrocarbons in an Aerobic Aquifer Determined by Laboratory Batch Experiments

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Christensen, Thomas Højlund

    1994-01-01

    The biological aerobic degradation of 7 phenolic hydrocarbons (phenol, o-cresol, o-nitrophenol, p-nitrophenol, 2,6-dichlorophenol, 2,4-dichlorophenol, 4,6-o-dichlorocresol) and 1 aromatic hydrocarbon (nitrobenzene) was studied for 149 days in replicate laboratory batch microcosms with sediment and...... groundwater from 8 localities representing a 15 m × 30 m section of an aerobic aquifer. Three patterns of variation were found: (1) phenol, o-cresol and in most cases p-nitrophenol showed very fast degradation with no or only short lag phases and with very little variation among localities; (2) 2...

  11. Biological degradation of partially oxidated constituents of stabilized sapropel; Biologischer Abbau teiloxidierter Inhaltsstoffe stabilisierter Faulschlaemme

    Energy Technology Data Exchange (ETDEWEB)

    Scheminski, A.; Krull, R.; Hempel, D.C. [Technische Univ. Braunschweig (Germany). Inst. fuer Bioverfahrenstechnik

    1999-07-01

    Partial oxidation of sapropel with ozone destroys the cell walls of microorganisms in sludge and releases the cell constituents. Substances that are not biologically degraded because of the size or structure of their molecules are transformed into smaller, water-soluble and biologically degradable fractions by the reaction with ozone. The experiments aim to render the partially oxidated sewage sludge constituents highly biologically degradable using a minimum of oxidation agents. For the experiments described, stabilized sapropels with low biological activity are used. Hence the ozone is mainly used for the partial oxidation of recalcitrant constituents. (orig.) [German] Durch partielle Oxidation von Faulschlaemmen mit Ozon werden die Zellwaende der Mikroorganismen im Schlamm zerstoert und die Zellinhaltsstoffe freigesetzt. Dabei werden Substanzen, die aufgrund ihrer Molekuelgroesse oder -struktur biologisch nicht abgebaut werden, durch die Reaktion mit Ozon in kleinere, wasserloesliche und biologisch abbaubare Bruchstuecke ueberfuehrt. Ziel der Versuche ist es, durch den Einsatz moeglichst geringer Mengen an Oxidationsmitteln eine hohe biologische Abbaubarkeit der teiloxidierten Klaerschlamminhaltsstoffe zu erreichen. Fuer die hier vorgestellten Experimente wurden stabilisierte Faulschlaemme mit geringer biologischer Aktivitaet eingesetzt. Dadurch wird das Ozon vorwiegend zur Teiloxidation recalcitranter Inhaltsstoffe genutzt. (orig.)

  12. The Influence of Surface Alumina and Silica on the Photocatalytic Degradation of Organic Pollutants

    Directory of Open Access Journals (Sweden)

    Terry A. Egerton

    2013-03-01

    Full Text Available Practical photocatalysis for degradation of organic pollutants must take into account the influence of other chemicals. Significant Al deposition on titania can occur at naturally occurring concentrations of dissolved Al. This paper reviews the author’s work on the influence of deliberately deposited hydrous oxides of aluminium on the behavior of a ~130 m2 g−1 rutile TiO2, and then compares the behavior of deposited alumina with that of deposited silica. On rutile some adsorbed nitrogen is infrared-active. Alumina and silica deposited on the rutile reduce, and ultimately eliminate, this infrared-active species. They also reduce photocatalytic oxidation of both propan-2-ol and dichloroacetate ion and the photocatalytic reduction of diphenyl picryl hydrazine. The surface oxides suppress charge transfer and may also reduce reactant adsorption. Quantitative measurement of TiO2 photogreying shows that the adsorbed inorganics also reduce photogreying, attributed to the capture of photogenerated conduction band electrons by Ti4+ to form Ti3+. The influence of adsorbed phosphate on photocatalysis is briefly considered, since phosphate reduces photocatalytic disinfection. In the context of classical colloid studies, it is concluded that inorganic species in water can significantly reduce photoactivity from the levels that measured in pure water.

  13. Degradation of biological weapons agents in the environment: implications for terrorism response.

    Science.gov (United States)

    Stuart, Amy L; Wilkening, Dean A

    2005-04-15

    We investigate the impact on effective terrorism response of the viability degradation of biological weapons agents in the environment. We briefly review the scientific understanding and modeling of agent environmental viability degradation. In general, agent susceptibility to viability loss is greatest for vegetative bacteria, intermediate for viruses, and least for bacterial spores. Survival is greatest in soil and progressively decreases in the following environments: textiles, water, hard surfaces, and air. There is little detailed understanding of loss mechanisms. We analyze the time behavior and sensitivity of four mathematical models that are used to represent environmental viability degradation (the exponential, probability, and first- and second-order catastrophic decay models). The models behave similarly at short times (representation of the hazard. For longer time phenomena, including decontamination, the current model capabilities are likely insufficient. Finally, we implement each model in a simple numerical integration of anthrax dispersion, viability degradation, and dose response. Decay models spanning the current knowledge of airborne degradation result in vastly different predicted hazard areas. This confounds attempts to determine necessary medical and decontamination measures. Hence,the current level of understanding and representation of environmental viability degradation in response models is inadequate to inform appropriate emergency response measures. PMID:15884371

  14. Strong Impact on the Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Community of a PAH-Polluted Soil but Marginal Effect on PAH Degradation when Priming with Bioremediated Soil Dominated by Mycobacteria▿

    OpenAIRE

    Johnsen, Anders R.; Schmidt, Stine; Hybholt, Trine K.; Henriksen, Sidsel; Jacobsen, Carsten S.; Andersen, Ole

    2007-01-01

    Bioaugmentation of soil polluted with polycyclic aromatic hydrocarbons (PAHs) is often disappointing because of the low survival rate and low activity of the introduced degrader bacteria. We therefore investigated the possibility of priming PAH degradation in soil by adding 2% of bioremediated soil with a high capacity for PAH degradation. The culturable PAH-degrading community of the bioremediated primer soil was dominated by Mycobacterium spp. A microcosm containing pristine soil artificial...

  15. In situ combined chemical and biological assessment of estrogenic pollution in a water recycling system.

    Science.gov (United States)

    Chi, Yulang; Huang, Qiansheng; Zhang, Huanteng; Chen, Yajie; Dong, Sijun

    2016-05-01

    Estrogenic pollution and its control in aquatic systems have drawn substantial attention around the world. The chemical and biological assessment approaches currently utilized in the laboratory or field cannot give an integrated assessment of the pollution when used separately. In this study, in situ chemical and biological methods were combined to detect pollution in a water recycling system. Data for the water quality index (WQI) demonstrated that the water treatment resulted in the decline of pollution from upstream to downstream. Wild male Nile tilapia, Oreochromis niloticus, was sampled in June and September. The concentrations of four common endocrine disrupting chemicals (EDCs) were determined in the tilapia liver by chromatographic analysis methods. The level of 17β-estradiol (E2) declined from upstream to downstream in both months. In contrast, the levels of bisphenol A (BPA), di-(2-ethylhcxyl) phthalate (DEHP), and perfluorooctane sulfonate (PFOS) did not display this declining tendency. The highest relative expression of vitellogenin 1 (VTG1) was observed in tilapia from upstream, then the level significantly decreased along the water system. The relative expression levels of CYP1A1 in the water system were also significantly higher than that of the control. However, no declining trend could be observed along the water system. The change of VTG1 expression corresponded well with that of E2 levels in the tilapia liver. Overall, our study assessed the pollution by endocrine disruptors using chemical and biological data with good correspondence. This study also demonstrated the effectiveness of the water recycling system in eliminating estrogen pollution in municipal sewage. PMID:27155427

  16. Effect of Organic Amendments and Inorganic Nitrogen on Biological and Chemical Degradation of Atrazine in Soil

    OpenAIRE

    E Ranjbar; G.H. Haghnia; A. Lakzian; A Fotovat

    2010-01-01

    This study was conducted to compare the impact of various organic amendments with different C/N ratios and chemical compositions on biological and chemical degradation of Atrazine in sterile and non-sterile soils. The experiment was carried out in a factorial arrangement (2×6×2) including two soil types (sterile and non sterile soils), six types of organic amendments (vermicompost, cow manure, glucose, starch and sawdust and without organic matter) and two levels of inorganic nitrogen fertili...

  17. Degradation of Refractory Organic Compounds in Aqueous Wastes employing a combination of biological and chemical treatments

    OpenAIRE

    Chindris, Anuta

    2011-01-01

    In this study the removal of refractory organic compounds (ROCs) in Aqueous Wastes (AW) employing a combination of biological and chemical treatment were investigated at Department of Chemical Engineering and Materials Science, University of Cagliari, Italy and Department of Engineering, Oxford University, UK. The main objectives were to stimulate and optimise the degradation of ROCs with efficient removal of them in AW. This project is divided in two sections, a theoreti...

  18. Effects of air pollution on ecosystems and biological diversity in the eastern United States.

    Science.gov (United States)

    Lovett, Gary M; Tear, Timothy H; Evers, David C; Findlay, Stuart E G; Cosby, B Jack; Dunscomb, Judy K; Driscoll, Charles T; Weathers, Kathleen C

    2009-04-01

    elevated exposure levels or in combination with other stresses such as drought, freezing, or pathogens. The notable exceptions are the acid/aluminum effects on aquatic organisms, which can be lethal at levels of acidity observed in many surface waters in the region. Although the effects are often subtle, they are important to biological conservation. Changes in species composition caused by terrestrial or aquatic acidification or eutrophication can propagate throughout the food webs to affect many organisms beyond those that are directly sensitive to the pollution. Likewise, sublethal doses of toxic pollutants may reduce the reproductive success of the affected organisms or make them more susceptible to potentially lethal pathogens. Many serious gaps in knowledge that warrant further research were identified. Among those gaps are the effects of acidification, ozone, and mercury on alpine systems, effects of nitrogen on species composition of forests, effects of mercury in terrestrial food webs, interactive effects of multiple pollutants, and interactions among air pollution and other environmental changes such as climate change and invasive species. These gaps in knowledge, coupled with the strong likelihood of impacts on ecosystems that have not been studied in the region, suggests that current knowledge underestimates the actual impact of air pollutants on biodiversity. Nonetheless, because known or likely impacts of air pollution on the biodiversity and function of natural ecosystems are widespread in the Northeast and Mid-Atlantic regions, the effects of air pollution should be considered in any long-term conservation strategy. It is recommended that ecologically relevant standards, such as "critical loads," be adopted for air pollutants and the importance of long-term monitoring of air pollution and its effects is emphasized. PMID:19432647

  19. Photoelectrocatalytic hydrogen generation and simultaneous degradation of organic pollutant via CdSe/TiO2 nanotube arrays

    Science.gov (United States)

    Wang, Wenchao; Li, Fang; Zhang, Dieqing; Leung, Dennis Y. C.; Li, Guisheng

    2016-01-01

    CdSe nanoparticles enhanced TiO2 nanotube arrays electrodes (CdSe/TNTAs) were explored as the photoanode for driving the photoelectrocatalytic (PEC) generation of hydrogen and simultaneous degradation of organic pollutants in a PEC system. The evolution hydrogen and the simultaneous degradation of organic pollutants were performed in an electrolytic cell (three electrodes system) under visible-light (λ > 400 nm). Such CdSe/TiO2 based PEC system exhibited both high efficiency of hydrogen generation and effective oxidation of methyl orange (MO). Such high PEC performance of CdSe/TNTAs was attributed to the high dispersity of CdSe nanoparticles on both outside and inside of the pore walls of TiO2 nanotube arrays, the strong combination and heterojunctions between CdSe and TiO2 through Cdsbnd O bonds via electrodeposition with ion-exchange method.

  20. Modified iron-carbon as heterogeneous electro-Fenton catalyst for organic pollutant degradation in near neutral pH condition: Characterization, degradation activity and stability

    International Nuclear Information System (INIS)

    Polytetrafluoroethylene (PTFE) was firstly used to modify the surface characteristics of Fe-C particles and acted as catalyst to degrade 2,4-dichlorophenol (2,4-DCP) by heterogeneous electro-Fenton (EF) in near neutral pH condition. Fe-C particles before and after PTFE modification, and after 15 times consecutive degradations were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray (EDX) spectrometry. The modified Fe-C exhibited a good activity for degradation of 120 mg/L 2,4-DCP in near neutral pH condition, achieving over 95% removal efficiency within 120 min under the conditions of Fe-C 6 g/L, current intensity 100 mA and initial pH 6.7. In this heterogeneous EF system, a significant synergetic effect between anodic oxidation and single Fe-C micro-electrolysis was obtained, which attributed to the effective EF oxidation at favorable acidic pH condition that triggered by anodic oxidation. 15 times consecutive runs demonstrated the 2,4-DCP degradation efficiency was stable while the iron leaching ratio was relatively low. Account for the catalytic activity, life span and inexpensive cost, the PTFE modified Fe-C was potential for industrial application as a good electro-Fenton catalyst to abate biorefractory pollutants in neutral pH condition

  1. EM-TECHNOLOGY APPLICATION FOR MUNICIPAL WASTEWATERS PURIFICATION FROM BIOLOGICAL POLLUTANTS

    OpenAIRE

    Vovk, Oksana; Gay, Angela; Yakovleva, Anna

    2011-01-01

    Abstract. This article is devoted to the problem of municipal waste waters purification. The present daysituation with waste water treatment facilities in Ukraine, existed methods of waste waters purification andsearch for new ones are described. Much attention is paid to such kind of pollutants as microbiological andbacterial. A comparatively new method of sewage waters purification from biological contaminants andpossibilities to apply this method in Ukraine is presented in the article.Keyw...

  2. Recommendations on methods for the detection and control of biological pollution in marine coastal waters

    OpenAIRE

    Olenin, Sergej; Elliott, Michael; Bysveen, Ingrid; Culverhouse, Phil F.; Daunys, Darius; Dubelaar, George B.J.; Gollasch, Stephan; Goulletquer, Philippe; Jelmert, Anders; Kantor, Yuri; Mézeth, Kjersti Bringsvor; Minchin, Dan; Occhipinti-ambrogi, Anna; OLENINA Irina; Vandekerkhove, Jochen

    2011-01-01

    Adverse effects of invasive alien species (IAS), or biological pollution, is an increasing problem in marine coastal waters, which remains high on the environmental management agenda. All maritime countries need to assess the size of this problem and consider effective mechanisms to prevent introductions, and if necessary and where possible to monitor, contain, control or eradicate the introduced impacting organisms. Despite this, and in contrast to more enclosed water bodies, the openness of...

  3. A two-stage anaerobic system for biodegrading wastewater containing terephthalic acid and high strength easily degradable pollutants

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The high strength easily biodegradable pollutants(represented by CODE) are strong inhibitors of terephthalic acid(TA) anaerobic biodegradation. At the same time, TA can inhibiteasily biodegradable pollutants removal under anaerobic conditionsto a limited extent. This mutual inhibition could happen and causea low removal efficiency of both TA and CODE, when the effluentfrom TA workshops containing TA and easily biodegradable pollutantsare treated by a single anaerobic reactor system. Based upon thetreatment kinetics analysis of both TA degradation and CODEremoval, a two-stage up-flow anaerobic sludge blanket and up-flowfixed film reactor(UASB-UAFF) system for dealing with this kind ofwastewater was developed and run successfully at laboratory scale.An UASB reactor with the methanogenic consortium as the first stageremoves the easily biodegradable pollutants(CODE). An UAFF reactor as the second stage is mainly in charge of TA degradation. At aHRT 18.5h, the CODE and TA removal rate of the system reached 89.2% and 71.6%, respectively.

  4. Relationship between Mineral Soil Surface Area and the Biological Degradation of Biosolids Added to Soil

    OpenAIRE

    Dongqi Wen; Wenjuan Zhai; Demetrios Moschandreas; Guanglong Tian; Noll, Kenneth E.

    2015-01-01

    Geochemical and biological processes that operate in the soil matrix and on the soil surface are important to the degradation of biosolids in soil. Due to the large surface area of soils it is assumed that the microbial ecology is associated with mineral soil surface area. The total mineral surface areas were determined for soils from eight different fields selected from a long term study (1972–2006) of annual biosolids application to 41 fields in central Illinois varying in size from 3.6 to ...

  5. Microbial degradation of trichloroethylene in the rhizosphere: Potential application to biological remediation of waste sites

    International Nuclear Information System (INIS)

    The possibility that vegetation may be used to actively promote microbial restoration of chemically contaminated soils was tested by using rhizosphere and nonvegetated soils collected from a trichloroethylene (TCE)-contaminated field site. Biomass determinations, disappearance of TCE from the headspace of spiked soil slurries, and mineralization of [14C]TCE to 14CO2 all showed that microbial activity is greater in rhizosphere soils and that TCE degradation occurs faster in the rhizosphere than in the edaphosphere. Thus, vegetation may be an important variable in the biological restoration of surface and near-surface soils

  6. Preparation of magnetic photocatalyst nanohybrid decorated by polyoxometalate for the degradation of a pharmaceutical pollutant under solar light.

    Science.gov (United States)

    Bastami, Tahereh Rohani; Ahmadpour, Ali

    2016-05-01

    Magnetic polyoxometalate nanohybrid was prepared by the surface modification of γ-Fe2O3/SrCO3 nanoparticles with PW 12 O 40 (3 -) polyoxometalate (POM) anions. The results of Fourier transform infrared (FTIR) and energy-dispersive X-ray (EDX) confirm the presence of POM on the surface of γ-Fe2O3/SrCO3 nanoparticles. TEM results revealed the ellipsoid-like structure of nanohybrid which was 23 nm in length and 6 nm in width. The activity of the photocatalyst was investigated by the photocatalytic degradation of ibuprofen (IBP) in an aqueous solution under solar light. It was found that in comparison with the γ-Fe2O3/SrCO3, the degradation of IBP after 2-h exposure to the solar light irradiation was significantly higher for POM-γ-Fe2O3/SrCO3 nanohybrids. The degradation of IBP was enhanced by the addition of H2O2 to the air saturated solution, while the addition of NaHCO3 and isopropanol restricted the degradation process. In the presence of H2O2, the Fenton photocatalyst degradation under solar light irradiation led to relatively complete degradation of IBP. Furthermore, the photocatalytic activity and magnetization properties of this magnetic photocatalyst nanohybrid provide a promising solution for the degradation of water pollutants and photocatalyst recovery. Graphical Abstract Schematic illustration for preparation of POM-γ-Fe2O3/SrCO3 nanohybrid and photocatalytic reaction of IBP on POM-γ-Fe2O3/SrCO3 nanohybrid. PMID:26810667

  7. Bioremediation of multi-polluted soil by spent mushroom (Agaricus bisporus) substrate: Polycyclic aromatic hydrocarbons degradation and Pb availability.

    Science.gov (United States)

    García-Delgado, Carlos; Yunta, Felipe; Eymar, Enrique

    2015-12-30

    This study investigates the effect of three spent Agaricus bisporus substrate (SAS) application methods on bioremediation of soil multi-polluted with Pb and PAH from close to a shooting range with respect natural attenuation (SM). The remediation treatments involve (i) use of sterilized SAS to biostimulate the inherent soil microbiota (SSAS) and two bioaugmentation possibilities (ii) its use without previous treatment to inoculate A. bisporus and inherent microbiota (SAS) or (iii) SAS sterilization and further A. bisporus re-inoculation (Abisp). The efficiency of each bioremediation microcosm was evaluated by: fungal activity, heterotrophic and PAH-degrading bacterial population, PAH removal, Pb mobility and soil eco-toxicity. Biostimulation of the native soil microbiology (SSAS) achieved similar levels of PAH biodegradation as SM and poor soil detoxification. Bioaugmented microcosms produced higher PAH removal and eco-toxicity reduction via different routes. SAS increased the PAH-degrading bacterial population, but lowered fungal activity. Abisp was a good inoculum carrier for A. bisporus exhibiting high levels of ligninolytic activity, the total and PAH-degrading bacteria population increased with incubation time. The three SAS applications produced slight Pb mobilization (<0.3%). SAS sterilization and further A. bisporus re-inoculation (Abisp) proved the best application method to remove PAH, mainly BaP, and detoxify the multi-polluted soil. PMID:26188871

  8. Biological Assessment to Support Ecological Recovery of a Degraded Headwater System

    Science.gov (United States)

    Longing, Scott D.; Haggard, Brian E.

    2010-09-01

    An assessment of the benthic macroinvertebrate community was conducted to characterize the ecological recovery of a channelized main stem and two small tributaries at the Watershed Research and Education Center (WREC, Arkansas, USA). Three other headwater streams in the same basin were also sampled as controls and for biological reference information. A principal components analysis produced stream groupings along an overall gradient of physical habitat integrity, with degraded reaches showing lower RBP habitat scores, reduced flow velocities, smaller substrate sizes, greater conductivity, and higher percentages of sand and silt substrate. The benthic macroinvertebrate assemblage at WREC was dominated by fast-reproducing dipteran larvae (midge and mosquito larvae) and physid snails, which comprised 71.3% of the total macroinvertebrate abundance over three sampling periods. Several macroinvertebrate assemblage metrics should provide effective targets for monitoring overall improvements in the invertebrate assemblage including recovery towards a more complex food web (e.g., total number of taxa, number of EPT taxa, percent 2 dominant taxa). However, current habitat conditions and the extent of existing degradation, system isolation and surrounding urban or agricultural land-uses might affect the level of positive change to the system. We therefore suggest a preliminary restoration strategy involving the addition of pool habitats in the system. At one pool we collected a total of 29 taxa (dominated by water beetle predators), which was 59% of total number of taxa collected at WREC. Maintaining water-retentive pools to collect flows and maintain water permanence focuses on enhancing known biology and habitat, thus reducing the effects of abiotic filters on macroinvertebrate assemblage recovery. Furthermore, biological assessment prior to restoration supports a strategy primarily focused on improving the existing macroinvertebrate community in the current context of the

  9. Degradation of aqueous methyl tert-butyl ether by photochemical, biological, and their combined processes

    Directory of Open Access Journals (Sweden)

    Azadeh Asadi

    2006-01-01

    Full Text Available The degradation of aqueous methyl tert-butyl ether (MTBE at relatively high concentrations was investigated by various photo-induced oxidation processes such as UV/H2O2 and UV/TiO2 as well as biological processes and their combination. It was shown that the degradation of MTBE by UV/H2O2 and TiO2 photocatalytic followed a first-order model with apparent rate constant of 1.31×10−1 and 1.21×10−2 min-1, respectively. It was observed that UV/H2O2/TiO2 process did not have any advantages over each of the other processes alone. The biodegradation of methyl tert-butyl ether (MTBE was evaluated using aerobic mixed culture with three different approaches, including ultimate biological oxygen demand (BODU assessment, nonacclimated, and acclimated mixed cultures. The apparent rate constant for the biodegradation of MTBE by nonacclimated mixed culture was 4.36×10−2 day-1. It was shown that the acclimatization of the mixed cultures enhanced the rate of biodegradation of MTBE to 3.24×10−1mg L-1h-1. Finally, the effects of the photocatalytic pretreatment of aqueous MTBE on its subsequent biological treatment were studied. It was observed that the rate of bioreaction was not enhanced and the photocatalytic pretreatment had adverse effects on its biological treatment so that the apparent rate constant decreased to 2.83×10−1 mg L-1h-1.

  10. Electrochemical Degradation Characteristics of Refractory Organic Pollutants in Coking Wastewater on Multiwall Carbon Nanotube-Modified Electrode

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2012-01-01

    Full Text Available The multiwall carbon nanotube-mollified electrode (MWCNT-ME was fabricated and its electrocatalytic activity of refractory organic pollutants of coking wastewater was investigated. The surface morphology, absorption properties, and the electrochemical behavior of phenol and aniline at the MWCNT-ME were analyzed. Using ultraviolet-visible adsorption spectroscopy (UV-vis, Gas chromatography mass spectrometry (GC/MS, and chemical oxygen demand (COD test, the electrochemical oxidation properties of refractory organic pollutants of coking wastewater using the MWCNT-ME and the IrSnSb/Ti electrode were analyzed. Compared with the powder adsorption media, the MWCNT-ME was proved to have weaker adsorption activity, which means electrochemical degradation is the decisive factor of the removal of organic pollutants. The MWCNT-ME shows high electrochemical reactivity with oxidation peaks of 0.18 A and 0.12 A for phenol and aniline, respectively. Under the same working conditions, the MWCNT-ME COD removal rate 51% is higher than IrSnSb/Ti electrode’s rate 35%. The MWCNT-ME has application potential of electrochemical oxidation of refractory organic pollutants of coking wastewater.

  11. Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology

    International Nuclear Information System (INIS)

    The integrated chemical-biological degradation combining advanced oxidation by UV/H2O2 followed by aerobic biodegradation was used to degrade C.I. Reactive Azo Red 195A, commonly used in the textile industry in Australia. An experimental design based on the response surface method was applied to evaluate the interactive effects of influencing factors (UV irradiation time, initial hydrogen peroxide dosage and recirculation ratio of the system) on decolourisation efficiency and optimizing the operating conditions of the treatment process. The effects were determined by the measurement of dye concentration and soluble chemical oxygen demand (S-COD). The results showed that the dye and S-COD removal were affected by all factors individually and interactively. Maximal colour degradation performance was predicted, and experimentally validated, with no recirculation, 30 min UV irradiation and 500 mg H2O2/L. The model predictions for colour removal, based on a three-factor/five-level Box-Wilson central composite design and the response surface method analysis, were found to be very close to additional experimental results obtained under near optimal conditions. This demonstrates the benefits of this approach in achieving good predictions while minimising the number of experiments required

  12. Petroleum Migration, Filling and Biological Degradation in Mesozoic Reservoirs in the Northern North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Horstad, I.

    1995-12-31

    This thesis comprises five papers the first of which discusses the distribution of petroleum within the Gullfaks Field and applies conventional geochemical techniques to characterize the petroleum distribution within a single field. The paper also shows how understanding geochemical heterogeneities in the petroleum fluids helped to build a better geological model of the development of the Gullfaks Field. Based on this work an improved filling model was proposed for the Gullfaks Field. The second paper discusses the biological degradation of the hydrocarbons within the Gullfaks Field, and shows how several samples from neighbouring fields were analyzed to confirm the filling model of the field. It also demonstrates how the quantification of biological degradation of hydrocarbons in the reservoir places constraints on acceptable models of the geological development of the Tampen Spur Area. The third paper discusses the source vs. sink problems of petroleum migration in the North Sea. The fourth paper is a regional study of the petroleum migration within the Tampen Spur area and proposes a regional migration model. The fifth paper is a detailed reservoir geochemical study of the giant Troll Field on the Horda Platform and proposes a revised filling model for the field. 224 refs., 86 figs., 5 tabs.

  13. Gaseous pollutants emitted from a mechanical biological treatment plant for municipal solid waste: odor assessment and photochemical reactivity.

    Science.gov (United States)

    Fang, Jingjing; Zhang, Hua; Yang, Na; Shao, Liming; He, Pinjing

    2013-11-01

    The concentrations and chromatographic profiles of gaseous pollutants emitted from a municipal solid waste (MSW) biological treatment plant were investigated to identify the major odor substances and atmospheric photochemical reactive species (PRS). Four methods were used to measure different gaseous pollutants in this study, including colorimetric tubes, gas chromatography with mass spectrometry/flame ionization detection/pulsed flame photometric detection (GC-MS/FID/PFPD) preceded by cold trap concentration, GC-FID preceded by solid-phase microextraction (SPME), and high-performance liquid chromatography (HPLC) after derivation by 2,4-dinitrophenylhydrazine (DNPH). Seventy-five gaseous compounds belonging to nine groups (nitrogen compounds, sulfur compounds, alkanes, alkenes, aromatics, terpenes, alcohols, carbonyls, and volatile fatty acids [VFAs]) were identified. In the pre-biotreatment facility, the total concentration of the gaseous pollutants reached the maximum value on day 7 (317 ppm). During the post-biotreatment process, the total concentration of gaseous pollutants decreased from 331 ppm at the beginning to 162 ppm in the end. The group with the greatest decrease was carbonyls, from 64 to 7.4 ppm, followed by alcohols, from 40 to 4.5 ppm, which were both oxygenated compounds. The proportion of aromatics was notably high in the pre-mechanical treatment facility, accounting for 50.6% of the total, revealing the xenobiotic compounds disseminated by stirring and agitating the waste in the initial stage. The proportions of nitrogen compounds were lower in the pre- and post-mechanical treatment facilities (1.5% and 6.9%) than in the pre- and post-biotreatment facilities (11.9% and 13:8%), suggesting that their generation was closely associated with waste degradation. The major odor compounds in the facilities were acetic acid, butyric acid, valeric acid, isovaleric acid, and dimethyl sulfide. The major PRS in the facilities were aromatics, acetaldehyde

  14. A novel method developed for estimating mineralization efficiencies and its application in PC and PEC degradations of large molecule biological compounds with unknown chemical formula.

    Science.gov (United States)

    Li, Guiying; Liu, Xiaolu; An, Taicheng; Wong, Po Keung; Zhao, Huijun

    2016-05-15

    A new method to estimate the photocatalytic (PC) and photoelectrocatalytic (PEC) mineralization efficiencies of large molecule biological compounds with unknown chemical formula in water was firstly developed and experimentally validated. The method employed chemical oxidation under the standard dichromate chemical oxygen demand (COD) conditions to obtain QCOD values of model compounds with unknown chemical formula. The measured QCOD values were used as the reference to replace QCOD values of model compounds for calculation of the mineralization efficiencies (in %) by assuming the obtained QCOD values are the measure of the theoretical charge required for the complete mineralization of organic pollutants. Total organic carbon (TOC) was also employed as a reference to confirm the mineralization capacity of dichromate chemical oxidation. The developed method was applied to determine the degradation extent of model compounds, such as bovine serum albumin (BSA), lecithin and bacterial DNA, by PC and PEC. Incomplete PC mineralization of all large molecule biological compounds was observed, especially for BSA. But the introduction of electrochemical technique into a PC oxidation process could profoundly improve the mineralization efficiencies of model compounds. PEC mineralization efficiencies of bacterial DNA was the highest, while that of lecithin was the lowest. Overall, PEC degradation method was found to be much effective than PC method for all large molecule biological compounds investigated, with PEC/PC mineralization ratios followed an order of BSA > lecithin > DNA. PMID:26994335

  15. Toprak Kirlenmesi ve Biyolojik Çevre / Soil Pollution and Biological Environment

    OpenAIRE

    Kızıloğlu Algan, F. Tülay; Bilen, Serdar

    2011-01-01

    ÖZET: İnsanların yanlış uygulamaları sonucunda toprak ekosisteminin fiziksel, kimyasal ve biyolojik özellikleri arasındaki dengebozulmaktadır. Bu durum, toprak üzerinde ve içerisinde yaşayan canlıları (biyolojik çevre) olumsuz etkilemektedir. Bu makalede toprakkirliliği ile biyolojik çevre arasındaki etkileşimler özetlenmiştir.Anahtar Kelimeler: Toprak kirliliği, Biyolojik çevreSoil Pollution and Biological Environment ABSTRACT: In result f...

  16. Application of vascular aquatic plants for pollution removal, energy and food production in a biological system

    Science.gov (United States)

    Wolverton, B. C.; Barlow, R. M.; Mcdonald, R. C.

    1975-01-01

    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications.

  17. Measures for reducing pollution produced by ash spoil banks of thermoelectric stations, by biological recultivation

    Directory of Open Access Journals (Sweden)

    MAXIM A.

    2008-11-01

    Full Text Available Worldwide, the thermoelectric power stations produce 70% from the total of electric energy. This intenselypollutes all environment compartments. The thermoelectric power stations produce as much gaseous (CO, CO2,NOx, SOx as solid (ash and heavy metals pollutants. Ash spoil banks from Romania occupy 3102 hectares. Themost efficient measure of rehabilitation is biological recultivation (agricultural, forestry, agricultural continuedby forest. The world and national researches on this domain shows that forest recultivation is the mostadvantageous, because requires a minimum of works towards agricultural recultivation, improves the locallandscape and contributes to the restore in circuit a part from total carbon emission mass of thermoelectric powerstation.

  18. Bacterial diversity exploration in hydrocarbon polluted soil: metabolic potential and degrader community evolution revealed by isotope labeling

    International Nuclear Information System (INIS)

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous compounds produced by incomplete combustion of organic matter. They are a source of environmental pollution, especially associated to oil product exploitation, and represent a threat for living organisms including human beings because of their toxicity. Many bacteria capable of degrading PAHs have been isolated and studied. However, since less than 5% of soil bacteria can be cultivated in the laboratory, bacterial species able to degrade PAHs in situ have been poorly studied. The first goal of this study was to identify bacteria that degrade PAHs in soil using culture-independent molecular methods. To this end, a strategy known a stable isotope probing has been implemented based on the use of phenanthrene, a three rings PAH, in which the natural isotope of carbon was replaced by 13C. This molecule has been introduced as a tracer in microcosms containing soil from a constructed wetlands collecting contaminated water from highway runoff. Bacteria having incorporated the 13C were then identified by 16S rRNA gene sequence analysis after PCR amplification from labeled genomic DNA extracted from soil. The results show that so far little studied Betaproteobacteria, belonging to the genera Acidovorax, Rhodoferax, Hydrogenophaga and Thiobacillus, as well as Rhodocyclaceae, were the key players in phenanthrene degradation. Predominance of Betaproteobacteries was established thanks to quantitative PCR measurements. A dynamic analysis of bacterial diversity also showed that the community structure of degraders depended on phenanthrene bioavailability. In addition, the phylogenetic diversity of ring-hydroxylating di-oxygenases, enzymes involved in the first step of PAH degradation, has been explored. We detected new sequences, mostly related to di-oxygenases from Sphingomonadales and Burkholderiales. For the first time, we were able to associate a catalytic activity for oxidation of PAHs to partial gene sequences amplified

  19. The role of organic and inorganic indoor pollutants in museum environments in the degradation of dammar varnish.

    Science.gov (United States)

    Bonaduce, Ilaria; Odlyha, Marianne; Di Girolamo, Francesca; Lopez-Aparicio, Susana; Grøntoft, Terje; Colombini, Maria Perla

    2013-01-21

    This paper investigates the effects of inorganic (NO(2) and O(3)) and volatile organic acid (acetic acid) pollutants on the degradation of dammar varnish in museum environments. Model paint varnish samples based on dammar resin were investigated by Gas Chromatography Mass Spectrometry (GC-MS), Dynamic Mechanical Analysis (DMA) and Atomic Force Microscopy (AFM). Dammar is a natural triterpenoid resin, commonly used as a paint varnish. Samples were subjected to accelerated ageing by different levels of pollutants (NO(2) and O(3) and acetic acid) over a range of relative humidities (RH) and then analysed. The results revealed that as the dose of the pollutant was increased, so did the degree of oxidation and cross-linking of the resin. Most interestingly, it was shown for the first time that exposure to acetic acid vapour resulted in the production of an oxidised and cross-linked resin, comparable to the resin obtained under exposure to NO(2) and O(3). These conclusions were supported by the analyses of model varnishes exposed for about two years in selected museum environments, where the levels of pollutants had been previously measured. Exposures were performed both within and outside the selected microclimate frames for paintings. Results showed that varnishes placed within the microclimate frames were not always better preserved than those exposed outside the frames. For some sites, the results highlighted the protective effects of the frames from outdoor generated pollutants, such as NO(2) and O(3). For other sites, the results showed that the microclimate frames acted as traps for the volatile organic acids emitted by the wooden components of the mc-frames, which damaged the varnish. PMID:23162813

  20. Polylactic Acid Maybe Hope for Solving White Pollution

    Institute of Scientific and Technical Information of China (English)

    Xu Dan

    2007-01-01

    @@ As the pollution problem has aroused more and more attention, greater efforts have been made in developing degradable biological materials without environmental pollution to replace oil-based traditional plastics being used in great quantities today. Among numerous kinds of degradable polymers, polylactic acid has become the 'green' environmental friendly material with the brightest development prospect.

  1. Atmospheric pollution: a case study of degrading urban air quality over Punjab, India.

    Science.gov (United States)

    Sehra, Parmjit Singh

    2007-01-01

    This paper presents the results of a case study of urban air quality over a densely populated city Ludhiana situated in Punjab, India, in the form of monthly and annual average concentrations of Suspended Particulate Matter (SPM), NO2 and SO2 for the periods 1988-1989, 1994-1999 and 2001-2005 which is generally found to be increasing with time and thus requires immediate corrective measures lest the situation becomes totally uncontrollable. The present situation is as bad as in other metropolitan Indian cities, although it seems to have somewhat improved as indicated by the latest 2001-2005 data in comparison with the past 1988-1989 and 1994-1999 data, but much more still needs to be done. In addition to the industrial and vehicular pollution, the agricultural pollution due to the burning of wheat and rice straws by the farmers should also be checked because it also creates tremendous pollution in the atmosphere. PMID:18472555

  2. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review.

    Science.gov (United States)

    Sirés, Ignasi; Brillas, Enric

    2012-04-01

    In the last years, the decontamination and disinfection of waters by means of direct or integrated electrochemical processes are being considered as a very appealing alternative due to the significant improvement of the electrode materials and the coupling with low-cost renewable energy sources. Many electrochemical technologies are currently available for the remediation of waters contaminated by refractory organic pollutants such as pharmaceutical micropollutants, whose presence in the environment has become a matter of major concern. Recent reviews have focused on the removal of pharmaceutical residues upon the application of other important methods like ozonation and advanced oxidation processes. Here, we present an overview on the electrochemical methods devised for the treatment of pharmaceutical residues from both, synthetic solutions and real pharmaceutical wastewaters. Electrochemical separation technologies such as membrane technologies, electrocoagulation and internal micro-electrolysis, which only isolate the pollutants from water, are firstly introduced. The fundamentals and experimental set-ups involved in technologies that allow the degradation of pharmaceuticals, like anodic oxidation, electro-oxidation with active chlorine, electro-Fenton, photoelectro-Fenton and photoelectrocatalysis among others, are further discussed. Progress on the promising solar photoelectro-Fenton process devised and further developed in our laboratory is especially highlighted and documented. The abatement of total organic carbon or reduction of chemical oxygen demand from contaminated waters allows the comparison between the different methods and materials. The routes for the degradation of the some pharmaceuticals are also presented. PMID:21862133

  3. Reconstruction of metabolic networks in a fluoranthene-degrading enrichments from polycyclic aromatic hydrocarbon polluted soil.

    Science.gov (United States)

    Zhao, Jian-Kang; Li, Xiao-Ming; Ai, Guo-Min; Deng, Ye; Liu, Shuang-Jiang; Jiang, Cheng-Ying

    2016-11-15

    Microbial degradation of polycyclic aromatic hydrocarbons (PAHs) is the primary process of removing PAHs from environments. The metabolic pathway of PAHs in pure cultures has been intensively studied, but cooperative metabolisms at community-level remained to be explored. In this study, we determined the dynamic composition of a microbial community and its metabolic intermediates during fluoranthene degradation using high-throughput metagenomics and gas chromatography-mass spectrometry (GC-MS), respectively. Subsequently, a cooperative metabolic network for fluoranthene degradation was constructed. The network shows that Mycobacterium contributed the majority of ring-hydroxylating and -cleavage dioxygenases, while Diaphorobacter contributed most of the dehydrogenases. Hyphomicrobium, Agrobacterium, and Sphingopyxis contributed to genes encoding enzymes involved in downstream reactions of fluoranthene degradation. The contributions of various microbial groups were calculated with the PICRUSt program. The contributions of Hyphomicrobium to alcohol dehydrogenases were 62.4% in stage 1 (i.e., when fluoranthene was rapidly removed) and 76.8% in stage 3 (i.e., when fluoranthene was not detectable), respectively; the contribution of Pseudomonas were 6.6% in stage 1 and decreased to 1.2% in subsequent stages. To the best of the author's knowledge, this report describes the first cooperative metabolic network to predict the contributions of various microbial groups during PAH-degradation at community-level. PMID:27415596

  4. Diversity as a measure of water pollution and an aid for biological water analysis

    Energy Technology Data Exchange (ETDEWEB)

    Verma, S.R.; Sharma, A.K.; Goel, D.P.

    1987-01-01

    Five aquatic ecosystems, Yamuna river, Krishna river Eastern Kalinadi, Kadrabad drain and Peacock lake have been studied with reference to disversity and physico-chemical characteristics and biological indices; a list of species have been selected with reference to polluted, mildly polluted or unpolluted water conditions. Though it is difficult to call any species strictly indicator species, certain species of Bacillariophyceae, bottom biota and Entomostraca can be regarded as indicative species; the quantitative distributions of the species of different groups have been analysed statistically. Margalef's Community Diversity Index (d), Shannon Weaver Function, coefficient of rank correlation and partial and multiple correlation coefficient were calculated as to find out the order of precedence in different taxonomical groups and the linear regression against BOD and the whole biocenosis were calculated, which indicate the relation as diversity d=6.7854-0.0080 BOD+-0.9695 where r/sup 2/=B=0.7365. Similarly, multiple linear regressions were also calculated using diversity against BOD, pH and temperature for each aquatic ecosystem. All these observations indicate that diversity of organisms can be used to measure the water pollution intensity.

  5. Monitoring the biological effects of pollution on the Algerian west coast using mussels Mytilus galloprovincialis

    Directory of Open Access Journals (Sweden)

    Zoheïr M. Taleb

    2007-12-01

    Full Text Available The Algerian west coast is the prime recipient of several forms of pollution; hence, the necessity for an impact assessment ofthis coastal pollution using a suite of recommended marine biomarkers, including lysosomal membrane stability in living cells by the Neutral Red Retention Time (NRRT method, the evaluation of micronucleus (MN frequency, and the determination ofacetylcholinesterase (AChE activity in mussels Mytilus galloprovincialis, sampled from the large, polluted Oran Harbour (OH and the Maârouf (Mrf marine mussel farm between July 2005 and April 2006. The difference in the variations of the annual physical parameters between OH and Mrf corresponds to the influence of the domestic and industrial sewage discharged by the city of Oran. The biological data of the mussels (condition index, protein content recorded at both sites were related to their natural reproductive cycle. This indicated that intrinsic variation between the sites due to different mussel development phases was minimal. The variation in the AChE activity of some organs of OH and Mrf mussels, with minimal inhibition in July and a higher NRRT recorded in the granular haemocytes in the Mrf than in the OH mussels during the autumn and spring, depends on the quality of the biotope and on generic stress factors. Moreover, the variation in MN frequency, in general reflecting a non-significant seasonal and spatial genotoxic effect of the contamination at the two sampling sites, requires further investigations regarding biotic and abiotic variations.

  6. Exposure assessment to heavy metals in general population in a polluted area through biological monitoring

    Directory of Open Access Journals (Sweden)

    Vimercati L.

    2013-04-01

    Full Text Available In polluted areas, a major issue is the correct assessment of the exposure of general population to industrial pollutants. The objectives were: to evaluate the exposure to heavy metals emitted from the industrial area of Taranto; to correlate biological monitoring data with environmental data, in order to clarify the impact of industrial pollution in terms of internal dose. A cross sectional study has been designed to measure levels of urinary arsenic, lead, cadmium, chromium, manganese in 300 inhabitants of Taranto, Statte and Laterza. Adult subjects have been selected by a two-stage random stratified sampling. Results are based on 272 subjects (131 men and 141 women. The observed concentrations of metals in the whole study population are overall high. The median values for lead (7.4 μg/l and chromium (0.4 μg/l are higher than the 95° percentile of the range of reference values. For manganese and arsenic the 95° percentile of concentration in the whole study population is higher than the 95° percentile of the range of reference values. Concentrations of mercury in the whole study population are comparable to reference.

  7. Diagnosis of water pollution caused by chemical effluents using hydro biological methods

    International Nuclear Information System (INIS)

    Industrial plants which discharge chemical effluents into rivers are faced with a double problem. 1 - To avoid excessive pollution which leads to an important modification of the medium and to a poisoning of the aquatic fauna, and in particular to the killing of fish. These disadvantages are avoided by a treatment of the effluents, by calculating the minimum fatal doses and the limiting dilutions for fish, and by carrying out biological analyses and tests on the residual waters. 2 - To avoid provoking continuous, slow and insidious pollutions which are more difficult to detect and which would result in the gradual sterilization of receptive media. In order to estimate this possible influence, the authors have listed the aquatic fauna and flora found in the canal which was the object of the experiment, and have modified the Saprobies system due to Kolwickz. They have tried to detect the presence or absence of pollution by estimating the density of the phyto-plankton formed on submerged laminae (periphyton) and the specific variations in the alga of which these populations are made up. In this report are given details of the tests and of the first results obtained. (authors)

  8. Biological degradation of EDTA in pulping effluents at higher pH - a laboratory study

    Energy Technology Data Exchange (ETDEWEB)

    Ek, M.; Remberger, M.; Allard, A.S.

    1999-01-01

    The biological degradation of EDTA at different pH, sludge load and sludge age has been investigated in laboratory experiments. The experiments showed that relatively fast degradation of EDTA in the form found in this waste water (from production of TMP) took place at least at pH around 8.5 with moderate COD load and high sludge age. In continuous reactors the degradation of EDTA in a pulp and paper waste water was 2-3 mg EDTA/g SS*day at both pH 7 and 8,5, and at sludge ages from 5 to 21 days. The degradation was dependent on sludge load, and no degradation was seen above 1 g COD/g SS*day. In kinetic experiments with half strength waste water the same degradation rate (1,5-2 mg EDTA/g SS*day) was found at pH 7 and at pH 8,5 with sludge of low age (9 and 5 days SRT). Much faster degradation was found at pH 8,5 with sludge of high age (21 days in the continuous experiment). The mean degradation rate was over 10 mg EDTA/g SS*day from 20 to 5 mg EDTA/l. v{sub max} was determined to be 35 mg EDTA/g SS*day and K{sub M} to 31 mg EDTA/l. COD removal was at least as good at pH 8,5 as at pH 7. Sludge properties were best at pH 8,5 and long sludge retention time (giving low sludge load). Both sludge volume index and residual suspended solids after sedimentation were lower than under normal conditions at pH 7. The direct cost for caustic lime would be about 15 SEK per ton of TMP, with a water like the one investigated here. This can vary a lot depending on starting pH and buffering capacity. Costs for addition of nitrogen source could probably be omitted, but this is normally not more than 1-2 SEK per ton of TMP. The extra need for oxygen in the treatment would not be more than some percent, but may be important if oxygen is limited. A substantial extra cost would be if the aeration volume has to be increased. According to the best results from the kinetic study, this would not be needed in an extended aeration activated plant with 2 days HRT and sludge concentrations of 2

  9. An Effective Novel ReactionSystem For The Photo-Degradation of Aqueous Organic Pollutants

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel reaction system consisted of a supported TiO2 film electrode, a Ru-Ti oxide film electrode and air (oxygen) electrode is reported. The air (oxygen) electrode can provide H2O2 continuously for homogeneous photochemical oxidation reaction on the spot. In this reactor, degradation reaction of aniline occur from interface of TiO2 film to ail solution which is irradiated by ultraviolet ray. The degradation rate of aniline was characterized by measuring the change of chemical oxygen demand (COD) in solution under different conditions. It was found that the degradation rate of aniline in the novel system increased apparently as compared with single heterogeneous photocatalysis and homogeneous photochemistry system. It can be explained in terms of combining acts of heterogeneous photocatalysis and homogeneous photochemistry.

  10. Analysis of organic pollutant degradation in pulsed plasma by coherent anti-Stokes Raman spectroscopy

    International Nuclear Information System (INIS)

    The degradation of p-benzoquinone (p-BQ) in water was investigated by the coherent anti-Stokes Raman spectroscopy (CARS) method, in which the change of the anti-Stokes signal intensity corresponding to the vibrational transitions of the molecule is monitored during and after solution plasma processing (SPP). In the beginning of SPP treatment, the CARS signal intensity of the ring vibrational molecular transitions at 1233 and 1660 cm-1 increases under the influence of the electric field of the plasma, depending on the delay time between the plasma pulse and the laser firing pulse. At the same time, the plasma contributes to the degradation of p-BQ molecules by generating hydrogen and hydroxyl radicals, which decompose p-BQ into different carboxylic acids. After SPP, the CARS signal intensity of the vibrational bands of p-BQ ceased and the degradation of p-BQ was confirmed by UV-visible absorption spectroscopy and liquid chromatography analysis.

  11. Indoor biology pollution control based on system-based humidity priority control strategy

    Institute of Scientific and Technical Information of China (English)

    刘亚昱; 谢慧; 石博强

    2009-01-01

    Indoor biological contamination and HVAC system secondary contamination problems caused wide public concerns. Biological contamination control will be the next step to achieve better IAQ. The most efficient and safe way to control biological contamination was to limit relative humidity in HVAC system and conditioned environment in the range that is more unsuitable for microorganism to survive. In this paper,by referring to bio-clean project experiences,a system-based humidity priority control manner came into being by lowering outdoor air humidity ratio to eliminate all indoor latent load and using self recirculation units to bear indoor sensible load. Based on the whole-course residue humidity contaminant control concept,dynamic step models for coil and conditioned zone were developed to describe mass and energy conservation and transformation processes. Then,HVAC system and conditioned zone dynamic models were established on LabVIEW+Matlab platform to investigate optimized regulation types,input signatures and control logics. Decoupling between cooling and dehumidification processes can be achieved and a more simplified and stable control system can be acquired by the system-based humidity priority control strategy. Therefore,it was a promising way for controlling biological pollution in buildings in order to achieve better IAQ.

  12. Characterization of Radiation Fields in Biological Shields of Nuclear Power Plants for Assessing Concrete Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Remec, Igor [ORNL; Rosseel, Thomas M [ORNL; Field, Kevin G [ORNL; Pape, Yann Le [Oak Ridge National Laboratory (ORNL)

    2016-01-01

    Life extensions of nuclear power plants to 60 and potentially 80 years of operation have renewed interest in long-term material degradation. One material being considered is concrete with a particular focus on radiation-induced effects. Based on the projected neutron fluence (E > 0.1 MeV) values in the concrete biological shields of the US PWR fleet and the available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database and a reliable determination of relevant neutron fluence energy cutoff value are necessary to assure reliable risk assessment for NPPs extended operation.

  13. THE DYNAMICS OF IN VITRO DEGRADATION OF NON-WOVEN POLYLACTIDE MATRICES IN MODEL BIOLOGICAL LIQUID

    Directory of Open Access Journals (Sweden)

    I. A. Khlusov

    2013-01-01

    Full Text Available The weekly in vitro degradation of fibrous-porous non-woven polylactide scaffolds made by aerodynamic formation in a turbulent gas flow has been studied with 37 °С in model RPMI-1640 medium imitated body fluid of organism. Lactate monomers released into solution exponentially and reached slowly a maximum value the end of the observation (5th week of dissolution. At the same time, reducing the concentrations of calcium and inorganic phosphorus ions in solutions contacted with tested samples (10×10×1 mm2 testified about chemical elements adsorption on artificial material. Ions exchange with biological fluids may be a basis of regulated bioactivity of fibrous-porous non-woven biodegradable material in application to intercellular matrix bioengineering for regenerative medicine

  14. Transcriptional profiling of Gram-positive Arthrobacter in the phyllosphere: induction of pollutant degradation genes by natural plant phenolic compounds.

    Science.gov (United States)

    Scheublin, Tanja R; Deusch, Simon; Moreno-Forero, Silvia K; Müller, Jochen A; van der Meer, Jan Roelof; Leveau, Johan H J

    2014-07-01

    Arthrobacter chlorophenolicus A6 is a Gram-positive, 4-chlorophenol-degrading soil bacterium that was recently shown to be an effective colonizer of plant leaf surfaces. The genetic basis for this phyllosphere competency is unknown. In this paper, we describe the genome-wide expression profile of A.chlorophenolicus on leaves of common bean (Phaseolus vulgaris) compared with growth on agar surfaces. In phyllosphere-grown cells, we found elevated expression of several genes known to contribute to epiphytic fitness, for example those involved in nutrient acquisition, attachment, stress response and horizontal gene transfer. A surprising result was the leaf-induced expression of a subset of the so-called cph genes for the degradation of 4-chlorophenol. This subset encodes the conversion of the phenolic compound hydroquinone to 3-oxoadipate, and was shown to be induced not only by 4-chlorophenol but also hydroquinone, its glycosylated derivative arbutin, and phenol. Small amounts of hydroquinone, but not arbutin or phenol, were detected in leaf surface washes of P.vulgaris by gas chromatography-mass spectrometry. Our findings illustrate the utility of genomics approaches for exploration and improved understanding of a microbial habitat. Also, they highlight the potential for phyllosphere-based priming of bacteria to stimulate pollutant degradation, which holds promise for the application of phylloremediation. PMID:24373130

  15. Microwave-assisted chemical oxidation of biological waste sludge: simultaneous micropollutant degradation and sludge solubilization.

    Science.gov (United States)

    Bilgin Oncu, Nalan; Akmehmet Balcioglu, Isil

    2013-10-01

    Microwave-assisted hydrogen peroxide (MW/H2O2) treatment and microwave-assisted persulfate (MW/S2O8(2-)) treatment of biological waste sludge were compared in terms of simultaneous antibiotic degradation and sludge solubilization. A 2(3) full factorial design was utilized to evaluate the influences of temperature, oxidant dose, and holding time on the efficiency of these processes. Although both MW/H2O2 and MW/S2O8(2-) yielded ≥97% antibiotic degradation with 1.2g H2O2 and 0.87 g S2O8(2-) per gram total solids, respectively, at 160 °C in 15 min, MW/S2O8(2-) was found to be more promising for efficient sludge treatment at a lower temperature and a lower oxidant dosage, as it allows more effective activation of persulfate to produce the SO4(-) radical. Relative to MW/H2O2, MW/S2O8(2-) gives 48% more overall metal solubilization, twofold higher improvement in dewaterability, and the oxidation of solubilized ammonia to nitrate in a shorter treatment period. PMID:23928124

  16. Evident bacterial community changes but only slight degradation when polluted with pyrene in a red soil

    Directory of Open Access Journals (Sweden)

    Gaidi eRen

    2015-01-01

    Full Text Available Understanding the potential for PAH degradation by indigenous microbiota and the influence of PAHs on native microbial communities is of great importance for bioremediation and ecological evaluation. Various studies have focused on the bacterial communities in the environment where obvious PAH degradation was observed, little is known about the microbiota in the soil where poor degradation was observed. Soil microcosms were constructed with a red soil by supplementation with a high-molecular-weight PAH (pyrene at three dosages (5, 30, and 70 mg.kg-1. Real-time PCR was used to evaluate the changes in bacterial abundance and pyrene dioxygenase gene (nidA quantity. Illumina sequencing was used to investigate changes in diversity, structure, and composition of bacterial communities. After 42 days of incubation, no evident degradation was observed. The poor degradation ability was associated with the stability or significant decrease of abundance of the nidA gene. Although the abundance of the bacterial 16S rRNA gene was not affected by pyrene, the bacterial richness and diversity were decreased with increasing dosage of pyrene and the community structure was changed. Phylotypes affected by pyrene were comprehensively surveyed: (1 at the high taxonomic level, seven of the abundant phyla/classes (relative abundance >1.0% including Chloroflexi, AD3, WPS-2, GAL5, Alphaproteobacteria, Actinobacteria, and Deltaproteobacteria and one rare phylum Crenarchaeota were significantly decreased by at least one dosage of pyrene, while 3 phyla/classes (Acidobacteria, Betaproteobacteria, and Gammaproteobacteria were significantly increased; and (2 at the lower taxonomic level, the relative abundances of twelve orders were significantly depressed, whereas those of nine orders were significantly increased. This work enhanced our understanding of the biodegradation potential of pyrene in red soil and the effect of pyrene on soil ecosystems at the microbial community

  17. Repair and strengthening of R/C bridges degraded by environmental actions and pollution

    OpenAIRE

    Benedetti, Andrea; Donchev, Ted; Pelà, Luca

    2012-01-01

    Many bridges all around the world experience very hard environmental conditions, and due to the irregular maintenance effort, show different problems of cracking, concrete cover detachment and steel reinforcement wear and corrosion. In general, as a consequence of the polluted rain wetting, the problem is more evident in vertical structures than in the horizontal ones, and serious problems can arise when the piers and columns are very tall. In recent times, the solutions offered by composite ...

  18. Bioremediation of soil polluted with crude oil and its derivatives: Microorganisms, degradation pathways, technologies

    OpenAIRE

    Beškoski Vladimir P.; Gojgić-Cvijović Gordana Đ.; Milić Jelena S.; Ilić Mila V.; Miletić Srđan B.; Jovančićević Branimir S.; Vrvić-Miroslav M.

    2012-01-01

    The contamination of soil and water with petroleum and its products occurs due to accidental spills during exploitation, transport, processing, storing and use. In order to control the environmental risks caused by petroleum products a variety of techniques based on physical, chemical and biological methods have been used. Biological methods are considered to have a comparative advantage as cost effective and environmentally friendly technologies. Bioremediation, defined as the use of b...

  19. Behavior of selected organic pollutants in municipal waste during the mechanical-biological progress of composting

    International Nuclear Information System (INIS)

    Municipal waste was investigated during the mechanical-biological process of composting. Waste from Burgenland is treated mechanically and biologically to reduce organic matter in the material and to keep gas building potential low before deposition. Samples were taken and analyzed during a period of 80 days. The parameters: temperature, dry-weight, glow loss, ammonium, nitrate and phenolic substances were measured to follow the composting process. It was found that the process was almost finished after a period of 40 days in which the material was breathed intensively. The content of polycyclic aromatic hydrocarbons and polychlorinated phenols decreased slightly. It was not clear whether this was due to microbiological activity or blowing-out effects. Polychlorinated biphenyls were found to be stable during composting. The concentrations were considered as high. Hepta- and octachlorinated dibenzodioxines were formed during the first 10 days. The increase of octachlorinated dibenzodioxin was threefold. Other dioxines and furanes remained unchanged. Finally it was found out that mechanical-biological waste treatment is insufficient in order to reduce organic pollutants effectively. (author)

  20. Influence of supporting electrolyte in electricity generation and degradation of organic pollutants in photocatalytic fuel cell.

    Science.gov (United States)

    Khalik, Wan Fadhilah; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Voon, Chun-Hong; Yusuf, Sara Yasina; Yusoff, Nik Athirah; Lee, Sin-Li

    2016-08-01

    This study investigated the effect of different supporting electrolyte (Na2SO4, MgSO4, NaCl) in degradation of Reactive Black 5 (RB5) and generation of electricity. Zinc oxide (ZnO) was immobilized onto carbon felt acted as photoanode, while Pt-coated carbon paper as photocathode was placed in a single chamber photocatalytic fuel cell, which then irradiated by UV lamp for 24 h. The degradation and mineralization of RB5 with 0.1 M NaCl rapidly decreased after 24-h irradiation time, followed by MgSO4, Na2SO4 and without electrolyte. The voltage outputs for Na2SO4, MgSO4 and NaCl were 908, 628 and 523 mV, respectively, after 24-h irradiation time; meanwhile, their short-circuit current density, J SC, was 1.3, 1.2 and 1.05 mA cm(-2), respectively. The power densities for Na2SO4, MgSO4 and NaCl were 0.335, 0.256 and 0.245 mW cm(-2), respectively. On the other hand, for without supporting electrolyte, the voltage output and short-circuit current density was 271.6 mV and 0.055 mA cm(-2), respectively. The supporting electrolyte NaCl showed greater performance in degradation of RB5 and generation of electricity due to the formation of superoxide radical anions which enhance the degradation of dye. The mineralization of RB5 with different supporting electrolyte was measured through spectrum analysis and reduction in COD concentration. PMID:27184147

  1. Design of a Metal Oxide-Organic Framework (MoOF) Foam Microreactor: Solar-Induced Direct Pollutant Degradation and Hydrogen Generation.

    Science.gov (United States)

    Zhu, Liangliang; Fu Tan, Chuan; Gao, Minmin; Ho, Ghim Wei

    2015-12-16

    A macroporous carbon network combined with mesoporous catalyst immobilization by a template method gives a metal-oxide-organic framework (MoOF) foam microreactor that readily soaks up pollutants and localizes solar energy in itself, leading to effective degradation of water pollutants (e.g., methyl orange (MO) and also hydrogen generation. The cleaned-up water can be removed from the microreactor simply by compression, and the microreactor used repeatedly. PMID:26501718

  2. Biological monitoring and allergic sensitization in traffic police officers exposed to urban air pollution.

    Science.gov (United States)

    Vimercati, L; Carrus, A; Bisceglia, L; Tatò, I; Bellotta, M R; Russo, A; Martina, G; Daprile, C; Di Leo, E; Nettis, E; Assennato, G

    2006-01-01

    Urban air pollution is associated with an increased incidence of allergic respiratory diseases. The aim of this study is to assess the occupational exposure to urban pollution through biological monitoring of PAHs and CO airborne levels in 122 traffic wardens in Bari, Italy and to investigate sensitization to inhaled allergens in a subgroup of workers. After filling in a questionnaire on lifestyle habits and occupational history, a medical examination, spirometry were carried out and blood samples were taken; the measurement of exhaled CO and urinary 1-hydroxypyrene (1-HOP) was performed and data on the air quality of Bari Municipality were obtained. Specific IgE dosage and skin prick tests were done on 18 workers giving altered values of spirometry or anamnestic allergic symptoms. Urinary 1-HOP showed median levels of 0.1 microMol/Mol(creat) (range 0.02-6.68) and was not influenced by smoking habits, work tasks, area of the city and environmental levels of PM10. Exhaled CO, with median value of 1 ppm (range 0-27), was significantly higher in smokers than in non-smokers, while no other variable seemed to play a role in modifying the levels. Specific IgE production versus inhalant allergens was found in 6 cases. Positive skin prick test results were observed in 11 cases. Allergic rhinitis was diagnosed in 6 cases. At least one of the allergometric tests performed was positive in 61 percent of the subjects. In conclusion, our results suggest the importance of introducing allergic status evaluation in this class of workers, exposed to several urban air pollutants. PMID:17291408

  3. Particulate matter air pollution disrupts endothelial cell barrier via calpain-mediated tight junction protein degradation

    Directory of Open Access Journals (Sweden)

    Wang Ting

    2012-08-01

    Full Text Available Abstract Background Exposure to particulate matter (PM is a significant risk factor for increased cardiopulmonary morbidity and mortality. The mechanism of PM-mediated pathophysiology remains unknown. However, PM is proinflammatory to the endothelium and increases vascular permeability in vitro and in vivo via ROS generation. Objectives We explored the role of tight junction proteins as targets for PM-induced loss of lung endothelial cell (EC barrier integrity and enhanced cardiopulmonary dysfunction. Methods Changes in human lung EC monolayer permeability were assessed by Transendothelial Electrical Resistance (TER in response to PM challenge (collected from Ft. McHenry Tunnel, Baltimore, MD, particle size >0.1 μm. Biochemical assessment of ROS generation and Ca2+ mobilization were also measured. Results PM exposure induced tight junction protein Zona occludens-1 (ZO-1 relocation from the cell periphery, which was accompanied by significant reductions in ZO-1 protein levels but not in adherens junction proteins (VE-cadherin and β-catenin. N-acetyl-cysteine (NAC, 5 mM reduced PM-induced ROS generation in ECs, which further prevented TER decreases and atteneuated ZO-1 degradation. PM also mediated intracellular calcium mobilization via the transient receptor potential cation channel M2 (TRPM2, in a ROS-dependent manner with subsequent activation of the Ca2+-dependent protease calpain. PM-activated calpain is responsible for ZO-1 degradation and EC barrier disruption. Overexpression of ZO-1 attenuated PM-induced endothelial barrier disruption and vascular hyperpermeability in vivo and in vitro. Conclusions These results demonstrate that PM induces marked increases in vascular permeability via ROS-mediated calcium leakage via activated TRPM2, and via ZO-1 degradation by activated calpain. These findings support a novel mechanism for PM-induced lung damage and adverse cardiovascular outcomes.

  4. Biological monitoring of aromatic diisocyanates in workers exposed to thermal degradation products of polyurethanes.

    Science.gov (United States)

    Rosenberg, Christina; Nikkilä, Kirsi; Henriks-Eckerman, Maj-Len; Peltonen, Kimmo; Engströrm, Kerstin

    2002-10-01

    Exposure to diisocyanates was assessed by biological monitoring among workers exposed to the thermal degradation products of polyurethanes (PURs) in five PUR-processing environments. The processes included grinding and welding in car repair shops, milling and turning of PUR-coated metal cylinders, injection moulding of thermoplastic PUR, welding and cutting of PUR-insulated district heating pipes during installation and joint welding, and heat-flexing of PUR floor covering. Isocyanate-derived amines in acid-hydrolysed urine samples were analysed as perfluoroacylated derivatives by gas chromatography mass spectrometry in negative chemical ionisation mode. The limits of quantification (LOQs) for the aromatic diamines 2,4- and 2,6-toluenediamine (2,4- and 2,6-TDA) and 4,4'-methylenedianiline (4,4'-MDA) were 0.25 nmol l(-1), 0.25 nmol l(-1) and 0.15 nmol l(-1), respectively. The LOQ for the aliphatic diamines hexamethylenediamine (HDA), isophoronediamine (IpDA) and 4,4'-diaminodicyclohexyl methane (4,4'-DDHM) was 5 nmol l(-1). TDA and MDA were detected in urine samples from workers in car repair shops and MDA in samples from workers welding district heating pipes. The 2,4-TDA isomer accounted for about 80% of the total TDA detected. No 2.6-TDA was found in the urine of non-exposed workers. The highest measured urinary TDA and MDA concentrations were 0.79 nmol mmol(-1) creatinine and 3.1 nmol mmol(-1) creatinine, respectively. The concentrations found among non-exposed workers were 0.08 nmol mmol(-1) creatinine for TDA and 0.05 nmol mmol(-1) creatinine for MDA (arithmetic means). Exposure to diisocyanates originating from the thermal degradation of PURs are often intermittent and of short duration. Nevertheless, exposure to aromatic diisocyanates can be identified by monitoring diisocyanate-derived amines in acid-hydrolysed urine samples. PMID:12400919

  5. Coupling membrane separation and photocatalytic oxidation processes for the degradation of pharmaceutical pollutants.

    Science.gov (United States)

    Martínez, F; López-Muñoz, M J; Aguado, J; Melero, J A; Arsuaga, J; Sotto, A; Molina, R; Segura, Y; Pariente, M I; Revilla, A; Cerro, L; Carenas, G

    2013-10-01

    The coupling of membrane separation and photocatalytic oxidation has been studied for the removal of pharmaceutical pollutants. The retention properties of two different membranes (nanofiltration and reverse osmosis) were assessed. Comparable selectivity on the separation of pharmaceuticals were observed for both membranes, obtaining a permeate stream with concentrations of each pharmaceutical below 0.5 mg L(-)(1) and a rejected flux highly concentrated (in the range of 16-25 mg L(-)(1) and 18-32 mg L(-)(1) of each pharmaceutical for NF-90 and BW-30 membranes, respectively), when an initial stream of six pharmaceuticals was feeding to the membrane system (10 mg L(-)(1) of each pharmaceutical). The abatement of concentrated pharmaceuticals of the rejected stream was evaluated by means of heterogeneous photocatalytic oxidation using TiO2 and Fe2O3/SBA-15 in presence of hydrogen peroxide as photo-Fenton system. Both photocatalytic treatments showed remarkable removals of pharmaceutical compounds, achieving values between 80 and 100%. The nicotine was the most refractory pollutant of all the studied pharmaceuticals. Photo-Fenton treatment seems to be more effective than TiO2 photocatalysis, as high mineralization degree and increased nicotine removal were attested. This work can be considered an interesting approach of coupling membrane separation and heterogeneous photocatalytic technologies for the successful abatement of pharmaceutical compounds in effluents of wastewater treatment plants. PMID:23863375

  6. Influence of Environmental Stressors on the Physiology of Pollutant Degrading Bacteria

    DEFF Research Database (Denmark)

    Svenningsen, Nanna Bygvraa

    compounds. However, soil environments frequently undergo changes, for instance in nutrient and water availability, and microbial cells residing in soils are continuously exposed to various abiotic and biotic insults. Thriving in soil is therefore difficult and conditions are rarely optimal for the microbial...... model degrader bacteria to nutrient- and oxidative stress, two highly relevant stress scenarios in natural environments, and at evaluating the impact of these environmental stress conditions on catabolic gene expression. The results suggest that environmental bacteria, here represented by the toluene...

  7. A biological quality index for volcanic Andisols and Aridisols (Canary Islands, Spain): variations related to the ecosystem degradation.

    Science.gov (United States)

    Armas, Cecilia María; Santana, Bayanor; Mora, Juan Luis; Notario, Jesús Santiago; Arbelo, Carmen Dolores; Rodríguez-Rodríguez, Antonio

    2007-05-25

    The aim of this work is to identify indicators of biological activity in soils from the Canary Islands, by studying the variation of selected biological parameters related to the processes of deforestation and accelerated soil degradation affecting the Canarian natural ecosystems. Ten plots with different degrees of maturity/degradation have been selected in three typical habitats in the Canary Islands: laurel forest, pine forest and xerophytic scrub with Andisols and Aridisols as the most common soils. The studied characteristics in each case include total organic carbon, field soil respiration, mineralized carbon after laboratory incubation, microbial biomass carbon, hot water-extractable carbon and carboxymethylcellulase, beta-d-glucosidase and dehydrogenase activities. A Biological Quality Index (BQI) has been designed on the basis of a regression model using these variables, assuming that the total soil organic carbon content is quite stable in nearly mature ecosystems. Total carbon in mature ecosystems has been related to significant biological variables (hot water-extractable carbon, soil respiration and carboxymethylcellulase, beta-d-glucosidase and dehydrogenase activities), accounting for nearly 100% of the total variance by a multiple regression analysis. The index has been calculated as the ratio of the value calculated from the regression model and the actual measured value. The obtained results show that soils in nearly mature ecosystems have BQI values close to unit, whereas those in degraded ecosystems range between 0.24 and 0.97, depending on the degradation degree. PMID:17316768

  8. 典型POPs的生物降解修复技术研究与发展%Research and development of bioremediation technology for persistent organic pollutants degradation

    Institute of Scientific and Technical Information of China (English)

    吴海珍; 韦朝海; 周盛

    2012-01-01

    engineered bacteria composed of multi-plasmids that are capable of degrading different pollutants due to the change of metabolic pathway; (iii) the technique of enzyme immobilization using carriers for improving enzyme stability, recycling and reuse; and (iv) the construction of biodegradation enzymes by subunit molecular replacement, enzyme-directed mutagenesis, and in vitro evolution of enzymes. In addition, the principles for improving POPs bioremediation by molecular biology are analyzed. The obstacles for the practical application of the genetically engineered microorganisms and immobilized enzymes are presented. Based on the analysis of polybrominated diphenyl ethers (PBDEs) degradation as a typical case of bioremediation of POPs, it is stressed that it is necessary to establish multi-scale functions for the strengthen of biodegradation process. The fundamental scientific issues to resolve POPs pollution problems by the combination of molecular biology and genetic engineering are also proposed. This means that the typical POPs bioremediation techniques emphasize the need to build a synergic degradation theory for degradation of both POPs and macro-pollutants, and the pursuit of more functions with respect to the gene level, molecular level, reactor level and project level.

  9. Use of bromodeoxyuridine immunocapture to identify psychrotolerant phenanthrene-degrading bacteria in phenanthrene-enriched polluted Baltic Sea sediments

    Energy Technology Data Exchange (ETDEWEB)

    Edlund, A.; Jansson, J.

    2008-05-01

    The aim of this study was to enrich and identify psychrotolerant phenanthrenedegrading bacteria from polluted Baltic Sea sediments. Polyaromatic hydrocarbon (PAH)-contaminated sediments were spiked with phenanthrene and incubated for 2 months in the presence of bromodeoxyuridine that is incorporated into the DNA of replicating cells. The bromodeoxyuridine-incorporated DNA was extracted by immunocapture and analyzed by terminal-restriction fragment length polymorphism and 16S rRNA gene cloning and sequencing to identify bacterial populations that were growing. In addition, degradation genes were quantified in the bromodeoxyuridine-incorporated DNA by real-time PCR. Phenanthrene concentrations decreased after 2 months of incubation in the phenanthrene-enriched sediments and this reduction correlated to increases in copy numbers of xylE and phnAc dioxygenase genes. Representatives of Exiguobacterium, Schewanella,Methylomonas, Pseudomonas, Bacteroides and an uncultured Deltaproteobacterium and a Gammaproteobacterium dominated the growing community in the phenanthrene spiked sediments. Isolates that were closely related to three of these bacteria (two pseudomonads and an Exiguobacterium sp.) could reduce phenanthrene concentrations in pure cultures and they all harbored phnAc dioxygenase genes. These results confirm that this combination of culture-based and molecular approaches was useful for identification of actively growing bacterial species with a high potential for phenanthrene degradation.

  10. Photoelectrocatalytic Degradation of Organic Pollutants in Aqueous Solution Using a Pt-TiO2 Film

    Directory of Open Access Journals (Sweden)

    Chun He

    2009-01-01

    Full Text Available A series of Pt-TiO2 films with nanocrystaline structure was prepared by a procedure of photodeposition and subsequent dip-coating. The Pt-TiO2 films were characterized by X-ray diffraction, scanning electronic microscope, electrochemical characterization to examine the surface structure, chemical composition, and the photoelectrochemical properties. The photocatalytic activity of the Pt-TiO2 films was evaluated in the photocatalytic (PC and photoelectrocatalytic (PEC degradation of formic acid in aqueous solution. Compared with a TiO2 film, the efficiency of formic acid degradation using the Pt-TiO2 films was significantly higher in both the PC and PEC processes. The enhancement is attributed to the action of Pt deposits on the TiO2 surface, which play a key role by attracting conduction band photoelectrons. In the PEC process, the anodic bias externally applied on the illuminated Pt-TiO2 films can further drive away the accumulated photoelectrons from the metal deposits and promote a process of interfacial charge transfer.

  11. Degradation of atrazine by microbial consortium in an anaerobic submerged biological filter.

    Science.gov (United States)

    Nasseri, Simin; Baghapour, Mohammad Ali; Derakhshan, Zahra; Faramarzian, Mohammad

    2014-09-01

    Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) (ATZ) is one of the components of S-triazine. Due to its certain characteristics, ATZ causes pollution in various ecosystems and has been of concern for its probable carcinogenic effects on humans. Researchers have used chemical and physical methods for removing ATZ from the environment. Although these methods are quick, they have not been capable of complete mineralization. Therefore, researchers are looking for methods with lower energy consumption and cost and higher efficiency. In this study, biodegradation of ATZ by microbial consortium was evaluated in the aquatic environment. The present study aimed to evaluate the efficiency of ATZ removal from aqueous environments by using an anaerobic submerged biological filter in four concentration levels of atrazine and three hydraulic retention times. The maximum efficiencies of ATZ and soluble chemical oxygen demand (SCOD) were 51.1 and 45.6%, respectively. There was no accumulation of ATZ in the biofilm and the loss of ATZ in the control reactor was negligible. This shows that ATZ removal in this system was due to biodegradation. Furthermore, the results of modeling showed that the Stover-Kincannon model had desirable fitness (R² > 99%) in loading ATZ in this biofilter. PMID:25252353

  12. Treatment of pharmaceutical wastewater using interior micro-electrolysis/Fenton oxidation-coagulation and biological degradation.

    Science.gov (United States)

    Xu, Xiaoyi; Cheng, Yao; Zhang, Tingting; Ji, Fangying; Xu, Xuan

    2016-06-01

    The synthesis of steroid hormones produces wastewater that is difficult to manage and characterize due to its complex components and high levels of toxicity and bio-refractory compounds. In this work, interior micro-electrolysis (IME) and Fenton oxidation-coagulation (FOC) were investigated as wastewater pretreatment processes in combination with biological treatments using a hydrolysis acidification unit (HA) and two-stage biological contact oxidation (BCO) in laboratory and field experiments. In laboratory experiments with an average initial COD load of about 15,000 mg/L, pH of 4, Fe-C/water (V/V) ratio of 1:1, air/water ratio of 10, and reaction time of 180 min, IME achieved a COD removal efficiency of 31.8% and a 1.7-fold increase in the BOD5/COD (B/C) ratio of wastewater. The Fe(2+) concentration of 458.5 mg/L in the IME effluent meets the requirements of the Fenton oxidation (FO) process. FOC further reduced the COD with an efficiency of 30.1%, and the B/C ratio of the wastewater reached 0.59. Excitation-emission matrix (EEM) analysis showed that complex higher molecular weight organic compounds in the wastewater were degraded after the pretreatment process. In addition, a field experiment with a continuous flow of 96 m(3)/d was conducted for over 90 d. The combined process system operated steadily, though the Fe-C fillings should be soaked in a sulfuric acid solution (5‰) for 12 h to recover activity every two weeks. The COD and BOD5 concentrations in the final effluent were less than 90 mg/L and 15 mg/L, respectively. PMID:26953729

  13. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation

    KAUST Repository

    Zhang, Tao

    2014-05-20

    Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize organics and halide anions reducing oxidation capacity of PDS and producing toxic halogenated products. Here we report that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals. The PDS/CuO coupled process is most efficient at neutral pH for decomposing a model compound, 2,4-dichlorophenol (2,4-DCP). In a continuous-flow reaction with an empty-bed contact time of 0.55 min, over 90% of 2,4-DCP (initially 20 μM) and 90% of adsorbable organic chlorine (AOCl) can be removed at the PDS/2,4-DCP molar ratio of 1 and 4, respectively. Based on kinetic study and surface characterization, PDS is proposed to be first activated by CuO through outer-sphere interaction, the rate-limiting step, followed by a rapid reaction with 2,4-DCP present in the solution. In the presence of ubiquitous chloride ions in groundwater/industrial wastewater, the PDS/CuO oxidation shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products. This work provides a new way of PDS activation for contaminant removal. © 2014 American Chemical Society.

  14. Characterization of Radiation Fields in Biological Shields of Nuclear Power Plants for Assessing Concrete Degradation

    Science.gov (United States)

    Remec, Igor; Rosseel, Thomas M.; Field, Kevin G.; Le Pape, Yann

    2016-02-01

    Life extensions of nuclear power plants to 60 and potentially 80 years of operation have renewed interest in long-term material degradation. One material being considered is concrete, with a particular focus on radiation-induced effects. Based on the projected neutron fluence values (E > 0.1 MeV) in the concrete biological shields of the US pressurized water reactor fleet and the available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database and a reliable determination of relevant neutron fluence energy cutoff value are necessary to ensure reliable risk assessment for extended operation of nuclear power plants. Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC0500OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  15. Assessment of biological effects of environmental pollution along the NW Mediterranean Sea using mussels as sentinel organisms

    Energy Technology Data Exchange (ETDEWEB)

    Zorita, Izaskun [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Apraiz, Itxaso [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Ortiz-Zarragoitia, Maren [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Orbea, Amaia [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Cancio, Ibon [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Soto, Manu [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Marigomez, Ionan [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Cajaraville, Miren P. [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain)]. E-mail: mirenp.cajaraville@ehu.es

    2007-07-15

    With the aim of assessing the biological effects of pollution along three gradients of pollution in the NW Mediterranean Sea, a biomonitoring survey was implemented using a battery of biomarkers (lysosomal membrane stability, lysosomal structural changes, metallothionein (MT) induction and peroxisome proliferation) in mussels over a period of two years as part of the EU-funded BEEP project. Mussels from the most impacted zones (Fos, Genova and Barcelona harbours) showed enlarged lysosomes accompanied by reduced labilisation period of lysosomal membranes, indicating disturbed health. MT levels did not reveal significant differences between stations and were significantly correlated with gonad index, suggesting that they were influenced by gamete development. Peroxisomal acyl-CoA oxidase (AOX) activity was significantly inhibited in polluted stations possibly due to interactions among mixtures of pollutants. In conclusion, the application of a battery of effect and exposure biomarkers provided relevant data for the assessment of biological effects of environmental pollution along the NW Mediterranean Sea. - The biomarker approach is suitable for assessment of environmental pollution in the NW Mediterranean Sea.

  16. Dark ambient degradation of Bisphenol A and Acid Orange 8 as organic pollutants by perovskite SrFeO₃-δ metal oxide.

    Science.gov (United States)

    Leiw, Ming Yian; Guai, Guan Hong; Wang, Xiaoping; Tse, Man Siu; Ng, Chee Mang; Tan, Ooi Kiang

    2013-09-15

    Current advanced oxidation processes (AOPs) are chemically and energetically intensive processes, which are undesirable for cost-effective and large-scale system water treatment and wastewater recycling. This study explored the Strontium Ferrite (SFO) metal oxide on the degradation of highly concentrated organic pollutants under dark ambient condition without any external stimulants. The SFO particles with single perovskite structure were successfully synthesized with a combined high temperature and high-energy ball milling process. An endocrine disruptor, Bisphenol A (BPA) and an azo dye, Acid Orange 8 (AO8) were used as probe organic pollutants. BPA was completely degraded with 83% of mineralization in 24 h while rapid decoloration of AO8 was achieved in 60 min and complete breakdown into primary intermediates and aliphatic acids occurred in 24 h under the treatment of dispersed SFO metal oxide in water. Such efficient degradation could be attributed to the enhanced adsorption of these anionic pollutants on positively charged ball-milled SFO metal oxide surface, resulted in higher degradation activity. Preliminary degradation mechanisms of BPA and AO8 under the action of SFO metal oxide were proposed. These results showed that the SFO metal oxide could be an efficient alternative material as novel advanced oxidation technology for low cost water treatment. PMID:23742952

  17. Cation exchange resin immobilized bimetallic nickel-iron nanoparticles to facilitate their application in pollutants degradation.

    Science.gov (United States)

    Ni, Shou-Qing; Yang, Ning

    2014-04-15

    Nanoscale zerovalent iron (nZVI) usually suffers from reduction of reactivity by aggregation, difficulty of assembling, environmental release and health concerns. Furthermore, data are lacking on the effect of cheap nickel on debromination of decabromodiphenyl ether (DBDE) by immobilized nZVI in aqueous system. In this study, strong acid polystyrene cation-exchange resins with particle diameter from 0.4 to 0.6 mm were utilized as matrices to immobilize bimetallic nickel-iron nanoparticles in order to minimize aggregation and environmental leakage risks of nZVI and to enhance their reactivity. Elemental distribution mapping showed that iron particles distributed uniformly on the surface of the resin and nickel particles were dispersed homogeneously into Fe phase. The reaction rate of resin-bound nZVI is about 55% higher than that of dispersed nZVI. The immobilized bimetallic nanoparticles with 9.69% Ni had the highest debromination percent (96%) and reaction rate (0.493 1/h). The existence of Ni significantly improved the debromination rate, due to the surface coverage of catalytic metal on the reductive metal and the formation of a galvanic cell. The environmental dominant congeners, such as BDE 154, 153, 100, 99 and 47, were produced during the process. Outstanding reactive performance, along with magnetic separation assured that resin-bound bimetallic nickel-iron nanoparticles are promising material that can be utilized to remediate a wide variety of pollutants contaminated sites including polybrominated diphenyl ethers. PMID:24559714

  18. Re-inoculation strategies enhance the degradation of emerging pollutants in fungal bioaugmentation of sewage sludge.

    Science.gov (United States)

    Rodríguez-Rodríguez, Carlos E; Lucas, Daniel; Barón, Enrique; Gago-Ferrero, Pablo; Molins-Delgado, Daniel; Rodríguez-Mozaz, Sara; Eljarrat, Ethel; Díaz-Cruz, M Silvia; Barceló, Damià; Caminal, Glòria; Vicent, Teresa

    2014-09-01

    The use of Trametes versicolor has been partially successful in the removal of some pharmaceuticals from sewage sludge in laboratory-scale biopile systems. The application of two strategies for the re-inoculation of biomass was assessed during the fungal bioaugmentation of non-sterile sludge (42-d treatment) as an approach to improve the elimination of pharmaceuticals and other groups of emerging pollutants. Globally, the re-inoculation of biopiles with blended mycelium exerted a major effect on the removal of pharmaceuticals (86%), brominated-flame-retardants (81%) and UV filters (80%) with respect to the re-inoculation with additional lignocellulosic substrate colonized by the fungus (69-67-22%). The performance was better than that of the analogous non-re-inoculated systems that were assayed previously for the removal of pharmaceuticals. The results demonstrate the ability of T. versicolor to remove a wide spectrum of emerging micropollutants under non-sterile conditions, while re-inoculation appears to be a useful step to improve the fungal treatment of sludge. PMID:24582425

  19. Structure and photocatalysis activity of silver doped titanium oxide nanotubes array for degradation of pollutants

    Science.gov (United States)

    Al-Arfaj, E. A.

    2013-10-01

    Semiconductor titanium oxide showed a wonderful performance as a photocatalysis for environmental remediation. Owing to high stability and promising physicochemical properties, titanium oxide nanostructures are used in various applications such as wastewater treatment, antimicrobial and air purification. In the present study, titanium oxide nanotubes and silver doped titanium oxide nanotubes were synthesized via anodic oxidation method. The morphology and composition structure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results depicted that nanotubes possess anatase phase with average tube diameter of 65 nm and 230 ± 12 nm in length. The band gap of the un-doped and silver doped titanium dioxide nanotubes was determined using UV-Vis. spectrophotometer. The results showed that the band gap of titanium dioxide nanotubes is decreased when doped with silver ions. The photocatalysis activity of un-doped and silver doped TiO2 nanotubes were evaluated in terms of degradation of phenol in the presence of ultra violet irradiation. It was found that silver doped TiO2 nanotubes exhibited much higher photocatalysis activity than un-doped TiO2 nanotubes.

  20. Isolation, fingerprinting and genetic identification of indigenous PAHs degrading bacteria from oil-polluted soils.

    Science.gov (United States)

    Alrumman, Sulaiman A; Hesham, Abd El-Latif; Alamri, Saad A

    2016-01-01

    In the present study, thirty five bacterial isolates were obtained from hydrocarbon-contaminated soil samples using an enrichment method. These isolates were tested to grow on mineral salt medium containing anthracene or phenanthrene as sole carbon source. Only five isolates showed the ability to degrade these compounds. RAPD-PCR fingerprinting was carried out for the five isolates, and the DNA patterns revealed that there was no similarity among the examined bacteria whenever the RFLP using four restriction enzymes HaeIII, Msp1, Hinf1 and Taq1 failed to differentiate among them. Five bacterial isolates were grown in high concentration of anthracene and phenanthrene (4% w/v). Two bacterial isolates were selected due to their high ability to grow in the presence of high concentrations of anthracene and phenanthrene. The isolates were identified as Bacillus flexus and Ochrobactrum anthropi, based on DNA sequencing of amplified 16S rRNA gene and phylogenetic analysis. Finally, the ability of these bacterial strains to tolerate and remove different PAHs looked promising for application in bioremediation technologies. PMID:26930863

  1. The complete multipartite genome sequence of Cupriavidus necator JMP134, a versatile pollutant degrader.

    Directory of Open Access Journals (Sweden)

    Athanasios Lykidis

    Full Text Available BACKGROUND: Cupriavidus necator JMP134 is a Gram-negative beta-proteobacterium able to grow on a variety of aromatic and chloroaromatic compounds as its sole carbon and energy source. METHODOLOGY/PRINCIPAL FINDINGS: Its genome consists of four replicons (two chromosomes and two plasmids containing a total of 6631 protein coding genes. Comparative analysis identified 1910 core genes common to the four genomes compared (C. necator JMP134, C. necator H16, C. metallidurans CH34, R. solanacearum GMI1000. Although secondary chromosomes found in the Cupriavidus, Ralstonia, and Burkholderia lineages are all derived from plasmids, analyses of the plasmid partition proteins located on those chromosomes indicate that different plasmids gave rise to the secondary chromosomes in each lineage. The C. necator JMP134 genome contains 300 genes putatively involved in the catabolism of aromatic compounds and encodes most of the central ring-cleavage pathways. This strain also shows additional metabolic capabilities towards alicyclic compounds and the potential for catabolism of almost all proteinogenic amino acids. This remarkable catabolic potential seems to be sustained by a high degree of genetic redundancy, most probably enabling this catabolically versatile bacterium with different levels of metabolic responses and alternative regulation necessary to cope with a challenging environment. From the comparison of Cupriavidus genomes, it is possible to state that a broad metabolic capability is a general trait for Cupriavidus genus, however certain specialization towards a nutritional niche (xenobiotics degradation, chemolithoautotrophy or symbiotic nitrogen fixation seems to be shaped mostly by the acquisition of "specialized" plasmids. CONCLUSIONS/SIGNIFICANCE: The availability of the complete genome sequence for C. necator JMP134 provides the groundwork for further elucidation of the mechanisms and regulation of chloroaromatic compound biodegradation.

  2. Applications of Cu2O octahedral particles on ITO glass in photocatalytic degradation of dye pollutants under a halogen tungsten lamp

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Photocatalytic activity of Cu2O octahedral microcrystals on ITO glass was studied. • They showed high abilities in degradation of methylene blue in the presence of H2O2. • H2O2 amount could affect the degradation efficiency. • Such particles could be easily recycled and still kept high activity. • Many dye pollutants and their mixtures could be efficiently degraded. - Abstract: Cu2O octahedral microcrystals were prepared on the ITO glass by galvanostatic electrodeposition in CuSO4 solution with poly(vinylpryrrolidone) as the surfactant. By controlling the electrodeposition time, the microcrystals could be randomly distributed on the ITO glass and separated from each other, resulting in as many as possible (1 1 1) crystalline planes were exposed. Such microcrystals immobilized on ITO glass were employed in photodegradation of dye pollutants in the presence of H2O2 under a 150 W halogen tungsten lamp. The photodegradation of methylene blue was taken as an example to evaluate the photocatalytic activities of the octahedral Cu2O microcrystals. Effects of electrodeposition time and H2O2 amount on the degradation efficiency was discussed, giving the optimum conditions and the corresponding degradation mechanism. The catalyst showed high ability in degradation of methylene blue, methyl orange, rhodamine B, eosin B and their mixtures under identical conditions

  3. Applications of Cu{sub 2}O octahedral particles on ITO glass in photocatalytic degradation of dye pollutants under a halogen tungsten lamp

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Wei [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Sun, Fengqiang, E-mail: fqsun@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University (China); Exhibition Base of Production, Study and Research on New Polymer Materials and Postgraduate Students’ Innovation Training of Guangdong Higher Education Institutes (China); Chen, Wei; Zhang, Lihe; Min, Zhilin; Li, Weishan [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)

    2013-11-15

    Graphical abstract: - Highlights: • Photocatalytic activity of Cu{sub 2}O octahedral microcrystals on ITO glass was studied. • They showed high abilities in degradation of methylene blue in the presence of H{sub 2}O{sub 2}. • H{sub 2}O{sub 2} amount could affect the degradation efficiency. • Such particles could be easily recycled and still kept high activity. • Many dye pollutants and their mixtures could be efficiently degraded. - Abstract: Cu{sub 2}O octahedral microcrystals were prepared on the ITO glass by galvanostatic electrodeposition in CuSO{sub 4} solution with poly(vinylpryrrolidone) as the surfactant. By controlling the electrodeposition time, the microcrystals could be randomly distributed on the ITO glass and separated from each other, resulting in as many as possible (1 1 1) crystalline planes were exposed. Such microcrystals immobilized on ITO glass were employed in photodegradation of dye pollutants in the presence of H{sub 2}O{sub 2} under a 150 W halogen tungsten lamp. The photodegradation of methylene blue was taken as an example to evaluate the photocatalytic activities of the octahedral Cu{sub 2}O microcrystals. Effects of electrodeposition time and H{sub 2}O{sub 2} amount on the degradation efficiency was discussed, giving the optimum conditions and the corresponding degradation mechanism. The catalyst showed high ability in degradation of methylene blue, methyl orange, rhodamine B, eosin B and their mixtures under identical conditions.

  4. Dark ambient degradation of Bisphenol A and Acid Orange 8 as organic pollutants by perovskite SrFeO3−δ metal oxide

    International Nuclear Information System (INIS)

    Highlights: • Perovskite SFO prepared by high temperature and high-energy ball milling process. • SFO metal oxide shows good efficiency in degrading and mineralizing BPA. • Rapid decoloration of AO8 was achieved in the presence of SFO metal oxide. • O2·− is the predominant ROS for dark oxidative degradation of BPA and AO8. -- Abstract: Current advanced oxidation processes (AOPs) are chemically and energetically intensive processes, which are undesirable for cost-effective and large-scale system water treatment and wastewater recycling. This study explored the Strontium Ferrite (SFO) metal oxide on the degradation of highly concentrated organic pollutants under dark ambient condition without any external stimulants. The SFO particles with single perovskite structure were successfully synthesized with a combined high temperature and high-energy ball milling process. An endocrine disruptor, Bisphenol A (BPA) and an azo dye, Acid Orange 8 (AO8) were used as probe organic pollutants. BPA was completely degraded with 83% of mineralization in 24 h while rapid decoloration of AO8 was achieved in 60 min and complete breakdown into primary intermediates and aliphatic acids occurred in 24 h under the treatment of dispersed SFO metal oxide in water. Such efficient degradation could be attributed to the enhanced adsorption of these anionic pollutants on positively charged ball-milled SFO metal oxide surface, resulted in higher degradation activity. Preliminary degradation mechanisms of BPA and AO8 under the action of SFO metal oxide were proposed. These results showed that the SFO metal oxide could be an efficient alternative material as novel advanced oxidation technology for low cost water treatment

  5. Dark ambient degradation of Bisphenol A and Acid Orange 8 as organic pollutants by perovskite SrFeO{sub 3−δ} metal oxide

    Energy Technology Data Exchange (ETDEWEB)

    Leiw, Ming Yian, E-mail: LEIW0003@e.ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); GlobalFoundries Singapore Pte. Ltd., 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore); Guai, Guan Hong [GlobalFoundries Singapore Pte. Ltd., 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore); School of Chemical and Biomedical Engineering and Center for Advanced Bionanosystems, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457 (Singapore); Wang, Xiaoping [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Tse, Man Siu [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Ng, Chee Mang [GlobalFoundries Singapore Pte. Ltd., 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore); Tan, Ooi Kiang [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2013-09-15

    Highlights: • Perovskite SFO prepared by high temperature and high-energy ball milling process. • SFO metal oxide shows good efficiency in degrading and mineralizing BPA. • Rapid decoloration of AO8 was achieved in the presence of SFO metal oxide. • O{sub 2}·{sup −} is the predominant ROS for dark oxidative degradation of BPA and AO8. -- Abstract: Current advanced oxidation processes (AOPs) are chemically and energetically intensive processes, which are undesirable for cost-effective and large-scale system water treatment and wastewater recycling. This study explored the Strontium Ferrite (SFO) metal oxide on the degradation of highly concentrated organic pollutants under dark ambient condition without any external stimulants. The SFO particles with single perovskite structure were successfully synthesized with a combined high temperature and high-energy ball milling process. An endocrine disruptor, Bisphenol A (BPA) and an azo dye, Acid Orange 8 (AO8) were used as probe organic pollutants. BPA was completely degraded with 83% of mineralization in 24 h while rapid decoloration of AO8 was achieved in 60 min and complete breakdown into primary intermediates and aliphatic acids occurred in 24 h under the treatment of dispersed SFO metal oxide in water. Such efficient degradation could be attributed to the enhanced adsorption of these anionic pollutants on positively charged ball-milled SFO metal oxide surface, resulted in higher degradation activity. Preliminary degradation mechanisms of BPA and AO8 under the action of SFO metal oxide were proposed. These results showed that the SFO metal oxide could be an efficient alternative material as novel advanced oxidation technology for low cost water treatment.

  6. Potential Technology for Studying Dosimetry and Response to Airborne Chemical and Biological Pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Timchalk, Chuck; Trease, Harold E.; Trease, Lynn L.; Minard, Kevin R.; Corley, Rick A.

    2001-06-01

    Advances in computational, and imaging techniques have enabled the rapid development of 3-dimensional (3-D) models of biological systems in unprecedented detail. Using these advances, 3-D models of the lungs and nasal passages of the rat and human are being developed to ultimately improve predictions of airborne pollutant dosimetry. Techniques for imaging the respiratory tract by magnetic resonance (MR) imaging were developed to improve the speed and accuracy of geometric data collection for mesh reconstruction. The MR imaging resolution is comparable to that obtained by manual measurements but at much greater speed and accuracy. Newly developed software (NWGrid) was utilized to translate imaging data from MR into 3-D mesh structures. Together, these approaches significantly reduced the time to develop a 3-D model. This more robust airway structure will ultimately facilitate modeling gas or vapor exchange between the respiratory tract and vasculature as well as enable linkages of dosimetry with cell response models. The 3-D, finite volume, visco-elastic mesh structures forms the geometric basis for computational fluid dynamics modeling of inhalation, exhalation and the delivery of individual particles (or concentrations of gas or vapors) to discrete regions of the respiratory tract. The ability of these 3-D models to resolve dosimetry at such a high level of detail will require new techniques to measure regional airflows and particulate deposition for model validation.

  7. Application of a Novel Semiconductor Catalyst, CT, in Degradation of Aromatic Pollutants in Wastewater: Phenol and Catechol

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2014-01-01

    Full Text Available Water-soluble phenol and phenolic compounds were generally removed via advanced oxidation processes. A novel semiconductor catalyst, CT, was the first-time employed in the present study to degrade phenol and catechol. The phenolic compounds (initial concentration of 88 mg L−1 were completely mineralized by the CT catalytic nanoparticles (1% within 15 days, under acidic condition and with the presence of mild UV radiation (15 w, the emitted wavelength is 254 nm and the light intensity <26 μw/cm2. Under the same reaction condition, 1% TiO2 (mixture of rutile and anatase, nanopowder, <100 nm and H2O2 had lower removal efficiency (phenol: <42%; catechol: <60%, whereas the control (without addition of catalysts/H2O2 only showed <12% removal. The processes of phenol/catechol removal by CT followed pseudo-zero-order kinetics. The aromatic structures absorbed the UV energy and passed to an excited state, which the CT worked on. The pollutants were adsorbed on the CT’s surface and oxidized via charge-transfer and hydroxyl radical generation by CT. Given low initial concentrations, a circumstance encountered in wastewater polishing, the current set-up should be an efficient and less energy- and chemical-consumptive treatment method.

  8. A contribution to the understanding of micro-pollutant sorption mechanisms in wastewater biological processes: case of the tributyltin.

    Science.gov (United States)

    Bancon-Montigny, Chrystelle; Delalonde, Michèle; Rondet, Eric; Vachoud, Laurent; Grosmaire, Lidwine; Delarbre, Jean-Louis; Wisniewski, Christelle

    2012-01-01

    Micro-pollutant fluxes distribution throughout the physical separation and biological units of wastewater treatment plants (WWTPs) are very dependent ofsorption phenomena. The understanding and the control of the sorption stage is thus essential for the optimization of micro-pollutant removal in WWTPs, and particularly in biological treatments where these mechanisms influence the bioavailability towards micro-organisms. If the influence of the micro-pollutant physicochemical characteristics (e.g. Kow, pKa) on their ability to sorb on biological media (i.e. sludge) has been demonstrated, it appears that some other parameters, like the biosorbent characteristics, have to been taken into account. The aim of this study is thus to correlate the capacities of sorption of an environmentally relevant substance (tributyltin), with a thorough characterization of different types of sludge. The characterization of three biological media (raw, sonicated and flocculated activated sludges) is proposed according to various characterization parameters related to biochemical composition, aggregate size, rheological behaviour etc. The results show first that, whatever the sludge characteristics may be, the sorption mechanisms are very rapid and that an equilibrium state is reached after a few minutes. The influence of the sludge characteristics, notably the floc size and the chemical oxygen demand partition between solid and colloidal fraction, on sorption efficiency is demonstrated. A Langmuir modelling allows giving the maximum sorption capacity, as well as the binding energy for the three studied sludges, according to their physicochemical characteristics. PMID:23393963

  9. The influence of bacterial-humus preparations on the biological activity of soils polluted with oil products and heavy metals

    Science.gov (United States)

    Kozlova, E. N.; Stepanov, A. L.; Lysak, L. V.

    2015-04-01

    The influence of bacterial-humus preparations based on Gumigel ( Agrosintez Company) on the biological activity of soddy-podzolic soil polluted with Pb(CH3COO)2 and gasoline was studied in a model experiment. Some indicators of biological activity are shown to depend on soil pollution to different extents. The process of nitrogen fixation and the activity of dehydrogenase and phosphatase were mostly inhibited by Pb(CH3COO)2 and gasoline. Gasoline compared to Pb(CH3COO)2 inhibited the soil biological activity to a greater extent. The bacterial-humus preparations exerted a significant positive effect on the biological activity of the polluted soils manifested in the increase of the total number of bacteria and of the enzyme activity (1.5-5.0 times), in the intensification of nitrogen fixation and denitrification (3-8 times), as well as in the increase in the biomass of the plants grown (1.5-2.0 times). The application of bacterial suspensions of pure cultures or the microbial complex without the preparations of humic acids did not always give a positive effect.

  10. Tailoring the degradation and biological response of a magnesium-strontium alloy for potential bone substitute application.

    Science.gov (United States)

    Han, Junjie; Wan, Peng; Ge, Ye; Fan, Xinmin; Tan, Lili; Li, Jianjun; Yang, Ke

    2016-01-01

    Bone defects are very challenging in orthopedic practice. There are many practical and clinical shortcomings in the repair of the defect by using autografts, allografts or xenografts, which continue to motivate the search for better alternatives. The ideal bone grafts should provide mechanical support, fill osseous voids and enhance the bone healing. Biodegradable magnesium-strontium (Mg-Sr) alloys demonstrate good biocompatibility and osteoconductive properties, which are promising biomaterials for bone substitutes. The aim of this study was to evaluate and pair the degradation of Mg-Sr alloys for grafting with their clinical demands. The microstructure and performance of Mg-Sr alloys, in vitro degradation and biological properties including in vitro cytocompatibility and in vivo implantation were investigated. The results showed that the as-cast Mg-Sr alloy exhibited a rapid degradation rate compared with the as-extruded alloy due to the intergranular distribution of the second phase and micro-galvanic corrosion. However, the initial degradation could be tailored by the coating protection, which was proved to be cytocompatible and also suitable for bone repair observed by in vivo implantation. The integrated fracture calluses were formed and bridged the fracture gap without gas bubble accumulation, meanwhile the substitutes simultaneously degraded. In conclusion, the as-cast Mg-Sr alloy with coating is potential to be used for bone substitute alternative. PMID:26478374

  11. Leachate characterization and identification of dominant pollutants using leachate pollution index for an uncontrolled landfill site

    OpenAIRE

    De, S.; Maiti, S.; Hazra, T.; A. Debsarkar; A. Dutta

    2016-01-01

    Landfill leachates are potential threats for environmental degradation. This study was conducted to determine the leachate quality, to identify the dominant pollutants and to evaluate the leachate pollution potential of an active and closed dumping ground of an uncontrolled municipal solid waste landfill site in Kolkata, India using leachate pollution index. The results of the physico-chemical and biological analyses of leachate indicated that landfill site was in its methanogenic phase. Amon...

  12. CHANGE OF BIOLOGICAL ACTIVITY OF RENDZINA SOILS OF WESTERN CAUCASUS AT POLLUTION BY ZINC, CADMIUM, MOLYBDENUM AND SELENIUM

    Directory of Open Access Journals (Sweden)

    Tatlok D. R.

    2015-02-01

    Full Text Available Rendzina soils are very widespread in the Caucasus. Because of their ecological and genetic characteristics Rendzina has significant buffering capacity to chemical pollution. The object of investigation was calcareous leached soil. Location selection - Azishskaya ridge on the border of the Republic of Adygea and the Krasnodar region. As pollutants, we have selected Zn, Cd, Mo, Se, since soil contamination with these elements in the south of Russia is not uncommon. Contamination of zinc, cadmium, molybdenum and selenium causes deterioration in the biological properties of calcareous soils of the Western Caucasus. We have investigated the toxicity of the elements formed following series due to their influence on Rendzina soils: Zn> Se> Cd> = Mo. The study attempted to analyze the entire range of concentrations of the examined elements in the soil, currently occurring in nature. In most cases, all the investigated substances registered direct correlation between the concentration of the pollutant in the soil and the degree of reduction of biological indicators. The activity of catalase and dehydrogenase cellulolytic ability, plenty of bacteria of the genus Azotobacter, length of roots of radish can be used to monitor, diagnose and regulation of chemical pollution of soil Zn, Cd, Mo, Se

  13. Primary and oxidative DNA damage in salivary leukocytes as a tool for the evaluation of air pollution early biological effects in children: current status of the MAPEC (Monitoring Air Pollution Effects on Children for supporting public health policy study

    Directory of Open Access Journals (Sweden)

    Samuele Vannini

    2015-05-01

    Conclusions - The main objective of the MAPEC study is to evaluate the associations in children between air pollutants and early biological effects, and to propose a model for estimating the global genotoxic risk.

  14. Effects of pollutant accumulation by the invasive weed saltcedar (Tamarix ramosissima) on the biological control agent Diorhabda elongata (Coleoptera: Chrysomelidae)

    International Nuclear Information System (INIS)

    Hydroponic greenhouse studies were used to investigate the effect of four anthropogenic pollutants (perchlorate (ClO4-), selenium (Se), manganese (Mn), and hexavalent chromium (Cr (VI))) on the biological control agent Diorhabda elongata Brulle. Contaminant concentrations were quantified for experimental Tamarix ramosissima Ledab. plants and D. elongata beetles. Growth of larvae was significantly reduced by Se contamination, but was not affected by the presence of perchlorate, Mn, or Cr (VI). All of the contaminants were transferred from plants to D. elongata beetles. Only Cr (VI) was accumulated at greater levels in beetles than in their food. Because T. ramosissima grows in disturbed areas, acquires salts readily, and utilizes groundwater, this plant is likely to accumulate anthropogenic pollutants in contaminated areas. This study is one of the first to investigate the potential of an anthropogenic pollutant to influence a weed biological control system. - The presence of Se, but not perchlorate, Mn, or Cr (VI), in foliage of the invasive weed saltcedar was shown to reduce growth of the biological control agent Diorhabda elongata

  15. Effects of pollutant accumulation by the invasive weed saltcedar (Tamarix ramosissima) on the biological control agent Diorhabda elongata (Coleoptera: Chrysomelidae)

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, Mary A. [Department of Entomology, University of California, Riverside, CA 92521 (United States)], E-mail: mary.sorensen@ucr.edu; Parker, David R. [Department of Environmental Science, University of California, Riverside, CA 92521 (United States); Trumble, John T. [Department of Entomology, University of California, Riverside, CA 92521 (United States)

    2009-02-15

    Hydroponic greenhouse studies were used to investigate the effect of four anthropogenic pollutants (perchlorate (ClO{sub 4}{sup -}), selenium (Se), manganese (Mn), and hexavalent chromium (Cr (VI))) on the biological control agent Diorhabda elongata Brulle. Contaminant concentrations were quantified for experimental Tamarix ramosissima Ledab. plants and D. elongata beetles. Growth of larvae was significantly reduced by Se contamination, but was not affected by the presence of perchlorate, Mn, or Cr (VI). All of the contaminants were transferred from plants to D. elongata beetles. Only Cr (VI) was accumulated at greater levels in beetles than in their food. Because T. ramosissima grows in disturbed areas, acquires salts readily, and utilizes groundwater, this plant is likely to accumulate anthropogenic pollutants in contaminated areas. This study is one of the first to investigate the potential of an anthropogenic pollutant to influence a weed biological control system. - The presence of Se, but not perchlorate, Mn, or Cr (VI), in foliage of the invasive weed saltcedar was shown to reduce growth of the biological control agent Diorhabda elongata.

  16. Efficient visible light photo-Fenton-like degradation of organic pollutants using in situ surface-modified BiFeO3 as a catalyst

    Institute of Scientific and Technical Information of China (English)

    Junjian An; Lihua Zhu; Yingying Zhang; Heqing Tang

    2013-01-01

    The visible light photo-Fenton-like catalytic performance of BiFeO3 nanoparticles was investigated using Methyl Violet (MV),Rhodamine B (RhB) and phenol as probes.Under optimum conditions,the pseudo first-order rate constant (k) was determined to be 2.21 × 10-2,5.56 × 10-2 and 2.01 × 10-2 min-1 for the degradation of MV (30 μmol/L),RhB (10 μmol/L) and phenol (3 mmol/L),respectively,in the BiFeO3-H2O2-visible light (Vis) system.The introduction of visible light irradiation increased the k values of MV,RhB and phenol degradation 3.47,1.95 and 2.07 times in comparison with those in dark.Generally,the k values in the BiFeO3-H2O2-Vis system were accelerated by increasing BiFeO3 load and H2O2 concentration,but decreased with increasing initial pollutant concentration.To further enhance the degradation of pollutants at high concentrations,BiFeO3 was modified with the addition of surface modifiers.The addition of ethylenediamineteraacetic acid (EDTA,0.4 mmol/L) increased the k value of MV degradation (60 μmol/L)from 1.01 × 10-2 min-1 in the BiFeO3-H2O2-Vis system to 1.30 min-1 in the EDTA-BiFeO3-H2O2-Vis system by a factor of 128.This suggests that in situ surface modification can enable BiFeO3 nano-particles to be a promising visible light photo-Fenton-like catalyst for the degradation of organic pollutants.

  17. Diagnosis of water pollution caused by chemical effluents using hydro biological methods; Diagnostic de la pollution des eaux par les effluents chimiques au moyen des methodes hydrobiologiques

    Energy Technology Data Exchange (ETDEWEB)

    Simeon, C.; Bonnefoy-Claudet, J. [Commissariat a l' Energie Atomique, Pierrelatte (France). Centre d' Etudes Nucleaires

    1965-04-01

    Industrial plants which discharge chemical effluents into rivers are faced with a double problem. 1 - To avoid excessive pollution which leads to an important modification of the medium and to a poisoning of the aquatic fauna, and in particular to the killing of fish. These disadvantages are avoided by a treatment of the effluents, by calculating the minimum fatal doses and the limiting dilutions for fish, and by carrying out biological analyses and tests on the residual waters. 2 - To avoid provoking continuous, slow and insidious pollutions which are more difficult to detect and which would result in the gradual sterilization of receptive media. In order to estimate this possible influence, the authors have listed the aquatic fauna and flora found in the canal which was the object of the experiment, and have modified the Saprobies system due to Kolwickz. They have tried to detect the presence or absence of pollution by estimating the density of the phyto-plankton formed on submerged laminae (periphyton) and the specific variations in the alga of which these populations are made up. In this report are given details of the tests and of the first results obtained. (authors) [French] Les usines deversant dans les cours d'eaux des effluents chimiques se trouvent devant un double probleme. 1 - Eviter les pollutions aigues qui se traduisent par une modification importante du milieu et par l'empoisonnement de la faune aquatique et notamment la mort du poisson. On evite ces inconvenients en traitant les effluents, en calculant les doses minima mortelles et les dilutions limites pour le poisson, en surveillant les eaux residuaires par analyses et tests biologiques. 2 - Ne pas provoquer des pollutions chroniques, lentes, insidieuses, plus difficiles a mettre en evidence qui aboutiraient a la sterilisation progressive des milieux recepteurs. Pour apprecier cette influence eventuelle les auteurs ont inventorie la faune et la flore aquatique du canal, objet de l

  18. Photoelectrochemical water splitting and simultaneous photoelectrocatalytic degradation of organic pollutant on highly smooth and ordered TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    The photoelectrochemical water splitting and simultaneous photoelectrocatalytic degradation of organic pollutant were achieved on TiO2 nanotube electrodes with double purposes of environmental protection and renewable energy production under illumination of simulated solar light. The TiO2 nanotube arrays (TiO2 NTs) were fabricated by a two-step anodization method. The TiO2 NTs prepared in two-step anodization process (2-step TiO2 NTs) showed much better surface smoothness and tube orderliness than TiO2 NTs prepared in one-step anodization process (1-step TiO2 NTs). In the photoelectrochemical water splitting and simultaneous photoelectrocatalytic decomposition process, the 2-step TiO2 NTs electrode showed both highest photo-conversion efficiency of 1.25% and effective photodecomposition efficiency with existing of methylene blue (MB) as sacrificial agent and as pollutant target. Those results implied that the highly ordered nanostructures provided direct pathway and uniform electric field distribution for effective charges transfer, as well as superior capabilities of light harvesting. - Graphical Abstract: The photoelectrochemical water splitting for hydrogen generation and simultaneous photoelectrocatalytic degradation of organic pollutant (methylene blue) were achieved on TiO2 nanotube electrodes with double purposes of environmental protection and renewable energy production under illumination of simulated solar light. Highlights: ► TiO2 nanotube arrays were fabricated by a two-step anodization method. ► Hydrogen generation and organic pollutant degradation were achieved on TiO2 NTs. ► Highest photoconversion efficiency of 1.25% was achieved. ► Increasing orderliness will increase photocatalytic activity of TiO2 NTs.

  19. Effects of organic pollution on biological communities of marine biofilm on hard substrata

    International Nuclear Information System (INIS)

    We examined the effect of organic enrichment on diatom and bacterial assemblages of marine epilithic biofilms on two locations in the Mediterranean, one situated in Spain and the other in Greece. Total organic carbon, total organic nitrogen, stable isotopes (δ13C and δ15N) and chlorophyll a indicated significant incorporation of organic wastes, increased primary production and trophic niche modifications on the biofilms close to the organic enrichment source. In Spain, where the organic load was higher than in Greece, diatom and, to some extent, bacterial assemblages varied following the organic enrichment gradient. The taxonomic richness of diatom and bacterial communities was not influenced by organic enrichment. Classical community parameters showed consistent patterns to organic pollution in both locations, whereas community assemblages were only influenced when organic pollution was greatest. The successional patterns of these communities were similar to other epilithic communities. The modification of community assemblages induced by organic pollution may affect ecological functions. - Highlights: • We examined the effect of organic enrichment on assemblages of marine biofilms. • Classical community parameters showed consistent patterns to organic pollution. • Diatom and bacterial assemblages were affected under high level of organic enrichment. • Successional patterns were similar to other communities inhabiting hard substrata. • Assemblage modifications induced by organic pollution may affect ecological functions. - Organic pollution modifies the assemblages of biofilm communities which may affect important ecological functions

  20. Micro-organic pollutants and biological response of mussels in marinas and ship building/breaking yards in Turkey.

    Science.gov (United States)

    Okay, O S; Karacık, B; Güngördü, A; Ozmen, M; Yılmaz, A; Koyunbaba, N C; Yakan, S D; Korkmaz, V; Henkelmann, B; Schramm, K-W

    2014-10-15

    Concentrations of PAHs, PCBs and OCPs in sediments and mussels (caged and/or native) were determined at 16 stations in six major sites of coastal Turkey. The biological effects of pollution were evaluated using sediment toxicity tests and enzyme activity assays. EROD, PROD, GST, AChE, CaE, and GR activities were evaluated using the digestive glands of mussels. The total PAH concentrations in the sediments varied between nd and 79,674 ng g(-1) dw, while the total OCP concentrations were in the range of nd to 53.7 ng g(-1) dw. The total PAH concentrations in mussels varied between 22.3 and 37.4 ng g(-1) ww. The average concentrations of total PCBs in mussels were 2795 pg g(-1) ww in the shipyard, 797 pg g(-1) ww in Marina 2 and 53 pg g(-1) ww in Marina 1 stations. The results of whole-sediment toxicity tests showed a strong correlation between toxicity test results and pollutant concentrations. Selected cytosolic enzyme activities in digestive glands differed significantly depending on localities. These differences in enzyme activities were mainly related to the different pollutant levels of the sampling sites. The micro-organic contaminant profile patterns, toxicity tests and biomarker studies showed that shipyards and shipbreaking yards are the major potential sources of organic pollution in coastal areas. PMID:25079235

  1. Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes

    OpenAIRE

    Naresh eSinghal; Octavio ePerez-Garcia

    2016-01-01

    Global water scarcity is driving the need for identifying new water source. Wastewater could be a potential water resource if appropriate treatment technologies could be developed. One of the barriers to obtaining high quality water from wastewater arises from the presence of organic micropollutants, which are biologically active at trace levels. Removal of these compounds from wastewater by current physico-chemical technologies is prohibitively expensive. While biological treatment processes...

  2. Biodegradation kinetics of bromoxynil as a pollution control technology

    OpenAIRE

    Askar, A.I.; Ibrahim, G.H.; Osman, K.A.

    2007-01-01

    Nonpoint source (NPS) pollution from agriculture is the leading source of impairment to Survey Rivers and lakes. Pesticides are one of the major NPS pollutants that result from agricultural activities. Among those pesticides, is Bromoxynil (BRMX) which is a widely used herbicide. The present study was carried out to determine the capability of selected biological control agents to degrade BRMX at different incubation periods. Microbial degradation of BRMX at the rate of 100 ppm in pure liquid...

  3. Effect of the pollution level on the functional bacterial groups aiming at degrading bisphenol A and nonylphenol in natural biofilms of an urban river.

    Science.gov (United States)

    Cai, Wei; Li, Yi; Wang, Peifang; Niu, Lihua; Zhang, Wenlong; Wang, Chao

    2016-08-01

    Bisphenol A (BPA) and 4-nonylphenol (NP) are ubiquitous pollutants with estrogenic activity in aquatic environment and have attracted global concern due to their disruption of endocrine systems. This study investigated the spatial distribution characteristics of the bacterial groups involved in the degradation of BPA and NP within biofilms in an urban river using terminal restriction fragment length polymorphism based on 16S rRNA gene sequences. The effects of the pollution level and water parameters on these groups were also assessed. Hierarchical cluster analysis grouped the sampling sites into three clusters reflecting their varying nutrient pollution levels of relatively slight pollution (SP), moderate pollution (MP), and high pollution (HP) based on water quality data and Environmental Quality Standard for Surface Water of China (GB3838-2002). The BPA and NP concentration in river water ranged from 0.8 to 77.5 and 10.2 to 162.9 ng L(-1), respectively. Comamonadaceae, Pseudomonadaceae, Alcaligenaceae, Bacillaceae, Sphingomonadacea, Burkholderiaceae, and Rhizobiaceae were the dominant bacterial taxa involved in BPA and NP degradation, comprising an average of 9.8, 8.1, 7.6, 6.7, 6.2, 4.1, and 2.8 % of total sequences, respectively. The total abundance of these groups showed a slight upward trend and subsequently rapidly decreased with increasing pollution levels. The average proportion of Comamonadaceae in MP river sections was almost 1.5-2 times than that in SP or HP one. The distribution of functional groups was found related to environmental variables, especially pH, conductivity, ammonium nitrogen (NH3-N), and BPA. The abundance of Comamonadaceae and Rhizobiaceae was both closely related to higher values of pH and conductivity as well as lower concentrations of NP and BPA. Alcaligenaceae and Pseudomonadaceae were associated with higher concentrations of TP and CODMn and inversely correlated with DO concentration. This study might provide effective data on

  4. Comprehensive biological effects of a complex field poly-metallic pollution gradient on the New Zealand mudsnail Potamopyrgus antipodarum (Gray)

    International Nuclear Information System (INIS)

    The Lot River is known to be contaminated by metals, mainly cadmium and zinc, due to a former Zn ore treatment plant in the watershed of the Riou-Mort, a tributary of the Lot River. Many studies have been performed to characterize contamination, but few have assessed its consequences on the biological responses of organisms along the gradient. We exposed adult and juvenile New Zealand freshwater mudsnails Potamopyrgus antipodarum at several sites along the gradient of metal contamination for 28 days. Biological responses were monitored at different levels: individual (survival, growth and fecundity), tissue and biochemical (energy status and vertebrate-like sex steroid levels) to better understand the toxicity mechanisms involved. Accumulation of Cd and Zn was high during exposure. Most of the biological effects observed could be linked to this contamination and were concentration-dependent. Histological lesions of the digestive gland were observed, with hypertrophy of calcium cells and vacuolization of digestive cells. Such effects are likely to explain the decrease of energy status (triglycerides and proteins), juvenile growth and adult fecundity observed at the most polluted site. However the magnitude of the fall in fecundity cannot be attributed only to these tissular effects, indicating another mode of action of Cd or possible confounding factors. Steroid accumulation in snails indicated only organic pollution. Histopathological effects proved the most sensitive endpoint to metal (Cd and Zn) contamination.

  5. Assessment of pollution in road runoff using a Bufo viridis biological assay

    International Nuclear Information System (INIS)

    Road runoff is a major source of environmental pollution, significantly threatening nearby aquatic habitats. Chemical analyses indicate high pollutant concentrations in the road's 'first flush', but bioassays are more advantageous for addressing the cumulative effects of the numerous pollutants within the runoff. We used Bufo viridis embryos and larvae to assess the toxicity of road runoff from two major highways in Israel. We show, for the first time, that exposure to midseason runoff not only has an adverse effect on growth and development rates of B. viridis larvae but can also lead to increased rates of morphological deformations. Seasonal first flushes, despite having higher metal concentrations, did not adversely affect the toad larvae, apparently due to a counter effect of organic matter that potentially served as a supplementary energy resource. Road runoff can be a major cause for a qualitative decrease in the quality of aquatic habitats threatening amphibians in Israel. - Highway runoff has detrimental effects on the development of B. viridis larvae.

  6. Poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels for pH-sensitive photocatalytic degradation of organic pollutants

    International Nuclear Information System (INIS)

    Graphical abstract: The photocatalytic removal of pollutants was improved by the two-step mechanism based on the adsorption of pollutants by hydrogel and the effective decomposition by combination of TiO2 and graphene oxide. -- Highlights: • pH sensitive PVA/PAAc hydrogels were prepared by radical polymerization and condensation reaction. • PVA/PAAc/TiO2/graphene oxide nanocomposite hydrogels were used for treatment of basic waste water. • Photocatalytic acitivity of TiO2 was improved by incorporation of graphene oxide. • Photocatalytic decomposition by nanocomposite hydrogel was improved by increasing pH. -- Abstract: Poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels were prepared using radical polymerization and condensation reaction for the photocatalytic treatment of waste water. Graphene oxide was used as an additive to improve the photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO2 nanocomposite hydrogels. Both TiO2 and graphene oxide were immobilized in poly(vinyl alcohol)/poly(acrylic acid) hydrogel matrix for an easier recovery after the waste water treatment. The photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels was evaluated on the base of the degradation of pollutants by using UV spectrometer. The improved removal of pollutants was due to the two-step mechanism based on the adsorption of pollutants by nanocomposite hydrogel and the effective decomposition of pollutants by TiO2 and graphene oxide. The highest swelling of nanocomposite hydrogel was observed at pH 10 indicating that poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels were suitable as a promising system for the treatment of basic waste water

  7. Poly(vinyl alcohol)/poly(acrylic acid)/TiO{sub 2}/graphene oxide nanocomposite hydrogels for pH-sensitive photocatalytic degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Young-E; Jung, Gowun; Yun, Jumi; Kim, Hyung-Il, E-mail: hikim@cnu.ac.kr

    2013-10-01

    Graphical abstract: The photocatalytic removal of pollutants was improved by the two-step mechanism based on the adsorption of pollutants by hydrogel and the effective decomposition by combination of TiO{sub 2} and graphene oxide. -- Highlights: • pH sensitive PVA/PAAc hydrogels were prepared by radical polymerization and condensation reaction. • PVA/PAAc/TiO{sub 2}/graphene oxide nanocomposite hydrogels were used for treatment of basic waste water. • Photocatalytic acitivity of TiO{sub 2} was improved by incorporation of graphene oxide. • Photocatalytic decomposition by nanocomposite hydrogel was improved by increasing pH. -- Abstract: Poly(vinyl alcohol)/poly(acrylic acid)/TiO{sub 2}/graphene oxide nanocomposite hydrogels were prepared using radical polymerization and condensation reaction for the photocatalytic treatment of waste water. Graphene oxide was used as an additive to improve the photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO{sub 2} nanocomposite hydrogels. Both TiO{sub 2} and graphene oxide were immobilized in poly(vinyl alcohol)/poly(acrylic acid) hydrogel matrix for an easier recovery after the waste water treatment. The photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO{sub 2}/graphene oxide nanocomposite hydrogels was evaluated on the base of the degradation of pollutants by using UV spectrometer. The improved removal of pollutants was due to the two-step mechanism based on the adsorption of pollutants by nanocomposite hydrogel and the effective decomposition of pollutants by TiO{sub 2} and graphene oxide. The highest swelling of nanocomposite hydrogel was observed at pH 10 indicating that poly(vinyl alcohol)/poly(acrylic acid)/TiO{sub 2}/graphene oxide nanocomposite hydrogels were suitable as a promising system for the treatment of basic waste water.

  8. Biological cycling of carbon and nitrogen to reduce agricultural pollution by nutrients

    Science.gov (United States)

    Carbon and nitrogen are two key elements of global significance, playing large roles in the production of food, feed, fiber, and fuel for human existence, as well as providing numerous other ecosystem services. Although nitrogen is often a limiting element in natural systems, it can become a pollut...

  9. A novel visible light-driven Ag{sub 3}PO{sub 4}/SBA-15 nanocomposite: Preparation and application in the photo-degradation of pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Yuanyuan; Wang, Li; Ren, Jia; Dai, Wei-Lin, E-mail: wldai@fudan.edu.cn

    2015-01-01

    Graphical abstract: - Highlights: • Highly efficient visible-light-driven Ag{sub 3}PO{sub 4}/SBA-15 nanocomposite. • Application in the photo-degradation of RhB. • Synthesis from a facile and simple colloidal method. • 20%-Ag{sub 3}PO{sub 4}/SBA-15 shows 8 times faster degradation rate than Ag{sub 3}PO{sub 4}. • Super stability and recycling ability. - Abstract: A novel visible light-driven environmental-benign Ag{sub 3}PO{sub 4}/SBA-15 nanocomposite photo-catalyst was synthesized for the photo-degradation of pollutants. The exploration on adsorption and photo-catalysis of dye or organic pollution for the nanocomposite was carried out. The adsorption capability for Ag{sub 3}PO{sub 4}/SBA-15 nanocomposite increases by 3 times compared with that of the Ag{sub 3}PO{sub 4} particles. The photo-catalytic activity of nanocomposite is higher than pristine Ag{sub 3}PO{sub 4} nanoparticle for the degradation of RhB or MO under visible light irradiation (λ > 420 nm). The effect of Ag{sub 3}PO{sub 4} loading on the catalytic performance was also studied. The results show that the optimum degradation is achieved over 20% Ag{sub 3}PO{sub 4}/SBA-15. Compared to pure Ag{sub 3}PO{sub 4} nanoparticle, the most efficient catalyst showed 8 times higher photo-catalytic activity for the degradation of RhB. The Ag{sub 3}PO{sub 4}/SBA-15 catalysts were systematically characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–Vis diffuse reflectance spectroscopy (DRS), and N{sub 2}-adsorption–desorption isotherms (BET). A possible mechanism scheme regarding photo-degradation enhancement induced by dye enrichments has been proposed on the Ag{sub 3}PO{sub 4}/SBA-15 nanocomposite. Additionally, the SBA-15 support can enhance the efficiency of separation of catalyst from the reaction mixture, implying that the Ag{sub 3}PO{sub 4} loading on the SBA-15 catalyst will not result in the extra environment and health

  10. A novel visible light-driven Ag3PO4/SBA-15 nanocomposite: Preparation and application in the photo-degradation of pollutants

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Highly efficient visible-light-driven Ag3PO4/SBA-15 nanocomposite. • Application in the photo-degradation of RhB. • Synthesis from a facile and simple colloidal method. • 20%-Ag3PO4/SBA-15 shows 8 times faster degradation rate than Ag3PO4. • Super stability and recycling ability. - Abstract: A novel visible light-driven environmental-benign Ag3PO4/SBA-15 nanocomposite photo-catalyst was synthesized for the photo-degradation of pollutants. The exploration on adsorption and photo-catalysis of dye or organic pollution for the nanocomposite was carried out. The adsorption capability for Ag3PO4/SBA-15 nanocomposite increases by 3 times compared with that of the Ag3PO4 particles. The photo-catalytic activity of nanocomposite is higher than pristine Ag3PO4 nanoparticle for the degradation of RhB or MO under visible light irradiation (λ > 420 nm). The effect of Ag3PO4 loading on the catalytic performance was also studied. The results show that the optimum degradation is achieved over 20% Ag3PO4/SBA-15. Compared to pure Ag3PO4 nanoparticle, the most efficient catalyst showed 8 times higher photo-catalytic activity for the degradation of RhB. The Ag3PO4/SBA-15 catalysts were systematically characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–Vis diffuse reflectance spectroscopy (DRS), and N2-adsorption–desorption isotherms (BET). A possible mechanism scheme regarding photo-degradation enhancement induced by dye enrichments has been proposed on the Ag3PO4/SBA-15 nanocomposite. Additionally, the SBA-15 support can enhance the efficiency of separation of catalyst from the reaction mixture, implying that the Ag3PO4 loading on the SBA-15 catalyst will not result in the extra environment and health problems and reduce the cost of wastewater treatment

  11. Enhancing the biological activity of chitosan and controlling the degradation by nanoscale interaction with bioglass.

    Science.gov (United States)

    Ravarian, Roya; Craft, Michaela; Dehghani, Fariba

    2015-09-01

    A nonuniform degradation of physical mixture of organic-inorganic biomaterials increases their risk of failure. In this study a chemical bonding between chitosan and bioglass was used as an alternative product to address this issue. To prepare a homogenous composite, chitosan was functionalized with γ-glycidoxypropyl trimethoxysilane and chemically bonded with bioglass during sol-gel method. The gelation time of these hybrids samples was optimized by varying parameters such as composition of chitosan and temperature. It was shown that gelation time was reduced from 7 days for pure bioglass at 25°C to less than six minutes at 70°C for chitosan 40 vol % bioglass hybrid. Furthermore, the enzymatic degradation after 4 weeks was decreased from 80% mass loss for pure chitosan to 32% for chitosan 40 vol % bioglass hybrid. The results of in vitro study demonstrated that the presence of nanoscale interaction enhanced the bioactivity of chitosan. Additionally, hybrid scaffolds were fabricated with pore sizes in the range of 200-400 µm. These scaffolds were prepared by the addition of sodium bicarbonate during sol-gel method as a gas foaming agent and a neutralizer that resulted in decreasing the gelation time of hybrids to less than three minutes. The hybrids fabricated in this study possessed superior characteristics compared to chitosan, also physical mixture of chitosan-bioglass and are promising alternatives for bone tissue engineering applications. PMID:25690303

  12. Enhanced photocatalytic activity for degrading pollutants of g-C3N4 by promoting oxygen adsorption after H3BO3 modification

    Science.gov (United States)

    Li, Chengming; Raziq, Fazal; Liu, Chong; Li, Zhijun; Sun, Liqun; Jing, Liqiang

    2015-12-01

    The g-C3N4 has been modified by a hydrothermal post treatment with orthoboric acid. It is shown that the surface modification with an appropriate amount of orthoboric acid obviously enhances the surface photovoltage responses of g-C3N4, clearly indicating that the separation of photogenerated charges is greatly improved. This is well responsible for the enhanced photocatalytic activities for degrading representative gas-phase acetaldehyde, and liquid-phase phenol. Moreover, it is demonstrated that the amount of O2 adsorbed on the surfaces of g-C3N4 is greatly increased after H3BO3 modification based on the O2 temperature-programmed desorption curves. It is suggested that the orthoboric acid modification favors O2 adsorption to promote the photogenerated electrons captured for improved photocatalytic activities. This work would provide feasible routes to further improve the photocatalytic performance of semiconductors for degrading pollutants.

  13. Establishment of Bacterial Herbicide Degraders in a Rapid Sand Filter for Bioremediation of Phenoxypropionate-Polluted Groundwater.

    Science.gov (United States)

    Feld, Louise; Nielsen, Tue Kjærgaard; Hansen, Lars Hestbjerg; Aamand, Jens; Albers, Christian Nyrop

    2016-02-01

    In this study, we investigated the establishment of natural bacterial degraders in a sand filter treating groundwater contaminated with the phenoxypropionate herbicides (RS)-2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP) and (RS)-2-(2,4-dichlorophenoxy)propanoic acid (DCPP) and the associated impurity/catabolite 4-chlorophenoxypropanoic acid (4-CPP). A pilot facility was set up in a contaminated landfill site. Anaerobic groundwater was pumped up and passed through an aeration basin and subsequently through a rapid sand filter, which is characterized by a short residence time of the water in the filter. For 3 months, the degradation of DCPP, MCPP, and 4-CPP in the sand filter increased to 15 to 30% of the inlet concentration. A significant selection for natural bacterial herbicide degraders also occurred in the sand filter. Using a most-probable-number (MPN) method, we found a steady increase in the number of culturable phenoxypropionate degraders, reaching approximately 5 × 10(5) degraders per g sand by the end of the study. Using a quantitative PCR targeting the two phenoxypropionate degradation genes, rdpA and sdpA, encoding stereospecific dioxygenases, a parallel increase was observed, but with the gene copy numbers being about 2 to 3 log units higher than the MPN. In general, the sdpA gene was more abundant than the rdpA gene, and the establishment of a significant population of bacteria harboring sdpA occurred faster than the establishment of an rdpA gene-carrying population. The identities of the specific herbicide degraders in the sand filter were assessed by Illumina MiSeq sequencing of 16S rRNA genes from sand filter samples and from selected MPN plate wells. We propose a list of potential degrader bacteria involved in herbicide degradation, including representatives belonging to the Comamonadaceae and Sphingomonadales. PMID:26590282

  14. Photocatalytic degradation of recalcitrant organic pollutants in water using a novel cylindrical multi-column photoreactor packed with TiO{sub 2}-coated silica gel beads

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dawei; Zhu, Qi; Han, Chengjie [Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 (Japan); Yang, Yingnan, E-mail: yo.innan.fu@u.tsukuba.ac.jp [Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 (Japan); Jiang, Weizhong [Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, China Agricultural University, Qinghua Donglu 17, Haidian, Beijing 100083 (China); Zhang, Zhenya, E-mail: zhang.zhenya.fu@u.tsukuba.ac.jp [Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 (Japan)

    2015-03-21

    Highlights: • A novel cylindrical multi-column photocatalytic reactor (CMCPR) was developed. • Methyl orange, amoxicillin and 3-chlorophenol were degraded successfully in CMCPR. • Electrical energy per order (E{sub EO}) was used to evaluate the efficiency of CMCPR. • The CMCPR is high efficient, low-cost and easily repeatable for water purification. - Abstract: A novel cylindrical multi-column photocatalytic reactor (CMCPR) has been developed and successfully applied for the degradation of methyl orange (MO), amoxicillin (AMX) and 3-chlorophenol (3-CP) in water. Due to its higher adsorption capacity and simpler molecular structure, 3-CP compared with MO and AMX obtained the highest photodegradation (100%) and mineralization (78.1%) after 300-min photocatalytic reaction. Electrical energy consumption for photocatalytic degradation of MO, AMX and 3-CP using CMCPR was 5.79 × 10{sup 4}, 7.31 × 10{sup 4} and 2.52 × 10{sup 4} kW h m{sup −3} order{sup −1}, respectively, which were less than one-thousand of those by reported photoreactors. The higher flow rate (15 mL min{sup −1}), lower initial concentration (5 mg L{sup −1}) and acidic condition (pH 3) were more favorable for the photocatalytic degradation of MO using CMCPR. Five repetitive operations of CMCPR achieved more than 97.0% photodegradation of MO in each cycle and gave a relative standard deviation of 0.72%. In comparison with reported slurry and thin-film photoreactors, CMCPR exhibited higher photocatalytic efficiency, lower energy consumption and better repetitive operation performance for the degradation of MO, AMX and 3-CP in water. The results demonstrated the feasibility of utilizing CMCPR for the degradation of recalcitrant organic pollutants in water.

  15. Photocatalytic degradation of recalcitrant organic pollutants in water using a novel cylindrical multi-column photoreactor packed with TiO2-coated silica gel beads

    International Nuclear Information System (INIS)

    Highlights: • A novel cylindrical multi-column photocatalytic reactor (CMCPR) was developed. • Methyl orange, amoxicillin and 3-chlorophenol were degraded successfully in CMCPR. • Electrical energy per order (EEO) was used to evaluate the efficiency of CMCPR. • The CMCPR is high efficient, low-cost and easily repeatable for water purification. - Abstract: A novel cylindrical multi-column photocatalytic reactor (CMCPR) has been developed and successfully applied for the degradation of methyl orange (MO), amoxicillin (AMX) and 3-chlorophenol (3-CP) in water. Due to its higher adsorption capacity and simpler molecular structure, 3-CP compared with MO and AMX obtained the highest photodegradation (100%) and mineralization (78.1%) after 300-min photocatalytic reaction. Electrical energy consumption for photocatalytic degradation of MO, AMX and 3-CP using CMCPR was 5.79 × 104, 7.31 × 104 and 2.52 × 104 kW h m−3 order−1, respectively, which were less than one-thousand of those by reported photoreactors. The higher flow rate (15 mL min−1), lower initial concentration (5 mg L−1) and acidic condition (pH 3) were more favorable for the photocatalytic degradation of MO using CMCPR. Five repetitive operations of CMCPR achieved more than 97.0% photodegradation of MO in each cycle and gave a relative standard deviation of 0.72%. In comparison with reported slurry and thin-film photoreactors, CMCPR exhibited higher photocatalytic efficiency, lower energy consumption and better repetitive operation performance for the degradation of MO, AMX and 3-CP in water. The results demonstrated the feasibility of utilizing CMCPR for the degradation of recalcitrant organic pollutants in water

  16. Biological functioning of PAH-polluted and thermal desorption-treated soils assessed by fauna and microbial bioindicators.

    Science.gov (United States)

    Cébron, Aurélie; Cortet, Jérôme; Criquet, Stéven; Biaz, Asmaa; Calvert, Virgile; Caupert, Cécile; Pernin, Céline; Leyval, Corinne

    2011-11-01

    A large number of soil bioindicators were used to assess biological diversity and activity in soil polluted with polycyclic aromatic hydrocarbons (PAHs) and the same soil after thermal desorption (TD) treatment. Abundance and biodiversity of bacteria, fungi, protozoa, nematodes and microarthropods, as well as functional parameters such as enzymatic activities and soil respiration, were assessed during a two year period of in situ monitoring. We investigated the influence of vegetation (spontaneous vegetation and Medicago sativa) and TD treatment on biological functioning. Multivariate analysis was performed to analyze the whole data set. A principal response curve (PRC) technique was used to evaluate the different treatments (various vegetation and contaminated vs. TD soil) contrasted with control (bare) soil over time. Our results indicated the value of using a number of complementary bioindicators, describing both diversity and functions, to assess the influence of vegetation on soil and discriminate polluted from thermal desorption (TD)-treated soil. Plants had an influence on the abundance and activity of all organisms examined in our study, favoring the whole trophic chain development. However, although TD-treated soil had a high abundance and diversity of microorganisms and fauna, enzymatic activities were weak because of the strong physical and chemical modifications of this soil. PMID:21392572

  17. On the multiscale origins of fracture resistance in human bone and its biological degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Elizabeth A.; Barth, Holly D.; Ritchie, Robert O.

    2012-03-09

    Akin to other mineralized tissues, human cortical bone can resist deformation and fracture due to the nature of its hierarchical structure, which spans the molecular to macroscopic length-scales. Deformation at the smallest scales, mainly through the composite action of the mineral and collagen, contributes to bone?s strength or intrinsic fracture resistance, while crack-tip shielding mechanisms active on the microstructural scale contribute to the extrinsic fracture resistance once cracking begins. The efficiency with which these structural features can resist fracture at both small and large length-scales becomes severely degraded with such factors as aging, irradiation and disease. Indeed aging and irradiation can cause changes to the cross-link profile at fibrillar length-scales as well as changes at the three orders of magnitude larger scale of the osteonal structures, both of which combine to inhibit the bone's overall resistance to the initiation and growth of cracks.

  18. BIODEGRADATION OF ENVIRONMENTAL POLLUTANTS BY THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOPORIUM: INVOLVEMENT OF THE LIGNIN DEGRADING SYSTEM

    Science.gov (United States)

    The white-rot fungus Phanrochaete chrysosporium has the ability to degrade a wide variety of structurally diverse organic compounds, including a number of environmentally persistent organopollutants. The unique biodegradative abilities of this fungus appears to be depend...

  19. BIODEGRADATION OF ENVIRONMENTAL POLLUTANTS BY THE WHITE ROT FUNGUS PHANEROCHATETE CHRYSOSPORIUM: INVOLVEMENT OF THE LIGNIN DEGRADING SYSTEM

    Science.gov (United States)

    The white-rot fungus Phanerochaete chrysosporium has the ability to degrade's wide variety of structurally diverse organic compounds, including a number of environmentall3 persistent organopollutants. he unique biodegradative abilities of this fungus appears to be dependent upon ...

  20. Use of ERTS imagery in air pollution and marine biology studies, tasks 1 through 3

    Science.gov (United States)

    Copeland, G. E.; Ludwick, J. C.; Marshall, H. G. (Principal Investigator); Bandy, A. R.; Fleischer, P.; Hanna, W. J.; Gosink, T. A.; Bowker, D. W.

    1972-01-01

    There are no author-identified significant results in this report. The general suitability of ERTS imagery in detecting ground originated air pollution has proved to be excellent. The quality and resolution exceeded expectations and has permitted in some instances location of point sources to within a thousand feet. Suitable techniques have not yet been developed for determining or measuring area and line sources of air pollution. A major problem has been cloud cover that has persisted over the area of primary interest, the Chesapeake Bay. Work has been completed on mounting the shipboard transmissometer which will be used for investigations to relate the chlorophyll and suspended sediment content in the waters of the Lower Chesapeake Bay to ERTS-1 imagery. Water sampling, plankton analysis, and preparations for sea collection of water truth along the eastern continental shelf of the U.S. have been completed for use in comparisons with ERTS-1 data.

  1. Biological indicators in relation to coastal pollution along Karnataka coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.; Desai, S.R.; Sarkar, A.; Dalal, S.G.

    USA). For current measurement, a self-recording current meter (RCM-7, Aanderaa Instruments Inc., Norway) was used. Water and sediment samples for chemical and biological studies were collected from 9 stations spread over 25 km2 area at each...

  2. Biological monitoring of polycyclic aromatic hydrocarbon exposure in a highly polluted area of Poland.

    OpenAIRE

    Ovrebø, S; Fjeldstad, P E; Grzybowska, E; Kure, E H; Chorazy, M; Haugen, A

    1995-01-01

    Air pollution in Poland and particularly in Silesia is among the worst in Europe. Many coal mines and coke oven plants are located in this area, representing a major source of carcinogenic polycyclic aromatic hydrocarbons (PAHs). We quantitated the PAH exposure level in air samples using personal sampling devices, collected urine samples from the same individuals, and measured 1-hydroxypyrene with high performance liquid chromatography. Samples were collected twice, once in February and once ...

  3. Combined Effects of Persistent Organic Pollutants and Biological Variables on Vitamin D in Polar Bears

    OpenAIRE

    Grønning, Hege Mentzoni

    2013-01-01

    Because of long-range transport, the Arctic is chronically exposed to persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), pesticides and brominated flame retardants, such as polybrominated flame retardants (PBDEs). Because of POPs are persistent and lipofilic, they are bioaccumulated in lipids and biomagnified in the food chains. The structures of some POPs resemble endogenous hormones, and have been shown to disrupt the TH homeostasis in animals. It has also been ...

  4. Biofilm growth in a biological plate tower, BPT, for VOC air pollution treatment

    OpenAIRE

    Peixoto, J.; M. Mota

    2002-01-01

    The growth of microorganisms in biofilters and biotrickling filters always leads to the occurrence of clogging. A good efficiency of removal makes it happen faster. To solve clogging and making that kind of process easy to operate steadily for a long time, a new concept of reactor was designed and tested with air polluted with toluene and Pseudomonas putida. The BPT is a cascade of plates to whose surface the bacteria attaches. Water flows down and air flows upwards. The reactor show...

  5. Assessment of pollution in road runoff using a Bufo viridis biological assay

    Energy Technology Data Exchange (ETDEWEB)

    Dorchin, A., E-mail: adorchin@campus.haifa.ac.i [Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa 31905 (Israel); Shanas, U., E-mail: shanas@research.haifa.ac.i [Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa 31905 (Israel); Department of Biology, Faculty of Natural sciences, University of Haifa - Oranim, Tiv' on 36006 (Israel)

    2010-12-15

    Road runoff is a major source of environmental pollution, significantly threatening nearby aquatic habitats. Chemical analyses indicate high pollutant concentrations in the road's 'first flush', but bioassays are more advantageous for addressing the cumulative effects of the numerous pollutants within the runoff. We used Bufo viridis embryos and larvae to assess the toxicity of road runoff from two major highways in Israel. We show, for the first time, that exposure to midseason runoff not only has an adverse effect on growth and development rates of B. viridis larvae but can also lead to increased rates of morphological deformations. Seasonal first flushes, despite having higher metal concentrations, did not adversely affect the toad larvae, apparently due to a counter effect of organic matter that potentially served as a supplementary energy resource. Road runoff can be a major cause for a qualitative decrease in the quality of aquatic habitats threatening amphibians in Israel. - Highway runoff has detrimental effects on the development of B. viridis larvae.

  6. Investigations in the degradation of polar and non-polar exit air constituents in biological scrubbers

    International Nuclear Information System (INIS)

    On a semi-technical scale (exit air volume flows between 1000 m3.h-1 and 3600 m3.h-1), experiments in the treatment of exit air from a mixed production plant of the chemical industry by biological absorption process were carried through. During testing, the configuration of the pilot plant was changed. Thus, both a multiple-zone nozzle scrubber and a packed column were used as an absorber, and as a scrubbing liquid both aerated sludge and a dispersion of aerated sludge and silicon oil with silicon oil contents of up to 5% wer used. (orig.)

  7. Eco-friendly and facile integrated biological-cum-photo assisted electrooxidation process for degradation of textile wastewater.

    Science.gov (United States)

    Aravind, Priyadharshini; Subramanyan, Vasudevan; Ferro, Sergio; Gopalakrishnan, Rajagopal

    2016-04-15

    The present article reports an integrated treatment method viz biodegradation followed by photo-assisted electrooxidation, as a new approach, for the abatement of textile wastewater. In the first stage of the integrated treatment scheme, the chemical oxygen demand (COD) of the real textile effluent was reduced by a biodegradation process using hydrogels of cellulose-degrading Bacillus cereus. The bio-treated effluent was then subjected to the second stage of the integrated scheme viz indirect electrooxidation (InDEO) as well as photo-assisted indirect electro oxidation (P-InDEO) process using Ti/IrO2-RuO2-TiO2 and Ti as electrodes and applying a current density of 20 mA cm(-2). The influence of cellulose in InDEO has been reported here, for the first time. UV-Visible light of 280-800 nm has been irradiated toward the anode/electrolyte interface in P-InDEO. The effectiveness of this combined treatment process in textile effluent degradation has been probed by chemical oxygen demand (COD) measurements and (1)H - nuclear magnetic resonance spectroscopy (NMR). The obtained results indicate that the biological treatment allows obtaining a 93% of cellulose degradation and 47% of COD removal, increasing the efficiency of the subsequent InDEO by a 33%. In silico molecular docking analysis ascertained that cellulose fibers affect the InDEO process by interacting with the dyes that are responsible of the COD. On the other hand, P-InDEO resulted in both 95% of decolorization and 68% of COD removal, as a result of radical mediators. Free radicals generated during P-InDEO were characterized as oxychloride (OCl) by electron paramagnetic resonance spectroscopy (EPR). This form of coupled approach is especially suggested for the treatment of textile wastewater containing cellulose. PMID:26921849

  8. Evaluation of Rangeland Stream Condition and Recovery using Physical and Biological Assessments of Nonpoint Source Pollution

    OpenAIRE

    Herbst, David B; Knapp, Roland A.

    1995-01-01

    Livestock grazing is the most common land use in the western United States, and has caused widespread degradation of water quality as a result of impacts to stream and riparian ecosystems. The problem is especially severe in the arid Great Basin, where stream channels and associated vegetation occupy small areas and carry low runoff, but are exposed to intense grazing pressure due to congregation of livestock in areas of shade and water supply. The federal Clean Water Act requires states to a...

  9. Enhancing the biological degradability of sulfamethoxazole by ionizing radiation treatment in aqueous solution

    Science.gov (United States)

    Sági, Gyuri; Kovács, Krisztina; Bezsenyi, Anikó; Csay, Tamás; Takács, Erzsébet; Wojnárovits, László

    2016-07-01

    Changes of biodegradability and toxicity were followed up on aqueous solutions of sulfamethoxazole (SMX), during ionizing radiation treatment. The biodegradability of SMX (0.1 mmol dm-3) was specified by five-day biological oxygen demand (BOD5), using municipal activated sludge, and the results showed an improvement with applying only 0.4 kGy dose. BOD5 further increased with prolonged irradiation, indicating a conversion of SMX, a non-biodegradable compound, to biologically treatable substances. At 2.5 kGy dose, the BOD5/COD ratio increased from 0 to 0.16. The total organic carbon (TOC) content showed a decrease of only 15% at this point, thus high degree of mineralization is not necessary to make SMX digestible for the low concentrations of microorganisms used during BOD5 measurements. Increment in respiration inhibition of municipal activated sludge was observed with increasing the dose. The EC50 values showed a decrease of one order of magnitude when changing the dose from 0.4 kGy to 2.5 kGy. The increase of inhibition and formation of H2O2 showed a strong correlation.

  10. Role of Moving Bed Biofilm Reactor and Sequencing Batch Reactor in Biological Degradation of Formaldehyde Wastewater

    Directory of Open Access Journals (Sweden)

    B. Ayati

    2011-10-01

    Full Text Available Nowadays formaldehyde is used as raw material in many industries. It has also disinfection applications in some public places. Due to its toxicity for microorganisms, chemical or anaerobic biological methods are applied for treating wastewater containing formaldehyde.In this research, formaldehyde removal efficiencies of aerobic biological treatment systems including moving bed biofilm (MMBR and sequencing batch reactors (SBR were investigated. During all experiments, the efficiency of SBR was more than MBBR, but the difference was not significant statistically. According to the results, the best efficiencies were obtained for influent formaldehyde COD of 200 mg/L in MBBR and SBR which were 93% and 99.4%, respectively. The systems were also capable to treat higher formaldehyde concentrations (up to 2500 mg/L with lower removal efficiency. The reaction kinetics followed the Stover-Kincannon second order model. The gram-positive and gram-negative bacillus and coccus as well as the gram-positive binary bacillus were found to be the most dominant species. The results of 13C-NMR analysis have shown that formaldehyde and urea were converted into N-{[(aminocarbonyl amino] methyl}urea and the residual formaldehyde was polymerized at room temperature.

  11. Cellular energy allocation in zebra mussels exposed along a pollution gradient: linking cellular effects to higher levels of biological organization

    International Nuclear Information System (INIS)

    Organisms exposed to suboptimal environments incur a cost of dealing with stress in terms of metabolic resources. The total amount of energy available for maintenance, growth and reproduction, based on the biochemical analysis of the energy budget, may provide a sensitive measure of stress in an organism. While the concept is clear, linking cellular or biochemical responses to the individual and population or community level remains difficult. The aim of this study was to validate, under field conditions, using cellular energy budgets [i.e. changes in glycogen-, lipid- and protein-content and mitochondrial electron transport system (ETS)] as an ecologically relevant measurement of stress by comparing these responses to physiological and organismal endpoints. Therefore, a 28-day in situ bioassay with zebra mussels (Dreissena polymorpha) was performed in an effluent-dominated stream. Five locations were selected along the pollution gradient and compared with a nearby (reference) site. Cellular Energy Allocation (CEA) served as a biomarker of cellular energetics, while Scope for Growth (SFG) indicated effects on a physiological level and Tissue Condition Index and wet tissue weight/dry tissue weight ratio were used as endpoints of organismal effects. Results indicated that energy budgets at a cellular level of biological organization provided the fastest and most sensitive response and energy budgets are a relevant currency to extrapolate cellular effects to higher levels of biological organization within the exposed mussels. - Exposure of zebra mussels along a pollution gradient has adverse effects on the cellular energy allocation, and results can be linked with higher levels of biological organization

  12. Bismuth oxychloride modified titanium phosphate nanoplates: A new p-n type heterostructured photocatalyst with high activity for the degradation of different kinds of organic pollutants.

    Science.gov (United States)

    Ao, Yanhui; Bao, Jiaqiu; Wang, Peifang; Wang, Chao; Hou, Jun

    2016-08-15

    In this work, BiOCl modified titanium phosphate nanoplates (BiOCl/TP) composite photocatalysts with p-n heterojunctions were prepared by a in-situ growth method. The morphology, crystal structure and optical properties of the prepared samples were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), UV-vis diffuse reflectance spectrometry (DRS). Rhodamine B (RhB), reactive brilliant Red X-3B (X-3B), methylene blue (MB), ciprofloxacin (CIP) and phenol were used to investigate the photocatalytic performance of the prepared samples under ultraviolet light irradiation. Results showed that the BiOCl/TP exhibited much higher activity for the degradation of all these model organic pollutants than pure TP. The mechanism for the enhancement of the photocatalytic performance was established with the help of the results of photocurrent measurements and Photoluminescence spectra. The results illustrated that the enhanced activity could be attributed to the formation of p-n heterojunctions between p-type BiOCl and n-type titanium phosphate, which effectively suppressed the recombination of photo-induced electron-hole pairs. Furthermore, the possible photocatalytic mechanisms on the degradation of the organic pollutants were also proposed. PMID:27209392

  13. Hydrocarbon-Degrading Bacteria and Paraffin from Polluted Seashores 9 Years after the Nakhodka Oil Spill in the Sea of Japan

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Pollution of petroleum hydrocarbons, in particular oil spills, has attracted much attention in the past and recent decades. Oil spills influence natural microbial community, and physical and chemical properties of the affected sites. The biodegradation of hydrocarbons by microorganisms is one of the primary ways by which oil spill is eliminated from contaminated sites. One such spill was that of the Russian tanker the Nakhodka that spilled heavy oil into the Sea of Japan on January 2, 1997. The impact of the Nakhodka oil spill resulted in a viscous sticky fluid fouling the shores and affected natural ecosystems. This paper describes the weathering of hydrocarbon-degrading bacteria (genus Pseudomonas) and crystallized organic compounds from the Nakhodka oil spill-polluted seashores after nine years. The Nakhodka oil has hardened and formed crust of crystalline paraffin wax as shown by XRD analysis (0.422, 0.377, and 0.250 nm d-spacing) in association with graphite and calcite after 9years of bioremediation. Anaerobic reverse side of the oil crust contained numerous coccus typed bacteria associated with halite. The finding of hydrocarbon-degrading bacteria and paraffin wax in the oil crust may have a significant effect on the weathering processes of the Nakhodka oil spill during the 9-year bioremediation.

  14. Comparison of three different DNA extraction methods from a highly degraded biological material.

    Science.gov (United States)

    Kuś, M; Ossowski, A; Zielińska, G

    2016-05-01

    The identification of unknown victims is one of the most challenging tasks faced by forensic medicine. This is due to the rapid decomposition of tissues, beginning at the moment of death and caused by released enzymes and microbial activity. Decay is directly associated with the decomposition of soft tissues and also the degradation of genetic material inside cells. Decomposition rates vary depending on a number of environmental factors, including temperature, humidity, season, and soil properties. Decomposition also differs between bodies left in the open air or buried. To date, forensic medicine has identified mainly people who were the victims of various types of criminal offences. However, with advances in identification methods, increasingly frequent attempts are made to identify the victims of armed conflicts, crimes of totalitarian regimes, or genocide. The aim of the study was to compare three different methods for the extraction of nuclear DNA from material considered in forensic medicine as difficult to handle, i.e. fragments of bones and teeth, and to determine the performance of these methods and their suitability for identification procedures. PMID:27016882

  15. Biological effect of radiation-degraded alginate on flower plants in tissue culture.

    Science.gov (United States)

    Le, Q Luan; Nguyen, Q Hien; Nagasawa, Naotsugu; Kume, Tamikazu; Yoshii, Fumio; Nakanishi, Tomoko M

    2003-12-01

    Alginate with a weight-average molecular mass (Mw) of approx. 9.04 x 10(5) Da was irradiated at 10-200 kGy in 4% (w/v) aqueous solution. The degraded alginate product was used to study its effectiveness as a growth promoter for plants in tissue culture. Alginate irradiated at 75 kGy with an Mw of approx. 1.43 x 10(4) Da had the highest positive effect in the growth of flower plants, namely limonium, lisianthus and chrysanthemum. Treatment of plants with irradiated alginate at concentrations of 30-200 mg/l increased the shoot multiplication rate from 17.5 to 40.5% compared with control. In plantlet culture, 100 mg/l irradiated alginate supplementation enhanced shoot height (9.7-23.2%), root length (9.7-39.4%) and fresh biomass (8.1-19.4%) of chrysanthemum, lisianthus and limonium compared with that of the untreated control. The survival ratios of the transferred flower plantlets treated with irradiated alginate were almost the same as the control value under greenhouse conditions. However, better growth was attained for the treated plantlets. PMID:12901723

  16. Impact of hydrodynamics on pollutant degradation and energy efficiency of VUV/UV and H2O2/UV oxidation processes.

    Science.gov (United States)

    Bagheri, Mehdi; Mohseni, Madjid

    2015-12-01

    The Vacuum-UV/UV process, an incipient catalyst/chemical-free advanced oxidation process (AOP), is potentially a cost-effective solution for the removal of harmful micropollutants from water. Utilizing a novel mechanistic numerical model, this work aimed to establish a thorough understanding of the degradation mechanisms in the VUV/UV process operating under continuous flow conditions, when compared with the widely applied H2O2/UV AOP. Of particular interest was the examination of the impact of flow characteristics (hydrodynamics) on the degradation efficacy of a target micropollutant during the VUV/UV and H2O2/UV AOPs. While hydroxyl radical (OH) oxidation was the dominant degradation pathway in both processes, the degradation efficacy of the VUV/UV process showed much stronger correlation with the extent of mixing in the photoreactor. Under a uniform flow regime, the degradation efficiency of the target pollutant achieved by the H2O2/UV process with 2- and 5 ppm H2O2 was greater than that provided by the VUV/UV process. Nonetheless, introduction of mixing and circulation zones to the VUV/UV reactor resulted in superior performance compared with the H2O2/UV AOP. Based on the electrical energy-per-order (EEO) analysis, incorporation of circulation zones resulted in a reduction of up to 50% in the overall energy cost of the VUV/UV AOP, while the corresponding reduction for the 5-ppm H2O2/UV system was less than 5%. Furthermore, the extent of OH scavenging of natural organic matter (NOM) on energy efficiency of the VUV/UV and H2O2/UV AOPs under continuous flow conditions was assessed using the EEO analysis. PMID:26363258

  17. Poly(L-lactide)-degrading enzyme production by Actinomadura keratinilytica T16-1 in 3 L airlift bioreactor and its degradation ability for biological recycle.

    Science.gov (United States)

    Sukkhum, Sukhumaporn; Tokuyama, Shinji; Kitpreechavanich, Vichien

    2012-01-01

    The optimal physical factors affecting enzyme production in an airlift fermenter have not been studied so far. Therefore, the physical parameters such as aeration rate, pH, and temperature affecting PLA-degrading enzyme production by Actinomadura keratinilytica strain T16-1 in a 3 l airlift fermenter were investigated. The response surface methodology (RSM) was used to optimize PLA-degrading enzyme production by implementing the central composite design. The optimal conditions for higher production of PLA-degrading enzyme were aeration rate of 0.43 vvm, pH of 6.85, and temperature at 46° C. Under these conditions, the model predicted a PLA-degrading activity of 254 U/ml. Verification of the optimization showed that PLA-degrading enzyme production of 257 U/ml was observed after 3 days cultivation under the optimal conditions in a 3 l airlift fermenter. The production under the optimized condition in the airlift fermenter was higher than un-optimized condition by 1.7 folds and 12 folds with un-optimized medium or condition in shake flasks. This is the first report on the optimization of environmental conditions for improvement of PLA-degrading enzyme production in a 3 l airlift fermenter by using a statistical analysis method. Moreover, the crude PLA-degrading enzyme could be adsorbed to the substrate and degraded PLA powder to produce lactic acid as degradation products. Therefore, this incident indicates that PLA-degrading enzyme produced by Actinomadura keratinilytica NBRC 104111 strain T16-1 has a potential to degrade PLA to lactic acid as a monomer and can be used for the recycle of PLA polymer. PMID:22297224

  18. Anaerobic methanethiol degradation and methanogenic community analysis in an alkaline (pH 10) biological process for liquefied petroleum gas desulfurization.

    Science.gov (United States)

    van Leerdam, Robin C; Bonilla-Salinas, Monica; de Bok, Frank A M; Bruning, H; Lens, Piet N L; Stams, Alfons J M; Janssen, Albert J H

    2008-11-01

    Anaerobic methanethiol (MT) degradation by mesophilic (30 degrees C) alkaliphilic (pH 10) communities was studied in a lab-scale Upflow Anaerobic Sludge Bed (UASB) reactor inoculated with a mixture of sediments from the Wadden Sea (The Netherlands), Soap Lake (Central Washington), and Russian soda lakes. MT degradation started after 32 days of incubation. During the first 252 days, complete degradation was achieved till a volumetric loading rate of 7.5 mmol MT/L/day, and sulfide, methane, and carbon dioxide were the main reaction products. Temporary inhibition of MT degradation occurred after MT peak loads and in the presence of dimethyl disulfide (DMDS), which is the autooxidation product of MT. From day 252 onwards, methanol was dosed to the reactor as co-substrate at a loading rate of 3-6 mmol/L/day to stimulate growth of methylotrophic methanogens. Methanol was completely degraded and also a complete MT degradation was achieved till a volumetric loading rate of 13 mmol MT/L/day (0.77 mmol MT/gVSS/day). However, from day 354 till the end of the experimental run (day 365), acetate was formed and MT was not completely degraded anymore, indicating that methanol-degrading homoacetogenic bacteria had partially outcompeted the methanogenic MT-degrading archea. The archeal community in the reactor sludge was analyzed by DGGE and sequencing of 16S rRNA genes. The methanogenic archea responsible for the degradation of MT in the reactor were related to Methanolobus oregonensis. A pure culture, named strain SODA, was obtained by serial dilutions in medium containing both trimethyl amine and dimethyl sulfide (DMS). Strain SODA degraded MT, DMS, trimethyl amine, and methanol. Flow sheet simulations revealed that for sufficient MT removal from liquefied petroleum gas, the extraction and biological degradation process should be operated above pH 9. PMID:18814290

  19. Ternary ZnO/Ag3VO4/Fe3O4 nanocomposites: Novel magnetically separable photocatalyst for efficiently degradation of dye pollutants under visible-light irradiation

    Science.gov (United States)

    Shekofteh-Gohari, Maryam; Habibi-Yangjeh, Aziz

    2015-10-01

    In this work, we successfully prepared a series of novel magnetically separable ZnO/Ag3VO4/Fe3O4 nanocomposites by a facile refluxing method using Fe3O4, zinc nitrate, silver nitrate, ammonium metavanadate, and sodium hydroxide as starting materials without using any post preparation treatments. The microstructure, purity, morphology, spectroscopic, and magnetic properties of the prepared samples were studied using XRD, EDX, SEM, TEM, UV-vis DRS, FT-IR, PL, and VSM techniques. The ZnO/Ag3VO4/Fe3O4 nanocomposite with 8:1 weight ratio of ZnO/Ag3VO4 to Fe3O4 has the superior activity in degradation of rhodamine B under visible-light irradiation. Photocatalytic activity of this nanocomposite is about 11.5-fold higher than that of the ZnO/Fe3O4 nanocomposite. The results showed that the preparation time and calcination temperature significantly affect on the photocatalytic activity. The trapping experiments revealed that superoxide ions and holes have major influence on the degradation reaction. Furthermore, the enhanced activity of the nanocomposite for degradation of two more dye pollutants was confirmed. Finally, the nanocomposite was magnetically separated from the treated solution after four successive cycles.

  20. Carbon-dot-decorated TiO₂ nanotube arrays used for photo/voltage-induced organic pollutant degradation and the inactivation of bacteria.

    Science.gov (United States)

    Feng, Lingyan; Sun, Hanjun; Ren, Jinsong; Qu, Xiaogang

    2016-03-18

    Photoluminescent carbon dots (c-dots) have recently attracted growing interest as a new member of the carbon-nanomaterial family. Here, we report for the first time that c-dot-decorated TiO2 nanotube arrays (c-dot/TiNTs) exhibit highly enhanced abilities regarding photo/voltage-induced organic pollutant degradation and bacterial inactivation. By applying UV irradiation (365 nm) or an electrochemical potential over 3 V (versus Ag/AgCl), an organic dye and a herbicide were efficiently degraded. Moreover, the inactivation of Gram-positive S. aureus and Gram-negative E. coli bacteria was realized on a c-dot/TiNT film. The c-dots were able to absorb light efficiently resulting in multiple exciton generation and also a reduction in the recombination of the e(-)/h(+) pair produced in c-dot/TiNT film during photo/voltage-induced degradation. It was also possible to readily regenerate the surface using ultraviolet light irradiation, leaving the whole film structure undamaged and with high reproducibility and stability. PMID:26870882

  1. Self-assembly graphitic carbon nitride quantum dots anchored on TiO2 nanotube arrays: An efficient heterojunction for pollutants degradation under solar light.

    Science.gov (United States)

    Su, Jingyang; Zhu, Lin; Geng, Ping; Chen, Guohua

    2016-10-01

    In this study, an efficient heterojunction was constructed by anchoring graphitic carbon nitride quantum dots onto TiO2 nanotube arrays through hydrothermal reaction strategy. The prepared graphitic carbon nitride quantum dots, which were prepared by solid-thermal reaction and sequential dialysis process, act as a sensitizer to enhance light absorption. Furthermore, it was demonstrated that the charge transfer and separation in the formed heterojunction were significantly improved compared with pristine TiO2. The prepared heterojunction was used as a photoanode, exhibiting much improved photoelectrochemical capability and excellent photo-stability under solar light illumination. The photoelectrocatalytic activities of prepared heterojunction were demonstrated by degradation of RhB and phenol in aqueous solution. The kinetic constants of RhB and phenol degradation using prepared photoelectrode are 2.4 times and 4.9 times higher than those of pristine TiO2, respectively. Moreover, hydroxyl radicals are demonstrated to be dominant active radicals during the pollutants degradation. PMID:27232727

  2. Carbon-dot-decorated TiO2 nanotube arrays used for photo/voltage-induced organic pollutant degradation and the inactivation of bacteria

    Science.gov (United States)

    Feng, Lingyan; Sun, Hanjun; Ren, Jinsong; Qu, Xiaogang

    2016-03-01

    Photoluminescent carbon dots (c-dots) have recently attracted growing interest as a new member of the carbon-nanomaterial family. Here, we report for the first time that c-dot-decorated TiO2 nanotube arrays (c-dot/TiNTs) exhibit highly enhanced abilities regarding photo/voltage-induced organic pollutant degradation and bacterial inactivation. By applying UV irradiation (365 nm) or an electrochemical potential over 3 V (versus Ag/AgCl), an organic dye and a herbicide were efficiently degraded. Moreover, the inactivation of Gram-positive S. aureus and Gram-negative E. coli bacteria was realized on a c-dot/TiNT film. The c-dots were able to absorb light efficiently resulting in multiple exciton generation and also a reduction in the recombination of the e-/h+ pair produced in c-dot/TiNT film during photo/voltage-induced degradation. It was also possible to readily regenerate the surface using ultraviolet light irradiation, leaving the whole film structure undamaged and with high reproducibility and stability.

  3. Biological phosphate removal using a degradable carbon source produced by hydrothermal treatment of excess sludge

    Directory of Open Access Journals (Sweden)

    L. H. Haraguchi

    2006-03-01

    Full Text Available The possibility of reusing excess sludge treated by hydrothermal reaction for the purpose of improving the efficiency of the enhanced biological phosphate removal (EBPR process was investigated. Excess sludge from a fish-processing industry located in Japan was treated in high-temperature and high-pressure water, at a reaction temperature ranging from 200 to 400ºC, a pressure of 1.8 to 30MPa and a constant reaction time of 7 min. For the conditions tested, the results showed that when the reaction temperature was increased the content of readily biodegradable substrate in the total COD Cr increased. In addition, the amount of some volatile fatty acids (VFAs produced by the hydrothermal reaction increased as reaction temperature increased. From the phosphate release tests under anaerobic conditions, it was possible to demonstrate that not only the VFAs, but also the readily and slowly biodegradable substrates are used as potential carbon source by the phosphate-accumulating organisms (PAOs.

  4. DECOLORIZATION AND BIOLOGICAL DEGRADATION OF AZO DYE REACTIVE RED2 BY ANAEROBIC/AEROBIC SEQUENTIAL PROCESS

    Directory of Open Access Journals (Sweden)

    A. Naimabadi ، H. Movahedian Attar ، A. Shahsavani

    2009-04-01

    Full Text Available This study investigates the anaerobic treatability of reactive Red2 in an anaerobic/aerobic sequential process. Laboratory scale anaerobic baffled reactor and fixed activated sludge reactor were operated at different organic loadings and hydraulic retention times. The effects of shock dye concentration on the chemical oxygen demand and color removal efficiencies were investigated in the anaerobic baffled reactor. The effect of hydraulic retention time on the color and chemical oxygen demand removal efficiencies were also investigated in the aerobic reactor. The studies were carried out in continuous mode and the effluent of the anaerobic baffled reactor was used as feed for the fixed activated sludge reactor. Chemical oxygen demand removal efficiency of 54.5% was obtained at HRT =1 day in the anaerobic reactor. The average color removal was 89.5%. Chemical oxygen demand removal efficiency of 69% was obtained at HRT =7 h in the aerobic fixed activated sludge reactor. A slight decrease of the color was also observed in the aerobic reactor. This investigation has shown that successful treatment of a highly colored wastewater is possible in the anaerobic baffled reactor. Also the results showed that, anaerobic biological system has higher efficiency in dye removal than fixed activated sludge system, while aerobic system has higher efficiency in chemical oxygen demand removal comparing with the anaerobic baffled reactor.

  5. The use of Sphagnum recurvum Pal. Beauv. as biological tests for determination of the level of pollution with fluorine compounds and sulphur dioxide in the environment

    Directory of Open Access Journals (Sweden)

    Maria Świeboda

    2014-02-01

    Full Text Available The green parts of the peat moss Sphagnum recurvum Pal. Beauv. were used as a biological test to evaluate the pollution level of the natural environment in the region of the aluminium works "Skawina" (Southern Poland with fluorine compounds and sulphur dioxide. The moss samples were placed in nylon nets and exposed to the polluted air for 6 weeks, then the fluorine and sulphur content in them was determined. The results demonstrated the usefulness of this method for the purpose of establishing the range of influence of the emitted industrial pollution.

  6. TAML/H2O2 Oxidative Degradation of Metaldehyde: Pursuing Better Water Treatment for the Most Persistent Pollutants.

    Science.gov (United States)

    Tang, Liang L; DeNardo, Matthew A; Gayathri, Chakicherla; Gil, Roberto R; Kanda, Rakesh; Collins, Terrence J

    2016-05-17

    The extremely persistent molluscicide, metaldehyde, widely used on farms and gardens, is often detected in drinking water sources of various countries at concentrations of regulatory concern. Metaldehyde contamination restricts treatment options. Conventional technologies for remediating dilute organics in drinking water, activated carbon, and ozone, are insufficiently effective against metaldehyde. Some treatment plants have resorted to effective, but more costly UV/H2O2. Here we have examined if TAML/H2O2 can decompose metaldehyde under laboratory conditions to guide development of a better real world option. TAML/H2O2 slowly degrades metaldehyde to acetaldehyde and acetic acid. Nuclear magnetic resonance spectroscopy ((1)H NMR) was used to monitor the degradation-the technique requires a high metaldehyde concentration (60 ppm). Within the pH range of 6.5-9, the reaction rate is greatest at pH 7. Under optimum conditions, one aliquot of TAML 1a (400 nM) catalyzed 5% degradation over 10 h with a turnover number of 40. Five sequential TAML aliquots (2 μM overall) effected a 31% removal over 60 h. TAML/H2O2 degraded metaldehyde steadily over many hours, highlighting an important long-service property. The observation of metaldehyde decomposition under mild conditions provides a further indication that TAML catalysis holds promise for advancing water treatment. These results have turned our attention to more aggressive TAML activators in development, which we expect will advance the observed technical performance. PMID:27088657

  7. Transcriptional profiling of Gram-positive Arthrobacter in the phyllosphere: induction of pollutant degradation genes by natural plant phenolic compounds

    NARCIS (Netherlands)

    Scheublin, T.R.; Deusch, S.; Moreno-Forero, S.K.; Müller, J.A.; van der Meer, J.R.; Leveau, J.H.J.

    2014-01-01

    Arthrobacter chlorophenolicus A6 is a Gram-positive, 4-chlorophenol degrading soil bacterium that was recently shown to be an effective colonizer of plant leaf surfaces. The genetic basis for this phyllosphere competency is unknown. In this paper, we describe the genome-wide expression profile of A.

  8. Activities and vectors responsible for the biological pollution in the Taranto Seas (Mediterranean Sea, southern Italy): a review.

    Science.gov (United States)

    Cecere, E; Petrocelli, A; Belmonte, M; Portacci, G; Rubino, F

    2016-07-01

    Biological pollution, caused by the negative impact of alien species, also known as non-indigenous species (NIS), is regarded as one of the greatest threat to marine ecosystems. The recent upsurge in the number and spread of these species drew attention to putative vectors such as shipping and shellfish importation for culture and consumption. The port of Taranto in Southern Italy is a hub for several vectors as it serves commercial and military shipping, fishing and recreational boating, in addition to shellfish importation. An analysis of anthropogenic activities and possible vectors in Taranto Seas was recently carried out within the framework of the RITMARE Project, involving local stakeholders. Different categories of stakeholders answered dedicated questionnaires with a high degree of reticence, and this highlighted a general lack of awareness of the problems associated with alien species. Consequently, there is a strong need to instil a truly ecological awareness among the general public and stakeholders. PMID:26178840

  9. Evaluation of methylene diphenyl diisocyanate as an indoor air pollutant and biological assessment of methylene dianiline in the polyurethane factories

    Directory of Open Access Journals (Sweden)

    Mirmohammadi Mirtaghi

    2009-01-01

    Full Text Available Today many raw materials used in factories may have a dangerous effect on the physiological system of workers. One of them, which is widely used in the polyurethane factories, is diisocyanates. These compounds are widely used in surface coatings, polyurethane foams, adhesives, resins, elastomers, binders, and sealants. Exposure to diisocyanates causes irritation to the skin, mucous membranes, eyes, and respiratory tract. Methylene dianiline (MDA is a metabolite of methylene diphenyle diisocyanate (MDI, an excretory material of worker′s urine who are exposed to MDI. Around 100 air samples were collected among five factories by the Midget Impinger, which contained DMSO absorbent as a solvent and Tryptamine as a reagent. Samples were analyzed by high-performance liquid chromatography with an ECUV detector using the NIOSH 5522 method of sampling and analysis. Also, fifty urine samples were collected from workers by using William′s biological analysis method. The concentration of MDI in all air samples was more than 88 µg/m³, showing a high concentration of the pollutant in the workplaces in comparison with the NIOSH standard, and all the worker′s urine was contaminated by MDA. The correlation and regression tests were used to obtain statistical model for MDI and MDA that is useful for prediction of diisocyanates pollution situation in the polyurethane factories.

  10. Mapping air pollution by biological monitoring in the metropolitan Tel Aviv area.

    Science.gov (United States)

    Lavi, Aya; Potchter, Oded; Omer, Itzhak; Fireman, Elizabeth

    2016-06-01

    Conventional environmental monitoring is not surrogate of personal exposure. In contrast, biomonitoring provides information on the presence of substances in the human body, making it highly relevant to the assessment of exposure to toxic substances. Induced sputum (IS) is a noninvasive technique for detecting inflammation and reflecting particulate matter content in the airways. In this study, we mapped particulate matter dispersion in metropolitan Tel Aviv by both biomonitoring techniques employing IS samples and by environmental monitoring. All adults referred to the Pulmonary Lab for respiratory symptom evaluation in 2007 and in 2009 were enrolled. Pulmonary function tests were performed by conventional methods. Particulate size distribution in IS was analyzed, and maps of air pollution were created. Biomonitoring was more informative and enabled mapping of wider areas. Integration of biomonitoring and environmental monitoring should be considered in forming public health policy on containment of airborne particles of toxic substances. PMID:26600473

  11. Risks and benefits of biological cleaning of the environment polluted with halogenated compounds

    Czech Academy of Sciences Publication Activity Database

    Demnerová, K.; Macková, M.; Ječná, K.; Stiborová, H.; Lovecká, P.; Dudková, V.; Zlámalíková, J.; Macek, Tomáš

    Chania: Technical University of Crete, 2008 - (Kalogerakis, N.; Fava, F.; Banwart, S.). s. 82-82 ISBN 978-960-8475-12-0. [European Bioremediation Conference /4./. 03.09.2008-06.09.2008, Chania] R&D Projects: GA ČR GA203/06/0563; GA MŠk 2B06156 Institutional research plan: CEZ:AV0Z40550506 Keywords : biological remediation * PCB Subject RIV: EI - Biotechnology ; Bionics

  12. Recent Developments in Environmental Photocatalytic Degradation of Organic Pollutants: The Case of Titanium Dioxide Nanoparticles—A Review

    Directory of Open Access Journals (Sweden)

    Mphilisi M. Mahlambi

    2015-01-01

    Full Text Available The presence of both organic and inorganic pollutants in water due to industrial, agricultural, and domestic activities has led to the global need for the development of new, improved, and advanced but effective technologies to effectively address the challenges of water quality. It is therefore necessary to develop a technology which would completely remove contaminants from contaminated waters. TiO2 (titania nanocatalysts have a proven potential to treat “difficult-to-remove” contaminants and thus are expected to play an important role in the remediation of environmental and pollution challenges. Titania nanoparticles are intended to be both supplementary and complementary to the present water-treatment technologies through the destruction or transformation of hazardous chemical wastes to innocuous end-products, that is, CO2 and H2O. This paper therefore explores and summarizes recent efforts in the area of titania nanoparticle synthesis, modifications, and application of titania nanoparticles for water treatment purposes.

  13. Recent Developments in Environmental Photocatalytic Degradation of Organic Pollutants: The Case of Titanium Dioxide Nanoparticles—A Review

    OpenAIRE

    Mahlambi, Mphilisi M; Ngila, Catherine J.; Bhekie B. Mamba

    2015-01-01

    The presence of both organic and inorganic pollutants in water due to industrial, agricultural, and domestic activities has led to the global need for the development of new, improved, and advanced but effective technologies to effectively address the challenges of water quality. It is therefore necessary to develop a technology which would completely remove contaminants from contaminated waters. TiO2 (titania) nanocatalysts have a proven potential to treat “difficult-to-remove” contaminants ...

  14. Mycoplasma hyorhinis markedly degrades β-amyloid peptides in vitro and ex vivo: a novel biological approach for treating Alzheimer’s disease?

    Science.gov (United States)

    Habib, Ahsan; Deng, Juan; Hou, Huayan; Zou, Qiang; Giunta, Brian; Wang, Yan-Jiang; Obregon, Demian; Sawmiller, Darrell; Li, Song; Mori, Takashi; Tan, Jun

    2013-01-01

    Accumulation of amyloid-β (Aβ) peptides (predominantly Aβ40, 42) and their aggregation into plaques in the brain are thought to be the one of the major causes of Alzheimer’s disease (AD). Originally discovered in our Chinese hamster ovary (CHO) cell line stably expressing human wild-type amyloid precursor protein (APP) (CHO/APPwt) cultures devoid of Aβ production, we found that Mycoplasma selectively degrades soluble Aβ in a time and dose (colony forming unit) dependent manner. Moreover, we fully characterized the Mycoplasma species as Mycoplasma hyorhinis (M. hyorhinis) by genetic and colony morphological analyses by light microscopy. Most interestingly, we attenuated the pathogenicity of M. hyorhinis by γ irradiation (3.5 Gy), and found that its ability to degrade Aβ was retained. On the other hand, heated and sonicated M. hyorhinis failed to retain this ability to degrade Aβ, suggesting that this degradation requires viable cells and likely a biologically active signaling pathway. In addition, we found that M. hyorhinis can degrade Aβ produced in AD model mice (PSAPP mice) ex vivo. Finally, we found that irradiated (non-pathogenic) M. hyorhinis also can degrade Aβ produced in PSAPP mice in vivo. These studies suggest that irradiated (non-pathogenic) M. hyorhinis can be a novel and alternative biological strategy for AD treatment. PMID:24093060

  15. Inhibitory Effects of Silver Nanoparticles on Removal of Organic Pollutants and Sulfate in an Anaerobic Biological Wastewater Treatment Process.

    Science.gov (United States)

    Rasool, Kashif; Lee, Dae Sung

    2016-05-01

    The increasing use of silver nanoparticles (AgNPs) in commercial products and industrial processes raises issues regarding the toxicity of sludge biomass in biological wastewater treatment plants, due to potential antimicrobial properties. This study investigated the effects of AgNPs on removal of organic pollutants and sulfate in an anaerobic biological sulfate reduction process. At AgNPs concentrations of up to 10 mg/L, no significant inhibition of sulfate and COD removal was observed. However, at higher concentrations (50-200 mg/L) sulfate and COD removal efficiencies were significantly decreased to 51.8% and 33.6%, respectively. Sulfate and COD reduction followed first-order kinetics at AgNPs concentrations of up to 10 mg/L and second-order kinetics at AgNPs concentrations of 50-200 mg/L. Lactate dehydrogenase release profiles showed increases in cytotoxicity at AgNPs concentrations greater than 50 mg/L suggesting cell membrane disruption. Analysis of extracellular polymeric substances (EPS) from sulfidogenic sludge biomass and of Fourier transform infrared (FT-IR) spectra showed a decrease in concentrations of carbohydrates, proteins, humic substances, and lipids in the presence of AgNPs. Moreover, the interaction of AgNPs with sludge biomass and the damage caused to cell walls were confirmed through scanning electron microscopy with energy dispersive X-ray spectroscopy. PMID:27483773

  16. Secondary successions of biota in oil-polluted peat soil upon different biological remediation methods

    Science.gov (United States)

    Melekhina, E. N.; Markarova, M. Yu.; Shchemelinina, T. N.; Anchugova, E. M.; Kanev, V. A.

    2015-06-01

    The effects of different bioremediation methods on restoration of the oil-polluted peat soil (Histosol) in the northernmost taiga subzone of European Russia was studied. The population dynamics of microorganisms belonging to different trophic groups (hydrocarbon-oxidizing, ammonifying, nitrifying, and oligonitrophilic) were analyzed together with data on the soil enzyme (catalase and dehydrogenase) activities, population densities of soil microfauna groups, their structures, and states of phytocenoses during a sevenyear-long succession. The remediation with biopreparations Roder composed of oil-oxidizing microorganisms-Roder with Rhodococcus rubber and R. erythropolis and Universal with Rhodotorula glutinis and Rhodococcus sp.-was more efficient than the agrochemical and technical remediation. It was concluded that the biopreparations activate microbiological oil destruction, thereby accelerating restoration succession of phytocenosis and zoocenosis. The succession of dominant microfauna groups was observed: the dipteran larvae and Mesostigmata mites predominant at the early stages were replaced by collembolans at later stages. The pioneer oribatid mite species were Tectocepheus velatus, Oppiella nova, Liochthonius sellnicki, Oribatula tibialis, and Eupelops sp.

  17. Particulate air pollution and increased mortality: Biological plausibility for causal relationship

    International Nuclear Information System (INIS)

    Recently, a number of epidemiological studies have concluded that ambient particulate exposure is associated with increased mortality and morbidity at PM concentrations well below those previously thought to affect human health. These studies have been conducted in several different geographical locations and have involved a range of populations. While the consistency of the findings and the presence of an apparent concentration response relationship provide a strong argument for causality, epidemiological studies can only conclude this based upon inference from statistical associations. The biological plausibility of a causal relationship between low concentrations of PM and daily mortality and morbidity rates is neither intuitively obvious nor expected based on past experimental studies on the toxicity of inhaled particles. Chronic toxicity from inhaled, poorly soluble particles has been observed based on the slow accumulation of large lung burdens of particles, not on small daily fluctuations in PM levels. Acute toxicity from inhaled particles is associated mainly with acidic particles and is observed at much higher concentrations than those observed in the epidemiology studies reporting an association between PM concentrations and morbidity/mortality. To approach the difficult problem of determining if the association between PM concentrations and daily morbidity and mortality is biologically plausible and causal, one must consider (1) the chemical and physical characteristics of the particles in the inhaled atmospheres, (2) the characteristics of the morbidity/mortality observed and the people who are affected, and (3) potential mechanisms that might link the two

  18. Molecular application for identification of polycyclic aromatic hydrocarbons degrading bacteria (PAHD) species isolated from oil polluted soil in Dammam, Saud Arabia.

    Science.gov (United States)

    Ibrahim, Mohamed M; Al-Turki, Ameena; Al-Sewedi, Dona; Arif, Ibrahim A; El-Gaaly, Gehan A

    2015-09-01

    Soil contamination with petroleum hydrocarbon products such as diesel and engine oil is becoming one of the major environmental problems. This study describes hydrocarbons degrading bacteria (PHAD) isolated from long-standing petrol polluted soil from the eastern region, Dammam, Saudi Arabia. The isolated strains were firstly categorized by accessible shape detection, physiological and biochemistry tests. Thereafter, a technique established on the sequence analysis of a 16S rDNA gene was used. Isolation of DNA from the bacterial strains was performed, on which the PCR reaction was carried out. Strains were identified based on 16S rDNA sequence analysis, As follows amplified samples were spontaneously sequenced automatically and the attained results were matched to open databases. Among the isolated bacterial strains, S1 was identified as Staphylococcus aureus and strain S1 as Corynebacterium amycolatum. PMID:26288572

  19. Biological and chemical evaluation of sewage water pollution in the Rietvlei nature reserve wetland area, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Oberholster, P.J. [CSIR Natural Resources and the Environment, P.O. Box 395, Pretoria 0001 (South Africa)], E-mail: anna.oberholster@up.ac.za; Botha, A.-M. [Department of Genetics, University of Pretoria, Hillcrest, Pretoria ZA002 (South Africa); Cloete, T.E. [Department of Microbiology and Plant Pathology, University of Pretoria, Hillcrest, Pretoria ZA002 (South Africa)

    2008-11-15

    Macroinvertebrate communities in Rietvlei nature reserve wetland area and their relationship with water quality were studied with the aim to evaluate their use as potential indicators of pollution. Sampling locations were selected to include outlets from swage effluent, agricultural and informal residential runoff. A large increase in nutrient concentrations was observed downstream from discharged treated sewage with an associated decrease in species richness. Bioassays performed included: Daphnia magna, Hydra attenuate, Lactuca sativa, Allium cepa and Pyxicephalus adspersus. The highest percentage of lethality response to a screen (100% concentration) of sampled wetland water by test specimens were observed at the point source input of the Hartbeespoort treated sewage plant. Data generated from the AUSRIVAS method and multitrophic level bioassays revealed the deterioration of the wetland possibly due to factors such as increasing urbanization, industrialization, agriculture runoff and rapid human settlement in the Hennops River catchment area and its principal tributaries. - Bioassays confirmed the degradation of a freshwater wetland system due to effluent from a variety of sources.

  20. Biological and chemical evaluation of sewage water pollution in the Rietvlei nature reserve wetland area, South Africa

    International Nuclear Information System (INIS)

    Macroinvertebrate communities in Rietvlei nature reserve wetland area and their relationship with water quality were studied with the aim to evaluate their use as potential indicators of pollution. Sampling locations were selected to include outlets from swage effluent, agricultural and informal residential runoff. A large increase in nutrient concentrations was observed downstream from discharged treated sewage with an associated decrease in species richness. Bioassays performed included: Daphnia magna, Hydra attenuate, Lactuca sativa, Allium cepa and Pyxicephalus adspersus. The highest percentage of lethality response to a screen (100% concentration) of sampled wetland water by test specimens were observed at the point source input of the Hartbeespoort treated sewage plant. Data generated from the AUSRIVAS method and multitrophic level bioassays revealed the deterioration of the wetland possibly due to factors such as increasing urbanization, industrialization, agriculture runoff and rapid human settlement in the Hennops River catchment area and its principal tributaries. - Bioassays confirmed the degradation of a freshwater wetland system due to effluent from a variety of sources

  1. Preparation and characterization of Nano-graphite/TiO2 composite photoelectrode for photoelectrocatalytic degradation of hazardous pollutant.

    Science.gov (United States)

    Li, Dong; Jia, Jialin; Zhang, Yuhang; Wang, Na; Guo, Xiaolei; Yu, Xiujuan

    2016-09-01

    Nano-graphite(Nano-G)/TiO2 composite photoelectrode was fabricated via sol-gel reaction, followed by the hot-press approach. The morphology, structure and light absorption capability of composite was characterized by various characterizations. The photoelectrochemical property and photoelectrocatalytic(PEC) activity of photoelectrode were also investigated. Results revealed that anatase TiO2 nanoparticles with an average diameter of 10nm were dispersed uniformly on the thickness of 2-3nm Nano-G, and TiOC bond was formed. The absorption edge of Nano-G/TiO2 photoelectrode was red-shifted towards low energy region and the enhanced visible light absorption was obtained. The charge transfer resistance of Nano-G/TiO2 photoelectrode was significantly decreased after the addition of Nano-G. And its transient photoinduced current was 10.5 times the value achieved using TiO2 electrode. Nano-G/TiO2 photoelectrode displayed greatly enhanced PEC activity of 99.2% towards the degradation of phenol, which was much higher than the 29.1% and 58.3% degradation seen on TiO2 and Nano-G electrode, respectively. The highly efficient and stable PEC activity of Nano-G/TiO2 photoelectrode was attributed to the synergy effect between photocatalysis and electrocatalysis, as well as enhanced light absorption ability and higher separation efficiency of photogenerated charge carriers. Moreover, contribution of series of reactive species to the PEC degradation of Nano-G/TiO2 photoelectrode was determined. PMID:27149660

  2. Assessment of biological effects of environmental pollution in Mersin Bay (Turkey, northeastern Mediterranean Sea) using Mullus barbatus and Liza ramada as target organisms.

    Science.gov (United States)

    Yılmaz, Doruk; Kalay, Mustafa; Dönmez, Erdem; Yılmaz, Nejat

    2016-01-01

    The increasing emphasis on the assessment and monitoring of marine ecosystems has revealed the need to use appropriate biological indicators for these areas. Enzyme activities and histopathology are increasingly being used as indicators of environmental stress since they provide a definite biological end-point of pollutant exposure. As part of an ecotoxicological assessment of Mersin Bay, EROD enzyme activity and histopathological response in selected organs and tissues of two species of fish, Mullus barbatus (red mullet) and Liza ramada (thinlip grey mullet), captured from area were examined. Pollutant (Organochlorines (OC), alkylphenols (APs) and BPA) levels and biomarker responses in tissue samples were evaluated together for their potential to alter the metabolism and cellular aspects in liver and gonad. Elevated induction of EROD activity and histopathological alterations in contaminated samples from Mersin Bay was observed compared to reference site indicating the exposure to potential pollutants. PMID:26552534

  3. Simultaneous determination of indoor ammonia pollution and its biological metabolite in the human body with a recyclable nanocrystalline lanthanide-functionalized MOF

    Science.gov (United States)

    Hao, Ji-Na; Yan, Bing

    2016-01-01

    A Eu3+ post-functionalized metal-organic framework of nanosized Ga(OH)bpydc(Eu3+@Ga(OH)bpydc, 1a) with intense luminescence is synthesized and characterized. Luminescence measurements reveal that 1a can detect ammonia gas selectively and sensitively among various indoor air pollutants. 1a can simultaneously determine a biological ammonia metabolite (urinary urea) in the human body, which is a rare example of a luminescent sensor that can monitor pollutants in the environment and also detect their biological markers. Furthermore, 1a exhibits appealing features including high selectivity and sensitivity, fast response, simple and quick regeneration, and excellent recyclability.A Eu3+ post-functionalized metal-organic framework of nanosized Ga(OH)bpydc(Eu3+@Ga(OH)bpydc, 1a) with intense luminescence is synthesized and characterized. Luminescence measurements reveal that 1a can detect ammonia gas selectively and sensitively among various indoor air pollutants. 1a can simultaneously determine a biological ammonia metabolite (urinary urea) in the human body, which is a rare example of a luminescent sensor that can monitor pollutants in the environment and also detect their biological markers. Furthermore, 1a exhibits appealing features including high selectivity and sensitivity, fast response, simple and quick regeneration, and excellent recyclability. Electronic supplementary information (ESI) available: Experimental section; XPS spectra; N2 adsorption-desorption isotherms; ICP data; SEM image; PXRD patterns and other luminescence data. See DOI: 10.1039/c5nr06066d

  4. Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation

    Science.gov (United States)

    Zhu, Chaosheng; Zhang, Lu; Jiang, Bo; Zheng, Jingtang; Hu, Ping; Li, Sujuan; Wu, Mingbo; Wu, Wenting

    2016-07-01

    In this study, highly efficient visible-light-driven Ag3PO4/MoS2 composite photocatalysts with different weight ratios of MoS2 were prepared via the ethanol-water mixed solvents precipitation method and characterized by ICP, XRD, HRTEM, FE-SEM, BET, XPS, UV-vis DRS and PL analysis. Under visible-light irradiation, Ag3PO4/MoS2 composites exhibit excellent photocatalytic activity towards the degradation of organic pollutants in aqueous solution. The optimal composite with 0.648 wt% MoS2 content exhibits the highest photocatalytic activity, which can degrade almost all MB under visible-light irradiation within 60 min. Recycling experiments confirmed that the Ag3PO4/MoS2 catalysts had superior cycle performance and stability. The photocatalytic activity enhancement of Ag3PO4/MoS2 photocatalysts can be mainly ascribed to the efficient separation of photogenerated charge carriers and the stronger oxidation and reduction ability through a Z-scheme system composed of Ag3PO4, Ag and MoS2, in which Ag particles act as the charge separation center. The high photocatalytic stability is due to the successful inhibition of the photocorrosion of Ag3PO4 by transferring the photogenerated electrons of Ag3PO4 to MoS2. The evidence of the Z-scheme photocatalytic mechanism of the composite photocatalysts could be obtained from the active species trapping experiments and the photoluminescence technique.

  5. Synergetic Effect of Ultrasound, the Heterogeneous Fenton Reaction and Photocatalysis by TiO2 Loaded on Nickel Foam on the Degradation of Pollutants

    Directory of Open Access Journals (Sweden)

    Shan Qiu

    2016-06-01

    Full Text Available The synergistic effect of ultrasound, the heterogeneous Fenton reaction and photocatalysis was studied using a nickel foam (NF-supporting TiO2 system and rhodamine B (RhB as a target. The NF-supporting TiO2 system was prepared by depositing TiO2 on the skeleton of NF repeatedly and then calcining it. To optimize the conditions and parameters, the catalytic activity was tested in four systems (ultrasound alone (US, nickel foam (NF, US/NF and NF/US/H2O2. The optimal conditions were fixed at 0.1 g/mL NF, initial 5.00 mg/L RhB, 300 W ultrasonic power, pH = 3 and 5.00 mg/L H2O2. The effects of the dissolution of nickel from NF and quenching of the Fenton reaction were studied on degradation efficiency. When the heterogeneous Fenton reaction is combined with TiO2-photocatalysis, the pollutant removal efficiency is enhanced significantly. Through this synergistic effect, 22% and 80% acetochlor was degraded within 10 min and 80 min, respectively.

  6. Near-Infrared- and Visible-Light-Enhanced Metal-Free Catalytic Degradation of Organic Pollutants over Carbon-Dot-Based Carbocatalysts Synthesized from Biomass.

    Science.gov (United States)

    Wang, Hui; Zhuang, Jianqin; Velado, David; Wei, Zengyan; Matsui, Hiroshi; Zhou, Shuiqin

    2015-12-23

    Cost-efficient nanoparticle carbocatalysts composed of fluorescent carbon dots (CDs) embedded in carbon matrix were synthesized via one-step acid-assisted hydrothermal treatment (200 °C) of glucose. These as-synthesized CD-based carbocatalysts have excellent photoluminescence (PL) properties over a broad range of wavelengths and the external visible or NIR irradiation on the carbocatalysts could produce electrons to form electron-hole (e(-)-h(+)) pairs on the surface of carbocatalysts. These restant electron-hole pairs will react with the adsorbed oxidants/reducers on the surface of the CD-based carbocatalysts to produce active radicals for reduction of 4-nitrophenol and degradation of dye molecules. Moreover, the local temperature increase over CD-based carbocatalyst under NIR irradiation can enhance the electron transfer rate between the organic molecules and CD-based carbocatalysts, thus obviously increase the catalytic activity of the CD-based carbocatalyst for the reduction of 4-nitrophenol and the degradation of dye molecules. Such a type of CD-based carbocatalysts with excellent properties and highly efficient metal-free photocatalytic activities is an ideal candidate as photocatalysts for the reduction of organic pollutants under visible light and NIR radiation. PMID:26615668

  7. Novel TiO2/C nanocomposites: synthesis, characterization, and application as a photocatalyst for the degradation of organic pollutants.

    Science.gov (United States)

    da Costa, Elias; Zamora, Patricio P; Zarbin, Aldo J G

    2012-02-15

    Novel TiO(2)/carbon nanocomposites were prepared through the pyrolysis of TiO(2)/poly(furfuryl alcohol) hybrid materials, which were obtained by the sol-gel method, starting from titanium tetraisopropoxide (TTIP) and furfuryl alcohol (FA) precursors. Six different TiO(2)/C samples were prepared based on different TiO(2) nanoparticle sizes and TiO(2)/FA ratios. All of the samples were characterized using X-ray diffraction, infrared, and Raman spectroscopy. The results indicated effective FA polymerization onto the TiO(2) (anatase) nanoparticles, polymer conversion to disordered carbon following the pyrolysis, and a simultaneous TiO(2) anatase-rutile phase transition. The resulting TiO(2)/carbon composites were used as photocatalysts in the advanced oxidative process (AOP) for the degradation of reactive organic dyes in aqueous solution. The results indicate excellent photocatalytic performance (degradation of 99% of the dye after 60 min) with several advantages over traditional TiO(2)-based photocatalysts. PMID:22056275

  8. Biological transport of persistent organic pollutants (POPs) to Lake Ellasjoeen, Bjoernoeya (Bear Island), Norway

    Energy Technology Data Exchange (ETDEWEB)

    Evenset, A.; Christensen, G. [Akvaplan-niva, Tromso (Norway); Kallenborn, R. [Norwegian Inst. for Air Research, Kjeller (Norway); Herzke, D. [Norwegian Inst. for Air Research, Tromso (Norway)

    2004-09-15

    During recent years, multidisciplinary studies have been carried out on Bjoernoeya (Bear Island, Norway), elucidating the fate and the presence of persistent organic pollutants (POPs) in this pristine Arctic environment. High concentrations of POPs, like polychlorinated biphenyls (PCBs), dichloro-diphenyl-dichlorethane (DDE) and polybrominated diphenyl ethers (PBDEs) have been measured in sediment and biota from Ellasjoeen, a lake located in the southern, mountainous part of Bjoernoeya. In Lake Oeyangen, located only 6 km north of Ellasjoeen on the central plains of the island, levels of POPs are several times lower than in Ellasjoeen. One reason for the different POP contamination levels in Ellasjoeen and Oeyangen is probably differences in precipitation regime between the southern mountainous part of the island and the central plains further north, leading to differences in the deposition of air transported contaminants. Another possible source for contaminants to Ellasjoeen is the large colonies of seabirds (mainly kittiwake (Rissa tridactyla), little auk (Alle alle) and glaucous gull (Larus hyperboreus)), which are situated close to the lake during the ice-free period (early June - October). These seabirds feed in the marine environment, and deposit large amounts of guano (excrements) directly into the lake or in the catchment area of the lake. Oeyangen is not influenced by seabirds. There are two ways in which input from seabirds can lead to higher levels of POPs in Ellasjoeen: direct input of POPs through allochthonous material (guano, bird remains) a change in trophic state of the lake as a result of nutrient loadings from the seabirds. The aim of the present study was to investigate the role of guano as a transport medium for POPs to Ellasjoeen. Two main approaches were followed: an investigation of the trophic status of Ellasjoeen, as well as the reference lake, Oeyangen, through analyses of stable isotopes of carbon and nitrogen, analyses of selected

  9. Bi-functional Au/FeS (Au/Co{sub 3}O{sub 4}) composite for in situ SERS monitoring and degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Shuzhen; Cai, Qian; Lu, Kailing; Liao, Fan, E-mail: fliao@suda.edu.cn; Shao, Mingwang, E-mail: mwshao@suda.edu.cn [Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University (China)

    2016-01-15

    The bi-functional Au/FeS (Au/Co{sub 3}O{sub 4}) composite was fabricated by in situ reducing Au nanoparticles onto the surface of FeS (Co{sub 3}O{sub 4}). The as-prepared FeS possessed a multi-structure composed of plenty of nanoplates, which were coated by Au nanoparticles with an average size of ∼47.5 nm. While the Co{sub 3}O{sub 4} showed a thin hexagonal sheet containing Au nanoparticles on its surface with an average size of ∼79.0 nm. Both the as-prepared Au/FeS and Au/Co{sub 3}O{sub 4} composites exhibited excellent SERS performance, capable of enhancing the Raman signals of R6G molecules with the enhancement factor up to 1.81 × 10{sup 6} and 7.60 × 10{sup 4}, respectively. Moreover, Au/FeS (Au/Co{sub 3}O{sub 4}) composite also has been verified to have intrinsic peroxidase-like activity, which could decompose H{sub 2}O{sub 2} into hydroxyl radicals and then degrade organic pollutants into small molecules. Therefore, SERS can be used to real-time and in situ monitoring the degradation process of R6G molecules, employing the Au/FeS (Au/Co{sub 3}O{sub 4}) composite both as SERS substrate and catalyst. Graphical abstract: SERS was used to real-time and in situ monitoring the degradation of R6G, employing the Au/FeS and Au/Co{sub 3}O{sub 4} composites both as SERS substrates and catalysts.

  10. Synthesize of Graphene-Tin Oxide Nanocomposite and Its Photocatalytic Properties for the Degradation of Organic Pollutants Under Visible Light.

    Science.gov (United States)

    Shanmugam, M; Jayavel, R

    2015-09-01

    Graphene-tinoxide nanocomposite has been synthesised by coating SnO2 nanoparticles on graphene sheets by the redox reaction between graphene oxide (GO) and tin chloride. Graphene oxide was reduced to graphene and Sn2+ was oxidized to SnO2 during the redox reaction, resulting in the uniform distribution of SnO2 nanoparticles on graphene sheets. The synthesised material was characterized by XRD, SEM, AFM, FT-IR, UV-vis, TGA and Raman spectroscopic studies. SEM and AFM studies reveal the formation of wrinkled paper like structure of graphene sheets with uniform coating of SnO2 nanoparticles on either side. The strong photocatalytic degradation of Methylene orange (MO) dye was analysed using G-SnO2 nanocomposite under the visible light irradiation. PMID:26716310

  11. Decontamination of PAH polluted soils by fungi. Subproject: PAH degradation balance and testing of the extended laboratory process. Final report

    International Nuclear Information System (INIS)

    The aim of the research project was first to select a fungus with a high potential for mineralization of polycyclic aromatic hydrocarbons (PAH) and a good ability to colonize different soils. The application of this fungus for a degradation of PAH in soil had to be tested. In a screening of 57 white rot fungi the fungus Pleurotus sp. Florida fulfilled these requirements best. In pure culture it was able to metabolize and mineralize highly condensed 4-6 ring PAH to a great extent. For instance, up to 50% of 14C-pyrene or 39% of 14C-benzo(a)pyrene was mineralized to 14CO2 within 15 weeks. If different carriers for 14C-pyrene were used the mineralization correlated with the bioavailability, which was characterized by the desorption of the compound from the carriers with water. The mineralization of 14C-pyrene, 14C-benz(a)anthracene; 14C-benzo(a)-pyrene and 14C-dibenz(a, h)anthracene in native soils showed that a colonization with Pl. sp Florida inhibited the degradation of the less recalcitrant 14C-pyrene by the indigenous soil microflora. However, the mineralization of the carcinogenic, very recalcitrant and high condensed 14C-PAH was considerably supported by the fungus. Therefore this capabilities of the fungus could not be proven in a joint medium-scale soil experiment (0.8 m3 soil) which had been conducted within a parmership with scientists in Jena and an industriell firm. Because of safety aspects only the low condensed less recalcitrant PAH could be applied in this experiment. (orig./MG)

  12. Investigation of the soluble metals in tissue as biological response pattern to environmental pollutants (Gammarus fossarum example).

    Science.gov (United States)

    Filipović Marijić, Vlatka; Dragun, Zrinka; Sertić Perić, Mirela; Matoničkin Kepčija, Renata; Gulin, Vesna; Velki, Mirna; Ečimović, Sandra; Hackenberger, Branimir K; Erk, Marijana

    2016-07-01

    In the present study, Gammarus fossarum was used to investigate the bioaccumulation and toxic effects of aquatic pollutants in the real environmental conditions. The novelty of the study is the evaluation of soluble tissue metal concentrations in gammarids as indicators in early assessment of metal exposure. In the Sutla River, industrially/rurally/agriculturally influenced catchment in North-Western Croatia, physico-chemical water properties pointed to disturbed ecological status, which was reflected on population scale as more than 50 times lower gammarid density compared to the reference location, Črnomerec Stream. Significantly higher levels of soluble toxic metals (Al, As, Cd, Pb, Sb, Sn, Sr) were observed in gammarids from the Sutla River compared to the reference site and reflected the data on higher total dissolved metal levels in the river water at that site. The soluble metal estimates were supplemented with the common multibiomarker approach, which showed significant biological responses for decreased acetylcholinesterase activity and increased total soluble protein concentrations, confirming stressed environmental conditions for biota in the Sutla River. Biomarker of metal exposure, metallothionein, was not induced and therefore, toxic effect of metals was not confirmed on molecular level. Comparable between-site pattern of soluble toxic metals in gammarids and total dissolved metal levels in water suggests that prior to biomarker response and observed toxic impact, soluble metals in tissue might be used as early warning signs of metal impact in the aquatic environment and improve the assessment of water quality. PMID:27060638

  13. Nitrogen-Doped TiO2 Photocatalyst Prepared by Mechanochemical Method: Doping Mechanisms and Visible Photoactivity of Pollutant Degradation

    Directory of Open Access Journals (Sweden)

    Yu-Chao Tang

    2012-01-01

    Full Text Available Nitrogen-doped TiO2 (N/TiO2 photocatalysts were prepared using a mechanochemical method with raw amorphous TiO2 as precursors and various nitrogenous compounds doses (NH4F, NH4HCO3, NH3·H2O, NH4COOCH3, and CH4N2O. The photocatalysts were characterized by X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, thermal gravimetric-differential thermal analysis (TG-DTA, and UV-Vis diffuse reflection spectra (UV-Vis-DRS. Their photocatalytic activities were evaluated with the degradation of p-nitrophenol and methyl orange under UV or sunlight irradiation. The catalysts had a strong visible light absorption which correspond to doped nitrogen and consequent oxygen deficient. The results of photocatalytic activity showed the visible light adsorption mechanisms, as the doped nitrogen species gave rise to a mid-gap level slightly above the top of the (O-2p valence band, but not from the mixed band gap of the N-2p and O-2p electronic levels.

  14. Influence of some sol-gel synthesis parameters of mesoporous TiO2 on photocatalytic degradation of pollutants

    Directory of Open Access Journals (Sweden)

    Golubović Aleksandar

    2016-01-01

    Full Text Available The titanium dioxide (TiO2 nanopowders were produced by sol-gel technique from tetrabutyl titanate as a precursor by varying some parameters of the sol-gel synthesis like the temperature (500 and 550 °C and the duration of the calcination (1.5, 2, and 2.5 h. X-ray powder diffraction (XRPD results have shown that all synthesized nanopowders are dominantly in anatase phase, with the presence of a small amount of rutile in samples calcined at 550 °C. According to the results obtained by Williamson-Hall method, the anatase crystallite size was increased with the duration of the calcination (from 24 to 29 nm in samples calcined at lower, and from 30 to 35 nm in samples calcined at higher temperature. The analysis of the shift and linewidth of the most intensive anatase Eg Raman mode confirmed the XRPD results. The analysis of pore structure from nitrogen sorption experimental data described all samples as mesoporous, with mean pore diameters in the range of 5-8 nm. Nanopowder properties have been related to the photocatalytic activity, tested in degradation of the textile dye (C.I. Reactive Orange 16, carbofuran and phenol. [Projekat Ministarstva nauke Republike Srbije, br. III45018 i br. ON171032

  15. In vivo degradation behavior and biological activity of some new Mg-Ca alloys with concentration's gradient of Si for bone grafts

    Science.gov (United States)

    Trincă, Lucia Carmen; Fântânariu, Mircea; Solcan, Carmen; Trofin, Alina Elena; Burtan, Liviu; Acatrinei, Dumitru Mihai; Stanciu, Sergiu; Istrate, Bogdan; Munteanu, Corneliu

    2015-10-01

    Magnesium based alloys, especially Mg-Ca alloys, are biocompatible substrates with mechanical properties similar to those of bones. The biodegradable alloys of Mg-Ca provide sufficient mechanical strength in load carrying applications as opposed to biopolymers and also they avoid stress shielding and secondary surgery inherent with permanent metallic implant materials. The main issue facing a biodegradable Mg-Ca alloy is the fast degradation in the aggressive physiological environment of the body. The alloy's corrosion is proportional with the dissolution of the Mg in the body: the reaction with the water generates magnesium hydroxide and hydrogen. The accelerated corrosion will lead to early loss of the alloy's mechanical integrity. The degradation rate of an alloy can be improved mainly through tailoring the composition and by carrying out surface treatments. This research focuses on the ability to adjust degradation rate of Mg-Ca alloys by an original method and studies the biological activity of the resulted specimens. A new Mg-Ca alloy, with a Si gradient concentration from the surface to the interior of the material, was obtained. The surface morphology was investigated using scanning electron microscopy (VegaTescan LMH II, SE detector, 30 kV), X-ray diffraction (X'Pert equipment) and energy dispersive X-ray (Bruker EDS equipment). In vivo degradation behavior, biological compatibility and activity of Mg-Ca alloys with/without Si gradient concentration were studied with an implant model (subcutaneous and bony) in rats. The organism response to implants was characterized by using radiological (plain X-rays and computed tomography), biochemical and histological methods of investigation. The results sustained that Si gradient concentration can be used to control the rate of degradation of the Mg-Ca alloys for enhancing their biologic activity in order to facilitate bone tissue repair.

  16. Posibilities of bioconversion for removing of oil pollution

    OpenAIRE

    Hejretová, Edita

    2011-01-01

    Oil pollution is a world-wide prevalent threat to the environment and the remediation of oil contaminated soils and water is a major challenge for environmental research. Bioremediation is an useful method for soil remediation, if pollutant concentrations are moderate and non-biological techniques are not economical. The aim of this study was to investigate if earthworms or aerated extract from vermicompost – aerated compost tea (ACT) can enhance the microbial degradation of petroleum hyd...

  17. [Removal characters of ozone-biological activated carbon process for typical pollutants in southern brooky regions of China].

    Science.gov (United States)

    Lin, Tao; Chen, Wei; Wang, Lei-Lei

    2009-05-15

    The products of relative molecular weight (Mr) distribution, bromate (BrO3(-)) and trihalomethanes (THMs) were studied by ozone-biological activated carbon (O3-BAC) process for treating organic matters and bromide (Br(-)) in water source of southern brooky regions of China. The experimental results showed that dissolved organic matters (DOC) with Mr lower than 10(3) accounted for 80% of the total. The removal rate of DOC and SUVA (UV254/DOC) were 8% and 14% respectively by traditional treatment process with main removalonly for ones with Mr higher than 100 x 10(3). Only 30% of DOC and 31% of SUVA were decreased by O3-BAC process for the removal of ones with Mr between 10(3) and 5 x 10(3), in which the biotic degradation was certainly restricted by predominant organic matters of hydrophilic and Mr was lower than 1000. An obvious increase of BrO3(-) occurred in the effluent from ozone oxidation process when the dose of ozone beyond 2 mg/L which increased Br(-) concentration. This could increase the product of BrO3(-). A poor and unstable removal effect of BrO3(-) was observed in the effluent of BAC process during the experiment. Each species of THMs, decreasing 40% of total, was reduced by O3-BAC treatment compared with the traditional treatment process. But the products of brominated trihalomethanes, especially CHBr3 would be markedly increased by enhanced chlorine dosage and Br(-) concentration. PMID:19558108

  18. Potentiality of Eisenia fetida to degrade disposable paper cups-an ecofriendly solution to solid waste pollution.

    Science.gov (United States)

    Arumugam, Karthika; Ganesan, Seethadevi; Muthunarayanan, Vasanthy; Vivek, Swabna; Sugumar, Susila; Munusamy, Vivekanadhan

    2015-02-01

    The aim of the present study was to subject the post-consumer waste, namely paper cups for vermicomposting along with cow dung in three different ratios for a period of 90-140 days employing Eisenia fetida. The post-consumer wastes are a menace in many developing countries including India. This waste was provided as feed for earthworms and was converted to vermicompost. Vermicompost prepared with paper cup waste was analyzed for their physicochemical properties. Based on the physicochemical properties, it was evident that the best manure is obtained from type A (paper cup/cow dung in the ratio 1:1) than type B (paper cup/cow dung in the ratio 1.5:0.5) and type C (paper cup/cow dung in the ratio 0.5:1.5). The results showed that earthworms accelerated the rate of mineralization and converted the wastes into compost with needed elements which could support the growth of crop plants. The predominant bacterial strains in the vermicompost were characterized biochemically as well as by 16S ribosomal RNA (rRNA) gene sequencing. The bacterial strains like Bacillus anthracis (KM289159), Bacillus endophyticus (KM289167), Bacillus funiculus (KM289165), Virigibacillius chiquenigi (KM289163), Bacillus thuringiensis (KM289164), Bacillus cereus (KM289160), Bacillus toyonensis (KM289161), Acinetobacter baumanni (KM289162), and Lactobacillus pantheries (KM289166) were isolated and identified from the final compost. The total protein content of E. fetida involved in vermicomposting was extracted, and the banding pattern was analyzed. During final stages of vermicomposting, it was observed that the earthworm did not act on the plastic material coated inside the paper cups and stagnated it around the rim of the tub. Further, the degradation of paper cup waste was confirmed by Fourier transform infrared spectroscopy analysis. Hence, vermicomposting was found to be an effective technology for the conversion of the paper cup waste material into a nutrient-rich manure, a value

  19. Enhanced Biological Trace Organic Contaminant Removal: A Lab-Scale Demonstration with Bisphenol A-Degrading Bacteria Sphingobium sp. BiD32.

    Science.gov (United States)

    Zhou, Nicolette A; Gough, Heidi L

    2016-08-01

    Discharge of trace organic contaminants (TOrCs) from wastewater treatment plants (WWTPs) may contribute to deleterious effects on aquatic life. Release to the environment occurs both through WWTP effluent discharge and runoff following land applications of biosolids. This study introduces Enhanced Biological TOrC Removal (EBTCR), which involves continuous bioaugmentation of TOrC-degrading bacteria for improved removal in WWTPs. Influence of bioaugmentation on enhanced degradation was investigated in two lab-scale sequencing batch reactors (SBRs), using bisphenol A (BPA) as the TOrC. The reactors were operated with 8 cycles per day and at two solids retention times (SRTs). Once each day, the test reactor was bioaugmented with Sphingobium sp. BiD32, a documented BPA-degrading culture. After bioaugmentation, BPA degradation (including both the dissolved and sorbed fractions) was 2-4 times higher in the test reactor than in a control reactor. Improved removal persisted for >5 cycles following bioaugmentation. By the last cycle of the day, enhanced BPA removal was lost, although it returned with the next bioaugmentation. A net loss of Sphingobium sp. BiD32 was observed in the reactors, supporting the original hypothesis that continuous bioaugmentation (rather than single-dose bioaugmentation) would be required to improve TOrCs removal during wastewater treatment. This study represents a first demonstration of a biologically based approach for enhanced TOrCs removal that both reduces concentrations in wastewater effluent and prevents transfer to biosolids. PMID:27338240

  20. Metal-free catalysis of persulfate activation and organic-pollutant degradation by nitrogen-doped graphene and aminated graphene.

    Science.gov (United States)

    Chen, Hao; Carroll, Kenneth C

    2016-08-01

    We evaluated three types of functionalized, graphene-based materials for activating persulfate (PS) and removing (i.e., sorption and oxidation) sulfamethoxazole (SMX) as a model emerging contaminant. Although advanced oxidative water treatment requires PS activation, activation requires energy or chemical inputs, and toxic substances are contained in many catalysts. Graphene-based materials were examined herein as an alternative to metal-based catalysts. Results show that nitrogen-doped graphene (N-GP) and aminated graphene (NH2-GP) can effectively activate PS. Overall, PS activation by graphene oxide was not observed in this study. N-GP (50 mg L(-1)) can rapidly activate PS (1 mM) to remove >99.9% SMX within 3 h, and NH2-GP (50 mg L(-1)) activated PS (1 mM) can also remove 50% SMX within 10 h. SMX sorption and total removal was greater for N-GP, which suggests oxidation was enhanced by increasing proximity to PS activation sites. Increasing pH enhanced the N-GP catalytic ability, and >99.9% SMX removal time decreased from 3 h to 1 h when pH increased from 3 to 9. However, the PS catalytic ability was inhibited at pH 9 for NH2-GP. Increases in ionic strength (100 mM NaCl or Na2SO4) and addition of radical scavengers (500 mM ethanol) both had negligible impacts on SMX removal. With bicarbonate addition (100 mM), while the catalytic ability of N-GP remained unaltered, NH2-GP catalytic ability was inhibited completely. Humic acid (250 mg L(-1)) was partially effective in inhibiting SMX removal in both N-GP and NH2-GP systems. These results have implications for elucidating oxidant catalysis mechanisms, and they quantify the ability of functionalization of graphene with hetero-atom doping to effectively catalyze PS for water treatment of organic pollutants including emerging contaminants. PMID:27179328

  1. A comprehensive review of the process on hexachlorobenzene degradation

    Directory of Open Access Journals (Sweden)

    Ji Xiyan

    2015-01-01

    Full Text Available This paper describes the chemical, physical property of the pollution source along with its perniciousness. In addition, with the recent treatment or degradation of the hexachlorobenzene (HCB, it talks about the research developments on the HCB. Of the many options available for treatment of municipal and industrial HCB pollution, the anaerobic biological treatment process is unique because of its potential for producing usable energy. It focuses on the biodegradation pathway which is intent to finish the steps of dechlorination. Moreover, the future study on the HCB degradation is prospected in this paper from the author’s angle.

  2. Degradation of a textile reactive azo dye by a combined biological-photocatalytic process: Candida tropicalis Jks2 -Tio2/Uv

    Science.gov (United States)

    2012-01-01

    In the present study, the decolorization and degradation of Reactive Black 5 (RB5) azo dye was investigated by biological, photocatalytic (UV/TiO2) and combined processes. Application of Candida tropicalis JKS2 in treatment of the synthetic medium containing RB5 indicated complete decolorization of the dye with 200 mg/L in less than 24 h. Degradation of the aromatic rings, resulting from the destruction of the dye, did not occur during the biological treatment. Mineralization of 50 mg/L RB5 solution was obtained after 80 min by photocatalytic process (in presence of 0.2 g/L TiO2). COD (chemical oxygen demand) was not detectable after complete decolorization of 50 mg/L RB5 solution. However, photocatalytic process was not effective in the removal of the dye at high concentrations (≥200 mg/L). With 200 mg/L concentration, 74.9% of decolorization was achieved after 4 h illumination under photocatalytic process and the absorbance peak in UV region (attributed to aromatic rings) was not completely removed. A two-step treatment process, namely, biological treatment by yeast followed by photocatalytic degradation, was also assessed. In the combined process (with 200 mg/L RB5), absorbance peak in UV region significantly disappeared after 2 h illumination and about 60% COD removal was achieved in the biological step. It is suggested that the combined process is more effective than the biological and photocatalytic treatments in the remediation of aromatic rings. PMID:23369285

  3. Degradation of a textile reactive azo dye by a combined biological-photocatalytic process: Candida tropicalis Jks2 -Tio2/Uv

    Directory of Open Access Journals (Sweden)

    Narjes Jafari

    2012-12-01

    Full Text Available In the present study, the decolorization and degradation of Reactive Black 5 (RB5 azo dye was investigated by biological, photocatalytic (UV/TiO2 and combined processes.Application of Candida tropicalis JKS2 in treatment of the synthetic medium containing RB5 indicated complete decolorization of the dye with 200 mg/L in less than 24 h. Degradation ofthe aromatic rings, resulting from the destruction of the dye, did not occur during the biological treatment. Mineralization of 50 mg/L RB5 solution was obtained after 80 min by photocatalytic process (in presence of 0.2 g/L TiO2. COD (chemical oxygen demand wasnot detectable after complete decolorization of 50 mg/L RB5 solution. However,photocatalytic process was not effective in the removal of the dye at high concentrations (≥200 mg/L. With 200 mg/L concentration, 74.9% of decolorization was achieved after 4 hillumination under photocatalytic process and the absorbance peak in UV region (attributed to aromatic rings was not completely removed. A two-step treatment process, namely,biological treatment by yeast followed by photocatalytic degradation, was also assessed. In the combined process (with 200 mg/L RB5, absorbance peak in UV region significantly disappeared after 2 h illumination and about 60 % COD removal was achieved in the biological step. It is suggested that the combined process is more effective than the biological and photocatalytic treatments in the remediation of aromatic rings.

  4. Degradation of a textile reactive azo dye by a combined biological-photocatalytic process: Candida tropicalis Jks2 -Tio2/Uv

    Directory of Open Access Journals (Sweden)

    Jafari Narjes

    2012-12-01

    Full Text Available Abstract In the present study, the decolorization and degradation of Reactive Black 5 (RB5 azo dye was investigated by biological, photocatalytic (UV/TiO2 and combined processes. Application of Candida tropicalis JKS2 in treatment of the synthetic medium containing RB5 indicated complete decolorization of the dye with 200 mg/L in less than 24 h. Degradation of the aromatic rings, resulting from the destruction of the dye, did not occur during the biological treatment. Mineralization of 50 mg/L RB5 solution was obtained after 80 min by photocatalytic process (in presence of 0.2 g/L TiO2. COD (chemical oxygen demand was not detectable after complete decolorization of 50 mg/L RB5 solution. However, photocatalytic process was not effective in the removal of the dye at high concentrations (≥200 mg/L. With 200 mg/L concentration, 74.9% of decolorization was achieved after 4 h illumination under photocatalytic process and the absorbance peak in UV region (attributed to aromatic rings was not completely removed. A two-step treatment process, namely, biological treatment by yeast followed by photocatalytic degradation, was also assessed. In the combined process (with 200 mg/L RB5, absorbance peak in UV region significantly disappeared after 2 h illumination and about 60% COD removal was achieved in the biological step. It is suggested that the combined process is more effective than the biological and photocatalytic treatments in the remediation of aromatic rings.

  5. Application of biological markers for the identification of oil-type pollutants in recent sediments: Alluvial formation of the Danube river, Oil refinery Pančevo

    Directory of Open Access Journals (Sweden)

    Rašović Aleksandar S.

    2002-01-01

    Full Text Available The purpose of this paper was to examine to which extent the abundance and distribution of certain biological markers may be used for the identification of oil-type pollutants in recent sediments and ground waters. The samples were taken from the area of the Oil Refinery Pančevo (alluvial formation of the Danube River. The organic matter of the investigated samples was isolated using an extraction method with chloroform. The group composition and usual biological markers were analyzed in the obtained extracts. n-Alkanes and acyclic isoprenoids, pristane and phytane were analyzed using gas chromatographie (GC analysis of saturated hydrocarbons. Polycyclic alkanes of the sterane and terpane type were analyzed using gas chromatography-mass spectrometry (GC-MS, i.e. by analyzing the carbamide non-adduct of the total alkane fraction (Single Ion Monitoring SIM-technique. The obtained results indicate that n-alkanes can be used for the identification of oil-type pollutants (for example, if the oil-pollutant is biodegraded or present in very low concentrations, and steranes and triterpanes can be used as very reliable indicators of oil-type pollution in recent sediments and ground waters.

  6. Influence of chemical and biological factors on trophic transfer of persistent organic pollutants in the northwater polynya marine food web.

    Science.gov (United States)

    Fisk, A T; Hobson, K A; Norstrom, R J

    2001-02-15

    Persistent organic pollutants (POPs) and stable isotopes of nitrogen (delta 15N) were measured in zooplankton (6 species), a benthic invertebrate (Anonyx nugax), Arctic cod (Boreogadus saida), seabirds (6 species), and ringed seals (Phoca hispida) collected in 1998 in the Northwater Polynya to examine effects of biological and chemical factors on trophic transfer of POPs in an Arctic marine food web. Strong positive relationships were found between recalcitrant POP concentrations (lipid corrected) and trophic level based on stable isotopes of nitrogen, providing clear evidence of POP biomagnification in Arctic marine food webs. Food web magnification factors (FWMFs), derived from the slope of the POP--trophic level relationship, provided an overall magnification factor for the food web but over and underestimated biomagnification factors (BMFs) based on predator--prey concentrations in poikilotherms (fish) and homeotherms (seabirds and mammals), respectively. Greater biomagnification in homeotherms was attributed to their greater energy requirement and subsequent feeding rates. Within the homeotherms, seabirds had greater BMFs than ringed seals, consistent with greater energy demands in birds. Scavenging from marine mammal carcasses and accumulation in more contaminated winter habitats were considered important variables in seabird BMFs. Metabolic differences between species resulted in lower than expected BMFs, which would not be recognized in whole food web trophic level--POP relationships. The use of sigma POP groups, such as sigma PCB, is problematic because FWMFs and BMFs varied considerably between individual POPs. FWMFs of recalcitrant POPs had a strong positive relationship with log octanol--water partition coefficient (Kow). Results of this study show the utility of using delta 15N to characterize trophic level and trophic transfer of POPs but highlight the effects of species and chemical differences on trophic transfer of POPs that can be overlooked when

  7. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling

    International Nuclear Information System (INIS)

    Triclocarban and triclosan are two antimicrobial agents widely used in many personal care products. Their biodegradation behaviour in soil was investigated by laboratory degradation experiments and environmental fate modelling. Quantitative structure-activity relationship (QSAR) analyses showed that triclocarban and triclosan had a tendency to partition into soil or sediment in the environment. Fate modelling suggests that either triclocarban or triclosan 'does not degrade fast' with its primary biodegradation half-life of 'weeks' and ultimate biodegradation half-life of 'months'. Laboratory experiments showed that triclocarban and triclosan were degraded in the aerobic soil with half-life of 108 days and 18 days, respectively. No negative effect of these two antimicrobial agents on soil microbial activity was observed in the aerobic soil samples during the experiments. But these two compounds persisted in the anaerobic soil within 70 days of the experimental period. - Triclocarban and triclosan can be degraded by microbial processes in aerobic soil, but will persist in anaerobic soil

  8. A Effect of Biological Pollution on Food Safety%生物性污染对食品安全的影响

    Institute of Scientific and Technical Information of China (English)

    孙若玉; 任亚妮; 张斌

    2015-01-01

    生物性污染是威胁食品安全和人们身心健康的重要因素之一,主要包括细菌性污染、病毒性污染、真菌和真菌毒素污染、水产中的生物毒素、寄生虫与害虫污染几个方面。通过对食品生物性污染来源分析,提出相应的预防措施,为有效保证食品安全工作提供依据。%The biological pollution was one of the important factors that threaten food safety and people's physical and mental health,which including bacterial pollution, viral contamination, fungal and mycotoxin contamination, biological toxin in aquaculture, parasites and pests and so on. Through the analysis of the biological pollution, We put forward the corresponding prevention measures, provide the basis for effective guarantee food safety work.

  9. 生物性污染对食品安全的影响%A Effect of Biological Pollution on Food Safety

    Institute of Scientific and Technical Information of China (English)

    孙若玉; 任亚妮; 张斌

    2015-01-01

    The biological pollution was one of the important factors that threaten food safety and people's physical and mental health,which including bacterial pollution, viral contamination, fungal and mycotoxin contamination, biological toxin in aquaculture, parasites and pests and so on. Through the analysis of the biological pollution, We put forward the corresponding prevention measures, provide the basis for effective guarantee food safety work.%生物性污染是威胁食品安全和人们身心健康的重要因素之一,主要包括细菌性污染、病毒性污染、真菌和真菌毒素污染、水产中的生物毒素、寄生虫与害虫污染几个方面。通过对食品生物性污染来源分析,提出相应的预防措施,为有效保证食品安全工作提供依据。

  10. Dynamics of the biological properties of soil and the nutrient release of Amorpha fruticosa L. litter in soil polluted by crude oil.

    Science.gov (United States)

    Zhang, Xiaoxi; Liu, Zengwen; Luc, Nhu Trung; Liang, Xiao; Liu, Xiaobo

    2015-11-01

    Litter from Amorpha fruticosa, a potential phytoremediating plant, was collected and used in a decomposition experiment that involved the litterbag in soil polluted by crude oil. The dynamics of the biological properties of soil and the nutrient release of the litter were detected. The results indicated that (1) in lightly polluted soil (LP, petroleum concentration was 15 g kg(-1)), the bacteria (including actinomycetes), and fungi populations were significant higher than those in unpolluted soil (CK) at the 1st month after pollution, and the bacteria (including actinomycetes) populations were higher than those in the CK at the 6th and 12th months. In moderately polluted soil (MP, 30 g kg(-1)), the bacteria (including actinomycetes) populations were higher than those in the CK at the 1st and 6th months, whereas only the actinomycetes population was greater than that in the CK at the 12th month. In seriously polluted soil (SP, 45 g kg(-1)), only the fungi population was higher than that in the CK at the 6th month. (2) The activities of soil protease, carboxymethyl cellulase, and sucrase were generally inhibited in polluted soil. Peroxidase activity was generally inhibited in the LP and MP soil, and polyphenol oxidase activity was inhibited in the SP soil at 6-12 months. (3) At the end of litter decomposition, the LP soil significantly increased the release rate of all nutrients, except for K. The MP soil reduced the release rate of Fe and Mn, whereas it increased that of C and Cu. The SP soil decreased the release rate of all nutrients except for Cu and Zn. In conclusion, SP by crude oil would lead to limitations in the release of nutrients from the litter and to decreases in the community stability of a phytoremediating plant. A. fruticosa could only be used in phytoremediation of polluted soil at concentrations below 45 g kg(-1) (crude). PMID:26087933

  11. Nitrogen oxide air pollution: biological effects. 1964-August, 1980 (citations from the NTIS data base). Report for 1964-Aug 80

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-10-01

    The effects of nitrogen oxide air pollution on humans, plants, and animals are covered in the bibliography. Toxicology, epidemiology, pathology, and the synergistic effects of nitrogen oxides and other pollutants are covered. (This updated bibliography contains 210 citations, 28 of which are new entries to the previous edition.)

  12. Kinetic Characterization by Respirometry of Volatile OrganicCompound-Degrading Biofilms from Gas-Phase Biological Filters

    OpenAIRE

    Gonzalez Sanchez, A.; Arellano Garcia, L.; Bonilla Blancas, W.; Baquerizo, G.; Hernandez, S.; Gabriel, D.; Revah, S.

    2014-01-01

    A novel heterogeneous respirometer for in situ assessment of the biological activity and mass transport phenomena of biofilm developed on packing materials of gas-phase biological filters is presented. The flexible respirometer configuration allows reproducing the operational features of biofilters and biotrickling filters to obtain reliable diagnoses of the bioreactor performance. A batch-operating mode was chosen for the biological assessment in which dynamic concentrations of oxygen, pollu...

  13. 环境污染对生物的影响及其保护对策%Analysis on the Effect of Environmental Pollution on the Biology and Protection Countermeasures

    Institute of Scientific and Technical Information of China (English)

    陈若愚; 赖发英; 周越

    2012-01-01

      生物多样性的破坏是世界主要环境问题之一,而环境污染直接或间接对生物造成了一定的影响。本文主要分析了大气污染、水污染、土壤污染、噪声污染、光污染对生物的影响,并提出相应的环境保护措施。%  The damage of biodiversity is one of the major environmental problems in the world, and environmental pollution, directly or indirectly, on biological caused certain effect. This paper mainly analyzes the air pollution, water pollution, soil pollution, noise pollution, light pollution on the biological effects, and propose corresponding environmental protection measures.

  14. Solar photocatalytic cleaning of polluted water

    International Nuclear Information System (INIS)

    Alternatively to biological, physical and chemical methods of waste water cleaning, photocatalysis can be employed. In this residue-free method, titanium dioxide particles are brought into contact with polluted water as photocatalysts. Under UV irradiation at wave-lengths below 400 nm, change carriers are generated in the semiconductor particles that act so intensely oxidizing as to completely degrade almost all organic pollutants in waste water. In this process, the ultra-violet part of the solar spectrum can be harnessed to generate oxidation equivalents. Thus, solar photocatalytic waste water cleaning is excellently suited for developing countries. (BWI)

  15. AICE Survey of USSR Air Pollution Literature, Volume 15: A Third Compilation of Technical Reports on the Biological Effects and the Public Health Aspects of Atmospheric Pollutants.

    Science.gov (United States)

    Nuttonson, M. Y.

    Ten papers were translated: Maximum permissible concentrations of noxious substances in the atmospheric air of populated areas; Some aspects of the biological effect of microconcentrations of two chloroisocyanates; The toxicology of low concentrations of aromatic hydrocarbons; Chronic action of low concentrations of acrolein in air on the…

  16. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling

    Energy Technology Data Exchange (ETDEWEB)

    Ying Guangguo [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia)], E-mail: guang-guo.ying@gig.ac.cn; Yu Xiangyang [CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia); Food Safety Research Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Kookana, Rai S. [CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia)

    2007-12-15

    Triclocarban and triclosan are two antimicrobial agents widely used in many personal care products. Their biodegradation behaviour in soil was investigated by laboratory degradation experiments and environmental fate modelling. Quantitative structure-activity relationship (QSAR) analyses showed that triclocarban and triclosan had a tendency to partition into soil or sediment in the environment. Fate modelling suggests that either triclocarban or triclosan 'does not degrade fast' with its primary biodegradation half-life of 'weeks' and ultimate biodegradation half-life of 'months'. Laboratory experiments showed that triclocarban and triclosan were degraded in the aerobic soil with half-life of 108 days and 18 days, respectively. No negative effect of these two antimicrobial agents on soil microbial activity was observed in the aerobic soil samples during the experiments. But these two compounds persisted in the anaerobic soil within 70 days of the experimental period. - Triclocarban and triclosan can be degraded by microbial processes in aerobic soil, but will persist in anaerobic soil.

  17. Working group 6: Health. 3. Biological effects of nonradioactive pollutants associated with nuclear and conventional power plants

    International Nuclear Information System (INIS)

    The major air pollutants released from conventional power plants have been found to be sulfur dioxide (SO2), nitrogen oxides (NOx) and suspended particulates beside these three major pollutants other substances (CO, O3, hydrocarbons, vanadium...) occur in air or in water. Origin and extent of these pollutants as well as their main health hazards, especially for the respiratory system, have been evaluated. Other risks connected with the whole fuel cycle (coal extraction, petrol refining...) have been considered to be significant for human health. A mathematical model has been set up by the C.E.N. of Mol (Belgium) in order to predict the content of pollutants at the soil level, especially for SO2. A relationship between SO2 content and the concentration of the other pollutants has been found by assuming certain hypothesis. Epidemiological and toxicological data connected with the SO2 release have been given. As for nonradioactive pollutants released from nuclear power plants their amount has been considered to be negligible. (G.C.)

  18. Degradation and biological properties of Ca-P contained micro-arc oxidation self-sealing coating on pure magnesium for bone fixation

    OpenAIRE

    Wang, Weidan; Wan, Peng; Liu, Chen; Tan, Lili; Li, Weirong; Li, Lugee; Yang, Ke

    2014-01-01

    Poor corrosion resistance is one of the main disadvantages for biodegradable magnesium-based metals, especially applied for bone fixation, where there is a high demand of bio-mechanical strength and stability. Surface coating has been proved as an effective method to control the in vivo degradation. In this study a Ca-P self-sealing micro-arc oxidation (MAO) coating was studied to verify its efficacy and biological properties by in vitro and in vivo tests. It was found that the MAO coating co...

  19. Greywater pollution variability and loadings

    DEFF Research Database (Denmark)

    Eriksson, Eva; Andersen, Henrik Rasmus; Madsen, Toke S.;

    2009-01-01

    . Concentrations of both macro- and micro-pollutants (organic matter and parabens) were found to range by several orders of magnitude in the influent, based on sampling every 20 min. Paraben degradation was proven to occur in the rotating biological contactor (RBC), while the remnant organic matter in the effluent...... per day, whereas the paraben loadings were below 1 mg per person per day. These data are highly relevant for comparing decentralised treatment options with existing end-of-pipe treatments, for feeding into risk assessments and for design purposes....

  20. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  1. A biological method to monitor early effects of the air pollution caused by the industrial exploitation of geothermal energy

    International Nuclear Information System (INIS)

    The suitability of a set of ecophysiological parameters, to be used as early warning indicator to detect signs of a worsening environment around geothermal power plants, was tested by comparison with the diversity of epiphytic lichens, a well-established indicator of geothermal air pollution. Samples of the lichen Evernia prunastri were transplanted around a geothermal power plant at Larderello (Tuscany, Italy) and at a control site, and integrity of cell membranes, concentration of chlorophyll a, b and carotenoids, chlorophyll integrity and variations in pH of thalli were measured. The results showed that cell membrane damage, expressed by changes in electrical conductivity, could be used to detect early (exposure periods as short as 1 month) deleterious effects of geothermal air pollution. - Biomonitoring early effects of geothermal air pollution

  2. Water-immiscible solvents for the biological treatment of waste gases.

    NARCIS (Netherlands)

    Cesario, M.T.

    1997-01-01

    In conventional biological systems for the treatment of waste gases, contaminants are transferred directly to the aqueous phase and then converted by the micro-organisms. When poorly water-soluble pollutants are to be removed, biological degradation is often limited by the slow transport from the ga

  3. Coupling of acrylic dyeing wastewater treatment by heterogeneous Fenton oxidation in a continuous stirred tank reactor with biological degradation in a sequential batch reactor.

    Science.gov (United States)

    Esteves, Bruno M; Rodrigues, Carmen S D; Boaventura, Rui A R; Maldonado-Hódar, F J; Madeira, Luís M

    2016-01-15

    This work deals with the treatment of a recalcitrant effluent, from the dyeing stage of acrylic fibres, by combination of the heterogeneous Fenton's process in a continuous stirred tank reactor (CSTR) with biological degradation in a sequential batch reactor (SBR). Three different catalysts (a commercial Fe/ZSM-5 zeolite and two distinct Fe-containing activated carbons - ACs - prepared by wet impregnation of iron acetate and iron nitrate) were employed on the Fenton's process, and afterwards a parametric study was carried out to determine the effect of the main operating conditions, namely the hydrogen peroxide feed concentration, temperature and contact time. Under the best operating conditions found, using the activated carbon impregnated with iron nitrate, 62.7% of discolouration and 39.9% of total organic carbon (TOC) reduction were achieved, at steady-state. Furthermore, a considerable increase in the effluent's biodegradability was attained (BOD5:COD ratio increased from toxicity (from 92.1 to 94.0% of Vibrio fischeri inhibition down to 6.9-9.9%). This allowed the application of the subsequent biological degradation stage. The combination of the two processes provided a treated effluent that clearly complies with the legislated discharge limits. It was also found that the iron leaching from the three catalysts tested was very small in all runs, a crucial factor for the stability and long-term use of such materials. PMID:26513317

  4. Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: A cell-adhesive and plasmin-degradable biosynthetic material for tissue repair

    Science.gov (United States)

    Halstenberg, Sven

    2002-01-01

    The goal of the research presented in this dissertation was to create a biomimetic artificial material that exhibits functions of extracellular matrix relevant for improved nerve regeneration. Neural adhesion peptides were photoimmobilized on highly crosslinked poly(ethylene glycol)-based substrates that were otherwise non-adhesive. Neurons adhered in two-dimensional patterns for eleven hours, but no neurites extended. To enable neurite extension and nerve regeneration in three dimensions, and to address the need for specifically cell adhesive and cell degradable materials for clinical applications in tissue repair in general, an artificial protein was recombinantly expressed and purified that consisted of a repeating amino acid sequence based on fibrinogen and anti-thrombin III. The recombinant protein contained integrin-binding RGD sites, plasmin degradation sites, heparin binding sites, and six thiol-containing cysteine residues as grafting sites for poly(ethylene glycol) diacrylate via Michael-type conjugate addition. The resulting protein-graft-poly(ethylene glycol)acrylates were crosslinked by photopolymerization to form hydrogels. Although three-dimensional, RGD mediated and serine protease-dependent ingrowth of human fibroblasts into protein-graft-poly(ethylene glycol) hydrogels occurred, only surface neurite outgrowth was observed from chick dorsal root ganglia. Axonal outgrowth depended on the concentration of matrix-bound heparin, suggesting that improved mechanical strength of the hydrogels and possible immobilization of neuroactive factors due to the presence of heparin promoted neurite outgrowth. Together, the above results show that specific biological functions can be harnessed by protein-graft-poly(ethylene glycol) hydrogels to serve as matrices for tissue repair and regeneration. In particular, the two design objectives, specific cell adhesion and degradability by cell-associated proteases, were fulfilled by the material. In the future, this and

  5. Dynamics of ecological and biological characteristics of soddy-podzolic soils under long-term oil pollution

    Science.gov (United States)

    Petrov, A. M.; Versioning, A. A.; Karimullin, L. K.; Akaikin, D. V.; Tarasov, O. Yu.

    2016-07-01

    The dynamics of respiratory and enzyme activities and toxicological properties of loamy-sandy and loamy soddy-podzolic soils (Retisols) under the long-term influence of oil pollution were studied. The concentrations of the pollutant, at which the activity (the ability of self-purification) of the indigenous soil microflora is preserved, were determined. The dynamics of the decrease of oil product content and the time of elimination of the toxic effects on higher plants at the initial pollutant contents were revealed. The parameters of the respiratory and enzyme activities in the course of the 365-day experiment showed that the microbial community of the loamy-sandy soil was more sensitive to oil pollution. The phytotoxic characteristics of the oil-containing loamy-sandy and loamy soils did not correlate with their respiratory and enzyme activities. This fact testifies to some differences in the mechanisms of their influence on living organisms with different organizational levels and to the necessity of taking into account a complex of parameters when assessing the state of the soils under the long-term effects of oil and its products.

  6. Oxidative damage to biological macromolecules in Prague bus drivers and garagemen: Impact of air pollution and genetic polymorphisms

    Czech Academy of Sciences Publication Activity Database

    Bagryantseva, Yana; Novotná, Božena; Rössner ml., Pavel; Chvátalová, Irena; Milcová, Alena; Švecová, Vlasta; Lněničková, Zdena; Solanský, I.; Šrám, Radim

    2010-01-01

    Roč. 199, č. 1 (2010), s. 60-68. ISSN 0378-4274 R&D Projects: GA MŽP(CZ) SP/1B3/8/08 Institutional research plan: CEZ:AV0Z50390512 Keywords : air pollution * bud drivers * oxidative stress Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.581, year: 2010

  7. 高效原油降解菌的筛选及其在生物活性炭中的应用%Screening of high efficient oil-degrading strains and their application in biological activated carbon

    Institute of Scientific and Technical Information of China (English)

    冯晋阳; 吴小宁

    2011-01-01

    以原油为唯一碳源,采用升高原油浓度的方法从长期被石油污染土壤中驯化、筛选出6株高效原油降解菌SY1~SY6,其油降解率均高于55%.经初步鉴定,SY1为微杆菌属(Microbacterium sp.),SY2为诺卡氏菌属(Nocardia sp.),SY3和SY5为假单胞菌属(Pseudomonas sp.),SY4和SY6为芽孢杆菌属(Bacillus sp.).从得到的高效原油降解菌中选用SY2、SY4、SY5和SY6构建原油降解菌群SY,并将SY菌群接种到生物活性炭(BAC)反应器中,BAC反应器运行稳定后,COD去除率达75%以上,油降解率在80%以上,处理效果良好.%Six oil degrading strains (named SY1 to SY6) were isolated and screened from oil-polluted soil with crude oil as single carbon source. The oil degrading rate of the six strains were all higher than 55%. Six strains were identified base on their physiological characteristics and morphology observation, results showed that SY1 belonged to Microbacterium sp. , SY2 belonged to Nocardia sp. , SY3 and SY5 belonged to Pseudomonas sp. , SY4 and SYS belonged to Bacillus sp. . SY2, SY4, SY5 and SY6 were selected for the construction of oil degradation bacterial community SY. The bacterial community SY was inoculated into the biological activated carbon (BAC) reactor for treatment of oil containing wastewater, BAC reactor presented perfect treatment performance after the stable operation, the removal rate of oil and COD were up go 80% and 75% , respectively.

  8. Environmental fate mechanisms influencing biological degradation of coal-tar derived polynuclear aromatic hydrocarbons in soil systems

    International Nuclear Information System (INIS)

    This paper discusses biodegradation, a technically viable and cost effective approach for the reduction and immobilization of polynuclear aromatic hydrocarbons (PAH) present in contaminated soils and sludges associated with coal-tar derived processes. While it is widely reported and accepted that PAH biodegradation in soil systems does occur, the specific controlling mechanisms are not entirely understood. One common observation among published reports is that the more soluble, lower molecular weight PAH compounds are biodegraded to a greater extent than the less soluble, higher molecular weight PAHs. The rate and extent to which PAHs are removed form soil/sludges is influenced by the combined and simultaneously occurring effects of volatilization, sorption and biological oxidation. The degree to which each of these three environmental fate mechanisms occurs is mainly influenced by the physical/chemical characteristics of the contaminated media, the physical/chemical characteristics of the specific PAH compounds, and the design and operation of the particular biological treatment process

  9. Environmental parameters of the Tennessee River in Alabama. 2: Physical, chemical, and biological parameters. [biological and chemical effects of thermal pollution from nuclear power plants on water quality

    Science.gov (United States)

    Rosing, L. M.

    1976-01-01

    Physical, chemical and biological water quality data from five sites in the Tennessee River, two in Guntersville Reservoir and three in Wheeler Reservoir were correlated with climatological data for three annual cycles. Two of the annual cycles are for the years prior to the Browns Ferry Nuclear Power Plant operations and one is for the first 14 months of Plant operations. A comparison of the results of the annual cycles indicates that two distinct physical conditions in the reservoirs occur, one during the warm months when the reservoirs are at capacity and one during the colder winter months when the reservoirs have been drawn-down for water storage during the rainy months and for weed control. The wide variations of physical and chemical parameters to which the biological organisms are subjected on an annual basis control the biological organisms and their population levels. A comparison of the parameters of the site below the Power plant indicates that the heated effluent from the plant operating with two of the three reactors has not had any effect on the organisms at this site. Recommendations given include the development of prediction mathematical models (statistical analysis) for the physical and chemical parameters under specific climatological conditions which affect biological organisms. Tabulated data of chemical analysis of water and organism populations studied is given.

  10. A biological method to monitor early effects of the air pollution caused by the industrial exploitation of geothermal energy.

    Science.gov (United States)

    Paoli, Luca; Loppi, Stefano

    2008-09-01

    The suitability of a set of ecophysiological parameters, to be used as early warning indicator to detect signs of a worsening environment around geothermal power plants, was tested by comparison with the diversity of epiphytic lichens, a well-established indicator of geothermal air pollution. Samples of the lichen Evernia prunastri were transplanted around a geothermal power plant at Larderello (Tuscany, Italy) and at a control site, and integrity of cell membranes, concentration of chlorophyll a, b and carotenoids, chlorophyll integrity and variations in pH of thalli were measured. The results showed that cell membrane damage, expressed by changes in electrical conductivity, could be used to detect early (exposure periods as short as 1 month) deleterious effects of geothermal air pollution. PMID:18155333

  11. Recovery of hillside soils, degraded by the erosion, by means of the use of biological-forest procedures

    International Nuclear Information System (INIS)

    Soil degradation is present in some areas of the Guanenta Comunero province in Andean Region of Colombia. Different responsible factors are identified: inadequate soil management (tilling in slope direction), machinery overuse and monoculture without natural cover. This carried out erosion that is severe in 40% of the affected area with furrows, gullies and barrens occurrence. For prevent the erosion were built wood barriers, established whit gramineous, leguminous and trees. The gramineous, Brachiaria decumbens was established using seeds a live material, which produced 1860, and 1631 kg/ha of dry material respectively. Arachis pintoi established like protein bank and in association reached a soil coverage of 87 % and improved disposability of Ca, Mg, K and P. farmers can easily build wooden barriers and them can retain sediments un amounts of 4.72, 23.43 and 1.50 m3 in areas of 207,494 and 129 m2 respectively

  12. Application of Fenton's reagent as a pretreatment step in biological degradation of polyaromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, R.L.; Gauger, W.K.; Srivastava, V.J.

    1990-01-01

    Fenton's reagent (H{sub 2}O{sub 2} and Fe{sup ++}) has been used for chemical oxidation of numerous organic compounds in water treatment schemes. In this study, the Institute of Gas Technology (IGT) applied Fenton's treatment to polynuclear aromatic hydrocarbons (PAHs) and PAH-contaminated soils. Fenton's treatment was very reactive with PAHs, causing rapid modification of the parental compounds to oxidized products and complete degradation to CO{sub 2}. This treatment was more effective on chemically reactive PAHs, such as benzo(a)pyrene and phenanthrene. Important parameters and conditions for Fenton's treatment of PAHs in solution and soil matrices have been identified. As much as 99% of the PAHs on soil matrices can be removed by treatment with Fenton's reagent. 28 refs., 13 figs., 1 tab.

  13. Assessment of biological effects of environmental pollution along the NW Mediterranean Sea using red mullets as sentinel organisms

    Energy Technology Data Exchange (ETDEWEB)

    Zorita, Izaskun; Ortiz-Zarragoitia, Maren; Apraiz, Itxaso; Cancio, Ibon; Orbea, Amaia; Soto, Manu; Marigomez, Ionan [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Universidad del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Cajaraville, Miren P. [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Universidad del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain)], E-mail: mirenp.cajaraville@ehu.es

    2008-05-15

    A biomonitoring program was carried out in spring and autumn in three pollution hot-spots and sensitive areas of the NW Mediterranean Sea using red mullets (Mullus barbatus) as sentinel organisms and a battery of biomarkers together with gonad histology. In fish from anthropogenic impacted areas (Fos-sur-mer, Cortiou, Arenzano, Delta of Ebro) lysosomal membrane destabilization occurred indicating disturbed health. There were no significant differences in metallothionein (MT) levels among stations. Peroxisomal acyl-CoA oxidase (AOX) activity was highest in fish from Cortiou. Both MT levels and AOX activities were significantly correlated with gamete development. Prevalence of melanomacrophage centers were high in Cortiou in all samplings and in Fos-sur-mer in September samplings. In conclusion, the application of a battery of biomarkers in red mullets provided relevant data for the assessment of environmental pollution in the NW Mediterranean Sea but also showed the difficulties of using native fish as sentinels. For future studies caging strategies are recommended. - Application of biomarkers in red mullets is promising to assess environmental pollution in the NW Mediterranean Sea.

  14. Assessment of biological effects of environmental pollution along the NW Mediterranean Sea using red mullets as sentinel organisms

    International Nuclear Information System (INIS)

    A biomonitoring program was carried out in spring and autumn in three pollution hot-spots and sensitive areas of the NW Mediterranean Sea using red mullets (Mullus barbatus) as sentinel organisms and a battery of biomarkers together with gonad histology. In fish from anthropogenic impacted areas (Fos-sur-mer, Cortiou, Arenzano, Delta of Ebro) lysosomal membrane destabilization occurred indicating disturbed health. There were no significant differences in metallothionein (MT) levels among stations. Peroxisomal acyl-CoA oxidase (AOX) activity was highest in fish from Cortiou. Both MT levels and AOX activities were significantly correlated with gamete development. Prevalence of melanomacrophage centers were high in Cortiou in all samplings and in Fos-sur-mer in September samplings. In conclusion, the application of a battery of biomarkers in red mullets provided relevant data for the assessment of environmental pollution in the NW Mediterranean Sea but also showed the difficulties of using native fish as sentinels. For future studies caging strategies are recommended. - Application of biomarkers in red mullets is promising to assess environmental pollution in the NW Mediterranean Sea

  15. Leachate characterization and identification of dominant pollutants using leachate pollution index for an uncontrolled landfill site

    Directory of Open Access Journals (Sweden)

    S. De

    2016-03-01

    Full Text Available Landfill leachates are potential threats for environmental degradation. This study was conducted to determine the leachate quality, to identify the dominant pollutants and to evaluate the leachate pollution potential of an active and closed dumping ground of an uncontrolled municipal solid waste landfill site in Kolkata, India using leachate pollution index. The results of the physico-chemical and biological analyses of leachate indicated that landfill site was in its methanogenic phase. Among the analysed leachate pollutants, TDS, BOD5, COD, TKN, NH3-N, Cl¯, TCB, Pb, and Hg surpassed the leachate discharge standards for inland surface water as specified by the municipal solid waste (Management and Handling Rules, 2013 for both the dumping grounds. Moreover the concentrations of total Cr and Zn also exceeded the leachate disposal standards for the active dumping ground. The leachate pollution potentialities of both the active and closed dumping grounds were comparable as the overall LPI obtained 34.02 and 31.80 respectively. The overall LPI, LPI organic (LPIor, LPI inorganic (LPIin and LPI heavy metals (LPIhm of both the dumping grounds largely exceeded the LPI and sub-LPI values for treated leachate before disposal to the inland surface water. In terms of the individual pollution rating, total coliform bacteria, TKN, NH3-N and Hg were identified as the dominant pollutants and major contributing factors for the leachate pollution potential.

  16. Active biomonitoring in freshwater environments: early warning signals from biomarkers in assessing biological effects of diffuse sources of pollutants

    Science.gov (United States)

    Wepener, V.; van Vuren, J. H. J.; Chatiza, F. P.; Mbizi, Z.; Slabbert, L.; Masola, B.

    Effluents are a main source of direct and continuous input of pollutants in aquatic ecosystems. Relating observed effects to specific pollutants or even classes of pollutants remains a very difficult task due to the usually unknown, complex and often highly variable composition of effluents. It is recognized that toxicants interfere with organism integrity at the biochemical level and give rise to effects at the individual level and is manifested in reduced ecologically relevant characteristics such as growth, reproduction and survival, and ultimately at the ecosystem level. By integrating multiple endpoints at different ecologically relevant levels of organization within one test organism, it should be possible to gain understanding in how different levels of organization within this organism respond to toxic exposure and how responses at these different levels are interrelated. This paper presents results from a field study in the Rietvlei Wetland system, Gauteng, South Africa using the freshwater mollusk ( Melanoides tuberculata) and freshwater fish ( Oreochromis mossambicus) as bioindicator organisms. Active biomonitoring (ABM) exposures were conducted where organisms were exposed for 28 days in an effluent dominated river during high flow conditions in April 2003. The river receives effluent from a wastewater treatment plant and an industrial complex, so that up to 75% of the total flow of the river is effluent-based. Effects of field exposure were determined using cellular biomarkers e.g. DNA damage, HSP 70, metallothionein, acetylcholine esterase, lactate dehydrogenase and ethoxyresorufin-o-deethylase activity. The results clearly indicate that although the traditional mortality-based whole effluent toxicity testing did not indicate any toxicity, the in situ exposed organisms were stressed. A multivariate statistical approach was particularly useful for integrating the biomarker responses and highlighting sites at which more detailed analysis of chemical

  17. Soil aquifer treatment to remove priority organic pollutants in the Llobregat river area

    OpenAIRE

    Huerta, Maria; Solé, Josep; Aceves, Mercè; Valhondo González, Cristina; Hernández, Marta; Gullón Santos, Martín

    2013-01-01

    The Llobregat River is the main source of water supply in this area. This river together with its aquifer has suffered from several damages which had contributed to endanger a suitable ecological and hydrological status; among them, pollution is a serious problem to deal with. In the last decades, the presence of organic pollutants in this river has been demonstrated [1,2]. Some of them are persistent to biological degradation and have shown to survive wastewater treatments almost unaltered a...

  18. Laccase-based technologies to remove organic pollutants from soils and wastewaters

    OpenAIRE

    Arca Ramos, Adriana

    2016-01-01

    Pollution of soil and water is an environmental issue worldwide. Thereby, the development and implementation of low-cost and eco-friendly treatments for the decontamination of polluted sites and wastewater is a priority. In this regard, the use of biological agents, as white rot fungi, to degrade and detoxify environmental contaminants has emerged as a potential alternative. These microorganisms have been reported to remove a wide range of xenobiotics by the action of the extracellular lignin...

  19. Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: synergy with tumour necrosis factor-alpha, Oncostatin M and response to biologic therapies.

    LENUS (Irish Health Repository)

    Moran, Ellen M

    2009-01-01

    INTRODUCTION: The aim of this study was to examine IL-17A in patients, following anti-TNF-alpha therapy and the effect of IL-17A on matrix turnover and cartilage degradation. METHODS: IL-17A expression was examined by ELISA and immunohistology in the rheumatoid arthritis (RA) joints. RA whole synovial tissue explant (RA ST), primary synovial fibroblasts (RASFC), human cartilage and chondrocyte cultures were stimulated with IL-17A +\\/- TNF-alpha and Oncostatin M (OSM). Matrix metalloproteinase (MMP) and tissue inhibitor (TIMP-1) were assessed by ELISA and zymography. Cartilage proteoglycan release was assessed histologically by Safranin-O staining. Clinical parameters, IL-17A, MMP\\/TIMP were assessed in patients pre\\/post biologic therapy. RESULTS: IL-17A levels were higher in RA vs osteoarthritis (OA)\\/normal joints (P < 0.05). IL-17A up-regulated MMP-1, -2, -9, and -13 in RA ST, RASFC, cartilage and chondrocyte cultures (P < 0.05). In combination with TNF-alpha and OSM, IL-17A shifted the MMP:TIMP-1 ratio in favor of matrix degradation (all P < 0.05). Cartilage proteoglycan depletion in response to IL-17A was mild; however, in combination with TNF-alpha or OSM showed almost complete proteoglycan depletion. Serum IL-17A was detected in 28% of patients commencing biologic therapy. IL-17A negative patients demonstrated reductions post therapy in serum MMP1\\/TIMP4, MMP3\\/TIMP1 and MMP3\\/TIMP4 ratios and an increase in CS846 (all P < 0.05). No significant changes were observed in IL-17A positive patients. CONCLUSIONS: IL-17A is produced locally in the inflamed RA joint. IL-17A promotes matrix turnover and cartilage destruction, especially in the presence of other cytokines, mimicking the joint environment. IL-17A levels are modulated in vivo, following anti-TNF therapy, and may reflect changes in matrix turnover.

  20. One dimensional CdS nanowire@TiO2 nanoparticles core-shell as high performance photocatalyst for fast degradation of dye pollutants under visible and sunlight irradiation.

    Science.gov (United States)

    Arabzadeh, Abbas; Salimi, Abdollah

    2016-10-01

    In this study, one-dimensional CdS nanowires@TiO2 nanoparticles core-shell structures (1D CdS NWs@TiO2 NPs) were synthesized by a facile wet chemical-solvothermal method. The different aspects of the properties of CdS NWs@TiO2 NPs were surveyed by using a comprehensive range of characterization techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis spectroscopy, scanning electron microscopy (SEM), fluorescence spectroscopy, energy dispersive X-ray spectroscopy (EDX), Cyclic Voltammetry (CV) and amperometry. The as-prepared nanostructure was applied as an effective photocatalyst for degradation of methyl orange (MO), methylene blue (MB) and rhodamine B (Rh B) under visible and sunlight irradiation. The results indicated significantly enhanced photocatalytic activity of CdS NWs@TiO2 NPs for degradation of MO, MB and Rh B compared to CdS NWs. The enhanced photocatalytic activity could be attributed to the enhanced sunlight absorbance and the efficient charge separation of the formed heterostructure between CdS NWs and TiO2. The results showed that MO, Rh B and MB were almost completely degraded after 2, 2 and 3min of exposure to sunlight, respectively; while under visible light irradiation (3W blue LED lamp) the dyes were decomposed with less half degradation rate. The catalytic activity was retained even after three degradation cycles of organic dyes, demonstrating that the proposed nanocomposite can be effectively used as efficient photocatalyst for removal of environmental pollutions caused by organic dyes under sunlight irradiation and it could be an important addition to the field of wastewater treatment. We hope the present study may open a new window of such 1-D semiconductor nanocomposites to be used as visible light photocatalysts in the promising field of organic dyes degradation. PMID:27348482

  1. Application of QUAL2K Model to Assess Ecological Purification Technology for a Polluted River

    OpenAIRE

    Wenting Zhu; Qian Niu; Ruibin Zhang; Rui Ye; Xin Qian; Yu Qian

    2015-01-01

    Industrialization and urbanization have caused water pollution and ecosystem degradation, especially in urban canals and rivers in China; accordingly, effective water quality improvement programs are needed. In this study, the Tianlai River in Jiangsu, China was taken as a research site, and a combination of ecological purification technologies consisting of biological rope, phytoremediation, and activated carbon were applied in a laboratory-scale study to examine degradation coefficients und...

  2. Study on the biological effect of radiation-degraded alginate and chitosan on plant in tissue culture

    International Nuclear Information System (INIS)

    The solution of chitosan (10%) and alginate (4%) were irradiated at doses of 10-250 kGy for degradation and the products were used for testing of plant growth promotion effect. The chitosan and alginate irradiated at 100 kGy and 75 kGy, respectively showed the strongest growth-promotion effect for plants namely L. latifolium, E. grandiflorum and C. morifolium in tissue culture. For shoot multiplication, the suitable concentrations are found to be ca. 50-200 mg/l for C. morifolium, 70-100 mg/l for L. latifolium and 30-100 mg/l E. grandiflorum with irradiated chitosan, while with irradiated alginate, it was 30-200 mg/l, 30-50 mg/l and 10-200 mg/l, respectively. The optimum concentrations for C. morifolium, E. grandiflorum, L. latifolium incubated on rooting medium are ca. 100 mg/l, 30 mg/l and 40 mg/l, respectively for irradiated chitosan and 100 mg/l for irradiated alginate. After acclimatizing for 30 days in the greenhouse, the survival ratio of the transferred C. morifolium, E. grandiflorum, L. latifolium plantlets treated with irradiated chitosan was improved 18%, 39% and 13%, respectively. (author)

  3. Monitoring Of Pollutants In Museum Environment

    Directory of Open Access Journals (Sweden)

    Ana-Maria Budu

    2015-10-01

    Full Text Available Art works are affected by environmental factors as light, temperature, humidity. Air pollutants are also implicated in their degradation. The pollution in museums has two sources: the air from outside, which brings usually dust and inorganic particles, and the inside sources – the materials used for casings (sealants, textiles placed on the display cases, varnishes, wood that emanate organic compounds. The dust is composed of particles with a diameter of approximately 2µm or higher, which come from soil (silica or animal and vegetal residues (skin cells, pollen. They facilitate water condensation on objects surface and biologic attack. The inorganic compounds are a result of materials combustion (SO2, NO2, NO and in presence of water they form acidic compounds which affect the museum objects. The organic compounds are usually peroxides, acids, phthalates, formaldehyde. The effects of these pollutants are: soiling, surface discolouration, embrittlement, corrosion. Therefore, conservators are interested in monitoring the pollution degree in the display cases or in the museum air and in analyzing the effects of pollutants on the exhibited objects. They use different methods for pollutants identification, like direct reading devices based on colorimetry, that can be read after few minutes and hours (they interact with the pollutants in atmosphere, or indirect reading samples that require a laboratory. The information gathered is used for the identification of pollution source and to analyze the concentration of pollutants needed to provoke damages on the surfaces of art objects. This paper is a review of pollutants that affect the art objects and of the monitoring systems used for their identification and measuring.

  4. Coupling of photocatalytic and biological processes as a contribution to the detoxification of water: catalytic and technological aspects

    OpenAIRE

    Parra Cardona, Sandra Patricia; Pulgarin, César

    2005-01-01

    This research contributes to the study and development of a new degradation technique that couples solar and biological processes for the treatment of biorecalcitrant, nonbiodegradable, and/or toxic organic substances present in the aqueous medium. Efficient physicochemical pretreatments are necessary to modify the structure of the pollutants, by transforming them into less toxic and biodegradable intermediates, allowing then, a biological procedure to complete the degradation of the pollutan...

  5. Persistent Organic Pollutants in albacore tuna (Thunnus alalunga) from Reunion Island (Southwest Indian Ocean) and South Africa in relation to biological and trophic characteristics.

    Science.gov (United States)

    Munschy, C; Bodin, N; Potier, M; Héas-Moisan, K; Pollono, C; Degroote, M; West, W; Hollanda, S J; Puech, A; Bourjea, J; Nikolic, N

    2016-07-01

    The contamination of albacore tuna (Thunnus alalunga) by Persistent Organic Pollutants (POPs), namely polychlorinated biphenyls (PCBs) and dichlorodiphenyl-trichloroethane (DDT), was investigated in individuals collected from Reunion Island (RI) and South Africa's (SA) southern coastlines in 2013, in relation to biological parameters and feeding ecology. The results showed lower PCB and DDT concentrations than those previously reported in various tuna species worldwide. A predominance of DDTs over PCBs was revealed, reflecting continuing inputs of DDT. Tuna collected from SA exhibited higher contamination levels than those from RI, related to higher dietary inputs and higher total lipid content. Greater variability in contamination levels and profiles was identified in tuna from RI, explained by a higher diversity of prey and more individualistic foraging behaviour. PCB and DDT contamination levels and profiles varied significantly in tuna from the two investigated areas, probably reflecting exposure to different sources of contamination. PMID:27084988

  6. Guidelines for the use of biological monitors in air pollution control (plants). Pt. 1. Methodological guidance for the drawing-up of biomonitoring guidelines (plants)

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, R.D. [Buero fuer Konzeptionelle Bioindikation, Jockgrim (Germany); Wagner, G. [Universitaet des Saarlandes, Saarbruecken (Germany). Inst. fuer Biogeographie; Finck, M.

    2000-04-01

    The main objective of this study is to encourage and promote further development of the methodological basis for a broader and more effective use of biological methods for monitoring the effects of air pollution on plants. It is not intended here to explain or discuss general criteria for the design of environmental monitoring studies and principal statistical methods for dealing with heterogeneously distributed spatial phenomena in detail. A further objective of this study is to give general guidance on how to - select suitable bioindicators, - develop, optimise and validate specific guidelines for the use of these bioindicators, - plan, design and employ biomonitoring studies for different purposes, - develop case-specific study plans determining how to apply an appropriate bioindicator (method-specific guideline) to a given task, case and area, - adapt principles of quality assurance and quality control to biomonitoring studies, - increase the importance and reliability of results obtained by bioindicators with respect to administrative measures. (orig.)

  7. Biochemical and cellularchanges in Oreochromis niloticus related to the water pollution of a degraded river - doi: 10.4025/actascibiolsci.v35i3.13207

    Directory of Open Access Journals (Sweden)

    Ary Gomes da Silva

    2013-08-01

    Full Text Available The effects of polluted water at three sites in the Marinho River, Brazil, on Oreochromis niloticus (Nile tilápia were investigated using histological, hematological and biochemical approaches. Fish exposed to the impacted water demonstrated that histological changes in gills were accompanied by nuclear and micronuclei abnormalities in cells. The activity of liver and plasma biomarkers (alkaline phosphatase (ALP, acid phosphatase (ACP, alanine aminotransferase (ALT, aspartate aminotransferase (AST and liver glutathione S-transferase (GST showed an expressive change due to the. The results were also correlated with the highest levels of Cu+2, Zn+2 and Mn+2 in the water. The data of this study evidenced the importance of using a set of biomarkers to quantify pollution in lentic ecosystems. Additionally, histological analyses of gills and erythrocytes have proven to be an important instrument for signaling the impact of pollutants in rivers.  

  8. Comparative biological tests in aquatic systems to determine the adverse effect of combinations of pollutants with several components

    International Nuclear Information System (INIS)

    In tests with luminous bacteria, algae and daphnes as representatives of different trophic stages, the combination effect of heavy metals (Cd, Cr) and organic pollutants (p-chloroaniline, 1,2,3-trichlorobenzene, Na3-NTA) in aquatic ecosystems is exemplarily tested with subsequent comparison of the results with models of the combination effect. The author differentiates between the principles of action ''similar joint action'' = ''concentration addition'', ''independent action'' = ''response addition'' and ''synergistic action'' and employs mathematical models juxtaposing a ''simple similar action'', and ''independent action'' to a ''complex similar action'' and ''dependent action'', respectively, as well as the ''toxic unit model'', which translates the concentration of a substance into the corresponding toxicological efficacy. Most, but not all of the investigated binary mixtures of substances exhibited additive effects, but some of the combination effects depended on the proportions in the mixture. Further combination effects found were less-than-additive, more-than-additive (Cd/Cr) and antagonistic ones. (uWA)

  9. Biological indication of heavy metal pollution in the areas of Donje Vlase and Cerje (southeastern Serbia using epiphytic lichens

    Directory of Open Access Journals (Sweden)

    Stamenković S.S.

    2013-01-01

    Full Text Available The performance of two epiphytic lichen species (Evernia prunastri (L. Ach. and Parmelia sulcata Taylor as bioindicators of heavy metal pollution in natural areas around the city of Niš (southeastern Serbia were evaluated. The concentration of 19 heavy metals in lichen samples was measured by inductively coupled plasma-optical emission spectroscopy. For the majority of the elements the concentrations found in Parmelia sulcata Taylor were higher than in Evernia prunastri (L. Ach. In addition, interspecific differences in heavy metal accumulation between Evernia prunastri (L. Ach. and Parmelia sulcata Taylor are observed. Parmelia sulcata Taylor showed a tendency to accumulate Fe, Mn, Ni and Ti while Evernia prunastri (L. Ach. preferentially concentrated Cu on both locations. A clear distinction between lithogenic (Mn-Cu-Ti and atmospheric elements (Ni-Co-Cr-Ag-Pb-Hg was achieved by cluster analysis. [Projekat Ministarstva nauke Republike Srbije, br. III41018, br. OI 171025, br. 172017 and br. III41017

  10. Microbial degradation of monocyclic and polycyclic aromatic hydrocarbons in case of limited pollutant availability with nitrate as a potential electron acceptor; Der mikrobielle Abbau mono- und polyzyklischer aromatischer Kohlenwasserstoffe bei einer begrenzten Schadstoffverfuegbarkeit mit Nitrat als potentiellem Elektronenakzeptor

    Energy Technology Data Exchange (ETDEWEB)

    Linke, C.

    2001-07-01

    The possibility of using natural degradation processes for long-term remediation of tar oil contaminated sites was investigated. Field studies have shown that microbial decomposition of pollutants does take place in many sites but that it is limited by limited availability of pollutants and oxygen in soil. The investigations focused on the activation of BTEX and PAH degradation in situ by nitrate in the absence or in the presence of oxygen. Tensides should be used in order to enhance the availability of pollutants in water, especially in the case of hardly water-soluble PAH. A large-scale experiment was carried out on tar oil contaminated terrain; it was found that the availability of oxygen and not of PAH is the limiting factor so that adding of surfactants will not improve pollutant degradation. In contrast, the adding of tensides would mean even higher concentrations of oxygen-depleting substances in soil. [German] In der vorliegenden Arbeit wurden im Hinblick auf langfristige Sanierungsstrategien fuer teeroelkontaminierte Standorte Moeglichkeiten der Nutzung natuerlicher Abbauvorgaenge untersucht. Zahlreiche Feldstudien belegen, dass ein mikrobieller Schadstoffabbau an vielen Standorten stattfindet, dieser jedoch sowohl durch eine begrenzte Schadstoffverfuegbarkeit als auch durch den im Untergrund nur begrenzt zur Verfuegung stehenden Sauerstoff limitiert wird. Ziel dieser Arbeit war es abzuklaeren, inwiefern ein BTEX- und PAK-Abbau in situ auch in Abwesenheit von Sauerstoff durch Nitrat allein oder durch Nitrat in Kombination mit Sauerstoff aktiviert werden kann. Um insbesondere fuer die schlecht wasserloeslichen PAK eine ausreichende Schadstoffverfuegbarkeit zu gewaehrleisten, sollten auch Tenside zur Erhoehung der im Wasser vorliegenden Schadstoffmenge eingesetzt werden. Aufbauend auf die Laboruntersuchungen wurde im Rahmen von VEGAS{sup ix} ein Grossversuch zum mikrobiellen PAK-Abbau im Abstrom einer simulierten Teeroelkontamination durchgefuehrt

  11. A biological treatment technique for wool textile

    Directory of Open Access Journals (Sweden)

    Yu Xiao-Wei

    2005-09-01

    Full Text Available A biological treatment technique for wool textile was carried out by enzymes degradation coupled with H2O2 oxidation. The results demonstrated that the technique had ideal effects on wool textile such as better softness, plump and less loss of bursting stress. Because of mild reaction conditions, less textile damage and less environmental pollution, this technique for wool textile treatment could have promising prospect.

  12. A biological treatment technique for wool textile

    OpenAIRE

    Yu Xiao-Wei; Wen-Jun Guan; Li Yong-Quan; Guo Ting-Jing; Zhou Ji-Dong

    2005-01-01

    A biological treatment technique for wool textile was carried out by enzymes degradation coupled with H2O2 oxidation. The results demonstrated that the technique had ideal effects on wool textile such as better softness, plump and less loss of bursting stress. Because of mild reaction conditions, less textile damage and less environmental pollution, this technique for wool textile treatment could have promising prospect.

  13. Photo catalytic degradation of organic pollutants diluted in water using TiO2 loaded on fluoride-modified hydrophobic meso porous silica

    International Nuclear Information System (INIS)

    The synthesis of the hydrophobic meso-porous silica (denoted as HMS(F)) was performed using tetraethyl orthosilicate (TEOS), tetraethylammonium fluoride (TEAF) as the source of the fluoride and dodecyl-amine (DDA) as templates. The TiO2 loaded on the hydrophobic HMS(F) (TiO2/HMS(F)) exhibited the efficient photo-catalytic performance for the degradation of alcohols (2-propanol and 2-hexanol) diluted in water. The amount of adsorption of alcohols and the photo-catalytic reactivity for the degradation increased with increasing the content of fluoride ions in these photo-catalysts. The hydrophobic meso-porous surface is suitable as photo-catalytic reaction field for the degradation of organic compounds diluted water. (authors)

  14. Protection against LPS-induced cartilage inflammation and degradation provided by a biological extract of Mentha spicata

    Directory of Open Access Journals (Sweden)

    Kott Laima S

    2010-05-01

    Full Text Available Abstract Background A variety of mint [Mentha spicata] has been bred which over-expresses Rosmarinic acid (RA by approximately 20-fold. RA has demonstrated significant anti-inflammatory activity in vitro and in small rodents; thus it was hypothesized that this plant would demonstrate significant anti-inflammatory activity in vitro. The objectives of this study were: a to develop an in vitro extraction procedure which mimics digestion and hepatic metabolism, b to compare anti-inflammatory properties of High-Rosmarinic-Acid Mentha spicata (HRAM with wild-type control M. spicata (CM, and c to quantify the relative contributions of RA and three of its hepatic metabolites [ferulic acid (FA, caffeic acid (CA, coumaric acid (CO] to anti-inflammatory activity of HRAM. Methods HRAM and CM were incubated in simulated gastric and intestinal fluid, liver microsomes (from male rat and NADPH. Concentrations of RA, CA, CO, and FA in simulated digest of HRAM (HRAMsim and CM (CMsim were determined (HPLC and compared with concentrations in aqueous extracts of HRAM and CM. Cartilage explants (porcine were cultured with LPS (0 or 3 μg/mL and test article [HRAMsim (0, 8, 40, 80, 240, or 400 μg/mL, or CMsim (0, 1, 5 or 10 mg/mL, or RA (0.640 μg/mL, or CA (0.384 μg/mL, or CO (0.057 μg/mL or FA (0.038 μg/mL] for 96 h. Media samples were analyzed for prostaglandin E2 (PGE2, interleukin 1β (IL-1, glycosaminoglycan (GAG, nitric oxide (NO and cell viability (differential live-dead cell staining. Results RA concentration of HRAMsim and CMsim was 49.3 and 0.4 μg/mL, respectively. CA, FA and CO were identified in HRAMsim but not in aqueous extract of HRAM. HRAMsim (≥ 8 μg/mL inhibited LPS-induced PGE2 and NO; HRAMsim (≥ 80 μg/mL inhibited LPS-induced GAG release. RA inhibited LPS-induced GAG release. No anti-inflammatory or chondroprotective effects of RA metabolites on cartilage explants were identified. Conclusions Our biological extraction procedure produces

  15. Human biological monitoring as demonstrated by means of a heavy-metal polluted abandoned site; Human-Biomonitoring am Beispiel einer Schwermetallaltlast

    Energy Technology Data Exchange (ETDEWEB)

    Elison, M.; Schulte-Hostede, S. [GSF-Forschungzentrum fuer Umwelt und Gesundheit Neuherberg (Germany). Inst. fuer Oekologische Chemie

    1997-12-31

    Models for estimating exposure permit to make a rough assessment of the risk emanating from a contaminated area. But it must not be overlooked that such models are fraught with considerable weaknesses.- In studies such as the one described, concerned citizens should additionally be examined in order to obtain supplementary information and to aid interpretation. Such human biological monitoring makes sense only if the persons in question actually live in the contaminated areas, so that a higher exposure may reasonably be expected. Human biological monitoring is to help assess the inner exposure of human beings to pollutants emanating from the contaminated area. (orig./SR) [Deutsch] Mit Hilfe von Modellen zur Expositionsabschaetzung ist man nach den oben dargestellten Vorgehensweisen in der Lage, eine orientierende Bewertung des von einer kontaminierten Flaeche ausgehenden Risikos vorzunehmen. Dabei ist jedoch zu beruecksichtigen, dass solche Modelle mit erheblichen Schwachstellen belastet sind. Zur Ergaenzung und Interpretationshilfe sind bei Untersuchungen wie der hier vorgestellten auch Untersuchungen an den betroffenen Buergen vorzunehmen. Dieses Human-Biomonitoring hat nur dort einen Sinn, wo sichergestellt ist, dass die Menschen dort tatsaechlich auf belasteten Flaechen leben und damit eine erhoehte Belastung der Menschen anzunehmen ist. Das Human-Biomonitoring soll eine Abschaetzung der inneren Belastung des Menschen mit Schadstoffen, die von der kontaminierten Flaeche herruehren, ermoeglichen. (orig./SR)

  16. Photocatalytic Degradation of Model Organic Pollutants on an Immobilized Particulate TiO2 Layer. Roles of Adsorption Processes and Mechanistic Complexity

    Czech Academy of Sciences Publication Activity Database

    Krýsa, J.; Waldner, G.; Měšťánková, Hana; Jirkovský, Jaromír; Grabner, G.

    2006-01-01

    Roč. 64, 3-4 (2006), s. 290-301. ISSN 0926-3373 Institutional research plan: CEZ:AV0Z40400503 Keywords : photocatalysis * degradation * TiO2 Subject RIV: CG - Electrochemistry Impact factor: 3.942, year: 2006

  17. Particle Pollution

    Science.gov (United States)

    ... Your Health Particle Pollution Public Health Issues Particle Pollution Recommend on Facebook Tweet Share Compartir Particle pollution ... see them in the air. Where does particle pollution come from? Particle pollution can come from two ...

  18. Degradations and Rearrangement Reactions

    Science.gov (United States)

    Zhang, Jianbo

    This section deals with recent reports concerning degradation and rearrangement reactions of free sugars as well as some glycosides. The transformations are classified in chemical and enzymatic ways. In addition, the Maillard reaction will be discussed as an example of degradation and rearrangement transformation and its application in current research in the fields of chemistry and biology.

  19. Primary and oxidative DNA damage in salivary leukocytes as a tool for the evaluation of air pollution early biological effects in children: current status of the MAPEC (Monitoring Air Pollution Effects on Children for supporting public health policy) study

    OpenAIRE

    Samuele Vannini; Sara Levorato; Elisabetta Ceretti; Sara Bonetta; Annalaura Carducci; Antonella De Donno; Alessio Perotti; Silvia Bonizzoni; Alberto Bonetti

    2015-01-01

    Background - Air pollution is a global problem: airborne or deposited pollutants are present everywhere on the planet, from highly polluted to remote areas. Twenty per cent of the EU urban population lives in areas where the EU air quality 24-hour limit value for particulate matter (PM10) is exceeded. At present, PM is Europe's most problematic pollutant in terms of harm to health, as reported by European Environmental Agency (EEA) in the EEA Technical Report on Air quality in Europe, 2011. A...

  20. Effect of pH on biologic degradation of Microcystis aeruginosa by alga-lysing bacteria in sequencing batch biofilm reactors

    Institute of Scientific and Technical Information of China (English)

    Hongjing LI; Mengli HAO; Jingxian LIU; Chen CHEN1; Zhengqiu FAN; Xiangrong WANG

    2012-01-01

    In this paper, the effect of pH on biological degradation of Microcystis aeruginosa by alga-lysing bacteria in laboratory-scale sequencing batch biofilm reactors (SBBRs) was investigated. After 10 d filming with waste activated sludge, the biological film could be formed, and the bioreactors in which laid polyolefin resin filler were used to treat algal culture. By comparing the removal efficiency of chlorophyll a at different aerobic time, the optimum time was determined as 5 h. Under pH 6.5, 7.5, and 8.5 conditions, the removal rates of Microcystis aeruginosa were respectively 75.9%, 83.6%, and 78.3% (in term of chlorophyll a), and that of Chemical Oxygen Demand (CODMn) were 30.6%, 35.8%, and 33.5%. While the removal efficiencies of ammonia nitrogen (NH+ -N) were all 100%. It was observed that the sequence of the removal efficiencies of algae, NH+ -N and organic matter were pH 7.5 〉 pH 8.5 〉 pH 6.5. The results showed that the dominant alga-lysing bacteria in the SBBRs was strain HM-01, which was identified as Bacillus sp. by Polymerase Chain Reaction (PCR) amplification of the 16S rRNA gene, Basic Local Alignment Search Tool (BLAST) analysis, and compar- ison with sequences in the GenBank nucleotide database. The algicidal activated substance which HM-01 strain excreted could withstand high temperature and pressure, also had better hydrophily and stronger polarity.

  1. INVESTIGATION OF THE NUTRITIONAL REQUIREMENTS AND CORRESPONDING CODING GENES OF HYDROCARBON-DEGRADING BACTERIAL STRAINS FOR THE PRODUCTION OF BIOMASS USEFUL IN BIOREMEDIATION OF PETROLEUM POLLUTION

    OpenAIRE

    Attar, Al Zahraa Omar

    2015-01-01

    Petroleum-derived contamination events constitute one of the most dominant sources of environmental deterioration in the industrialized countries. Hydrocarbon compounds are recognized as toxic and carcinogenic organic pollutants and environmentally persistent. Bioremediation efforts aim to confine, restrain and mitigate the magnitude of contamination, in order to prevent additional decline of the environment and to protect all life forms from exposure to hazardous materials. The aim of this p...

  2. Treatment of hydrocarbon-rich wastewater using oil degrading bacteria and phototrophic microorganisms in rotating biological contactor: Effect of N:P ratio

    International Nuclear Information System (INIS)

    Treatment of hydrocarbon-rich industrial wastewater in bioreactors using heterotrophic microorganisms is often associated with various operational problems. In this study, a consortium of phototrophic microorganisms and a bacterium is developed on the discs of a rotating biological contactor (RBC) for treatment of wastewater containing diesel oil. The reactor was fed with oil degrading bacterium, Burkholderia cepacia and oil tolerant phototrophic microorganisms. After biofilm formation and acclimatization to 0.6% (v/v) diesel, continuous-mode operation was initiated at 21 h hydraulic retention time (HRT). Residual diesel in the effluent was 0.003%. Advantages of this system include good total petroleum hydrocarbon (TPH) removal, no soluble carbon source requirement and good settleability of biosolids. Biofilm observations revealed the predominance of B. cepacia and cyanobacteria (Phormidium, Oscillatoria and Chroococcus). The N:P ratio affected the relative dominance of the phototrophic microorganisms and bacterial culture. This ratio was a critical factor in determining the performance efficiency of the reactor. At 21 h HRT and organic loading of 27.33 g TPH/m2 d, the N:P ratio 28.5:1 and 38:1 both yielded high and almost comparable TPH and COD removal efficiencies. This study presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries

  3. Treatment of hydrocarbon-rich wastewater using oil degrading bacteria and phototrophic microorganisms in rotating biological contactor: Effect of N:P ratio

    Energy Technology Data Exchange (ETDEWEB)

    Chavan, Anal [Centre for Environmental Science and Engineering (CESE), Indian Institute of Technology (Bombay), Powai, Mumbai 400076 (India); Mukherji, Suparna [Centre for Environmental Science and Engineering (CESE), Indian Institute of Technology (Bombay), Powai, Mumbai 400076 (India)], E-mail: mitras@iitb.ac.in

    2008-06-15

    Treatment of hydrocarbon-rich industrial wastewater in bioreactors using heterotrophic microorganisms is often associated with various operational problems. In this study, a consortium of phototrophic microorganisms and a bacterium is developed on the discs of a rotating biological contactor (RBC) for treatment of wastewater containing diesel oil. The reactor was fed with oil degrading bacterium, Burkholderia cepacia and oil tolerant phototrophic microorganisms. After biofilm formation and acclimatization to 0.6% (v/v) diesel, continuous-mode operation was initiated at 21 h hydraulic retention time (HRT). Residual diesel in the effluent was 0.003%. Advantages of this system include good total petroleum hydrocarbon (TPH) removal, no soluble carbon source requirement and good settleability of biosolids. Biofilm observations revealed the predominance of B. cepacia and cyanobacteria (Phormidium, Oscillatoria and Chroococcus). The N:P ratio affected the relative dominance of the phototrophic microorganisms and bacterial culture. This ratio was a critical factor in determining the performance efficiency of the reactor. At 21 h HRT and organic loading of 27.33 g TPH/m{sup 2} d, the N:P ratio 28.5:1 and 38:1 both yielded high and almost comparable TPH and COD removal efficiencies. This study presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries.

  4. Visible light-induced degradation of organic pollutants using Fe(Ⅱ) supported on silica 8el as an effective catalyst

    Institute of Scientific and Technical Information of China (English)

    ZHAO Chao; HUANG YingPing; FANG YanFen; JIANG LiRong; LIU LiMing; King Tong Lau

    2008-01-01

    Silica gel-supported Fe(Ⅱ) (SiOFe) was prepared and used for heterogeneous degradation of sulforho-damine B (SRB) and 2,4-dichlorophenol (DCP) under visible irradiation (λ>420 nm) as an effective catalyst. UV-visible spectra, and infrared Spectrophotometry (IR), fluorescence, total organic carbon (TOC) and electron spin resonance (ESR) measurements were employed to analyze the photoreaction products. The results showed that SRB could be efficiently degraded by SiOFe/H2O2 system under visible irradiation with 100% decolorization and 72.3% TOC removal after 180 min illumination. The results of ESR and fluorescence measurements indicated that the oxidative process was predominated mainly by the hydroxyl radical (.OH) generated in the system.

  5. A highly uniform ZnO/NaTaO3 nanocomposite: Enhanced self-sensitized degradation of colored pollutants under visible light

    International Nuclear Information System (INIS)

    In this study, a highly uniform ZnO/NaTaO3 composite was prepared via simple hydrothermal synthesis. XRD confirmed the composite was constructed by pure cubic phase of NaTaO3 and hexagonal phase of ZnO. SEM analysis showed that as-prepared ZnO/NaTaO3 shaped as an irregular ginger with an obviously smaller size than that of pure ZnO without obvious agglomeration. EDS mapping demonstrated that the four elements (Na, Ta, O, Zn) in the composite were very uniformly distributed. The photocatalytic behaviors of as-prepared composites were studied in the degradation of methylene blue both under UV and visible irradiation. The bare ZnO showed the highest activity with 99.8% methylene blue (MB) photodegraded in 70 min under UV light irradiation whereas 94% photodegraded rate was achieved for ZnO/NaTaO3. More importantly, the uniform composite of ZnO/NaTaO3 exhibited effective degradation of methylene blue under visible light which can be attributed to the well dyes adsorption abilities and the high efficiency of electron separation, induced by the synergistic effect between ZnO and NaTaO3. It is confirmed the dye rather than a semiconductor is excited under visible light irradiation and a self-sensitized photocatalytic mechanism was then proposed based on the experimental results. - Graphical abstract: Visible light photocatalytic activity of ZnO/NaTaO3 and proposed schematic of self-sensitization directed photogradation of MB. - Highlights: • Highly uniform ZnO/NaTaO3 photocatalysts were fabricated by hydrothermal method. • ZnO/NaTaO3 composite exhibited effective degradation of MB under visible light. • ZnO/NaTaO3 composite effectively promoted dye adsorption and electrons separation. • A self-sensitized photocatalytic mechanism was proposed for the degradation of dye

  6. Photocatalytic degradation of model organic pollutants on an immobilized particulate TiO.sub.2./sub. layer. Roles of adsorption processes and mechanistic complexity

    Czech Academy of Sciences Publication Activity Database

    Krýsa, J.; Waldner, G.; Měšťánková, H.; Jirkovský, Jaromír; Grabner, G.

    2006-01-01

    Roč. 64, 3-4 (2006), s. 290-301. ISSN 0926-3373 R&D Projects: GA MŠk 1M0577 Grant ostatní: European Commission(XE) CT-1999-00016; European Commission(XE) 2002-11; European Commission(XE) 2005-22 Institutional research plan: CEZ:AV0Z40400503 Keywords : photocatalysis * degradation * TiO2 * immobilization Subject RIV: CG - Electrochemistry Impact factor: 3.942, year: 2006

  7. 新疆油污土壤中石油烃降解菌筛选及鉴定%Screen and identification of oH-degrading bacteria from oil polluted soil in Xingjiang

    Institute of Scientific and Technical Information of China (English)

    孙玉萍; 王红英; 刘素辉; 倪萍; 马海梅

    2011-01-01

    Objective To isolate and identify petroleum-degrading bacteria from oil-polluted soil in Karamay of Xinjiang Uyghur Autonomous Region. Methods By enriching the polluted soil with petroleum hydrocarbons as the only carbon source,the oil-degradation bacterium from oil-contaminated soil was screened and identified by its 16S rDNA sequencing. Then basic local alignment search tool( BLAST) was used to indicate the sequence of the isolates from the GenBank. Results Totally 18 bacteria strains were isolated and identified from oil-polluted soil. The sequence of its 16S rDNA indicated that there were 98% of homology to the representative strains. The main strain were Pseudomonas sp. , Planococcus sp. , Arthrobacter sp. ,Psychrobacter sp. ,Brevibacillus agri sp. ,and Brevundimonas sp.. The bacteria strains from different oil-polluted soil were different and there were more bacteria strains in heavy oil-polluted soil. Conclusion The main strain was Pseudomonas sp. In oil-polluted soid and the bacteria strains were different in different oil-polluted soil.%目的 从新疆克拉玛依油田油污土壤中筛选具有降解能力的菌株,为今后构建本源石油降解微生物菌群提供技术支持和菌种储备.方法通过以石油烃为唯一碳源的选择培养基的分离培养,获得能够利用石油烃为碳源的菌株,并通过16S rDNA序列测定方法对菌株进行鉴定.结果分离得到18株能以石油作为唯一碳源和能源的石油降解菌株,通过序列分析,初步鉴定为假单胞菌属(Pseudomonas sp.)、动性球菌属(Planococcus sp.)、节杆菌属(Arthrobacter sp.)、嗜冷杆菌(Psychrobacter sp.)、短杆菌属(Brevibacillus agri sp.)等5类.在不同土壤中分离出的降解菌株不同,含油量较高的土壤中种类较多.结论新疆克拉玛依油田油污土壤中的石油降解菌株以假单胞菌属为主,而且随着污染严重程度的不同降解菌株的种类也不同.

  8. Ag@graphene oxide nanocomposite as an efficient visible-light plasmonic photocatalyst for the degradation of organic pollutants: A facile green synthetic approach

    International Nuclear Information System (INIS)

    We report a simple and effective supercritical route to decorate silver nanoparticles (Ag NPs) on graphene oxide (GO) using a commonly available and non-toxic glucose as a reducing agent. Transmission electron microscopy and energy-dispersive X-ray analysis confirmed that Ag NPs of size around 8–20 nm were coated on the GO surface under optimized experimental condition. Ag NPs on the GO surface were predominantly spherical in shape and well dispersed. The experimental results proved that the as-synthesized GO/Ag nanocomposite could be used as a highly efficient photocatalyst for the degradation of Rhodamine 123 dye and acetaldehyde under visible-light irradiation. The degradation results indicated that the photocatalytic performance of nanocomposite was greatly enhanced owing to the improved adsorption performance and separation efficiency of photo-generated carriers. The nanocomposite maintains a high level activity even after four times of recycle. Furthermore, the nanocomposite exhibited excellent antibacterial activity against gram-positive and gram-negative microorganisms. - Highlights: • Visible-light driven reusable photocatalyst. • Efficient degradation of Rhodamine 123 dye and acetaldehyde. • Excellent antibacterial activity. • Green synthetic approach using supercritical fluid. • New field of sustainable nanotechnology

  9. Catalytic degradation of recalcitrant pollutants by Fenton-like process using polyacrylonitrile-supported iron (II) phthalocyanine nanofibers: Intermediates and pathway.

    Science.gov (United States)

    Zhu, Zhexin; Chen, Yi; Gu, Yan; Wu, Fei; Lu, Wangyang; Xu, Tiefeng; Chen, Wenxing

    2016-04-15

    Iron (II) phthalocyanine (FePc) molecules were isolated in polyacrylonitrile (PAN) nanofibers by electrospinning to prevent the formation of dimers and oligomers. Carbamazepine (CBZ) and Rhodamine B (RhB) degradation was investigated during a Fenton-like process with FePc/PAN nanofibers. Classical quenching tests with isopropanol and electron paramagnetic resonance tests with 5,5-dimethyl-pyrroline-oxide as spin-trapping agent were performed to determine the formation of active species during hydrogen peroxide (H2O2) decomposition by FePc/PAN nanofibers. After eight recycles for CBZ degradation over the FePc/PAN nanofibers/H2O2 system, the removal ratios of CBZ remained at 99%. Seven by-products of RhB and twelve intermediates of CBZ were identified using ultra-performance liquid chromatography and high-resolution mass spectrometry. Pathways of CBZ and RhB degradation were proposed based on the identified intermediates. As the reaction proceeded, all CBZ and RhB aromatic nucleus intermediates decreased and were transformed to small acids, but also to potentially toxic epoxide-containing intermediates and acridine, because of the powerful oxidation ability of •OH in the catalytic system. PMID:26949842

  10. Ag@graphene oxide nanocomposite as an efficient visible-light plasmonic photocatalyst for the degradation of organic pollutants: A facile green synthetic approach

    Energy Technology Data Exchange (ETDEWEB)

    Haldorai, Yuvaraj [Supercritical Fluids and Nano Processes Laboratory, School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712-749 (Korea, Republic of); Kim, Byung-Keuk; Jo, Youl-Lae [Department of Applied Microbiology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749 (Korea, Republic of); Shim, Jae-Jin, E-mail: jjshim@yu.ac.kr [Supercritical Fluids and Nano Processes Laboratory, School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712-749 (Korea, Republic of)

    2014-02-14

    We report a simple and effective supercritical route to decorate silver nanoparticles (Ag NPs) on graphene oxide (GO) using a commonly available and non-toxic glucose as a reducing agent. Transmission electron microscopy and energy-dispersive X-ray analysis confirmed that Ag NPs of size around 8–20 nm were coated on the GO surface under optimized experimental condition. Ag NPs on the GO surface were predominantly spherical in shape and well dispersed. The experimental results proved that the as-synthesized GO/Ag nanocomposite could be used as a highly efficient photocatalyst for the degradation of Rhodamine 123 dye and acetaldehyde under visible-light irradiation. The degradation results indicated that the photocatalytic performance of nanocomposite was greatly enhanced owing to the improved adsorption performance and separation efficiency of photo-generated carriers. The nanocomposite maintains a high level activity even after four times of recycle. Furthermore, the nanocomposite exhibited excellent antibacterial activity against gram-positive and gram-negative microorganisms. - Highlights: • Visible-light driven reusable photocatalyst. • Efficient degradation of Rhodamine 123 dye and acetaldehyde. • Excellent antibacterial activity. • Green synthetic approach using supercritical fluid. • New field of sustainable nanotechnology.

  11. Illicit drugs as new environmental pollutants: cyto-genotoxic effects of cocaine on the biological model Dreissena polymorpha.

    Science.gov (United States)

    Binelli, A; Pedriali, A; Riva, C; Parolini, M

    2012-03-01

    The increase in global consumption of illicit drugs has produced not only social and medical problems but also a potential new environmental danger. Indeed, it has been established that drugs consumed by humans end up in surface waters, after being carried through the sewage system. Although many studies to measure concentrations of several drugs of abuse in freshwater worldwide have been conducted, no data have been available to evaluate their potentially harmful effects on non-target organisms until now. The present study represents the first attempt to investigate the cyto-genotoxic effects of cocaine, one of the primary drugs consumed in Western Countries, in the biological model Dreissena polymorpha by the use of a biomarker battery. We performed the following tests on Zebra mussel hemocytes: the single cell gel electrophoresis (SCGE) assay, the apoptosis frequency evaluation and the micronucleus assay (MN test) for the evaluation of genotoxicity and the lysosomal membranes stability test (neutral red retention assay; NRRA) to identify the cocaine cytotoxicity. We exposed the molluscs for 96 h to three different nominal concentrations in water (40 ng L(-1); 220 ng L(-1); and 10 μg L(-1)). Cocaine caused significant (papoptosis, which was evident in samples from even the lowest environmental cocaine concentration. Because cocaine decreased the stability of lysosomal membranes, we also highlighted its cytotoxicity and the possible implications of oxidative stress for the observed genotoxic effects. PMID:22119280

  12. Biology Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Presents procedures, exercises, demonstrations, and information on a variety of biology topics including labeling systems, biological indicators of stream pollution, growth of lichens, reproductive capacity of bulbous buttercups, a straw balance to measure transpiration, interaction of fungi, osmosis, and nitrogen fixation and crop production. (DC)

  13. The Research of the Bio-degradation of Organic Pollutants During Exploitation and Utilization of Oil Shale%油页岩开采利用地下水有机污染物生物降解的研究

    Institute of Scientific and Technical Information of China (English)

    马然; 张清; 张兰英; 王显胜; 樊亚楠; 宋顶峰

    2013-01-01

    To solve the problem of organic pollutants product in groundwater during exploitation and utilization of oil shale, the article took the oil degrading strains after domestication and cultivation to research the bio-degradation of the organic pollutants. The indoor research conducted at low temperature (10℃ ) and at shaking speed of 120 r/min. The experimental results show that: when the initial concentration of 200 mg/L, the optimum condition of the strains using the organic pollutants in groundwater was at pH 7, for inoculation of 5 mL, used ammonium chloride(0.05%) as the best nitrogen source and potassium sulfate(0.05%) as the best source of phosphorus. After 6 days at the optimum condition the concentration of total petroleum hydrocarbon could reduce from 200 mg/L to 33.94 mg/L. By the strains the degradation rate of the total petroleum hydrocarbon and COD was 83.03% and 67.58%, respectively. The biodegradation was proved to be first-order kinetic equation by kinetic analysis of degradation process under the initial concentration of the total petroleum hydrocarbon at 20 mg/L, and the total petroleum hydrocarbon initial concentration between 50-300 mg/L degradation meet zero-order kinetic equation.%为解决油页岩在开采利用中有机物对地下水的污染问题,试验采用驯化培养的石油降解菌,对地下水中的有机污染物进行生物降解。在低温(10℃)、120 r/min条件下,通过室内试验,确定菌群降解地下水中有机污染物的最佳pH为7,接种量为5 mL(8×106个/mL),初始浓度为200 mg/L,辅助氮源为氯化铵(0.05%),辅助磷源为磷酸二氢铵(0.05%)。在此最佳条件下,反应6天后总石油烃质量浓度为33.94 mg/L,菌群对总石油烃及COD的降解率分别为83.03%及67.58%。通过对降解过程的动力学研究分析可知,总石油烃初始浓度为20 mg/L时的降解符合一级动力学方程,50~300 mg/L时的降解符合零级动力学方程。

  14. Oil-removal enhancement in media with keratinous or chitinous wastes by hydrocarbon-degrading bacteria isolated from oil-polluted soils.

    Science.gov (United States)

    Cervantes-González, E; Rojas-Avelizapa, N G; Cruz-Camarillo, R; García-Mena, J; Rojas-Avelizapa, L I

    2008-02-01

    The aim of this work was to isolate oil-degrading bacteria that use chitin or keratin as carbon sources from oil contaminated soils; and additionally to study if oil removal by these bacteria is enhanced when a chitinous or a keratinous waste is added to the culture media. To isolate the above-mentioned bacteria, 12 soil samples were collected close to an oil-well. Such soils showed unsuitable nutrients content, but their counts of heterotrophic bacteria ranged within 10(5)-10(8) CFU g(-1) soil, of which 0.1-77% corresponded to oil hydrocarbon-degrading ones. By sampling on plates, 109 oil-degrading bacterial isolates were obtained. Their keratinase and chitinase activities were then screened by plate assays and spectrophotometric methods, resulting in 13 isolates that were used to integrate two mixed cultures, one keratinolytic and the other chitinolytic. These mixed cultures were grown in media with oil, or oil supplemented with chicken-feathers or shrimp wastes. The oil-hydrocarbon removal was measured by gas chromatography. Results showed that keratinolytic bacteria were better enzyme producers than the chitinolytic ones, and that oil removal in the presence of chicken-feathers was 3.8 times greater than with shrimp wastes, and almost twice, in comparison with oil-only added cultures. Identification of microorganisms from the mixed cultures by 16S rDNA, indicated the presence of seven different bacterial genera; Stenotrophomonas, Pseudomonas, Brevibacillus, Bacillus, Micrococcus, Lysobacter and Nocardiodes. These findings suggest that the isolated microorganisms and the chicken-feather wastes could be applied to the cleaning of oil-contaminated environments, whether in soil or water. PMID:18613616

  15. Cu(2)ZnSnS(4)-Pt and Cu(2)ZnSnS(4)-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation.

    Science.gov (United States)

    Yu, Xuelian; Shavel, Alexey; An, Xiaoqiang; Luo, Zhishan; Ibáñez, Maria; Cabot, Andreu

    2014-07-01

    Cu2ZnSnS4, based on abundant and environmental friendly elements and with a direct band gap of 1.5 eV, is a main candidate material for solar energy conversion through both photovoltaics and photocatalysis. We detail here the synthesis of quasi-spherical Cu2ZnSnS4 nanoparticles with unprecedented narrow size distributions. We further detail their use as seeds to produce CZTS-Au and CZTS-Pt heterostructured nanoparticles. Such heterostructured nanoparticles are shown to have excellent photocatalytic properties toward degradation of Rhodamine B and hydrogen generation by water splitting. PMID:24946131

  16. A highly uniform ZnO/NaTaO{sub 3} nanocomposite: Enhanced self-sensitized degradation of colored pollutants under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Guanjie; Tang, Changhe [School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021 (China); Zhang, Bo [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 (China); Zhao, Lanxiao; Su, Yiguo [School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021 (China); Wang, Xiaojing, E-mail: wang_xiao_jing@hotmail.com [School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021 (China)

    2015-10-25

    In this study, a highly uniform ZnO/NaTaO{sub 3} composite was prepared via simple hydrothermal synthesis. XRD confirmed the composite was constructed by pure cubic phase of NaTaO{sub 3} and hexagonal phase of ZnO. SEM analysis showed that as-prepared ZnO/NaTaO{sub 3} shaped as an irregular ginger with an obviously smaller size than that of pure ZnO without obvious agglomeration. EDS mapping demonstrated that the four elements (Na, Ta, O, Zn) in the composite were very uniformly distributed. The photocatalytic behaviors of as-prepared composites were studied in the degradation of methylene blue both under UV and visible irradiation. The bare ZnO showed the highest activity with 99.8% methylene blue (MB) photodegraded in 70 min under UV light irradiation whereas 94% photodegraded rate was achieved for ZnO/NaTaO{sub 3}. More importantly, the uniform composite of ZnO/NaTaO{sub 3} exhibited effective degradation of methylene blue under visible light which can be attributed to the well dyes adsorption abilities and the high efficiency of electron separation, induced by the synergistic effect between ZnO and NaTaO{sub 3}. It is confirmed the dye rather than a semiconductor is excited under visible light irradiation and a self-sensitized photocatalytic mechanism was then proposed based on the experimental results. - Graphical abstract: Visible light photocatalytic activity of ZnO/NaTaO{sub 3} and proposed schematic of self-sensitization directed photogradation of MB. - Highlights: • Highly uniform ZnO/NaTaO{sub 3} photocatalysts were fabricated by hydrothermal method. • ZnO/NaTaO{sub 3} composite exhibited effective degradation of MB under visible light. • ZnO/NaTaO{sub 3} composite effectively promoted dye adsorption and electrons separation. • A self-sensitized photocatalytic mechanism was proposed for the degradation of dye.

  17. Synergistic effect of oxygen vacancy and nitrogen doping on enhancing the photocatalytic activity of Bi2O2CO3 nanosheets with exposed {0 0 1} facets for the degradation of organic pollutants

    Science.gov (United States)

    Zhang, Yafei; Zhu, Gangqiang; Hojamberdiev, Mirabbos; Gao, Jianzhi; Hao, Jing; Zhou, Jianping; Liu, Peng

    2016-05-01

    Single-crystalline bare Bi2O2CO3 (BOC) nanosheets with exposed {0 0 1} facets and nitrogen-doped Bi2O2CO3 (NBOC) flower-like microstructures were synthesized by a simple hydrothermal method. The nitrogen-doped Bi2O2CO3 flower-like microstructures with oxygen vacancy (UV-NBOC) were obtained by irradiating the NBOC microstructures with UV light for 2 h in ethanol. The UV-vis diffuse reflectance spectra showed that the NBOC and UV-NBOC nanosheets exhibit an obvious red shift in light absorption band compared with the pure BOC nanosheets. Rhodamine B (RhB) was chosen as a model organic pollutant to verify the influence of oxygen vacancy and nitrogen doping on the photocatalytic activity of Bi2O2CO3 under simulated solar light irradiation. Judging from the kinetics of RhB photodegradation over the synthesized samples, a synergistic effect between oxygen vacancy and nitrogen doping was found with a remarkable increase (more than 10 and 2 times) in the photocatalytic activity of UV-NBOC compared with BOC and NBOC, respectively. Moreover, the UV-NBOC also exhibited an excellent cyclability and superior photocatalytic activity toward degradation of other organic pollutants (methylene blue, Congo red, Bisphenol A) under simulated solar light irradiation.

  18. Development of Photocatalytic Degradation of Organic Pollutants with Titanium Dioxide%TiO2光催化降解有机污染物研究进展

    Institute of Scientific and Technical Information of China (English)

    张鹏会; 王九思; 韩迪

    2009-01-01

    Even though heterogeneous photocatalysis appeared in many forms, photodegradation of organic pollutants had recently been the most widely investigated. By far, titania had played a much larger role in this scenario compared to other semiconductor photocatalysts due to its cost effectiveness, inert nature and photostability. The research progress on the photocatalytic degradation of organic pollutants using TiO2 under of light was reviewed. The photo-catalyzed mechanism under UV and visible light was described and the outlook was made for this study.%近年来对光催化降解有机物进行的广泛研究,使得非均相光催化以各种各样的形式出现.目前,在光催化领域里,TiO2起着非常重要的作用,与其它半导体相比,它具有成本低、惰性以及光稳定性的特点.本文综述了有关在光照射下以TiO2对有机污染物催化降解情况的研究进展,阐述了TiO2在紫外光和可见光下的光化机理,并对TiO2光催化降解有机物的研究前景进行了展望.

  19. Effective visible light-active nitrogen and samarium co-doped BiVO{sub 4} for the degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Min; Niu, Chao [College of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110165 (China); Liu, Jun, E-mail: minwang62@msn.com [Shenyang Military General Hospital, Shenyang 110016 (China); Wang, Qianwu; Yang, Changxiu; Zheng, Haoyan [College of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110165 (China)

    2015-11-05

    Nitrogen and samarium co-doped BiVO{sub 4} (N–xSm–BiVO{sub 4}) nanoparticles were synthesized using a sol–gel method with a corn stem template. The physicochemical properties of the resultant N–xSm–BiVO{sub 4} particles were characterized using various methods: XPS, XRD, SEM, BET, and UV–Vis DRS analyses. The visible-light photocatalytic activity was successfully demonstrated by degrading a model dye, namely, methyl orange. The dopant content was optimized, and the nitrogen and samarium co-doped BiVO{sub 4} extended the light absorption spectrum toward the visible region, significantly enhancing the photodegradation of the model dye. The Sm and N co-doped BiVO{sub 4} exhibited the highest photocatalytic activity compared to materials with a single dopant or no dopant. The significantly enhanced photocatalytic activity of the N–Sm co-doped BiVO{sub 4} under visible-light irradiation can be attributed to the synergistic effects of the nitrogen and samarium. - Highlights: • The N–Sm codoped BiVO{sub 4} were synthesized using a sol–gel method with a corn stem template. • The N and Sm codoped BiVO{sub 4} has excellent photocatalytic activity of methyl orange degradation. • The maximum activity was observed when the molar ratio of Sm/Bi was 1.0. • The high photocatalytic activity was caused by the synergistic effects between N doping and Sm doping.

  20. Ultrasonic-assisted one-pot preparation of ZnO/Ag3VO4 nanocomposites for efficiently degradation of organic pollutants under visible-light irradiation

    Science.gov (United States)

    Kiantazh, Fariba; Habibi-Yangjeh, Aziz

    2015-11-01

    We report a facile ultrasonic-assisted one-pot method for preparation of ZnO/Ag3VO4 nanocomposites with different mole fractions of silver vanadate. The preparation method has considerable merits such as short preparation time, large-scale, and one-pot strategy. The resultant samples were fairly characterized by means of XRD, EDX, SEM, TEM, UV-vis DRS, FT-IR, and PL techniques. Visible-light activity of the resultant samples was investigated by degradation of rhodamine B (RhB), methylene blue (MB), and methyl orange (MO). Among the prepared nanocomposites, the ZnO/Ag3VO4 nanocomposite with 0.073 mole fraction of Ag3VO4 exhibited the best activity and excessive amount of Ag3VO4 resulted in decrease of the activity. Photocatalytic activity of this nanocomposite under visible-light irradiation is about 21, 56, and 2.8-fold higher than that of the ZnO sample in degradation of RhB, MB, and MO, respectively. The highly enhanced activity of the nanocomposite was attributed to greater generation of electron-hole pairs, due to photosensitizing role of Ag3VO4 under visible-light irradiation, and efficiently separation of the photogenerated electron-hole pairs, due to formation of n-n heterojunction between the counterparts. Furthermore, it was revealed that the photocatalytic activity largely depends on ultrasonic irradiation time, calcination temperature, and scavengers of the reactive species.

  1. Study on Degradation Abilities of Chlorophytum comosum and Hedera nepalensis on Indoor Formaldehyde Pollution%吊兰和常春藤对室内甲醛污染降解能力的研究

    Institute of Scientific and Technical Information of China (English)

    陈佳瀛; 邵勤龙; 张佳慧; 俞璟凤

    2013-01-01

    [Objective] The research aimed to study on degradation abilities of Chlorophytum comosum and Hedera nepalensis on indoor formaldehyde pollution.[Method] By simulating indoor formaldehyde pollution environment in laboratory,Chlorophytum comosum and Hedera nepalensis were selected to conduct test on formaldehyde removal.[Result] Both Chlorophytum comosum and Hedera nepalensis had different purifying abilities on formaldehyde.Configuration effect of Chlorophytum comosum and Hedera nepalensis was significantly better than Chlorophytum comosum.Degradation ability of Chlorophytum comosum on formaldehyde was stronger than Hedera nepalensis.At horizontal configuration from southeast to northwest and vertical configuration from lower layer to upper and middle layers,chlorophyll content all presented rise tendency.[Conclusion] Screening and optimal configuration of the potted plants could provide scientific basis for effectively preventing and controlling indoor long-term pollution and really improving indoor environmental quality.%[目的]研究吊兰和常春藤对室内甲醛污染的降解能力.[方法]通过实验室模拟室内甲醛污染环境,选用吊兰和常春藤盆栽植物进行去除甲醛的试验研究.[结果]吊兰和常春藤均具有不同程度净化甲醛的能力.吊兰和常春藤同时配置效果明显优于吊兰,而吊兰对甲醛的降解要强于常春藤.从东南到西北不同水平配置和由下层到上、中层的不同垂直配置的植物叶片叶绿素含量均呈上升趋势.[结论]盆栽植物的筛选和优化组合配置可为有效防治室内长期污染、真正改善室内环境质量提供科学依据.

  2. A Novel Mesoporous Single-Crystal-Like Bi2WO6 with Enhanced Photocatalytic Activity for Pollutants Degradation and Oxygen Production.

    Science.gov (United States)

    Li, Chunmei; Chen, Gang; Sun, Jingxue; Rao, Jiancun; Han, Zhonghui; Hu, Yidong; Zhou, Yansong

    2015-11-25

    The porous single-crystal-like micro/nanomaterials exhibited splendid intrinsic performance in photocatalysts, dye-sensitized solar cells, gas sensors, lithium cells, and many other application fields. Here, a novel mesoporous single-crystal-like Bi2WO6 tetragonal architecture was first achieved in the mixed molten salt system. Its crystal construction mechanism originated from the oriented attachment of nanosheet units accompanied by Ostwald ripening process. Additionally, the synergistic effect of mixed alkali metal nitrates and electrostatic attraction caused by internal electric field in crystal played a pivotal role in oriented attachment process of nanosheet units. The obtained sample displayed superior photocatalytic activity of both organic dye degradation and O2 evolution from water under visible light. We gained an insight into this unique architecture's impact on the physical properties, light absorption, photoelectricity, and luminescent decay, etc., that significantly influenced photocatalytic activity. PMID:26524604

  3. Narrow with tunable optical band gap of CdS based core shell nanoparticles: Applications in pollutant degradation and solar cells

    International Nuclear Information System (INIS)

    In this work, sulfide-based core–shell heterostructures were successfully synthesized by chemical method. Structural, morphological, chemical composition, optical, and thermal properties of core–shell materials were investigated using different analytical techniques. The thickness of the shell can be tuned by controlling the concentration of respective shell precursors. TEM and HR-TEM analyses show that the particles are spherical in shape with particle size in the range 3–5 nm. Optical studies reveal that the core–shell materials possess strong visible-light photocatalytic activity. Among the four photocatalysts, CdS/SnS showed the best activity towards photo-degradation of methylene blue (MB). Addition of shells to the CdS core has a clear impact on the performance of solar cells. - Highlights: • Sulfide based core shell nanoparticles were synthesized by chemical method. • Structural, morphological and optical properties were studied. • Strong photocatalytic samples showed week photovoltaic performance

  4. Narrow with tunable optical band gap of CdS based core shell nanoparticles: Applications in pollutant degradation and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Murugadoss, G., E-mail: murugadoss_g@yahoo.com [Department of Electric Engineering and Computer Science, School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hypogo 671-2280 (Japan); Thangamuthu, R. [Electrochemical Materials Science Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630006, Tamilnadu (India); Jayavel, R. [Centre for Nanoscience and Technology, Anna University, Chennai 600025, Tamilnadu (India); Rajesh Kumar, M. [Department of Physics, Annamalai University, Annamalai nagar 608 002, Tamilnadu (India)

    2015-09-15

    In this work, sulfide-based core–shell heterostructures were successfully synthesized by chemical method. Structural, morphological, chemical composition, optical, and thermal properties of core–shell materials were investigated using different analytical techniques. The thickness of the shell can be tuned by controlling the concentration of respective shell precursors. TEM and HR-TEM analyses show that the particles are spherical in shape with particle size in the range 3–5 nm. Optical studies reveal that the core–shell materials possess strong visible-light photocatalytic activity. Among the four photocatalysts, CdS/SnS showed the best activity towards photo-degradation of methylene blue (MB). Addition of shells to the CdS core has a clear impact on the performance of solar cells. - Highlights: • Sulfide based core shell nanoparticles were synthesized by chemical method. • Structural, morphological and optical properties were studied. • Strong photocatalytic samples showed week photovoltaic performance.

  5. Visible light-driven photocatalytic degradation of the organic pollutant methylene blue with hybrid palladium–fluorine-doped titanium oxide nanoparticles

    International Nuclear Information System (INIS)

    The synthesis of mesoporous aggregates of titanium oxide nanoparticles (F0) is described using a very cheap and simple synthetic protocol. This consists of the reaction of titanium tetraisopropoxide and a solution of HNO3 in water (pH 2.0) and subsequent filtration. In addition, fluorine-doped titanium oxides (F1, F2, F5 and F10) were synthesized using the same method, adding increasing amounts of NaF to the reaction mixture (avoiding the use of expensive reagents such as NH4F or trifluoroacetic acid). The resulting materials were calcined at different temperatures (500, 600 and 650 °C) giving particles sized between 10 and 20 nm. Furthermore, a hybrid F-doped TiO2 with supported palladium nanoparticles of ca. 20 nm (F5-500-Pd1) was synthesized by grafting an organometallic palladium(II) salt namely [Pd(cod)Cl2] (cod = 1,5-cyclooctadiene). Photocatalytic studies of the degradation of methylene blue (MB) were carried out under UV light using all the synthesized material (non-doped an F-doped TiO2), observing that the increase in the quantity of fluorine has a positive effect on the photocatalytic activity. F5-500 is apparently the material which has the most convenient structural properties (in terms of surface area and anatase/rutile ratio) and thus a higher photocatalytic activity. The hybrid material F-doped TiO2–Pd nanoparticles (F5-500-Pd1) has a lower band gap value than F5-500, and thus photocatalytic degradation of MB under LED visible light was achieved using F5-500-Pd1 as photocatalyst

  6. A visible-light-driven core-shell like Ag2S@Ag2CO3 composite photocatalyst with high performance in pollutants degradation.

    Science.gov (United States)

    Yu, Changlin; Wei, Longfu; Zhou, Wanqin; Dionysiou, Dionysios D; Zhu, Lihua; Shu, Qing; Liu, Hong

    2016-08-01

    A series of Ag2S-Ag2CO3 (4%, 8%, 16%, 32% and 40% Ag2S), Ag2CO3@Ag2S (32%Ag2S) and Ag2S@Ag2CO3 (32%Ag2S) composite photocatalysts were fabricated by coprecipitation or successive precipitation reaction. The obtained catalysts were analyzed by N2 physical adsorption, powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and photocurrent test. Under visible light irradiation, the influences of Ag2S content and core-shell property on photocatalytic activity and stability were evaluated in studies focused on the degradation of methyl orange (MO) dye, phenol, and bisphenol A. Results showed that excellent photocatalytic performance was obtained over Ag2S/Ag2CO3 composite photocatalysts with respect to Ag2S and Ag2CO3. With optimal content of Ag2S (32 wt%), the Ag2S-Ag2CO3 showed the highest photocatalytic degradation efficiency. Moreover, the structured property of Ag2S/Ag2CO3 greatly influenced the activity. Compared with Ag2S-Ag2CO3 and Ag2CO3@Ag2S, core-shell like Ag2S@Ag2CO3 demonstrated the highest activity and stability. The main reason for the boosting of photocatalytic performance was due to the formation of Ag2S/Ag2CO3 well contacted interface and unique electron structures. Ag2S/Ag2CO3 interface could significantly increase the separation efficiency of the photo-generated electrons (e(-)) and holes (h(+)), and production of OH radicals. More importantly, the low solubility of Ag2S shell could effectively protect the core of Ag2CO3, which further guarantees the stability of Ag2CO3. PMID:27236845

  7. Visible light-driven photocatalytic degradation of the organic pollutant methylene blue with hybrid palladium–fluorine-doped titanium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lázaro-Navas, Sonia; Prashar, Sanjiv; Fajardo, Mariano; Gómez-Ruiz, Santiago, E-mail: santiago.gomez@urjc.es [Universidad Rey Juan Carlos, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET (Spain)

    2015-02-15

    The synthesis of mesoporous aggregates of titanium oxide nanoparticles (F0) is described using a very cheap and simple synthetic protocol. This consists of the reaction of titanium tetraisopropoxide and a solution of HNO{sub 3} in water (pH 2.0) and subsequent filtration. In addition, fluorine-doped titanium oxides (F1, F2, F5 and F10) were synthesized using the same method, adding increasing amounts of NaF to the reaction mixture (avoiding the use of expensive reagents such as NH{sub 4}F or trifluoroacetic acid). The resulting materials were calcined at different temperatures (500, 600 and 650 °C) giving particles sized between 10 and 20 nm. Furthermore, a hybrid F-doped TiO{sub 2} with supported palladium nanoparticles of ca. 20 nm (F5-500-Pd1) was synthesized by grafting an organometallic palladium(II) salt namely [Pd(cod)Cl{sub 2}] (cod = 1,5-cyclooctadiene). Photocatalytic studies of the degradation of methylene blue (MB) were carried out under UV light using all the synthesized material (non-doped an F-doped TiO{sub 2}), observing that the increase in the quantity of fluorine has a positive effect on the photocatalytic activity. F5-500 is apparently the material which has the most convenient structural properties (in terms of surface area and anatase/rutile ratio) and thus a higher photocatalytic activity. The hybrid material F-doped TiO{sub 2}–Pd nanoparticles (F5-500-Pd1) has a lower band gap value than F5-500, and thus photocatalytic degradation of MB under LED visible light was achieved using F5-500-Pd1 as photocatalyst.

  8. Synthesis of hectorite-TiO2 and kaolinite-TiO2 nanocomposites with photocatalytic activity for the degradation of model air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Destaillats, Hugo; Kibanova, D.; Trejo, M.; Destaillats, H.; Cervini-Silva, J.

    2008-03-01

    We studied the synthesis and photocatalytic activity of small-sized TiO{sub 2} supported on hectorite and kaolinite. Deposition of TiO{sub 2} on the clay mineral surface was conducted by using a sol-gel method with titanium isopropoxide as precursor. Anatase TiO{sub 2} particles formation was achieved by hydrothermal treatment at 180 C. Material characterization was conducted using XRD, SEM, XPS, ICP-OES, BET and porosimetry analysis. Efficiency in synthesizing clay-TiO{sub 2} composites depended strongly on the clay mineral structure. Incorporation of anatase in hectorite, an expandable clay mineral, was found to be very significant (> 36 wt.% Ti) and to be followed by important structural changes at the clay mineral surface. Instead, no major structural modifications of the clay were observed for kaolinite-TiO{sub 2}, as compared with the untreated material. Photocatalytic performance of clay-TiO{sub 2} composites was evaluated with ATR-FTIR following the oxidation of adsorbed toluene and d-limonene, two model air pollutants. In either case, the photocatalytic removal efficiency of these hydrophobic substrates by the synthesized clay-TiO{sub 2} composites was comparable to that observed using pure commercial TiO{sub 2} (Degussa P25).

  9. Reduced graphene oxide wrapped ZnS–Ag2S ternary composites synthesized via hydrothermal method: Applications in photocatalyst degradation of organic pollutants

    International Nuclear Information System (INIS)

    Highlights: • Hydrothermal synthesis of ternary ZnS–Ag2S–RGO nanostructures without any additives. • Significant improvement of the photocatalytic activity in RGO wrapped composites. • Near white light emission and stable cycling can lead these composites to find application in near UV-white LEDs and environmental protection issues. - Abstract: In this work, we have successfully synthesized ternary nanohybrid composite, ZnS–Ag2S wrapped with reduced graphene oxide (RGO) using hydrothermal method without any surfactant. We have accessed the photocatalytic ability of ZnS–Ag2S–RGO nanocomposite using the oxidation of Rhodamine B (RhB) under simulated sunlight irradiation. The superior photocatalytic ability of ZnS–Ag2S–RGO compared to bare ZnS, was ascribed to an efficient charge transfer from ZnS to Ag2S and graphene sheets. The recyclability results also demonstrated the excellent stability and reliability of the ZnS–Ag2S–RGO. In addition to the excellent photocatalytic degradation properties, the synthesized ZnS–Ag2S–RGO nanocomposite exhibited near white light emission, which implies that careful design and control of the composition could be lead to find application in near UV-white LEDs. The present work provides new insights into the synthesis and characterizations of ternary ZnS–Ag2S–RGO nanocomposites and its wide applications in the environmental protection issues

  10. Preparation of flower-like TiO2 sphere/reduced graphene oxide composites for photocatalytic degradation of organic pollutants

    Science.gov (United States)

    Kim, Tae-Woong; Park, Mira; Kim, Hak Yong; Park, Soo-Jin

    2016-07-01

    In this study, novel flower-like TiO2 sphere (FTS)/reduced graphene oxide (rGO) composites (FTS-G) were synthesized via a hydrothermal method. The photocatalytic performance of the FTS-G composites was evaluated through the photodegradation of rhodamine B (Rh B) and trichloroethylene (TCE) under simulated solar light irradiation. The rGO to FTS ratio in the composites significantly affected photocatalytic activity. The photocatalytic activities of FTS-Gs in the degradation of Rh B and TCE were superior to that of pure FTS. Of all the FTS-G composites tested, FTS-G with 1 wt% rGO (FTS-G-1) had the greatest photocatalytic activity, while FTS-G composites with rGO contents over 1 wt% had lower photocatalytic activities. Additionally, it is expected that the synthesis of FTS with a high specific surface area and well-developed pore structure and simultaneous conversion of GO to graphene-like rGO without the use of strong reducing agents could be a promising strategy to prepare other carbon-based flower-like TiO2 sphere composite photocatalysts.

  11. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  12. Water-immiscible solvents for the biological treatment of waste gases.

    OpenAIRE

    Cesario, M.T.

    1997-01-01

    In conventional biological systems for the treatment of waste gases, contaminants are transferred directly to the aqueous phase and then converted by the micro-organisms. When poorly water-soluble pollutants are to be removed, biological degradation is often limited by the slow transport from the gas to the aqueous phase. This transport limitation can be circumvented by contacting the gas directly with an intermediate water-immiscible organic solvent with a high affinity for these contaminant...

  13. Heterogeneous Degradation of Organic Pollutants by Persulfate Activated by CuO-Fe3O4: Mechanism, Stability, and Effects of pH and Bicarbonate Ions.

    Science.gov (United States)

    Lei, Yang; Chen, Chuh-Shun; Tu, Yao-Jen; Huang, Yao-Hui; Zhang, Hui

    2015-06-01

    Magnetic CuO-Fe3O4 composite was fabricated by a simple hydrothermal method and characterized as a heterogeneous catalyst for phenol degradation. The effects of pH and bicarbonate ions on catalytic activity were extensively evaluated in view of the practical applications. The results indicated that an increase of solution pH and the presence of bicarbonate ions were beneficial for the removal of phenol in the CuO-Fe3O4 coupled with persulfate (PS) process. Almost 100% mineralization of 0.1 mM phenol can be achieved in 120 min by using 0.3 g/L CuO-Fe3O4 and 5.0 mM PS at pH 11.0 or in the presence of 3.0 mM bicarbonate. The positive effect of bicarbonate ion is probably due to the suppression of copper leaching as well as the formation of Cu(III). The reuse of catalyst at pH0 11.0 and 5.6 showed that the catalyst remains a high level of stability at alkaline condition (e.g., pH0 11.0). On the basis of the characterization of catalyst, the results of metal leaching and EPR studies, it is suggested that phenol is mainly destroyed by the surface-adsorbed radicals and Cu(III) resulting from the reaction between PS and Cu(II) on the catalyst. Taking into account the widespread presence of bicarbonate ions in waste streams, the CuO-Fe3O4/PS system may provide some new insights for contaminant removal from wastewater. PMID:25955238

  14. Facile fabrication of efficient AgBr-TiO{sub 2} nanoheterostructured photocatalyst for degrading pollutants and its photogenerated charge transfer mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenxin [Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, Harbin 150080 (China); Jing, Liqiang, E-mail: Jinglq@hlju.edu.cn [Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, Harbin 150080 (China); Qu, Yichun; Luan, Yunbo; Fu, Honggang; Xiao, Yuchen [Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, Harbin 150080 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A microemulsion-like chemical precipitation is developed for AgBr-TiO{sub 2} composite. Black-Right-Pointing-Pointer The composite displays effective charge transfers between AgBr and TiO{sub 2.} Black-Right-Pointing-Pointer A charge transfer mechanism in the AgBr-TiO{sub 2} composite is suggested. Black-Right-Pointing-Pointer The suggested mechanism is responsible for the enhanced photocatalytic activity. - Abstract: A simple microemulsion-like chemical precipitation method has been successfully developed to construct effectively-contacted AgBr-TiO{sub 2} composite. The key of this method is the dual roles of Br{sup -} in the synthetic process, as linkers between cetyltrimethyl ammonium cation surfactants and nanocrystalline anatase TiO{sub 2} in the acidic condition, and as bromine sources to directly produce nanocrystalline AgBr on the surfaces of TiO{sub 2} by chemical precipitation. It is well demonstrated that the as-constructed AgBr-TiO{sub 2} nanoheterostructured composites display effective photogenerated charge transfer between AgBr and TiO{sub 2}, favorable to improve charge separation, by means of the surface photovoltage technique in different atmospheres at the aid of outer electric fields, especially for the transient surface photovoltage technique in air. And also, the Br{sup -} in crystal lattice of AgBr could effectively capture photogenerated holes under illumination. These factors are well responsible for the enhanced activity for photocatalytic degradation of liquid phase aqueous phenol solution and gas phase acetaldehyde under either UV-visible or visible irradiation, and the stability of AgBr in the photocatalytic processes.

  15. Noise Pollution

    Science.gov (United States)

    ... EPA Home Air and Radiation Noise Pollution Noise Pollution This page has moved. You should be immediately ... gov/clean-air-act-overview/title-iv-noise-pollution Local Navigation Air & Radiation Home Basic Information Where ...

  16. Water Pollution

    Science.gov (United States)

    Bowen, H. J. M.

    1975-01-01

    Deals with water pollution in the following categories: a global view, self purification, local pollution, difficulties in chemical analysis, and remedies for water pollution. Emphasizes the extent to which man's activities have modified the cycles of certain elements. (GS)

  17. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, ... a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  18. Noise Pollution

    Science.gov (United States)

    ... Overview » Title IV - Noise Pollution Title IV - Noise Pollution The 1990 Clean Air Act Amendments added a ... abatement 7642 Authorization of appropriations What is Noise Pollution? The traditional definition of noise is “unwanted or ...

  19. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, pollen and ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, ...

  20. Soil bacteria for remediation of polluted soils

    Energy Technology Data Exchange (ETDEWEB)

    Springael, D.; Bastiaens, L.; Carpels, M.; Mergaey, M.; Diels, L.

    1996-09-18

    Soil bacteria, specifically adapted to contaminated soils, may be used for the remediation of polluted soils. The Flemish research institute VITO has established a collection of bacteria, which were isolated from contaminated areas. This collection includes microbacteria degrading mineral oils (Pseudomonas sp., Acinetobacter sp. and others), microbacteria degrading polycyclic aromatic hydrocarbons (genera Sphingomonas and Mycobacterium), microbacteria degrading polychlorobiphenyls (genus Ralstonia and strains related to beta-Proteobacteria), and metal resistant bacteria with plasmid borne resistances to Cd, Zn, Ni, Co, Cu, Hg, and Cr. Bench-scale reactors were developed to investigate the industrial feasibility of bioremediation. Batch Stirred Tank Reactors were used to evaluate the efficiency of oil degraders. Soils, contaminated with non-ferrous metals, were treated using a Bacterial Metal Slurry Reactor. It was found that the reduction of the Cd concentration may vary strongly from sample to sample: reduction factors vary from 95 to 50%. Is was shown that Cd contained in metallic sinter and biologically unavailable Cd could not be removed.

  1. INDOOR AIR POLLUTION

    OpenAIRE

    Ahmet Soysal; Yucel Demiral

    2007-01-01

    The existance of hazardious materials including biological, chemical, and physical agents such as carbon dioxide, carbon monoxide, sulphur dioxide, nitrogen oxides, radon, volotile organic compounds, microorganisms in houses and the other non-industrilized buildings have been defined as “indoor air pollution”. Indoor air pollutants could possible arised from inside or outside environment and categorized into six subgroups. Almost 80% Turkish population have living in the urban areas...

  2. Anaerobic methanethiol degradation and methanogenic community analysis in an alkaline (pH 10) biological process for liquefied petroleum gas desulfurization

    NARCIS (Netherlands)

    Leerdam, van R.C.; Bonilla-Salinas, M.; Bok, de F.A.M.; Bruning, H.; Lens, P.N.L.; Stams, A.J.M.; Janssen, A.J.H.

    2008-01-01

    Anaerobic methanethiol (MT) degradation by mesophilic (30 degrees C) alkaliphilic (pH 10) communities was studied in a lab-scale Upflow Anaerobic Sludge Bed (UASB) reactor inoculated with a mixture of sediments from the Wadden Sea (The Netherlands), Soap Lake (Central Washington), and Russian soda l

  3. Solar photocatalytic cleaning of polluted water. Solare Reinigung verschmutzter Waesser mittels Photokatalyse

    Energy Technology Data Exchange (ETDEWEB)

    Bockelmann, D.

    1994-01-01

    Alternatively to biological, physical and chemical methods of waste water cleaning, photocatalysis can be employed. In this residue-free method, titanium dioxide particles are brought into contact with polluted water as photocatalysts. Under UV irradiation at wave-lengths below 400 nm, change carriers are generated in the semiconductor particles that act so intensely oxidizing as to completely degrade almost all organic pollutants in waste water. In this process, the ultra-violet part of the solar spectrum can be harnessed to generate oxidation equivalents. Thus, solar photocatalytic waste water cleaning is excellently suited for developing countries. (BWI)

  4. Structural Analysis and Biological Toxicity of Aflatoxins B1 and B2 Degradation Products Following Detoxification by Ocimum basilicum and Cassia fistula Aqueous Extracts.

    Science.gov (United States)

    Iram, Wajiha; Anjum, Tehmina; Iqbal, Mazhar; Ghaffar, Abdul; Abbas, Mateen; Khan, Abdul Muqeet

    2016-01-01

    This study showed the comparison between Ocimum basilicum and Cassia fistula (leaves and branch) aqueous extracts for their ability to detoxify of aflatoxins B1 and B2 (AFB1; 100 μg L(-1) and AFB2; 50 μg L(-1)) by In Vitro assays and decontamination studies. Results indicated that O. basilicum leaves extract was found to be highly significant (P < 0.05) in degrading AFB1 and AFB2, i.e., 90.4 and 88.6%, respectively. However, O. basilicum branch, C. fistula leaves and branch extracts proved to be less efficient in degrading these aflatoxins, under optimized conditions, i.e., pH 8, temperature 30°C and incubation period of 72 h. Moreover the antifungal activity of these plants extracts were also tested. The findings depicted that O. basilicum leaves extract showed maximum growth inhibition of aflatoxigenic isolates, i.e., 82-87% as compared to other tested plants extracts. The structural elucidation of degraded toxin products by LCMS/MS analysis showed that nine degraded products of AFB1 and AFB2 were formed. MS/MS spectra showed that most of the products were formed by the removal of double bond in the terminal furan ring and modification of lactone group indicating less toxicity as compared to parent compounds. Brine shrimps bioassay further confirmed the low toxicity of degraded products, showing that O. basilicum leaves extract can be used as an effective tool for the detoxification of aflatoxins. PMID:27471501

  5. Pollution from Urban Runoff

    DEFF Research Database (Denmark)

    Hvitved-Jacobsen, Thorkild; Schaarup-Jensen, Kjeld

    1992-01-01

    The main idea of this paper is to establish the following facts: Biodegradable organic matter discharged from combined sewer overflows (CSO) gives rise to an acute effect on the dissolved oxygen (DO) concentration of a river. This acute effect consist of two subeffects: an immediate oxygen deplet...... depletion which takes place in the polluted water volume passing down the river, and a delayed oxygen depletion which is associated with degradation of the organic matter accumulated at the river bottom during the passage of the polluted water volume....

  6. Land-Based Marine Pollution in Arctic

    OpenAIRE

    Haile, Fitsum Gebreselassie

    2014-01-01

    Land-based pollution represents the single most important cause of marine pollution. The threat of land-based pollution to the marine environment is a serious one since it mainly affects coastal waters, which are sites of high biological productivity. The occurrence of high concentrations of pollutants in the Arctic environment has been a concern for many years.. Regional and international actions over the past two decades attempting to manage pollutants in the Arctic environment from land- b...

  7. Bioseguridad con énfasis en contaminantes biológicos en trabajadores de la salud Bio-security with emphasis in biological polluting agents in health workers

    Directory of Open Access Journals (Sweden)

    Ana Maria Ardila

    2009-12-01

    Full Text Available Los trabajadores de la salud del servicio de urgencias están expuestos frecuentemente a diferentes peligros, entre ellos a la exposición de los contaminantes biológicos. Estudio de carácter descriptivo, con el objetivo de caracterizar socio-demográficamente a los trabajadores, además de verificar el nivel de aplicación de las normas de bioseguridad, en el servicio de urgencias de una institución de salud en la ciudad de Bogota-Colombia 68.3 % de los trabajadores se encuentra vinculados mediante contrato en la modalidad de prestación de servicios, el 31.7%, esta vinculado en la modalidad de término indefinido. El 44.6% del personal no ha recibido capacitación sobre el tema de bioseguridad, un 42.4 % no aplican la técnica adecuada de lavado de manos. En relación con el aspecto de re-encapuchar las agujas, se encontró que el 31% realizan esta práctica. El 100% de los trabajadores tienen el esquema completo de la vacuna Hepatitis B, pero el mismo porcentaje no tiene medición de anticuerpos de hepatitis B. Es fundamental el suministro de elementos de protección personal y dotación de elementos y recipientes que contribuyan a la bioseguridad. Se deben realizar actividades pedagógicas para sensibilizar y crear conciencia crítica a la organización y todo el personal que labora en el área de urgencias, sobre los peligros y consecuencias a que se exponen en su lugar de trabajo.Health workers of the emergency service are frequently exposed to different dangers, among them the contact with biological polluting agents. This is a study of descriptive character, with the objective to characterize workers on social demographic aspects, and also to verify the level of application of the bio-security norms at the emergency services of a health institution in the city of Bogota, Colombia. 68,3% of the workers are with a contract in the modality of benefit of services, the 31,7%, are in the modality of indefinite term. 44,6% of the personnel

  8. E-Alerts: Environmental pollution and control (water pollution and control). E-mail newsletter

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    Topics of discussion include the following: Pollution by municipal wastes, agricultural wastes, industrial wastes, mine wastes, radioactive contaminants; Chemistry and analysis of pollutants; Thermal pollution; Oil pollution; Control techniques and equipment; Sewage treatment; Industrial waste water pretreatment; Hydrology and limnology; Biological and ecological effects; Waste water reuse; Laws, legislation, and regulations; Public administration; Economics; Land use.

  9. Environmental activity of bacteria degrading pollutants

    OpenAIRE

    Moreno Forero S. C.

    2015-01-01

    Une des meilleures techniques pour décontaminer l'environnement d'éléments toxiques (comme par exemple le dibenzofuan, DBF et le 4-chlorophenol, 4CP) déposés par l'homme, à bas coûts et sans le perturber considérablement, est sans doute la biorémédiation, et particulièrement la bioaugmentation. Malheureusement, si plusieurs microorganismes ont démontré leur efficacité à dégrader les composés toxiques en conditions de laboratoire, plusieurs tentatives afin de les utiliser dans l'environnement ...

  10. Biological carbon environment effect and role in agricultural non-point source pollution in the prevention and control%生物炭环境效应和在农业面源污染防治中的作用

    Institute of Scientific and Technical Information of China (English)

    陈晓博

    2013-01-01

      生物炭能够延缓肥料养分释放,提高肥料利用率,降低肥料及土壤养分流失,从而减轻农业面源污染。同时,生物炭进入土壤中,实现碳的封存固定,减少碳排放。%The biological carbon can delay the fertilizer nutrient release , improve the utilization rate of the fertilizer, reducing fertilizer and soil nutrient loss, thereby reducing agricultural non -point source pollution.At the same time, the biological carbon in soil carbon se-questration, fixed, reduce carbon emissions.

  11. PRESENTED AT TRIANGLE CONSORTIUM OF REPRODUCTIVE BIOLOGY, CHAPEL HILL, NC: GST M1 GENOTYPE INFLUENCES SPERM DNA DAMAGE ASSOCIATED WITH EXPOSURE TO AIR POLLUTION

    Science.gov (United States)

    Exposure to episodic air pollution in the Czech Republic has been associated with abnormal semen quality and sperm DNA damage (EHP 108:887;2000). A subsequentlongitudinal study evaluated semenfrom 36 men sampled up to 7 times over a period of two years to capture exposures durin...

  12. Environmental Pollution and Health Consequences

    Czech Academy of Sciences Publication Activity Database

    Rössner ml., Pavel; Šrám, Radim

    New York: Humana Press, 2014 - (Tsukahara, H. - Kaneko, K.), s. 283-299 ISBN 978-1-4939-0678-9 Institutional support: RVO:68378041 Keywords : pollution * occupationally exposed workers * environmental Subject RIV: EB - Genetics ; Molecular Biology

  13. Pollution effects on fisheries — potential management activities

    Science.gov (United States)

    Sindermann, C. J.

    1980-03-01

    Management of ocean pollution must be based on the best available scientific information, with adequate consideration of economic, social, and political realities. Unfortunately, the best available scientific information about pollution effects on fisheries is often fragmentary, and often conjectural; therefore a primary concern of management should be a critical review and assessment of available factual information about effects of pollutants on fish and shellfish stocks. A major problem in any such review and assessment is the separation of pollutant effects from the effects of all the other environmental factors that influence survival and well-being of marine animals. Data from long-term monitoring of resource abundance, and from monitoring of all determinant environmental variables, will be required for analyses that lead to resolution of the problem. Information must also be acquired about fluxes of contaminants through resource-related ecosystems, and about contaminant effects on resource species as demonstrated in field and laboratory experiments. Other possible management activities include: (1) encouragement of continued efforts to document clearly the localized and general effects of pollution on living resources; (2) continued pressure to identify and use reliable biological indicators of environmental degradation (indicators of choice at present are: unusually high levels of genetic and other anomalies in the earliest life history stages; presence of pollution-associated disease signs, particularly fin erosion and ulcers, in fish; and biochemical/physiological changes); and (3) major efforts to reduce inputs of pollutants clearly demonstrated to be harmful to living resources, from point sources as well as ocean dumping. Such pollution management activities, based on continuous efforts in stock assessment, environmental assessment, and experimental studies, can help to insure that rational decisions will be made about uses and abuses of coastal

  14. Persistence and degradation of pesticide residues in different agricultural soils, related to biological activity. Part of a coordinated programme on isotopic-tracer-aided studies of agrochemical residue - soil biota interactions

    International Nuclear Information System (INIS)

    Laboratory studies and small-scale field experiments were conducted involving pesticides extensively used in agricultural practice in Brazil (the insecticides aldrin, carbaryl and parathion, and the fungicides carbendazim and metalaxyl) with emphasis on biological activity and soil organic matter content. The ability of fungi isolated from soils of southern, centre and northern regions of Brazil to degrade 14C-aldrin and its metabolites was assayed in culture growth medium. Results showed that the microorganism Penicilium sp. was able to metabolize the parent compound or one of its metabolites added to the medium. Field studies performed with soils packed into PVC tubes showed that added 14C-aldrin leached fastest in the soil poor in organic matter. 14C-carbaryl was used to evaluate the effects of addition of carbon sources on its persistence and degradation in soils rich and poor in organic matter. It was found that cellulose can influence the behaviour of carbaryl in soil low in organic matter by interfering with microorganismal population. Studies on the degradation of 14C-parathion by soil kept moist with and without repeated applications demonstrated that microbial population was modified by the repeated treatment. The adsorption, movement and persistence of the fungicide 14C-carbendazim was examined in Brazilian soils differing in organic matter content. Soils with highest levels of organic matter showed higher sorption coefficients and lower mobility. Carbendazim was very persistent in all soils. The metabolite 2-benzimidazolecarbamate was the main degradation product detected. Experiments with 14C-metalaxyl showed that sorption coefficients in the Humic Gley soil were 0.8 and in the Dark Red Latosol soil 0.3. Data are in agreement with the high mobility of 14C-metalaxyl in soil thin-layers. Also, a metabolite was detected in percentages varying from 3 to 10% specially in the Humic Gley soil samples

  15. Radiation degradation of biological waste (aflatoxins) produced in food laboratory; Degradacao por radiacao de residuos biologicos (aflatoxinas) produzidos em laboratorio de alimentos

    Energy Technology Data Exchange (ETDEWEB)

    Rogovschi, Vladimir Dias

    2009-07-01

    Many filamentous fungi can produce secondary metabolites, called mycotoxins, which can be found in food and agricultural products. One of the main genera of myco toxigenic fungi related to the food chain is the Aspergillus spp. There are over 400 mycotoxins described in the literature, the most common the aflatoxins B1, B2, G1 and G2. The mycotoxins are commonly found in foods and are considered one of the most dangerous contaminants. The aflatoxin B1 is classified in group one by the International Agency of Research on Cancer. Aflatoxins resisting for more than one hour in autoclave making it necessary to other means of degradation of these toxins. This work aimed to observe the effects of gamma radiation of {sup 60}Co and electron beams in the degradation of aflatoxins and compare the damage caused on the morphology of the Aspergillus flavus. The fungus was grown on potato dextrose agar (PDA) for 10 days and was subsequently transferred to coconut agar medium, and maintained for 14 days at 25 degree C. After this step the coconut agar was ground to become a homogeneous pasty and was irradiated with doses of 2.5, 5.0, 10 and 20 kGy. The samples used in scanning electron microscopy were irradiated with doses of 0, 2.5, 5.0, 10 and 20 kGy with sources of {sup 60}Co and electron beams. Irradiation with electron accelerator showed a slightly higher degradation to gamma radiation, reducing 29.93 %, 34.50 %, 52.63 % and 72.30 % for doses of 2.5, 5.0, 10 and 20 kGy, respectively. The Scanning Electron Microscopy showed that doses of 2.5 to 10 kGy did not cause damage to the fungus, but with a dose of 20 kGy it can be observed fungal damage to structures. (author)

  16. Plastic Pollution from Ships

    OpenAIRE

    ČULIN, Jelena; Bielić, Toni

    2016-01-01

    The environmental impact of shipping on marine environment includes discharge of garbage. Plastic litter is of particular concern due to abundance, resistance to degradation and detrimental effect on marine biota. According to recently published studies, a further research is required to assess human health risk. Monitoring data indicate that despite banning plastic disposal at sea, shipping is still a source of plastic pollution. Some of the measures to combat the problem are discussed.

  17. Structural Analysis and Biological Toxicity of Aflatoxins B1 and B2 Degradation Products Following Detoxification by Ocimum basilicum and Cassia fistula Aqueous Extracts

    Science.gov (United States)

    Iram, Wajiha; Anjum, Tehmina; Iqbal, Mazhar; Ghaffar, Abdul; Abbas, Mateen; Khan, Abdul Muqeet

    2016-01-01

    This study showed the comparison between Ocimum basilicum and Cassia fistula (leaves and branch) aqueous extracts for their ability to detoxify of aflatoxins B1 and B2 (AFB1; 100 μg L-1 and AFB2; 50 μg L-1) by In Vitro assays and decontamination studies. Results indicated that O. basilicum leaves extract was found to be highly significant (P Brine shrimps bioassay further confirmed the low toxicity of degraded products, showing that O. basilicum leaves extract can be used as an effective tool for the detoxification of aflatoxins. PMID:27471501

  18. Water pollution

    OpenAIRE

    Institute, Marine

    2013-01-01

    Students will learn about what causes water pollution and how to be environmentally aware. *Note: Students should understand the concept of the water cycle before moving onto water pollution (see Lesson Plan “Oceans all Around Us”).

  19. [Biodegradation of organic pollutants by thermophiles and their applications: a review].

    Science.gov (United States)

    Cui, Jing-Lan; Chen, Chen; Qin, Zhi-Hui; Yu, Chun-Na; Shen, Hui; Shen, Chao-Feng; Chen, Ying-Xu

    2012-11-01

    Persistent organic pollutants have increasingly become a critical environmental concern, while thermophiles have the high potential of degrading various kinds of environmental organic pollutants. At high temperatures, thermophiles have higher metabolic activity, and the competition by mesophiles is reduced, meanwhile, the solubility and bioavailability of some persistent organic pollutants are greatly increased, and thus, the degradation of the pollutants by thermophiles is more rapid and complete. Therefore, thermophils are of great significance for the bio-treatment of organic wastewater and the bioremediation of organic pollutants-contaminated sites. This paper introduced the research progress on the degradation of organic pollutants by thermophiles in terms of the characteristics of thermophiles in degrading organic pollutants, the effects of temperature on the degradation, the degradation pathways, the degradation enzymes, their coding genes, and practical engineering applications. The future research directions including the degradation mechanisms of thermophiles, their resources reserve, related technology strategies and their applications were also prospected. PMID:23431811

  20. Mechanism of aerobic biological destabilisation of wool scour effluent emulsions.

    Science.gov (United States)

    Poole, Andrew J; Cord-Ruwisch, Ralf; William Jones, F

    2005-07-01

    Wool scouring effluent is a highly polluted industrial wastewater in which the main pollutant, wool wax, is held in a stable oil-in-water emulsion by non-ionic detergent. The use of microbial action to cause emulsion destabilisation has been proposed as a new treatment strategy for this effluent stream. This strategy aims at improving aerobic treatment performance by physically removing the high-COD, slowly bio-degradable wool wax from the system without bio-degradation. The mechanism by which an aerobic-mixed culture destabilises the wool scouring effluent emulsion was investigated. Our results show that destabilisation is due to partial bio-degradation of both the scouring detergent and the wool wax. Cleavage of the wool wax esters was the first stage in wax degradation, when 40-50% of wax was de-emulsified. Over the same period, detergent degradation was low, at 7-21%. With further incubation, detergent degradation increased, aiding further breakdown of the emulsion. The degradation of the detergent, a nonylphenol ethoxylate, resulted in both a reduction in molar concentration (of up to 82%) and a shortening of the ethoxylate chain length. The latter reduced the hydrophile-lipophile balance (HLB) from 12 to approximately 7, thereby reducing the ability of the residual detergent to stabilise the emulsion. Analysis of the emulsified and de-emulsified wax fractions could not identify a group of compounds that were preferentially de-emulsified based on molecular weight or polarity. These findings will assist in using a de-emulsification strategy in both existing and new treatment systems in order to save on aeration costs and treatment times for biological treatment of this highly polluted wastewater. PMID:15979119

  1. Water Pollution

    International Nuclear Information System (INIS)

    This work is about the water pollution. The air and the water interaction cycles is the main idea of the geochemical pollution conception. In the water surface as well as in the deep aquifers we can found cough metals or minerals from the athmosferic air. The activities of mercury fluor and nitrates are important to the pollution study

  2. Air Pollution.

    Science.gov (United States)

    Barker, K.; And Others

    Pollution of the general environment, which exposes an entire population group for an indeterminate period of time, certainly constitutes a problem in public health. Serious aid pollution episodes have resulted in increased mortality and a possible relationship between chronic exposure to a polluted atmosphere and certain diseases has been…

  3. Oil pollution and the significant biological resources of Puget Sound : final report field survey from 16 July 1974 to 01 September 1976 (NODC Accession 7601556)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Biological and chemical data were collected using sediment sampler and other instruments in the PUGET Sound, which is in the Northwest coastal waters of Washington....

  4. Water magnetic relaxation dispersion in biological systems: The contribution of proton exchange and implications for the noninvasive detection of cartilage degradation

    OpenAIRE

    Duvvuri, Umamaheswar; Goldberg, Ari D.; Kranz, James K.; Hoang, Linh; Reddy, Ravinder; Wehrli, Felix W.; Wand, A. Joshua; Englander, S W; Leigh, John S.

    2001-01-01

    Magnetic relaxation has been used extensively to study and characterize biological tissues. In particular, spin-lattice relaxation in the rotating frame (T1ρ) of water in protein solutions has been demonstrated to be sensitive to macromolecular weight and composition. However, the nature of the contribution from low frequency processes to water relaxation remains unclear. We have examined this problem by studying the water T1ρ dispersion in peptide solutions (14N- and 15N-labeled), glycosamin...

  5. 设计和制备能量转换和环境净化的高效异质结光催化剂%Design and fabrication of heterojunction photocatalysts for energy conversion and pollutant degradation

    Institute of Scientific and Technical Information of China (English)

    余长林; 周晚琴; 余济美; 刘鸿; 魏龙福

    2014-01-01

    Photocatalysis has attracted much attention for its promise in converting solar energy to chemical energy and in degrading various pollutants. Many recent investigations have demonstrated photo-catalysts with well-defined junctions between two semiconductors with matched electronic band structures. Such structures effectively facilitate charge transfer and suppress recombination of photogenerated electrons and holes, leading to extremely high activity and stability. In this review, we focus on the influence of the heterojunction on the performance of semiconductor photocata-lysts, including TiO2-based, ZnO-based, and Ag-based semiconductor photocatalysts. We also inves-tigate fabrication methods for heterojunctions and attempt to understand the mechanisms behind photocatalysis. Finally, we propose challenges to design and clarify the mechanism for enhancing the effect of the heterojunction on photocatalyst performance.%在过去的几十年中,光催化由于具有将太阳能转化为清洁氢化学能和降解各种污染物的广泛应用前景,因而引起了人们广泛关注。近期,很多研究表明,两个具有相匹配电子能级结构的半导体形成接触良好的异质结,可以有效地促进电荷转移和抑制光生电子(e-)和空穴(h+)的复合,从而显著提高光催化剂的活性和稳定性。本文主要讨论了异质结对半导体光催化剂的促进作用;分析了异质结对一些典型光催化剂如TiO2, ZnO和Ag基半导体等光催化性能的影响;讨论了异质结光催化剂的制备方法和对光催化过程影响的基本机理;最后,提出了设计和理解异质结促进光催化反应机理所面临的挑战。

  6. Microbial Degradation of Indole and Its Derivatives

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Arora

    2015-01-01

    Full Text Available Indole and its derivatives, including 3-methylindole and 4-chloroindole, are environmental pollutants that are present worldwide. Microbial degradation of indole and its derivatives can occur in several aerobic and anaerobic pathways; these pathways involve different known and characterized genes. In this minireview, we summarize and explain the microbial degradation of indole, indole-3-acetic acid, 4-chloroindole, and methylindole.

  7. Oxidative degradation of alternative gasoline oxygenates in aqueous solution by ultrasonic irradiation: Mechanistic study

    International Nuclear Information System (INIS)

    Widespread pollution has been associated with gasoline oxygenates of branched ethers methyl tert-butyl ether (MTBE), di-isopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), and tert-amyl ether (TAME) which enter groundwater. The contaminated plume develops rapidly and treatment for the removal/destruction of these ethers is difficult when using conventional methods. Degradation of MTBE, with biological methods and advanced oxidation processes, are rather well known; however, fewer studies have been reported for degradation of alternative oxygenates. Degradation of alternative gasoline oxygenates (DIPE, ETBE, and TAME) by ultrasonic irradiation in aqueous oxygen saturation was investigated to elucidate degradation pathways. Detailed degradation mechanisms are proposed for each gasoline oxygenate. The common major degradation pathways are proposed to involve abstraction of α-hydrogen atoms by hydroxyl radicals generated during ultrasound cavitation and low temperature pyrolytic degradation of ETBE and TAME. Even some of the products from β-H abstraction overlap with those from high temperature pyrolysis, the effect of β-H abstraction was not shown clearly from product study because of possible 1,5 H-transfer inside cavitating bubbles. Formation of hydrogen peroxide and organic peroxides was also determined during sonolysis. These data provide a better understanding of the degradation pathways of gasoline oxygenates by sonolysis in aqueous solutions. The approach may also serve as a model for others interested in the details of sonolysis. - Highlights: ► Gasoline oxygenates (ETBE, TAME, DIPE) were completely degraded after 6 hours under ultrasonic irradiation in O2 saturation. ► The major degradation pathways were proposed to involve abstraction of α-hydrogen atoms by hydroxyl radicals and low temperature pyrolytic degradation. ► The effect of β-H abstraction was not observed possibly because of 1,5 H-transfer inside cavitating bubbles. ► Formation

  8. Photo-fenton degradation of diclofenac: identification of main intermediates and degradation pathway.

    Science.gov (United States)

    Pérez-Estrada, Leónidas A; Malato, Sixto; Gernjak, Wolfgang; Agüera, Ana; Thurman, E Michael; Ferrer, Imma; Fernández-Alba, Amadeo R

    2005-11-01

    In recent years, the presence of pharmaceuticals in the aquatic environment has been of growing interest. These new contaminants are important because many of them are not degraded under the typical biological treatments applied in the wastewater treatment plants and represent a continuous input into the environment. Thus, compounds such as diclofenac are present in surface waters in all Europe and a crucial need for more enhanced technologies that can reduce its presence in the environment has become evident. In this sense, advanced oxidation processes (AOPs) represent a good choice for the treatment of hazardous nonbiodegradable pollutants. This work deals with the solar photodegradation of diclofenac, an antiinflammatory drug, in aqueous solutions by photo-Fenton reaction. A pilot-scale facility using a compound parabolic collector (CPC) reactor was used for this study. Results obtained show rapid and complete oxidation of diclofenac after 60 min, and total mineralization (disappearance of dissolved organic carbon, DOC) after 100 min of exposure to sunlight. Although diclofenac precipitates during the process at low pH, its degradation takes place in the homogeneous phase governed by a precipitation-redissolution-degradation process. Establishment of the reaction pathway was made possible by a thorough analysis of the reaction mixture identifying the main intermediate products generated. Gas chromatography-mass spectrometry (GC/ MS) and liquid chromatography coupled with time-of-flight mass spectrometry (LC/TOF-MS) were used to identify 18 intermediates, in two tentative degradation routes. The main one was based on the initial hydroxylation of the phenylacetic acid moiety in the C-4 position and subsequent formation of a quinone imine derivative that was the starting point for further multistep degradation involving hydroxylation, decarboxylation, and oxidation reactions. An alternative route was based on the transient preservation of the biphenyl amino moiety

  9. Information Pollution

    OpenAIRE

    Noruzi, Alireza

    2000-01-01

    The exponential growth of information resources creates new challenges for end-users. The correct information may be polluted by misinformation, disinformation, propaganda or incorrect information via the Internet and other media. This paper defines 'information pollution' as "the contamination of information by misinformation, disinformation, propaganda and incorrect information." The purpose of this paper is to present the methods of information pollution. It is concluded that it is sometim...

  10. Air Pollution

    OpenAIRE

    Lawther, P. J.

    2014-01-01

    The human costs of air pollution are considerable in Jordan. According to a report published in 2000 by the World Bank under the Mediterranean Environmental Technical Assistance Program (METAP), approximately 600 people die prematurely each year in Jordan because of urban pollution. 50-90% of air pollution in Jordanian towns is caused by road traffic. Readings taken in 2007 by Jordanian researchers showed that levels of black carbon particles in the air were higher in urban areas (caused by v...

  11. 生活垃圾处理机生物降解生活垃圾的微生物研究%Study on Microorganism in Biological Degradation of Domestic Garbage by Domestic Garbage Disposal

    Institute of Scientific and Technical Information of China (English)

    吴昊; 张赣道

    2011-01-01

    [Objective] The research aimed to study microorganism in biological degradation of domestic garbage by domestic garbage disposal. [Method]Kitchen waste was collected, bacterial strains of the predominant bacteria in the degradation of assorted garbage and sorted garbage, and incidental microbial inoculums of domestic garbage disposal were cultivated and identified. [ Result ] Trie research identified 11 bacterial strains of origin microorganism;3 predominant bacterial strains of starch garbage degradation,respectively Bacillus subtilis(BDh9) .miscellaneous bacteria (stal) and Bacillus amyloliquefaciensB( BDhl) ;3 predominant bacterial strains of protein garbage degradation,respectively Bacillus sub tilis ( BDh9), miscellaneous bacteria ( stal) and Camobacterium divergent (BD5); 5 predominant bacterial strains of cellulose garbage degrada tion, respectively Bacillus subtilis(BT)h9), miscellaneous bacteria(stal) ,Burkholderia multivorans{BT)hS) ,Bacillus ctrcu/ons(BDl)and miscella neous bacteria (sta2). [Conclusion] The study lays a foundation for researching patent technology for biodegradation of domestic garbage.%[目的]采用生活垃圾处理机生物降解生活垃圾中的微生物.[方法]收集厨余垃圾,对降解混合垃圾、分类垃圾的优势菌群中的菌株和复合菌剂中的菌株进行培养和鉴定.[结果]鉴定出原菌剂中微生物11株;降解淀粉类垃圾的优势菌群微生物3株,分别为枯草芽孢杆菌(Bacillus subtilis,BDh9)、杂菌(stal)和淀粉液化芽孢杆菌(Bacillus amyloliquefaciensB,BDh1);降解蛋白质类生活垃圾优势菌群微生物3株,分别为枯草芽孢杆菌(Bacillus subtilis,BDh9)、杂jun (stal)和肉食杆菌属(Carnobacterium divergens,BD5);降解纤维素类垃圾的优势菌群微生物5株,分别为枯草芽孢杆菌(Bacillus subtilis,BDh9)、杂菌(stal)、伯克霍尔德菌(Burkholderia multivorans,BDh6)、环状芽孢杆菌(Bacillus circulans,BDI)和杂菌(sta2).[结论]该研究可

  12. Antibiotic abatement in different advanced oxidation processes coupled with a biological sequencing batch biofilm reactor

    International Nuclear Information System (INIS)

    During the last decade, the lack of fresh water is becoming a major concern. Recently, the present of recalcitrant products such as pharmaceuticals has caused a special interest due to their undefined environmental impact. Among these antibiotics are one of the numerous recalcitrant pollutants present in surface waters that might not be completely removed in the biological stage of sewage treatment plants because of their antibacterial nature. Advanced Oxidation Processes (AOPs) have proved to be highly efficient for the degradation of most organic pollutants in wastewaters. (Author)

  13. HOW AGRICULTURAL CHEMISTRY CAN CONTRIBUTE TO DEALING WITH PROBLEMS OF ENVIRONMENTAL POLLUTION

    Directory of Open Access Journals (Sweden)

    Carlo Emanuele Gessa

    2010-08-01

    Full Text Available Soil is a complex heterogeneous system whose physical, chemical and biological properties regulate interactions with the chemical species which reach its surface. Soil chemistry is an essential tool for understanding and predicting these interactions. Soil is able to immobilize and transform organic and inorganic molecules by different mechanisms, such as complexing and redox reactions. This behaviour gives soil detoxifying capacities towards pollutants which accumulate in the environment. Pollution by heavy metals is regulated by their solubility in soil solution which in turn depends on soil pH and redox properties and metal speciation. Organic and inorganic colloidal soil fractions can promote the immobilisation, degradation, and diffusion of organic molecules such as agrochemicals, solvents, hydrocarbons and other chemicals which reach the soil by anthropic activities. Predicting the fate of xenobiotics in soil, water, air, and plant ecosystems, the recycling of biomass and the decontamination of polluted soils are of major concern to soil chemistry.

  14. A new possible biological interface model useful to narrate the artificial negative events by the radioactive contaminations and heavy-metals pollution of the soil and the atmosphere in different areas of Europe

    International Nuclear Information System (INIS)

    A lot of environmental negative effects are associated to the pollution and radioactive contaminations of the soil and the atmosphere. Actually the C.I.S.A.M. (Interforces Centre for Studies and Military Applications) receives increasing commitments to control and to knowledge about the risks of the population and soldiers employed as stabilization or keeping peace force in large areas of different territories of Europe and other sites of the Planet. The aim of this work is focused to compare the contents of radionuclides on specific natural interfaces in different areas as residual radioactive contamination in addition to the other possible heavy-metals pollution. We used barks, lichens and symbiontic microalgae as interfaces with the atmospheric events of the Chernobyl, Balkan, and the Italian areas. The qualitative analysis of these biological matters showed the constant presence of Radiocesium, along with other radionuclides, of which we report the concentrations. Even if these observations are not completely new, nevertheless we can suppose that this approach could be a new possible interface model useful to narrate the sequence of the the artificial negative events due to the human activities and contemporarely an indirect valuation of different risks pointed to the protection of the exposed population

  15. Evaluation of physical, biological and chemical techniques applied to the remediation of an arsenic-polluted soil comming from an old mining area

    Energy Technology Data Exchange (ETDEWEB)

    Clozel-Leloup, B. [BRGM (French Geological Survey), SGR/RHA (Rhone-Alpes Area) Villeurbannde (France); Battaglia-Brunet, F.; Ignatiadis, I. [BRGM (French Geological Survey), Environment and Process Department, Biotechnology Unit, Orleans (France); Conil, P. [BRGM (French Geological Survey), SGR/PAL (Pays-de-Loire Area), Nantes (France)

    2003-07-01

    The purpose of this work is to develop and try out tests having a tree structure aimed at assessing the applicability of different techniques to the remediation of polluted soils. One of the case studies is a soil from an old mining area, heavily polluted by arsenic (As content >3%). The first step in this case study was to determine the arsenic speciation in a sample of the soil so as to determine its potential for treatment. To this purpose, the soil was characterised both physically (through soil fractionation and physical analysis of its constituents) and chemically (through chemical attacks). The results of the physical characterisation show a large variety of arsenic-bearing phases, such as sulphides from the mining activities, slag from the pyrometallurgical processing and, above all, Fe-As oxide phases encrustations on the grains, probably resulting from weathering and oxidation of the sulphides. The encrustations are the main arsenic-carriers in the soil; iron arsenates (like scorodite type) have been identified, but they are generally iron hydroxides on which the arsenic is sorbed or coprecipitated. The development of a test consisting in successive chemical attacks at high and low pH, thus respectively favouring arsenates desorption or iron hydroxides dissolution, has enabled us to demonstrate tht the main mechanism linking the arsenic and the solid is their sorption on the iron hydroxides. An exchange test with phosphates, carried out at neutral pH, supports these observations by releasing 6% of arsenic soil content, and confirms the strong potential risk presented by this soil, even in the absence of physical, chemical modifications or redox conditions. (orig.)

  16. Polar bears (Ursus maritimus) in the Barents Sea area : population biology and linkages to sea ice change, human disturbance and pollution

    OpenAIRE

    Andersen, Magnus

    2013-01-01

    Polar bears in the Barents Sea population have been protected from hunting in Russia since 1956 and following the signing of the international Polar Bear Agreement in 1973 in Norway. This thesis seeks to summarise current knowledge on key population biology issues four decades after the Norwegian protection and almost six after the Russian. Further, it discusses threats that have developed in the decades following protection against human harvesting. It concludes with a discussion of the effe...

  17. The Pollution of Zeytinburnu Port, Istanbul, Turkey

    OpenAIRE

    Guven, Kasim Cemal; Balkis, Nuray; Çetintürk, Kartal; Okus, Erdogan

    2003-01-01

    Abstract The pollutants of sediment of Zeytinburnu Port were determined. The pollutant amounts were found high for organic as oil (3.8 mg/g), chlorined pestisides (9.55 ng/g), phenol and anorganic as Zinc, hydrogen sulphide, ammonium, nitrite, nitrate. The degradation products of DDT were determined as DDE and DDD. According to these results Zeytinburnu Port is a highly polluted area.

  18. Evaluation of 4-bromophenol biodegradation in mixed pollutants system by Arthrobacter chlorophenolicus A6 in an upflow packed bed reactor.

    Science.gov (United States)

    Sahoo, Naresh Kumar; Pakshirajan, Kannan; Ghosh, Pranab Kumar

    2014-09-01

    Bromophenol is listed as priority pollutant by U.S. EPA, however, there is no report so far on its removal in mixed pollutants system by any biological reactor operated in continuous mode. Furthermore, bromophenol along with chlorophenol and nitrophenol are usually the major constituents of paper pulp and pesticide industrial effluent. The present study investigated simultaneous biodegradation of these three pollutants with specially emphasis on substrate competition and crossed inhibition by Arthrobacter chlorophenolicus A6 in an upflow packed bed reactor (UPBR). A 2(3) full factorial design was employed with these pollutants at two different levels by varying their influent concentration in the range of 250-450 mg l(-1). Almost complete removal of all these pollutants and 97 % effluent toxicity removal were achieved in the UPBR at a pollutant loading rate of 1707 mg l(-1) day(-1) or lesser. However, at higher loading rates, the reactor performance deteriorated due to transient accumulation of toxic intermediates. Statistical analysis of the results revealed a strong negative interaction of 4-CP on 4-NP biodegradation. On the other hand, interaction effect between 4-CP and 4-BP was found to be insignificant. Among these three pollutants 4-NP preferentially degraded, however, 4-CP exerted more inhibitory effect on 4-NP biodegradation. This study demonstrated the potential of A. chlorophenolicus A6 for biodegradation of 4-BP in mixed pollutants system by a flow through UPBR system. PMID:24934870

  19. Air Pollution.

    Science.gov (United States)

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  20. Water pollution - phycological perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, J.P.; Rai, L.C.

    1983-01-01

    Water pollution exerts a pressure of selection on algal populations. In spite of a possible adaptation, often a changed diversity and sociological structure result, from which other effects on higher levels of the nutrient chain may emanate. There are presented some biological indices for characterizing algal communities which may serve as a biological measure of pollution and self-purification, the problem of diversity being especially taken into account. Moreover, algal tests are used for representing the trophic situation and for determining the limiting nutrient, but also for determining the toxic influencing of biocenosis by hydrocarbons, too. Special attention is paid to heavy metals with regard to their synergistic action and bioaccumulation. On the other hand, the mass culture of algae is a value method of wastewater treatment and the recovery of valuable materials, and algae ponds provide an important technique for advanced wastewater purification.

  1. Environmental and biological factors controlling the spring phytoplankton bloom at the Patagonian shelf-break front - Degraded fucoxanthin pigments and the importance of microzooplankton grazing

    Science.gov (United States)

    Carreto, José I.; Montoya, Nora G.; Carignan, Mario O.; Akselman, Rut; Acha, E. Marcelo; Derisio, Carla

    2016-08-01

    The aim of this study was to investigate the biotic and abiotic factors controlling the spring phytoplankton blooms at the Patagonian shelf-break front (PSBF). Using a CHEMTAX analysis of HPLC pigment data and other methods, the biomass and spatial variability of plankton communities were studied in four sections (39-48°S) across the PSBF during October 2005. Environmental factors and the biomass and composition of plankton communities exhibited a marked spatial heterogeneity. The latitudinal and cross-shelf progression in the timing of the spring bloom initiation and the nutritive properties of the water masses (Subantarctic Shelf Waters and Malvinas Current Waters) seemed to be the key factors. Three plankton regions were distinguished: (a) Outer shelf (OS), (b) Shelf-break front (SBF) and (c) Malvinas Current (MC). At the highly stratified OS region, the post-bloom community showed low-biomasshigh-phytoplankton diversity formed mainly by small cells (haptophytes 30-62%, diatoms 17-49%, chlorophytes 0-34%, and prasinophytes 0-21% of total Chl a). High amounts of degraded fucoxanthin were found associated with the heterotrophic dinoflagellate, Protoperidinium capurroi. Grazing by this microheterotroph on the diatom population seemed to be the most important factor for the spring bloom decay at the OS. A remarkable quasi monospecific bloom (∼90%) of a nanodiatom (Thalassiosira bioculata var. raripora) associated with high Chl a (up to 20 mg m-3) occurred along (∼1000 km) the SBF and in the most northern extension of the MC. In the southern region, the bloom was developed under absent or incipient density stratification, increasing solar irradiance, high nitrate and phosphate availability, and low numbers of phytoplankton grazers. The average mixedlayer PAR irradiance (<2.0 mol quanta PAR m-2 d-1) and Si:N ratios (<0.2) were low, suggesting a diatom population limited by light and under progressive silicate limitation. The more stratified northern region of the

  2. Digestion and degradation, air for life.

    Science.gov (United States)

    Lettinga, G

    2001-01-01

    Anaerobic degradation of dead biomass is a natural gasification process, an anaerobic crematorium producing a very useful end-product composed of methane and carbon dioxide, generally polluted with small amounts of some malodorous and quite toxic volatile S-compounds. It leads to the production of essential building elements for new life. This exciting field became my faith, vision, hope and expectation. This paper intends to present a reflection of more than three decades of research, teaching and advertisement in the field of sustainable environmental protection technologies, particularly of systems based on anaerobic digestion and the biological sulphur cycle. Considerable progress has been made during these decades worldwide, both in the basic understanding of the various processes and concepts, but also in the implementation of these systems, despite the fact that particularly the implementation frequently proceeded very laboriously. The difficulties certainly can no longer be attributed to technological limitations and/or insufficient understanding of the microbiology and chemistry only, but mainly to the frustrating social rigidity and short-term self-interest in all sectors of our society. By combining anaerobic processes with other microbiological degradation or transformation processes, like those based on the biological sulphur cycle, micro-aerobic and conventional aerobic and anoxic processes, ideal conditions can be created to valorise residues (wastes) from domestic, industrial and agricultural origin. It is simply not just "technology", but also a route to achieve more sustainability and justice in society. It is a fight against conservative establishments. Decomposition, disintegration disbandment, it also stands for deliverance and liberation, space and air for continuation of life. PMID:11730132

  3. Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye.

    Science.gov (United States)

    Elango, Ganesh; Roopan, Selvaraj Mohana

    2016-02-01

    Maximum pollutants in the industrial and domestic waste water effluents from any sources include pathogens and organic chemicals, which can be removed before discharging into the water bodies. Methylene blue has been considered as one of the major water contaminated pollutants. Such pollutant is dominant in surface water and groundwater. It will cause irreversible hazards to human and aquatic life. Nanotechnology plays a major role in degrading such type of pollutant. In order to fulfill today's requirement, we have decided to handle the green synthesis of nanoparticles and its application by merging important fields like chemistry, environmental science, and biotechnology. Here our work emphasizes on the biological synthesis of SnO2 nanoparticles (SnO2 NPs) using the methanolic extract of Cyphomandra betacea (C.betacea), and it was confirmed by various characterization techniques such as UV-visible spectroscopy, FT-IR, XRD, SEM, particle size analyzer, zeta potential, and TEM. The obtained results stated that the synthesized SnO2 NPs were in rod shape with an average size of 21nm, which resulted in a product of nanobiotechnology. Further, we have utilized the environmental-friendly synthesized SnO2 NPs photocatalytic degradation of environmental concern methylene blue with first-order kinetics. In this paper, we have attempted to prove that secondary metabolite-entrapped SnO2 NPs are non-toxic to the environment. PMID:26724726

  4. 可降解聚已内酯材料的体外生物学特征:安全性评价%Biological characters in vitro of degradable polycaprolactone:safety evaluation

    Institute of Scientific and Technical Information of China (English)

    艾合麦提·玉素甫; 陈统一; 陈中伟

    2004-01-01

    背景:可降解聚己内酯体内植入物材料的毒副作用、生物安全性评价试验已有报道,但体外生物学安全性如何还不清楚.目的:评价可降解聚己内酯的体外生物学安全性.设计:随机对照重复测量设计.地点和对象:在上海市计划生育研究所毒理学实验室完成.Wistar大鼠130只、新西兰大白兔9只,上海医科大学中山医院动物实验部提供,清洁级.干预:采用可降解PCL的浸出液进行了急性毒性试验、Ames试验、微核试验、肌肉刺激实验、热源试验.主要观察指标:①急性毒性试验结果.②Ames试验结果.③微核试验结果.④肌肉刺激实验结果.⑤热源试验结果.结果:PCL浸出液对大鼠的生长及细胞无毒性作用,Ames试验及微核试验结果证明PCL对细胞染色体、DNA水平的遗传物质无损害作用.热源试验及肌肉刺激试验结果证明PCL无免疫原性.结论:PCL是一种具有良好的生物相容性、无毒性、无免疫原性的材料.%BACKGROUND: There are some reports on the toxic and side effects, biological safety evaluation of degradable polycaprolactone(PCL) as in vivo implantation material. However, the in vitro safety of biological is still unclear.OBJECTIVE: To evaluate the in vitro biological safety of degradable PCL.DESIGN: A randomized controlled and repeated survey design was conducted.SETTING and PARTICIPANTS: The study was conducted in the Laboratory of Toxicology, Shanghai Institute of Planned Parenthood Research. One hundred and thirty Wister rats and 9 New Zealand rabbits of clean grade were provided by Department of Experimental Animals, Zhongshan Hospital Affiliated to Shanghai Medical University.INTERVENTIONS: The extraction solution of degradable PCL was used to conduct acute toxicity testing, Ames test, micronucleus test, muscle stimulation test and heat source test.RESULTS: PCL extraction solution had no toxic effects of on the growth of rats and on the cells. Ames test and

  5. Environmental Pollution

    International Nuclear Information System (INIS)

    This book tells US that what nature is, which gives descriptions of the world of living things like the role of plant, order of the vegetable kingdom, the world of plant, destruction of the natural world, and the world of bugs, nature and human with man's survive and change of nature, environment and human, and in creasing population and environment, philosophy of conservation of nature on meaning, destroy and management, and direction, air pollution spot, water pollution, soil pollution conservation of nature and industry case of foreign country and view of environment and environmental assimilating capacity.

  6. Biological control of Sclerotinia sclerotiorum attacking soybean plants. Degradation of the cell walls of this pathogen by Trichoderma harzianum (BAFC 742). Biological control of Sclerotinia sclerotiorum by Trichoderma harzianum.

    Science.gov (United States)

    Menendez, A B; Godeas, A

    1998-01-01

    Two experiments of biological control of Sclerotinia sclerotiorum, one in the greenhouse and the other in the field, were carried out with soybean and Trichoderma harzianum as host and antagonist, respectively. Significant control of disease was achieved in both experiments, but there were no significant differences in plant growths. In the greenhouse, the application of T. harzianum as alginate capsules, increased the survival of soybean plants more than 100% with respect to the disease treatment. In the field, T. harzianum treated plants survived 40% more than those from the disease treatment, showing a similar survival level to control plants. Besides, a significant reduction (62.5%) in the number of germinated sclerotia was observed in the Trichoderma treated plot. Chitinase and 1,3-beta- glucanase activities were detected when T. harzianum was grown in a medium containing Sclerotinia sclerotiorum cell walls as sole carbon source. In addition, electrophoretic profiles of proteins induced in T. harzianum showed quantitative differences between major bands obtained in the media induced by S. sclerotiorum cell walls and that containing glucose as a sole carbon source. PMID:16284851

  7. Light Pollution

    Science.gov (United States)

    Riegel, Kurt W.

    1973-01-01

    Outdoor lighting is light pollution which handicaps certain astronomical programs. Protective measures must be adopted by the government to aid observational astronomy without sacrificing legitimate outdoor lighting needs. (PS)

  8. Air pollution

    International Nuclear Information System (INIS)

    Australian cites experience a number of current and emerging air pollution problems. Concentrations of traditional primary pollutants such as CO, lead and dust have fallen in recent years as a consequence of air pollutant control measures, and the widespread introduction of lead-free petrol. However, recommended guidelines for ozone, the principal component of photochemical smog, are regularly exceeded in major capital cities in the summer months. In addition, it is predicted that extensive urban expansion will lead to much greater dependence on the motor vehicle as the primary means of transportation. Effects of air pollution are felt at a variety of scales. Traditionally, concerns about gaseous and particulate emissions from industrial and vehicular sources were focused on local impacts due to exposure to toxic species such as CO and lead. As noted above, concentrations of these pollutants have been reduced by a variety of control measures. Pollutants which have effects at a regional scale, such as photochemically-produced ozone, and acidic gases and particles have proved more difficult to reduce. In general, these pollutants arc not the result of direct emissions to atmosphere, but result from complex secondary processes driven by photochemical reactions of species such as NO2 and aldehydes. In addition, global effects of gaseous and particulate emissions to the atmosphere have received significant recent attention, concentrations of atmospheric CO2 with predicted impacts on global climate, and ozone depletion due to anthropogenic emissions of chlorine-containing chemicals are the two major examples. Combustion processes from petrol- and diesel-fuelled vehicles, make major contributions to air pollution, and the magnitude of this contribution is discussed in this article

  9. Ground Pollution Science

    International Nuclear Information System (INIS)

    This book deals with ground pollution science and soil science, classification of soil and fundamentals, ground pollution and human, ground pollution and organic matter, ground pollution and city environment, environmental problems of the earth and ground pollution, soil pollution and development of geological features of the ground, ground pollution and landfill of waste, case of measurement of ground pollution.

  10. Multistage treatment system for raw leachate from sanitary landfill combining biological nitrification-denitrification/solar photo-Fenton/biological processes, at a scale close to industrial--biodegradability enhancement and evolution profile of trace pollutants.

    Science.gov (United States)

    Silva, Tânia F C V; Silva, M Elisabete F; Cunha-Queda, A Cristina; Fonseca, Amélia; Saraiva, Isabel; Sousa, M A; Gonçalves, C; Alpendurada, M F; Boaventura, Rui A R; Vilar, Vítor J P

    2013-10-15

    A multistage treatment system, at a scale close to the industrial, was designed for the treatment of a mature raw landfill leachate, including: a) an activated sludge biological oxidation (ASBO), under aerobic and anoxic conditions; b) a solar photo-Fenton process, enhancing the bio-treated leachate biodegradability, with and without sludge removal after acidification; and c) a final polishing step, with further ASBO. The raw leachate was characterized by a high concentration of humic substances (HS) (1211 mg CHS/L), representing 39% of the dissolved organic carbon (DOC) content, and a high nitrogen content, mainly in the form of ammonium nitrogen (>3.8 g NH4(+)-N/L). In the first biological oxidation step, a 95% removal of total nitrogen and a 39% mineralization in terms of DOC were achieved, remaining only the recalcitrant fraction, mainly attributed to HS (57% of DOC). Under aerobic conditions, the highest nitrification rate obtained was 8.2 mg NH4(+)-N/h/g of volatile suspended solids (VSS), and under anoxic conditions, the maximum denitrification rate obtained was 5.8 mg (NO2(-)-N + NO3(-)-N)/h/g VSS, with a C/N consumption ratio of 2.4 mg CH3OH/mg (NO2(-)-N + NO3(-)-N). The precipitation of humic acids (37% of HS) after acidification of the bio-treated leachate corresponds to a 96% DOC abatement. The amount of UV energy and H2O2 consumption during the photo-Fenton reaction was 30% higher in the experiment without sludge removal and, consequently, the reaction velocity was 30% lower. The phototreatment process led to the depletion of HS >80%, of low-molecular-weight carboxylate anions >70% and other organic micropollutants, thus resulting in a total biodegradability increase of >70%. The second biological oxidation allowed to obtain a final treated leachate in compliance with legal discharge limits regarding water bodies (with the exception of sulfate ions), considering the experiment without sludge. Finally, the high efficiency of the overall treatment

  11. Biotic and Abiotic Constraints to Revegetation and Establishment of Functional Ecosystem in Degraded Lands in A Tropical Environment

    Directory of Open Access Journals (Sweden)

    Samuel Agele

    2011-11-01

    Full Text Available Land degradation and deforestation connote loss of biological and economic productivity, and confounds the widespread and increasing need for environmental conservation in the tropics and elsewhere in the world. Vast expanse of land are left bare, degraded and subjected to accelerated erosion and threat of desertification as a result of mining, agricultural and urban development activities in the tropics. Such degradation manifests in form of soil disturbance, accelerate environmental pollution, changes in physical and chemical properties of the soil, loss of forest covers and biodiversity, nutrient cycling and energy balances, and climatic stress factors. The accompanying deforestation brings about shifts in plant community and structure and strongly affect the survival and competitive advantage of native and alien (invaded plant species. Abiotic stress factors will affect the ec-ophysiological attributes of plant species important to species diversity and adaptation or tolerance to degraded ecosystems characterised by microclimatic gradients and other stress factors. Remediation measures had been achieved through organic wastes amendments, topsoil replacement (soil reconstruction. Biorestoration of degraded landscapes for environmental protection may also be built on the recruitment of native components of biodiversity (tracts of vegetation from existing plant communities and remnants of primary forests and late successional species for revegetation. In the tropics, there is therefore increasing and urgent need for remediation of degraded lands and to restore productive (functional ecosystem. These efforts will assist in the development and sustainable management of degraded landscapes for agricultural production, biodiversity conservation and ecosystem health. The recuperation (restoration of the ecological balance and productivity of degraded lands of degraded ecosystems will provide alternative land uses such as wild life/amenity parks

  12. Use of in situ biological indicators of pollution stress by the Venezuelan Petroleum Corporation (PDVSA): Bases for their industrial applications in Latin America

    International Nuclear Information System (INIS)

    Because Industry requires answers in a time-effective manner, PDVSA is promoting the use of biological indicators in an ecotoxicological context, replacing the classical view of species inventory or whole community structure analyses, widely used for ecological assessment studies. When the classical approach is followed, tropical ecosystem complexity consumes a great deal of effort just describing or identifying species, not to mention establishing trophic-structure relationships. If, on the contrary, key species or even communities of reduced species, not to mention establishing trophic-structure relationships. If, on the contrary, key species or even communities of reduced complexity belonging to a given ecological assessment could be simplified, allowing for an efficient response to the clients needs. Throughout this paper, in situ methods developed for these purposes will be discussed, showing the successful application of a large scale assessment through tissue level analyses of a ''sentinel'' mussel (Polymesoda arctata). In addition, when environmental assessment areas are of smaller scale, so that temporal and spatial variations are minimized, the application of community changes by the use of fouling communities will be shown as a novel means for reducing structural complexity. Methods herein proposed, are highly comprehensive, and could serve as basis for future environmental industrial monitoring throughout Latin America and many other regions of the world

  13. Formaldehyde degradation by catalytic oxidation.

    OpenAIRE

    Shirey, W N; Hall, T. A.; Hanel, E; Sansone, E B

    1981-01-01

    Formaldehyde used for the disinfection of a laminar-flow biological safety cabinet was oxidatively degraded by using a catalyst. This technique reduced the formaldehyde concentration in the cabinet from about 5,000 to about 45 mg/m3 in 8 h. This technique should prove useful in other applications.

  14. Pollutant balances and emission reduction in mechanical-biological treatment of waste; Schadstoffbilanzierung und Emissionsminderung bei der mechanisch-biologischen Abfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Cuhls, C.

    2001-07-01

    To balance the emissions of mechanical biological pretreatment (MBP) of municipal solid waste (MSW) and evaluate emission control systems four different plants were investigated. The applied technologies comprised aerobe processes with a rotting duration of 4 days to 16 weeks and one process with integrated (partial current) fermentation. The emissions of main organic substances (81 single compounds and NMVOC) were evaluated depending on either mass or environmental relevance or both. Additionally, total organic carbon (TOC), total nitrogen (TN), methane (CH{sub 4}) and ammonia (NH{sub 3}) were measured. At present the combination of a simple scrubber and biofilter is the state-of-the-art technology used for waste air purification. By using this combination the concentrations of pure gas (just odour) comply with the common regulations. However, the achieved efficiencies for non methane volatile organic compounds (NMVOC) are behind the expectations. In this combination of a simple scrubber and biofilter a NMVOC removal of only 50% is realistic. The main organic emission source is biogenic. That means they are formed by metabolic processes and emitted as intermediate compounds. (orig.) [German] Zur Emissionsbilanzierung wurden vier unterschiedliche mechanisch-biologische Abfallbehandlungsanlagen (MBA) untersucht. Die realisierten Verfahrenstechniken beinhalteten Aerobverfahren mit Rottezeiten zwischen 6 Tagen und 16 Wochen sowie eine zweistufige Anlage mit integrierter Teilstromvergaerung. Die Emissionsmessungen umfassten die wichtigsten 81 organischen Stoffe nach den Kriterien Mengen- und/oder Umweltrelevanz. Ergaenzt wurden die Messungen um die Summenparameter Ges.-C, Ges.-N, CH{sub 4} und NH{sub 3}. Die erforderlichen Emissionskonzentrationen nach TA Luft werden eingehalten. Ausschlaggebend hierfuer ist die Kombination aus Luftbefeuchter und Biofilter, die derzeit den Stand der Technik darstellt. Die erzielten Wirkungsgrade fuer NMVOC (Non Methane Volatile Organic

  15. Modeling the Impacts of Diffuse Pollution on Receiving Water Quality

    OpenAIRE

    Shanahan, P.; Somlyody, L.

    1995-01-01

    Nonpoint or diffuse pollutants represent a major cause of water-quality degradation of rivers, estuaries, lakes, and reservoirs and have become increasingly significant in countries where point sources of pollution are largely controlled. Nonpoint sources cause eutrophication, oxygen depletion, sedimentation, acidification, and salinization in receiving water bodies, introduce pathogenic organisms and other pollutants, and through shock loads of pollutants, cause mortality and morbidity of aq...

  16. Biochemical and cellularchanges in Oreochromis niloticus related to the water pollution of a degraded river - doi: 10.4025/actascibiolsci.v35i3.13207

    OpenAIRE

    Ary Gomes da Silva; Romildo Rocha Azevedo Júnior; Adriana Canal; Rodrigo Roque Lesqueves de Castro; Alessandro Ramos; Zilma Maria Almeida Cruz

    2013-01-01

    The effects of polluted water at three sites in the Marinho River, Brazil, on Oreochromis niloticus (Nile tilápia) were investigated using histological, hematological and biochemical approaches. Fish exposed to the impacted water demonstrated that histological changes in gills were accompanied by nuclear and micronuclei abnormalities in cells. The activity of liver and plasma biomarkers (alkaline phosphatase (ALP), acid phosphatase (ACP), alanine aminotransferase (ALT), aspartate aminotransfe...

  17. Influence of tensides and lipophilic substrates on the biological availability of polycyclic aromatic hydrocarbons (PAHs); Ueber dem Einfluss von Tensiden und lipophilen Substraten auf die Bioverfuegbarkeit von polyzyklischen aromatischen Kohlenwasserstoffen (PAK)

    Energy Technology Data Exchange (ETDEWEB)

    Soeder, C.J. von; Kleespies, M.; Eschner, C.; Webb, L.; Groeneweg, J. [Forschungszentrum Juelich GmbH (Germany). IBT-3/ICG-6

    1997-12-31

    The objects of the study were as follows: isolation and characterization of PAH-degrading micro-organisms from lysimeters; tests relating to the experimental simulation of the conditions permitting pollutant degradation in soil; investigation of the influence of tensides and other dissolved organic compounds on the biological availability and degradation of PAHs. (orig./SR) [Deutsch] - Isolierung und Charakterisierung PAK-abbauender Mikroorganismen aus Lysimetern; Versuche zur experimentellen Simulation der Bedingungen, unter denen der Abbau von Schadstoffen im Boden erfolgt. - Untersuchung des Einflusses von Tensiden und anderen geloesten organischen Verbindungen auf Bioverfuegbarkeit und Abbau von PAK. (orig./SR)

  18. Polysaccharide Degradation

    Science.gov (United States)

    Stone, Bruce A.; Svensson, Birte; Collins, Michelle E.; Rastall, Robert A.

    An overview of current and potential enzymes used to degrade polysaccharides is presented. Such depolymerases are comprised of glycoside hydrolases, glycosyl transferases, phosphorylases and lyases, and their classification, active sites and action patterns are discussed. Additionally, the mechanisms that these enzymes use to cleave glycosidic linkages is reviewed as are inhibitors of depolymerase activity; reagents which react with amino acid residues, glycoside derivatives, transition state inhibitors and proteinaceous inhibitors. The characterization of various enzymes of microbial, animal or plant origin has led to their widespread use in the production of important oligosaccharides which can be incorporated into food stuffs. Sources of polysaccharides of particular interest in this chapter are those from plants and include inulin, dextran, xylan and pectin, as their hydrolysis products are purported to be functional foods in the context of gastrointestinal health. An alternative use of degraded polysaccharides is in the treatment of disease. The possibility exists to treat bacterial exopolysaccharide with lyases from bacteriophage to produce oligosaccharides exhibiting bioactive sequences. Although this area is currently in its infancy the knowledge is available to investigate further.

  19. Aspects of Aquatic Pollution in Nigeria

    Directory of Open Access Journals (Sweden)

    A.T. Ekubo

    2011-11-01

    Full Text Available Water pollution is a major problem in the global context. Yet aquatic resources consists of extremely wide range of floral and fauna resources which offer a broad array of goods with potential utilitarian application in agriculture, innovative industry and the pharmaceutical industry which renders valuable benefits and services. The slow poisoning of the waters is witnessed in Nigeria and the destruction of vegetation and agricultural land by oil spills which occur during petroleum operations. But since the inception of the oil industry in Nigeria, more than twenty-five years ago, there has been no concerned and effective effort on the part of the government, let alone the oil operators, to control environmental problems associated with the industry'. The article reviews the meaning of water pollution, water pollution categories, point source pollution, non-point source pollution, ground water pollution, causes of water pollution, pathogens, chemicals and other contaminants, thermal pollution, transport and chemical reactions of pollution, measurement of pollution, sampling, physical testing, chemical testing, biological testing, control of water pollution, domestic sewage, industrial waste water, agricultural waste water, construction site storm water urban runoff (storm water, radiation pollution, the Federal Environmental Protection Agency, The National Policy on Environment, The national environmental reference laboratory, Water resources management, Strategies under the National Policy on Environment, Industrial water pollution control programme, Industrial effluent standards to provide some information on the Nigeria situation.

  20. Plasmids and aromatic degradation in Sphingomonas for bioremediation : Aromatic ring cleavage genes in soil and rhizosphere

    OpenAIRE

    SipilÀ, Timo

    2009-01-01

    Microbial degradation pathways play a key role in the detoxification and the mineralization of polyaromatic hydrocarbons (PAHs), which are widespread pollutants in soil and constituents of petroleum hydrocarbons. In microbiology the aromatic degradation pathways are traditionally studied from single bacterial strains with capacity to degrade certain pollutant. In soil the degradation of aromatics is performed by a diverse community of micro-organisms. The aim of this thesis was to study biode...

  1. Olive plants (Olea europaea L.) as a bioindicator for pollution.

    Science.gov (United States)

    Eliwa, Amal Mohamed; Kamel, Ehab Abdel-Razik

    2013-06-15

    In the present work, olive plant (Olea europaea L.) was used as a biological indicator for pollution in which, molecular and physiological parameters were studied. Olive plants were collected from polluted and non-polluted areas in Jeddah - Saudi Arabia, traffic area as an air polluted area, sewage treatment station as water polluted area, industrial area as solid waste polluted, costal area as marine polluted area and an area without a direct source of pollution far away from the city center, which was used as control. These changes conducted with nucleic acid content, minerals content, pigments and some growth parameters. Results showed significant reductions in DNA and RNA contents under all polluted sites. Mineral contents were varied widely depending on the different pollutants and locations of olive plant. Generally, micro-elements varied (increase/decrease) significantly within collected samples and the source of pollution. All growth parameters were decreased significantly within the studied samples of all pollutant areas except the relative water content was increased. The content of chlorophyll a has decreased highly significantly in all polluted leaves. While the content of chlorophyll b has increased significantly in all polluted leaves especially in air polluted leaves. The total content of carotenoid pigments has decreased highly significantly in all polluted leaves. It was concluded that olive plant can be used as a biological indicator to the environmental pollutants. PMID:24494523

  2. Environmental degradation and environmental threats in China.

    Science.gov (United States)

    Wang, Ying

    2004-01-01

    The article presents a review of environmental degradation and its threats in China. Air pollution, water pollution, deforestation, soil degradation, sand depositing in dams, decaying urban infrastructure, and more and more hazards such as floods, landslides and soil erosion are major consequences of environmental degradation and are making tremendous loss both in life and property. Through investigation, the author found that poor air quality in the large cities; water pollution in the downstream of many rivers; the multiple problems of many mining areas; lack of access to fresh water; decaying sewage systems; and the disastrous impact of these environmental degradations on public health and agricultural products in many provinces is rather serious. Relationship of environmental degradation and natural hazards is close; more attention should be put in environmental degradation that may surpass economy progress if the trend continues. It is therefore imperative that Chinese government undertake a series of prudent actions now that will enable to be in the best possible position when the current environmental crisis ultimately passes. PMID:15887370

  3. Persistent organic pollutants as risk factors for type 2 diabetes.

    Science.gov (United States)

    Ngwa, Elvis Ndonwi; Kengne, Andre-Pascal; Tiedeu-Atogho, Barbara; Mofo-Mato, Edith-Pascale; Sobngwi, Eugene

    2015-01-01

    Type 2 diabetes mellitus (T2DM) is a major and fast growing public health problem. Although obesity is considered to be the main driver of the pandemic of T2DM, a possible contribution of some environmental contaminants, of which persistent organic pollutants (POPs) form a particular class, has been suggested. POPs are organic compounds that are resistant to environmental degradation through chemical, biological, and photolytic processes which enable them to persist in the environment, to be capable of long-range transport, bio accumulate in human and animal tissue, bio accumulate in food chains, and to have potential significant impacts on human health and the environment. Several epidemiological studies have reported an association between persistent organic pollutants and diabetes risk. These findings have been replicated in experimental studies both in human (in-vitro) and animals (in-vivo and in-vitro), and patho-physiological derangements through which these pollutants exercise their harmful effect on diabetes risk postulated. This review summarizes available studies, emphasises on limitations so as to enable subsequent studies to be centralized on possible pathways and bring out clearly the role of POPs on diabetes risk. PMID:25987904

  4. Water Pollution

    Science.gov (United States)

    ... phosphorus make algae grow and can turn water green. Bacteria, often from sewage spills, can pollute fresh or salt water. You can help protect your water supply: Don't pour household products such as cleansers, beauty products, medicines, auto fluids, paint, and lawn care ...

  5. Water Pollution

    Science.gov (United States)

    We all need clean water. People need it to grow crops and to operate factories, and for drinking and recreation. Fish and wildlife depend on ... and phosphorus make algae grow and can turn water green. Bacteria, often from sewage spills, can pollute ...

  6. Charting environmental pollution. [by noise measurements

    Science.gov (United States)

    Halpert, E.; Bizo, F.; Karacsonyi, Z.

    1974-01-01

    It is found that areas affected by different noxious agents are within the limits traced for high noise level areas; consequently, it is suggested that high noise pressure levels should be used as the primary indication of environmental pollution. A complex methodology is reported for charting environmental pollution due to physical, chemical and biological noxious agents on the scale of an industrial district.

  7. Genomics technology for assessing soil pollution.

    OpenAIRE

    Straalen, van, Bart; Roelofs, D.

    2008-01-01

    Transcription and metabolite analysis is a powerful way to reveal physiological shifts in response to environmental pollution. Recent studies on earthworms, including one in BMC Biology, show that the type of pollution and its availability for uptake by organisms can differentially affect transcription and metabolism.

  8. 协调中国环境污染与经济增长冲突的路径研究——基于环境退化成本的分析%Research on the Path of Adjusting Conflict Between Environmental Pollution and Economic Growth in China——Based on Analysis of Environmental Degradation Cost

    Institute of Scientific and Technical Information of China (English)

    李娟伟; 任保平

    2011-01-01

    This paper selects relative data of our country from 1990 to 2009. Firstly, it uses these selected data to estimate the environmental degradation cost. It is found that environmental degradation cost shows a rising trend. The environmental degradation cost mainly results from water pollution and air pollution. Second, we take this cost as the indicator of environmental pollution and combine it with the characteristics of the Environmental Kuznets Curve. We also establish the criteria of choosing a policy path to control pollution,to see whether the policy can effectively put the indicator of pollution down to a comparative lower level. According to those, we can analyse the path of the coordinating the conflicts between economic growth and environmental pollution. The empirical results indicate that not considering the effects of policies, the GDP level of our country is on the left of the tuming points of Environmental Kuznets Curve. It means that increasing the domestic products can make the environment condition worse. Another result is that when all of the controlling pollution measures are put into practice, some performances of those policies are at a low level, even of no efficiency. The last conclusion is that at present in order to guarantee the sustaineahce economic growth and reduce the environment cost, the policy path is that firstly we should pay great attention to the adjustment of industrial structure. It means we should keep the proportion of the secondary industry at a reasonable level and strictly supervise the pollution enterprises in the process of developing the tertiary;Industry. The second step is to adjust the proportion of import and export and to stimulate export. The policy of attracting foreign direct investment and the government investment to deal with pollution at the present development stage of our country can not effectively reduce the the environmental degradation cost of economic growth.%选取我国1990-2009年相关数据,首

  9. Lichens as biological indicators

    International Nuclear Information System (INIS)

    Lichens, a symbiotic association of an alga and a fungus, have been used for some years as 'bioindicators', to detect environmental pollution. For this, their property of reacting to certain pollutants with characteristic changes of growth is exploired. With this biological method, continual, sufficiently sensitive measurements over wide areas can often be carried out more simply than with expensive, complicated technical equipment, which requires servicing, as well. This article describes the various possibilities of using lichens as bioindicators, and reviews the methods currently in use for measuring air pollution by means of lichens. (orig.)

  10. Screening of lipid degrading microorganisms for wastewater treatment

    Directory of Open Access Journals (Sweden)

    Sarmurzina, Z. S.

    2013-01-01

    Full Text Available Aims: Fats, oils and greases (FOG are poorly removable materials in wastewater treatment systems. The aim of this work is to find the most suitable strain(s for a biological treatment technology of FOGs polluted wastewaters. Methodology and results: The 142 microorganisms from polluted environment were screened for lipase activity (LA by sequentially using assays on agar-Tween 80, agar-fats, and turbidimetrically measuring the quantity of calcium salts with fatty acids. The isolates G23, G30, and Zb32 showed highest units of LA and were identified by sequence analysis of 16S rRNA genes. Lipid masses were determined gravimetrically after chloroform/ethyl alcohol extraction. In the model solutions with animal fats the strain Pseudomonas aeruginosa G23 reduced mass fractions of mutton fat, beef tallow, and lard by 79±5%, 88±4%, and 80±6% respectively. Under the same conditions Aeromonas punctata G30 reduced: 65±3%, 60±8%, and 75±4%, and P. aeruginosa Zb32 reduced: 47±5%, 52±6% and 73±7%. In the model solutions with FOGs trap specimens as a carbon source from the local cafeteria the strains P. aeruginosa G23, A. punctata G30, and P. aeruginosa Zb32 reduced a lipid mass fraction by 61.5±7%, 45.2±5%, and 37.5±3% respectively.Conclusion, significance and impact of study: The strain P. aeruginosa G23 is the most effective lipid-degrading microorganism and the best candidate to use in biological treatment technology of FOGs polluted wastewater in Kazakhstan.

  11. Soil-water salinity pollution: extent, management and potential impacts on agricultural sustain ability

    International Nuclear Information System (INIS)

    One of the significant environmental hazards of irrigated agriculture is the accumulation of salts in the soil. The presence of large quantities of certain soluble salts badly affects the physical, chemical, biological and fertility characteristics of the soils. This pollution of soil salinity and its toxic degradation directly affects plants, hence impacting the air filters of nature. The soil and water salinity has adversely reduced the yield of our major agricultural crops to an extent that agricultural sustainability is being threatened. Salinity has also dwindled the survival of marine life, livestock, in addition to damaging of construction works. The problem can be estimated from the fact that out of 16.2 m.ha of irrigated land of Pakistan, 6.3 . ha are salt affected in the Indus Plain. The state of water pollution can further be assessed from the fact that presently about 106 MAF of water is diverted from the rivers into the canals of the Indus Plain which contains 28 MT of salts. Due to soil and water pollution more than 40,000 ha of good irrigated land goes out of cultivation every year. This it has drastically reduced the potential of our agricultural lands. Hence, an estimated annual loss of Rs. 14,000 million has been reported due to this soil-water salinity pollution in Pakistan. Some management options to mitigate the soil - water salinity pollution are proposed. (author)

  12. Air pollution in Karachi: a study

    International Nuclear Information System (INIS)

    Air population is a necessary adjunct to the advancement of civilisation. It was an offshoot or rapid industrialisation of Europe during the late nineteenth and early twentieth century when most of the industrial plants coming up in the big industrial cities were based on the use of coal as a source of energy. This caused an enormous amount of air pollution. Air pollution therefore is a man made phenomenon which creates environmental degradation and it generally builds up over a period of time. Pollution of Karachi which was less than half a million at the time of partition of India has crossed ten million mark during the last decade. This rapid and more or less unplanned expansion of population of this teeming metropolis has entailed environmental degradation of Karachi. As this matter needs detailed and in depth monitoring we have limited our scope to the study of its effect on air pollution alone. (A.B.)

  13. Air Pollution and the skin

    Directory of Open Access Journals (Sweden)

    Eleni eDrakaki

    2014-05-01

    Full Text Available The increase of air pollution over the years has major effects on the human skin. The skin is exposed to ultraviolet radiation (UVR and environmental air pollutants such as polycyclic aromatic hydrocarbons (PAHs, volatile organic compounds (VOCs, oxides, particulate matter (PM, ozone (O3 and cigarette smoke. Although human skin acts as a biological shield against pro-oxidative chemical and physical air pollutants, the prolonged or repetitive exposure to high levels of these pollutants may have profound negative effects on the skin. Exposure of the skin to air pollutants has been associated with skin aging and inflammatory or allergic skin conditions such as atopic dermatitis, eczema, psoriasis or acne, while skin cancer is among the most serious effects. On the other hand, some air pollutants (ie, ozone, nitrogen dioxide, and sulfur dioxide and scattering particulates (clouds and soot in the troposphere reduce the effects of shorter wavelength UVR and significant reductions in UV irradiance have been observed in polluted urban areas.

  14. Pollutants emission in power sector

    International Nuclear Information System (INIS)

    Fossil fuels, including coal, natural gas, petroleum, shale oil and bitumen, are the primary source of heat and electrical energy production and are responsible for emitting a large number and amount of pollutants into the atmosphere via exhaust gases from industry, power stations, residential heating systems and vehicles. During the combustion process, different pollutants such as CO2, SOX (including SO2 and SO3), NOX (including NO2, NO and N2O), fly ash, VOCs and mercury are emitted. These emissions cause big environmental and human health hazard. CO2, N2O, some VOCs, CH4 contribute to the global greenhouse effect, adding a new dimension to the environmental degradation resulting from the burning of fossil fuels. These problems regarding emissions inventory, their impact on the environment and human health, air pollution control technologies and costs, periods of fossil fuels depletion, role of renewable and nuclear energy in the further civilization development are briefly discussed. (author)

  15. Engineering bacteria for environmental pollution control and agriculture

    International Nuclear Information System (INIS)

    The ability to use genetically modified Pseudomonads as pollution control or cleanup agents depends on the solution of the technical problems in genetic engineering: the ability to identify and clone degradative genes, and the ability to stably incorporate these degradative genes into suitable Pseudomonas strains. This paper reviews progress, in our laboratory, on both these subjects. Methods to isolate and characterize degradative genes have been evolved and two examples, the genes coding for the degradation of vanillate and sodium dodecyl sulphate, are described. Vanillate, in its chlorinated form, is a pollutant of the pulp and paper industry and sodium dodecyl sulphate is a component of many household and industrial detergents

  16. Marine biology

    International Nuclear Information System (INIS)

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index

  17. Marine biology

    Energy Technology Data Exchange (ETDEWEB)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index.

  18. Digestion and degradation, air for life

    NARCIS (Netherlands)

    Lettinga, G.

    2001-01-01

    Anaerobic degradation of dead biomass is a natural gasification process, an anaerobic crematorium producing a very useful end-product composed of methane and carbon dioxide, generally polluted with small amounts of some malodorous and quite toxic volatile S-compounds. It leads to the production of e

  19. Hazardous Air Pollutants

    Science.gov (United States)

    ... Facebook Twitter Google+ Pinterest Contact Us Hazardous Air Pollutants Hazardous air pollutants are those known to cause ... protect against adverse environmental effects. About Hazardous Air Pollutants What are hazardous air pollutants? Health and Environmental ...

  20. Monitoring Of Pollutants In Museum Environment

    OpenAIRE

    Ana-Maria Budu; Ion Sandu

    2015-01-01

    Art works are affected by environmental factors as light, temperature, humidity. Air pollutants are also implicated in their degradation. The pollution in museums has two sources: the air from outside, which brings usually dust and inorganic particles, and the inside sources – the materials used for casings (sealants, textiles placed on the display cases, varnishes, wood) that emanate organic compounds. The dust is composed of particles with a diameter of approximately 2µm or higher, which co...

  1. The Internet Pollution

    Institute of Scientific and Technical Information of China (English)

    唐宁宁

    2005-01-01

    Life today has brought new problems. As we know, there are fourterrible pollutions in the world: water pollution, noise pollution, air pol-lution and rubbish pollution. Water pollution kills our fish and pollutesour drinking water. Noise pollution makes us talk louder and become angry more easily. Air pollution makes us hold our breath longer and be badto all living things in the world. Rubbish pollution often makes our livingenvironment much dirtier. But I think that the Internet pollution is anothernew pollution in the world.

  2. Evaluation of toxicity reduction, mineralization, and treatability of phenolic wastewater treated with combined system of catalytic ozonation process / biological reactor (SBR)

    OpenAIRE

    Y Dadban Shahamat; M. Farzadkia; S Nasseri; A.H Mahvi; Gholami, M.; A Esrafily

    2016-01-01

    Background and Objectives: Phenol is one of the industrial pollutants in wastewaters, which due to its toxicity for biological systems various pretreatment processes have been used for its detoxification. In this study, the combination of catalytic ozonation process (COP) and sequencing batch reactor (SBR) were used for detoxification of these types of wastewaters. Materials and Methodology: In this study, the effect of COP on phenol degradation, COD removal, and detoxification of wastewa...

  3. SEARCH FOR ENZYMES INVOLVED IN THE TRINITROTOLUENE DEGRADATION IN PLANTS

    Czech Academy of Sciences Publication Activity Database

    Podlipná, Radka; Vavříková, Zuzana; Vágner, Martin; Vaněk, Tomáš

    University of Verona, 2008. s. 29-30. [Genes and Proteins Involved in Steps of Phytoextraction and Degradation of Pollutants. 05.06.2008-06.06.2008, Verona] Institutional research plan: CEZ:AV0Z50380511 Keywords : Trinitrotoluene * Saponaria officinalis * nitroreductases Subject RIV: DJ - Water Pollution ; Quality

  4. Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches.

    Science.gov (United States)

    Ganzenko, Oleksandra; Huguenot, David; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A

    2014-01-01

    As pollution becomes one of the biggest environmental challenges of the twenty-first century, pollution of water threatens the very existence of humanity, making immediate action a priority. The most persistent and hazardous pollutants come from industrial and agricultural activities; therefore, effective treatment of this wastewater prior to discharge into the natural environment is the solution. Advanced oxidation processes (AOPs) have caused increased interest due to their ability to degrade hazardous substances in contrast to other methods, which mainly only transfer pollution from wastewater to sludge, a membrane filter, or an adsorbent. Among a great variety of different AOPs, a group of electrochemical advanced oxidation processes (EAOPs), including electro-Fenton, is emerging as an environmental-friendly and effective treatment process for the destruction of persistent hazardous contaminants. The only concern that slows down a large-scale implementation is energy consumption and related investment and operational costs. A combination of EAOPs with biological treatment is an interesting solution. In such a synergetic way, removal efficiency is maximized, while minimizing operational costs. The goal of this review is to present cutting-edge research for treatment of three common and problematic pollutants and effluents: dyes and textile wastewater, olive processing wastewater, and pharmaceuticals and hospital wastewater. Each of these types is regarded in terms of recent scientific research on individual electrochemical, individual biological and a combined synergetic treatment. PMID:24965093

  5. Microbial PAH-Degradation in Soil: Degradation Pathways and Contributing Factors

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xu-Xiang; CHENG Shu-Pei; ZHU Cheng-Jun; SUN Shi-Lei

    2006-01-01

    Adverse effects on the environment and high persistence in the microbial degradation and environmental fate of polycyclic aromatic hydrocarbons (PAHs) are motivating interest. Many soil microorganisms can degrade PAHs and use various metabolic pathways to do so. However, both the physio-chemical characteristics of compounds as well as the physical, chemical, and biological properties of soils can drastically influence the degradation capacity of naturally occurring microorganisms for field bioremediation. Modern biological techniques have been widely used to promote the efficiency of microbial PAH-degradation and make the biodegradation metabolic pathways more clear. In this review microbial degradation of PAHs in soil is discussed, with emphasis placed on the main degradation pathways and the environmental factors affecting biodegradation.

  6. Water Pollution. Project COMPSEP.

    Science.gov (United States)

    Lantz, H. B., Jr.

    This is an introductory program on water pollution. Examined are the cause and effect relationships of water pollution, sources of water pollution, and possible alternatives to effect solutions from our water pollution problems. Included is background information on water pollution, a glossary of pollution terminology, a script for a slide script…

  7. Biological impacts of oil pollution: coral reefs

    International Nuclear Information System (INIS)

    Coral reefs are the largest structures made by living things and exist as extremely productive ecosystems in tropical and sub-tropical areas of the world. Their location in nearshore waters means that there is a potential danger to corals from tanker accidents, refinery operations, oil exploration and production. There are now a number of published scientific papers concerning the effects of oils on corals. This report summarises and interprets the findings, and provides background information on the structure and ecology of coral reefs. Clean-up options and their implications are discussed in the light of the latest evidence from case histories and field experiments. (author)

  8. Biological impacts of oil pollution: fisheries

    International Nuclear Information System (INIS)

    Fisheries and aquaculture may be affected following oil spills. This report describes the direct effects on the species themselves, and indirect effects through impacts on their habitats. The impact on fishing gear and aquaculture facilities is also considered. Information is included on the basic ecology of the species concerned, and on fishing and aquaculture methods. Response to spills is discussed and reference is made to case history examples. (author) ntial information for the assessment of pipeline defects from the comprehensive review report cited above. (2) Summarise current practice and capability for defect inspection during and after laying: material properties pertaining to defect assessment in ageing, new and future lines: an

  9. One-pot approach for synthesis of N-doped TiO2/ZnFe2O4 hybrid as an efficient photocatalyst for degradation of aqueous organic pollutants

    International Nuclear Information System (INIS)

    Highlights: • N-doped TiO2/ZnFe2O4 catalysts were prepared by a one-pot vapor-thermal method. • The UV–vis-light-driven photocatalytic activities of the hybrids were evaluated. • Influence factor, degradation kinetics, and mechanism, have been analyzed. • Active species in the degradation process were detected by using the scavengers. • N-doped TiO2/ZnFe2O4 showed to be a promising catalyst and simple separation. - Abstract: N-doped TiO2/ZnFe2O4 catalysts were successfully prepared by coupling nitrogen modified TiO2 with ZnFe2O4 via a one-pot vapor-thermal method. The physicochemical properties of the as-prepared catalysts have been characterized using various spectroscopic and microscopic techniques. The UV–vis-light-driven photocatalytic activities of the hybrids were evaluated and the effects of the amount of photocatalyst, different types of dyes, catalyst stability on photodegradation of organic dyes were investigated. Moreover, degradation kinetics and mechanism as well as the roles of N doping, ZnFe2O4 and TiO2 have been analyzed. It was revealed that N-doped TiO2/ZnFe2O4 exhibited an improved performance compared with TiO2/ZnFe2O4 or ZnFe2O4 because of the formation of a heterostructure at the interface as well as the introduction of N species. Active species such as holes, electrons, hydroxyl radicals, and superoxide radicals involved in the photodegradation process were detected by using different types of scavengers. Because of ZnFe2O4 in the hybrid, the catalyst shows ferromagnetism, and thus, the hybrid catalyst is easily isolated from the reaction mixture after the photocatalytic experiments. This work not only offers a simple method for the fabrication of N doped TiO2/ZnFe2O4 hybrids, but also provides an effective and conveniently recyclable photocatalyst for the purification of water

  10. Degradação biológica do PVC em aterro sanitário e avaliação microbiológica Biological degradation of PVC in landfill and microbiological evaluation

    Directory of Open Access Journals (Sweden)

    Ana M. C. Grisa

    2011-01-01

    Full Text Available O poli(cloreto de vinila (PVC é um dos polímeros utilizado no campo das embalagens e no setor calçadista, e, em função da sua aplicação diversificada, apresenta elevados percentuais em aterros domésticos e industriais. É um polímero amorfo podendo apresentar diferentes teores de plastificante e outros aditivos responsáveis pela sua estabilização, os quais podem influenciar no tempo de vida útil e nas propriedades do produto final. Este trabalho apresenta o estudo da degradação química e biológica de filmes de poli(cloreto de vinila flexível (PVC-f, no aterro sanitário São Giácomo, na cidade de Caxias do Sul/RS, antes e após 330 dias de disposição. As amostras de PVC-f antes e após a disposição no aterro sanitário foram avaliadas por análise térmica (TGA, estrutural (FT-IR e morfológica (MEV e MO. Observou-se que as amostras de PVC-f dispostas no aterro sanitário (PVC-fa, apresentam um único evento de perda de massa, em relação ao PVC-f não degradado ou virgem (PVC-fv, além de um maior % de perda de massa e de mudanças estruturais. Nas amostras de PVC-fa foram observadas modificações morfológicas importantes para descrever os fenômenos de degradação como erosão da superfície, bioerosão, que propiciaram a ação das leveduras, bactérias e fungos presentes no meio no polímero aterrado.The poly (vinyl chloride (PVC is one of the polymers used in the field of packing materials and footwear sector, and due its diversified applications, it has presented in a high percentage of domestic and industrial landfills It is an amorphous polymer and may present different levels of plasticizer and other additives responsible for its stabilization, which can influence the lifetime and the properties of the final product. This work presents the study of the chemical and biological degradation of poly (vinyl chloride flexible (PVC-f films, at São Giácomo landfill, in Caxias do Sul city after 330 days of

  11. Monitoring and inventorying of the pollutant emissions from thermal power plants

    International Nuclear Information System (INIS)

    Pollution due to emissions discharged in atmosphere as a result of human (anthropogenic) activities and the related environmental effects, such as acid depositions, land quality degradation, global warming/climate changes, building degradation, ozone layer depletion required the monitoring and inventorying of the polluting emissions at the local, regional and global levels. The paper briefly presents the international requirements concerning the development of a polluting emission inventory, the European methodologies for air polluting emission inventorying, programs and methodologies used in the Romanian electricity production sector for inventorying the polluting emissions and calculation of the dispersion of the pollutants discharged in the atmosphere. (author)

  12. Status of oil pollution along the Indian coast

    Digital Repository Service at National Institute of Oceanography (India)

    Kadam, A.N.; Chouksey, M.K.

    pollution. Moreover, accelerated efforts in offshore oil prospecting in several areas of the continental shelf of India further enhance to vulnerability of the coastal zone to oil induced degradation....

  13. Bacterial Degradation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Qing X. Li

    2009-01-01

    Full Text Available Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.

  14. Air pollution epidemiology. Assessment of health effects and risks

    Energy Technology Data Exchange (ETDEWEB)

    Katsouyanni, K. [Athens Univ. (Greece). Dept. of Hygiene and Epidemiology

    1995-12-31

    Air pollution epidemiology is the study of the occurrence and distribution of health outcomes in association with community air pollution exposure. It is therefore specific in the exposure variable. Air pollution health effects became evident during high air pollution episodes which occurred in the first decades of our century. Since then, legal and other control measures have led to lower air pollution levels. However, recent results from several studies indicate that lower levels of air pollution than the previously considered safe have serious adverse health effects. Although, there is increasingly agreement that air pollution, at levels measured today, affects health, there is still a lot to be understood concerning specific causal pollutants, biologic mechanisms involved and sensitive groups of individuals. The extent of potential confounding, time-considerations in air pollution effects, individual variation in air pollution exposure and exposure misclassification are some factors which complicate the study of these issues. (author)

  15. Mechanistic study of a diazo dye degradation by Soybean Peroxidase

    OpenAIRE

    Kalsoom, Umme; Ashraf, Syed Salman; Meetani, Mohammed A; Rauf, Muhammad A; Bhatti, Haq Nawaz

    2013-01-01

    Background Enzyme based remediation of wastewater is emerging as a novel, efficient and environmentally-friendlier approach. However, studies showing detailed mechanisms of enzyme mediated degradation of organic pollutants are not widely published. Results The present report describes a detailed study on the use of Soybean Peroxidase to efficiently degrade Trypan Blue, a diazo dye. In addition to examining various parameters that can affect the dye degradation ability of the enzyme, such as e...

  16. Biological Activity in a Degraded Alfisol Amended with Sewage Sludge and Cropped with Yellow Serradela (Ornithopus compressus L. Actividad Biológica en un Alfisol Degradado Enmendado con Lodos Urbanos y Cultivado con Serradela Amarilla (Ornithopus compressus L.

    Directory of Open Access Journals (Sweden)

    José Celis H

    2011-03-01

    Full Text Available There are few studies about the impact of sewage sludge on the biological properties in Alfisols of the Chilean Coastal Range drylands. Hence, the objective of this study was to evaluate its effect on the microbial respiration and enzymatic activities of a degraded Alfisol located in the Bío Bío Region (Chile that was cropped with yellow serradela (Ornithopus compressus L.. Sludge was added to the soil at rates of 15, 30, and 60 t ha-1; he following treatments were defined: L15-P = 15 t ha-1 sludge + O. compressus; L30-P = 30 t ha-1 sludge + O. compressus; L60-P = 60 t ha-1 sludge + O. compressus; L15 = 15 t ha-1 sludge; L30 = 30 t ha-1 sludge; L60 = 60 t ha-1 sludge; CP = non-amended soil, cropped; and C = non-amended soil, no crop. Soil microorganism activity was evaluated by respirometry. Hydrolytic enzyme activity representative of soil C, N, and P cycles was determined. Crop phytomass development was also evaluated. The amount of C-CO2 produced by soil microorganisms was directly proportional to the dose of amended sludge (p ≤ 0.05. Similarly, greater β-glucosidase, urease, and acid phosphatase were more active at 60 t sludge ha-1. However, both respiratory and enzymatic activities were greater (p ≤ 0.05 in treatments with sludge-amended soil cropped with O. compressus. This greater activity was notorious when the legumes achieved greater phytomass development, thus highlighting the root’s stimulating effect on soil biological activity.El impacto de los lodos urbanos sobre las propiedades biológicas en suelos Alfisoles del secano interior de la Cordillera de la Costa de Chile ha sido poco estudiado. El objetivo de este estudio fue evaluar el efecto de la aplicación de lodo urbano sobre las propiedades biológicas de un suelo Alfisol degradado de la Región del Bío Bío, Chile, cultivado con serradela amarilla (Ornithopus compressus L.. Se adicionó lodo al suelo a razón de 15, 30 y 60 t ha-1, a partir de lo cual se definieron

  17. Screening and identification of bacteria for organic pollutant degradation in sediment of marine cage fish farming area%网箱养殖沉积环境中有机污染物降解菌的筛选与鉴定

    Institute of Scientific and Technical Information of China (English)

    孟霞; 黄洪辉; 贾晓平; 古小莉

    2011-01-01

    This paper is aimed to present our study on the screening and identification of effective organic pollutant degrading bacteria in the sediment of a heavily organic polluted marine cage fish farm. As a matter of fact, the marine cage fish farming first began in Guangdong coastal waters of China at the end of 1970s, and it has grown dramatically during the last three decades and become one of the important marine aquaculture industries in China. However, marine cage fish farming generates high pollution loadings especially in the sea bottom, where the high sediment oxygen demand, anoxic sediments, production of toxic gases and decrease in benthic diversity may result. For bioremediation of polluted sediment environment in marine cage farm, six bacteria strains were isolated after 2 months of selective enrichment incubation under intermittent aeration condition from the sediment in the marine cage fish farm in Dapeng Ao Cove,east coast of Shenzhen City. Through the ability test for degradation to the liquid wild trash fish culture medium, four bacteria strains which were capable of degrading the organic trash fish pollutant rapidly and efficiently, were obtained. The 7 d incubation of biochemical oxygen demand (BOD7) were between 1 040- 1 140 mg/l, the 5 d incubation for the average CODMn removing rate ( 1 - COD5/COD0 ) were between 13.58% -46.9% and the biochemical degradation rate (BOD5/COD0) were between 81.56% -89.43%. The 5 d incubation for average CODMn degradation rate of pair-strain mixed bacteria was64.91% (6.51%, which was 2 times higher than that 30.60 (13.63% of single strain; and BOD5/COD0 were between 86.10% -89.13%. There were no obvious differences if compared with those of single strain. Sequence analysis based on partial 16S rDNA and performed by BLASTN and FASTA showed that 2 strains belonged to genus of Staphylococcus sp. and Halornonas sp. The other 2 strains maybe belonged to genus of Halomonas sp. and Pseudomonas sp

  18. Indoor Air Pollution (Environmental Health Student Portal)

    Science.gov (United States)

    ... Students to Environmental Health Information Menu Home Air Pollution Air Pollution Home Indoor Air Pollution Outdoor Air Pollution ... Pollution Indoor Air Pollution Print this Page Air Pollution Air Pollution Home Indoor Air Pollution Outdoor Air Pollution ...

  19. CHLOROPHENOL DEGRADATION BY ELECTROCATALYSIS COMBINED WITH UV RADIATION%电催化与紫外光辐射降解氯酚

    Institute of Scientific and Technical Information of China (English)

    吴祖成; 叶倩; 周明华; 丛燕青

    2002-01-01

    @@ Chlorinated organic compounds, especially chlorophenols are well-known water priority pollutant family due to their toxicity and potential health hazard. As biological treatment processes for the degradation of chlorinated phenols have not been effective, various technologies and processes such as activated carbon adsorption[1], chemical oxidation[2], have been conventionally attempted for phenolic waster treatment. Recently, advanced oxidation processes (AOPs) have attracted a great deal of attention for treatment of phenolic wastewater, among these chemical oxidation ultraviolet (UV) oxidation system[3], anodic oxidation and indirect electro-oxidation have been widely studied[4]. Though a number of researchers worked on the degradation of chlorophenol by UV radiation or electrochemical processes, there are few reports on both methods for organic wastewater treatment. If these two processes can operate in harmony, the degradation efficiency would be enhanced.

  20. Deterioration and Degradation of Aquatic Systems Due to Brick Kiln Industries – A Study in Cachar District, Assam.

    Directory of Open Access Journals (Sweden)

    Sushmita De

    2015-08-01

    Full Text Available Brick industries are unorganised, rural, small scale industries in Cachar district of Assam which play an important role in economic development of the entire region. It has been observed during the study that these brick industries are responsible for large scale environmental problems like land degradation, air pollution, water quality degradation and loss of biodiversity. The present study deals with the quality of water in the selected brick kilns in Cachar district and its degradation during Jan-Dec 2014. The existing water bodies are contaminated with different compounds and continuous siltation from the brick kilns. The research focuses on the variation of various physico-chemical parameters such as water temperature, pH, conductivity, Total alkalinity, Dissolved oxygen, Carbondioxide, Nitrate, Phosphate, Transparency in the selected water bodies. The studied ponds were found to be in degrading state with less productivity. Moreover, the result obtained showed the need and urgency to restore the physical, chemical and biological management tactics to conserve and preserve the ecological imbalance and disturbance in the hydro-geo-chemical and hydro-biological cycles that adversely affect the food chain and food web in the brick kiln affected aquatic bodies.

  1. Ultrasonic-assisted preparation of novel ternary ZnO/Ag3VO4/Ag2CrO4 nanocomposites and their enhanced visible-light activities in degradation of different pollutants

    Science.gov (United States)

    Pirhashemi, Mahsa; Habibi-Yangjeh, Aziz

    2016-05-01

    Novel ternary ZnO/Ag3VO4/Ag2CrO4 nanocomposites were successfully fabricated via preparation of ZnO/Ag3VO4 followed by coupling of it with Ag2CrO4 through facile ultrasonic-assisted method. The resultant samples were carefully characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive analysis of X-rays, UV-vis diffuse reflectance spectroscopy, Fourier transform-infrared spectroscopy, and photoluminescence techniques. Photocatalytic activity for degradation of organic dyes, including rhodamine B, methylene blue, and methyl orange was examined under visible-light irradiation. Among the prepared samples, the ternary nanocomposite with 20% of Ag2CrO4 demonstrated the superior activity. This nanocomposite showed 10.6, 2.9, and 3.0-folds greater activity compared to ZnO, ZnO/Ag2CrO4, and ZnO/Ag3VO4, respectively. The enhanced activity was attributed to more harvesting of the visible-light irradiation and efficiently separation of the photogenerated charge carriers in the ternary nanocomposites. To understand efficiently separation of the charge carriers, a plausible diagram was proposed based on formation of tandem n-n heterojunctions.

  2. Multidimensional evaluation of soil pollution from railway tracks

    OpenAIRE

    Wierzbicka, Małgorzata; Bemowska-Kałabun, Olga; Gworek, Barbara

    2015-01-01

    Railway transport is a source of pollution to soils and living organisms by e.g. PAHs, PCBs, oil-derived products, pesticides and heavy metals. Soil toxicity evaluation requires chemical analyses, indicating the type and content of particular pollutants, as well as biological analyses, which allow assessing the reaction of organisms to these pollutants. This paper is focused on a multi-aspect evaluation of the degree of toxicity and pollution of soil in selected railway areas from north-easte...

  3. Parameters affecting the photocatalytic degradation of dyes using TiO2: a review

    Science.gov (United States)

    Reza, Khan Mamun; Kurny, ASW; Gulshan, Fahmida

    2015-12-01

    Traditional chemical, physical and biological processes for treating wastewater containing textile dye have such disadvantages as high cost, high energy requirement and generation of secondary pollution during treatment process. The advanced oxidation processes technology has been attracting growing attention for the decomposition of organic dyes. Such processes are based on the light-enhanced generation of highly reactive hydroxyl radicals, which oxidize the organic matter in solution and convert it completely into water, CO2 and inorganic compounds. In this presentation, the photocatalytic degradation of dyes in aqueous solution using TiO2 as photocatalyst under solar and UV irradiation has been reviewed. It is observed that the degradation of dyes depends on several parameters such as pH, catalyst concentration, substrate concentration and the presence of oxidants. Reaction temperature and the intensity of light also affect the degradation of dyes. Particle size, BET-surface area and different mineral forms of TiO2 also have influence on the degradation rate.

  4. A comparative view of radiation, photo and photocatalytically induced oxidation of water pollutants

    International Nuclear Information System (INIS)

    Water resources are presently overloaded with biologically resistant (refractory) pollutants. Several oxidation methods have been developed for their degradation, the most efficient of which is irradiation treatment, particularly that based on e-beam processing in the presence of O2/O3. The next-best method is photoinduced pollutant oxidation with VUV- and/or UV-light, using H2O2 or H2O2/O3 as an additional source of OH radicals. The photocatalytic method, using e.g. TiO2 as a catalyst in combination with oxidation agents such as H2O2 or H2O2/O3, is also recommended. The suitability of these three methods is illustrated by examples and they are briefly discussed and compared on the basis of the energy consumption and efficiency. Other methods, such as ozone treatment, the photo-Fenton process, ultrasonic and electrochemical treatments, as well as the well known biological process and thermal oxidation of refractory pollutants, are briefly mentioned. (author)

  5. Report on the behalf of the Commission of inquiry on the economic and financial cost of air pollution. Nr 610

    International Nuclear Information System (INIS)

    After a list of 61 propositions made by the authors, this huge report first addresses air pollution as a major public health issue with multiple impacts. It proposes an overview of the progressive awareness on this issue as pollution has been considered for a long time as an unavoidable consequence of technical and industrial progress, as the emergence of air survey slowly became a priority for public authorities between 1917 and 1973, and as the struggle against atmospheric pollution is now a key issue in the prevention of climate change in a context which has become supra-national. It analyses outer air pollution: European and international definitions, status of scientific knowledge on health effects, sources of atmospheric pollution, the peculiar case of France regarding chemical pollution due to the Diesel engines, and aero-biologic pollution. It addresses inner air pollution, a hazard with many unknowns: a phenomenon which has been progressively acknowledged as a major public health problem, overview of the rather timid French legal framework. It proposes an overview of other impacts (other than on health): on vegetal and biodiversity, on the built environment, and on water. The second part addresses the economic and financial cost of air pollution. It discusses how to assess the cost of air pollution (assessment of health impacts of air pollution, assessment of health cost of air pollution). It outlines that it is a major cost which is often under-assessed. It proposes an overview of the status of the cost of air pollution in France as far as the cost for the health system, the social and economic cost, and other costs (decrease of agriculture efficiency, building degradation, policy costs, effect of the environment and loss of biodiversity, tax and regulation) are concerned. The third part of this report proposes an overview of solutions which aim at obtaining a better balance between standards and tax policy, at promoting innovation, at implementing

  6. Testing Increasing Returns to Pollution Abatement in Pesticides

    OpenAIRE

    Managi, Shunsuke

    2006-01-01

    According to the Environmental Kuznets Curve (EKC) hypothesis, economic growth and the reduction of environmental degradation are compatible goals. An inverted U-shaped relationship between economic performance and environmental pollution suggests that, empirically, an economy is associated with smaller levels of pollution after some threshold income point. One potential explanation for the empirical evidence of an EKC is increasing returns to pollution abatement, where the abatement efficien...

  7. The Control of Nonpoint Pollution when Damages are Heterogeneous

    OpenAIRE

    Albiac Murillo, José; Esteban Gracia, Encarna

    2012-01-01

    The expansion of intensive agriculture in Spain during recent decades has created substantial ambient pollution loads of nutrients and pesticides in streams and river courses. This pollution degrades water quality and damages aquatic ecosystems. Because the pollution emissions from agriculture are nonpoint, it is almost impossible (or very costly) to identify the responsible agent, the location of sources, and the amount of emissions. This paper analyzes the problem of saline p...

  8. Biofilm mediated decontamination of pollutants from the environment

    OpenAIRE

    Arindam Mitra; Suman Mukhopadhyay

    2016-01-01

    In this review, we highlight beneficial use of microbial biofilms in remediation of environmental pollutants by bioremediation. Bioremediation is an environment friendly, cost effective, sustainable technology that utilizes microbes to decontaminate and degrade a wide variety of pollutants into less harmful products. Relative to free-floating planktonic cells, microbes existing in biofilm mode are advantageous for bioremediation because of greater tolerance to pollutants, environmental stress...

  9. Photoredox degradation of different water pollutants (MO, RhB, MB, and Cr(VI)) using Fe–N–S-tri-doped TiO{sub 2} nanophotocatalyst prepared by novel chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xuyao; Zhou, Xiaosong, E-mail: zxs801213@163.com; Zhang, Lingling; Xu, Limei; Ma, Lin; Luo, Jin; Li, Mengjia; Zeng, Lihua

    2015-10-15

    Highlights: • TiO{sub 2} was synthesized through simple one-step hydrothermal method. • Photocatalytic activity for degradation of organic dyes and Cr(VI) are investigated. • The synergistic effect is shown in coexistence of MB and Cr(VI). - Abstract: Fe–N–S-tri-doped TiO{sub 2} (FeNS-TiO{sub 2}) was synthesized by a simple one-step hydrothermal method. The as-synthesized samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities of as-synthesized samples were tested by the oxidation of methyl orange (MO), rhodamine B (RhB), methylene blue (MB) and the reduction of aqueous Cr(VI) under visible-light (λ > 420 nm) irradiation, and compared with N-dope P25 (N-P25) and the undoped TiO{sub 2}. Besides, the effects of the coexistence of MO, RhB, and MB on FeNS-TiO{sub 2}-mediated photocatalytic reduction of aqueous Cr(VI) were also studied. The results indicated FeNS-TiO{sub 2} displayed higher visible-light-activated photocatalytic activity than N-P25 and the undoped TiO{sub 2}. Otherwise, FeNS-TiO{sub 2} showed the coexistence of MB enhanced the photocatalytic reduction of Cr(VI), whereas the coexistence of MO and RhB retarded the photocatalytic reduction of Cr(VI) over FeNS-TiO{sub 2}. Moreover, a possible photocatalytic mechanism is discussed.

  10. Marine Biology and Human Affairs

    Science.gov (United States)

    Russell, F. S.

    1976-01-01

    Marine biology has become an important area for study throughout the world. The author of this article discusses some of the important discoveries and fields of research in marine biology that are useful for mankind. Topics include food from the sea, fish farming, pesticides, pollution, and conservation. (MA)

  11. WATER POLLUTION: IMPACT OF POLLUTANTS AND NEW PROMISING TECHNIQUES IN PURIFICATION PROCESS

    OpenAIRE

    Chandra Singh Kanesh; Dharmendra Dwivedi; D. P. Prajapati

    2015-01-01

    Water is a critical resource in the lives of people who both benefit from its use and who are harmed byits misuse and unpredictability (flooding, droughts, salinity, acidity, and degraded quality). Water is a finite andvulnerable resource. Consequently, consumption of polluted water puts lives and livelihoods at risk because water hasno substitute. There are many ways in which water intended for human consumption can get polluted. These includewastes from industries like mining...

  12. Federal Air Pollutant Emission Regulations and Preliminary Estimates of Potential-to-Emit from Biorefineries. Pathway #1: Dilute-Acid and Enzymatic Deconstruction of Biomass-to-Sugars and Biological Conversion of Sugars-to-Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yimin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bhatt, Arpit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thomas, Mae [Eastern Research Group, Lexington, MA (United States); Renzaglia, Jason [Eastern Research Group, Lexington, MA (United States)

    2016-02-01

    Biorefineries are subject to environmental laws, including complex air quality regulations that aim to protect and improve the quality of the air. These regulations govern the amount of certain types of air pollutants that can be emitted from different types of emission sources. To determine which federal air emission regulations potentially apply to the sugars-to-hydrocarbon (HC) biorefinery, we first identified the types of regulated air pollutants emitted to the ambient environment by the biorefinery or from specific equipment. Once the regulated air pollutants are identified, we review the applicability criteria of each federal air regulation to determine whether the sugars-to-HC biorefinery or specific equipment is subject to it. We then estimate the potential-to-emit of pollutants likely to be emitted from the sugars-to-HC biorefinery to understand the air permitting requirements.

  13. Effects of terrestrial pollutants on insect parasitoids.

    Science.gov (United States)

    Butler, Casey D; Beckage, Nancy E; Trumble, John T

    2009-06-01

    Parasitoids are important organisms in the regulation of insect herbivores in natural, urban, and agricultural ecosystems. The impact of pollutants acting on parasitoids has not been extensively reviewed. This prompted us to propose a falsifiable null hypothesis (pollutants have no effects on parasitoids) and two alternative hypotheses (pollution negatively or positively affects parasitoids) to assess in the available literature the effects of pollutants acting on parasitoids. We found 26 studies examining 39 biological systems that met our criteria for inclusion. Of these studies, 18 of the 39 biological systems (46.2%) supported the null hypothesis while 18 (46.2%) supported the first alternative hypothesis in which pollutants exhibited negative effects on parasitoids. Only a small percentage of the studies (7.6%, 3 of 39) supported the second alternative hypothesis suggesting that pollutants had positive effects on parasitoids. We provide a synthesis of the available data by pollution type, summarize trends for different pollutants, and suggest future areas of research. PMID:19132813

  14. Shoreline clean-up methods : biological treatments

    Energy Technology Data Exchange (ETDEWEB)

    Massoura, S.T. [Oil Spill Response Limited, Southampton (United Kingdom)

    2009-07-01

    The cleanup of oil spills in shoreline environments is a challenging issue worldwide. Oil spills receive public and media attention, particularly in the event of a coastal impact. It is important to evaluate the efficiency and effectiveness of cleanup methods when defining the level of effort and consequences that are appropriate to remove or treat different types of oil on different shoreline substrates. Of the many studies that have compared different mechanical, chemical and biological treatments for their effectiveness on various types of oil, biological techniques have received the most attention. For that reason, this paper evaluated the effectiveness and effects of shoreline cleanup methods using biological techniques. It summarized data from field experiments and oil spill incidents, including the Exxon Valdez, Sea Empress, Prestige, Grand Eagle, Nakhodka, Guanabara Bay and various Gulf war oil spills. Five major shoreline types were examined, notably rocky intertidal, cobble/pebble/gravel, sand/mud, saltmarsh, and mangrove/sea-grass. The biological techniques that were addressed were nutrient enrichment, hydrocarbon-utilizing bacteria, vegetable oil biosolvents, plants, surf washing, oil-particle interactions and natural attenuation. The study considered the oil type, volume and fate of stranded oil, location of coastal materials, extent of pollution and the impact of biological techniques. The main factors that affect biodegradation of hydrocarbons are the volume, chemical composition and weathering state of the petroleum product as well as the temperature, oxygen availability of nutrients, water salinity, pH level, water content, and microorganisms in the shoreline environment. The interaction of these factors also affect the biodegradation of oil. It was concluded that understanding the fate of stranded oil can help in the development of techniques that improve the weathering and degradation of oil on complex shoreline substrates. 39 refs.

  15. Effects of Electron Acceptors, Reducing Agents, and Toxic Metabolites on Anaerobic Degradation of Heterocyclic Compounds

    DEFF Research Database (Denmark)

    Licht, Dorthe; Ahring, Birgitte Kiær; Arvin, Erik

    1996-01-01

    Degradation of four heterocyclic compounds was examined under nitrate-reducing, sulphate-reducing and methanogenic conditions. Soil samples from a creosote-polluted site in Denmark were used as inoculum. Indole and quinoline were degraded under all redox conditions with the highest degradation...

  16. Monitoring of Land degradation in the mining impacted areas of Mongolia

    Science.gov (United States)

    Amar, T.; Renchin, T.

    2012-12-01

    Nowadays, environmental issue is very important and complicated problem in Mongolia. Mongolia has long suffered from poor mining legislation and almost no regulation of its production . There is a need to undertake analyses of land degradation and land use in Mongolia as an important factor of Environment. Land degradation has been identified as one the priority concerns. Causes of land degradation can be divided into two categories natural and human induced in Mongolia. The second hand level mining contributes to land degradation increased small to large-scale mining, as well as illicit activity resulting in exploitation of the country's mineral resources. In the last decade Mongolia has been developing the mining sector and due to the great number of exploitations the related territories were ecologically damaged. The rivers and lakes are drained, the earth is defiled and all these damages brought the environmental problems. This study aims to monitor land degradation processes in the study area Ongi River Basin of the central region of Mongolia. This area is affected by mining activities and desertification processes. The main reason of drying up Ongiriver and Ulaannuur is definitely changed the Onggi riverbed due to the mining of gold placer deposit and never making technical and biological reclamation. About 60 thousand people and over one million livestock who one living around Onggi river one getting defective of drink water and pasture because of Onggi river and UlaanLake's evaporation. We applied change detection technique and supervised classification using Satellite data. This study contributes to the research which involves policy makers and stakeholders to define and negotiate relevant scenarios in participatory approaches in the local area and to the studies about linking people to pixels. This case study will enable our researchers to plan for the future by making more educated decisions in issues stemming from mining, land degradation, water

  17. Climate change and air pollution

    OpenAIRE

    D’Amato, Gennaro; Bergmann, Karl Christian; Cecchi, Lorenzo; Annesi-Maesano, Isabella; Sanduzzi, Alessandro; Liccardi, Gennaro; Vitale, Carolina; Stanziola, Anna; D’Amato, Maria

    2014-01-01

    Summary The observational evidence indicates that recent regional changes in climate, particularly temperature increases, have already affected a diverse set of physical and biological systems in many parts of the world. Allergens patterns are also changing in response to climate change and air pollution can modify the allergenic potential of pollen grains especially in the presence of specific weather conditions. Although genetic factors are important in the development of asthma and allergi...

  18. River and Stream Pollution

    Science.gov (United States)

    ... Topics Games Activities Lessons MENU River and Stream Pollution Kids Homepage Topics Pollution River and Stream Pollution ... stream in the first place by disturbing the land as little as possible. Farmers and construction workers ...

  19. Indoor Air Pollution

    Science.gov (United States)

    We usually think of air pollution as being outdoors, but the air in your house or office could also be polluted. Sources of indoor pollution include Mold and pollen Tobacco smoke Household products ...

  20. Pyrolysis Characteristics and Thermal Kinetics of Degradable Films

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Developing degradable films is an important means for resolving the problem of film pollution; however, in recent years,there have been only few studies related to the thermal analysis of degradable plastic films. This research detailed the composition and pyrolysis of one kind of ordinary and three kinds of degradable plastic films using the differential thermal analysis (DTA) technique. The results showed that degradable films and ordinary film had similar DTA curves, which reflected their similar compositions; however, small differences were measured, which were due to the added constituents of the degradable films. The pyrolysis reaction orders of each film were about 0.93. The pyrolysis activation energies and pre-exponential factors followed the order of ordinary film > photodegradable film > photodegradable calcium carbonate film > biodegradable film. The results of this research laid the foundation for new theories for harnessing soil pollution caused by plastic films.