WorldWideScience

Sample records for biological degradation pollutants

  1. Chemotactic selection of pollutant degrading soil bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, T.C.

    1991-03-04

    A method is described for identifying soil microbial strains which may be bacterial degraders of pollutants. This method includes: Placing a concentration of a pollutant in a substantially closed container; placing the container in a sample of soil for a period of time ranging from one minute to several hours; retrieving the container and collecting its contents; microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to innoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  2. Water pollution biology

    Energy Technology Data Exchange (ETDEWEB)

    Mason, C.F. [University of Essex, Colchester (United Kingdom). Dept. of Biology

    1996-12-31

    Chapter 4 of this book describes the effects of major types of pollutants on aquatic life. These are: organic pollution, eutrophication, acidification, toxic chemicals, oil, and radioactivity. The review includes an description of some of the methods of assessing the biological impacts of pollution. 50 refs., 8 figs., 3 tabs.

  3. Biology and Water Pollution Control.

    Science.gov (United States)

    Warren, Charles E.

    Within this text, the reader is attuned to the role biology can and should play in combating the alarming increase in water pollution. Both the urgency of the problem and the biological techniques that are being developed to cope with the water pollution crisis are scrutinized; what is and is not known about the problem is explained; past,…

  4. Degradation of air polluted by organic compounds

    International Nuclear Information System (INIS)

    According to the Mexican standard NOM-010-STPS-1994 it has been established concentrations of maximum permissible levels in workable air for styrene in the range 420-1710 mg/m3 and for xylene between 218-870 mg/m3. In this work it is studied a biological treatment (bio filtration) for air polluted by xylene and styrene where the microorganisms are adhered at synthetic fiber, these degrade to the organic compounds that across in gaseous state and they are mineralized toward CO2 and H2O. The characteristics of temperature, p H, concentration of organic compound and mineral parameters, as well as, the biomass quantity have been optimized for that bio filters efficiency were greater than those reported in other works. (Author)

  5. "Shoot and Sense" Janus Micromotors-Based Strategy for the Simultaneous Degradation and Detection of Persistent Organic Pollutants in Food and Biological Samples.

    Science.gov (United States)

    Rojas, D; Jurado-Sánchez, B; Escarpa, A

    2016-04-01

    A novel Janus micromotor-based strategy for the direct determination of diphenyl phthalate (DPP) in food and biological samples is presented. Mg/Au Janus micromotors are employed as novel analytical platforms for the degradation of the non-electroactive DPP into phenol, which is directly measured by difference pulse voltammetry on disposable screen-printed electrodes. The self-movement of the micromotors along the samples result in the generation of hydrogen microbubbles and hydroxyl ions for DPP degradation. The increased fluid transport improves dramatically the analytical signal, increasing the sensitivity while lowering the detection potential. The method has been successfully applied to the direct analysis of DPP in selected food and biological samples, without any sample treatment and avoiding any potential contamination from laboratory equipment. The developed approach is fast (∼5 min) and accurate with recoveries of ∼100%. In addition, efficient propulsion of multiple Mg/Au micromotors in complex samples has also been demonstrated. The advantages of the micromotors-assisted technology, i.e., disposability, portability, and the possibility to carry out multiple analysis simultaneously, hold considerable promise for its application in food and biological control in analytical applications with high significance. PMID:26938969

  6. A Novel Electrocatalysis Method for Organic Pollutants Degradation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel electrocatalysis, ferrous ion catalyzed anodic-cathodic electrocatalysis (FACEC), was developed for organic pollutants degradation, which could promote the degradation by achieving synergetic effects of both anodic oxidation and cathodic indirect oxidation. The degradation rate of model pollutants - phenol by FACEC could increase by nearly 30% comparing with that of anodic electrocatalysis, and the current efficiency could reach 67%.

  7. Fluid extraction-biological degradation of organic wastes

    International Nuclear Information System (INIS)

    The Institute of Gas Technology (IGT) Fluid Extraction-Biological Degradation (FEBD) Process extracts hydrocarbon contaminants from soil and then biologically degrades the pollutants in aerobic bioreactors. The FEBD process has the potential to be an environmentally benign means of safely and economically degrading pollutants by overcoming bioavailability limitations of the pollutants in soil. The process consists of three stages; extraction, separation, and biodegradation. Contaminants are first removed from the soil by solubilization in supercritical carbondioxide in an above-ground extraction vessel. The hydrocarbon contaminants are then collected in a separation solvent, and clean CO2 is recycled to the extraction stage. Separation solvent containing the organic wastes is sent to the biodegradation stage where the wastes are converted to CO2, water, and biomass. All stages of the FEBD process have been successfully demonstrated. The extraction stage of the FEBD process relies on the unique properties of supercritical fluids (SCF) to remove organic contaminants from soil. An SCF is a compound at conditions exceeding its critical temperature and pressure. Fluids in the supercritical range have viscosities and diffusivities between liquids and gases with densities close to those of liquids. Supercritical fluids have the solution characteristics of liquids with better mass transfer capabilities. Extraction and separation are easily controlled because changes in the pressure (density) of an SCF can be used to change the solvation ability of the fluid

  8. Biological degradation of plastics: a comprehensive review.

    Science.gov (United States)

    Shah, Aamer Ali; Hasan, Fariha; Hameed, Abdul; Ahmed, Safia

    2008-01-01

    Lack of degradability and the closing of landfill sites as well as growing water and land pollution problems have led to concern about plastics. With the excessive use of plastics and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. Awareness of the waste problem and its impact on the environment has awakened new interest in the area of degradable polymers. The interest in environmental issues is growing and there are increasing demands to develop material which do not burden the environment significantly. Biodegradation is necessary for water-soluble or water-immiscible polymers because they eventually enter streams which can neither be recycled nor incinerated. It is important to consider the microbial degradation of natural and synthetic polymers in order to understand what is necessary for biodegradation and the mechanisms involved. This requires understanding of the interactions between materials and microorganisms and the biochemical changes involved. Widespread studies on the biodegradation of plastics have been carried out in order to overcome the environmental problems associated with synthetic plastic waste. This paper reviews the current research on the biodegradation of biodegradable and also the conventional synthetic plastics and also use of various techniques for the analysis of degradation in vitro. PMID:18337047

  9. Dye Degradation by Fungi: An Exercise in Applied Science for Biology Students

    Science.gov (United States)

    Lefebvre, Daniel D.; Chenaux, Peter; Edwards, Maureen

    2005-01-01

    An easily implemented practical exercise in applied science for biology students is presented that uses fungi to degrade an azo-dye. This is an example of bioremediation, the employment of living organisms to detoxify or contain pollutants. Its interdisciplinary nature widens students' perspectives of biology by exposing them to a chemical…

  10. Biological degradation of chernozems under irrigation

    Directory of Open Access Journals (Sweden)

    Oksana Naydyonova

    2014-12-01

    Full Text Available We studied the changes in the state of microbial cenosis of Ukraine’s chernozems under irrigation. Considerable part of Ukraine’s chernozems is located in the areas where humidification is insufficient and unstable. Irrigation is a soil-reclamation measure for chernozems of Ukrainian Forest-steppe and Steppe which enables getting the assured yield, especially vegetable and fodder crops. At the same time, irrigation is a powerful anthropogenic factor that affects the soil, causes a significant transformation of many of its properties and regimes including biological ones. Often these changes are negative. The purpose of our investigation was to identify changes in the state of microbial cenoses of chernozem soils under irrigation which depend on such factors as the quality of irrigation water, the duration and intensity of irrigation, the initial properties of soil, the structure of crop rotation, usage of fertilizing systems and agroameliorative techniques. We identified direction and evaluated a degree of changes in biological properties of chernozems under influence of irrigation in different agro-irrigational and soil-climatic conditions. In the long-term stationary field experiments we identified the following biological indices of irrigated soils and their non-irrigated analogues: a number of microorganisms which belong to main ecological-trophic groups, activity of soil enzymes (dehydrogenase, invertase, phenol oxidase, soil phytotoxic activity, cellulose destroying capacity of soil, indices of oligotrophy and mineralization, summary biological index (SBI and index of biological degradation (BDI. Results of researches showed that irrigation unbalanced the soil ecosystem and stipulated the forming of microbial cenosis with new parameters. Long-term intensive irrigation of typical chernozem (Kharkiv Region with fresh water under condition of 4-fields vegetable crop rotation led to the degradation changes of its microbial cenosis such as

  11. Biological degradation of heavy mineral soaps

    Energy Technology Data Exchange (ETDEWEB)

    Glombitza, F.; Iske, U.; Bullmann, M.

    1988-11-01

    The possibility of biological degradation is exemplified by a chemically highly resistant Zircon mineral of the heavy mineral soaps of the Baltic Sea, with the aid of Thiobacillus ferrooxidans and Acetobacter spec. strains. The total matrix of the mineral is dissolved and all trace elements contained are solubilized. The different mechanisms of the leaching reaction give different distributions of the dissolved compounds in the phases of the leaching system. Concerning the REE a selectivity based on their physical characteristics is observed. There is a preferential solution of the light REE as compared to the heavy REE. The conditions of use are discussed.

  12. Bioremediation via in situ microbial degradation of organic pollutants.

    Science.gov (United States)

    Vogt, Carsten; Richnow, Hans Hermann

    2014-01-01

    Contamination of soil and natural waters by organic pollutants is a global problem. The major organic pollutants of point sources are mineral oil, fuel components, and chlorinated hydrocarbons. Research from the last two decades discovered that most of these compounds are biodegradable under anoxic conditions. This has led to the rise of bioremediation strategies based on the in situ biodegradation of pollutants. Monitored natural attenuation is a concept by which a contaminated site is remediated by natural biodegradation; to evaluate such processes, a combination of chemical and microbiological methods are usually used. Compound specific stable isotope analysis emerged as a key method for detecting and quantifying in situ biodegradation. Natural attenuation processes can be initiated or accelerated by manipulating the environmental conditions to become favorable for indigenous pollutant degrading microbial communities or by adding externally breeded specific pollutant degrading microorganisms; these techniques are referred to as enhanced natural attenuation. Xenobiotic micropollutants, such as pesticides or pharmaceuticals, contaminate diffusively large areas in low concentrations; the biodegradation pattern of such contaminations are not yet understood. PMID:24337042

  13. Air pollutants degrade floral scents and increase insect foraging times

    Science.gov (United States)

    Fuentes, Jose D.; Chamecki, Marcelo; Roulston, T.'ai; Chen, Bicheng; Pratt, Kenneth R.

    2016-09-01

    Flowers emit mixtures of scents that mediate plant-insect interactions such as attracting insect pollinators. Because of their volatile nature, however, floral scents readily react with ozone, nitrate radical, and hydroxyl radical. The result of such reactions is the degradation and the chemical modification of scent plumes downwind of floral sources. Large Eddy Simulations (LES) are developed to investigate dispersion and chemical degradation and modification of floral scents due to reactions with ozone, hydroxyl radical, and nitrate radical within the atmospheric surface layer. Impacts on foraging insects are investigated by utilizing a random walk model to simulate insect search behavior. Results indicate that even moderate air pollutant levels (e.g., ozone mixing ratios greater than 60 parts per billion on a per volume basis, ppbv) substantially degrade floral volatiles and alter the chemical composition of released floral scents. As a result, insect success rates of locating plumes of floral scents were reduced and foraging times increased in polluted air masses due to considerable degradation and changes in the composition of floral scents. Results also indicate that plant-pollinator interactions could be sensitive to changes in floral scent composition, especially if insects are unable to adapt to the modified scentscape. The increase in foraging time could have severe cascading and pernicious impacts on the fitness of foraging insects by reducing the time devoted to other necessary tasks.

  14. EFFECTS OF POLLUTANTS ON BIOLOGICAL SYSTEMS. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1980-10-01

    Planning a rational energy future requires anticipating the environmental consequences of various technologies. This is difficult to do with precision as the effects of pollutants are often determined by interactions between and among complex physical (abiotic) and biological (biotic) systems. A given pollutant may affect human beings through direct exposure or indirectly through inducing changes to biological systems which humans need to utilize. The concentration of a toxin in the food chain or the destruction of organisms necessary for the maintenance of high quality water are examples of indirect effects. Pollutants can be transformed and/or degraded as they establish residence in various components of an ecosystem. Anticipation and amelioration of pollutant effects involves the integration of a vast range of data. This data includes: (1) physical and chemical characterization cf the pollutant as it enters the environment; (2) determining effects on the various components (biotic and abiotic) within the context of the functioning ecosystem of interest; (3) transformation in movements and/or degradation of the pollutant within that ecosystem and within specific organisms and physical components; and (4) determining a detailed biochemical and biological picture of the interactions of pollutants with particular organisms and/or their cellular components judged salient for various processes. The major programs described below are designed to answer parts of the above fundamental questions relevant to pollutants generated by energy related technologies. Their emphasis is on anticipating consequences to the biological components of various ecosystems. The work ranges from studies involving parts of a single cell (the membranes) to studies involving the whole ecosystem (in the pelagic zone of a lake). The programs take advantage of expertise and technical abilities present at LBL. Two small exploratory projects which were of brief duration and not related to

  15. Roles of protein ubiquitination and degradation kinetics in biological oscillations.

    Directory of Open Access Journals (Sweden)

    Lida Xu

    Full Text Available Protein ubiquitination and degradation play important roles in many biological functions and are associated with many human diseases. It is well known that for biochemical oscillations to occur, proper degradation rates of the participating proteins are needed. In most mathematical models of biochemical reactions, linear degradation kinetics has been used. However, the degradation kinetics in real systems may be nonlinear, and how nonlinear degradation kinetics affects biological oscillations are not well understood. In this study, we first develop a biochemical reaction model of protein ubiquitination and degradation and calculate the degradation rate against the concentration of the free substrate. We show that the protein degradation kinetics mainly follows the Michaelis-Menten formulation with a time delay caused by ubiquitination and deubiquitination. We then study analytically how the Michaelis-Menten degradation kinetics affects the instabilities that lead to oscillations using three generic oscillation models: 1 a positive feedback mediated oscillator; 2 a positive-plus-negative feedback mediated oscillator; and 3 a negative feedback mediated oscillator. In all three cases, nonlinear degradation kinetics promotes oscillations, especially for the negative feedback mediated oscillator, resulting in much larger oscillation amplitudes and slower frequencies than those observed with linear kinetics. However, the time delay due to protein ubiquitination and deubiquitination generally suppresses oscillations, reducing the amplitude and increasing the frequency of the oscillations. These theoretical analyses provide mechanistic insights into the effects of specific proteins in the ubiquitination-proteasome system on biological oscillations.

  16. Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Naresh eSinghal

    2016-05-01

    Full Text Available Global water scarcity is driving the need for identifying new water source. Wastewater could be a potential water resource if appropriate treatment technologies could be developed. One of the barriers to obtaining high quality water from wastewater arises from the presence of organic micropollutants, which are biologically active at trace levels. Removal of these compounds from wastewater by current physico-chemical technologies is prohibitively expensive. While biological treatment processes are comparatively cheap, current systems are not capable of degrading the wide range of organic micropollutants present in wastewater. As current wastewater treatment processes were developed for treating conventional pollutants present at mg/L levels, degrading the ng/L levels of micropollutants will require a different approach to system design and operation. In this paper we discuss strategies that could be employed to develop biological wastewater treatment systems capable of degrading organic micropollutants.

  17. Aerobic Microbial Degradation of Chlorochromate Compounds Polluting the Environment

    International Nuclear Information System (INIS)

    Eight soil and sludge samples which have been polluted with petroleum wastes for more than 41 years were used for isolation of adapted indigenous microbial communities able to mineralize the chloro aromatic compounds [3-chlorobenzoic acid (3-CBA), 2,4-dichlorophenol (2,4-DCP), 2,6-dichlorophenol indole phenol (2,6-DCPP) and 1,2,4-trichlorobenzene (1,2,4-TCB)] and use them as a sole carbon and energy sources. From these communities, the most promising bacterial strain MAM-24 which has the ability to degrade the four chosen aromatic compounds was isolated and identified by comparative sequence analysis for its 16S-rRNA coding genes and it was identified as Bacillus mucilaginosus HQ 013329. Degradation percentage was quantified by HPLC. Degradation products were identified by GC-MS analysis which revealed that the isolated strain and its mutant dechlorinated the four chloro aromatic compounds in the first step forming acetophenone which is considered as the corner stone of the intermediate compounds

  18. Bioremediation of soil polluted with crude oil and its derivatives: Microorganisms, degradation pathways, technologies

    Directory of Open Access Journals (Sweden)

    Beškoski Vladimir P.

    2012-01-01

    Full Text Available The contamination of soil and water with petroleum and its products occurs due to accidental spills during exploitation, transport, processing, storing and use. In order to control the environmental risks caused by petroleum products a variety of techniques based on physical, chemical and biological methods have been used. Biological methods are considered to have a comparative advantage as cost effective and environmentally friendly technologies. Bioremediation, defined as the use of biological systems to destroy and reduce the concentrations of hazardous waste from contaminated sites, is an evolving technology for the removal and degradation of petroleum hydrocarbons as well as industrial solvents, phenols and pesticides. Microorganisms are the main bioremediation agents due to their diverse metabolic capacities. In order to enhance the rate of pollutant degradation the technology optimizes the conditions for the growth of microorganisms present in soil by aeration, nutrient addition and, if necessary, by adding separately prepared microorganisms cultures. The other factors that influence the efficiency of process are temperature, humidity, presence of surfactants, soil pH, mineral composition, content of organic substance of soil as well as type and concentration of contaminant. This paper presents a review of our ex situ bioremediation procedures successfully implemented on the industrial level. This technology was used for treatment of soils contaminated by crude oil and its derivatives originated from refinery as well as soils polluted with oil fuel and transformer oil.

  19. The Practice of Water Pollution Biology.

    Science.gov (United States)

    Mackenthun, Kenneth M.

    Water pollution techniques and practices, including data analysis, interpretation and display are described in this book intended primarily for the biologist inexperienced in this work, and for sanitary engineers, chemists, and water pollution control administrators. The characteristics of aquatic environments, their biota, and the effects of…

  20. Policy Tools for Managing Biological Pollution Risks from Trade

    OpenAIRE

    Reeling, Carson J.; Horan, Richard D.

    2015-01-01

    The spread of infectious livestock diseases can be considered a form of “biological pollution.” Prior literature asserts trade-related biological pollution externalities arise from trade in contaminated goods. However, this literature ignores (i) importers’ ability to reduce disease spillovers via private risk management choices and (ii) the potential for strategic interactions to arise when an importer’s risk management measures simultaneously protect himself and others. This paper explores ...

  1. Impact of sources of environmental degradation on microbial community dynamics in non-polluted and metal-polluted soils.

    Science.gov (United States)

    Epelde, Lur; Martín-Sánchez, Iker; González-Oreja, José A; Anza, Mikel; Gómez-Sagasti, María T; Garbisu, Carlos

    2012-09-01

    Soils are currently being degraded at an alarming rate due to increasing pressure from different sources of environmental degradation. Consequently, we carried out a 4-month microcosm experiment to measure the impact of different sources of environmental degradation (biodiversity loss, nitrogen deposition and climate change) on soil health in a non-polluted (non-degraded) and a heavily metal-polluted (degraded) soil, and to compare their responses. To this aim, we determined a variety of soil microbial properties with potential as bioindicators of soil health: basal respiration; β-glucosaminidase and protease activities; abundance (Q-PCR) of bacterial, fungal and chitinase genes; richness (PCR-DGGE) of fungal and chitinase genes. Non-polluted and metal-polluted soils showed different response microbial dynamics when subjected to sources of environmental degradation. The non-polluted soil appeared resilient to "biodiversity loss" and "climate change" treatments. The metal-polluted soil was probably already too severely affected by the presence of high levels of toxic metals to respond to other sources of stress. Our data together suggests that soil microbial activity and biomass parameters are more sensitive to the applied sources of environmental degradation, showing immediate responses of greater magnitude, while soil microbial diversity parameters do not show such variations.

  2. Biological activities of radiation-degraded carrageenan

    Energy Technology Data Exchange (ETDEWEB)

    Relleve, Lorna; Dela Rosa, Alumanda; ABAD, Lucille; Aranilla, Charito; Aliganga, Anne Kathrina [Philippine Nuclear Research Institute, Quezon City (Philippines); Yoshii, Fumio; Kume, Tamikazu; Nagasawa, Naotsugu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Carrageenans were irradiated in solid state to doses 50-1000 kGy in air at ambient temperature. Changes in their molecular weight and functional properties with respect to their FT-IR and UV spectra were evaluated. Irradiation of carrageenans resulted in a rapid decrease of molecular weight indicating main chain scission in their polymeric structures. Formations of some compounds were evident by new absorption peaks in their UV and FT-IR spectra and quantitative analyses of the FT-IR spectra which, in addition, support that there is a breakdown in the carrageenan structure. Irradiated carrageenans were investigated for their plant growth-promoting activity. Carrageenans were added to the nutrient solutions for rice seedlings under non-circulating hydroponics cultivation. Irradiated carrageenan induced weight gain in treated rice seedlings. Maximum weight gain was obtained with KC irradiated at 100 kGy while treatment with IC at 500 kGy. IC exhibited less growth promoting properties than KC. The growth of fungi on the roots disappeared with treatment of IC and KC irradiated at 500 kGy. Growth promotion of some leafy vegetables was also observed with application of degraded KC. The carrageenan molecule has been broken down to smaller molecule (s) or compound (s) that can be absorbed effectively as nourishment factors and anti-microbial agents by plants. (author)

  3. MSW: From pollution/degradation source to resource

    Directory of Open Access Journals (Sweden)

    Francesca Pirlone

    2016-08-01

    Full Text Available Municipal Solid Waste is one of the biggest challenges that cities are facing: MSW is considered of the main sources of energy consumption, urban degradation and pollution. This paper defines the major negative effects of MSW on cities and proposes new solutions to guide waste policies. Most contemporary waste management efforts are focused at regional government level and based on high tech waste disposal by methods such as landfill and incineration. However, these methods are becoming increasingly expensive, energy inefficient and pollutant: waste disposal is not sustainable and will have negative implications for future generations. In this paper are proposed all the principle solutions that could be undertaken. New policy instruments are presented updating and adapting policies and encouraging innovation for less wasteful systems. Waste management plans are fundamental to increase the ability of urban areas to effectively adapt to waste challenges. These plans have to give an outline of waste streams and treatment options and provide a scenario for the following years that significantly reduce landfills and incinerators in favor of prevention, reuse and recycling. The key aim of an urban waste management plan is to set out the work towards a zero waste economy as part of the transition to a sustainable economy. Other questions remain still opened: How to change people’s behavior? What is the role of environmental education and risk perception? It is sure that the involvement of the various stakeholders and the wider public in the planning process should aim at ensuring acceptance of the waste policy.

  4. Radiation degradation of alginate and some results of biological effect of degraded alginate on plants

    Energy Technology Data Exchange (ETDEWEB)

    Hien, N.Q.; Hai, L.; Luan, L.Q.; Hanh, T.T. [Nuclear Research Institute, Dalat (Viet Nam); Nagasawa, Naotsugu; Yoshii, Fumio; Makuuchi, Keizo; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Radiation degradation yields (Gd) of alginate in aqueous solution with different concentration were determined by viscometry method. The relationship between Gd and the alginate concentration was found out as: Gd=33.5 x C{sup -0.68}, with C% (w/v) and dry alginate referred to C=100%. An empirical equation for preparing degraded alginate with the desired low viscometry average molecular weight (Mv) by radiation was proposed. Alginate extracted directly horn seaweed'Sagassum, degraded by radiation was used for field experiments and results of the biological effect on plants (tea, carrot, chrysanthemum) were presented. (author)

  5. Radiation degradation of alginate and some results of biological effect of degraded alginate on plants

    International Nuclear Information System (INIS)

    Radiation degradation yields (Gd) of alginate in aqueous solution with different concentration were determined by viscometry method. The relationship between Gd and the alginate concentration was found out as: Gd=33.5 x C-0.68, with C% (w/v) and dry alginate referred to C=100%. An empirical equation for preparing degraded alginate with the desired low viscometry average molecular weight (Mv) by radiation was proposed. Alginate extracted directly horn seaweed'Sagassum, degraded by radiation was used for field experiments and results of the biological effect on plants (tea, carrot, chrysanthemum) were presented. (author)

  6. Linking exposure to environmental pollutants with biological effects

    DEFF Research Database (Denmark)

    Sørensen, Mette; Autrup, Herman; Møller, Peter;

    2003-01-01

    Exposure to ambient air pollution has been associated with cancer. Ambient air contains a complex mixture of toxics, including particulate matter (PM) and benzene. Carcinogenic effects of PM may relate both to the content of PAH and to oxidative DNA damage generated by transition metals, benzene......, metabolism and inflammation. By means of personal monitoring and biomarkers of internal dose, biologically effective dose and susceptibility, it should be possible to characterize individual exposure and identify air pollution sources with relevant biological effects. In a series of studies, individual......, biological effects of air pollutants appear mainly related to oxidative stress via personal exposure and not to urban background levels. Future developments include personal time-resolved monitors for exposure to ultrafine PM and PM(2.5,) use of GPS, as well as genomics and proteomics based biomarkers....

  7. Influence of mussel biological variability on pollution biomarkers.

    Science.gov (United States)

    González-Fernández, Carmen; Albentosa, Marina; Campillo, Juan A; Viñas, Lucía; Fumega, José; Franco, Angeles; Besada, Victoria; González-Quijano, Amelia; Bellas, Juan

    2015-02-01

    This study deals with the identification and characterization of biological variables that may affect some of the biological responses used as pollution biomarkers. With this aim, during the 2012 mussel survey of the Spanish Marine Pollution monitoring program (SMP), at the North-Atlantic coast, several quantitative and qualitative biological variables were measured (corporal and shell indices, gonadal development and reserves composition). Studied biomarkers were antioxidant enzymatic activities (CAT, GST, GR), lipid peroxidation (LPO) and the physiological rates integrated in the SFG biomarker (CR, AE, RR). Site pollution was considered as the chemical concentration in the whole tissues of mussels. A great geographical variability was observed for the biological variables, which was mainly linked to the differences in food availability along the studied region. An inverse relationship between antioxidant enzymes and the nutritional status of the organism was evidenced, whereas LPO was positively related to nutritional status and, therefore, with higher metabolic costs, with their associated ROS generation. Mussel condition was also inversely related to CR, and therefore to SFG, suggesting that mussels keep an "ecological memory" from the habitat where they have been collected. No overall relationship was observed between pollution and biomarkers, but a significant overall effect of biological variables on both biochemical and physiological biomarkers was evidenced. It was concluded that when a wide range of certain environmental factors, as food availability, coexist in the same monitoring program, it determines a great variability in mussel populations which mask the effect of contaminants on biomarkers. PMID:25483414

  8. Degradation of air polluted by organic compounds; Degradacion de aire contaminado por compuestos organicos

    Energy Technology Data Exchange (ETDEWEB)

    Santoyo O, E.L.; Lizama S, B.E. [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, 56000 Toluca (Mexico); Vazquez A, O.; Luna C, P.C.; Arredondo H, S. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    According to the Mexican standard NOM-010-STPS-1994 it has been established concentrations of maximum permissible levels in workable air for styrene in the range 420-1710 mg/m{sup 3} and for xylene between 218-870 mg/m{sup 3}. In this work it is studied a biological treatment (bio filtration) for air polluted by xylene and styrene where the microorganisms are adhered at synthetic fiber, these degrade to the organic compounds that across in gaseous state and they are mineralized toward CO{sub 2} and H{sub 2}O. The characteristics of temperature, p H, concentration of organic compound and mineral parameters, as well as, the biomass quantity have been optimized for that bio filters efficiency were greater than those reported in other works. (Author)

  9. Effective degradation of refractory organic pollutants in landfill leachate by electro-peroxone treatment

    International Nuclear Information System (INIS)

    Highlights: • Landfill leachate concentrate is effectively treated by a novel E-peroxone process. • E-peroxone process combines ozonation with electrolysis to drive peroxone reaction. • H2O2 is electro-generated in situ from O2 in sparged gas from an ozone generator. • Hydroxyl radicals are produced from sparged O3 and electro-generated H2O2. • Refractory organic pollutants can be effectively mineralized in E-peroxone process. -- Abstract: A novel electrochemically driven process (E-peroxone) was employed to treat landfill leachate concentrates that were generated from reverse osmosis of biologically pretreated leachate. In the E-peroxone system, O3 was produced from O2 using an ozone generator. The O2 and O3 gas mixture from the ozone generator was then sparged into a reactor that had a carbon–polytetrafluorethylene (carbon–PTFE) cathode, which can convert O2 to H2O2 effectively. The in situ generated H2O2 then reacted with the sparged O3 to produce a very powerful oxidant ·OH, thus achieving synergy of O3 and H2O2 (i.e., peroxone) on organic pollutant degradation. Up to 87% of the total organic carbon (TOC) was removed from the leachate concentrates after 4 h of the E-peroxone process. In comparison, ozonation, conventional peroxone (using externally added H2O2), and electro-Fenton treatment removed only 45%, 65%, and 71% TOC, respectively, under similar reaction conditions in 4 h. The results indicate that the E-peroxone process may provide a convenient and effective alternative to conventional advanced oxidation processes for degrading refractory organic pollutants in wastewater

  10. River Pollution: Part II. Biological Methods for Assessing Water Quality.

    Science.gov (United States)

    Openshaw, Peter

    1984-01-01

    Discusses methods used in the biological assessment of river quality and such indicators of clean and polluted waters as the Trent Biotic Index, Chandler Score System, and species diversity indexes. Includes a summary of a river classification scheme based on quality criteria related to water use. (JN)

  11. New Photocatalysis for Effective Degradation of Organic Pollutants in Water

    Science.gov (United States)

    Zarei Chaleshtori, M.; Saupe, G. B.; Masoud, S.

    2009-12-01

    The presence of harmful compounds in water supplies and in the discharge of wastewater from chemical industries, power plants, and agricultural sources is a topic of global concern. The processes and technologies available at the present time for the treatment of polluted water are varied that include traditional water treatment processes such as biological, thermal and chemical treatment. All these water treatment processes, have limitations of their own and none is cost effective. Advanced oxidation processes have been proposed as an alternative for the treatment of this kind of wastewater. Heterogeneous photocatalysis has recently emerged as an efficient method for purifying water. TiO2 has generally been demonstrated to be the most active semiconductor material for decontamination water. One significant factor is the cost of separation TiO2, which is generally a powder having a very small particle size from the water after treatment by either sedimentation or ultrafiltration. The new photocatalyst, HTiNbO5, has been tested to determine whether its photocatalytic efficiency is good enough for use in photocatalytic water purification since it has high surface area and relatively large particle size. The larger particle sizes of the porous materials facilitate catalyst removal from a solution, after purification has taken place. It can be separated from water easily than TiO2, a significant technical improvement that might eliminate the tedious final filtration necessary with a slurry. These materials are characterized and tested as water decontamination photocatalysts. The new catalyst exhibited excellent catalytic activity, but with a strong pH dependence on the photo efficiency. These results suggest that elimination of the ion exchange character of the catalyst may greatly improve its performance at various pHs. This new research proposes to study the effects of a topotactic dehydration reaction on these new porous material catalysts.

  12. Photoactive chitosan: A step towards a green strategy for pollutant degradation

    OpenAIRE

    Walalawela, Niluksha; Greer, Alexander

    2014-01-01

    This article is a highlight of the paper by Ferrari et al. in this issue of Photochemistry and Photobiology. It describes the innovative use of rose bengal-conjugated chitosan as a reusable green catalyst that photo-degrades phenolic compounds in aqueous media, and thereby has decontamination potential of polluted waters. Whether a next-generation photoactive polymer that produces singlet oxygen is a solution to pollutant degradation can be argued. It is as yet unclear what ...

  13. Isolation and Screening of Hydrocarbon Degrading Bacterial Strains for Bioremediation of Petroleum Pollution in Qatar

    OpenAIRE

    Al Disi, Zulfa Ali

    2013-01-01

    Pollution, due to activities related to the oil industry, represents a serious threat to the natural environment. The application of biotechnological methods provides much safer and sustainable alternatives for bioremediation of polluted areas, using microorganisms. Several techniques for the isolation of hydrocarbon degrading bacteria have been investigated and published worldwide. A wide range of bilogical activities was shown. However, local hydrocarbon degrading strains and the factors af...

  14. Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility

    OpenAIRE

    Díaz Fernández, Eduardo

    2004-01-01

    Although most organisms have detoxification abilities (i.e mineralization, transformation and/or immobilization of pollutants), microorganisms, particularly bacteria, play a crucial role in biogeochemical cycles and in sustainable development of the biosphere. Next to glucosyl residues, the benzene ring is the most widely distributed unit of chemical structure in nature, and many of the aromatic compounds are major environmental pollutants. Bacteria have developed strategies fo...

  15. Radiation degradation of carbohydrates and their biological activities for plants

    Energy Technology Data Exchange (ETDEWEB)

    Kume, T.; Nagasawa, N.; Matsuhashi, S. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment] [and others

    2000-03-01

    Radiation effects on carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to improve the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities such as anti-bacterial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Pectic fragments obtained from degraded pectin induced the phytoalexins such as glyceollins in soybean and pisatin in pea. The irradiated chitosan shows the higher elicitor activity for pisatin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. Kappa and iota carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa irradiated at 100 kGy. Some radiation degraded carbohydrates suppressed the damage of heavy metals on plants. The effects of irradiated carbohydrates on transportation of heavy metals have been investigated by PETIS (Positron Emitting Tracer Imaging System) and autoradiography using {sup 48}V and {sup 62}Zn. (author)

  16. Radiation degradation of carbohydrates and their biological activities for plants

    International Nuclear Information System (INIS)

    Radiation effects on carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to improve the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities such as anti-bacterial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Pectic fragments obtained from degraded pectin induced the phytoalexins such as glyceollins in soybean and pisatin in pea. The irradiated chitosan shows the higher elicitor activity for pisatin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. Kappa and iota carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa irradiated at 100 kGy. Some radiation degraded carbohydrates suppressed the damage of heavy metals on plants. The effects of irradiated carbohydrates on transportation of heavy metals have been investigated by PETIS (Positron Emitting Tracer Imaging System) and autoradiography using 48V and 62Zn. (author)

  17. Assessing the response of degradative biofilms to groundwater pollutants

    OpenAIRE

    Keasling, Jay D.

    2002-01-01

    There is limited knowledge of interspecies interactions in biofilm communities. In this study, Pseudomonas sp. GJ1, a 2-chloroethanol (2-CE) degrading organism, and Pseudomonas putida DMP1, a p-cresol degrader, produced distinct biofilms in response to model mixed waste streams comprised of 2-CE and various p-cresol concentrations. The two organisms maintained a commensal relationship, with DMP1 mitigating the inhibitory effects of p-cresol on GJ1. A triple labeling technique compatible with ...

  18. Microbial degradation of street dust polycyclic aromatic hydrocarbons in microcosms simulating diffuse pollution of urban soil

    DEFF Research Database (Denmark)

    Johnsen, Anders R; de Lipthay, Julia R; Sørensen, Søren J;

    2006-01-01

    Diffuse pollution with polycyclic aromatic hydrocarbons (PAHs) of topsoil in urban regions has caused increasing concerns in recent years. We simulated diffuse pollution of soil in microcosms by spiking sandy topsoil (A-horizon) and coarse, mineral subsoil (C-horizon) with street dust (PM63......) isolated from municipal street sweepings from central Copenhagen. The microbial communities adapted to PAH degradation in microcosms spiked with street dust in both A-horizon and C-horizon soils, in spite of low PAH-concentrations. The increased potential for PAH degradation was demonstrated on several...... levels: by slowly diminishing PAH-concentrations, increased mineralization of 14C-PAHs, increasing numbers of PAH degraders and increased prevalence of nah and pdo1 PAH degradation genes, i.e. the microbial communities quickly adapted to PAH degradation. Three- and 4-ring PAHs from the street dust were...

  19. Degradation of environment pollutant dyes using phytosynthesized metal nanocatalysts

    Science.gov (United States)

    MeenaKumari, M.; Philip, Daizy

    2015-01-01

    We present for the first time biogenic reduction and stabilization of gold and silver ions at room temperature using fruit juice of Punica granatum. The formation, morphology and crystalline structure of the synthesized nanoparticles are determined using UV-Visible, XRD and TEM. An attempt to reveal the partial role of phenolic hydroxyls in the reduction of Au3+ and Ag+ is done through FTIR analysis. The synthesized nanoparticles are used as potential catalysts in the degradation of a cationic phenothiazine dye, an anionic mono azo dye and a cationic fluorescent dye. The calculated values of percentage removal of dyes and the rate constants from pseudo first order kinetic data fit give a comparative study on degradation of organic dyes in presence of prepared gold and silver nanoparticles.

  20. Bacterial degradation of naproxen--undisclosed pollutant in the environment.

    Science.gov (United States)

    Wojcieszyńska, Danuta; Domaradzka, Dorota; Hupert-Kocurek, Katarzyna; Guzik, Urszula

    2014-12-01

    The presence of non-steroidal anti-inflammatory drugs (NSAIDs) in the environment is an emerging problem due to their potential influence on human health and biocenosis. This is the first report on the biotransformation of naproxen, a polycyclic NSAID, by a bacterial strain. Stenotrophomonas maltophilia KB2 transformed naproxen within 35 days with about 28% degradation efficiency. Under cometabolic conditions with glucose or phenol as a carbon source degradation efficiency was 78% and 40%, respectively. Moreover, in the presence of naproxen phenol monooxygenase, naphthalene dioxygenase, hydroxyquinol 1,2-dioxygenase and gentisate 1,2-dioxygenase were induced. This suggests that degradation of naproxen occurs by its hydroxylation to 5,7,8-trihydroxynaproxen, an intermediate that can be cleaved by hydroxyquinol 1,2-dioxygenase. The cleavage product is probably further oxidatively cleaved by gentisate 1,2-dioxygenase. The obtained results provide the basis for the use of cometabolic systems in the bioremediation of polycyclic NSAID-contaminated environments. PMID:25026371

  1. Quantification of organic pollutant degradation in contaminated aquifers using compound specific stable isotope analysis – Review of recent developments

    NARCIS (Netherlands)

    Thullner, M.; Centler, F.; Richnow, H.-H.; Fischer, A.

    2012-01-01

    Compound specific stable isotope analysis (CSIA) has been established as a viable tool for proving, characterizing and assessing degradation of organic pollutants within contaminated aquifers. The fractionation of stable isotopes during contaminant degradation leads to observable shifts in stable is

  2. Degradation of Organic Pollutants in Water by Catalytic Ozonation

    Institute of Scientific and Technical Information of China (English)

    LI Xin; YAO Jun-hai; QI Jing-yao

    2007-01-01

    Different series of transition metal catalysts supported on Al2O3 were prepared by the impregnation method. The catalytic activity was measured in a batch reactor with ozone as the oxidizing reagent. The experimental results indicate that Cu/Al2O3 has a very effective catalytic activity during the ozonation of organic pollutants in water. The optimum conditions for preparing Cu/Al2O3 were systematically investigated with the orthogonal testing method. Furthermore, the results also show that the surface properties of catalyst are not compulsory for effective oxidation.

  3. Catalytical degradation of relevant pollutants from waters using magnetic nanocatalysts

    Science.gov (United States)

    Nadejde, C.; Neamtu, M.; Schneider, R. J.; Hodoroaba, V.-D.; Ababei, G.; Panne, U.

    2015-10-01

    The catalytic efficiency of two magnetically responsive nanocatalysts was evaluated for the degradation of Reactive Black 5 (RB5) and Reactive Yellow 84 (RY84) azo dyes using hydrogen peroxide as oxidant under very mild conditions (atmospheric pressure, room temperature). In order to obtain the nanocatalysts, the surface of magnetite (Fe3O4) nanoparticles, prepared by a co-precipitation method, was further modified with ferrous oxalate, a highly sensitive non-hazardous reducing agent. The sensitized nanomaterials were characterized by X-ray diffraction, scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy and vibrating sample magnetometry, and used in the catalytic wet hydrogen peroxide oxidation (CWHPO) of RB5 and RY84, in laboratory-scale experiments. The effect of important variables such as catalyst dosage, H2O2 concentration, and contact time was studied in the dye degradation kinetics. The results showed that it was possible to remove up to 99.7% dye in the presence of 20 mM H2O2 after 240 min of oxidation for a catalyst concentration of 10 g L-1 at 25 °C and initial pH value of 9.0. CWHPO of reactive dyes using sensitized magnetic nanocatalysts can be a suitable pre-treatment method for complete decolorization of effluents from textile dyeing and finishing processes, once the optimum operating conditions are established.

  4. Radiation Induced Degradation of Organic Pollutants in Waters and Wastewaters.

    Science.gov (United States)

    Wojnárovits, László; Takács, Erzsébet

    2016-08-01

    In water treatment by ionizing radiation, and also in other advanced oxidation processes, the main goal is to destroy, or at least to deactivate harmful water contaminants: pharmaceutical compounds, pesticides, surfactants, health-care products, etc. The chemical transformations are mainly initiated by hydroxyl radicals, and the reactions of the formed carbon centered radicals with dissolved oxygen basically determine the rate of oxidation. The concentration of the target compounds is generally very low as compared to the concentration of such natural 'impurities' as chloride and carbonate/bicarbonate ions or the dissolved humic substances (generally referred to as dissolved organic carbon), which consume the majority of the hydroxyl radicals. The different constituents compete for reacting with radicals initiating the degradation. This manuscript discusses the radiation chemistry of this complex system. It includes the reactions of the primary water radiolysis intermediates (hydroxyl radical, hydrated electron/hydrogen atom), the reactions of radicals that form in radical transfer reactions (dichloride-, carbonate- and sulfate radical anions) and also the contribution to the degradation of organic compounds of such additives as hydrogen peroxide, ozone or persulfate. PMID:27573402

  5. Photocatalytic Degradation of Persistent and Toxic Organic Pollutants and its Mechanism

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jincai; Jimmy Yu; TAO Shen; WANG Wanhong; CHEN Chuncheng

    2007-01-01

    @@ Persistent and toxic organic pollutants are serious environmental concerns in many parts of the world. These pollutants are often difficult to deal with using conventional treatment processes. Photocatalysis is an emerging technology which uses environmentally-friendly oxidants (oxygen, hydrogen peroxide, ozone),photocatalysts (titanium dioxide, ferrous ions or its complexes) and ultraviolet (UV) radiation to degrade and mineralize the toxic organic pollutants. The major drawback is that photocatalytic processes need to be activated by ultraviolet light, which accounts for only about 4% of the incoming solar energy; the overall reaction efficiency is still very low.

  6. Microbial degradation. Mass transfer in the system pollutant - water - sediment; Mikrobieller Abbau. Massentransfer im System Schadstoff - Wasser - Sediment

    Energy Technology Data Exchange (ETDEWEB)

    Tiehm, Andreas [Technologiezentrum Wasser (TZW), Karlsruhe (Germany). Abt. Umweltbiotechnologie und Altlasten; Kranzioch, Irene; Stoll, Claudia

    2011-09-15

    The microbial degradation of pollutants in the aquatic environment essentially is influenced by the prevailing redox conditions and mass exchange processes (bioavailability). Within a new project, the Technologiezentrum Wasser TZW (Karlsruhe, Federal Republic of Germany) deals with the microbial conversion under dynamic conditions such as those expected in the area of the Three Gorges Dam at the Yangtze River. In particular, molecular-biological methods (PCR, polymerase chain reaction and DGGE Denatured gradient gel electrophoresis) are used for a targeted monitoring and further developed. The focus of the investigation initially focuses on the degradation of halogenated substances which are used as main substances for understanding the mass exchange between sediment and water as well as the microbial conversion processes. An enhanced understanding of the process and the compilation of the dynamic sales performance can be defined as a target.

  7. Recent development of VUV-based processes for air pollutants degradation

    Directory of Open Access Journals (Sweden)

    Haibao eHuang

    2016-03-01

    Full Text Available As air pollution become more and more serious nowadays, it is essential to find out a way to efficiently degrade the air pollutants. Vacuum ultraviolet (VUV-based processes are an emerging and promising technologies for environmental remediation such as air cleaning, wastewater treatment and air/water disinfection. With VUV irradiation, photolysis, photocatalyst is and ozone-assisted oxidation are involved at the same time, resulting in the fast degradation of air pollutants because of their strong oxidizing capacity. The mechanisms of how the oxidants are produced and reacted are discussed in this review. This paper mainly focuses on the three VUV-based oxidation processes including VUV photolysis, VUV combined with ozone-assisted oxidation and VUV-PCO with emphasis on their mechanisms and applications. Also, the outlooks of these processes are outlined in this paper.

  8. Natural polymers supported copper nanoparticles for pollutants degradation

    Science.gov (United States)

    Haider, Sajjad; Kamal, Tahseen; Khan, Sher Bahadar; Omer, Muhammad; Haider, Adnan; Khan, Farman Ullah; Asiri, Abdullah M.

    2016-11-01

    In this report, chitosan (CS) was adhered on cellulose microfiber mat (CMM) to prepare CS-CMM. This was used as host for copper (Cu) nanoparticles preparation. After adsorption of Cu2+ ions from an aqueous solution of CuSO4, the metal ions entrapped in CS coating layer was treated with sodium borohydride (NaBH4) to prepare Cu nanoparticles loaded CS-CMM (Cu/CS-CMM). Fourier transform infrared spectroscopy, and X-ray diffraction confirmed the formation of Cu/CS-CMM hybrid. Scanning electron microscopy analysis was performed to reveal the morphology of the prepared catalyst. The prepared Cu/CS-CMM was employed as a catalyst for the degradation of nitro-aromatic compounds of 2-nitrophenol (2NP) and 4-nitrophenol (4NP) as well as an organic cresyl blue (CB) dye. Remarkably, the turnover frequency in the case of 2NP and 4NP using Cu/CS-CMM reaches 103.3 and 88.6 h-1, outperforming previously reported Cu nanoparticles immobilized in hydrogel-based catalytic systems. The rate constants for 2NP, 4NP and CB were 1.2 × 10-3 s-1, 2.1 × 10-3 s-1 and, 1.3 × 10-3 s-1, respectively. Besides, we discussed the separation of the catalyst from the reaction mixture and its re-usability.

  9. Radiation degradation of aromatic pollutants exit in wastewater and ph dependence

    CERN Document Server

    Takriti, S

    2002-01-01

    The effect of gamma radiation on the degradation of phenol (hydroxybenzene), resorcinol (1,3 dihydroxybenzen) and hydroquinone (1,4 dihydroxybenzen) exit in waste water was investigated. The concentrations of these pollutants as well as the irradiated solution ph were studied. The results showed that the phenol is very resistance against the radiation doses comparing the other phenol compounds. Phenol was also a product of radiolysis of resorcinol and hydroquinone. On the other hand, the acid phase of the irradiation sample increased the degradation rate of pollutants. Spectrophotometer (UV-VIS) and chromatography (HPLC) were used to monitor the analysis of the radiation product solution. The results illustrated the existing of many substances such as organic alcohol, aldehyde, ketone and acidic functional groups as a final radiation products. The degradation of benzene, monochlorobenzene (CB) and 1,2 dichlorobenzene (1,2 DCB) exit in waste water by gamma irradiation was investigated. The effect of the irradi...

  10. Research program on the biological effects of oil pollution

    International Nuclear Information System (INIS)

    A national research program on the biological effects of oil pollution (FOBO) was initiated by the Norwegian Ministry of Environment in October 1983 in the light of the increasing oil exploration and production activity in the North Sea and northern Norwegian waters. Ambitions were high and five main fields of research were suggested: Seabirds, fish (incl. salmon), marine mammals, the littoral zone and plankton. However, due to the lack of interest on the part of other potential financers, e.g. the Ministry of Fisheries and the oil companies, to participate, the four-year programme had to be limited to the following three topics: Seabirds around bruding colonies and at sea; Higher plants along the shoreline; The littoral zone. The program ran from the autumn of 1985 to the end of 1989 and this report summarizes the main results and conclusions of each project. 95 refs., 52 figs., 9 tabs

  11. Microbial degradation of street dust polycyclic aromatic hydrocarbons in microcosms simulating diffuse pollution of urban soil.

    Science.gov (United States)

    Johnsen, Anders R; de Lipthay, Julia R; Sørensen, Søren J; Ekelund, Flemming; Christensen, Peter; Andersen, Ole; Karlson, Ulrich; Jacobsen, Carsten S

    2006-03-01

    Diffuse pollution with polycyclic aromatic hydrocarbons (PAHs) of topsoil in urban regions has caused increasing concerns in recent years. We simulated diffuse pollution of soil in microcosms by spiking sandy topsoil (A-horizon) and coarse, mineral subsoil (C-horizon) with street dust (PM63) isolated from municipal street sweepings from central Copenhagen. The microbial communities adapted to PAH degradation in microcosms spiked with street dust in both A-horizon and C-horizon soils, in spite of low PAH-concentrations. The increased potential for PAH degradation was demonstrated on several levels: by slowly diminishing PAH-concentrations, increased mineralization of 14C-PAHs, increasing numbers of PAH degraders and increased prevalence of nah and pdo1 PAH degradation genes, i.e. the microbial communities quickly adapted to PAH degradation. Three- and 4-ring PAHs from the street dust were biodegraded to some extent (10-20%), but 5- and 6-ring PAHs were not biodegraded in spite of frequent soil mixing and high PAH degradation potentials. In addition to biodegradation, leaching of 2-, 3- and 4-ring PAHs from the A-horizon to the C-horizon seems to reduce PAH-levels in surface soil. Over time, levels of 2-, 3- and 4-ring PAHs in surface soil may reach equilibrium between input and the combination of biodegradation and leaching. However, levels of the environmentally critical 5- and 6-ring PAHs will probably continue to rise. We presume that sorption to black carbon particles is responsible for the persistence and low bioaccessibility of 5- and 6-ring PAHs in diffusely polluted soil.

  12. Dechlorination progress of chlorinated organic pollutants degraded by use of ionizing radiation in aqueous solutions

    International Nuclear Information System (INIS)

    Kinetics and mechanisms of dechlorination of chlorinated organic pollutants induced by ionizing radiation were described in this article. The progress on the dechlorination of chlorophenols, polychlorinated biphenyl, trichloroethylene, and perchloroethylene involved in radiolysis was also reviewed. In oxidative condition, hydroxyl radical (·OH) would attack chlorophenol to form ·OH-adducts, which could be dechlorinated gradually. However, chlorophenol can be directly reduced by hydrated electron (eaq-) to release Cl-. It was found that radiolytic degradation of polychlorinated biphenyls in organic solvent would release chlorine atoms gradually by chain reactions and the final products were Cl- and biphenyl. Trichloroethylene and tetrachloroethylene mainly reacted with ·OH with the final products of CO2, HCOOH and HCI. As conclusion, the reductive dechlorination of chlorinated organic pollutants possesses advantages of high degradation efficiency, simple products and relatively low radiation dose compared with the oxidation methods. (authors)

  13. Degradation of pollutants and elimination of pathogens of waste water by adsorption of accelerated electrons; Degradacion de contaminantes y eliminacion de patogenos de aguas residuales por adsorcion de electrones acelerados

    Energy Technology Data Exchange (ETDEWEB)

    Martinez M, I

    1991-10-15

    This report presents a position of the pollutants degradation of the industrial residual waters, it intends a method that consists on making pass residual water, treated biologically by a packed column with activated carbon. The carbon retains the pollutants and the water goes out with a purity that allows the reuse. In simultaneous form to the adsorption of pollutants are made pass electrons through the column of carbon, the electrons will destroy to the polluting adsorbed in the carbon; the pollutants degrade until CO{sub 2} that escapes as gas. The active sites of the carbon are empty and clever to be occupied by other pollutants. This process is continuous and it is repeated while water is passing by the column and electrons through this. (Author)

  14. DYNAMICS OF RESTORATION OF BIOLOGICAL PROPERTIES OF BLACK SOILS POLLUTED WITH OIL

    Directory of Open Access Journals (Sweden)

    Kutuzova I. V.

    2014-12-01

    Full Text Available Negative impact of oil on biological properties of soils right after pollution is shown in the article. Eventually, there is their restoration. However, even in some years after pollution, the biological properties of soils aren't restored completely

  15. Mechanism and Kinetics Study for Photocatalytic Oxidation Degradation: A Case Study for Phenoxyacetic Acid Organic Pollutant

    Directory of Open Access Journals (Sweden)

    Kian Mun Lee

    2015-01-01

    Full Text Available Photocatalysis is a rapidly expanding technology for wastewater treatment, including a wide range of organic pollutants. Thus, understanding the kinetics and mechanism of the photocatalytic oxidation (PCO for degradation of phenoxyacetic acid (PAA is an indispensable component of risk assessment. In this study, we demonstrated that the central composite design (CCD coupled with response surface methodology (RSM was successfully employed to probe the kinetics and mechanism of PCO degradation for PAA using an efficient zinc oxide (ZnO photocatalyst. In our current case study, four independent factors such as ZnO dosage, initial concentration of PAA, solution pH, and reaction time on the PCO degradation for PAA were examined in detail. Based on our results obtained from RSM analyses, an efficient pathway leading to the high degradation rate (>90% was applying 0.4 g/L of ZnO dosage with 16 mg/L of concentration of PAA at pH 6.73 for 40 minutes. The experimental results were fitted well with the derived response model with R2 = 0.9922. This study offers a cost-effective way for probing our global environmental water pollution issue.

  16. Variability of Biological Degradation of Aromatic Hydrocarbons in an Aerobic Aquifer Determined by Laboratory Batch Experiments

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Christensen, Thomas Højlund

    1994-01-01

    The biological aerobic degradation of 7 aromatic hydrocarbons (benzene, toluene, o-xylene, p-dichlorobenzene, o-dichlorobenzene, naphthalene and biphenyl) was studied for 149 days in replicate laboratory batch experiments with groundwater and sediment from 8 localities representing a 15 m × 30 m...... section of an aerobic aquifer. Compared to biologically deactivated control experiments all compounds were biologically degraded. Degradation curves were very reproducible for some compounds (benzene, toluene, o-xylene, o-dichlorobenzene and p-dichlorobenzene) and less reproducible for other (naphthalene...... and biphenyl). Based on observed length of lag phases, length of the degradation periods and percent degradation, the variation among the 8 localities appears to be modest. However, detailed examination of the degradation rates revealed statistically significant variation among localities for benzene, toluene...

  17. Selenium: environmental significance, pollution, and biological treatment technologies.

    Science.gov (United States)

    Tan, Lea Chua; Nancharaiah, Yarlagadda V; van Hullebusch, Eric D; Lens, Piet N L

    2016-01-01

    Selenium is an essential trace element needed for all living organisms. Despite its essentiality, selenium is a potential toxic element to natural ecosystems due to its bioaccumulation potential. Though selenium is found naturally in the earth's crust, especially in carbonate rocks and volcanic and sedimentary soils, about 40% of the selenium emissions to atmospheric and aquatic environments are caused by various industrial activities such as mining-related operations. In recent years, advances in water quality and pollution monitoring have shown that selenium is a contaminant of potential environmental concern. This has practical implications on industry to achieve the stringent selenium regulatory discharge limit of 5μgSeL(-1) for selenium containing wastewaters set by the United States Environmental Protection Agency. Over the last few decades, various technologies have been developed for the treatment of selenium-containing wastewaters. Biological selenium reduction has emerged as the leading technology for removing selenium from wastewaters since it offers a cheaper alternative compared to physico-chemical treatments and is suitable for treating dilute and variable selenium-laden wastewaters. Moreover, biological treatment has the advantage of forming elemental selenium nanospheres which exhibit unique optical and spectral properties for various industrial applications, i.e. medical, electrical, and manufacturing processes. However, despite the advances in biotechnology employing selenium reduction, there are still several challenges, particularly in achieving stringent discharge limits, the long-term stability of biogenic selenium and predicting the fate of bioreduced selenium in the environment. This review highlights the significance of selenium in the environment, health, and industry and biotechnological advances made in the treatment of selenium contaminated wastewaters. The challenges and future perspectives are overviewed considering recent

  18. Selenium: environmental significance, pollution, and biological treatment technologies.

    Science.gov (United States)

    Tan, Lea Chua; Nancharaiah, Yarlagadda V; van Hullebusch, Eric D; Lens, Piet N L

    2016-01-01

    Selenium is an essential trace element needed for all living organisms. Despite its essentiality, selenium is a potential toxic element to natural ecosystems due to its bioaccumulation potential. Though selenium is found naturally in the earth's crust, especially in carbonate rocks and volcanic and sedimentary soils, about 40% of the selenium emissions to atmospheric and aquatic environments are caused by various industrial activities such as mining-related operations. In recent years, advances in water quality and pollution monitoring have shown that selenium is a contaminant of potential environmental concern. This has practical implications on industry to achieve the stringent selenium regulatory discharge limit of 5μgSeL(-1) for selenium containing wastewaters set by the United States Environmental Protection Agency. Over the last few decades, various technologies have been developed for the treatment of selenium-containing wastewaters. Biological selenium reduction has emerged as the leading technology for removing selenium from wastewaters since it offers a cheaper alternative compared to physico-chemical treatments and is suitable for treating dilute and variable selenium-laden wastewaters. Moreover, biological treatment has the advantage of forming elemental selenium nanospheres which exhibit unique optical and spectral properties for various industrial applications, i.e. medical, electrical, and manufacturing processes. However, despite the advances in biotechnology employing selenium reduction, there are still several challenges, particularly in achieving stringent discharge limits, the long-term stability of biogenic selenium and predicting the fate of bioreduced selenium in the environment. This review highlights the significance of selenium in the environment, health, and industry and biotechnological advances made in the treatment of selenium contaminated wastewaters. The challenges and future perspectives are overviewed considering recent

  19. Sonochemical degradation of the pharmaceutical fluoxetine: Effect of parameters, organic and inorganic additives and combination with a biological system

    Energy Technology Data Exchange (ETDEWEB)

    Serna-Galvis, Efraím A.; Silva-Agredo, Javier [Grupo de Investigación en Remediación Ambiental y Biocatálisis, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Giraldo-Aguirre, Ana L. [Grupo de Diseño y Formulación de Medicamentos, Cosméticos y Afines (DYFOMECO), Facultad de Química Farmacéutica, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Torres-Palma, Ricardo A., E-mail: ricardo.torres@udea.edu.co [Grupo de Investigación en Remediación Ambiental y Biocatálisis, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2015-08-15

    Fluoxetine (FLX), one of the most widely used antidepressants in the world, is an emergent pollutant found in natural waters that causes disrupting effects on the endocrine systems of some aquatic species. This work explores the total elimination of FLX by sonochemical treatment coupled to a biological system. The biological process acting alone was shown to be unable to remove the pollutant, even under favourable conditions of pH and temperature. However, sonochemical treatment (600 kHz) was shown to be able to remove the pharmaceutical. Several parameters were evaluated for the ultrasound application: the applied power (20–60 W), dissolved gas (air, Ar and He), pH (3–11) and initial concentration of fluoxetine (2.9–162.0 μmol L{sup −1}). Additionally, the presence of organic (1-hexanol and 2-propanol) and inorganic (Fe{sup 2+}) compounds in the water matrix and the degradation of FLX in a natural mineral water were evaluated. The sonochemical treatment readily eliminates FLX following a kinetic Langmuir. After 360 min of ultrasonic irradiation, 15% mineralization was achieved. Analysis of the biodegradability provided evidence that the sonochemical process transforms the pollutant into biodegradable substances, which can then be mineralized in a subsequent biological treatment. - Highlights: • The pharmaceutical fluoxetine was effectively eliminated upon ultrasonic action. • Ultrasonic power, dissolved gas, pH and concentration of fluoxetine were evaluated. • Fe{sup 2+}, sodium nitrate or nitric acid had a positive effect on the FLX degradation. • More hydrophobic or volatile compounds than fluoxetine diminished the efficiency. • A sonochemical-biological combined process led to the total mineralization of FLX.

  20. Sonochemical degradation of the pharmaceutical fluoxetine: Effect of parameters, organic and inorganic additives and combination with a biological system

    International Nuclear Information System (INIS)

    Fluoxetine (FLX), one of the most widely used antidepressants in the world, is an emergent pollutant found in natural waters that causes disrupting effects on the endocrine systems of some aquatic species. This work explores the total elimination of FLX by sonochemical treatment coupled to a biological system. The biological process acting alone was shown to be unable to remove the pollutant, even under favourable conditions of pH and temperature. However, sonochemical treatment (600 kHz) was shown to be able to remove the pharmaceutical. Several parameters were evaluated for the ultrasound application: the applied power (20–60 W), dissolved gas (air, Ar and He), pH (3–11) and initial concentration of fluoxetine (2.9–162.0 μmol L−1). Additionally, the presence of organic (1-hexanol and 2-propanol) and inorganic (Fe2+) compounds in the water matrix and the degradation of FLX in a natural mineral water were evaluated. The sonochemical treatment readily eliminates FLX following a kinetic Langmuir. After 360 min of ultrasonic irradiation, 15% mineralization was achieved. Analysis of the biodegradability provided evidence that the sonochemical process transforms the pollutant into biodegradable substances, which can then be mineralized in a subsequent biological treatment. - Highlights: • The pharmaceutical fluoxetine was effectively eliminated upon ultrasonic action. • Ultrasonic power, dissolved gas, pH and concentration of fluoxetine were evaluated. • Fe2+, sodium nitrate or nitric acid had a positive effect on the FLX degradation. • More hydrophobic or volatile compounds than fluoxetine diminished the efficiency. • A sonochemical-biological combined process led to the total mineralization of FLX

  1. Allochthonous bioaugmentation in ex situ treatment of crude oil-polluted sediments in the presence of an effective degrading indigenous microbiome

    KAUST Repository

    Fodelianakis, Stylianos

    2015-04-01

    Oil-polluted sediment bioremediation depends on both physicochemical and biological parameters, but the effect of the latter cannot be evaluated without the optimization of the former. We aimed in optimizing the physicochemical parameters related to biodegradation by applying an ex-situ landfarming set-up combined with biostimulation to oil-polluted sediment, in order to determine the added effect of bioaugmentation by four allochthonous oil-degrading bacterial consortia in relation to the degradation efficiency of the indigenous community. We monitored hydrocarbon degradation, sediment ecotoxicity and hydrolytic activity, bacterial population sizes and bacterial community dynamics, characterizing the dominant taxa through time and at each treatment. We observed no significant differences in total degradation, but increased ecotoxicity between the different treatments receiving both biostimulation and bioaugmentation and the biostimulated-only control. Moreover, the added allochthonous bacteria quickly perished and were rarely detected, their addition inducing minimal shifts in community structure although it altered the distribution of the residual hydrocarbons in two treatments. Therefore, we concluded that biodegradation was mostly performed by the autochthonous populations while bioaugmentation, in contrast to biostimulation, did not enhance the remediation process. Our results indicate that when environmental conditions are optimized, the indigenous microbiome at a polluted site will likely outperform any allochthonous consortium.

  2. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation.

    Science.gov (United States)

    Wei, Mingyu; Gao, Long; Li, Jun; Fang, Jia; Cai, Wenxuan; Li, Xiaoxia; Xu, Aihua

    2016-10-01

    Graphitic carbon nitride supported on activated carbon (g-C3N4/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C3N4 was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C3N4 to CO was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C3N4/AC catalyst within 20min with PMS, while g-C3N4+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C3N4 loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO and SO4(-)) in AO7 oxidation was proposed in the system. The CO groups play a key role in the process; while the exposure of more N-(C)3 group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants.

  3. One-Dimensional Nanostructured TiO2 for Photocatalytic Degradation of Organic Pollutants in Wastewater

    Directory of Open Access Journals (Sweden)

    Ting Feng

    2014-01-01

    Full Text Available The present paper reviews the progress in the synthesis of one-dimensional (1D TiO2 nanostructures and their environmental applications in the removal of organic pollutants. According to the shape, 1D TiO2 nanostructures can be divided into nanorods, nanotubes, nanowires/nanofibers, and nanobelts. Each of them can be synthesized via different technologies, such as sol-gel template method, chemical vapor deposition, and hydrothermal method. These methods are discussed in this paper, and the recent development of the synthesis technologies is also presented. Furthermore, the organic pollutants, degradation using the synthesized 1D TiO2 nanostructures is studied as an important application of photocatalytic oxidation (PCO. The 1D nanostructured TiO2 exhibited excellent photocatalytic activity in a PCO process, and the mechanism of photocatalytic degradation of organic pollutants is also discussed. Moreover, the modification of 1D TiO2 nanostructures using metal ions, metal oxide, or inorganic element can further enhance the photocatalytic activity of the photocatalyst. This phenomenon can be explained by the suppression of e−-h+ pairs recombination rate, increased specific surface area, and reduction of band gap. In addition, 1D nanostructured TiO2 can be further constructed as a film or membrane, which may extend its practical applications.

  4. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation.

    Science.gov (United States)

    Wei, Mingyu; Gao, Long; Li, Jun; Fang, Jia; Cai, Wenxuan; Li, Xiaoxia; Xu, Aihua

    2016-10-01

    Graphitic carbon nitride supported on activated carbon (g-C3N4/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C3N4 was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C3N4 to CO was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C3N4/AC catalyst within 20min with PMS, while g-C3N4+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C3N4 loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO and SO4(-)) in AO7 oxidation was proposed in the system. The CO groups play a key role in the process; while the exposure of more N-(C)3 group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants. PMID:27214000

  5. A strategy for xenobiotic removal using photocatalytic treatment, microbial degradation or integrated photocatalytic-biological process

    OpenAIRE

    Lapertot, Miléna; Pulgarin, César

    2007-01-01

    According to the limited natural resources and due to the risks of anthropogenic pollution, it appears necessary to react efficiently in order to remove existing contaminations and avoid the creation of new ones. Therefore, the purpose of this thesis is to propose a sustainable strategy for treating problematic pollutants with the most adequate process. First, an overview of the different treatment processes has been given. In particular, biological, photocatalytic and integrated biological-p...

  6. Appetite for danger - genetic potential for PCP degradation at historically polluted groundwater sites

    Science.gov (United States)

    Mikkonen, Anu; Yläranta, Kati; Tiirola, Marja; Romantschuk, Martin; Sinkkonen, Aki

    2016-04-01

    Pentachlorophenol (PCP) is a priority pollutant of exclusively anthropogenic origin. Formerly used commonly in timber preservatives, PCP has persisted at polluted groundwater sites decades after its use was banned, typically as the last detectable contaminant component. Notorious for its toxicity and poor biodegradability, little is known about the genetic potential and pathways for PCP degradation in the environment. The only fully characterized mineralization pathway is initiated by the enzyme coded by chromosomal pcpB gene, previously detected in PCP degrading Sphingomonadaceae bacteria isolated at two continents. However, there is no information about the abundance or diversity of any PCP degradation related gene at contaminated sites in situ. Our aim was to assess whether pcpB and/or sphingomonads seem to play a role in in situ degradation of PCP, by studying whether pcpB i) is detectable at chlorophenol-polluted groundwater sediments, ii) responds to PCP concentration changes, and iii) shows correlation with the abundance of sphingomonads or a specific sphingomonad genus. Novel protocols for quantification and profiling of pcpB, with primers covering full known diversity, were developed and tested at two sites in Finland with well-documented long-term chlorophenol contamination history: Kärkölä and Pursiala. High throughput sequencing complemented characterization of the total bacterial community and pcpB gene pool. The relative abundance of pcpB in bacterial community was associated with spatial variability in groundwater PCP concentration in Pursiala, and with temporal differences in groundwater PCP concentration in Kärkölä. T-RFLP fingerprinting results indicated and Ion Torrent PGM and Sanger sequencing confirmed the presence of a single phylotype of pcpB at both geographically distant, historically contaminated sites, matching the one detected previously in Canadian bioreactor clones and Kärkölä bioreactor isolates. Sphingomonad abundance

  7. The lichens: general considerations. Role as pollution biological indicators; Les lichens: generalites. Role comme bioindicateurs de la pollution

    Energy Technology Data Exchange (ETDEWEB)

    Rivaux, E

    1998-03-25

    After having recalled the morphology and the different classification of lichens, the author presents the main lichenous substances, in particular the depsides and the depsidones. A detailed study on the role of lichens as pollution biological indicators is given. (O.M.)

  8. Enhanced biological degradation of crude oil in a Spitsbergen tundra site

    International Nuclear Information System (INIS)

    A series of oil-contaminated tundra plots on Spitsbergen was treated with combinations of five different fertilizer additives. Both organic and mineral nutrient sources were used, alone or in combination. Biological degradation of oil was recorded in all of the plots. The extent of degradation depended on the type of fertilizer added. The local conditions influence oil degradation significantly, as well as the effect of the fertilizer. Urea, SkogAN (a slow releasing fertilizer), and a blend of fish meals all give high degrees of oil degradation. Both the microbial parameters and the total heterotrophic respiration are influenced by the addition of fertilizers. 6 refs., 13 figs., 3 tabs

  9. Photocatalytic activity of porous multiwalled carbon nanotube-TiO2 composite layers for pollutant degradation.

    Science.gov (United States)

    Zouzelka, Radek; Kusumawati, Yuly; Remzova, Monika; Rathousky, Jiri; Pauporté, Thierry

    2016-11-01

    TiO2 nanoparticles are suitable building blocks nanostructures for the synthesis of porous functional thin films. Here we report the preparation of films using brookite, P25 titania and anatase pristine nanoparticles and of nanocomposite layers combining anatase nanoparticles and multi-walled carbon nanotube (MWCNT) at various concentrations. The structure and phase composition of the layers were characterized by X-ray diffraction and Raman spectroscopy. Their morphology and texture properties were determined by scanning electron microscopy and krypton adsorption experiments, respectively. Additionally to a strong absorption in the UV range, the composites exhibited light absorption in the visible range as well. The photocatalytic performance of the layers was tested in the degradation of aqueous solutions of 4-chlorophenol serving as a model of an eco-persistent pollutant. Besides the determination of the decrease in the concentration of 4-chlorophenol, also the formation of intermediate degradation products, namely hydroquinone and benzoquinone, was followed. The presence of MWCNTs had a beneficial effect on the photocatalytic performance, a marked increase in the photocatalytic degradation rate constant being observed even at very low concentrations of MWCNTs. Compared to a P25 reference layer, the first order rate reaction constant increased by about 100% for the composite films containing MWCNTs at concentrations above 0.6 wt%. The key parameters for the enhancement of the photocatalytic performance are discussed. The presence of carbon nanotubes influences beneficially the degradation of 4-chlorophenol by an attack of the primarily photoproduced hydroxyl radicals onto the 4-chlorophenol molecules. The degradation due to the direct charge transfer is practically not influenced at all. PMID:27262272

  10. Development of MCM-41 based catalysts for the photo-Fenton's degradation of dye pollutants

    Science.gov (United States)

    Lam, Leung Yuk Frank

    The continuous advancement in most industries has resulted in serious water pollution problems. The industrial effluents contain a variety of highly toxic organics such as dye pollutants. Numerous processes have been demonstrated for treating such pollutants. Among them, photo-Fenton's reaction is effective for organic mineralization by hydroxyl radicals generated from the Fenton's reagents (Fe2+ and H2O2). However, there is a drawback in that it requires a separation system to recover the homogeneous ferrous ion in the treated wastewater. In this research, new heterogeneous Fenton's catalysts are developed to solve such a problem and to achieve an efficient mineralization of dye pollutants. Two methods for catalyst preparation, including sol-gel hydrothermal (SG) and metal-organic chemical vapor deposition (MOCVD) techniques, were studied in this work. For SG-prepared catalysts, the iron element was successfully doped into the MCM-41 structure. These catalysts demonstrated a good catalytic efficiency but leaching of metal ions from the developed catalyst was found. In the MOCVD technique, a rotated tubular reactor system was developed to synthesize Fe/MCM-41 catalyst with uniform metal dispersion. It was found that using oxygen as a carrier gas during metal deposition was able to increase the stability of the deposited metal. In degradation of a model dye pollutant, Orange II, a total of 85% TOC mineralization was achieved at pH 3. A disadvantage of using Fe/MCM-41 was the reduced efficiency at higher pH. Cu/MCM-41 was thus developed and showed better catalytic activities than Fe/MCM-41 at neutral pH. Having the specific catalytic properties of Fe/MCM-41 and Cu/MCM-41, bimetallic (Fe+Cu) catalysts supported on MCM-41 were developed which show better activities in the Orange II mineralization than those monometallic (Fe or Cu) catalysts. The preparation conditions of the catalysts were experimentally optimized. The effects of catalyst dosage, metal loading

  11. Radiation degradation of biological waste (aflatoxins) produced in food laboratory

    International Nuclear Information System (INIS)

    Many filamentous fungi can produce secondary metabolites, called mycotoxins, which can be found in food and agricultural products. One of the main genera of myco toxigenic fungi related to the food chain is the Aspergillus spp. There are over 400 mycotoxins described in the literature, the most common the aflatoxins B1, B2, G1 and G2. The mycotoxins are commonly found in foods and are considered one of the most dangerous contaminants. The aflatoxin B1 is classified in group one by the International Agency of Research on Cancer. Aflatoxins resisting for more than one hour in autoclave making it necessary to other means of degradation of these toxins. This work aimed to observe the effects of gamma radiation of 60Co and electron beams in the degradation of aflatoxins and compare the damage caused on the morphology of the Aspergillus flavus. The fungus was grown on potato dextrose agar (PDA) for 10 days and was subsequently transferred to coconut agar medium, and maintained for 14 days at 25 degree C. After this step the coconut agar was ground to become a homogeneous pasty and was irradiated with doses of 2.5, 5.0, 10 and 20 kGy. The samples used in scanning electron microscopy were irradiated with doses of 0, 2.5, 5.0, 10 and 20 kGy with sources of 60Co and electron beams. Irradiation with electron accelerator showed a slightly higher degradation to gamma radiation, reducing 29.93 %, 34.50 %, 52.63 % and 72.30 % for doses of 2.5, 5.0, 10 and 20 kGy, respectively. The Scanning Electron Microscopy showed that doses of 2.5 to 10 kGy did not cause damage to the fungus, but with a dose of 20 kGy it can be observed fungal damage to structures. (author)

  12. Structural biology of starch-degrading enzymes and their regulation

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Svensson, Birte

    2016-01-01

    Starch is a major energy source for all domains of life. Recent advances in structures of starch-degrading enzymes encompass the substrate complex of starch debranching enzyme, the function of surface binding sites in plant isoamylase, details on individual steps in the mechanism of plant...... disproportionating enzyme and a self-stabilised conformation of amylose accommodated in the active site of plant α-glucosidase. Important inhibitor complexes include a flavonol glycoside, montbretin A, binding at the active site of human pancreatic α-amylase and barley limit dextrinase inhibitor binding...... to the debranching enzyme, limit dextrinase using a new binding mode for cereal protein inhibitors....

  13. Heavy-metal air pollution study using biological indicators and nuclear analytical methods

    International Nuclear Information System (INIS)

    The development of industry and the increase in vehicle road traffic are responsible for the ever-growing environmental pollution by toxic elements. Some biological organisms strongly accumulate certain heavy toxic elements and thus can be considered as indicators of the environmental pollution. In this work different types of biological indicators were collected in almost all main cities and industrial zones of Vietnam. They were subsequently analysed by different modern analytical methods. The concentration of different elements and their correlation matrices may provide valuable information on the nature and sources of pollution (author)

  14. Pollutional haze and COPD: etiology, epidemiology, pathogenesis, pathology, biological markers and therapy.

    Science.gov (United States)

    Wang, Fei; Ni, Song-Shi; Liu, Hua

    2016-01-01

    In recent years, serious pollutional haze occurs in the mainland of China thanks to the development of urbanization and industrialization. There is a close relationship between air pollution and the occurrence and development of chronic obstructive pulmonary disease (COPD), but there are some new characteristics in some aspects of COPD associated with pollutional haze compared with COPD induced by traditional physical and chemical factors. This article attempts to summarize the new progress from these new features of COPD related to pollutional haze, focus on etiology, epidemiology, pathogenesis, pathology, biological markers and therapy.

  15. Potential particulate pollution derived from UV-induced degradation of odorous dimethyl sulfide

    Institute of Scientific and Technical Information of China (English)

    Liping Qiao; Jianmin Chen; Xin Yang

    2011-01-01

    UV-induced degradation of odorous dimethyl sulfide (DMS) was carried out in a static White cell chamber with UV irradiation. The combination of in situ Fourier transform infrared (FT-IR) spectrometer, gas chromatograph-mass spectrometer (GC-MS), wide-range particle spectrometer (WPS) technique, filter sampling and ion chromatographic (IC) analysis was used to monitor the gaseous and potential particulate products. During 240 min of UV irradiation, the degradation efficiency of DMS attained 20.9%, and partially oxidized sulfur-containing gaseous products, such as sulfur dioxide (SO2), carbonyl sulfide (OCS), dimethyl sulfoxide (DMSO),dimethyl sulfone (DMSO2) and dimethyl disulfide (DMDS) were identified by in situ FT-IR and GC-MS analysis, respectively.Accompanying with the oxidation of DMS, suspended particles were directly detected to be formed by WPS techniques. These particles were measured mainly in the size range of accumulation mode, and increased their count median diameter throughout the whole removal process. IC analysis of the filter samples revealed that methanesulfonic acid (MSA), sulfuric acid (H2SO4) and other unidentified chemicals accounted for the major non-refractory compositions of these particles. Based on products analysis and possible intermediates formed, the degradation pathways of DMS were proposed as the combination of the O(1 D)- and the OH- initiated oxidation mechanisms. A plausible formation mechanism of the suspended particles was also analyzed. It is concluded that UV-induced degradation of odorous DMS is potentially a source of particulate pollutants in the atmosphere.

  16. Radiation degradation of biological residues (Aflatoxins) produced in food laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Rogovschi, Vladimir D.; Aquino, Simone; Nunes, Thaise C.F.; Trindade, Reginaldo A.; Villavicencio, Anna L.C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (brazil)]. E-mails: vladrogo@yahoo.com.br; villavic@ipen.br; Zorzete, Patricia; Correa, Benedito [Universidade de Sao Paulo, SP (Brazil). Inst. de Ciencias Biomedicas]. E-mail: correabe@usp.br

    2007-07-01

    Some molds have the capacity to produce substances that are toxic and generally cancer-causing agents, such as aflatoxins, that stand between the most important carcinogenic substances (class one of the agents which are certainly carcinogenous for human people according to the International Agency for Research on Cancer). Aspergillus spp. is present in world-wide distribution, with predominance in tropical and subtropical regions growing in any substratum. The aim of this work is establish a minimum dose of radiation that degrades aflatoxins produced by fungi Aspergillus spp. The Aspergillus spp. colonies will be cultivated in coconut agar medium and the samples will be conditioned in appropriate bags for irradiation treatment of contaminated material and processed in the Gammacell 220 with dose of 20 kGy. (author)

  17. Highly efficient degradation of dye pollutants by Ce-doped MoO₃ catalyst at room temperature.

    Science.gov (United States)

    Jin, Yujian; Li, Na; Liu, Haiqiu; Hua, Xia; Zhang, Qiuying; Chen, Mindong; Teng, Fei

    2014-09-14

    In order to efficiently degrade organic pollutants via an easily operated method, Ce-doped MoO3 (Ce(x)/MoO3) samples are synthesized by a simple impregnation method. The samples are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), nitrogen sorption isotherms and UV-vis diffused reflectance spectra (UV-DRS), total organic carbon (TOC), infrared spectroscopy (IR) and mass spectrometry (MS) analyses. Furthermore, we have mainly investigated the degradation of different dye pollutants by the Ce(x)/MoO3 samples, including cationic methylene blue (MB), anionic methyl orange (MO), neutral phenol, and a MB-MO mixture dye. For the single-component MB and MO dyes, the highest degradation efficiencies are achieved by Ce(5)/MoO3 and Ce(10)/MoO3 samples. For the MB-MO mixture dyes, the highest degradation efficiency for MB is achieved by a Ce(10)/MoO3 sample. It is surprising that the degradation efficiency of MB in the MB-MO mixture dye solution is higher than that in the single-component MB dye solution, which has been mainly ascribed to the promoting effect of MO. Moreover, a plausible degradation mechanism of the dyes has been proposed and discussed. It should be noted that the degradation reaction is carried out at room temperature and normal atmospheric pressure, and without light irradiation. As a result, this degradation reaction is obviously different from the conventional thermally activated heterogeneous catalysis (or photocatalysis), in which thermal energy (or light irradiation) is indispensable; also different from a sorption technology, in which the pollutants cannot be degraded, but only transformed from one phase to another one. Thus, the reported degradation reaction is a quite promising environmental cleaning technology, which could be widely practically applied.

  18. A comparison between Ce(III) and Ce(IV) ions in photocatalytic degradation of organic pollutants

    Institute of Scientific and Technical Information of China (English)

    程强; 施薇; 段炼; 孙彬哲; 李晓霞; 徐爱华

    2015-01-01

    Nano cerium oxides are efficient photocatalysts for pollutants degradation with highly dispersed Ce(III) ions as the sug-gested active species to promote the reaction, while Ce(IV) species do not behave as a catalyst. In this paper, to understand the mechanism of Ce-based photocatalysts, we studied the comparison of simple cerium ions, Ce(III) and Ce(IV) in aqueous solution for organic pollutants degradation under UV irradiation. Orange II (AOII), methyl orange, andp-nitrophenol were selected as the target pollutants. The formation and contribution of reactive oxygen species, the kinetics of Ce(IV) photoreduction and Ce(III) photooxida-tion, and the influence of solution pH were investigated in detail. It was found that at low pH Ce(IV) ions showed a higher activity for hydroxyl radicals production and AOII degradation than Ce(III) ions, which could be attributed to its fast reduction rate to Ce(III). However, its activity dramatically decreased when solution pH increased, and was also strongly influenced by the type of pollutants; while Ce(III) exhibited high degradation efficiency of all the tested pollutants over a wide pH range.

  19. Life in oil :Hydrocarbon-degrading bacterial mineralization in oil spill-polluted marine environment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The biodegradation of hydrocarbons by microorganisms is one of the primary ways by which an oil spill is eliminated from contaminated sites.One such spill was that of the Russian tanker the Nakhodka that spilled heavy oil into the Sea of Japan on January 2,1997.This paper describes the three main processes of the Nakhodka oil spill,including:(1) the weathering of hydrocarbon-degrading bacteria (genus Pseudomonas)and crystallized organic compounds from the Nakhodka oil spill-polluted seashores after nine years;(2) the laboratory-scale biodegradation of the Nakhodka oil spill over a 429-day period;and (3) the bioavailability of kaolinite clay minerals and the role they play in seawater polluted with the Nakhodka oil spill.Upon the slow evaporation of the Nakhodka oil spill during the 9-year weathering,the dendritic crystal growth of paraffin (a mixture of alkanes) occurred in the oil crust under natural conditions.Heavy metals were obtained in the original heavy oil samples of three seashores in the Sea of Japan.Si,S,Ti,Cr,Ni,Cu,and Zn were found in the original Nakhodka oil spill samples whereas these heavy metals and S were no longer present after 9 years.The anaerobic reverse side of the oil crust contained numerous coccus-type bacteria associated with halite.The hydrocarbon-degrading bacteria and paraffin wax in the oil crust may have a significant effect on the weathering processes of the Nakhodka oil spill during the 9-year bioremediation.A biodegradation process of heavy oil from the Nakhodka oil spill by indigenous microbial consortia was monitored over 429 days in the laboratory.The indigenous microbial consortia consisted of bacteria and fungi as well as the bacterium Pseudomonas aeruginosa isolated from Atake seashore,Ishikawa Prefecture,Japan.Both bacteria and fungi had a significant role in the observed biodegradation of heavy oil during the 429-day bioremediation with respect to the pH of the solution.Hydrocarbon-degrading bacteria had a tendency to

  20. Influence of different biological factors on the character of biodegradation of oil pollution soils

    OpenAIRE

    Lifshits, S. H.; Chalaya, O. N.; Glaznetsova, Ju. S.; Zueva, I. N.; Лифшиц, С. Х.; Чалая, О. Н.; Глязнецова, Ю. С.; Зуева, И. Н.

    2012-01-01

    The results of laboratory and field experiments on remediation of oil pollution soils showed that for the effective restoration of soils it is possible to recommend performing works with the application of microorganism-plant complexes i.e. combining introduction into contaminated soil of hydrocarbon degradating bacteria with plant seeding.

  1. Photocatalytic degradation of bezacryl yellow in batch reactors--feasibility of the combination of photocatalysis and a biological treatment.

    Science.gov (United States)

    Khenniche, Lamia; Favier, Lidia; Bouzaza, Abdelkrim; Fourcade, Florence; Aissani, Farida; Amrane, Abdeltif

    2015-01-01

    A combined process coupling photocatalysis and a biological treatment was investigated for the removal of Bezacryl yellow (BZY), an industrial-use textile dye. Photocatalytic degradation experiments of BZY were carried out in two stirred reactors, operating in batch mode with internal or external irradiation. Two photocatalysts (TiO2P25 and TiO2PC500) were tested and the dye degradation was studied for different initial pollutant concentrations (10-117 mg L(-1)). A comparative study showed that the photocatalytic degradation led to the highest degradation and mineralization yields in a stirred reactor with internal irradiation in the presence of the P25 catalyst. Regardless of the photocatalyst, discoloration yields up to 99% were obtained for 10 and 20 mg L(-1) dye concentrations in the reactor with internal irradiation. Moreover, the first-order kinetic and Langmuir-Hinshelwood models were examined by using the nonlinear method for different initial concentrations and showed that the two models lead to completely different predicted kinetics suggesting that they were completely different.According to the BOD5/ Chemical oxygen demand (COD) ratio, the non-treated solution (20 mg L(-1) of BZY) was estimated as non-biodegradable. After photocatalytic pretreatment of bezacryl solution containing 20 mg/L of initial dye, the biodegradability test showed a BOD5/COD ratio of 0.5, which is above the limit of biodegradability (0.4). These results were promising regarding the feasibility of combining photocatalysis and biological mineralization for the removal of BZY.

  2. Radiation degradation of polysaccharides and induced biological activity

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, Naotsugu; Yoshii, Fumio; Makuuchi Keizo; Kume Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Mitomo, Hiroshi [Gunma Univ., Kiryu (Japan). Faculty of Engineering

    1999-09-01

    Relationship between irradiation effect of polysaccharides and induced biological activity for plants has been investigated. Sodium alginate was irradiated by gamma-rays from a Co-60 source in liquid state (aqueous solution) and in solid state (powder form). Measurement of molecular weight and analysis of UV spectra of irradiated sodium alginate have been carried out. The molecular weight was decreased by irradiation in both conditions. New absorbance peak derived from double bond or/and carbonyl group was appeared at close to 267 nm by irradiation in UV spectra. It was found that alginate having molecular weight about 10,000 is most suitable to used as growth promoter in plants. To obtain the molecular weight of 10,000 by irradiation, the necessary doses are 100 kGy in liquid state and 500 kGy in solid state, respectively. (author)

  3. Nanomaterial based detection and degradation of biological and chemical contaminants in a microfluidic system

    Science.gov (United States)

    Jayamohan, Harikrishnan

    Monitoring and remediation of environmental contaminants (biological and chemical) form the crux of global water resource management. There is an extant need to develop point-of-use, low-power, low-cost tools that can address this problem effectively with minimal environmental impact. Nanotechnology and microfluidics have made enormous advances during the past decade in the area of biosensing and environmental remediation. The "marriage" of these two technologies can effectively address some of the above-mentioned needs. In this dissertation, nanomaterials were used in conjunction with microfluidic techniques to detect and degrade biological and chemical pollutants. In the first project, a point-of-use sensor was developed for detection of trichloroethylene (TCE) from water. A self-organizing nanotubular titanium dioxide (TNA) synthesized by electrochemical anodization and functionalized with photocatalytically deposited platinum (Pt/TNA) was applied to the detection. The morphology and crystallinity of the Pt/TNA sensor was characterized using field emission scanning electron microscope, energy dis- persive x-ray spectroscopy, and X-ray diffraction. The sensor could detect TCE in the concentrations ranging from 10 to 1000 ppm. The room-temperature operation capability of the sensor makes it less power intensive and can potentially be incorporated into a field-based sensor. In the second part, TNA synthesized on a foil was incorporated into a flow-based microfluidic format and applied to degradation of a model pollutant, methylene blue. The system was demonstrated to have enhanced photocatalytic performance at higher flow rates (50-200 muL/min) over the same microfluidic format with TiO2 nanoparticulate (commercial P25) catalyst. The microfluidic format with TNA catalyst was able to achieve 82% fractional conversion of 18 mM methylene blue in comparison to 55% in the case of the TiO2 nanoparticulate layer at a flow rate of 200 L/min. The microfluidic device was

  4. Activation of peroxymonosulfate by base: Implications for the degradation of organic pollutants.

    Science.gov (United States)

    Qi, Chengdu; Liu, Xitao; Ma, Jun; Lin, Chunye; Li, Xiaowan; Zhang, Huijuan

    2016-05-01

    Increasing attention has been paid to environmentally friendly activation methods of peroxymonosulfate (PMS) in advanced oxidation processes (AOPs) for organic pollutant elimination. This work demonstrates that Base can be applied as a novel activator for PMS. The Base/PMS system, at ambient temperature, was able to degrade a variety of organic pollutants, including acid orange 7 (AO7), phenol and bisphenol A. In subsequent experiments with AO7, the decolorization rates for AO7 followed pseudo-first-order kinetics, with rate constant values ranging from 0.0006 to 0.1749 min(-1) depending on the operating parameters (initial PMS, Base, AO7 concentrations and reaction temperature). Furthermore, the mechanism for PMS activation by the Base was elucidated by radical scavenger (tert-butyl alcohol, methanol, sodium azide and p-benzoquinone) and electron spin resonance trapping studies. The results revealed that superoxide anion radical and singlet oxygen other than sulfate radical were the primary reactive oxygen species in the Base/PMS system. The findings of this study present a new pathway for PMS activation and provide useful information for the treatment of wastewater. PMID:26946115

  5. Enhanced catalytic oxidation ability of ternary layered double hydroxides for organic pollutants degradation.

    Science.gov (United States)

    Fahel, Jean; Kim, Sanghoon; Durand, Pierrick; André, Erwan; Carteret, Cédric

    2016-05-10

    Co(2+) and Cu(2+) substituted MgAl layered double hydroxides with an M(2+)/M(3+) atomic ratio of 2.0 were synthesized by a co-precipitation method and fully characterized using various techniques including powder X-ray diffraction, ICP-AES analysis, FT-IR, DR UV-Vis spectroscopy, N2 adsorption-desorption and transmission electron microscopy. The materials revealed a good crystallinity with no phase impurity and successful substitution of cobalt and copper ions in the framework of binary LDH with the target ratio of metals in the sheet. The adsorption characteristics (kinetic and isotherm) and the catalytic oxidation of organic pollutants, methylene blue (cationic dye) and orange II (anionic) were carried out to investigate a potential use of LDH materials as catalysts. In particular, Co3Cu1Al2 LDH exhibited an excellent catalytic activity towards catalytic dye degradation, especially for orange II with good stability and reusability over several times. Furthermore, this LDH material showed good catalytic performance for several chlorophenol compounds, suggesting its practical application in wastewater treatment. Therefore, layered double hydroxides substituted with Co(2+) and Cu(2+) could be promising candidates in various applications, such as the abatement of organic pollutants. PMID:27097543

  6. Mapping the Compositions of Zinc Tantalate for Optimum Photocatalytic Performance in Degradation of Organic Pollutants

    Institute of Scientific and Technical Information of China (English)

    WANG Yun-Jian; HUANG Xin-Song; LI Li-Ping; LI Guang-She

    2012-01-01

    This work aims at mapping the compositions of zinc tantalate for optimum photocatalytic performance in degradation of organic pollutants. Three zinc tantalates, low-temperature form ZnTa2O6 (LT-ZnTa2O6), high-temperature form ZnTa2O6 (HT-ZnTa2O6), and Zn3Ta2O8 were prepared by solid state method. Photocatalytic activities of these zinc tantalates were tested for the degradation of methyl orange under UV irradiation and compared with Sr2Ta2O7, an efficient catalyst previously reported. It is found that the photocatalytic activity of these tantalates follows such a sequence: LT-ZnTa2O6 〉 Sr2Ta2O7 〉 HT-ZnTa2O6 〉 Zn3Ta2O8, in which LT-ZnTa2O6 shows an optimum activity at least twice higher than Sr2Ta2O7. This photocatalytic performance was revealed to primarily originate from the formation of ·OH radicals as indicated by photo- luminescence measurements. The synergistic effects of chemical compositions, crystal structure, and band structure on photocatalytic performances were discussed.

  7. Solar photo-ozonation: A novel treatment method for the degradation of water pollutants.

    Science.gov (United States)

    Chávez, Ana M; Rey, Ana; Beltrán, Fernando J; Álvarez, Pedro M

    2016-11-01

    The decomposition of aqueous ozone by UV-vis radiation has been investigated with focus on the impact of ozone photolysis on the degradation of water pollutants during solar ozonation processes. The apparent first-order rate constants of the decomposition of ozone (kobs) have been determined at various pHs in the 4-9 range using radiation of different wavelengths in the UV-vis range. It was found that UVA-visible radiation (λ>320nm) highly enhanced ozone decomposition, especially at pH 4, for which kobs was three-folded with respect to the process in the absence of radiation. Hydrogen peroxide was identified as a main intermediate of ozone photo-decomposition at pH 4. Experiments of degradation of oxalic acid by ozone showed that solar irradiation brings about an increase in the hydroxyl radical to ozone exposures ratio (Rct). Finally, photo-ozonation (λ>300nm) was shown advantageous over single ozonation in the mineralization of a selection of emerging contaminants (metoprolol, ibuprofen, N,N-diethyl-meta-toluamide and clofibric acid) in both ultrapure water and a synthetic secondary effluent. Thus, TOC removal in 2-h treatments increased from 10 to 25% in the absence of radiation to about 50% in the presence of radiation.

  8. Solar photo-ozonation: A novel treatment method for the degradation of water pollutants.

    Science.gov (United States)

    Chávez, Ana M; Rey, Ana; Beltrán, Fernando J; Álvarez, Pedro M

    2016-11-01

    The decomposition of aqueous ozone by UV-vis radiation has been investigated with focus on the impact of ozone photolysis on the degradation of water pollutants during solar ozonation processes. The apparent first-order rate constants of the decomposition of ozone (kobs) have been determined at various pHs in the 4-9 range using radiation of different wavelengths in the UV-vis range. It was found that UVA-visible radiation (λ>320nm) highly enhanced ozone decomposition, especially at pH 4, for which kobs was three-folded with respect to the process in the absence of radiation. Hydrogen peroxide was identified as a main intermediate of ozone photo-decomposition at pH 4. Experiments of degradation of oxalic acid by ozone showed that solar irradiation brings about an increase in the hydroxyl radical to ozone exposures ratio (Rct). Finally, photo-ozonation (λ>300nm) was shown advantageous over single ozonation in the mineralization of a selection of emerging contaminants (metoprolol, ibuprofen, N,N-diethyl-meta-toluamide and clofibric acid) in both ultrapure water and a synthetic secondary effluent. Thus, TOC removal in 2-h treatments increased from 10 to 25% in the absence of radiation to about 50% in the presence of radiation. PMID:27258212

  9. Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation

    OpenAIRE

    R Michael Lehman; Cynthia A. Cambardella; Diane E. Stott; Veronica Acosta-Martinez; Manter, Daniel K; Buyer, Jeffrey S.; Jude E. Maul; Smith, Jeffrey L.; Harold P. Collins; Halvorson, Jonathan J.; Kremer, Robert J.; Lundgren, Jonathan G.; Tom F. Ducey; Jin, Virginia L.; Douglas L. Karlen

    2015-01-01

    Our objective is to provide an optimistic strategy for reversing soil degradation by increasing public and private research efforts to understand the role of soil biology, particularly microbiology, on the health of our world’s soils. We begin by defining soil quality/soil health (which we consider to be interchangeable terms), characterizing healthy soil resources, and relating the significance of soil health to agroecosystems and their functions. We examine how soil biology influences soi...

  10. Biological effects of mercury pollution. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The bibliography contains citations concerning biological and biochemical effects of mercury pollutants on humans, animals, and plants. References cover long-term and short-term experiments, biochemical reaction kinetics, pollution sources, and ecosystems. Mercury poisoning, metabolism, and related diseases are described. Carcinogenicity testing, health risk and assessment, and the effects on food chains are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  11. Phytoecological indicators for biological recultivation of soils polluted with oil in the Absheron peninsula

    OpenAIRE

    E. M. Gurbanov; A. A. Akhundova

    2009-01-01

    Phytoecological indicators of polluted soils of Amirov Oil-and-Gas Production Department (Garadag district, Baku) were studied. Phytocenological and biomorphological analysis of flora was done with the aim of further biological rehabilitation of Absheron peninsula. Oil products (black oil, boring waters, etc.) pollution turns the plant cover into a dead mass. Decontamination of soil and rehabilitation of microbial community improve the soil’s fertility. Wild and cultured plant indicators may ...

  12. Degradation of Some Textile Dyes using Biological and Physical Treatments

    International Nuclear Information System (INIS)

    A total of twenty samples composed of ten samples of decaying eucalyptus leaves and ten soil samples were collected from El-Kanater El-Khairia district. All isolates were purified and identified to the species level. They found to be belonging to two main genera: Aspergillus sp. and Penicillium sp. The obtained fungal isolates were screened for testing their ability to decolorize Isolan dyes. The strain Aspergillus niger ES-5 was chosen for its highest ability to decolorize the four Isolan dyes. The biological decolorization of the textile metal azo dye was investigated under co-metabolic conditions. The decolorization capacity of the strain was influenced by the presence and/or absence of media components. The majority of decolorization was growth related, where resulted in 90.4%, 99.6%, 95.0% and 94.6% for I.Y, I.R, I.N and I.G, respectively after 72 h, only 2.5, 1.3, 1.4 and 3.0% for I.Y, I.R, I.N and I.G, respectively were desorbed, while negligible decolorization was detected using extracellular fluid (ECF) as well as using dead pellets. The addition of the dye to fungal cultures didn’t affect the extracellular GOD production while intracellular GOD production exhibited a different profile. Pictures of the mycelia represent dye uptake over the 72 h period of decolorization. The metal detection using Energy Dispersive X-ray Spectroscopy (EDS) of the outer fungal mycelium wall and ECF were both below detection level after the decolorization process took place. Thus, decolorization process and the removal of the elements by A. niger ES-5 involve initial adsorption followed by entrapment of the adsorbed dye inside the fungal biomass. Gamma rays increase color intensity in I.Y, while the other three Isolan dyes showed negative decolorization efficiency till 2.5 kGy after which, slow increase in the decolorization was observed.

  13. Degradation of trace concentrations of the persistent groundwater pollutant 2,6-dichlorobenzamide (BAM) in bioaugmented rapid sand filters.

    Science.gov (United States)

    Albers, Christian Nyrop; Feld, Louise; Ellegaard-Jensen, Lea; Aamand, Jens

    2015-10-15

    Groundwater is an important drinking water resource. Yet, this resource is threatened by pollution from chemicals, such as pesticides and their degradation products. To investigate the potential for remediation of groundwater polluted by trace concentrations of the pesticide residue 2,6-dichlorobenzamide (BAM), we established a pilot waterworks including two sand filters. The waterworks treated groundwater polluted with 0.2 μg/L BAM at flow conditions typical for rapid sand filters. Bioaugmentation of the sand filter with a specific BAM-degrading bacterium (Aminobacter sp. MSH1) resulted in significant BAM degradation to concentrations below the legal threshold level (0.1 μg/L), and this without adverse effects on other sand filter processes such as ammonium and iron oxidation. However, efficient degradation for more than 2-3 weeks was difficult to maintain due to loss of MSH1-bacteria, especially during backwashing. By limiting backwash procedures, the period of degradation was prolonged, but bacteria (and hence degradation activity) were still lost with time. Protozoa were observed to grow in the filters to a density that contributed significantly to the general loss of bacteria from the filters. Additionally, the concentration of easily assimilable organic carbon (AOC) in the remediated water may have been too low to sustain a sufficient population of degrader bacteria in the filter. This study shows that scaling up is not trivial and shortcomings in transferring degradation rates obtained in batch experiments to a rapid sand filter system are discussed. Further optimization is necessary to obtain and control more temporally stable systems for water purification. However, for the first time outside the laboratory and at realistic conditions a potential for the biodegradation of recalcitrant micropollutants in bioaugmented rapid sand filters is shown. PMID:26125500

  14. Phytoecological indicators for biological recultivation of soils polluted with oil in the Absheron peninsula

    Directory of Open Access Journals (Sweden)

    E. M. Gurbanov

    2009-07-01

    Full Text Available Phytoecological indicators of polluted soils of Amirov Oil-and-Gas Production Department (Garadag district,Baku were studied. Phytocenological and biomorphological analysis of flora was done with the aim of further biological rehabilitation of Absheron peninsula. Oil products (black oil, boring waters, etc. pollution turns the plant cover into a dead mass. Decontamination of soil and rehabilitation of microbial community improve the soil’s fertility. Wild and cultured plant indicators may be used in biopurification of the soils polluted with oil products. Sowing of the fodder crops followed by the technical remediation forms the clean areas of higher productivity.

  15. Preliminary degradation process study of infectious biological waste in a 5 k W thermal plasma equipment

    International Nuclear Information System (INIS)

    This work is a preliminary study of infectious biological waste degradation process by thermal plasma and was made in Thermal Plasma Applications Laboratory of Environmental Studies Department of the National Institute of Nuclear Research (ININ). Infectious biological waste degradation process is realized by using samples such polyethylene, cotton, glass, etc., but the present study scope is to analyze polyethylene degradation process with mass and energy balances involved. Degradation method is realized as follow: a polyethylene sample is put in an appropriated crucible localized inside a pyrolysis reactor chamber, the plasma jet is projected to the sample, by the pyrolysis phenomena the sample is degraded into its constitutive particles: carbon and hydrogen. Air was utilized as a recombination gas in order to obtain the higher percent of CO2 if amount of O2 is greater in the recombination gas, the CO generation is reduced. The effluent gases of exhaust pyrolysis reactor through are passed through a heat exchanger to get cooled gases, the temperature water used is 15 Centigrade degrees. Finally the gases was tried into absorption tower with water as an absorbent fluid. Thermal plasma degradation process is a very promising technology, but is necessary to develop engineering process area to avail all advantages of thermal plasma. (Author)

  16. Current Status on Biochemistry and Molecular Biology of Microbial Degradation of Nicotine

    Directory of Open Access Journals (Sweden)

    Raman Gurusamy

    2013-01-01

    Full Text Available Bioremediation is one of the most promising methods to clean up polluted environments using highly efficient potent microbes. Microbes with specific enzymes and biochemical pathways are capable of degrading the tobacco alkaloids including highly toxic heterocyclic compound, nicotine. After the metabolic conversion, these nicotinophilic microbes use nicotine as the sole carbon, nitrogen, and energy source for their growth. Various nicotine degradation pathways such as demethylation pathway in fungi, pyridine pathway in Gram-positive bacteria, pyrrolidine pathway, and variant of pyridine and pyrrolidine pathways in Gram-negative bacteria have been reported. In this review, we discussed the nicotine-degrading pathways of microbes and their enzymes and biotechnological applications of nicotine intermediate metabolites.

  17. The image simulation arithmetic of the degradating process of porous biologic ceramic in life-form

    Institute of Scientific and Technical Information of China (English)

    CHEN Zuo-bing; HUANG Jian-zhong; YAN Yu-hua; LI Shi-pu

    2001-01-01

    @@ It is a complex and difficult task to simulate the degradating process of porous biologic ceramic in life-form by computer. Because the evolvement of crystal' s structure deals with not only the mechanism of many factors, such as crystallography tropism, the reciprocity of wafer, interfacial movement, but also topology geometry mechanism of dimensional padding.

  18. Degradative Enzymes from the Pharmacy or Health Food Store: Interesting Examples for Introductory Biology Laboratories

    Science.gov (United States)

    Deutch, Charles E.

    2007-01-01

    Degradative enzymes in over-the-counter products from pharmacies and health food stores provide good examples of biological catalysis. These include [beta]-galactosidase in Lactaid[TM], [alpha]-galactosidase in Beano[R], [alpha]-amylase and proteases in digestive aids, and proteases in contact lens cleaners. These enzymes can be studied…

  19. EM-TECHNOLOGY APPLICATION FOR MUNICIPAL WASTEWATERS PURIFICATION FROM BIOLOGICAL POLLUTANTS

    Directory of Open Access Journals (Sweden)

    Oksana Vovk

    2011-03-01

    Full Text Available Abstract. This article is devoted to the problem of municipal waste waters purification. The present daysituation with waste water treatment facilities in Ukraine, existed methods of waste waters purification andsearch for new ones are described. Much attention is paid to such kind of pollutants as microbiological andbacterial. A comparatively new method of sewage waters purification from biological contaminants andpossibilities to apply this method in Ukraine is presented in the article.Keywords: biological pollutants, disinfection, effective microorganisms, EM-technology, treatmentfacilities, wastewaters.

  20. The Complete Multipartite Genome Sequence of Cupriavidus necator JMP134, a Versatile Pollutant Degrader

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios; Perez-Pantoja, Danilo; Ledger, Thomas; Mavromatis, Kostantinos; Anderson, Iain J.; Ivanova, Natalia N.; Hooper, Sean D.; Lapidus, Alla; Lucas, Susan; Gonzalez, Bernardo; Kyrpides, Nikos C.

    2010-02-01

    Cupriavidus necator JMP134 (formerly Ralstonia eutropha JMP134) is a Gram-negative {beta}-proteobacterium able to degrade a variety of chloroaromatic compounds and chemically-related pollutants. It was originally isolated based on its ability to use 2,4 dichlorophenoxyacetic acid (2,4-D) as a sole carbon and energy source [1]. In addition to 2,4-D, this strain can also grow on a variety of aromatic substrates, such as 4-chloro-2-methylphenoxyacetate (MCPA), 3-chlorobenzoic acid (3-CB) [2], 2,4,6-trichlorophenol [3], and 4-fluorobenzoate [4]. The genes necessary for 2,4-D utilization have been identified. They are located in two clusters on plasmid pPJ4: tfd{sub I} and tfd{sub II} [5,6,7,8]. The sequence and analysis of plasmid pJP4 was reported and a congruent model for bacterial adaptation to chloroaromatic pollutants was proposed [9]. According to this model, catabolic gene clusters assemble in a modular manner into broad-host-range plasmid backbones by means of repeated chromosomal capture events. Cupriavidus and related Burkholderia genomes are typically multipartite, composed of two large replicons (chromosomes) accompanied by classical plasmids. Previous work with Burkholderia xenovorans LB400 revealed a differential gene distribution with core functions preferentially encoded by the larger chromosome and secondary functions by the smaller [10]. It has been proposed that the secondary chromosomes in many bacteria originated from ancestral plasmids which, in turn, had been the recipient of genes transferred earlier from ancestral primary chromosomes [11]. The existence of multiple Cupriavidus and Burkholderia genomes provides the opportunity for comparative studies that will lead to a better understanding of the evolutionary mechanisms for the formation of multipartite genomes and the relation with biodegradation abilities.

  1. Influence of biological oxygen demand degradation patterns on water-quality modeling for rivers running through urban areas.

    Science.gov (United States)

    Fan, Chihhao; Wang, Wei-Shen

    2008-10-01

    Water-quality modeling has been used as a support tool for water-resources management. The Streeter-Phelps (SP) equation is one often-used algorithm in river water-quality simulation because of its simplicity and ease in use. To characterize the river dissolved oxygen (DO) sag profile, it only considers that the first-order biological oxygen demand (BOD) degradation and atmospheric reaeration are the sink and source in a river, respectively. In the river water-quality calculation, the assumption may not always provide satisfactory simulation due to an inappropriate description of BOD degradation. In the study, various patterns of BOD degradation were combined with the oxygen reaeration to simulate the DO sag profile in a river. Different BOD degradation patterns used include the first-order decay, mixed second-order decay, and oxygen-inhibition decay. The results shows that the oxygen-inhibition SP equation calculates higher BOD and DO concentration, while the mixed second SP equation calculates the least among the three tested models. In river-water calculation of Keelung River, the SP and oxygen-inhibition SP equations calculate similar BOD and DO concentrations, and the mixed second SP equation calculates the least BOD and DO concentration. The pollution loading of BOD and atmospheric reaeration constant are the two important factors that have significant impacts on aqueous DO concentration. In the field application, it is suggested that the mixed second SP equation be employed in water-quality simulation when the monitoring data exhibits a faster trend in BOD decay. The oxygen-inhibition SP equation may calculate the water quality more accurately when BOD decay is slower.

  2. Estimation of the fraction of biologically active methyl tert-butyl ether degraders in a heterogeneous biomass sample

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2008-01-01

    The fraction of biologically active methyl tert-butyl ether degraders in reactors is just as important for prediction of removal rates as knowledge of the kinetic parameters. The fraction of biologically active methyl tert-butyl ether degraders in a heterogeneous biomass sample, taken from a packed...

  3. The Influence of Surface Alumina and Silica on the Photocatalytic Degradation of Organic Pollutants

    Directory of Open Access Journals (Sweden)

    Terry A. Egerton

    2013-03-01

    Full Text Available Practical photocatalysis for degradation of organic pollutants must take into account the influence of other chemicals. Significant Al deposition on titania can occur at naturally occurring concentrations of dissolved Al. This paper reviews the author’s work on the influence of deliberately deposited hydrous oxides of aluminium on the behavior of a ~130 m2 g−1 rutile TiO2, and then compares the behavior of deposited alumina with that of deposited silica. On rutile some adsorbed nitrogen is infrared-active. Alumina and silica deposited on the rutile reduce, and ultimately eliminate, this infrared-active species. They also reduce photocatalytic oxidation of both propan-2-ol and dichloroacetate ion and the photocatalytic reduction of diphenyl picryl hydrazine. The surface oxides suppress charge transfer and may also reduce reactant adsorption. Quantitative measurement of TiO2 photogreying shows that the adsorbed inorganics also reduce photogreying, attributed to the capture of photogenerated conduction band electrons by Ti4+ to form Ti3+. The influence of adsorbed phosphate on photocatalysis is briefly considered, since phosphate reduces photocatalytic disinfection. In the context of classical colloid studies, it is concluded that inorganic species in water can significantly reduce photoactivity from the levels that measured in pure water.

  4. Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation

    Directory of Open Access Journals (Sweden)

    R. Michael Lehman

    2015-01-01

    Full Text Available Our objective is to provide an optimistic strategy for reversing soil degradation by increasing public and private research efforts to understand the role of soil biology, particularly microbiology, on the health of our world’s soils. We begin by defining soil quality/soil health (which we consider to be interchangeable terms, characterizing healthy soil resources, and relating the significance of soil health to agroecosystems and their functions. We examine how soil biology influences soil health and how biological properties and processes contribute to sustainability of agriculture and ecosystem services. We continue by examining what can be done to manipulate soil biology to: (i increase nutrient availability for production of high yielding, high quality crops; (ii protect crops from pests, pathogens, weeds; and (iii manage other factors limiting production, provision of ecosystem services, and resilience to stresses like droughts. Next we look to the future by asking what needs to be known about soil biology that is not currently recognized or fully understood and how these needs could be addressed using emerging research tools. We conclude, based on our perceptions of how new knowledge regarding soil biology will help make agriculture more sustainable and productive, by recommending research emphases that should receive first priority through enhanced public and private research in order to reverse the trajectory toward global soil degradation.

  5. Treatment of Slightly Polluted Wastewater in an Oil Refinery Using a Biological Aerated Filter Process

    Institute of Scientific and Technical Information of China (English)

    XIE Wenyu; ZHONG Li; CHEN Jianjun

    2007-01-01

    The slightly polluted wastewater from oil refinery contains some COD, oil pollutants and suspended solids (SS). A small-scale fixed film biological aerated filter (BAF) process was used to treat the wastewater. The influences of hydraulic retention time (HRT), air/water volume flow ratio and backwashing cycle on treatment efficiencies were investigated. The wastewater was treated by the BAF process under optimal conditions: the HRT of backwashing cycle of every 4-7 days. The results showed that the average removal efficiency of COD, oil pollutants and SS was 84.5%, 94.0% and 83.4%, respectively. And the average effluent concentration of COD, oil pollutants and SS was 12.5, 0.27, 14.5the BAF process is a suitable and highly efficient method to treat the wastewater.

  6. Degradation of biological weapons agents in the environment: implications for terrorism response.

    Science.gov (United States)

    Stuart, Amy L; Wilkening, Dean A

    2005-04-15

    We investigate the impact on effective terrorism response of the viability degradation of biological weapons agents in the environment. We briefly review the scientific understanding and modeling of agent environmental viability degradation. In general, agent susceptibility to viability loss is greatest for vegetative bacteria, intermediate for viruses, and least for bacterial spores. Survival is greatest in soil and progressively decreases in the following environments: textiles, water, hard surfaces, and air. There is little detailed understanding of loss mechanisms. We analyze the time behavior and sensitivity of four mathematical models that are used to represent environmental viability degradation (the exponential, probability, and first- and second-order catastrophic decay models). The models behave similarly at short times (representation of the hazard. For longer time phenomena, including decontamination, the current model capabilities are likely insufficient. Finally, we implement each model in a simple numerical integration of anthrax dispersion, viability degradation, and dose response. Decay models spanning the current knowledge of airborne degradation result in vastly different predicted hazard areas. This confounds attempts to determine necessary medical and decontamination measures. Hence,the current level of understanding and representation of environmental viability degradation in response models is inadequate to inform appropriate emergency response measures. PMID:15884371

  7. Biological removal of arsenic pollution by soil fungi.

    Science.gov (United States)

    Srivastava, Pankaj Kumar; Vaish, Aradhana; Dwivedi, Sanjay; Chakrabarty, Debasis; Singh, Nandita; Tripathi, Rudra Deo

    2011-05-15

    Fifteen fungal strains were isolated from arsenic contaminated (range 9.45-15.63 mg kg(-1)) agricultural soils from the state of West Bengal, India. Five fungal strains were belonged to the Aspergillus and Trichoderma group each, however, remaining five were identified as the Neocosmospora, Sordaria, Rhizopus, Penicillium and sterile mycelial strain. All these fungal strains were cultivated on medium supplemented with 100, 500, 1000, 5000 and 10,000 mg l(-1) of sodium arsenate. After 30-day cultivation under laboratory conditions, radial growth of these strains was determined and compared with control. Toxicity and tolerance of these strains to arsenate were evaluated on the basis of tolerance index. Out of fifteen, only five fungal strains were found resistant and survived with tolerance index pattern as 0.956 (sterile mycelial strain)>0.311 (Rhizopus sp.)>0.306 (Neocosmospora sp.)>0.212 (Penicillium sp.)>0.189 (Aspergillus sp.) at 10,000 mg l(-1) of arsenate. The arsenic removal efficacy of ten fungal strains, tolerant to 5000 mg l(-1) arsenate, was also assayed under laboratory conditions for 21 days. All these strains were cultivated individually on mycological broth enriched with 10 mg l(-1) of arsenic. The initial and final pH of cultivating medium, fungal biomass and removal of arsenic by each fungal strain were evaluated. Fungal biomass of ten strains removed arsenic biologically from the medium which were ranged from 10.92 to 65.81% depending on fungal species. The flux of biovolatilized arsenic was determined indirectly by estimating the sum of arsenic content in fungal biomass and medium. The mean percent removal as flux of biovolatilized arsenic ranged from 3.71 to 29.86%. The most effective removal of arsenic was observed in the Trichoderma sp., sterile mycelial strain, Neocosmospora sp. and Rhizopus sp. fungal strains. These fungal strains can be effectively used for the bioremediation of arsenic-contaminated agricultural soils.

  8. Strong Impact on the Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Community of a PAH-Polluted Soil but Marginal Effect on PAH Degradation when Priming with Bioremediated Soil Dominated by Mycobacteria▿

    OpenAIRE

    Johnsen, Anders R.; Schmidt, Stine; Hybholt, Trine K.; Henriksen, Sidsel; Jacobsen, Carsten S.; Andersen, Ole

    2007-01-01

    Bioaugmentation of soil polluted with polycyclic aromatic hydrocarbons (PAHs) is often disappointing because of the low survival rate and low activity of the introduced degrader bacteria. We therefore investigated the possibility of priming PAH degradation in soil by adding 2% of bioremediated soil with a high capacity for PAH degradation. The culturable PAH-degrading community of the bioremediated primer soil was dominated by Mycobacterium spp. A microcosm containing pristine soil artificial...

  9. In situ combined chemical and biological assessment of estrogenic pollution in a water recycling system.

    Science.gov (United States)

    Chi, Yulang; Huang, Qiansheng; Zhang, Huanteng; Chen, Yajie; Dong, Sijun

    2016-05-01

    Estrogenic pollution and its control in aquatic systems have drawn substantial attention around the world. The chemical and biological assessment approaches currently utilized in the laboratory or field cannot give an integrated assessment of the pollution when used separately. In this study, in situ chemical and biological methods were combined to detect pollution in a water recycling system. Data for the water quality index (WQI) demonstrated that the water treatment resulted in the decline of pollution from upstream to downstream. Wild male Nile tilapia, Oreochromis niloticus, was sampled in June and September. The concentrations of four common endocrine disrupting chemicals (EDCs) were determined in the tilapia liver by chromatographic analysis methods. The level of 17β-estradiol (E2) declined from upstream to downstream in both months. In contrast, the levels of bisphenol A (BPA), di-(2-ethylhcxyl) phthalate (DEHP), and perfluorooctane sulfonate (PFOS) did not display this declining tendency. The highest relative expression of vitellogenin 1 (VTG1) was observed in tilapia from upstream, then the level significantly decreased along the water system. The relative expression levels of CYP1A1 in the water system were also significantly higher than that of the control. However, no declining trend could be observed along the water system. The change of VTG1 expression corresponded well with that of E2 levels in the tilapia liver. Overall, our study assessed the pollution by endocrine disruptors using chemical and biological data with good correspondence. This study also demonstrated the effectiveness of the water recycling system in eliminating estrogen pollution in municipal sewage. PMID:27155427

  10. [Effects of Oil Pollutants on the Performance of Marine Benthonic Microbial Fuel Cells and Its Acceleration of Degradation].

    Science.gov (United States)

    Meng, Yao; Fu, Yu-bin; Liang, Sheng-kang; Chen, Wei; Liu, Zhao-hui

    2015-08-01

    Degradation of oil pollutants under the sea is slow for its oxygen-free environment which has caused long-term harm to ocean environment. This paper attempts to accelerate the degradation of the sea oil pollutants through electro catalysis by using the principle of marine benthonic microbial fuel cells (BMFCs). The influence of oil pollutants on the battery performance is innovatively explored by comparing the marine benthonic microbial fuel cells ( BMFCs-A) containing oil and oil-free microbial fuel cells (BMFCs-B). The acceleration effect of BMFCs is investigated by the comparison between the oil-degrading rate and the number of heterotrophic bacteria of the BMFCs-A and BMFCs-B on their anodes. The results show that the exchange current densities in the anode of the BMFCs-A and BMFCs-B are 1. 37 x 10(-2) A x m(-2) and 1.50 x 10(-3) A x m(-2) respectively and the maximum output power densities are 105.79 mW x m(-2) and 83.60 mW x m(-2) respectively. The exchange current densities have increased 9 times and the maximum output power density increased 1. 27 times. The anti-polarization ability of BMFCs-A is improved. The heterotrophic bacteria numbers of BMFCs-A and BMFCs-C on their anodes are (66 +/- 3.61) x 10(7) CFU x g(-1) and (7.3 +/- 2.08) x 10(7) CFU x g(-1) respectively and the former total number has increased 8 times, which accelerates the oil-degrading rate. The degrading rate of the oil in the BMFCs-A is 18.7 times higher than that in its natural conditions. The BMFCs can improve its electrochemical performance, meanwhile, the degradation of oil pollutants can also be accelerated. A new model of the marine benthonic microbial fuel cells on its acceleration of oil degradation is proposed in this article.

  11. Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding of Biological Pathway.

    Science.gov (United States)

    Elgrabli, Dan; Dachraoui, Walid; Ménard-Moyon, Cécilia; Liu, Xiao Jie; Bégin, Dominique; Bégin-Colin, Sylvie; Bianco, Alberto; Gazeau, Florence; Alloyeau, Damien

    2015-10-27

    Despite numerous applications, the cellular-clearance mechanism of multiwalled carbon nanotubes (MWCNTs) has not been clearly established yet. Previous in vitro studies showed the ability of oxidative enzymes to induce nanotube degradation. Interestingly, these enzymes have the common capacity to produce reactive oxygen species (ROS). Here, we combined material and life science approaches for revealing an intracellular way taken by macrophages to degrade carbon nanotubes. We report the in situ monitoring of ROS-mediated MWCNT degradation by liquid-cell transmission electron microscopy. Two degradation mechanisms induced by hydroxyl radicals were extracted from these unseen dynamic nanoscale investigations: a non-site-specific thinning process of the walls and a site-specific transversal drilling process on pre-existing defects of nanotubes. Remarkably, similar ROS-induced structural injuries were observed on MWCNTs after aging into macrophages from 1 to 7 days. Beside unraveling oxidative transformations of MWCNT structure, we elucidated an important, albeit not exclusive, biological pathway for MWCNT degradation in macrophages, involving NOX2 complex activation, superoxide production, and hydroxyl radical attack, which highlights the critical role of oxidative stress in cellular processing of MWCNTs.

  12. Modified iron-carbon as heterogeneous electro-Fenton catalyst for organic pollutant degradation in near neutral pH condition: Characterization, degradation activity and stability

    International Nuclear Information System (INIS)

    Polytetrafluoroethylene (PTFE) was firstly used to modify the surface characteristics of Fe-C particles and acted as catalyst to degrade 2,4-dichlorophenol (2,4-DCP) by heterogeneous electro-Fenton (EF) in near neutral pH condition. Fe-C particles before and after PTFE modification, and after 15 times consecutive degradations were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray (EDX) spectrometry. The modified Fe-C exhibited a good activity for degradation of 120 mg/L 2,4-DCP in near neutral pH condition, achieving over 95% removal efficiency within 120 min under the conditions of Fe-C 6 g/L, current intensity 100 mA and initial pH 6.7. In this heterogeneous EF system, a significant synergetic effect between anodic oxidation and single Fe-C micro-electrolysis was obtained, which attributed to the effective EF oxidation at favorable acidic pH condition that triggered by anodic oxidation. 15 times consecutive runs demonstrated the 2,4-DCP degradation efficiency was stable while the iron leaching ratio was relatively low. Account for the catalytic activity, life span and inexpensive cost, the PTFE modified Fe-C was potential for industrial application as a good electro-Fenton catalyst to abate biorefractory pollutants in neutral pH condition

  13. EM-TECHNOLOGY APPLICATION FOR MUNICIPAL WASTEWATERS PURIFICATION FROM BIOLOGICAL POLLUTANTS

    OpenAIRE

    Vovk, Oksana; Gay, Angela; Yakovleva, Anna

    2011-01-01

    Abstract. This article is devoted to the problem of municipal waste waters purification. The present daysituation with waste water treatment facilities in Ukraine, existed methods of waste waters purification andsearch for new ones are described. Much attention is paid to such kind of pollutants as microbiological andbacterial. A comparatively new method of sewage waters purification from biological contaminants andpossibilities to apply this method in Ukraine is presented in the article.Keyw...

  14. Recommendations on methods for the detection and control of biological pollution in marine coastal waters

    OpenAIRE

    Olenin, Sergej; Elliott, Michael; Bysveen, Ingrid; Culverhouse, Phil F.; Daunys, Darius; Dubelaar, George B.J.; Gollasch, Stephan; Goulletquer, Philippe; Jelmert, Anders; Kantor, Yuri; Mézeth, Kjersti Bringsvor; Minchin, Dan; Occhipinti-ambrogi, Anna; OLENINA Irina; Vandekerkhove, Jochen

    2011-01-01

    Adverse effects of invasive alien species (IAS), or biological pollution, is an increasing problem in marine coastal waters, which remains high on the environmental management agenda. All maritime countries need to assess the size of this problem and consider effective mechanisms to prevent introductions, and if necessary and where possible to monitor, contain, control or eradicate the introduced impacting organisms. Despite this, and in contrast to more enclosed water bodies, the openness of...

  15. Electricity generation and pollutant degradation using a novel biocathode coupled photoelectrochemical cell.

    Science.gov (United States)

    Du, Yue; Feng, Yujie; Qu, Youpeng; Liu, Jia; Ren, Nanqi; Liu, Hong

    2014-07-01

    The photoelectrochemical cell (PEC) is a promising tool for the degradation of organic pollutants and simultaneous electricity recovery, however, current cathode catalysts suffer from high costs and short service lives. Herein, we present a novel biocathode coupled PEC (Bio-PEC) integrating the advantages of photocatalytic anode and biocathode. Electrochemical anodized TiO2 nanotube arrays fabricated on Ti substrate were used as Bio-PEC anodes. Field-emission scanning electron microscope images revealed that the well-aligned TiO2 nanotubes had inner diameters of 60-100 nm and wall-thicknesses of about 5 nm. Linear sweep voltammetry presented the pronounced photocurrent output (325 μA/cm(2)) under xenon illumination, compared with that under dark conditions. Comparing studies were carried out between the Bio-PEC and PECs with Pt/C cathodes. The results showed that the performance of Pt/C cathodes was closely related with the structure and Pt/C loading amounts of cathodes, while the Bio-PEC achieved similar methyl orange (MO) decoloration rate (0.0120 min(-1)) and maximum power density (211.32 mW/m(2)) to the brush cathode PEC with 50 mg Pt/C loading (Brush-PEC, 50 mg). The fill factors of Bio-PEC and Brush-PEC (50 mg) were 39.87% and 43.06%, respectively. The charge transfer resistance of biocathode was 13.10 Ω, larger than the brush cathode with 50 mg Pt/C (10.68 Ω), but smaller than the brush cathode with 35 mg Pt/C (18.35 Ω), indicating the comparable catalytic activity with Pt/C catalyst. The biocathode was more dependent on the nutrient diffusion, such as nitrogen and inorganic carbon, thus resulting in relatively higher diffusion resistance compared to the brush cathode with 50 mg Pt/C loading that yielded similar MO removal and power output. Considering the performance and cost of PEC system, the biocathode was a promising alternative for the Pt/C catalyst. PMID:24863439

  16. Strong Impact on the Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Community of a PAH-Polluted Soil but Marginal Effect on PAH Degradation when Priming with Bioremediated Soil Dominated by Mycobacteria

    DEFF Research Database (Denmark)

    Johnsen, Anders R.; Schmidt, Stine; Hybholdt, Trine K.;

    2007-01-01

    Bioaugmentation of soil polluted with polycyclic aromatic hydrocarbons (PAHs) is often disappointing because of the low survival rate and low activity of the introduced degrader bacteria. We therefore investigated the possibility of priming PAH degradation in soil by adding 2% of bioremediated soil...... with a high capacity for PAH degradation. The culturable PAH-degrading community of the bioremediated primer soil was dominated by Mycobacterium spp. A microcosm containing pristine soil artificially polluted with PAHs and primed with bioremediated soil showed a fast, 100- to 1,000-fold increase in numbers...... of culturable phenanthrene-, pyrene-, and fluoranthene degraders and a 160-fold increase in copy numbers of the mycobacterial PAH dioxygenase gene pdo1. A nonpolluted microcosm primed with bioremediated soil showed a high rate of survival of the introduced degrader community during the 112 days of incubation...

  17. Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation

    Science.gov (United States)

    Hansen, Angela; Kraus, Tamara; Pellerin, Brian; Fleck, Jacob; Downing, Bryan D.; Bergamaschi, Brian

    2016-01-01

    Advances in spectroscopic techniques have led to an increase in the use of optical properties (absorbance and fluorescence) to assess dissolved organic matter (DOM) composition and infer sources and processing. However, little information is available to assess the impact of biological and photolytic processing on the optical properties of original DOM source materials. We measured changes in commonly used optical properties and indices in DOM leached from peat soil, plants, and algae following biological and photochemical degradation to determine whether they provide unique signatures that can be linked to original DOM source. Changes in individual optical parameters varied by source material and process, with biodegradation and photodegradation often causing values to shift in opposite directions. Although values for different source materials overlapped at the end of the 111-day lab experiment, multivariate statistical analyses showed that unique optical signatures could be linked to original DOM source material even after degradation, with 17 optical properties determined by discriminant analysis to be significant (p<0.05) in distinguishing between DOM source and environmental processing. These results demonstrate that inferring the source material from optical properties is possible when parameters are evaluated in combination even after extensive biological and photochemical alteration.

  18. Pollution

    NARCIS (Netherlands)

    E. Dürr; R. Jaffe

    2014-01-01

    This essay points to the role of pollution in understanding the social construction of hierarchies and urban space. Conceptualizations of pollution and approaches to waste management always reflect the Zeitgeist and tend to be politically charged. We argue that an ethnographic approach to pollution

  19. A two-stage anaerobic system for biodegrading wastewater containing terephthalic acid and high strength easily degradable pollutants

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The high strength easily biodegradable pollutants(represented by CODE) are strong inhibitors of terephthalic acid(TA) anaerobic biodegradation. At the same time, TA can inhibiteasily biodegradable pollutants removal under anaerobic conditionsto a limited extent. This mutual inhibition could happen and causea low removal efficiency of both TA and CODE, when the effluentfrom TA workshops containing TA and easily biodegradable pollutantsare treated by a single anaerobic reactor system. Based upon thetreatment kinetics analysis of both TA degradation and CODEremoval, a two-stage up-flow anaerobic sludge blanket and up-flowfixed film reactor(UASB-UAFF) system for dealing with this kind ofwastewater was developed and run successfully at laboratory scale.An UASB reactor with the methanogenic consortium as the first stageremoves the easily biodegradable pollutants(CODE). An UAFF reactor as the second stage is mainly in charge of TA degradation. At aHRT 18.5h, the CODE and TA removal rate of the system reached 89.2% and 71.6%, respectively.

  20. Bioremediation of multi-polluted soil by spent mushroom (Agaricus bisporus) substrate: Polycyclic aromatic hydrocarbons degradation and Pb availability.

    Science.gov (United States)

    García-Delgado, Carlos; Yunta, Felipe; Eymar, Enrique

    2015-12-30

    This study investigates the effect of three spent Agaricus bisporus substrate (SAS) application methods on bioremediation of soil multi-polluted with Pb and PAH from close to a shooting range with respect natural attenuation (SM). The remediation treatments involve (i) use of sterilized SAS to biostimulate the inherent soil microbiota (SSAS) and two bioaugmentation possibilities (ii) its use without previous treatment to inoculate A. bisporus and inherent microbiota (SAS) or (iii) SAS sterilization and further A. bisporus re-inoculation (Abisp). The efficiency of each bioremediation microcosm was evaluated by: fungal activity, heterotrophic and PAH-degrading bacterial population, PAH removal, Pb mobility and soil eco-toxicity. Biostimulation of the native soil microbiology (SSAS) achieved similar levels of PAH biodegradation as SM and poor soil detoxification. Bioaugmented microcosms produced higher PAH removal and eco-toxicity reduction via different routes. SAS increased the PAH-degrading bacterial population, but lowered fungal activity. Abisp was a good inoculum carrier for A. bisporus exhibiting high levels of ligninolytic activity, the total and PAH-degrading bacteria population increased with incubation time. The three SAS applications produced slight Pb mobilization (<0.3%). SAS sterilization and further A. bisporus re-inoculation (Abisp) proved the best application method to remove PAH, mainly BaP, and detoxify the multi-polluted soil. PMID:26188871

  1. Microbial degradation of trichloroethylene in the rhizosphere: Potential application to biological remediation of waste sites

    International Nuclear Information System (INIS)

    The possibility that vegetation may be used to actively promote microbial restoration of chemically contaminated soils was tested by using rhizosphere and nonvegetated soils collected from a trichloroethylene (TCE)-contaminated field site. Biomass determinations, disappearance of TCE from the headspace of spiked soil slurries, and mineralization of [14C]TCE to 14CO2 all showed that microbial activity is greater in rhizosphere soils and that TCE degradation occurs faster in the rhizosphere than in the edaphosphere. Thus, vegetation may be an important variable in the biological restoration of surface and near-surface soils

  2. Electrochemical Degradation Characteristics of Refractory Organic Pollutants in Coking Wastewater on Multiwall Carbon Nanotube-Modified Electrode

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2012-01-01

    Full Text Available The multiwall carbon nanotube-mollified electrode (MWCNT-ME was fabricated and its electrocatalytic activity of refractory organic pollutants of coking wastewater was investigated. The surface morphology, absorption properties, and the electrochemical behavior of phenol and aniline at the MWCNT-ME were analyzed. Using ultraviolet-visible adsorption spectroscopy (UV-vis, Gas chromatography mass spectrometry (GC/MS, and chemical oxygen demand (COD test, the electrochemical oxidation properties of refractory organic pollutants of coking wastewater using the MWCNT-ME and the IrSnSb/Ti electrode were analyzed. Compared with the powder adsorption media, the MWCNT-ME was proved to have weaker adsorption activity, which means electrochemical degradation is the decisive factor of the removal of organic pollutants. The MWCNT-ME shows high electrochemical reactivity with oxidation peaks of 0.18 A and 0.12 A for phenol and aniline, respectively. Under the same working conditions, the MWCNT-ME COD removal rate 51% is higher than IrSnSb/Ti electrode’s rate 35%. The MWCNT-ME has application potential of electrochemical oxidation of refractory organic pollutants of coking wastewater.

  3. Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sudarjanto, Gatut [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia); Keller-Lehmann, Beatrice [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia); Keller, Jurg [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia)]. E-mail: j.keller@awmc.uq.edu.au

    2006-11-02

    The integrated chemical-biological degradation combining advanced oxidation by UV/H{sub 2}O{sub 2} followed by aerobic biodegradation was used to degrade C.I. Reactive Azo Red 195A, commonly used in the textile industry in Australia. An experimental design based on the response surface method was applied to evaluate the interactive effects of influencing factors (UV irradiation time, initial hydrogen peroxide dosage and recirculation ratio of the system) on decolourisation efficiency and optimizing the operating conditions of the treatment process. The effects were determined by the measurement of dye concentration and soluble chemical oxygen demand (S-COD). The results showed that the dye and S-COD removal were affected by all factors individually and interactively. Maximal colour degradation performance was predicted, and experimentally validated, with no recirculation, 30 min UV irradiation and 500 mg H{sub 2}O{sub 2}/L. The model predictions for colour removal, based on a three-factor/five-level Box-Wilson central composite design and the response surface method analysis, were found to be very close to additional experimental results obtained under near optimal conditions. This demonstrates the benefits of this approach in achieving good predictions while minimising the number of experiments required.

  4. Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology

    International Nuclear Information System (INIS)

    The integrated chemical-biological degradation combining advanced oxidation by UV/H2O2 followed by aerobic biodegradation was used to degrade C.I. Reactive Azo Red 195A, commonly used in the textile industry in Australia. An experimental design based on the response surface method was applied to evaluate the interactive effects of influencing factors (UV irradiation time, initial hydrogen peroxide dosage and recirculation ratio of the system) on decolourisation efficiency and optimizing the operating conditions of the treatment process. The effects were determined by the measurement of dye concentration and soluble chemical oxygen demand (S-COD). The results showed that the dye and S-COD removal were affected by all factors individually and interactively. Maximal colour degradation performance was predicted, and experimentally validated, with no recirculation, 30 min UV irradiation and 500 mg H2O2/L. The model predictions for colour removal, based on a three-factor/five-level Box-Wilson central composite design and the response surface method analysis, were found to be very close to additional experimental results obtained under near optimal conditions. This demonstrates the benefits of this approach in achieving good predictions while minimising the number of experiments required

  5. Petroleum Migration, Filling and Biological Degradation in Mesozoic Reservoirs in the Northern North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Horstad, I.

    1995-12-31

    This thesis comprises five papers the first of which discusses the distribution of petroleum within the Gullfaks Field and applies conventional geochemical techniques to characterize the petroleum distribution within a single field. The paper also shows how understanding geochemical heterogeneities in the petroleum fluids helped to build a better geological model of the development of the Gullfaks Field. Based on this work an improved filling model was proposed for the Gullfaks Field. The second paper discusses the biological degradation of the hydrocarbons within the Gullfaks Field, and shows how several samples from neighbouring fields were analyzed to confirm the filling model of the field. It also demonstrates how the quantification of biological degradation of hydrocarbons in the reservoir places constraints on acceptable models of the geological development of the Tampen Spur Area. The third paper discusses the source vs. sink problems of petroleum migration in the North Sea. The fourth paper is a regional study of the petroleum migration within the Tampen Spur area and proposes a regional migration model. The fifth paper is a detailed reservoir geochemical study of the giant Troll Field on the Horda Platform and proposes a revised filling model for the field. 224 refs., 86 figs., 5 tabs.

  6. Gaseous pollutants emitted from a mechanical biological treatment plant for municipal solid waste: odor assessment and photochemical reactivity.

    Science.gov (United States)

    Fang, Jingjing; Zhang, Hua; Yang, Na; Shao, Liming; He, Pinjing

    2013-11-01

    The concentrations and chromatographic profiles of gaseous pollutants emitted from a municipal solid waste (MSW) biological treatment plant were investigated to identify the major odor substances and atmospheric photochemical reactive species (PRS). Four methods were used to measure different gaseous pollutants in this study, including colorimetric tubes, gas chromatography with mass spectrometry/flame ionization detection/pulsed flame photometric detection (GC-MS/FID/PFPD) preceded by cold trap concentration, GC-FID preceded by solid-phase microextraction (SPME), and high-performance liquid chromatography (HPLC) after derivation by 2,4-dinitrophenylhydrazine (DNPH). Seventy-five gaseous compounds belonging to nine groups (nitrogen compounds, sulfur compounds, alkanes, alkenes, aromatics, terpenes, alcohols, carbonyls, and volatile fatty acids [VFAs]) were identified. In the pre-biotreatment facility, the total concentration of the gaseous pollutants reached the maximum value on day 7 (317 ppm). During the post-biotreatment process, the total concentration of gaseous pollutants decreased from 331 ppm at the beginning to 162 ppm in the end. The group with the greatest decrease was carbonyls, from 64 to 7.4 ppm, followed by alcohols, from 40 to 4.5 ppm, which were both oxygenated compounds. The proportion of aromatics was notably high in the pre-mechanical treatment facility, accounting for 50.6% of the total, revealing the xenobiotic compounds disseminated by stirring and agitating the waste in the initial stage. The proportions of nitrogen compounds were lower in the pre- and post-mechanical treatment facilities (1.5% and 6.9%) than in the pre- and post-biotreatment facilities (11.9% and 13:8%), suggesting that their generation was closely associated with waste degradation. The major odor compounds in the facilities were acetic acid, butyric acid, valeric acid, isovaleric acid, and dimethyl sulfide. The major PRS in the facilities were aromatics, acetaldehyde

  7. Bacterial diversity exploration in hydrocarbon polluted soil: metabolic potential and degrader community evolution revealed by isotope labeling

    International Nuclear Information System (INIS)

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous compounds produced by incomplete combustion of organic matter. They are a source of environmental pollution, especially associated to oil product exploitation, and represent a threat for living organisms including human beings because of their toxicity. Many bacteria capable of degrading PAHs have been isolated and studied. However, since less than 5% of soil bacteria can be cultivated in the laboratory, bacterial species able to degrade PAHs in situ have been poorly studied. The first goal of this study was to identify bacteria that degrade PAHs in soil using culture-independent molecular methods. To this end, a strategy known a stable isotope probing has been implemented based on the use of phenanthrene, a three rings PAH, in which the natural isotope of carbon was replaced by 13C. This molecule has been introduced as a tracer in microcosms containing soil from a constructed wetlands collecting contaminated water from highway runoff. Bacteria having incorporated the 13C were then identified by 16S rRNA gene sequence analysis after PCR amplification from labeled genomic DNA extracted from soil. The results show that so far little studied Betaproteobacteria, belonging to the genera Acidovorax, Rhodoferax, Hydrogenophaga and Thiobacillus, as well as Rhodocyclaceae, were the key players in phenanthrene degradation. Predominance of Betaproteobacteries was established thanks to quantitative PCR measurements. A dynamic analysis of bacterial diversity also showed that the community structure of degraders depended on phenanthrene bioavailability. In addition, the phylogenetic diversity of ring-hydroxylating di-oxygenases, enzymes involved in the first step of PAH degradation, has been explored. We detected new sequences, mostly related to di-oxygenases from Sphingomonadales and Burkholderiales. For the first time, we were able to associate a catalytic activity for oxidation of PAHs to partial gene sequences amplified

  8. The role of organic and inorganic indoor pollutants in museum environments in the degradation of dammar varnish.

    Science.gov (United States)

    Bonaduce, Ilaria; Odlyha, Marianne; Di Girolamo, Francesca; Lopez-Aparicio, Susana; Grøntoft, Terje; Colombini, Maria Perla

    2013-01-21

    This paper investigates the effects of inorganic (NO(2) and O(3)) and volatile organic acid (acetic acid) pollutants on the degradation of dammar varnish in museum environments. Model paint varnish samples based on dammar resin were investigated by Gas Chromatography Mass Spectrometry (GC-MS), Dynamic Mechanical Analysis (DMA) and Atomic Force Microscopy (AFM). Dammar is a natural triterpenoid resin, commonly used as a paint varnish. Samples were subjected to accelerated ageing by different levels of pollutants (NO(2) and O(3) and acetic acid) over a range of relative humidities (RH) and then analysed. The results revealed that as the dose of the pollutant was increased, so did the degree of oxidation and cross-linking of the resin. Most interestingly, it was shown for the first time that exposure to acetic acid vapour resulted in the production of an oxidised and cross-linked resin, comparable to the resin obtained under exposure to NO(2) and O(3). These conclusions were supported by the analyses of model varnishes exposed for about two years in selected museum environments, where the levels of pollutants had been previously measured. Exposures were performed both within and outside the selected microclimate frames for paintings. Results showed that varnishes placed within the microclimate frames were not always better preserved than those exposed outside the frames. For some sites, the results highlighted the protective effects of the frames from outdoor generated pollutants, such as NO(2) and O(3). For other sites, the results showed that the microclimate frames acted as traps for the volatile organic acids emitted by the wooden components of the mc-frames, which damaged the varnish. PMID:23162813

  9. Integrated assessment of oil pollution using biological monitoring and chemical fingerprinting.

    Science.gov (United States)

    Lewis, Ceri; Guitart, Carlos; Pook, Chris; Scarlett, Alan; Readman, James W; Galloway, Tamara S

    2010-06-01

    A full assessment of the impact of oil and chemical spills at sea requires the identification of both the polluting chemicals and the biological effects they cause. Here, a combination of chemical fingerprinting of surface oils, tissue residue analysis, and biological effects measures was used to explore the relationship between spilled oil and biological impact following the grounding of the MSC Napoli container ship in Lyme Bay, England in January 2007. Initially, oil contamination remained restricted to a surface slick in the vicinity of the wreck, and there was no chemical evidence to link biological impairment of animals (the common limpet, Patella vulgata) on the shore adjacent to the oil spill. Secondary oil contamination associated with salvage activities in July 2007 was also assessed. Chemical analyses of aliphatic hydrocarbons and terpanes in shell swabs taken from limpet shells provided an unequivocal match with the fuel oil carried by the ship. Corresponding chemical analysis of limpet tissues revealed increased concentrations of polycyclic aromatic hydrocarbons (PAHs) dominated by phenanthrene and C1 to C3 phenanthrenes with smaller contributions from heavier molecular weight PAHs. Concurrent ecotoxicological tests indicated impairment of cellular viability (p oiled animals. These results illustrate the value of combining biological monitoring with chemical fingerprinting for the rapid identification of spilled oils and their sublethal impacts on biota in situ.

  10. Measures for reducing pollution produced by ash spoil banks of thermoelectric stations, by biological recultivation

    Directory of Open Access Journals (Sweden)

    MAXIM A.

    2008-11-01

    Full Text Available Worldwide, the thermoelectric power stations produce 70% from the total of electric energy. This intenselypollutes all environment compartments. The thermoelectric power stations produce as much gaseous (CO, CO2,NOx, SOx as solid (ash and heavy metals pollutants. Ash spoil banks from Romania occupy 3102 hectares. Themost efficient measure of rehabilitation is biological recultivation (agricultural, forestry, agricultural continuedby forest. The world and national researches on this domain shows that forest recultivation is the mostadvantageous, because requires a minimum of works towards agricultural recultivation, improves the locallandscape and contributes to the restore in circuit a part from total carbon emission mass of thermoelectric powerstation.

  11. Application of vascular aquatic plants for pollution removal, energy and food production in a biological system

    Science.gov (United States)

    Wolverton, B. C.; Barlow, R. M.; Mcdonald, R. C.

    1975-01-01

    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications.

  12. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review.

    Science.gov (United States)

    Sirés, Ignasi; Brillas, Enric

    2012-04-01

    In the last years, the decontamination and disinfection of waters by means of direct or integrated electrochemical processes are being considered as a very appealing alternative due to the significant improvement of the electrode materials and the coupling with low-cost renewable energy sources. Many electrochemical technologies are currently available for the remediation of waters contaminated by refractory organic pollutants such as pharmaceutical micropollutants, whose presence in the environment has become a matter of major concern. Recent reviews have focused on the removal of pharmaceutical residues upon the application of other important methods like ozonation and advanced oxidation processes. Here, we present an overview on the electrochemical methods devised for the treatment of pharmaceutical residues from both, synthetic solutions and real pharmaceutical wastewaters. Electrochemical separation technologies such as membrane technologies, electrocoagulation and internal micro-electrolysis, which only isolate the pollutants from water, are firstly introduced. The fundamentals and experimental set-ups involved in technologies that allow the degradation of pharmaceuticals, like anodic oxidation, electro-oxidation with active chlorine, electro-Fenton, photoelectro-Fenton and photoelectrocatalysis among others, are further discussed. Progress on the promising solar photoelectro-Fenton process devised and further developed in our laboratory is especially highlighted and documented. The abatement of total organic carbon or reduction of chemical oxygen demand from contaminated waters allows the comparison between the different methods and materials. The routes for the degradation of the some pharmaceuticals are also presented. PMID:21862133

  13. Reconstruction of metabolic networks in a fluoranthene-degrading enrichments from polycyclic aromatic hydrocarbon polluted soil.

    Science.gov (United States)

    Zhao, Jian-Kang; Li, Xiao-Ming; Ai, Guo-Min; Deng, Ye; Liu, Shuang-Jiang; Jiang, Cheng-Ying

    2016-11-15

    Microbial degradation of polycyclic aromatic hydrocarbons (PAHs) is the primary process of removing PAHs from environments. The metabolic pathway of PAHs in pure cultures has been intensively studied, but cooperative metabolisms at community-level remained to be explored. In this study, we determined the dynamic composition of a microbial community and its metabolic intermediates during fluoranthene degradation using high-throughput metagenomics and gas chromatography-mass spectrometry (GC-MS), respectively. Subsequently, a cooperative metabolic network for fluoranthene degradation was constructed. The network shows that Mycobacterium contributed the majority of ring-hydroxylating and -cleavage dioxygenases, while Diaphorobacter contributed most of the dehydrogenases. Hyphomicrobium, Agrobacterium, and Sphingopyxis contributed to genes encoding enzymes involved in downstream reactions of fluoranthene degradation. The contributions of various microbial groups were calculated with the PICRUSt program. The contributions of Hyphomicrobium to alcohol dehydrogenases were 62.4% in stage 1 (i.e., when fluoranthene was rapidly removed) and 76.8% in stage 3 (i.e., when fluoranthene was not detectable), respectively; the contribution of Pseudomonas were 6.6% in stage 1 and decreased to 1.2% in subsequent stages. To the best of the author's knowledge, this report describes the first cooperative metabolic network to predict the contributions of various microbial groups during PAH-degradation at community-level. PMID:27415596

  14. An Effective Novel ReactionSystem For The Photo-Degradation of Aqueous Organic Pollutants

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel reaction system consisted of a supported TiO2 film electrode, a Ru-Ti oxide film electrode and air (oxygen) electrode is reported. The air (oxygen) electrode can provide H2O2 continuously for homogeneous photochemical oxidation reaction on the spot. In this reactor, degradation reaction of aniline occur from interface of TiO2 film to ail solution which is irradiated by ultraviolet ray. The degradation rate of aniline was characterized by measuring the change of chemical oxygen demand (COD) in solution under different conditions. It was found that the degradation rate of aniline in the novel system increased apparently as compared with single heterogeneous photocatalysis and homogeneous photochemistry system. It can be explained in terms of combining acts of heterogeneous photocatalysis and homogeneous photochemistry.

  15. Evaluating the biological activity of oil-polluted soils using a complex index

    Science.gov (United States)

    Kabirov, R. R.; Kireeva, N. A.; Kabirov, T. R.; Dubovik, I. Ye.; Yakupova, A. B.; Safiullina, L. M.

    2012-02-01

    A complex index characterizing the biological activity of soils (BAS) is suggested. It is based on an estimate of the level of activity of catalase; the number of heterotrophic and hydrocarbon oxidizing microorganisms, microscopic fungi, algae, and cyanobacteria; and the degree of development of higher plants and insects in the studied soil. The data on using the BAS coefficient for evaluating the efficiency of rehabilitation measures for oil-polluted soils are given. Such measures included introducing the following biological preparations: Lenoil based on a natural consortium of microorganisms Bacillus brevis and Arthrobacter sp.; the Azolen biofertilizer with complex action based on Azotobacter vinelandii; the Belvitamil biopreparation, which is the active silt of pulp and paper production; and a ready-mixed industrial association of aerobic and anaerobic microorganisms that contains hydrocarbon oxidizing microorganisms of the Arthrobacter, Bacillus, Candida, Desulfovibrio, and Pseudomonas genera.

  16. Development of bio-active permeable in-situ barriers for plume remediation. Subproject 1: long term-behaviour of contaminant release from NAPL sources and contaminant retardation in sorbing barriers. Subproject 2: biological pollutant degradation. Final report; VEGAS - Entwicklung bioaktiver Sorptionsbarrieren zur in-situ Abstromsanierung. Teilprojekt 1: Langzeit-Entwicklung der Schadstoffemission aus Schadensherden und Schadstoff-Retention in Sorptionsbarrieren. Teilprojekt 2: Mikrobiologischer Schadstoffabbau in Sorptionsbarrieren und Schadensherden. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Teutsch, G.; Grathwohl, P.; Liedl, R.; Eberhardt, C.; Finkel, M.; Kuehn, W.; Stieber, M.; Linke, C.

    2001-09-15

    The objective of this project was to contribute to some of the key issues concerning the development of improved contaminant plume management technologies by means of a large scale experiment with real tar oil sources within the VEGAS research facility at the University of Stuttgart. The investigations were focused on contaminant release, microbiological degradation, the use of surfactants and contaminant transport within the plume. Among others, the most important results are: - None of the 6 investigated surfactants meets the criteria for an installation of an in-situ permeable sorptive barrier. - PAH- and BTEX degradation was significantly improved by H{sub 2}O{sub 2} (also in combination with nitrate). Under anaerobic conditions no PAH degradation was observed. For BTEX, only ethylbenzene was degraded under denitrifying conditions. - Contaminant release from a NAPL pool and the development of concentration profiles could be directly measured: pore diffusion and transverse dispersion govern the release process. - Phenanthrene release rates could be enhanced by a factor of 20 with Lutensol A8 at moderate concentration ({proportional_to}1 g/l) guaranteeing that only minor mobilisation effects have occurred. - Due to the fact that degradation of surfactants results in a depletion of electron acceptors the pollutant degradation was impaired and increased contaminant flux could not be eliminated. Therefore, surfactant biodegradability is a key factor for in-situ surfactant application. (orig.) [German] Ziel dieses Verbundforschungsprojekts war es, im Rahmen eines Grossversuchs im Rinnenbehaelter der VEGAS-Versuchshalle an der Universitaet Stuttgart Untersuchungen mit realen Teeroel-Schadensherden zu einigen der grundlegenden Fragestellungen in Bezug auf 'Plume-management'-Technologien durchzufuehren und so wichtige Grundlagenkenntnisse fuer die Entwicklung neuer bzw. verbesserter Verfahren zu liefern. Die Schadstofffreisetzung, die Moeglichkeiten eines

  17. Polylactic Acid Maybe Hope for Solving White Pollution

    Institute of Scientific and Technical Information of China (English)

    Xu Dan

    2007-01-01

    @@ As the pollution problem has aroused more and more attention, greater efforts have been made in developing degradable biological materials without environmental pollution to replace oil-based traditional plastics being used in great quantities today. Among numerous kinds of degradable polymers, polylactic acid has become the 'green' environmental friendly material with the brightest development prospect.

  18. Biological degradation of EDTA in pulping effluents at higher pH - a laboratory study

    Energy Technology Data Exchange (ETDEWEB)

    Ek, M.; Remberger, M.; Allard, A.S.

    1999-01-01

    The biological degradation of EDTA at different pH, sludge load and sludge age has been investigated in laboratory experiments. The experiments showed that relatively fast degradation of EDTA in the form found in this waste water (from production of TMP) took place at least at pH around 8.5 with moderate COD load and high sludge age. In continuous reactors the degradation of EDTA in a pulp and paper waste water was 2-3 mg EDTA/g SS*day at both pH 7 and 8,5, and at sludge ages from 5 to 21 days. The degradation was dependent on sludge load, and no degradation was seen above 1 g COD/g SS*day. In kinetic experiments with half strength waste water the same degradation rate (1,5-2 mg EDTA/g SS*day) was found at pH 7 and at pH 8,5 with sludge of low age (9 and 5 days SRT). Much faster degradation was found at pH 8,5 with sludge of high age (21 days in the continuous experiment). The mean degradation rate was over 10 mg EDTA/g SS*day from 20 to 5 mg EDTA/l. v{sub max} was determined to be 35 mg EDTA/g SS*day and K{sub M} to 31 mg EDTA/l. COD removal was at least as good at pH 8,5 as at pH 7. Sludge properties were best at pH 8,5 and long sludge retention time (giving low sludge load). Both sludge volume index and residual suspended solids after sedimentation were lower than under normal conditions at pH 7. The direct cost for caustic lime would be about 15 SEK per ton of TMP, with a water like the one investigated here. This can vary a lot depending on starting pH and buffering capacity. Costs for addition of nitrogen source could probably be omitted, but this is normally not more than 1-2 SEK per ton of TMP. The extra need for oxygen in the treatment would not be more than some percent, but may be important if oxygen is limited. A substantial extra cost would be if the aeration volume has to be increased. According to the best results from the kinetic study, this would not be needed in an extended aeration activated plant with 2 days HRT and sludge concentrations of 2

  19. Diversity as a measure of water pollution and an aid for biological water analysis

    Energy Technology Data Exchange (ETDEWEB)

    Verma, S.R.; Sharma, A.K.; Goel, D.P.

    1987-01-01

    Five aquatic ecosystems, Yamuna river, Krishna river Eastern Kalinadi, Kadrabad drain and Peacock lake have been studied with reference to disversity and physico-chemical characteristics and biological indices; a list of species have been selected with reference to polluted, mildly polluted or unpolluted water conditions. Though it is difficult to call any species strictly indicator species, certain species of Bacillariophyceae, bottom biota and Entomostraca can be regarded as indicative species; the quantitative distributions of the species of different groups have been analysed statistically. Margalef's Community Diversity Index (d), Shannon Weaver Function, coefficient of rank correlation and partial and multiple correlation coefficient were calculated as to find out the order of precedence in different taxonomical groups and the linear regression against BOD and the whole biocenosis were calculated, which indicate the relation as diversity d=6.7854-0.0080 BOD+-0.9695 where r/sup 2/=B=0.7365. Similarly, multiple linear regressions were also calculated using diversity against BOD, pH and temperature for each aquatic ecosystem. All these observations indicate that diversity of organisms can be used to measure the water pollution intensity.

  20. Cleaning of polluted water using biological techniques. [Ground water]. Rensning af forurenet vand ved biologisk teknik

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M. (Hedeselskabet (Denmark))

    1992-01-01

    Ground-water at many Danish locations has been polluted by organic substances. This pollution has taken place in relation to leaks or spills of, for example, petrol from leaky tanks or oil separators. The article describes a new biological technique for the purification of ground-water polluted by petrol and diesel oils leaked at a petrol station. The technique involves decompostion by bacteria. During decompostion the biomass in the filter increases and carbon dioxide and water is produced, so there is no waste product from this process. The two units consist of an oil-separator which separates the diesel oil and petrol from the water, and a bio-filter which is constructed as an aired-through inverted filter to which nutrient salts are continually added. The filter-material used is in the form of plastic rings on which the oil-decomposing bacteria grow and reproduce themselves. The system is further described. It is claimed that the bio-filter can decompose 7 kg of petrol and diesel oil in one week, larger ones decompose more. The servicelife of the system is expected to be 4-6 years. Current installation costs are 20.000 - 100.000 Danish kroner, according to size. (AB).

  1. Exposure assessment to heavy metals in general population in a polluted area through biological monitoring

    Directory of Open Access Journals (Sweden)

    Vimercati L.

    2013-04-01

    Full Text Available In polluted areas, a major issue is the correct assessment of the exposure of general population to industrial pollutants. The objectives were: to evaluate the exposure to heavy metals emitted from the industrial area of Taranto; to correlate biological monitoring data with environmental data, in order to clarify the impact of industrial pollution in terms of internal dose. A cross sectional study has been designed to measure levels of urinary arsenic, lead, cadmium, chromium, manganese in 300 inhabitants of Taranto, Statte and Laterza. Adult subjects have been selected by a two-stage random stratified sampling. Results are based on 272 subjects (131 men and 141 women. The observed concentrations of metals in the whole study population are overall high. The median values for lead (7.4 μg/l and chromium (0.4 μg/l are higher than the 95° percentile of the range of reference values. For manganese and arsenic the 95° percentile of concentration in the whole study population is higher than the 95° percentile of the range of reference values. Concentrations of mercury in the whole study population are comparable to reference.

  2. Monitoring the biological effects of pollution on the Algerian west coast using mussels Mytilus galloprovincialis

    Directory of Open Access Journals (Sweden)

    Zoheïr M. Taleb

    2007-12-01

    Full Text Available The Algerian west coast is the prime recipient of several forms of pollution; hence, the necessity for an impact assessment ofthis coastal pollution using a suite of recommended marine biomarkers, including lysosomal membrane stability in living cells by the Neutral Red Retention Time (NRRT method, the evaluation of micronucleus (MN frequency, and the determination ofacetylcholinesterase (AChE activity in mussels Mytilus galloprovincialis, sampled from the large, polluted Oran Harbour (OH and the Maârouf (Mrf marine mussel farm between July 2005 and April 2006. The difference in the variations of the annual physical parameters between OH and Mrf corresponds to the influence of the domestic and industrial sewage discharged by the city of Oran. The biological data of the mussels (condition index, protein content recorded at both sites were related to their natural reproductive cycle. This indicated that intrinsic variation between the sites due to different mussel development phases was minimal. The variation in the AChE activity of some organs of OH and Mrf mussels, with minimal inhibition in July and a higher NRRT recorded in the granular haemocytes in the Mrf than in the OH mussels during the autumn and spring, depends on the quality of the biotope and on generic stress factors. Moreover, the variation in MN frequency, in general reflecting a non-significant seasonal and spatial genotoxic effect of the contamination at the two sampling sites, requires further investigations regarding biotic and abiotic variations.

  3. Diagnosis of water pollution caused by chemical effluents using hydro biological methods

    International Nuclear Information System (INIS)

    Industrial plants which discharge chemical effluents into rivers are faced with a double problem. 1 - To avoid excessive pollution which leads to an important modification of the medium and to a poisoning of the aquatic fauna, and in particular to the killing of fish. These disadvantages are avoided by a treatment of the effluents, by calculating the minimum fatal doses and the limiting dilutions for fish, and by carrying out biological analyses and tests on the residual waters. 2 - To avoid provoking continuous, slow and insidious pollutions which are more difficult to detect and which would result in the gradual sterilization of receptive media. In order to estimate this possible influence, the authors have listed the aquatic fauna and flora found in the canal which was the object of the experiment, and have modified the Saprobies system due to Kolwickz. They have tried to detect the presence or absence of pollution by estimating the density of the phyto-plankton formed on submerged laminae (periphyton) and the specific variations in the alga of which these populations are made up. In this report are given details of the tests and of the first results obtained. (authors)

  4. Bioremediation of multi-polluted soil by spent mushroom (Agaricus bisporus) substrate: Polycyclic aromatic hydrocarbons degradation and Pb availability.

    Science.gov (United States)

    García-Delgado, Carlos; Yunta, Felipe; Eymar, Enrique

    2015-12-30

    This study investigates the effect of three spent Agaricus bisporus substrate (SAS) application methods on bioremediation of soil multi-polluted with Pb and PAH from close to a shooting range with respect natural attenuation (SM). The remediation treatments involve (i) use of sterilized SAS to biostimulate the inherent soil microbiota (SSAS) and two bioaugmentation possibilities (ii) its use without previous treatment to inoculate A. bisporus and inherent microbiota (SAS) or (iii) SAS sterilization and further A. bisporus re-inoculation (Abisp). The efficiency of each bioremediation microcosm was evaluated by: fungal activity, heterotrophic and PAH-degrading bacterial population, PAH removal, Pb mobility and soil eco-toxicity. Biostimulation of the native soil microbiology (SSAS) achieved similar levels of PAH biodegradation as SM and poor soil detoxification. Bioaugmented microcosms produced higher PAH removal and eco-toxicity reduction via different routes. SAS increased the PAH-degrading bacterial population, but lowered fungal activity. Abisp was a good inoculum carrier for A. bisporus exhibiting high levels of ligninolytic activity, the total and PAH-degrading bacteria population increased with incubation time. The three SAS applications produced slight Pb mobilization (soil.

  5. Transcriptional profiling of Gram-positive Arthrobacter in the phyllosphere: induction of pollutant degradation genes by natural plant phenolic compounds.

    Science.gov (United States)

    Scheublin, Tanja R; Deusch, Simon; Moreno-Forero, Silvia K; Müller, Jochen A; van der Meer, Jan Roelof; Leveau, Johan H J

    2014-07-01

    Arthrobacter chlorophenolicus A6 is a Gram-positive, 4-chlorophenol-degrading soil bacterium that was recently shown to be an effective colonizer of plant leaf surfaces. The genetic basis for this phyllosphere competency is unknown. In this paper, we describe the genome-wide expression profile of A.chlorophenolicus on leaves of common bean (Phaseolus vulgaris) compared with growth on agar surfaces. In phyllosphere-grown cells, we found elevated expression of several genes known to contribute to epiphytic fitness, for example those involved in nutrient acquisition, attachment, stress response and horizontal gene transfer. A surprising result was the leaf-induced expression of a subset of the so-called cph genes for the degradation of 4-chlorophenol. This subset encodes the conversion of the phenolic compound hydroquinone to 3-oxoadipate, and was shown to be induced not only by 4-chlorophenol but also hydroquinone, its glycosylated derivative arbutin, and phenol. Small amounts of hydroquinone, but not arbutin or phenol, were detected in leaf surface washes of P.vulgaris by gas chromatography-mass spectrometry. Our findings illustrate the utility of genomics approaches for exploration and improved understanding of a microbial habitat. Also, they highlight the potential for phyllosphere-based priming of bacteria to stimulate pollutant degradation, which holds promise for the application of phylloremediation. PMID:24373130

  6. Indoor biology pollution control based on system-based humidity priority control strategy

    Institute of Scientific and Technical Information of China (English)

    刘亚昱; 谢慧; 石博强

    2009-01-01

    Indoor biological contamination and HVAC system secondary contamination problems caused wide public concerns. Biological contamination control will be the next step to achieve better IAQ. The most efficient and safe way to control biological contamination was to limit relative humidity in HVAC system and conditioned environment in the range that is more unsuitable for microorganism to survive. In this paper,by referring to bio-clean project experiences,a system-based humidity priority control manner came into being by lowering outdoor air humidity ratio to eliminate all indoor latent load and using self recirculation units to bear indoor sensible load. Based on the whole-course residue humidity contaminant control concept,dynamic step models for coil and conditioned zone were developed to describe mass and energy conservation and transformation processes. Then,HVAC system and conditioned zone dynamic models were established on LabVIEW+Matlab platform to investigate optimized regulation types,input signatures and control logics. Decoupling between cooling and dehumidification processes can be achieved and a more simplified and stable control system can be acquired by the system-based humidity priority control strategy. Therefore,it was a promising way for controlling biological pollution in buildings in order to achieve better IAQ.

  7. Evident bacterial community changes but only slight degradation when polluted with pyrene in a red soil

    Directory of Open Access Journals (Sweden)

    Gaidi eRen

    2015-01-01

    Full Text Available Understanding the potential for PAH degradation by indigenous microbiota and the influence of PAHs on native microbial communities is of great importance for bioremediation and ecological evaluation. Various studies have focused on the bacterial communities in the environment where obvious PAH degradation was observed, little is known about the microbiota in the soil where poor degradation was observed. Soil microcosms were constructed with a red soil by supplementation with a high-molecular-weight PAH (pyrene at three dosages (5, 30, and 70 mg.kg-1. Real-time PCR was used to evaluate the changes in bacterial abundance and pyrene dioxygenase gene (nidA quantity. Illumina sequencing was used to investigate changes in diversity, structure, and composition of bacterial communities. After 42 days of incubation, no evident degradation was observed. The poor degradation ability was associated with the stability or significant decrease of abundance of the nidA gene. Although the abundance of the bacterial 16S rRNA gene was not affected by pyrene, the bacterial richness and diversity were decreased with increasing dosage of pyrene and the community structure was changed. Phylotypes affected by pyrene were comprehensively surveyed: (1 at the high taxonomic level, seven of the abundant phyla/classes (relative abundance >1.0% including Chloroflexi, AD3, WPS-2, GAL5, Alphaproteobacteria, Actinobacteria, and Deltaproteobacteria and one rare phylum Crenarchaeota were significantly decreased by at least one dosage of pyrene, while 3 phyla/classes (Acidobacteria, Betaproteobacteria, and Gammaproteobacteria were significantly increased; and (2 at the lower taxonomic level, the relative abundances of twelve orders were significantly depressed, whereas those of nine orders were significantly increased. This work enhanced our understanding of the biodegradation potential of pyrene in red soil and the effect of pyrene on soil ecosystems at the microbial community

  8. The use of the fungus Dichomitus squalens for degradation in rotating biological contactor conditions.

    Science.gov (United States)

    Novotný, Ceněk; Trošt, Nina; Šlušla, Martin; Svobodová, Kateřina; Mikesková, Hana; Válková, Hana; Malachová, Kateřina; Pavko, Aleksander

    2012-06-01

    Biodegradation potential of Dichomitus squalens in biofilm cultures and rotating biological contactor (RBC) was investigated. The fungus formed thick biofilms on inert and lignocellulosic supports and exhibited stable activities of laccase and manganese peroxidase to reach 40-62 and 25-32% decolorization of anthraquinone Remazol Brilliant Blue R and heterocyclic phthalocyanine dyes, respectively. The decolorization ceased when glucose concentration dropped to 1 mmol l(-1). In RBC reactor, respective decolorizations of Remazol Brilliant Blue R and heterocyclic Methylene Blue and Azure B dyes (50 mg l(-1)) attained 99%, 93%, and 59% within 7, 40 and 200 h. The fungus exhibited tolerance to coliform and non-coliform bacteria on rich organic media, the inhibition occurred only on media containing tryptone and NaCl. The degradation efficiency in RBC reactor, capability to decolorize a wide range of dye structures and tolerance to bacterial stress make D. squalens an organism applicable to remediation of textile wastewaters.

  9. THE DYNAMICS OF IN VITRO DEGRADATION OF NON-WOVEN POLYLACTIDE MATRICES IN MODEL BIOLOGICAL LIQUID

    Directory of Open Access Journals (Sweden)

    I. A. Khlusov

    2013-01-01

    Full Text Available The weekly in vitro degradation of fibrous-porous non-woven polylactide scaffolds made by aerodynamic formation in a turbulent gas flow has been studied with 37 °С in model RPMI-1640 medium imitated body fluid of organism. Lactate monomers released into solution exponentially and reached slowly a maximum value the end of the observation (5th week of dissolution. At the same time, reducing the concentrations of calcium and inorganic phosphorus ions in solutions contacted with tested samples (10×10×1 mm2 testified about chemical elements adsorption on artificial material. Ions exchange with biological fluids may be a basis of regulated bioactivity of fibrous-porous non-woven biodegradable material in application to intercellular matrix bioengineering for regenerative medicine

  10. Biological degradation of catechol in wastewater using the sequencing continuous-inflow reactor (SCR).

    Science.gov (United States)

    Aghapour, Ali Ahmad; Moussavi, Gholamreza; Yaghmaeian, Kamyar

    2013-05-24

    Catechol is used in many industries. It can be removed from wastewater by various methods but biological processes are the most superior and commonly used technology. The SCR is a modified form of SBR used to degrade catechol. The objective of this study was to investigate the performance of SCR for biodegradation and mineralization of catechol under various inlet concentrations (630-1500 mg/L) and hydraulic retention times (HRT) (18-9 h). This study used a bench scale SCR setup to test catechol degradation. The acclimation time of biomass for catechol at degradation at 630 mg/L was 41 d. The SCR operating cycle time was 6 h and the consecutive times taken for aerating, settling and decanting were 4, 1.5 and 0.5 h, respectively. This study investigated the effects of inlet catechol concentration (630-1560 mg/L) and HRT (18-9 h). The average catechol removal efficiencies in steady-state conditions of 630, 930, 12954 and 1559 mg/L of catechol were 98.5%, 98.5%, 98.2% and 96.9% in terms catechol and 97.8%, 97.7%, 96.4% and 94.3% for COD, respectively. SCR with acclimated biomasses could effectively remove the catechol and the corresponding COD from wastewater with concentrations of up to 1560, at the loading rate of 5.38 kg COD/m3.d and at a HRT of up to 13 h. The HRT was determined as an important variable affecting catechol removal from wastewater. Reducing the HRT to below 13 h led to reduced removal of catechol and COD.

  11. Integrated photocatalytic-biological reactor for accelerated 2,4,6-trichlorophenol degradation and mineralization.

    Science.gov (United States)

    Zhang, Yongming; Sun, Xia; Chen, Lujun; Rittmann, Bruce E

    2012-02-01

    An integrated photocatalytic-biological reactor (IPBR) was used for accelerated degradation and mineralization of 2,4,6-trichlorophenol (TCP) through simultaneous, intimate coupling of photocatalysis and biodegradation in one reactor. Intimate coupling was realized by circulating the IPBR's liquid contents between a TiO(2) film on mat glass illuminated by UV light and honeycomb ceramics as biofilm carriers. Three protocols-photocatalysis alone (P), biodegradation alone (B), and integrated photocatalysis and biodegradation (photobiodegradation, P&B)-were used for degradation of different initial TCP concentrations. Intimately coupled P&B also was compared with sequential P and B. TCP removal by intimately coupled P&B was faster than that by P and B alone or sequentially coupled P and B. Because photocatalysis relieved TCP inhibition to biodegradation by decreasing its concentration, TCP biodegradation could become more important over the full batch P&B experiments. When phenol, an easy biodegradable compounds, was added to TCP in order to promote TCP mineralization by means of secondary utilization, P&B was superior to P and B in terms of mineralization of TCP, giving 95% removal of chemical oxygen demand. Cl(-) was only partially released during P experiments (24%), and this corresponded to its poor mineralization in P experiments (32%). Thus, intimately coupled P&B in the IPBR made it possible obtain the best features of each: rapid photocatalytic transformation in parallel with mineralization of photocatalytic products.

  12. Degradation of phenolics, nitrogen-heterocyclics and polynuclear aromatic hydrocarbons in a rotating biological contactor.

    Science.gov (United States)

    Jeswani, Hansa; Mukherji, Suparna

    2012-05-01

    The degradation of phenolics, heterocyclics and polynuclear aromatic hydrocarbons (PAHs) in a synthetic biomass gasifier wastewater with average COD of 1388 mg/L was studied in a three stage rotating biological contactor (RBC) using the pyrene degrader, Exiguobacterium aurantiacum and activated sludge consortia (1:3 v/v). As the organic loading rate (OLR) was varied from 3.3 to 14 g/m(2)/d, the COD removal ranged from 63.3% to 92.6%. Complete removal of all the constituents was observed at the lowest OLR of 3.3g/m(2)/d. At 24h hydraulic retention time (HRT) and OLR of 6.6g/m(2)/d complete removal of pyridine, quinoline and benzene and 85-96% removal of phenol, naphthalene, phenanthrene, fluoranthene and pyrene was observed. E. aurantiacum was found to be the dominant bacteria in the biofilm. Clark's model provided good fits to data for all the three stages of the RBC.

  13. Microwave-assisted chemical oxidation of biological waste sludge: simultaneous micropollutant degradation and sludge solubilization.

    Science.gov (United States)

    Bilgin Oncu, Nalan; Akmehmet Balcioglu, Isil

    2013-10-01

    Microwave-assisted hydrogen peroxide (MW/H2O2) treatment and microwave-assisted persulfate (MW/S2O8(2-)) treatment of biological waste sludge were compared in terms of simultaneous antibiotic degradation and sludge solubilization. A 2(3) full factorial design was utilized to evaluate the influences of temperature, oxidant dose, and holding time on the efficiency of these processes. Although both MW/H2O2 and MW/S2O8(2-) yielded ≥97% antibiotic degradation with 1.2g H2O2 and 0.87 g S2O8(2-) per gram total solids, respectively, at 160 °C in 15 min, MW/S2O8(2-) was found to be more promising for efficient sludge treatment at a lower temperature and a lower oxidant dosage, as it allows more effective activation of persulfate to produce the SO4(-) radical. Relative to MW/H2O2, MW/S2O8(2-) gives 48% more overall metal solubilization, twofold higher improvement in dewaterability, and the oxidation of solubilized ammonia to nitrate in a shorter treatment period. PMID:23928124

  14. Repair and strengthening of R/C bridges degraded by environmental actions and pollution

    OpenAIRE

    Benedetti, Andrea; Donchev, Ted; Pelà, Luca

    2012-01-01

    Many bridges all around the world experience very hard environmental conditions, and due to the irregular maintenance effort, show different problems of cracking, concrete cover detachment and steel reinforcement wear and corrosion. In general, as a consequence of the polluted rain wetting, the problem is more evident in vertical structures than in the horizontal ones, and serious problems can arise when the piers and columns are very tall. In recent times, the solutions offered by composite ...

  15. Bioremediation of soil polluted with crude oil and its derivatives: Microorganisms, degradation pathways, technologies

    OpenAIRE

    Beškoski Vladimir P.; Gojgić-Cvijović Gordana Đ.; Milić Jelena S.; Ilić Mila V.; Miletić Srđan B.; Jovančićević Branimir S.; Vrvić-Miroslav M.

    2012-01-01

    The contamination of soil and water with petroleum and its products occurs due to accidental spills during exploitation, transport, processing, storing and use. In order to control the environmental risks caused by petroleum products a variety of techniques based on physical, chemical and biological methods have been used. Biological methods are considered to have a comparative advantage as cost effective and environmentally friendly technologies. Bioremediation, defined as the use of b...

  16. Influence of supporting electrolyte in electricity generation and degradation of organic pollutants in photocatalytic fuel cell.

    Science.gov (United States)

    Khalik, Wan Fadhilah; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Voon, Chun-Hong; Yusuf, Sara Yasina; Yusoff, Nik Athirah; Lee, Sin-Li

    2016-08-01

    This study investigated the effect of different supporting electrolyte (Na2SO4, MgSO4, NaCl) in degradation of Reactive Black 5 (RB5) and generation of electricity. Zinc oxide (ZnO) was immobilized onto carbon felt acted as photoanode, while Pt-coated carbon paper as photocathode was placed in a single chamber photocatalytic fuel cell, which then irradiated by UV lamp for 24 h. The degradation and mineralization of RB5 with 0.1 M NaCl rapidly decreased after 24-h irradiation time, followed by MgSO4, Na2SO4 and without electrolyte. The voltage outputs for Na2SO4, MgSO4 and NaCl were 908, 628 and 523 mV, respectively, after 24-h irradiation time; meanwhile, their short-circuit current density, J SC, was 1.3, 1.2 and 1.05 mA cm(-2), respectively. The power densities for Na2SO4, MgSO4 and NaCl were 0.335, 0.256 and 0.245 mW cm(-2), respectively. On the other hand, for without supporting electrolyte, the voltage output and short-circuit current density was 271.6 mV and 0.055 mA cm(-2), respectively. The supporting electrolyte NaCl showed greater performance in degradation of RB5 and generation of electricity due to the formation of superoxide radical anions which enhance the degradation of dye. The mineralization of RB5 with different supporting electrolyte was measured through spectrum analysis and reduction in COD concentration. PMID:27184147

  17. Design of a Metal Oxide-Organic Framework (MoOF) Foam Microreactor: Solar-Induced Direct Pollutant Degradation and Hydrogen Generation.

    Science.gov (United States)

    Zhu, Liangliang; Fu Tan, Chuan; Gao, Minmin; Ho, Ghim Wei

    2015-12-16

    A macroporous carbon network combined with mesoporous catalyst immobilization by a template method gives a metal-oxide-organic framework (MoOF) foam microreactor that readily soaks up pollutants and localizes solar energy in itself, leading to effective degradation of water pollutants (e.g., methyl orange (MO) and also hydrogen generation. The cleaned-up water can be removed from the microreactor simply by compression, and the microreactor used repeatedly. PMID:26501718

  18. Design of a Metal Oxide-Organic Framework (MoOF) Foam Microreactor: Solar-Induced Direct Pollutant Degradation and Hydrogen Generation.

    Science.gov (United States)

    Zhu, Liangliang; Fu Tan, Chuan; Gao, Minmin; Ho, Ghim Wei

    2015-12-16

    A macroporous carbon network combined with mesoporous catalyst immobilization by a template method gives a metal-oxide-organic framework (MoOF) foam microreactor that readily soaks up pollutants and localizes solar energy in itself, leading to effective degradation of water pollutants (e.g., methyl orange (MO) and also hydrogen generation. The cleaned-up water can be removed from the microreactor simply by compression, and the microreactor used repeatedly.

  19. Behavior of selected organic pollutants in municipal waste during the mechanical-biological progress of composting

    International Nuclear Information System (INIS)

    Municipal waste was investigated during the mechanical-biological process of composting. Waste from Burgenland is treated mechanically and biologically to reduce organic matter in the material and to keep gas building potential low before deposition. Samples were taken and analyzed during a period of 80 days. The parameters: temperature, dry-weight, glow loss, ammonium, nitrate and phenolic substances were measured to follow the composting process. It was found that the process was almost finished after a period of 40 days in which the material was breathed intensively. The content of polycyclic aromatic hydrocarbons and polychlorinated phenols decreased slightly. It was not clear whether this was due to microbiological activity or blowing-out effects. Polychlorinated biphenyls were found to be stable during composting. The concentrations were considered as high. Hepta- and octachlorinated dibenzodioxines were formed during the first 10 days. The increase of octachlorinated dibenzodioxin was threefold. Other dioxines and furanes remained unchanged. Finally it was found out that mechanical-biological waste treatment is insufficient in order to reduce organic pollutants effectively. (author)

  20. Coupling membrane separation and photocatalytic oxidation processes for the degradation of pharmaceutical pollutants.

    Science.gov (United States)

    Martínez, F; López-Muñoz, M J; Aguado, J; Melero, J A; Arsuaga, J; Sotto, A; Molina, R; Segura, Y; Pariente, M I; Revilla, A; Cerro, L; Carenas, G

    2013-10-01

    The coupling of membrane separation and photocatalytic oxidation has been studied for the removal of pharmaceutical pollutants. The retention properties of two different membranes (nanofiltration and reverse osmosis) were assessed. Comparable selectivity on the separation of pharmaceuticals were observed for both membranes, obtaining a permeate stream with concentrations of each pharmaceutical below 0.5 mg L(-)(1) and a rejected flux highly concentrated (in the range of 16-25 mg L(-)(1) and 18-32 mg L(-)(1) of each pharmaceutical for NF-90 and BW-30 membranes, respectively), when an initial stream of six pharmaceuticals was feeding to the membrane system (10 mg L(-)(1) of each pharmaceutical). The abatement of concentrated pharmaceuticals of the rejected stream was evaluated by means of heterogeneous photocatalytic oxidation using TiO2 and Fe2O3/SBA-15 in presence of hydrogen peroxide as photo-Fenton system. Both photocatalytic treatments showed remarkable removals of pharmaceutical compounds, achieving values between 80 and 100%. The nicotine was the most refractory pollutant of all the studied pharmaceuticals. Photo-Fenton treatment seems to be more effective than TiO2 photocatalysis, as high mineralization degree and increased nicotine removal were attested. This work can be considered an interesting approach of coupling membrane separation and heterogeneous photocatalytic technologies for the successful abatement of pharmaceutical compounds in effluents of wastewater treatment plants. PMID:23863375

  1. Biological Degradation of Some Organic Compounds Enrolled in Paper Industry—A Pollution Prevention Approach 

    Institute of Scientific and Technical Information of China (English)

    RIFAATABDELWAHAAB

    2000-01-01

    Evaluation of the elimination and the "ultimate" biodegradation by aerobic microorganisms of some organic compounds commonly used in paper manufacturing technology was investigated.Biodegradation lines of nine orgainc compounds were determined as percentage removal of chemical oxygen demand(COD) over 7 days incubation.The results of the biodegradable,while others rank from fairly to even non-biodegradable.Significant biodegradation results were recorder for anticoating ester(95.0%),basoplast 200D(85.3%) and basoplast PR 8050(87.6%),A bleaching agent(formamidin-sulfinic acid),ukanol BAS and solidurit KM demonstrate moderate biodegradation results of 62.1%,76.2% and 69.8%,respectively,Poor biodegradation results for Hedifix M/35(12.7%),basazol orange(34.9%)and basazol brown(29.0%) were recorded,Accordingly,appropriate precaution should be taken into consideration when using these compounds for industrial applications.

  2. MBR对焚烧厂渗滤液中有机污染物的降解特性%Degradation of Organic Pollutants in Leachate from Municipal Solid Waste Incineration Plant by Using MBR

    Institute of Scientific and Technical Information of China (English)

    裘湛

    2009-01-01

    The membrane bioreactor (MBR) was applied to treat the leachate from municipal solid waste incineration plant, and the degradation mechanisms of the organic pollutants in the leachate were investigated by GC/MS technology. The results show that the biological process degrades well the pollu-tants having 4 to 8 carbon atoms, while the inorganic membrane process removes well pollutants having 16 to 19 carbon atoms. The organic acids are degraded well in the biological process, and the organic ke-tones, alcohols and acids are removed well in the inorganic membrane process. When the influent COD and NH3-N are 57 000 mg/L and 665 mg/L, the effluent COD and NH3-N can decrease to 457 mg/L and 8.54 mg/L respectively.%采用膜生物反应器(MBR)处理垃圾焚烧厂渗滤液,并采用GC/MS技术考察了MBR处理渗滤液过程中有机污染物的降解特性.结果表明,生化段对C4~C8的有机物有较好的降解能力,而无机膜对C16~C19的有机物的去除效果较好;生化段对渗滤液中酸类有机物的降解效果明显,而无机膜对酮、醇、酸类有机物的去除效果明显;当进水COD为57 000 mg/L、NH3-N为665mg/L时,MBR出水的COD和NH3-N分别可降至457、8.54 mg/L.

  3. Use of bromodeoxyuridine immunocapture to identify psychrotolerant phenanthrene-degrading bacteria in phenanthrene-enriched polluted Baltic Sea sediments

    Energy Technology Data Exchange (ETDEWEB)

    Edlund, A.; Jansson, J.

    2008-05-01

    The aim of this study was to enrich and identify psychrotolerant phenanthrenedegrading bacteria from polluted Baltic Sea sediments. Polyaromatic hydrocarbon (PAH)-contaminated sediments were spiked with phenanthrene and incubated for 2 months in the presence of bromodeoxyuridine that is incorporated into the DNA of replicating cells. The bromodeoxyuridine-incorporated DNA was extracted by immunocapture and analyzed by terminal-restriction fragment length polymorphism and 16S rRNA gene cloning and sequencing to identify bacterial populations that were growing. In addition, degradation genes were quantified in the bromodeoxyuridine-incorporated DNA by real-time PCR. Phenanthrene concentrations decreased after 2 months of incubation in the phenanthrene-enriched sediments and this reduction correlated to increases in copy numbers of xylE and phnAc dioxygenase genes. Representatives of Exiguobacterium, Schewanella,Methylomonas, Pseudomonas, Bacteroides and an uncultured Deltaproteobacterium and a Gammaproteobacterium dominated the growing community in the phenanthrene spiked sediments. Isolates that were closely related to three of these bacteria (two pseudomonads and an Exiguobacterium sp.) could reduce phenanthrene concentrations in pure cultures and they all harbored phnAc dioxygenase genes. These results confirm that this combination of culture-based and molecular approaches was useful for identification of actively growing bacterial species with a high potential for phenanthrene degradation.

  4. 典型POPs的生物降解修复技术研究与发展%Research and development of bioremediation technology for persistent organic pollutants degradation

    Institute of Scientific and Technical Information of China (English)

    吴海珍; 韦朝海; 周盛

    2012-01-01

    engineered bacteria composed of multi-plasmids that are capable of degrading different pollutants due to the change of metabolic pathway; (iii) the technique of enzyme immobilization using carriers for improving enzyme stability, recycling and reuse; and (iv) the construction of biodegradation enzymes by subunit molecular replacement, enzyme-directed mutagenesis, and in vitro evolution of enzymes. In addition, the principles for improving POPs bioremediation by molecular biology are analyzed. The obstacles for the practical application of the genetically engineered microorganisms and immobilized enzymes are presented. Based on the analysis of polybrominated diphenyl ethers (PBDEs) degradation as a typical case of bioremediation of POPs, it is stressed that it is necessary to establish multi-scale functions for the strengthen of biodegradation process. The fundamental scientific issues to resolve POPs pollution problems by the combination of molecular biology and genetic engineering are also proposed. This means that the typical POPs bioremediation techniques emphasize the need to build a synergic degradation theory for degradation of both POPs and macro-pollutants, and the pursuit of more functions with respect to the gene level, molecular level, reactor level and project level.

  5. Alkali metal ion induced cube shaped mesoporous hematite particles for improved magnetic properties and efficient degradation of water pollutants.

    Science.gov (United States)

    Roy, Mouni; Naskar, Milan Kanti

    2016-07-27

    Mesoporous cube shaped hematite (α-Fe2O3) particles were prepared using FeCl3 as an Fe(3+) precursor and 1-butyl-3-methylimidazolium bromide (ionic liquid) as a soft template in the presence of different alkali metal (lithium, sodium and potassium) acetates, under hydrothermal conditions at 150 °C/4 h followed by calcination at 350 °C. The formation of the α-Fe2O3 phase in the synthesized samples was confirmed by XRD, FTIR and Raman spectroscopy. Unlike K(+) ions, intercalation of Li(+) and Na(+) ions occurred in α-Fe2O3 crystal layers as evidenced by XRD and Raman spectroscopy. Electron microscopy (FESEM and TEM) images showed the formation of cube-like particles of different sizes in the presence of Li(+), Na(+) and K(+) ions. The mesoporosity of the products was confirmed by N2 adsorption-desorption studies, while their optical properties were analyzed by UV-DRS. Na(+) ion intercalated α-Fe2O3 microcubes showed improved coercivity (5.7 kOe) due to increased strain in crystals, and shape and magnetocrystalline anisotropy. Temperature dependent magnetization of the samples confirmed the existence of Morin temperature in the range of 199-260 K. Catalytic degradation of methylene blue (MB), a toxic water pollutant, was studied using the synthesized products via a heterogeneous photo-Fenton process. The degradation products were traced by electrospray ionization-mass spectrometry (ESI-MS). The α-Fe2O3 microcubes obtained in the presence of Na(+) ions exhibited a more efficient degradation of MB to non-toxic open chain products. PMID:27406648

  6. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation

    KAUST Repository

    Zhang, Tao

    2014-05-20

    Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize organics and halide anions reducing oxidation capacity of PDS and producing toxic halogenated products. Here we report that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals. The PDS/CuO coupled process is most efficient at neutral pH for decomposing a model compound, 2,4-dichlorophenol (2,4-DCP). In a continuous-flow reaction with an empty-bed contact time of 0.55 min, over 90% of 2,4-DCP (initially 20 μM) and 90% of adsorbable organic chlorine (AOCl) can be removed at the PDS/2,4-DCP molar ratio of 1 and 4, respectively. Based on kinetic study and surface characterization, PDS is proposed to be first activated by CuO through outer-sphere interaction, the rate-limiting step, followed by a rapid reaction with 2,4-DCP present in the solution. In the presence of ubiquitous chloride ions in groundwater/industrial wastewater, the PDS/CuO oxidation shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products. This work provides a new way of PDS activation for contaminant removal. © 2014 American Chemical Society.

  7. Degradation of atrazine by microbial consortium in an anaerobic submerged biological filter.

    Science.gov (United States)

    Nasseri, Simin; Baghapour, Mohammad Ali; Derakhshan, Zahra; Faramarzian, Mohammad

    2014-09-01

    Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) (ATZ) is one of the components of S-triazine. Due to its certain characteristics, ATZ causes pollution in various ecosystems and has been of concern for its probable carcinogenic effects on humans. Researchers have used chemical and physical methods for removing ATZ from the environment. Although these methods are quick, they have not been capable of complete mineralization. Therefore, researchers are looking for methods with lower energy consumption and cost and higher efficiency. In this study, biodegradation of ATZ by microbial consortium was evaluated in the aquatic environment. The present study aimed to evaluate the efficiency of ATZ removal from aqueous environments by using an anaerobic submerged biological filter in four concentration levels of atrazine and three hydraulic retention times. The maximum efficiencies of ATZ and soluble chemical oxygen demand (SCOD) were 51.1 and 45.6%, respectively. There was no accumulation of ATZ in the biofilm and the loss of ATZ in the control reactor was negligible. This shows that ATZ removal in this system was due to biodegradation. Furthermore, the results of modeling showed that the Stover-Kincannon model had desirable fitness (R² > 99%) in loading ATZ in this biofilter.

  8. Treatment of pharmaceutical wastewater using interior micro-electrolysis/Fenton oxidation-coagulation and biological degradation.

    Science.gov (United States)

    Xu, Xiaoyi; Cheng, Yao; Zhang, Tingting; Ji, Fangying; Xu, Xuan

    2016-06-01

    The synthesis of steroid hormones produces wastewater that is difficult to manage and characterize due to its complex components and high levels of toxicity and bio-refractory compounds. In this work, interior micro-electrolysis (IME) and Fenton oxidation-coagulation (FOC) were investigated as wastewater pretreatment processes in combination with biological treatments using a hydrolysis acidification unit (HA) and two-stage biological contact oxidation (BCO) in laboratory and field experiments. In laboratory experiments with an average initial COD load of about 15,000 mg/L, pH of 4, Fe-C/water (V/V) ratio of 1:1, air/water ratio of 10, and reaction time of 180 min, IME achieved a COD removal efficiency of 31.8% and a 1.7-fold increase in the BOD5/COD (B/C) ratio of wastewater. The Fe(2+) concentration of 458.5 mg/L in the IME effluent meets the requirements of the Fenton oxidation (FO) process. FOC further reduced the COD with an efficiency of 30.1%, and the B/C ratio of the wastewater reached 0.59. Excitation-emission matrix (EEM) analysis showed that complex higher molecular weight organic compounds in the wastewater were degraded after the pretreatment process. In addition, a field experiment with a continuous flow of 96 m(3)/d was conducted for over 90 d. The combined process system operated steadily, though the Fe-C fillings should be soaked in a sulfuric acid solution (5‰) for 12 h to recover activity every two weeks. The COD and BOD5 concentrations in the final effluent were less than 90 mg/L and 15 mg/L, respectively. PMID:26953729

  9. Physicochemical and porosity characteristics of thermally regenerated activated carbon polluted with biological activated carbon process.

    Science.gov (United States)

    Dong, Lihua; Liu, Wenjun; Jiang, Renfu; Wang, Zhansheng

    2014-11-01

    The characteristics of thermally regenerated activated carbon (AC) polluted with biological activated carbon (BAC) process were investigated. The results showed that the true micropore and sub-micropore volume, pH value, bulk density, and hardness of regenerated AC decreased compared to the virgin AC, but the total pore volume increased. XPS analysis displayed that the ash contents of Al, Si, and Ca in the regenerated AC respectively increased by 3.83%, 2.62% and 1.8%. FTIR spectrum showed that the surface functional groups of virgin and regenerated AC did not change significantly. Pore size distributions indicated that the AC regeneration process resulted in the decrease of micropore and macropore (D>10 μm) volume and the increase of mesopore and macropore (0.1 μmbiological waste (spent AC) from BAC process.

  10. Characterization of Radiation Fields in Biological Shields of Nuclear Power Plants for Assessing Concrete Degradation

    Science.gov (United States)

    Remec, Igor; Rosseel, Thomas M.; Field, Kevin G.; Le Pape, Yann

    2016-02-01

    Life extensions of nuclear power plants to 60 and potentially 80 years of operation have renewed interest in long-term material degradation. One material being considered is concrete, with a particular focus on radiation-induced effects. Based on the projected neutron fluence values (E > 0.1 MeV) in the concrete biological shields of the US pressurized water reactor fleet and the available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database and a reliable determination of relevant neutron fluence energy cutoff value are necessary to ensure reliable risk assessment for extended operation of nuclear power plants. Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC0500OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  11. Re-inoculation strategies enhance the degradation of emerging pollutants in fungal bioaugmentation of sewage sludge.

    Science.gov (United States)

    Rodríguez-Rodríguez, Carlos E; Lucas, Daniel; Barón, Enrique; Gago-Ferrero, Pablo; Molins-Delgado, Daniel; Rodríguez-Mozaz, Sara; Eljarrat, Ethel; Díaz-Cruz, M Silvia; Barceló, Damià; Caminal, Glòria; Vicent, Teresa

    2014-09-01

    The use of Trametes versicolor has been partially successful in the removal of some pharmaceuticals from sewage sludge in laboratory-scale biopile systems. The application of two strategies for the re-inoculation of biomass was assessed during the fungal bioaugmentation of non-sterile sludge (42-d treatment) as an approach to improve the elimination of pharmaceuticals and other groups of emerging pollutants. Globally, the re-inoculation of biopiles with blended mycelium exerted a major effect on the removal of pharmaceuticals (86%), brominated-flame-retardants (81%) and UV filters (80%) with respect to the re-inoculation with additional lignocellulosic substrate colonized by the fungus (69-67-22%). The performance was better than that of the analogous non-re-inoculated systems that were assayed previously for the removal of pharmaceuticals. The results demonstrate the ability of T. versicolor to remove a wide spectrum of emerging micropollutants under non-sterile conditions, while re-inoculation appears to be a useful step to improve the fungal treatment of sludge. PMID:24582425

  12. High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures.

    Science.gov (United States)

    Li, Qian; Zhang, Ning; Yang, Yong; Wang, Guozhong; Ng, Dickon H L

    2014-07-29

    Porous graphitic carbon nitride was synthesized by controllable thermal polymerization of urea in air. Their textural, electrical, and optical properties were tuned by varying the heating rate. The presence of proper residual oxygen in carbon nitride matrix had enhanced light absorption and inhibited the recombination of charge carriers. Furthermore, the MoS2 nanosheets were coupled into the carbon nitride to form MoS2/C3N4 heterostructures via a facile ultrasonic chemical method. The optimized MoS2/C3N4 heterostructure with 0.05 wt % MoS2 showed a reaction rate constant as high as 0.301 min(-1), which was 3.6 times that of bare carbon nitride. As analyzed by SEM, TEM, UV-vis absorption, PL and photoelectrochemical measurements, intimate contact interface, extended light response range, enhanced separation speed of charge carriers, and high photocurrent density upon MoS2 coupling led to the photocatalytic promotion of the MoS2/C3N4 heterostructures. In this architecture, MoS2 served as electron trapper to extend the lifetime of separated electron-hole pairs. Meanwhile, the accumulated holes on the surface of carbon nitride oxidized the organic dye directly, which was a predominant process in the photodegradation of organic pollutants in water treatment. The promotional mechanisms and principles reported here would have great significance in heterogeneous photocatalysis.

  13. Structure and photocatalysis activity of silver doped titanium oxide nanotubes array for degradation of pollutants

    Science.gov (United States)

    Al-Arfaj, E. A.

    2013-10-01

    Semiconductor titanium oxide showed a wonderful performance as a photocatalysis for environmental remediation. Owing to high stability and promising physicochemical properties, titanium oxide nanostructures are used in various applications such as wastewater treatment, antimicrobial and air purification. In the present study, titanium oxide nanotubes and silver doped titanium oxide nanotubes were synthesized via anodic oxidation method. The morphology and composition structure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results depicted that nanotubes possess anatase phase with average tube diameter of 65 nm and 230 ± 12 nm in length. The band gap of the un-doped and silver doped titanium dioxide nanotubes was determined using UV-Vis. spectrophotometer. The results showed that the band gap of titanium dioxide nanotubes is decreased when doped with silver ions. The photocatalysis activity of un-doped and silver doped TiO2 nanotubes were evaluated in terms of degradation of phenol in the presence of ultra violet irradiation. It was found that silver doped TiO2 nanotubes exhibited much higher photocatalysis activity than un-doped TiO2 nanotubes.

  14. Isolation, fingerprinting and genetic identification of indigenous PAHs degrading bacteria from oil-polluted soils.

    Science.gov (United States)

    Alrumman, Sulaiman A; Hesham, Abd El-Latif; Alamri, Saad A

    2016-01-01

    In the present study, thirty five bacterial isolates were obtained from hydrocarbon-contaminated soil samples using an enrichment method. These isolates were tested to grow on mineral salt medium containing anthracene or phenanthrene as sole carbon source. Only five isolates showed the ability to degrade these compounds. RAPD-PCR fingerprinting was carried out for the five isolates, and the DNA patterns revealed that there was no similarity among the examined bacteria whenever the RFLP using four restriction enzymes HaeIII, Msp1, Hinf1 and Taq1 failed to differentiate among them. Five bacterial isolates were grown in high concentration of anthracene and phenanthrene (4% w/v). Two bacterial isolates were selected due to their high ability to grow in the presence of high concentrations of anthracene and phenanthrene. The isolates were identified as Bacillus flexus and Ochrobactrum anthropi, based on DNA sequencing of amplified 16S rRNA gene and phylogenetic analysis. Finally, the ability of these bacterial strains to tolerate and remove different PAHs looked promising for application in bioremediation technologies. PMID:26930863

  15. Assessment of biological effects of environmental pollution along the NW Mediterranean Sea using mussels as sentinel organisms

    Energy Technology Data Exchange (ETDEWEB)

    Zorita, Izaskun [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Apraiz, Itxaso [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Ortiz-Zarragoitia, Maren [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Orbea, Amaia [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Cancio, Ibon [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Soto, Manu [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Marigomez, Ionan [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Cajaraville, Miren P. [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain)]. E-mail: mirenp.cajaraville@ehu.es

    2007-07-15

    With the aim of assessing the biological effects of pollution along three gradients of pollution in the NW Mediterranean Sea, a biomonitoring survey was implemented using a battery of biomarkers (lysosomal membrane stability, lysosomal structural changes, metallothionein (MT) induction and peroxisome proliferation) in mussels over a period of two years as part of the EU-funded BEEP project. Mussels from the most impacted zones (Fos, Genova and Barcelona harbours) showed enlarged lysosomes accompanied by reduced labilisation period of lysosomal membranes, indicating disturbed health. MT levels did not reveal significant differences between stations and were significantly correlated with gonad index, suggesting that they were influenced by gamete development. Peroxisomal acyl-CoA oxidase (AOX) activity was significantly inhibited in polluted stations possibly due to interactions among mixtures of pollutants. In conclusion, the application of a battery of effect and exposure biomarkers provided relevant data for the assessment of biological effects of environmental pollution along the NW Mediterranean Sea. - The biomarker approach is suitable for assessment of environmental pollution in the NW Mediterranean Sea.

  16. Variability of Biological Degradation of Phenolic Hydrocarbons in an Aerobic Aquifer Determined by Laboratory Batch Experiments

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Christensen, Thomas Højlund

    1994-01-01

    and groundwater from 8 localities representing a 15 m × 30 m section of an aerobic aquifer. Three patterns of variation were found: (1) phenol, o-cresol and in most cases p-nitrophenol showed very fast degradation with no or only short lag phases and with very little variation among localities; (2) 2......,4-dichlorophenol was degraded in all localities and showed large variability among localities with respect to lag phases (0–50 days) and some variation with respect to degradation periods (20–40 days); and (3) nitrobenzene, o-nitrophenol, 2,6-dichlorophenol and 4,6-o-dichlorocresol showed very large variability...... among localities ranging from no degradation within 149 days in some localities to degradation within 2 days in other localities. The degradation patterns were highly sequential, indicating a general sequence, for those compounds degradable, valid in all localities. The results are of importance...

  17. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: a biomonitoring approach for pollution assessment.

    Science.gov (United States)

    Chakraborty, Sukalyan; Bhattacharya, Tanushree; Singh, Gurmeet; Maity, Jyoti Prakash

    2014-02-01

    Metal pollution in the marine coastline environment is an important topical issue in the context of ecological disturbance and climate change. Heavy metal contaminations (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in seawater and surficial sediments, as well as macroalgal diversity, were determined in six different locations along the coast of the Gulf of Kutch in India. The marine coastline environment was found to be enriched with Cd and Zn in comparison to other metals. Significant (p ≤ 0.05) inter-elemental positive-correlations were observed between Fe-Mn, Fe-Cu, Fe-Cr, Fe-Zn, Cr-Cu, Cu-Mn, and Cd-Zn, as well as negative-correlations between Cd-Pb, Ni-Pb, and Zn-Pb. Though genus specific macroalgal responses to heavy metal accumulation were significant, species specific response was insignificant (p ≤ 0.05). The relative abundance of metals in macroalgae followed the order of Fe>Zn>Mn>Cu>Cd>Cr>Ni>Pb. The high uptake of metals in green algae (Ulva lactuca and Enteromorpha intestinalis) and brown algae (Padina gymnospora and Dictyota bartayresiana) suggested that these algae may be used as potential biomonitors for heavy metal pollution. Three pollution indicators, Contamination Factor (CF), Enrichment Factor (EF) and Geochemical Index (Igeo) were calculated to determine the degree of metal pollution in the marine coastline and the contribution of anthropogenic influence.

  18. The complete multipartite genome sequence of Cupriavidus necator JMP134, a versatile pollutant degrader.

    Directory of Open Access Journals (Sweden)

    Athanasios Lykidis

    Full Text Available BACKGROUND: Cupriavidus necator JMP134 is a Gram-negative beta-proteobacterium able to grow on a variety of aromatic and chloroaromatic compounds as its sole carbon and energy source. METHODOLOGY/PRINCIPAL FINDINGS: Its genome consists of four replicons (two chromosomes and two plasmids containing a total of 6631 protein coding genes. Comparative analysis identified 1910 core genes common to the four genomes compared (C. necator JMP134, C. necator H16, C. metallidurans CH34, R. solanacearum GMI1000. Although secondary chromosomes found in the Cupriavidus, Ralstonia, and Burkholderia lineages are all derived from plasmids, analyses of the plasmid partition proteins located on those chromosomes indicate that different plasmids gave rise to the secondary chromosomes in each lineage. The C. necator JMP134 genome contains 300 genes putatively involved in the catabolism of aromatic compounds and encodes most of the central ring-cleavage pathways. This strain also shows additional metabolic capabilities towards alicyclic compounds and the potential for catabolism of almost all proteinogenic amino acids. This remarkable catabolic potential seems to be sustained by a high degree of genetic redundancy, most probably enabling this catabolically versatile bacterium with different levels of metabolic responses and alternative regulation necessary to cope with a challenging environment. From the comparison of Cupriavidus genomes, it is possible to state that a broad metabolic capability is a general trait for Cupriavidus genus, however certain specialization towards a nutritional niche (xenobiotics degradation, chemolithoautotrophy or symbiotic nitrogen fixation seems to be shaped mostly by the acquisition of "specialized" plasmids. CONCLUSIONS/SIGNIFICANCE: The availability of the complete genome sequence for C. necator JMP134 provides the groundwork for further elucidation of the mechanisms and regulation of chloroaromatic compound biodegradation.

  19. Applications of Cu{sub 2}O octahedral particles on ITO glass in photocatalytic degradation of dye pollutants under a halogen tungsten lamp

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Wei [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Sun, Fengqiang, E-mail: fqsun@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University (China); Exhibition Base of Production, Study and Research on New Polymer Materials and Postgraduate Students’ Innovation Training of Guangdong Higher Education Institutes (China); Chen, Wei; Zhang, Lihe; Min, Zhilin; Li, Weishan [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)

    2013-11-15

    Graphical abstract: - Highlights: • Photocatalytic activity of Cu{sub 2}O octahedral microcrystals on ITO glass was studied. • They showed high abilities in degradation of methylene blue in the presence of H{sub 2}O{sub 2}. • H{sub 2}O{sub 2} amount could affect the degradation efficiency. • Such particles could be easily recycled and still kept high activity. • Many dye pollutants and their mixtures could be efficiently degraded. - Abstract: Cu{sub 2}O octahedral microcrystals were prepared on the ITO glass by galvanostatic electrodeposition in CuSO{sub 4} solution with poly(vinylpryrrolidone) as the surfactant. By controlling the electrodeposition time, the microcrystals could be randomly distributed on the ITO glass and separated from each other, resulting in as many as possible (1 1 1) crystalline planes were exposed. Such microcrystals immobilized on ITO glass were employed in photodegradation of dye pollutants in the presence of H{sub 2}O{sub 2} under a 150 W halogen tungsten lamp. The photodegradation of methylene blue was taken as an example to evaluate the photocatalytic activities of the octahedral Cu{sub 2}O microcrystals. Effects of electrodeposition time and H{sub 2}O{sub 2} amount on the degradation efficiency was discussed, giving the optimum conditions and the corresponding degradation mechanism. The catalyst showed high ability in degradation of methylene blue, methyl orange, rhodamine B, eosin B and their mixtures under identical conditions.

  20. Dark ambient degradation of Bisphenol A and Acid Orange 8 as organic pollutants by perovskite SrFeO{sub 3−δ} metal oxide

    Energy Technology Data Exchange (ETDEWEB)

    Leiw, Ming Yian, E-mail: LEIW0003@e.ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); GlobalFoundries Singapore Pte. Ltd., 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore); Guai, Guan Hong [GlobalFoundries Singapore Pte. Ltd., 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore); School of Chemical and Biomedical Engineering and Center for Advanced Bionanosystems, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457 (Singapore); Wang, Xiaoping [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Tse, Man Siu [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Ng, Chee Mang [GlobalFoundries Singapore Pte. Ltd., 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore); Tan, Ooi Kiang [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2013-09-15

    Highlights: • Perovskite SFO prepared by high temperature and high-energy ball milling process. • SFO metal oxide shows good efficiency in degrading and mineralizing BPA. • Rapid decoloration of AO8 was achieved in the presence of SFO metal oxide. • O{sub 2}·{sup −} is the predominant ROS for dark oxidative degradation of BPA and AO8. -- Abstract: Current advanced oxidation processes (AOPs) are chemically and energetically intensive processes, which are undesirable for cost-effective and large-scale system water treatment and wastewater recycling. This study explored the Strontium Ferrite (SFO) metal oxide on the degradation of highly concentrated organic pollutants under dark ambient condition without any external stimulants. The SFO particles with single perovskite structure were successfully synthesized with a combined high temperature and high-energy ball milling process. An endocrine disruptor, Bisphenol A (BPA) and an azo dye, Acid Orange 8 (AO8) were used as probe organic pollutants. BPA was completely degraded with 83% of mineralization in 24 h while rapid decoloration of AO8 was achieved in 60 min and complete breakdown into primary intermediates and aliphatic acids occurred in 24 h under the treatment of dispersed SFO metal oxide in water. Such efficient degradation could be attributed to the enhanced adsorption of these anionic pollutants on positively charged ball-milled SFO metal oxide surface, resulted in higher degradation activity. Preliminary degradation mechanisms of BPA and AO8 under the action of SFO metal oxide were proposed. These results showed that the SFO metal oxide could be an efficient alternative material as novel advanced oxidation technology for low cost water treatment.

  1. Indoor biological pollution; L'inquinamento ambientale negli ambienti indoor

    Energy Technology Data Exchange (ETDEWEB)

    Bressa, G. [Padua Univ., Padua (Italy)

    2000-06-01

    Inside buildings - besides the umpteen toxic substances emanating from materials and appliances used daily for the most assorted activities - there are may be a number of different pathogenic micro-organisms able to cause diseases and respiratory system infections. Indoor pollution caused by biological agents may be due not only to living microorganisms, but also to dead ones or to the produce of their metabolism as well as to allergens. The most efficient precautionary measure against biological agents is to ventilate the rooms one lives in. In case of air-conditioning, it's good rule to keep air pipes dry and clean, renewing filters at regular intervals in order to avoid fungi and bacteria from settling in. [Italian] All'interno degli edifici oltre alle innumerevoli sostanze tossiche che si sprigionano da materiali e apparecchiature impiegate nelle piu' svariate attivita' quotidiane vi possono essere diversi microorganismi patogeni in grado di provocare malattie ed infezioni dell'apparato respiratorio. L'inquinamento indoor da agenti biologici puo' essere dovuto non solo ai microorganismi viventi ma anche a quelli morti, oppure ai prodotti del loro metabolismo ed anche agli allergeni. Il mezzo di prevenzione piu' efficace nel confronto degli agenti biologici consiste nel ricambio di aria all'interno dei locali in cui si vive. In presenza di impianti di climatizzazione, una buona regola e' quella di mantenere pulite e asciutte le condotte dell'aria, sostituendo periodicamente i filtri per evitare l'insediamento di funghi e batteri.

  2. Application of a Novel Semiconductor Catalyst, CT, in Degradation of Aromatic Pollutants in Wastewater: Phenol and Catechol

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2014-01-01

    Full Text Available Water-soluble phenol and phenolic compounds were generally removed via advanced oxidation processes. A novel semiconductor catalyst, CT, was the first-time employed in the present study to degrade phenol and catechol. The phenolic compounds (initial concentration of 88 mg L−1 were completely mineralized by the CT catalytic nanoparticles (1% within 15 days, under acidic condition and with the presence of mild UV radiation (15 w, the emitted wavelength is 254 nm and the light intensity <26 μw/cm2. Under the same reaction condition, 1% TiO2 (mixture of rutile and anatase, nanopowder, <100 nm and H2O2 had lower removal efficiency (phenol: <42%; catechol: <60%, whereas the control (without addition of catalysts/H2O2 only showed <12% removal. The processes of phenol/catechol removal by CT followed pseudo-zero-order kinetics. The aromatic structures absorbed the UV energy and passed to an excited state, which the CT worked on. The pollutants were adsorbed on the CT’s surface and oxidized via charge-transfer and hydroxyl radical generation by CT. Given low initial concentrations, a circumstance encountered in wastewater polishing, the current set-up should be an efficient and less energy- and chemical-consumptive treatment method.

  3. Combined technology for clomazone herbicide wastewater treatment: three-dimensional packed-bed electrochemical oxidation and biological contact degradation.

    Science.gov (United States)

    Feng, Yujie; Liu, Junfeng; Zhu, Limin; Wei, Jinzhi

    2013-01-01

    The clomazone herbicide wastewater was treated using a combined technology composed of electrochemical catalytic oxidation and biological contact degradation. A new type of electrochemical reactor was fabricated and a Ti/SnO2 electrode was chosen as the anode in electrochemical-oxidation reactor and stainless steel as the cathode. Ceramic rings loaded with SnO2 were used as three-dimensional electrodes forming a packed bed. The operation parameters that might influence the degradation of organic contaminants in the clomazone wastewater were optimized. When the cell voltage was set at 30 V and the volume of particle electrodes was designed as two-thirds of the volume of the total reactor bed, the chemical oxygen demand (COD) removal rate could reach 82% after 120 min electrolysis, and the ratio of biochemical oxygen demand (BOD)/COD of wastewater increased from 0.12 to 0.38. After 12 h degradation with biological contact oxidation, the total COD removal rate of the combined technology reached 95%, and effluent COD was below 120 mg/L. The results demonstrated that this electrocatalytic oxidation method can be used as a pretreatment for refractory organic wastewater before biological treatment.

  4. A contribution to the understanding of micro-pollutant sorption mechanisms in wastewater biological processes: case of the tributyltin.

    Science.gov (United States)

    Bancon-Montigny, Chrystelle; Delalonde, Michèle; Rondet, Eric; Vachoud, Laurent; Grosmaire, Lidwine; Delarbre, Jean-Louis; Wisniewski, Christelle

    2012-01-01

    Micro-pollutant fluxes distribution throughout the physical separation and biological units of wastewater treatment plants (WWTPs) are very dependent ofsorption phenomena. The understanding and the control of the sorption stage is thus essential for the optimization of micro-pollutant removal in WWTPs, and particularly in biological treatments where these mechanisms influence the bioavailability towards micro-organisms. If the influence of the micro-pollutant physicochemical characteristics (e.g. Kow, pKa) on their ability to sorb on biological media (i.e. sludge) has been demonstrated, it appears that some other parameters, like the biosorbent characteristics, have to been taken into account. The aim of this study is thus to correlate the capacities of sorption of an environmentally relevant substance (tributyltin), with a thorough characterization of different types of sludge. The characterization of three biological media (raw, sonicated and flocculated activated sludges) is proposed according to various characterization parameters related to biochemical composition, aggregate size, rheological behaviour etc. The results show first that, whatever the sludge characteristics may be, the sorption mechanisms are very rapid and that an equilibrium state is reached after a few minutes. The influence of the sludge characteristics, notably the floc size and the chemical oxygen demand partition between solid and colloidal fraction, on sorption efficiency is demonstrated. A Langmuir modelling allows giving the maximum sorption capacity, as well as the binding energy for the three studied sludges, according to their physicochemical characteristics. PMID:23393963

  5. The influence of bacterial-humus preparations on the biological activity of soils polluted with oil products and heavy metals

    Science.gov (United States)

    Kozlova, E. N.; Stepanov, A. L.; Lysak, L. V.

    2015-04-01

    The influence of bacterial-humus preparations based on Gumigel ( Agrosintez Company) on the biological activity of soddy-podzolic soil polluted with Pb(CH3COO)2 and gasoline was studied in a model experiment. Some indicators of biological activity are shown to depend on soil pollution to different extents. The process of nitrogen fixation and the activity of dehydrogenase and phosphatase were mostly inhibited by Pb(CH3COO)2 and gasoline. Gasoline compared to Pb(CH3COO)2 inhibited the soil biological activity to a greater extent. The bacterial-humus preparations exerted a significant positive effect on the biological activity of the polluted soils manifested in the increase of the total number of bacteria and of the enzyme activity (1.5-5.0 times), in the intensification of nitrogen fixation and denitrification (3-8 times), as well as in the increase in the biomass of the plants grown (1.5-2.0 times). The application of bacterial suspensions of pure cultures or the microbial complex without the preparations of humic acids did not always give a positive effect.

  6. Tailoring the degradation and biological response of a magnesium-strontium alloy for potential bone substitute application.

    Science.gov (United States)

    Han, Junjie; Wan, Peng; Ge, Ye; Fan, Xinmin; Tan, Lili; Li, Jianjun; Yang, Ke

    2016-01-01

    Bone defects are very challenging in orthopedic practice. There are many practical and clinical shortcomings in the repair of the defect by using autografts, allografts or xenografts, which continue to motivate the search for better alternatives. The ideal bone grafts should provide mechanical support, fill osseous voids and enhance the bone healing. Biodegradable magnesium-strontium (Mg-Sr) alloys demonstrate good biocompatibility and osteoconductive properties, which are promising biomaterials for bone substitutes. The aim of this study was to evaluate and pair the degradation of Mg-Sr alloys for grafting with their clinical demands. The microstructure and performance of Mg-Sr alloys, in vitro degradation and biological properties including in vitro cytocompatibility and in vivo implantation were investigated. The results showed that the as-cast Mg-Sr alloy exhibited a rapid degradation rate compared with the as-extruded alloy due to the intergranular distribution of the second phase and micro-galvanic corrosion. However, the initial degradation could be tailored by the coating protection, which was proved to be cytocompatible and also suitable for bone repair observed by in vivo implantation. The integrated fracture calluses were formed and bridged the fracture gap without gas bubble accumulation, meanwhile the substitutes simultaneously degraded. In conclusion, the as-cast Mg-Sr alloy with coating is potential to be used for bone substitute alternative. PMID:26478374

  7. Discussion on the Biological Degradation of Acid/Basic Dyes%酸性/碱性染料的生物降解分析

    Institute of Scientific and Technical Information of China (English)

    仲玲玲; 孙东豪; 苏小军; 杜晟威; 梁羽

    2012-01-01

    染料在纺织领域使用较为广泛,对环境的污染也最为严重,因此纺织品污水处理方法研究是绿色工业生产中的一个重要课题。使用价格低廉、易于培养的活性污泥细菌对染料进行生物降解,并通过细胞毒性试验、小鼠全身毒性试验、化学需氧量(COD)测试、分光光度法测试和红外分析法测试来表征染料降解的程度。结果表明:活性污泥对5种染料(4种酸性染料和1种碱性染料)的降解效果明显,降解后COD值明显下降,染料的去除率为71.4%~76.1%;分光光度法测试的染料平均降解效率为90.6%。%Dyes are widely used in textile field,resulting in the serious environmental pollution.Therefore,to investigate the textile wastewater treatment method is the need of green industrial production.We report the use of activated sludge bacteria,which is cheap and easy to be cultured,for biological degradation of dyes.The degree of dye degradation is characterized by cell toxicity,mouse systemic toxicity test,chemical oxygen demand,spectrophotometry and infrared analysis.The results show that the degradation of activated sludge on five kinds of dyes is effective,that is,after degradation,COD values from treated solutions decrease obviously,dye removal rate is 71.4%~76.1% and dye degradation average efficiency is 90.6%.

  8. Leachate characterization and identification of dominant pollutants using leachate pollution index for an uncontrolled landfill site

    OpenAIRE

    De, S.; Maiti, S.; Hazra, T.; A. Debsarkar; A. Dutta

    2016-01-01

    Landfill leachates are potential threats for environmental degradation. This study was conducted to determine the leachate quality, to identify the dominant pollutants and to evaluate the leachate pollution potential of an active and closed dumping ground of an uncontrolled municipal solid waste landfill site in Kolkata, India using leachate pollution index. The results of the physico-chemical and biological analyses of leachate indicated that landfill site was in its methanogenic phase. Amon...

  9. CHANGE OF BIOLOGICAL ACTIVITY OF RENDZINA SOILS OF WESTERN CAUCASUS AT POLLUTION BY ZINC, CADMIUM, MOLYBDENUM AND SELENIUM

    Directory of Open Access Journals (Sweden)

    Tatlok D. R.

    2015-02-01

    Full Text Available Rendzina soils are very widespread in the Caucasus. Because of their ecological and genetic characteristics Rendzina has significant buffering capacity to chemical pollution. The object of investigation was calcareous leached soil. Location selection - Azishskaya ridge on the border of the Republic of Adygea and the Krasnodar region. As pollutants, we have selected Zn, Cd, Mo, Se, since soil contamination with these elements in the south of Russia is not uncommon. Contamination of zinc, cadmium, molybdenum and selenium causes deterioration in the biological properties of calcareous soils of the Western Caucasus. We have investigated the toxicity of the elements formed following series due to their influence on Rendzina soils: Zn> Se> Cd> = Mo. The study attempted to analyze the entire range of concentrations of the examined elements in the soil, currently occurring in nature. In most cases, all the investigated substances registered direct correlation between the concentration of the pollutant in the soil and the degree of reduction of biological indicators. The activity of catalase and dehydrogenase cellulolytic ability, plenty of bacteria of the genus Azotobacter, length of roots of radish can be used to monitor, diagnose and regulation of chemical pollution of soil Zn, Cd, Mo, Se

  10. Efficient visible light photo-Fenton-like degradation of organic pollutants using in situ surface-modified BiFeO3 as a catalyst

    Institute of Scientific and Technical Information of China (English)

    Junjian An; Lihua Zhu; Yingying Zhang; Heqing Tang

    2013-01-01

    The visible light photo-Fenton-like catalytic performance of BiFeO3 nanoparticles was investigated using Methyl Violet (MV),Rhodamine B (RhB) and phenol as probes.Under optimum conditions,the pseudo first-order rate constant (k) was determined to be 2.21 × 10-2,5.56 × 10-2 and 2.01 × 10-2 min-1 for the degradation of MV (30 μmol/L),RhB (10 μmol/L) and phenol (3 mmol/L),respectively,in the BiFeO3-H2O2-visible light (Vis) system.The introduction of visible light irradiation increased the k values of MV,RhB and phenol degradation 3.47,1.95 and 2.07 times in comparison with those in dark.Generally,the k values in the BiFeO3-H2O2-Vis system were accelerated by increasing BiFeO3 load and H2O2 concentration,but decreased with increasing initial pollutant concentration.To further enhance the degradation of pollutants at high concentrations,BiFeO3 was modified with the addition of surface modifiers.The addition of ethylenediamineteraacetic acid (EDTA,0.4 mmol/L) increased the k value of MV degradation (60 μmol/L)from 1.01 × 10-2 min-1 in the BiFeO3-H2O2-Vis system to 1.30 min-1 in the EDTA-BiFeO3-H2O2-Vis system by a factor of 128.This suggests that in situ surface modification can enable BiFeO3 nano-particles to be a promising visible light photo-Fenton-like catalyst for the degradation of organic pollutants.

  11. Primary and oxidative DNA damage in salivary leukocytes as a tool for the evaluation of air pollution early biological effects in children: current status of the MAPEC (Monitoring Air Pollution Effects on Children for supporting public health policy study

    Directory of Open Access Journals (Sweden)

    Samuele Vannini

    2015-05-01

    Conclusions - The main objective of the MAPEC study is to evaluate the associations in children between air pollutants and early biological effects, and to propose a model for estimating the global genotoxic risk.

  12. Effects of pollutant accumulation by the invasive weed saltcedar (Tamarix ramosissima) on the biological control agent Diorhabda elongata (Coleoptera: Chrysomelidae)

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, Mary A. [Department of Entomology, University of California, Riverside, CA 92521 (United States)], E-mail: mary.sorensen@ucr.edu; Parker, David R. [Department of Environmental Science, University of California, Riverside, CA 92521 (United States); Trumble, John T. [Department of Entomology, University of California, Riverside, CA 92521 (United States)

    2009-02-15

    Hydroponic greenhouse studies were used to investigate the effect of four anthropogenic pollutants (perchlorate (ClO{sub 4}{sup -}), selenium (Se), manganese (Mn), and hexavalent chromium (Cr (VI))) on the biological control agent Diorhabda elongata Brulle. Contaminant concentrations were quantified for experimental Tamarix ramosissima Ledab. plants and D. elongata beetles. Growth of larvae was significantly reduced by Se contamination, but was not affected by the presence of perchlorate, Mn, or Cr (VI). All of the contaminants were transferred from plants to D. elongata beetles. Only Cr (VI) was accumulated at greater levels in beetles than in their food. Because T. ramosissima grows in disturbed areas, acquires salts readily, and utilizes groundwater, this plant is likely to accumulate anthropogenic pollutants in contaminated areas. This study is one of the first to investigate the potential of an anthropogenic pollutant to influence a weed biological control system. - The presence of Se, but not perchlorate, Mn, or Cr (VI), in foliage of the invasive weed saltcedar was shown to reduce growth of the biological control agent Diorhabda elongata.

  13. Diagnosis of water pollution caused by chemical effluents using hydro biological methods; Diagnostic de la pollution des eaux par les effluents chimiques au moyen des methodes hydrobiologiques

    Energy Technology Data Exchange (ETDEWEB)

    Simeon, C.; Bonnefoy-Claudet, J. [Commissariat a l' Energie Atomique, Pierrelatte (France). Centre d' Etudes Nucleaires

    1965-04-01

    Industrial plants which discharge chemical effluents into rivers are faced with a double problem. 1 - To avoid excessive pollution which leads to an important modification of the medium and to a poisoning of the aquatic fauna, and in particular to the killing of fish. These disadvantages are avoided by a treatment of the effluents, by calculating the minimum fatal doses and the limiting dilutions for fish, and by carrying out biological analyses and tests on the residual waters. 2 - To avoid provoking continuous, slow and insidious pollutions which are more difficult to detect and which would result in the gradual sterilization of receptive media. In order to estimate this possible influence, the authors have listed the aquatic fauna and flora found in the canal which was the object of the experiment, and have modified the Saprobies system due to Kolwickz. They have tried to detect the presence or absence of pollution by estimating the density of the phyto-plankton formed on submerged laminae (periphyton) and the specific variations in the alga of which these populations are made up. In this report are given details of the tests and of the first results obtained. (authors) [French] Les usines deversant dans les cours d'eaux des effluents chimiques se trouvent devant un double probleme. 1 - Eviter les pollutions aigues qui se traduisent par une modification importante du milieu et par l'empoisonnement de la faune aquatique et notamment la mort du poisson. On evite ces inconvenients en traitant les effluents, en calculant les doses minima mortelles et les dilutions limites pour le poisson, en surveillant les eaux residuaires par analyses et tests biologiques. 2 - Ne pas provoquer des pollutions chroniques, lentes, insidieuses, plus difficiles a mettre en evidence qui aboutiraient a la sterilisation progressive des milieux recepteurs. Pour apprecier cette influence eventuelle les auteurs ont inventorie la faune et la flore aquatique du canal, objet de l

  14. Photoelectrochemical water splitting and simultaneous photoelectrocatalytic degradation of organic pollutant on highly smooth and ordered TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    The photoelectrochemical water splitting and simultaneous photoelectrocatalytic degradation of organic pollutant were achieved on TiO2 nanotube electrodes with double purposes of environmental protection and renewable energy production under illumination of simulated solar light. The TiO2 nanotube arrays (TiO2 NTs) were fabricated by a two-step anodization method. The TiO2 NTs prepared in two-step anodization process (2-step TiO2 NTs) showed much better surface smoothness and tube orderliness than TiO2 NTs prepared in one-step anodization process (1-step TiO2 NTs). In the photoelectrochemical water splitting and simultaneous photoelectrocatalytic decomposition process, the 2-step TiO2 NTs electrode showed both highest photo-conversion efficiency of 1.25% and effective photodecomposition efficiency with existing of methylene blue (MB) as sacrificial agent and as pollutant target. Those results implied that the highly ordered nanostructures provided direct pathway and uniform electric field distribution for effective charges transfer, as well as superior capabilities of light harvesting. - Graphical Abstract: The photoelectrochemical water splitting for hydrogen generation and simultaneous photoelectrocatalytic degradation of organic pollutant (methylene blue) were achieved on TiO2 nanotube electrodes with double purposes of environmental protection and renewable energy production under illumination of simulated solar light. Highlights: ► TiO2 nanotube arrays were fabricated by a two-step anodization method. ► Hydrogen generation and organic pollutant degradation were achieved on TiO2 NTs. ► Highest photoconversion efficiency of 1.25% was achieved. ► Increasing orderliness will increase photocatalytic activity of TiO2 NTs.

  15. Effect of the pollution level on the functional bacterial groups aiming at degrading bisphenol A and nonylphenol in natural biofilms of an urban river.

    Science.gov (United States)

    Cai, Wei; Li, Yi; Wang, Peifang; Niu, Lihua; Zhang, Wenlong; Wang, Chao

    2016-08-01

    Bisphenol A (BPA) and 4-nonylphenol (NP) are ubiquitous pollutants with estrogenic activity in aquatic environment and have attracted global concern due to their disruption of endocrine systems. This study investigated the spatial distribution characteristics of the bacterial groups involved in the degradation of BPA and NP within biofilms in an urban river using terminal restriction fragment length polymorphism based on 16S rRNA gene sequences. The effects of the pollution level and water parameters on these groups were also assessed. Hierarchical cluster analysis grouped the sampling sites into three clusters reflecting their varying nutrient pollution levels of relatively slight pollution (SP), moderate pollution (MP), and high pollution (HP) based on water quality data and Environmental Quality Standard for Surface Water of China (GB3838-2002). The BPA and NP concentration in river water ranged from 0.8 to 77.5 and 10.2 to 162.9 ng L(-1), respectively. Comamonadaceae, Pseudomonadaceae, Alcaligenaceae, Bacillaceae, Sphingomonadacea, Burkholderiaceae, and Rhizobiaceae were the dominant bacterial taxa involved in BPA and NP degradation, comprising an average of 9.8, 8.1, 7.6, 6.7, 6.2, 4.1, and 2.8 % of total sequences, respectively. The total abundance of these groups showed a slight upward trend and subsequently rapidly decreased with increasing pollution levels. The average proportion of Comamonadaceae in MP river sections was almost 1.5-2 times than that in SP or HP one. The distribution of functional groups was found related to environmental variables, especially pH, conductivity, ammonium nitrogen (NH3-N), and BPA. The abundance of Comamonadaceae and Rhizobiaceae was both closely related to higher values of pH and conductivity as well as lower concentrations of NP and BPA. Alcaligenaceae and Pseudomonadaceae were associated with higher concentrations of TP and CODMn and inversely correlated with DO concentration. This study might provide effective data on

  16. Effect of the pollution level on the functional bacterial groups aiming at degrading bisphenol A and nonylphenol in natural biofilms of an urban river.

    Science.gov (United States)

    Cai, Wei; Li, Yi; Wang, Peifang; Niu, Lihua; Zhang, Wenlong; Wang, Chao

    2016-08-01

    Bisphenol A (BPA) and 4-nonylphenol (NP) are ubiquitous pollutants with estrogenic activity in aquatic environment and have attracted global concern due to their disruption of endocrine systems. This study investigated the spatial distribution characteristics of the bacterial groups involved in the degradation of BPA and NP within biofilms in an urban river using terminal restriction fragment length polymorphism based on 16S rRNA gene sequences. The effects of the pollution level and water parameters on these groups were also assessed. Hierarchical cluster analysis grouped the sampling sites into three clusters reflecting their varying nutrient pollution levels of relatively slight pollution (SP), moderate pollution (MP), and high pollution (HP) based on water quality data and Environmental Quality Standard for Surface Water of China (GB3838-2002). The BPA and NP concentration in river water ranged from 0.8 to 77.5 and 10.2 to 162.9 ng L(-1), respectively. Comamonadaceae, Pseudomonadaceae, Alcaligenaceae, Bacillaceae, Sphingomonadacea, Burkholderiaceae, and Rhizobiaceae were the dominant bacterial taxa involved in BPA and NP degradation, comprising an average of 9.8, 8.1, 7.6, 6.7, 6.2, 4.1, and 2.8 % of total sequences, respectively. The total abundance of these groups showed a slight upward trend and subsequently rapidly decreased with increasing pollution levels. The average proportion of Comamonadaceae in MP river sections was almost 1.5-2 times than that in SP or HP one. The distribution of functional groups was found related to environmental variables, especially pH, conductivity, ammonium nitrogen (NH3-N), and BPA. The abundance of Comamonadaceae and Rhizobiaceae was both closely related to higher values of pH and conductivity as well as lower concentrations of NP and BPA. Alcaligenaceae and Pseudomonadaceae were associated with higher concentrations of TP and CODMn and inversely correlated with DO concentration. This study might provide effective data on

  17. Effects of organic pollution on biological communities of marine biofilm on hard substrata

    International Nuclear Information System (INIS)

    We examined the effect of organic enrichment on diatom and bacterial assemblages of marine epilithic biofilms on two locations in the Mediterranean, one situated in Spain and the other in Greece. Total organic carbon, total organic nitrogen, stable isotopes (δ13C and δ15N) and chlorophyll a indicated significant incorporation of organic wastes, increased primary production and trophic niche modifications on the biofilms close to the organic enrichment source. In Spain, where the organic load was higher than in Greece, diatom and, to some extent, bacterial assemblages varied following the organic enrichment gradient. The taxonomic richness of diatom and bacterial communities was not influenced by organic enrichment. Classical community parameters showed consistent patterns to organic pollution in both locations, whereas community assemblages were only influenced when organic pollution was greatest. The successional patterns of these communities were similar to other epilithic communities. The modification of community assemblages induced by organic pollution may affect ecological functions. - Highlights: • We examined the effect of organic enrichment on assemblages of marine biofilms. • Classical community parameters showed consistent patterns to organic pollution. • Diatom and bacterial assemblages were affected under high level of organic enrichment. • Successional patterns were similar to other communities inhabiting hard substrata. • Assemblage modifications induced by organic pollution may affect ecological functions. - Organic pollution modifies the assemblages of biofilm communities which may affect important ecological functions

  18. Occurrence and fate of tetracycline and degradation products in municipal biological wastewater treatment plant and transport of them in surface water.

    Science.gov (United States)

    Topal, Murat; Arslan Topal, E Işıl

    2015-12-01

    The aims of this study are to investigate the fate of tetracycline (TC) and degradation products (DPs) in municipal biological wastewater treatment plant (MBWWTP) located in Elazığ City (Turkey) and to determine the occurrence and transport of TC and DPs in surface water (SW) (Kehli Stream) which the effluents of the plant discharged. The aqueous phase removal of TC, 4-epitetracycline (ETC), 4-epianhydrotetracycline (EATC), and anhydrotetracycline (ATC) in the studied treatment plant was 39.4 ± 1.9, 31.8 ± 1.5, 15.1 ± 0.7, and 16.9 ± 0.8%, respectively. According to the analyses' results of SW samples taken from downstream at every 500-m distance, TC and DPs decreased by the increase in the distance. In downstream, at 2000 m, TC, ETC, EATC, and ATC were 4.12 ± 0.20, 6.70 ± 0.33, 8.31 ± 0.41, and 3.57 ± 0.17 μg/L, respectively. As a result, antibiotic pollution in the SW that takes the effluent of MBWWTP exists.

  19. Field experiment on biological contact oxidation process to treat polluted river water in the Dianchi Lake watershed

    Institute of Scientific and Technical Information of China (English)

    Lu LI; Shuguang XIE; Hui ZHANG; Donghui WEN

    2009-01-01

    In this study two types of biological contact oxidation processes (BCOP), a step-feed (SBCOP) unit and an inter-recycle (IBCOP) unit, were designed to investigate the treatment of heavily polluted river water.The Daqing River, which is the largest pollutant contributor to the Dianchi Lake, one of the most eutrophic freshwater lakes in China, was taken for the case study. It was found that the SBCOP had higher adaptability and better performance in the reduction of COD, TN, and TP,which made it applicable for the treatment of polluted river water entering the Dianchi Lake. Nitrification rate was observed to be greatly affected by the influent temperature.During each season, the nitrification in the SBCOP was higher than that in the IBCOP. TN removal efficiency in the SBCOP was higher than that in the IBCOP during the winter and spring but poorer during the summer, possibly due to the inhibition of denitrification by higher dissolved oxygen level in the summer. Moreover, symbiotic algae-bacteria growth may be conducive to the removal of pollutants.

  20. Micro-organic pollutants and biological response of mussels in marinas and ship building/breaking yards in Turkey.

    Science.gov (United States)

    Okay, O S; Karacık, B; Güngördü, A; Ozmen, M; Yılmaz, A; Koyunbaba, N C; Yakan, S D; Korkmaz, V; Henkelmann, B; Schramm, K-W

    2014-10-15

    Concentrations of PAHs, PCBs and OCPs in sediments and mussels (caged and/or native) were determined at 16 stations in six major sites of coastal Turkey. The biological effects of pollution were evaluated using sediment toxicity tests and enzyme activity assays. EROD, PROD, GST, AChE, CaE, and GR activities were evaluated using the digestive glands of mussels. The total PAH concentrations in the sediments varied between nd and 79,674 ng g(-1) dw, while the total OCP concentrations were in the range of nd to 53.7 ng g(-1) dw. The total PAH concentrations in mussels varied between 22.3 and 37.4 ng g(-1) ww. The average concentrations of total PCBs in mussels were 2795 pg g(-1) ww in the shipyard, 797 pg g(-1) ww in Marina 2 and 53 pg g(-1) ww in Marina 1 stations. The results of whole-sediment toxicity tests showed a strong correlation between toxicity test results and pollutant concentrations. Selected cytosolic enzyme activities in digestive glands differed significantly depending on localities. These differences in enzyme activities were mainly related to the different pollutant levels of the sampling sites. The micro-organic contaminant profile patterns, toxicity tests and biomarker studies showed that shipyards and shipbreaking yards are the major potential sources of organic pollution in coastal areas. PMID:25079235

  1. A novel visible light-driven Ag3PO4/SBA-15 nanocomposite: Preparation and application in the photo-degradation of pollutants

    Science.gov (United States)

    Chai, Yuanyuan; Wang, Li; Ren, Jia; Dai, Wei-Lin

    2015-01-01

    A novel visible light-driven environmental-benign Ag3PO4/SBA-15 nanocomposite photo-catalyst was synthesized for the photo-degradation of pollutants. The exploration on adsorption and photo-catalysis of dye or organic pollution for the nanocomposite was carried out. The adsorption capability for Ag3PO4/SBA-15 nanocomposite increases by 3 times compared with that of the Ag3PO4 particles. The photo-catalytic activity of nanocomposite is higher than pristine Ag3PO4 nanoparticle for the degradation of RhB or MO under visible light irradiation (λ > 420 nm). The effect of Ag3PO4 loading on the catalytic performance was also studied. The results show that the optimum degradation is achieved over 20% Ag3PO4/SBA-15. Compared to pure Ag3PO4 nanoparticle, the most efficient catalyst showed 8 times higher photo-catalytic activity for the degradation of RhB. The Ag3PO4/SBA-15 catalysts were systematically characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS), and N2-adsorption-desorption isotherms (BET). A possible mechanism scheme regarding photo-degradation enhancement induced by dye enrichments has been proposed on the Ag3PO4/SBA-15 nanocomposite. Additionally, the SBA-15 support can enhance the efficiency of separation of catalyst from the reaction mixture, implying that the Ag3PO4 loading on the SBA-15 catalyst will not result in the extra environment and health problems and reduce the cost of wastewater treatment.

  2. Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes

    OpenAIRE

    Naresh eSinghal; Octavio ePerez-Garcia

    2016-01-01

    Global water scarcity is driving the need for identifying new water source. Wastewater could be a potential water resource if appropriate treatment technologies could be developed. One of the barriers to obtaining high quality water from wastewater arises from the presence of organic micropollutants, which are biologically active at trace levels. Removal of these compounds from wastewater by current physico-chemical technologies is prohibitively expensive. While biological treatment processes...

  3. Biodegradation kinetics of bromoxynil as a pollution control technology

    OpenAIRE

    Askar, A.I.; Ibrahim, G.H.; Osman, K.A.

    2007-01-01

    Nonpoint source (NPS) pollution from agriculture is the leading source of impairment to Survey Rivers and lakes. Pesticides are one of the major NPS pollutants that result from agricultural activities. Among those pesticides, is Bromoxynil (BRMX) which is a widely used herbicide. The present study was carried out to determine the capability of selected biological control agents to degrade BRMX at different incubation periods. Microbial degradation of BRMX at the rate of 100 ppm in pure liquid...

  4. Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure

    DEFF Research Database (Denmark)

    Møller, Henrik Bjarne; Sommer, S.G.; Ahring, Birgitte Kiær

    2004-01-01

    digestion may be a significant source of CH4 and could reduce the potential CH4 production in the biogas reactor. Degradation of energy-rich organic components in slurry and emissions of CH4 and carbon dioxide (CO2) from aerobic and anaerobic degradation processes during pre-storage were examined...... in the laboratory. Newly mixed slurry was added to vessels and stored at 15 and 20degreesC for 100 to 220 d. During storage, CH4 and CO2 emissions were measured with a dynamic chamber technique. The ratio of decomposition in the subsurface to that at the surface indicated that the aerobic surface processes...... contributed significantly to CO2 emission. The measured CH4 emission was used to calculate the methane conversion factor (MCF) in relation to storage time and temperature, and the total carbon-C emission was used to calculate the decrease in potential CH4 production by anaerobic digestion following pre-storage...

  5. Increase the Degradation Efficiency of Organic Pollutants With a Radical Scavenger(Cl-)in a Novel Photoelectrocatalytic Reactor

    Institute of Scientific and Technical Information of China (English)

    Tai Cheng AN; Wen Bing ZHANG; Gui Ying LI; Jia Mo FU; Guo Ying SHENG

    2004-01-01

    Photoelectrocatalytic degradation performance of quinoline in saline water was investigated using a new-designed continuous flow three-dimensional electrode-packed bed photocatalytic reactor.It is interesting to find that chloride ion has an obvious enhancement effect rather than a scavenging effect on the photoelectrocatalytic degradation of quinoline, and create a kinetic synergetic effect in the photoelectrocatalytic reactor.

  6. Comprehensive biological effects of a complex field poly-metallic pollution gradient on the New Zealand mudsnail Potamopyrgus antipodarum (Gray)

    International Nuclear Information System (INIS)

    The Lot River is known to be contaminated by metals, mainly cadmium and zinc, due to a former Zn ore treatment plant in the watershed of the Riou-Mort, a tributary of the Lot River. Many studies have been performed to characterize contamination, but few have assessed its consequences on the biological responses of organisms along the gradient. We exposed adult and juvenile New Zealand freshwater mudsnails Potamopyrgus antipodarum at several sites along the gradient of metal contamination for 28 days. Biological responses were monitored at different levels: individual (survival, growth and fecundity), tissue and biochemical (energy status and vertebrate-like sex steroid levels) to better understand the toxicity mechanisms involved. Accumulation of Cd and Zn was high during exposure. Most of the biological effects observed could be linked to this contamination and were concentration-dependent. Histological lesions of the digestive gland were observed, with hypertrophy of calcium cells and vacuolization of digestive cells. Such effects are likely to explain the decrease of energy status (triglycerides and proteins), juvenile growth and adult fecundity observed at the most polluted site. However the magnitude of the fall in fecundity cannot be attributed only to these tissular effects, indicating another mode of action of Cd or possible confounding factors. Steroid accumulation in snails indicated only organic pollution. Histopathological effects proved the most sensitive endpoint to metal (Cd and Zn) contamination.

  7. Comprehensive biological effects of a complex field poly-metallic pollution gradient on the New Zealand mudsnail Potamopyrgus antipodarum (Gray)

    Energy Technology Data Exchange (ETDEWEB)

    Gust, M., E-mail: marion.gust@cemagref.fr [Cemagref, UR MALY, Laboratoire d' ecotoxicologie, 3b quai Chauveau, 69009 Lyon (France); AgroPariTech ENGREF, 19 avenue du Maine, F 75732 Paris (France); Buronfosse, T., E-mail: thierry.buronfosse@inserm.fr [Universite de Lyon, Laboratoire d' endocrinologie, Ecole Nationale Veterinaire de Lyon, avenue Bourgelat, 69280 Marcy l' Etoile (France); Geffard, O., E-mail: olivier.geffard@cemagref.fr [Cemagref, UR MALY, Laboratoire d' ecotoxicologie, 3b quai Chauveau, 69009 Lyon (France); Coquery, M., E-mail: marina.coquery@cemagref.fr [Cemagref, UR MALY, Laboratoire d' analyses physico-chimiques des milieux aquatiques, 3b quai Chauveau, 69009 Lyon (France); Mons, R., E-mail: raphael.mons@cemagref.fr [Cemagref, UR MALY, Laboratoire d' ecotoxicologie, 3b quai Chauveau, 69009 Lyon (France); Abbaci, K., E-mail: khedidja.abbaci@cemagref.fr [Cemagref, UR MALY, Laboratoire d' ecotoxicologie, 3b quai Chauveau, 69009 Lyon (France); Giamberini, L., E-mail: giamb@sciences.univ-metz.fr [Laboratoire des interactions Ecotoxicologie, Biodiversite, Ecosystemes, CNRS UMR 7146, campus Bridoux, 57000 Metz (France); Garric, J., E-mail: jeanne.garric@cemagref.fr [Cemagref, UR MALY, Laboratoire d' ecotoxicologie, 3b quai Chauveau, 69009 Lyon (France)

    2011-01-17

    The Lot River is known to be contaminated by metals, mainly cadmium and zinc, due to a former Zn ore treatment plant in the watershed of the Riou-Mort, a tributary of the Lot River. Many studies have been performed to characterize contamination, but few have assessed its consequences on the biological responses of organisms along the gradient. We exposed adult and juvenile New Zealand freshwater mudsnails Potamopyrgus antipodarum at several sites along the gradient of metal contamination for 28 days. Biological responses were monitored at different levels: individual (survival, growth and fecundity), tissue and biochemical (energy status and vertebrate-like sex steroid levels) to better understand the toxicity mechanisms involved. Accumulation of Cd and Zn was high during exposure. Most of the biological effects observed could be linked to this contamination and were concentration-dependent. Histological lesions of the digestive gland were observed, with hypertrophy of calcium cells and vacuolization of digestive cells. Such effects are likely to explain the decrease of energy status (triglycerides and proteins), juvenile growth and adult fecundity observed at the most polluted site. However the magnitude of the fall in fecundity cannot be attributed only to these tissular effects, indicating another mode of action of Cd or possible confounding factors. Steroid accumulation in snails indicated only organic pollution. Histopathological effects proved the most sensitive endpoint to metal (Cd and Zn) contamination.

  8. Degradation of vehicle pollutants by nano-titania photocatalyst%二氧化钛光触媒净化车内空气的应用研究

    Institute of Scientific and Technical Information of China (English)

    冯连荣; 许雪峰; 刘守清

    2012-01-01

    将纳米二氧化钛应用于客车车厢内有机毒物的分解。研究表明,在紫外光照射下,纳米二氧化钛对车内主要有机污染物甲苯、二甲苯、甲醛和总有机挥发物的降解率分别达到93.8%、91.6%、64.8%和88.3%。参照国家室内空气质量标准,在对车内空气污染物进行了治理后,甲苯、二甲苯和总有机挥发物分别达到了国家标准,甲醛的含量也大幅度下降。数据表明,光催化法可以用作车内空气污染的治理。%This paper studies the degradation of organic pollutants in vehicles by the nano-titania photocatalyst. The results show that the photocatalyst can effectively decompose the pollutants in vehicles under ultraviolet light. The degradation ratios of toluene, dimethylbenzene, formaldehyde and the total value of organic compounds are 93.8% ,91.6% ,64.8% and 88.3% respectively. After the photocatalysis is conducted,the content of toluene, dimethylbenzene and the total value of organic compounds in vehicle is lower than the safe values by the state standard of indoor healthy air quality. The amount of formaldehyde also decreases obviously after the photocatalysis. Thus, the photocatalysis can be used to degrade organic pollutants in vehicles.

  9. A novel visible light-driven Ag{sub 3}PO{sub 4}/SBA-15 nanocomposite: Preparation and application in the photo-degradation of pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Yuanyuan; Wang, Li; Ren, Jia; Dai, Wei-Lin, E-mail: wldai@fudan.edu.cn

    2015-01-01

    Graphical abstract: - Highlights: • Highly efficient visible-light-driven Ag{sub 3}PO{sub 4}/SBA-15 nanocomposite. • Application in the photo-degradation of RhB. • Synthesis from a facile and simple colloidal method. • 20%-Ag{sub 3}PO{sub 4}/SBA-15 shows 8 times faster degradation rate than Ag{sub 3}PO{sub 4}. • Super stability and recycling ability. - Abstract: A novel visible light-driven environmental-benign Ag{sub 3}PO{sub 4}/SBA-15 nanocomposite photo-catalyst was synthesized for the photo-degradation of pollutants. The exploration on adsorption and photo-catalysis of dye or organic pollution for the nanocomposite was carried out. The adsorption capability for Ag{sub 3}PO{sub 4}/SBA-15 nanocomposite increases by 3 times compared with that of the Ag{sub 3}PO{sub 4} particles. The photo-catalytic activity of nanocomposite is higher than pristine Ag{sub 3}PO{sub 4} nanoparticle for the degradation of RhB or MO under visible light irradiation (λ > 420 nm). The effect of Ag{sub 3}PO{sub 4} loading on the catalytic performance was also studied. The results show that the optimum degradation is achieved over 20% Ag{sub 3}PO{sub 4}/SBA-15. Compared to pure Ag{sub 3}PO{sub 4} nanoparticle, the most efficient catalyst showed 8 times higher photo-catalytic activity for the degradation of RhB. The Ag{sub 3}PO{sub 4}/SBA-15 catalysts were systematically characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–Vis diffuse reflectance spectroscopy (DRS), and N{sub 2}-adsorption–desorption isotherms (BET). A possible mechanism scheme regarding photo-degradation enhancement induced by dye enrichments has been proposed on the Ag{sub 3}PO{sub 4}/SBA-15 nanocomposite. Additionally, the SBA-15 support can enhance the efficiency of separation of catalyst from the reaction mixture, implying that the Ag{sub 3}PO{sub 4} loading on the SBA-15 catalyst will not result in the extra environment and health

  10. Enhanced photocatalytic activity for degrading pollutants of g-C3N4 by promoting oxygen adsorption after H3BO3 modification

    Science.gov (United States)

    Li, Chengming; Raziq, Fazal; Liu, Chong; Li, Zhijun; Sun, Liqun; Jing, Liqiang

    2015-12-01

    The g-C3N4 has been modified by a hydrothermal post treatment with orthoboric acid. It is shown that the surface modification with an appropriate amount of orthoboric acid obviously enhances the surface photovoltage responses of g-C3N4, clearly indicating that the separation of photogenerated charges is greatly improved. This is well responsible for the enhanced photocatalytic activities for degrading representative gas-phase acetaldehyde, and liquid-phase phenol. Moreover, it is demonstrated that the amount of O2 adsorbed on the surfaces of g-C3N4 is greatly increased after H3BO3 modification based on the O2 temperature-programmed desorption curves. It is suggested that the orthoboric acid modification favors O2 adsorption to promote the photogenerated electrons captured for improved photocatalytic activities. This work would provide feasible routes to further improve the photocatalytic performance of semiconductors for degrading pollutants.

  11. Establishment of Bacterial Herbicide Degraders in a Rapid Sand Filter for Bioremediation of Phenoxypropionate-Polluted Groundwater.

    Science.gov (United States)

    Feld, Louise; Nielsen, Tue Kjærgaard; Hansen, Lars Hestbjerg; Aamand, Jens; Albers, Christian Nyrop

    2015-11-20

    In this study, we investigated the establishment of natural bacterial degraders in a sand filter treating groundwater contaminated with the phenoxypropionate herbicides (RS)-2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP) and (RS)-2-(2,4-dichlorophenoxy)propanoic acid (DCPP) and the associated impurity/catabolite 4-chlorophenoxypropanoic acid (4-CPP). A pilot facility was set up in a contaminated landfill site. Anaerobic groundwater was pumped up and passed through an aeration basin and subsequently through a rapid sand filter, which is characterized by a short residence time of the water in the filter. For 3 months, the degradation of DCPP, MCPP, and 4-CPP in the sand filter increased to 15 to 30% of the inlet concentration. A significant selection for natural bacterial herbicide degraders also occurred in the sand filter. Using a most-probable-number (MPN) method, we found a steady increase in the number of culturable phenoxypropionate degraders, reaching approximately 5 × 10(5) degraders per g sand by the end of the study. Using a quantitative PCR targeting the two phenoxypropionate degradation genes, rdpA and sdpA, encoding stereospecific dioxygenases, a parallel increase was observed, but with the gene copy numbers being about 2 to 3 log units higher than the MPN. In general, the sdpA gene was more abundant than the rdpA gene, and the establishment of a significant population of bacteria harboring sdpA occurred faster than the establishment of an rdpA gene-carrying population. The identities of the specific herbicide degraders in the sand filter were assessed by Illumina MiSeq sequencing of 16S rRNA genes from sand filter samples and from selected MPN plate wells. We propose a list of potential degrader bacteria involved in herbicide degradation, including representatives belonging to the Comamonadaceae and Sphingomonadales.

  12. Enhancing the biological activity of chitosan and controlling the degradation by nanoscale interaction with bioglass.

    Science.gov (United States)

    Ravarian, Roya; Craft, Michaela; Dehghani, Fariba

    2015-09-01

    A nonuniform degradation of physical mixture of organic-inorganic biomaterials increases their risk of failure. In this study a chemical bonding between chitosan and bioglass was used as an alternative product to address this issue. To prepare a homogenous composite, chitosan was functionalized with γ-glycidoxypropyl trimethoxysilane and chemically bonded with bioglass during sol-gel method. The gelation time of these hybrids samples was optimized by varying parameters such as composition of chitosan and temperature. It was shown that gelation time was reduced from 7 days for pure bioglass at 25°C to less than six minutes at 70°C for chitosan 40 vol % bioglass hybrid. Furthermore, the enzymatic degradation after 4 weeks was decreased from 80% mass loss for pure chitosan to 32% for chitosan 40 vol % bioglass hybrid. The results of in vitro study demonstrated that the presence of nanoscale interaction enhanced the bioactivity of chitosan. Additionally, hybrid scaffolds were fabricated with pore sizes in the range of 200-400 µm. These scaffolds were prepared by the addition of sodium bicarbonate during sol-gel method as a gas foaming agent and a neutralizer that resulted in decreasing the gelation time of hybrids to less than three minutes. The hybrids fabricated in this study possessed superior characteristics compared to chitosan, also physical mixture of chitosan-bioglass and are promising alternatives for bone tissue engineering applications. PMID:25690303

  13. BIODEGRADATION OF ENVIRONMENTAL POLLUTANTS BY THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOPORIUM: INVOLVEMENT OF THE LIGNIN DEGRADING SYSTEM

    Science.gov (United States)

    The white-rot fungus Phanrochaete chrysosporium has the ability to degrade a wide variety of structurally diverse organic compounds, including a number of environmentally persistent organopollutants. The unique biodegradative abilities of this fungus appears to be depend...

  14. BIODEGRADATION OF ENVIRONMENTAL POLLUTANTS BY THE WHITE ROT FUNGUS PHANEROCHATETE CHRYSOSPORIUM: INVOLVEMENT OF THE LIGNIN DEGRADING SYSTEM

    Science.gov (United States)

    The white-rot fungus Phanerochaete chrysosporium has the ability to degrade's wide variety of structurally diverse organic compounds, including a number of environmentall3 persistent organopollutants. he unique biodegradative abilities of this fungus appears to be dependent upon ...

  15. Formulation of economical microbial feed using degraded chicken feathers by a novel Streptomyces sp: mitigation of environmental pollution

    Directory of Open Access Journals (Sweden)

    Jayapradha Ramakrishnan

    2011-09-01

    Full Text Available A new Streptomyces sp. IF 5 was isolated from the feather dumped soil and found to have a tremendous keratinase activity. The strain enabled the degradation of the chicken feathers very effectively in 60 h. The 16S rRNA sequence of 1474 bp long was submitted to the National centre for Biotechnological information. The keratinolytic activity in the culture medium was 1181 U/ml. The release and analyses of sulphydryl groups in the culture medium evident the degradation activity by the Streptomyces sp. IF 5. The idea of the present study was to use the degraded chicken feathers as the substrate for the growth and cultivation of microorganisms. We have designed a very economical culture medium that includes the usage of some basal salts alone and degraded chicken feathers (10 g/l. The results of the specific growth rate of the tested microbes confirm the usage of the new designed medium for microbial culturing.

  16. Formulation of economical microbial feed using degraded chicken feathers by a novel Streptomyces sp: mitigation of environmental pollution

    Science.gov (United States)

    Ramakrishnan, Jayapradha; Balakrishnan, Hariram; Raja, Selvaraj Thirupathi Kumara; Sundararamakrishnan, Natarajan; Renganathan, Sadagoban; Radha, Venkatesh Nagarajan

    2011-01-01

    A new Streptomyces sp. IF 5 was isolated from the feather dumped soil and found to have a tremendous keratinase activity. The strain enabled the degradation of the chicken feathers very effectively in 60 h. The 16S rRNA sequence of 1474 bp long was submitted to the National centre for Biotechnological information. The keratinolytic activity in the culture medium was 1181 U/ml. The release and analyses of sulphydryl groups in the culture medium evident the degradation activity by the Streptomyces sp. IF 5. The idea of the present study was to use the degraded chicken feathers as the substrate for the growth and cultivation of microorganisms. We have designed a very economical culture medium that includes the usage of some basal salts alone and degraded chicken feathers (10 g/l). The results of the specific growth rate of the tested microbes confirm the usage of the new designed medium for microbial culturing. PMID:24031698

  17. On the multiscale origins of fracture resistance in human bone and its biological degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Elizabeth A.; Barth, Holly D.; Ritchie, Robert O.

    2012-03-09

    Akin to other mineralized tissues, human cortical bone can resist deformation and fracture due to the nature of its hierarchical structure, which spans the molecular to macroscopic length-scales. Deformation at the smallest scales, mainly through the composite action of the mineral and collagen, contributes to bone?s strength or intrinsic fracture resistance, while crack-tip shielding mechanisms active on the microstructural scale contribute to the extrinsic fracture resistance once cracking begins. The efficiency with which these structural features can resist fracture at both small and large length-scales becomes severely degraded with such factors as aging, irradiation and disease. Indeed aging and irradiation can cause changes to the cross-link profile at fibrillar length-scales as well as changes at the three orders of magnitude larger scale of the osteonal structures, both of which combine to inhibit the bone's overall resistance to the initiation and growth of cracks.

  18. Combined Effects of Persistent Organic Pollutants and Biological Variables on Vitamin D in Polar Bears

    OpenAIRE

    Grønning, Hege Mentzoni

    2013-01-01

    Because of long-range transport, the Arctic is chronically exposed to persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), pesticides and brominated flame retardants, such as polybrominated flame retardants (PBDEs). Because of POPs are persistent and lipofilic, they are bioaccumulated in lipids and biomagnified in the food chains. The structures of some POPs resemble endogenous hormones, and have been shown to disrupt the TH homeostasis in animals. It has also been ...

  19. Biological monitoring of polycyclic aromatic hydrocarbon exposure in a highly polluted area of Poland.

    OpenAIRE

    Ovrebø, S; Fjeldstad, P E; Grzybowska, E; Kure, E H; Chorazy, M; Haugen, A

    1995-01-01

    Air pollution in Poland and particularly in Silesia is among the worst in Europe. Many coal mines and coke oven plants are located in this area, representing a major source of carcinogenic polycyclic aromatic hydrocarbons (PAHs). We quantitated the PAH exposure level in air samples using personal sampling devices, collected urine samples from the same individuals, and measured 1-hydroxypyrene with high performance liquid chromatography. Samples were collected twice, once in February and once ...

  20. Assessment of pollution in road runoff using a Bufo viridis biological assay

    Energy Technology Data Exchange (ETDEWEB)

    Dorchin, A., E-mail: adorchin@campus.haifa.ac.i [Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa 31905 (Israel); Shanas, U., E-mail: shanas@research.haifa.ac.i [Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa 31905 (Israel); Department of Biology, Faculty of Natural sciences, University of Haifa - Oranim, Tiv' on 36006 (Israel)

    2010-12-15

    Road runoff is a major source of environmental pollution, significantly threatening nearby aquatic habitats. Chemical analyses indicate high pollutant concentrations in the road's 'first flush', but bioassays are more advantageous for addressing the cumulative effects of the numerous pollutants within the runoff. We used Bufo viridis embryos and larvae to assess the toxicity of road runoff from two major highways in Israel. We show, for the first time, that exposure to midseason runoff not only has an adverse effect on growth and development rates of B. viridis larvae but can also lead to increased rates of morphological deformations. Seasonal first flushes, despite having higher metal concentrations, did not adversely affect the toad larvae, apparently due to a counter effect of organic matter that potentially served as a supplementary energy resource. Road runoff can be a major cause for a qualitative decrease in the quality of aquatic habitats threatening amphibians in Israel. - Highway runoff has detrimental effects on the development of B. viridis larvae.

  1. Hydrocarbon-Degrading Bacteria and Paraffin from Polluted Seashores 9 Years after the Nakhodka Oil Spill in the Sea of Japan

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Pollution of petroleum hydrocarbons, in particular oil spills, has attracted much attention in the past and recent decades. Oil spills influence natural microbial community, and physical and chemical properties of the affected sites. The biodegradation of hydrocarbons by microorganisms is one of the primary ways by which oil spill is eliminated from contaminated sites. One such spill was that of the Russian tanker the Nakhodka that spilled heavy oil into the Sea of Japan on January 2, 1997. The impact of the Nakhodka oil spill resulted in a viscous sticky fluid fouling the shores and affected natural ecosystems. This paper describes the weathering of hydrocarbon-degrading bacteria (genus Pseudomonas) and crystallized organic compounds from the Nakhodka oil spill-polluted seashores after nine years. The Nakhodka oil has hardened and formed crust of crystalline paraffin wax as shown by XRD analysis (0.422, 0.377, and 0.250 nm d-spacing) in association with graphite and calcite after 9years of bioremediation. Anaerobic reverse side of the oil crust contained numerous coccus typed bacteria associated with halite. The finding of hydrocarbon-degrading bacteria and paraffin wax in the oil crust may have a significant effect on the weathering processes of the Nakhodka oil spill during the 9-year bioremediation.

  2. Bismuth oxychloride modified titanium phosphate nanoplates: A new p-n type heterostructured photocatalyst with high activity for the degradation of different kinds of organic pollutants.

    Science.gov (United States)

    Ao, Yanhui; Bao, Jiaqiu; Wang, Peifang; Wang, Chao; Hou, Jun

    2016-08-15

    In this work, BiOCl modified titanium phosphate nanoplates (BiOCl/TP) composite photocatalysts with p-n heterojunctions were prepared by a in-situ growth method. The morphology, crystal structure and optical properties of the prepared samples were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), UV-vis diffuse reflectance spectrometry (DRS). Rhodamine B (RhB), reactive brilliant Red X-3B (X-3B), methylene blue (MB), ciprofloxacin (CIP) and phenol were used to investigate the photocatalytic performance of the prepared samples under ultraviolet light irradiation. Results showed that the BiOCl/TP exhibited much higher activity for the degradation of all these model organic pollutants than pure TP. The mechanism for the enhancement of the photocatalytic performance was established with the help of the results of photocurrent measurements and Photoluminescence spectra. The results illustrated that the enhanced activity could be attributed to the formation of p-n heterojunctions between p-type BiOCl and n-type titanium phosphate, which effectively suppressed the recombination of photo-induced electron-hole pairs. Furthermore, the possible photocatalytic mechanisms on the degradation of the organic pollutants were also proposed. PMID:27209392

  3. Investigations in the degradation of polar and non-polar exit air constituents in biological scrubbers

    International Nuclear Information System (INIS)

    On a semi-technical scale (exit air volume flows between 1000 m3.h-1 and 3600 m3.h-1), experiments in the treatment of exit air from a mixed production plant of the chemical industry by biological absorption process were carried through. During testing, the configuration of the pilot plant was changed. Thus, both a multiple-zone nozzle scrubber and a packed column were used as an absorber, and as a scrubbing liquid both aerated sludge and a dispersion of aerated sludge and silicon oil with silicon oil contents of up to 5% wer used. (orig.)

  4. Bioaugmentation of biological contact oxidation reactor (BCOR) with phenol-degrading bacteria for coal gasification wastewater (CGW) treatment.

    Science.gov (United States)

    Fang, Fang; Han, Hongjun; Zhao, Qian; Xu, Chunyan; Zhang, Linghan

    2013-12-01

    This study was conducted to evaluate the performance of the biological contact oxidation reactor (BCOR) treating coal gasification wastewater (CGW) after augmented with phenol degrading bacteria (PDB). The PDB were isolated with phenol, 4-methyl phenol, 3,5-dimethyl phenol and resorcinol as carbon resources. Much of the refractory phenolic compounds were converted into easily-biodegradable compounds in spite of low TOC removal. The bioaugmentation with PDB significantly enhanced the removal of COD, total phenols (TP) and NH3-N, with efficiencies from 58% to 78%, 66% to 80%, and 5% to 25%, respectively. In addition, the augmented BCOR exhibited strong recovery capability in TP and COD removal while recovery of NH3-N removal needed longer time. Microbial community analysis revealed that the PDB presented as dominant populations in the bacteria consortia, which in turn determined the overall performance of the system.

  5. Impact of hydrodynamics on pollutant degradation and energy efficiency of VUV/UV and H2O2/UV oxidation processes.

    Science.gov (United States)

    Bagheri, Mehdi; Mohseni, Madjid

    2015-12-01

    The Vacuum-UV/UV process, an incipient catalyst/chemical-free advanced oxidation process (AOP), is potentially a cost-effective solution for the removal of harmful micropollutants from water. Utilizing a novel mechanistic numerical model, this work aimed to establish a thorough understanding of the degradation mechanisms in the VUV/UV process operating under continuous flow conditions, when compared with the widely applied H2O2/UV AOP. Of particular interest was the examination of the impact of flow characteristics (hydrodynamics) on the degradation efficacy of a target micropollutant during the VUV/UV and H2O2/UV AOPs. While hydroxyl radical (OH) oxidation was the dominant degradation pathway in both processes, the degradation efficacy of the VUV/UV process showed much stronger correlation with the extent of mixing in the photoreactor. Under a uniform flow regime, the degradation efficiency of the target pollutant achieved by the H2O2/UV process with 2- and 5 ppm H2O2 was greater than that provided by the VUV/UV process. Nonetheless, introduction of mixing and circulation zones to the VUV/UV reactor resulted in superior performance compared with the H2O2/UV AOP. Based on the electrical energy-per-order (EEO) analysis, incorporation of circulation zones resulted in a reduction of up to 50% in the overall energy cost of the VUV/UV AOP, while the corresponding reduction for the 5-ppm H2O2/UV system was less than 5%. Furthermore, the extent of OH scavenging of natural organic matter (NOM) on energy efficiency of the VUV/UV and H2O2/UV AOPs under continuous flow conditions was assessed using the EEO analysis. PMID:26363258

  6. Impact of hydrodynamics on pollutant degradation and energy efficiency of VUV/UV and H2O2/UV oxidation processes.

    Science.gov (United States)

    Bagheri, Mehdi; Mohseni, Madjid

    2015-12-01

    The Vacuum-UV/UV process, an incipient catalyst/chemical-free advanced oxidation process (AOP), is potentially a cost-effective solution for the removal of harmful micropollutants from water. Utilizing a novel mechanistic numerical model, this work aimed to establish a thorough understanding of the degradation mechanisms in the VUV/UV process operating under continuous flow conditions, when compared with the widely applied H2O2/UV AOP. Of particular interest was the examination of the impact of flow characteristics (hydrodynamics) on the degradation efficacy of a target micropollutant during the VUV/UV and H2O2/UV AOPs. While hydroxyl radical (OH) oxidation was the dominant degradation pathway in both processes, the degradation efficacy of the VUV/UV process showed much stronger correlation with the extent of mixing in the photoreactor. Under a uniform flow regime, the degradation efficiency of the target pollutant achieved by the H2O2/UV process with 2- and 5 ppm H2O2 was greater than that provided by the VUV/UV process. Nonetheless, introduction of mixing and circulation zones to the VUV/UV reactor resulted in superior performance compared with the H2O2/UV AOP. Based on the electrical energy-per-order (EEO) analysis, incorporation of circulation zones resulted in a reduction of up to 50% in the overall energy cost of the VUV/UV AOP, while the corresponding reduction for the 5-ppm H2O2/UV system was less than 5%. Furthermore, the extent of OH scavenging of natural organic matter (NOM) on energy efficiency of the VUV/UV and H2O2/UV AOPs under continuous flow conditions was assessed using the EEO analysis.

  7. Greywater pollution variability and loadings

    DEFF Research Database (Denmark)

    Eriksson, Eva; Andersen, Henrik Rasmus; Madsen, Toke S.;

    2009-01-01

    Small on-site greywater treatment and reuse plants are susceptible to high short-term variation in flow and pollutant concentrations. As demonstrated in this study of a bathroom greywater plant in Copenhagen, Denmark, the flow ranges from no-flow periods to high-flow periods reaching 34 l min−1....... Concentrations of both macro- and micro-pollutants (organic matter and parabens) were found to range by several orders of magnitude in the influent, based on sampling every 20 min. Paraben degradation was proven to occur in the rotating biological contactor (RBC), while the remnant organic matter in the effluent...... was proved not to be readily degradable. Ammonium content, presumably from urine contamination, was found to undergo nitrification in the RBC. Mass flow (daily loads) for individual substances was calculated for several pollutants. Macropollutants were found to be generated in low numbers of grams per person...

  8. Biological Removal of Propylene Glycol from Wastewater and its Degradation in Soil by the Activated Sludge Consortia

    Directory of Open Access Journals (Sweden)

    G.R Moussavi

    2009-07-01

    Full Text Available "n "nBackground and Objectives : Propylene glycol is the main compound of anti-freezing chemicals. A significant amount of propylene glycol is released to the environment after application and contaminates the soil. The main objective of this study was to determine the biological removal of propylene glycol from wastewater and its degradation in soil by the isolated bacteria from activated sludge process."nMaterials and Methods: In the present study, the sludge taken from the return flow in a local activated sludge treatment system was used as the initial seed. The performance of the bioreactor in treating the wastewater was evaluated at four different retention times of 18, 12, 6 and 4 h all with the inlet COD concentration of 1000 mg/L. This phase lasted around 4 months. Then, a part of the adapted microorganisms were transported from the bioreactor to the soil which was synthetically contaminated to the propylene glycol."nResults: The average of propylene glycol removal efficiency from the wastewater in detention times of 18, 12, 8 and 4 h in steady state conditions was 98.6%, 97.1%, 86.4% and 62.2% respectively. Also, the maximum degradation in soil was found to be 97.8%."nConclusion: According to the results obtained from this study, it appears that propylene glycol is inherently well biodegradable and can be biodegraded in liquid phase and soil after a short period of adaptation.

  9. Enhancing the biological degradability of sulfamethoxazole by ionizing radiation treatment in aqueous solution

    Science.gov (United States)

    Sági, Gyuri; Kovács, Krisztina; Bezsenyi, Anikó; Csay, Tamás; Takács, Erzsébet; Wojnárovits, László

    2016-07-01

    Changes of biodegradability and toxicity were followed up on aqueous solutions of sulfamethoxazole (SMX), during ionizing radiation treatment. The biodegradability of SMX (0.1 mmol dm-3) was specified by five-day biological oxygen demand (BOD5), using municipal activated sludge, and the results showed an improvement with applying only 0.4 kGy dose. BOD5 further increased with prolonged irradiation, indicating a conversion of SMX, a non-biodegradable compound, to biologically treatable substances. At 2.5 kGy dose, the BOD5/COD ratio increased from 0 to 0.16. The total organic carbon (TOC) content showed a decrease of only 15% at this point, thus high degree of mineralization is not necessary to make SMX digestible for the low concentrations of microorganisms used during BOD5 measurements. Increment in respiration inhibition of municipal activated sludge was observed with increasing the dose. The EC50 values showed a decrease of one order of magnitude when changing the dose from 0.4 kGy to 2.5 kGy. The increase of inhibition and formation of H2O2 showed a strong correlation.

  10. Role of Moving Bed Biofilm Reactor and Sequencing Batch Reactor in Biological Degradation of Formaldehyde Wastewater

    Directory of Open Access Journals (Sweden)

    B. Ayati

    2011-10-01

    Full Text Available Nowadays formaldehyde is used as raw material in many industries. It has also disinfection applications in some public places. Due to its toxicity for microorganisms, chemical or anaerobic biological methods are applied for treating wastewater containing formaldehyde.In this research, formaldehyde removal efficiencies of aerobic biological treatment systems including moving bed biofilm (MMBR and sequencing batch reactors (SBR were investigated. During all experiments, the efficiency of SBR was more than MBBR, but the difference was not significant statistically. According to the results, the best efficiencies were obtained for influent formaldehyde COD of 200 mg/L in MBBR and SBR which were 93% and 99.4%, respectively. The systems were also capable to treat higher formaldehyde concentrations (up to 2500 mg/L with lower removal efficiency. The reaction kinetics followed the Stover-Kincannon second order model. The gram-positive and gram-negative bacillus and coccus as well as the gram-positive binary bacillus were found to be the most dominant species. The results of 13C-NMR analysis have shown that formaldehyde and urea were converted into N-{[(aminocarbonyl amino] methyl}urea and the residual formaldehyde was polymerized at room temperature.

  11. Bioresources for control of environmental pollution.

    Science.gov (United States)

    Sana, Barindra

    2015-01-01

    Environmental pollution is one of the biggest threats to human beings. For practical reasons it is not possible to stop most of the activities responsible for environmental pollution; rather we need to eliminate the pollutants. In addition to other existing means, biological processes can be utilized to get rid of toxic pollutants. Degradation, removal, or deactivation of pollutants by biological means is known as bioremediation. Nature itself has several weapons to deal with natural wastage and some of them are equally active for eliminating nonnatural pollutants. Several plants, microorganisms, and some lower eukaryotes utilize environmental pollutants as nutrients and some of them are very efficient for decontaminating specific types of pollutants. If exploited properly, these natural resources have enough potential to deal with most elements of environmental pollution. In addition, several artificial microbial consortia and genetically modified organisms with high bioremediation potential were developed by application of advanced scientific tools. On the other hand, natural equilibria of ecosystems are being affected by human intervention. Rapid population growth, urbanization, and industrialization are destroying ecological balances and the natural remediation ability of the Earth is being compromised. Several potential bioremediation tools are also being destroyed by biodiversity destruction of unexplored ecosystems. Pollution management by bioremediation is highly dependent on abundance, exploration, and exploitation of bioresources, and biodiversity is the key to success. Better pollution management needs the combined actions of biodiversity conservation, systematic exploration of natural resources, and their exploitation with sophisticated modern technologies.

  12. A new alkali-activated steel slag-based cementitious material for photocatalytic degradation of organic pollutant from waste water

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yao Jun, E-mail: yaojzhang@yahoo.com.cn [College of Material Science and Engineering, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Liu, Li Cai; Xu, Yong; Wang, Ya Chao; Xu, De Long [College of Material Science and Engineering, Xi' an University of Architecture and Technology, Xi' an 710055 (China)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer A novel Ni,Ca-cementitious material is synthesized by a two-step reaction. Black-Right-Pointing-Pointer Ni,Ca-geopolymer is firstly used for the photocatalytic degradation of MB. Black-Right-Pointing-Pointer Absorption bands in the UV and NIR regions are reported for the first time. Black-Right-Pointing-Pointer A reaction mechanism of photocatalytic degradation was proposed. - Abstract: A new type of Ni,Ca-cementitious material was firstly synthesized via a two-step reaction of alkali-activated steel slag polymerization and ion exchange. The XRF results showed that almost all the Na{sup +} ions in the matrix of Na,Ca-cementitious material were replaced by Ni{sup 2+} ions at room temperature. The new hydrated products of metahalloysite (Si{sub 2}Al{sub 2}O{sub 5}(OH){sub 4}) and calcium silicate hydrate (CSH) were formed in the Na,Ca-cementitious material. The diffuse reflectance UV-vis near infrared ray spectrum was blue-shifted due to the strong interaction between Ni{sup 2+} and negative charge of [AlO{sub 4}]{sup 5-} tetrahedron in the framework of cementitious material. The Ni,Ca-cementitious material was used as a catalyst for the photocatalytic degradation of methylene blue dye and showed a degradation rate of 94.39% under UV irradiation. The high photocatalytic degradation activity was suggested to be the synergistic effect of the cementitious matrix, Ni{sup 2+} ions and the iron oxides of wustite (FeO) and calcium iron oxide (Ca{sub 2}Fe{sub 2}O{sub 5}) from the steel slag. A probable mechanism of photocatalytic oxidative degradation was proposed.

  13. Biological effect of radiation-degraded alginate on flower plants in tissue culture.

    Science.gov (United States)

    Le, Q Luan; Nguyen, Q Hien; Nagasawa, Naotsugu; Kume, Tamikazu; Yoshii, Fumio; Nakanishi, Tomoko M

    2003-12-01

    Alginate with a weight-average molecular mass (Mw) of approx. 9.04 x 10(5) Da was irradiated at 10-200 kGy in 4% (w/v) aqueous solution. The degraded alginate product was used to study its effectiveness as a growth promoter for plants in tissue culture. Alginate irradiated at 75 kGy with an Mw of approx. 1.43 x 10(4) Da had the highest positive effect in the growth of flower plants, namely limonium, lisianthus and chrysanthemum. Treatment of plants with irradiated alginate at concentrations of 30-200 mg/l increased the shoot multiplication rate from 17.5 to 40.5% compared with control. In plantlet culture, 100 mg/l irradiated alginate supplementation enhanced shoot height (9.7-23.2%), root length (9.7-39.4%) and fresh biomass (8.1-19.4%) of chrysanthemum, lisianthus and limonium compared with that of the untreated control. The survival ratios of the transferred flower plantlets treated with irradiated alginate were almost the same as the control value under greenhouse conditions. However, better growth was attained for the treated plantlets. PMID:12901723

  14. Poly(L-lactide)-degrading enzyme production by Actinomadura keratinilytica T16-1 in 3 L airlift bioreactor and its degradation ability for biological recycle.

    Science.gov (United States)

    Sukkhum, Sukhumaporn; Tokuyama, Shinji; Kitpreechavanich, Vichien

    2012-01-01

    The optimal physical factors affecting enzyme production in an airlift fermenter have not been studied so far. Therefore, the physical parameters such as aeration rate, pH, and temperature affecting PLA-degrading enzyme production by Actinomadura keratinilytica strain T16-1 in a 3 l airlift fermenter were investigated. The response surface methodology (RSM) was used to optimize PLA-degrading enzyme production by implementing the central composite design. The optimal conditions for higher production of PLA-degrading enzyme were aeration rate of 0.43 vvm, pH of 6.85, and temperature at 46° C. Under these conditions, the model predicted a PLA-degrading activity of 254 U/ml. Verification of the optimization showed that PLA-degrading enzyme production of 257 U/ml was observed after 3 days cultivation under the optimal conditions in a 3 l airlift fermenter. The production under the optimized condition in the airlift fermenter was higher than un-optimized condition by 1.7 folds and 12 folds with un-optimized medium or condition in shake flasks. This is the first report on the optimization of environmental conditions for improvement of PLA-degrading enzyme production in a 3 l airlift fermenter by using a statistical analysis method. Moreover, the crude PLA-degrading enzyme could be adsorbed to the substrate and degraded PLA powder to produce lactic acid as degradation products. Therefore, this incident indicates that PLA-degrading enzyme produced by Actinomadura keratinilytica NBRC 104111 strain T16-1 has a potential to degrade PLA to lactic acid as a monomer and can be used for the recycle of PLA polymer. PMID:22297224

  15. Self-assembly graphitic carbon nitride quantum dots anchored on TiO2 nanotube arrays: An efficient heterojunction for pollutants degradation under solar light.

    Science.gov (United States)

    Su, Jingyang; Zhu, Lin; Geng, Ping; Chen, Guohua

    2016-10-01

    In this study, an efficient heterojunction was constructed by anchoring graphitic carbon nitride quantum dots onto TiO2 nanotube arrays through hydrothermal reaction strategy. The prepared graphitic carbon nitride quantum dots, which were prepared by solid-thermal reaction and sequential dialysis process, act as a sensitizer to enhance light absorption. Furthermore, it was demonstrated that the charge transfer and separation in the formed heterojunction were significantly improved compared with pristine TiO2. The prepared heterojunction was used as a photoanode, exhibiting much improved photoelectrochemical capability and excellent photo-stability under solar light illumination. The photoelectrocatalytic activities of prepared heterojunction were demonstrated by degradation of RhB and phenol in aqueous solution. The kinetic constants of RhB and phenol degradation using prepared photoelectrode are 2.4 times and 4.9 times higher than those of pristine TiO2, respectively. Moreover, hydroxyl radicals are demonstrated to be dominant active radicals during the pollutants degradation.

  16. Carbon-dot-decorated TiO₂ nanotube arrays used for photo/voltage-induced organic pollutant degradation and the inactivation of bacteria.

    Science.gov (United States)

    Feng, Lingyan; Sun, Hanjun; Ren, Jinsong; Qu, Xiaogang

    2016-03-18

    Photoluminescent carbon dots (c-dots) have recently attracted growing interest as a new member of the carbon-nanomaterial family. Here, we report for the first time that c-dot-decorated TiO2 nanotube arrays (c-dot/TiNTs) exhibit highly enhanced abilities regarding photo/voltage-induced organic pollutant degradation and bacterial inactivation. By applying UV irradiation (365 nm) or an electrochemical potential over 3 V (versus Ag/AgCl), an organic dye and a herbicide were efficiently degraded. Moreover, the inactivation of Gram-positive S. aureus and Gram-negative E. coli bacteria was realized on a c-dot/TiNT film. The c-dots were able to absorb light efficiently resulting in multiple exciton generation and also a reduction in the recombination of the e(-)/h(+) pair produced in c-dot/TiNT film during photo/voltage-induced degradation. It was also possible to readily regenerate the surface using ultraviolet light irradiation, leaving the whole film structure undamaged and with high reproducibility and stability. PMID:26870882

  17. Carbon-dot-decorated TiO2 nanotube arrays used for photo/voltage-induced organic pollutant degradation and the inactivation of bacteria

    Science.gov (United States)

    Feng, Lingyan; Sun, Hanjun; Ren, Jinsong; Qu, Xiaogang

    2016-03-01

    Photoluminescent carbon dots (c-dots) have recently attracted growing interest as a new member of the carbon-nanomaterial family. Here, we report for the first time that c-dot-decorated TiO2 nanotube arrays (c-dot/TiNTs) exhibit highly enhanced abilities regarding photo/voltage-induced organic pollutant degradation and bacterial inactivation. By applying UV irradiation (365 nm) or an electrochemical potential over 3 V (versus Ag/AgCl), an organic dye and a herbicide were efficiently degraded. Moreover, the inactivation of Gram-positive S. aureus and Gram-negative E. coli bacteria was realized on a c-dot/TiNT film. The c-dots were able to absorb light efficiently resulting in multiple exciton generation and also a reduction in the recombination of the e-/h+ pair produced in c-dot/TiNT film during photo/voltage-induced degradation. It was also possible to readily regenerate the surface using ultraviolet light irradiation, leaving the whole film structure undamaged and with high reproducibility and stability.

  18. Self-assembly graphitic carbon nitride quantum dots anchored on TiO2 nanotube arrays: An efficient heterojunction for pollutants degradation under solar light.

    Science.gov (United States)

    Su, Jingyang; Zhu, Lin; Geng, Ping; Chen, Guohua

    2016-10-01

    In this study, an efficient heterojunction was constructed by anchoring graphitic carbon nitride quantum dots onto TiO2 nanotube arrays through hydrothermal reaction strategy. The prepared graphitic carbon nitride quantum dots, which were prepared by solid-thermal reaction and sequential dialysis process, act as a sensitizer to enhance light absorption. Furthermore, it was demonstrated that the charge transfer and separation in the formed heterojunction were significantly improved compared with pristine TiO2. The prepared heterojunction was used as a photoanode, exhibiting much improved photoelectrochemical capability and excellent photo-stability under solar light illumination. The photoelectrocatalytic activities of prepared heterojunction were demonstrated by degradation of RhB and phenol in aqueous solution. The kinetic constants of RhB and phenol degradation using prepared photoelectrode are 2.4 times and 4.9 times higher than those of pristine TiO2, respectively. Moreover, hydroxyl radicals are demonstrated to be dominant active radicals during the pollutants degradation. PMID:27232727

  19. 超声协同光催化降解有机污染物的研究%Review on The Sonophotocatalytic Degradation of Organic Water Pollutants

    Institute of Scientific and Technical Information of China (English)

    胡伟; 石建军

    2011-01-01

    超声/光催化是近年发展起来的一种新型废水处理技术。该技术利用超声所特有的空化效应强化光催剂的催化效能,可以实现超声和光催化协同的降解效果,提高有机污染物的降解效率。从超声光催化降解机理、影响因素、催化剂类型等几个方面介绍了近几年相关研究进展,并对未来的发展方向有所展望。%Sonophotocatalytic is a new technology for wastewater treatment in recent years.The technology can achieve synergy ultrasound and photocatalysis degradation effect.It improves the efficiency of the degradation of organic pollutants.This review relates to photocatalytic degradation mechanism from the ultrasound,kinetics,several mayor controlling factors,and its prospect.

  20. Anaerobic methanethiol degradation and methanogenic community analysis in an alkaline (pH 10) biological process for liquefied petroleum gas desulfurization.

    Science.gov (United States)

    van Leerdam, Robin C; Bonilla-Salinas, Monica; de Bok, Frank A M; Bruning, H; Lens, Piet N L; Stams, Alfons J M; Janssen, Albert J H

    2008-11-01

    Anaerobic methanethiol (MT) degradation by mesophilic (30 degrees C) alkaliphilic (pH 10) communities was studied in a lab-scale Upflow Anaerobic Sludge Bed (UASB) reactor inoculated with a mixture of sediments from the Wadden Sea (The Netherlands), Soap Lake (Central Washington), and Russian soda lakes. MT degradation started after 32 days of incubation. During the first 252 days, complete degradation was achieved till a volumetric loading rate of 7.5 mmol MT/L/day, and sulfide, methane, and carbon dioxide were the main reaction products. Temporary inhibition of MT degradation occurred after MT peak loads and in the presence of dimethyl disulfide (DMDS), which is the autooxidation product of MT. From day 252 onwards, methanol was dosed to the reactor as co-substrate at a loading rate of 3-6 mmol/L/day to stimulate growth of methylotrophic methanogens. Methanol was completely degraded and also a complete MT degradation was achieved till a volumetric loading rate of 13 mmol MT/L/day (0.77 mmol MT/gVSS/day). However, from day 354 till the end of the experimental run (day 365), acetate was formed and MT was not completely degraded anymore, indicating that methanol-degrading homoacetogenic bacteria had partially outcompeted the methanogenic MT-degrading archea. The archeal community in the reactor sludge was analyzed by DGGE and sequencing of 16S rRNA genes. The methanogenic archea responsible for the degradation of MT in the reactor were related to Methanolobus oregonensis. A pure culture, named strain SODA, was obtained by serial dilutions in medium containing both trimethyl amine and dimethyl sulfide (DMS). Strain SODA degraded MT, DMS, trimethyl amine, and methanol. Flow sheet simulations revealed that for sufficient MT removal from liquefied petroleum gas, the extraction and biological degradation process should be operated above pH 9. PMID:18814290

  1. TAML/H2O2 Oxidative Degradation of Metaldehyde: Pursuing Better Water Treatment for the Most Persistent Pollutants.

    Science.gov (United States)

    Tang, Liang L; DeNardo, Matthew A; Gayathri, Chakicherla; Gil, Roberto R; Kanda, Rakesh; Collins, Terrence J

    2016-05-17

    The extremely persistent molluscicide, metaldehyde, widely used on farms and gardens, is often detected in drinking water sources of various countries at concentrations of regulatory concern. Metaldehyde contamination restricts treatment options. Conventional technologies for remediating dilute organics in drinking water, activated carbon, and ozone, are insufficiently effective against metaldehyde. Some treatment plants have resorted to effective, but more costly UV/H2O2. Here we have examined if TAML/H2O2 can decompose metaldehyde under laboratory conditions to guide development of a better real world option. TAML/H2O2 slowly degrades metaldehyde to acetaldehyde and acetic acid. Nuclear magnetic resonance spectroscopy ((1)H NMR) was used to monitor the degradation-the technique requires a high metaldehyde concentration (60 ppm). Within the pH range of 6.5-9, the reaction rate is greatest at pH 7. Under optimum conditions, one aliquot of TAML 1a (400 nM) catalyzed 5% degradation over 10 h with a turnover number of 40. Five sequential TAML aliquots (2 μM overall) effected a 31% removal over 60 h. TAML/H2O2 degraded metaldehyde steadily over many hours, highlighting an important long-service property. The observation of metaldehyde decomposition under mild conditions provides a further indication that TAML catalysis holds promise for advancing water treatment. These results have turned our attention to more aggressive TAML activators in development, which we expect will advance the observed technical performance. PMID:27088657

  2. Transcriptional profiling of Gram-positive Arthrobacter in the phyllosphere: induction of pollutant degradation genes by natural plant phenolic compounds

    NARCIS (Netherlands)

    Scheublin, T.R.; Deusch, S.; Moreno-Forero, S.K.; Müller, J.A.; van der Meer, J.R.; Leveau, J.H.J.

    2014-01-01

    Arthrobacter chlorophenolicus A6 is a Gram-positive, 4-chlorophenol degrading soil bacterium that was recently shown to be an effective colonizer of plant leaf surfaces. The genetic basis for this phyllosphere competency is unknown. In this paper, we describe the genome-wide expression profile of A.

  3. Generalist hydrocarbon-degrading bacterial communities in the oil-polluted water column of the North Sea

    NARCIS (Netherlands)

    Chronopoulou, P.M.; Sanni, G.O.; Silas-Olu, D.I.; van der Meer, J.R.; Timmis, K.N.; Brussaard, C.P.D.; McGenity, T.J.

    2015-01-01

    The aim of this work was to determine the effect of light crude oil on bacterial communities during an experimental oil spill in the North Sea and in mesocosms (simulating a heavy, enclosed oil spill), and to isolate and characterize hydrocarbon-degrading bacteria from the water column. No oil-induc

  4. A novel hybrid nano zerovalent iron initiated oxidation--biological degradation approach for remediation of recalcitrant waste metalworking fluids.

    Science.gov (United States)

    Jagadevan, Sheeja; Jayamurthy, Manickam; Dobson, Peter; Thompson, Ian P

    2012-05-01

    Disposal of operationally exhausted metal working fluids (MWF) through a biological route is an attractive option, since it is effective with relatively low energy demands. However, it is enormously challenging since these fluids are chemically complex, including the addition of toxic biocides which are added specifically to retard bio-deterioration whilst the fluids are operational. Nano-sized elemental iron represents a new generation of environmental remediation technologies. Laboratory scale batch studies were performed to test the degradation ability of a semi-synthetic metalworking fluid (MWF) wastewater (which was found to be resistant to initial bacterial treatment in specifically established bioreactors) by employing a novel hybrid approach. The approach was to combine the synergistic effects of nano zerovalent iron (nZVI) induced oxidation, followed by biodegradation, specifically for the remediation of recalcitrant components of MWF effluent. Addition of nZVI particles to oxygenated wastewater resulted in oxidation of organic contaminants present. Our studies confirmed 78% reduction in chemical oxygen demand (COD) by nZVI oxidation at pH 3.0 and 67% reduction in neutral pH (7.5), and 85% concurrent reduction in toxicity. Importantly, this low toxicity made the nZVI treated effluent more amenable for a second stage biological oxidation step. An overall COD reduction of 95.5% was achieved by the novel combined treatment described, demonstrating that nZVI oxidation can be exploited for enhancing the biodegradability of a recalcitrant wastewater in treatment processes. PMID:22365368

  5. DECOLORIZATION AND BIOLOGICAL DEGRADATION OF AZO DYE REACTIVE RED2 BY ANAEROBIC/AEROBIC SEQUENTIAL PROCESS

    Directory of Open Access Journals (Sweden)

    A. Naimabadi ، H. Movahedian Attar ، A. Shahsavani

    2009-04-01

    Full Text Available This study investigates the anaerobic treatability of reactive Red2 in an anaerobic/aerobic sequential process. Laboratory scale anaerobic baffled reactor and fixed activated sludge reactor were operated at different organic loadings and hydraulic retention times. The effects of shock dye concentration on the chemical oxygen demand and color removal efficiencies were investigated in the anaerobic baffled reactor. The effect of hydraulic retention time on the color and chemical oxygen demand removal efficiencies were also investigated in the aerobic reactor. The studies were carried out in continuous mode and the effluent of the anaerobic baffled reactor was used as feed for the fixed activated sludge reactor. Chemical oxygen demand removal efficiency of 54.5% was obtained at HRT =1 day in the anaerobic reactor. The average color removal was 89.5%. Chemical oxygen demand removal efficiency of 69% was obtained at HRT =7 h in the aerobic fixed activated sludge reactor. A slight decrease of the color was also observed in the aerobic reactor. This investigation has shown that successful treatment of a highly colored wastewater is possible in the anaerobic baffled reactor. Also the results showed that, anaerobic biological system has higher efficiency in dye removal than fixed activated sludge system, while aerobic system has higher efficiency in chemical oxygen demand removal comparing with the anaerobic baffled reactor.

  6. Biological phosphate removal using a degradable carbon source produced by hydrothermal treatment of excess sludge

    Directory of Open Access Journals (Sweden)

    L. H. Haraguchi

    2006-03-01

    Full Text Available The possibility of reusing excess sludge treated by hydrothermal reaction for the purpose of improving the efficiency of the enhanced biological phosphate removal (EBPR process was investigated. Excess sludge from a fish-processing industry located in Japan was treated in high-temperature and high-pressure water, at a reaction temperature ranging from 200 to 400ºC, a pressure of 1.8 to 30MPa and a constant reaction time of 7 min. For the conditions tested, the results showed that when the reaction temperature was increased the content of readily biodegradable substrate in the total COD Cr increased. In addition, the amount of some volatile fatty acids (VFAs produced by the hydrothermal reaction increased as reaction temperature increased. From the phosphate release tests under anaerobic conditions, it was possible to demonstrate that not only the VFAs, but also the readily and slowly biodegradable substrates are used as potential carbon source by the phosphate-accumulating organisms (PAOs.

  7. Recent Developments in Environmental Photocatalytic Degradation of Organic Pollutants: The Case of Titanium Dioxide Nanoparticles—A Review

    Directory of Open Access Journals (Sweden)

    Mphilisi M. Mahlambi

    2015-01-01

    Full Text Available The presence of both organic and inorganic pollutants in water due to industrial, agricultural, and domestic activities has led to the global need for the development of new, improved, and advanced but effective technologies to effectively address the challenges of water quality. It is therefore necessary to develop a technology which would completely remove contaminants from contaminated waters. TiO2 (titania nanocatalysts have a proven potential to treat “difficult-to-remove” contaminants and thus are expected to play an important role in the remediation of environmental and pollution challenges. Titania nanoparticles are intended to be both supplementary and complementary to the present water-treatment technologies through the destruction or transformation of hazardous chemical wastes to innocuous end-products, that is, CO2 and H2O. This paper therefore explores and summarizes recent efforts in the area of titania nanoparticle synthesis, modifications, and application of titania nanoparticles for water treatment purposes.

  8. Suspension membrane reactor for biological elimination of non-degradable materials from mixed effluents. Final report; Suspensionsmembranreaktor zur biologischen Eliminierung schwer abbaubarer Stoffe aus Abwassergemischen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Raebiger, N.; Schierenbeck, A.

    2002-07-01

    An earlier research project had shown that a combined process involving membrane filtration and a bioreactor ensure substrate-specific times of residue inside the reactor, i.e. high selective conversation at low discharge rates. The second project aimed at higher flexibility. For this purpose, a two-stage suspension membrane reactor was developed in which the filtration stage and the bioreactor were decoupled. The liquid effluents are concentrated first in a nanofiltration stage, and the permeate, which should be free of non-degradable materials, is discharged. The concentrate is treated in the biological reaction stage and recirculated into the nanofiltration stage in order to ensure complete degradation during a substrate-specific time of residue. An intermediate microfiltration stage serves to retain biomass and prevent the growth of a biofilm in the nanofiltration stage. The method was tested with the practically relevant model pollutant 4-chlorophenol and a real industrial effluent from the antifelting stage of a Bremen woollen mill (Bremer Wollkaemmerei), with a high AOX concentration. [German] Im vorhergehenden Teil des Forschungsvorhabens konnte gezeigt werden, dass durch eine kombinierte Anwendung der Membranfiltration mit einem Bioreaktor eine substratspezifische Verweilzeitverteilung im Reaktor und damit eine hohe selektive Umsatzleistung bei gleichzeitig niedrigen Ablaufwerten realisierbar ist. Um eine groessere Flexibilitaet bei dem Einsatz verschiedener Membranmodule zu realisieren, wurde in dem zweiten Abschnitt des Forschungsvorhabens eine zweistufige Anlage vom Typ des Suspensions-Membranreaktors entwickelt, bei der Filtration und Bioreaktor entkoppelt werden. Das zu reinigende Abwasser wird zunaechst in einer Nanofiltrationsstufe aufkonzentriert, das moeglichst an schwer abbaubaren Stoffen freie Permeat bildet den Ablauf der Anlage. Der Konzentratstrom wird in der nachfolgenden Reaktionsstufe biologisch behandelt und in die Nanofiltrationsstufe

  9. Recent Developments in Environmental Photocatalytic Degradation of Organic Pollutants: The Case of Titanium Dioxide Nanoparticles—A Review

    OpenAIRE

    Mahlambi, Mphilisi M; Ngila, Catherine J.; Bhekie B. Mamba

    2015-01-01

    The presence of both organic and inorganic pollutants in water due to industrial, agricultural, and domestic activities has led to the global need for the development of new, improved, and advanced but effective technologies to effectively address the challenges of water quality. It is therefore necessary to develop a technology which would completely remove contaminants from contaminated waters. TiO2 (titania) nanocatalysts have a proven potential to treat “difficult-to-remove” contaminants ...

  10. The use of Sphagnum recurvum Pal. Beauv. as biological tests for determination of the level of pollution with fluorine compounds and sulphur dioxide in the environment

    Directory of Open Access Journals (Sweden)

    Maria Świeboda

    2014-02-01

    Full Text Available The green parts of the peat moss Sphagnum recurvum Pal. Beauv. were used as a biological test to evaluate the pollution level of the natural environment in the region of the aluminium works "Skawina" (Southern Poland with fluorine compounds and sulphur dioxide. The moss samples were placed in nylon nets and exposed to the polluted air for 6 weeks, then the fluorine and sulphur content in them was determined. The results demonstrated the usefulness of this method for the purpose of establishing the range of influence of the emitted industrial pollution.

  11. Activities and vectors responsible for the biological pollution in the Taranto Seas (Mediterranean Sea, southern Italy): a review.

    Science.gov (United States)

    Cecere, E; Petrocelli, A; Belmonte, M; Portacci, G; Rubino, F

    2016-07-01

    Biological pollution, caused by the negative impact of alien species, also known as non-indigenous species (NIS), is regarded as one of the greatest threat to marine ecosystems. The recent upsurge in the number and spread of these species drew attention to putative vectors such as shipping and shellfish importation for culture and consumption. The port of Taranto in Southern Italy is a hub for several vectors as it serves commercial and military shipping, fishing and recreational boating, in addition to shellfish importation. An analysis of anthropogenic activities and possible vectors in Taranto Seas was recently carried out within the framework of the RITMARE Project, involving local stakeholders. Different categories of stakeholders answered dedicated questionnaires with a high degree of reticence, and this highlighted a general lack of awareness of the problems associated with alien species. Consequently, there is a strong need to instil a truly ecological awareness among the general public and stakeholders. PMID:26178840

  12. Evaluation of methylene diphenyl diisocyanate as an indoor air pollutant and biological assessment of methylene dianiline in the polyurethane factories

    Directory of Open Access Journals (Sweden)

    Mirmohammadi Mirtaghi

    2009-01-01

    Full Text Available Today many raw materials used in factories may have a dangerous effect on the physiological system of workers. One of them, which is widely used in the polyurethane factories, is diisocyanates. These compounds are widely used in surface coatings, polyurethane foams, adhesives, resins, elastomers, binders, and sealants. Exposure to diisocyanates causes irritation to the skin, mucous membranes, eyes, and respiratory tract. Methylene dianiline (MDA is a metabolite of methylene diphenyle diisocyanate (MDI, an excretory material of worker′s urine who are exposed to MDI. Around 100 air samples were collected among five factories by the Midget Impinger, which contained DMSO absorbent as a solvent and Tryptamine as a reagent. Samples were analyzed by high-performance liquid chromatography with an ECUV detector using the NIOSH 5522 method of sampling and analysis. Also, fifty urine samples were collected from workers by using William′s biological analysis method. The concentration of MDI in all air samples was more than 88 µg/m³, showing a high concentration of the pollutant in the workplaces in comparison with the NIOSH standard, and all the worker′s urine was contaminated by MDA. The correlation and regression tests were used to obtain statistical model for MDI and MDA that is useful for prediction of diisocyanates pollution situation in the polyurethane factories.

  13. Mycoplasma hyorhinis markedly degrades β-amyloid peptides in vitro and ex vivo: a novel biological approach for treating Alzheimer’s disease?

    Science.gov (United States)

    Habib, Ahsan; Deng, Juan; Hou, Huayan; Zou, Qiang; Giunta, Brian; Wang, Yan-Jiang; Obregon, Demian; Sawmiller, Darrell; Li, Song; Mori, Takashi; Tan, Jun

    2013-01-01

    Accumulation of amyloid-β (Aβ) peptides (predominantly Aβ40, 42) and their aggregation into plaques in the brain are thought to be the one of the major causes of Alzheimer’s disease (AD). Originally discovered in our Chinese hamster ovary (CHO) cell line stably expressing human wild-type amyloid precursor protein (APP) (CHO/APPwt) cultures devoid of Aβ production, we found that Mycoplasma selectively degrades soluble Aβ in a time and dose (colony forming unit) dependent manner. Moreover, we fully characterized the Mycoplasma species as Mycoplasma hyorhinis (M. hyorhinis) by genetic and colony morphological analyses by light microscopy. Most interestingly, we attenuated the pathogenicity of M. hyorhinis by γ irradiation (3.5 Gy), and found that its ability to degrade Aβ was retained. On the other hand, heated and sonicated M. hyorhinis failed to retain this ability to degrade Aβ, suggesting that this degradation requires viable cells and likely a biologically active signaling pathway. In addition, we found that M. hyorhinis can degrade Aβ produced in AD model mice (PSAPP mice) ex vivo. Finally, we found that irradiated (non-pathogenic) M. hyorhinis also can degrade Aβ produced in PSAPP mice in vivo. These studies suggest that irradiated (non-pathogenic) M. hyorhinis can be a novel and alternative biological strategy for AD treatment. PMID:24093060

  14. Molecular application for identification of polycyclic aromatic hydrocarbons degrading bacteria (PAHD) species isolated from oil polluted soil in Dammam, Saud Arabia.

    Science.gov (United States)

    Ibrahim, Mohamed M; Al-Turki, Ameena; Al-Sewedi, Dona; Arif, Ibrahim A; El-Gaaly, Gehan A

    2015-09-01

    Soil contamination with petroleum hydrocarbon products such as diesel and engine oil is becoming one of the major environmental problems. This study describes hydrocarbons degrading bacteria (PHAD) isolated from long-standing petrol polluted soil from the eastern region, Dammam, Saudi Arabia. The isolated strains were firstly categorized by accessible shape detection, physiological and biochemistry tests. Thereafter, a technique established on the sequence analysis of a 16S rDNA gene was used. Isolation of DNA from the bacterial strains was performed, on which the PCR reaction was carried out. Strains were identified based on 16S rDNA sequence analysis, As follows amplified samples were spontaneously sequenced automatically and the attained results were matched to open databases. Among the isolated bacterial strains, S1 was identified as Staphylococcus aureus and strain S1 as Corynebacterium amycolatum. PMID:26288572

  15. Combined use of GIS and environmental indicators for assessment of chemical, physical and biological soil degradation in a Spanish Mediterranean region.

    Science.gov (United States)

    de Paz, José-Miguel; Sánchez, Juan; Visconti, Fernando

    2006-04-01

    Soil is one of the main non-renewable natural resources in the world. In the Valencian Community (Mediterranean coast of Spain), it is especially important because agriculture and forest biomass exploitation are two of the main economic activities in the region. More than 44% of the total area is under agriculture and 52% is forested. The frequently arid or semi-arid climate with rainfall concentrated in few events, usually in the autumn and spring, scarcity of vegetation cover, and eroded and shallow soils in several areas lead to soil degradation processes. These processes, mainly water erosion and salinization, can be intense in many locations within the Valencian Community. Evaluation of soil degradation on a regional scale is important because degradation is incompatible with sustainable development. Policy makers involved in land use planning require tools to evaluate soil degradation so they can go on to develop measures aimed at protecting and conserving soils. In this study, a methodology to evaluate physical, chemical and biological soil degradation in a GIS-based approach was developed for the Valencian Community on a 1/200,000 scale. The information used in this study was obtained from two different sources: (i) a soil survey with more than 850 soil profiles sampled within the Valencian Community, and (ii) the environmental information implemented in the Geo-scientific map of the Valencian Community digitised on an Arc/Info GIS. Maps of physical, chemical and biological soil degradation in the Valencian Community on a 1/200,000 scale were obtained using the methodology devised. These maps can be used to make a cost-effective evaluation of soil degradation on a regional scale. Around 29% of the area corresponding to the Valencian Community is affected by high to very high physical soil degradation, 36% by high to very high biological degradation, and 6% by high to very high chemical degradation. It is, therefore, necessary to draw up legislation and to

  16. Preparation and characterization of Nano-graphite/TiO2 composite photoelectrode for photoelectrocatalytic degradation of hazardous pollutant.

    Science.gov (United States)

    Li, Dong; Jia, Jialin; Zhang, Yuhang; Wang, Na; Guo, Xiaolei; Yu, Xiujuan

    2016-09-01

    Nano-graphite(Nano-G)/TiO2 composite photoelectrode was fabricated via sol-gel reaction, followed by the hot-press approach. The morphology, structure and light absorption capability of composite was characterized by various characterizations. The photoelectrochemical property and photoelectrocatalytic(PEC) activity of photoelectrode were also investigated. Results revealed that anatase TiO2 nanoparticles with an average diameter of 10nm were dispersed uniformly on the thickness of 2-3nm Nano-G, and TiOC bond was formed. The absorption edge of Nano-G/TiO2 photoelectrode was red-shifted towards low energy region and the enhanced visible light absorption was obtained. The charge transfer resistance of Nano-G/TiO2 photoelectrode was significantly decreased after the addition of Nano-G. And its transient photoinduced current was 10.5 times the value achieved using TiO2 electrode. Nano-G/TiO2 photoelectrode displayed greatly enhanced PEC activity of 99.2% towards the degradation of phenol, which was much higher than the 29.1% and 58.3% degradation seen on TiO2 and Nano-G electrode, respectively. The highly efficient and stable PEC activity of Nano-G/TiO2 photoelectrode was attributed to the synergy effect between photocatalysis and electrocatalysis, as well as enhanced light absorption ability and higher separation efficiency of photogenerated charge carriers. Moreover, contribution of series of reactive species to the PEC degradation of Nano-G/TiO2 photoelectrode was determined. PMID:27149660

  17. Preparation and characterization of Nano-graphite/TiO2 composite photoelectrode for photoelectrocatalytic degradation of hazardous pollutant.

    Science.gov (United States)

    Li, Dong; Jia, Jialin; Zhang, Yuhang; Wang, Na; Guo, Xiaolei; Yu, Xiujuan

    2016-09-01

    Nano-graphite(Nano-G)/TiO2 composite photoelectrode was fabricated via sol-gel reaction, followed by the hot-press approach. The morphology, structure and light absorption capability of composite was characterized by various characterizations. The photoelectrochemical property and photoelectrocatalytic(PEC) activity of photoelectrode were also investigated. Results revealed that anatase TiO2 nanoparticles with an average diameter of 10nm were dispersed uniformly on the thickness of 2-3nm Nano-G, and TiOC bond was formed. The absorption edge of Nano-G/TiO2 photoelectrode was red-shifted towards low energy region and the enhanced visible light absorption was obtained. The charge transfer resistance of Nano-G/TiO2 photoelectrode was significantly decreased after the addition of Nano-G. And its transient photoinduced current was 10.5 times the value achieved using TiO2 electrode. Nano-G/TiO2 photoelectrode displayed greatly enhanced PEC activity of 99.2% towards the degradation of phenol, which was much higher than the 29.1% and 58.3% degradation seen on TiO2 and Nano-G electrode, respectively. The highly efficient and stable PEC activity of Nano-G/TiO2 photoelectrode was attributed to the synergy effect between photocatalysis and electrocatalysis, as well as enhanced light absorption ability and higher separation efficiency of photogenerated charge carriers. Moreover, contribution of series of reactive species to the PEC degradation of Nano-G/TiO2 photoelectrode was determined.

  18. Secondary successions of biota in oil-polluted peat soil upon different biological remediation methods

    Science.gov (United States)

    Melekhina, E. N.; Markarova, M. Yu.; Shchemelinina, T. N.; Anchugova, E. M.; Kanev, V. A.

    2015-06-01

    The effects of different bioremediation methods on restoration of the oil-polluted peat soil (Histosol) in the northernmost taiga subzone of European Russia was studied. The population dynamics of microorganisms belonging to different trophic groups (hydrocarbon-oxidizing, ammonifying, nitrifying, and oligonitrophilic) were analyzed together with data on the soil enzyme (catalase and dehydrogenase) activities, population densities of soil microfauna groups, their structures, and states of phytocenoses during a sevenyear-long succession. The remediation with biopreparations Roder composed of oil-oxidizing microorganisms-Roder with Rhodococcus rubber and R. erythropolis and Universal with Rhodotorula glutinis and Rhodococcus sp.-was more efficient than the agrochemical and technical remediation. It was concluded that the biopreparations activate microbiological oil destruction, thereby accelerating restoration succession of phytocenosis and zoocenosis. The succession of dominant microfauna groups was observed: the dipteran larvae and Mesostigmata mites predominant at the early stages were replaced by collembolans at later stages. The pioneer oribatid mite species were Tectocepheus velatus, Oppiella nova, Liochthonius sellnicki, Oribatula tibialis, and Eupelops sp.

  19. Particulate air pollution and increased mortality: Biological plausibility for causal relationship

    International Nuclear Information System (INIS)

    Recently, a number of epidemiological studies have concluded that ambient particulate exposure is associated with increased mortality and morbidity at PM concentrations well below those previously thought to affect human health. These studies have been conducted in several different geographical locations and have involved a range of populations. While the consistency of the findings and the presence of an apparent concentration response relationship provide a strong argument for causality, epidemiological studies can only conclude this based upon inference from statistical associations. The biological plausibility of a causal relationship between low concentrations of PM and daily mortality and morbidity rates is neither intuitively obvious nor expected based on past experimental studies on the toxicity of inhaled particles. Chronic toxicity from inhaled, poorly soluble particles has been observed based on the slow accumulation of large lung burdens of particles, not on small daily fluctuations in PM levels. Acute toxicity from inhaled particles is associated mainly with acidic particles and is observed at much higher concentrations than those observed in the epidemiology studies reporting an association between PM concentrations and morbidity/mortality. To approach the difficult problem of determining if the association between PM concentrations and daily morbidity and mortality is biologically plausible and causal, one must consider (1) the chemical and physical characteristics of the particles in the inhaled atmospheres, (2) the characteristics of the morbidity/mortality observed and the people who are affected, and (3) potential mechanisms that might link the two

  20. Inhibitory Effects of Silver Nanoparticles on Removal of Organic Pollutants and Sulfate in an Anaerobic Biological Wastewater Treatment Process.

    Science.gov (United States)

    Rasool, Kashif; Lee, Dae Sung

    2016-05-01

    The increasing use of silver nanoparticles (AgNPs) in commercial products and industrial processes raises issues regarding the toxicity of sludge biomass in biological wastewater treatment plants, due to potential antimicrobial properties. This study investigated the effects of AgNPs on removal of organic pollutants and sulfate in an anaerobic biological sulfate reduction process. At AgNPs concentrations of up to 10 mg/L, no significant inhibition of sulfate and COD removal was observed. However, at higher concentrations (50-200 mg/L) sulfate and COD removal efficiencies were significantly decreased to 51.8% and 33.6%, respectively. Sulfate and COD reduction followed first-order kinetics at AgNPs concentrations of up to 10 mg/L and second-order kinetics at AgNPs concentrations of 50-200 mg/L. Lactate dehydrogenase release profiles showed increases in cytotoxicity at AgNPs concentrations greater than 50 mg/L suggesting cell membrane disruption. Analysis of extracellular polymeric substances (EPS) from sulfidogenic sludge biomass and of Fourier transform infrared (FT-IR) spectra showed a decrease in concentrations of carbohydrates, proteins, humic substances, and lipids in the presence of AgNPs. Moreover, the interaction of AgNPs with sludge biomass and the damage caused to cell walls were confirmed through scanning electron microscopy with energy dispersive X-ray spectroscopy. PMID:27483773

  1. Enviormental Pollution

    OpenAIRE

    Kanika Saini; Dr. Sona Malhotra

    2016-01-01

    Environment Pollution is one of the greatest problems today which is increasing with every passing year and causing crucial and severe damage to the earth. It has become a real problem since the beginning of the industrial revolution. It is the contamination of physical and biological components of the Earth / atmosphere system to such an extent that normal environmental processes are harmed. Pollution of the environment consists of five main types of pollution, namely air, water,...

  2. The design and realization of a large-area flexible nanofiber-based mat for pollutant degradation: an application in photocatalysis

    Science.gov (United States)

    Shang, Meng; Wang, Wenzhong; Sun, Songmei; Gao, Erping; Zhang, Zhijie; Zhang, Ling; O'Hayre, Ryan

    2013-05-01

    This work demonstrates a novel multifunctional nanofibrous mat for photocatalytic applications based on TiO2 nanocables functionalized by Ag nanoparticles and coated with a thin (~2 nm) graphitic shell. In this mat, which was realized by an electrospinning technique, each component serves a unique function: the carbon coating acts as both an adsorption material for capturing pollutants and as a charge-transfer material, the Ag nanoparticles act as a visible-light sensitizing agent and also as a charge-transfer material, finally the TiO2 nanocable mat acts as a UV sensitive photocatalytic matrix and as the flexible substrate for the other functional components. This multicomponent nanocable mat exhibits excellent photocatalytic activity under simulated solar irradiation for the degradation of model pollutants including RhB and phenol. The significant photocatalytic properties are attributed to the synergetic effect of the three functional components and the unique charge transport ``freeway'' property of the nanofibrous mat. In addition, the porous carbon coating infiltrated into the nanocable matrix endows the mat with excellent flexibility and enables robust, large-area (10 × 10 cm) fabrication, representing a significant advantage over previous brittle ceramic nanofibrous mat photocatalyst substrates. This study provides new insight into the design and preparation of an advanced, yet commercially practical and scaleable photocatalytic composite membrane material. The as-prepared photocatalytic mat might also be of interest in solar cell, catalysis, separation technology, biomedical engineering, and nanotechnology.

  3. Novel TiO2/C nanocomposites: synthesis, characterization, and application as a photocatalyst for the degradation of organic pollutants.

    Science.gov (United States)

    da Costa, Elias; Zamora, Patricio P; Zarbin, Aldo J G

    2012-02-15

    Novel TiO(2)/carbon nanocomposites were prepared through the pyrolysis of TiO(2)/poly(furfuryl alcohol) hybrid materials, which were obtained by the sol-gel method, starting from titanium tetraisopropoxide (TTIP) and furfuryl alcohol (FA) precursors. Six different TiO(2)/C samples were prepared based on different TiO(2) nanoparticle sizes and TiO(2)/FA ratios. All of the samples were characterized using X-ray diffraction, infrared, and Raman spectroscopy. The results indicated effective FA polymerization onto the TiO(2) (anatase) nanoparticles, polymer conversion to disordered carbon following the pyrolysis, and a simultaneous TiO(2) anatase-rutile phase transition. The resulting TiO(2)/carbon composites were used as photocatalysts in the advanced oxidative process (AOP) for the degradation of reactive organic dyes in aqueous solution. The results indicate excellent photocatalytic performance (degradation of 99% of the dye after 60 min) with several advantages over traditional TiO(2)-based photocatalysts. PMID:22056275

  4. Biological and chemical evaluation of sewage water pollution in the Rietvlei nature reserve wetland area, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Oberholster, P.J. [CSIR Natural Resources and the Environment, P.O. Box 395, Pretoria 0001 (South Africa)], E-mail: anna.oberholster@up.ac.za; Botha, A.-M. [Department of Genetics, University of Pretoria, Hillcrest, Pretoria ZA002 (South Africa); Cloete, T.E. [Department of Microbiology and Plant Pathology, University of Pretoria, Hillcrest, Pretoria ZA002 (South Africa)

    2008-11-15

    Macroinvertebrate communities in Rietvlei nature reserve wetland area and their relationship with water quality were studied with the aim to evaluate their use as potential indicators of pollution. Sampling locations were selected to include outlets from swage effluent, agricultural and informal residential runoff. A large increase in nutrient concentrations was observed downstream from discharged treated sewage with an associated decrease in species richness. Bioassays performed included: Daphnia magna, Hydra attenuate, Lactuca sativa, Allium cepa and Pyxicephalus adspersus. The highest percentage of lethality response to a screen (100% concentration) of sampled wetland water by test specimens were observed at the point source input of the Hartbeespoort treated sewage plant. Data generated from the AUSRIVAS method and multitrophic level bioassays revealed the deterioration of the wetland possibly due to factors such as increasing urbanization, industrialization, agriculture runoff and rapid human settlement in the Hennops River catchment area and its principal tributaries. - Bioassays confirmed the degradation of a freshwater wetland system due to effluent from a variety of sources.

  5. Biological and chemical evaluation of sewage water pollution in the Rietvlei nature reserve wetland area, South Africa

    International Nuclear Information System (INIS)

    Macroinvertebrate communities in Rietvlei nature reserve wetland area and their relationship with water quality were studied with the aim to evaluate their use as potential indicators of pollution. Sampling locations were selected to include outlets from swage effluent, agricultural and informal residential runoff. A large increase in nutrient concentrations was observed downstream from discharged treated sewage with an associated decrease in species richness. Bioassays performed included: Daphnia magna, Hydra attenuate, Lactuca sativa, Allium cepa and Pyxicephalus adspersus. The highest percentage of lethality response to a screen (100% concentration) of sampled wetland water by test specimens were observed at the point source input of the Hartbeespoort treated sewage plant. Data generated from the AUSRIVAS method and multitrophic level bioassays revealed the deterioration of the wetland possibly due to factors such as increasing urbanization, industrialization, agriculture runoff and rapid human settlement in the Hennops River catchment area and its principal tributaries. - Bioassays confirmed the degradation of a freshwater wetland system due to effluent from a variety of sources

  6. Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation

    Science.gov (United States)

    Zhu, Chaosheng; Zhang, Lu; Jiang, Bo; Zheng, Jingtang; Hu, Ping; Li, Sujuan; Wu, Mingbo; Wu, Wenting

    2016-07-01

    In this study, highly efficient visible-light-driven Ag3PO4/MoS2 composite photocatalysts with different weight ratios of MoS2 were prepared via the ethanol-water mixed solvents precipitation method and characterized by ICP, XRD, HRTEM, FE-SEM, BET, XPS, UV-vis DRS and PL analysis. Under visible-light irradiation, Ag3PO4/MoS2 composites exhibit excellent photocatalytic activity towards the degradation of organic pollutants in aqueous solution. The optimal composite with 0.648 wt% MoS2 content exhibits the highest photocatalytic activity, which can degrade almost all MB under visible-light irradiation within 60 min. Recycling experiments confirmed that the Ag3PO4/MoS2 catalysts had superior cycle performance and stability. The photocatalytic activity enhancement of Ag3PO4/MoS2 photocatalysts can be mainly ascribed to the efficient separation of photogenerated charge carriers and the stronger oxidation and reduction ability through a Z-scheme system composed of Ag3PO4, Ag and MoS2, in which Ag particles act as the charge separation center. The high photocatalytic stability is due to the successful inhibition of the photocorrosion of Ag3PO4 by transferring the photogenerated electrons of Ag3PO4 to MoS2. The evidence of the Z-scheme photocatalytic mechanism of the composite photocatalysts could be obtained from the active species trapping experiments and the photoluminescence technique.

  7. Synergetic Effect of Ultrasound, the Heterogeneous Fenton Reaction and Photocatalysis by TiO2 Loaded on Nickel Foam on the Degradation of Pollutants

    Directory of Open Access Journals (Sweden)

    Shan Qiu

    2016-06-01

    Full Text Available The synergistic effect of ultrasound, the heterogeneous Fenton reaction and photocatalysis was studied using a nickel foam (NF-supporting TiO2 system and rhodamine B (RhB as a target. The NF-supporting TiO2 system was prepared by depositing TiO2 on the skeleton of NF repeatedly and then calcining it. To optimize the conditions and parameters, the catalytic activity was tested in four systems (ultrasound alone (US, nickel foam (NF, US/NF and NF/US/H2O2. The optimal conditions were fixed at 0.1 g/mL NF, initial 5.00 mg/L RhB, 300 W ultrasonic power, pH = 3 and 5.00 mg/L H2O2. The effects of the dissolution of nickel from NF and quenching of the Fenton reaction were studied on degradation efficiency. When the heterogeneous Fenton reaction is combined with TiO2-photocatalysis, the pollutant removal efficiency is enhanced significantly. Through this synergistic effect, 22% and 80% acetochlor was degraded within 10 min and 80 min, respectively.

  8. Bi-functional Au/FeS (Au/Co{sub 3}O{sub 4}) composite for in situ SERS monitoring and degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Shuzhen; Cai, Qian; Lu, Kailing; Liao, Fan, E-mail: fliao@suda.edu.cn; Shao, Mingwang, E-mail: mwshao@suda.edu.cn [Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University (China)

    2016-01-15

    The bi-functional Au/FeS (Au/Co{sub 3}O{sub 4}) composite was fabricated by in situ reducing Au nanoparticles onto the surface of FeS (Co{sub 3}O{sub 4}). The as-prepared FeS possessed a multi-structure composed of plenty of nanoplates, which were coated by Au nanoparticles with an average size of ∼47.5 nm. While the Co{sub 3}O{sub 4} showed a thin hexagonal sheet containing Au nanoparticles on its surface with an average size of ∼79.0 nm. Both the as-prepared Au/FeS and Au/Co{sub 3}O{sub 4} composites exhibited excellent SERS performance, capable of enhancing the Raman signals of R6G molecules with the enhancement factor up to 1.81 × 10{sup 6} and 7.60 × 10{sup 4}, respectively. Moreover, Au/FeS (Au/Co{sub 3}O{sub 4}) composite also has been verified to have intrinsic peroxidase-like activity, which could decompose H{sub 2}O{sub 2} into hydroxyl radicals and then degrade organic pollutants into small molecules. Therefore, SERS can be used to real-time and in situ monitoring the degradation process of R6G molecules, employing the Au/FeS (Au/Co{sub 3}O{sub 4}) composite both as SERS substrate and catalyst. Graphical abstract: SERS was used to real-time and in situ monitoring the degradation of R6G, employing the Au/FeS and Au/Co{sub 3}O{sub 4} composites both as SERS substrates and catalysts.

  9. Assessment of biological effects of environmental pollution in Mersin Bay (Turkey, northeastern Mediterranean Sea) using Mullus barbatus and Liza ramada as target organisms.

    Science.gov (United States)

    Yılmaz, Doruk; Kalay, Mustafa; Dönmez, Erdem; Yılmaz, Nejat

    2016-01-01

    The increasing emphasis on the assessment and monitoring of marine ecosystems has revealed the need to use appropriate biological indicators for these areas. Enzyme activities and histopathology are increasingly being used as indicators of environmental stress since they provide a definite biological end-point of pollutant exposure. As part of an ecotoxicological assessment of Mersin Bay, EROD enzyme activity and histopathological response in selected organs and tissues of two species of fish, Mullus barbatus (red mullet) and Liza ramada (thinlip grey mullet), captured from area were examined. Pollutant (Organochlorines (OC), alkylphenols (APs) and BPA) levels and biomarker responses in tissue samples were evaluated together for their potential to alter the metabolism and cellular aspects in liver and gonad. Elevated induction of EROD activity and histopathological alterations in contaminated samples from Mersin Bay was observed compared to reference site indicating the exposure to potential pollutants. PMID:26552534

  10. Assessment of biological effects of environmental pollution in Mersin Bay (Turkey, northeastern Mediterranean Sea) using Mullus barbatus and Liza ramada as target organisms.

    Science.gov (United States)

    Yılmaz, Doruk; Kalay, Mustafa; Dönmez, Erdem; Yılmaz, Nejat

    2016-01-01

    The increasing emphasis on the assessment and monitoring of marine ecosystems has revealed the need to use appropriate biological indicators for these areas. Enzyme activities and histopathology are increasingly being used as indicators of environmental stress since they provide a definite biological end-point of pollutant exposure. As part of an ecotoxicological assessment of Mersin Bay, EROD enzyme activity and histopathological response in selected organs and tissues of two species of fish, Mullus barbatus (red mullet) and Liza ramada (thinlip grey mullet), captured from area were examined. Pollutant (Organochlorines (OC), alkylphenols (APs) and BPA) levels and biomarker responses in tissue samples were evaluated together for their potential to alter the metabolism and cellular aspects in liver and gonad. Elevated induction of EROD activity and histopathological alterations in contaminated samples from Mersin Bay was observed compared to reference site indicating the exposure to potential pollutants.

  11. Simultaneous determination of indoor ammonia pollution and its biological metabolite in the human body with a recyclable nanocrystalline lanthanide-functionalized MOF

    Science.gov (United States)

    Hao, Ji-Na; Yan, Bing

    2016-01-01

    A Eu3+ post-functionalized metal-organic framework of nanosized Ga(OH)bpydc(Eu3+@Ga(OH)bpydc, 1a) with intense luminescence is synthesized and characterized. Luminescence measurements reveal that 1a can detect ammonia gas selectively and sensitively among various indoor air pollutants. 1a can simultaneously determine a biological ammonia metabolite (urinary urea) in the human body, which is a rare example of a luminescent sensor that can monitor pollutants in the environment and also detect their biological markers. Furthermore, 1a exhibits appealing features including high selectivity and sensitivity, fast response, simple and quick regeneration, and excellent recyclability.A Eu3+ post-functionalized metal-organic framework of nanosized Ga(OH)bpydc(Eu3+@Ga(OH)bpydc, 1a) with intense luminescence is synthesized and characterized. Luminescence measurements reveal that 1a can detect ammonia gas selectively and sensitively among various indoor air pollutants. 1a can simultaneously determine a biological ammonia metabolite (urinary urea) in the human body, which is a rare example of a luminescent sensor that can monitor pollutants in the environment and also detect their biological markers. Furthermore, 1a exhibits appealing features including high selectivity and sensitivity, fast response, simple and quick regeneration, and excellent recyclability. Electronic supplementary information (ESI) available: Experimental section; XPS spectra; N2 adsorption-desorption isotherms; ICP data; SEM image; PXRD patterns and other luminescence data. See DOI: 10.1039/c5nr06066d

  12. Synthesize of Graphene-Tin Oxide Nanocomposite and Its Photocatalytic Properties for the Degradation of Organic Pollutants Under Visible Light.

    Science.gov (United States)

    Shanmugam, M; Jayavel, R

    2015-09-01

    Graphene-tinoxide nanocomposite has been synthesised by coating SnO2 nanoparticles on graphene sheets by the redox reaction between graphene oxide (GO) and tin chloride. Graphene oxide was reduced to graphene and Sn2+ was oxidized to SnO2 during the redox reaction, resulting in the uniform distribution of SnO2 nanoparticles on graphene sheets. The synthesised material was characterized by XRD, SEM, AFM, FT-IR, UV-vis, TGA and Raman spectroscopic studies. SEM and AFM studies reveal the formation of wrinkled paper like structure of graphene sheets with uniform coating of SnO2 nanoparticles on either side. The strong photocatalytic degradation of Methylene orange (MO) dye was analysed using G-SnO2 nanocomposite under the visible light irradiation. PMID:26716310

  13. Biological transport of persistent organic pollutants (POPs) to Lake Ellasjoeen, Bjoernoeya (Bear Island), Norway

    Energy Technology Data Exchange (ETDEWEB)

    Evenset, A.; Christensen, G. [Akvaplan-niva, Tromso (Norway); Kallenborn, R. [Norwegian Inst. for Air Research, Kjeller (Norway); Herzke, D. [Norwegian Inst. for Air Research, Tromso (Norway)

    2004-09-15

    During recent years, multidisciplinary studies have been carried out on Bjoernoeya (Bear Island, Norway), elucidating the fate and the presence of persistent organic pollutants (POPs) in this pristine Arctic environment. High concentrations of POPs, like polychlorinated biphenyls (PCBs), dichloro-diphenyl-dichlorethane (DDE) and polybrominated diphenyl ethers (PBDEs) have been measured in sediment and biota from Ellasjoeen, a lake located in the southern, mountainous part of Bjoernoeya. In Lake Oeyangen, located only 6 km north of Ellasjoeen on the central plains of the island, levels of POPs are several times lower than in Ellasjoeen. One reason for the different POP contamination levels in Ellasjoeen and Oeyangen is probably differences in precipitation regime between the southern mountainous part of the island and the central plains further north, leading to differences in the deposition of air transported contaminants. Another possible source for contaminants to Ellasjoeen is the large colonies of seabirds (mainly kittiwake (Rissa tridactyla), little auk (Alle alle) and glaucous gull (Larus hyperboreus)), which are situated close to the lake during the ice-free period (early June - October). These seabirds feed in the marine environment, and deposit large amounts of guano (excrements) directly into the lake or in the catchment area of the lake. Oeyangen is not influenced by seabirds. There are two ways in which input from seabirds can lead to higher levels of POPs in Ellasjoeen: direct input of POPs through allochthonous material (guano, bird remains) a change in trophic state of the lake as a result of nutrient loadings from the seabirds. The aim of the present study was to investigate the role of guano as a transport medium for POPs to Ellasjoeen. Two main approaches were followed: an investigation of the trophic status of Ellasjoeen, as well as the reference lake, Oeyangen, through analyses of stable isotopes of carbon and nitrogen, analyses of selected

  14. Multivariate analysis of respiratory problems and their connection with meteorological parameters and the main biological and chemical air pollutants

    Science.gov (United States)

    Matyasovszky, István; Makra, László; Bálint, Beatrix; Guba, Zoltán; Sümeghy, Zoltán

    2011-08-01

    The aim of the study is to analyse the joint effect of biological (pollen) and chemical air pollutants, as well as meteorological variables, on the hospital admissions of respiratory problems for the Szeged region in Southern Hungary. The data set used covers a nine-year period (1999-2007) and is unique in the sense that it includes—besides the daily number of respiratory hospital admissions—not just the hourly mean concentrations of CO, PM 10, NO, NO 2, O 3 and SO 2 with meteorological variables (temperature, global solar flux, relative humidity, air pressure and wind speed), but two pollen variables ( Ambrosia and total pollen excluding Ambrosia) as well. The analysis was performed using three age categories for the pollen season of Ambrosia and the pollen-free season. Meteorological elements and air pollutants are clustered in order to define optimum environmental conditions of high patient numbers. ANOVA was then used to determine whether cluster-related mean patient numbers differ significantly. Furthermore, two novel procedures are applied here: factor analysis including a special transformation and a time-varying multivariate linear regression that makes it possible to determine the rank of importance of the influencing variables in respiratory hospital admissions, and also compute the relative importance of the parameters affecting respiratory disorders. Both techniques revealed that Ambrosia pollen is an important variable that influences hospital admissions (an increase of 10 pollen grains m -3 can imply an increase of around 24% in patient numbers). The role of chemical and meteorological parameters is also significant, but their weights vary according to the seasons and the methods. Clearer results are obtained for the pollination season of Ambrosia. Here, a 10 μg m -3 increase in O 3 implies a patient number response from -17% to +11%. Wind speed is a surprisingly important variable, where a 1 m s -1 rise may result in a hospital admission

  15. Degradation of synthetic pollutants in real wastewater using laccase encapsulated in core-shell magnetic copper alginate beads.

    Science.gov (United States)

    Le, Thao Thanh; Murugesan, Kumarasamy; Lee, Chung-Seop; Vu, Chi Huong; Chang, Yoon-Seok; Jeon, Jong-Rok

    2016-09-01

    Immobilization of laccase has been highlighted to enhance their stability and reusability in bioremediation. In this study, we provide a novel immobilization technique that is very suitable to real wastewater treatment. A perfect core-shell system composing copper alginate for the immobilization of laccase (Lac-beads) was produced. Additionally, nFe2O3 was incorporated for the bead recycling through magnetic force. The beads were proven to immobilize 85.5% of total laccase treated and also to be structurally stable in water, acetate buffer, and real wastewater. To test the Lac-beads reactivity, triclosan (TCS) and Remazol Brilliant Blue R (RBBR) were employed. The Lac-beads showed a high percentage of TCS removal (89.6%) after 8h and RBBR decolonization at a range from 54.2% to 75.8% after 4h. Remarkably, the pollutants removal efficacy of the Lac-beads was significantly maintained in real wastewater with the bead recyclability, whereas that of the corresponding free laccase was severely deteriorated. PMID:27240236

  16. Nitrogen-Doped TiO2 Photocatalyst Prepared by Mechanochemical Method: Doping Mechanisms and Visible Photoactivity of Pollutant Degradation

    Directory of Open Access Journals (Sweden)

    Yu-Chao Tang

    2012-01-01

    Full Text Available Nitrogen-doped TiO2 (N/TiO2 photocatalysts were prepared using a mechanochemical method with raw amorphous TiO2 as precursors and various nitrogenous compounds doses (NH4F, NH4HCO3, NH3·H2O, NH4COOCH3, and CH4N2O. The photocatalysts were characterized by X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, thermal gravimetric-differential thermal analysis (TG-DTA, and UV-Vis diffuse reflection spectra (UV-Vis-DRS. Their photocatalytic activities were evaluated with the degradation of p-nitrophenol and methyl orange under UV or sunlight irradiation. The catalysts had a strong visible light absorption which correspond to doped nitrogen and consequent oxygen deficient. The results of photocatalytic activity showed the visible light adsorption mechanisms, as the doped nitrogen species gave rise to a mid-gap level slightly above the top of the (O-2p valence band, but not from the mixed band gap of the N-2p and O-2p electronic levels.

  17. Influence of some sol-gel synthesis parameters of mesoporous TiO2 on photocatalytic degradation of pollutants

    Directory of Open Access Journals (Sweden)

    Golubović Aleksandar

    2016-01-01

    Full Text Available The titanium dioxide (TiO2 nanopowders were produced by sol-gel technique from tetrabutyl titanate as a precursor by varying some parameters of the sol-gel synthesis like the temperature (500 and 550 °C and the duration of the calcination (1.5, 2, and 2.5 h. X-ray powder diffraction (XRPD results have shown that all synthesized nanopowders are dominantly in anatase phase, with the presence of a small amount of rutile in samples calcined at 550 °C. According to the results obtained by Williamson-Hall method, the anatase crystallite size was increased with the duration of the calcination (from 24 to 29 nm in samples calcined at lower, and from 30 to 35 nm in samples calcined at higher temperature. The analysis of the shift and linewidth of the most intensive anatase Eg Raman mode confirmed the XRPD results. The analysis of pore structure from nitrogen sorption experimental data described all samples as mesoporous, with mean pore diameters in the range of 5-8 nm. Nanopowder properties have been related to the photocatalytic activity, tested in degradation of the textile dye (C.I. Reactive Orange 16, carbofuran and phenol. [Projekat Ministarstva nauke Republike Srbije, br. III45018 i br. ON171032

  18. Investigation of the soluble metals in tissue as biological response pattern to environmental pollutants (Gammarus fossarum example).

    Science.gov (United States)

    Filipović Marijić, Vlatka; Dragun, Zrinka; Sertić Perić, Mirela; Matoničkin Kepčija, Renata; Gulin, Vesna; Velki, Mirna; Ečimović, Sandra; Hackenberger, Branimir K; Erk, Marijana

    2016-07-01

    In the present study, Gammarus fossarum was used to investigate the bioaccumulation and toxic effects of aquatic pollutants in the real environmental conditions. The novelty of the study is the evaluation of soluble tissue metal concentrations in gammarids as indicators in early assessment of metal exposure. In the Sutla River, industrially/rurally/agriculturally influenced catchment in North-Western Croatia, physico-chemical water properties pointed to disturbed ecological status, which was reflected on population scale as more than 50 times lower gammarid density compared to the reference location, Črnomerec Stream. Significantly higher levels of soluble toxic metals (Al, As, Cd, Pb, Sb, Sn, Sr) were observed in gammarids from the Sutla River compared to the reference site and reflected the data on higher total dissolved metal levels in the river water at that site. The soluble metal estimates were supplemented with the common multibiomarker approach, which showed significant biological responses for decreased acetylcholinesterase activity and increased total soluble protein concentrations, confirming stressed environmental conditions for biota in the Sutla River. Biomarker of metal exposure, metallothionein, was not induced and therefore, toxic effect of metals was not confirmed on molecular level. Comparable between-site pattern of soluble toxic metals in gammarids and total dissolved metal levels in water suggests that prior to biomarker response and observed toxic impact, soluble metals in tissue might be used as early warning signs of metal impact in the aquatic environment and improve the assessment of water quality. PMID:27060638

  19. Potentiality of Eisenia fetida to degrade disposable paper cups-an ecofriendly solution to solid waste pollution.

    Science.gov (United States)

    Arumugam, Karthika; Ganesan, Seethadevi; Muthunarayanan, Vasanthy; Vivek, Swabna; Sugumar, Susila; Munusamy, Vivekanadhan

    2015-02-01

    The aim of the present study was to subject the post-consumer waste, namely paper cups for vermicomposting along with cow dung in three different ratios for a period of 90-140 days employing Eisenia fetida. The post-consumer wastes are a menace in many developing countries including India. This waste was provided as feed for earthworms and was converted to vermicompost. Vermicompost prepared with paper cup waste was analyzed for their physicochemical properties. Based on the physicochemical properties, it was evident that the best manure is obtained from type A (paper cup/cow dung in the ratio 1:1) than type B (paper cup/cow dung in the ratio 1.5:0.5) and type C (paper cup/cow dung in the ratio 0.5:1.5). The results showed that earthworms accelerated the rate of mineralization and converted the wastes into compost with needed elements which could support the growth of crop plants. The predominant bacterial strains in the vermicompost were characterized biochemically as well as by 16S ribosomal RNA (rRNA) gene sequencing. The bacterial strains like Bacillus anthracis (KM289159), Bacillus endophyticus (KM289167), Bacillus funiculus (KM289165), Virigibacillius chiquenigi (KM289163), Bacillus thuringiensis (KM289164), Bacillus cereus (KM289160), Bacillus toyonensis (KM289161), Acinetobacter baumanni (KM289162), and Lactobacillus pantheries (KM289166) were isolated and identified from the final compost. The total protein content of E. fetida involved in vermicomposting was extracted, and the banding pattern was analyzed. During final stages of vermicomposting, it was observed that the earthworm did not act on the plastic material coated inside the paper cups and stagnated it around the rim of the tub. Further, the degradation of paper cup waste was confirmed by Fourier transform infrared spectroscopy analysis. Hence, vermicomposting was found to be an effective technology for the conversion of the paper cup waste material into a nutrient-rich manure, a value

  20. In vivo degradation behavior and biological activity of some new Mg-Ca alloys with concentration's gradient of Si for bone grafts

    Science.gov (United States)

    Trincă, Lucia Carmen; Fântânariu, Mircea; Solcan, Carmen; Trofin, Alina Elena; Burtan, Liviu; Acatrinei, Dumitru Mihai; Stanciu, Sergiu; Istrate, Bogdan; Munteanu, Corneliu

    2015-10-01

    Magnesium based alloys, especially Mg-Ca alloys, are biocompatible substrates with mechanical properties similar to those of bones. The biodegradable alloys of Mg-Ca provide sufficient mechanical strength in load carrying applications as opposed to biopolymers and also they avoid stress shielding and secondary surgery inherent with permanent metallic implant materials. The main issue facing a biodegradable Mg-Ca alloy is the fast degradation in the aggressive physiological environment of the body. The alloy's corrosion is proportional with the dissolution of the Mg in the body: the reaction with the water generates magnesium hydroxide and hydrogen. The accelerated corrosion will lead to early loss of the alloy's mechanical integrity. The degradation rate of an alloy can be improved mainly through tailoring the composition and by carrying out surface treatments. This research focuses on the ability to adjust degradation rate of Mg-Ca alloys by an original method and studies the biological activity of the resulted specimens. A new Mg-Ca alloy, with a Si gradient concentration from the surface to the interior of the material, was obtained. The surface morphology was investigated using scanning electron microscopy (VegaTescan LMH II, SE detector, 30 kV), X-ray diffraction (X'Pert equipment) and energy dispersive X-ray (Bruker EDS equipment). In vivo degradation behavior, biological compatibility and activity of Mg-Ca alloys with/without Si gradient concentration were studied with an implant model (subcutaneous and bony) in rats. The organism response to implants was characterized by using radiological (plain X-rays and computed tomography), biochemical and histological methods of investigation. The results sustained that Si gradient concentration can be used to control the rate of degradation of the Mg-Ca alloys for enhancing their biologic activity in order to facilitate bone tissue repair.

  1. Metal-free catalysis of persulfate activation and organic-pollutant degradation by nitrogen-doped graphene and aminated graphene.

    Science.gov (United States)

    Chen, Hao; Carroll, Kenneth C

    2016-08-01

    We evaluated three types of functionalized, graphene-based materials for activating persulfate (PS) and removing (i.e., sorption and oxidation) sulfamethoxazole (SMX) as a model emerging contaminant. Although advanced oxidative water treatment requires PS activation, activation requires energy or chemical inputs, and toxic substances are contained in many catalysts. Graphene-based materials were examined herein as an alternative to metal-based catalysts. Results show that nitrogen-doped graphene (N-GP) and aminated graphene (NH2-GP) can effectively activate PS. Overall, PS activation by graphene oxide was not observed in this study. N-GP (50 mg L(-1)) can rapidly activate PS (1 mM) to remove >99.9% SMX within 3 h, and NH2-GP (50 mg L(-1)) activated PS (1 mM) can also remove 50% SMX within 10 h. SMX sorption and total removal was greater for N-GP, which suggests oxidation was enhanced by increasing proximity to PS activation sites. Increasing pH enhanced the N-GP catalytic ability, and >99.9% SMX removal time decreased from 3 h to 1 h when pH increased from 3 to 9. However, the PS catalytic ability was inhibited at pH 9 for NH2-GP. Increases in ionic strength (100 mM NaCl or Na2SO4) and addition of radical scavengers (500 mM ethanol) both had negligible impacts on SMX removal. With bicarbonate addition (100 mM), while the catalytic ability of N-GP remained unaltered, NH2-GP catalytic ability was inhibited completely. Humic acid (250 mg L(-1)) was partially effective in inhibiting SMX removal in both N-GP and NH2-GP systems. These results have implications for elucidating oxidant catalysis mechanisms, and they quantify the ability of functionalization of graphene with hetero-atom doping to effectively catalyze PS for water treatment of organic pollutants including emerging contaminants. PMID:27179328

  2. Solar Hydrogen Production Coupled with the Degradation of a Dye Pollutant Using TiO2 Modified with Platinum and Nafion

    Directory of Open Access Journals (Sweden)

    Jungwon Kim

    2014-01-01

    Full Text Available The simultaneous production of molecular hydrogen (H2 and degradation of rhodamine B (RhB was successfully achieved using TiO2 modified with platinum and nafion (Pt/TiO2/Nf under visible light (λ>420 nm. Pt/TiO2/Nf exhibited high activity for H2 production in the presence of RhB and EDTA as a photosensitizer (also an organic dye pollutant and an electron donor, respectively. However, the activity of TiO2 modified with either platinum or nafion for H2 production was negligible under the same experimental conditions. The negatively charged nafion layer enhances the adsorption of cationic RhB and pulls protons, a source of hydrogen, to the surface of TiO2 through electrostatic attraction. On the other hand, platinum deposits on TiO2 can act as an electron sink and a temporary electron reservoir for the reduction of protons. With the production of H2, RhB was gradually degraded through N-deethylation, which was confirmed by the spectral blue shift of the maximum absorption wavelength (λmax from 556 to 499 nm (corresponding to the λmax of rhodamine 110. With Pt/TiO2/Nf employed at [RhB]=20 μM (0.6 μmol, approximately 70 μmol of H2 was produced and RhB and its intermediates were completely removed over a 12 h period. A detailed reaction mechanism was discussed.

  3. Posibilities of bioconversion for removing of oil pollution

    OpenAIRE

    Hejretová, Edita

    2011-01-01

    Oil pollution is a world-wide prevalent threat to the environment and the remediation of oil contaminated soils and water is a major challenge for environmental research. Bioremediation is an useful method for soil remediation, if pollutant concentrations are moderate and non-biological techniques are not economical. The aim of this study was to investigate if earthworms or aerated extract from vermicompost – aerated compost tea (ACT) can enhance the microbial degradation of petroleum hyd...

  4. Enhanced Biological Trace Organic Contaminant Removal: A Lab-Scale Demonstration with Bisphenol A-Degrading Bacteria Sphingobium sp. BiD32.

    Science.gov (United States)

    Zhou, Nicolette A; Gough, Heidi L

    2016-08-01

    Discharge of trace organic contaminants (TOrCs) from wastewater treatment plants (WWTPs) may contribute to deleterious effects on aquatic life. Release to the environment occurs both through WWTP effluent discharge and runoff following land applications of biosolids. This study introduces Enhanced Biological TOrC Removal (EBTCR), which involves continuous bioaugmentation of TOrC-degrading bacteria for improved removal in WWTPs. Influence of bioaugmentation on enhanced degradation was investigated in two lab-scale sequencing batch reactors (SBRs), using bisphenol A (BPA) as the TOrC. The reactors were operated with 8 cycles per day and at two solids retention times (SRTs). Once each day, the test reactor was bioaugmented with Sphingobium sp. BiD32, a documented BPA-degrading culture. After bioaugmentation, BPA degradation (including both the dissolved and sorbed fractions) was 2-4 times higher in the test reactor than in a control reactor. Improved removal persisted for >5 cycles following bioaugmentation. By the last cycle of the day, enhanced BPA removal was lost, although it returned with the next bioaugmentation. A net loss of Sphingobium sp. BiD32 was observed in the reactors, supporting the original hypothesis that continuous bioaugmentation (rather than single-dose bioaugmentation) would be required to improve TOrCs removal during wastewater treatment. This study represents a first demonstration of a biologically based approach for enhanced TOrCs removal that both reduces concentrations in wastewater effluent and prevents transfer to biosolids. PMID:27338240

  5. Microbially influenced degradation of concrete structures

    Science.gov (United States)

    Rogers, Robert D.; Hamilton, Melinda A.; Nelson, Lee O.

    1998-03-01

    Steel reinforced concrete is the most widely used construction material in the world. The economic costs of repair or replacement of environmentally damaged concrete structures is astronomical. For example, half of the concrete bridges in the Federal Department of Transportation highway system are in need of major repairs. Microbially influenced degradation of concrete (MID) is one of the recognized degradative processes known to adversely affect concrete integrity. It is not possible to assign a specific percent of effect to any of these processes. However, MID has been shown to be as aggressive as any of the physical/chemical phenomena. In addition, the possibility exists that there is a synergism which results in cumulative effects from all the processes. Three groups of bacteria are known to promote MID. Of these, sulfur-oxidizing bacteria (SOB) are the most aggressive. Much is known about the nutritional needs of these bacteria. However, there has not been a biological linkage established between the presence of environmental, polluting sulfur sources and the degradation of concrete structures. It has been shown that the environmental pollutants sulfur dioxide and sulfite can be utilized by active SOB for the biological production of sulfuric acid. Therefore, it is not a reach of reality to assume that SOB exposed to these pollutants could have a major impact on the degradation of concrete structures. But, until the environment sulfur loop is closed it will not be possible to calculate how important SOB activity is in initiating and promoting damage.

  6. A comprehensive review of the process on hexachlorobenzene degradation

    Directory of Open Access Journals (Sweden)

    Ji Xiyan

    2015-01-01

    Full Text Available This paper describes the chemical, physical property of the pollution source along with its perniciousness. In addition, with the recent treatment or degradation of the hexachlorobenzene (HCB, it talks about the research developments on the HCB. Of the many options available for treatment of municipal and industrial HCB pollution, the anaerobic biological treatment process is unique because of its potential for producing usable energy. It focuses on the biodegradation pathway which is intent to finish the steps of dechlorination. Moreover, the future study on the HCB degradation is prospected in this paper from the author’s angle.

  7. Degradation of a textile reactive azo dye by a combined biological-photocatalytic process: Candida tropicalis Jks2 -Tio2/Uv

    Directory of Open Access Journals (Sweden)

    Narjes Jafari

    2012-12-01

    Full Text Available In the present study, the decolorization and degradation of Reactive Black 5 (RB5 azo dye was investigated by biological, photocatalytic (UV/TiO2 and combined processes.Application of Candida tropicalis JKS2 in treatment of the synthetic medium containing RB5 indicated complete decolorization of the dye with 200 mg/L in less than 24 h. Degradation ofthe aromatic rings, resulting from the destruction of the dye, did not occur during the biological treatment. Mineralization of 50 mg/L RB5 solution was obtained after 80 min by photocatalytic process (in presence of 0.2 g/L TiO2. COD (chemical oxygen demand wasnot detectable after complete decolorization of 50 mg/L RB5 solution. However,photocatalytic process was not effective in the removal of the dye at high concentrations (≥200 mg/L. With 200 mg/L concentration, 74.9% of decolorization was achieved after 4 hillumination under photocatalytic process and the absorbance peak in UV region (attributed to aromatic rings was not completely removed. A two-step treatment process, namely,biological treatment by yeast followed by photocatalytic degradation, was also assessed. In the combined process (with 200 mg/L RB5, absorbance peak in UV region significantly disappeared after 2 h illumination and about 60 % COD removal was achieved in the biological step. It is suggested that the combined process is more effective than the biological and photocatalytic treatments in the remediation of aromatic rings.

  8. Degradation of a textile reactive azo dye by a combined biological-photocatalytic process: Candida tropicalis Jks2 -Tio2/Uv

    Directory of Open Access Journals (Sweden)

    Jafari Narjes

    2012-12-01

    Full Text Available Abstract In the present study, the decolorization and degradation of Reactive Black 5 (RB5 azo dye was investigated by biological, photocatalytic (UV/TiO2 and combined processes. Application of Candida tropicalis JKS2 in treatment of the synthetic medium containing RB5 indicated complete decolorization of the dye with 200 mg/L in less than 24 h. Degradation of the aromatic rings, resulting from the destruction of the dye, did not occur during the biological treatment. Mineralization of 50 mg/L RB5 solution was obtained after 80 min by photocatalytic process (in presence of 0.2 g/L TiO2. COD (chemical oxygen demand was not detectable after complete decolorization of 50 mg/L RB5 solution. However, photocatalytic process was not effective in the removal of the dye at high concentrations (≥200 mg/L. With 200 mg/L concentration, 74.9% of decolorization was achieved after 4 h illumination under photocatalytic process and the absorbance peak in UV region (attributed to aromatic rings was not completely removed. A two-step treatment process, namely, biological treatment by yeast followed by photocatalytic degradation, was also assessed. In the combined process (with 200 mg/L RB5, absorbance peak in UV region significantly disappeared after 2 h illumination and about 60% COD removal was achieved in the biological step. It is suggested that the combined process is more effective than the biological and photocatalytic treatments in the remediation of aromatic rings.

  9. Degradation of a textile reactive azo dye by a combined biological-photocatalytic process: Candida tropicalis Jks2 -Tio2/Uv

    Science.gov (United States)

    2012-01-01

    In the present study, the decolorization and degradation of Reactive Black 5 (RB5) azo dye was investigated by biological, photocatalytic (UV/TiO2) and combined processes. Application of Candida tropicalis JKS2 in treatment of the synthetic medium containing RB5 indicated complete decolorization of the dye with 200 mg/L in less than 24 h. Degradation of the aromatic rings, resulting from the destruction of the dye, did not occur during the biological treatment. Mineralization of 50 mg/L RB5 solution was obtained after 80 min by photocatalytic process (in presence of 0.2 g/L TiO2). COD (chemical oxygen demand) was not detectable after complete decolorization of 50 mg/L RB5 solution. However, photocatalytic process was not effective in the removal of the dye at high concentrations (≥200 mg/L). With 200 mg/L concentration, 74.9% of decolorization was achieved after 4 h illumination under photocatalytic process and the absorbance peak in UV region (attributed to aromatic rings) was not completely removed. A two-step treatment process, namely, biological treatment by yeast followed by photocatalytic degradation, was also assessed. In the combined process (with 200 mg/L RB5), absorbance peak in UV region significantly disappeared after 2 h illumination and about 60% COD removal was achieved in the biological step. It is suggested that the combined process is more effective than the biological and photocatalytic treatments in the remediation of aromatic rings. PMID:23369285

  10. Application of biological markers for the identification of oil-type pollutants in recent sediments: Alluvial formation of the Danube river, Oil refinery Pančevo

    Directory of Open Access Journals (Sweden)

    Rašović Aleksandar S.

    2002-01-01

    Full Text Available The purpose of this paper was to examine to which extent the abundance and distribution of certain biological markers may be used for the identification of oil-type pollutants in recent sediments and ground waters. The samples were taken from the area of the Oil Refinery Pančevo (alluvial formation of the Danube River. The organic matter of the investigated samples was isolated using an extraction method with chloroform. The group composition and usual biological markers were analyzed in the obtained extracts. n-Alkanes and acyclic isoprenoids, pristane and phytane were analyzed using gas chromatographie (GC analysis of saturated hydrocarbons. Polycyclic alkanes of the sterane and terpane type were analyzed using gas chromatography-mass spectrometry (GC-MS, i.e. by analyzing the carbamide non-adduct of the total alkane fraction (Single Ion Monitoring SIM-technique. The obtained results indicate that n-alkanes can be used for the identification of oil-type pollutants (for example, if the oil-pollutant is biodegraded or present in very low concentrations, and steranes and triterpanes can be used as very reliable indicators of oil-type pollution in recent sediments and ground waters.

  11. Influence of chemical and biological factors on trophic transfer of persistent organic pollutants in the northwater polynya marine food web.

    Science.gov (United States)

    Fisk, A T; Hobson, K A; Norstrom, R J

    2001-02-15

    Persistent organic pollutants (POPs) and stable isotopes of nitrogen (delta 15N) were measured in zooplankton (6 species), a benthic invertebrate (Anonyx nugax), Arctic cod (Boreogadus saida), seabirds (6 species), and ringed seals (Phoca hispida) collected in 1998 in the Northwater Polynya to examine effects of biological and chemical factors on trophic transfer of POPs in an Arctic marine food web. Strong positive relationships were found between recalcitrant POP concentrations (lipid corrected) and trophic level based on stable isotopes of nitrogen, providing clear evidence of POP biomagnification in Arctic marine food webs. Food web magnification factors (FWMFs), derived from the slope of the POP--trophic level relationship, provided an overall magnification factor for the food web but over and underestimated biomagnification factors (BMFs) based on predator--prey concentrations in poikilotherms (fish) and homeotherms (seabirds and mammals), respectively. Greater biomagnification in homeotherms was attributed to their greater energy requirement and subsequent feeding rates. Within the homeotherms, seabirds had greater BMFs than ringed seals, consistent with greater energy demands in birds. Scavenging from marine mammal carcasses and accumulation in more contaminated winter habitats were considered important variables in seabird BMFs. Metabolic differences between species resulted in lower than expected BMFs, which would not be recognized in whole food web trophic level--POP relationships. The use of sigma POP groups, such as sigma PCB, is problematic because FWMFs and BMFs varied considerably between individual POPs. FWMFs of recalcitrant POPs had a strong positive relationship with log octanol--water partition coefficient (Kow). Results of this study show the utility of using delta 15N to characterize trophic level and trophic transfer of POPs but highlight the effects of species and chemical differences on trophic transfer of POPs that can be overlooked when

  12. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling

    International Nuclear Information System (INIS)

    Triclocarban and triclosan are two antimicrobial agents widely used in many personal care products. Their biodegradation behaviour in soil was investigated by laboratory degradation experiments and environmental fate modelling. Quantitative structure-activity relationship (QSAR) analyses showed that triclocarban and triclosan had a tendency to partition into soil or sediment in the environment. Fate modelling suggests that either triclocarban or triclosan 'does not degrade fast' with its primary biodegradation half-life of 'weeks' and ultimate biodegradation half-life of 'months'. Laboratory experiments showed that triclocarban and triclosan were degraded in the aerobic soil with half-life of 108 days and 18 days, respectively. No negative effect of these two antimicrobial agents on soil microbial activity was observed in the aerobic soil samples during the experiments. But these two compounds persisted in the anaerobic soil within 70 days of the experimental period. - Triclocarban and triclosan can be degraded by microbial processes in aerobic soil, but will persist in anaerobic soil

  13. A Effect of Biological Pollution on Food Safety%生物性污染对食品安全的影响

    Institute of Scientific and Technical Information of China (English)

    孙若玉; 任亚妮; 张斌

    2015-01-01

    生物性污染是威胁食品安全和人们身心健康的重要因素之一,主要包括细菌性污染、病毒性污染、真菌和真菌毒素污染、水产中的生物毒素、寄生虫与害虫污染几个方面。通过对食品生物性污染来源分析,提出相应的预防措施,为有效保证食品安全工作提供依据。%The biological pollution was one of the important factors that threaten food safety and people's physical and mental health,which including bacterial pollution, viral contamination, fungal and mycotoxin contamination, biological toxin in aquaculture, parasites and pests and so on. Through the analysis of the biological pollution, We put forward the corresponding prevention measures, provide the basis for effective guarantee food safety work.

  14. 生物性污染对食品安全的影响%A Effect of Biological Pollution on Food Safety

    Institute of Scientific and Technical Information of China (English)

    孙若玉; 任亚妮; 张斌

    2015-01-01

    The biological pollution was one of the important factors that threaten food safety and people's physical and mental health,which including bacterial pollution, viral contamination, fungal and mycotoxin contamination, biological toxin in aquaculture, parasites and pests and so on. Through the analysis of the biological pollution, We put forward the corresponding prevention measures, provide the basis for effective guarantee food safety work.%生物性污染是威胁食品安全和人们身心健康的重要因素之一,主要包括细菌性污染、病毒性污染、真菌和真菌毒素污染、水产中的生物毒素、寄生虫与害虫污染几个方面。通过对食品生物性污染来源分析,提出相应的预防措施,为有效保证食品安全工作提供依据。

  15. Assessment of full-scale biological nutrient removal systems upgraded with physico-chemical processes for the removal of emerging pollutants present in wastewaters from Mexico.

    Science.gov (United States)

    Estrada-Arriaga, Edson Baltazar; Cortés-Muñoz, Juana Enriqueta; González-Herrera, Arturo; Calderón-Mólgora, César Guillermo; de Lourdes Rivera-Huerta, Ma; Ramírez-Camperos, Esperanza; Montellano-Palacios, Leticia; Gelover-Santiago, Silvia Lucila; Pérez-Castrejón, Sara; Cardoso-Vigueros, Lina; Martín-Domínguez, Alejandra; García-Sánchez, Liliana

    2016-11-15

    Two full-scale biological nutrient removal systems upgraded with three physico-chemical processes (coagulation, chemical precipitation, and neutral Fenton) were evaluated in order to determine the removal of emerging pollutants (EPs) present in municipal wastewater from Mexico. Between 41 and 55 EPs were detected in the influents of two wastewater treatment plants (WWTPs), including personal care products (PPCPs), antibiotics, analgesics, antiepileptics, antilipidemics, antihypertensives, antiseptics, stimulants, and hormones. Emerging pollutants were detected at concentrations ranging from 0.69ng/L to 94,600ng/L. High concentrations of emerging pollutants were found during dry season. WWTP 1, integrated by oxidation ditches and UV light lamps, showed removal efficiencies of EPs between 20% and 22%. On the other hand, WWTP 2 consisted of anaerobic/anoxic/aerobic tanks coupled with two disinfection processes; chlorine dioxide and UV light lamps, for which the removal of EPs was significant (up to 80%). The concentrations of emerging pollutants in WWTP 1 effluent was found within a rangetreatment for the two effluents from the WWTPs is promising for the removal of emerging pollutants (up to 100%) and for assuring high quality of treated water. PMID:27457673

  16. Dynamics of the biological properties of soil and the nutrient release of Amorpha fruticosa L. litter in soil polluted by crude oil.

    Science.gov (United States)

    Zhang, Xiaoxi; Liu, Zengwen; Luc, Nhu Trung; Liang, Xiao; Liu, Xiaobo

    2015-11-01

    Litter from Amorpha fruticosa, a potential phytoremediating plant, was collected and used in a decomposition experiment that involved the litterbag in soil polluted by crude oil. The dynamics of the biological properties of soil and the nutrient release of the litter were detected. The results indicated that (1) in lightly polluted soil (LP, petroleum concentration was 15 g kg(-1)), the bacteria (including actinomycetes), and fungi populations were significant higher than those in unpolluted soil (CK) at the 1st month after pollution, and the bacteria (including actinomycetes) populations were higher than those in the CK at the 6th and 12th months. In moderately polluted soil (MP, 30 g kg(-1)), the bacteria (including actinomycetes) populations were higher than those in the CK at the 1st and 6th months, whereas only the actinomycetes population was greater than that in the CK at the 12th month. In seriously polluted soil (SP, 45 g kg(-1)), only the fungi population was higher than that in the CK at the 6th month. (2) The activities of soil protease, carboxymethyl cellulase, and sucrase were generally inhibited in polluted soil. Peroxidase activity was generally inhibited in the LP and MP soil, and polyphenol oxidase activity was inhibited in the SP soil at 6-12 months. (3) At the end of litter decomposition, the LP soil significantly increased the release rate of all nutrients, except for K. The MP soil reduced the release rate of Fe and Mn, whereas it increased that of C and Cu. The SP soil decreased the release rate of all nutrients except for Cu and Zn. In conclusion, SP by crude oil would lead to limitations in the release of nutrients from the litter and to decreases in the community stability of a phytoremediating plant. A. fruticosa could only be used in phytoremediation of polluted soil at concentrations below 45 g kg(-1) (crude). PMID:26087933

  17. Nitrogen oxide air pollution: biological effects. 1964-August, 1980 (citations from the NTIS data base). Report for 1964-Aug 80

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-10-01

    The effects of nitrogen oxide air pollution on humans, plants, and animals are covered in the bibliography. Toxicology, epidemiology, pathology, and the synergistic effects of nitrogen oxides and other pollutants are covered. (This updated bibliography contains 210 citations, 28 of which are new entries to the previous edition.)

  18. Preliminary Study on Biological Characteristics of Degraded Soil Ecosystems in Dry Hot Valley of the Jinsha River

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Distribution characteristics of soil animals, microorganisms and enzymatic activity were studied in thedry red soil and Vertisol ecosystems with different degradation degrees in the Yuanmou dry hot valley of theJinsha River, China. Results showed that Hymenoptera, Araneae and Collembola were the dominant groupsof soil animals in the plots studied. The numbers of groups and individuals and density of soil animals in thedry red soil series were higher than those in the Vertisol series, and the numbers of individuals and density ofsoil animals decreased with the degree of soil degradation. Bacteria dominated microbiocoenosis not only inthe dry red soils but also in the Vertisols. Microbial numbers of the dry red soil series were higher than thoseof Vertisol series, and decreased with the degree of soil degradation. The activities of catalase, invertase,urease and alkaline phosphatase declined with the degradation degree and showed a significant decline withdepth in the profiles of both the dry red soils and the Vertisols, but activities of polyphenol oxidase andacid and neutral phosphatase showed the same tendencies only in the Vertisols. It was concluded that thecharacteristics of soil animals, microorganisms and enzymatic activity could be used as the bio-indicators toshow the degradation degree of the dry red soils and Vertisols. Correlation among these soil bio-indicatorswas highly significant.

  19. Kinetic Characterization by Respirometry of Volatile OrganicCompound-Degrading Biofilms from Gas-Phase Biological Filters

    OpenAIRE

    Gonzalez Sanchez, A.; Arellano Garcia, L.; Bonilla Blancas, W.; Baquerizo, G.; Hernandez, S.; Gabriel, D.; Revah, S.

    2014-01-01

    A novel heterogeneous respirometer for in situ assessment of the biological activity and mass transport phenomena of biofilm developed on packing materials of gas-phase biological filters is presented. The flexible respirometer configuration allows reproducing the operational features of biofilters and biotrickling filters to obtain reliable diagnoses of the bioreactor performance. A batch-operating mode was chosen for the biological assessment in which dynamic concentrations of oxygen, pollu...

  20. Optimizing the use of biological indicators for detection of significant pollutant types. Optimierung verschiedener Bioindikationsverfahren zur Erfassung wichtiger Immissionstypen

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, R.D.

    1982-04-14

    Bioindication methods to determine the different pollutant types have been compared using the accumulation indicators Halian ryegrass (cloned material) and pine (Picea abies) and the sensitive indicator species tobacco (Nicotiana tabacum), gladiolus (G. hybridus), tulip (T. gesneriana), leek (A. porrum), clover (T. pratense), alfalfa (M. sativa), spinach (S. oleracea), petunia (P. hybrida), pelargonium (P. zonale), French marigold (T. patula), salvia (S. splendens) and ipomoea (I. purpurea). Field tests were carried out on 15 different sites in Bavaria. By means of the accumulation indicators, inorganic pollutants (S, F, Cl, Pb, Cd, Zn) were to be determined by analyses of the plant material. In the sensitive indicator plants, growth and flowering were studied with regard to external damage. In tobacco plants, also the physiological parameters and the total nitrogen concentration were determined. The following recommendations can be made for region with unknown pollutant levels: Accumulation indicators can be used in large areas; they yield valid information in case of high pollutant levels and react in a highly differentiated manner to site-specific pollutant levels already within the normal concentration range. Sensitive indicators are of use only in the direct vicinity of large-scale pollution sources. They have a signal function and may warn of high air pollution levels.

  1. In-situ degradation of pollutants like MTBE, VC and PAh in groundwater using iSOC trademark; In situ Abbau von Schadstoffen wie MTBE, VC und PAK mittels iSOC trademark im Grundwasser

    Energy Technology Data Exchange (ETDEWEB)

    Buhl, J. [Cornelsen Umwelttechnologie GmbH, Essen (Germany)

    2005-07-01

    The iSOC system (in situ Submerged Oxygen Curtain) is a tool for stimulating biological sanitation of groundwater. This is achieved by introducing oxygen into the groundwater, which may be highly efficient in removing pollutants like BTEX, MTBE, VC, and PAH. (orig.)

  2. 环境污染对生物的影响及其保护对策%Analysis on the Effect of Environmental Pollution on the Biology and Protection Countermeasures

    Institute of Scientific and Technical Information of China (English)

    陈若愚; 赖发英; 周越

    2012-01-01

      生物多样性的破坏是世界主要环境问题之一,而环境污染直接或间接对生物造成了一定的影响。本文主要分析了大气污染、水污染、土壤污染、噪声污染、光污染对生物的影响,并提出相应的环境保护措施。%  The damage of biodiversity is one of the major environmental problems in the world, and environmental pollution, directly or indirectly, on biological caused certain effect. This paper mainly analyzes the air pollution, water pollution, soil pollution, noise pollution, light pollution on the biological effects, and propose corresponding environmental protection measures.

  3. Degradation of recalcitrant organic contaminants by solar photocatalysis.

    Science.gov (United States)

    Mansouri, L; Bousselmi, L; Ghrabi, A

    2007-01-01

    Biological pre-treated landfill leachates of Djebel Chakir contains some macromolecular organic substances that are resistant to biological degradation. The aim of the present work is to assess the feasibility of removing refractory organic pollutants in biological pre-treated landfill leachate by solar photocatalyse process. Leachate pollutant contents are studied to assess their contribution to leachate pollution and their treatability by solar photocatalyse process. Phenol is chosen as model of pollutants, to evaluate its removal and the efficiency of the photocatalytic system. The experiments were carried out in suspended photocatalytic reactor, using TiO2 Degussa P25, under sunlight illumination (UV-A: 15-31 W/cm2). Under optimum operational conditions, applied to single reactant (phenol), the system presents a TOC removal of 90% (the degradation follows a first-order kinetic). Based on the TOC removal, the results shows that the degradation of biological pre-treated leachate follows a zero-order kinetic. After 5 h of sunlight exposure, 74% of COT is removed. The TOC removal is the best without any correction of the pH and at the TiO2 concentration of 2.5 g/L. The photocatalytic degradation of organic contaminants as well as the formation and disappearance of the by-products were followed by GC/MS. The solar photocatalysis processes induce several modifications of the matrix leading to more biodegradable forms: all the remaining and new compounds generated after the biological pre-treatment of leachate are degraded and other types of organics appear, mainly carboxylic acid, aliphatic hydrocarbons and phtalic acids.

  4. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling

    Energy Technology Data Exchange (ETDEWEB)

    Ying Guangguo [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia)], E-mail: guang-guo.ying@gig.ac.cn; Yu Xiangyang [CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia); Food Safety Research Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Kookana, Rai S. [CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia)

    2007-12-15

    Triclocarban and triclosan are two antimicrobial agents widely used in many personal care products. Their biodegradation behaviour in soil was investigated by laboratory degradation experiments and environmental fate modelling. Quantitative structure-activity relationship (QSAR) analyses showed that triclocarban and triclosan had a tendency to partition into soil or sediment in the environment. Fate modelling suggests that either triclocarban or triclosan 'does not degrade fast' with its primary biodegradation half-life of 'weeks' and ultimate biodegradation half-life of 'months'. Laboratory experiments showed that triclocarban and triclosan were degraded in the aerobic soil with half-life of 108 days and 18 days, respectively. No negative effect of these two antimicrobial agents on soil microbial activity was observed in the aerobic soil samples during the experiments. But these two compounds persisted in the anaerobic soil within 70 days of the experimental period. - Triclocarban and triclosan can be degraded by microbial processes in aerobic soil, but will persist in anaerobic soil.

  5. Working group 6: Health. 3. Biological effects of nonradioactive pollutants associated with nuclear and conventional power plants

    International Nuclear Information System (INIS)

    The major air pollutants released from conventional power plants have been found to be sulfur dioxide (SO2), nitrogen oxides (NOx) and suspended particulates beside these three major pollutants other substances (CO, O3, hydrocarbons, vanadium...) occur in air or in water. Origin and extent of these pollutants as well as their main health hazards, especially for the respiratory system, have been evaluated. Other risks connected with the whole fuel cycle (coal extraction, petrol refining...) have been considered to be significant for human health. A mathematical model has been set up by the C.E.N. of Mol (Belgium) in order to predict the content of pollutants at the soil level, especially for SO2. A relationship between SO2 content and the concentration of the other pollutants has been found by assuming certain hypothesis. Epidemiological and toxicological data connected with the SO2 release have been given. As for nonradioactive pollutants released from nuclear power plants their amount has been considered to be negligible. (G.C.)

  6. Wastewater treatment processes for the removal of emerging organic pollutants

    Directory of Open Access Journals (Sweden)

    Ainhoa Rubio Clemente

    2013-12-01

    Full Text Available Emerging organic pollutants form a very heterogeneous group of substances that have negative effects on aquatic organisms, so they should be removed from the environment. Unfortunately, conventional processes in wastewater treatment plants, especially biological ones, are inefficient in the degradation of these substances. It is therefore necessary to evaluate and optimize the effectiveness of the treatments, including advanced oxidation and membrane filtration processes. However, both techniques have drawbacks that may limit their stand-alone application, so it is proposed that the best solution may be to combine these technologies with biological processes to treat wastewater contaminated with emerging organic pollutants.

  7. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  8. Coupling of acrylic dyeing wastewater treatment by heterogeneous Fenton oxidation in a continuous stirred tank reactor with biological degradation in a sequential batch reactor.

    Science.gov (United States)

    Esteves, Bruno M; Rodrigues, Carmen S D; Boaventura, Rui A R; Maldonado-Hódar, F J; Madeira, Luís M

    2016-01-15

    This work deals with the treatment of a recalcitrant effluent, from the dyeing stage of acrylic fibres, by combination of the heterogeneous Fenton's process in a continuous stirred tank reactor (CSTR) with biological degradation in a sequential batch reactor (SBR). Three different catalysts (a commercial Fe/ZSM-5 zeolite and two distinct Fe-containing activated carbons - ACs - prepared by wet impregnation of iron acetate and iron nitrate) were employed on the Fenton's process, and afterwards a parametric study was carried out to determine the effect of the main operating conditions, namely the hydrogen peroxide feed concentration, temperature and contact time. Under the best operating conditions found, using the activated carbon impregnated with iron nitrate, 62.7% of discolouration and 39.9% of total organic carbon (TOC) reduction were achieved, at steady-state. Furthermore, a considerable increase in the effluent's biodegradability was attained (BOD5:COD ratio increased from toxicity (from 92.1 to 94.0% of Vibrio fischeri inhibition down to 6.9-9.9%). This allowed the application of the subsequent biological degradation stage. The combination of the two processes provided a treated effluent that clearly complies with the legislated discharge limits. It was also found that the iron leaching from the three catalysts tested was very small in all runs, a crucial factor for the stability and long-term use of such materials. PMID:26513317

  9. Integration of natural pollutant retention and degradation processes in groundwater sanitation at LMBV MBH. The former Profen coking plant; Praxis der Einbindung von natuerlichem Schadstoffrueckhalt und -abbau in die Grundwasser-Sanierung der LMBV MBH. Am Beispiel der ehemaligen Schwelerei Profen

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, A. [LMBV mbH, Ingenieurbereich Technik, Bitterfeld (Germany); Hahlbeck, S. [Staatliche Baumanagement Hannover II, Hannover (Germany)

    2005-07-01

    Using the example of the former Profen coking plant, practical experience is presented as follows: Description of the contamination situation and the relevant aspects of pollutant degradation; management of licenses for stopping active groundwater decontamination; experience in three years of monitoring after stopping active groundwater decontamination in April 2002; questions and problems concerning the applicability of the results to other contaminated sites and general conclusions concerning the integration of natural pollutant retention and degradation processes in sanitation measures. (orig.)

  10. Water-immiscible solvents for the biological treatment of waste gases.

    NARCIS (Netherlands)

    Cesario, M.T.

    1997-01-01

    In conventional biological systems for the treatment of waste gases, contaminants are transferred directly to the aqueous phase and then converted by the micro-organisms. When poorly water-soluble pollutants are to be removed, biological degradation is often limited by the slow transport from the ga

  11. Dynamics of ecological and biological characteristics of soddy-podzolic soils under long-term oil pollution

    Science.gov (United States)

    Petrov, A. M.; Versioning, A. A.; Karimullin, L. K.; Akaikin, D. V.; Tarasov, O. Yu.

    2016-07-01

    The dynamics of respiratory and enzyme activities and toxicological properties of loamy-sandy and loamy soddy-podzolic soils (Retisols) under the long-term influence of oil pollution were studied. The concentrations of the pollutant, at which the activity (the ability of self-purification) of the indigenous soil microflora is preserved, were determined. The dynamics of the decrease of oil product content and the time of elimination of the toxic effects on higher plants at the initial pollutant contents were revealed. The parameters of the respiratory and enzyme activities in the course of the 365-day experiment showed that the microbial community of the loamy-sandy soil was more sensitive to oil pollution. The phytotoxic characteristics of the oil-containing loamy-sandy and loamy soils did not correlate with their respiratory and enzyme activities. This fact testifies to some differences in the mechanisms of their influence on living organisms with different organizational levels and to the necessity of taking into account a complex of parameters when assessing the state of the soils under the long-term effects of oil and its products.

  12. Biological characteristics and degradation performance of a degrading strain%降解菌株P-2生物学特性及其降解性能研究

    Institute of Scientific and Technical Information of China (English)

    田连生; 陈菲

    2012-01-01

    To degrade pesticide residues in soil and solve the problem of excessive pesticide residues in agricultural byproducts, a bacterium was screened and isolated from the carbendazim polluted soil. The effect of some factors on its growth biodegradation characteristics in vitro were studied, including initial pH, culture temperature, inoculum size, extra carbon source, nitrogen source. The results showed that this strain could grow by using carbendazim as the carbon source. It could degrade 60. 6% of 100 mg o L-1 carbendazim in mineral culture medium in 5 d, but could degrade 91 % by adding peptone as nitrogen source. The optimal pH and culture temperature for carbendazim biodegradation were 5. 1 - 8. 1 and 25 - 40 ℃ respectively. The biodegradation speed was related positively to the biomass yield.%为降解土壤中农药残留,解决农副产品农药超标问题,采用富集培养法分离筛选出1株能够降解多菌灵的菌株P-2,研究初始pH、培养温度、接种量、外加碳源、氮源对其生长量和降解特性的影响.结果表明:该菌株能以多菌灵为碳源生长,在基础培养基中培养5d时对100 mg·L-1的多菌灵降解率达60.6%,而另外加入氮源蛋白胨,可提高降解率达91%.降解多菌灵的适宜条件为温度25~40℃、pH 5.1~8.1,且降解率与菌体生长量呈正相关关系.

  13. 高效原油降解菌的筛选及其在生物活性炭中的应用%Screening of high efficient oil-degrading strains and their application in biological activated carbon

    Institute of Scientific and Technical Information of China (English)

    冯晋阳; 吴小宁

    2011-01-01

    以原油为唯一碳源,采用升高原油浓度的方法从长期被石油污染土壤中驯化、筛选出6株高效原油降解菌SY1~SY6,其油降解率均高于55%.经初步鉴定,SY1为微杆菌属(Microbacterium sp.),SY2为诺卡氏菌属(Nocardia sp.),SY3和SY5为假单胞菌属(Pseudomonas sp.),SY4和SY6为芽孢杆菌属(Bacillus sp.).从得到的高效原油降解菌中选用SY2、SY4、SY5和SY6构建原油降解菌群SY,并将SY菌群接种到生物活性炭(BAC)反应器中,BAC反应器运行稳定后,COD去除率达75%以上,油降解率在80%以上,处理效果良好.%Six oil degrading strains (named SY1 to SY6) were isolated and screened from oil-polluted soil with crude oil as single carbon source. The oil degrading rate of the six strains were all higher than 55%. Six strains were identified base on their physiological characteristics and morphology observation, results showed that SY1 belonged to Microbacterium sp. , SY2 belonged to Nocardia sp. , SY3 and SY5 belonged to Pseudomonas sp. , SY4 and SYS belonged to Bacillus sp. . SY2, SY4, SY5 and SY6 were selected for the construction of oil degradation bacterial community SY. The bacterial community SY was inoculated into the biological activated carbon (BAC) reactor for treatment of oil containing wastewater, BAC reactor presented perfect treatment performance after the stable operation, the removal rate of oil and COD were up go 80% and 75% , respectively.

  14. Environmental parameters of the Tennessee River in Alabama. 2: Physical, chemical, and biological parameters. [biological and chemical effects of thermal pollution from nuclear power plants on water quality

    Science.gov (United States)

    Rosing, L. M.

    1976-01-01

    Physical, chemical and biological water quality data from five sites in the Tennessee River, two in Guntersville Reservoir and three in Wheeler Reservoir were correlated with climatological data for three annual cycles. Two of the annual cycles are for the years prior to the Browns Ferry Nuclear Power Plant operations and one is for the first 14 months of Plant operations. A comparison of the results of the annual cycles indicates that two distinct physical conditions in the reservoirs occur, one during the warm months when the reservoirs are at capacity and one during the colder winter months when the reservoirs have been drawn-down for water storage during the rainy months and for weed control. The wide variations of physical and chemical parameters to which the biological organisms are subjected on an annual basis control the biological organisms and their population levels. A comparison of the parameters of the site below the Power plant indicates that the heated effluent from the plant operating with two of the three reactors has not had any effect on the organisms at this site. Recommendations given include the development of prediction mathematical models (statistical analysis) for the physical and chemical parameters under specific climatological conditions which affect biological organisms. Tabulated data of chemical analysis of water and organism populations studied is given.

  15. A biological method to monitor early effects of the air pollution caused by the industrial exploitation of geothermal energy.

    Science.gov (United States)

    Paoli, Luca; Loppi, Stefano

    2008-09-01

    The suitability of a set of ecophysiological parameters, to be used as early warning indicator to detect signs of a worsening environment around geothermal power plants, was tested by comparison with the diversity of epiphytic lichens, a well-established indicator of geothermal air pollution. Samples of the lichen Evernia prunastri were transplanted around a geothermal power plant at Larderello (Tuscany, Italy) and at a control site, and integrity of cell membranes, concentration of chlorophyll a, b and carotenoids, chlorophyll integrity and variations in pH of thalli were measured. The results showed that cell membrane damage, expressed by changes in electrical conductivity, could be used to detect early (exposure periods as short as 1 month) deleterious effects of geothermal air pollution.

  16. A preliminary study for establishing Perna viridis (Mollusca:Bivalvia) as a biological monitor for pollution in Karachi coastal water

    OpenAIRE

    Zehra, Itrat; Naz, Huma; Naqvi, Iftikhar Imam

    1996-01-01

    Adverse effects of toxic substances on the environmental quality have become a subject of concern in recent years. Toxicity of heavy metals has never been in dispute and therefore their presence in our natural environment is undesirable. This study was undertaken to establish the capability of Perna viridis as a monitor for pollution in the Manora channel. Accumulation of Zinc, Copper, Iron and Manganese by marine mussels, sampled from Manora channel, was determined. Metal load varied markedl...

  17. Development of biological indices for identifying and evaluating impacts of pollutants on freshwater ecosystems. Final report, June 1975-October 1980

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, J. Jr.; Cherry, D.S.

    1980-09-30

    The ten Research Areas reported included: (1) the development of functional indices for identifying and evaluating impacts of pollutants on Aufwuchs communities, (2) relationship of protozoan colonization rates to the eutrophication process, (3) testing of methods to determine the functioning of zooplankton communities subjected to entrainment stress, (4) the use of the first steps of detritus processing (microbial decomposition) as a technique for assessing pollutional stress on aquatic communities in a river system, (5) relationship of protozoan invasion and extinction rate to the eutrophication process, (6) extension of present early colonization studies to the simultaneous evaluation of natural environmental parameters and power plant effluents and application of the early colonization approach to microbial communities in streams of the New River drainage, (7) testing of single species-community responses of protozoans from selected heavy metals, (8) the effects of selected power plant pollutants on grazer utilization of Aufwuchs, (9) investigation of bioconcentration and bioaccumulation mechanisms of the Asiatic clam (Corbicula fluminea) populations in field artificial streams and laboratory microcosms with reference to physical chemistry and diet alterations, and (10) investigation of the homeostatic regulation in bluegill sunfish following acute hypothermal shock and to other power plant related effluents.

  18. Assessment of biological effects of environmental pollution along the NW Mediterranean Sea using red mullets as sentinel organisms

    Energy Technology Data Exchange (ETDEWEB)

    Zorita, Izaskun; Ortiz-Zarragoitia, Maren; Apraiz, Itxaso; Cancio, Ibon; Orbea, Amaia; Soto, Manu; Marigomez, Ionan [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Universidad del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Cajaraville, Miren P. [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Universidad del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain)], E-mail: mirenp.cajaraville@ehu.es

    2008-05-15

    A biomonitoring program was carried out in spring and autumn in three pollution hot-spots and sensitive areas of the NW Mediterranean Sea using red mullets (Mullus barbatus) as sentinel organisms and a battery of biomarkers together with gonad histology. In fish from anthropogenic impacted areas (Fos-sur-mer, Cortiou, Arenzano, Delta of Ebro) lysosomal membrane destabilization occurred indicating disturbed health. There were no significant differences in metallothionein (MT) levels among stations. Peroxisomal acyl-CoA oxidase (AOX) activity was highest in fish from Cortiou. Both MT levels and AOX activities were significantly correlated with gamete development. Prevalence of melanomacrophage centers were high in Cortiou in all samplings and in Fos-sur-mer in September samplings. In conclusion, the application of a battery of biomarkers in red mullets provided relevant data for the assessment of environmental pollution in the NW Mediterranean Sea but also showed the difficulties of using native fish as sentinels. For future studies caging strategies are recommended. - Application of biomarkers in red mullets is promising to assess environmental pollution in the NW Mediterranean Sea.

  19. Assessment of biological effects of environmental pollution along the NW Mediterranean Sea using red mullets as sentinel organisms

    International Nuclear Information System (INIS)

    A biomonitoring program was carried out in spring and autumn in three pollution hot-spots and sensitive areas of the NW Mediterranean Sea using red mullets (Mullus barbatus) as sentinel organisms and a battery of biomarkers together with gonad histology. In fish from anthropogenic impacted areas (Fos-sur-mer, Cortiou, Arenzano, Delta of Ebro) lysosomal membrane destabilization occurred indicating disturbed health. There were no significant differences in metallothionein (MT) levels among stations. Peroxisomal acyl-CoA oxidase (AOX) activity was highest in fish from Cortiou. Both MT levels and AOX activities were significantly correlated with gamete development. Prevalence of melanomacrophage centers were high in Cortiou in all samplings and in Fos-sur-mer in September samplings. In conclusion, the application of a battery of biomarkers in red mullets provided relevant data for the assessment of environmental pollution in the NW Mediterranean Sea but also showed the difficulties of using native fish as sentinels. For future studies caging strategies are recommended. - Application of biomarkers in red mullets is promising to assess environmental pollution in the NW Mediterranean Sea

  20. Leachate characterization and identification of dominant pollutants using leachate pollution index for an uncontrolled landfill site

    Directory of Open Access Journals (Sweden)

    S. De

    2016-03-01

    Full Text Available Landfill leachates are potential threats for environmental degradation. This study was conducted to determine the leachate quality, to identify the dominant pollutants and to evaluate the leachate pollution potential of an active and closed dumping ground of an uncontrolled municipal solid waste landfill site in Kolkata, India using leachate pollution index. The results of the physico-chemical and biological analyses of leachate indicated that landfill site was in its methanogenic phase. Among the analysed leachate pollutants, TDS, BOD5, COD, TKN, NH3-N, Cl¯, TCB, Pb, and Hg surpassed the leachate discharge standards for inland surface water as specified by the municipal solid waste (Management and Handling Rules, 2013 for both the dumping grounds. Moreover the concentrations of total Cr and Zn also exceeded the leachate disposal standards for the active dumping ground. The leachate pollution potentialities of both the active and closed dumping grounds were comparable as the overall LPI obtained 34.02 and 31.80 respectively. The overall LPI, LPI organic (LPIor, LPI inorganic (LPIin and LPI heavy metals (LPIhm of both the dumping grounds largely exceeded the LPI and sub-LPI values for treated leachate before disposal to the inland surface water. In terms of the individual pollution rating, total coliform bacteria, TKN, NH3-N and Hg were identified as the dominant pollutants and major contributing factors for the leachate pollution potential.

  1. Active biomonitoring in freshwater environments: early warning signals from biomarkers in assessing biological effects of diffuse sources of pollutants

    Science.gov (United States)

    Wepener, V.; van Vuren, J. H. J.; Chatiza, F. P.; Mbizi, Z.; Slabbert, L.; Masola, B.

    Effluents are a main source of direct and continuous input of pollutants in aquatic ecosystems. Relating observed effects to specific pollutants or even classes of pollutants remains a very difficult task due to the usually unknown, complex and often highly variable composition of effluents. It is recognized that toxicants interfere with organism integrity at the biochemical level and give rise to effects at the individual level and is manifested in reduced ecologically relevant characteristics such as growth, reproduction and survival, and ultimately at the ecosystem level. By integrating multiple endpoints at different ecologically relevant levels of organization within one test organism, it should be possible to gain understanding in how different levels of organization within this organism respond to toxic exposure and how responses at these different levels are interrelated. This paper presents results from a field study in the Rietvlei Wetland system, Gauteng, South Africa using the freshwater mollusk ( Melanoides tuberculata) and freshwater fish ( Oreochromis mossambicus) as bioindicator organisms. Active biomonitoring (ABM) exposures were conducted where organisms were exposed for 28 days in an effluent dominated river during high flow conditions in April 2003. The river receives effluent from a wastewater treatment plant and an industrial complex, so that up to 75% of the total flow of the river is effluent-based. Effects of field exposure were determined using cellular biomarkers e.g. DNA damage, HSP 70, metallothionein, acetylcholine esterase, lactate dehydrogenase and ethoxyresorufin-o-deethylase activity. The results clearly indicate that although the traditional mortality-based whole effluent toxicity testing did not indicate any toxicity, the in situ exposed organisms were stressed. A multivariate statistical approach was particularly useful for integrating the biomarker responses and highlighting sites at which more detailed analysis of chemical

  2. Catalytic oxidation degradation of marine diesel pollution by horseradish peroxidase%用辣根过氧化物酶催化降解海水中柴油污染的研究

    Institute of Scientific and Technical Information of China (English)

    尚晓琳; 于晓彩; 季秋忆; 张健; 吴云英; 杨利

    2016-01-01

    为深入探索酶催化技术在海洋石油污染处理中的应用,以游离辣根过氧化物酶( HRP)催化降解海水中柴油污染,研究了酶用量、溶液pH值、柴油初始浓度和催化反应时间等因素对酶催化降解海水中柴油污染的影响,确定了HRP催化降解海水中柴油污染的优化工艺条件,同时考察了反应助剂对海水中柴油污染去除率的影响。结果表明: HRP能有效催化降解海水的柴油污染,当海水中柴油的质量浓度为1.2 g/L时,在温度为25℃、 HRP加入量为1.6 U/mL、 H2 O2为250 mg/L、溶液pH为5的条件下,催化降解3 h,柴油去除率可达90.77%;聚乙二醇( PEG)对HRP催化降解海水中的柴油污染有较显著的影响。%The influence of dosage, solution pH value, diesel initial concentration and catalytic period on free horseradish peroxidase ( HRP) degradation of marine diesel pollution were studied and optimized for the process conditions by orthogonal experiment to exploite utilization of horseradish peroxidase in the catalytic oxidation degra-dation of marine diesel pollution. The removal of marine diesel pollution by a reaction promoter was observed. The results showed that free horseradish peroxidase was shown to degradate the diesel pollution in the seawater effective-ly under the optimum conditions of diesel initial concentration of 1. 2 g/L, temperature of 25℃, HRP activity con-centration of 1. 6 U/mL, H2 O2 mass concentration of 250 mg/L, pH 7. 5 and reaction time of 3 h, with the diesel removal rate of 90. 77%. It was found that polyethylene glycol ( PEG) improved the efficiency for HRP catalytic oxidation in seawater diesel pollution.

  3. One dimensional CdS nanowire@TiO2 nanoparticles core-shell as high performance photocatalyst for fast degradation of dye pollutants under visible and sunlight irradiation.

    Science.gov (United States)

    Arabzadeh, Abbas; Salimi, Abdollah

    2016-10-01

    In this study, one-dimensional CdS nanowires@TiO2 nanoparticles core-shell structures (1D CdS NWs@TiO2 NPs) were synthesized by a facile wet chemical-solvothermal method. The different aspects of the properties of CdS NWs@TiO2 NPs were surveyed by using a comprehensive range of characterization techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis spectroscopy, scanning electron microscopy (SEM), fluorescence spectroscopy, energy dispersive X-ray spectroscopy (EDX), Cyclic Voltammetry (CV) and amperometry. The as-prepared nanostructure was applied as an effective photocatalyst for degradation of methyl orange (MO), methylene blue (MB) and rhodamine B (Rh B) under visible and sunlight irradiation. The results indicated significantly enhanced photocatalytic activity of CdS NWs@TiO2 NPs for degradation of MO, MB and Rh B compared to CdS NWs. The enhanced photocatalytic activity could be attributed to the enhanced sunlight absorbance and the efficient charge separation of the formed heterostructure between CdS NWs and TiO2. The results showed that MO, Rh B and MB were almost completely degraded after 2, 2 and 3min of exposure to sunlight, respectively; while under visible light irradiation (3W blue LED lamp) the dyes were decomposed with less half degradation rate. The catalytic activity was retained even after three degradation cycles of organic dyes, demonstrating that the proposed nanocomposite can be effectively used as efficient photocatalyst for removal of environmental pollutions caused by organic dyes under sunlight irradiation and it could be an important addition to the field of wastewater treatment. We hope the present study may open a new window of such 1-D semiconductor nanocomposites to be used as visible light photocatalysts in the promising field of organic dyes degradation. PMID:27348482

  4. One dimensional CdS nanowire@TiO2 nanoparticles core-shell as high performance photocatalyst for fast degradation of dye pollutants under visible and sunlight irradiation.

    Science.gov (United States)

    Arabzadeh, Abbas; Salimi, Abdollah

    2016-10-01

    In this study, one-dimensional CdS nanowires@TiO2 nanoparticles core-shell structures (1D CdS NWs@TiO2 NPs) were synthesized by a facile wet chemical-solvothermal method. The different aspects of the properties of CdS NWs@TiO2 NPs were surveyed by using a comprehensive range of characterization techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis spectroscopy, scanning electron microscopy (SEM), fluorescence spectroscopy, energy dispersive X-ray spectroscopy (EDX), Cyclic Voltammetry (CV) and amperometry. The as-prepared nanostructure was applied as an effective photocatalyst for degradation of methyl orange (MO), methylene blue (MB) and rhodamine B (Rh B) under visible and sunlight irradiation. The results indicated significantly enhanced photocatalytic activity of CdS NWs@TiO2 NPs for degradation of MO, MB and Rh B compared to CdS NWs. The enhanced photocatalytic activity could be attributed to the enhanced sunlight absorbance and the efficient charge separation of the formed heterostructure between CdS NWs and TiO2. The results showed that MO, Rh B and MB were almost completely degraded after 2, 2 and 3min of exposure to sunlight, respectively; while under visible light irradiation (3W blue LED lamp) the dyes were decomposed with less half degradation rate. The catalytic activity was retained even after three degradation cycles of organic dyes, demonstrating that the proposed nanocomposite can be effectively used as efficient photocatalyst for removal of environmental pollutions caused by organic dyes under sunlight irradiation and it could be an important addition to the field of wastewater treatment. We hope the present study may open a new window of such 1-D semiconductor nanocomposites to be used as visible light photocatalysts in the promising field of organic dyes degradation.

  5. Laccase-based technologies to remove organic pollutants from soils and wastewaters

    OpenAIRE

    Arca Ramos, Adriana

    2016-01-01

    Pollution of soil and water is an environmental issue worldwide. Thereby, the development and implementation of low-cost and eco-friendly treatments for the decontamination of polluted sites and wastewater is a priority. In this regard, the use of biological agents, as white rot fungi, to degrade and detoxify environmental contaminants has emerged as a potential alternative. These microorganisms have been reported to remove a wide range of xenobiotics by the action of the extracellular lignin...

  6. Soil aquifer treatment to remove priority organic pollutants in the Llobregat river area

    OpenAIRE

    Huerta, Maria; Solé, Josep; Aceves, Mercè; Valhondo González, Cristina; Hernández, Marta; Gullón Santos, Martín

    2013-01-01

    The Llobregat River is the main source of water supply in this area. This river together with its aquifer has suffered from several damages which had contributed to endanger a suitable ecological and hydrological status; among them, pollution is a serious problem to deal with. In the last decades, the presence of organic pollutants in this river has been demonstrated [1,2]. Some of them are persistent to biological degradation and have shown to survive wastewater treatments almost unaltered a...

  7. Coupling of acrylic dyeing wastewater treatment by heterogeneous Fenton oxidation in a continuous stirred tank reactor with biological degradation in a sequential batch reactor.

    Science.gov (United States)

    Esteves, Bruno M; Rodrigues, Carmen S D; Boaventura, Rui A R; Maldonado-Hódar, F J; Madeira, Luís M

    2016-01-15

    This work deals with the treatment of a recalcitrant effluent, from the dyeing stage of acrylic fibres, by combination of the heterogeneous Fenton's process in a continuous stirred tank reactor (CSTR) with biological degradation in a sequential batch reactor (SBR). Three different catalysts (a commercial Fe/ZSM-5 zeolite and two distinct Fe-containing activated carbons - ACs - prepared by wet impregnation of iron acetate and iron nitrate) were employed on the Fenton's process, and afterwards a parametric study was carried out to determine the effect of the main operating conditions, namely the hydrogen peroxide feed concentration, temperature and contact time. Under the best operating conditions found, using the activated carbon impregnated with iron nitrate, 62.7% of discolouration and 39.9% of total organic carbon (TOC) reduction were achieved, at steady-state. Furthermore, a considerable increase in the effluent's biodegradability was attained (BOD5:COD ratio increased from <0.001 to 0.27 and SOUR - specific oxygen uptake rate - from <0.2 to 11.1 mg O2/(gVSS·h)), alongside a major decrease in its toxicity (from 92.1 to 94.0% of Vibrio fischeri inhibition down to 6.9-9.9%). This allowed the application of the subsequent biological degradation stage. The combination of the two processes provided a treated effluent that clearly complies with the legislated discharge limits. It was also found that the iron leaching from the three catalysts tested was very small in all runs, a crucial factor for the stability and long-term use of such materials.

  8. Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: synergy with tumour necrosis factor-alpha, Oncostatin M and response to biologic therapies.

    LENUS (Irish Health Repository)

    Moran, Ellen M

    2009-01-01

    INTRODUCTION: The aim of this study was to examine IL-17A in patients, following anti-TNF-alpha therapy and the effect of IL-17A on matrix turnover and cartilage degradation. METHODS: IL-17A expression was examined by ELISA and immunohistology in the rheumatoid arthritis (RA) joints. RA whole synovial tissue explant (RA ST), primary synovial fibroblasts (RASFC), human cartilage and chondrocyte cultures were stimulated with IL-17A +\\/- TNF-alpha and Oncostatin M (OSM). Matrix metalloproteinase (MMP) and tissue inhibitor (TIMP-1) were assessed by ELISA and zymography. Cartilage proteoglycan release was assessed histologically by Safranin-O staining. Clinical parameters, IL-17A, MMP\\/TIMP were assessed in patients pre\\/post biologic therapy. RESULTS: IL-17A levels were higher in RA vs osteoarthritis (OA)\\/normal joints (P < 0.05). IL-17A up-regulated MMP-1, -2, -9, and -13 in RA ST, RASFC, cartilage and chondrocyte cultures (P < 0.05). In combination with TNF-alpha and OSM, IL-17A shifted the MMP:TIMP-1 ratio in favor of matrix degradation (all P < 0.05). Cartilage proteoglycan depletion in response to IL-17A was mild; however, in combination with TNF-alpha or OSM showed almost complete proteoglycan depletion. Serum IL-17A was detected in 28% of patients commencing biologic therapy. IL-17A negative patients demonstrated reductions post therapy in serum MMP1\\/TIMP4, MMP3\\/TIMP1 and MMP3\\/TIMP4 ratios and an increase in CS846 (all P < 0.05). No significant changes were observed in IL-17A positive patients. CONCLUSIONS: IL-17A is produced locally in the inflamed RA joint. IL-17A promotes matrix turnover and cartilage destruction, especially in the presence of other cytokines, mimicking the joint environment. IL-17A levels are modulated in vivo, following anti-TNF therapy, and may reflect changes in matrix turnover.

  9. Study on the biological effect of radiation-degraded alginate and chitosan on plant in tissue culture

    International Nuclear Information System (INIS)

    The solution of chitosan (10%) and alginate (4%) were irradiated at doses of 10-250 kGy for degradation and the products were used for testing of plant growth promotion effect. The chitosan and alginate irradiated at 100 kGy and 75 kGy, respectively showed the strongest growth-promotion effect for plants namely L. latifolium, E. grandiflorum and C. morifolium in tissue culture. For shoot multiplication, the suitable concentrations are found to be ca. 50-200 mg/l for C. morifolium, 70-100 mg/l for L. latifolium and 30-100 mg/l E. grandiflorum with irradiated chitosan, while with irradiated alginate, it was 30-200 mg/l, 30-50 mg/l and 10-200 mg/l, respectively. The optimum concentrations for C. morifolium, E. grandiflorum, L. latifolium incubated on rooting medium are ca. 100 mg/l, 30 mg/l and 40 mg/l, respectively for irradiated chitosan and 100 mg/l for irradiated alginate. After acclimatizing for 30 days in the greenhouse, the survival ratio of the transferred C. morifolium, E. grandiflorum, L. latifolium plantlets treated with irradiated chitosan was improved 18%, 39% and 13%, respectively. (author)

  10. Monitoring Of Pollutants In Museum Environment

    Directory of Open Access Journals (Sweden)

    Ana-Maria Budu

    2015-10-01

    Full Text Available Art works are affected by environmental factors as light, temperature, humidity. Air pollutants are also implicated in their degradation. The pollution in museums has two sources: the air from outside, which brings usually dust and inorganic particles, and the inside sources – the materials used for casings (sealants, textiles placed on the display cases, varnishes, wood that emanate organic compounds. The dust is composed of particles with a diameter of approximately 2µm or higher, which come from soil (silica or animal and vegetal residues (skin cells, pollen. They facilitate water condensation on objects surface and biologic attack. The inorganic compounds are a result of materials combustion (SO2, NO2, NO and in presence of water they form acidic compounds which affect the museum objects. The organic compounds are usually peroxides, acids, phthalates, formaldehyde. The effects of these pollutants are: soiling, surface discolouration, embrittlement, corrosion. Therefore, conservators are interested in monitoring the pollution degree in the display cases or in the museum air and in analyzing the effects of pollutants on the exhibited objects. They use different methods for pollutants identification, like direct reading devices based on colorimetry, that can be read after few minutes and hours (they interact with the pollutants in atmosphere, or indirect reading samples that require a laboratory. The information gathered is used for the identification of pollution source and to analyze the concentration of pollutants needed to provoke damages on the surfaces of art objects. This paper is a review of pollutants that affect the art objects and of the monitoring systems used for their identification and measuring.

  11. Biochemical and cellularchanges in Oreochromis niloticus related to the water pollution of a degraded river - doi: 10.4025/actascibiolsci.v35i3.13207

    Directory of Open Access Journals (Sweden)

    Ary Gomes da Silva

    2013-08-01

    Full Text Available The effects of polluted water at three sites in the Marinho River, Brazil, on Oreochromis niloticus (Nile tilápia were investigated using histological, hematological and biochemical approaches. Fish exposed to the impacted water demonstrated that histological changes in gills were accompanied by nuclear and micronuclei abnormalities in cells. The activity of liver and plasma biomarkers (alkaline phosphatase (ALP, acid phosphatase (ACP, alanine aminotransferase (ALT, aspartate aminotransferase (AST and liver glutathione S-transferase (GST showed an expressive change due to the. The results were also correlated with the highest levels of Cu+2, Zn+2 and Mn+2 in the water. The data of this study evidenced the importance of using a set of biomarkers to quantify pollution in lentic ecosystems. Additionally, histological analyses of gills and erythrocytes have proven to be an important instrument for signaling the impact of pollutants in rivers.  

  12. Optimization of Two-species Whole-cell Immobilization System Constructed with Marine-derived Fungi and Its Biological Degradation Ability

    Institute of Scientific and Technical Information of China (English)

    陈慧英; 王明霞; 沈煜斌; 姚善泾

    2014-01-01

    Mycelia pellet formed spontaneously in the process of cultivation was exploited as a biological carrier for whole-cell immobilization due to its unique structural characteristic. An innovative two-species whole-cell im-mobilization system was achieved by inoculating the marine-derived fungus Pestalotiopsis sp. J63 spores into cul-ture medium containing another fungus Penicillium janthinellum P1 pre-grown mycelia pellets for 2 days without any pretreatment. In order to evaluate the biological degradation capacity of this novel constructed immobilization system, the immobilized pellets were applied to treat paper mill effluent and decolorize dye Azure B. The use of the constructed immobilization system in the effluent resulted in successful and rapid biodegradation of numerous in-soluble fine fibers. The optimum conditions of immobilized procedure for maximum biodegradation capacity were determined using orthogonal design with biomass of P1 pellets 10 g (wet mass), concentration of J63 spore 2×109 ml-1, and immobilization time 2 d. The results demonstrate that immobilized pellets have more than 99%biodegra-dation capacity in a ten-hour treatment process. The kinetics of biodegradation fits the Michaelis-Menten equation well. Besides, the decolorization capability of immobilized pellets is more superior than that of P1 mycelia pellets. Overall, the present study offers a simple and reproducible way to construct a two-species whole-cell immobiliza-tion system for sewage treatment.

  13. 纳米二氧化钛光催化降解水中有机污染物的研究%Study on photocatalytic degradation of organic pollutants in water by using nanometer titanium dioxide

    Institute of Scientific and Technical Information of China (English)

    黄艳娥; 琚行松

    2001-01-01

    Ti02在光催化降解水中有机污染物方面具有明显的优势。本文综述了Ti02光催化降解水中有机污染物时,pH值、Ti02表面改性、载体、外加氧化剂及其他因素对其光催化活性的影响。讨论了光电催化、太阳能利用等对光催化领域的推动作用。并指出在该领域的研究中存在问题和发展方向。%Studies have shown that TiO2 had obvious advantages in photocatalytic degradation of organic pollutants in water. In this paper the effects of factors such as pH value, surface modification of TiO2, the support, exterior oxidants and others etc.,on the photocatalytic activities of TiO2 when it photocatalytically degrades organic pollutants in water have been summarized. Meanwhile the driving effects of photoelectric catalyzing and solar energy utilizing on photocatalysis have been discussed.Its development trend and existing problems in it have also been pointed out.

  14. DETECTION OF PHENOL DEGRADING BACTERIA AND PSEUDOMONAS PUTIDA IN ACTIVATED SLUDGE BY POLYMERASE CHAIN REACTION

    OpenAIRE

    H. Movahedyan ، H. Khorsandi ، R. Salehi ، M. Nikaeen

    2009-01-01

    Phenol is one of the organic pollutants in various industrial wastewaters especially petrochemical and oil refining. Biological treatment is one of the considerable choices for removing of phenol present in these wastewaters. Identification of effective microbial species is considered as one of the important priorities for production of the biomass in order to achieve desirable kinetic of biological reactions. Basic purpose of this research is identification of phenol-degrading Pseudomonas Pu...

  15. Microbial degradation of monocyclic and polycyclic aromatic hydrocarbons in case of limited pollutant availability with nitrate as a potential electron acceptor; Der mikrobielle Abbau mono- und polyzyklischer aromatischer Kohlenwasserstoffe bei einer begrenzten Schadstoffverfuegbarkeit mit Nitrat als potentiellem Elektronenakzeptor

    Energy Technology Data Exchange (ETDEWEB)

    Linke, C.

    2001-07-01

    The possibility of using natural degradation processes for long-term remediation of tar oil contaminated sites was investigated. Field studies have shown that microbial decomposition of pollutants does take place in many sites but that it is limited by limited availability of pollutants and oxygen in soil. The investigations focused on the activation of BTEX and PAH degradation in situ by nitrate in the absence or in the presence of oxygen. Tensides should be used in order to enhance the availability of pollutants in water, especially in the case of hardly water-soluble PAH. A large-scale experiment was carried out on tar oil contaminated terrain; it was found that the availability of oxygen and not of PAH is the limiting factor so that adding of surfactants will not improve pollutant degradation. In contrast, the adding of tensides would mean even higher concentrations of oxygen-depleting substances in soil. [German] In der vorliegenden Arbeit wurden im Hinblick auf langfristige Sanierungsstrategien fuer teeroelkontaminierte Standorte Moeglichkeiten der Nutzung natuerlicher Abbauvorgaenge untersucht. Zahlreiche Feldstudien belegen, dass ein mikrobieller Schadstoffabbau an vielen Standorten stattfindet, dieser jedoch sowohl durch eine begrenzte Schadstoffverfuegbarkeit als auch durch den im Untergrund nur begrenzt zur Verfuegung stehenden Sauerstoff limitiert wird. Ziel dieser Arbeit war es abzuklaeren, inwiefern ein BTEX- und PAK-Abbau in situ auch in Abwesenheit von Sauerstoff durch Nitrat allein oder durch Nitrat in Kombination mit Sauerstoff aktiviert werden kann. Um insbesondere fuer die schlecht wasserloeslichen PAK eine ausreichende Schadstoffverfuegbarkeit zu gewaehrleisten, sollten auch Tenside zur Erhoehung der im Wasser vorliegenden Schadstoffmenge eingesetzt werden. Aufbauend auf die Laboruntersuchungen wurde im Rahmen von VEGAS{sup ix} ein Grossversuch zum mikrobiellen PAK-Abbau im Abstrom einer simulierten Teeroelkontamination durchgefuehrt

  16. Biological indication of heavy metal pollution in the areas of Donje Vlase and Cerje (southeastern Serbia using epiphytic lichens

    Directory of Open Access Journals (Sweden)

    Stamenković S.S.

    2013-01-01

    Full Text Available The performance of two epiphytic lichen species (Evernia prunastri (L. Ach. and Parmelia sulcata Taylor as bioindicators of heavy metal pollution in natural areas around the city of Niš (southeastern Serbia were evaluated. The concentration of 19 heavy metals in lichen samples was measured by inductively coupled plasma-optical emission spectroscopy. For the majority of the elements the concentrations found in Parmelia sulcata Taylor were higher than in Evernia prunastri (L. Ach. In addition, interspecific differences in heavy metal accumulation between Evernia prunastri (L. Ach. and Parmelia sulcata Taylor are observed. Parmelia sulcata Taylor showed a tendency to accumulate Fe, Mn, Ni and Ti while Evernia prunastri (L. Ach. preferentially concentrated Cu on both locations. A clear distinction between lithogenic (Mn-Cu-Ti and atmospheric elements (Ni-Co-Cr-Ag-Pb-Hg was achieved by cluster analysis. [Projekat Ministarstva nauke Republike Srbije, br. III41018, br. OI 171025, br. 172017 and br. III41017

  17. Persistent Organic Pollutants in albacore tuna (Thunnus alalunga) from Reunion Island (Southwest Indian Ocean) and South Africa in relation to biological and trophic characteristics.

    Science.gov (United States)

    Munschy, C; Bodin, N; Potier, M; Héas-Moisan, K; Pollono, C; Degroote, M; West, W; Hollanda, S J; Puech, A; Bourjea, J; Nikolic, N

    2016-07-01

    The contamination of albacore tuna (Thunnus alalunga) by Persistent Organic Pollutants (POPs), namely polychlorinated biphenyls (PCBs) and dichlorodiphenyl-trichloroethane (DDT), was investigated in individuals collected from Reunion Island (RI) and South Africa's (SA) southern coastlines in 2013, in relation to biological parameters and feeding ecology. The results showed lower PCB and DDT concentrations than those previously reported in various tuna species worldwide. A predominance of DDTs over PCBs was revealed, reflecting continuing inputs of DDT. Tuna collected from SA exhibited higher contamination levels than those from RI, related to higher dietary inputs and higher total lipid content. Greater variability in contamination levels and profiles was identified in tuna from RI, explained by a higher diversity of prey and more individualistic foraging behaviour. PCB and DDT contamination levels and profiles varied significantly in tuna from the two investigated areas, probably reflecting exposure to different sources of contamination. PMID:27084988

  18. Guidelines for the use of biological monitors in air pollution control (plants). Pt. 1. Methodological guidance for the drawing-up of biomonitoring guidelines (plants)

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, R.D. [Buero fuer Konzeptionelle Bioindikation, Jockgrim (Germany); Wagner, G. [Universitaet des Saarlandes, Saarbruecken (Germany). Inst. fuer Biogeographie; Finck, M.

    2000-04-01

    The main objective of this study is to encourage and promote further development of the methodological basis for a broader and more effective use of biological methods for monitoring the effects of air pollution on plants. It is not intended here to explain or discuss general criteria for the design of environmental monitoring studies and principal statistical methods for dealing with heterogeneously distributed spatial phenomena in detail. A further objective of this study is to give general guidance on how to - select suitable bioindicators, - develop, optimise and validate specific guidelines for the use of these bioindicators, - plan, design and employ biomonitoring studies for different purposes, - develop case-specific study plans determining how to apply an appropriate bioindicator (method-specific guideline) to a given task, case and area, - adapt principles of quality assurance and quality control to biomonitoring studies, - increase the importance and reliability of results obtained by bioindicators with respect to administrative measures. (orig.)

  19. Development of biological indices for identifying and evaluating impacts of pollutants on freshwater ecosystems. Annual progress report, June 1, 1976--June 1, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, J. Jr.; Benfield, E.F.; Buikema, A.L. Jr.; Dickson, K.L.; Hendricks, A.C.

    1977-01-01

    The overall objectives of this joint research effort were to devise and evaluate biological methods for determining the functional response of aquatic organisms to perturbations. Structural and functional aspects of autotrophic and heterotrophic attached microbial communities were studied in lotic systems with emphasis on carbon, nitrogen and sulfur. The uptake of carbon, nitrogen and sulfur under controlled and field situations was investigated along with biomass, ATP and chlorophyll measurement. Relationship of protozoan invasion and extinction rates to the eutrophication process were investigated. Protozoan invasion and extinction rates (utilizing artificial substrates) were measured under oligotrophic and eutrophic conditions in numerous lakes and reservoirs. Behavioral responses of zooplankton subjected to cooling water entrainment were examined. Zooplankton were subjected to various conditions that would be encountered during entrainment in order that the responses of the organisms might be ascertained. Detritus processing by macroinvertebrates was studied as a pollutional stress assessment technique.

  20. Coupling of photocatalytic and biological processes as a contribution to the detoxification of water: catalytic and technological aspects

    OpenAIRE

    Parra Cardona, Sandra Patricia; Pulgarin, César

    2005-01-01

    This research contributes to the study and development of a new degradation technique that couples solar and biological processes for the treatment of biorecalcitrant, nonbiodegradable, and/or toxic organic substances present in the aqueous medium. Efficient physicochemical pretreatments are necessary to modify the structure of the pollutants, by transforming them into less toxic and biodegradable intermediates, allowing then, a biological procedure to complete the degradation of the pollutan...

  1. Development of biological indices for identifying and evaluating impacts of pollutants on freshwater ecosystems. Annual progress report, June 1, 1975--February 28, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, J. Jr.; Benfield, E.F.; Buikema, A.L. Jr.; Dickson, K.L.; Hendricks, A.C.

    1976-01-01

    The overall objective of this joint research effort was to devise and evaluate biological methods for determining the functional response of aquatic organisms to perturbations. The research effort fell into four general categories: structural and functional aspects of autotrophic and heterotrophic attached microbial communities in lotic systems with emphasis on carbon, nitrogen, and sulfur. The uptake of carbon, nitrogen, and sulfur under controlled and field situations was investigated along with biomass, ATP, and chlorophyll measurement. Relationship of protozoan invasion and extinction rates to the eutrophication process. Protozoan invasion and extinction rates (utilizing artificial substrates) were measured under oligotrophic and eutrophic conditions in numerous lakes and reservoirs. Behavioral responses of zooplankton subjected to cooling water entrainment. Zooplankton were subjected to various conditions that would be encountered during entrainment in order that the responses of the organisms might be ascertained. Detritus processing by macroinvertebrates as a pollutional stress assessment technique. Exposed measured units of detrital material to pollutional stress through time and compared their rates of processing to processing rates of similar units that were not exposed to the stress. (auth)

  2. Application of a biofilm formed by a mixture of yeasts isolated in Vietnam to degrade aromatic hydrocarbon polluted wastewater collected from petroleum storage.

    Science.gov (United States)

    Nhi Cong, Le Thi; Ngoc Mai, Cung Thi; Thanh, Vu Thi; Nga, Le Phi; Minh, Nghiem Ngoc

    2014-01-01

    In this study, three good biofilm-forming yeast strains, including Candida viswanathii TH1, Candida tropicalis TH4 and Trichosporon asahii B1, were isolated from oil-contaminated water and sediment samples collected in coastal zones of Vietnam. These strains were registered in the GenBank database with the accession numbers JX129175, JX129176 and KC139404 for strain TH1, TH4 and B1, respectively. The biofilm formed by a mixture of these organisms degraded 90, 85, 82 and 67% of phenol, naphthalene, anthracene and pyrene, respectively, after a 7-day incubation period using an initial concentration of 600 ppm phenol and 200 ppm of each of the other compounds. In addition, this biofilm completely degraded these aromatic compounds, which were from wastewater collected from petroleum tanks in Do Xa, Hanoi after 14 days of incubation based on gas chromatography mass spectrometry analysis. To the best of our knowledge, reports on polycyclic aromatic hydrocarbon and phenol degradation by biofilm-forming yeasts are limited. The results obtained indicate that the biofilm formed by multiple yeast strains may considerably increase the degradation efficiency of aromatic hydrocarbon compounds, and may lead to a new approach for eliminating petroleum oil-contaminated water in Vietnam.

  3. Protection against LPS-induced cartilage inflammation and degradation provided by a biological extract of Mentha spicata

    Directory of Open Access Journals (Sweden)

    Kott Laima S

    2010-05-01

    Full Text Available Abstract Background A variety of mint [Mentha spicata] has been bred which over-expresses Rosmarinic acid (RA by approximately 20-fold. RA has demonstrated significant anti-inflammatory activity in vitro and in small rodents; thus it was hypothesized that this plant would demonstrate significant anti-inflammatory activity in vitro. The objectives of this study were: a to develop an in vitro extraction procedure which mimics digestion and hepatic metabolism, b to compare anti-inflammatory properties of High-Rosmarinic-Acid Mentha spicata (HRAM with wild-type control M. spicata (CM, and c to quantify the relative contributions of RA and three of its hepatic metabolites [ferulic acid (FA, caffeic acid (CA, coumaric acid (CO] to anti-inflammatory activity of HRAM. Methods HRAM and CM were incubated in simulated gastric and intestinal fluid, liver microsomes (from male rat and NADPH. Concentrations of RA, CA, CO, and FA in simulated digest of HRAM (HRAMsim and CM (CMsim were determined (HPLC and compared with concentrations in aqueous extracts of HRAM and CM. Cartilage explants (porcine were cultured with LPS (0 or 3 μg/mL and test article [HRAMsim (0, 8, 40, 80, 240, or 400 μg/mL, or CMsim (0, 1, 5 or 10 mg/mL, or RA (0.640 μg/mL, or CA (0.384 μg/mL, or CO (0.057 μg/mL or FA (0.038 μg/mL] for 96 h. Media samples were analyzed for prostaglandin E2 (PGE2, interleukin 1β (IL-1, glycosaminoglycan (GAG, nitric oxide (NO and cell viability (differential live-dead cell staining. Results RA concentration of HRAMsim and CMsim was 49.3 and 0.4 μg/mL, respectively. CA, FA and CO were identified in HRAMsim but not in aqueous extract of HRAM. HRAMsim (≥ 8 μg/mL inhibited LPS-induced PGE2 and NO; HRAMsim (≥ 80 μg/mL inhibited LPS-induced GAG release. RA inhibited LPS-induced GAG release. No anti-inflammatory or chondroprotective effects of RA metabolites on cartilage explants were identified. Conclusions Our biological extraction procedure produces

  4. Quantifying restoration success and recovery in a metal-polluted stream: A 17-year assessment of physicochemical and biological responses

    Science.gov (United States)

    Clements, W.H.; Vieira, N.K.M.; Church, S.E.

    2010-01-01

    Evaluating the effectiveness of stream restoration is often challenging because of the lack of pre-treatment data, narrow focus on physicochemical measures and insufficient post-restoration monitoring. Even when these fundamental elements are present, quantifying restoration success is difficult because of the challenges associated with distinguishing treatment effects from seasonal variation, episodic events and long-term climatic changes.2. We report results of one of the most comprehensive and continuous records of physical, chemical and biological data available to assess restoration success for a stream ecosystem in North America. Over a 17 year period we measured seasonal and annual changes in metal concentrations, physicochemical characteristics, macroinvertebrate communities, and brown trout Salmo trutta populations in the Arkansas River, a metal-contaminated stream in Colorado, USA.3. Although we observed significant improvements in water quality after treatment, the effectiveness of restoration varied temporally, spatially and among biological response variables. The fastest recovery was observed at stations where restoration eliminated point sources of metal contamination. Recovery of macroinvertebrates was significantly delayed at some stations because of residual sediment contamination and because extreme seasonal and episodic variation in metal concentrations prevented recolonization by sensitive species. Synthesis and applications. Because recovery trajectories after the removal of a stressor are often complex or nonlinear, long-term studies are necessary to assess restoration success within the context of episodic events and changes in regional climate. The observed variation in recovery among chemical and biological endpoints highlights the importance of developing objective criteria to assess restoration success. Although the rapid response of macroinvertebrates to reduced metal concentrations is encouraging, we have previously demonstrated that

  5. Particle Pollution

    Science.gov (United States)

    ... Your Health Particle Pollution Public Health Issues Particle Pollution Recommend on Facebook Tweet Share Compartir Particle pollution ... see them in the air. Where does particle pollution come from? Particle pollution can come from two ...

  6. Human biological monitoring as demonstrated by means of a heavy-metal polluted abandoned site; Human-Biomonitoring am Beispiel einer Schwermetallaltlast

    Energy Technology Data Exchange (ETDEWEB)

    Elison, M.; Schulte-Hostede, S. [GSF-Forschungzentrum fuer Umwelt und Gesundheit Neuherberg (Germany). Inst. fuer Oekologische Chemie

    1997-12-31

    Models for estimating exposure permit to make a rough assessment of the risk emanating from a contaminated area. But it must not be overlooked that such models are fraught with considerable weaknesses.- In studies such as the one described, concerned citizens should additionally be examined in order to obtain supplementary information and to aid interpretation. Such human biological monitoring makes sense only if the persons in question actually live in the contaminated areas, so that a higher exposure may reasonably be expected. Human biological monitoring is to help assess the inner exposure of human beings to pollutants emanating from the contaminated area. (orig./SR) [Deutsch] Mit Hilfe von Modellen zur Expositionsabschaetzung ist man nach den oben dargestellten Vorgehensweisen in der Lage, eine orientierende Bewertung des von einer kontaminierten Flaeche ausgehenden Risikos vorzunehmen. Dabei ist jedoch zu beruecksichtigen, dass solche Modelle mit erheblichen Schwachstellen belastet sind. Zur Ergaenzung und Interpretationshilfe sind bei Untersuchungen wie der hier vorgestellten auch Untersuchungen an den betroffenen Buergen vorzunehmen. Dieses Human-Biomonitoring hat nur dort einen Sinn, wo sichergestellt ist, dass die Menschen dort tatsaechlich auf belasteten Flaechen leben und damit eine erhoehte Belastung der Menschen anzunehmen ist. Das Human-Biomonitoring soll eine Abschaetzung der inneren Belastung des Menschen mit Schadstoffen, die von der kontaminierten Flaeche herruehren, ermoeglichen. (orig./SR)

  7. Degradations and Rearrangement Reactions

    Science.gov (United States)

    Zhang, Jianbo

    This section deals with recent reports concerning degradation and rearrangement reactions of free sugars as well as some glycosides. The transformations are classified in chemical and enzymatic ways. In addition, the Maillard reaction will be discussed as an example of degradation and rearrangement transformation and its application in current research in the fields of chemistry and biology.

  8. INVESTIGATION OF THE NUTRITIONAL REQUIREMENTS AND CORRESPONDING CODING GENES OF HYDROCARBON-DEGRADING BACTERIAL STRAINS FOR THE PRODUCTION OF BIOMASS USEFUL IN BIOREMEDIATION OF PETROLEUM POLLUTION

    OpenAIRE

    Attar, Al Zahraa Omar

    2015-01-01

    Petroleum-derived contamination events constitute one of the most dominant sources of environmental deterioration in the industrialized countries. Hydrocarbon compounds are recognized as toxic and carcinogenic organic pollutants and environmentally persistent. Bioremediation efforts aim to confine, restrain and mitigate the magnitude of contamination, in order to prevent additional decline of the environment and to protect all life forms from exposure to hazardous materials. The aim of this p...

  9. Primary and oxidative DNA damage in salivary leukocytes as a tool for the evaluation of air pollution early biological effects in children: current status of the MAPEC (Monitoring Air Pollution Effects on Children for supporting public health policy) study

    OpenAIRE

    Samuele Vannini; Sara Levorato; Elisabetta Ceretti; Sara Bonetta; Annalaura Carducci; Antonella De Donno; Alessio Perotti; Silvia Bonizzoni; Alberto Bonetti

    2015-01-01

    Background - Air pollution is a global problem: airborne or deposited pollutants are present everywhere on the planet, from highly polluted to remote areas. Twenty per cent of the EU urban population lives in areas where the EU air quality 24-hour limit value for particulate matter (PM10) is exceeded. At present, PM is Europe's most problematic pollutant in terms of harm to health, as reported by European Environmental Agency (EEA) in the EEA Technical Report on Air quality in Europe, 2011. A...

  10. Visible light-induced degradation of organic pollutants using Fe(Ⅱ) supported on silica 8el as an effective catalyst

    Institute of Scientific and Technical Information of China (English)

    ZHAO Chao; HUANG YingPing; FANG YanFen; JIANG LiRong; LIU LiMing; King Tong Lau

    2008-01-01

    Silica gel-supported Fe(Ⅱ) (SiOFe) was prepared and used for heterogeneous degradation of sulforho-damine B (SRB) and 2,4-dichlorophenol (DCP) under visible irradiation (λ>420 nm) as an effective catalyst. UV-visible spectra, and infrared Spectrophotometry (IR), fluorescence, total organic carbon (TOC) and electron spin resonance (ESR) measurements were employed to analyze the photoreaction products. The results showed that SRB could be efficiently degraded by SiOFe/H2O2 system under visible irradiation with 100% decolorization and 72.3% TOC removal after 180 min illumination. The results of ESR and fluorescence measurements indicated that the oxidative process was predominated mainly by the hydroxyl radical (.OH) generated in the system.

  11. Effect of pH on biologic degradation of Microcystis aeruginosa by alga-lysing bacteria in sequencing batch biofilm reactors

    Institute of Scientific and Technical Information of China (English)

    Hongjing LI; Mengli HAO; Jingxian LIU; Chen CHEN1; Zhengqiu FAN; Xiangrong WANG

    2012-01-01

    In this paper, the effect of pH on biological degradation of Microcystis aeruginosa by alga-lysing bacteria in laboratory-scale sequencing batch biofilm reactors (SBBRs) was investigated. After 10 d filming with waste activated sludge, the biological film could be formed, and the bioreactors in which laid polyolefin resin filler were used to treat algal culture. By comparing the removal efficiency of chlorophyll a at different aerobic time, the optimum time was determined as 5 h. Under pH 6.5, 7.5, and 8.5 conditions, the removal rates of Microcystis aeruginosa were respectively 75.9%, 83.6%, and 78.3% (in term of chlorophyll a), and that of Chemical Oxygen Demand (CODMn) were 30.6%, 35.8%, and 33.5%. While the removal efficiencies of ammonia nitrogen (NH+ -N) were all 100%. It was observed that the sequence of the removal efficiencies of algae, NH+ -N and organic matter were pH 7.5 〉 pH 8.5 〉 pH 6.5. The results showed that the dominant alga-lysing bacteria in the SBBRs was strain HM-01, which was identified as Bacillus sp. by Polymerase Chain Reaction (PCR) amplification of the 16S rRNA gene, Basic Local Alignment Search Tool (BLAST) analysis, and compar- ison with sequences in the GenBank nucleotide database. The algicidal activated substance which HM-01 strain excreted could withstand high temperature and pressure, also had better hydrophily and stronger polarity.

  12. Application of Microorganisms in the Degradation of Polluted Chemicals in Aquatic Environments%微生物在水环境污染物降解中的应用

    Institute of Scientific and Technical Information of China (English)

    彭燕; 蔡俊鹏

    2008-01-01

    Every year, waters on earth receive large quantities of wastewater from industry, agriculture, fish and poultry raising, and municipal sewage treatment plants. Consequently, the aquatic environment on the earth is under a serious challenge from a very large quantity of pollutants such as antibiotics, insecticides, herbicides, hydrocarbons, etc., contained in the domestic wastewater, industrial and agricultural waste water and illegal effluents. In particular, with the development of intensive aquiculture and poultry, the effluent pollution has recently become more and more serious with more attentions. Furthermore more and more chemical pollutants discharged into aquatic environment have been detected with the advancement of analytical techniques. These chemicals can cause toxic effects on water habitats after discharged into aquatic environment. However, microorganisms have many key functions in pollution control. In this review, applications of microorganism in the degradation of chemicals in aquatic environments are reviewed. It was concluded that most applications of microorganisms degrading chemicals focused on aquaculture waters, whereas other aquatic systems (such as river, lake, sea, coastal waters) have been scarcely studied.%每年有大量来自工业、农业、养殖业和城市污水处理厂的废水被排入到水环境中,因此,地球上的水环境面临大量来自生活废水、工农业废水、非法排放的废水及其它废水的污染物质(如抗生素、杀虫剂,除草剂、烃等)的严重挑战,特别是近年来随着集约化养殖的发展,废水污染问题日益突出,并且随着分析手段的进步,能够检测到被排入水环境中的化学污染物质也越来越多,这些化学污染物对水环境中的生物产生有害影响.但是,微生物在污染控制上具有许多重要的作用.因此,本文对微生物在水环境污染物降解中的应用进行了评论.结果表明微生物主要是应用

  13. Catalytic degradation of recalcitrant pollutants by Fenton-like process using polyacrylonitrile-supported iron (II) phthalocyanine nanofibers: Intermediates and pathway.

    Science.gov (United States)

    Zhu, Zhexin; Chen, Yi; Gu, Yan; Wu, Fei; Lu, Wangyang; Xu, Tiefeng; Chen, Wenxing

    2016-04-15

    Iron (II) phthalocyanine (FePc) molecules were isolated in polyacrylonitrile (PAN) nanofibers by electrospinning to prevent the formation of dimers and oligomers. Carbamazepine (CBZ) and Rhodamine B (RhB) degradation was investigated during a Fenton-like process with FePc/PAN nanofibers. Classical quenching tests with isopropanol and electron paramagnetic resonance tests with 5,5-dimethyl-pyrroline-oxide as spin-trapping agent were performed to determine the formation of active species during hydrogen peroxide (H2O2) decomposition by FePc/PAN nanofibers. After eight recycles for CBZ degradation over the FePc/PAN nanofibers/H2O2 system, the removal ratios of CBZ remained at 99%. Seven by-products of RhB and twelve intermediates of CBZ were identified using ultra-performance liquid chromatography and high-resolution mass spectrometry. Pathways of CBZ and RhB degradation were proposed based on the identified intermediates. As the reaction proceeded, all CBZ and RhB aromatic nucleus intermediates decreased and were transformed to small acids, but also to potentially toxic epoxide-containing intermediates and acridine, because of the powerful oxidation ability of •OH in the catalytic system. PMID:26949842

  14. Efficiency comparison of photocatalysis and photoelectrocatalysis for wastwater pollutant degradation%光催化与光电催化废水污染物降解活性比较

    Institute of Scientific and Technical Information of China (English)

    王立博; 何涛; 张亚晰; 翁永根; 王海花

    2016-01-01

    探究光催化与光电催化在污染物废水光降解方面的活性差异。利用常规刮涂“doctor blade”工艺在金属钛片表面制备TiO2纳米颗粒聚集体薄膜,采用SEM和XRD对薄膜结构进行表征。配制氨氮和甲基橙染料模拟废水进行光催化和光电催化降解反应,采用分光光度法测量模拟废水降解效率。结果表明,对于易于氧化降解的甲基橙染料废水,光电催化过程中电子和空穴对分离效率的提高使该技术相比于传统的光催化具有更高的降解效率。然而,对于含有较稳定N—H键的氨氮废水的光降解,空穴的界面传递过程可能已不再是降解反应的速控步骤,因此两种光降解技术表现出近乎相同活性。%The efficiency difference of photocatalysis and photoelectrocatalysis processes for photo-degradation of liquid pollutions was investigated. TiO2 nanoparticle-aggregating films were prepared on the surface of Ti plates by the common‘doctor blade’method. The structure of TiO2 films was characterized by means of scanning electron microscope and powder X-ray diffraction techniques. Photocatalytic and photoelectro-catalytic degradation were carried out by using ammonia nitrogen and methyl orange solutions as the simu-lated wastewater,respectively. The degradation rates were evaluated by spectrophotometry. The results indicated that compared with traditional photocatalysis,the technology remarkably possessed higher degra-dation rates of methyl orange,which tended to be oxidized,by improving separation efficiency of electron and hole during photoelectrocatalysis. The two techniques showed almost the same efficiencies for the degradation of ammonia nitrogen,because the bonding energy of N—H was much higher and the hole interface transfer rate were no longer the rate-determining step for the whole degradation reaction.

  15. 新疆油污土壤中石油烃降解菌筛选及鉴定%Screen and identification of oH-degrading bacteria from oil polluted soil in Xingjiang

    Institute of Scientific and Technical Information of China (English)

    孙玉萍; 王红英; 刘素辉; 倪萍; 马海梅

    2011-01-01

    Objective To isolate and identify petroleum-degrading bacteria from oil-polluted soil in Karamay of Xinjiang Uyghur Autonomous Region. Methods By enriching the polluted soil with petroleum hydrocarbons as the only carbon source,the oil-degradation bacterium from oil-contaminated soil was screened and identified by its 16S rDNA sequencing. Then basic local alignment search tool( BLAST) was used to indicate the sequence of the isolates from the GenBank. Results Totally 18 bacteria strains were isolated and identified from oil-polluted soil. The sequence of its 16S rDNA indicated that there were 98% of homology to the representative strains. The main strain were Pseudomonas sp. , Planococcus sp. , Arthrobacter sp. ,Psychrobacter sp. ,Brevibacillus agri sp. ,and Brevundimonas sp.. The bacteria strains from different oil-polluted soil were different and there were more bacteria strains in heavy oil-polluted soil. Conclusion The main strain was Pseudomonas sp. In oil-polluted soid and the bacteria strains were different in different oil-polluted soil.%目的 从新疆克拉玛依油田油污土壤中筛选具有降解能力的菌株,为今后构建本源石油降解微生物菌群提供技术支持和菌种储备.方法通过以石油烃为唯一碳源的选择培养基的分离培养,获得能够利用石油烃为碳源的菌株,并通过16S rDNA序列测定方法对菌株进行鉴定.结果分离得到18株能以石油作为唯一碳源和能源的石油降解菌株,通过序列分析,初步鉴定为假单胞菌属(Pseudomonas sp.)、动性球菌属(Planococcus sp.)、节杆菌属(Arthrobacter sp.)、嗜冷杆菌(Psychrobacter sp.)、短杆菌属(Brevibacillus agri sp.)等5类.在不同土壤中分离出的降解菌株不同,含油量较高的土壤中种类较多.结论新疆克拉玛依油田油污土壤中的石油降解菌株以假单胞菌属为主,而且随着污染严重程度的不同降解菌株的种类也不同.

  16. Treatment of hydrocarbon-rich wastewater using oil degrading bacteria and phototrophic microorganisms in rotating biological contactor: Effect of N:P ratio

    International Nuclear Information System (INIS)

    Treatment of hydrocarbon-rich industrial wastewater in bioreactors using heterotrophic microorganisms is often associated with various operational problems. In this study, a consortium of phototrophic microorganisms and a bacterium is developed on the discs of a rotating biological contactor (RBC) for treatment of wastewater containing diesel oil. The reactor was fed with oil degrading bacterium, Burkholderia cepacia and oil tolerant phototrophic microorganisms. After biofilm formation and acclimatization to 0.6% (v/v) diesel, continuous-mode operation was initiated at 21 h hydraulic retention time (HRT). Residual diesel in the effluent was 0.003%. Advantages of this system include good total petroleum hydrocarbon (TPH) removal, no soluble carbon source requirement and good settleability of biosolids. Biofilm observations revealed the predominance of B. cepacia and cyanobacteria (Phormidium, Oscillatoria and Chroococcus). The N:P ratio affected the relative dominance of the phototrophic microorganisms and bacterial culture. This ratio was a critical factor in determining the performance efficiency of the reactor. At 21 h HRT and organic loading of 27.33 g TPH/m2 d, the N:P ratio 28.5:1 and 38:1 both yielded high and almost comparable TPH and COD removal efficiencies. This study presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries

  17. Reactor for biological elimination of poorly degradable hydrocarbons by adjustment of substrate-specific retention times; Reaktor zur biologischen Eliminierung schwer abbaubarer Kohlenwasserstoffe durch Einstellung substratspezifischer Verweilzeiten

    Energy Technology Data Exchange (ETDEWEB)

    Brambach, R.

    1997-11-01

    Industrial waste water cleaning increasingly makes use of biological processes based on immobilized biomass, in order to ensure the aimed elimination of toxic substances. A novel, efficient reactor technique was developed, by which dangerous, poorly degradable dissolved hydrocarbons are selectively retained in the bioreactor thanks to an integrated membrane, while other substances are quickly discharged from the system via the effluent. With a synthetic waste water, this selective retention method achieved substrate-specific retention times which were five to fifty times higher than those of a merely hydrodynamically operated reactor system. In addition, the decoupling of high reactor and low effluent concentrations results in a higher biochemical activity in the reactor in comparison with conventional process techniques. (orig.) [Deutsch] In der industriellen Abwasserreinigung werden verstaerkt Bioverfahrenstechniken mit immobilisierter Biomasse eingesetzt, um eine gezielte Eliminierung gefaehrlicher Stoffe durchzufuehren. - Hierzu wurde eine neuartige leistungsfaehige Reaktortechnik entwickelt, die mittels einer im Bioreaktor integrierten Membran gefaehrliche, schwer abbaubare geloeste Kohlenwasserstoffe selektiv im Bioreaktor zurueckhaelt, waehrend andere Stoffe das System schnell ueber den Ablauf verlassen. Durch den stoffselektiven Rueckhalt wurden an einem synthetischen Abwasser substratspezifische Verweilzeiten erzielt, die um den Faktor 5 bis 50 ueber denen eines rein hydrodynamisch bestimmten Reaktorsystems liegen. Darueber hinaus wird aufgrund der Entkopplung von hoher Reaktor- und niedriger Ablaufkonzentration eine im Vergleich zu herkoemmlichen Verfahrenstechniken hoehere biochemische Aktivitaet im Reaktor erzielt. (orig.)

  18. Illicit drugs as new environmental pollutants: cyto-genotoxic effects of cocaine on the biological model Dreissena polymorpha.

    Science.gov (United States)

    Binelli, A; Pedriali, A; Riva, C; Parolini, M

    2012-03-01

    The increase in global consumption of illicit drugs has produced not only social and medical problems but also a potential new environmental danger. Indeed, it has been established that drugs consumed by humans end up in surface waters, after being carried through the sewage system. Although many studies to measure concentrations of several drugs of abuse in freshwater worldwide have been conducted, no data have been available to evaluate their potentially harmful effects on non-target organisms until now. The present study represents the first attempt to investigate the cyto-genotoxic effects of cocaine, one of the primary drugs consumed in Western Countries, in the biological model Dreissena polymorpha by the use of a biomarker battery. We performed the following tests on Zebra mussel hemocytes: the single cell gel electrophoresis (SCGE) assay, the apoptosis frequency evaluation and the micronucleus assay (MN test) for the evaluation of genotoxicity and the lysosomal membranes stability test (neutral red retention assay; NRRA) to identify the cocaine cytotoxicity. We exposed the molluscs for 96 h to three different nominal concentrations in water (40 ng L(-1); 220 ng L(-1); and 10 μg L(-1)). Cocaine caused significant (papoptosis, which was evident in samples from even the lowest environmental cocaine concentration. Because cocaine decreased the stability of lysosomal membranes, we also highlighted its cytotoxicity and the possible implications of oxidative stress for the observed genotoxic effects. PMID:22119280

  19. Combined biological treatment of sinter plant waste water, blast furnace gas scrubber water polluted groundwater and coke plant effluent

    Energy Technology Data Exchange (ETDEWEB)

    Antoine van Hoorn [Corus Staal, IJmuiden (Netherlands)

    2006-07-01

    Waste water from the Corus coke plant in IJmuiden had been handled by the activated sludge process since start-up in 1972 but in the eighties it was clear that although this removed most phenols, the rest of the COD and thiocyanate must also be removed before discharge. The paper describes the original water treatment process and the higher pressure gas scrubber system for removal of SO{sub 2}, heavy metals and other harmful components. It goes on to describe development of a combined biological treatment system, the heart of which is the so-called Bio 2000. The performance of this new plant is discussed. COD concentrations are very constant but Total Kjeldahl Nitrogen (TKN) concentrations fluctuate. COD, TKN and heavy metals are in compliance but cyanide and suspended solids are not always so. A method of overcoming this is being sought. This paper was presented at a COMA meeting in March 2005 held in Scunthorpe, UK. 10 figs., 2 tabs.

  20. The Research of the Bio-degradation of Organic Pollutants During Exploitation and Utilization of Oil Shale%油页岩开采利用地下水有机污染物生物降解的研究

    Institute of Scientific and Technical Information of China (English)

    马然; 张清; 张兰英; 王显胜; 樊亚楠; 宋顶峰

    2013-01-01

    To solve the problem of organic pollutants product in groundwater during exploitation and utilization of oil shale, the article took the oil degrading strains after domestication and cultivation to research the bio-degradation of the organic pollutants. The indoor research conducted at low temperature (10℃ ) and at shaking speed of 120 r/min. The experimental results show that: when the initial concentration of 200 mg/L, the optimum condition of the strains using the organic pollutants in groundwater was at pH 7, for inoculation of 5 mL, used ammonium chloride(0.05%) as the best nitrogen source and potassium sulfate(0.05%) as the best source of phosphorus. After 6 days at the optimum condition the concentration of total petroleum hydrocarbon could reduce from 200 mg/L to 33.94 mg/L. By the strains the degradation rate of the total petroleum hydrocarbon and COD was 83.03% and 67.58%, respectively. The biodegradation was proved to be first-order kinetic equation by kinetic analysis of degradation process under the initial concentration of the total petroleum hydrocarbon at 20 mg/L, and the total petroleum hydrocarbon initial concentration between 50-300 mg/L degradation meet zero-order kinetic equation.%为解决油页岩在开采利用中有机物对地下水的污染问题,试验采用驯化培养的石油降解菌,对地下水中的有机污染物进行生物降解。在低温(10℃)、120 r/min条件下,通过室内试验,确定菌群降解地下水中有机污染物的最佳pH为7,接种量为5 mL(8×106个/mL),初始浓度为200 mg/L,辅助氮源为氯化铵(0.05%),辅助磷源为磷酸二氢铵(0.05%)。在此最佳条件下,反应6天后总石油烃质量浓度为33.94 mg/L,菌群对总石油烃及COD的降解率分别为83.03%及67.58%。通过对降解过程的动力学研究分析可知,总石油烃初始浓度为20 mg/L时的降解符合一级动力学方程,50~300 mg/L时的降解符合零级动力学方程。

  1. In-situ microwave synthesis of graphene-TiO2 nanocomposites with enhanced photocatalytic properties for the degradation of organic pollutants.

    Science.gov (United States)

    Shanmugam, Mahalingam; Alsalme, Ali; Alghamdi, Abdulaziz; Jayavel, Ramasamy

    2016-10-01

    Graphene-titanium oxide (G-TiO2) nanocomposites were synthesized by a novel surfactant free, environmentally friendly one-port in-situ microwave method. The structure of the nanocomposite was characterized by the X-ray diffraction analysis and the morphology by using scanning electron microscopic and transmission electron microscopic images. The functional groups and carbon band structures were identified using FTIR and Raman spectral analysis. TiO2 nanoparticles in the size range of 5-10nm were distributed on the graphene sheets. The surface area of pure TiO2 and G-TiO2 nanocomposite was measured to be 20.11 and 173.76m(2)/g respectively. The pore volume and pore size of TiO2 were 0.018cm(3)/g and 1.5266nm respectively. G-TiO2 composite possesses higher pore volume (0.259cm(3)/g) and pore size 3.2075nm. The binding states of C, O and Ti of nanocomposite were analyzed by X-ray photoelectron spectroscopy, which confirmed the chemical bonding between graphene-TiO2. The photocatalytic activity of pure TiO2 and G-TiO2 nanocomposite was studied under UV and visible light irradiation sources with methylene blue dye. It has been observed that the degradation was faster in G-TiO2 nanocomposite than pure TiO2 nanoparticles. The rate constant and half life time were calculated from the kinetic studies of the degradation. The highest degradation efficiency of 97% was achieved in UV light and 96% for visible light irradiation with G-TiO2 as a catalyst. The studies reveal that G-TiO2 nanocomposite can be an effective catalyst for industrial waste water treatment.

  2. In-situ microwave synthesis of graphene-TiO2 nanocomposites with enhanced photocatalytic properties for the degradation of organic pollutants.

    Science.gov (United States)

    Shanmugam, Mahalingam; Alsalme, Ali; Alghamdi, Abdulaziz; Jayavel, Ramasamy

    2016-10-01

    Graphene-titanium oxide (G-TiO2) nanocomposites were synthesized by a novel surfactant free, environmentally friendly one-port in-situ microwave method. The structure of the nanocomposite was characterized by the X-ray diffraction analysis and the morphology by using scanning electron microscopic and transmission electron microscopic images. The functional groups and carbon band structures were identified using FTIR and Raman spectral analysis. TiO2 nanoparticles in the size range of 5-10nm were distributed on the graphene sheets. The surface area of pure TiO2 and G-TiO2 nanocomposite was measured to be 20.11 and 173.76m(2)/g respectively. The pore volume and pore size of TiO2 were 0.018cm(3)/g and 1.5266nm respectively. G-TiO2 composite possesses higher pore volume (0.259cm(3)/g) and pore size 3.2075nm. The binding states of C, O and Ti of nanocomposite were analyzed by X-ray photoelectron spectroscopy, which confirmed the chemical bonding between graphene-TiO2. The photocatalytic activity of pure TiO2 and G-TiO2 nanocomposite was studied under UV and visible light irradiation sources with methylene blue dye. It has been observed that the degradation was faster in G-TiO2 nanocomposite than pure TiO2 nanoparticles. The rate constant and half life time were calculated from the kinetic studies of the degradation. The highest degradation efficiency of 97% was achieved in UV light and 96% for visible light irradiation with G-TiO2 as a catalyst. The studies reveal that G-TiO2 nanocomposite can be an effective catalyst for industrial waste water treatment. PMID:27588719

  3. Cu(2)ZnSnS(4)-Pt and Cu(2)ZnSnS(4)-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation.

    Science.gov (United States)

    Yu, Xuelian; Shavel, Alexey; An, Xiaoqiang; Luo, Zhishan; Ibáñez, Maria; Cabot, Andreu

    2014-07-01

    Cu2ZnSnS4, based on abundant and environmental friendly elements and with a direct band gap of 1.5 eV, is a main candidate material for solar energy conversion through both photovoltaics and photocatalysis. We detail here the synthesis of quasi-spherical Cu2ZnSnS4 nanoparticles with unprecedented narrow size distributions. We further detail their use as seeds to produce CZTS-Au and CZTS-Pt heterostructured nanoparticles. Such heterostructured nanoparticles are shown to have excellent photocatalytic properties toward degradation of Rhodamine B and hydrogen generation by water splitting. PMID:24946131

  4. A highly uniform ZnO/NaTaO{sub 3} nanocomposite: Enhanced self-sensitized degradation of colored pollutants under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Guanjie; Tang, Changhe [School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021 (China); Zhang, Bo [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 (China); Zhao, Lanxiao; Su, Yiguo [School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021 (China); Wang, Xiaojing, E-mail: wang_xiao_jing@hotmail.com [School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021 (China)

    2015-10-25

    In this study, a highly uniform ZnO/NaTaO{sub 3} composite was prepared via simple hydrothermal synthesis. XRD confirmed the composite was constructed by pure cubic phase of NaTaO{sub 3} and hexagonal phase of ZnO. SEM analysis showed that as-prepared ZnO/NaTaO{sub 3} shaped as an irregular ginger with an obviously smaller size than that of pure ZnO without obvious agglomeration. EDS mapping demonstrated that the four elements (Na, Ta, O, Zn) in the composite were very uniformly distributed. The photocatalytic behaviors of as-prepared composites were studied in the degradation of methylene blue both under UV and visible irradiation. The bare ZnO showed the highest activity with 99.8% methylene blue (MB) photodegraded in 70 min under UV light irradiation whereas 94% photodegraded rate was achieved for ZnO/NaTaO{sub 3}. More importantly, the uniform composite of ZnO/NaTaO{sub 3} exhibited effective degradation of methylene blue under visible light which can be attributed to the well dyes adsorption abilities and the high efficiency of electron separation, induced by the synergistic effect between ZnO and NaTaO{sub 3}. It is confirmed the dye rather than a semiconductor is excited under visible light irradiation and a self-sensitized photocatalytic mechanism was then proposed based on the experimental results. - Graphical abstract: Visible light photocatalytic activity of ZnO/NaTaO{sub 3} and proposed schematic of self-sensitization directed photogradation of MB. - Highlights: • Highly uniform ZnO/NaTaO{sub 3} photocatalysts were fabricated by hydrothermal method. • ZnO/NaTaO{sub 3} composite exhibited effective degradation of MB under visible light. • ZnO/NaTaO{sub 3} composite effectively promoted dye adsorption and electrons separation. • A self-sensitized photocatalytic mechanism was proposed for the degradation of dye.

  5. Synergistic effect of oxygen vacancy and nitrogen doping on enhancing the photocatalytic activity of Bi2O2CO3 nanosheets with exposed {0 0 1} facets for the degradation of organic pollutants

    Science.gov (United States)

    Zhang, Yafei; Zhu, Gangqiang; Hojamberdiev, Mirabbos; Gao, Jianzhi; Hao, Jing; Zhou, Jianping; Liu, Peng

    2016-05-01

    Single-crystalline bare Bi2O2CO3 (BOC) nanosheets with exposed {0 0 1} facets and nitrogen-doped Bi2O2CO3 (NBOC) flower-like microstructures were synthesized by a simple hydrothermal method. The nitrogen-doped Bi2O2CO3 flower-like microstructures with oxygen vacancy (UV-NBOC) were obtained by irradiating the NBOC microstructures with UV light for 2 h in ethanol. The UV-vis diffuse reflectance spectra showed that the NBOC and UV-NBOC nanosheets exhibit an obvious red shift in light absorption band compared with the pure BOC nanosheets. Rhodamine B (RhB) was chosen as a model organic pollutant to verify the influence of oxygen vacancy and nitrogen doping on the photocatalytic activity of Bi2O2CO3 under simulated solar light irradiation. Judging from the kinetics of RhB photodegradation over the synthesized samples, a synergistic effect between oxygen vacancy and nitrogen doping was found with a remarkable increase (more than 10 and 2 times) in the photocatalytic activity of UV-NBOC compared with BOC and NBOC, respectively. Moreover, the UV-NBOC also exhibited an excellent cyclability and superior photocatalytic activity toward degradation of other organic pollutants (methylene blue, Congo red, Bisphenol A) under simulated solar light irradiation.

  6. FIRST EXPLORATION OF MECHANISM OF DEGRADATION OF ORGANIC POLLUTANTS BY DSA ANODE CATALYTIC OXIDATION%DSA类阳极催化氧化降解有机污染物的机理初探

    Institute of Scientific and Technical Information of China (English)

    宋卫锋; 吴斌; 马前; 李义久; 倪亚明

    2001-01-01

    Electrolytic catalysis oxidation method is one of AOT(Advanced Oxidation Technologies), which are developed newly abroad. An simple and convenient detecting means of OH* radicals and DSA(Dimensionally Stable Anodes)--typed anodes, made by ourselves with special technology, is employed in this study. The results show that a mass of OH* radicals, with very high oxidation ability, can be produced during electrolysis. They can oxide the organic pollutants in the wastwater, i e the pollutants are degraded in an indiret way, which is the main mechanism of electrolytic catalysis oxidation technology. In view of the reasons mentioned above, the technology is one of AOT.%电解催化氧化技术是一种新兴的氧化技术。本文采用DSA类阳极的方法对电解催化降解有机污染物的机理进行了研究,表明在电解过程中能够产生氧化能力极强的OH*自由基,可以氧化降解废水中的有机污染物。

  7. Influencing factors on the photocatalytic properties of TiO2 in the degradation of liquid pollutants%液相污染物降解中TiO2光催化性能的影响因素

    Institute of Scientific and Technical Information of China (English)

    吴丰; 陈迎刚; 刘恩周; 张倩; 何奇; 侯文倩; 樊君

    2011-01-01

    During the degradation of liquid pollutants, factors such as modification of Tio2 , the design of photocatalysis reactors, and operation parameters had great influence on photocatalytic properties of TiO2.The main mechanisms of TiO2 modification was summarized, the problems on reactor designs were pointed out , the effect of operation parameters including pH , temperature , dissolved oxygen , quantity of TiO2 , concentration of pollutants,light intensity on catalytic properties were discussed, and the development trend of TiO2 catalyst were prospected at last.%TiO光催化剂的改性、光催化反应器的设计以及操作参数等影响着TiO在降解液相污染物时的光催化性能.综述了TiO改性的各种机理,指出了反应器设计面临的难题,探讨了pH、温度、溶氧量、TiO用量、污染物浓度、光强度等操作参数对催化性能的影响.最后,展望了TiO光催化的发展趋势.

  8. Development of Photocatalytic Degradation of Organic Pollutants with Titanium Dioxide%TiO2光催化降解有机污染物研究进展

    Institute of Scientific and Technical Information of China (English)

    张鹏会; 王九思; 韩迪

    2009-01-01

    Even though heterogeneous photocatalysis appeared in many forms, photodegradation of organic pollutants had recently been the most widely investigated. By far, titania had played a much larger role in this scenario compared to other semiconductor photocatalysts due to its cost effectiveness, inert nature and photostability. The research progress on the photocatalytic degradation of organic pollutants using TiO2 under of light was reviewed. The photo-catalyzed mechanism under UV and visible light was described and the outlook was made for this study.%近年来对光催化降解有机物进行的广泛研究,使得非均相光催化以各种各样的形式出现.目前,在光催化领域里,TiO2起着非常重要的作用,与其它半导体相比,它具有成本低、惰性以及光稳定性的特点.本文综述了有关在光照射下以TiO2对有机污染物催化降解情况的研究进展,阐述了TiO2在紫外光和可见光下的光化机理,并对TiO2光催化降解有机物的研究前景进行了展望.

  9. Effective visible light-active nitrogen and samarium co-doped BiVO{sub 4} for the degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Min; Niu, Chao [College of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110165 (China); Liu, Jun, E-mail: minwang62@msn.com [Shenyang Military General Hospital, Shenyang 110016 (China); Wang, Qianwu; Yang, Changxiu; Zheng, Haoyan [College of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110165 (China)

    2015-11-05

    Nitrogen and samarium co-doped BiVO{sub 4} (N–xSm–BiVO{sub 4}) nanoparticles were synthesized using a sol–gel method with a corn stem template. The physicochemical properties of the resultant N–xSm–BiVO{sub 4} particles were characterized using various methods: XPS, XRD, SEM, BET, and UV–Vis DRS analyses. The visible-light photocatalytic activity was successfully demonstrated by degrading a model dye, namely, methyl orange. The dopant content was optimized, and the nitrogen and samarium co-doped BiVO{sub 4} extended the light absorption spectrum toward the visible region, significantly enhancing the photodegradation of the model dye. The Sm and N co-doped BiVO{sub 4} exhibited the highest photocatalytic activity compared to materials with a single dopant or no dopant. The significantly enhanced photocatalytic activity of the N–Sm co-doped BiVO{sub 4} under visible-light irradiation can be attributed to the synergistic effects of the nitrogen and samarium. - Highlights: • The N–Sm codoped BiVO{sub 4} were synthesized using a sol–gel method with a corn stem template. • The N and Sm codoped BiVO{sub 4} has excellent photocatalytic activity of methyl orange degradation. • The maximum activity was observed when the molar ratio of Sm/Bi was 1.0. • The high photocatalytic activity was caused by the synergistic effects between N doping and Sm doping.

  10. Ultrasonic-assisted one-pot preparation of ZnO/Ag3VO4 nanocomposites for efficiently degradation of organic pollutants under visible-light irradiation

    Science.gov (United States)

    Kiantazh, Fariba; Habibi-Yangjeh, Aziz

    2015-11-01

    We report a facile ultrasonic-assisted one-pot method for preparation of ZnO/Ag3VO4 nanocomposites with different mole fractions of silver vanadate. The preparation method has considerable merits such as short preparation time, large-scale, and one-pot strategy. The resultant samples were fairly characterized by means of XRD, EDX, SEM, TEM, UV-vis DRS, FT-IR, and PL techniques. Visible-light activity of the resultant samples was investigated by degradation of rhodamine B (RhB), methylene blue (MB), and methyl orange (MO). Among the prepared nanocomposites, the ZnO/Ag3VO4 nanocomposite with 0.073 mole fraction of Ag3VO4 exhibited the best activity and excessive amount of Ag3VO4 resulted in decrease of the activity. Photocatalytic activity of this nanocomposite under visible-light irradiation is about 21, 56, and 2.8-fold higher than that of the ZnO sample in degradation of RhB, MB, and MO, respectively. The highly enhanced activity of the nanocomposite was attributed to greater generation of electron-hole pairs, due to photosensitizing role of Ag3VO4 under visible-light irradiation, and efficiently separation of the photogenerated electron-hole pairs, due to formation of n-n heterojunction between the counterparts. Furthermore, it was revealed that the photocatalytic activity largely depends on ultrasonic irradiation time, calcination temperature, and scavengers of the reactive species.

  11. Biology Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Presents procedures, exercises, demonstrations, and information on a variety of biology topics including labeling systems, biological indicators of stream pollution, growth of lichens, reproductive capacity of bulbous buttercups, a straw balance to measure transpiration, interaction of fungi, osmosis, and nitrogen fixation and crop production. (DC)

  12. Study on Degradation Abilities of Chlorophytum comosum and Hedera nepalensis on Indoor Formaldehyde Pollution%吊兰和常春藤对室内甲醛污染降解能力的研究

    Institute of Scientific and Technical Information of China (English)

    陈佳瀛; 邵勤龙; 张佳慧; 俞璟凤

    2013-01-01

    [Objective] The research aimed to study on degradation abilities of Chlorophytum comosum and Hedera nepalensis on indoor formaldehyde pollution.[Method] By simulating indoor formaldehyde pollution environment in laboratory,Chlorophytum comosum and Hedera nepalensis were selected to conduct test on formaldehyde removal.[Result] Both Chlorophytum comosum and Hedera nepalensis had different purifying abilities on formaldehyde.Configuration effect of Chlorophytum comosum and Hedera nepalensis was significantly better than Chlorophytum comosum.Degradation ability of Chlorophytum comosum on formaldehyde was stronger than Hedera nepalensis.At horizontal configuration from southeast to northwest and vertical configuration from lower layer to upper and middle layers,chlorophyll content all presented rise tendency.[Conclusion] Screening and optimal configuration of the potted plants could provide scientific basis for effectively preventing and controlling indoor long-term pollution and really improving indoor environmental quality.%[目的]研究吊兰和常春藤对室内甲醛污染的降解能力.[方法]通过实验室模拟室内甲醛污染环境,选用吊兰和常春藤盆栽植物进行去除甲醛的试验研究.[结果]吊兰和常春藤均具有不同程度净化甲醛的能力.吊兰和常春藤同时配置效果明显优于吊兰,而吊兰对甲醛的降解要强于常春藤.从东南到西北不同水平配置和由下层到上、中层的不同垂直配置的植物叶片叶绿素含量均呈上升趋势.[结论]盆栽植物的筛选和优化组合配置可为有效防治室内长期污染、真正改善室内环境质量提供科学依据.

  13. A Novel Mesoporous Single-Crystal-Like Bi2WO6 with Enhanced Photocatalytic Activity for Pollutants Degradation and Oxygen Production.

    Science.gov (United States)

    Li, Chunmei; Chen, Gang; Sun, Jingxue; Rao, Jiancun; Han, Zhonghui; Hu, Yidong; Zhou, Yansong

    2015-11-25

    The porous single-crystal-like micro/nanomaterials exhibited splendid intrinsic performance in photocatalysts, dye-sensitized solar cells, gas sensors, lithium cells, and many other application fields. Here, a novel mesoporous single-crystal-like Bi2WO6 tetragonal architecture was first achieved in the mixed molten salt system. Its crystal construction mechanism originated from the oriented attachment of nanosheet units accompanied by Ostwald ripening process. Additionally, the synergistic effect of mixed alkali metal nitrates and electrostatic attraction caused by internal electric field in crystal played a pivotal role in oriented attachment process of nanosheet units. The obtained sample displayed superior photocatalytic activity of both organic dye degradation and O2 evolution from water under visible light. We gained an insight into this unique architecture's impact on the physical properties, light absorption, photoelectricity, and luminescent decay, etc., that significantly influenced photocatalytic activity. PMID:26524604

  14. Narrow with tunable optical band gap of CdS based core shell nanoparticles: Applications in pollutant degradation and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Murugadoss, G., E-mail: murugadoss_g@yahoo.com [Department of Electric Engineering and Computer Science, School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hypogo 671-2280 (Japan); Thangamuthu, R. [Electrochemical Materials Science Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630006, Tamilnadu (India); Jayavel, R. [Centre for Nanoscience and Technology, Anna University, Chennai 600025, Tamilnadu (India); Rajesh Kumar, M. [Department of Physics, Annamalai University, Annamalai nagar 608 002, Tamilnadu (India)

    2015-09-15

    In this work, sulfide-based core–shell heterostructures were successfully synthesized by chemical method. Structural, morphological, chemical composition, optical, and thermal properties of core–shell materials were investigated using different analytical techniques. The thickness of the shell can be tuned by controlling the concentration of respective shell precursors. TEM and HR-TEM analyses show that the particles are spherical in shape with particle size in the range 3–5 nm. Optical studies reveal that the core–shell materials possess strong visible-light photocatalytic activity. Among the four photocatalysts, CdS/SnS showed the best activity towards photo-degradation of methylene blue (MB). Addition of shells to the CdS core has a clear impact on the performance of solar cells. - Highlights: • Sulfide based core shell nanoparticles were synthesized by chemical method. • Structural, morphological and optical properties were studied. • Strong photocatalytic samples showed week photovoltaic performance.

  15. Coupling of Nanocrystalline Anatase TiO2 to Porous Nanosized LaFeO3 for Efficient Visible-Light Photocatalytic Degradation of Pollutants

    Directory of Open Access Journals (Sweden)

    Muhammad Humayun

    2016-01-01

    Full Text Available In this work we have successfully fabricated nanocrystalline anatase TiO2/perovskite-type porous nanosized LaFeO3 (T/P-LFO nanocomposites using a simple wet chemical method. It is clearly demonstrated by means of atmosphere-controlled steady-state surface photovoltage spectroscopy (SPS responses, photoluminescence spectra, and fluorescence spectra related to the formed OH− radical amount that the photogenerated charge carriers in the resultant T/P-LFO nanocomposites with a proper mole ratio percentage of TiO2 display much higher separation in comparison to the P-LFO alone. This is highly responsible for the improved visible-light activities of T/P-LFO nanocomposites for photocatalytic degradation of gas-phase acetaldehyde and liquid-phase phenol. This work will provide a feasible route to synthesize visible-light responsive nano-photocatalysts for efficient solar energy utilization.

  16. Visible light-driven photocatalytic degradation of the organic pollutant methylene blue with hybrid palladium–fluorine-doped titanium oxide nanoparticles

    International Nuclear Information System (INIS)

    The synthesis of mesoporous aggregates of titanium oxide nanoparticles (F0) is described using a very cheap and simple synthetic protocol. This consists of the reaction of titanium tetraisopropoxide and a solution of HNO3 in water (pH 2.0) and subsequent filtration. In addition, fluorine-doped titanium oxides (F1, F2, F5 and F10) were synthesized using the same method, adding increasing amounts of NaF to the reaction mixture (avoiding the use of expensive reagents such as NH4F or trifluoroacetic acid). The resulting materials were calcined at different temperatures (500, 600 and 650 °C) giving particles sized between 10 and 20 nm. Furthermore, a hybrid F-doped TiO2 with supported palladium nanoparticles of ca. 20 nm (F5-500-Pd1) was synthesized by grafting an organometallic palladium(II) salt namely [Pd(cod)Cl2] (cod = 1,5-cyclooctadiene). Photocatalytic studies of the degradation of methylene blue (MB) were carried out under UV light using all the synthesized material (non-doped an F-doped TiO2), observing that the increase in the quantity of fluorine has a positive effect on the photocatalytic activity. F5-500 is apparently the material which has the most convenient structural properties (in terms of surface area and anatase/rutile ratio) and thus a higher photocatalytic activity. The hybrid material F-doped TiO2–Pd nanoparticles (F5-500-Pd1) has a lower band gap value than F5-500, and thus photocatalytic degradation of MB under LED visible light was achieved using F5-500-Pd1 as photocatalyst

  17. Visible light-driven photocatalytic degradation of the organic pollutant methylene blue with hybrid palladium–fluorine-doped titanium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lázaro-Navas, Sonia; Prashar, Sanjiv; Fajardo, Mariano; Gómez-Ruiz, Santiago, E-mail: santiago.gomez@urjc.es [Universidad Rey Juan Carlos, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET (Spain)

    2015-02-15

    The synthesis of mesoporous aggregates of titanium oxide nanoparticles (F0) is described using a very cheap and simple synthetic protocol. This consists of the reaction of titanium tetraisopropoxide and a solution of HNO{sub 3} in water (pH 2.0) and subsequent filtration. In addition, fluorine-doped titanium oxides (F1, F2, F5 and F10) were synthesized using the same method, adding increasing amounts of NaF to the reaction mixture (avoiding the use of expensive reagents such as NH{sub 4}F or trifluoroacetic acid). The resulting materials were calcined at different temperatures (500, 600 and 650 °C) giving particles sized between 10 and 20 nm. Furthermore, a hybrid F-doped TiO{sub 2} with supported palladium nanoparticles of ca. 20 nm (F5-500-Pd1) was synthesized by grafting an organometallic palladium(II) salt namely [Pd(cod)Cl{sub 2}] (cod = 1,5-cyclooctadiene). Photocatalytic studies of the degradation of methylene blue (MB) were carried out under UV light using all the synthesized material (non-doped an F-doped TiO{sub 2}), observing that the increase in the quantity of fluorine has a positive effect on the photocatalytic activity. F5-500 is apparently the material which has the most convenient structural properties (in terms of surface area and anatase/rutile ratio) and thus a higher photocatalytic activity. The hybrid material F-doped TiO{sub 2}–Pd nanoparticles (F5-500-Pd1) has a lower band gap value than F5-500, and thus photocatalytic degradation of MB under LED visible light was achieved using F5-500-Pd1 as photocatalyst.

  18. Monitoring of Gasoline-ethanol Degradation In Undisturbed Soil

    Science.gov (United States)

    Österreicher-Cunha, P.; Nunes, C. M. F.; Vargas, E. A.; Guimarães, J. R. D.; Costa, A.

    Environmental contamination problems are greatly emphasised nowadays because of the direct threat they represent for human health. Traditional remediation methods fre- quently present low efficiency and high costs; therefore, biological treatment is being considered as an accessible and efficient alternative for soil and water remediation. Bioventing, commonly used to remediate petroleum hydrocarbon spills, stimulates the degradation capacity of indigenous microorganisms by providing better subsur- face oxygenation. In Brazil, gasoline and ethanol are mixed (78:22 v/v); some authors indicate that despite gasoline high degradability, its degradation in subsurface is hin- dered by the presence of much more rapidly degrading ethanol. Contaminant distribu- tion and degradation in the subsurface can be monitored by several physical, chemical and microbiological methodologies. This study aims to evaluate and follow the degra- dation of a gasoline-ethanol mixture in a residual undisturbed tropical soil from Rio de Janeiro. Bioventing was used to enhance microbial degradation. Shifts in bacte- rial culturable populations due to contamination and treatment effects were followed by conventional microbiology methods. Ground Penetrating Radar (GPR) measure- ments, which consist of the emission of electro-magnetic waves into the soil, yield a visualisation of contaminant degradation because of changes in soil conductivity due to microbial action on the pollutants. Chemical analyses will measure contaminant residue in soil. Our results disclosed contamination impact as well as bioventing stim- ulation on soil culturable heterotrophic bacterial populations. This multidisciplinary approach allows for a wider evaluation of processes occurring in soil.

  19. Synthesis of hectorite-TiO2 and kaolinite-TiO2 nanocomposites with photocatalytic activity for the degradation of model air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Destaillats, Hugo; Kibanova, D.; Trejo, M.; Destaillats, H.; Cervini-Silva, J.

    2008-03-01

    We studied the synthesis and photocatalytic activity of small-sized TiO{sub 2} supported on hectorite and kaolinite. Deposition of TiO{sub 2} on the clay mineral surface was conducted by using a sol-gel method with titanium isopropoxide as precursor. Anatase TiO{sub 2} particles formation was achieved by hydrothermal treatment at 180 C. Material characterization was conducted using XRD, SEM, XPS, ICP-OES, BET and porosimetry analysis. Efficiency in synthesizing clay-TiO{sub 2} composites depended strongly on the clay mineral structure. Incorporation of anatase in hectorite, an expandable clay mineral, was found to be very significant (> 36 wt.% Ti) and to be followed by important structural changes at the clay mineral surface. Instead, no major structural modifications of the clay were observed for kaolinite-TiO{sub 2}, as compared with the untreated material. Photocatalytic performance of clay-TiO{sub 2} composites was evaluated with ATR-FTIR following the oxidation of adsorbed toluene and d-limonene, two model air pollutants. In either case, the photocatalytic removal efficiency of these hydrophobic substrates by the synthesized clay-TiO{sub 2} composites was comparable to that observed using pure commercial TiO{sub 2} (Degussa P25).

  20. DISTRIBUTION AND FACTORS OF PETROLEUM-DEGRADATION BIOLOGICAL ACTIVITY IN DIFFERENT VEGETATION STATUS FROM ESTUARINE REED WETLAND%河口区芦苇湿地不同植被状态下石油降解生物活性分布特征及影响因素

    Institute of Scientific and Technical Information of China (English)

    李艳艳; 白洁; 赵阳国; 周方; 潘益锋

    2013-01-01

    Soil samples in different vegetation characteristics from Panjin estuarine reed wetland wear collected,and the number of petroleum-degrader,enzymes activity and concentration of petroleum hydrocarbon in the soil samples was determined.The distribution and factors of the petroleum-degrader activity in different reed vegetation characteristics from estuarine wetland was studied,and the natural purification capacity characteristics in reed wetland were investigated.The existence of reed was benefit to the activity of petroleum-degradation biological and promoted the degradation of petroleum in wetland.There was a significant positive linear relationship between the petroleum hydrocarbons and dehydrogenase activity (p<0.05),so the biological activity condition during petroleum degradation process in soil can be reflected by the activity of dehydrogenase.The main factors affecting microbial activity is the N,P content,pH and moisture content of soil.The environmental conditions of soil can be improved by reed rhizosphere to promote the growth of microorganisms.The petroleum-degradation biological activity was enhanced and the purification capacity of wetlands was increased by restring reed manually,which is a effective measures to protect the ecological functions of estuarine wetlands.This research gave scientific basis on the study of Biological purification capacity of Oil pollution in Estuarine Wetland and the Impact assessment of Bioremediation.%本文通过现场采集盘锦芦苇湿地不同植被状态区域土壤样品,测定土壤中石油降解菌数量、酶活性和石油烃含量,研究了河口湿地不同芦苇植被状况下石油降解微生物活性的分布特征及影响因素,并探讨了芦苇湿地自然净化能力特征.结果表明,盘锦湿地石油降解微生物活性与湿地芦苇的植被状况相关,芦苇的存在明显提高了石油降解微生物的活性,促进了湿地中石油污染物的降解;脱氢酶活性与石油

  1. Synergetic adsorption and photocatalytic degradation of pollutants over 3D TiO2-graphene aerogel composites synthesized via a facile one-pot route.

    Science.gov (United States)

    Zhang, Jing-Jie; Wu, Yu-Hui; Mei, Jin-Ya; Zheng, Guang-Ping; Yan, Ting-Ting; Zheng, Xiu-Cheng; Liu, Pu; Guan, Xin-Xin

    2016-08-01

    A series of composites consisting of anatase TiO2 nanocrystals and three-dimensional (3D) graphene aerogel (TiO2-GA) were self-assembled directly from tetrabutyl titanate and graphene oxides via a one-pot hydrothermal process. TiO2 was found to uniformly distribute inside the 3D network of GA in the resulting composites with large surface areas (SBET > 125 m(2) g(-1)) and high pore volumes (Vp > 0.22 cm(3) g(-1)). In comparison with GA and TiO2, the composites possessed much higher adsorption capacities and visible light photocatalytic activity in the degradation of rhodamine B (RhB). With an initial concentration of 20.0 mg L(-1) of RhB, the adsorptive decolourization of RhB was as high as 95.1% and the total decolourization value reached up to 98.7% under visible light irradiation over 5.0 mg of the resulting composites. It was elucidated that the physical and chemical properties of the TiO2-GA composites could be ascribed to their unique 3D nanoporous structure with high surface areas and the synergetic activities of graphene nanosheets and TiO2 nanoparticles.

  2. Reduced graphene oxide wrapped ZnS–Ag{sub 2}S ternary composites synthesized via hydrothermal method: Applications in photocatalyst degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Amaranatha Reddy, D.; Ma, Rory [Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan 609-735 (Korea, Republic of); Choi, Myong Yong, E-mail: mychoi@gnu.ac.kr [Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Kim, Tae Kyu, E-mail: tkkim@pusan.ac.kr [Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan 609-735 (Korea, Republic of)

    2015-01-01

    Highlights: • Hydrothermal synthesis of ternary ZnS–Ag{sub 2}S–RGO nanostructures without any additives. • Significant improvement of the photocatalytic activity in RGO wrapped composites. • Near white light emission and stable cycling can lead these composites to find application in near UV-white LEDs and environmental protection issues. - Abstract: In this work, we have successfully synthesized ternary nanohybrid composite, ZnS–Ag{sub 2}S wrapped with reduced graphene oxide (RGO) using hydrothermal method without any surfactant. We have accessed the photocatalytic ability of ZnS–Ag{sub 2}S–RGO nanocomposite using the oxidation of Rhodamine B (RhB) under simulated sunlight irradiation. The superior photocatalytic ability of ZnS–Ag{sub 2}S–RGO compared to bare ZnS, was ascribed to an efficient charge transfer from ZnS to Ag{sub 2}S and graphene sheets. The recyclability results also demonstrated the excellent stability and reliability of the ZnS–Ag{sub 2}S–RGO. In addition to the excellent photocatalytic degradation properties, the synthesized ZnS–Ag{sub 2}S–RGO nanocomposite exhibited near white light emission, which implies that careful design and control of the composition could be lead to find application in near UV-white LEDs. The present work provides new insights into the synthesis and characterizations of ternary ZnS–Ag{sub 2}S–RGO nanocomposites and its wide applications in the environmental protection issues.

  3. Synergetic adsorption and photocatalytic degradation of pollutants over 3D TiO2-graphene aerogel composites synthesized via a facile one-pot route.

    Science.gov (United States)

    Zhang, Jing-Jie; Wu, Yu-Hui; Mei, Jin-Ya; Zheng, Guang-Ping; Yan, Ting-Ting; Zheng, Xiu-Cheng; Liu, Pu; Guan, Xin-Xin

    2016-08-01

    A series of composites consisting of anatase TiO2 nanocrystals and three-dimensional (3D) graphene aerogel (TiO2-GA) were self-assembled directly from tetrabutyl titanate and graphene oxides via a one-pot hydrothermal process. TiO2 was found to uniformly distribute inside the 3D network of GA in the resulting composites with large surface areas (SBET > 125 m(2) g(-1)) and high pore volumes (Vp > 0.22 cm(3) g(-1)). In comparison with GA and TiO2, the composites possessed much higher adsorption capacities and visible light photocatalytic activity in the degradation of rhodamine B (RhB). With an initial concentration of 20.0 mg L(-1) of RhB, the adsorptive decolourization of RhB was as high as 95.1% and the total decolourization value reached up to 98.7% under visible light irradiation over 5.0 mg of the resulting composites. It was elucidated that the physical and chemical properties of the TiO2-GA composites could be ascribed to their unique 3D nanoporous structure with high surface areas and the synergetic activities of graphene nanosheets and TiO2 nanoparticles. PMID:27417708

  4. Preparation of flower-like TiO2 sphere/reduced graphene oxide composites for photocatalytic degradation of organic pollutants

    Science.gov (United States)

    Kim, Tae-Woong; Park, Mira; Kim, Hak Yong; Park, Soo-Jin

    2016-07-01

    In this study, novel flower-like TiO2 sphere (FTS)/reduced graphene oxide (rGO) composites (FTS-G) were synthesized via a hydrothermal method. The photocatalytic performance of the FTS-G composites was evaluated through the photodegradation of rhodamine B (Rh B) and trichloroethylene (TCE) under simulated solar light irradiation. The rGO to FTS ratio in the composites significantly affected photocatalytic activity. The photocatalytic activities of FTS-Gs in the degradation of Rh B and TCE were superior to that of pure FTS. Of all the FTS-G composites tested, FTS-G with 1 wt% rGO (FTS-G-1) had the greatest photocatalytic activity, while FTS-G composites with rGO contents over 1 wt% had lower photocatalytic activities. Additionally, it is expected that the synthesis of FTS with a high specific surface area and well-developed pore structure and simultaneous conversion of GO to graphene-like rGO without the use of strong reducing agents could be a promising strategy to prepare other carbon-based flower-like TiO2 sphere composite photocatalysts.

  5. Biotechnological in-situ-remediation of soil and groundwater by degradation of petrochemical and other organic pollutants - analysis and evaluation. Final report. - Study about the state of in-situ-treatment methods for contaminated land and view of development of in-situ-methods in future. Untersuchung und Bewertung von in situ-biotechnologischen Verfahren zur Sanierung des Bodens und des Untergrundes durch Abbau petrochemischer Altlasten und anderer organischer Umweltchemikalien. Schlussbericht. - Untersuchung zur Erfassung des Standes der Technik der in situ-Sanierungsverfahren von Altlasten und Ausblick auf zukuenftige Entwicklung der Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Filip, Z.; Geller, A.; Schiefer, B.; Schwefer, H.J.; Weirich, G.; Stiefel, R.; Joeckel, R.

    1989-01-01

    The report reflects a current state of the biotechnological in-situ remediation technique in chemically polluted soil and groundwater environments. Main groups of common organic contaminants have been considered and their relationships with soil and groundwater micoorganisms have been discussed. Specific factors related to soil hydrogeological and engineering conditions which are of importance for the biological degradation of contaminants have been also evaluated. Biological and physicochemical aspects of monitoring are discussed. A review is given of the analytical equipment available at the market of the FRG. Ten typical remediation projects have been analysed and evaluated. On this basis, a model remediation system for a site contaminated by mineral oil has been proposed. (orig.) With 179 refs., 29 tabs., 23 figs.

  6. Bacterial Degradation of Pesticides

    DEFF Research Database (Denmark)

    Knudsen, Berith Elkær

    . Bioaugmentation i.e. addition of specific degrader organisms, has been suggested as an environmentally friendly and economically competitive strategy for cleaning polluted sites. Several organisms have been isolated, capable of degrading different compounds. However the capacity to degrade the desired compound...... could potentially improve bioremediation of BAM. An important prerequisite for bioaugmentation is the potential to produce the degrader strain at large quantities within reasonable time. The aim of manuscript II, was to optimize the growth medium for Aminobacter MSH1 and to elucidate optimal growth...... analysis revealed that D47 had an inhibitory effect on the fungal growth; however the effect on LEJ702 was lessened in presence of SRS16. This effect of SRS16 was not seen on LEJ703. These results stress the importance of testing the consortia, as it is impossible to predict the outcome of the created...

  7. Facile fabrication of efficient AgBr-TiO{sub 2} nanoheterostructured photocatalyst for degrading pollutants and its photogenerated charge transfer mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenxin [Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, Harbin 150080 (China); Jing, Liqiang, E-mail: Jinglq@hlju.edu.cn [Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, Harbin 150080 (China); Qu, Yichun; Luan, Yunbo; Fu, Honggang; Xiao, Yuchen [Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, Harbin 150080 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A microemulsion-like chemical precipitation is developed for AgBr-TiO{sub 2} composite. Black-Right-Pointing-Pointer The composite displays effective charge transfers between AgBr and TiO{sub 2.} Black-Right-Pointing-Pointer A charge transfer mechanism in the AgBr-TiO{sub 2} composite is suggested. Black-Right-Pointing-Pointer The suggested mechanism is responsible for the enhanced photocatalytic activity. - Abstract: A simple microemulsion-like chemical precipitation method has been successfully developed to construct effectively-contacted AgBr-TiO{sub 2} composite. The key of this method is the dual roles of Br{sup -} in the synthetic process, as linkers between cetyltrimethyl ammonium cation surfactants and nanocrystalline anatase TiO{sub 2} in the acidic condition, and as bromine sources to directly produce nanocrystalline AgBr on the surfaces of TiO{sub 2} by chemical precipitation. It is well demonstrated that the as-constructed AgBr-TiO{sub 2} nanoheterostructured composites display effective photogenerated charge transfer between AgBr and TiO{sub 2}, favorable to improve charge separation, by means of the surface photovoltage technique in different atmospheres at the aid of outer electric fields, especially for the transient surface photovoltage technique in air. And also, the Br{sup -} in crystal lattice of AgBr could effectively capture photogenerated holes under illumination. These factors are well responsible for the enhanced activity for photocatalytic degradation of liquid phase aqueous phenol solution and gas phase acetaldehyde under either UV-visible or visible irradiation, and the stability of AgBr in the photocatalytic processes.

  8. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  9. Measuring River Pollution

    Science.gov (United States)

    Ayyavoo, Gabriel

    2004-01-01

    The Don River watershed is located within Canada's most highly urbanized area--metropolitan Toronto. Many residential and commercial uses, including alterations to the river's course with bridges, have had a significant impact on the Don's fauna and flora. Pollutants have degraded the river's water quality, a situation exacerbated by the…

  10. Microbial bioconversion of pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Golovleva, L.A.; Aliyeva, R.M.; Naumova, R.P.; Gvozdyak, P.I. (Institute of Biochemistry and Physiology of Microorganisms, USSR Academy of Sciences, Moscow (USSR))

    1992-01-01

    Microorganisms totally detoxicate xenobiotics of various chemical structures, which are serious and, in some cases, very hazardous pollutants. At present, the efforts of a number of researchers promoted the establishment in this country of a collection of microorganisms able to degrade volatile toxic pollutants--toluene, isomeric xylenes, styrene, alpha-methylstyrene, crotonaldehyde; widely distributed xenobiotics chlorobenzoic acids; isomeric aryldicarboxylic acids; and ecologically hazardous pollutants such as aromatic nitrocompounds. The active strains-destructors are mainly representatives of the genera Pseudomonas and Rhodococcus. Research into their physiological characteristics, key enzymes, pathways of xenobiotics degradation, genetic mechanisms determining the degradation of these foreign compounds, and behaviour of the strains in a real environment made it possible to develop the theoretical principles of using these microbial cultures to purify real industrial wastes and remediate polluted areas of soil and water. Improvement of the methods of immobilizing the active xenobiotics-degrading strains on cheap and efficient carriers made it possible to significantly intensify the cleanup process of industrial wastes and eliminate a number of problems during the development of the biotechnologies for industrial waste cleanup. Successfully operated at present are the biotechnologies of the local cleanup of waste waters of terephthalate production, microbial purification of industrial waste waters in nylon-66 production from hexamethylenediamine, purification of coke production wastes from phenols, waste waters of polyisocyanate production from aromatic amines, local purification of waste waters in synthetic rubber production from alpha-methylstyrene, acetaldehyde production wastes from crotonaldehyde and mercury. 97 references.

  11. Water-immiscible solvents for the biological treatment of waste gases.

    OpenAIRE

    Cesario, M.T.

    1997-01-01

    In conventional biological systems for the treatment of waste gases, contaminants are transferred directly to the aqueous phase and then converted by the micro-organisms. When poorly water-soluble pollutants are to be removed, biological degradation is often limited by the slow transport from the gas to the aqueous phase. This transport limitation can be circumvented by contacting the gas directly with an intermediate water-immiscible organic solvent with a high affinity for these contaminant...

  12. Decision criteria for the selection of wet oxidation and conventional biological treatment.

    Science.gov (United States)

    Collado, Sergio; Laca, Adriana; Diaz, Mario

    2012-07-15

    The suitability of wet oxidation or biological treatments for the degradation of industrial wastewaters is here discussed. Advantages of these operations, either singly or in combination, are discussed on the basis of previous experimental results from laboratory and industry. Decision diagrams for the selection of conventional biological treatment, wet oxidation or a combination of both techniques are suggested according to the type of pollutant, its concentration and the wastewater flow rate.

  13. Water Pollution

    Science.gov (United States)

    Bowen, H. J. M.

    1975-01-01

    Deals with water pollution in the following categories: a global view, self purification, local pollution, difficulties in chemical analysis, and remedies for water pollution. Emphasizes the extent to which man's activities have modified the cycles of certain elements. (GS)

  14. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, pollen and ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, ...

  15. Noise Pollution

    Science.gov (United States)

    ... Overview » Title IV - Noise Pollution Title IV - Noise Pollution The 1990 Clean Air Act Amendments added a ... abatement 7642 Authorization of appropriations What is Noise Pollution? The traditional definition of noise is “unwanted or ...

  16. Soil bacteria for remediation of polluted soils

    Energy Technology Data Exchange (ETDEWEB)

    Springael, D.; Bastiaens, L.; Carpels, M.; Mergaey, M.; Diels, L.

    1996-09-18

    Soil bacteria, specifically adapted to contaminated soils, may be used for the remediation of polluted soils. The Flemish research institute VITO has established a collection of bacteria, which were isolated from contaminated areas. This collection includes microbacteria degrading mineral oils (Pseudomonas sp., Acinetobacter sp. and others), microbacteria degrading polycyclic aromatic hydrocarbons (genera Sphingomonas and Mycobacterium), microbacteria degrading polychlorobiphenyls (genus Ralstonia and strains related to beta-Proteobacteria), and metal resistant bacteria with plasmid borne resistances to Cd, Zn, Ni, Co, Cu, Hg, and Cr. Bench-scale reactors were developed to investigate the industrial feasibility of bioremediation. Batch Stirred Tank Reactors were used to evaluate the efficiency of oil degraders. Soils, contaminated with non-ferrous metals, were treated using a Bacterial Metal Slurry Reactor. It was found that the reduction of the Cd concentration may vary strongly from sample to sample: reduction factors vary from 95 to 50%. Is was shown that Cd contained in metallic sinter and biologically unavailable Cd could not be removed.

  17. 30 CFR 250.300 - Pollution prevention.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Pollution prevention. 250.300 Section 250.300... OPERATIONS IN THE OUTER CONTINENTAL SHELF Pollution Prevention and Control § 250.300 Pollution prevention. (a... components which could cause unreasonable degradation to the marine environment. No...

  18. Effect of toluene as gaseous cosubstrate in bioremediation of hydrocarbon-polluted soil.

    Science.gov (United States)

    Ortiz, Irmene; Velasco, Antonio; Revah, Sergio

    2006-04-17

    The stimulation of the microbial population by a more bioavailable supplementary carbon source and by a surfactant pretreatment was studied in petroleum hydrocarbon-polluted soils bioremediation. Two types of soils were used, Soil A which had been recently polluted and the aged Soil B. They contained 52.4 and 50.4 g of total petroleum hydrocarbons per kg of dry soil, respectively. The effect of passing a continuous small stream of air containing a low concentration of gaseous toluene through packed 0.5 l (Ø=5.5 cm) columns was studied. For Soil A, after 62 days the THPs degradation was 28% higher in the toluene treated columns than in controls. In aged Soil B the effect of toluene was not significant, probably due to bioavailability limitations. With Soil B, the combined effect of toluene as cosubstrate and a surfactant pretreatment was studied and the hydrocarbons degradation was 29% higher in the toluene-amended columns than in the controls. Toluene removal was higher than 99% in all cases. Surfactant addition increased hydrocarbon degradation when toluene was also added suggesting that the biological reaction was the limiting process. The study shows the possibilities of using gaseous substrates, such as toluene, for the in situ or ex situ treatment of petroleum hydrocarbon-polluted soil in processes limited by the biological reaction. The main advantage of the treatment is that the compound can be easily and directly delivered to the polluted soil through the venting system. PMID:16239067

  19. Effect of River Bank Material on Organic Pollution Degradation Capacity%河岸材料对河流有机污染物降解能力的影响

    Institute of Scientific and Technical Information of China (English)

    赵素; 潘伟斌

    2011-01-01

    Microbial biomass and enzyme activities for dry masonry, cellular gabion, eco-block and masonry were investigated to reveal the effects of different river bank materials on organic pollution degradation capacity. Total organic carbon (TOC) degradation ratio of eco-block bank were 6.14 and 3.15 times significantly higher than that of cellular gabion and masonry, respectively (p<0.05).Dissolved organic carbon (DOC) degradation ratio of eco-block bank, dry masonry and cellular gabion were 10.6, 6.60 and 6.08 times significantly higher than that of masonry, respectively ( p <0.05). Lipid phosphorus contents of suspended microbe and microbial film in river with eco-block and cellular gabion were up to 7.27 nmol P/cm2 and 58.16 nmol P/cm2 ,respectively. Dihydroartemisinin of suspended dehydrogenase activity (S-DHA), fluorescein diacetate activity(FDA), nitrate reductase activity of microbial film (F-NRA),alkaline phosphatase activity (APA) of eco-block were also significantly higher than that of dry masonry and masonry (p <0.05). River bank materials affect organic degradation capacity by microbial biomass and enzyme activities.%研究了干砌石、浆砌石、蜂巢格宾和生态砖等河岸材料对河流有机污染物降解能力的影响.4种材料中,以生态砖为河岸的河流中总有机碳(TOC)沿程降解率分别是蜂巢格宾和浆砌石的6.14和3.15倍(p<0.05);生态砖、干砌石和蜂巢格宾河段中溶解性有机碳(DOC)沿程降解率分别是浆砌石的10.68、6.60和6.08倍(p<0.05).生态砖和蜂巢格宾构筑的河岸的河流中,悬浮和附着微生物脂磷含量显著高于干砌石和浆砌石(p<0.05),最多可达到7.27 nmol P/cm2和58.16 nmol P/cm2,悬浮微生物脱氢酶(S-DHA)、荧光素双醋酸酯(FDA)、附着微生物硝酸还原酶活性(F-NRA)、碱性磷酸酶活性(APA)也显著高于干砌石和浆砌石(p<0.05).河岸材料影响了微生物生物量及硝化等关键生化反应过程的酶活性,从而影

  20. Anaerobic methanethiol degradation and methanogenic community analysis in an alkaline (pH 10) biological process for liquefied petroleum gas desulfurization

    NARCIS (Netherlands)

    Leerdam, van R.C.; Bonilla-Salinas, M.; Bok, de F.A.M.; Bruning, H.; Lens, P.N.L.; Stams, A.J.M.; Janssen, A.J.H.

    2008-01-01

    Anaerobic methanethiol (MT) degradation by mesophilic (30 degrees C) alkaliphilic (pH 10) communities was studied in a lab-scale Upflow Anaerobic Sludge Bed (UASB) reactor inoculated with a mixture of sediments from the Wadden Sea (The Netherlands), Soap Lake (Central Washington), and Russian soda l

  1. Structural Analysis and Biological Toxicity of Aflatoxins B1 and B2 Degradation Products Following Detoxification by Ocimum basilicum and Cassia fistula Aqueous Extracts.

    Science.gov (United States)

    Iram, Wajiha; Anjum, Tehmina; Iqbal, Mazhar; Ghaffar, Abdul; Abbas, Mateen; Khan, Abdul Muqeet

    2016-01-01

    This study showed the comparison between Ocimum basilicum and Cassia fistula (leaves and branch) aqueous extracts for their ability to detoxify of aflatoxins B1 and B2 (AFB1; 100 μg L(-1) and AFB2; 50 μg L(-1)) by In Vitro assays and decontamination studies. Results indicated that O. basilicum leaves extract was found to be highly significant (P < 0.05) in degrading AFB1 and AFB2, i.e., 90.4 and 88.6%, respectively. However, O. basilicum branch, C. fistula leaves and branch extracts proved to be less efficient in degrading these aflatoxins, under optimized conditions, i.e., pH 8, temperature 30°C and incubation period of 72 h. Moreover the antifungal activity of these plants extracts were also tested. The findings depicted that O. basilicum leaves extract showed maximum growth inhibition of aflatoxigenic isolates, i.e., 82-87% as compared to other tested plants extracts. The structural elucidation of degraded toxin products by LCMS/MS analysis showed that nine degraded products of AFB1 and AFB2 were formed. MS/MS spectra showed that most of the products were formed by the removal of double bond in the terminal furan ring and modification of lactone group indicating less toxicity as compared to parent compounds. Brine shrimps bioassay further confirmed the low toxicity of degraded products, showing that O. basilicum leaves extract can be used as an effective tool for the detoxification of aflatoxins. PMID:27471501

  2. Pollution from Urban Runoff

    DEFF Research Database (Denmark)

    Hvitved-Jacobsen, Thorkild; Schaarup-Jensen, Kjeld

    1992-01-01

    The main idea of this paper is to establish the following facts: Biodegradable organic matter discharged from combined sewer overflows (CSO) gives rise to an acute effect on the dissolved oxygen (DO) concentration of a river. This acute effect consist of two subeffects: an immediate oxygen deplet...... depletion which takes place in the polluted water volume passing down the river, and a delayed oxygen depletion which is associated with degradation of the organic matter accumulated at the river bottom during the passage of the polluted water volume....

  3. Land-Based Marine Pollution in Arctic

    OpenAIRE

    Haile, Fitsum Gebreselassie

    2014-01-01

    Land-based pollution represents the single most important cause of marine pollution. The threat of land-based pollution to the marine environment is a serious one since it mainly affects coastal waters, which are sites of high biological productivity. The occurrence of high concentrations of pollutants in the Arctic environment has been a concern for many years.. Regional and international actions over the past two decades attempting to manage pollutants in the Arctic environment from land- b...

  4. Study of Biological Degradation of New Poly(Ether-Urethane-Urea)s Containing Cyclopeptide Moiety and PEG by Bacillus amyloliquefaciens Isolated from Soil.

    Science.gov (United States)

    Rafiemanzelat, Fatemeh; Jafari, Mahboobeh; Emtiazi, Giti

    2015-10-01

    The present work for the first time investigates the effect of Bacillus amyloliquefaciens, M3, on a new poly(ether-urethane-urea) (PEUU). PEUU was synthesized via reaction of 4,4'-methylenebis(4-phenylisocyanate) (MDI), L-leucine anhydride cyclopeptide (LACP) as a degradable monomer and polyethylene glycol with molecular weight of 1000 (PEG-1000). Biodegradation of the synthesized PEUU as the only source for carbon and nitrogen for M3 was studied. The co-metabolism biodegradation of the polymer by this organism was also investigated by adding mannitol or nutrient broth to the basic media. Biodegradation of the synthesized polymer was followed by SEM, FT-IR, TGA, and XRD techniques. It was shown that incubation of PEUU with M3 resulted in a 30-44 % reduction in polymer's weight after 1 month. This study indicates that the chemical structure of PEUU significantly changes after exposure to M3 due to hydrolytic and enzymatic degradation of polymer chains. The results of this work supports the idea that this poly(ether-urethane) is used as a sole carbon source by M3 and this bacterium has a good capability for degradation of poly(ether-urethane)s.

  5. Structural Analysis and Biological Toxicity of Aflatoxins B1 and B2 Degradation Products Following Detoxification by Ocimum basilicum and Cassia fistula Aqueous Extracts

    Science.gov (United States)

    Iram, Wajiha; Anjum, Tehmina; Iqbal, Mazhar; Ghaffar, Abdul; Abbas, Mateen; Khan, Abdul Muqeet

    2016-01-01

    This study showed the comparison between Ocimum basilicum and Cassia fistula (leaves and branch) aqueous extracts for their ability to detoxify of aflatoxins B1 and B2 (AFB1; 100 μg L-1 and AFB2; 50 μg L-1) by In Vitro assays and decontamination studies. Results indicated that O. basilicum leaves extract was found to be highly significant (P aflatoxins, under optimized conditions, i.e., pH 8, temperature 30°C and incubation period of 72 h. Moreover the antifungal activity of these plants extracts were also tested. The findings depicted that O. basilicum leaves extract showed maximum growth inhibition of aflatoxigenic isolates, i.e., 82–87% as compared to other tested plants extracts. The structural elucidation of degraded toxin products by LCMS/MS analysis showed that nine degraded products of AFB1 and AFB2 were formed. MS/MS spectra showed that most of the products were formed by the removal of double bond in the terminal furan ring and modification of lactone group indicating less toxicity as compared to parent compounds. Brine shrimps bioassay further confirmed the low toxicity of degraded products, showing that O. basilicum leaves extract can be used as an effective tool for the detoxification of aflatoxins. PMID:27471501

  6. Bioseguridad con énfasis en contaminantes biológicos en trabajadores de la salud Bio-security with emphasis in biological polluting agents in health workers

    Directory of Open Access Journals (Sweden)

    Ana Maria Ardila

    2009-12-01

    Full Text Available Los trabajadores de la salud del servicio de urgencias están expuestos frecuentemente a diferentes peligros, entre ellos a la exposición de los contaminantes biológicos. Estudio de carácter descriptivo, con el objetivo de caracterizar socio-demográficamente a los trabajadores, además de verificar el nivel de aplicación de las normas de bioseguridad, en el servicio de urgencias de una institución de salud en la ciudad de Bogota-Colombia 68.3 % de los trabajadores se encuentra vinculados mediante contrato en la modalidad de prestación de servicios, el 31.7%, esta vinculado en la modalidad de término indefinido. El 44.6% del personal no ha recibido capacitación sobre el tema de bioseguridad, un 42.4 % no aplican la técnica adecuada de lavado de manos. En relación con el aspecto de re-encapuchar las agujas, se encontró que el 31% realizan esta práctica. El 100% de los trabajadores tienen el esquema completo de la vacuna Hepatitis B, pero el mismo porcentaje no tiene medición de anticuerpos de hepatitis B. Es fundamental el suministro de elementos de protección personal y dotación de elementos y recipientes que contribuyan a la bioseguridad. Se deben realizar actividades pedagógicas para sensibilizar y crear conciencia crítica a la organización y todo el personal que labora en el área de urgencias, sobre los peligros y consecuencias a que se exponen en su lugar de trabajo.Health workers of the emergency service are frequently exposed to different dangers, among them the contact with biological polluting agents. This is a study of descriptive character, with the objective to characterize workers on social demographic aspects, and also to verify the level of application of the bio-security norms at the emergency services of a health institution in the city of Bogota, Colombia. 68,3% of the workers are with a contract in the modality of benefit of services, the 31,7%, are in the modality of indefinite term. 44,6% of the personnel

  7. E-Alerts: Environmental pollution and control (water pollution and control). E-mail newsletter

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    Topics of discussion include the following: Pollution by municipal wastes, agricultural wastes, industrial wastes, mine wastes, radioactive contaminants; Chemistry and analysis of pollutants; Thermal pollution; Oil pollution; Control techniques and equipment; Sewage treatment; Industrial waste water pretreatment; Hydrology and limnology; Biological and ecological effects; Waste water reuse; Laws, legislation, and regulations; Public administration; Economics; Land use.

  8. PRESENTED AT TRIANGLE CONSORTIUM OF REPRODUCTIVE BIOLOGY, CHAPEL HILL, NC: GST M1 GENOTYPE INFLUENCES SPERM DNA DAMAGE ASSOCIATED WITH EXPOSURE TO AIR POLLUTION

    Science.gov (United States)

    Exposure to episodic air pollution in the Czech Republic has been associated with abnormal semen quality and sperm DNA damage (EHP 108:887;2000). A subsequentlongitudinal study evaluated semenfrom 36 men sampled up to 7 times over a period of two years to capture exposures durin...

  9. Chemico-biological treatment of polluted soils by polychorinated biphenyls; Tratamiento integrado quimico-biologico de suelos contaminados por bifenilos policlorados

    Energy Technology Data Exchange (ETDEWEB)

    Manzano Quinones, M. A.

    2001-07-01

    In this work a study of biological and chemical treatment of polychlorinated biphenyls (PCBs) in soil has been done. The experiments have been carried out in pilot scale reactors and the results obtained showed 98% elimination and a high mineralization of PCBs employing a Integrated Chemical-Biological Treatment. (Author) 12 refs.

  10. Pollution effects on fisheries — potential management activities

    Science.gov (United States)

    Sindermann, C. J.

    1980-03-01

    Management of ocean pollution must be based on the best available scientific information, with adequate consideration of economic, social, and political realities. Unfortunately, the best available scientific information about pollution effects on fisheries is often fragmentary, and often conjectural; therefore a primary concern of management should be a critical review and assessment of available factual information about effects of pollutants on fish and shellfish stocks. A major problem in any such review and assessment is the separation of pollutant effects from the effects of all the other environmental factors that influence survival and well-being of marine animals. Data from long-term monitoring of resource abundance, and from monitoring of all determinant environmental variables, will be required for analyses that lead to resolution of the problem. Information must also be acquired about fluxes of contaminants through resource-related ecosystems, and about contaminant effects on resource species as demonstrated in field and laboratory experiments. Other possible management activities include: (1) encouragement of continued efforts to document clearly the localized and general effects of pollution on living resources; (2) continued pressure to identify and use reliable biological indicators of environmental degradation (indicators of choice at present are: unusually high levels of genetic and other anomalies in the earliest life history stages; presence of pollution-associated disease signs, particularly fin erosion and ulcers, in fish; and biochemical/physiological changes); and (3) major efforts to reduce inputs of pollutants clearly demonstrated to be harmful to living resources, from point sources as well as ocean dumping. Such pollution management activities, based on continuous efforts in stock assessment, environmental assessment, and experimental studies, can help to insure that rational decisions will be made about uses and abuses of coastal

  11. Biological carbon environment effect and role in agricultural non-point source pollution in the prevention and control%生物炭环境效应和在农业面源污染防治中的作用

    Institute of Scientific and Technical Information of China (English)

    陈晓博

    2013-01-01

      生物炭能够延缓肥料养分释放,提高肥料利用率,降低肥料及土壤养分流失,从而减轻农业面源污染。同时,生物炭进入土壤中,实现碳的封存固定,减少碳排放。%The biological carbon can delay the fertilizer nutrient release , improve the utilization rate of the fertilizer, reducing fertilizer and soil nutrient loss, thereby reducing agricultural non -point source pollution.At the same time, the biological carbon in soil carbon se-questration, fixed, reduce carbon emissions.

  12. Plastic Pollution from Ships

    OpenAIRE

    ČULIN, Jelena; Bielić, Toni

    2016-01-01

    The environmental impact of shipping on marine environment includes discharge of garbage. Plastic litter is of particular concern due to abundance, resistance to degradation and detrimental effect on marine biota. According to recently published studies, a further research is required to assess human health risk. Monitoring data indicate that despite banning plastic disposal at sea, shipping is still a source of plastic pollution. Some of the measures to combat the problem are discussed.

  13. Water pollution

    OpenAIRE

    Institute, Marine

    2013-01-01

    Students will learn about what causes water pollution and how to be environmentally aware. *Note: Students should understand the concept of the water cycle before moving onto water pollution (see Lesson Plan “Oceans all Around Us”).

  14. Persistence and degradation of pesticide residues in different agricultural soils, related to biological activity. Part of a coordinated programme on isotopic-tracer-aided studies of agrochemical residue - soil biota interactions

    International Nuclear Information System (INIS)

    Laboratory studies and small-scale field experiments were conducted involving pesticides extensively used in agricultural practice in Brazil (the insecticides aldrin, carbaryl and parathion, and the fungicides carbendazim and metalaxyl) with emphasis on biological activity and soil organic matter content. The ability of fungi isolated from soils of southern, centre and northern regions of Brazil to degrade 14C-aldrin and its metabolites was assayed in culture growth medium. Results showed that the microorganism Penicilium sp. was able to metabolize the parent compound or one of its metabolites added to the medium. Field studies performed with soils packed into PVC tubes showed that added 14C-aldrin leached fastest in the soil poor in organic matter. 14C-carbaryl was used to evaluate the effects of addition of carbon sources on its persistence and degradation in soils rich and poor in organic matter. It was found that cellulose can influence the behaviour of carbaryl in soil low in organic matter by interfering with microorganismal population. Studies on the degradation of 14C-parathion by soil kept moist with and without repeated applications demonstrated that microbial population was modified by the repeated treatment. The adsorption, movement and persistence of the fungicide 14C-carbendazim was examined in Brazilian soils differing in organic matter content. Soils with highest levels of organic matter showed higher sorption coefficients and lower mobility. Carbendazim was very persistent in all soils. The metabolite 2-benzimidazolecarbamate was the main degradation product detected. Experiments with 14C-metalaxyl showed that sorption coefficients in the Humic Gley soil were 0.8 and in the Dark Red Latosol soil 0.3. Data are in agreement with the high mobility of 14C-metalaxyl in soil thin-layers. Also, a metabolite was detected in percentages varying from 3 to 10% specially in the Humic Gley soil samples

  15. Radiation degradation of biological waste (aflatoxins) produced in food laboratory; Degradacao por radiacao de residuos biologicos (aflatoxinas) produzidos em laboratorio de alimentos

    Energy Technology Data Exchange (ETDEWEB)

    Rogovschi, Vladimir Dias

    2009-07-01

    Many filamentous fungi can produce secondary metabolites, called mycotoxins, which can be found in food and agricultural products. One of the main genera of myco toxigenic fungi related to the food chain is the Aspergillus spp. There are over 400 mycotoxins described in the literature, the most common the aflatoxins B1, B2, G1 and G2. The mycotoxins are commonly found in foods and are considered one of the most dangerous contaminants. The aflatoxin B1 is classified in group one by the International Agency of Research on Cancer. Aflatoxins resisting for more than one hour in autoclave making it necessary to other means of degradation of these toxins. This work aimed to observe the effects of gamma radiation of {sup 60}Co and electron beams in the degradation of aflatoxins and compare the damage caused on the morphology of the Aspergillus flavus. The fungus was grown on potato dextrose agar (PDA) for 10 days and was subsequently transferred to coconut agar medium, and maintained for 14 days at 25 degree C. After this step the coconut agar was ground to become a homogeneous pasty and was irradiated with doses of 2.5, 5.0, 10 and 20 kGy. The samples used in scanning electron microscopy were irradiated with doses of 0, 2.5, 5.0, 10 and 20 kGy with sources of {sup 60}Co and electron beams. Irradiation with electron accelerator showed a slightly higher degradation to gamma radiation, reducing 29.93 %, 34.50 %, 52.63 % and 72.30 % for doses of 2.5, 5.0, 10 and 20 kGy, respectively. The Scanning Electron Microscopy showed that doses of 2.5 to 10 kGy did not cause damage to the fungus, but with a dose of 20 kGy it can be observed fungal damage to structures. (author)

  16. Structural Analysis and Biological Toxicity of Aflatoxins B1 and B2 Degradation Products Following Detoxification by Ocimum basilicum and Cassia fistula Aqueous Extracts

    Science.gov (United States)

    Iram, Wajiha; Anjum, Tehmina; Iqbal, Mazhar; Ghaffar, Abdul; Abbas, Mateen; Khan, Abdul Muqeet

    2016-01-01

    This study showed the comparison between Ocimum basilicum and Cassia fistula (leaves and branch) aqueous extracts for their ability to detoxify of aflatoxins B1 and B2 (AFB1; 100 μg L-1 and AFB2; 50 μg L-1) by In Vitro assays and decontamination studies. Results indicated that O. basilicum leaves extract was found to be highly significant (P Brine shrimps bioassay further confirmed the low toxicity of degraded products, showing that O. basilicum leaves extract can be used as an effective tool for the detoxification of aflatoxins. PMID:27471501

  17. [Biodegradation of organic pollutants by thermophiles and their applications: a review].

    Science.gov (United States)

    Cui, Jing-Lan; Chen, Chen; Qin, Zhi-Hui; Yu, Chun-Na; Shen, Hui; Shen, Chao-Feng; Chen, Ying-Xu

    2012-11-01

    Persistent organic pollutants have increasingly become a critical environmental concern, while thermophiles have the high potential of degrading various kinds of environmental organic pollutants. At high temperatures, thermophiles have higher metabolic activity, and the competition by mesophiles is reduced, meanwhile, the solubility and bioavailability of some persistent organic pollutants are greatly increased, and thus, the degradation of the pollutants by thermophiles is more rapid and complete. Therefore, thermophils are of great significance for the bio-treatment of organic wastewater and the bioremediation of organic pollutants-contaminated sites. This paper introduced the research progress on the degradation of organic pollutants by thermophiles in terms of the characteristics of thermophiles in degrading organic pollutants, the effects of temperature on the degradation, the degradation pathways, the degradation enzymes, their coding genes, and practical engineering applications. The future research directions including the degradation mechanisms of thermophiles, their resources reserve, related technology strategies and their applications were also prospected. PMID:23431811

  18. Air Pollution.

    Science.gov (United States)

    Barker, K.; And Others

    Pollution of the general environment, which exposes an entire population group for an indeterminate period of time, certainly constitutes a problem in public health. Serious aid pollution episodes have resulted in increased mortality and a possible relationship between chronic exposure to a polluted atmosphere and certain diseases has been…

  19. 设计和制备能量转换和环境净化的高效异质结光催化剂%Design and fabrication of heterojunction photocatalysts for energy conversion and pollutant degradation

    Institute of Scientific and Technical Information of China (English)

    余长林; 周晚琴; 余济美; 刘鸿; 魏龙福

    2014-01-01

    Photocatalysis has attracted much attention for its promise in converting solar energy to chemical energy and in degrading various pollutants. Many recent investigations have demonstrated photo-catalysts with well-defined junctions between two semiconductors with matched electronic band structures. Such structures effectively facilitate charge transfer and suppress recombination of photogenerated electrons and holes, leading to extremely high activity and stability. In this review, we focus on the influence of the heterojunction on the performance of semiconductor photocata-lysts, including TiO2-based, ZnO-based, and Ag-based semiconductor photocatalysts. We also inves-tigate fabrication methods for heterojunctions and attempt to understand the mechanisms behind photocatalysis. Finally, we propose challenges to design and clarify the mechanism for enhancing the effect of the heterojunction on photocatalyst performance.%在过去的几十年中,光催化由于具有将太阳能转化为清洁氢化学能和降解各种污染物的广泛应用前景,因而引起了人们广泛关注。近期,很多研究表明,两个具有相匹配电子能级结构的半导体形成接触良好的异质结,可以有效地促进电荷转移和抑制光生电子(e-)和空穴(h+)的复合,从而显著提高光催化剂的活性和稳定性。本文主要讨论了异质结对半导体光催化剂的促进作用;分析了异质结对一些典型光催化剂如TiO2, ZnO和Ag基半导体等光催化性能的影响;讨论了异质结光催化剂的制备方法和对光催化过程影响的基本机理;最后,提出了设计和理解异质结促进光催化反应机理所面临的挑战。

  20. Changes in the ecological and biological properties of ordinary chernozems polluted by heavy metals of the second hazard class (Mo, Co, Cr, and Ni)

    Science.gov (United States)

    Kolesnikov, S. I.; Evreinova, A. V.; Kazeev, K. Sh.; Val'Kov, V. F.

    2009-08-01

    The pollution of ordinary chernozems by heavy metals of the second hazard class (Mo, Co, Cr, and Ni) results in a decrease in the numbers of saprotrophic bacteria and fungi and bacteria of the Azotobacter genus; the catalase and invertase activities and the rates of the cellulose and urea decomposition also decrease. The soil phytotoxicity becomes higher. With respect to their ecological hazard, the studied heavy metals may be arranged into the following sequence: Cr > Co ≥ Ni > Mo.

  1. Oil pollution and the significant biological resources of Puget Sound : final report field survey from 16 July 1974 to 01 September 1976 (NODC Accession 7601556)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Biological and chemical data were collected using sediment sampler and other instruments in the PUGET Sound, which is in the Northwest coastal waters of Washington....

  2. Microbial Degradation of Indole and Its Derivatives

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Arora

    2015-01-01

    Full Text Available Indole and its derivatives, including 3-methylindole and 4-chloroindole, are environmental pollutants that are present worldwide. Microbial degradation of indole and its derivatives can occur in several aerobic and anaerobic pathways; these pathways involve different known and characterized genes. In this minireview, we summarize and explain the microbial degradation of indole, indole-3-acetic acid, 4-chloroindole, and methylindole.

  3. Water magnetic relaxation dispersion in biological systems: The contribution of proton exchange and implications for the noninvasive detection of cartilage degradation

    OpenAIRE

    Duvvuri, Umamaheswar; Goldberg, Ari D.; Kranz, James K.; Hoang, Linh; Reddy, Ravinder; Wehrli, Felix W.; Wand, A. Joshua; Englander, S W; Leigh, John S.

    2001-01-01

    Magnetic relaxation has been used extensively to study and characterize biological tissues. In particular, spin-lattice relaxation in the rotating frame (T1ρ) of water in protein solutions has been demonstrated to be sensitive to macromolecular weight and composition. However, the nature of the contribution from low frequency processes to water relaxation remains unclear. We have examined this problem by studying the water T1ρ dispersion in peptide solutions (14N- and 15N-labeled), glycosamin...

  4. Relative Abundance and the Relationships between Aniline,Phenol and Catechol Degraders in Fresh Water

    Institute of Scientific and Technical Information of China (English)

    MasaoNasu; NevilGOONEWARDENA; 等

    1993-01-01

    Relative abundance and relationships between aniline,phenol and catechol degraders were investigated in unpolluted and polluted fresh waters in Osaka prefectur,Japan,Phenol and catechol degraders were found more frequently compared to aniline degraders.The results indicate that these degraders were more abundant in polluted waters than in unpolluted waters.Aniline degraders isolated from the Ina River water showed a higher capability of degrading catechol than phenol.Analysis on sequence homology among these three kinds of degraders indicated a possible relationship between aniline degraders and certain strains of both catechol and phenol degraders.

  5. [Progress of research on the microbial fuel cells in the application of environment pollution treatment--a review].

    Science.gov (United States)

    Yang, Yonggang; Sun, Guoping; Xu, Meiying

    2010-07-01

    Microbial fuel cells (MFCs) are bio-electrochemical reactors that have the capacity to convert chemical energy of biodegradable organic chemicals to electrical energy, and developed rapidly in the past few years. With an increasing concern for energy crisis and environment pollution, MFCs has became a promising technology in the researches of environment pollution treatments and biology electricity. In this paper, we offered a comprehensive review of the recent research progress of MFCs in environment pollution treatment, includes denitrification, desufurization, organic pollutants degradation, heavy metal reduction and landfill leachate treatment. Also, we pointed out the challenges and problems which were bottle necks for a wide application of MFCs and the potential future development. PMID:20815229

  6. 生活垃圾处理机生物降解生活垃圾的微生物研究%Study on Microorganism in Biological Degradation of Domestic Garbage by Domestic Garbage Disposal

    Institute of Scientific and Technical Information of China (English)

    吴昊; 张赣道

    2011-01-01

    [Objective] The research aimed to study microorganism in biological degradation of domestic garbage by domestic garbage disposal. [Method]Kitchen waste was collected, bacterial strains of the predominant bacteria in the degradation of assorted garbage and sorted garbage, and incidental microbial inoculums of domestic garbage disposal were cultivated and identified. [ Result ] Trie research identified 11 bacterial strains of origin microorganism;3 predominant bacterial strains of starch garbage degradation,respectively Bacillus subtilis(BDh9) .miscellaneous bacteria (stal) and Bacillus amyloliquefaciensB( BDhl) ;3 predominant bacterial strains of protein garbage degradation,respectively Bacillus sub tilis ( BDh9), miscellaneous bacteria ( stal) and Camobacterium divergent (BD5); 5 predominant bacterial strains of cellulose garbage degrada tion, respectively Bacillus subtilis(BT)h9), miscellaneous bacteria(stal) ,Burkholderia multivorans{BT)hS) ,Bacillus ctrcu/ons(BDl)and miscella neous bacteria (sta2). [Conclusion] The study lays a foundation for researching patent technology for biodegradation of domestic garbage.%[目的]采用生活垃圾处理机生物降解生活垃圾中的微生物.[方法]收集厨余垃圾,对降解混合垃圾、分类垃圾的优势菌群中的菌株和复合菌剂中的菌株进行培养和鉴定.[结果]鉴定出原菌剂中微生物11株;降解淀粉类垃圾的优势菌群微生物3株,分别为枯草芽孢杆菌(Bacillus subtilis,BDh9)、杂菌(stal)和淀粉液化芽孢杆菌(Bacillus amyloliquefaciensB,BDh1);降解蛋白质类生活垃圾优势菌群微生物3株,分别为枯草芽孢杆菌(Bacillus subtilis,BDh9)、杂jun (stal)和肉食杆菌属(Carnobacterium divergens,BD5);降解纤维素类垃圾的优势菌群微生物5株,分别为枯草芽孢杆菌(Bacillus subtilis,BDh9)、杂菌(stal)、伯克霍尔德菌(Burkholderia multivorans,BDh6)、环状芽孢杆菌(Bacillus circulans,BDI)和杂菌(sta2).[结论]该研究可

  7. On Pollution

    Institute of Scientific and Technical Information of China (English)

    刘磊

    2005-01-01

    Long long ago,our world was very beautiful, there were trees, flowers,rivers ... they were very clean and tidy.But now, the hillsarenrt green, the rivers aren't clean,the fish has died. Pollution is becoming more and more serious all over the world. We are living in a polluted environment which is bad forour health.

  8. HOW AGRICULTURAL CHEMISTRY CAN CONTRIBUTE TO DEALING WITH PROBLEMS OF ENVIRONMENTAL POLLUTION

    Directory of Open Access Journals (Sweden)

    Carlo Emanuele Gessa

    2010-08-01

    Full Text Available Soil is a complex heterogeneous system whose physical, chemical and biological properties regulate interactions with the chemical species which reach its surface. Soil chemistry is an essential tool for understanding and predicting these interactions. Soil is able to immobilize and transform organic and inorganic molecules by different mechanisms, such as complexing and redox reactions. This behaviour gives soil detoxifying capacities towards pollutants which accumulate in the environment. Pollution by heavy metals is regulated by their solubility in soil solution which in turn depends on soil pH and redox properties and metal speciation. Organic and inorganic colloidal soil fractions can promote the immobilisation, degradation, and diffusion of organic molecules such as agrochemicals, solvents, hydrocarbons and other chemicals which reach the soil by anthropic activities. Predicting the fate of xenobiotics in soil, water, air, and plant ecosystems, the recycling of biomass and the decontamination of polluted soils are of major concern to soil chemistry.

  9. The Pollution of Zeytinburnu Port, Istanbul, Turkey

    OpenAIRE

    Guven, Kasim Cemal; Balkis, Nuray; Çetintürk, Kartal; Okus, Erdogan

    2003-01-01

    Abstract The pollutants of sediment of Zeytinburnu Port were determined. The pollutant amounts were found high for organic as oil (3.8 mg/g), chlorined pestisides (9.55 ng/g), phenol and anorganic as Zinc, hydrogen sulphide, ammonium, nitrite, nitrate. The degradation products of DDT were determined as DDE and DDD. According to these results Zeytinburnu Port is a highly polluted area.

  10. Evaluation of physical, biological and chemical techniques applied to the remediation of an arsenic-polluted soil comming from an old mining area

    Energy Technology Data Exchange (ETDEWEB)

    Clozel-Leloup, B. [BRGM (French Geological Survey), SGR/RHA (Rhone-Alpes Area) Villeurbannde (France); Battaglia-Brunet, F.; Ignatiadis, I. [BRGM (French Geological Survey), Environment and Process Department, Biotechnology Unit, Orleans (France); Conil, P. [BRGM (French Geological Survey), SGR/PAL (Pays-de-Loire Area), Nantes (France)

    2003-07-01

    The purpose of this work is to develop and try out tests having a tree structure aimed at assessing the applicability of different techniques to the remediation of polluted soils. One of the case studies is a soil from an old mining area, heavily polluted by arsenic (As content >3%). The first step in this case study was to determine the arsenic speciation in a sample of the soil so as to determine its potential for treatment. To this purpose, the soil was characterised both physically (through soil fractionation and physical analysis of its constituents) and chemically (through chemical attacks). The results of the physical characterisation show a large variety of arsenic-bearing phases, such as sulphides from the mining activities, slag from the pyrometallurgical processing and, above all, Fe-As oxide phases encrustations on the grains, probably resulting from weathering and oxidation of the sulphides. The encrustations are the main arsenic-carriers in the soil; iron arsenates (like scorodite type) have been identified, but they are generally iron hydroxides on which the arsenic is sorbed or coprecipitated. The development of a test consisting in successive chemical attacks at high and low pH, thus respectively favouring arsenates desorption or iron hydroxides dissolution, has enabled us to demonstrate tht the main mechanism linking the arsenic and the solid is their sorption on the iron hydroxides. An exchange test with phosphates, carried out at neutral pH, supports these observations by releasing 6% of arsenic soil content, and confirms the strong potential risk presented by this soil, even in the absence of physical, chemical modifications or redox conditions. (orig.)

  11. Environmental and biological factors controlling the spring phytoplankton bloom at the Patagonian shelf-break front - Degraded fucoxanthin pigments and the importance of microzooplankton grazing

    Science.gov (United States)

    Carreto, José I.; Montoya, Nora G.; Carignan, Mario O.; Akselman, Rut; Acha, E. Marcelo; Derisio, Carla

    2016-08-01

    The aim of this study was to investigate the biotic and abiotic factors controlling the spring phytoplankton blooms at the Patagonian shelf-break front (PSBF). Using a CHEMTAX analysis of HPLC pigment data and other methods, the biomass and spatial variability of plankton communities were studied in four sections (39-48°S) across the PSBF during October 2005. Environmental factors and the biomass and composition of plankton communities exhibited a marked spatial heterogeneity. The latitudinal and cross-shelf progression in the timing of the spring bloom initiation and the nutritive properties of the water masses (Subantarctic Shelf Waters and Malvinas Current Waters) seemed to be the key factors. Three plankton regions were distinguished: (a) Outer shelf (OS), (b) Shelf-break front (SBF) and (c) Malvinas Current (MC). At the highly stratified OS region, the post-bloom community showed low-biomasshigh-phytoplankton diversity formed mainly by small cells (haptophytes 30-62%, diatoms 17-49%, chlorophytes 0-34%, and prasinophytes 0-21% of total Chl a). High amounts of degraded fucoxanthin were found associated with the heterotrophic dinoflagellate, Protoperidinium capurroi. Grazing by this microheterotroph on the diatom population seemed to be the most important factor for the spring bloom decay at the OS. A remarkable quasi monospecific bloom (∼90%) of a nanodiatom (Thalassiosira bioculata var. raripora) associated with high Chl a (up to 20 mg m-3) occurred along (∼1000 km) the SBF and in the most northern extension of the MC. In the southern region, the bloom was developed under absent or incipient density stratification, increasing solar irradiance, high nitrate and phosphate availability, and low numbers of phytoplankton grazers. The average mixedlayer PAR irradiance (iron-rich sediments. The upwelling along the SBF provides a large source of macronutrients and probably the dissolved iron needed to sustain the intense diatom bloom, but also diatom resting

  12. [Biological treatments for contaminated soils: hydrocarbon contamination. Fungal applications in bioremediation treatment].

    Science.gov (United States)

    Martín Moreno, Carmen; González Becerra, Aldo; Blanco Santos, María José

    2004-09-01

    Bioremediation is a spontaneous or controlled process in which biological, mainly microbiological, methods are used to degrade or transform contaminants to non or less toxic products, reducing the environmental pollution. The most important parameters to define a contaminated site are: biodegradability, contaminant distribution, lixiviation grade, chemical reactivity of the contaminants, soil type and properties, oxygen availability and occurrence of inhibitory substances. Biological treatments of organic contaminations are based on the degradative abilities of the microorganisms. Therefore the knowledge on the physiology and ecology of the biological species or consortia involved as well as the characteristics of the polluted sites are decisive factors to select an adequate biorremediation protocol. Basidiomycetes which cause white rot decay of wood are able to degrade lignin and a variety of environmentally persistent pollutants. Thus, white rot fungi and their enzymes are thought to be useful not only in some industrial process like biopulping and biobleaching but also in bioremediation. This paper provides a review of different aspects of bioremediation technologies and recent advances on ligninolytic metabolism research.

  13. Evaluation of 4-bromophenol biodegradation in mixed pollutants system by Arthrobacter chlorophenolicus A6 in an upflow packed bed reactor.

    Science.gov (United States)

    Sahoo, Naresh Kumar; Pakshirajan, Kannan; Ghosh, Pranab Kumar

    2014-09-01

    Bromophenol is listed as priority pollutant by U.S. EPA, however, there is no report so far on its removal in mixed pollutants system by any biological reactor operated in continuous mode. Furthermore, bromophenol along with chlorophenol and nitrophenol are usually the major constituents of paper pulp and pesticide industrial effluent. The present study investigated simultaneous biodegradation of these three pollutants with specially emphasis on substrate competition and crossed inhibition by Arthrobacter chlorophenolicus A6 in an upflow packed bed reactor (UPBR). A 2(3) full factorial design was employed with these pollutants at two different levels by varying their influent concentration in the range of 250-450 mg l(-1). Almost complete removal of all these pollutants and 97 % effluent toxicity removal were achieved in the UPBR at a pollutant loading rate of 1707 mg l(-1) day(-1) or lesser. However, at higher loading rates, the reactor performance deteriorated due to transient accumulation of toxic intermediates. Statistical analysis of the results revealed a strong negative interaction of 4-CP on 4-NP biodegradation. On the other hand, interaction effect between 4-CP and 4-BP was found to be insignificant. Among these three pollutants 4-NP preferentially degraded, however, 4-CP exerted more inhibitory effect on 4-NP biodegradation. This study demonstrated the potential of A. chlorophenolicus A6 for biodegradation of 4-BP in mixed pollutants system by a flow through UPBR system. PMID:24934870

  14. Water pollution - phycological perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, J.P.; Rai, L.C.

    1983-01-01

    Water pollution exerts a pressure of selection on algal populations. In spite of a possible adaptation, often a changed diversity and sociological structure result, from which other effects on higher levels of the nutrient chain may emanate. There are presented some biological indices for characterizing algal communities which may serve as a biological measure of pollution and self-purification, the problem of diversity being especially taken into account. Moreover, algal tests are used for representing the trophic situation and for determining the limiting nutrient, but also for determining the toxic influencing of biocenosis by hydrocarbons, too. Special attention is paid to heavy metals with regard to their synergistic action and bioaccumulation. On the other hand, the mass culture of algae is a value method of wastewater treatment and the recovery of valuable materials, and algae ponds provide an important technique for advanced wastewater purification.

  15. Response of autochthonous microbiota of diesel polluted soils to land-farming treatments.

    Science.gov (United States)

    Silva-Castro, Gloria Andrea; Uad, Imane; Rodríguez-Calvo, Alfonso; González-López, Jesús; Calvo, Concepción

    2015-02-01

    This study investigated the response of autochthonous microorganisms of diesel polluted soils to land-farming treatments. Inorganic NPK (nitrogen, phosphorous, and potassium) fertilizer and Ivey surfactant were applied alone or in combination as biostimulating agents. The study was carried out in experimental separated land-farming plots performed with two soils: a sandy clay soil with low biological activity and a sandy clay soil with higher biological activity, contaminated with two concentrations of diesel: 10,000 and 20,000mgkg(-1). Bacterial growth, dehydrogenase activity and CO2 production were the biological parameters evaluated. Non-metric multidimensional scaling analysis proved that moisture content showed a tendency related to microbial growth and that heterotrophic and degrading microorganisms had the best relationship. Initial biological activity of soil influenced the response with 11.1% of variability attributed to this parameter. Soils with low activity had higher degree of response to nutrient addition. PMID:25486545

  16. Digestion and degradation, air for life.

    Science.gov (United States)

    Lettinga, G

    2001-01-01

    Anaerobic degradation of dead biomass is a natural gasification process, an anaerobic crematorium producing a very useful end-product composed of methane and carbon dioxide, generally polluted with small amounts of some malodorous and quite toxic volatile S-compounds. It leads to the production of essential building elements for new life. This exciting field became my faith, vision, hope and expectation. This paper intends to present a reflection of more than three decades of research, teaching and advertisement in the field of sustainable environmental protection technologies, particularly of systems based on anaerobic digestion and the biological sulphur cycle. Considerable progress has been made during these decades worldwide, both in the basic understanding of the various processes and concepts, but also in the implementation of these systems, despite the fact that particularly the implementation frequently proceeded very laboriously. The difficulties certainly can no longer be attributed to technological limitations and/or insufficient understanding of the microbiology and chemistry only, but mainly to the frustrating social rigidity and short-term self-interest in all sectors of our society. By combining anaerobic processes with other microbiological degradation or transformation processes, like those based on the biological sulphur cycle, micro-aerobic and conventional aerobic and anoxic processes, ideal conditions can be created to valorise residues (wastes) from domestic, industrial and agricultural origin. It is simply not just "technology", but also a route to achieve more sustainability and justice in society. It is a fight against conservative establishments. Decomposition, disintegration disbandment, it also stands for deliverance and liberation, space and air for continuation of life. PMID:11730132

  17. [Comparison of efficiencies of oil-oxidizing Dietzia maris strain and stimulation of natural microbial communities in remediation of polluted soil].

    Science.gov (United States)

    Pleshakova, E V; Dubrovskaia, E V; Turkovskaia, O V

    2008-01-01

    Two approaches to bioremediation of oil-polluted soils are compared: use of active degrader strain Dietzia maris AM3 and stimulation of natural microflora. Introduction of D. maris AM3 to soil freshly polluted with oil accelerated its remediation twofold within the first month in comparison with the stimulation. After three months, the purification degrees were approximately equal. By the end of bioremediation, the soil with the introduced strain had higher dehydrogenase and catalase activities. In soil with multiyear pollution, introduced strain D. maris AM3 did not affect the rate of oil product degradation, and no significant differences between the two bioremediation methods were detected in purification degree and biological activity of soil after three months.

  18. Community Analysis and Recovery of Phenol-degrading Bacteria from Drinking Water Biofilters.

    Science.gov (United States)

    Gu, Qihui; Wu, Qingping; Zhang, Jumei; Guo, Weipeng; Wu, Huiqing; Sun, Ming

    2016-01-01

    Phenol is a ubiquitous organic contaminant in drinking water. Biodegradation plays an important role in the elimination of phenol pollution in the environment, but the information about phenol removal by drinking water biofilters is still lacking. Herein, we study an acclimated bacterial community that can degrade over 80% of 300 mg/L phenol within 3 days. PCR detection of genotypes involved in bacterial phenol degradation revealed that the degradation pathways contained the initial oxidative attack by phenol hydroxylase, and subsequent ring fission by catechol 1,2-dioxygenase. Based on the PCR denatured gradient gel electrophoresis (PCR-DGGE) profiles of bacteria from biological activated carbon (BAC), the predominant bacteria in drinking water biofilters including Delftia sp., Achromobacter sp., and Agrobacterium sp., which together comprised up to 50% of the total microorganisms. In addition, a shift in bacterial community structure was observed during phenol biodegradation. Furthermore, the most effective phenol-degrading strain DW-1 that correspond to the main band in denaturing gradient gel electrophoresis (DGGE) profile was isolated and identified as Acinetobacter sp., according to phylogenetic analyses of the 16S ribosomal ribonucleic acid (rRNA) gene sequences. The strain DW-1 also produced the most important enzyme, phenol hydroxylase, and it also exhibited a good ability to degrade phenol when immobilized on granular active carbon (GAC). This study indicates that the enrichment culture has great potential application for treatment of phenol-polluted drinking water sources, and the indigenous phenol-degrading microorganism could recover from drinking water biofilters as an efficient resource for phenol removal. Therefore, the aim of this study is to draw attention to recover native phenol-degrading bacteria from drinking water biofilters, and use these native microorganisms as phenolic water remediation in drinking water sources.

  19. Community analysis and recovery of phenol-degrading bacteria from drinking water biofilters

    Directory of Open Access Journals (Sweden)

    Qihui eGu

    2016-04-01

    Full Text Available Phenol is a ubiquitous organic contaminant in drinking water. Biodegradation plays an important role in the elimination of phenol pollution in the environment, but the information about phenol removal by drinking water biofilters is still lacking. Herein, we study an acclimated bacterial community that can degrade over 80% of 300 mg/L phenol within 3 d. PCR detection of genotypes involved in bacterial phenol degradation revealed that the degradation pathways contained the initial oxidative attack by phenol hydroxylase, and subsequent ring fission by catechol 1,2-dioxygenase. Based on the PCR denatured gradient gel electrophoresis (PCR-DGGE profiles of bacteria from biological activated carbon (BAC, the predominant bacteria in drinking water biofilters including Delftia sp., Achromobacter sp., and Agrobacterium sp., which together comprised up to 50% of the total microorganisms. In addition, a shift in bacterial community structure was observed during phenol biodegradation. Furthermore, the most effective phenol-degrading strain DW-1 that correspond to the main band in DGGE profile was isolated and identified as Acinetobacter sp., according to phylogenetic analyses of the 16S ribosomal ribonucleic acid (rRNA gene sequences. The strain DW-1 also produced the most important enzyme, phenol hydroxylase, and it also exhibited a good ability to degrade phenol when immobilized on GAC. This study indicates that the enrichment culture has great potential application for treatment of phenol-polluted drinking water sources, and the indigenous phenol-degrading microorganism could recover from drinking water biofilters as an efficient resource for phenol removal. Therefore, the aim of this study is to draw attention to recover native phenol-degrading bacteria from drinking water biofilters, and use these native microorganisms as phenolic water remediation in drinking water sources.

  20. Community Analysis and Recovery of Phenol-degrading Bacteria from Drinking Water Biofilters.

    Science.gov (United States)

    Gu, Qihui; Wu, Qingping; Zhang, Jumei; Guo, Weipeng; Wu, Huiqing; Sun, Ming

    2016-01-01

    Phenol is a ubiquitous organic contaminant in drinking water. Biodegradation plays an important role in the elimination of phenol pollution in the environment, but the information about phenol removal by drinking water biofilters is still lacking. Herein, we study an acclimated bacterial community that can degrade over 80% of 300 mg/L phenol within 3 days. PCR detection of genotypes involved in bacterial phenol degradation revealed that the degradation pathways contained the initial oxidative attack by phenol hydroxylase, and subsequent ring fission by catechol 1,2-dioxygenase. Based on the PCR denatured gradient gel electrophoresis (PCR-DGGE) profiles of bacteria from biological activated carbon (BAC), the predominant bacteria in drinking water biofilters including Delftia sp., Achromobacter sp., and Agrobacterium sp., which together comprised up to 50% of the total microorganisms. In addition, a shift in bacterial community structure was observed during phenol biodegradation. Furthermore, the most effective phenol-degrading strain DW-1 that correspond to the main band in denaturing gradient gel electrophoresis (DGGE) profile was isolated and identified as Acinetobacter sp., according to phylogenetic analyses of the 16S ribosomal ribonucleic acid (rRNA) gene sequences. The strain DW-1 also produced the most important enzyme, phenol hydroxylase, and it also exhibited a good ability to degrade phenol when immobilized on granular active carbon (GAC). This study indicates that the enrichment culture has great potential application for treatment of phenol-polluted drinking water sources, and the indigenous phenol-degrading microorganism could recover from drinking water biofilters as an efficient resource for phenol removal. Therefore, the aim of this study is to draw attention to recover native phenol-degrading bacteria from drinking water biofilters, and use these native microorganisms as phenolic water remediation in drinking water sources. PMID:27148185

  1. Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye.

    Science.gov (United States)

    Elango, Ganesh; Roopan, Selvaraj Mohana

    2016-02-01

    Maximum pollutants in the industrial and domestic waste water effluents from any sources include pathogens and organic chemicals, which can be removed before discharging into the water bodies. Methylene blue has been considered as one of the major water contaminated pollutants. Such pollutant is dominant in surface water and groundwater. It will cause irreversible hazards to human and aquatic life. Nanotechnology plays a major role in degrading such type of pollutant. In order to fulfill today's requirement, we have decided to handle the green synthesis of nanoparticles and its application by merging important fields like chemistry, environmental science, and biotechnology. Here our work emphasizes on the biological synthesis of SnO2 nanoparticles (SnO2 NPs) using the methanolic extract of Cyphomandra betacea (C.betacea), and it was confirmed by various characterization techniques such as UV-visible spectroscopy, FT-IR, XRD, SEM, particle size analyzer, zeta potential, and TEM. The obtained results stated that the synthesized SnO2 NPs were in rod shape with an average size of 21nm, which resulted in a product of nanobiotechnology. Further, we have utilized the environmental-friendly synthesized SnO2 NPs photocatalytic degradation of environmental concern methylene blue with first-order kinetics. In this paper, we have attempted to prove that secondary metabolite-entrapped SnO2 NPs are non-toxic to the environment. PMID:26724726

  2. 可降解聚已内酯材料的体外生物学特征:安全性评价%Biological characters in vitro of degradable polycaprolactone:safety evaluation

    Institute of Scientific and Technical Information of China (English)

    艾合麦提·玉素甫; 陈统一; 陈中伟

    2004-01-01

    背景:可降解聚己内酯体内植入物材料的毒副作用、生物安全性评价试验已有报道,但体外生物学安全性如何还不清楚.目的:评价可降解聚己内酯的体外生物学安全性.设计:随机对照重复测量设计.地点和对象:在上海市计划生育研究所毒理学实验室完成.Wistar大鼠130只、新西兰大白兔9只,上海医科大学中山医院动物实验部提供,清洁级.干预:采用可降解PCL的浸出液进行了急性毒性试验、Ames试验、微核试验、肌肉刺激实验、热源试验.主要观察指标:①急性毒性试验结果.②Ames试验结果.③微核试验结果.④肌肉刺激实验结果.⑤热源试验结果.结果:PCL浸出液对大鼠的生长及细胞无毒性作用,Ames试验及微核试验结果证明PCL对细胞染色体、DNA水平的遗传物质无损害作用.热源试验及肌肉刺激试验结果证明PCL无免疫原性.结论:PCL是一种具有良好的生物相容性、无毒性、无免疫原性的材料.%BACKGROUND: There are some reports on the toxic and side effects, biological safety evaluation of degradable polycaprolactone(PCL) as in vivo implantation material. However, the in vitro safety of biological is still unclear.OBJECTIVE: To evaluate the in vitro biological safety of degradable PCL.DESIGN: A randomized controlled and repeated survey design was conducted.SETTING and PARTICIPANTS: The study was conducted in the Laboratory of Toxicology, Shanghai Institute of Planned Parenthood Research. One hundred and thirty Wister rats and 9 New Zealand rabbits of clean grade were provided by Department of Experimental Animals, Zhongshan Hospital Affiliated to Shanghai Medical University.INTERVENTIONS: The extraction solution of degradable PCL was used to conduct acute toxicity testing, Ames test, micronucleus test, muscle stimulation test and heat source test.RESULTS: PCL extraction solution had no toxic effects of on the growth of rats and on the cells. Ames test and

  3. Light Pollution

    Science.gov (United States)

    Riegel, Kurt W.

    1973-01-01

    Outdoor lighting is light pollution which handicaps certain astronomical programs. Protective measures must be adopted by the government to aid observational astronomy without sacrificing legitimate outdoor lighting needs. (PS)

  4. Study on Nitrogen-doped Titanium Dioxide's Degradation of Nirogen Pollutants in Water with Visible Light Photocatalysis%氮掺杂的二氧化钛可见光催化降解水中含氮污染物的研究

    Institute of Scientific and Technical Information of China (English)

    张瑶; 李利辉; 严亚

    2015-01-01

    目的:探讨可见光照射下氮掺杂的二氧化钛对水中含氮污染物的降解活性.方法:以硫脲为氮源,用水热法制备不同比例的氮掺杂二氧化钛.用X射线衍射、透射电子显微镜对产物的结构、形貌进行表征.在可见光照射下,以罗丹明B为模型染料污染物,考察所制备的系列样品的可见光催化活性.以乙酰甲胺磷为含氮的模型污染物考察最佳比例的氮掺杂的二氧化钛样品对水环境中的含氮污染物的降解活性.结果:掺杂适量的氮可以提高二氧化钛纳米粒子的可见光催化活性,氮的掺杂量为1.0%时可见光催化活性最高.水环境中总氮含量为Ⅳ类水时,经1.0%氮掺杂的二氧化钛可见光催化降解4 h,样品液的总氮含量可接近Ⅱ类水.结论:氮掺杂的二氧化钛在可见光下可有效降解水中的含氮污染物.%Objective: To investigate the degradation activity of nitrogen-doped titanium dioxide to the Nitrogen pollutants with visible light photocatalysis. Methods: Nitrogen-doped titanium oxides (N-TiO2) with different amounts of N were prepared via hydrothermal method by using thiourea as nitrogen source. The structure and morphology of N-TiO2 were characterized by X-ray powder diffraction(XRD)and transmission electron microscopy(TEM)respectively. The visible light photocatalysis activities of the N-TiO2 series samples were evaluated by the degradation of rhodamine B in aqueous solution, and the nitrogen pollutant degradation activity of the optimum N-TiO2 on the nitrogen pollutants were explored by using acephate as the nitrogen model pollutant. Results:The visible light photocatalysis activity of TiO2 was enhanced when appropriate amount nitrogen was doped into TiO2, and 1.0%N-TiO2 showed the highest visible light photocatalysis activity. The total nitrogen can be degraded from classⅣwater quality to classⅡwater quality after 4 hours' visible light irradiation using 1.0%N-TiO2 as the photocatalyst

  5. Biological impacts of oil pollution and cleaning in the intertidal zone of exposed sandy beaches: Preliminary study of the “Prestige” oil spill

    Science.gov (United States)

    de la Huz, R.; Lastra, M.; Junoy, J.; Castellanos, C.; Viéitez, J. M.

    2005-10-01

    On 13th September 2002, the oil tanker "Prestige" sunk off the Galician coast, causing one of the most important oil spills in history, which affected the entire coastline, particularly the exposed rocky shores and sandy beaches. Seventeen exposed sandy beaches were analysed along the Galician coast, in May 2003, and results were compared with previous data for September 1995 and 1996. The intertidal areas of the beaches were sampled in four tidal zones along the beach profile: swash, resurgence, retention and dry sand. Six cores of 0.05 m 2 were taken at each level and washed through a 1 mm mesh. Sediment samples were collected at each level for sediment analysis. The species were grouped into six main taxonomic groups: polychaetes, molluscs, marine crustaceans, semi-terrestrial crustaceans, insects and others. The total number of species was calculated in each group before and after the oil spill. The disturbance effect on each tidal level was determined. A decrease in the species richness was generally observed in all the studied beaches, although this decrease was not homogeneous in all the taxonomic groups. Polychaetes, insects, semi-terrestrial crustaceans and others lost species in all cases, while marine crustaceans did not show this tendency, losing species in some cases and gaining in others. The most affected beaches lost up to 66.7% of the total species richness after the oil spill. The most disturbed levels were swash, losing most of the polychaetes, and dry sand, with decrease in insects and semi-terrestrial crustaceans in many cases. Dry sand level received a high amount of oil and was more affected by grooming and cleaning activities where fuel and polluted material were removed, including algal wrack that is used by the supratidal macrofauna as food and shelter.

  6. New approach to optimize operational conditions for the biological treatment of a high-strength thiocyanate and ammonium waste: pH as key factor.

    Science.gov (United States)

    Lay-Son, Meiling; Drakides, Christian

    2008-02-01

    Biological treatment of coke and steel-processing wastewaters has to satisfy both industrial economic needs and environmental protection regulations. Nevertheless, as some of the pollutants contained in these waters or produced during the treatment are highly toxic, an effective and safe treatment has proved to be difficult to obtain. This paper reports the study of a biological method for the treatment of wastewaters containing free cyanide, thiocyanate and ammonium (NH4). Laboratory-scale activated-sludge reactors were fed with a synthetic solution reproducing a steel-processing industrial wastewater and inoculated with the same industrial bacterial seeding used on-site (Ecosynergie Inc.). The results demonstrated that free cyanide and thiocyanate were efficiently degraded. Nevertheless, thiocyanate degradation and nitrification processes were actually inhibited by the free ammonia form (NH3) in place of the ionized NH4 form (NH4+) currently dosed and often unproperly named "ammonia" [IUPAC, 1997. In: McNaught, A.D., Wilkinson, A. (compilers). Compendium of Chemical Terminology. Royal Society of Chemistry, Cambridge, UK]. Optimum degradation rates were obtained for very narrow ranges of ammonia nitrogen (NH3-N) concentrations. This result can be explained by the role of pH, which mainly controls the NH3/NH4 equilibrium. Pollutants and NH3 concentrations influenced degradation rates of main pollutants. This influence was determined and expressed through elementary equations. Although the Michaelis-Menten equation could have been used to describe thiocyanate degradation, a Haldane-inhibition model was used to satisfactorily describe cyanide degradation. On the other hand, a slightly modified Haldane model was applied to describe both NH4 oxidation using NH3-N as substrate and thiocyanate degradation using NH3-N as inhibitor. These findings emphasize the role of pH on degradation rates and allow one to optimize operational conditions in the biological treatment of

  7. Electrochemical degradation of organic pollutants on PbO2 electrode%二氧化铅电极上有机污染物的电化学降解

    Institute of Scientific and Technical Information of China (English)

    冯磊; 魏杰

    2012-01-01

    The electrode process during the anodic degradation of p-nitrophenol on PbO2 electrode was investi- gated by the cyclic voltammetry and stead-state polarization. The influences of the current density, the type of supporting electrolytes and the initial p-nitrophenol concentration and degradation time on the effect of electro- degradation were investigated. The result of experiments showed that the p-nitrophenol could be electro-degrad- ed by PbO2 electrode effectively. Through the orthogonal method, the optimum conditions were obtained as fol- lows: anodic current density 20 mA" cm-2; type of supporting electrolytes 0.1 tool" L-1 NaC1; initial p-nitrophenol concentration 400 mg. L^-1; degradation time 4 h. The degradation mechanism was preliminarily discussed by ana- lyzing the PNP degradation intermediates using ultraviolet spectrum scanner(UV). In addition, the degradation of p-nitrophenol followed the first-order kinetics at PbO2 electrode.%采用稳态极化等方法对二氧化铅电极阳极降解对硝基苯酚(PNP)的电极过程进行了研究。考察了电流密度、支持电解质种类、对硝基苯酚初始浓度和降解时间等因素对降解效果的影响。实验结果表明,二氧化铅电极能够对对硝基苯酚进行有效地降解。通过正交实验,得到较优工艺条件为阳极电流密度为20 mA·cm-2、电解质种类为0.1 mol·L-1NaCl、PNP初始浓度为400 mg·L-1、降解时间为4 h。采用紫外图谱扫描(UV)分析了电化学降解PNP的中间产物,初步探讨了降解机理及二氧化铅电极降解对硝基苯酚遵循一级反应动力学规律。

  8. [Photocatalytic Degradation of Perfluorooctanoic Acid by Pd-TiO2 Photocatalyst].

    Science.gov (United States)

    Liu, Qing; Yu, Ze-bin; Zhang, Rui-han; Li, Ming-jie; Chen, Ying; Wang, Li; Kuang, Yu; Zhang, Bo; Zhu, You-hui

    2015-06-01

    Perfluorooctanoic acid (PFOA) is a new persistent organic pollutant which has got global concern for its wide distribution, high bioaccumulation and strong biological toxicity. In present study, the photocatalytic degradation of PFOA using palladium doped TiO2 (Pd-TiO2) prepared by chemical reduction method was investigated. The photocatalysts were characterized by XRD, FESEM and UV-vis DRS and were used for PFOA degradation under 365 nm UV irradiation. The results indicated that the grain size of TiO2 was smaller while the specific surface area increased and the absorption of ultraviolet light also enhanced after using chemical reduction method, but all these changes had no influence on PFOA degradation. However, the degradation was significantly enhanced because of the deposition of Pd, the fluoride concentration of PFOA was 6.62 mg x L(-1) after 7 h irradiation which was 7.3 times higher than that of TiO2 (P25). Experiments with the addition of trapping agent and nitrogen indicated that *OH played an important role in PFOA degradation while the presence of O2 accelerated the degradation. The main intermediate products of photocatalytic degradation of PFOA were authenticated by an ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry systems (UPLC-QTOF-MS). The probable photocatalytic degradation mechanism involves h+ attacking the carboxyl of PFOA and resulting in decarboxylation. The produced *CnF(2n +1) was oxidized by *OH underwent defluorinetion to form shorter-chain perfluorinated carboxylic acids. The significant enhancement of PFOA degradation can be ascribed to the palladium deposits, acting as electron traps on the Pd-TiO2 surface, which facilitated the transfer of photogenerated electrons and retarded the accumulation of electrons.

  9. Ground Pollution Science

    International Nuclear Information System (INIS)

    This book deals with ground pollution science and soil science, classification of soil and fundamentals, ground pollution and human, ground pollution and organic matter, ground pollution and city environment, environmental problems of the earth and ground pollution, soil pollution and development of geological features of the ground, ground pollution and landfill of waste, case of measurement of ground pollution.

  10. Multistage treatment system for raw leachate from sanitary landfill combining biological nitrification-denitrification/solar photo-Fenton/biological processes, at a scale close to industrial--biodegradability enhancement and evolution profile of trace pollutants.

    Science.gov (United States)

    Silva, Tânia F C V; Silva, M Elisabete F; Cunha-Queda, A Cristina; Fonseca, Amélia; Saraiva, Isabel; Sousa, M A; Gonçalves, C; Alpendurada, M F; Boaventura, Rui A R; Vilar, Vítor J P

    2013-10-15

    A multistage treatment system, at a scale close to the industrial, was designed for the treatment of a mature raw landfill leachate, including: a) an activated sludge biological oxidation (ASBO), under aerobic and anoxic conditions; b) a solar photo-Fenton process, enhancing the bio-treated leachate biodegradability, with and without sludge removal after acidification; and c) a final polishing step, with further ASBO. The raw leachate was characterized by a high concentration of humic substances (HS) (1211 mg CHS/L), representing 39% of the dissolved organic carbon (DOC) content, and a high nitrogen content, mainly in the form of ammonium nitrogen (>3.8 g NH4(+)-N/L). In the first biological oxidation step, a 95% removal of total nitrogen and a 39% mineralization in terms of DOC were achieved, remaining only the recalcitrant fraction, mainly attributed to HS (57% of DOC). Under aerobic conditions, the highest nitrification rate obtained was 8.2 mg NH4(+)-N/h/g of volatile suspended solids (VSS), and under anoxic conditions, the maximum denitrification rate obtained was 5.8 mg (NO2(-)-N + NO3(-)-N)/h/g VSS, with a C/N consumption ratio of 2.4 mg CH3OH/mg (NO2(-)-N + NO3(-)-N). The precipitation of humic acids (37% of HS) after acidification of the bio-treated leachate corresponds to a 96% DOC abatement. The amount of UV energy and H2O2 consumption during the photo-Fenton reaction was 30% higher in the experiment without sludge removal and, consequently, the reaction velocity was 30% lower. The phototreatment process led to the depletion of HS >80%, of low-molecular-weight carboxylate anions >70% and other organic micropollutants, thus resulting in a total biodegradability increase of >70%. The second biological oxidation allowed to obtain a final treated leachate in compliance with legal discharge limits regarding water bodies (with the exception of sulfate ions), considering the experiment without sludge. Finally, the high efficiency of the overall treatment

  11. Review of Systems Biology Approach to Study on Developmental Toxicity Mechanism of Environmental Pollutants%环境污染物发育毒性机制研究的系统生物学方法进展

    Institute of Scientific and Technical Information of China (English)

    徐挺; 赵静; 胡霞林; 尹大强

    2011-01-01

    基因调控网络(gene regulatory network,GRN)是用于研究基因调控的一种新兴的系统生物学方法,尤其适合描述生物体早期发育的调控系统和机制.由于它能体现出调控过程的网络特性和动态关系,从整体的角度全面审视环境扰动所造成的真实影响,因此有望在内分泌干扰物等环境污染物的发育毒性机制研究中发挥重要作用,解决多年来一直困扰相关研究的种种难题.针对基因调控网络的结构、研究方法、应用成果和案例进行综述,并对将这一方法应用于污染物发育毒性机制研究的前景做出展望.%Gene regulatory network (GRN) was a novel systematical biology approach for the study on gene regulation mechanism, especially helpful in describing the early development of animal body. Because GRNs can present the networks and dynamics of regulatory processing and the true impacts from the environmental perturbation, they were expected to play a key role in studying developmental toxicity mechanisms of environmental pollutants including endocrine disrupting chemicals with resolving many problems which existed for a long time. The structures, methodologies, current application cases of GRNs are rewiewed. The application of GRNs into mechanism researches of developmental toxicity of pollutants is previewed in this paper.

  12. Use of in situ biological indicators of pollution stress by the Venezuelan Petroleum Corporation (PDVSA): Bases for their industrial applications in Latin America

    International Nuclear Information System (INIS)

    Because Industry requires answers in a time-effective manner, PDVSA is promoting the use of biological indicators in an ecotoxicological context, replacing the classical view of species inventory or whole community structure analyses, widely used for ecological assessment studies. When the classical approach is followed, tropical ecosystem complexity consumes a great deal of effort just describing or identifying species, not to mention establishing trophic-structure relationships. If, on the contrary, key species or even communities of reduced species, not to mention establishing trophic-structure relationships. If, on the contrary, key species or even communities of reduced complexity belonging to a given ecological assessment could be simplified, allowing for an efficient response to the clients needs. Throughout this paper, in situ methods developed for these purposes will be discussed, showing the successful application of a large scale assessment through tissue level analyses of a ''sentinel'' mussel (Polymesoda arctata). In addition, when environmental assessment areas are of smaller scale, so that temporal and spatial variations are minimized, the application of community changes by the use of fouling communities will be shown as a novel means for reducing structural complexity. Methods herein proposed, are highly comprehensive, and could serve as basis for future environmental industrial monitoring throughout Latin America and many other regions of the world

  13. Urban pollution.

    Science.gov (United States)

    Sancini, Angela; Tomei, Francesco; Tomei, Gianfranco; Caciari, Tiziana; Di Giorgio, Valeria; André, Jean-Claude; Palermo, Paola; Andreozzi, Giorgia; Nardone, Nadia; Schifano, Maria Pia; Fiaschetti, Maria; Cetica, Carlotta; Ciarrocca, Manuela

    2012-01-01

    Air pollution represents a health risk for people living in urban environment. Urban air consists in a complex mixture of chemicals and carcinogens and its effects on health can be summarized in acute respiratory effects, neoplastic nonneoplastic (e.g. chronic bronchitis) chronic respiratory effects, and effects on other organs and systems. Air pollution may be defined according to origin of the phenomena that determine it: natural causes (natural fumes, decomposition, volcanic ash) or anthropogenic causes which are the result of human activities (industrial and civil emissions). Transport is the sector that more than others contributes to the deterioration of air quality in cities. In this context, in recent years, governments of the territory were asked to advance policies aimed at solving problems related to pollution. In consideration of the many effects on health caused by pollution it becomes necessary to know the risks from exposure to various environmental pollutants and to limit and control their effects. Many are the categories of "outdoor" workers, who daily serve the in urban environment: police, drivers, newsagents, etc.

  14. Formaldehyde degradation by catalytic oxidation.

    OpenAIRE

    Shirey, W N; Hall, T. A.; Hanel, E; Sansone, E B

    1981-01-01

    Formaldehyde used for the disinfection of a laminar-flow biological safety cabinet was oxidatively degraded by using a catalyst. This technique reduced the formaldehyde concentration in the cabinet from about 5,000 to about 45 mg/m3 in 8 h. This technique should prove useful in other applications.

  15. Degradation of 2-mercaptobenzothiazole in aqueous solution by gamma irradiation

    Science.gov (United States)

    Bao, Qiburi; Chen, Lujun; Tian, Jinping; Wang, Jianlong

    2014-10-01

    Industrial wastewaters containing 2-mercaptobenzothiazole (MBT), a widely used chemical additive, usually cannot be treated properly by conventional biological methods, thus cause an environmental risk. Ionizing radiation was proposed as a method for abatement of several refractory pollutants from water. The paper investigated MBT degradation using irradiation technology. The decomposition kinetics was described, and the transformation and the change of biodegradability were discussed. The results of gamma radiation experiments on MBT-containing aqueous solutions indicated that reactive radicals resulting from water radiolysis effectively degrade MBT and improve the biodegradability of the solutions. At a 20 mg/L MBT concentration, the removal of 82% was achieved at the absorbed dose of 1.2 kGy. The results of specific oxygen uptake rate (SOUR) test showed that MBT was decomposed into biodegradable products, after irradiation at 20 kGy. Radicals attacked the sulfur atoms of the studied molecule leading to the release of sulfate ions, but the mineralization of organic carbons was rather weak. Initial concentration significantly affected the degradation efficacy of MBT by gamma radiation.

  16. Pollutant balances and emission reduction in mechanical-biological treatment of waste; Schadstoffbilanzierung und Emissionsminderung bei der mechanisch-biologischen Abfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Cuhls, C.

    2001-07-01

    To balance the emissions of mechanical biological pretreatment (MBP) of municipal solid waste (MSW) and evaluate emission control systems four different plants were investigated. The applied technologies comprised aerobe processes with a rotting duration of 4 days to 16 weeks and one process with integrated (partial current) fermentation. The emissions of main organic substances (81 single compounds and NMVOC) were evaluated depending on either mass or environmental relevance or both. Additionally, total organic carbon (TOC), total nitrogen (TN), methane (CH{sub 4}) and ammonia (NH{sub 3}) were measured. At present the combination of a simple scrubber and biofilter is the state-of-the-art technology used for waste air purification. By using this combination the concentrations of pure gas (just odour) comply with the common regulations. However, the achieved efficiencies for non methane volatile organic compounds (NMVOC) are behind the expectations. In this combination of a simple scrubber and biofilter a NMVOC removal of only 50% is realistic. The main organic emission source is biogenic. That means they are formed by metabolic processes and emitted as intermediate compounds. (orig.) [German] Zur Emissionsbilanzierung wurden vier unterschiedliche mechanisch-biologische Abfallbehandlungsanlagen (MBA) untersucht. Die realisierten Verfahrenstechniken beinhalteten Aerobverfahren mit Rottezeiten zwischen 6 Tagen und 16 Wochen sowie eine zweistufige Anlage mit integrierter Teilstromvergaerung. Die Emissionsmessungen umfassten die wichtigsten 81 organischen Stoffe nach den Kriterien Mengen- und/oder Umweltrelevanz. Ergaenzt wurden die Messungen um die Summenparameter Ges.-C, Ges.-N, CH{sub 4} und NH{sub 3}. Die erforderlichen Emissionskonzentrationen nach TA Luft werden eingehalten. Ausschlaggebend hierfuer ist die Kombination aus Luftbefeuchter und Biofilter, die derzeit den Stand der Technik darstellt. Die erzielten Wirkungsgrade fuer NMVOC (Non Methane Volatile Organic

  17. 甲酸钠促进厌氧生物降解蔗糖废水的研究%Study on Promoting Anaerobic Biological Degradation of Sucrose Wastewater by Sodium Formate

    Institute of Scientific and Technical Information of China (English)

    糜奕; 徐文英

    2011-01-01

    [Objective] The study aimed to explore the feasibility of the sodium formate in promoting the anaerobic biological degradation of the sucrose wastewater. [ Method] Hie inoculated sludge was from the concentrated pool in a sewage plant in Shanghai City, which was sealed a week after use and the experiment waste water was used by the self-made sucrose wastewater. The experiment was divided into two stages: sludge domesticated stage and load improving stage. The sludge samples in each system were made for microbial diversity analysis by PCR-DCCE technology. [ Result] The addition of sodium formate could accelerate the startup of the anaerobic biological system, increase the COD removal rate and the volume loading rate ( VLR) of the system, and the effect was more significant as the sodium formate concn. Was increased. The addition of sodium formate could improve the settleability of sludge, enhance the microbial concn. , increase its microbial activity , thus increase the COD removal rate. The addition of sodium formate also could change the microorganism species and increase the biodiversity , which also could increase the COD removal rate. [ Conclusion] The sodium formate got good effect in promoting the anaerobic biological degradation of the sucrose wastewater.%[目的]探讨甲酸钠在促进蔗糖废水厌氧生物处理方面的可行性.[方法]接种污泥取自上海市某污水厂浓缩池,密封一个星期后使用,实验废水采用自配蔗糖废水,实验分为两个阶段:污泥驯化阶段和负荷提高阶段.采用PCR - DGGE技术对各系统中的污泥样品进行微生物多样性分析.[结果]添加甲酸钠可以促进蔗糖废水厌氧生物系统的启动,提高COD去除率以及系统所能承受的容积负荷,且甲酸钠浓度越高,其促进作用越明显;添加甲酸钠可改善污泥沉降性,增加污泥中的微生物浓度,提高污泥活性,从而提高COD去除率;添加甲酸钠会改变污泥中的微生物种群,提高

  18. Polysaccharide Degradation

    Science.gov (United States)

    Stone, Bruce A.; Svensson, Birte; Collins, Michelle E.; Rastall, Robert A.

    An overview of current and potential enzymes used to degrade polysaccharides is presented. Such depolymerases are comprised of glycoside hydrolases, glycosyl transferases, phosphorylases and lyases, and their classification, active sites and action patterns are discussed. Additionally, the mechanisms that these enzymes use to cleave glycosidic linkages is reviewed as are inhibitors of depolymerase activity; reagents which react with amino acid residues, glycoside derivatives, transition state inhibitors and proteinaceous inhibitors. The characterization of various enzymes of microbial, animal or plant origin has led to their widespread use in the production of important oligosaccharides which can be incorporated into food stuffs. Sources of polysaccharides of particular interest in this chapter are those from plants and include inulin, dextran, xylan and pectin, as their hydrolysis products are purported to be functional foods in the context of gastrointestinal health. An alternative use of degraded polysaccharides is in the treatment of disease. The possibility exists to treat bacterial exopolysaccharide with lyases from bacteriophage to produce oligosaccharides exhibiting bioactive sequences. Although this area is currently in its infancy the knowledge is available to investigate further.

  19. Catabolism and biotechnological applications of cholesterol degrading bacteria.

    Science.gov (United States)

    García, J L; Uhía, I; Galán, B

    2012-11-01

    Cholesterol is a steroid commonly found in nature with a great relevance in biology, medicine and chemistry, playing an essential role as a structural component of animal cell membranes. The ubiquity of cholesterol in the environment has made it a reference biomarker for environmental pollution analysis and a common carbon source for different microorganisms, some of them being important pathogens such as Mycobacterium tuberculosis. This work revises the accumulated biochemical and genetic knowledge on the bacterial pathways that degrade or transform this molecule, given that the characterization of cholesterol metabolism would contribute not only to understand its role in tuberculosis but also to develop new biotechnological processes that use this and other related molecules as starting or target materials.

  20. Modeling the Impacts of Diffuse Pollution on Receiving Water Quality

    OpenAIRE

    Shanahan, P.; Somlyody, L.

    1995-01-01

    Nonpoint or diffuse pollutants represent a major cause of water-quality degradation of rivers, estuaries, lakes, and reservoirs and have become increasingly significant in countries where point sources of pollution are largely controlled. Nonpoint sources cause eutrophication, oxygen depletion, sedimentation, acidification, and salinization in receiving water bodies, introduce pathogenic organisms and other pollutants, and through shock loads of pollutants, cause mortality and morbidity of aq...

  1. Plasmids and aromatic degradation in Sphingomonas for bioremediation : Aromatic ring cleavage genes in soil and rhizosphere

    OpenAIRE

    SipilÀ, Timo

    2009-01-01

    Microbial degradation pathways play a key role in the detoxification and the mineralization of polyaromatic hydrocarbons (PAHs), which are widespread pollutants in soil and constituents of petroleum hydrocarbons. In microbiology the aromatic degradation pathways are traditionally studied from single bacterial strains with capacity to degrade certain pollutant. In soil the degradation of aromatics is performed by a diverse community of micro-organisms. The aim of this thesis was to study biode...

  2. Influence of tensides and lipophilic substrates on the biological availability of polycyclic aromatic hydrocarbons (PAHs); Ueber dem Einfluss von Tensiden und lipophilen Substraten auf die Bioverfuegbarkeit von polyzyklischen aromatischen Kohlenwasserstoffen (PAK)

    Energy Technology Data Exchange (ETDEWEB)

    Soeder, C.J. von; Kleespies, M.; Eschner, C.; Webb, L.; Groeneweg, J. [Forschungszentrum Juelich GmbH (Germany). IBT-3/ICG-6

    1997-12-31

    The objects of the study were as follows: isolation and characterization of PAH-degrading micro-organisms from lysimeters; tests relating to the experimental simulation of the conditions permitting pollutant degradation in soil; investigation of the influence of tensides and other dissolved organic compounds on the biological availability and degradation of PAHs. (orig./SR) [Deutsch] - Isolierung und Charakterisierung PAK-abbauender Mikroorganismen aus Lysimetern; Versuche zur experimentellen Simulation der Bedingungen, unter denen der Abbau von Schadstoffen im Boden erfolgt. - Untersuchung des Einflusses von Tensiden und anderen geloesten organischen Verbindungen auf Bioverfuegbarkeit und Abbau von PAK. (orig./SR)

  3. Olive plants (Olea europaea L.) as a bioindicator for pollution.

    Science.gov (United States)

    Eliwa, Amal Mohamed; Kamel, Ehab Abdel-Razik

    2013-06-15

    In the present work, olive plant (Olea europaea L.) was used as a biological indicator for pollution in which, molecular and physiological parameters were studied. Olive plants were collected from polluted and non-polluted areas in Jeddah - Saudi Arabia, traffic area as an air polluted area, sewage treatment station as water polluted area, industrial area as solid waste polluted, costal area as marine polluted area and an area without a direct source of pollution far away from the city center, which was used as control. These changes conducted with nucleic acid content, minerals content, pigments and some growth parameters. Results showed significant reductions in DNA and RNA contents under all polluted sites. Mineral contents were varied widely depending on the different pollutants and locations of olive plant. Generally, micro-elements varied (increase/decrease) significantly within collected samples and the source of pollution. All growth parameters were decreased significantly within the studied samples of all pollutant areas except the relative water content was increased. The content of chlorophyll a has decreased highly significantly in all polluted leaves. While the content of chlorophyll b has increased significantly in all polluted leaves especially in air polluted leaves. The total content of carotenoid pigments has decreased highly significantly in all polluted leaves. It was concluded that olive plant can be used as a biological indicator to the environmental pollutants. PMID:24494523

  4. Water Pollution

    Science.gov (United States)

    We all need clean water. People need it to grow crops and to operate factories, and for drinking and recreation. Fish and wildlife depend on ... and phosphorus make algae grow and can turn water green. Bacteria, often from sewage spills, can pollute ...

  5. Degradation of chlorobenzoates and chlorophenols by methanogenic consortia

    NARCIS (Netherlands)

    Ennik-Maarsen, K.

    1999-01-01

    Pollution of the environment with chlorinated organic compounds mainly results from (agro)industrial activity. In many studies, biodegradation is examined under anaerobic conditions, because highly chlorinated compounds are more easily degradable under anaerobic than under aerobic conditions. Proble

  6. 协调中国环境污染与经济增长冲突的路径研究——基于环境退化成本的分析%Research on the Path of Adjusting Conflict Between Environmental Pollution and Economic Growth in China——Based on Analysis of Environmental Degradation Cost

    Institute of Scientific and Technical Information of China (English)

    李娟伟; 任保平

    2011-01-01

    This paper selects relative data of our country from 1990 to 2009. Firstly, it uses these selected data to estimate the environmental degradation cost. It is found that environmental degradation cost shows a rising trend. The environmental degradation cost mainly results from water pollution and air pollution. Second, we take this cost as the indicator of environmental pollution and combine it with the characteristics of the Environmental Kuznets Curve. We also establish the criteria of choosing a policy path to control pollution,to see whether the policy can effectively put the indicator of pollution down to a comparative lower level. According to those, we can analyse the path of the coordinating the conflicts between economic growth and environmental pollution. The empirical results indicate that not considering the effects of policies, the GDP level of our country is on the left of the tuming points of Environmental Kuznets Curve. It means that increasing the domestic products can make the environment condition worse. Another result is that when all of the controlling pollution measures are put into practice, some performances of those policies are at a low level, even of no efficiency. The last conclusion is that at present in order to guarantee the sustaineahce economic growth and reduce the environment cost, the policy path is that firstly we should pay great attention to the adjustment of industrial structure. It means we should keep the proportion of the secondary industry at a reasonable level and strictly supervise the pollution enterprises in the process of developing the tertiary;Industry. The second step is to adjust the proportion of import and export and to stimulate export. The policy of attracting foreign direct investment and the government investment to deal with pollution at the present development stage of our country can not effectively reduce the the environmental degradation cost of economic growth.%选取我国1990-2009年相关数据,首

  7. Persistent organic pollutants as risk factors for type 2 diabetes.

    Science.gov (United States)

    Ngwa, Elvis Ndonwi; Kengne, Andre-Pascal; Tiedeu-Atogho, Barbara; Mofo-Mato, Edith-Pascale; Sobngwi, Eugene

    2015-01-01

    Type 2 diabetes mellitus (T2DM) is a major and fast growing public health problem. Although obesity is considered to be the main driver of the pandemic of T2DM, a possible contribution of some environmental contaminants, of which persistent organic pollutants (POPs) form a particular class, has been suggested. POPs are organic compounds that are resistant to environmental degradation through chemical, biological, and photolytic processes which enable them to persist in the environment, to be capable of long-range transport, bio accumulate in human and animal tissue, bio accumulate in food chains, and to have potential significant impacts on human health and the environment. Several epidemiological studies have reported an association between persistent organic pollutants and diabetes risk. These findings have been replicated in experimental studies both in human (in-vitro) and animals (in-vivo and in-vitro), and patho-physiological derangements through which these pollutants exercise their harmful effect on diabetes risk postulated. This review summarizes available studies, emphasises on limitations so as to enable subsequent studies to be centralized on possible pathways and bring out clearly the role of POPs on diabetes risk. PMID:25987904

  8. Charting environmental pollution. [by noise measurements

    Science.gov (United States)

    Halpert, E.; Bizo, F.; Karacsonyi, Z.

    1974-01-01

    It is found that areas affected by different noxious agents are within the limits traced for high noise level areas; consequently, it is suggested that high noise pressure levels should be used as the primary indication of environmental pollution. A complex methodology is reported for charting environmental pollution due to physical, chemical and biological noxious agents on the scale of an industrial district.

  9. Genomics technology for assessing soil pollution.

    OpenAIRE

    Straalen, van, Bart; Roelofs, D.

    2008-01-01

    Transcription and metabolite analysis is a powerful way to reveal physiological shifts in response to environmental pollution. Recent studies on earthworms, including one in BMC Biology, show that the type of pollution and its availability for uptake by organisms can differentially affect transcription and metabolism.

  10. The degradation behaviour of nine diverse contaminants in urban surface water and wastewater prior to water treatment.

    Science.gov (United States)

    Cormier, Guillaume; Barbeau, Benoit; Arp, Hans Peter H; Sauvé, Sébastien

    2015-12-01

    An increasing diversity of emerging contaminants are entering urban surface water and wastewater, posing unknown risks for the environment. One of the main contemporary challenges in ensuring water quality is to design efficient strategies for minimizing such risks. As a first step in such strategies, it is important to establish the fate and degradation behavior of contaminants prior to any engineered secondary water treatment. Such information is relevant for assessing treatment solutions by simple storage, or to assess the impacts of contaminant spreading in the absence of water treatment, such as during times of flooding or in areas of poor infrastructure. Therefore in this study we examined the degradation behavior of a broad array of water contaminants in actual urban surface water and wastewater, in the presence and absence of naturally occurring bacteria and at two temperatures. The chemicals included caffeine, sulfamethoxazole, carbamazepine, atrazine, 17β-estradiol, ethinylestradiol, diclofenac, desethylatrazine and norethindrone. Little information on the degradation behavior of these pollutants in actual influent wastewater exist, nor in general in water for desethylatrazine (a transformation product of atrazine) and the synthetic hormone norethindrone. Investigations were done in aerobic conditions, in the absence of sunlight. The results suggest that all chemicals except estradiol are stable in urban surface water, and in waste water neither abiotic nor biological degradation in the absence of sunlight contribute significantly to the disappearance of desethylatrazine, atrazine, carbamazepine and diclofenac. Biological degradation in wastewater was effective at transforming norethindrone, 17β-estradiol, ethinylestradiol, caffeine and sulfamethoxazole, with measured degradation rate constants k and half-lives ranging respectively from 0.0082-0.52 d(-1) and 1.3-85 days. The obtained degradation data generally followed a pseudo-first-order-kinetic model

  11. 碳掺杂TiO_2光催化剂处理有机污染物的研究%The Study for Degradation Organic Pollutants of C-doped TiO_2 Photo Catalyst

    Institute of Scientific and Technical Information of China (English)

    田大惠

    2012-01-01

    本文利用自制的碳掺杂改性TiO2光催化剂对甲基橙的光催化降解进行了研究,探索了光催化剂的最佳活性条件.实验表明:催化剂在350℃下焙烧4 h,且负载量为3∶2时光催化活性最佳;当催化剂用量为0.3 g时,光照0.5 h甲基橙的降解率为99%以上;当双氧水用量为2 mL时光催化剂催化活性最高,同时比较了紫外光下和太阳光下降解效果,显然太阳光下效果远远差于紫外光下的降解效果,但催化剂已经向可见光吸收范围转移.%In this paper the photocatalytic degradation of methyl orange by utilizing the self-made C-doped Modified TiO2 was systematically investigated,conducting extensive research on the best felicity conditions of photocatalyst.The results showed that under the condition of sintering of 350 ℃ in 4 hours,and the load capacity of 3∶ 2,the catalytic agent was the best.The degradation rate of methyl orange was over 99% when the actual quantity of TiO2 was 0.3 g and the illumination time was 0.5 hour.Moreover,the catalyst was the most active when 2 mL of hydrogen peroxide was used.Comparing the different degradation effect under the lightening conditions of UV light and sunlight,the result was that the degradation effect under sunlight was much lower than that of UV light,but the photocatalyst had been transferred into the visible light.

  12. Screening of lipid degrading microorganisms for wastewater treatment

    Directory of Open Access Journals (Sweden)

    Sarmurzina, Z. S.

    2013-01-01

    Full Text Available Aims: Fats, oils and greases (FOG are poorly removable materials in wastewater treatment systems. The aim of this work is to find the most suitable strain(s for a biological treatment technology of FOGs polluted wastewaters. Methodology and results: The 142 microorganisms from polluted environment were screened for lipase activity (LA by sequentially using assays on agar-Tween 80, agar-fats, and turbidimetrically measuring the quantity of calcium salts with fatty acids. The isolates G23, G30, and Zb32 showed highest units of LA and were identified by sequence analysis of 16S rRNA genes. Lipid masses were determined gravimetrically after chloroform/ethyl alcohol extraction. In the model solutions with animal fats the strain Pseudomonas aeruginosa G23 reduced mass fractions of mutton fat, beef tallow, and lard by 79±5%, 88±4%, and 80±6% respectively. Under the same conditions Aeromonas punctata G30 reduced: 65±3%, 60±8%, and 75±4%, and P. aeruginosa Zb32 reduced: 47±5%, 52±6% and 73±7%. In the model solutions with FOGs trap specimens as a carbon source from the local cafeteria the strains P. aeruginosa G23, A. punctata G30, and P. aeruginosa Zb32 reduced a lipid mass fraction by 61.5±7%, 45.2±5%, and 37.5±3% respectively.Conclusion, significance and impact of study: The strain P. aeruginosa G23 is the most effective lipid-degrading microorganism and the best candidate to use in biological treatment technology of FOGs polluted wastewater in Kazakhstan.

  13. Soil-water salinity pollution: extent, management and potential impacts on agricultural sustain ability

    International Nuclear Information System (INIS)

    One of the significant environmental hazards of irrigated agriculture is the accumulation of salts in the soil. The presence of large quantities of certain soluble salts badly affects the physical, chemical, biological and fertility characteristics of the soils. This pollution of soil salinity and its toxic degradation directly affects plants, hence impacting the air filters of nature. The soil and water salinity has adversely reduced the yield of our major agricultural crops to an extent that agricultural sustainability is being threatened. Salinity has also dwindled the survival of marine life, livestock, in addition to damaging of construction works. The problem can be estimated from the fact that out of 16.2 m.ha of irrigated land of Pakistan, 6.3 . ha are salt affected in the Indus Plain. The state of water pollution can further be assessed from the fact that presently about 106 MAF of water is diverted from the rivers into the canals of the Indus Plain which contains 28 MT of salts. Due to soil and water pollution more than 40,000 ha of good irrigated land goes out of cultivation every year. This it has drastically reduced the potential of our agricultural lands. Hence, an estimated annual loss of Rs. 14,000 million has been reported due to this soil-water salinity pollution in Pakistan. Some management options to mitigate the soil - water salinity pollution are proposed. (author)

  14. Pollutants emission in power sector

    International Nuclear Information System (INIS)

    Fossil fuels, including coal, natural gas, petroleum, shale oil and bitumen, are the primary source of heat and electrical energy production and are responsible for emitting a large number and amount of pollutants into the atmosphere via exhaust gases from industry, power stations, residential heating systems and vehicles. During the combustion process, different pollutants such as CO2, SOX (including SO2 and SO3), NOX (including NO2, NO and N2O), fly ash, VOCs and mercury are emitted. These emissions cause big environmental and human health hazard. CO2, N2O, some VOCs, CH4 contribute to the global greenhouse effect, adding a new dimension to the environmental degradation resulting from the burning of fossil fuels. These problems regarding emissions inventory, their impact on the environment and human health, air pollution control technologies and costs, periods of fossil fuels depletion, role of renewable and nuclear energy in the further civilization development are briefly discussed. (author)

  15. Air Pollution and the skin

    Directory of Open Access Journals (Sweden)

    Eleni eDrakaki

    2014-05-01

    Full Text Available The increase of air pollution over the years has major effects on the human skin. The skin is exposed to ultraviolet radiation (UVR and environmental air pollutants such as polycyclic aromatic hydrocarbons (PAHs, volatile organic compounds (VOCs, oxides, particulate matter (PM, ozone (O3 and cigarette smoke. Although human skin acts as a biological shield against pro-oxidative chemical and physical air pollutants, the prolonged or repetitive exposure to high levels of these pollutants may have profound negative effects on the skin. Exposure of the skin to air pollutants has been associated with skin aging and inflammatory or allergic skin conditions such as atopic dermatitis, eczema, psoriasis or acne, while skin cancer is among the most serious effects. On the other hand, some air pollutants (ie, ozone, nitrogen dioxide, and sulfur dioxide and scattering particulates (clouds and soot in the troposphere reduce the effects of shorter wavelength UVR and significant reductions in UV irradiance have been observed in polluted urban areas.

  16. Heterogeneous photocatalytic degradation of recalcitrant pollutants over CdS-TiO{sub 2} nanotubes: Boosting effect of TiO{sub 2} nanoparticles at nanotube-CdS interface

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Winn; Manivannan, A; Subramanian, Vaidyanathan Ravi

    2012-10-28

    The heterogeneous photocatalytic degradation of a textile dye, over TiO{sub 2} nanotubes (T_NT) containing nanocrystals of cadmium sulfide (CdS) and an interfacial layer of TiO{sub 2} nanoparticles (T_NP) is presented. T_NT is prepared by anodization of Ti mesh. A TiCl{sub 4} treatment is implemented to deposit T_NP on T_NT when applicable. CdS nanocrystals are prepared using a successive ionic layer adsorption and reaction approach. Methyl orange (MO) and phenol conversion on the different photocatalysts follows the trend: T_NT/T_NP/CdS > T_NT/CdS > T_NT with the actual values of fractional conversion of MO being 0.94, 0.64, and 0.04 respectively. The role of Na{sub 2}S in MO photodegradation and CdS stabilization is examined in detail. The addition of a limited amount of Na{sub 2}S (up to a concentration of 0.02 M) with MO has multiple benefits including (i) improvement in electron separation and transport, (ii) stabilization of the CdS, and (iii) enhancement of the photocatalytic degradation of MO by 35%.

  17. Engineering bacteria for environmental pollution control and agriculture

    International Nuclear Information System (INIS)

    The ability to use genetically modified Pseudomonads as pollution control or cleanup agents depends on the solution of the technical problems in genetic engineering: the ability to identify and clone degradative genes, and the ability to stably incorporate these degradative genes into suitable Pseudomonas strains. This paper reviews progress, in our laboratory, on both these subjects. Methods to isolate and characterize degradative genes have been evolved and two examples, the genes coding for the degradation of vanillate and sodium dodecyl sulphate, are described. Vanillate, in its chlorinated form, is a pollutant of the pulp and paper industry and sodium dodecyl sulphate is a component of many household and industrial detergents

  18. Digestion and degradation, air for life

    NARCIS (Netherlands)

    Lettinga, G.

    2001-01-01

    Anaerobic degradation of dead biomass is a natural gasification process, an anaerobic crematorium producing a very useful end-product composed of methane and carbon dioxide, generally polluted with small amounts of some malodorous and quite toxic volatile S-compounds. It leads to the production of e

  19. Hazardous Air Pollutants

    Science.gov (United States)

    ... Facebook Twitter Google+ Pinterest Contact Us Hazardous Air Pollutants Hazardous air pollutants are those known to cause ... protect against adverse environmental effects. About Hazardous Air Pollutants What are hazardous air pollutants? Health and Environmental ...

  20. Monitoring Of Pollutants In Museum Environment

    OpenAIRE

    Ana-Maria Budu; Ion Sandu

    2015-01-01

    Art works are affected by environmental factors as light, temperature, humidity. Air pollutants are also implicated in their degradation. The pollution in museums has two sources: the air from outside, which brings usually dust and inorganic particles, and the inside sources – the materials used for casings (sealants, textiles placed on the display cases, varnishes, wood) that emanate organic compounds. The dust is composed of particles with a diameter of approximately 2µm or higher, which co...

  1. The Internet Pollution

    Institute of Scientific and Technical Information of China (English)

    唐宁宁

    2005-01-01

    Life today has brought new problems. As we know, there are fourterrible pollutions in the world: water pollution, noise pollution, air pol-lution and rubbish pollution. Water pollution kills our fish and pollutesour drinking water. Noise pollution makes us talk louder and become angry more easily. Air pollution makes us hold our breath longer and be badto all living things in the world. Rubbish pollution often makes our livingenvironment much dirtier. But I think that the Internet pollution is anothernew pollution in the world.

  2. Molecular Biological Methods in Environmental Engineering.

    Science.gov (United States)

    Zhang, Guocai; Wei, Li; Chang, Chein-Chi; Zhang, Yuhua; Wei, Dong

    2016-10-01

    Bacteria, acting as catalysts, perform the function of degrading pollutants. Molecular biological techniques play an important role in research on the community analysis, the composition and the functions of complex microbial communities. The development of secondary high-throughput pyrosequencing techiniques enhances the understanding of the composition of the microbial community. The literatures of 2015 indicated that 16S rDNA gene as genetic tag is still the important method for bacteria identification and classification. 454 high throughput sequencing and Illumina MiSeq sequencing have been the primary and widely recognized methods to analyze the microbial. This review will provide environmental engineers and microbiologists an overview of important advancements in molecular techniques and highlight the application of these methods in diverse environments. PMID:27620079

  3. One-pot approach for synthesis of N-doped TiO{sub 2}/ZnFe{sub 2}O{sub 4} hybrid as an efficient photocatalyst for degradation of aqueous organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yunjin, E-mail: yaoyunjin@gmail.com [Anhui Key Lab of Controllable Chemical Reaction & Material Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009 (China); State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China); School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Qin, Jiacheng; Chen, Hao; Wei, Fengyu; Liu, Xueting; Wang, Jianlong [Anhui Key Lab of Controllable Chemical Reaction & Material Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009 (China); Wang, Shaobin, E-mail: shaobin.wang@curtin.edu.au [Department of Chemical Engineering, Curtin University, G.P.O. Box U1987, Perth, Western Australia 6845 (Australia)

    2015-06-30

    Highlights: • N-doped TiO{sub 2}/ZnFe{sub 2}O{sub 4} catalysts were prepared by a one-pot vapor-thermal method. • The UV–vis-light-driven photocatalytic activities of the hybrids were evaluated. • Influence factor, degradation kinetics, and mechanism, have been analyzed. • Active species in the degradation process were detected by using the scavengers. • N-doped TiO{sub 2}/ZnFe{sub 2}O{sub 4} showed to be a promising catalyst and simple separation. - Abstract: N-doped TiO{sub 2}/ZnFe{sub 2}O{sub 4} catalysts were successfully prepared by coupling nitrogen modified TiO{sub 2} with ZnFe{sub 2}O{sub 4} via a one-pot vapor-thermal method. The physicochemical properties of the as-prepared catalysts have been characterized using various spectroscopic and microscopic techniques. The UV–vis-light-driven photocatalytic activities of the hybrids were evaluated and the effects of the amount of photocatalyst, different types of dyes, catalyst stability on photodegradation of organic dyes were investigated. Moreover, degradation kinetics and mechanism as well as the roles of N doping, ZnFe{sub 2}O{sub 4} and TiO{sub 2} have been analyzed. It was revealed that N-doped TiO{sub 2}/ZnFe{sub 2}O{sub 4} exhibited an improved performance compared with TiO{sub 2}/ZnFe{sub 2}O{sub 4} or ZnFe{sub 2}O{sub 4} because of the formation of a heterostructure at the interface as well as the introduction of N species. Active species such as holes, electrons, hydroxyl radicals, and superoxide radicals involved in the photodegradation process were detected by using different types of scavengers. Because of ZnFe{sub 2}O{sub 4} in the hybrid, the catalyst shows ferromagnetism, and thus, the hybrid catalyst is easily isolated from the reaction mixture after the photocatalytic experiments. This work not only offers a simple method for the fabrication of N doped TiO{sub 2}/ZnFe{sub 2}O{sub 4} hybrids, but also provides an effective and conveniently recyclable photocatalyst for the

  4. Water Pollution. Project COMPSEP.

    Science.gov (United States)

    Lantz, H. B., Jr.

    This is an introductory program on water pollution. Examined are the cause and effect relationships of water pollution, sources of water pollution, and possible alternatives to effect solutions from our water pollution problems. Included is background information on water pollution, a glossary of pollution terminology, a script for a slide script…

  5. Microbial PAH-Degradation in Soil: Degradation Pathways and Contributing Factors

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xu-Xiang; CHENG Shu-Pei; ZHU Cheng-Jun; SUN Shi-Lei

    2006-01-01

    Adverse effects on the environment and high persistence in the microbial degradation and environmental fate of polycyclic aromatic hydrocarbons (PAHs) are motivating interest. Many soil microorganisms can degrade PAHs and use various metabolic pathways to do so. However, both the physio-chemical characteristics of compounds as well as the physical, chemical, and biological properties of soils can drastically influence the degradation capacity of naturally occurring microorganisms for field bioremediation. Modern biological techniques have been widely used to promote the efficiency of microbial PAH-degradation and make the biodegradation metabolic pathways more clear. In this review microbial degradation of PAHs in soil is discussed, with emphasis placed on the main degradation pathways and the environmental factors affecting biodegradation.

  6. Marine biology

    International Nuclear Information System (INIS)

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index

  7. Marine biology

    Energy Technology Data Exchange (ETDEWEB)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index.

  8. Evaluation of toxicity reduction, mineralization, and treatability of phenolic wastewater treated with combined system of catalytic ozonation process / biological reactor (SBR)

    OpenAIRE

    Y Dadban Shahamat; M. Farzadkia; S Nasseri; A.H Mahvi; Gholami, M.; A Esrafily

    2016-01-01

    Background and Objectives: Phenol is one of the industrial pollutants in wastewaters, which due to its toxicity for biological systems various pretreatment processes have been used for its detoxification. In this study, the combination of catalytic ozonation process (COP) and sequencing batch reactor (SBR) were used for detoxification of these types of wastewaters. Materials and Methodology: In this study, the effect of COP on phenol degradation, COD removal, and detoxification of wastewa...

  9. Bacterial Degradation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Qing X. Li

    2009-01-01

    Full Text Available Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.

  10. Status of oil pollution along the Indian coast

    Digital Repository Service at National Institute of Oceanography (India)

    Kadam, A.N.; Chouksey, M.K.

    pollution. Moreover, accelerated efforts in offshore oil prospecting in several areas of the continental shelf of India further enhance to vulnerability of the coastal zone to oil induced degradation....

  11. Degradação biológica do PVC em aterro sanitário e avaliação microbiológica Biological degradation of PVC in landfill and microbiological evaluation

    Directory of Open Access Journals (Sweden)

    Ana M. C. Grisa

    2011-01-01

    Full Text Available O poli(cloreto de vinila (PVC é um dos polímeros utilizado no campo das embalagens e no setor calçadista, e, em função da sua aplicação diversificada, apresenta elevados percentuais em aterros domésticos e industriais. É um polímero amorfo podendo apresentar diferentes teores de plastificante e outros aditivos responsáveis pela sua estabilização, os quais podem influenciar no tempo de vida útil e nas propriedades do produto final. Este trabalho apresenta o estudo da degradação química e biológica de filmes de poli(cloreto de vinila flexível (PVC-f, no aterro sanitário São Giácomo, na cidade de Caxias do Sul/RS, antes e após 330 dias de disposição. As amostras de PVC-f antes e após a disposição no aterro sanitário foram avaliadas por análise térmica (TGA, estrutural (FT-IR e morfológica (MEV e MO. Observou-se que as amostras de PVC-f dispostas no aterro sanitário (PVC-fa, apresentam um único evento de perda de massa, em relação ao PVC-f não degradado ou virgem (PVC-fv, além de um maior % de perda de massa e de mudanças estruturais. Nas amostras de PVC-fa foram observadas modificações morfológicas importantes para descrever os fenômenos de degradação como erosão da superfície, bioerosão, que propiciaram a ação das leveduras, bactérias e fungos presentes no meio no polímero aterrado.The poly (vinyl chloride (PVC is one of the polymers used in the field of packing materials and footwear sector, and due its diversified applications, it has presented in a high percentage of domestic and industrial landfills It is an amorphous polymer and may present different levels of plasticizer and other additives responsible for its stabilization, which can influence the lifetime and the properties of the final product. This work presents the study of the chemical and biological degradation of poly (vinyl chloride flexible (PVC-f films, at São Giácomo landfill, in Caxias do Sul city after 330 days of

  12. A novel strategy for acetonitrile wastewater treatment by using a recombinant bacterium with biofilm-forming and nitrile-degrading capability.

    Science.gov (United States)

    Li, Chunyan; Yue, Zhenlei; Feng, Fengzhao; Xi, Chuanwu; Zang, Hailian; An, Xuejiao; Liu, Keran

    2016-10-01

    There is a great need for efficient acetonitrile removal technology in wastewater treatment to reduce the discharge of this pollutant in untreated wastewater. In this study, a nitrilase gene (nit) isolated from a nitrile-degrading bacterium (Rhodococcus rhodochrous BX2) was cloned and transformed into a biofilm-forming bacterium (Bacillus subtilis N4) that expressed the recombinant protein upon isopropylthio-β-galactoside (IPTG) induction. The recombinant bacterium (B. subtilis N4-pHT01-nit) formed strong biofilms and had nitrile-degrading capability. Further testing demonstrated that biofilms formed by B. subtilis N4-pHT01-nit were highly resistant to loading shock from acetonitrile and almost completely degraded the initial concentration of acetonitrile (800 mg L(-1)) within 24 h in a moving bed biofilm reactor (MBBR) after operation for 35 d. The bacterial composition of the biofilm, identified by high-throughput sequencing, in a reactor in which the B. subtilis N4-pHT01-nit bacterium was introduced indicated that the engineered bacterium was successfully immobilized in the reactor and became dominant genus. This work demonstrates that an engineered bacterium with nitrile-degrading and biofilm-forming capacity can improve the degradation of contaminants in wastewater. This approach offers a novel strategy for enhancing the biological oxidation of toxic pollutants in wastewater.

  13. Air pollution epidemiology. Assessment of health effects and risks

    Energy Technology Data Exchange (ETDEWEB)

    Katsouyanni, K. [Athens Univ. (Greece). Dept. of Hygiene and Epidemiology

    1995-12-31

    Air pollution epidemiology is the study of the occurrence and distribution of health outcomes in association with community air pollution exposure. It is therefore specific in the exposure variable. Air pollution health effects became evident during high air pollution episodes which occurred in the first decades of our century. Since then, legal and other control measures have led to lower air pollution levels. However, recent results from several studies indicate that lower levels of air pollution than the previously considered safe have serious adverse health effects. Although, there is increasingly agreement that air pollution, at levels measured today, affects health, there is still a lot to be understood concerning specific causal pollutants, biologic mechanisms involved and sensitive groups of individuals. The extent of potential confounding, time-considerations in air pollution effects, individual variation in air pollution exposure and exposure misclassification are some factors which complicate the study of these issues. (author)

  14. Decontamination of PAH polluted soils by fungi. Subproject: PAH degradation balance and testing of the extended laboratory process. Final report; Dekontamination von PAK belasteten Boeden durch Pilze. Teilprojekt: Bilanzierung des PAK-Abbaus und Erprobung des erweiterten Laborverfahrens. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Martens, R.; Zadrazil, F.; Wolter, M.; Bahadir, M.

    1997-09-01

    The aim of the research project was first to select a fungus with a high potential for mineralization of polycyclic aromatic hydrocarbons (PAH) and a good ability to colonize different soils. The application of this fungus for a degradation of PAH in soil had to be tested. In a screening of 57 white rot fungi the fungus Pleurotus sp. Florida fulfilled these requirements best. In pure culture it was able to metabolize and mineralize highly condensed 4-6 ring PAH to a great extent. For instance, up to 50% of {sup 14}C-pyrene or 39% of {sup 14}C-benzo(a)pyrene was mineralized to {sup 14}CO{sub 2} within 15 weeks. If different carriers for {sup 14}C-pyrene were used the mineralization correlated with the bioavailability, which was characterized by the desorption of the compound from the carriers with water. The mineralization of {sup 14}C-pyrene, {sup 14}C-benz(a)anthracene; {sup 14}C-benzo(a)-pyrene and {sup 14}C-dibenz(a, h)anthracene in native soils showed that a colonization with Pl. sp Florida inhibited the degradation of the less recalcitrant {sup 14}C-pyrene by the indigenous soil microflora. However, the mineralization of the carcinogenic, very recalcitrant and high condensed {sup 14}C-PAH was considerably supported by the fungus. Therefore this capabilities of the fungus could not be proven in a joint medium-scale soil experiment (0.8 m{sup 3} soil) which had been conducted within a parmership with scientists in Jena and an industriell firm. Because of safety aspects only the low condensed less recalcitrant PAH could be applied in this experiment. (orig./MG) [Deutsch] Ziel der Untersuchungen war es, zunaechst aus einer groesseren Zahl von Weissfaeulepilzen Pilze zu selektieren, die ein hohes Abbaupotential fuer PAK besitzen. Fuer die effektive Bildung der fuer den Xenobiotika-Abbau wahrscheinlich verantwortlichen lignolytischen Enzyme sollten die Pilze auf Stroh mit einer Kontamination von {sup 14}C-Pyren angezogen werden. An Hand der Freisetzung von {sup 14

  15. Screening and identification of bacteria for organic pollutant degradation in sediment of marine cage fish farming area%网箱养殖沉积环境中有机污染物降解菌的筛选与鉴定

    Institute of Scientific and Technical Information of China (English)

    孟霞; 黄洪辉; 贾晓平; 古小莉

    2011-01-01

    This paper is aimed to present our study on the screening and identification of effective organic pollutant degrading bacteria in the sediment of a heavily organic polluted marine cage fish farm. As a matter of fact, the marine cage fish farming first began in Guangdong coastal waters of China at the end of 1970s, and it has grown dramatically during the last three decades and become one of the important marine aquaculture industries in China. However, marine cage fish farming generates high pollution loadings especially in the sea bottom, where the high sediment oxygen demand, anoxic sediments, production of toxic gases and decrease in benthic diversity may result. For bioremediation of polluted sediment environment in marine cage farm, six bacteria strains were isolated after 2 months of selective enrichment incubation under intermittent aeration condition from the sediment in the marine cage fish farm in Dapeng Ao Cove,east coast of Shenzhen City. Through the ability test for degradation to the liquid wild trash fish culture medium, four bacteria strains which were capable of degrading the organic trash fish pollutant rapidly and efficiently, were obtained. The 7 d incubation of biochemical oxygen demand (BOD7) were between 1 040- 1 140 mg/l, the 5 d incubation for the average CODMn removing rate ( 1 - COD5/COD0 ) were between 13.58% -46.9% and the biochemical degradation rate (BOD5/COD0) were between 81.56% -89.43%. The 5 d incubation for average CODMn degradation rate of pair-strain mixed bacteria was64.91% (6.51%, which was 2 times higher than that 30.60 (13.63% of single strain; and BOD5/COD0 were between 86.10% -89.13%. There were no obvious differences if compared with those of single strain. Sequence analysis based on partial 16S rDNA and performed by BLASTN and FASTA showed that 2 strains belonged to genus of Staphylococcus sp. and Halornonas sp. The other 2 strains maybe belonged to genus of Halomonas sp. and Pseudomonas sp

  16. Biological Activity in a Degraded Alfisol Amended with Sewage Sludge and Cropped with Yellow Serradela (Ornithopus compressus L. Actividad Biológica en un Alfisol Degradado Enmendado con Lodos Urbanos y Cultivado con Serradela Amarilla (Ornithopus compressus L.

    Directory of Open Access Journals (Sweden)

    José Celis H

    2011-03-01

    Full Text Available There are few studies about the impact of sewage sludge on the biological properties in Alfisols of the Chilean Coastal Range drylands. Hence, the objective of this study was to evaluate its effect on the microbial respiration and enzymatic activities of a degraded Alfisol located in the Bío Bío Region (Chile that was cropped with yellow serradela (Ornithopus compressus L.. Sludge was added to the soil at rates of 15, 30, and 60 t ha-1; he following treatments were defined: L15-P = 15 t ha-1 sludge + O. compressus; L30-P = 30 t ha-1 sludge + O. compressus; L60-P = 60 t ha-1 sludge + O. compressus; L15 = 15 t ha-1 sludge; L30 = 30 t ha-1 sludge; L60 = 60 t ha-1 sludge; CP = non-amended soil, cropped; and C = non-amended soil, no crop. Soil microorganism activity was evaluated by respirometry. Hydrolytic enzyme activity representative of soil C, N, and P cycles was determined. Crop phytomass development was also evaluated. The amount of C-CO2 produced by soil microorganisms was directly proportional to the dose of amended sludge (p ≤ 0.05. Similarly, greater β-glucosidase, urease, and acid phosphatase were more active at 60 t sludge ha-1. However, both respiratory and enzymatic activities were greater (p ≤ 0.05 in treatments with sludge-amended soil cropped with O. compressus. This greater activity was notorious when the legumes achieved greater phytomass development, thus highlighting the root’s stimulating effect on soil biological activity.El impacto de los lodos urbanos sobre las propiedades biológicas en suelos Alfisoles del secano interior de la Cordillera de la Costa de Chile ha sido poco estudiado. El objetivo de este estudio fue evaluar el efecto de la aplicación de lodo urbano sobre las propiedades biológicas de un suelo Alfisol degradado de la Región del Bío Bío, Chile, cultivado con serradela amarilla (Ornithopus compressus L.. Se adicionó lodo al suelo a razón de 15, 30 y 60 t ha-1, a partir de lo cual se definieron

  17. TiO2纳米带负载FePcS光催化降解有毒有机污染物%Photocatalytic Degradation of Toxic Organic Pollutants Catalyzed by FePcS Immobilized on TiO2 Nanobelt

    Institute of Scientific and Technical Information of China (English)

    汪淑廉; 饶志; 王攀; 曹婷婷; 赵小蓉; 黄应平

    2011-01-01

    Compound catalyst FePcS-TiO2 was prepared using TiO2 nanobelt as support to load iron-phthalocyanine tetrasulfonic acid (FePcS). UV-visible diffuse reflectance (UV-vis DRS) was employed to characterize the catalyst. The photocatalytic degradation of organic dye rhodamine B (RhB) and colorless small molecular organic substance salicylic acid (SA) were used as probe reactions to evaluate the photocatalytic activity of the catalyst. The results indicated that FePcS-TiO2 had good photocatalytic properties under visible light irradiation (λ≥420 nm). RhB can be efficiently degraded by FePcS-TiO2 under visible light irradiation with 100% decolorization after 240min and 100% mineralization rate after 14h, while SA was degraded by 83.17%under visible irradiation for 10h. The photocatalytic degradation of toxic organic pollutants was a process of deep oxidation and the oxidative process was predominated mainly by the hydroxyl radical (·OH).%以制备的TiO2纳米带为载体负载四磺基铁酞菁(Iron-phthalocyanine tetrasulfonic acid,FePcS),得到FePcS-TiO2复合体催化剂.通过紫外可见漫反射光谱(UV-vis DRS)对催化剂进行了表征.同时以有机染料罗丹明B(Rhodamine B,RhB)和无色小分子水杨酸(Salicylic acid,SA)为降解对象探讨了光催化活化分子氧降解有毒有机污染物的催化活性.实验结果表明:在可见光照射下(λ≥420nm),FePcS-TiO2复合体光催化剂的催化性能较好,光照240min后使有机污染物RhB褪色率达到100%,14 h后矿化率达到100%;光照10 h后对无色小分子有机物SA降解率达到83.17%,表明FePcS-TiO2对有机物的光催化降解是一个深度矿化的过程.降解过程主要涉及羟基自由基(·OH)的氧化机理.

  18. Ultrasonic-assisted preparation of novel ternary ZnO/Ag3VO4/Ag2CrO4 nanocomposites and their enhanced visible-light activities in degradation of different pollutants

    Science.gov (United States)

    Pirhashemi, Mahsa; Habibi-Yangjeh, Aziz

    2016-05-01

    Novel ternary ZnO/Ag3VO4/Ag2CrO4 nanocomposites were successfully fabricated via preparation of ZnO/Ag3VO4 followed by coupling of it with Ag2CrO4 through facile ultrasonic-assisted method. The resultant samples were carefully characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive analysis of X-rays, UV-vis diffuse reflectance spectroscopy, Fourier transform-infrared spectroscopy, and photoluminescence techniques. Photocatalytic activity for degradation of organic dyes, including rhodamine B, methylene blue, and methyl orange was examined under visible-light irradiation. Among the prepared samples, the ternary nanocomposite with 20% of Ag2CrO4 demonstrated the superior activity. This nanocomposite showed 10.6, 2.9, and 3.0-folds greater activity compared to ZnO, ZnO/Ag2CrO4, and ZnO/Ag3VO4, respectively. The enhanced activity was attributed to more harvesting of the visible-light irradiation and efficiently separation of the photogenerated charge carriers in the ternary nanocomposites. To understand efficiently separation of the charge carriers, a plausible diagram was proposed based on formation of tandem n-n heterojunctions.

  19. Indoor Air Pollution (Environmental Health Student Portal)

    Science.gov (United States)

    ... Students to Environmental Health Information Menu Home Air Pollution Air Pollution Home Indoor Air Pollution Outdoor Air Pollution ... Pollution Indoor Air Pollution Print this Page Air Pollution Air Pollution Home Indoor Air Pollution Outdoor Air Pollution ...

  20. CHLOROPHENOL DEGRADATION BY ELECTROCATALYSIS COMBINED WITH UV RADIATION%电催化与紫外光辐射降解氯酚

    Institute of Scientific and Technical Information of China (English)

    吴祖成; 叶倩; 周明华; 丛燕青

    2002-01-01

    @@ Chlorinated organic compounds, especially chlorophenols are well-known water priority pollutant family due to their toxicity and potential health hazard. As biological treatment processes for the degradation of chlorinated phenols have not been effective, various technologies and processes such as activated carbon adsorption[1], chemical oxidation[2], have been conventionally attempted for phenolic waster treatment. Recently, advanced oxidation processes (AOPs) have attracted a great deal of attention for treatment of phenolic wastewater, among these chemical oxidation ultraviolet (UV) oxidation system[3], anodic oxidation and indirect electro-oxidation have been widely studied[4]. Though a number of researchers worked on the degradation of chlorophenol by UV radiation or electrochemical processes, there are few reports on both methods for organic wastewater treatment. If these two processes can operate in harmony, the degradation efficiency would be enhanced.