WorldWideScience

Sample records for biological control systems

  1. Biological Systems Thinking for Control Engineering Design

    Directory of Open Access Journals (Sweden)

    D. J. Murray-Smith

    2004-01-01

    Full Text Available Artificial neural networks and genetic algorithms are often quoted in discussions about the contribution of biological systems thinking to engineering design. This paper reviews work on the neuromuscular system, a field in which biological systems thinking could make specific contributions to the development and design of automatic control systems for mechatronics and robotics applications. The paper suggests some specific areas in which a better understanding of this biological control system could be expected to contribute to control engineering design methods in the future. Particular emphasis is given to the nonlinear nature of elements within the neuromuscular system and to processes of neural signal processing, sensing and system adaptivity. Aspects of the biological system that are of particular significance for engineering control systems include sensor fusion, sensor redundancy and parallelism, together with advanced forms of signal processing for adaptive and learning control

  2. An Integrated Biological Control System At Hanford

    International Nuclear Information System (INIS)

    Johnson, A.R.; Caudill, J.G.; Giddings, R.F.; Rodriguez, J.M.; Roos, R.C.; Wilde, J.W.

    2010-01-01

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimate spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  3. AN INTEGRATED BIOLOGICAL CONTROL SYSTEM AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON AR; CAUDILL JG; GIDDINGS RF; RODRIGUEZ JM; ROOS RC; WILDE JW

    2010-02-11

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimated spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  4. Complexity, Analysis and Control of Singular Biological Systems

    CERN Document Server

    Zhang, Qingling; Zhang, Xue

    2012-01-01

    Complexity, Analysis and Control of Singular Biological Systems follows the control of real-world biological systems at both ecological and phyisological levels concentrating on the application of now-extensively-investigated singular system theory. Much effort has recently been dedicated to the modelling and analysis of developing bioeconomic systems and the text establishes singular examples of these, showing how proper control can help to maintain sustainable economic development of biological resources. The book begins from the essentials of singular systems theory and bifurcations before tackling  the use of various forms of control in singular biological systems using examples including predator-prey relationships and viral vaccination and quarantine control. Researchers and graduate students studying the control of complex biological systems are shown how a variety of methods can be brought to bear and practitioners working with the economics of biological systems and their control will also find the ...

  5. Holarchical Systems and Emotional Holons : Biologically-Inspired System Designs for Control of Autonomous Aerial Vehicles

    Science.gov (United States)

    Ippolito, Corey; Plice, Laura; Pisanich, Greg

    2003-01-01

    The BEES (Bio-inspired Engineering for Exploration Systems) for Mars project at NASA Ames Research Center has the goal of developing bio-inspired flight control strategies to enable aerial explorers for Mars scientific investigations. This paper presents a summary of our ongoing research into biologically inspired system designs for control of unmanned autonomous aerial vehicle communities for Mars exploration. First, we present cooperative design considerations for robotic explorers based on the holarchical nature of biological systems and communities. Second, an outline of an architecture for cognitive decision making and control of individual robotic explorers is presented, modeled after the emotional nervous system of cognitive biological systems. Keywords: Holarchy, Biologically Inspired, Emotional UAV Flight Control

  6. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering.

    Science.gov (United States)

    He, Fei; Murabito, Ettore; Westerhoff, Hans V

    2016-04-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. © 2016 The Author(s).

  7. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering

    NARCIS (Netherlands)

    He, F.; Murabito, E.; Westerhoff, H.V.

    2016-01-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out throughin silicotheoretical studies with the aim to guide and complement furtherin vitroandin vivoexperimental

  8. Systems Biology

    Indian Academy of Sciences (India)

    IAS Admin

    study and understand the function of biological systems, particu- larly, the response of such .... understand the organisation and behaviour of prokaryotic sys- tems. ... relationship of the structure of a target molecule to its ability to bind a certain ...

  9. New experimental approaches to the biology of flight control systems.

    Science.gov (United States)

    Taylor, Graham K; Bacic, Marko; Bomphrey, Richard J; Carruthers, Anna C; Gillies, James; Walker, Simon M; Thomas, Adrian L R

    2008-01-01

    Here we consider how new experimental approaches in biomechanics can be used to attain a systems-level understanding of the dynamics of animal flight control. Our aim in this paper is not to provide detailed results and analysis, but rather to tackle several conceptual and methodological issues that have stood in the way of experimentalists in achieving this goal, and to offer tools for overcoming these. We begin by discussing the interplay between analytical and empirical methods, emphasizing that the structure of the models we use to analyse flight control dictates the empirical measurements we must make in order to parameterize them. We then provide a conceptual overview of tethered-flight paradigms, comparing classical ;open-loop' and ;closed-loop' setups, and describe a flight simulator that we have recently developed for making flight dynamics measurements on tethered insects. Next, we provide a conceptual overview of free-flight paradigms, focusing on the need to use system identification techniques in order to analyse the data they provide, and describe two new techniques that we have developed for making flight dynamics measurements on freely flying birds. First, we describe a technique for obtaining inertial measurements of the orientation, angular velocity and acceleration of a steppe eagle Aquila nipalensis in wide-ranging free flight, together with synchronized measurements of wing and tail kinematics using onboard instrumentation and video cameras. Second, we describe a photogrammetric method to measure the 3D wing kinematics of the eagle during take-off and landing. In each case, we provide demonstration data to illustrate the kinds of information available from each method. We conclude by discussing the prospects for systems-level analyses of flight control using these techniques and others like them.

  10. Computational Biomathematics: Toward Optimal Control of Complex Biological Systems

    Science.gov (United States)

    2016-09-26

    SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS...neighbor or bi-linear interpolation). The following paper is in preparation: Scaling methods and heuristic algorithms for agent-based models. Matt...The actual method of control used is in the form of heuristic algorithms. In general, these algorithms search through a virtually infinite set of

  11. The role and control of sludge age in biological nutrient removal activated sludge systems.

    Science.gov (United States)

    Ekama, G A

    2010-01-01

    The sludge age is the most fundamental and important parameter in the design, operation and control of biological nutrient removal (BNR) activated sludge (AS) systems. Generally, the better the effluent and waste sludge quality required from the system, the longer the sludge age, the larger the biological reactor and the more wastewater characteristics need to be known. Controlling the reactor concentration does not control sludge age, only the mass of sludge in the system. When nitrification is a requirement, sludge age control becomes a requirement and the secondary settling tanks can no longer serve the dual purpose of clarifier and waste activated sludge thickeners. The easiest and most practical way to control sludge age is with hydraulic control by wasting a defined proportion of the reactor volume daily. In AS plants with reactor concentration control, nitrification fails first. With hydraulic control of sludge age, nitrification will not fail, rather the plant fails by shedding solids over the secondary settling tank effluent weirs.

  12. Identifying Ant-Mirid Spatial Interactions to Improve Biological Control in Cacao-Based Agroforestry System.

    Science.gov (United States)

    Bagny Beilhe, Leïla; Piou, Cyril; Tadu, Zéphirin; Babin, Régis

    2018-06-06

    The use of ants for biological control of insect pests was the first reported case of conservation biological control. Direct and indirect community interactions between ants and pests lead to differential spatial pattern. We investigated spatial interactions between mirids, the major cocoa pest in West Africa and numerically dominant ant species, using bivariate point pattern analysis to identify potential biological control agents. We assume that potential biological control agents should display negative spatial interactions with mirids considering their niche overlap. The mirid/ant data were collected in complex cacao-based agroforestry systems sampled in three agroecological areas over a forest-savannah gradient in Cameroon. Three species, Crematogaster striatula Emery (Hymenoptera: Formicidae), Crematogaster clariventris Mayr (Hymenoptera: Formicidae), and Oecophylla longinoda Latreille (Hymenoptera: Formicidae) with high predator and aggressive behaviors were identified as dominant and showed negative spatial relationships with mirids. The weaver ant, O. longinoda was identified as the only potential biological control agent, considering its ubiquity in the plots, the similarity in niche requirements, and the spatial segregation with mirids resulting probably from exclusion mechanisms. Combining bivariate point pattern analysis to good knowledge of insect ecology was an effective method to identify a potentially good biological control agent.

  13. Biologically inspired control and modeling of (biorobotic systems and some applications of fractional calculus in mechanics

    Directory of Open Access Journals (Sweden)

    Lazarević Mihailo P.

    2013-01-01

    Full Text Available In this paper, the applications of biologically inspired modeling and control of (biomechanical (nonredundant mechanisms are presented, as well as newly obtained results of author in mechanics which are based on using fractional calculus. First, it is proposed to use biological analog-synergy due to existence of invariant features in the execution of functional motion. Second, the model of (biomechanical system may be obtained using another biological concept called distributed positioning (DP, which is based on the inertial properties and actuation of joints of considered mechanical system. In addition, it is proposed to use other biological principles such as: principle of minimum interaction, which takes a main role in hierarchical structure of control and self-adjusting principle (introduce local positive/negative feedback on control with great amplifying, which allows efficiently realization of control based on iterative natural learning. Also, new, recently obtained results of the author in the fields of stability, electroviscoelasticity, and control theory are presented which are based on using fractional calculus (FC. [Projekat Ministarstva nauke Republike Srbije, br. 35006

  14. Evaluation of impedance on biological Tissues using automatic control measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Kil, Sang Hyeong; Shin, Dong Hoon; Lee, Seong Mo [Pusan National University, Yangsan (Korea, Republic of); Lee, Moo Seok; Kim, Sang Sik [Pusan National University, Busan (Korea, Republic of); Kim, Gun FDo; Lee, Jong Kyu [Pukyung National University, Busan (Korea, Republic of)

    2015-08-15

    Each biological tissue has endemic electrical characteristics owing to various differences such as those in cellular arrangement or organization form. The endemic electrical characteristics change when any biological change occurs. This work is a preliminary study surveying the changes in the electrical characteristics of biological tissue caused by radiation exposure. For protection against radiation hazards, therefore the electrical characteristics of living tissue were evaluated after development of the automatic control measurement system using LabVIEW. No alteration of biological tissues was observed before and after measurement of the electrical characteristics, and the biological tissues exhibited similar patterns. Through repeated measurements using the impedance/gain-phase analyzer, the coefficient of variation was determined as within 10%. The reproducibility impedance phase difference in electrical characteristics of the biological tissue did not change, and the tissue had resistance. The absolute value of impedance decreased constantly in proportion to the frequency. It has become possible to understand the electrical characteristics of biological tissues through the measurements made possible by the use of the developed.

  15. Evaluation of impedance on biological Tissues using automatic control measurement system

    International Nuclear Information System (INIS)

    Kil, Sang Hyeong; Shin, Dong Hoon; Lee, Seong Mo; Lee, Moo Seok; Kim, Sang Sik; Kim, Gun FDo; Lee, Jong Kyu

    2015-01-01

    Each biological tissue has endemic electrical characteristics owing to various differences such as those in cellular arrangement or organization form. The endemic electrical characteristics change when any biological change occurs. This work is a preliminary study surveying the changes in the electrical characteristics of biological tissue caused by radiation exposure. For protection against radiation hazards, therefore the electrical characteristics of living tissue were evaluated after development of the automatic control measurement system using LabVIEW. No alteration of biological tissues was observed before and after measurement of the electrical characteristics, and the biological tissues exhibited similar patterns. Through repeated measurements using the impedance/gain-phase analyzer, the coefficient of variation was determined as within 10%. The reproducibility impedance phase difference in electrical characteristics of the biological tissue did not change, and the tissue had resistance. The absolute value of impedance decreased constantly in proportion to the frequency. It has become possible to understand the electrical characteristics of biological tissues through the measurements made possible by the use of the developed.

  16. Integrated Biological Control

    International Nuclear Information System (INIS)

    JOHNSON, A.R.

    2002-01-01

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response

  17. Economic value of biological control in integrated pest management of managed plant systems.

    Science.gov (United States)

    Naranjo, Steven E; Ellsworth, Peter C; Frisvold, George B

    2015-01-07

    Biological control is an underlying pillar of integrated pest management, yet little focus has been placed on assigning economic value to this key ecosystem service. Setting biological control on a firm economic foundation would help to broaden its utility and adoption for sustainable crop protection. Here we discuss approaches and methods available for valuation of biological control of arthropod pests by arthropod natural enemies and summarize economic evaluations in classical, augmentative, and conservation biological control. Emphasis is placed on valuation of conservation biological control, which has received little attention. We identify some of the challenges of and opportunities for applying economics to biological control to advance integrated pest management. Interaction among diverse scientists and stakeholders will be required to measure the direct and indirect costs and benefits of biological control that will allow farmers and others to internalize the benefits that incentivize and accelerate adoption for private and public good.

  18. Exotic biological control agents

    NARCIS (Netherlands)

    Hajek, Ann E.; Hurley, Brett P.; Kenis, Marc; Garnas, Jeffrey R.; Bush, Samantha J.; Wingfield, Michael J.; Lenteren, van Joop C.; Cock, Matthew J.W.

    2016-01-01

    Biological control is a valuable and effective strategy for controlling arthropod pests and has been used extensively against invasive arthropods. As one approach for control of invasives, exotic natural enemies from the native range of a pest are introduced to areas where control is needed.

  19. Insecticides and Biological Control

    Science.gov (United States)

    Furness, G. O.

    1972-01-01

    Use of insecticides has been questioned due to their harmful effects on edible items. Biological control of insects along with other effective practices for checking spread of parasites on crops are discussed. (PS)

  20. The role of bacillus-based biological control agents in integrated pest management systems: plant diseases.

    Science.gov (United States)

    Jacobsen, B J; Zidack, N K; Larson, B J

    2004-11-01

    ABSTRACT Bacillus-based biological control agents (BCAs) have great potential in integrated pest management (IPM) systems; however, relatively little work has been published on integration with other IPM management tools. Unfortunately, most research has focused on BCAs as alternatives to synthetic chemical fungicides or bactericides and not as part of an integrated management system. IPM has had many definitions and this review will use the national coalition for IPM definition: "A sustainable approach to managing pests by combining biological, cultural, physical and chemical tools in a way that minimizes economic, health and environmental risks." This review will examine the integrated use of Bacillus-based BCAs with disease management tools, including resistant cultivars, fungicides or bactericides, or other BCAs. This integration is important because the consistency and degree of disease control by Bacillus-based BCAs is rarely equal to the control afforded by the best fungicides or bactericides. In theory, integration of several tools brings stability to disease management programs. Integration of BCAs with other disease management tools often provides broader crop adaptation and both more efficacious and consistent levels of disease control. This review will also discuss the use of Bacillus-based BCAs in fungicide resistance management. Work with Bacillus thuringiensis and insect pest management is the exception to the relative paucity of reports but will not be the focus of this review.

  1. Reliability of unstable periodic orbit based control strategies in biological systems

    International Nuclear Information System (INIS)

    Mishra, Nagender; Singh, Harinder P.; Hasse, Maria; Biswal, B.

    2015-01-01

    Presence of recurrent and statistically significant unstable periodic orbits (UPOs) in time series obtained from biological systems is now routinely used as evidence for low dimensional chaos. Extracting accurate dynamical information from the detected UPO trajectories is vital for successful control strategies that either aim to stabilize the system near the fixed point or steer the system away from the periodic orbits. A hybrid UPO detection method from return maps that combines topological recurrence criterion, matrix fit algorithm, and stringent criterion for fixed point location gives accurate and statistically significant UPOs even in the presence of significant noise. Geometry of the return map, frequency of UPOs visiting the same trajectory, length of the data set, strength of the noise, and degree of nonstationarity affect the efficacy of the proposed method. Results suggest that establishing determinism from unambiguous UPO detection is often possible in short data sets with significant noise, but derived dynamical properties are rarely accurate and adequate for controlling the dynamics around these UPOs. A repeat chaos control experiment on epileptic hippocampal slices through more stringent control strategy and adaptive UPO tracking is reinterpreted in this context through simulation of similar control experiments on an analogous but stochastic computer model of epileptic brain slices. Reproduction of equivalent results suggests that far more stringent criteria are needed for linking apparent success of control in such experiments with possible determinism in the underlying dynamics

  2. Reliability of unstable periodic orbit based control strategies in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Nagender; Singh, Harinder P. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Hasse, Maria [Institut für Höchstleistungsrechnen, Universität Stuttgart, D-70569 Stuttgart (Germany); Biswal, B. [Cluster Innovation Center, University of Delhi, Delhi 110007 (India); Sri Venkateswara College, University of Delhi, Delhi 110021 (India)

    2015-04-15

    Presence of recurrent and statistically significant unstable periodic orbits (UPOs) in time series obtained from biological systems is now routinely used as evidence for low dimensional chaos. Extracting accurate dynamical information from the detected UPO trajectories is vital for successful control strategies that either aim to stabilize the system near the fixed point or steer the system away from the periodic orbits. A hybrid UPO detection method from return maps that combines topological recurrence criterion, matrix fit algorithm, and stringent criterion for fixed point location gives accurate and statistically significant UPOs even in the presence of significant noise. Geometry of the return map, frequency of UPOs visiting the same trajectory, length of the data set, strength of the noise, and degree of nonstationarity affect the efficacy of the proposed method. Results suggest that establishing determinism from unambiguous UPO detection is often possible in short data sets with significant noise, but derived dynamical properties are rarely accurate and adequate for controlling the dynamics around these UPOs. A repeat chaos control experiment on epileptic hippocampal slices through more stringent control strategy and adaptive UPO tracking is reinterpreted in this context through simulation of similar control experiments on an analogous but stochastic computer model of epileptic brain slices. Reproduction of equivalent results suggests that far more stringent criteria are needed for linking apparent success of control in such experiments with possible determinism in the underlying dynamics.

  3. Photo-Responsive Graphene and Carbon Nanotubes to Control and Tackle Biological Systems

    Science.gov (United States)

    Cardano, Francesca; Frasconi, Marco; Giordani, Silvia

    2018-01-01

    Photo-responsive multifunctional nanomaterials are receiving considerable attention for biological applications because of their unique properties. The functionalization of the surface of carbon nanotubes (CNTs) and graphene, among other carbon based nanomaterials, with molecular switches that exhibit reversible transformations between two or more isomers in response to different kind of external stimuli, such as electromagnetic radiation, temperature and pH, has allowed the control of the optical and electrical properties of the nanomaterial. Light-controlled molecular switches, such as azobenzene and spiropyran, have attracted a lot of attention for nanomaterial's functionalization because of the remote modulation of their physicochemical properties using light stimulus. The enhanced properties of the hybrid materials obtained from the coupling of carbon based nanomaterials with light-responsive switches has enabled the fabrication of smart devices for various biological applications, including drug delivery, bioimaging and nanobiosensors. In this review, we highlight the properties of photo-responsive carbon nanomaterials obtained by the conjugation of CNTs and graphene with azobenzenes and spiropyrans molecules to investigate biological systems, devising possible future directions in the field. PMID:29707534

  4. Photo-Responsive Graphene and Carbon Nanotubes to Control and Tackle Biological Systems

    Science.gov (United States)

    Cardano, Francesca; Frasconi, Marco; Giordani, Silvia

    2018-04-01

    Photo-responsive multifunctional nanomaterials are receiving considerable attention for biological applications because of their unique properties. The functionalization of the surface of carbon nanotubes (CNTs) and graphene, among other carbon based nanomaterials, with molecular switches that exhibit reversible transformations between two or more isomers in response to different kind of external stimuli, such as electromagnetic radiation, temperature and pH, has allowed the control of the optical and electrical properties of the nanomaterial. Light-controlled molecular switches, such as azobenzene and spiropyran, have attracted a lot of attention for nanomaterial’s functionalization because of the remote modulation of their physicochemical properties using light stimulus. The enhanced properties of the hybrid materials obtained from the coupling of carbon based nanomaterials with light-responsive switches has enabled the fabrication of smart devices for various biological applications, including drug delivery, bioimaging and nanobiosensors. In this review, we highlight the properties of photo-responsive carbon nanomaterials obtained by the conjugation of CNTs and graphene with azobenzenes and spiropyrans molecules to investigate biological systems, devising possible future directions in the field.

  5. Computational Systems Chemical Biology

    OpenAIRE

    Oprea, Tudor I.; May, Elebeoba E.; Leitão, Andrei; Tropsha, Alexander

    2011-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically-based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology, SCB (Oprea et al., 2007).

  6. Biological conversion system

    Science.gov (United States)

    Scott, C.D.

    A system for bioconversion of organic material comprises a primary bioreactor column wherein a biological active agent (zymomonas mobilis) converts the organic material (sugar) to a product (alcohol), a rejuvenator column wherein the biological activity of said biological active agent is enhanced, and means for circulating said biological active agent between said primary bioreactor column and said rejuvenator column.

  7. Compatible biological and chemical control systems for Rhizoctonia solani in potato

    NARCIS (Netherlands)

    Boogert, van den P.H.J.F.; Luttikholt, A.J.G.

    2004-01-01

    A series of chemical and biological control agents were tested for compatibility with the Rhizoctonia-specific biocontrol fungus Verticillium biguttatum aimed at designing novel control strategies for black scurf (Rhizoctonia solani) and other tuber diseases in potato. The efficacy of chemicals,

  8. A biologically inspired meta-control navigation system for the Psikharpax rat robot

    International Nuclear Information System (INIS)

    Caluwaerts, K; Staffa, M; N’Guyen, S; Grand, C; Dollé, L; Favre-Félix, A; Girard, B; Khamassi, M

    2012-01-01

    A biologically inspired navigation system for the mobile rat-like robot named Psikharpax is presented, allowing for self-localization and autonomous navigation in an initially unknown environment. The ability of parts of the model (e.g. the strategy selection mechanism) to reproduce rat behavioral data in various maze tasks has been validated before in simulations. But the capacity of the model to work on a real robot platform had not been tested. This paper presents our work on the implementation on the Psikharpax robot of two independent navigation strategies (a place-based planning strategy and a cue-guided taxon strategy) and a strategy selection meta-controller. We show how our robot can memorize which was the optimal strategy in each situation, by means of a reinforcement learning algorithm. Moreover, a context detector enables the controller to quickly adapt to changes in the environment—recognized as new contexts—and to restore previously acquired strategy preferences when a previously experienced context is recognized. This produces adaptivity closer to rat behavioral performance and constitutes a computational proposition of the role of the rat prefrontal cortex in strategy shifting. Moreover, such a brain-inspired meta-controller may provide an advancement for learning architectures in robotics. (paper)

  9. Biological control in agro-systems by means of the handling of entomophagous insects

    International Nuclear Information System (INIS)

    Nicholls, Clara Ines; Altieri, Miguel A

    1998-01-01

    From several decades ago the importance of natural enemies of the noxious organisms has been recognized. Unfortunately the introduction of the biological control has not had the desired dimension. The indiscriminate use of biocides products has altered the biodiversity of the agro-ecosystem. The parasitoids and predators have suffered the noxious effects of the plaguicides. These natural enemies of the plagues play a momentous paper in the regulation of noxious insects population. The predators of the insecta class register in diverse orders and the abundance of species is impressive. But the knowledge of their importance is only partial. In many countries the kindness of these organisms has not been specified and does not protect them. In the case of parasitoids something similar occurs. It is say that their biotic diversity is incalculable but very few species are exploited. In these two groups rest the classic biological control projects. The successes in projects of biological control are recognized and they are enlarging in several countries but more impulse is required. Due to demands of a sustainable agricultural production it should support the biological control of plagues. In this document general looks on the topic are expounded

  10. "Protected biological control"- Biological pest management in the greenhouse industry

    NARCIS (Netherlands)

    Pilkington, L.J.; Messelink, G.J.; Lenteren, van J.C.; Mottee, Le K.

    2010-01-01

    This paper briefly describes the foundations and characteristics of biological control in protected cropping and what drivers are behind adoption of this management system within this industry. Examining a brief history of biological control in greenhouses and what makes it a successful management

  11. Biological control of ticks

    Science.gov (United States)

    Samish, M.; Ginsberg, H.; Glazer, I.; Bowman, A.S.; Nuttall, P.

    2004-01-01

    Ticks have numerous natural enemies, but only a few species have been evaluated as tick biocontrol agents (BCAs). Some laboratory results suggest that several bacteria are pathogenic to ticks, but their mode of action and their potential value as biocontrol agents remain to be determined. The most promising entomopathogenic fungi appear to be Metarhizium anisopliae and Beauveria bassiana, strains of which are already commercially available for the control of some pests. Development of effective formulations is critical for tick management. Entomopathogenic nematodes that are pathogenic to ticks can potentially control ticks, but improved formulations and selection of novel nematode strains are needed. Parasitoid wasps of the genus Ixodiphagus do not typically control ticks under natural conditions, but inundative releases show potential value. Most predators of ticks are generalists, with a limited potential for tick management (one possible exception is oxpeckers in Africa). Biological control is likely to play a substantial role in future IPM programmes for ticks because of the diversity of taxa that show high potential as tick BCAs. Considerable research is required to select appropriate strains, develop them as BCAs, establish their effectiveness, and devise production strategies to bring them to practical use.

  12. Control Structure Design of an Innovative Enhanced Biological Nutrient Recovery Activated Sludge System Coupled with a Photobioreactor

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Fuentes-Martínez, José Manuel; Flores Alsina, Xavier

    2015-01-01

    The TRENS system is a train of biological units designed for resource recovery from wastewater. It is a sequence of a modified enhanced biological phosphorus removal and recovery system (EBP2R) coupled with a photobioreactor (PBR). The bacteria-based system constructs an optimal culture media...... for the downstream algae cultivation. In this work, we present a control strategy to ensure an optimal nutrient balance to feed to the PBR, so the grown algal suspension is suitable for fertigation (irrigation and fertilization of agricultural crops). The system is able to recover up to 75% of the influent load......, while keeping an optimal N-to-P ratio of 16 in the influent to the PBR. The system is tested under different scenarios, where the influent quality is disturbed following a step change. The control system is able to reject most of the disturbances. However, when the P-recovery is limited by the bacteria...

  13. Development of Design Tools for the Optimization of Biologically Based Control Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — I plan to develop software that aids in the design of biomimetic control systems by optimizing the properties of the system in order to produce the desired output....

  14. Compact Electro-Permeabilization System for Controlled Treatment of Biological Cells and Cell Medium Conductivity Change Measurement

    Directory of Open Access Journals (Sweden)

    Novickij Vitalij

    2014-10-01

    Full Text Available Subjection of biological cells to high intensity pulsed electric field results in the permeabilization of the cell membrane. Measurement of the electrical conductivity change allows an analysis of the dynamics of the process, determination of the permeabilization thresholds, and ion efflux influence. In this work a compact electro-permeabilization system for controlled treatment of biological cells is presented. The system is capable of delivering 5 μs - 5 ms repetitive square wave electric field pulses with amplitude up to 1 kV. Evaluation of the cell medium conductivity change is implemented in the setup, allowing indirect measurement of the ion concentration changes occurring due to the cell membrane permeabilization. The simulation model using SPICE and the experimental data of the proposed system are presented in this work. Experimental data with biological cells is also overviewed

  15. Top-down models in biology: explanation and control of complex living systems above the molecular level.

    Science.gov (United States)

    Pezzulo, Giovanni; Levin, Michael

    2016-11-01

    It is widely assumed in developmental biology and bioengineering that optimal understanding and control of complex living systems follows from models of molecular events. The success of reductionism has overshadowed attempts at top-down models and control policies in biological systems. However, other fields, including physics, engineering and neuroscience, have successfully used the explanations and models at higher levels of organization, including least-action principles in physics and control-theoretic models in computational neuroscience. Exploiting the dynamic regulation of pattern formation in embryogenesis and regeneration requires new approaches to understand how cells cooperate towards large-scale anatomical goal states. Here, we argue that top-down models of pattern homeostasis serve as proof of principle for extending the current paradigm beyond emergence and molecule-level rules. We define top-down control in a biological context, discuss the examples of how cognitive neuroscience and physics exploit these strategies, and illustrate areas in which they may offer significant advantages as complements to the mainstream paradigm. By targeting system controls at multiple levels of organization and demystifying goal-directed (cybernetic) processes, top-down strategies represent a roadmap for using the deep insights of other fields for transformative advances in regenerative medicine and systems bioengineering. © 2016 The Author(s).

  16. Economic Benefits of Advanced Control Strategies in Biological Nutrient Removal Systems

    DEFF Research Database (Denmark)

    Carstensen, J.; Nielsen, M.K.; Harremoës, Poul

    1994-01-01

    little regards to the variations in load and biomass activity. However, these dynamics can be evaluated on-line using grey box models to describe the most important features of the hydraulic and biological processes. Simulation studies of plants with an alternating process have shown that control...... strategies incorporating information from the grey box models are capable of reducing the total nitrogen discharge as well as energy costs. These results have a major impact on both existing and future plants. In fact, it is expected that future plants can be reduced with 10-20 per cent in size...

  17. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2013-10-01

    Full Text Available Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  18. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875

  19. Mammalian Synthetic Biology: Engineering Biological Systems.

    Science.gov (United States)

    Black, Joshua B; Perez-Pinera, Pablo; Gersbach, Charles A

    2017-06-21

    The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.

  20. Systems Biology and Health Systems Complexity in;

    NARCIS (Netherlands)

    Donald Combs, C.; Barham, S.R.; Sloot, P.M.A.

    2016-01-01

    Systems biology addresses interactions in biological systems at different scales of biological organization, from the molecular to the cellular, organ, organism, societal, and ecosystem levels. This chapter expands on the concept of systems biology, explores its implications for individual patients

  1. Nutritional Systems Biology

    DEFF Research Database (Denmark)

    Jensen, Kasper

    and network biology has the potential to increase our understanding of how small molecules affect metabolic pathways and homeostasis, how this perturbation changes at the disease state, and to what extent individual genotypes contribute to this. A fruitful strategy in approaching and exploring the field...... biology research. The paper also shows as a proof-of-concept that a systems biology approach to diet is meaningful and demonstrates some basic principles on how to work with diet systematic. The second chapter of this thesis we developed the resource NutriChem v1.0. A foodchemical database linking...... sites of diet on the disease pathway. We propose a framework for interrogating the critical targets in colon cancer process and identifying plant-based dietary interventions as important modifiers using a systems chemical biology approach. The fifth chapter of the thesis is on discovering of novel anti...

  2. Control of biological growth in recirculating cooling systems using treated secondary effluent as makeup water with monochloramine.

    Science.gov (United States)

    Chien, Shih-Hsiang; Chowdhury, Indranil; Hsieh, Ming-Kai; Li, Heng; Dzombak, David A; Vidic, Radisav D

    2012-12-01

    Secondary-treated municipal wastewater, an abundant and widely distributed impaired water source, is a promising alternative water source for thermoelectric power plant cooling. However, excessive biological growth is a major challenge associated with wastewater reuse in cooling systems as it can interfere with normal system operation as well as enhance corrosion and scaling problems. Furthermore, possible emission of biological aerosols (e.g., Legionella pneumophila) with the cooling tower drift can lead to public health concerns within the zone of aerosol deposition. In this study, the effectiveness of pre-formed and in-situ-formed monochloramine was evaluated for its ability to control biological growth in recirculating cooling systems using secondary-treated municipal wastewater as the only makeup water source. Bench-scale studies were compared with pilot-scale studies for their ability to predict system behavior under realistic process conditions. Effectiveness of the continuous addition of pre-formed monochloramine and monochloramine formed in-situ through the reaction of free chlorine with ammonia in the incoming water was evaluated in terms of biocide residual and its ability to control both planktonic and sessile microbial populations. Results revealed that monochloramine can effectively control biofouling in cooling systems employing secondary-treated municipal wastewater and has advantages relative to use of free chlorine, but that bench-scale studies seriously underestimate biocide dose and residual requirements for proper control of biological growth in full-scale systems. Pre-formed monochloramine offered longer residence time and more reliable performance than in-situ-formed monochloramine due to highly variable ammonia concentration in the recirculating water caused by ammonia stripping in the cooling tower. Pilot-scale tests revealed that much lower dosing rate was required to maintain similar total chlorine residual when pre-formed monochloramine

  3. Biological control of toxic cyanobacteria

    CSIR Research Space (South Africa)

    Ndlela, L

    2016-04-01

    Full Text Available harmful algal blooms and their impacts in over 30 countries. Biological control is a method of introducing natural enemies to control an organism and has been more successful using microorganisms....

  4. Controlled biomass removal - the key parameter to achieve enhanced biological phosphorus removal in biofilm systems

    DEFF Research Database (Denmark)

    Morgenroth, E.

    1999-01-01

    the influence of the following processes on EBPR in biofilms was evaluated: (1) mass transfer limitation for oxygen (2) mass transfer limitation for organic substrate, (3) lack of controlled removal of biomass from the system. It was shown that mass transfer of soluble components (oxygen and organic substrate...

  5. Systems biology at work

    NARCIS (Netherlands)

    Martins Dos Santos, V.A.P.; Damborsky, J.

    2010-01-01

    In his editorial overview for the 2008 Special Issue on this topic, the late Jaroslav Stark pointedly noted that systems biology is no longer a niche pursuit, but a recognized discipline in its own right “noisily” coming of age [1]. Whilst general underlying principles and basic techniques are now

  6. Plant Systems Biology (editorial)

    Science.gov (United States)

    In June 2003, Plant Physiology published an Arabidopsis special issue devoted to plant systems biology. The intention of Natasha Raikhel and Gloria Coruzzi, the two editors of this first-of-its-kind issue, was ‘‘to help nucleate this new effort within the plant community’’ as they considered that ‘‘...

  7. Pythium invasion of plant-based life support systems: biological control and sources

    Science.gov (United States)

    Jenkins, D. G.; Cook, K. L.; Garland, J. L.; Board, K. F.; Sager, J. C. (Principal Investigator)

    2000-01-01

    Invasion of plant-based life support systems by plant pathogens could cause plant disease and disruption of life support capability. Root rot caused by the fungus, Pythium, was observed during tests of prototype plant growth systems containing wheat at the Kennedy Space Center (KSC). We conducted experiments to determine if the presence of complex microbial communities in the plant root zone (rhizosphere) resisted invasion by the Pythium species isolated from the wheat root. Rhizosphere inocula of different complexity (as assayed by community-level physiological profile: CLPP) were developed using a dilution/extinction approach, followed by growth in hydroponic rhizosphere. Pythium growth on wheat roots and concomitant decreases in plant growth were inversely related to the complexity of the inocula during 20-day experiments in static hydroponic systems. Pythium was found on the seeds of several different wheat cultivars used in controlled environmental studies, but it is unclear if the seed-borne fungal strain(s) were identical to the pathogenic strain recovered from the KSC studies. Attempts to control pathogens and their effects in hydroponic life support systems should include early inoculation with complex microbial communities, which is consistent with ecological theory.

  8. Biophysics and systems biology.

    Science.gov (United States)

    Noble, Denis

    2010-03-13

    Biophysics at the systems level, as distinct from molecular biophysics, acquired its most famous paradigm in the work of Hodgkin and Huxley, who integrated their equations for the nerve impulse in 1952. Their approach has since been extended to other organs of the body, notably including the heart. The modern field of computational biology has expanded rapidly during the first decade of the twenty-first century and, through its contribution to what is now called systems biology, it is set to revise many of the fundamental principles of biology, including the relations between genotypes and phenotypes. Evolutionary theory, in particular, will require re-assessment. To succeed in this, computational and systems biology will need to develop the theoretical framework required to deal with multilevel interactions. While computational power is necessary, and is forthcoming, it is not sufficient. We will also require mathematical insight, perhaps of a nature we have not yet identified. This article is therefore also a challenge to mathematicians to develop such insights.

  9. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  10. Engineering challenges of BioNEMS: the integration of microfluidics, micro- and nanodevices, models and external control for systems biology.

    Science.gov (United States)

    Wikswo, J P; Prokop, A; Baudenbacher, F; Cliffel, D; Csukas, B; Velkovsky, M

    2006-08-01

    Systems biology, i.e. quantitative, postgenomic, postproteomic, dynamic, multiscale physiology, addresses in an integrative, quantitative manner the shockwave of genetic and proteomic information using computer models that may eventually have 10(6) dynamic variables with non-linear interactions. Historically, single biological measurements are made over minutes, suggesting the challenge of specifying 10(6) model parameters. Except for fluorescence and micro-electrode recordings, most cellular measurements have inadequate bandwidth to discern the time course of critical intracellular biochemical events. Micro-array expression profiles of thousands of genes cannot determine quantitative dynamic cellular signalling and metabolic variables. Major gaps must be bridged between the computational vision and experimental reality. The analysis of cellular signalling dynamics and control requires, first, micro- and nano-instruments that measure simultaneously multiple extracellular and intracellular variables with sufficient bandwidth; secondly, the ability to open existing internal control and signalling loops; thirdly, external BioMEMS micro-actuators that provide high bandwidth feedback and externally addressable intracellular nano-actuators; and, fourthly, real-time, closed-loop, single-cell control algorithms. The unravelling of the nested and coupled nature of cellular control loops requires simultaneous recording of multiple single-cell signatures. Externally controlled nano-actuators, needed to effect changes in the biochemical, mechanical and electrical environment both outside and inside the cell, will provide a major impetus for nanoscience.

  11. Realization of Flight Control System in Virtual Reality Environment with Biological Signals

    OpenAIRE

    ALTIN, Cemil; ER, Orhan

    2018-01-01

    In this study, anunmanned aerial vehicle was flown on a virtual reality gaming platform with thehelp of commands processed by signal processing methods of biological signals. In thedeveloped application, Matlab signal processing environment and Unity 3Denvironment which is a virtual reality software platform are integrated witheach other and made to work. The biological signals obtained from the EEG ve EMGsensors are processed in Matlab environment and then converted to commands andtransferre...

  12. Integrative radiation systems biology

    International Nuclear Information System (INIS)

    Unger, Kristian

    2014-01-01

    Maximisation of the ratio of normal tissue preservation and tumour cell reduction is the main concept of radiotherapy alone or combined with chemo-, immuno- or biologically targeted therapy. The foremost parameter influencing this ratio is radiation sensitivity and its modulation towards a more efficient killing of tumour cells and a better preservation of normal tissue at the same time is the overall aim of modern therapy schemas. Nevertheless, this requires a deep understanding of the molecular mechanisms of radiation sensitivity in order to identify its key players as potential therapeutic targets. Moreover, the success of conventional approaches that tried to statistically associate altered radiation sensitivity with any molecular phenotype such as gene expression proofed to be somewhat limited since the number of clinically used targets is rather sparse. However, currently a paradigm shift is taking place from pure frequentistic association analysis to the rather holistic systems biology approach that seeks to mathematically model the system to be investigated and to allow the prediction of an altered phenotype as the function of one single or a signature of biomarkers. Integrative systems biology also considers the data from different molecular levels such as the genome, transcriptome or proteome in order to partially or fully comprehend the causal chain of molecular mechanisms. An example for the application of this concept currently carried out at the Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer” of the Helmholtz-Zentrum München and the LMU Munich is described. This review article strives for providing a compact overview on the state of the art of systems biology, its actual challenges, potential applications, chances and limitations in radiation oncology research working towards improved personalised therapy concepts using this relatively new methodology

  13. Systems Biology of the Fluxome

    Directory of Open Access Journals (Sweden)

    Miguel A. Aon

    2015-07-01

    Full Text Available The advent of high throughput -omics has made the accumulation of comprehensive data sets possible, consisting of changes in genes, transcripts, proteins and metabolites. Systems biology-inspired computational methods for translating metabolomics data into fluxomics provide a direct functional, dynamic readout of metabolic networks. When combined with appropriate experimental design, these methods deliver insightful knowledge about cellular function under diverse conditions. The use of computational models accounting for detailed kinetics and regulatory mechanisms allow us to unravel the control and regulatory properties of the fluxome under steady and time-dependent behaviors. This approach extends the analysis of complex systems from description to prediction, including control of complex dynamic behavior ranging from biological rhythms to catastrophic lethal arrhythmias. The powerful quantitative metabolomics-fluxomics approach will help our ability to engineer unicellular and multicellular organisms evolve from trial-and-error to a more predictable process, and from cells to organ and organisms.

  14. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.

    Directory of Open Access Journals (Sweden)

    Yongcheng Li

    Full Text Available We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning. Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.

  15. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.

    Science.gov (United States)

    Li, Yongcheng; Sun, Rong; Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei

    2016-01-01

    We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.

  16. Logical analysis of biological systems

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian

    2005-01-01

    R. Mardare, Logical analysis of biological systems. Fundamenta Informaticae, N 64:271-285, 2005.......R. Mardare, Logical analysis of biological systems. Fundamenta Informaticae, N 64:271-285, 2005....

  17. Nutrient control of eukaryote cell growth: a systems biology study in yeast

    Directory of Open Access Journals (Sweden)

    Lilley Kathryn S

    2010-05-01

    Full Text Available Abstract Background To elucidate the biological processes affected by changes in growth rate and nutrient availability, we have performed a comprehensive analysis of the transcriptome, proteome and metabolome responses of chemostat cultures of the yeast, Saccharomyces cerevisiae, growing at a range of growth rates and in four different nutrient-limiting conditions. Results We find significant changes in expression for many genes in each of the four nutrient-limited conditions tested. We also observe several processes that respond differently to changes in growth rate and are specific to each nutrient-limiting condition. These include carbohydrate storage, mitochondrial function, ribosome synthesis, and phosphate transport. Integrating transcriptome data with proteome measurements allows us to identify previously unrecognized examples of post-transcriptional regulation in response to both nutrient and growth-rate signals. Conclusions Our results emphasize the unique properties of carbon metabolism and the carbon substrate, the limitation of which induces significant changes in gene regulation at the transcriptional and post-transcriptional level, as well as altering how many genes respond to growth rate. By comparison, the responses to growth limitation by other nutrients involve a smaller set of genes that participate in specific pathways. See associated commentary http://www.biomedcentral.com/1741-7007/8/62

  18. Water quality and emergy evaluation of two freshwater aquacultural systems for eutrophic water in the Controlling by Biological Chains

    Science.gov (United States)

    Xi, L. M.; Liu, C. Q.; Liu, D. F.; Huang, W. L.; Sun, Y.

    2017-08-01

    According to the ecological restoration theory, this experiment establishes aquaculture systems controlled by biological chains in both Xiaoxidian area and Dujiadian area of Baiyangdian Lake separately in order to improve the environment and bring economic benefits. The appearance of Emergy Theory provides a new method for the quantitative analysis of ecological economic system. Based on the analysis of Emergy Theory, this thesis compares the eco-economic systems under different polyculture models between Xiaoxidian area and Dujiadian area. The result demonstrates that Xiaoxidian ecological system is of high Emergy Transformity with higher emergy output and economic income per unit area compared with Dujiadian area. While Dujiadian area has higher Emergy Yield Rate and lower Environment Load Rate. So Dujiadian area is more sustainable due to the overload non-renewable energy of Xiaoxidian area devoted by human. Therefore, it will be better if we adjust and optimize the management of aquaculture system in Xiaoxidian area in order to find a stable equilibrium point between environmental sustainability and economic benefits.

  19. Feedback dynamics and cell function: Why systems biology is called Systems Biology.

    Science.gov (United States)

    Wolkenhauer, Olaf; Mesarovic, Mihajlo

    2005-05-01

    A new paradigm, like Systems Biology, should challenge the way research has been conducted previously. This Opinion article aims to present Systems Biology, not as the application of engineering principles to biology but as a merger of systems- and control theory with molecular- and cell biology. In our view, the central dogma of Systems Biology is that it is system dynamics that gives rise to the functioning and function of cells. The concepts of feedback regulation and control of pathways and the coordination of cell function are emphasized as an important area of Systems Biology research. The hurdles and risks for this area are discussed from the perspective of dynamic pathway modelling. Most of all, the aim of this article is to promote mathematical modelling and simulation as a part of molecular- and cell biology. Systems Biology is a success if it is widely accepted that there is nothing more practical than a good theory.

  20. Control theory meets synthetic biology.

    Science.gov (United States)

    Del Vecchio, Domitilla; Dy, Aaron J; Qian, Yili

    2016-07-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology. © 2016 The Author(s).

  1. Electromagnetic fields in biological systems

    National Research Council Canada - National Science Library

    Lin, James C

    2012-01-01

    "Focusing on exposure, induced fields, and absorbed energy, this volume covers the interaction of electromagnetic fields and waves with biological systems, spanning static fields to terahertz waves...

  2. Modelling biological control with wild-type and genetically modified baculoviruses in the Helicoverpa armigera-cotton system

    NARCIS (Netherlands)

    Sun, X.; Werf, van der W.; Bianchi, F.J.J.A.; Hu, Z.; Vlak, J.M.

    2006-01-01

    A comprehensive model was developed to simulate virus epizootics in a stage structured insect population and analyse scenarios for the biological control of cotton bollworm (CBW), Helicoverpa armigera, in cotton, using wild-type or genetically modified baculoviruses. In simulations on dosage and

  3. Excited states in biological systems

    International Nuclear Information System (INIS)

    Cilento, G.; Zinner, K.; Bechara, E.J.H.; Duran, N.; Baptista, R.C. de; Shimizu, Y.; Augusto, O.; Faljoni-Alario, A.; Vidigal, C.C.C.; Oliveira, O.M.M.F.; Haun, M.

    1979-01-01

    Some aspects of bioluminescence related to bioenergetics are discussed: 1. chemical generation of excited species, by means of two general processes: electron transference and cyclic - and linear peroxide cleavage; 2. biological systems capable of generating excited states and 3. biological functions of these states, specially the non-emissive ones (tripletes). The production and the role of non-emissive excited states in biological systems are analysed, the main purpose of the study being the search for non-emissive states. Experiences carried out in biological systems are described; results and conclusions are given. (M.A.) [pt

  4. Telemetry System of Biological Parameters

    Directory of Open Access Journals (Sweden)

    Jan Spisak

    2005-01-01

    Full Text Available The mobile telemetry system of biological parameters serves for reading and wireless data transfer of measured values of selected biological parameters to an outlying computer. It concerns basically long time monitoring of vital function of car pilot.The goal of this projects is to propose mobile telemetry system for reading, wireless transfer and processing of biological parameters of car pilot during physical and psychical stress. It has to be made with respect to minimal consumption, weight and maximal device mobility. This system has to eliminate signal noise, which is created by biological artifacts and disturbances during the data transfer.

  5. Mapping biological systems to network systems

    CERN Document Server

    Rathore, Heena

    2016-01-01

    The book presents the challenges inherent in the paradigm shift of network systems from static to highly dynamic distributed systems – it proposes solutions that the symbiotic nature of biological systems can provide into altering networking systems to adapt to these changes. The author discuss how biological systems – which have the inherent capabilities of evolving, self-organizing, self-repairing and flourishing with time – are inspiring researchers to take opportunities from the biology domain and map them with the problems faced in network domain. The book revolves around the central idea of bio-inspired systems -- it begins by exploring why biology and computer network research are such a natural match. This is followed by presenting a broad overview of biologically inspired research in network systems -- it is classified by the biological field that inspired each topic and by the area of networking in which that topic lies. Each case elucidates how biological concepts have been most successfully ...

  6. Static Analysis for Systems Biology

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis; Rosa, D. Schuch da

    2004-01-01

    This paper shows how static analysis techniques can help understanding biological systems. Based on a simple example we illustrate the outcome of performing three different analyses extracting information of increasing precision. We conclude by reporting on the potential impact and exploitation o...... of these techniques in systems biology....

  7. Systems biology and medicine

    Indian Academy of Sciences (India)

    work could potentially provide us with ways to identify drug ... appropriately balance cause, effect, and context of a given clinical ... would not provide answers/solutions to multitude of tasks that were ... a major challenge of contemporary biology is to embark on an ... nificantly govern the life and responsiveness of cells.

  8. [Network structures in biological systems].

    Science.gov (United States)

    Oleskin, A V

    2013-01-01

    Network structures (networks) that have been extensively studied in the humanities are characterized by cohesion, a lack of a central control unit, and predominantly fractal properties. They are contrasted with structures that contain a single centre (hierarchies) as well as with those whose elements predominantly compete with one another (market-type structures). As far as biological systems are concerned, their network structures can be subdivided into a number of types involving different organizational mechanisms. Network organization is characteristic of various structural levels of biological systems ranging from single cells to integrated societies. These networks can be classified into two main subgroups: (i) flat (leaderless) network structures typical of systems that are composed of uniform elements and represent modular organisms or at least possess manifest integral properties and (ii) three-dimensional, partly hierarchical structures characterized by significant individual and/or intergroup (intercaste) differences between their elements. All network structures include an element that performs structural, protective, and communication-promoting functions. By analogy to cell structures, this element is denoted as the matrix of a network structure. The matrix includes a material and an immaterial component. The material component comprises various structures that belong to the whole structure and not to any of its elements per se. The immaterial (ideal) component of the matrix includes social norms and rules regulating network elements' behavior. These behavioral rules can be described in terms of algorithms. Algorithmization enables modeling the behavior of various network structures, particularly of neuron networks and their artificial analogs.

  9. Quantum Effects in Biological Systems

    CERN Document Server

    2016-01-01

    Since the last decade the study of quantum mechanical phenomena in biological systems has become a vibrant field of research. Initially sparked by evidence of quantum effects in energy transport that is instrumental for photosynthesis, quantum biology asks the question of how methods and models from quantum theory can help us to understand fundamental mechanisms in living organisms. This approach entails a paradigm change challenging the related disciplines: The successful framework of quantum theory is taken out of its low-temperature, microscopic regimes and applied to hot and dense macroscopic environments, thereby extending the toolbox of biology and biochemistry at the same time. The Quantum Effects in Biological Systems conference is a platform for researchers from biology, chemistry and physics to present and discuss the latest developments in the field of quantum biology. After meetings in Lisbon (2009), Harvard (2010), Ulm (2011), Berkeley (2012), Vienna (2013), Singapore (2014) and Florence (2015),...

  10. Carbon dioxide evolution rate as a method to monitor and control an aerobic biological waste treatment system

    Science.gov (United States)

    Lee, S. S.; Shuler, M. L.

    1986-01-01

    An experimental system was developed to study the microbial growth kinetic of an undefined mixed culture in an erobic biological waste treatment process. The experimental results were used to develop a mathematical model that can predict the performance of a bioreactor. The bioreactor will be used to regeneratively treat waste material which is expected to be generated during a long term manned space mission. Since the presence of insoluble particles in the chemically undefined complex media made estimating biomass very difficult in the real system, a clean system was devised to study the microbial growth from the soluble substrate.

  11. Heuristic Strategies in Systems Biology

    Directory of Open Access Journals (Sweden)

    Fridolin Gross

    2016-06-01

    Full Text Available Systems biology is sometimes presented as providing a superior approach to the problem of biological complexity. Its use of ‘unbiased’ methods and formal quantitative tools might lead to the impression that the human factor is effectively eliminated. However, a closer look reveals that this impression is misguided. Systems biologists cannot simply assemble molecular information and compute biological behavior. Instead, systems biology’s main contribution is to accelerate the discovery of mechanisms by applying models as heuristic tools. These models rely on a variety of idealizing and simplifying assumptions in order to be efficient for this purpose. The strategies of systems biologists are similar to those of experimentalists in that they attempt to reduce the complexity of the discovery process. Analyzing and comparing these strategies, or ‘heuristics’, reveals the importance of the human factor in computational approaches and helps to situate systems biology within the epistemic landscape of the life sciences.

  12. Pakistan's national legislation entitled: 'Export Control on Goods, Technologies, Material and Equipment related to Nuclear and Biological Weapons and their Delivery Systems Act, 2004'

    International Nuclear Information System (INIS)

    2004-01-01

    The Director General has received a letter from the Permanent Mission of Pakistan, dated 4 November 2004, concerning Pakistan's national legislation entitled 'Export Control on Goods, Technologies, Material and Equipment related to Nuclear and Biological Weapons and their Delivery Systems Act, 2004'. As requested by the Permanent Mission of Pakistan, the letter and the Export Control Act of 2004, are reproduced herein for the information of the Member States

  13. Compartmental study of biological systems

    International Nuclear Information System (INIS)

    Moretti, J.L.

    1975-01-01

    The compartmental analysis of biological system is dealt with on several chapters devoted successively to: terminology; a mathematical and symbolic account of a system at equilibrium; different compartment systems; analysis of the experimental results. For this it is pointed out that the application of compartmental systems to biological phenomena is not always without danger. Sometimes the compartmental system established in a reference subject fails to conform in the patient. The compartments can divide into two or join together, completely changing the aspect of the system so that parameters calculated with the old model become entirely false. The conclusion is that the setting up of a compartmental system to represent a biological phenomenon is a tricky undertaking and the results must be constantly criticized and questioned [fr

  14. Ten questions about systems biology

    DEFF Research Database (Denmark)

    Joyner, Michael J; Pedersen, Bente K

    2011-01-01

    In this paper we raise 'ten questions' broadly related to 'omics', the term systems biology, and why the new biology has failed to deliver major therapeutic advances for many common diseases, especially diabetes and cardiovascular disease. We argue that a fundamentally narrow and reductionist...... to understand how whole animals adapt to the real world. We argue that a lack of fluency in these concepts is a major stumbling block for what has been narrowly defined as 'systems biology' by some of its leading advocates. We also point out that it is a failure of regulation at multiple levels that causes many...

  15. Ten questions about systems biology

    DEFF Research Database (Denmark)

    Joyner, Michael J; Pedersen, Bente K

    2011-01-01

    to understand how whole animals adapt to the real world. We argue that a lack of fluency in these concepts is a major stumbling block for what has been narrowly defined as 'systems biology' by some of its leading advocates. We also point out that it is a failure of regulation at multiple levels that causes many......In this paper we raise 'ten questions' broadly related to 'omics', the term systems biology, and why the new biology has failed to deliver major therapeutic advances for many common diseases, especially diabetes and cardiovascular disease. We argue that a fundamentally narrow and reductionist...

  16. Informing biological design by integration of systems and synthetic biology.

    Science.gov (United States)

    Smolke, Christina D; Silver, Pamela A

    2011-03-18

    Synthetic biology aims to make the engineering of biology faster and more predictable. In contrast, systems biology focuses on the interaction of myriad components and how these give rise to the dynamic and complex behavior of biological systems. Here, we examine the synergies between these two fields. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Development trend of radiation biology research-systems radiation biology

    International Nuclear Information System (INIS)

    Min Rui

    2010-01-01

    Radiation biology research has past 80 years. We have known much more about fundamentals, processes and results of biology effects induced by radiation and various factors that influence biology effects wide and deep, however many old and new scientific problems occurring in the field of radiation biology research remain to be illustrated. To explore and figure these scientific problems need systemic concept, methods and multi dimension view on the base of considerations of complexity of biology system, diversity of biology response, temporal and spatial process of biological effects during occurrence, and complex feed back network of biological regulations. (authors)

  18. Biological control and sustainable food production

    NARCIS (Netherlands)

    Bale, J.S.; Lenteren, van J.C.; Bigler, F.

    2008-01-01

    The use of biological control for the management of pest insects pre-dates the modern pesticide era. The first major successes in biological control occurred with exotic pests controlled by natural enemy species collected from the country or area of origin of the pest (classical control).

  19. Magnetic Actuation of Biological Systems

    Science.gov (United States)

    Lauback, Stephanie D.

    Central to the advancement of many biomedical and nanotechnology capabilities is the capacity to precisely control the motion of micro and nanostructures. These applications range from single molecule experiments to cell isolation and separation, to drug delivery and nanomachine manipulation. This dissertation focuses on actuation of biological micro- and nano-entities through the use of weak external magnetic fields, superparamagnetic beads, and ferromagnetic thin films. The magnetic platform presents an excellent method for actuation of biological systems due to its ability to directly control the motion of an array of micro and nanostructures in real-time with calibrated picoNewton forces. The energy landscape of two ferromagnetic thin film patterns (disks and zigzag wires) is experimentally explored and compared to corresponding theoretical models to quantify the applied forces and trajectories of superparamagnetic beads due to the magnetic traps. A magnetic method to directly actuate DNA nanomachines in real-time with nanometer resolution and sub-second response times using micromagnetic control was implemented through the use of stiff DNA micro-levers which bridged the large length scale mismatch between the micro-actuator and the nanomachine. Compared to current alternative methods which are limited in the actuation speeds and the number of reconfiguration states of DNA constructs, this magnetic approach enables fast actuation (˜ milliseconds) and reconfigurable conformations achieved through a continuous range of finely tuned steps. The system was initially tested through actuation of the stiff arm tethered to the surface, and two prototype DNA nanomachines (rotor and hinge) were successfully actuated using the stiff mechanical lever. These results open new possibilities in the development of functional robotic systems at the molecular scale. In exploiting the use of DNA stiff levers, a new technique was also developed to investigate the emergence of the

  20. Characterizing Biological Closed-Loop Life Support Systems for Thermal Control and Revitalization of Spacecraft Cabin Environments

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental Control and Support Systems (ECLSS) are required for all manned spaceflight missions to provide the most fundamental physiological needs. One of these...

  1. From systems biology to systems biomedicine.

    Science.gov (United States)

    Antony, Paul M A; Balling, Rudi; Vlassis, Nikos

    2012-08-01

    Systems Biology is about combining theory, technology, and targeted experiments in a way that drives not only data accumulation but knowledge as well. The challenge in Systems Biomedicine is to furthermore translate mechanistic insights in biological systems to clinical application, with the central aim of improving patients' quality of life. The challenge is to find theoretically well-chosen models for the contextually correct and intelligible representation of multi-scale biological systems. In this review, we discuss the current state of Systems Biology, highlight the emergence of Systems Biomedicine, and highlight some of the topics and views that we think are important for the efficient application of Systems Theory in Biomedicine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Inverse problems in systems biology

    International Nuclear Information System (INIS)

    Engl, Heinz W; Lu, James; Müller, Stefan; Flamm, Christoph; Schuster, Peter; Kügler, Philipp

    2009-01-01

    Systems biology is a new discipline built upon the premise that an understanding of how cells and organisms carry out their functions cannot be gained by looking at cellular components in isolation. Instead, consideration of the interplay between the parts of systems is indispensable for analyzing, modeling, and predicting systems' behavior. Studying biological processes under this premise, systems biology combines experimental techniques and computational methods in order to construct predictive models. Both in building and utilizing models of biological systems, inverse problems arise at several occasions, for example, (i) when experimental time series and steady state data are used to construct biochemical reaction networks, (ii) when model parameters are identified that capture underlying mechanisms or (iii) when desired qualitative behavior such as bistability or limit cycle oscillations is engineered by proper choices of parameter combinations. In this paper we review principles of the modeling process in systems biology and illustrate the ill-posedness and regularization of parameter identification problems in that context. Furthermore, we discuss the methodology of qualitative inverse problems and demonstrate how sparsity enforcing regularization allows the determination of key reaction mechanisms underlying the qualitative behavior. (topical review)

  3. Nanoscale technology in biological systems

    CERN Document Server

    Greco, Ralph S; Smith, R Lane

    2004-01-01

    Reviewing recent accomplishments in the field of nanobiology Nanoscale Technology in Biological Systems introduces the application of nanoscale matrices to human biology. It focuses on the applications of nanotechnology fabrication to biomedical devices and discusses new physical methods for cell isolation and manipulation and intracellular communication at the molecular level. It also explores the application of nanobiology to cardiovascular diseases, oncology, transplantation, and a range of related disciplines. This book build a strong background in nanotechnology and nanobiology ideal for

  4. Biology and Water Pollution Control.

    Science.gov (United States)

    Warren, Charles E.

    Within this text, the reader is attuned to the role biology can and should play in combating the alarming increase in water pollution. Both the urgency of the problem and the biological techniques that are being developed to cope with the water pollution crisis are scrutinized; what is and is not known about the problem is explained; past,…

  5. Biological Control in Brazil: an overview

    OpenAIRE

    Parra,José Roberto Postali

    2014-01-01

    The use of Biological Control methods is on the increase, mainly as a result of the mobilization of human resources in entomology studies since the establishment of graduate programs in this country in the 1960s. This review approaches the retrospective of Biological Control in Brazil in recent decades, with an emphasis on the "culture of applying agrochemicals" adopted by Brazilian growers, which constrains progress in this area. Successful cases of Biological Control have been reported on i...

  6. Review of Pasteuria penetrans: Biology, Ecology, and Biological Control Potential.

    Science.gov (United States)

    Chen, Z X; Dickson, D W

    1998-09-01

    Pasteuria penetrans is a mycelial, endospore-forming, bacterial parasite that has shown great potential as a biological control agent of root-knot nematodes. Considerable progress has been made during the last 10 years in understanding its biology and importance as an agent capable of effectively suppressing root-knot nematodes in field soil. The objective of this review is to summarize the current knowledge of the biology, ecology, and biological control potential of P. penetrans and other Pasteuria members. Pasteuria spp. are distributed worldwide and have been reported from 323 nematode species belonging to 116 genera of free-living, predatory, plant-parasitic, and entomopathogenic nematodes. Artificial cultivation of P. penetrans has met with limited success; large-scale production of endospores depends on in vivo cultivation. Temperature affects endospore attachment, germination, pathogenesis, and completion of the life cycle in the nematode pseudocoelom. The biological control potential of Pasteuria spp. have been demonstrated on 20 crops; host nematodes include Belonolaimus longicaudatus, Heterodera spp., Meloidogyne spp., and Xiphinema diversicaudatum. Pasteuria penetrans plays an important role in some suppressive soils. The efficacy of the bacterium as a biological control agent has been examined. Approximately 100,000 endospores/g of soil provided immediate control of the peanut root-knot nematode, whereas 1,000 and 5,000 endospores/g of soil each amplified in the host nematode and became suppressive after 3 years.

  7. Workshop Introduction: Systems Biology and Biological Models

    Science.gov (United States)

    As we consider the future of toxicity testing, the importance of applying biological models to this problem is clear. Modeling efforts exist along a continuum with respect to the level of organization (e.g. cell, tissue, organism) linked to the resolution of the model. Generally,...

  8. Systems biology approach to bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Romy; Wu, Cindy H.; Hazen, Terry C.

    2012-06-01

    Bioremediation has historically been approached as a ‘black box’ in terms of our fundamental understanding. Thus it succeeds and fails, seldom without a complete understanding of why. Systems biology is an integrated research approach to study complex biological systems, by investigating interactions and networks at the molecular, cellular, community, and ecosystem level. The knowledge of these interactions within individual components is fundamental to understanding the dynamics of the ecosystem under investigation. Finally, understanding and modeling functional microbial community structure and stress responses in environments at all levels have tremendous implications for our fundamental understanding of hydrobiogeochemical processes and the potential for making bioremediation breakthroughs and illuminating the ‘black box’.

  9. Systems biology: the reincarnation of systems theory applied in biology?

    Science.gov (United States)

    Wolkenhauer, O

    2001-09-01

    With the availability of quantitative data on the transcriptome and proteome level, there is an increasing interest in formal mathematical models of gene expression and regulation. International conferences, research institutes and research groups concerned with systems biology have appeared in recent years and systems theory, the study of organisation and behaviour per se, is indeed a natural conceptual framework for such a task. This is, however, not the first time that systems theory has been applied in modelling cellular processes. Notably in the 1960s systems theory and biology enjoyed considerable interest among eminent scientists, mathematicians and engineers. Why did these early attempts vanish from research agendas? Here we shall review the domain of systems theory, its application to biology and the lessons that can be learned from the work of Robert Rosen. Rosen emerged from the early developments in the 1960s as a main critic but also developed a new alternative perspective to living systems, a concept that deserves a fresh look in the post-genome era of bioinformatics.

  10. Biological control of Otiorhynchus sulcatus by insect parasitic nematodes, Heterorhabditis spp., at low temperatures : a systems analytical approach

    NARCIS (Netherlands)

    Westerman, P.R.

    1997-01-01

    The black vine weevil, Otiorhynchus sulcatus, is an important pest in ornamentals and nursery stock in The Netherlands. The larvae, which feed on the root system of the plant, can be controlled by insect parasitic nematodes, Heterorhabditis.

  11. Tunable promoters in systems biology

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Jensen, Peter Ruhdal

    2005-01-01

    The construction of synthetic promoter libraries has represented a major breakthrough in systems biology, enabling the subtle tuning of enzyme activities. A number of tools are now available that allow the modulation of gene expression and the detection of changes in expression patterns. But, how...

  12. Systems Biology of Industrial Microorganisms

    Science.gov (United States)

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  13. Field-controlled electron transfer and reaction kinetics of the biological catalytic system of microperoxidase-11 and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Yongki Choi

    2011-12-01

    Full Text Available Controlled reaction kinetics of the bio-catalytic system of microperoxidase-11 and hydrogen peroxide has been achieved using an electrostatic technique. The technique allowed independent control of 1 the thermodynamics of the system using electrochemical setup and 2 the quantum mechanical tunneling at the interface between microperoxidase-11 and the working electrode by applying a gating voltage to the electrode. The cathodic currents of electrodes immobilized with microperoxidase-11 showed a dependence on the gating voltage in the presence of hydrogen peroxide, indicating a controllable reduction reaction. The measured kinetic parameters of the bio-catalytic reduction showed nonlinear dependences on the gating voltage as the result of modified interfacial electron tunnel due to the field induced at the microperoxidase-11-electrode interface. Our results indicate that the kinetics of the reduction of hydrogen peroxide can be controlled by a gating voltage and illustrate the operation of a field-effect bio-catalytic transistor, whose current-generating mechanism is the conversion of hydrogen peroxide to water with the current being controlled by the gating voltage.

  14. Systems Biology-an interdisciplinary approach.

    Science.gov (United States)

    Friboulet, Alain; Thomas, Daniel

    2005-06-15

    System-level approaches in biology are not new but foundations of "Systems Biology" are achieved only now at the beginning of the 21st century [Kitano, H., 2001. Foundations of Systems Biology. MIT Press, Cambridge, MA]. The renewed interest for a system-level approach is linked to the progress in collecting experimental data and to the limits of the "reductionist" approach. System-level understanding of native biological and pathological systems is needed to provide potential therapeutic targets. Examples of interdisciplinary approach in Systems Biology are described in U.S., Japan and Europe. Robustness in biology, metabolic engineering and idiotypic networks are discussed in the framework of Systems Biology.

  15. Mathematical methods in systems biology.

    Science.gov (United States)

    Kashdan, Eugene; Duncan, Dominique; Parnell, Andrew; Schattler, Heinz

    2016-12-01

    The editors of this Special Issue of Mathematical Biosciences and Engineering were the organizers for the Third International Workshop "Mathematical Methods in System Biology" that took place on June 15-18, 2015 at the University College Dublin in Ireland. As stated in the workshop goals, we managed to attract a good mix of mathematicians and statisticians working on biological and medical applications with biologists and clinicians interested in presenting their challenging problems and looking to find mathematical and statistical tools for their solutions.

  16. Biological control of Fusarium moniliforme in maize.

    Science.gov (United States)

    Bacon, C W; Yates, I E; Hinton, D M; Meredith, F

    2001-05-01

    Fusarium moniliforme Sheldon, a biological species of the mating populations within the (italic)Gibberella fujikuroi species complex, i.e., population A [= G. moniliformis (Sheld.) Wineland], is an example of a facultative fungal endophyte. During the biotrophic endophytic association with maize, as well as during saprophytic growth, F. moniliforme produces the fumonisins. The fungus is transmitted vertically and horizontally to the next generation of plants via clonal infection of seeds and plant debris. Horizontal infection is the manner by which this fungus is spread contagiously and through which infection occurs from the outside that can be reduced by application of certain fungicides. The endophytic phase is vertically transmitted. This type infection is important because it is not controlled by seed applications of fungicides, and it remains the reservoir from which infection and toxin biosynthesis takes place in each generation of plants. Thus, vertical transmission of this fungus is just as important as horizontal transmission. A biological control system using an endophytic bacterium, Bacillus subtilis, has been developed that shows great promise for reducing mycotoxin accumulation during the endophytic (vertical transmission) growth phase. Because this bacterium occupies the identical ecological niche within the plant, it is considered an ecological homologue to F. moniliforme, and the inhibitory mechanism, regardless of the mode of action, operates on the competitive exclusion principle. In addition to this bacterium, an isolate of a species of the fungus Trichoderma shows promise in the postharvest control of the growth and toxin accumulation from F. moniliforme on corn in storage.

  17. Carbon nanomaterials in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Pu Chun Ke [Laboratory of Single-Molecule Biophysics and Polymer Physics, Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Qiao Rui [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634 (United States)

    2007-09-19

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment. (topical review)

  18. Carbon nanomaterials in biological systems

    International Nuclear Information System (INIS)

    Pu Chun Ke; Qiao Rui

    2007-01-01

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment. (topical review)

  19. Analyzing the Biology on the System Level

    OpenAIRE

    Tong, Wei

    2016-01-01

    Although various genome projects have provided us enormous static sequence information, understanding of the sophisticated biology continues to require integrating the computational modeling, system analysis, technology development for experiments, and quantitative experiments all together to analyze the biology architecture on various levels, which is just the origin of systems biology subject. This review discusses the object, its characteristics, and research attentions in systems biology,...

  20. Biological Potential in Serpentinizing Systems

    Science.gov (United States)

    Hoehler, Tori M.

    2016-01-01

    Generation of the microbial substrate hydrogen during serpentinization, the aqueous alteration of ultramafic rocks, has focused interest on the potential of serpentinizing systems to support biological communities or even the origin of life. However the process also generates considerable alkalinity, a challenge to life, and both pH and hydrogen concentrations vary widely across natural systems as a result of different host rock and fluid composition and differing physical and hydrogeologic conditions. Biological potential is expected to vary in concert. We examined the impact of such variability on the bioenergetics of an example metabolism, methanogenesis, using a cell-scale reactive transport model to compare rates of metabolic energy generation as a function of physicochemical environment. Potential rates vary over more than 5 orders of magnitude, including bioenergetically non-viable conditions, across the range of naturally occurring conditions. In parallel, we assayed rates of hydrogen metabolism in wells associated with the actively serpentinizing Coast Range Ophiolite, which includes conditions more alkaline and considerably less reducing than is typical of serpentinizing systems. Hydrogen metabolism is observed at pH approaching 12 but, consistent with the model predictions, biological methanogenesis is not observed.

  1. Anion binding in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Feiters, Martin C [Department of Organic Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Meyer-Klaucke, Wolfram [EMBL Hamburg Outstation at DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Kostenko, Alexander V; Soldatov, Alexander V [Faculty of Physics, Southern Federal University, Sorge 5, Rostov-na-Donu, 344090 (Russian Federation); Leblanc, Catherine; Michel, Gurvan; Potin, Philippe [Centre National de la Recherche Scientifique and Universite Pierre et Marie Curie Paris-VI, Station Biologique de Roscoff, Place Georges Teissier, BP 74, F-29682 Roscoff cedex, Bretagne (France); Kuepper, Frithjof C [Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland (United Kingdom); Hollenstein, Kaspar; Locher, Kaspar P [Institute of Molecular Biology and Biophysics, ETH Zuerich, Schafmattstrasse 20, Zuerich, 8093 (Switzerland); Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R, E-mail: m.feiters@science.ru.n [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2009-11-15

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L{sub 3} (2p{sub 3/2}) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  2. Anion binding in biological systems

    International Nuclear Information System (INIS)

    Feiters, Martin C; Meyer-Klaucke, Wolfram; Kostenko, Alexander V; Soldatov, Alexander V; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Kuepper, Frithjof C; Hollenstein, Kaspar; Locher, Kaspar P; Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R

    2009-01-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L 3 (2p 3/2 ) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  3. Anion binding in biological systems

    Science.gov (United States)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  4. Conserving and enhancing biological control of nematodes.

    Science.gov (United States)

    Timper, Patricia

    2014-06-01

    Conservation biological control is the modification of the environment or existing practices to protect and enhance antagonistic organisms to reduce damage from pests. This approach to biological control has received insufficient attention compared with inundative applications of microbial antagonists to control nematodes. This review provides examples of how production practices can enhance or diminish biological control of plant-parasitic nematodes and other soilborne pests. Antagonists of nematodes can be enhanced by providing supplementary food sources such as occurs when organic amendments are applied to soil. However, some organic amendments (e.g., manures and plants containing allelopathic compounds) can also be detrimental to nematode antagonists. Plant species and genotype can strongly influence the outcome of biological control. For instance, the susceptibility of the plant to the nematode can determine the effectiveness of control; good hosts will require greater levels of suppression than poor hosts. Plant genotype can also influence the degree of rhizosphere colonization and antibiotic production by antagonists, as well the expression of induced resistance by plants. Production practices such as crop rotation, fallow periods, tillage, and pesticide applications can directly disrupt populations of antagonistic organisms. These practices can also indirectly affect antagonists by reducing their primary nematode host. One of the challenges of conservation biological control is that practices intended to protect or enhance suppression of nematodes may not be effective in all field sites because they are dependent on indigenous antagonists. Ultimately, indicators will need to be identified, such as the presence of particular antagonists, which can guide decisions on where it is practical to use conservation biological control. Antagonists can also be applied to field sites in conjunction with conservation practices to improve the consistency, efficacy, and

  5. [Establishment of Quality Control System of Nucleic Acid Detection for Ebola Virus in Sierra Leone-China Friendship Biological Safety Laboratory].

    Science.gov (United States)

    Wang, Qin; Zhang, Yong; Nie, Kai; Wang, Huanyu; Du, Haijun; Song, Jingdong; Xiao, Kang; Lei, Wenwen; Guo, Jianqiang; Wei, Hejiang; Cai, Kun; Wang, Yanhai; Wu, Jiang; Gerald, Bangura; Kamara, Idrissa Laybohr; Liang, Mifang; Wu, Guizhen; Dong, Xiaoping

    2016-03-01

    The quality control process throughout the Ebola virus nucleic acid detection in Sierra Leone-China Friendship Biological Safety Laboratory (SLE-CHN Biosafety Lab) was described in detail, in order to comprehensively display the scientific, rigorous, accurate and efficient practice in detection of Ebola virus of first batch detection team in SLE-CHN Biosafety Lab. Firstly, the key points of laboratory quality control system was described, including the managements and organizing, quality control documents and information management, instrument, reagents and supplies, assessment, facilities design and space allocation, laboratory maintenance and biosecurity. Secondly, the application of quality control methods in the whole process of the Ebola virus detection, including before the test, during the test and after the test, was analyzed. The excellent and professional laboratory staffs, the implementation of humanized management are the cornerstone of the success; High-level biological safety protection is the premise for effective quality control and completion of Ebola virus detection tasks. And professional logistics is prerequisite for launching the laboratory diagnosis of Ebola virus. The establishment and running of SLE-CHN Biosafety Lab has landmark significance for the friendship between Sierra Leone and China, and the lab becomes the most important base for Ebola virus laboratory testing in Sierra Leone.

  6. Controllability and observability of Boolean networks arising from biology

    Science.gov (United States)

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  7. Opportunities for biological weed control in Europe

    NARCIS (Netherlands)

    Scheepens, P.C.; Müller-Schärer, H.; Kempenaar, C.

    2001-01-01

    The development and application of biological weed control offer greatopportunities not only for farmers, nature conservationists and othervegetation managers but also for institutions and companies that wish tosell plant protection services and products, and for the general publicthat demands safe

  8. Nonlinear dynamics in biological systems

    CERN Document Server

    Carballido-Landeira, Jorge

    2016-01-01

    This book presents recent research results relating to applications of nonlinear dynamics, focusing specifically on four topics of wide interest: heart dynamics, DNA/RNA, cell mobility, and proteins. The book derives from the First BCAM Workshop on Nonlinear Dynamics in Biological Systems, held in June 2014 at the Basque Center of Applied Mathematics (BCAM). At this international meeting, researchers from different but complementary backgrounds, including molecular dynamics, physical chemistry, bio-informatics and biophysics, presented their most recent results and discussed the future direction of their studies using theoretical, mathematical modeling and experimental approaches. Such was the level of interest stimulated that the decision was taken to produce this publication, with the organizers of the event acting as editors. All of the contributing authors are researchers working on diverse biological problems that can be approached using nonlinear dynamics. The book will appeal especially to applied math...

  9. Controlling Devices Using Biological Signals

    Directory of Open Access Journals (Sweden)

    Alexandre Santos Brandão

    2011-08-01

    Full Text Available Knowing that the driving task of a conventional wheelchair could be difficult or even impossible for impairment people, this work presents an overview of some strategies developed to aid these people. Within this context, a myoelectrical eye-blink and an iris tracking system to guide a robotic wheelchair are briefly described. Futhermore, some comments about EEG-based systems are also presented. Finally, it is presented a robotic wheelchair navigation system capable to reach a desired pose in a planar environment while avoiding static and dynamic obstacles.

  10. Systems Biology — the Broader Perspective

    Directory of Open Access Journals (Sweden)

    Jonathan Bard

    2013-06-01

    Full Text Available Systems biology has two general aims: a narrow one, which is to discover how complex networks of proteins work, and a broader one, which is to integrate the molecular and network data with the generation and function of organism phenotypes. Doing all this involves complex methodologies, but underpinning the subject are more general conceptual problems about upwards and downwards causality, complexity and information storage, and their solutions provide the constraints within which these methodologies can be used. This essay considers these general aspects and the particular role of protein networks; their functional outputs are often the processes driving phenotypic change and physiological function—networks are, in a sense, the units of systems biology much as proteins are for molecular biology. It goes on to argue that the natural language for systems-biological descriptions of biological phenomena is the mathematical graph (a set of connected facts of the general form [process] (e.g., [activates] . Such graphs not only integrate events at different levels but emphasize the distributed nature of control as well as displaying a great deal of data. The implications and successes of these ideas for physiology, pharmacology, development and evolution are briefly considered. The paper concludes with some challenges for the future.

  11. Systems biology of Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    Navid, A; Ghim, C; Fenley, A; Yoon, S; Lee, S; Almaas, E

    2008-04-11

    Microbes exist naturally in a wide range of environments, spanning the extremes of high acidity and high temperature to soil and the ocean, in communities where their interactions are significant. We present a practical discussion of three different approaches for modeling microbial communities: rate equations, individual-based modeling, and population dynamics. We illustrate the approaches with detailed examples. Each approach is best fit to different levels of system representation, and they have different needs for detailed biological input. Thus, this set of approaches is able to address the operation and function of microbial communities on a wide range of organizational levels.

  12. Biology-Inspired Autonomous Control

    Science.gov (United States)

    2011-08-31

    insect brain, allow these animals to fly with damaged wings, order of body mass payloads (e.g., foraging bees with a load of pollen , blood satiated...The research focus addressed two broad, complementary research areas : autonomous systems concepts inspired by the behavior and neurobiology...UL 46 19b. TELEPHONE NUMBER (include area code) 850 883-1887 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 iii Table of

  13. Systems biology and biomarker discovery

    Energy Technology Data Exchange (ETDEWEB)

    Rodland, Karin D.

    2010-12-01

    Medical practitioners have always relied on surrogate markers of inaccessible biological processes to make their diagnosis, whether it was the pallor of shock, the flush of inflammation, or the jaundice of liver failure. Obviously, the current implementation of biomarkers for disease is far more sophisticated, relying on highly reproducible, quantitative measurements of molecules that are often mechanistically associated with the disease in question, as in glycated hemoglobin for the diagnosis of diabetes [1] or the presence of cardiac troponins in the blood for confirmation of myocardial infarcts [2]. In cancer, where the initial symptoms are often subtle and the consequences of delayed diagnosis often drastic for disease management, the impetus to discover readily accessible, reliable, and accurate biomarkers for early detection is compelling. Yet despite years of intense activity, the stable of clinically validated, cost-effective biomarkers for early detection of cancer is pathetically small and still dominated by a handful of markers (CA-125, CEA, PSA) first discovered decades ago. It is time, one could argue, for a fresh approach to the discovery and validation of disease biomarkers, one that takes full advantage of the revolution in genomic technologies and in the development of computational tools for the analysis of large complex datasets. This issue of Disease Markers is dedicated to one such new approach, loosely termed the 'Systems Biology of Biomarkers'. What sets the Systems Biology approach apart from other, more traditional approaches, is both the types of data used, and the tools used for data analysis - and both reflect the revolution in high throughput analytical methods and high throughput computing that has characterized the start of the twenty first century.

  14. Radical production in biological systems

    International Nuclear Information System (INIS)

    Johnson, J.R.; Akabani, G.

    1994-10-01

    This paper describes our effort to develop a metric for radiation exposure that is more fundamental than adsorbed dose and upon which a metric for exposure to chemicals could be based. This metric is based on the production of radicals by the two agents. Radicals produced by radiation in biological systems commonly assumed to be the same as those produced in water despite the presence of a variety of complex molecules. This may explain why the extensive efforts to describe the relationship between energy deposition (track structure) and molecular damage to DNA, based on the spectrum of radicals produced, have not been successful in explaining simple biological effects such as cell killing. Current models assume that DNA and its basic elements are immersed in water-like media and only model the production and diffusion of water-based radicals and their interaction with DNA structures; these models lack the cross sections associated with each macro-component of DNA and only treat water-based radicals. It has been found that such models are not realistic because DNA is not immersed in pure water. A computer code capable of simulating electron tracks, low-energy electrons, energy deposition in small molecules, and radical production and diffusion in water like media has been developed. This code is still in at a primitive stage and development is continuing. It is being used to study radical production by radiation, and radical diffusion and interactions in simple molecular systems following their production. We are extending the code to radical production by chemicals to complement our PBPK modeling efforts. It therefore has been developed primarily for use with radionuclides that are in biological materials, and not for radiation fields

  15. Integrating phosphoproteomics in systems biology

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2014-07-01

    Full Text Available Phosphorylation of serine, threonine and tyrosine plays significant roles in cellular signal transduction and in modifying multiple protein functions. Phosphoproteins are coordinated and regulated by a network of kinases, phosphatases and phospho-binding proteins, which modify the phosphorylation states, recognize unique phosphopeptides, or target proteins for degradation. Detailed and complete information on the structure and dynamics of these networks is required to better understand fundamental mechanisms of cellular processes and diseases. High-throughput technologies have been developed to investigate phosphoproteomes in model organisms and human diseases. Among them, mass spectrometry (MS-based technologies are the major platforms and have been widely applied, which has led to explosive growth of phosphoproteomic data in recent years. New bioinformatics tools are needed to analyze and make sense of these data. Moreover, most research has focused on individual phosphoproteins and kinases. To gain a more complete knowledge of cellular processes, systems biology approaches, including pathways and networks modeling, have to be applied to integrate all components of the phosphorylation machinery, including kinases, phosphatases, their substrates, and phospho-binding proteins. This review presents the latest developments of bioinformatics methods and attempts to apply systems biology to analyze phosphoproteomics data generated by MS-based technologies. Challenges and future directions in this field will be also discussed.

  16. Systems biology of fungal infection

    Directory of Open Access Journals (Sweden)

    Fabian eHorn

    2012-04-01

    Full Text Available Elucidation of pathogenicity mechanisms of the most important human pathogenic fungi, Aspergillus fumigatus and Candida albicans, has gained great interest in the light of the steadily increasing number of cases of invasive fungal infections.A key feature of these infections is the interaction of the different fungal morphotypes with epithelial and immune effector cells in the human host. Because of the high level of complexity, it is necessary to describe and understand invasive fungal infection by taking a systems biological approach, i.e., by a comprehensive quantitative analysis of the non-linear and selective interactions of a large number of functionally diverse, and frequently multifunctional, sets of elements, e.g., genes, proteins, metabolites, which produce coherent and emergent behaviours in time and space. The recent advances in systems biology will now make it possible to uncover the structure and dynamics of molecular and cellular cause-effect relationships within these pathogenic interactions.We review current efforts to integrate omics and image-based data of host-pathogen interactions into network and spatio-temporal models. The modelling will help to elucidate pathogenicity mechanisms and to identify diagnostic biomarkers and potential drug targets for therapy and could thus pave the way for novel intervention strategies based on novel antifungal drugs and cell therapy.

  17. Use of nuclear techniques in biological control

    International Nuclear Information System (INIS)

    Greany, Patrick D.; Carpenter, James E.

    2000-01-01

    As pointed out by Benbrook (1996), pest management is at a crossroads, and there is a great need for new, biointensive pest management strategies. Among these approaches, biological control is a keystone. However, because of increasing concerns about the introduction of exotic natural enemies of insect pests and weeds (Howarth 1991, Delfosse 1997), the overall thrust of biological control has moved toward augmentative biological control, involving releases of established natural enemy species (Knipling 1992). This in turn has created a need to develop more cost-effective mass rearing technologies for beneficial insects. Nuclear techniques could play an especially important role in augmentative biological control, not only in facilitating mass rearing, but in several other ways, as indicated below. Recognising the potential value for use of nuclear techniques in biological control, the Insect and Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, sponsored a Consultants' Group Meeting on this subject in April 1997. The Group produced a document entitled Use of Nuclear Techniques in Biological Control: Managing Pests, Facilitating Trade and Protecting the Environment. The consultants included the authors of this paper as well as Ernest Delfosse (at that time, with the USDA-APHIS National Biological Control Institute), Garry Hill (Intl. Institute for Biological Control), Sinthya Penn (Beneficial Insectary), and Felipe Jeronimo (USDA-APHIS PPQ, Guatemala). The remarks presented in this paper reflect the thoughts presented by these consultants and other participants at the IAEA-sponsored meeting. Several potential uses for nuclear techniques were identified by the Consultants' Group, including: 1) improvements in rearing media (either artificial diets or natural hosts/prey), 2) provision of sterilised natural prey to be used as food during shipment, to ameliorate concerns relating to the

  18. Dynamical systems in population biology

    CERN Document Server

    Zhao, Xiao-Qiang

    2017-01-01

    This research monograph provides an introduction to the theory of nonautonomous semiflows with applications to population dynamics. It develops dynamical system approaches to various evolutionary equations such as difference, ordinary, functional, and partial differential equations, and pays more attention to periodic and almost periodic phenomena. The presentation includes persistence theory, monotone dynamics, periodic and almost periodic semiflows, basic reproduction ratios, traveling waves, and global analysis of prototypical population models in ecology and epidemiology. Research mathematicians working with nonlinear dynamics, particularly those interested in applications to biology, will find this book useful. It may also be used as a textbook or as supplementary reading for a graduate special topics course on the theory and applications of dynamical systems. Dr. Xiao-Qiang Zhao is a University Research Professor at Memorial University of Newfoundland, Canada. His main research interests involve applied...

  19. Biological control component [Management of water hyacinth

    International Nuclear Information System (INIS)

    Harley, K.L.S.

    1981-01-01

    Both chemical and biological control have been used with limited success for the management of water hyacinth in Fiji. In some cases heavy application of chemicals have been successful in completely killing limited areas of water hyacinth, but have resulted in the destruction of biological agents introduced to control the water hyacinth and high contamination of natural water supplies. It is proposed that under the direction of Mr S R Singh, the Senior Research Scientist (Entomology) of the Koronivia Research Station, Suva, Fiji, a collaborative programme with Dr Harley of Australia on chemical and biological control of water hyacinth be initiated. This programme would be fundamentally short-term with the prime objective being an investigation of levels of insect population following varying levels of application of chemical sprays. By comparison with control areas, observations would be made of both chemical damage and insect damage within the limited time span of the period

  20. Institute for Genomics and Systems Biology

    Science.gov (United States)

    Institute for Genomics and Systems Biology Discover. Predict. Improve. Advancing Human and , 2015 See all Research Papers Featured Video Introduction to Systems Biology Video: Introduction to Systems Biology News Jack Gilbert Heading UChicago Startup that Aims to Predict Behavior of Trillions of

  1. Answering biological questions: Querying a systems biology database for nutrigenomics

    NARCIS (Netherlands)

    Evelo, C.T.; Bochove, K. van; Saito, J.T.

    2011-01-01

    The requirement of systems biology for connecting different levels of biological research leads directly to a need for integrating vast amounts of diverse information in general and of omics data in particular. The nutritional phenotype database addresses this challenge for nutrigenomics. A

  2. Fostering synergy between cell biology and systems biology.

    Science.gov (United States)

    Eddy, James A; Funk, Cory C; Price, Nathan D

    2015-08-01

    In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules, predicting mechanisms and identifying generalizable themes, generating hypotheses and guiding experimental design, and highlighting knowledge gaps and refining understanding. In turn, incorporating domain expertise and experimental data is crucial for building towards whole cell models. An iterative cycle of interaction between cell and systems biologists advances the goals of both fields and establishes a framework for mechanistic understanding of the genome-to-phenome relationship. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  3. Quantum Dynamics in Biological Systems

    Science.gov (United States)

    Shim, Sangwoo

    In the first part of this dissertation, recent efforts to understand quantum mechanical effects in biological systems are discussed. Especially, long-lived quantum coherences observed during the electronic energy transfer process in the Fenna-Matthews-Olson complex at physiological condition are studied extensively using theories of open quantum systems. In addition to the usual master equation based approaches, the effect of the protein structure is investigated in atomistic detail through the combined application of quantum chemistry and molecular dynamics simulations. To evaluate the thermalized reduced density matrix, a path-integral Monte Carlo method with a novel importance sampling approach is developed for excitons coupled to an arbitrary phonon bath at a finite temperature. In the second part of the thesis, simulations of molecular systems and applications to vibrational spectra are discussed. First, the quantum dynamics of a molecule is simulated by combining semiclassical initial value representation and density funcitonal theory with analytic derivatives. A computationally-tractable approximation to the sum-of-states formalism of Raman spectra is subsequently discussed.

  4. Editorial overview : Systems biology for biotechnology

    NARCIS (Netherlands)

    Heinemann, Matthias; Pilpel, Yitzhak

    About 15 years ago, systems biology was introduced as a novel approach to biological research. On the one side, its introduction was a result of the recognition that through solely the reductionist approach, we would ulti- mately not be able to understand how biological systems function as a whole.

  5. Integrating systems biology models and biomedical ontologies.

    Science.gov (United States)

    Hoehndorf, Robert; Dumontier, Michel; Gennari, John H; Wimalaratne, Sarala; de Bono, Bernard; Cook, Daniel L; Gkoutos, Georgios V

    2011-08-11

    Systems biology is an approach to biology that emphasizes the structure and dynamic behavior of biological systems and the interactions that occur within them. To succeed, systems biology crucially depends on the accessibility and integration of data across domains and levels of granularity. Biomedical ontologies were developed to facilitate such an integration of data and are often used to annotate biosimulation models in systems biology. We provide a framework to integrate representations of in silico systems biology with those of in vivo biology as described by biomedical ontologies and demonstrate this framework using the Systems Biology Markup Language. We developed the SBML Harvester software that automatically converts annotated SBML models into OWL and we apply our software to those biosimulation models that are contained in the BioModels Database. We utilize the resulting knowledge base for complex biological queries that can bridge levels of granularity, verify models based on the biological phenomenon they represent and provide a means to establish a basic qualitative layer on which to express the semantics of biosimulation models. We establish an information flow between biomedical ontologies and biosimulation models and we demonstrate that the integration of annotated biosimulation models and biomedical ontologies enables the verification of models as well as expressive queries. Establishing a bi-directional information flow between systems biology and biomedical ontologies has the potential to enable large-scale analyses of biological systems that span levels of granularity from molecules to organisms.

  6. Biological effect of penetration controlled irradiation with ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi; Shimizu, Takashi; Kikuchi, Masahiro; Kobayashi, Yasuhiko; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Yamashita, Takao

    1997-03-01

    To investigate the effect of local irradiation with ion beams on biological systems, technique for penetration controlled irradiation has been established. The range in a target was controlled by changing the distance from beam window in the atmosphere, and could be controlled linearly up to about 31 {mu}m in biological material. In addition, the effects of the penetration controlled irradiations with 1.5 MeV/u C and He ions were examined using tobacco pollen. The increased frequency of leaky pollen produced by ion beams suggests that the efficient pollen envelope damages would be induced at the range-end of ion beams. (author)

  7. Augmentative biological control of arthropods in Latin America

    NARCIS (Netherlands)

    Lenteren, van J.C.; Bueno, V.H.P.

    2003-01-01

    Augmentative forms of biological control, where natural enemies are periodically introduced, are applied over large areas in various cropping systems in Latin America. About 25% of the world area under augmentative control is situated in this region. Well-known examples are the use of species of the

  8. A functional overview of conservation biological control

    DEFF Research Database (Denmark)

    Begg, Graham S; Cook, Samantha M; Dye, Richard

    2017-01-01

    Conservation biological control (CBC) is a sustainable approach to pest management that can contribute to a reduction in pesticide use as part of an Integrated Pest Management (IPM) strategy. CBC is based on the premise that countering habitat loss and environmental disturbance associated...... CBC prescriptions have proved elusive. To tackle this, we consolidate existing knowledge of CBC using a simple conceptual model that organises the functional elements of CBC into a common, unifying framework. We identify and integrate the key biological processes affecting natural enemies...... and their biological control function across local and regional scales, and consider the interactions, interdependencies and constraints that determine the outcome of CBC strategies. Conservation measures are often effective in supporting natural enemy populations but their success cannot be guaranteed; the greatest...

  9. Biologically inspired rate control of chaos.

    Science.gov (United States)

    Olde Scheper, Tjeerd V

    2017-10-01

    The overall intention of chaotic control is to eliminate chaos and to force the system to become stable in the classical sense. In this paper, I demonstrate a more subtle method that does not eliminate all traces of chaotic behaviour; yet it consistently, and reliably, can provide control as intended. The Rate Control of Chaos (RCC) method is derived from metabolic control processes and has several remarkable properties. RCC can control complex systems continuously, and unsupervised, it can also maintain control across bifurcations, and in the presence of significant systemic noise. Specifically, I show that RCC can control a typical set of chaotic models, including the 3 and 4 dimensional chaotic Lorenz systems, in all modes. Furthermore, it is capable of controlling spatiotemporal chaos without supervision and maintains control of the system across bifurcations. This property of RCC allows a dynamic system to operate in parameter spaces that are difficult to control otherwise. This may be particularly interesting for the control of forced systems or dynamic systems that are chaotically perturbed. These control properties of RCC are applicable to a range of dynamic systems, thereby appearing to have far-reaching effects beyond just controlling chaos. RCC may also point to the existence of a biochemical control function of an enzyme, to stabilise the dynamics of the reaction cascade.

  10. Characterization and Control of Biological Microrobots

    NARCIS (Netherlands)

    Khalil, I.S.M.; Pichel, Marc Philippe; Pichel, M.P.; Zondervan, L.; Abelmann, Leon; Misra, Sarthak

    2012-01-01

    This work addresses the characterization and control of Magnetotactic Bacterium (MTB) which can be considered as a biological microrobot. Magnetic dipole moment of the MTB and response to a field-with-alternating-direction are characterized. First, the magnetic dipole moment is characterized using

  11. Characterization and control of biological microrobots

    NARCIS (Netherlands)

    Khalil, I.S.M.; Pichel, Marc Philippe; Zondervan, L.; Abelmann, Leon; Misra, Sarthak; Desai, Jaydev P.; Dudek, Gregory; Khatib, Oussama; Kumar, Vijay

    2013-01-01

    This work addresses the characterization and control of Magnetotactic Bacterium (MTB) which can be considered as a biological microrobot. Magnetic dipole moment of the MTB and response to a field-with-alternating-direction are characterized. First, the magnetic dipole moment is characterized using

  12. Incorporating biological control into IPM decision making

    Science.gov (United States)

    Of the many ways biological control can be incorporated into Integrated Pest Management (IPM) programs, natural enemy thresholds are arguably most easily adopted by stakeholders. Integration of natural enemy thresholds into IPM programs requires ecological and cost/benefit crop production data, thr...

  13. Selection of Trichogramma for inundative biological control

    NARCIS (Netherlands)

    Pak, G.A.

    1988-01-01

    This thesis presents a study of the potential for biological control of lepidopterous pests on cabbage crops in the Netherlands, by means of inundative releases of the egg parasite Trichogramma (Hymenoptera, Trichogrammatidae). The objective of this study is to investigate the

  14. Biological control of Meloidogyne incognita by Trichoderma ...

    African Journals Online (AJOL)

    Biological control against the root-knot nematode, Meloidogyne incognita was proven to occur in tomato, Solanum lycopersicom, soil-drenched with different isolates of Trichoderma harzianum and a commercial suspension of Serratia marcescens (Nemaless). The potential of such biocontrol agents to trigger plant defense ...

  15. Applicability of Computational Systems Biology in Toxicology

    DEFF Research Database (Denmark)

    Kongsbak, Kristine Grønning; Hadrup, Niels; Audouze, Karine Marie Laure

    2014-01-01

    be used to establish hypotheses on links between the chemical and human diseases. Such information can also be applied for designing more intelligent animal/cell experiments that can test the established hypotheses. Here, we describe how and why to apply an integrative systems biology method......Systems biology as a research field has emerged within the last few decades. Systems biology, often defined as the antithesis of the reductionist approach, integrates information about individual components of a biological system. In integrative systems biology, large data sets from various sources...... and databases are used to model and predict effects of chemicals on, for instance, human health. In toxicology, computational systems biology enables identification of important pathways and molecules from large data sets; tasks that can be extremely laborious when performed by a classical literature search...

  16. Biological control of livestock pests: Pathogens

    Science.gov (United States)

    Interest in biological methods for livestock and poultry pest management is largely motivated by the development of resistance to most of the available synthetic pesticides by the major pests. There also has been a marked increase in organic systems, and those that promote animal welfare by reducing...

  17. Metabolomics: Definitions and Significance in Systems Biology.

    Science.gov (United States)

    Klassen, Aline; Faccio, Andréa Tedesco; Canuto, Gisele André Baptista; da Cruz, Pedro Luis Rocha; Ribeiro, Henrique Caracho; Tavares, Marina Franco Maggi; Sussulini, Alessandra

    2017-01-01

    Nowadays, there is a growing interest in deeply understanding biological mechanisms not only at the molecular level (biological components) but also the effects of an ongoing biological process in the organism as a whole (biological functionality), as established by the concept of systems biology. Within this context, metabolomics is one of the most powerful bioanalytical strategies that allow obtaining a picture of the metabolites of an organism in the course of a biological process, being considered as a phenotyping tool. Briefly, metabolomics approach consists in identifying and determining the set of metabolites (or specific metabolites) in biological samples (tissues, cells, fluids, or organisms) under normal conditions in comparison with altered states promoted by disease, drug treatment, dietary intervention, or environmental modulation. The aim of this chapter is to review the fundamentals and definitions used in the metabolomics field, as well as to emphasize its importance in systems biology and clinical studies.

  18. Systems biology of personalized nutrition

    NARCIS (Netherlands)

    Ommen, B. van; Broek, T. van den; Hoogh, I. de; Erk, M. van; Someren, E. van; Rouhani-Rankouhi, T.; Anthony, J.C.; Hogenelst, K.; Pasman, W.; Boorsma, A.; Wopereis, S.

    2017-01-01

    Personalized nutrition is fast becoming a reality due to a number of technological, scientific, and societal developments that complement and extend current public health nutrition recommendations. Personalized nutrition tailors dietary recommendations to specific biological requirements on the

  19. Philosophy of Systems and Synthetic Biology

    DEFF Research Database (Denmark)

    Green, Sara

    2017-01-01

    This entry aims to clarify how systems and synthetic biology contribute to and extend discussions within philosophy of science. Unlike fields such as developmental biology or molecular biology, systems and synthetic biology are not easily demarcated by a focus on a specific subject area or level...... of organization. Rather, they are characterized by the development and application of mathematical, computational, and synthetic modeling strategies in response to complex problems and challenges within the life sciences. Proponents of systems and synthetic biology often stress the necessity of a perspective...... that goes beyond the scope of molecular biology and genetic engineering, respectively. With the emphasis on systems and interaction networks, the approaches explicitly engage in one of the oldest philosophical discussions on the relationship between parts and wholes, or between reductionism and holism...

  20. Onchocerciasis control: biological research is still needed

    Directory of Open Access Journals (Sweden)

    Boussinesq M.

    2008-09-01

    Full Text Available Achievements obtained by the onchocerciasis control programmes should not lead to a relaxation in the biological research on Onchocerca volvulus. Issues such as the Loa loa-related postivermectin serious adverse events, the uncertainties as to whether onchocerciasis can be eliminated by ivermectin treatments, and the possible emergence of ivermectin-resistant O. volvulus populations should be addressed proactively. Doxycycline, moxidectin and emodepside appear to be promising as alternative drugs against onchocerciasis but support to researches in immunology and genomics should also be increased to develop new control tools, including both vaccines and macrofilaricidal drugs.

  1. Micro-separation toward systems biology.

    Science.gov (United States)

    Liu, Bi-Feng; Xu, Bo; Zhang, Guisen; Du, Wei; Luo, Qingming

    2006-02-17

    Current biology is experiencing transformation in logic or philosophy that forces us to reevaluate the concept of cell, tissue or entire organism as a collection of individual components. Systems biology that aims at understanding biological system at the systems level is an emerging research area, which involves interdisciplinary collaborations of life sciences, computational and mathematical sciences, systems engineering, and analytical technology, etc. For analytical chemistry, developing innovative methods to meet the requirement of systems biology represents new challenges as also opportunities and responsibility. In this review, systems biology-oriented micro-separation technologies are introduced for comprehensive profiling of genome, proteome and metabolome, characterization of biomolecules interaction and single cell analysis such as capillary electrophoresis, ultra-thin layer gel electrophoresis, micro-column liquid chromatography, and their multidimensional combinations, parallel integrations, microfabricated formats, and nano technology involvement. Future challenges and directions are also suggested.

  2. A systematic approach for the assessment of bacterial growth-controlling factors linked to biological stability of drinking water in distribution systems

    KAUST Repository

    Prest, E. I.

    2016-01-06

    A systematic approach is presented for the assessment of (i) bacterial growth-controlling factors in drinking water and (ii) the impact of distribution conditions on the extent of bacterial growth in full-scale distribution systems. The approach combines (i) quantification of changes in autochthonous bacterial cell concentrations in full-scale distribution systems with (ii) laboratoryscale batch bacterial growth potential tests of drinking water samples under defined conditions. The growth potential tests were done by direct incubation of water samples, without modification of the original bacterial flora, and with flow cytometric quantification of bacterial growth. This method was shown to be reproducible (ca. 4% relative standard deviation) and sensitive (detection of bacterial growth down to 5 μg L-1 of added assimilable organic carbon). The principle of step-wise assessment of bacterial growth-controlling factors was demonstrated on bottled water, shown to be primarily carbon limited at 133 (±18) × 103 cells mL-1 and secondarily limited by inorganic nutrients at 5,500 (±1,700) × 103 cells mL-1. Analysis of the effluent of a Dutch full-scale drinking water treatment plant showed (1) bacterial growth inhibition as a result of end-point chlorination, (2) organic carbon limitation at 192 (±72) × 103 cells mL-1 and (3) inorganic nutrient limitation at 375 (±31) × 103 cells mL-1. Significantly lower net bacterial growth was measured in the corresponding full-scale distribution system (176 (±25) × 103 cells mL-1) than in the laboratory-scale growth potential test of the same water (294 (±35) × 103 cells mL-1), highlighting the influence of distribution on bacterial growth. The systematic approach described herein provides quantitative information on the effect of drinking water properties and distribution system conditions on biological stability, which can assist water utilities in decision-making on treatment or distribution system improvements to

  3. Impact of Thermodynamic Principles in Systems Biology

    NARCIS (Netherlands)

    Heijnen, J.J.

    2010-01-01

    It is shown that properties of biological systems which are relevant for systems biology motivated mathematical modelling are strongly shaped by general thermodynamic principles such as osmotic limit, Gibbs energy dissipation, near equilibria and thermodynamic driving force. Each of these aspects

  4. Aspergilli: Systems biology and industrial applications

    DEFF Research Database (Denmark)

    Knuf, Christoph; Nielsen, Jens

    2012-01-01

    possible to implement systems biology tools to advance metabolic engineering. These tools include genome-wide transcription analysis and genome-scale metabolic models. Herein, we review achievements in the field and highlight the impact of Aspergillus systems biology on industrial biotechnology....

  5. BIOLOGICAL CONTROL OF WEEDS BY MEANS OF PLANT PATHOGENS

    OpenAIRE

    Marija Ravlić; Renata Baličević

    2014-01-01

    Biological control is the use of live beneficial organisms and products of their metabolism in the pests control. Plant pathogens can be used for weed control in three different ways: as classical, conservation and augmentative (inoculative and inundated) biological control. Inundated biological control involves the use of bioherbicides (mycoherbicides) or artificial breeding of pathogens and application in specific stages of crops and weeds. Biological control of weeds can be used where chem...

  6. Systems biology in critical-care nursing.

    Science.gov (United States)

    Schallom, Lynn; Thimmesch, Amanda R; Pierce, Janet D

    2011-01-01

    Systems biology applies advances in technology and new fields of study including genomics, transcriptomics, proteomics, and metabolomics to the development of new treatments and approaches of care for the critically ill and injured patient. An understanding of systems biology enhances a nurse's ability to implement evidence-based practice and to educate patients and families on novel testing and therapies. Systems biology is an integrated and holistic view of humans in relationship with the environment. Biomarkers are used to measure the presence and severity of disease and are rapidly expanding in systems biology endeavors. A systems biology approach using predictive, preventive, and participatory involvement is being utilized in a plethora of conditions of critical illness and injury including sepsis, cancer, pulmonary disease, and traumatic injuries.

  7. Marine biological data and information management system

    Digital Repository Service at National Institute of Oceanography (India)

    Sarupria, J.S.

    Indian National Oceanographic Data Centre (INODC) is engaged in developing a marine biological data and information management system (BIODIMS). This system will contain the information on zooplankton in the water column, zoobenthic biomass...

  8. Graphics processing units in bioinformatics, computational biology and systems biology.

    Science.gov (United States)

    Nobile, Marco S; Cazzaniga, Paolo; Tangherloni, Andrea; Besozzi, Daniela

    2017-09-01

    Several studies in Bioinformatics, Computational Biology and Systems Biology rely on the definition of physico-chemical or mathematical models of biological systems at different scales and levels of complexity, ranging from the interaction of atoms in single molecules up to genome-wide interaction networks. Traditional computational methods and software tools developed in these research fields share a common trait: they can be computationally demanding on Central Processing Units (CPUs), therefore limiting their applicability in many circumstances. To overcome this issue, general-purpose Graphics Processing Units (GPUs) are gaining an increasing attention by the scientific community, as they can considerably reduce the running time required by standard CPU-based software, and allow more intensive investigations of biological systems. In this review, we present a collection of GPU tools recently developed to perform computational analyses in life science disciplines, emphasizing the advantages and the drawbacks in the use of these parallel architectures. The complete list of GPU-powered tools here reviewed is available at http://bit.ly/gputools. © The Author 2016. Published by Oxford University Press.

  9. Genomes, Phylogeny, and Evolutionary Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Monica

    2005-03-25

    With the completion of the human genome and the growing number of diverse genomes being sequenced, a new age of evolutionary research is currently taking shape. The myriad of technological breakthroughs in biology that are leading to the unification of broad scientific fields such as molecular biology, biochemistry, physics, mathematics and computer science are now known as systems biology. Here I present an overview, with an emphasis on eukaryotes, of how the postgenomics era is adopting comparative approaches that go beyond comparisons among model organisms to shape the nascent field of evolutionary systems biology.

  10. Microbial stress tolerance for biofuels. Systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zonglin Lewis (ed.) [National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL (United States)

    2012-07-01

    The development of sustainable and renewable biofuels is attracting growing interest. It is vital to develop robust microbial strains for biocatalysts that are able to function under multiple stress conditions. This Microbiology Monograph provides an overview of methods for studying microbial stress tolerance for biofuels applications using a systems biology approach. Topics covered range from mechanisms to methodology for yeast and bacteria, including the genomics of yeast tolerance and detoxification; genetics and regulation of glycogen and trehalose metabolism; programmed cell death; high gravity fermentations; ethanol tolerance; improving biomass sugar utilization by engineered Saccharomyces; the genomics on tolerance of Zymomonas mobilis; microbial solvent tolerance; control of stress tolerance in bacterial host organisms; metabolomics for ethanologenic yeast; automated proteomics work cell systems for strain improvement; and unification of gene expression data for comparable analyses under stress conditions. (orig.)

  11. A systems biology approach to studying Tai Chi, physiological complexity and healthy aging: design and rationale of a pragmatic randomized controlled trial.

    Science.gov (United States)

    Wayne, Peter M; Manor, Brad; Novak, Vera; Costa, Madelena D; Hausdorff, Jeffrey M; Goldberger, Ary L; Ahn, Andrew C; Yeh, Gloria Y; Peng, C-K; Lough, Matthew; Davis, Roger B; Quilty, Mary T; Lipsitz, Lewis A

    2013-01-01

    Aging is typically associated with progressive multi-system impairment that leads to decreased physical and cognitive function and reduced adaptability to stress. Due to its capacity to characterize complex dynamics within and between physiological systems, the emerging field of complex systems biology and its array of quantitative tools show great promise for improving our understanding of aging, monitoring senescence, and providing biomarkers for evaluating novel interventions, including promising mind-body exercises, that treat age-related disease and promote healthy aging. An ongoing, two-arm randomized clinical trial is evaluating the potential of Tai Chi mind-body exercise to attenuate age-related loss of complexity. A total of 60 Tai Chi-naïve healthy older adults (aged 50-79) are being randomized to either six months of Tai Chi training (n=30), or to a waitlist control receiving unaltered usual medical care (n=30). Our primary outcomes are complexity-based measures of heart rate, standing postural sway and gait stride interval dynamics assessed at 3 and 6months. Multiscale entropy and detrended fluctuation analysis are used as entropy- and fractal-based measures of complexity, respectively. Secondary outcomes include measures of physical and psychological function and tests of physiological adaptability also assessed at 3 and 6months. Results of this study may lead to novel biomarkers that help us monitor and understand the physiological processes of aging and explore the potential benefits of Tai Chi and related mind-body exercises for healthy aging. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Transcription control engineering and applications in synthetic biology

    Directory of Open Access Journals (Sweden)

    Michael D. Engstrom

    2017-09-01

    Full Text Available In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein, a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators (cis-factors were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators (trans-factors, giving examples of how cis- and trans-acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli, we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.

  13. Transcription control engineering and applications in synthetic biology.

    Science.gov (United States)

    Engstrom, Michael D; Pfleger, Brian F

    2017-09-01

    In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein), a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity) levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators ( cis -factors) were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators ( trans- factors), giving examples of how cis- and trans -acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli , we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.

  14. An engineering design approach to systems biology.

    Science.gov (United States)

    Janes, Kevin A; Chandran, Preethi L; Ford, Roseanne M; Lazzara, Matthew J; Papin, Jason A; Peirce, Shayn M; Saucerman, Jeffrey J; Lauffenburger, Douglas A

    2017-07-17

    Measuring and modeling the integrated behavior of biomolecular-cellular networks is central to systems biology. Over several decades, systems biology has been shaped by quantitative biologists, physicists, mathematicians, and engineers in different ways. However, the basic and applied versions of systems biology are not typically distinguished, which blurs the separate aspirations of the field and its potential for real-world impact. Here, we articulate an engineering approach to systems biology, which applies educational philosophy, engineering design, and predictive models to solve contemporary problems in an age of biomedical Big Data. A concerted effort to train systems bioengineers will provide a versatile workforce capable of tackling the diverse challenges faced by the biotechnological and pharmaceutical sectors in a modern, information-dense economy.

  15. Epigenetics and Why Biological Networks are More Controllable than Expected

    Science.gov (United States)

    Motter, Adilson

    2013-03-01

    A fundamental property of networks is that perturbations to one node can affect other nodes, potentially causing the entire system to change behavior or fail. In this talk, I will show that it is possible to exploit this same principle to control network behavior. This approach takes advantage of the nonlinear dynamics inherent to real networks, and allows bringing the system to a desired target state even when this state is not directly accessible or the linear counterpart is not controllable. Applications show that this framework permits both reprogramming a network to a desired task as well as rescuing networks from the brink of failure, which I will illustrate through various biological problems. I will also briefly review the progress our group has made over the past 5 years on related control of complex networks in non-biological domains.

  16. Biological control of corky root in tomato.

    Science.gov (United States)

    Fiume, G; Fiume, F

    2008-01-01

    Corky root caused by Pyrenochaeta lycopersici (Schneider et Gerlach) is one of the most important soil borne fungal pathogens which develops in the soils, causing diseases in different crops. The research was carried out to evaluate the effectiveness of the biological control of corky root on tomato. Biological control was performed by using Trichoderma viride Pers. 18/17 SS, Streptomyces spp. AtB42 and Bacillus subtilis M51 PI. According to present and future regulations on the use of chemical fungicides and considering that treatments must avoids environmental pollution, the main object of this research was to find alternative strategies by using biocontrol agents against P. lycopersici that affect tomato plants. In laboratory, the effectiveness of T. viride 18/17 SS, Streptomyces spp. AtB42 and B. subtilis M51 PI to control P. lycopersici were studied. In greenhouse, the research was carried out comparing the following treatments: 1) untreated control; 2) T. viride 18/17 SS; 3) Streptomyces spp. AtB42; 4) B. subtilis M51 PI. Roots of plants of tomato H3028 Hazera were treated with the antagonist suspensions just prior of transplant. Treatments were repeated about 2 months after, with the same suspensions sprayed on the soil to the plant collar. In dual culture, the inhibition of P. lycopersici ranged up to 81.2% (caused from T. viride 18/17 SS), 75.6% (from Streptomyces spp. AtB42) and 66.8% (from B. subtilis M51 PI). In greenhouse trials, with regard to corky root symptoms, all treated plots showed signifycative differences compared to untreated. T. viride gave the better results followed by Streptomyces spp. and then by B. subtilis. The fungus antagonist showed good root surface competence such as demonstrated its persistence on the roots surface of the tomato plants whose roots were treated with T. viride 18/17 SS up to 2 months before.

  17. EURASIP journal on bioinformatics & systems biology

    National Research Council Canada - National Science Library

    2006-01-01

    "The overall aim of "EURASIP Journal on Bioinformatics and Systems Biology" is to publish research results related to signal processing and bioinformatics theories and techniques relevant to a wide...

  18. Biological control agents elevate hantavirus by subsidizing deer mouse populations

    Science.gov (United States)

    Dean E. Pearson; Ragan M. Callaway

    2006-01-01

    Biological control of exotic invasive plants using exotic insects is practiced under the assumption that biological control agents are safe if they do not directly attack non-target species. We tested this assumption by evaluating the potential for two host-specific biological control agents (Urophora spp.), widely established in North America for spotted...

  19. Notions of similarity for systems biology models.

    Science.gov (United States)

    Henkel, Ron; Hoehndorf, Robert; Kacprowski, Tim; Knüpfer, Christian; Liebermeister, Wolfram; Waltemath, Dagmar

    2018-01-01

    Systems biology models are rapidly increasing in complexity, size and numbers. When building large models, researchers rely on software tools for the retrieval, comparison, combination and merging of models, as well as for version control. These tools need to be able to quantify the differences and similarities between computational models. However, depending on the specific application, the notion of 'similarity' may greatly vary. A general notion of model similarity, applicable to various types of models, is still missing. Here we survey existing methods for the comparison of models, introduce quantitative measures for model similarity, and discuss potential applications of combined similarity measures. To frame model comparison as a general problem, we describe a theoretical approach to defining and computing similarities based on a combination of different model aspects. The six aspects that we define as potentially relevant for similarity are underlying encoding, references to biological entities, quantitative behaviour, qualitative behaviour, mathematical equations and parameters and network structure. We argue that future similarity measures will benefit from combining these model aspects in flexible, problem-specific ways to mimic users' intuition about model similarity, and to support complex model searches in databases. © The Author 2016. Published by Oxford University Press.

  20. Biological control of the terrestrial carbon sink

    Science.gov (United States)

    Schulze, E.-D.

    2006-03-01

    different reasons depending on the region of the world: anthropogenic nitrogen deposition is the controlling factor in Europe, increasing global temperatures is the main factor in Siberia, and maybe rising CO2 the factor controlling the carbon fluxes in Amazonia. However, this has not lead to increases in net biome productivity, due to associated losses. Also important is the interaction between biodiversity and biogeochemical processes. It is shown that net primary productivity increases with plant species diversity (50% species loss equals 20% loss in productivity). However, in this extrapolation the action of soil biota is poorly understood although soils contribute the largest number of species and of taxonomic groups to an ecosystem. The global terrestrial carbon budget strongly depends on areas with pristine old growth forests which are carbon sinks. The management options are very limited, mostly short term, and usually associated with high uncertainty. Unmanaged grasslands appear to be a carbon sink of similar magnitude as forest, but generally these ecosystems lost their C with grazing and agricultural use. Extrapolation to the future of Earth climate shows that the biota will not be able to balance fossil fuel emissions, and that it will be essential to develop a carbon free energy system in order to maintain the living conditions on earth.

  1. Biological control of the terrestrial carbon sink

    Directory of Open Access Journals (Sweden)

    E.-D. Schulze

    2006-01-01

    plant growth has different reasons depending on the region of the world: anthropogenic nitrogen deposition is the controlling factor in Europe, increasing global temperatures is the main factor in Siberia, and maybe rising CO2 the factor controlling the carbon fluxes in Amazonia. However, this has not lead to increases in net biome productivity, due to associated losses. Also important is the interaction between biodiversity and biogeochemical processes. It is shown that net primary productivity increases with plant species diversity (50% species loss equals 20% loss in productivity. However, in this extrapolation the action of soil biota is poorly understood although soils contribute the largest number of species and of taxonomic groups to an ecosystem. The global terrestrial carbon budget strongly depends on areas with pristine old growth forests which are carbon sinks. The management options are very limited, mostly short term, and usually associated with high uncertainty. Unmanaged grasslands appear to be a carbon sink of similar magnitude as forest, but generally these ecosystems lost their C with grazing and agricultural use. Extrapolation to the future of Earth climate shows that the biota will not be able to balance fossil fuel emissions, and that it will be essential to develop a carbon free energy system in order to maintain the living conditions on earth.

  2. Omics/systems biology and cancer cachexia.

    Science.gov (United States)

    Gallagher, Iain J; Jacobi, Carsten; Tardif, Nicolas; Rooyackers, Olav; Fearon, Kenneth

    2016-06-01

    Cancer cachexia is a complex syndrome generated by interaction between the host and tumour cells with a background of treatment effects and toxicity. The complexity of the physiological pathways likely involved in cancer cachexia necessitates a holistic view of the relevant biology. Emergent properties are characteristic of complex systems with the result that the end result is more than the sum of its parts. Recognition of the importance of emergent properties in biology led to the concept of systems biology wherein a holistic approach is taken to the biology at hand. Systems biology approaches will therefore play an important role in work to uncover key mechanisms with therapeutic potential in cancer cachexia. The 'omics' technologies provide a global view of biological systems. Genomics, transcriptomics, proteomics, lipidomics and metabolomics approaches all have application in the study of cancer cachexia to generate systems level models of the behaviour of this syndrome. The current work reviews recent applications of these technologies to muscle atrophy in general and cancer cachexia in particular with a view to progress towards integration of these approaches to better understand the pathology and potential treatment pathways in cancer cachexia. Copyright © 2016. Published by Elsevier Ltd.

  3. Decision Making in Biological Systems

    DEFF Research Database (Denmark)

    Tian, Chengzhe

    This thesis consists of five projects in three topics with a shared theme of understanding cellular decision-making processes with mathematical modeling. In the first topic, we address the possible interaction between bacterial Toxin-Antitoxin (TA) systems and stringent response alarmone guanosin...

  4. Biologically controlled minerals as potential indicators of life

    Science.gov (United States)

    Schwartz, D. E.; Mancinelli, R. L.; Kaneshiro, E.

    1991-01-01

    Minerals can be produced and deposited either by abiotic or biologic means. Regardless of their origin, mineral crystals reflect the environment conditions (e.g., temperature, pressure, chemical composition, and redox potential) present during crystal formation. Biologically-produced mineral crystals are grown or reworked under the control of their host organism and reflect an environment different from the abiotic environment. In addition, minerals of either biologic or abiotic origin have great longevities. For these reasons, biologically produced minerals have been proposed as biomarkers. Biomarkers are key morphological, chemical, and isotopic signatures of living systems that can be used to determine if life processes have occurred. Studies of biologically controlled minerals produced by the protist, Paramecium tetraurelia, were initiated since techniques have already been developed to culture them and isolate their crystalline material, and methods are already in place to analyze this material. Two direct crystalline phases were identified. One phase, whose chemical composition is high in Mg, was identified as struvite. The second phase, whose chemical composition is high in Ca, has not been previously found occurring naturally and may be considered a newly discovered material. Analyses are underway to determine the characteristics of these minerals in order to compare them with characteristics of these minerals in order to compare them with characteristics of minerals formed abiotically, but with the same chemical composition.

  5. Carbon-13 NMR spectroscopy of biological systems

    CERN Document Server

    Beckmann, Nicolau

    1995-01-01

    This book is intended to provide an in-depth understanding of 13C NMR as a tool in biological research. 13C NMR has provided unique information concerning complex biological systems, from proteins and nucleic acids to animals and humans. The subjects addressed include multidimensional heteronuclear techniques for structural studies of molecules in the liquid and solid states, the investigation of interactions in model membranes, the elucidation of metabolic pathwaysin vitro and in vivo on animals, and noninvasive metabolic studies performed on humans. The book is a unique mix of NMR methods and biological applications which makes it a convenient reference for those interested in research in this interdisciplinary area of physics, chemistry, biology, and medicine.Key Features* An interdisciplinary text with emphasis on both 13C NMR methodology and the relevant biological and biomedical issues* State-of-the-art 13C NMR techniques are described; Whenever possible, their advantages over other approaches are empha...

  6. Controlled polymer synthesis--from biomimicry towards synthetic biology.

    Science.gov (United States)

    Pasparakis, George; Krasnogor, Natalio; Cronin, Leroy; Davis, Benjamin G; Alexander, Cameron

    2010-01-01

    The controlled assembly of synthetic polymer structures is now possible with an unprecedented range of functional groups and molecular architectures. In this critical review we consider how the ability to create artificial materials over lengthscales ranging from a few nm to several microns is generating systems that not only begin to mimic those in nature but also may lead to exciting applications in synthetic biology (139 references).

  7. Biologically-Inspired Control Architecture for Musical Performance Robots

    Directory of Open Access Journals (Sweden)

    Jorge Solis

    2014-10-01

    Full Text Available At Waseda University, since 1990, the authors have been developing anthropomorphic musical performance robots as a means for understanding human control, introducing novel ways of interaction between musical partners and robots, and proposing applications for humanoid robots. In this paper, the design of a biologically-inspired control architecture for both an anthropomorphic flutist robot and a saxophone playing robot are described. As for the flutist robot, the authors have focused on implementing an auditory feedback system to improve the calibration procedure for the robot in order to play all the notes correctly during a performance. In particular, the proposed auditory feedback system is composed of three main modules: an Expressive Music Generator, a Feed Forward Air Pressure Control System and a Pitch Evaluation System. As for the saxophone-playing robot, a pressure-pitch controller (based on the feedback error learning to improve the sound produced by the robot during a musical performance was proposed and implemented. In both cases studied, a set of experiments are described to verify the improvements achieved while considering biologically-inspired control approaches.

  8. Self-Organized Biological Dynamics and Nonlinear Control

    Science.gov (United States)

    Walleczek, Jan

    2006-04-01

    The frontiers and challenges of biodynamics research Jan Walleczek; Part I. Nonlinear Dynamics in Biology and Response to Stimuli: 1. External signals and internal oscillation dynamics - principal aspects and response of stimulated rhythmic processes Friedemann Kaiser; 2. Nonlinear dynamics in biochemical and biophysical systems: from enzyme kinetics to epilepsy Raima Larter, Robert Worth and Brent Speelman; 3. Fractal mechanisms in neural control: human heartbeat and gait dynamics in health and disease Chung-Kang Peng, Jeffrey M. Hausdorff and Ary L. Goldberger; 4. Self-organising dynamics in human coordination and perception Mingzhou Ding, Yanqing Chen, J. A. Scott Kelso and Betty Tuller; 5. Signal processing in biochemical reaction networks Adam P. Arkin; Part II. Nonlinear Sensitivity of Biological Systems to Electromagnetic Stimuli: 6. Electrical signal detection and noise in systems with long-range coherence Paul C. Gailey; 7. Oscillatory signals in migrating neutrophils: effects of time-varying chemical and electrical fields Howard R. Petty; 8. Enzyme kinetics and nonlinear biochemical amplification in response to static and oscillating magnetic fields Jan Walleczek and Clemens F. Eichwald; 9. Magnetic field sensitivity in the hippocampus Stefan Engström, Suzanne Bawin and W. Ross Adey; Part III. Stochastic Noise-Induced Dynamics and Transport in Biological Systems: 10. Stochastic resonance: looking forward Frank Moss; 11. Stochastic resonance and small-amplitude signal transduction in voltage-gated ion channels Sergey M. Bezrukov and Igor Vodyanoy; 12. Ratchets, rectifiers and demons: the constructive role of noise in free energy and signal transduction R. Dean Astumian; 13. Cellular transduction of periodic and stochastic energy signals by electroconformational coupling Tian Y. Tsong; Part IV. Nonlinear Control of Biological and Other Excitable Systems: 14. Controlling chaos in dynamical systems Kenneth Showalter; 15. Electromagnetic fields and biological

  9. Systems Biology and Stem Cell Pluripotency

    DEFF Research Database (Denmark)

    Mashayekhi, Kaveh; Hall, Vanessa Jane; Freude, Kristine

    2016-01-01

    Recent breakthroughs in stem cell biology have accelerated research in the area of regenerative medicine. Over the past years, it has become possible to derive patient-specific stem cells which can be used to generate different cell populations for potential cell therapy. Systems biological...... modeling of stem cell pluripotency and differentiation have largely been based on prior knowledge of signaling pathways, gene regulatory networks, and epigenetic factors. However, there is a great need to extend the complexity of the modeling and to integrate different types of data, which would further...... improve systems biology and its uses in the field. In this chapter, we first give a general background on stem cell biology and regenerative medicine. Stem cell potency is introduced together with the hierarchy of stem cells ranging from pluripotent embryonic stem cells (ESCs) and induced pluripotent stem...

  10. Tunable promoters in synthetic and systems biology

    DEFF Research Database (Denmark)

    Dehli, Tore; Solem, Christian; Jensen, Peter Ruhdal

    2012-01-01

    in synthetic biology. A number of tools exist to manipulate the steps in between gene sequence and functional protein in living cells, but out of these the most straight-forward approach is to alter the gene expression level by manipulating the promoter sequence. Some of the promoter tuning tools available......Synthetic and systems biologists need standardized, modular and orthogonal tools yielding predictable functions in vivo. In systems biology such tools are needed to quantitatively analyze the behavior of biological systems while the efficient engineering of artificial gene networks is central...... for accomplishing such altered gene expression levels are discussed here along with examples of their use, and ideas for new tools are described. The road ahead looks very promising for synthetic and systems biologists as tools to achieve just about anything in terms of tuning and timing multiple gene expression...

  11. A systematic approach for the assessment of bacterial growth-controlling factors linked to biological stability of drinking water in distribution systems

    KAUST Repository

    Prest, E. I.; Hammes, F.; Kotzsch, S.; van Loosdrecht, M. C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    A systematic approach is presented for the assessment of (i) bacterial growth-controlling factors in drinking water and (ii) the impact of distribution conditions on the extent of bacterial growth in full-scale distribution systems. The approach

  12. Biologically inspired autonomous structural materials with controlled toughening and healing

    Science.gov (United States)

    Garcia, Michael E.; Sodano, Henry A.

    2010-04-01

    The field of structural health monitoring (SHM) has made significant contributions in the field of prognosis and damage detection in the past decade. The advantageous use of this technology has not been integrated into operational structures to prevent damage from propagating or to heal injured regions under real time loading conditions. Rather, current systems relay this information to a central processor or human operator, who then determines a course of action such as altering the mission or scheduling repair maintenance. Biological systems exhibit advanced sensory and healing traits that can be applied to the design of material systems. For instance, bone is the major structural component in vertebrates; however, unlike modern structural materials, bone has many properties that make it effective for arresting the propagation of cracks and subsequent healing of the fractured area. The foremost goal for the development of future adaptive structures is to mimic biological systems, similar to bone, such that the material system can detect damage and deploy defensive traits to impede damage from propagating, thus preventing catastrophic failure while in operation. After sensing and stalling the propagation of damage, the structure must then be repaired autonomously using self healing mechanisms motivated by biological systems. Here a novel autonomous system is developed using shape memory polymers (SMPs), that employs an optical fiber network as both a damage detection sensor and a network to deliver stimulus to the damage site initiating adaptation and healing. In the presence of damage the fiber optic fractures allowing a high power laser diode to deposit a controlled level of thermal energy at the fractured sight locally reducing the modulus and blunting the crack tip, which significantly slows the crack growth rate. By applying a pre-induced strain field and utilizing the shape memory recovery effect, thermal energy can be deployed to close the crack and return

  13. Automatic control systems engineering

    International Nuclear Information System (INIS)

    Shin, Yun Gi

    2004-01-01

    This book gives descriptions of automatic control for electrical electronics, which indicates history of automatic control, Laplace transform, block diagram and signal flow diagram, electrometer, linearization of system, space of situation, state space analysis of electric system, sensor, hydro controlling system, stability, time response of linear dynamic system, conception of root locus, procedure to draw root locus, frequency response, and design of control system.

  14. BIOLOGICAL CONTROL OF WEEDS BY MEANS OF PLANT PATHOGENS

    Directory of Open Access Journals (Sweden)

    Marija Ravlić

    2014-06-01

    Full Text Available Biological control is the use of live beneficial organisms and products of their metabolism in the pests control. Plant pathogens can be used for weed control in three different ways: as classical, conservation and augmentative (inoculative and inundated biological control. Inundated biological control involves the use of bioherbicides (mycoherbicides or artificial breeding of pathogens and application in specific stages of crops and weeds. Biological control of weeds can be used where chemical herbicides are not allowed, if resistant weed species are present or in the integrated pest management against weeds with reduced herbicides doses and other non-chemical measures, but it has certain limitations and disadvantages.

  15. Ins and outs of systems biology vis-à-vis molecular biology: continuation or clear cut?

    Science.gov (United States)

    De Backer, Philippe; De Waele, Danny; Van Speybroeck, Linda

    2010-03-01

    The comprehension of living organisms in all their complexity poses a major challenge to the biological sciences. Recently, systems biology has been proposed as a new candidate in the development of such a comprehension. The main objective of this paper is to address what systems biology is and how it is practised. To this end, the basic tools of a systems biological approach are explored and illustrated. In addition, it is questioned whether systems biology 'revolutionizes' molecular biology and 'transcends' its assumed reductionism. The strength of this claim appears to depend on how molecular and systems biology are characterised and on how reductionism is interpreted. Doing credit to molecular biology and to methodological reductionism, it is argued that the distinction between molecular and systems biology is gradual rather than sharp. As such, the classical challenge in biology to manage, interpret and integrate biological data into functional wholes is further intensified by systems biology's use of modelling and bioinformatics, and by its scale enlargement.

  16. Biological Control of Bacterial Wilt in South East Asia

    OpenAIRE

    Arwiyanto, Triwidodo

    2014-01-01

    Bacterial wilt disease caused by Ralstonia solanacearum destroys many crops of different plant families in South East Asia despite many researches about the disease, and the availability of developed control method in other parts of the world. There is no chemical available for the bacterial wilt pathogen and biological control is then chosen as an alternative to save the crops. Most of the biological control studies were based on antagonism between biological control agent and the pathogen. ...

  17. Optimizing biological waste water cleaning by means of modern control systems (fuzzy logic); Optimierung der biologischen Abwasserreinigung durch moderne Regelsysteme (Fuzzy-Logik)

    Energy Technology Data Exchange (ETDEWEB)

    Lohse, M.; Boening, T.; Hegemann, G. [Fachhochschule Muenster (Germany). Inst. fuer Abfall- und Abwasserwirtschaft e.V.

    1999-07-01

    Within the framework of a project sponsored by EUREGIO, test series with the biological activation stages of a German and a Dutch sewage treatment plant each are carried out using different process concepts for the control of oxygen supply by fuzzy logic. As the currently available results demonstrate, the developed fuzzy-logic fields of characteristic curves permit establishing a stable and, thus, little energy-consuming process with optimum oxygen supply in comparison with conventional control. (orig.) [German] Im Rahmen eines von der EUREGIO gefoerderten Forschungsprojektes werden Versuchsreihen im Bereich der biologischen Belebungsstufen einer deutschen und einer niederlaendischen Abwasserreinigungsanlage (ARA) mit unterschiedlichen Verfahrenskonzepten hinsichtlich der Regelung der Sauerstoffzufuhr mit Hilfe der Fuzzy-Logik Technik durchgefuehrt. Die bisherigen Versuchsergebnisse zeigen, dass - im Vergleich zur konventionellen Regelung - durch die entwickelten Fuzzy-Logik Kennfelder ein stabiler und damit energiearmer Prozess mit optimaler Sauerstoffzufuhr erzeugt wird. (orig.)

  18. Systems biology solutions for biochemical production challenges

    DEFF Research Database (Denmark)

    Hansen, Anne Sofie Lærke; Lennen, Rebecca M; Sonnenschein, Nikolaus

    2017-01-01

    There is an urgent need to significantly accelerate the development of microbial cell factories to produce fuels and chemicals from renewable feedstocks in order to facilitate the transition to a biobased society. Methods commonly used within the field of systems biology including omics...... characterization, genome-scale metabolic modeling, and adaptive laboratory evolution can be readily deployed in metabolic engineering projects. However, high performance strains usually carry tens of genetic modifications and need to operate in challenging environmental conditions. This additional complexity...... compared to basic science research requires pushing systems biology strategies to their limits and often spurs innovative developments that benefit fields outside metabolic engineering. Here we survey recent advanced applications of systems biology methods in engineering microbial production strains...

  19. Systems biology solutions for biochemical production challenges.

    Science.gov (United States)

    Hansen, Anne Sofie Lærke; Lennen, Rebecca M; Sonnenschein, Nikolaus; Herrgård, Markus J

    2017-06-01

    There is an urgent need to significantly accelerate the development of microbial cell factories to produce fuels and chemicals from renewable feedstocks in order to facilitate the transition to a biobased society. Methods commonly used within the field of systems biology including omics characterization, genome-scale metabolic modeling, and adaptive laboratory evolution can be readily deployed in metabolic engineering projects. However, high performance strains usually carry tens of genetic modifications and need to operate in challenging environmental conditions. This additional complexity compared to basic science research requires pushing systems biology strategies to their limits and often spurs innovative developments that benefit fields outside metabolic engineering. Here we survey recent advanced applications of systems biology methods in engineering microbial production strains for biofuels and -chemicals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Precision digital control systems

    Science.gov (United States)

    Vyskub, V. G.; Rozov, B. S.; Savelev, V. I.

    This book is concerned with the characteristics of digital control systems of great accuracy. A classification of such systems is considered along with aspects of stabilization, programmable control applications, digital tracking systems and servomechanisms, and precision systems for the control of a scanning laser beam. Other topics explored are related to systems of proportional control, linear devices and methods for increasing precision, approaches for further decreasing the response time in the case of high-speed operation, possibilities for the implementation of a logical control law, and methods for the study of precision digital control systems. A description is presented of precision automatic control systems which make use of electronic computers, taking into account the existing possibilities for an employment of computers in automatic control systems, approaches and studies required for including a computer in such control systems, and an analysis of the structure of automatic control systems with computers. Attention is also given to functional blocks in the considered systems.

  1. Radiochemical and biological control of metaiodobenzyl-guanidine (MIBG) labeled with 131I

    International Nuclear Information System (INIS)

    Barboza, M.R.F.F. de; Muramoto, E.; Colturato, M.T.; Silva Valente Goncalves, R. da; Pereira, N.P.S. de; Almeida, M.A.T.M. de; Silva, C.P.G. da.

    1988-07-01

    This study shows the standardization of the radiochemical control of MIBG - 131 I in eletrophoretic system and also the biological control in Wistar rat for a period of time, not longer than 60 minutes after tracer administration. (author) [pt

  2. Applications of dynamical systems in biology and medicine

    CERN Document Server

    Radunskaya, Ami

    2015-01-01

    This volume highlights problems from a range of biological and medical applications that can be interpreted as questions about system behavior or control.  Topics include drug resistance in cancer and malaria, biological fluid dynamics, auto-regulation in the kidney, anti-coagulation therapy, evolutionary diversification and photo-transduction.  Mathematical techniques used to describe and investigate these biological and medical problems include ordinary, partial and stochastic differentiation equations, hybrid discrete-continuous approaches, as well as 2 and 3D numerical simulation. .

  3. Biological indicators for monitoring water quality of MTF canals system

    Science.gov (United States)

    Sethi, S. L.

    1975-01-01

    Biological models, diversity indexes, were developed to predict environmental effects of NASA's Mississippi test facility (MTF) chemical operations on canal systems in the area. To predict the effects on local streams, a physical model of unpolluted streams was established. The model is fed by artesian well water free of background levels of pollutants. The species diversity and biota composition of unpolluted MTF stream was determined; resulting information will be used to form baseline data for future comparisons. Biological modeling was accomplished by adding controlled quantities or kinds of chemical pollutants and evaluating the effects of these chemicals on the biological life of the stream.

  4. Maternal feeding controls fetal biological clock.

    Directory of Open Access Journals (Sweden)

    Hidenobu Ohta

    Full Text Available BACKGROUND: It is widely accepted that circadian physiological rhythms of the fetus are affected by oscillators in the maternal brain that are coupled to the environmental light-dark (LD cycle. METHODOLOGY/PRINCIPAL FINDINGS: To study the link between fetal and maternal biological clocks, we investigated the effects of cycles of maternal food availability on the rhythms of Per1 gene expression in the fetal suprachiasmatic nucleus (SCN and liver using a transgenic rat model whose tissues express luciferase in vitro. Although the maternal SCN remained phase-locked to the LD cycle, maternal restricted feeding phase-advanced the fetal SCN and liver by 5 and 7 hours respectively within the 22-day pregnancy. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that maternal feeding entrains the fetal SCN and liver independently of both the maternal SCN and the LD cycle. This indicates that maternal-feeding signals can be more influential for the fetal SCN and particular organ oscillators than hormonal signals controlled by the maternal SCN, suggesting the importance of a regular maternal feeding schedule for appropriate fetal molecular clockwork during pregnancy.

  5. BSF control system

    International Nuclear Information System (INIS)

    Irie, Y.; Ishii, K.; Ninomiya, S.; Sasaki, H.; Sakai, I.

    1982-08-01

    The booster synchrotron utilization facility (BSF) is a facility which utilizes the four fifths of available beam pulses from the KEK booster synchrotron. The BSF control system includes the beam line control, interactions with the PS central control room and the experimental facilities, and the access control system. A brief description of the various components in the control system is given. (author)

  6. Synthetic Biology: Advancing Biological Frontiers by Building Synthetic Systems

    OpenAIRE

    Chen, Yvonne Yu-Hsuan; Galloway, Kate E; Smolke, Christina D

    2012-01-01

    Advances in synthetic biology are contributing to diverse research areas, from basic biology to biomanufacturing and disease therapy. We discuss the theoretical foundation, applications, and potential of this emerging field.

  7. Control system design method

    Science.gov (United States)

    Wilson, David G [Tijeras, NM; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  8. Will the Convention on Biological Diversity put an end to biological control?

    NARCIS (Netherlands)

    Lenteren, van J.C.; Cock, M.J.W.; Brodeur, J.; Barratt, B.I.P.; Bigler, F.; Bolckmans, K.; Haas, F.; Mason, P.G.; Parra, J.R.P.

    2011-01-01

    Will the Convention on Biological Diversity put an end to biological control? Under the Convention on Biological Diversity countries have sovereign rights over their genetic resources. Agreements governing the access to these resources and the sharing of the benefits arising from their use need to

  9. FFTF control system experience

    International Nuclear Information System (INIS)

    Warrick, R.P.

    1981-01-01

    The FFTF control systems provide control equipment for safe and efficient operation of the plant. For convenience, these systems will be divided into three parts for discussions: (1) Plant Protection System (PPS); (2) Plant Control System (PCS); and (3) General Observations. Performance of each of these systems is discussed

  10. Systems biology of microbial exopolysaccharides production

    Directory of Open Access Journals (Sweden)

    Ozlem eAtes

    2015-12-01

    Full Text Available Exopolysaccharides (EPS produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture and medicine. EPSs are mainly associated with high-value applications and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore a systems-based approach constitutes an important step towards understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan and dextran.

  11. Systems Biology of Microbial Exopolysaccharides Production.

    Science.gov (United States)

    Ates, Ozlem

    2015-01-01

    Exopolysaccharides (EPSs) produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture, and medicine. EPSs are mainly associated with high-value applications, and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However, only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover, a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore, a systems-based approach constitutes an important step toward understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism, and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan, and dextran.

  12. Effectiveness of a biological control agent Palexorista gilvoides in ...

    African Journals Online (AJOL)

    ACSS

    Effectiveness of a biological control agent Palexorista gilvoides in controlling Gonometa podorcarpi in conifer ... gilvoides as a potential biological control agent for G. podocarpi. Field and laboratory studies further established that P. .... version for windows (SPSS, 2002). Results. Gonometa podocarpi was present in.

  13. Status of biological control in vegetation management in forestry

    Science.gov (United States)

    George P. Markin; Donald E. Gardner

    1993-01-01

    Biological control traditionally depends upon importing the natural enemies of introduced weeds. Since vegetation management in forestry has primarily been aimed at protecting economic species of trees from competition from other native plants, biological control has been of little use in forestry. An alternative approach to controlling unwanted native plants,...

  14. Asymmetric positive feedback loops reliably control biological responses.

    Science.gov (United States)

    Ratushny, Alexander V; Saleem, Ramsey A; Sitko, Katherine; Ramsey, Stephen A; Aitchison, John D

    2012-04-24

    Positive feedback is a common mechanism enabling biological systems to respond to stimuli in a switch-like manner. Such systems are often characterized by the requisite formation of a heterodimer where only one of the pair is subject to feedback. This ASymmetric Self-UpREgulation (ASSURE) motif is central to many biological systems, including cholesterol homeostasis (LXRα/RXRα), adipocyte differentiation (PPARγ/RXRα), development and differentiation (RAR/RXR), myogenesis (MyoD/E12) and cellular antiviral defense (IRF3/IRF7). To understand why this motif is so prevalent, we examined its properties in an evolutionarily conserved transcriptional regulatory network in yeast (Oaf1p/Pip2p). We demonstrate that the asymmetry in positive feedback confers a competitive advantage and allows the system to robustly increase its responsiveness while precisely tuning the response to a consistent level in the presence of varying stimuli. This study reveals evolutionary advantages for the ASSURE motif, and mechanisms for control, that are relevant to pharmacologic intervention and synthetic biology applications.

  15. Systems Biology for Organotypic Cell Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Grego, Sonia [RTI International, Research Triangle Park, NC (United States); Dougherty, Edward R. [Texas A & M Univ., College Station, TX (United States); Alexander, Francis J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Auerbach, Scott S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Berridge, Brian R. [GlaxoSmithKline, Research Triangle Park, NC (United States); Bittner, Michael L. [Translational Genomics Research Inst., Phoenix, AZ (United States); Casey, Warren [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Cooley, Philip C. [RTI International, Research Triangle Park, NC (United States); Dash, Ajit [HemoShear Therapeutics, Charlottesville, VA (United States); Ferguson, Stephen S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Fennell, Timothy R. [RTI International, Research Triangle Park, NC (United States); Hawkins, Brian T. [RTI International, Research Triangle Park, NC (United States); Hickey, Anthony J. [RTI International, Research Triangle Park, NC (United States); Kleensang, Andre [Johns Hopkins Univ., Baltimore, MD (United States). Center for Alternatives to Animal Testing; Liebman, Michael N. [IPQ Analytics, Kennett Square, PA (United States); Martin, Florian [Phillip Morris International, Neuchatel (Switzerland); Maull, Elizabeth A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Paragas, Jason [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Qiao, Guilin [Defense Threat Reduction Agency, Ft. Belvoir, VA (United States); Ramaiahgari, Sreenivasa [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Sumner, Susan J. [RTI International, Research Triangle Park, NC (United States); Yoon, Miyoung [The Hamner Inst. for Health Sciences, Research Triangle Park, NC (United States); ScitoVation, Research Triangle Park, NC (United States)

    2016-08-04

    Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomic data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data. This consensus report summarizes the discussions held.

  16. Promoting Systems Thinking through Biology Lessons

    Science.gov (United States)

    Riess, Werner; Mischo, Christoph

    2010-01-01

    This study's goal was to analyze various teaching approaches within the context of natural science lessons, especially in biology. The main focus of the paper lies on the effectiveness of different teaching methods in promoting systems thinking in the field of Education for Sustainable Development. The following methods were incorporated into the…

  17. Systems Biology of Glucocorticoids in Muscle Disease

    Science.gov (United States)

    2010-10-01

    Introduction Duchenne muscular dystrophy (DMD) is the most common and incurable muscular dystrophy of childhood. Muscle regeneration fails with...SUBJECT TERMS Duchenne Muscular dystrophy , Glucocorticoids, Systems biology, Drug mechanism 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION...better targeted and more effective therapies for Duchenne muscular dystrophy dynamically. This MDA grant proposal is led by Dr. Eric Hoffman, and it

  18. Modular microfluidic system for biological sample preparation

    Science.gov (United States)

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  19. Radiological/biological/aerosol removal system

    Science.gov (United States)

    Haslam, Jeffery J

    2015-03-17

    An air filter replacement system for existing buildings, vehicles, arenas, and other enclosed airspaces includes a replacement air filter for replacing a standard air filter. The replacement air filter has dimensions and air flow specifications that allow it to replace the standard air filter. The replacement air filter includes a filter material that removes radiological or biological or aerosol particles.

  20. Notions of radiation chemistry in biological systems

    International Nuclear Information System (INIS)

    Mastro, N.L. del.

    1989-10-01

    The present paper examines some aspects of the direct and indirect biological radiation effects: pair formation, free radicals, superoxide ion, hydrogen peroxide, hydroxyl radical, oxygen singlet together with the endogen radioprotector mechanisms of organisms and the ways in which an improved radioresistance of biochemical systems can be achieved. (author) [pt

  1. Biological stability of drinking water: controlling factors, methods and challenges

    Directory of Open Access Journals (Sweden)

    Emmanuelle ePrest

    2016-02-01

    Full Text Available Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g. development of opportunistic pathogens, aesthetic (e.g. deterioration of taste, odour, colour or operational (e.g. fouling or biocorrosion of pipes problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors such as (i type and concentration of available organic and inorganic nutrients, (ii type and concentration of residual disinfectant, (iii presence of predators such as protozoa and invertebrates, (iv environmental conditions such as water temperature, and (v spatial location of microorganisms (bulk water, sediment or biofilm. Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i existing knowledge on biological stability controlling factors and (ii how these factors are affected by drinking water production and distribution conditions. In addition, (iii the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discuss how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order to

  2. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    Science.gov (United States)

    Prest, Emmanuelle I.; Hammes, Frederik; van Loosdrecht, Mark C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  3. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    KAUST Repository

    Prest, Emmanuelle I.

    2016-02-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  4. Biological Efficacy of Herbicides for Weed Control in Noncropped Areas

    Directory of Open Access Journals (Sweden)

    Tsvetanka Dimitrova

    2009-01-01

    Full Text Available An increasing problem facing agricultural producers is the invasion of weeds, perennial in particular, so that implementation of industrial technologies is impossible without their highly efficient and rational control. For the purpose of studying efficient herbicides for weed control in noncropped areas (stubbles, a biological study of five total systemic herbicides was conducted in areas under natural weed infestation and pressure from othersurrounding weeds at the Institute of Forage Crops in Pleven in 2005-2007. The trials were carried out in field conditions using the block method with plot size of 20 m². Treatment was conducted at the predominant stage of budding of perennial dicotyledonous weeds and earing of monocotyledonous weeds. Herbicidal efficacy was recorded on the EWRS 9-score scale (0-100% killed weeds = score 9-1. It was found that treatment of noncropped areas (stubbles with the total systemic herbicides Touchdown System 4 (360 g/l glyphosate; Cosmic (360 g/l glyphosate; Roundup Plus (441 g/l glyphosate potassium salt; Leon 36 SL (360 g/l glyphosate and Glyphos Super 45 SL (450 g/l glyphosate was highly efficient, so that it was a successful element of a strategy for controlling weeds of different biological groups, and was especially effective against perennial weeds.

  5. Integrative Systems Biology Applied to Toxicology

    DEFF Research Database (Denmark)

    Kongsbak, Kristine Grønning

    associated with combined exposure to multiple chemicals. Testing all possible combinations of the tens of thousands environmental chemicals is impractical. This PhD project was launched to apply existing computational systems biology methods to toxicological research. In this thesis, I present in three...... of a system thereby suggesting new ways of thinking specific toxicological endpoints. Furthermore, computational methods can serve as valuable input for the hypothesis generating phase of the preparations of a research project....

  6. Wisdom Appliance Control System

    Science.gov (United States)

    Hendrick; Jheng, Jyun-Teng; Tsai, Chen-Chai; Liou, Jia-Wei; Wang, Zhi-Hao; Jong, Gwo-Jia

    2017-07-01

    Intelligent appliances wisdom involves security, home care, convenient and energy saving, but the home automation system is still one of the core unit, and also using micro-processing electronics technology to centralized and control the home electrical products and systems, such as: lighting, television, fan, air conditioning, stereo, it composed of front-controller systems and back-controller panels, user using front-controller to control command, and then through the back-controller to powered the device.

  7. Design control considerations for biologic-device combination products.

    Science.gov (United States)

    Anderson, Dave; Liu, Roger; Anand Subramony, J; Cammack, Jon

    2017-03-01

    Combination products are therapeutic and diagnostic medical products that combine drugs, devices, and/or biological products with one another. Historically, biologics development involved identifying efficacious doses administered to patients intravenously or perhaps by a syringe. Until fairly recently, there has been limited focus on developing an accompanying medical device, such as a prefilled syringe or auto-injector, to enable easy and more efficient delivery. For the last several years, and looking forward, where there may be little to distinguish biologics medicines with relatively similar efficacy profiles, the biotechnology market is beginning to differentiate products by patient-focused, biologic-device based combination products. As innovative as biologic-device combination products are, they can pose considerable development, regulatory, and commercialization challenges due to unique physicochemical properties and special clinical considerations (e.g., dosing volumes, frequency, co-medications, etc.) of the biologic medicine. A biologic-device combination product is a marriage between two partners with "cultural differences," so to speak. There are clear differences in the development, review, and commercialization processes of the biologic and the device. When these two cultures come together in a combination product, developers and reviewers must find ways to address the design controls and risk management processes of both the biologic and device, and knit them into a single entity with supporting product approval documentation. Moreover, digital medicine and connected health trends are pushing the boundaries of combination product development and regulations even further. Despite an admirable cooperation between industry and FDA in recent years, unique product configurations and design features have resulted in review challenges. These challenges have prompted agency reviewers to modernize consultation processes, while at the same time, promoting

  8. Using a kairomone-based attracting system to enhance biological control of mealybugs (Hemiptera: Pseudococcidae by Anagyrus sp. near pseudococci (Hymenoptera: Encyrtidae in Sicilian vineyards

    Directory of Open Access Journals (Sweden)

    Ramzi Mansour

    2010-11-01

    Full Text Available The “potato trap” technique was applied for the fi rst time in Italian (Sicily vineyards in an attempt to assess: a the impact of the kairomonal activity of the vine mealybug sex pheromone (S-(+-lavandulyl senecioate (LS on the parasitism of mealybugs by the encyrtid Anagyrus sp. near pseudococci, b the influence of two commonly used insecticides on the parasitization activity of A. sp. near pseudococci towards mealybugs, and c the efficiency of the release of A. sp. near pseudococci in enhancing parasitism rates of mealybugs. The number of captured A. sp. near pseudococci females in LS baited traps was significantly higher than that in unbaited traps. The minimal number of days for the first parasitoid emergence in LS baited traps was almost 3 days earlier, compared to unbaited control, suggesting a faster host detection by the encyrtid when LS is applied. These findings resulted in a significant increase in parasitism of mealybugs by A. sp. near pseudococci in LS baited traps relative to unbaited traps suggesting that the LS is used by the encyrtid as kairomone to ensure greater potential for host searching activity. Insecticide treatments significantly affected parasitization activity of A. sp. near pseudococci on mealybugs when compared to an untreated control with parasitoid release. The buprofezin, chlorpyriphos-methyl and untreated control with no parasitoid release treatments had statistically similar numbers of emerged parasitoids from exposed mealybugs. The obtained results provide evidence that, in the absence of conventional insecticides applications, the use of the LS could be a promising tool to improve and strengthen biological control of mealybugs by A. sp. near pseudococci within Sicilian vineyard conditions.

  9. Personal exposure control system

    International Nuclear Information System (INIS)

    Tanabe, Ken-ichi; Akashi, Michio

    1994-01-01

    Nuclear power stations are under strict radiation control. Exposure control for nuclear workers is the most important operation, and so carefully thought out measures are taken. This paper introduces Fuji Electric's personal exposure control system that meets strict exposure control and rationalizes control operations. The system has a merit that it can provide required information in an optimum form using the interconnection of a super minicomputer and exposure control facilities and realizes sophisticated exposure control operations. (author)

  10. Radionuclide Imaging Technologies for Biological Systems

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Calvin R. [Duke Univ., Durham, NC (United States); Reid, Chantal D. [Duke Univ., Durham, NC (United States); Weisenberger, Andrew G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2014-05-14

    The main objective of this project is to develop technologies and experimental techniques for studying the dynamics of physiological responses of plants to changes in their interface with the local environment and to educate a new generation of scientists in an interdisciplinary environment of biology, physics and engineering. Also an important goal is to perform measurements to demonstrate the new data that can be produced and made available to the plant-biology community using the imaging technologies and experimental techniques developed in this project. The study of the plant-environment interface includes a wide range of topics in plant physiology, e.g., the root-soil interface, resource availability, impact of herbivores, influence of microbes on root surface, and responses to toxins in the air and soil. The initial scientific motivation for our work is to improve understanding of the mechanisms for physiological responses to abrupt changes in the local environment, in particular, the responses that result in short-term adjustments in resource (e.g., sugars, nutrients and water) allocations. Data of time-dependent responses of plants to environmental changes are essential in developing mechanistic models for substance intake and resource allocation. Our approach is to use radioisotope tracing techniques to study whole-plant and plant organ (e.g., leaves, stems, roots) dynamical responses to abrupt changes in environmental conditions such as concentration of CO2 in the atmosphere, nutrient availability and lighting. To this aim we are collaborating with the Radiation Detector and Imaging Group at the Thomas Jefferson National Laboratory Facility (JLab) to develop gamma-ray and beta particle imaging systems optimized for plant studies. The radioisotope tracing measurements are conducted at the Phytotron facility at Duke University. The Phytotron is a controlled environment plant research facility with a variety of plant growth chambers. One chamber

  11. Synthetic biology expands chemical control of microorganisms.

    Science.gov (United States)

    Ford, Tyler J; Silver, Pamela A

    2015-10-01

    The tools of synthetic biology allow researchers to change the ways engineered organisms respond to chemical stimuli. Decades of basic biology research and new efforts in computational protein and RNA design have led to the development of small molecule sensors that can be used to alter organism function. These new functions leap beyond the natural propensities of the engineered organisms. They can range from simple fluorescence or growth reporting to pathogen killing, and can involve metabolic coordination among multiple cells or organisms. Herein, we discuss how synthetic biology alters microorganisms' responses to chemical stimuli resulting in the development of microbes as toxicity sensors, disease treatments, and chemical factories. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The remote control system

    International Nuclear Information System (INIS)

    Jansweijer, P.P.M.

    1988-01-01

    The remote-control system is applied in order to control various signals in the car of the spectrometer at distance. The construction (hardware and software) as well as the operation of the system is described. (author). 20 figs

  13. Control and automation systems

    International Nuclear Information System (INIS)

    Schmidt, R.; Zillich, H.

    1986-01-01

    A survey is given of the development of control and automation systems for energy uses. General remarks about control and automation schemes are followed by a description of modern process control systems along with process control processes as such. After discussing the particular process control requirements of nuclear power plants the paper deals with the reliability and availability of process control systems and refers to computerized simulation processes. The subsequent paragraphs are dedicated to descriptions of the operating floor, ergonomic conditions, existing systems, flue gas desulfurization systems, the electromagnetic influences on digital circuits as well as of light wave uses. (HAG) [de

  14. Understanding Federal regulations as guidelines for classical biological control programs

    Science.gov (United States)

    Michael E. Montgomery

    2011-01-01

    This chapter reviews the legislation and rules that provide the foundation for federal regulation of the introduction of natural enemies of insects as biological control agents. It also outlines the steps for complying with regulatory requirements, using biological control of Adelges tsugae Annand, the hemlock woolly adelgid (HWA), as an example. The...

  15. Efficiency of using green algae as biological controllers against toxic ...

    African Journals Online (AJOL)

    Efficiency of using green algae as biological controllers against toxic algal taxa in cultured ... of two green algal species as biological control of the growth of toxic blue-green algae. ... African Journal of Aquatic Science 2014, 39(4): 443–450 ...

  16. ISABELLE control system

    International Nuclear Information System (INIS)

    Humphrey, J.W.; Frankel, R.S.; Niederer, J.A.

    1980-01-01

    Design principles for the Brookhaven ISABELLE control intersecting storage ring accelerator are described. Principal features include a locally networked console and control computer complex, a system wide process data highway, and intelligent local device controllers. Progress to date is summarized

  17. Set membership experimental design for biological systems

    Directory of Open Access Journals (Sweden)

    Marvel Skylar W

    2012-03-01

    Full Text Available Abstract Background Experimental design approaches for biological systems are needed to help conserve the limited resources that are allocated for performing experiments. The assumptions used when assigning probability density functions to characterize uncertainty in biological systems are unwarranted when only a small number of measurements can be obtained. In these situations, the uncertainty in biological systems is more appropriately characterized in a bounded-error context. Additionally, effort must be made to improve the connection between modelers and experimentalists by relating design metrics to biologically relevant information. Bounded-error experimental design approaches that can assess the impact of additional measurements on model uncertainty are needed to identify the most appropriate balance between the collection of data and the availability of resources. Results In this work we develop a bounded-error experimental design framework for nonlinear continuous-time systems when few data measurements are available. This approach leverages many of the recent advances in bounded-error parameter and state estimation methods that use interval analysis to generate parameter sets and state bounds consistent with uncertain data measurements. We devise a novel approach using set-based uncertainty propagation to estimate measurement ranges at candidate time points. We then use these estimated measurements at the candidate time points to evaluate which candidate measurements furthest reduce model uncertainty. A method for quickly combining multiple candidate time points is presented and allows for determining the effect of adding multiple measurements. Biologically relevant metrics are developed and used to predict when new data measurements should be acquired, which system components should be measured and how many additional measurements should be obtained. Conclusions The practicability of our approach is illustrated with a case study. This

  18. Glycoengineering in CHO cells: Advances in systems biology

    DEFF Research Database (Denmark)

    Tejwani, Vijay; Andersen, Mikael Rørdam; Nam, Jong Hyun

    2018-01-01

    are not well understood. A systems biology approach combining different technologies is needed for complete understanding of the molecular processes accounting for this variability and to open up new venues in cell line development. In this review, we describe several advances in genetic manipulation, modeling......For several decades, glycoprotein biologics have been successfully produced from Chinese hamster ovary (CHO) cells. The therapeutic efficacy and potency of glycoprotein biologics are often dictated by their post translational modifications, particularly glycosylation, which unlike protein synthesis....... Recently, CHO cells have also been explored for production of therapeutic glycosaminoglycans (e.g. heparin), which presents similar challenges as producing glycoproteins biologics. Approaches to controlling heterogeneity in CHO cells and directing the biosynthetic process toward desired glycoforms...

  19. The Control of Chemical and Biological Weapons.

    Science.gov (United States)

    Alexander, Archibald S.; And Others

    This book is composed of four papers prepared to illuminate the problem areas which might arise if the policies of the 1925 Geneva Protocol and other measures to limit chemical and biological weapons are ratified by the United States Senate. The papers included are: Legal Aspects of the Geneva Protocol of 1925; The Use of Herbicides in War: A…

  20. Biological Control Strategies for Mosquito Vectors of Arboviruses.

    Science.gov (United States)

    Huang, Yan-Jang S; Higgs, Stephen; Vanlandingham, Dana L

    2017-02-10

    Historically, biological control utilizes predatory species and pathogenic microorganisms to reduce the population of mosquitoes as disease vectors. This is particularly important for the control of mosquito-borne arboviruses, which normally do not have specific antiviral therapies available. Although development of resistance is likely, the advantages of biological control are that the resources used are typically biodegradable and ecologically friendly. Over the past decade, the advancement of molecular biology has enabled optimization by the manipulation of genetic materials associated with biological control agents. Two significant advancements are the discovery of cytoplasmic incompatibility induced by Wolbachia bacteria, which has enhanced replacement programs, and the introduction of dominant lethal genes into local mosquito populations through the release of genetically modified mosquitoes. As various arboviruses continue to be significant public health threats, biological control strategies have evolved to be more diverse and become critical tools to reduce the disease burden of arboviruses.

  1. Biological Control Strategies for Mosquito Vectors of Arboviruses

    Directory of Open Access Journals (Sweden)

    Yan-Jang S. Huang

    2017-02-01

    Full Text Available Historically, biological control utilizes predatory species and pathogenic microorganisms to reduce the population of mosquitoes as disease vectors. This is particularly important for the control of mosquito-borne arboviruses, which normally do not have specific antiviral therapies available. Although development of resistance is likely, the advantages of biological control are that the resources used are typically biodegradable and ecologically friendly. Over the past decade, the advancement of molecular biology has enabled optimization by the manipulation of genetic materials associated with biological control agents. Two significant advancements are the discovery of cytoplasmic incompatibility induced by Wolbachia bacteria, which has enhanced replacement programs, and the introduction of dominant lethal genes into local mosquito populations through the release of genetically modified mosquitoes. As various arboviruses continue to be significant public health threats, biological control strategies have evolved to be more diverse and become critical tools to reduce the disease burden of arboviruses.

  2. Optoelectronic system and apparatus for connection to biological systems

    Science.gov (United States)

    Okandan, Murat; Nielson, Gregory N.

    2018-03-06

    The present invention relates to a biological probe structure, as well as apparatuses, systems, and methods employing this structure. In particular embodiments, the structure includes a hermetically sealed unit configured to receive and transmit one or more optical signals. Furthermore, the structure can be implanted subcutaneously and interrogated externally. In this manner, a minimally invasive method can be employed to detect, treat, and/or assess the biological target. Additional methods and systems are also provided.

  3. Biology and control of Varroa destructor.

    Science.gov (United States)

    Rosenkranz, Peter; Aumeier, Pia; Ziegelmann, Bettina

    2010-01-01

    The ectoparasitic honey bee mite Varroa destructor was originally confined to the Eastern honey bee Apis cerana. After a shift to the new host Apis mellifera during the first half of the last century, the parasite dispersed world wide and is currently considered the major threat for apiculture. The damage caused by Varroosis is thought to be a crucial driver for the periodical colony losses in Europe and the USA and regular Varroa treatments are essential in these countries. Therefore, Varroa research not only deals with a fascinating host-parasite relationship but also has a responsibility to find sustainable solutions for the beekeeping. This review provides a survey of the current knowledge in the main fields of Varroa research including the biology of the mite, damage to the host, host tolerance, tolerance breeding and Varroa treatment. We first present a general view on the functional morphology and on the biology of the Varroa mite with special emphasis on host-parasite interactions during reproduction of the female mite. The pathology section describes host damage at the individual and colony level including the problem of transmission of secondary infections by the mite. Knowledge of both the biology and the pathology of Varroa mites is essential for understanding possible tolerance mechanisms in the honey bee host. We comment on the few examples of natural tolerance in A. mellifera and evaluate recent approaches to the selection of Varroa tolerant honey bees. Finally, an extensive listing and critical evaluation of chemical and biological methods of Varroa treatments is given. This compilation of present-day knowledge on Varroa honey bee interactions emphasizes that we are still far from a solution for Varroa infestation and that, therefore, further research on mite biology, tolerance breeding, and Varroa treatment is urgently needed. Copyright 2009 Elsevier Inc. All rights reserved.

  4. A Converter from the Systems Biology Markup Language to the Synthetic Biology Open Language.

    Science.gov (United States)

    Nguyen, Tramy; Roehner, Nicholas; Zundel, Zach; Myers, Chris J

    2016-06-17

    Standards are important to synthetic biology because they enable exchange and reproducibility of genetic designs. This paper describes a procedure for converting between two standards: the Systems Biology Markup Language (SBML) and the Synthetic Biology Open Language (SBOL). SBML is a standard for behavioral models of biological systems at the molecular level. SBOL describes structural and basic qualitative behavioral aspects of a biological design. Converting SBML to SBOL enables a consistent connection between behavioral and structural information for a biological design. The conversion process described in this paper leverages Systems Biology Ontology (SBO) annotations to enable inference of a designs qualitative function.

  5. Reactor control system. PWR

    International Nuclear Information System (INIS)

    2009-01-01

    At present, 23 units of PWR type reactors have been operated in Japan since the start of Mihama Unit 1 operation in 1970 and various improvements have been made to upgrade operability of power stations as well as reliability and safety of power plants. As the share of nuclear power increases, further improvements of operating performance such as load following capability will be requested for power stations with more reliable and safer operation. This article outlined the reactor control system of PWR type reactors and described the control performance of power plants realized with those systems. The PWR control system is characterized that the turbine power is automatic or manually controlled with request of the electric power system and then the nuclear power is followingly controlled with the change of core reactivity. The system mainly consists of reactor automatic control system (control rod control system), pressurizer pressure control system, pressurizer water level control system, steam generator water level control system and turbine bypass control system. (T. Tanaka)

  6. A theoretical approach on controlling agricultural pest by biological controls.

    Science.gov (United States)

    Mondal, Prasanta Kumar; Jana, Soovoojeet; Kar, T K

    2014-03-01

    In this paper we propose and analyze a prey-predator type dynamical system for pest control where prey population is treated as the pest. We consider two classes for the pest namely susceptible pest and infected pest and the predator population is the natural enemy of the pest. We also consider average delay for both the predation rate i.e. predation to the susceptible pest and infected pest. Considering a subsystem of original system in the absence of infection, we analyze the existence of all possible non-negative equilibria and their stability criteria for both the subsystem as well as the original system. We present the conditions for transcritical bifurcation and Hopf bifurcation in the disease free system. The theoretical evaluations are demonstrated through numerical simulations.

  7. GPSR: A Resource for Genomics Proteomics and Systems Biology

    Indian Academy of Sciences (India)

    GPSR: A Resource for Genomics Proteomics and Systems Biology · Simple Calculation Programs for Biology Immunological Methods · Simple Calculation Programs for Biology Methods in Molecular Biology · Simple Calculation Programs for Biology Other Methods · PowerPoint Presentation · Slide 6 · Slide 7 · Prediction of ...

  8. Complex biological and bio-inspired systems

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    The understanding and characterization ofthe fundamental processes of the function of biological systems underpins many of the important challenges facing American society, from the pathology of infectious disease and the efficacy ofvaccines, to the development of materials that mimic biological functionality and deliver exceptional and novel structural and dynamic properties. These problems are fundamentally complex, involving many interacting components and poorly understood bio-chemical kinetics. We use the basic science of statistical physics, kinetic theory, cellular bio-chemistry, soft-matter physics, and information science to develop cell level models and explore the use ofbiomimetic materials. This project seeks to determine how cell level processes, such as response to mechanical stresses, chemical constituents and related gradients, and other cell signaling mechanisms, integrate and combine to create a functioning organism. The research focuses on the basic physical processes that take place at different levels ofthe biological organism: the basic role of molecular and chemical interactions are investigated, the dynamics of the DNA-molecule and its phylogenetic role are examined and the regulatory networks of complex biochemical processes are modeled. These efforts may lead to early warning algorithms ofpathogen outbreaks, new bio-sensors to detect hazards from pathomic viruses to chemical contaminants. Other potential applications include the development of efficient bio-fuel alternative-energy processes and the exploration ofnovel materials for energy usages. Finally, we use the notion of 'coarse-graining,' which is a method for averaging over less important degrees of freedom to develop computational models to predict cell function and systems-level response to disease, chemical stress, or biological pathomic agents. This project supports Energy Security, Threat Reduction, and the missions of the DOE Office of Science through its efforts to

  9. Life: An Introduction to Complex Systems Biology

    CERN Document Server

    Kaneko, Kunihiko

    2006-01-01

    What is life? Has molecular biology given us a satisfactory answer to this question? And if not, why, and how to carry on from there? This book examines life not from the reductionist point of view, but rather asks the question: what are the universal properties of living systems and how can one construct from there a phenomenological theory of life that leads naturally to complex processes such as reproductive cellular systems, evolution and differentiation? The presentation has been deliberately kept fairly non-technical so as to address a broad spectrum of students and researchers from the natural sciences and informatics.

  10. Integrated control systems

    International Nuclear Information System (INIS)

    Smith, D.J.

    1991-01-01

    This paper reports that instrument manufacturers must develop standard network interfaces to pull together interrelated systems such as automatic start-up, optimization programs, and online diagnostic systems. In the past individual control system manufacturers have developed their own data highways with proprietary hardware and software designs. In the future, electric utilities will require that future systems, irrespective of manufacturer, should be able to communicate with each other. Until now the manufactures of control systems have not agreed on the standard high-speed data highway system. Currently, the Electric Power Research Institute (EPRI), in conjunction with several electric utilities and equipment manufactures, is working on developing a standard protocol for communicating between various manufacturers' control systems. According to N. Michael of Sargent and Lundy, future control room designs will require that more of the control and display functions be accessible from the control room through CRTs. There will be less emphasis on traditional hard-wired control panels

  11. Leaving out control groups: an internal contrast analysis of gene expression profiles in atrial fibrillation patients--a systems biology approach to clinical categorization.

    Science.gov (United States)

    Vanhoutte, Kurt; de Asmundis, Carlo; Francesconi, Anna; Figysl, Jurgen; Steurs, Griet; Boussy, Tim; Roos, Markus; Mueller, Andreas; Massimo, Lucio; Paparella, Gaetano; Van Caelenberg, Kristien; Chierchia, Gian Battista; Sarkozy, Andrea; Terradellas, Pedro Brugada Y; Zizi, Martin

    2009-01-01

    Atrial fibrillation (AF) is a frequent chronic dysrythmia with an incidence that increases with age (>40). Because of its medical and socio-economic impacts it is expected to become an increasing burden on most health care systems. AF is a multi-factorial disease for which the identification of subtypes is warranted. Novel approaches based on the broad concepts of systems biology may overcome the blurred notion of normal and pathological phenotype, which is inherent to high throughput molecular arrays analysis. Here we apply an internal contrast algorithm on AF patient data with an analytical focus on potential entry pathways into the disease. We used a RMA (Robust Multichip Average) normalized Affymetrix micro-array data set from 10 AF patients (geo_accession #GSE2240). Four series of probes were selected based on physiopathogenic links with AF entryways: apoptosis (remodeling), MAP kinase (cell remodeling), OXPHOS (ability to sustain hemodynamic workload) and glycolysis (ischemia). Annotated probe lists were polled with Bioconductor packages in R (version 2.7.1). Genetic profile contrasts were analysed with hierarchical clustering and principal component analysis. The analysis revealed distinct patient groups for all probe sets. A substantial part (54% till 67%) of the variance is explained in the first 2 principal components. Genes in PC1/2 with high discriminatory value were selected and analyzed in detail. We aim for reliable molecular stratification of AF. We show that stratification is possible based on physiologically relevant gene sets. Genes with high contrast value are likely to give pathophysiological insight into permanent AF subtypes.

  12. A national control system

    International Nuclear Information System (INIS)

    Larsson, A.

    1975-01-01

    An effective control of nuclear fissionable material is dependent on three different kinds of control, the industry - laboratory management, a national control system and an international safeguards system. The national systems of control differ greatly between various industrialized countries. Two principal reasons for fact can be mentioned. The type and the amounts for nuclear material may be different depending upon the stage of development of the nuclear industry in the country in question. Another reason may be that the country may wish to establish a very elaborate national system of control in order to minimize the IAEA control as much as possible. The two safeguards agreements between the Agency and Sweden on one hand and the Agency and Japan on the other hand can serve as examples for the understanding of the latitude of the IAEA safeguards system under NPT due to the influence of the national control system. If it thus is apparent that the national control system is strongly interrelated to the international safeguards system it is equally influenced by the control and accountancy systems which exist at the nuclear plants and development laboratories. A detailed study of national control systems and their relations to plant management control would fall outside the scope of this article. Some important features will however be examined. (author)

  13. A systems biology approach to study systemic inflammation.

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chia-Chou

    2014-01-01

    Systemic inflammation needs a precise control on the sequence and magnitude of occurring events. The high throughput data on the host-pathogen interactions gives us an opportunity to have a glimpse on the systemic inflammation. In this article, a dynamic Candida albicans-zebrafish interactive infectious network is built as an example to demonstrate how systems biology approach can be used to study systematic inflammation. In particular, based on microarray data of C. albicans and zebrafish during infection, the hyphal growth, zebrafish, and host-pathogen intercellular PPI networks were combined to form an integrated infectious PPI network that helps us understand the systematic mechanisms underlying the pathogenicity of C. albicans and the immune response of the host. The signaling pathways for morphogenesis and hyphal growth of C. albicans were 2 significant interactions found in the intercellular PPI network. Two cellular networks were also developed corresponding to the different infection stages (adhesion and invasion), and then compared with each other to identify proteins to gain more insight into the pathogenic role of hyphal development in the C. albicans infection process. Important defense-related proteins in zebrafish were predicted using the same approach. This integrated network consisting of intercellular invasion and cellular defense processes during infection can improve medical therapies and facilitate development of new antifungal drugs.

  14. SEEK: a systems biology data and model management platform.

    Science.gov (United States)

    Wolstencroft, Katherine; Owen, Stuart; Krebs, Olga; Nguyen, Quyen; Stanford, Natalie J; Golebiewski, Martin; Weidemann, Andreas; Bittkowski, Meik; An, Lihua; Shockley, David; Snoep, Jacky L; Mueller, Wolfgang; Goble, Carole

    2015-07-11

    Systems biology research typically involves the integration and analysis of heterogeneous data types in order to model and predict biological processes. Researchers therefore require tools and resources to facilitate the sharing and integration of data, and for linking of data to systems biology models. There are a large number of public repositories for storing biological data of a particular type, for example transcriptomics or proteomics, and there are several model repositories. However, this silo-type storage of data and models is not conducive to systems biology investigations. Interdependencies between multiple omics datasets and between datasets and models are essential. Researchers require an environment that will allow the management and sharing of heterogeneous data and models in the context of the experiments which created them. The SEEK is a suite of tools to support the management, sharing and exploration of data and models in systems biology. The SEEK platform provides an access-controlled, web-based environment for scientists to share and exchange data and models for day-to-day collaboration and for public dissemination. A plug-in architecture allows the linking of experiments, their protocols, data, models and results in a configurable system that is available 'off the shelf'. Tools to run model simulations, plot experimental data and assist with data annotation and standardisation combine to produce a collection of resources that support analysis as well as sharing. Underlying semantic web resources additionally extract and serve SEEK metadata in RDF (Resource Description Format). SEEK RDF enables rich semantic queries, both within SEEK and between related resources in the web of Linked Open Data. The SEEK platform has been adopted by many systems biology consortia across Europe. It is a data management environment that has a low barrier of uptake and provides rich resources for collaboration. This paper provides an update on the functions and

  15. System biology and the project Encode

    Directory of Open Access Journals (Sweden)

    M. Yu. Obolenskaya

    2014-08-01

    Full Text Available The goal of this review is to give an incipient knowledge on the background of system biology, the premises to its assignment as a new branch of biology, its principles, methodology and its great achievements in identification of functional elements of human genome and regulation of their concordant­ and differential activity. The short characteristics of functional elements including the protein-coding sequences and those coding noncoding RNAs, the DNAse 1 hypersensitivity sites and methylated CpG islets, modified histones and specific 3D structure of chromatin, are represented. The topology of transcription factors network with its main motifs, hierar­chy, combination and association of transcription factors and their allelic specificity are highlighted­.

  16. Engineering biological systems toward a sustainable bioeconomy.

    Science.gov (United States)

    Lopes, Mateus Schreiner Garcez

    2015-06-01

    The nature of our major global risks calls for sustainable innovations to decouple economic growth from greenhouse gases emission. The development of sustainable technologies has been negatively impacted by several factors including sugar production costs, production scale, economic crises, hydraulic fracking development and the market inability to capture externality costs. However, advances in engineering of biological systems allow bridging the gap between exponential growth of knowledge about biology and the creation of sustainable value chains for a broad range of economic sectors. Additionally, industrial symbiosis of different biobased technologies can increase competitiveness and sustainability, leading to the development of eco-industrial parks. Reliable policies for carbon pricing and revenue reinvestments in disruptive technologies and in the deployment of eco-industrial parks could boost the welfare while addressing our major global risks toward the transition from a fossil to a biobased economy.

  17. Biological Therapy in Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Mariana Postal

    2012-01-01

    Full Text Available Systemic lupus erythematosus (SLE is a prototypic inflammatory autoimmune disorder characterized by multisystem involvement and fluctuating disease activity. Symptoms range from rather mild manifestations such as rash or arthritis to life-threatening end-organ manifestations. Despite new and improved therapy having positively impacted the prognosis of SLE, a subgroup of patients do not respond to conventional therapy. Moreover, the risk of fatal outcomes and the damaging side effects of immunosuppressive therapies in SLE call for an improvement in the current therapeutic management. New therapeutic approaches are focused on B-cell targets, T-cell downregulation and costimulatory blockade, cytokine inhibition, and the modulation of complement. Several biological agents have been developed, but this encouraging news is associated with several disappointments in trials and provide a timely moment to reflect on biologic therapy in SLE.

  18. Biology of Leptoypha hospita (Hemiptera: Tingidae), a Potential Biological Control Agent of Chinese Privet

    Science.gov (United States)

    Yanzhuo Zhang; James L. Hanula; Scott Horn; Kristine Braman; Jianghua Sun

    2011-01-01

    The biology of Leptoypha hospita Drake et Poor (Hemiptera: Tingidae), a potential biological control agent from China for Chinese privet, Ligustrum sinense Lour., was studied in quarantine in the United States. Both nymphs and adults feed on Chinese privet mesophyll cells that lead to a bleached appearance of leaves and dieback of branch tips. L. hospita has five...

  19. Intelligent control systems 1990

    International Nuclear Information System (INIS)

    Shoureshi, R.

    1991-01-01

    The field of artificial intelligence (Al) has generated many useful ideas and techniques that can be integrated into the design of control systems. It is believed and, for special cases, has been demonstrated, that integration of Al into control systems would provide the necessary tools for solving many of the complex problems that present control techniques and Al algorithms are unable to do, individually. However, this integration requires the development of basic understanding and new fundamentals to provide scientific bases for achievement of its potential. This book presents an overview of some of the latest research studies in the area of intelligent control systems. These papers present techniques for formulation of intelligent control, and development of the rule-based control systems. Papers present applications of control systems in nuclear power plants and HVAC systems

  20. Entomopatogenic fungi as an alternative for biological pest control

    Directory of Open Access Journals (Sweden)

    Pablo Andrés Motta Delgado

    2011-08-01

    Full Text Available The entomopatogenic fungi are a diverse group of microorganisms that provide multiple services to agroecological systems. Among those the capacity to regulate the pests to keep them in suitable levels stands out. The present paper shows a description of the entomopatogenic fungi of most extensively used for the biological control of pests, their mechanism of action on their host, and also investigations about the in vitro and in situ behavior of the mostly used fungi for the control of some insects. Also, the formulations that are used for the development of this biotechnology in the field are described. In the development of bioinsecticides the entomopatogenic fungi are a viable option to minimize environmental damage.

  1. Biological Control of Plant Disease Caused by Bacteria

    Directory of Open Access Journals (Sweden)

    Triwidodo Arwiyanto

    2014-07-01

    Full Text Available Bacterial diseases in plants are difficult to control. The emphasis is on preventing the spread of the bacteria rather than curing the diseased plant. Integrated management measures for bacterial plant pathogens should be applied for successfull control. Biological control is one of the control measures viz. through the use of microorganisms to suppress the growth and development of bacterial plant pathogen and ultimately reduce the possibility of disease onset. The study of biological control of bacterial plant pathogen was just began compared with of fungal plant pathogen. The ecological nature of diverse bacterial plant pathogens has led scientists to apply different approach in the investigation of its biological control. The complex process of entrance to its host plant for certain soil-borne bacterial plant pathogens need special techniques and combination of more than one biological control agent. Problem and progress in controlling bacterial plant pathogens biologically will be discussed in more detail in the paper and some commercial products of biological control agents (biopesticides will be introduced.     Penyakit tumbuhan karena bakteri sulit dikendalikan. Penekanan pengendalian adalah pada pencegahan penyebaran bakteri patogen dan bukan pada penyembuhan tanaman yang sudah sakit. Untuk suksesnya pengendalian bakteri patogen tumbuhan diperlukan cara pengelolaan yang terpadu. Pengendalian secara biologi merupakan salah satu cara pengendalian dengan menggunakan mikroorganisme untuk menekan pertumbuhan dan perkembangan bakteri patogen tumbuhan dengan tujuan akhir menurunkan kemungkinan timbulnya penyakit. Sifat ekologi bakteri patogen tumbuhan yang berbeda-beda mengharuskan pendekatan yang berbeda pula dalam pengendaliannya secara biologi. Masalah dan perkembangan dalam pengendalian bakteri patogen tumbuhan secara biologi didiskusikan secara detail dalam makalah ini.

  2. Biological Control of Bacterial Wilt in South East Asia

    Directory of Open Access Journals (Sweden)

    Triwidodo Arwiyanto

    2014-12-01

    Full Text Available Bacterial wilt disease caused by Ralstonia solanacearum destroys many crops of different plant families in South East Asia despite many researches about the disease, and the availability of developed control method in other parts of the world. There is no chemical available for the bacterial wilt pathogen and biological control is then chosen as an alternative to save the crops. Most of the biological control studies were based on antagonism between biological control agent and the pathogen. The biological control agents were intended to reduce the initial inoculum of the pathogen. The effort to minimize the initial inoculum of the pathogen by baiting with the use of hypersensitive host-plant was only reliable when conducted in the greenhouse experiments. Various microorganisms have been searched as possible biological control agents, for instance avirulent form of the pathogen, soil or rhizosphere bacteria (Bacillus spp. and fluorescent pseudomonads, actinomycetes (Streptomyces spp., yeast (Pichia uillermondii, Candida ethanolica, and a consortium of microorganisms known as effective microorganisms (EM. None of these biological control agents has been used in field application and they need further investigation in order to effectively control bacterial wilt. Opportunities and challenges in developing biological control to combat bacterial wilt are discussed in the paper. Penyakit layu bakteri yang disebabkan oleh Ralstonia solanacearum menghancurkan banyak tanaman dalam famili yang berbeda di Asia Tenggara meskipun telah banyak penelitian tentang metode pengendaliannya. Penyakit ini sulit dikendalikan karena banyaknya variabilitas patogen dan belum tersedianya sumber ketahanan yang mapan. Di samping itu, sampai saat ini belum ada bahan kimia yang tersedia untuk patogen layu bakteri ini sehingga pengendalian biologi kemudian dipilih sebagai cara alternatif untuk menyelamatkan tanaman. Sebagian besar penelitian pengendalian biologi didasarkan

  3. Biological control of saltcedar (Tamarix spp.) by saltcedar leaf beetles (Diorhabda spp.): effects on small mammals

    Science.gov (United States)

    The spread of introduced saltcedar (Tamarix spp.) throughout many riparian systems across the western United States motivated the introduction of biological control agents that are specific to saltcedar, saltcedar leaf beetles (Diorhabda carinulata, D. elongata; Chrysomelidae). I monitored small mam...

  4. Adaptable data management for systems biology investigations

    Directory of Open Access Journals (Sweden)

    Burdick David

    2009-03-01

    Full Text Available Abstract Background Within research each experiment is different, the focus changes and the data is generated from a continually evolving barrage of technologies. There is a continual introduction of new techniques whose usage ranges from in-house protocols through to high-throughput instrumentation. To support these requirements data management systems are needed that can be rapidly built and readily adapted for new usage. Results The adaptable data management system discussed is designed to support the seamless mining and analysis of biological experiment data that is commonly used in systems biology (e.g. ChIP-chip, gene expression, proteomics, imaging, flow cytometry. We use different content graphs to represent different views upon the data. These views are designed for different roles: equipment specific views are used to gather instrumentation information; data processing oriented views are provided to enable the rapid development of analysis applications; and research project specific views are used to organize information for individual research experiments. This management system allows for both the rapid introduction of new types of information and the evolution of the knowledge it represents. Conclusion Data management is an important aspect of any research enterprise. It is the foundation on which most applications are built, and must be easily extended to serve new functionality for new scientific areas. We have found that adopting a three-tier architecture for data management, built around distributed standardized content repositories, allows us to rapidly develop new applications to support a diverse user community.

  5. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS (A Toroidal LHC Apparatus). The ALFA system is composed by four stations installed in the LHC tunnel 240 m away from the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronics for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  6. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS/LHC. The ALFA system is composed by two stations installed in the LHC tunnel 240 m away from each side of the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronic for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  7. Explaining Biological Functionality: Is Control Theory Enough ...

    African Journals Online (AJOL)

    I argue that the etiological approach, as understood in terms of control theory, suffers from a problem of symmetry, by which function can equally well be placed in the environment as in the organism. Focusing on the autonomy view, I note that it can be understood to some degree in terms of control theory in its version called ...

  8. It's the System, Stupid: How Systems Biology Is Transforming.

    Science.gov (United States)

    2010-01-01

    So far, little is known about systems biology and its potential for changing how we diagnose and treat disease. That will change soon, say the systems experts, who advise payers to begin learning now about how it could make healthcare efficient.

  9. Systems Biology: Impressions from a Newcomer Graduate Student in 2016

    Science.gov (United States)

    Simpson, Melanie Rae

    2016-01-01

    As a newcomer, the philosophical basis of systems biology seems intuitive and appealing, the underlying philosophy being that the whole of a living system cannot be completely understood by the study of its individual parts. Yet answers to the questions "What is systems biology?" and "What constitutes a systems biology approach in…

  10. The Feasibility of Systems Thinking in Biology Education

    Science.gov (United States)

    Boersma, Kerst; Waarlo, Arend Jan; Klaassen, Kees

    2011-01-01

    Systems thinking in biology education is an up and coming research topic, as yet with contrasting feasibility claims. In biology education systems thinking can be understood as thinking backward and forward between concrete biological objects and processes and systems models representing systems theoretical characteristics. Some studies claim that…

  11. A modular control system

    International Nuclear Information System (INIS)

    Cruz, B.; Drexler, J.; Olcese, G.; Santome, D.

    1990-01-01

    The main objective of the modular control system is to provide the requirements to most of the processes supervision and control applications within the industrial automatization area. The design is based on distribution, modulation and expansion concepts. (Author) [es

  12. Microbiome studies in the biological control of plant pathogens

    Science.gov (United States)

    Biological control of plant pathogens, although it has been a successful alternative that has allowed to select microorganisms for the generation of bioproducts and to understand multiple biological mechanisms, cannot be considered as a strategy defined only from the selection of a range of cultiva...

  13. Applied Control Systems Design

    CERN Document Server

    Mahmoud, Magdi S

    2012-01-01

    Applied Control System Design examines several methods for building up systems models based on real experimental data from typical industrial processes and incorporating system identification techniques. The text takes a comparative approach to the models derived in this way judging their suitability for use in different systems and under different operational circumstances. A broad spectrum of control methods including various forms of filtering, feedback and feedforward control is applied to the models and the guidelines derived from the closed-loop responses are then composed into a concrete self-tested recipe to serve as a check-list for industrial engineers or control designers. System identification and control design are given equal weight in model derivation and testing to reflect their equality of importance in the proper design and optimization of high-performance control systems. Readers’ assimilation of the material discussed is assisted by the provision of problems and examples. Most of these e...

  14. Biological diversity in the patent system.

    Directory of Open Access Journals (Sweden)

    Paul Oldham

    Full Text Available Biological diversity in the patent system is an enduring focus of controversy but empirical analysis of the presence of biodiversity in the patent system has been limited. To address this problem we text mined 11 million patent documents for 6 million Latin species names from the Global Names Index (GNI established by the Global Biodiversity Information Facility (GBIF and Encyclopedia of Life (EOL. We identified 76,274 full Latin species names from 23,882 genera in 767,955 patent documents. 25,595 species appeared in the claims section of 136,880 patent documents. This reveals that human innovative activity involving biodiversity in the patent system focuses on approximately 4% of taxonomically described species and between 0.8-1% of predicted global species. In this article we identify the major features of the patent landscape for biological diversity by focusing on key areas including pharmaceuticals, neglected diseases, traditional medicines, genetic engineering, foods, biocides, marine genetic resources and Antarctica. We conclude that the narrow focus of human innovative activity and ownership of genetic resources is unlikely to be in the long term interest of humanity. We argue that a broader spectrum of biodiversity needs to be opened up to research and development based on the principles of equitable benefit-sharing, respect for the objectives of the Convention on Biological Diversity, human rights and ethics. Finally, we argue that alternative models of innovation, such as open source and commons models, are required to open up biodiversity for research that addresses actual and neglected areas of human need. The research aims to inform the implementation of the 2010 Nagoya Protocol on Access to Genetic Resources and the Equitable Sharing of Benefits Arising from their Utilization and international debates directed to the governance of genetic resources. Our research also aims to inform debates under the Intergovernmental Committee on

  15. Nuclear magnetic resonance applications in biological systems

    International Nuclear Information System (INIS)

    Jiang Ling; Liu Maili

    2011-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is a state-of-the-art technology which has been widely applied in biological systems over the past decades. It is a powerful tool for macromolecular structure determination in solution, and has the unique advantage of being capable of elucidating the structure and dynamic behavior of proteins during vital biomedical processes. In this review, we introduce the recent progress in NMR techniques for studying the structure, interaction and dynamics of proteins. The methods for NMR based drug discovery and metabonomics are also briefly introduced. (authors)

  16. System for determining sizes of biological macromolecules

    International Nuclear Information System (INIS)

    Nelson, R.M.; Danby, P.C.

    1987-01-01

    An electrophoresis system for determining the sizes of radiolabelled biological macromolecules is described. It comprises a cell containing an electrophoresis gel and having at least one lane, a voltage source connected across the gel for effecting the movement of macromolecules in the lane, a detector fixed relative to the moving molecules for generating electrical pulses responsive to signals emitted by the radiolabelled molecules; a pulse processor for counting the pulse rate, and a computational device for comparing the pulse rate to a predetermined value. (author)

  17. The ILC control system

    International Nuclear Information System (INIS)

    Carwardine, J.; Saunders, C.; Arnold, N.; Lenkszus, F.; Rehlich, K.; Simrock, S.; Banerjee, b.; Chase, B.; Gottschalk, E.; Joireman, P.; Kasley, P.; Lackey, S.; McBride, P.; Pavlicek, V.; Patrick, J.; Votava, M.; Wolbers, S.; Furukawa, K.; Michizono, S.; Larson, R.S.; Downing, R.

    2007-01-01

    Since the last ICALEPCS, a small multi-region team has developed a reference design model for a control system for the International Linear Collider as part of the ILC Global Design Effort. The scale and performance parameters of the ILC accelerator require new thinking in regards to control system design. Technical challenges include the large number of accelerator systems to be controlled, the large scale of the accelerator facility, the high degree of automation needed during accelerator operations, and control system equipment requiring 'Five Nines' availability. The R and D path for high availability touches the control system hardware, software, and overall architecture, and extends beyond traditional interfaces into the technical systems. Software considerations for HA include fault detection through exhaustive out-of-band monitoring and automatic state migration to redundant systems, while the telecom industry's emerging ATCA standard - conceived, specified, and designed for High Availability - is being evaluated for suitability for ILC front-end electronics.

  18. Control systems engineering

    CERN Document Server

    Nise, Norman S

    1995-01-01

    This completely updated new edition shows how to use MATLAB to perform control-system calculations. Designed for the professional or engineering student who needs a quick and readable update on designing control systems, the text features a series of tightly focused examples that clearly illustrate each concept of designing control systems. Most chapters conclude with a detailed application from the two case studies that run throughout the book: an antenna asimuth control system and a submarine. The author also refers to many examples of design methods.

  19. Arms Control: US and International efforts to ban biological weapons

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The Bacteriological (Biological) and Toxin Weapons Convention, the treaty that bans the development, production, and stockpiling and acquisition of biological weapons was opened for signature in 1972 and came into force in 1975 after being ratified by 22 governments, including the depository nations of the USA, the United Kingdom, and the former Soviet Union. In support of the Convention, the USA later established export controls on items used to make biological weapons. Further, in accordance with the 1990 President`s Enhanced Proliferation Control Initiative, actions were taken to redefine and expand US export controls, as well as to encourage multilateral controls through the Australia Group. Thus far, the Convention has not been effective in stopping the development of biological weapons. The principal findings as to the reasons of the failures of the Convention are found to be: the Convention lacks universality, compliance measures are effective, advantage of verification may outweigh disadvantages. Recommendations for mitigating these failures are outlined in this report.

  20. Biological control of tortricids and aphids in strawberries

    DEFF Research Database (Denmark)

    Sigsgaard, Lene; Enkegaard, Annie; Eilenberg, Jørgen

    Cropping practice and biological control can contribute to reduced pesticide use in strawberries. Organic strawberries are less attacked by strawberry tortricid and buckwheat flower strips can augment its natural enemies. Against shallot aphid the two-spot ladybird is promising....

  1. Dielectric relaxation in biological systems physical principles, methods, and applications

    CERN Document Server

    Feldman, Yuri

    2015-01-01

    This title covers the theoretical basis and practical aspects of the study of dielectric properties of biological systems, such as water, electrolyte and polyelectrolytes, solutions of biological macromolecules, cells suspensions and cellular systems.

  2. Redefining plant systems biology: from cell to ecosystem

    NARCIS (Netherlands)

    Keurentjes, J.J.B.; Angenent, G.C.; Dicke, M.; Martins Dos Santos, V.A.P.; Molenaar, J.; Van der Putten, W.H.; de Ruiter, P.C.; Struik, P.C.; Thomma, B.P.H.J.

    2011-01-01

    Molecular biologists typically restrict systems biology to cellular levels. By contrast, ecologists define biological systems as communities of interacting individuals at different trophic levels that process energy, nutrient and information flows. Modern plant breeding needs to increase

  3. BIOMASS PRODUCTION AND FORMULATION OF Bacillus subtilis FOR BIOLOGICAL CONTROL

    Directory of Open Access Journals (Sweden)

    Amran Muis

    2016-10-01

    Full Text Available Bacillus subtilis is a widespread bacterium found in soil, water, and air. It controls the growth of certain harmful bacteria and fungi, presumably by competing for nutrients, growth sites on plants, and by directly colonizing and attaching to fungal pathogens. When applied to seeds, it colonizes the developing root system of the plants and continues to live on the root system and provides protection throughout the growing season. The study on biomass production and formulation of B. subtilis for biological control was conducted in the laboratory of Department of Plant Pathology, College of Agriculture, University of the Philippines Los Baños (UPLB-CA, College, Laguna from May to July 2005. The objective of the study was to determine the optimum pH and a good carbon source for biomass production of B. subtilis and to develop a seed treatment formulation of B. subtilis as biological control agent. Results showed that the optimum pH for growth of B. subtilis was pH 6 (1.85 x 109 cfu/ml. In laboratory tests for biomass production using cassava flour, corn flour, rice flour, and brown sugar as carbon sources, it grew best in brown sugar plus yeast extract medium (6.8 x 108 cfu ml-1 in sterile distilled water and 7.8 x 108 cfu ml-1 in coconut water. In test for bacterial biomass carriers, talc proved to be the best in terms of number of bacteria recovered from the seeds (3.98 x 105 cfu seed-1.

  4. Isolation of microorganisms for biological control the moniliophthora roreri

    OpenAIRE

    suarez contreras, liliana yanet; Rangel Riaño, Alba Luz

    2014-01-01

    Moniliophlhora roreri is the causal agent of cocoa Moniliasis, which produces losses of up to 60% of the crop, as it affects only its commercial product, the cob. Biological control appears as an alternative management, using endophytic microorganisms. The reason because of this research came up was that it was aimed to isolate microorganisms with antagonist potential for biological control towards the phytopathogen M. roreri in Norte de Santander. This is done through isolation and identifica...

  5. Discrete control systems

    CERN Document Server

    Okuyama, Yoshifumi

    2014-01-01

    Discrete Control Systems establishes a basis for the analysis and design of discretized/quantized control systemsfor continuous physical systems. Beginning with the necessary mathematical foundations and system-model descriptions, the text moves on to derive a robust stability condition. To keep a practical perspective on the uncertain physical systems considered, most of the methods treated are carried out in the frequency domain. As part of the design procedure, modified Nyquist–Hall and Nichols diagrams are presented and discretized proportional–integral–derivative control schemes are reconsidered. Schemes for model-reference feedback and discrete-type observers are proposed. Although single-loop feedback systems form the core of the text, some consideration is given to multiple loops and nonlinearities. The robust control performance and stability of interval systems (with multiple uncertainties) are outlined. Finally, the monograph describes the relationship between feedback-control and discrete ev...

  6. Structural Identifiability of Dynamic Systems Biology Models.

    Science.gov (United States)

    Villaverde, Alejandro F; Barreiro, Antonio; Papachristodoulou, Antonis

    2016-10-01

    A powerful way of gaining insight into biological systems is by creating a nonlinear differential equation model, which usually contains many unknown parameters. Such a model is called structurally identifiable if it is possible to determine the values of its parameters from measurements of the model outputs. Structural identifiability is a prerequisite for parameter estimation, and should be assessed before exploiting a model. However, this analysis is seldom performed due to the high computational cost involved in the necessary symbolic calculations, which quickly becomes prohibitive as the problem size increases. In this paper we show how to analyse the structural identifiability of a very general class of nonlinear models by extending methods originally developed for studying observability. We present results about models whose identifiability had not been previously determined, report unidentifiabilities that had not been found before, and show how to modify those unidentifiable models to make them identifiable. This method helps prevent problems caused by lack of identifiability analysis, which can compromise the success of tasks such as experiment design, parameter estimation, and model-based optimization. The procedure is called STRIKE-GOLDD (STRuctural Identifiability taKen as Extended-Generalized Observability with Lie Derivatives and Decomposition), and it is implemented in a MATLAB toolbox which is available as open source software. The broad applicability of this approach facilitates the analysis of the increasingly complex models used in systems biology and other areas.

  7. Stochastic transport processes in discrete biological systems

    CERN Document Server

    Frehland, Eckart

    1982-01-01

    These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re­ cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio­ logical 'transport systems can be complex. For example, the tr...

  8. Model checking biological systems described using ambient calculus

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Priami, Corrado; Qualia, Paola

    2005-01-01

    Model checking biological systems described using ambient calculus. In Proc. of the second International Workshop on Computational Methods in Systems Biology (CMSB04), Lecture Notes in Bioinformatics 3082:85-103, Springer, 2005.......Model checking biological systems described using ambient calculus. In Proc. of the second International Workshop on Computational Methods in Systems Biology (CMSB04), Lecture Notes in Bioinformatics 3082:85-103, Springer, 2005....

  9. Calculating life? Duelling discourses in interdisciplinary systems biology.

    Science.gov (United States)

    Calvert, Jane; Fujimura, Joan H

    2011-06-01

    A high profile context in which physics and biology meet today is in the new field of systems biology. Systems biology is a fascinating subject for sociological investigation because the demands of interdisciplinary collaboration have brought epistemological issues and debates front and centre in discussions amongst systems biologists in conference settings, in publications, and in laboratory coffee rooms. One could argue that systems biologists are conducting their own philosophy of science. This paper explores the epistemic aspirations of the field by drawing on interviews with scientists working in systems biology, attendance at systems biology conferences and workshops, and visits to systems biology laboratories. It examines the discourses of systems biologists, looking at how they position their work in relation to previous types of biological inquiry, particularly molecular biology. For example, they raise the issue of reductionism to distinguish systems biology from molecular biology. This comparison with molecular biology leads to discussions about the goals and aspirations of systems biology, including epistemic commitments to quantification, rigor and predictability. Some systems biologists aspire to make biology more similar to physics and engineering by making living systems calculable, modelable and ultimately predictable-a research programme that is perhaps taken to its most extreme form in systems biology's sister discipline: synthetic biology. Other systems biologists, however, do not think that the standards of the physical sciences are the standards by which we should measure the achievements of systems biology, and doubt whether such standards will ever be applicable to 'dirty, unruly living systems'. This paper explores these epistemic tensions and reflects on their sociological dimensions and their consequences for future work in the life sciences. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Biogas plant control system

    International Nuclear Information System (INIS)

    Balasevicius, L.; Dervinis, G.; Macerauskas, V.

    2002-01-01

    This paper presents intelligent control system for the pig farm biogas production process. The system uses a fuzzy logic models based on knowledge of experts and operators. Four fuzzy models are introduced. The adequacy of fuzzy models is verified using real data and MATLAB simulation. Proposed expert system is implemented into traditional SCADA system for biogas process prediction and failure analyzing. (authors)

  11. Biology and control of hemlock woolly adelgid

    Science.gov (United States)

    Nathan P. Havill; Ligia C. Vieira; Scott M. Salom

    2014-01-01

    This publication is a substantial revision of FHTET 2001-03, Hemlock Woolly Adelgid, which was published in 2001. This publication contains information on the native range of hemlock and range of hemlock woolly adelgid, the importance of hemlocks in eastern forest ecosystems, and on hosts, life cycle, control, and population trends of the hemlock woolly adelgid.

  12. Spatial Structures and Regulation in Biological Systems

    DEFF Research Database (Denmark)

    Yde, Pernille

    , and the other is the spatial regulation of biological systems, here related to different aspects of the inflammatory response. All systems are studied using computational modelling and mathematical analysis. The first part of the thesis explores different protein aggregation scenarios. In Chapter 1, we consider...... a previously studied and very general aggregation model describing frangible linear filaments. This model is especially relevant for the growth of amyloid fibres, that have been related to a number of serious human diseases, and which are known to grow in an accelerated self-enhanced manner.We derive...... model of the tissue and show how coupled cells are able to function as an excitable medium and propagate waves of high cytokine concentration through the tissue. If the internal regulation in the cells is over-productive, the model predicts a continuous amplification of cytokines, which spans the entire...

  13. Molecular profiles to biology and pathways: a systems biology approach.

    Science.gov (United States)

    Van Laere, Steven; Dirix, Luc; Vermeulen, Peter

    2016-06-16

    Interpreting molecular profiles in a biological context requires specialized analysis strategies. Initially, lists of relevant genes were screened to identify enriched concepts associated with pathways or specific molecular processes. However, the shortcoming of interpreting gene lists by using predefined sets of genes has resulted in the development of novel methods that heavily rely on network-based concepts. These algorithms have the advantage that they allow a more holistic view of the signaling properties of the condition under study as well as that they are suitable for integrating different data types like gene expression, gene mutation, and even histological parameters.

  14. Biological control of biofilms on membranes by metazoans.

    Science.gov (United States)

    Klein, Theresa; Zihlmann, David; Derlon, Nicolas; Isaacson, Carl; Szivak, Ilona; Weissbrodt, David G; Pronk, Wouter

    2016-01-01

    Traditionally, chemical and physical methods have been used to control biofouling on membranes by inactivating and removing the biofouling layer. Alternatively, the permeability can be increased using biological methods while accepting the presence of the biofouling layer. We have investigated two different types of metazoans for this purpose, the oligochaete Aelosoma hemprichi and the nematode Plectus aquatilis. The addition of these grazing metazoans in biofilm-controlled membrane systems resulted in a flux increase of 50% in presence of the oligochaetes (Aelosoma hemprichi), and a flux increase of 119-164% in presence of the nematodes (Plectus aquatilis) in comparison to the control system operated without metazoans. The change in flux resulted from (1) a change in the biofilm structure, from a homogeneous, cake-like biofilm to a more heterogeneous, porous structure and (2) a significant reduction in the thickness of the basal layer. Pyrosequencing data showed that due to the addition of the predators, also the community composition of the biofilm in terms of protists and bacteria was strongly affected. The results have implications for a range of membrane processes, including ultrafiltration for potable water production, membrane bioreactors and reverse osmosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Control system design guide

    Energy Technology Data Exchange (ETDEWEB)

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  16. Control rod shutdown system

    International Nuclear Information System (INIS)

    Miyamoto, Yoshiyuki; Higashigawa, Yuichi.

    1996-01-01

    The present invention provides a control rod terminating system in a BWR type nuclear power plant, which stops an induction electric motor as rapidly as possible to terminate the control rods. Namely, the control rod stopping system controls reactor power by inserting/withdrawing control rods into a reactor by driving them by the induction electric motor. The system is provided with a control device for controlling the control rods and a control device for controlling the braking device. The control device outputs a braking operation signal for actuating the braking device during operation of the control rods to stop the operation of the control rods. Further, the braking device has at least two kinds of breaks, namely, a first and a second brakes. The two kinds of brakes are actuated by receiving the brake operation signals at different timings. The brake device is used also for keeping the control rods after the stopping. Even if a stopping torque of each of the breaks is small, different two kinds of brakes are operated at different timings thereby capable of obtaining a large stopping torque as a total. (I.S.)

  17. Systems and Control Engineering

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 5. Systems and Control Engineering - Control Systems-Analysis and Design. A Rama Kalyan J R Vengateswaran. General Article Volume 4 Issue 5 May 1999 pp 88-94 ...

  18. Study of the effects of radon in three biological systems

    International Nuclear Information System (INIS)

    Tavera, L.; Balcazar, M.; Lopez, A.; Brena, M.; Rosa, M.E. De la; Villalobos P, R.

    2002-01-01

    The radon and its decay products are responsible of the 3/4 parts of the exposure of the persons to the environmental radiation. The discovery at the end of XIX Century of the illnesses, mainly of cancer, which appeared in the presence of radon, lead to an accelerated growing of the radon studies: monitoring, dosimetry, effects on the persons, etc. Several epidemiological studies of radon in miners and population in general have been realized; advancing in the knowledge about the concentration-lung cancer risk relationship, but with discrepancies in the results depending on the concentration levels. Therefor, studies which consuming time, efforts and money go on doing. The research of the radon effects in biological systems different to human, allows to realize studies in less time, in controlled conditions and generally at lower cost, generating information about the alpha radiation effects in the cellular field. Therefor it was decided to study the response of three biological systems exposed to radon: an unicellular bacteria Escherichia Coli which was exposed directly to alpha particles from an electrodeposited source for determining the sensitivity limit of the chose technique. A plant, Tradescantia, for studying the cytogenetic effect of the system exposed to controlled concentrations of radon. An insect, Drosophila Melanogaster, for studying the genetic effects and the accumulated effects in several generations exposed to radon. In this work the experimental settlements are presented for the expositions of the systems and the biological results commenting the importance of these. (Author)

  19. A dedicated database system for handling multi-level data in systems biology.

    Science.gov (United States)

    Pornputtapong, Natapol; Wanichthanarak, Kwanjeera; Nilsson, Avlant; Nookaew, Intawat; Nielsen, Jens

    2014-01-01

    Advances in high-throughput technologies have enabled extensive generation of multi-level omics data. These data are crucial for systems biology research, though they are complex, heterogeneous, highly dynamic, incomplete and distributed among public databases. This leads to difficulties in data accessibility and often results in errors when data are merged and integrated from varied resources. Therefore, integration and management of systems biological data remain very challenging. To overcome this, we designed and developed a dedicated database system that can serve and solve the vital issues in data management and hereby facilitate data integration, modeling and analysis in systems biology within a sole database. In addition, a yeast data repository was implemented as an integrated database environment which is operated by the database system. Two applications were implemented to demonstrate extensibility and utilization of the system. Both illustrate how the user can access the database via the web query function and implemented scripts. These scripts are specific for two sample cases: 1) Detecting the pheromone pathway in protein interaction networks; and 2) Finding metabolic reactions regulated by Snf1 kinase. In this study we present the design of database system which offers an extensible environment to efficiently capture the majority of biological entities and relations encountered in systems biology. Critical functions and control processes were designed and implemented to ensure consistent, efficient, secure and reliable transactions. The two sample cases on the yeast integrated data clearly demonstrate the value of a sole database environment for systems biology research.

  20. Spacecraft momentum control systems

    CERN Document Server

    Leve, Frederick A; Peck, Mason A

    2015-01-01

    The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...

  1. Neutron generator control system

    International Nuclear Information System (INIS)

    Peelman, H.E.; Bridges, J.R.

    1981-01-01

    A method is described of controlling the neutron output of a neutron generator tube used in neutron well logging. The system operates by monitoring the target beam current and comparing a function of this current with a reference voltage level to develop a control signal used in a series regulator to control the replenisher current of the neutron generator tube. (U.K.)

  2. Models for integrated pest control and their biological implications.

    Science.gov (United States)

    Tang, Sanyi; Cheke, Robert A

    2008-09-01

    Successful integrated pest management (IPM) control programmes depend on many factors which include host-parasitoid ratios, starting densities, timings of parasitoid releases, dosages and timings of insecticide applications and levels of host-feeding and parasitism. Mathematical models can help us to clarify and predict the effects of such factors on the stability of host-parasitoid systems, which we illustrate here by extending the classical continuous and discrete host-parasitoid models to include an IPM control programme. The results indicate that one of three control methods can maintain the host level below the economic threshold (ET) in relation to different ET levels, initial densities of host and parasitoid populations and host-parasitoid ratios. The effects of host intrinsic growth rate and parasitoid searching efficiency on host mean outbreak period can be calculated numerically from the models presented. The instantaneous pest killing rate of an insecticide application is also estimated from the models. The results imply that the modelling methods described can help in the design of appropriate control strategies and assist management decision-making. The results also indicate that a high initial density of parasitoids (such as in inundative releases) and high parasitoid inter-generational survival rates will lead to more frequent host outbreaks and, therefore, greater economic damage. The biological implications of this counter intuitive result are discussed.

  3. Dynamic Systems and Control Engineering

    International Nuclear Information System (INIS)

    Kim, Jong Seok

    1994-02-01

    This book deals with introduction of dynamic system and control engineering, frequency domain modeling of dynamic system, temporal modeling of dynamic system, typical dynamic system and automatic control device, performance and stability of control system, root locus analysis, analysis of frequency domain dynamic system, design of frequency domain dynamic system, design and analysis of space, space of control system and digital control system such as control system design of direct digital and digitalization of consecutive control system.

  4. Dynamic Systems and Control Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Seok

    1994-02-15

    This book deals with introduction of dynamic system and control engineering, frequency domain modeling of dynamic system, temporal modeling of dynamic system, typical dynamic system and automatic control device, performance and stability of control system, root locus analysis, analysis of frequency domain dynamic system, design of frequency domain dynamic system, design and analysis of space, space of control system and digital control system such as control system design of direct digital and digitalization of consecutive control system.

  5. On the limitations of standard statistical modeling in biological systems: a full Bayesian approach for biology.

    Science.gov (United States)

    Gomez-Ramirez, Jaime; Sanz, Ricardo

    2013-09-01

    One of the most important scientific challenges today is the quantitative and predictive understanding of biological function. Classical mathematical and computational approaches have been enormously successful in modeling inert matter, but they may be inadequate to address inherent features of biological systems. We address the conceptual and methodological obstacles that lie in the inverse problem in biological systems modeling. We introduce a full Bayesian approach (FBA), a theoretical framework to study biological function, in which probability distributions are conditional on biophysical information that physically resides in the biological system that is studied by the scientist. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Drone Control System

    Science.gov (United States)

    1983-01-01

    Drones, subscale vehicles like the Firebees, and full scale retired military aircraft are used to test air defense missile systems. The DFCS (Drone Formation Control System) computer, developed by IBM (International Business Machines) Federal Systems Division, can track ten drones at once. A program called ORACLS is used to generate software to track and control Drones. It was originally developed by Langley and supplied by COSMIC (Computer Software Management and Information Center). The program saved the company both time and money.

  7. Magnetic spectrometer control system

    International Nuclear Information System (INIS)

    Lecca, L.A.; Di Paolo, Hugo; Fernandez Niello, Jorge O.; Marti, Guillermo V; Pacheco, Alberto J.; Ramirez, Marcelo

    2003-01-01

    The design and implementation of a new computerized control system for the several devices of the magnetic spectrometer at TANDAR Laboratory is described. This system, as a main difference from the preexisting one, is compatible with almost any operating systems of wide spread use available in PC. This allows on-line measurement and control of all signals from any terminal of a computer network. (author)

  8. HYBRID VEHICLE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-06-01

    Full Text Available The hybrid vehicle control system includes a start–stop system for an internal combustion engine. The system works in a hybrid mode and normal vehicle operation. To simplify the start–stop system, there were user new possibilities of a hybrid car, which appeared after the conversion. Results of the circuit design of the proposed system of basic blocks are analyzed.

  9. The control system

    International Nuclear Information System (INIS)

    1988-01-01

    The present control system has matured both in terms of age and capacity. Thus a new system based on a local area network (LAN) is being developed. A pilot project has been started but, owing to difficulties encountered with the present operating system used with the microprocessors, it has become necessary to reconsider the choice of operating system. A recently-released multi-tasking operating system that runs on the existing hardware has been chosen. 1 fig

  10. Hydrogen production from biomass by biological systems

    International Nuclear Information System (INIS)

    Sharifan, H.R.; Qader, S.

    2009-01-01

    Hydrogen gas is seen as a future energy carrier, not involved in 'greenhouse' gas and its released energy in combustion can be converted to electric power. Biological system with low energy can produce hydrogen compared to electrochemical hydrogen production via solar battery-based water splitting which requires the use of solar batteries with high energy requirements. The biological hydrogen production occurs in microalgae and cyanobacteria by photosynthesis. They consume biochemical energy to produce molecular hydrogen. Hydrogen in some algae is an anaerobic production in the absence of light. In cyanobacteria the hydrogen production simultaneously happens with nitrogen fixation, and also catalyzed by nitrogenase as a side reaction. Hydrogen production by photosynthetic bacteria is mediated by nitrogenase activity, although hydrogenases may be active for both hydrogen production and hydrogen uptake under some conditions. Genetic studies on photosynthetic microorganisms have markedly increased in recent times, relatively few genetic engineering studies have focused on altering the characteristics of these microorganisms, particularly with respect to enhancing the hydrogen-producing capabilities of photosynthetic bacteria and cyanobacteria. (author)

  11. System control and communication

    International Nuclear Information System (INIS)

    Bindner, H.; Oestergaard, J.

    2005-01-01

    Rapid and ongoing development in the energy sector has consequences for system control at all levels. In relation to system control and communication the control system is challenged in five important ways: 1) Expectations for security of supply, robustness and vulnerability are becoming more stringent, and the control system plays a big part in meeting these expectations. 2) Services are becoming increasingly based on markets that involve the transmission system operators (TSOs), generators and distribution companies. Timely, accurate and secure communication is essential to the smooth running of the markets. 3) Adding large amounts of renewable energy (RE) to the mix is a challenge for control systems because of the intermittent availability of many RE sources. 4) Increasing the number of active components in the system, such as small CHP plants, micro-CHP and intelligent loads, means that the system control will be much more complex. 5) In the future it is likely that power, heat, gas, transport and communication systems will be tighter coupled and interact much more. (au)

  12. 3S - Systematic, systemic, and systems biology and toxicology.

    Science.gov (United States)

    Smirnova, Lena; Kleinstreuer, Nicole; Corvi, Raffaella; Levchenko, Andre; Fitzpatrick, Suzanne C; Hartung, Thomas

    2018-01-01

    A biological system is more than the sum of its parts - it accomplishes many functions via synergy. Deconstructing the system down to the molecular mechanism level necessitates the complement of reconstructing functions on all levels, i.e., in our conceptualization of biology and its perturbations, our experimental models and computer modelling. Toxicology contains the somewhat arbitrary subclass "systemic toxicities"; however, there is no relevant toxic insult or general disease that is not systemic. At least inflammation and repair are involved that require coordinated signaling mechanisms across the organism. However, the more body components involved, the greater the challenge to reca-pitulate such toxicities using non-animal models. Here, the shortcomings of current systemic testing and the development of alternative approaches are summarized. We argue that we need a systematic approach to integrating existing knowledge as exemplified by systematic reviews and other evidence-based approaches. Such knowledge can guide us in modelling these systems using bioengineering and virtual computer models, i.e., via systems biology or systems toxicology approaches. Experimental multi-organ-on-chip and microphysiological systems (MPS) provide a more physiological view of the organism, facilitating more comprehensive coverage of systemic toxicities, i.e., the perturbation on organism level, without using substitute organisms (animals). The next challenge is to establish disease models, i.e., micropathophysiological systems (MPPS), to expand their utility to encompass biomedicine. Combining computational and experimental systems approaches and the chal-lenges of validating them are discussed. The suggested 3S approach promises to leverage 21st century technology and systematic thinking to achieve a paradigm change in studying systemic effects.

  13. Local and global control of ecological and biological networks

    OpenAIRE

    Alessandro Ferrarini

    2014-01-01

    Recently, I introduced a methodological framework so that ecological and biological networks can be controlled both from inside and outside by coupling network dynamics and evolutionary modelling. The endogenous control requires the network to be optimized at the beginning of its dynamics (by acting upon nodes, edges or both) so that it will then go inertially to the desired state. Instead, the exogenous control requires that exogenous controllers act upon the network at each time step. By th...

  14. Computational Modeling of Biological Systems From Molecules to Pathways

    CERN Document Server

    2012-01-01

    Computational modeling is emerging as a powerful new approach for studying and manipulating biological systems. Many diverse methods have been developed to model, visualize, and rationally alter these systems at various length scales, from atomic resolution to the level of cellular pathways. Processes taking place at larger time and length scales, such as molecular evolution, have also greatly benefited from new breeds of computational approaches. Computational Modeling of Biological Systems: From Molecules to Pathways provides an overview of established computational methods for the modeling of biologically and medically relevant systems. It is suitable for researchers and professionals working in the fields of biophysics, computational biology, systems biology, and molecular medicine.

  15. A Magnetic Sensor System for Biological Detection

    KAUST Repository

    Li, Fuquan

    2015-01-01

    Magnetic biosensors detect biological targets through sensing the stray field of magnetic beads which label the targets. Commonly, magnetic biosensors employ the “sandwich” method to immobilize biological targets, i.e., the targets are sandwiched

  16. The CEBAF control system

    International Nuclear Information System (INIS)

    Watson, W.A. III.

    1995-01-01

    CEBAF has recently upgraded its accelerator control system to use EPICS, a control system toolkit being developed by a collaboration among laboratories in the US and Europe. The migration to EPICS has taken place during a year of intense commissioning activity, with new and old control systems operating concurrently. Existing CAMAC hardware was preserved by adding a CAMAC serial highway link to VME; newer hardware developments are now primarily in VME. Software is distributed among three tiers of computers: first, workstations and X terminals for operator interfaces and high level applications; second, VME single board computers for distributed access to hardware and for local control processing; third, embedded processors where needed for faster closed loop operation. This system has demonstrated the ability to scale EPICS to controlling thousands of devices, including hundreds of embedded processors, with control distributed among dozens of VME processors executing more than 125,000 EPICS database records. To deal with the large size of the control system, CEBAF has integrated an object oriented database, providing data management capabilities for both low level I/O and high level machine modeling. A new callable interface which is control system independent permits access to live EPICS data, data in other Unix processes, and data contained in the object oriented database

  17. Load Control System Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Trudnowski, Daniel [Montana Tech of the Univ. of Montana, Butte, MT (United States)

    2015-04-03

    This report summarizes the results of the Load Control System Reliability project (DOE Award DE-FC26-06NT42750). The original grant was awarded to Montana Tech April 2006. Follow-on DOE awards and expansions to the project scope occurred August 2007, January 2009, April 2011, and April 2013. In addition to the DOE monies, the project also consisted of matching funds from the states of Montana and Wyoming. Project participants included Montana Tech; the University of Wyoming; Montana State University; NorthWestern Energy, Inc., and MSE. Research focused on two areas: real-time power-system load control methodologies; and, power-system measurement-based stability-assessment operation and control tools. The majority of effort was focused on area 2. Results from the research includes: development of fundamental power-system dynamic concepts, control schemes, and signal-processing algorithms; many papers (including two prize papers) in leading journals and conferences and leadership of IEEE activities; one patent; participation in major actual-system testing in the western North American power system; prototype power-system operation and control software installed and tested at three major North American control centers; and, the incubation of a new commercial-grade operation and control software tool. Work under this grant certainly supported the DOE-OE goals in the area of “Real Time Grid Reliability Management.”

  18. Hologenomics: Systems-Level Host Biology.

    Science.gov (United States)

    Theis, Kevin R

    2018-01-01

    The hologenome concept of evolution is a hypothesis explaining host evolution in the context of the host microbiomes. As a hypothesis, it needs to be evaluated, especially with respect to the extent of fidelity of transgenerational coassociation of host and microbial lineages and the relative fitness consequences of repeated associations within natural holobiont populations. Behavioral ecologists are in a prime position to test these predictions because they typically focus on animal phenotypes that are quantifiable, conduct studies over multiple generations within natural animal populations, and collect metadata on genetic relatedness and relative reproductive success within these populations. Regardless of the conclusion on the hologenome concept as an evolutionary hypothesis, a hologenomic perspective has applied value as a systems-level framework for host biology, including in medicine. Specifically, it emphasizes investigating the multivarious and dynamic interactions between patient genomes and the genomes of their diverse microbiota when attempting to elucidate etiologies of complex, noninfectious diseases.

  19. ISTTOK control system upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ivo S., E-mail: ivoc@ipfn.ist.utl.pt; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Carvalho, Bernardo B.

    2013-10-15

    Highlights: •ISTTOK fast controller. •All real-time diagnostic and actuators were integrated in the control platform. •100 μs control cycle under the MARTe framework. •The ISTTOK control system upgrade provides reliable operation with an improved operational space. -- Abstract: The ISTTOK tokamak (Ip = 4 kA, BT = 0.5 T, R = 0.46 m, a = 0.085 m) is one of the few tokamaks with regular alternate plasma current (AC) discharges scientific programme. In order to improve the discharge stability and to increase the number of AC discharge cycles a novel control system was developed. The controller acquires data from 50 analog-to-digital converter (ADC) channels of real-time diagnostics and measurements: tomography, Mirnov coils, interferometer, electric probes, sine and cosine probes, bolometer, current delivered by the power supplies, loop voltage and plasma current. The system has a control cycle of 100 μs during which it reads all the diagnostics connected to the advanced telecommunications computing architecture (ATCA) digitizers and sends the control reference to ISTTOK actuators. The controller algorithms are executed on an Intel{sup ®} Q8200 chip with 4 cores running at 2.33 GHz and connected to the I/O interfaces through an ATCA based environment. The real-time control system was programmed in C++ on top of the Multi-threaded Application Real-Time executor (MARTe). To extend the duration of the AC discharges and the plasma stability a new magnetising field power supply was commissioned and the horizontal and vertical field power supplies were also upgraded. The new system also features a user-friendly interface based on HyperText Markup Language (HTML) and Javascript to configure the controller parameters. This paper presents the ISTTOK control system and the consequent update of real-time diagnostics and actuators.

  20. ISTTOK control system upgrade

    International Nuclear Information System (INIS)

    Carvalho, Ivo S.; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Carvalho, Bernardo B.

    2013-01-01

    Highlights: •ISTTOK fast controller. •All real-time diagnostic and actuators were integrated in the control platform. •100 μs control cycle under the MARTe framework. •The ISTTOK control system upgrade provides reliable operation with an improved operational space. -- Abstract: The ISTTOK tokamak (Ip = 4 kA, BT = 0.5 T, R = 0.46 m, a = 0.085 m) is one of the few tokamaks with regular alternate plasma current (AC) discharges scientific programme. In order to improve the discharge stability and to increase the number of AC discharge cycles a novel control system was developed. The controller acquires data from 50 analog-to-digital converter (ADC) channels of real-time diagnostics and measurements: tomography, Mirnov coils, interferometer, electric probes, sine and cosine probes, bolometer, current delivered by the power supplies, loop voltage and plasma current. The system has a control cycle of 100 μs during which it reads all the diagnostics connected to the advanced telecommunications computing architecture (ATCA) digitizers and sends the control reference to ISTTOK actuators. The controller algorithms are executed on an Intel ® Q8200 chip with 4 cores running at 2.33 GHz and connected to the I/O interfaces through an ATCA based environment. The real-time control system was programmed in C++ on top of the Multi-threaded Application Real-Time executor (MARTe). To extend the duration of the AC discharges and the plasma stability a new magnetising field power supply was commissioned and the horizontal and vertical field power supplies were also upgraded. The new system also features a user-friendly interface based on HyperText Markup Language (HTML) and Javascript to configure the controller parameters. This paper presents the ISTTOK control system and the consequent update of real-time diagnostics and actuators

  1. Control system integration

    CERN Document Server

    Shea, T J

    2008-01-01

    This lecture begins with a definition of an accelerator control system, and then reviews the control system architectures that have been deployed at the larger accelerator facilities. This discussion naturally leads to identification of the major subsystems and their interfaces. We shall explore general strategies for integrating intelligent devices and signal processing subsystems based on gate arrays and programmable DSPs. The following topics will also be covered: physical packaging; timing and synchronization; local and global communication technologies; interfacing to machine protection systems; remote debugging; configuration management and source code control; and integration of commercial software tools. Several practical realizations will be presented.

  2. Milk fever and subclinical hypocalcaemia--an evaluation of parameters on incidence risk, diagnosis, risk factors and biological effects as input for a decision support system for disease control

    DEFF Research Database (Denmark)

    Houe, H; Østergaard, S; Thilsing-Hansen, T

    2001-01-01

    The present review analyses the documentation on incidence, diagnosis, risk factors and effects of milk fever and subclinical hypocalcaemia. It is hereby evaluated whether the existing documentation seems sufficient for further modelling in a decision support system for selection of a control...... concerning incidence, diagnosis, risk factors and effects seems sufficient for a systematic inclusion in a decision support system. A model on milk fever should take into consideration the variation in biological data and individual herd characteristics. The inclusion of subclinical hypocalcaemia would...... of risk factors is outlined. The clinical symptoms of milk fever are highly specific and the disease level may thus be determined from recording of treatments. Diagnosis of subclinical hypocalcaemia needs to include laboratory examinations or it may be determined by multiplying the incidence of milk fever...

  3. Biological control by ( Coccinella algerica , Kovar 1977) against the ...

    African Journals Online (AJOL)

    Inputs from chemicals, particularly pesticides, to control crop pests have adverse effects on soil and the environment, among others. To reduce pest attacks, biological control with indigenous predators is the alternative and the cleanest, most environmentally friendly and ecologically balanced way. In order to achieve this ...

  4. Nematodes for the biological control of the woodwasp, Sirex noctilio

    Science.gov (United States)

    Robin A. Bedding

    2007-01-01

    The tylenchid nematode Beddingia (Deladenus) siricidicola (Bedding) is by far the most important control agent of Sirex noctilio F., a major pest of pine plantations. It sterilizes female sirex, is density dependent, can achieve nearly 100 percent parasitism and, as a result of its complicated biology can be readily manipulated for sirex control. Bedding and Iede (2005...

  5. Biomarkers of Nanoparticles Impact on Biological Systems

    Science.gov (United States)

    Mikhailenko, V.; Ieleiko, L.; Glavin, A.; Sorochinska, J.

    Studies of nanoscale mineral fibers have demonstrated that the toxic and carcinogenic effects are related to the surface area and surface activity of inhaled particles. Particle surface characteristics are considered to be key factors in the generation of free radicals and reactive oxygen species and are related to the development of apoptosis or cancer. Existing physico-chemical methods do not always allow estimation of the nanoparticles impact on organismal and cellular levels. The aim of this study was to develop marker system for evaluation the toxic and carcinogenic effects of nanoparticles on cells. The markers are designed with respect to important nanoparticles characteristics for specific and sensitive assessment of their impact on biological system. We have studied DNA damage, the activity of xanthine oxidoreductase influencing the level of free radicals, bioenergetic status, phospholipids profile and formation of 1H-NMR-visible mobile lipid domains in Ehrlich carcinoma cells. The efficiency of the proposed marker system was tested in vivo and in vitro with the use of C60 fullerene nanoparticles and multiwalled carbon nanotubes. Our data suggest that multiwalled carbon nanotubes and fullerene C60 may pose genotoxic effect, change energy metabolism and membrane structure, alter free radical level via xanthine oxidase activation and cause mobile lipid domains formation as determined in vivo and in vitro studies on Ehrlich carcinoma cells.

  6. Systems Biology of Metabolism: Annual Review of Biochemistry

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2017-01-01

    Metabolism is highly complex and involves thousands of different connected reactions; it is therefore necessary to use mathematical models for holistic studies. The use of mathematical models in biology is referred to as systems biology. In this review, the principles of systems biology are descr...

  7. Echinococcus as a model system: biology and epidemiology.

    Science.gov (United States)

    Thompson, R C A; Jenkins, D J

    2014-10-15

    The introduction of Echinococcus to Australia over 200 years ago and its establishment in sheep rearing areas of the country inflicted a serious medical and economic burden on the country. This resulted in an investment in both basic and applied research aimed at learning more about the biology and life cycle of Echinococcus. This research served to illustrate the uniqueness of the parasite in terms of developmental biology and ecology, and the value of Echinococcus as a model system in a broad range of research, from fundamental biology to theoretical control systems. These studies formed the foundation for an international, diverse and ongoing research effort on the hydatid organisms encompassing stem cell biology, gene regulation, strain variation, wildlife diseases and models of transmission dynamics. We describe the development, nature and diversity of this research, and how it was initiated in Australia but subsequently has stimulated much international and collaborative research on Echinococcus. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  8. The Epicure Control System

    International Nuclear Information System (INIS)

    Dambik, E.; Kline, D.; West, R.

    1993-09-01

    The Epicure Control System supports the Fermilab fixed target physics program. The system is distributed across a network of many different types of components. The use of multiple layers on interfaces for communication between logical tasks fits the client-server model. Physical devices are read and controlled using symbolic references entered into a database with an editor utility. The database system consists of a central portion containing all device information and optimized portions distributed among many nodes. Updates to the database are available throughout the system within minutes after being requested

  9. Control systems under attack?

    CERN Document Server

    Lüders, Stefan

    2005-01-01

    The enormous growth of the Internet during the last decade offers new means to share and distribute both information and data. In Industry, this results in a rapprochement of the production facilities, i.e. their Process Control and Automation Systems, and the data warehouses. At CERN, the Internet opens the possibility to monitor and even control (parts of) the LHC and its four experiments remotely from anywhere in the world. However, the adoption of standard IT technologies to Distributed Process Control and Automation Systems exposes inherent vulnerabilities to the world. The Teststand On Control System Security at CERN (TOCSSiC) is dedicated to explore the vulnerabilities of arbitrary Commercial-Of-The-Shelf hardware devices connected to standard Ethernet. As such, TOCSSiC should discover their vulnerabilities, point out areas of lack of security, and address areas of improvement which can then be confidentially communicated to manufacturers. This paper points out risks of accessing the Control and Automa...

  10. Distribution and Biological Effects of Nanoparticles in the Reproductive System.

    Science.gov (United States)

    Liu, Ying; Li, Hongxia; Xiao, Kai

    2016-01-01

    Nanoparticles have shown great potential in biomedical applications such as imaging probes and drug delivery. However, the increasing use of nanoparticles has raised concerns about their adverse effects on human health and environment. Reproductive tissues and gametes represent highly delicate biological systems with the essential function of transmitting genetic information to the offspring, which is highly sensitive to environmental toxicants. This review aims to summarzie the penetration of physiological barriers (blood-testis barrier and placental barrier), distribution and biological effects of nanoparticles in the reproductive system, which is essential to control the beneficial effects of nanoparticles applications and to avoid their adverse effects on the reproductive system. We referred to a large number of relevant peer-reviewed research articles about the reproductive toxicity of nanoparticles. The comprehensive information was summarized into two parts: physiological barrier penetration and biological effects of nanoparticles in male or female reproductive system; distribution and metabolism of nanoparticles in the reproductive system. The representative examples were also presented in four tables. The in vitro and in vivo studies imply that some nanoparticles are able to cross the blood-testis barrier or placental barrier, and their penetration depends on the physicochemical characteristics of nanoparticles (e.g., composition, shape, particle size and surface coating). The toxicity assays indicate that nanoparticles might induce adverse physiological effects and impede fertility or embryogenesis. The barrier penetration, adverse physiological effects, distribution and metabolism are closely related to physicochemical characteristics of nanoparticles. Further systematic and mechanistic studies using well-characterized nanoparticles, relevant administration routes, and doses relevant to the expected exposure level are required to improve our

  11. Tautological control systems

    CERN Document Server

    Lewis, Andrew D

    2014-01-01

    This brief presents a description of a new modelling framework for nonlinear/geometric control theory. The framework is intended to be—and shown to be—feedback-invariant. As such, Tautological Control Systems provides a platform for understanding fundamental structural problems in geometric control theory. Part of the novelty of the text stems from the variety of regularity classes, e.g., Lipschitz, finitely differentiable, smooth, real analytic, with which it deals in a comprehensive and unified manner. The treatment of the important real analytic class especially reflects recent work on real analytic topologies by the author. Applied mathematicians interested in nonlinear and geometric control theory will find this brief of interest as a starting point for work in which feedback invariance is important. Graduate students working in control theory may also find Tautological Control Systems to be a stimulating starting point for their research.

  12. Reset Control Systems

    CERN Document Server

    Baños, Alfonso

    2012-01-01

    Reset Control Systems addresses the analysis for reset control treating both its basic form which requires only that the state of the controller be reinitialized to zero (the reset action) each time the tracking error crosses zero (the reset condition), and some useful variations of the reset action (partial reset with fixed or variable reset percentage) and of the reset condition (fixed or variable reset band and anticipative reset). The issues regarding reset control – concepts and motivation; analysis tools; and the application of design methodologies to real-world examples – are given comprehensive coverage. The text opens with an historical perspective which moves from the seminal work of the Clegg integrator and Horowitz FORE to more recent approaches based on impulsive/hybrid control systems and explains the motivation for reset compensation. Preliminary material dealing with notation, basic definitions and results, and with the definition of the control problem under study is also included. The fo...

  13. Flight control actuation system

    Science.gov (United States)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  14. A SYSTEMIC VISION OF BIOLOGY: OVERCOMING LINEARITY

    Directory of Open Access Journals (Sweden)

    M. Mayer

    2005-07-01

    Full Text Available Many  authors have proposed  that contextualization of reality  is necessary  to teach  Biology, empha- sizing students´ social and  economic realities.   However, contextualization means  more than  this;  it is related  to working with  different kinds of phenomena  and/or objects  which enable  the  expression of scientific concepts.  Thus,  contextualization allows the integration of different contents.  Under this perspective,  the  objectives  of this  work were to articulate different  biology concepts  in order  to de- velop a systemic vision of biology; to establish  relationships with other areas of knowledge and to make concrete the  cell molecular  structure and organization as well as their  implications  on living beings´ environment, using  contextualization.  The  methodology  adopted  in this  work  was based  on three aspects:  interdisciplinarity, contextualization and development of competences,  using energy:  its flux and transformations as a thematic axis and  an approach  which allowed the  interconnection between different situations involving  these  concepts.   The  activities developed  were:  1.   dialectic exercise, involving a movement around  micro and macroscopic aspects,  by using questions  and activities,  sup- ported  by the use of alternative material  (as springs, candles on the energy, its forms, transformations and  implications  in the  biological way (microscopic  concepts;  2, Construction of molecular  models, approaching the concepts of atom,  chemical bonds and bond energy in molecules; 3. Observations de- veloped in Manguezal¨(mangrove swamp  ecosystem (Itapissuma, PE  were used to work macroscopic concepts  (as  diversity  and  classification  of plants  and  animals,  concerning  to  energy  flow through food chains and webs. A photograph register of all activities  along the course plus texts

  15. Reactor limit control system

    International Nuclear Information System (INIS)

    Rubbel, F.E.

    1982-01-01

    The very extensive use of limitations in the operational field between protection system and closed-loop controls is an important feature of German understanding of operational safety. The design of limitations is based on very large activities in the computational field but mostly on the high level of the plant-wide own commissioning experience of a turnkey contractor. Limitations combine intelligence features of closed-loop controls with the high availability of protection systems. (orig.)

  16. Fluid flow control system

    International Nuclear Information System (INIS)

    Rion, Jacky.

    1982-01-01

    Fluid flow control system featuring a series of grids placed perpendicular to the fluid flow direction, characterized by the fact that it is formed of a stack of identical and continuous grids, each of which consists of identical meshes forming a flat lattice. The said meshes are offset from one grid to the next. This system applies in particular to flow control of the coolant flowing at the foot of an assembly of a liquid metal cooled nuclear reactor [fr

  17. Internal control system

    OpenAIRE

    Pavésková, Ivana

    2014-01-01

    Dissertation focuse on the internal control system in the enterprises, aims to map the control system by focusing on the purchasing department. I focused on the purchasing process, because with an increasing trends of outsourcing services and the increasing interconnectedness of enterprises increases the risk of fraud currently in the purchasing process. To the research was selected the sample of companies from the banking and non-banking environment, to which were sent a questionnaire focusi...

  18. Insect pathogens as biological control agents: Back to the future.

    Science.gov (United States)

    Lacey, L A; Grzywacz, D; Shapiro-Ilan, D I; Frutos, R; Brownbridge, M; Goettel, M S

    2015-11-01

    The development and use of entomopathogens as classical, conservation and augmentative biological control agents have included a number of successes and some setbacks in the past 1years. In this forum paper we present current information on development, use and future directions of insect-specific viruses, bacteria, fungi and nematodes as components of integrated pest management strategies for control of arthropod pests of crops, forests, urban habitats, and insects of medical and veterinary importance. Insect pathogenic viruses are a fruitful source of microbial control agents (MCAs), particularly for the control of lepidopteran pests. Most research is focused on the baculoviruses, important pathogens of some globally important pests for which control has become difficult due to either pesticide resistance or pressure to reduce pesticide residues. Baculoviruses are accepted as safe, readily mass produced, highly pathogenic and easily formulated and applied control agents. New baculovirus products are appearing in many countries and gaining an increased market share. However, the absence of a practical in vitro mass production system, generally higher production costs, limited post application persistence, slow rate of kill and high host specificity currently contribute to restricted use in pest control. Overcoming these limitations are key research areas for which progress could open up use of insect viruses to much larger markets. A small number of entomopathogenic bacteria have been commercially developed for control of insect pests. These include several Bacillus thuringiensis sub-species, Lysinibacillus (Bacillus) sphaericus, Paenibacillus spp. and Serratia entomophila. B. thuringiensis sub-species kurstaki is the most widely used for control of pest insects of crops and forests, and B. thuringiensis sub-species israelensis and L. sphaericus are the primary pathogens used for control of medically important pests including dipteran vectors. These pathogens

  19. Systems and Control Engineering

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 1. Systems and Control Engineering - Notions of Control. A Rama Kalyan J R Vengateswaran. General Article Volume 4 Issue 1 January 1999 pp 45-52. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Controllability of nilpotent systems

    International Nuclear Information System (INIS)

    Bravo, V.A.; Martin, L.S.

    1993-02-01

    The purpose of this paper is to investigate algebraic conditions which give information about the controllability of invariant control systems on nilpotent Lie groups. With the same purpose, the authors use the co-adjoint representation and define the concept of symplectic vectors. We study the existence of these objects to analyze the controllability. In particular, we obtain a characterization when G is simply connected. (author). 9 refs

  1. Biological control of Mycosphaerella fragariae in strawberry culture

    Directory of Open Access Journals (Sweden)

    Anderson Luis Heling

    2015-12-01

    Full Text Available The Mycosphaerella spot is one of the main foliar diseases of strawberry, degrating great leaf regions and reducing the photosynthetic area. Its control is mainly by the use of chemical fungicides, but, due the increasing demand for food free of pesticide, alternative control methods have been researched, such as biological control. This work aimed to evaluate the effect on strawberry plants, treated with the biological control agents Bacillus cereus, Saccharomyces boulardii and Saccharomyces cerevisiae, in the severity of Mycosphaerella fragariae, productivity and in the activity of β-1.3 glucanases, peroxidases and chitinases enzymes. It was verified that S. cerevisiae and B. cereus treatments were similar to fungicide for disease control. However, even reducing the severity of the disease, there was no increase in productivity, and the different control agents do not cause changes in the evaluated defense mechanisms.

  2. Design of fluidized-bed, biological denitrification systems

    International Nuclear Information System (INIS)

    Patton, B.D.; Hancher, C.W.; Pitt, W.W.; Walker, J.F.

    1982-01-01

    Many commercial processes yield nitrate-containing wastewaters that are being discharged to the environment because traditional recovery or disposal methods are economically unacceptable. The anticipated discharge limits (i.e., 10 to 20 g (NO 3 - )/m 3 ) being considered by many states will not allow continued release of these wastewaters. The new discharge standards can be met economically by use of the fluidizied-bed, biological denitrification process. Research and development studies were conducted with 0.05-, 0.10-, 0.20-, and 0.50-m-diam fluidized-bed bioreactor systems. Feed nitrate concentrations were in the 0 to 10,000 g (NO 3 - )/m 3 range. Using the data from these studies, rate expressions were developed for the destruction of nitrate as a function of nitrate concentration. Methods were also developed for sizing bioreactors and biomass control systems. The sizing methods for fluidized-bed denitrification systems are described, and support systems such as sampling and analysis, instrumentation and controls, utilities, and bacteria storage are discussed. Operation of the process is also briefly discussed to aid the designer. Using the methods presented in this report, fluidized-bed, biological denitrification systems can be designed to treat nitrate wastewater streams

  3. Neural systems for preparatory control of imitation.

    Science.gov (United States)

    Cross, Katy A; Iacoboni, Marco

    2014-01-01

    Humans have an automatic tendency to imitate others. Previous studies on how we control these tendencies have focused on reactive mechanisms, where inhibition of imitation is implemented after seeing an action. This work suggests that reactive control of imitation draws on at least partially specialized mechanisms. Here, we examine preparatory imitation control, where advance information allows control processes to be employed before an action is observed. Drawing on dual route models from the spatial compatibility literature, we compare control processes using biological and non-biological stimuli to determine whether preparatory imitation control recruits specialized neural systems that are similar to those observed in reactive imitation control. Results indicate that preparatory control involves anterior prefrontal, dorsolateral prefrontal, posterior parietal and early visual cortices regardless of whether automatic responses are evoked by biological (imitative) or non-biological stimuli. These results indicate both that preparatory control of imitation uses general mechanisms, and that preparatory control of imitation draws on different neural systems from reactive imitation control. Based on the regions involved, we hypothesize that preparatory control is implemented through top-down attentional biasing of visual processing.

  4. Ecological and biological systems under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, V S; Nenishkiene, V B

    1989-01-01

    The behaviour of biological and ecological systems under extreme conditions (high and low temperatures, electromagnetic fields of different frequencies, ultraviolet. X-ray and gamma radiation) is analyzed. The ecosystems of macro- and microalgae living in salt, brackinsh and fresh waters are considered in the evolutional aspect basing on their chemical and biochemical composition taking into account the mechanism of radionuclide uptake by water plant cells, osmotic regulation, water and ice structures, combined water in a living organism. The problems of life-support in cosmic flights and of mastering the planets of the Solar system, for instance Mars and Venus, utilizing some microalgae and bacteria with high adaptive properties are discussed. Abnormal water points and their role in the metabolism of a water plant cell are estimated. The 'life niches' are determined at the temperatures exceeding 100 deg C and the possibility of existence for living organisms in high pressure and temperature is grounded. Attempts are made to change the metabolism of the plant and animal cell by subjecting it to the action of electromagnetic and thermal fields, heavy water, chemical and pharmocological substances changing the structure of bound water. 333 refs.; 79 tabs.

  5. Drawing inspiration from biological optical systems

    Science.gov (United States)

    Wolpert, H. D.

    2009-08-01

    Bio-Mimicking/Bio-Inspiration: How can we not be inspired by Nature? Life has evolved on earth over the last 3.5 to 4 billion years. Materials formed during this time were not toxic; they were created at low temperatures and low pressures unlike many of the materials developed today. The natural materials formed are self-assembled, multifunctional, nonlinear, complex, adaptive, self-repairing and biodegradable. The designs that failed are fossils. Those that survived are the success stories. Natural materials are mostly formed from organics, inorganic crystals and amorphous phases. The materials make economic sense by optimizing the design of the structures or systems to meet multiple needs. We constantly "see" many similar strategies in approaches, between man and nature, but we seldom look at the details of natures approaches. The power of image processing, in many of natures creatures, is a detail that is often overlooked. Seldon does the engineer interact with the biologist and learn what nature has to teach us. The variety and complexity of biological materials and the optical systems formed should inspire us.

  6. Network Reconstruction of Dynamic Biological Systems

    OpenAIRE

    Asadi, Behrang

    2013-01-01

    Inference of network topology from experimental data is a central endeavor in biology, since knowledge of the underlying signaling mechanisms a requirement for understanding biological phenomena. As one of the most important tools in bioinformatics area, development of methods to reconstruct biological networks has attracted remarkable attention in the current decade. Integration of different data types can lead to remarkable improvements in our ability to identify the connectivity of differe...

  7. CEBAF control system

    International Nuclear Information System (INIS)

    Bork, R.; Grubb, C.; Lahti, G.; Navarro, E.; Sage, J.

    1989-01-01

    A logic-based computer control system is in development at CEBAF. This Unix/C language software package, running on a distributed, hierarchical system of workstation and supervisory minicomputers, interfaces to hardware via CAMAC. Software aspects to be covered are ladder logic, interactive database generation, networking, and graphic user interfaces. 1 fig

  8. PSR control system

    International Nuclear Information System (INIS)

    Clout, P.N.; Conley, A.P.; Bair, S.S.; Fuka, M.A.; Sandford, E.L.; Lander, R.F.; Wells, F.D.

    1985-01-01

    The control system for the Proton Storage Ring at Los Alamos has been essentially completed. Modifications are being applied that are required in the light of machine physics and operating experience. The present design of the system is described and future planned modifications are indicated

  9. Environment control system

    International Nuclear Information System (INIS)

    Sammarone, D.G.

    1978-01-01

    Disclosed is a system for controlling the environment of an enclosed area in nuclear reactor installations. The system permits the changing of the environment from nitrogen to air, or from air to nitrogen, without the release of any radioactivity or process gas to the outside atmosphere

  10. The ISOLDE control system

    Science.gov (United States)

    Deloose, I.; Pace, A.

    1994-12-01

    The two CERN isotope separators named ISOLDE have been running on the new Personal Computer (PC) based control system since April 1992. The new architecture that makes heavy use of the commercial software and hardware of the PC market has been implemented on the 1700 geographically distributed control channels of the two separators and their experimental area. Eleven MSDOS Intel-based PCs with approximately 80 acquisition and control boards are used to access the equipment and are controlled from three PCs running Microsoft Windows used as consoles through a Novell Local Area Network. This paper describes the interesting solutions found and discusses the reduced programming workload and costs that have been obtained.

  11. Use of rhizobacteria and endophytes for biological control of weeds

    Directory of Open Access Journals (Sweden)

    Trognitz, Friederike

    2014-02-01

    Full Text Available Weeds cause severe yield losses in agriculture, with a maximum estimate of 34% of yield loss worldwide due to competition between the crops and the weeds for nutrition, light and humidity (OERKE, 2006. Invasive plants contribute partially to other problems. The pollen of common ragweed, Ambrosia artemisiifolia L., for example, is five times more allergenic than grass pollen; already ten pollen grains per m3 air can trigger allergy in sensitized patients, including rhinitis, conjunctivitis and asthma. This neophyte from America has extended the season of allergy in European patients to October. Common ragweed is currently most frequent in Hungary, France and Italy. In Austria, ragweed populations along roads have increased dramatically since 2000. The effective means to control this weed of the Asteraceae family are limited; a single plant can produce up to 6000 seeds which stay in the soil for 40 years. Control using selective herbicides is not possible within stands of the Asteraceae member sunflower. Efforts to use herbivore insects as biological control agents also failed due to the unavailability of insects specializing on this ragweed. The use of plant-associated rhizobacteria and endophytes as bio-herbicides offers a novel alternative to conventional methods. By analogy to experiences from other plant-microbe systems, the chances to find microbes of the desired characteristics are highest when isolating and testing specimens directly from ragweed plants. These organisms often have an extremely narrow host range that permits their use for the control of among several even closely related plant species growing together in a field.

  12. Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter?

    Science.gov (United States)

    Vazquez-Muñoz, Roberto; Borrego, Belen; Juárez-Moreno, Karla; García-García, Maritza; Mota Morales, Josué D; Bogdanchikova, Nina; Huerta-Saquero, Alejandro

    2017-07-05

    Currently, nanomaterials are more frequently in our daily life, specifically in biomedicine, electronics, food, textiles and catalysis just to name a few. Although nanomaterials provide many benefits, recently their toxicity profiles have begun to be explored. In this work, the toxic effects of silver nanoparticles (35nm-average diameter and Polyvinyl-Pyrrolidone-coated) on biological systems of different levels of complexity was assessed in a comprehensive and comparatively way, through a variety of viability and toxicological assays. The studied organisms included viruses, bacteria, microalgae, fungi, animal and human cells (including cancer cell lines). It was found that biological systems of different taxonomical groups are inhibited at concentrations of silver nanoparticles within the same order of magnitude. Thus, the toxicity of nanomaterials on biological/living systems, constrained by their complexity, e.g. taxonomic groups, resulted contrary to the expected. The fact that cells and virus are inhibited with a concentration of silver nanoparticles within the same order of magnitude could be explained considering that silver nanoparticles affects very primitive cellular mechanisms by interacting with fundamental structures for cells and virus alike. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Quantifying electron transfer reactions in biological systems

    DEFF Research Database (Denmark)

    Sjulstok, Emil Sjulstok; Olsen, Jógvan Magnus Haugaard; Solov'yov, Ilia A

    2015-01-01

    which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between...

  14. Systems biology: properties of reconstructed networks

    National Research Council Canada - National Science Library

    Palsson, Bernhard

    2006-01-01

    ... between the mathematical ideas and biological processes are made clear, the book reflects the irreversible trend of increasing mathematical content in biology education. Therefore to assist both teacher and student, Palsson provides problem sets, projects, and PowerPoint slides in an associated web site and keeps the presentation in the book concrete with illustrat...

  15. TMX magnet control system

    International Nuclear Information System (INIS)

    Goerz, D.A.

    1978-01-01

    A control system utilizing a microcomputer has been developed that controls the power supplies driving the Tandem Mirror Experiment (TMX) magnet set and monitors magnet coil operation. The magnet set consists of 18 magnet coils that are driven by 26 dc power supplies. There are two possible modes of operation with this system: a pulse mode where the coils are pulsed on for several seconds with a dc power consumption of 16 MW; and a continuous mode where the coils can run steady state at 10 percent of maximum current ratings. The processor has been given an active control role and serves as an interface between the operator and electronic circuitry that controls the magnet power supplies. This microcomputer also collects and processes data from many analog singal monitors in the coil circuits and numerous status signals from the supplies. Placing the microcomputer in an active control role has yielded a compact, cost effective system that simplifies the magnet system operation and has proven to be very reliable. This paper will describe the TMX magnet control sytem and discuss its development

  16. Precision medicine driven by cancer systems biology.

    Science.gov (United States)

    Filipp, Fabian V

    2017-03-01

    Molecular insights from genome and systems biology are influencing how cancer is diagnosed and treated. We critically evaluate big data challenges in precision medicine. The melanoma research community has identified distinct subtypes involving chronic sun-induced damage and the mitogen-activated protein kinase driver pathway. In addition, despite low mutation burden, non-genomic mitogen-activated protein kinase melanoma drivers are found in membrane receptors, metabolism, or epigenetic signaling with the ability to bypass central mitogen-activated protein kinase molecules and activating a similar program of mitogenic effectors. Mutation hotspots, structural modeling, UV signature, and genomic as well as non-genomic mechanisms of disease initiation and progression are taken into consideration to identify resistance mutations and novel drug targets. A comprehensive precision medicine profile of a malignant melanoma patient illustrates future rational drug targeting strategies. Network analysis emphasizes an important role of epigenetic and metabolic master regulators in oncogenesis. Co-occurrence of driver mutations in signaling, metabolic, and epigenetic factors highlights how cumulative alterations of our genomes and epigenomes progressively lead to uncontrolled cell proliferation. Precision insights have the ability to identify independent molecular pathways suitable for drug targeting. Synergistic treatment combinations of orthogonal modalities including immunotherapy, mitogen-activated protein kinase inhibitors, epigenetic inhibitors, and metabolic inhibitors have the potential to overcome immune evasion, side effects, and drug resistance.

  17. Isotopic fractionation of tritium in biological systems.

    Science.gov (United States)

    Le Goff, Pierre; Fromm, Michel; Vichot, Laurent; Badot, Pierre-Marie; Guétat, Philippe

    2014-04-01

    Isotopic fractionation of tritium is a highly relevant issue in radiation protection and requires certain radioecological considerations. Sound evaluation of this factor is indeed necessary to determine whether environmental compartments are enriched/depleted in tritium or if tritium is, on the contrary, isotopically well-distributed in a given system. The ubiquity of tritium and the standard analytical methods used to assay it may induce biases in both the measurement and the signification that is accorded to the so-called fractionation: based on an exhaustive review of the literature, we show how, sometimes large deviations may appear. It is shown that when comparing the non-exchangeable fraction of organically bound tritium (neOBT) to another fraction of tritium (e.g. tritiated water) the preparation of samples and the measurement of neOBT reported frequently led to underestimation of the ratio of tritium to hydrogen (T/H) in the non-exchangeable compartment by a factor of 5% to 50%. In the present study, corrections are proposed for most of the biological matrices studied so far. Nevertheless, the values of isotopic fractionation reported in the literature remain difficult to compare with each other, especially since the physical quantities and units often vary between authors. Some improvements are proposed to better define what should encompass the concepts of exchangeable and non-exchangeable fractions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Toward mechanical systems biology in bone.

    Science.gov (United States)

    Trüssel, Andreas; Müller, Ralph; Webster, Duncan

    2012-11-01

    Cyclic mechanical loading is perhaps the most important physiological factor regulating bone mass and shape in a way which balances optimal strength with minimal weight. This bone adaptation process spans multiple length and time scales. Forces resulting from physiological exercise at the organ scale are sensed at the cellular scale by osteocytes, which reside inside the bone matrix. Via biochemical pathways, osteocytes orchestrate the local remodeling action of osteoblasts (bone formation) and osteoclasts (bone resorption). Together these local adaptive remodeling activities sum up to strengthen bone globally at the organ scale. To resolve the underlying mechanisms it is required to identify and quantify both cause and effect across the different scales. Progress has been made at the different scales experimentally. Computational models of bone adaptation have been developed to piece together various experimental observations at the different scales into coherent and plausible mechanisms. However additional quantitative experimental validation is still required to build upon the insights which have already been achieved. In this review we discuss emerging as well as state of the art experimental and computational techniques and how they might be used in a mechanical systems biology approach to further our understanding of the mechanisms governing load induced bone adaptation, i.e., ways are outlined in which experimental and computational approaches could be coupled, in a quantitative manner to create more reliable multiscale models of bone.

  19. Ionic interactions in biological and physical systems: a variational treatment.

    Science.gov (United States)

    Eisenberg, Bob

    2013-01-01

    Chemistry is about chemical reactions. Chemistry is about electrons changing their configurations as atoms and molecules react. Chemistry has for more than a century studied reactions as if they occurred in ideal conditions of infinitely dilute solutions. But most reactions occur in salt solutions that are not ideal. In those solutions everything (charged) interacts with everything else (charged) through the electric field, which is short and long range extending to the boundaries of the system. Mathematics has recently been developed to deal with interacting systems of this sort. The variational theory of complex fluids has spawned the theory of liquid crystals (or vice versa). In my view, ionic solutions should be viewed as complex fluids, particularly in the biological and engineering context. In both biology and electrochemistry ionic solutions are mixtures highly concentrated (to approximately 10 M) where they are most important, near electrodes, nucleic ids, proteins, active sites of enzymes, and ionic channels. Ca2+ is always involved in biological solutions because the concentration (really free energy per mole) of Ca2+ in a particular location is the signal that controls many biological functions. Such interacting systems are not simple fluids, and it is no wonder that analysis of interactions, such as the Hofmeister series, rooted in that tradition has not succeeded as one would hope. Here, we present a variational treatment of ard spheres in a frictional dielectric with the hope that such a treatment of an lectrolyte as a complex fluid will be productive. The theory automatically extends to spatially nonuniform boundary conditions and the nonequilibrium systems and flows they produce. The theory is unavoidably self-consistent since differential equations are derived (not assumed) from models of (Helmholtz free) nergy and dissipation of the electrolyte. The origin of the Hofmeister series is (in my view) an inverse problem that becomes well posed when

  20. Biological control of alien and invasive species in agriculture

    International Nuclear Information System (INIS)

    Calvitti, Maurizio; Moretti Riccardo; Lampazzi, Elena

    2015-01-01

    Agricultural production in Europe faces many challenges including limited availability of water, nitrogen input and fossil fuels. It is necessary, therefore, to identify methods of production and new technologies to increase the efficiency of the primary systems, guaranteeing amount of food, quality, safety and eco-sustainability . One of the most important aspects, though often undervalued in relation to the food chain, is the adversity of biological management of agricultural crops due to pests, pathogens or fitomizi with potential invasive already present in the territory or of recent origin alien. In this context, two main objectives should be implemented at the same time reduce production losses and protect the agro-ecosystem. To meet these expectations, as of January 1, 2015 all farms in the European Union countries are bound to the application of the Integrated Defense principles, as indicated by the Directive on the sustainable use of plant protection products (128/09 / EC) .In response to this and other new entomological emergencies plant health and medical-veterinary entomologist researchers of the Laboratory sustainable management of Agro-Ecosystems in ENEA, have directed their research towards the development of innovative systems for the sustainable control of invasive species of insects is in the agricultural sector that health. [it

  1. Interactomes, manufacturomes and relational biology: analogies between systems biology and manufacturing systems

    Science.gov (United States)

    2011-01-01

    Background We review and extend the work of Rosen and Casti who discuss category theory with regards to systems biology and manufacturing systems, respectively. Results We describe anticipatory systems, or long-range feed-forward chemical reaction chains, and compare them to open-loop manufacturing processes. We then close the loop by discussing metabolism-repair systems and describe the rationality of the self-referential equation f = f (f). This relationship is derived from some boundary conditions that, in molecular systems biology, can be stated as the cardinality of the following molecular sets must be about equal: metabolome, genome, proteome. We show that this conjecture is not likely correct so the problem of self-referential mappings for describing the boundary between living and nonliving systems remains an open question. We calculate a lower and upper bound for the number of edges in the molecular interaction network (the interactome) for two cellular organisms and for two manufacturomes for CMOS integrated circuit manufacturing. Conclusions We show that the relevant mapping relations may not be Abelian, and that these problems cannot yet be resolved because the interactomes and manufacturomes are incomplete. PMID:21689427

  2. Adapting to Biology: Maintaining Container-Closure System Compatibility with the Therapeutic Biologic Revolution.

    Science.gov (United States)

    Degrazio, Dominick

    Many pharmaceutical companies are transitioning their research and development drug product pipeline from traditional small-molecule injectables to the dimension of evolving therapeutic biologics. Important concerns associated with this changeover are becoming forefront, as challenges develop of varying complexity uncommon with the synthesis and production of traditional drugs. Therefore, alternative measures must be established that aim to preserve the efficacy and functionality of a biologic that might not be implemented for small molecules. Conserving protein stability is relative to perpetuating a net equilibrium of both intrinsic and extrinsic factors. Key to sustaining this balance is the ability of container-closure systems to maintain their compatibility with the ever-changing dynamics of therapeutic biologics. Failure to recognize and adjust the material properties of packaging components to support compatibility with therapeutic biologics can compromise patient safety, drug productivity, and biological stability. This review will examine the differences between small-molecule drugs and therapeutic biologics, lay a basic foundation for understanding the stability of therapeutic biologics, and demonstrate potential sources of container-closure systems' incompatibilities with therapeutic biologics at a mechanistic level. Many pharmaceutical companies are transitioning their research and development drug product pipeline from traditional small-molecule injectables to recombinantly derived therapeutic biologics. Concerns associated with this transformation are becoming prominent, as therapeutic biologics are uncharacteristic to small-molecule drugs. Maintaining the stability of a therapeutic biologic is a combination of balancing intrinsic factors and external elements within the biologic's microenvironment. An important aspect of this balance is relegated to the overall compatibility of primary, parenteral container-closure systems with therapeutic biologics

  3. System control and display

    International Nuclear Information System (INIS)

    Jacobs, J.

    1977-01-01

    The system described was designed, developed, and installed on short time scales and primarily utilized of-the-shelf military and commercial hardware. The system was designed to provide security-in-depth and multiple security options with several stages of redundancy. Under normal operating conditions, the system is computer controlled with manual backup during abnormal conditions. Sensor alarm data are processed in conjunction with weather data to reduce nuisance alarms. A structured approach is used to order alarmed sectors for assessment. Alarm and video information is presented to security personnel in an interactive mode. Historical operational data are recorded for system evaluation

  4. Ion implantation control system

    International Nuclear Information System (INIS)

    Gault, R. B.; Keutzer, L. L.

    1985-01-01

    A control system is disclosed for an ion implantation system of the type in which the wafers to be implanted are mounted around the periphery of a disk which rotates and also moves in a radial direction relative to an ion beam to expose successive sections of each wafer to the radiation. The control system senses beam current which passes through one or more apertures in the disk and is collected by a Faraday cup. This current is integrated to obtain a measure of charge which is compared with a calculated value based upon the desired ion dosage and other parameters. The resultant controls the number of incremental steps the rotating disk moves radially to expose the adjacent sections of each wafer. This process is continued usually with two or more traverses until the entire surface of each wafer has been implanted with the proper ion dosage

  5. Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Nielsen, Jens; Jewett, Michael Christopher

    2008-01-01

    in the industrial application of this yeast. Developments in genomics and high-throughput systems biology tools are enhancing one's ability to rapidly characterize cellular behaviour, which is valuable in the field of metabolic engineering where strain characterization is often the bottleneck in strain development...... programmes. Here, the impact of systems biology on metabolic engineering is reviewed and perspectives on the role of systems biology in the design of cell factories are given....

  6. Fabrication, Characterization, and Biological Activity of Avermectin Nano-delivery Systems with Different Particle Sizes

    Science.gov (United States)

    Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin

    2018-01-01

    Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.

  7. Network Analyses in Systems Biology: New Strategies for Dealing with Biological Complexity

    DEFF Research Database (Denmark)

    Green, Sara; Serban, Maria; Scholl, Raphael

    2018-01-01

    of biological networks using tools from graph theory to the application of dynamical systems theory to understand the behavior of complex biological systems. We show how network approaches support and extend traditional mechanistic strategies but also offer novel strategies for dealing with biological...... strategies? When and how can network and mechanistic approaches interact in productive ways? In this paper we address these questions by focusing on how biological networks are represented and analyzed in a diverse class of case studies. Our examples span from the investigation of organizational properties...

  8. The TRISTAN control system

    International Nuclear Information System (INIS)

    Kurokawa, Shinichi; Akiyama, Atsuyoshi; Ishii, Kazuhiro; Kadokura, Eiichi; Katoh, Tadahiko; Kawamoto, Takashi; Kikutani, Eiji; Kimura, Yoshitaka; Koiso, Haruyo; Komada, Ichitaka; Kudo, Kikuo; Naito, Takashi; Oide, Katsunobu; Takeda, Shigeru; Uchino, Kenji; Urakawa, Junji; Shinomoto, Manabu; Kurihara, Michio; Abe, Kenichi

    1986-01-01

    The 8 GeV accumulation ring and the 30 GeV main ring of TRISTAN, an accelerator-storage ring complex at KEK, are controlled by a highly computerized control system. Twenty-four minicomputers are linked by optical fiber cables to form an N-to-N token ring network. The transmission speed on the cables is 10 Mbps. From each minicomputer, a CAMAC serial highway extends to the controlled equipment. At present, twenty minicomputers are connected to the network and are used to control the accumulation ring. The software system is based on the NODAL language devised at the CERN SPS. The KEK NODAL system retains main features of the original NODAL: the interpretive scheme, the multi-computer programming facility, and the data-module concept. In addition, it has the following features: (1) fast execution due to the compiler-interpreter method, (2) a multi-computer file system (3), a full-screen editing facility, and (4) a dynamic linkage scheme for data modules and NODAL functions. The accelerators are operated through five operator consoles, each of which is mangaged by one minicomputer in the network. An operator console contains two 20-inch high-resolution color graphic displays, a pair of touch-panels, and ten small TV monitors. One touch-panel is used to select a program and a piece of equipment to be controlled; the other is used mainly to perform the console actions. (orig.)

  9. neural control system

    International Nuclear Information System (INIS)

    Elshazly, A.A.E.

    2002-01-01

    Automatic power stabilization control is the desired objective for any reactor operation , especially, nuclear power plants. A major problem in this area is inevitable gap between a real plant ant the theory of conventional analysis and the synthesis of linear time invariant systems. in particular, the trajectory tracking control of a nonlinear plant is a class of problems in which the classical linear transfer function methods break down because no transfer function can represent the system over the entire operating region . there is a considerable amount of research on the model-inverse approach using feedback linearization technique. however, this method requires a prices plant model to implement the exact linearizing feedback, for nuclear reactor systems, this approach is not an easy task because of the uncertainty in the plant parameters and un-measurable state variables . therefore, artificial neural network (ANN) is used either in self-tuning control or in improving the conventional rule-based exper system.the main objective of this thesis is to suggest an ANN, based self-learning controller structure . this method is capable of on-line reinforcement learning and control for a nuclear reactor with a totally unknown dynamics model. previously, researches are based on back- propagation algorithm . back -propagation (BP), fast back -propagation (FBP), and levenberg-marquardt (LM), algorithms are discussed and compared for reinforcement learning. it is found that, LM algorithm is quite superior

  10. Conservation biological control and enemy diversity on a landscape scale

    NARCIS (Netherlands)

    Tscharntke, T.; Bommarco, R.; Clough, Y.; Crist, T.O.; Kleijn, D.; Rand, T.A.; Tylianakis, J.M.; Nouhuys, S.; Vidal, S.

    2007-01-01

    Conservation biological control in agroecosystems requires a landscape management perspective, because most arthropod species experience their habitat at spatial scales beyond the plot level, and there is spillover of natural enemies across the crop–noncrop interface. The species pool in the

  11. Methylene Diphosphonate Chemical and Biological control of MDP complex

    International Nuclear Information System (INIS)

    Aungurarat, Angkanan; Ngamprayad, Tippanan

    2000-01-01

    Technetium-9 9m MDP easy prepared from MDP kits which different sources such as OAP (In house), SIGMA. The resulting Tc 9 9m -MDP preparations were controlled in chemical and biological tests to compare the different results in these cases: radiochemical purity, the quantity of starting material and biodistribution result

  12. Biological control agent for mosquito larvae: Review on the killifish ...

    African Journals Online (AJOL)

    This review attempts to give an account on the recent advances on the killifish Aphanius dispar dispar as a biological control agent for mosquito larvae. Thirty six (36) articles of literature (scientific papers, technical and workshop reports) on this subject covering the period between 1980 and 2009 were reviewed.

  13. Studies on bacterial flora and biological control agent of Cydia ...

    African Journals Online (AJOL)

    In the present study, in order to find a more effective and safe biological control agent against Cydia pomonella, we investigated the bacterial flora and tested them for insecticidal effects on this insect. According to morphological, physiological and biochemical tests, bacterial flora were identified as Proteus rettgeri (Cp1), ...

  14. Stakeholder perceptions: Biological control of Russian olive (Elaeagnus angustifolia)

    Science.gov (United States)

    Sharlene E. Sing; Kevin J. Delaney

    2016-01-01

    An online survey was distributed through email lists provided by various stakeholder groups on behalf of the International Consortium for Biological Control of Russian Olive in spring of 2012. A total of 392 respondents replied from 24 U.S. states and 1 Canadian province. Questions posed in the survey were designed to identify and categorize 1) stakeholders by...

  15. The perception of corn farmers about biological control of Caradrina ...

    African Journals Online (AJOL)

    The purpose of this study was to analyze the perception of corn farmers about biological control of Caradrina by Braconid in Dezful Township, Khouzestan Province, Iran. The method used in this study was correlative descriptive and causal relation. A random sample of Dezful township corn farmers of Khouzestan Province, ...

  16. Funding needed for assessments of weed biological control

    Science.gov (United States)

    John L. Maron; Dean E. Pearson; Stephen M. Hovick; Walter P. Carson

    2010-01-01

    Invasive non-native plants are a serious economic and ecological problem worldwide, and major efforts are therefore devoted to reducing weed abundance in agricultural and natural settings. Effective options for reducing invasive abundance and spread are few, although one common approach is biological control - the introduction of specialist herbivores or pathogens from...

  17. Seasonal allergic rhinitis and systems biology-oriented biomarker discovery

    NARCIS (Netherlands)

    Baars, E.W.; Nierop, A.F.M.; Savelkoul, H.F.J.

    2015-01-01

    There is an increasing interest in science and medicine in the systems approach. Instead of the reductionist approach that focuses on the physical and chemical properties of the individual components, systems biology aims to describe, understand, and explain from the complex biological systems

  18. Biologically inspired control of humanoid robot arms robust and adaptive approaches

    CERN Document Server

    Spiers, Adam; Herrmann, Guido

    2016-01-01

    This book investigates a biologically inspired method of robot arm control, developed with the objective of synthesising human-like motion dynamically, using nonlinear, robust and adaptive control techniques in practical robot systems. The control method caters to a rising interest in humanoid robots and the need for appropriate control schemes to match these systems. Unlike the classic kinematic schemes used in industrial manipulators, the dynamic approaches proposed here promote human-like motion with better exploitation of the robot’s physical structure. This also benefits human-robot interaction. The control schemes proposed in this book are inspired by a wealth of human-motion literature that indicates the drivers of motion to be dynamic, model-based and optimal. Such considerations lend themselves nicely to achievement via nonlinear control techniques without the necessity for extensive and complex biological models. The operational-space method of robot control forms the basis of many of the techniqu...

  19. Breeding system and pollination biology of the semidomesticated ...

    African Journals Online (AJOL)

    Breeding system and pollination biology of the semidomesticated fruit tree, Tamarindus indica L. (Leguminosae: Caesalpinioideae ): Implications for fruit production, selective breeding, and conservation of genetic resources.

  20. RHIC control system

    Energy Technology Data Exchange (ETDEWEB)

    Barton, D.S. E-mail: dsbarton@bnl.gov; Binello, S.; Buxton, W.; Clifford, T.; D' Ottavio, T.; Hartmann, H.; Hoff, L.T.; Katz, R.; Kennell, S.; Kerner, T.; Laster, J.; Lee, R.C.; Marusic, A.; Michnoff, R.; Morris, J.; Oerter, B.R.; Olsen, R.; Piacentino, J.; Skelly, J.F

    2003-03-01

    The RHIC control system architecture is hierarchical and consists of two physical layers with a fiber-optic network connection. The Front-End Level systems consist of VME chassis with processors running a real-time operating system and both VME I/O modules and remote bus interfaces. Accelerator device software interfaces are implemented as objects in C++. The network implementation uses high speed, switched Ethernet technology. Specialized hardware modules were built for waveform control of power supplies, multiplexed signal acquisition, and timing services. The Console Level systems are Unix workstations. A strong emphasis has been given to developing highly reusable, standard software tools for use in building physics and diagnostic application software.

  1. RHIC control system

    International Nuclear Information System (INIS)

    Barton, D.S.; Binello, S.; Buxton, W.; Clifford, T.; D'Ottavio, T.; Hartmann, H.; Hoff, L.T.; Katz, R.; Kennell, S.; Kerner, T.; Laster, J.; Lee, R.C.; Marusic, A.; Michnoff, R.; Morris, J.; Oerter, B.R.; Olsen, R.; Piacentino, J.; Skelly, J.F.

    2003-01-01

    The RHIC control system architecture is hierarchical and consists of two physical layers with a fiber-optic network connection. The Front-End Level systems consist of VME chassis with processors running a real-time operating system and both VME I/O modules and remote bus interfaces. Accelerator device software interfaces are implemented as objects in C++. The network implementation uses high speed, switched Ethernet technology. Specialized hardware modules were built for waveform control of power supplies, multiplexed signal acquisition, and timing services. The Console Level systems are Unix workstations. A strong emphasis has been given to developing highly reusable, standard software tools for use in building physics and diagnostic application software

  2. How do biological systems escape 'chaotic' state?

    Indian Academy of Sciences (India)

    B J Rao

    2018-02-13

    Feb 13, 2018 ... Lorencova 2016), sociology, physics, computer science, economics and even biology ... dynamic complexity associated with them at multiple levels? .... Social anthropology and the science of chaos (Oxford: Berghahn Books).

  3. ZEUS hardware control system

    Science.gov (United States)

    Loveless, R.; Erhard, P.; Ficenec, J.; Gather, K.; Heath, G.; Iacovacci, M.; Kehres, J.; Mobayyen, M.; Notz, D.; Orr, R.; Orr, R.; Sephton, A.; Stroili, R.; Tokushuku, K.; Vogel, W.; Whitmore, J.; Wiggers, L.

    1989-12-01

    The ZEUS collaboration is building a system to monitor, control and document the hardware of the ZEUS detector. This system is based on a network of VAX computers and microprocessors connected via ethernet. The database for the hardware values will be ADAMO tables; the ethernet connection will be DECNET, TCP/IP, or RPC. Most of the documentation will also be kept in ADAMO tables for easy access by users.

  4. ZEUS hardware control system

    International Nuclear Information System (INIS)

    Loveless, R.; Erhard, P.; Ficenec, J.; Gather, K.; Heath, G.; Iacovacci, M.; Kehres, J.; Mobayyen, M.; Notz, D.; Orr, R.; Sephton, A.; Stroili, R.; Tokushuku, K.; Vogel, W.; Whitmore, J.; Wiggers, L.

    1989-01-01

    The ZEUS collaboration is building a system to monitor, control and document the hardware of the ZEUS detector. This system is based on a network of VAX computers and microprocessors connected via ethernet. The database for the hardware values will be ADAMO tables; the ethernet connection will be DECNET, TCP/IP, or RPC. Most of the documentation will also be kept in ADAMO tables for easy access by users. (orig.)

  5. Economic Benefit for Cuban Laurel Thrips Biological Control.

    Science.gov (United States)

    Shogren, C; Paine, T D

    2016-02-01

    The Cuban laurel thrips, Gynaikothrips ficorum Marchal (Thysanoptera: Phlaeothripidae), is a critical insect pest of Ficus microcarpa in California urban landscapes and production nurseries. Female thrips feed and oviposit on young Ficus leaves, causing the expanding leaves to fold or curl into a discolored leaf gall. There have been attempts to establish specialist predator natural enemies of the thrips, but no success has been reported. We resampled the same areas in 2013-2014 where we had released Montandoniola confusa (= morguesi) Streito and Matocq (Hemiptera: Anthocoridae) in southern California in 1995 but had been unable to recover individuals in 1997-1998. Thrips galls were significantly reduced in all three of the locations in the recent samples compared with the earlier samples. M. confusa was present in all locations and appears to be providing successful biological control. The value of the biological control, the difference between street trees in good foliage condition and trees with poor foliage, was $58,766,166. If thrips damage reduced the foliage to very poor condition, the value of biological control was $73,402,683. Total cost for the project was $61,830. The benefit accrued for every dollar spent on the biological control of the thrips ranged from $950, if the foliage was in poor condition, to $1,187, if the foliage was in very poor condition. The value of urban forest is often underappreciated. Economic analyses that clearly demonstrate the very substantial rates of return on investment in successful biological control in urban forests provide compelling arguments for supporting future efforts. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Control of complex systems

    CERN Document Server

    Albertos, Pedro; Blanke, Mogens; Isidori, Alberto; Schaufelberger, Walter; Sanz, Ricardo

    2001-01-01

    The world of artificial systems is reaching complexity levels that es­ cape human understanding. Surface traffic, electricity distribution, air­ planes, mobile communications, etc. , are examples that demonstrate that we are running into problems that are beyond classical scientific or engi­ neering knowledge. There is an ongoing world-wide effort to understand these systems and develop models that can capture its behavior. The reason for this work is clear, if our lack of understanding deepens, we will lose our capability to control these systems and make they behave as we want. Researchers from many different fields are trying to understand and develop theories for complex man-made systems. This book presents re­ search from the perspective of control and systems theory. The book has grown out of activities in the research program Control of Complex Systems (COSY). The program has been sponsored by the Eu­ ropean Science Foundation (ESF) which for 25 years has been one of the leading players in stimula...

  7. Industrial systems biology and its impact on synthetic biology of yeast cell factories.

    Science.gov (United States)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-06-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal of developing improved yeast cell factories. Biotechnol. Bioeng. 2016;113: 1164-1170. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  8. Industrial systems biology and its impact on synthetic biology of yeast cell factories

    DEFF Research Database (Denmark)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-01-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools......, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex...... regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal...

  9. Evaluation of Orius species for biological control of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae)

    NARCIS (Netherlands)

    Tommasini, M.G.

    2003-01-01

    Key words: Thysanoptera, Frankliniella occidentalis, Heteroptera, Orius leavigatu, Orius majusculu, Orius niger, Orius insidiosus, Biology, Diapause, Biological control.The overall aim of this research was to develop a biological control programme for F. occidentalis through the selection of

  10. Potential for widespread application of biological control of stored-product pests

    DEFF Research Database (Denmark)

    Hansen, Lise Stengaard

    2007-01-01

    Biological control of stored product pests has substantial potential in Europe". This is essentially the conclusion of the activities of a European working group funded by the COST system, an intergovernmental networking system. Working group 4 of COST action 842 (2000-2005) focussed on biologica...... for these situations will contribute to ensuring that stored food products are protected from insect and mite pests using techniques that are safe for consumers, workers and the environment.......Biological control of stored product pests has substantial potential in Europe". This is essentially the conclusion of the activities of a European working group funded by the COST system, an intergovernmental networking system. Working group 4 of COST action 842 (2000-2005) focussed on biological...

  11. HESYRL control system status

    International Nuclear Information System (INIS)

    Yao Chihyuan

    1992-01-01

    HESYRL synchrotron radiation storage ring was completed in 1989 and has been in commissioning since then. Now it has met its design specification and is ready for synchrotron light experiments. Control system of the project was completed in 1989 and some modifications were made during commissioning. This paper describes its present configuration, status and upgrading plan. (author)

  12. Fault Tolerant Control Systems

    DEFF Research Database (Denmark)

    Bøgh, S. A.

    This thesis considered the development of fault tolerant control systems. The focus was on the category of automated processes that do not necessarily comprise a high number of identical sensors and actuators to maintain safe operation, but still have a potential for improving immunity to component...

  13. Lighting Control Systems Handbook.

    Science.gov (United States)

    1985-06-01

    cost, both initial and operating. Initially, the control system designer must collect in- formation and then study and weigh several areas including...8217odLe 045. Pearl Harbor. III: Code 11 Pearl Harbor ar ho I ir I L ’ odk 402. R IYI& [’. Plearl II arbor I II: Li bra ry. Pearl HaIitrbor. I ai

  14. GLCTA control system

    International Nuclear Information System (INIS)

    Terunuma, N.; Hayano, H.; Higo, T.; Saeki, T.; Suehara, T.; Watanabe, K.

    2004-01-01

    Research and development for the high power X-band RF technologies have been performed on the GLC Test Accelerator, GLCTA, since fall of 2003. The control system of this facility is based on the PC-Linux servers that handle the CAMAC, VME and PLC modules. Automated RF processing and data accumulation of the RF breakdown have been performed. (author)

  15. A Magnetic Sensor System for Biological Detection

    KAUST Repository

    Li, Fuquan

    2015-05-01

    Magnetic biosensors detect biological targets through sensing the stray field of magnetic beads which label the targets. Commonly, magnetic biosensors employ the “sandwich” method to immobilize biological targets, i.e., the targets are sandwiched between a bio-functionalized sensor surface and bio-functionalized magnetic beads. This method has been used very successfully in different application, but its execution requires a rather elaborate procedure including several washing and incubation steps. This dissertation investigates a new magnetic biosensor concept, which enables a simple and effective detection of biological targets. The biosensor takes advantage of the size difference between bare magnetic beads and compounds of magnetic beads and biological targets. First, the detection of super-paramagnetic beads via magnetic tunnel junction (MTJ) sensors is implemented. Frequency modulation is used to enhance the signal-to-noise ratio, enabling the detection of a single magnetic bead. Second, the concept of the magnetic biosensor is investigated theoretically. The biosensor consists of an MTJ sensor, which detects the stray field of magnetic beads inside of a trap on top of the MTJ. A microwire between the trap and the MTJ is used to attract magnetic beads to the trapping well by applying a current to it. The MTJ sensor’s output depends on the number of beads inside the trap. If biological targets are in the sample solution, the beads will form bead compounds consisting of beads linked to the biological targets. Since bead compounds are larger than bare beads, the number of beads inside the trapping well will depend on the presence of biological targets. Hence, the output of the MTJ sensor will depend on the biological targets. The dependences of sensor signals on the sizes of the MTJ sensor, magnetic beads and biological targets are studied to find the optimum constellations for the detection of specific biological targets. The optimization is demonstrated

  16. Internet Congestion Control System

    Directory of Open Access Journals (Sweden)

    Pranoto Rusmin

    2010-10-01

    Full Text Available Internet congestion occurs when resource demands exceeds the network capacity. But, it is not the only reason. Congestion can happen on some users because some others user has higher sending rate. Then some users with lower sending rate will experience congestion. This partial congestion is caused by inexactly feedback. At this moment congestion are solved by the involvement of two controlling mechanisms. These mechanisms are flow/congestion control in the TCP source and Active Queue Management (AQM in the router. AQM will provide feedback to the source a kind of indication for the occurrence of the congestion in the router, whereas the source will adapt the sending rate appropriate with the feedback. These mechanisms are not enough to solve internet congestion problem completely. Therefore, this paper will explain internet congestion causes, weakness, and congestion control technique that researchers have been developed. To describe congestion system mechanisms and responses, the system will be simulated by Matlab.

  17. PEP computer control system

    International Nuclear Information System (INIS)

    1979-03-01

    This paper describes the design and performance of the computer system that will be used to control and monitor the PEP storage ring. Since the design is essentially complete and much of the system is operational, the system is described as it is expected to 1979. Section 1 of the paper describes the system hardware which includes the computer network, the CAMAC data I/O system, and the operator control consoles. Section 2 describes a collection of routines that provide general services to applications programs. These services include a graphics package, data base and data I/O programs, and a director programm for use in operator communication. Section 3 describes a collection of automatic and semi-automatic control programs, known as SCORE, that contain mathematical models of the ring lattice and are used to determine in real-time stable paths for changing beam configuration and energy and for orbit correction. Section 4 describes a collection of programs, known as CALI, that are used for calibration of ring elements

  18. Biological Control of Meloidogyne hapla Using an Antagonistic Bacterium

    Directory of Open Access Journals (Sweden)

    Jiyeong Park

    2014-09-01

    Full Text Available We examined the efficacy of a bacterium for biocontrol of the root-knot nematode (RKN Meloidogyne hapla in carrot (Daucus carota subsp. sativus and tomato (Solanum lycopersicum. Among 542 bacterial isolates from various soils and plants, the highest nematode mortality was observed for treatments with isolate C1-7, which was identified as Bacillus cereus based on cultural and morphological characteristics, the Biolog program, and 16S rRNA sequencing analyses. The population density and the nematicidal activity of B. cereus C1-7 remained high until the end of culture in brain heart infusion broth, suggesting that it may have sustainable biocontrol potential. In pot experiments, the biocontrol efficacy of B. cereus C1-7 was high, showing complete inhibition of root gall or egg mass formation by RKN in carrot and tomato plants, and subsequently reducing RKN damage and suppressing nematode population growth, respectively. Light microscopy of RKN-infected carrot root tissues treated with C1-7 showed reduced formation of gall cells and fully developed giant cells, while extensive gall cells and fully mature giant cells with prominent cell wall ingrowths formed in the untreated control plants infected with RKNs. These histopathological characteristics may be the result of residual or systemic biocontrol activity of the bacterium, which may coincide with the biocontrol efficacies of nematodes in pots. These results suggest that B. cereus C1-7 can be used as a biocontrol agent for M. hapla.

  19. The aims of systems biology: between molecules and organisms.

    Science.gov (United States)

    Noble, D

    2011-05-01

    The systems approach to biology has a long history. Its recent rapid resurgence at the turn of the century reflects the problems encountered in interpreting the sequencing of the genome and the failure of that immense achievement to provide rapid and direct solutions to major multi-factorial diseases. This paper argues that systems biology is necessarily multilevel and that there is no privileged level of causality in biological systems. It is an approach rather than a separate discipline. Functionality arises from biological networks that interact with the genome, the environment and the phenotype. This view of biology is very different from the gene-centred views of neo-Darwinism and molecular biology. In neuroscience, the systems approach leads naturally to 2 important conclusions: first, that the idea of 'programs' in the brain is confusing, and second, that the self is better interpreted as a process than as an object. © Georg Thieme Verlag KG Stuttgart · New York.

  20. The ISOLDE control system

    International Nuclear Information System (INIS)

    Deloose, I.; Pace, A.

    1994-01-01

    The two CERN isotope separators named ISOLDE have been running on the new Personal Computer (PC) based control system since April 1992. The new architecture that makes heavy use of the commercial software and hardware of the PC market has been implemented on the 1700 geographically distributed control channels of the two separators and their experimental area. Eleven MSDOS Intel-based PCs with approximately 80 acquisition and control boards are used to access the equipment and are controlled from three PCs running Microsoft Windows used as consoles through a Novell Local Area Network. This paper describes the interesting solutions found and discusses the reduced programming workload and costs that have been obtained. ((orig.))

  1. Macro to microfluidics system for biological environmental monitoring.

    Science.gov (United States)

    Delattre, Cyril; Allier, Cédric P; Fouillet, Yves; Jary, Dorothée; Bottausci, Frederic; Bouvier, Denis; Delapierre, Guillaume; Quinaud, Manuelle; Rival, Arnaud; Davoust, Laurent; Peponnet, Christine

    2012-01-01

    Biological environmental monitoring (BEM) is a growing field of research which challenges both microfluidics and system automation. The aim is to develop a transportable system with analysis throughput which satisfies the requirements: (i) fully autonomous, (ii) complete protocol integration from sample collection to final analysis, (iii) detection of diluted molecules or biological species in a large real life environmental sample volume, (iv) robustness and (v) flexibility and versatility. This paper discusses all these specifications in order to define an original fluidic architecture based on three connected modules, a sampling module, a sample preparation module and a detection module. The sample preparation module highly concentrates on the pathogens present in a few mL samples of complex and unknown solutions and purifies the pathogens' nucleic acids into a few μL of a controlled buffer. To do so, a two-step concentration protocol based on magnetic beads is automated in a reusable macro-to-micro fluidic system. The detection module is a PCR based miniaturized platform using digital microfluidics, where reactions are performed in 64 nL droplets handled by electrowetting on dielectric (EWOD) actuation. The design and manufacture of the two modules are reported as well as their respective performances. To demonstrate the integration of the complete protocol in the same system, first results of pathogen detection are shown. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Control of self-organizing nonlinear systems

    CERN Document Server

    Klapp, Sabine; Hövel, Philipp

    2016-01-01

    The book summarizes the state-of-the-art of research on control of self-organizing nonlinear systems with contributions from leading international experts in the field. The first focus concerns recent methodological developments including control of networks and of noisy and time-delayed systems. As a second focus, the book features emerging concepts of application including control of quantum systems, soft condensed matter, and biological systems. Special topics reflecting the active research in the field are the analysis and control of chimera states in classical networks and in quantum systems, the mathematical treatment of multiscale systems, the control of colloidal and quantum transport, the control of epidemics and of neural network dynamics.

  3. Morphogenesis and pattern formation in biological systems experiments and models

    CERN Document Server

    Noji, Sumihare; Ueno, Naoto; Maini, Philip

    2003-01-01

    A central goal of current biology is to decode the mechanisms that underlie the processes of morphogenesis and pattern formation. Concerned with the analysis of those phenomena, this book covers a broad range of research fields, including developmental biology, molecular biology, plant morphogenesis, ecology, epidemiology, medicine, paleontology, evolutionary biology, mathematical biology, and computational biology. In Morphogenesis and Pattern Formation in Biological Systems: Experiments and Models, experimental and theoretical aspects of biology are integrated for the construction and investigation of models of complex processes. This collection of articles on the latest advances by leading researchers not only brings together work from a wide spectrum of disciplines, but also provides a stepping-stone to the creation of new areas of discovery.

  4. A review of imaging techniques for systems biology

    Directory of Open Access Journals (Sweden)

    Po Ming J

    2008-08-01

    Full Text Available Abstract This paper presents a review of imaging techniques and of their utility in system biology. During the last decade systems biology has matured into a distinct field and imaging has been increasingly used to enable the interplay of experimental and theoretical biology. In this review, we describe and compare the roles of microscopy, ultrasound, CT (Computed Tomography, MRI (Magnetic Resonance Imaging, PET (Positron Emission Tomography, and molecular probes such as quantum dots and nanoshells in systems biology. As a unified application area among these different imaging techniques, examples in cancer targeting are highlighted.

  5. Hierarchical structure of biological systems: a bioengineering approach.

    Science.gov (United States)

    Alcocer-Cuarón, Carlos; Rivera, Ana L; Castaño, Victor M

    2014-01-01

    A general theory of biological systems, based on few fundamental propositions, allows a generalization of both Wierner and Berthalanffy approaches to theoretical biology. Here, a biological system is defined as a set of self-organized, differentiated elements that interact pair-wise through various networks and media, isolated from other sets by boundaries. Their relation to other systems can be described as a closed loop in a steady-state, which leads to a hierarchical structure and functioning of the biological system. Our thermodynamical approach of hierarchical character can be applied to biological systems of varying sizes through some general principles, based on the exchange of energy information and/or mass from and within the systems.

  6. On the interplay between mathematics and biology: hallmarks toward a new systems biology.

    Science.gov (United States)

    Bellomo, Nicola; Elaiw, Ahmed; Althiabi, Abdullah M; Alghamdi, Mohammed Ali

    2015-03-01

    This paper proposes a critical analysis of the existing literature on mathematical tools developed toward systems biology approaches and, out of this overview, develops a new approach whose main features can be briefly summarized as follows: derivation of mathematical structures suitable to capture the complexity of biological, hence living, systems, modeling, by appropriate mathematical tools, Darwinian type dynamics, namely mutations followed by selection and evolution. Moreover, multiscale methods to move from genes to cells, and from cells to tissue are analyzed in view of a new systems biology approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. MIDAS: A Modular DNA Assembly System for Synthetic Biology.

    Science.gov (United States)

    van Dolleweerd, Craig J; Kessans, Sarah A; Van de Bittner, Kyle C; Bustamante, Leyla Y; Bundela, Rudranuj; Scott, Barry; Nicholson, Matthew J; Parker, Emily J

    2018-04-20

    A modular and hierarchical DNA assembly platform for synthetic biology based on Golden Gate (Type IIS restriction enzyme) cloning is described. This enabling technology, termed MIDAS (for Modular Idempotent DNA Assembly System), can be used to precisely assemble multiple DNA fragments in a single reaction using a standardized assembly design. It can be used to build genes from libraries of sequence-verified, reusable parts and to assemble multiple genes in a single vector, with full user control over gene order and orientation, as well as control of the direction of growth (polarity) of the multigene assembly, a feature that allows genes to be nested between other genes or genetic elements. We describe the detailed design and use of MIDAS, exemplified by the reconstruction, in the filamentous fungus Penicillium paxilli, of the metabolic pathway for production of paspaline and paxilline, key intermediates in the biosynthesis of a range of indole diterpenes-a class of secondary metabolites produced by several species of filamentous fungi. MIDAS was used to efficiently assemble a 25.2 kb plasmid from 21 different modules (seven genes, each composed of three basic parts). By using a parts library-based system for construction of complex assemblies, and a unique set of vectors, MIDAS can provide a flexible route to assembling tailored combinations of genes and other genetic elements, thereby supporting synthetic biology applications in a wide range of expression hosts.

  8. Dynamitron control systems

    International Nuclear Information System (INIS)

    Lisanti, Thomas F.

    2005-01-01

    The Dynamitron control system utilizes the latest personal computer technology in control circuitry and components. Both the DPC-2000 and newer Millennium series of control systems make use of their modular architecture in both software and hardware to keep up with customer and engineering demands. This also allows the main structure of the software to remain constant for the user while software drivers are easily changed as hardware demands are modified and improved. The system is presented as four units; the Remote I/O (Input/Output), Local Analog and Digital I/O, Operator Interface and the Main Computer. The operator is provided with a selection of many informative screen displays. The control program handles all graphic screen displays and the updating of these screens directly; it does not communicate to a display terminal. This adds to the quick response and excellent operator feedback received while operating the accelerator. The CPU also has the ability to store and record all process variable setpoints for each product that will be treated. All process parameters are printed to a report at regular intervals during a process run for record keeping

  9. Wireless Remote Control System

    Directory of Open Access Journals (Sweden)

    Adrian Tigauan

    2012-06-01

    Full Text Available This paper presents the design of a wireless remote control system based on the ZigBee communication protocol. Gathering data from sensors or performing control tasks through wireless communication is advantageous in situations in which the use of cables is impractical. An Atmega328 microcontroller (from slave device is used for gathering data from the sensors and transmitting it to a coordinator device with the help of the XBee modules. The ZigBee standard is suitable for low-cost, low-data-rate and low-power wireless networks implementations. The XBee-PRO module, designed to meet ZigBee standards, requires minimal power for reliable data exchange between devices over a distance of up to 1600m outdoors. A key component of the ZigBee protocol is the ability to support networking and this can be used in a wireless remote control system. This system may be employed e.g. to control temperature and humidity (SHT11 sensor and light intensity (TSL230 sensor levels inside a commercial greenhouse.

  10. Management control system description

    Energy Technology Data Exchange (ETDEWEB)

    Bence, P. J.

    1990-10-01

    This Management Control System (MCS) description describes the processes used to manage the cost and schedule of work performed by Westinghouse Hanford Company (Westinghouse Hanford) for the US Department of Energy, Richland Operations Office (DOE-RL), Richland, Washington. Westinghouse Hanford will maintain and use formal cost and schedule management control systems, as presented in this document, in performing work for the DOE-RL. This MCS description is a controlled document and will be modified or updated as required. This document must be approved by the DOE-RL; thereafter, any significant change will require DOE-RL concurrence. Westinghouse Hanford is the DOE-RL operations and engineering contractor at the Hanford Site. Activities associated with this contract (DE-AC06-87RL10930) include operating existing plant facilities, managing defined projects and programs, and planning future enhancements. This document is designed to comply with Section I-13 of the contract by providing a description of Westinghouse Hanford's cost and schedule control systems used in managing the above activities. 5 refs., 22 figs., 1 tab.

  11. Application of integrative genomics and systems biology to conventional and in vitro reproductive traits in cattle

    DEFF Research Database (Denmark)

    Mazzoni, Gianluca; Pedersen, Hanne S.; de Oliveira Junior, Gerson A.

    2017-01-01

    by both conventional and ARTs such as OPU-IVP. The integration of systems biology information across different biological layers generates a complete view of the different molecular networks that control complex traits and can provide a strong contribution to the understanding of traits related to ARTs....

  12. Programming Morphogenesis through Systems and Synthetic Biology.

    Science.gov (United States)

    Velazquez, Jeremy J; Su, Emily; Cahan, Patrick; Ebrahimkhani, Mo R

    2018-04-01

    Mammalian tissue development is an intricate, spatiotemporal process of self-organization that emerges from gene regulatory networks of differentiating stem cells. A major goal in stem cell biology is to gain a sufficient understanding of gene regulatory networks and cell-cell interactions to enable the reliable and robust engineering of morphogenesis. Here, we review advances in synthetic biology, single cell genomics, and multiscale modeling, which, when synthesized, provide a framework to achieve the ambitious goal of programming morphogenesis in complex tissues and organoids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Thresholds for HLB vector control in infected commercial citrus and compatibility with biological control

    OpenAIRE

    Monzo, C.; Hendricks, K.; Roberts, P.; Stansly, P. A.

    2014-01-01

    Control of the HLB vector, Diaphorina citri Kuwayama, is considered a basic component for management this disease, even in a high HLB incidence scenario. Such control is mostly chemically oriented. However, over use of insecticides would increase costs and be incompatible with biological control. Establishment of economic thresholds for psyllid control under different price scenarios could optimize returns on investment.

  14. Access control system operation

    International Nuclear Information System (INIS)

    Barnes, L.D.

    1981-06-01

    An automated method for the control and monitoring of personnel movement throughout the site was developed under contract to the Department of Energy by Allied-General Nuclear Services (AGNS) at the Barnwell Nuclear Fuel Plant (BNFP). These automated features provide strict enforcement of personnel access policy without routine patrol officer involvement. Identification methods include identification by employee ID number, identification by voice verification and identification by physical security officer verification. The ability to grant each level of access authority is distributed over the organization to prevent any single individual at any level in the organization from being capable of issuing an authorization for entry into sensitive areas. Each access event is recorded. As access events occur, the inventory of both the entered and the exited control area is updated so that a current inventory is always available for display. The system has been operated since 1979 in a development mode and many revisions have been implemented in hardware and software as areas were added to the system. Recent changes have involved the installation of backup systems and other features required to achieve a high reliability. The access control system and recent operating experience are described

  15. The COSY control system

    International Nuclear Information System (INIS)

    Bongers, N.; Hacker, U.; Henn, K.; Richert, A.; Simon, M.; Sobotta, K.; Stephan, M.; Vashegyi, T.; Weinert, A.

    1992-01-01

    The COSY control system architecture is organized strongly hierarchically with distributed intelligence and extensive use of standards. At the top level of computer control hardware work stations give the operator graphical access to the process. For these tasks Hewlett Packard HP 9000 Series 700 computers with HP-UX and X-Windows/Motif are in use. Also used as work-cells this RISC computers give computing power for model calculations and long term databases. This computers are interconnected using Ethernet and TCP/IP to the next layer of hardware. (author) 3 refs.; 5 figs

  16. Network science of biological systems at different scales: A review

    Science.gov (United States)

    Gosak, Marko; Markovič, Rene; Dolenšek, Jurij; Slak Rupnik, Marjan; Marhl, Marko; Stožer, Andraž; Perc, Matjaž

    2018-03-01

    Network science is today established as a backbone for description of structure and function of various physical, chemical, biological, technological, and social systems. Here we review recent advances in the study of complex biological systems that were inspired and enabled by methods of network science. First, we present

  17. SEEK: a systems biology data and model management platform.

    NARCIS (Netherlands)

    Wolstencroft, K.J.; Owen, S.; Krebs, O.; Nguyen, Q.; Stanford, N.J.; Golebiewski, M.; Weidemann, A.; Bittkowski, M.; An, L.; Shockley, D.; Snoep, J.L.; Mueller, W.; Goble, C.

    2015-01-01

    Background: Systems biology research typically involves the integration and analysis of heterogeneous data types in order to model and predict biological processes. Researchers therefore require tools and resources to facilitate the sharing and integration of data, and for linking of data to systems

  18. Quantum and classical dynamics in biologically inspired systems

    International Nuclear Information System (INIS)

    Guerreschi, G.

    2012-01-01

    Quantum biology is an emerging field in which traditional believes and paradigms are under examination. Typically, quantum effects are witnessed inside quantum optics or atomic physics laboratories in systems which are kept under control and isolated from any noise source by means of very advanced technology. Biological systems exhibit opposite characteristics: They are usually constituted of macromolecules continuously exposed to a warm and wet environment, well beyond our control; but at the same time, they operate far away from equilibrium. Recently, the experimental observation of excitonic coherence in photosynthetic complexes has con firmed that, in non-equilibrium scenarios, quantum phenomena can survive even in presence of a noisy environment. The challenge faced by the ongoing research is twofold: On one side, considering biological molecules as effective nanomachines, one has to address questions of principle regarding their design and functioning; on the other side, one has to investigate real systems which are experimentally accessible and identify such features in these concrete scenarios. The present thesis contributes to both of these aspects. In Part I, we demonstrate how entanglement can be persistently generated even under unfavorable environmental conditions. The physical mechanism is modeled after the idea of conformational changes, and it relies on the interplay of classical oscillations of large structures with the quantum dynamics of a few interacting degrees of freedom. In a similar context, we show that the transfer of an excitation through a linear chain of sites can be enhanced when the inter-site distances oscillate periodically. This enhancement is present even in comparison with the static con figuration which is optimal in the classical case and, therefore, it constitutes a clear signature of the underlying quantum dynamics. In Part II of this thesis, we study the radical pair mechanism from the perspective of quantum control and

  19. Quality control of X-ray irradiator by biological markers

    International Nuclear Information System (INIS)

    Miura, Miwa; Lukmanul Hakkim, F.; Yoshida, Masahiro; Matsuda, Naoki; Morita, Naoko

    2011-01-01

    The exposure of animals or cultured cells to radiation is the essential and common step in experimental researches to elucidate biological effects of radiation. When an X-ray generator is used as a radiation source, physical parameters including dose, dose rate, and the energy spectrum of X-ray play crucial roles in biological outcome. Therefore, those parameters are the important points to be checked in quality control and to be carefully considered in advance to the irradiation to obtain the accurate and reproductive results. Here we measured radiation dose emitted from the X-ray irradiator for research purposes by using clonogenic survival of cultured mammalian cells as a biological marker in parallel with physical dosimetry. The results drawn from both methods exhibited good consistency in the dose distribution on the irradiation stage. Furthermore, the close relationship was observed between cell survival and the photon energy spectrum by using different filter components. These results suggest that biological dosimetry is applicable to quality control of X-ray irradiator in adjunct to physical dosimetry and that it possibly helps better understanding of the optimal irradiating condition by X-ray users in life-science field. (author)

  20. Plant Systems Biology at the Single-Cell Level.

    Science.gov (United States)

    Libault, Marc; Pingault, Lise; Zogli, Prince; Schiefelbein, John

    2017-11-01

    Our understanding of plant biology is increasingly being built upon studies using 'omics and system biology approaches performed at the level of the entire plant, organ, or tissue. Although these approaches open new avenues to better understand plant biology, they suffer from the cellular complexity of the analyzed sample. Recent methodological advances now allow plant scientists to overcome this limitation and enable biological analyses of single-cells or single-cell-types. Coupled with the development of bioinformatics and functional genomics resources, these studies provide opportunities for high-resolution systems analyses of plant phenomena. In this review, we describe the recent advances, current challenges, and future directions in exploring the biology of single-cells and single-cell-types to enhance our understanding of plant biology as a system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The UNK control system

    International Nuclear Information System (INIS)

    Alferov, V.N.; Brook, V.L.; Dunaitsev, A.F.

    1992-01-01

    The IHEP proton Accelerating and Storage Complex (UNK) includes in its first stage a 400 GeV conventional and a 3000 GeV superconducting ring placed in the same underground tunnel of 20.7 km circumference. The beam will be injected into UNK from the existing 70 GeV accelerator U-70. The experimental programme which is planned to start in 1995, will include 3000 GeV fixed target and 400 + 3000 GeV colliding beams physics. The size and complexity of the UNK dictate a distributed multiprocessor architecture of the control system. About 4000 of 8/16 bit controllers, directly attached to the UNK equipment will perform low level control and data acquisition tasks. The equipment controllers will be connected via the MIL-1553 field bus to VME based 32-bit front end computers. The TCP/IP network will interconnect front end computers in the UNK equipment buildings with UNIX workstations and servers in the Main Control Room. The report presents the general architecture and current status of the UNK control. (author)

  2. Tracing organizing principles: Learning from the history of systems biology

    DEFF Research Database (Denmark)

    Green, Sara; Wolkenhauer, Olaf

    2014-01-01

    on this historical background in order to increase the understanding of the motivation behind the search for general principles and to clarify different epistemic aims within systems biology. We pinpoint key aspects of earlier approaches that also underlie the current practice. These are i) the focus on relational......With the emergence of systems biology, the identification of organizing principles is being highlighted as a key research aim. Researchers attempt to “reverse engineer” the functional organization of biological systems using methodologies from mathematics, engineering and computer science while...... taking advantage of data produced by new experimental techniques. While systems biology is a relatively new approach, the quest for general principles of biological organization dates back to systems theoretic approaches in early and mid-twentieth century. The aim of this paper is to draw...

  3. Yeast systems biology to unravel the network of life

    DEFF Research Database (Denmark)

    Mustacchi, Roberta; Hohmann, S; Nielsen, Jens

    2006-01-01

    Systems biology focuses on obtaining a quantitative description of complete biological systems, even complete cellular function. In this way, it will be possible to perform computer-guided design of novel drugs, advanced therapies for treatment of complex diseases, and to perform in silico design....... Furthermore, it serves as an industrial workhorse for production of a wide range of chemicals and pharmaceuticals. Systems biology involves the combination of novel experimental techniques from different disciplines as well as functional genomics, bioinformatics and mathematical modelling, and hence no single...... laboratory has access to all the necessary competences. For this reason the Yeast Systems Biology Network (YSBN) has been established. YSBN will coordinate research efforts, in yeast systems biology and, through the recently obtained EU funding for a Coordination Action, it will be possible to set...

  4. Automatic heating control system

    Energy Technology Data Exchange (ETDEWEB)

    Whittle, A.J.

    1989-11-15

    A heating control system for buildings comprises at least one heater incorporating heat storage means, a first sensor for detecting temperature within the building, means for setting a demand temperature, a second sensor for detecting outside temperature, a timer, and means for determining the switch on time of the heat storage means on the basis of the demand temperature and the internal and external temperatures. The system may additionally base the switch on time of the storage heater(s) on the heating and cooling rates of the building (as determined from the sensed temperatures); or on the anticipated daytime temperature (determined from the sensed night time temperature). (author).

  5. Biologically Inspired Modular Neural Control for a Leg-Wheel Hybrid Robot

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Wörgötter, Florentin; Laksanacharoen, Pudit

    2014-01-01

    In this article we present modular neural control for a leg-wheel hybrid robot consisting of three legs with omnidirectional wheels. This neural control has four main modules having their functional origin in biological neural systems. A minimal recurrent control (MRC) module is for sensory signal...... processing and state memorization. Its outputs drive two front wheels while the rear wheel is controlled through a velocity regulating network (VRN) module. In parallel, a neural oscillator network module serves as a central pattern generator (CPG) controls leg movements for sidestepping. Stepping directions...... or they can serve as useful modules for other module-based neural control applications....

  6. Casual Games and Casual Learning About Human Biological Systems

    Science.gov (United States)

    Price, C. Aaron; Gean, Katherine; Christensen, Claire G.; Beheshti, Elham; Pernot, Bryn; Segovia, Gloria; Person, Halcyon; Beasley, Steven; Ward, Patricia

    2016-02-01

    Casual games are everywhere. People play them throughout life to pass the time, to engage in social interactions, and to learn. However, their simplicity and use in distraction-heavy environments can attenuate their potential for learning. This experimental study explored the effects playing an online, casual game has on awareness of human biological systems. Two hundred and forty-two children were given pretests at a Museum and posttests at home after playing either a treatment or control game. Also, 41 children were interviewed to explore deeper meanings behind the test results. Results show modest improvement in scientific attitudes, ability to identify human biological systems and in the children's ability to describe how those systems work together in real-world scenarios. Interviews reveal that children drew upon their prior school learning as they played the game. Also, on the surface they perceived the game as mainly entertainment but were easily able to discern learning outcomes when prompted. Implications for the design of casual games and how they can be used to enhance transfer of knowledge from the classroom to everyday life are discussed.

  7. Network biology: Describing biological systems by complex networks. Comment on "Network science of biological systems at different scales: A review" by M. Gosak et al.

    Science.gov (United States)

    Jalili, Mahdi

    2018-03-01

    I enjoyed reading Gosak et al. review on analysing biological systems from network science perspective [1]. Network science, first started within Physics community, is now a mature multidisciplinary field of science with many applications ranging from Ecology to biology, medicine, social sciences, engineering and computer science. Gosak et al. discussed how biological systems can be modelled and described by complex network theory which is an important application of network science. Although there has been considerable progress in network biology over the past two decades, this is just the beginning and network science has a great deal to offer to biology and medical sciences.

  8. Intelligent Lighting Control System

    OpenAIRE

    García, Elena; Rodríguez González, Sara; de Paz Santana, Juan F.; Bajo Pérez, Javier

    2014-01-01

    This paper presents an adaptive architecture that allows centralized control of public lighting and intelligent management, in order to economise on lighting and maintain maximum comfort status of the illuminated areas. To carry out this management, architecture merges various techniques of artificial intelligence (AI) and statistics such as artificial neural networks (ANN), multi-agent systems (MAS), EM algorithm, methods based on ANOVA and a Service Oriented Aproach (SOA). It performs optim...

  9. Biological control and invading freshwater snails. A case study.

    Science.gov (United States)

    Pointier, J P; Augustin, D

    1999-12-01

    Introductions of four species of freshwater snails occurred between 1972 and 1996 onto Guadeloupe Island. Two of them, Melanoides tuberculata and Marisa cornuarietis, were subsequently used as biological control agents against Biomphalaria glabrata, the snail intermediate host of intestinal schistosomiasis. In 1996, a general survey was carried out in 134 sites which had already been investigated in 1972. The total number of mollusc species had increased from 19 to 21. Site numbers housing B. glabrata and two other species had strongly declined. This decline may be mainly attributed to a competitive displacement by M. tuberculata and M. cornuarietis as illustrated by several biological control programmes. There were no changes in the remainder of the malacological fauna.

  10. Biological Detection System Technologies Technology and Industrial Base Study. A Primer on Biological Detection Technologies

    National Research Council Canada - National Science Library

    2001-01-01

    .... and Canadian military personnel. In light of these concerns both defense departments have increased efforts to develop and field biological agent detection systems to help protect their military forces and fixed assets...

  11. Controlling chaotic systems via nonlinear feedback control

    International Nuclear Information System (INIS)

    Park, Ju H.

    2005-01-01

    In this article, a new method to control chaotic systems is proposed. Using Lyapunov method, we design a nonlinear feedback controller to make the controlled system be stabilized. A numerical example is given to illuminate the design procedure and advantage of the result derived

  12. Biological elements carry out optical tasks in coherent imaging systems

    Science.gov (United States)

    Ferraro, P.; Bianco, V.; Paturzo, M.; Miccio, L.; Memmolo, P.; Merola, F.; Marchesano, V.

    2016-03-01

    We show how biological elements, like live bacteria species and Red Blood Cells (RBCs) can accomplish optical functionalities in DH systems. Turbid media allow coherent microscopy despite the strong light scattering these provoke, acting on light just as moving diffusers. Furthermore, a turbid medium can have positive effects on a coherent imaging system, providing resolution enhancement and mimicking the action of noise decorrelation devices, thus yielding an image quality significantly higher than the quality achievable through a transparent medium in similar recording conditions. Besides, suspended RBCs are demonstrated to behave as controllable liquid micro-lenses, opening new possibilities in biophotonics for endoscopy imaging purposes, as well as telemedicine for point-of-care diagnostics in developing countries and low-resource settings.

  13. Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions

    OpenAIRE

    Kaufman, Leyla V.; Wright, Mark G.

    2017-01-01

    The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in H...

  14. The Systems Biology Research Tool: evolvable open-source software

    Directory of Open Access Journals (Sweden)

    Wright Jeremiah

    2008-06-01

    Full Text Available Abstract Background Research in the field of systems biology requires software for a variety of purposes. Software must be used to store, retrieve, analyze, and sometimes even to collect the data obtained from system-level (often high-throughput experiments. Software must also be used to implement mathematical models and algorithms required for simulation and theoretical predictions on the system-level. Results We introduce a free, easy-to-use, open-source, integrated software platform called the Systems Biology Research Tool (SBRT to facilitate the computational aspects of systems biology. The SBRT currently performs 35 methods for analyzing stoichiometric networks and 16 methods from fields such as graph theory, geometry, algebra, and combinatorics. New computational techniques can be added to the SBRT via process plug-ins, providing a high degree of evolvability and a unifying framework for software development in systems biology. Conclusion The Systems Biology Research Tool represents a technological advance for systems biology. This software can be used to make sophisticated computational techniques accessible to everyone (including those with no programming ability, to facilitate cooperation among researchers, and to expedite progress in the field of systems biology.

  15. Scaling for Dynamical Systems in Biology.

    Science.gov (United States)

    Ledder, Glenn

    2017-11-01

    Asymptotic methods can greatly simplify the analysis of all but the simplest mathematical models and should therefore be commonplace in such biological areas as ecology and epidemiology. One essential difficulty that limits their use is that they can only be applied to a suitably scaled dimensionless version of the original dimensional model. Many books discuss nondimensionalization, but with little attention given to the problem of choosing the right scales and dimensionless parameters. In this paper, we illustrate the value of using asymptotics on a properly scaled dimensionless model, develop a set of guidelines that can be used to make good scaling choices, and offer advice for teaching these topics in differential equations or mathematical biology courses.

  16. Magnetic biosensor system to detect biological targets

    KAUST Repository

    Li, Fuquan

    2012-09-01

    Magneto-resistive sensors in combination with magnetic beads provide sensing platforms, which are small in size and highly sensitive. These platforms can be fully integrated with microchannels and electronics to enable devices capable of performing complex tasks. Commonly, a sandwich method is used that requires a specific coating of the sensor\\'s surface to immobilize magnetic beads and biological targets on top of the sensor. This paper concerns a micro device to detect biological targets using magnetic concentration, magnetic as well as mechanical trapping and magnetic sensing. Target detection is based on the size difference between bare magnetic beads and magnetic beads with targets attached. This method remedies the need for a coating layer and reduces the number of steps required to run an experiment. © 2012 IEEE.

  17. NSLS control system upgrade

    International Nuclear Information System (INIS)

    Smith, J.D.; Ramamoorthy, Susila; Tang, Y.N.

    1994-01-01

    The NSLS consists of two storage rings, a booster and a linac. A major upgrade of the control system (installed in 1978) was undertaken and has been completed. The computer architecture is being changed from a three level star-network to a two level distributed system. The microprocessor subsystem, host computer and workstations, communication link and the main software components are being upgraded or replaced. Since the NSLS rings operate twenty four hours a day a year with minimum maintenance time, the key requirement during the upgrade phase is a non-disruptive transition with minimum downtime. Concurrent with the upgrade, some immediate improvements were required. This paper describes the various components of the upgraded system and outlines the future plans. ((orig.))

  18. NSLS control system upgrade

    International Nuclear Information System (INIS)

    Smith, J.D.; Ramamoorthy, S.; Tang, Yong N.

    1995-01-01

    The NSLS consists of two storage rings, a booster and a linac. A major upgrade of the control system (installed in 1978) was undertaken and has been completed. The computer architecture is being changed from a three level star-network to a two level distributed system. The microprocessor subsystem, host computer and workstations, communication link and the main software components are being upgraded or replaced. Since the NSLS rings operate twenty four hours a day a year with minimum maintenance time, the key requirement during the upgrade phase is a non-disruptive transition with minimum downtime. Concurrent with the upgrade, some immediate improvements were required. This paper describes the various components of the upgraded system and outlines the future plans

  19. Synthetic Biology: Engineering Living Systems from Biophysical Principles.

    Science.gov (United States)

    Bartley, Bryan A; Kim, Kyung; Medley, J Kyle; Sauro, Herbert M

    2017-03-28

    Synthetic biology was founded as a biophysical discipline that sought explanations for the origins of life from chemical and physical first principles. Modern synthetic biology has been reinvented as an engineering discipline to design new organisms as well as to better understand fundamental biological mechanisms. However, success is still largely limited to the laboratory and transformative applications of synthetic biology are still in their infancy. Here, we review six principles of living systems and how they compare and contrast with engineered systems. We cite specific examples from the synthetic biology literature that illustrate these principles and speculate on their implications for further study. To fully realize the promise of synthetic biology, we must be aware of life's unique properties. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. The semiotics of control and modeling relations in complex systems.

    Science.gov (United States)

    Joslyn, C

    2001-01-01

    We provide a conceptual analysis of ideas and principles from the systems theory discourse which underlie Pattee's semantic or semiotic closure, which is itself foundational for a school of theoretical biology derived from systems theory and cybernetics, and is now being related to biological semiotics and explicated in the relational biological school of Rashevsky and Rosen. Atomic control systems and models are described as the canonical forms of semiotic organization, sharing measurement relations, but differing topologically in that control systems are circularly and models linearly related to their environments. Computation in control systems is introduced, motivating hierarchical decomposition, hybrid modeling and control systems, and anticipatory or model-based control. The semiotic relations in complex control systems are described in terms of relational constraints, and rules and laws are distinguished as contingent and necessary functional entailments, respectively. Finally, selection as a meta-level of constraint is introduced as the necessary condition for semantic relations in control systems and models.

  1. Incoherent control of locally controllable quantum systems

    International Nuclear Information System (INIS)

    Dong Daoyi; Zhang Chenbin; Rabitz, Herschel; Pechen, Alexander; Tarn, T.-J.

    2008-01-01

    An incoherent control scheme for state control of locally controllable quantum systems is proposed. This scheme includes three steps: (1) amplitude amplification of the initial state by a suitable unitary transformation, (2) projective measurement of the amplified state, and (3) final optimization by a unitary controlled transformation. The first step increases the amplitudes of some desired eigenstates and the corresponding probability of observing these eigenstates, the second step projects, with high probability, the amplified state into a desired eigenstate, and the last step steers this eigenstate into the target state. Within this scheme, two control algorithms are presented for two classes of quantum systems. As an example, the incoherent control scheme is applied to the control of a hydrogen atom by an external field. The results support the suggestion that projective measurements can serve as an effective control and local controllability information can be used to design control laws for quantum systems. Thus, this scheme establishes a subtle connection between control design and controllability analysis of quantum systems and provides an effective engineering approach in controlling quantum systems with partial controllability information.

  2. Crawling the Control System

    International Nuclear Information System (INIS)

    Larrieu, Theodore

    2009-01-01

    Information about accelerator operations and the control system resides in various formats in a variety of places on the lab network. There are operating procedures, technical notes, engineering drawings, and other formal controlled documents. There are programmer references and API documentation generated by tools such as doxygen and javadoc. There are the thousands of electronic records generated by and stored in databases and applications such as electronic logbooks, training materials, wikis, and bulletin boards and the contents of text-based configuration files and log files that can also be valuable sources of information. The obvious way to aggregate all these sources is to index them with a search engine that users can then query from a web browser. Toward this end, the Google 'mini' search appliance was selected and implemented because of its low cost and its simple web-based configuration and management. In addition to crawling and indexing electronic documents, the appliance provides an API that has been used to supplement search results with live control system data such as current values of EPICS process variables and graphs of recent data from the archiver.

  3. Radiation control system

    International Nuclear Information System (INIS)

    Murao, Mitsuo.

    1985-01-01

    Purpose: To rapidly and suitably performing planning and designation by radiation-working control systems in the radiation controlled area of nuclear power plant. Method: Various informations regarding radiation exposure are arranged and actual exposure data are statistically stored, to thereby perform forecasting calculation for the radiation exposure upon workings in the plurality of working regions in the radiation controlled area. Based on the forecast values and the registered workers' exposure dose in the past workings are alocated successively such that the total exposure does upon conducting the workings is less than the limited value, to prepare working plans in the areas. Further, procedures for preparing a series of documents regarding the workings in the radiation area are automated to rapidly and properly provide the informations serving to the planning and designation for the radiation workings. As a result, the radiation managers' burnden can be mitigated and an efficient working management system can be provided, in view of the exposure management and personal management. (Kamimura, M.)

  4. Prospects for biological soil-borne disease control: application of indigenous versus synthetic microbiomes

    Science.gov (United States)

    Biological disease control of soil-borne plant diseases has traditionally employed the biopesticide approach whereby single strains or strain mixtures are introduced into production systems through inundative/inoculative release. The approach has significant barriers that have long been recognized,...

  5. 41 CFR 101-42.1102-5 - Drugs, biologicals, and reagents other than controlled substances.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Drugs, biologicals, and reagents other than controlled substances. 101-42.1102-5 Section 101-42.1102-5 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS...

  6. How do precision medicine and system biology response to human body's complex adaptability?

    Science.gov (United States)

    Yuan, Bing

    2016-12-01

    In the field of life sciences, although system biology and "precision medicine" introduce some complex scientifific methods and techniques, it is still based on the "analysis-reconstruction" of reductionist theory as a whole. Adaptability of complex system increase system behaviour uncertainty as well as the difficulties of precise identifification and control. It also put systems biology research into trouble. To grasp the behaviour and characteristics of organism fundamentally, systems biology has to abandon the "analysis-reconstruction" concept. In accordance with the guidelines of complexity science, systems biology should build organism model from holistic level, just like the Chinese medicine did in dealing with human body and disease. When we study the living body from the holistic level, we will fifind the adaptability of complex system is not the obstacle that increases the diffificulty of problem solving. It is the "exceptional", "right-hand man" that helping us to deal with the complexity of life more effectively.

  7. Biological control of fruit-tree red spider mite

    NARCIS (Netherlands)

    Rabbinge, R.

    1976-01-01

    During the last decade, integrated pest control systems have been developed for several crops. One of the main fields of research in integrated control has been the control of orchard pests. Experience with modified spraying programmes in apple orchards, the increasing resistance of spider

  8. Control of optical systems

    Science.gov (United States)

    Founds, D.

    1988-01-01

    Some of the current and planned activities at the Air Force Systems Command in structures and controls for optical-type systems are summarized. Many of the activities are contracted to industry; one task is an in-house program which includes a hardware test program. The objective of the in-house program, referred to as the Aluminum Beam Expander Structure (ABES), is to address issues involved in on-orbit system identification. The structure, which appears similar to the LDR backup structure, is about 35 feet tall. The activity to date has been limited to acquisition of about 250 hours of test data. About 30 hours of data per excitation force is gathered in order to obtain sufficient data for a good statistical estimate of the structural parameters. The development of an Integrated Structural Modeling (ISM) computer program is being done by Boeing Aerospace Company. The objective of the contracted effort is to develop a combined optics, structures, thermal, controls, and multibody dynamics simulation code.

  9. Adaptive Fuzzy-Lyapunov Controller Using Biologically Inspired Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Alejandro Carrasco Elizalde

    2008-01-01

    Full Text Available The collective behaviour of swarms produces smarter actions than those achieved by a single individual. Colonies of ants, flocks of birds and fish schools are examples of swarms interacting with their environment to achieve a common goal. This cooperative biological intelligence is the inspiration for an adaptive fuzzy controller developed in this paper. Swarm intelligence is used to adjust the parameters of the membership functions used in the adaptive fuzzy controller. The rules of the controller are designed using a computing-with-words approach called Fuzzy-Lyapunov synthesis to improve the stability and robustness of an adaptive fuzzy controller. Computing-with-words provides a powerful tool to manipulate numbers and symbols, like words in a natural language.

  10. Feedwater control system

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    Excessive swing of the feedwater in nuclear reactor power supply apparatus on the occurrence of a transient is suppressed by injecting an anticipatory compensating signal (δWsub(fw)) into the control for the feedwater. Typical overshoot occurs on removal of a large part of the load, the steam flow is reduced so that the conventional control system reduces the flow of feedwater. At the same time there is a reduction of feedwater level in the steam generator because of the collapse of the bubbles under increased steam pressure. By the time the control responds to the drop in level, the apparatus has begun to stabilize so that there is overshoot. The anticipatory signal is derived from the boiling power (BP) which is a function of the nuclear power (Qsub(N)) developed, the enthalpy of saturated water (hsub(s)) and the enthalpy of the feedwater injected into the steam generator (hsub(fw)). From the boiling power (BP) and the increment in steam pressure resulting from the transient an anticipatory increment of feedwater flow is derived. This increment is added to the other parameters controlling the feedwater. (author)

  11. Modelling the crop: from system dynamics to systems biology

    NARCIS (Netherlands)

    Yin, X.; Struik, P.C.

    2010-01-01

    There is strong interplant competition in a crop stand for various limiting resources, resulting in complex compensation and regulation mechanisms along the developmental cascade of the whole crop. Despite decades-long use of principles in system dynamics (e.g. feedback control), current crop models

  12. Tensegrity I. Cell structure and hierarchical systems biology

    Science.gov (United States)

    Ingber, Donald E.

    2003-01-01

    In 1993, a Commentary in this journal described how a simple mechanical model of cell structure based on tensegrity architecture can help to explain how cell shape, movement and cytoskeletal mechanics are controlled, as well as how cells sense and respond to mechanical forces (J. Cell Sci. 104, 613-627). The cellular tensegrity model can now be revisited and placed in context of new advances in our understanding of cell structure, biological networks and mechanoregulation that have been made over the past decade. Recent work provides strong evidence to support the use of tensegrity by cells, and mathematical formulations of the model predict many aspects of cell behavior. In addition, development of the tensegrity theory and its translation into mathematical terms are beginning to allow us to define the relationship between mechanics and biochemistry at the molecular level and to attack the larger problem of biological complexity. Part I of this two-part article covers the evidence for cellular tensegrity at the molecular level and describes how this building system may provide a structural basis for the hierarchical organization of living systems--from molecule to organism. Part II, which focuses on how these structural networks influence information processing networks, appears in the next issue.

  13. The Glucose-Insulin Control System

    DEFF Research Database (Denmark)

    Hallgreen, Christine Erikstrup; Korsgaard, Thomas Vagn; Hansen, RenéNormann N.

    2008-01-01

    This chapter reviews the glucose-insulin control system. First, classic control theory is described briefly and compared with biological control. The following analysis of the control system falls into two parts: a glucose-sensing part and a glucose-controlling part. The complex metabolic pathways...... are divided into smaller pieces and analyzed via several small biosimulation models that describe events in beta cells, liver, muscle and adipose tissue etc. In the glucose-sensing part, the beta cell are shown to have some characteristics of a classic PID controller, but with nonlinear properties...... control, the analysis shows that the system has many more facets than just keeping the glucose concentration within narrow limits. After glucose enters the cell and is phosphorylated to glucose-6-phosphate, the handling of glucose-6-phosphate is critical for glucose regulation. Also, this handling...

  14. Behaviors of tritium in terrestrial biological system

    International Nuclear Information System (INIS)

    Inomata, Tsuyako

    1983-01-01

    The in vivo behaviors of HTO- 3 H in food chain models in experimental animals were described. Of pregnant mice that had ingested HTO and drinking water alone for 19 days, the total 3 H content in the tissue/wet weight was greater by 20% in fetuses and newborns than in mothers, and the proportion of tissue-bound 3 H was 8-24% in mothers and 3% in fetuses. The mean 3 H concentration in the free water in tissues was about 36% of ingested HTO. When only 3 H foods were ingested for 18 days, the total 3 H content in the tissue/wet weight showed no marked difference among the mother, fetuses and newborns, nor did the bound 3 H level show great differences. With respect to the tissue distribution of 3 H, only the incorporation rate by the mother's brain from HTO was satisfactory, whereas in other organs, the mother, fetuses and newborns showed higher incorporation rates from 3 H foods. The ratio of specific radioactivity of soft tissue 3 H in mothers to HTO in drinking water exceeded 1 only for the spleen, but other tissues showed no biological concentration. Again, no biological concentration was observed with 3 H foods. Environmental HTO did not result in biological concentration of 3 H in mother mice that had ingested 3 H foods, but 3 H was rather diluted. Tissues other than the spleen showed similar values of 3 H ingestion from environmental HTO through all routes. However, the proportion of bound 3 H in the total 3 H in the soft tissue was about 1.4-1.6 times that on ingestion of HTO alone. (Chiba, N.)

  15. Phase Control in Nonlinear Systems

    Science.gov (United States)

    Zambrano, Samuel; Seoane, Jesús M.; Mariño, Inés P.; Sanjuán, Miguel A. F.; Meucci, Riccardo

    The following sections are included: * Introduction * Phase Control of Chaos * Description of the model * Numerical exploration of phase control of chaos * Experimental evidence of phase control of chaos * Phase Control of Intermittency in Dynamical Systems * Crisis-induced intermittency and its control * Experimental setup and implementation of the phase control scheme * Phase control of the laser in the pre-crisis regime * Phase control of the intermittency after the crisis * Phase control of the intermittency in the quadratic map * Phase Control of Escapes in Open Dynamical Systems * Control of open dynamical systems * Model description * Numerical simulations and heuristic arguments * Experimental implementation in an electronic circuit * Conclusions and Discussions * Acknowledgments * References

  16. Optical Biosensors to Explore Biological Systems

    DEFF Research Database (Denmark)

    Palanco, Marta Espina; Mogensen, Klaus Bo; Andersen, Nils H. Skovgaard

    2016-01-01

    their capability to work in biosensor devices. For example, Raman spectroscopy can be non-invasive and can provide 1 μm of spatial resolution in 1 second of collection time, well suited for sensing. Moreover, it may give information at the single cell and even approaching the single molecule scale. Here we present...... protein may be used as an efficient sensor in an organic environment via a biomimetic membrane model. The combination of both biomimetic membranes and protein membranes as a signal transduction medium has interesting applications in biology and medicine. It is crucial that the matrix where a protein...

  17. PEP instrumentation and control system

    Energy Technology Data Exchange (ETDEWEB)

    Melen, R.

    1980-06-01

    This paper describes the operating characteristics of the primary components that form the PEP Instrumentation and Control System. Descriptions are provided for the computer control system, beam monitors, and other support systems.

  18. PEP instrumentation and control system

    International Nuclear Information System (INIS)

    Melen, R.

    1980-06-01

    This paper describes the operating characteristics of the primary components that form the PEP Instrumentation and Control System. Descriptions are provided for the computer control system, beam monitors, and other support systems

  19. Noninvasive biological sensor system for detection of drunk driving.

    Science.gov (United States)

    Murata, Kohji; Fujita, Etsunori; Kojima, Shigeyuki; Maeda, Shinitirou; Ogura, Yumi; Kamei, Tsutomu; Tsuji, Toshio; Kaneko, Shigehiko; Yoshizumi, Masao; Suzuki, Nobutaka

    2011-01-01

    Systems capable of monitoring the biological condition of a driver and issuing warnings during instances of drowsiness have recently been studied. Moreover, many researchers have reported that biological signals, such as brain waves, pulsation waves, and heart rate, are different between people who have and have not consumed alcohol. Currently, we are developing a noninvasive system to detect individuals driving under the influence of alcohol by measuring biological signals. We used the frequency time series analysis to attempt to distinguish between normal and intoxicated states of a person as the basis of the sensing system.

  20. Biochemical Space: A Framework for Systemic Annotation of Biological Models

    Czech Academy of Sciences Publication Activity Database

    Klement, M.; Děd, T.; Šafránek, D.; Červený, Jan; Müller, Stefan; Steuer, Ralf

    2014-01-01

    Roč. 306, JUL (2014), s. 31-44 ISSN 1571-0661 R&D Projects: GA MŠk(CZ) EE2.3.20.0256 Institutional support: RVO:67179843 Keywords : biological models * model annotation * systems biology * cyanobacteria Subject RIV: EH - Ecology, Behaviour

  1. Review of "Stochastic Modelling for Systems Biology" by Darren Wilkinson

    Directory of Open Access Journals (Sweden)

    Bullinger Eric

    2006-12-01

    Full Text Available Abstract "Stochastic Modelling for Systems Biology" by Darren Wilkinson introduces the peculiarities of stochastic modelling in biology. This book is particularly suited to as a textbook or for self-study, and for readers with a theoretical background.

  2. Biopesticides: An option for the biological pest control

    Directory of Open Access Journals (Sweden)

    Eusebio Nava Pérez

    2012-09-01

    Full Text Available The indiscriminate use of synthetic pesticides and the problems that its cause to human health, agriculture and the environment is comment, this paper also present general aspects about of biopesticides, and their uses in the biological pest control. By the nature these can be safely used in a sustainable agriculture. An example is the use of botanical pesticides whose active ingredient are the terpenes, alkaloids and phenolics, these have insecticide effects for many agriculture pests; also its are less expensive, are biodegradable and safe for humans and the environment, however havelittle residuality. Microbial pesticides are being introduced successfully to pests control in important crops such as; coffee, sugar cane, beans and corn. These products contain bacteria, fungi, viruses or nematodes. However, few entomopathogenic agents have been developed as effective biocontrol agents, one of them is the bacterium Bacillus thuringiensis (Berlinier for control of armyworm Spodoptera frugiperda (J.E Smith covering about 74% of the market,fungus 10% , viruses 5% and 11% others. Other upstanding case is the use of the fungus Beauveria bassiana (Balsamoagainst bean weevil Acanthoscelides obtectus (Say. Biopesticides have shown that when are used properly in the biological pest control its favor the practice of a sustainable agriculture, with less dependence of chemical insecticides.

  3. Environmental Control System Development

    Science.gov (United States)

    Flores Arroyo, Elvin A.

    2018-01-01

    Since before the first men landed on the moon, human beings have aspired to reach farther into space, to discover and answer the great mysteries that exist beyond imagination. To reach where no one has gone before. To able to see all the wonderful things that can be found in space and that only satellites have revealed to us during all this time. Considering the last trip to the moon, mankind has been evolving and improving their technology to reach destinations whose distances had been impossible to transit. To reach that goal, the National Aeronautics and Space Administration (NASA) has designed and developed the largest and most powerful rocket ever created by the human race, the Space Launch System - better known as the SLS. To be able to send this large rocket to space, Kennedy Space Center (KSC) is doing upgrades to their existing facilities and equipment. At Launch Pad 39B, they are setting up a new Environmental Control System (ECS) developed to supply the rocket with the correct gases and mixtures that will be needed for the rocket to launch. The ECS is similar to an air conditioning unit. The main functionality of it is to supply the SLS with the correct gas mixture for it to launch. Also the ECS has been required to reduce or eliminate the possibility of a complete system failure. The system is part of the Ground Support Equipment (GSE) for the SLS that will be going to the Moon and Mars.

  4. Automatically controlled training systems

    International Nuclear Information System (INIS)

    Milashenko, A.; Afanasiev, A.

    1990-01-01

    This paper reports that the computer system for NPP personnel training was developed for training centers in the Soviet Union. The system should be considered as the first step in training, taking into account that further steps are to be devoted to part-task and full scope simulator training. The training room consists of 8-12 IBM PC/AT personal computers combined into a network. A trainee accesses the system in a dialor manner. Software enables the instructor to determine the trainee's progress in different subjects of the program. The quality of any trainee preparedness may be evaluated by Knowledge Control operation. Simplified dynamic models are adopted for separate areas of the program. For example, the system of neutron flux monitoring has a dedicated model. Currently, training, requalification and support of professional qualifications of nuclear power plant operators is being emphasized. A significant number of emergency situations during work are occurring due to operator errors. Based on data from September-October 1989, more than half of all unplanned drops in power and stoppages of power plants were due to operator error. As a comparison, problems due to equipment malfunction accounted for no more than a third of the total. The role of personnel, especially of the operators, is significant during normal operations, since energy production costs as well as losses are influenced by the capability of the staff. These facts all point to the importance of quality training of personnel

  5. Augmentative biological control in the Mexican national fruit fly campaign

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, P [Campana Nacional Moscas de la Fruta, DGSV-SAGARPA (Mexico); Cancino, J; Gutierrez, J M; Santiago, G [Campana Nacional Moscas de la Fruta, DGSV-SAGARPA (Mexico)

    2005-07-01

    the trapping system (i.e. Fly/Trap/Day indices) and percent parasitism from fruit sampling. Release densities fluctuated between 1,500-2,500 parasitoids/ha, depending on the ecological complexity of the zone. Apparently, the effect of released parasitoids has been similar in all zones under control. For example, in the State of Michoacan, releases were made over 1,600 ha, and FTD reduction was nearly 39%. In Sinaloa the release density was around 2,000 wasp/ha over 10,800 ha, and the FTD reduction observed was 41%. During 2003, in the State of Nayarit the percent parasitism oscillated between 33.5 and 64.7 %, and the FTD reduction obtained was around 46%. In the State of Chiapas, under an integrated pest management scheme, the release of parasitoids contributed to reduce 68.6% the FTD index. In 2002, we observed a parasitism of more than 30% of the four economically important Anastrepha species, with the maximum rates of parasitism of 72.1%; 77.5%; 38.1% and 54.5% over A. serpentina, A. ludens, A. obliqua and A. striata, respectively. These data show the impact that augmentative releases of parasitoids can have on backyard fruit fly populations. By carrying out these actions, the presence of fruit flies inside commercial orchards could be greatly reduced, and consequently, their control will become easier. (author)

  6. Multi-level and hybrid modelling approaches for systems biology.

    Science.gov (United States)

    Bardini, R; Politano, G; Benso, A; Di Carlo, S

    2017-01-01

    During the last decades, high-throughput techniques allowed for the extraction of a huge amount of data from biological systems, unveiling more of their underling complexity. Biological systems encompass a wide range of space and time scales, functioning according to flexible hierarchies of mechanisms making an intertwined and dynamic interplay of regulations. This becomes particularly evident in processes such as ontogenesis, where regulative assets change according to process context and timing, making structural phenotype and architectural complexities emerge from a single cell, through local interactions. The information collected from biological systems are naturally organized according to the functional levels composing the system itself. In systems biology, biological information often comes from overlapping but different scientific domains, each one having its own way of representing phenomena under study. That is, the different parts of the system to be modelled may be described with different formalisms. For a model to have improved accuracy and capability for making a good knowledge base, it is good to comprise different system levels, suitably handling the relative formalisms. Models which are both multi-level and hybrid satisfy both these requirements, making a very useful tool in computational systems biology. This paper reviews some of the main contributions in this field.

  7. The effect of initial density and parasitoid intergenerational survival rate on classical biological control

    International Nuclear Information System (INIS)

    Xiao Yanni; Tang Sanyi

    2008-01-01

    Models of biological control have a long history of theoretical development that have focused on the interaction of a parasitoid and its host. The host-parasitoid systems have identified several important and general factors affecting the long-term dynamics of interacting populations. However, much less is known about how the initial densities of host-parasitoid populations affect the biological control as well as the stability of host-parasitoid systems. To do this, the classical Nicholson-Bailey model with host self-regulation and parasitoid intergenerational survival rate is used to uncover the effect of initial densities on the successful biological control. The results indicate that the simplest Nicholson-Bailey model has various coexistence with a wide range of parameters, including boundary attractors where the parasitoid population is absent and interior attractors where host-parasitoid coexists. The final stable states of host-parasitoid populations depend on their initial densities as well as their ratios, and those results are confirmed by basins of attraction of initial densities. The results also indicate that the parasitoid intergenerational survival rate increases the stability of the host-parasitoid systems. Therefore, the present research can help us to further understand the dynamical behavior of host-parasitoid interactions, to improve the classical biological control and to make management decisions

  8. Generating Systems Biology Markup Language Models from the Synthetic Biology Open Language.

    Science.gov (United States)

    Roehner, Nicholas; Zhang, Zhen; Nguyen, Tramy; Myers, Chris J

    2015-08-21

    In the context of synthetic biology, model generation is the automated process of constructing biochemical models based on genetic designs. This paper discusses the use cases for model generation in genetic design automation (GDA) software tools and introduces the foundational concepts of standards and model annotation that make this process useful. Finally, this paper presents an implementation of model generation in the GDA software tool iBioSim and provides an example of generating a Systems Biology Markup Language (SBML) model from a design of a 4-input AND sensor written in the Synthetic Biology Open Language (SBOL).

  9. Bridging Mechanistic and Phenomenological Models of Complex Biological Systems.

    Science.gov (United States)

    Transtrum, Mark K; Qiu, Peng

    2016-05-01

    The inherent complexity of biological systems gives rise to complicated mechanistic models with a large number of parameters. On the other hand, the collective behavior of these systems can often be characterized by a relatively small number of phenomenological parameters. We use the Manifold Boundary Approximation Method (MBAM) as a tool for deriving simple phenomenological models from complicated mechanistic models. The resulting models are not black boxes, but remain expressed in terms of the microscopic parameters. In this way, we explicitly connect the macroscopic and microscopic descriptions, characterize the equivalence class of distinct systems exhibiting the same range of collective behavior, and identify the combinations of components that function as tunable control knobs for the behavior. We demonstrate the procedure for adaptation behavior exhibited by the EGFR pathway. From a 48 parameter mechanistic model, the system can be effectively described by a single adaptation parameter τ characterizing the ratio of time scales for the initial response and recovery time of the system which can in turn be expressed as a combination of microscopic reaction rates, Michaelis-Menten constants, and biochemical concentrations. The situation is not unlike modeling in physics in which microscopically complex processes can often be renormalized into simple phenomenological models with only a few effective parameters. The proposed method additionally provides a mechanistic explanation for non-universal features of the behavior.

  10. Multiple levels of epigenetic control for bone biology and pathology.

    Science.gov (United States)

    Montecino, Martin; Stein, Gary; Stein, Janet; Zaidi, Kaleem; Aguilar, Rodrigo

    2015-12-01

    Multiple dimensions of epigenetic control contribute to regulation of gene expression that governs bone biology and pathology. Once confined to DNA methylation and a limited number of post-translational modifications of histone proteins, the definition of epigenetic mechanisms is expanding to include contributions of non-coding RNAs and mitotic bookmarking, a mechanism for retaining phenotype identity during cell proliferation. Together these different levels of epigenetic control of physiological processes and their perturbations that are associated with compromised gene expression during the onset and progression of disease, have contributed to an unprecedented understanding of the activities (operation) of the genomic landscape. Here, we address general concepts that explain the contribution of epigenetic control to the dynamic regulation of gene expression during eukaryotic transcription. This article is part of a Special Issue entitled Epigenetics and Bone. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Genome Scale Modeling in Systems Biology: Algorithms and Resources

    Science.gov (United States)

    Najafi, Ali; Bidkhori, Gholamreza; Bozorgmehr, Joseph H.; Koch, Ina; Masoudi-Nejad, Ali

    2014-01-01

    In recent years, in silico studies and trial simulations have complemented experimental procedures. A model is a description of a system, and a system is any collection of interrelated objects; an object, moreover, is some elemental unit upon which observations can be made but whose internal structure either does not exist or is ignored. Therefore, any network analysis approach is critical for successful quantitative modeling of biological systems. This review highlights some of most popular and important modeling algorithms, tools, and emerging standards for representing, simulating and analyzing cellular networks in five sections. Also, we try to show these concepts by means of simple example and proper images and graphs. Overall, systems biology aims for a holistic description and understanding of biological processes by an integration of analytical experimental approaches along with synthetic computational models. In fact, biological networks have been developed as a platform for integrating information from high to low-throughput experiments for the analysis of biological systems. We provide an overview of all processes used in modeling and simulating biological networks in such a way that they can become easily understandable for researchers with both biological and mathematical backgrounds. Consequently, given the complexity of generated experimental data and cellular networks, it is no surprise that researchers have turned to computer simulation and the development of more theory-based approaches to augment and assist in the development of a fully quantitative understanding of cellular dynamics. PMID:24822031

  12. Sensitivity analysis approaches applied to systems biology models.

    Science.gov (United States)

    Zi, Z

    2011-11-01

    With the rising application of systems biology, sensitivity analysis methods have been widely applied to study the biological systems, including metabolic networks, signalling pathways and genetic circuits. Sensitivity analysis can provide valuable insights about how robust the biological responses are with respect to the changes of biological parameters and which model inputs are the key factors that affect the model outputs. In addition, sensitivity analysis is valuable for guiding experimental analysis, model reduction and parameter estimation. Local and global sensitivity analysis approaches are the two types of sensitivity analysis that are commonly applied in systems biology. Local sensitivity analysis is a classic method that studies the impact of small perturbations on the model outputs. On the other hand, global sensitivity analysis approaches have been applied to understand how the model outputs are affected by large variations of the model input parameters. In this review, the author introduces the basic concepts of sensitivity analysis approaches applied to systems biology models. Moreover, the author discusses the advantages and disadvantages of different sensitivity analysis methods, how to choose a proper sensitivity analysis approach, the available sensitivity analysis tools for systems biology models and the caveats in the interpretation of sensitivity analysis results.

  13. A system for success: BMC Systems Biology, a new open access journal

    OpenAIRE

    Webb Penelope A; Hodgkinson Matt J

    2007-01-01

    Abstract BMC Systems Biology is the first open access journal spanning the growing field of systems biology from molecules up to ecosystems. The journal has launched as more and more institutes are founded that are similarly dedicated to this new approach. BMC Systems Biology builds on the ongoing success of the BMC series, providing a venue for all sound research in the systems-level analysis of biology.

  14. A system for success: BMC Systems Biology, a new open access journal.

    Science.gov (United States)

    Hodgkinson, Matt J; Webb, Penelope A

    2007-09-04

    BMC Systems Biology is the first open access journal spanning the growing field of systems biology from molecules up to ecosystems. The journal has launched as more and more institutes are founded that are similarly dedicated to this new approach. BMC Systems Biology builds on the ongoing success of the BMC series, providing a venue for all sound research in the systems-level analysis of biology.

  15. A Biomechanical Comparison of Proportional Electromyography Control to Biological Torque Control Using a Powered Hip Exoskeleton

    Directory of Open Access Journals (Sweden)

    Aaron J. Young

    2017-06-01

    Full Text Available BackgroundDespite a large increase in robotic exoskeleton research, there are few studies that have examined human performance with different control strategies on the same exoskeleton device. Direct comparison studies are needed to determine how users respond to different types of control. The purpose of this study was to compare user performance using a robotic hip exoskeleton with two different controllers: a controller that targeted a biological hip torque profile and a proportional myoelectric controller.MethodsWe tested both control approaches on 10 able-bodied subjects using a pneumatically powered hip exoskeleton. The state machine controller targeted a biological hip torque profile. The myoelectric controller used electromyography (EMG of lower limb muscles to produce a proportional control signal for the hip exoskeleton. Each subject performed two 30-min exoskeleton walking trials (1.0 m/s using each controller and a 10-min trial with the exoskeleton unpowered. During each trial, we measured subjects’ metabolic cost of walking, lower limb EMG profiles, and joint kinematics and kinetics (torques and powers using a force treadmill and motion capture.ResultsCompared to unassisted walking in the exoskeleton, myoelectric control significantly reduced metabolic cost by 13% (p = 0.005 and biological hip torque control reduced metabolic cost by 7% (p = 0.261. Subjects reduced muscle activity relative to the unpowered condition for a greater number of lower limb muscles using myoelectric control compared to the biological hip torque control. More subjects subjectively preferred the myoelectric controller to the biological hip torque control.ConclusionMyoelectric control had more advantages (metabolic cost and muscle activity reduction compared to a controller that targeted a biological torque profile for walking with a robotic hip exoskeleton. However, these results were obtained with a single exoskeleton device with specific

  16. A Biomechanical Comparison of Proportional Electromyography Control to Biological Torque Control Using a Powered Hip Exoskeleton.

    Science.gov (United States)

    Young, Aaron J; Gannon, Hannah; Ferris, Daniel P

    2017-01-01

    Despite a large increase in robotic exoskeleton research, there are few studies that have examined human performance with different control strategies on the same exoskeleton device. Direct comparison studies are needed to determine how users respond to different types of control. The purpose of this study was to compare user performance using a robotic hip exoskeleton with two different controllers: a controller that targeted a biological hip torque profile and a proportional myoelectric controller. We tested both control approaches on 10 able-bodied subjects using a pneumatically powered hip exoskeleton. The state machine controller targeted a biological hip torque profile. The myoelectric controller used electromyography (EMG) of lower limb muscles to produce a proportional control signal for the hip exoskeleton. Each subject performed two 30-min exoskeleton walking trials (1.0 m/s) using each controller and a 10-min trial with the exoskeleton unpowered. During each trial, we measured subjects' metabolic cost of walking, lower limb EMG profiles, and joint kinematics and kinetics (torques and powers) using a force treadmill and motion capture. Compared to unassisted walking in the exoskeleton, myoelectric control significantly reduced metabolic cost by 13% ( p  = 0.005) and biological hip torque control reduced metabolic cost by 7% ( p  = 0.261). Subjects reduced muscle activity relative to the unpowered condition for a greater number of lower limb muscles using myoelectric control compared to the biological hip torque control. More subjects subjectively preferred the myoelectric controller to the biological hip torque control. Myoelectric control had more advantages (metabolic cost and muscle activity reduction) compared to a controller that targeted a biological torque profile for walking with a robotic hip exoskeleton. However, these results were obtained with a single exoskeleton device with specific control configurations while level walking at a

  17. Systems biology of neutrophil differentiation and immune response

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim; Porse, Bo T; Borregaard, Niels

    2005-01-01

    Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies. These stu......Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies....... These studies have identified a plethora of novel effector proteins stored in the granules of neutrophils. In addition, these studies provide evidence that neutrophil differentiation and immune response are governed by a highly coordinated transcriptional programme that regulates cellular fate and function...

  18. Advancing metabolic engineering through systems biology of industrial microorganisms.

    Science.gov (United States)

    Dai, Zongjie; Nielsen, Jens

    2015-12-01

    Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Advancing metabolic engineering through systems biology of industrial microorganisms

    DEFF Research Database (Denmark)

    Dai, Zongjie; Nielsen, Jens

    2015-01-01

    resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review......Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable...... the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further....

  20. Systems biology approaches to the study of cardiovascular drugs

    NARCIS (Netherlands)

    Nikolsky, Y.; Kleemann, R.

    2010-01-01

    Atherogenic lipids and chronic inflammation drive the development of cardiovascular disorders such as atherosclerosis. Many cardiovascular drugs target the liver which is involved in the formation of lipid and inflammatory risk factors. With robust systems biology tools and comprehensive

  1. Strategies for structuring interdisciplinary education in Systems Biology

    DEFF Research Database (Denmark)

    Cvijovic, Marija; Höfer, Thomas; Aćimović, Jure

    2016-01-01

    function by employing experimental data, mathematical models and computational simulations. As Systems Biology is inherently multidisciplinary, education within this field meets numerous hurdles including departmental barriers, availability of all required expertise locally, appropriate teaching material...... and example curricula. As university education at the Bachelor’s level is traditionally built upon disciplinary degrees, we believe that the most effective way to implement education in Systems Biology would be at the Master’s level, as it offers a more flexible framework. Our team of experts and active...... performers of Systems Biology education suggest here (i) a definition of the skills that students should acquire within a Master’s programme in Systems Biology, (ii) a possible basic educational curriculum with flexibility to adjust to different application areas and local research strengths, (iii...

  2. Control of the cassava mealybug in Africa: lessons from a biological ...

    African Journals Online (AJOL)

    Control of the cassava mealybug in Africa: lessons from a biological control project. ... Such studies are needed in order to attribute the observed effects to various causes and to advance the science of biological control. ( 4) It is concluded that biological control is the basis ofiPM but cannot usually be manipulated by the ...

  3. 75 FR 64984 - Availability of an Environmental Assessment for a Biological Control Agent for Hawkweeds

    Science.gov (United States)

    2010-10-21

    ... hawkweed gall wasp, Aulacidea subterminalis, into the continental United States as a biological control... United States for the biological control of hawkweeds (Hieracium pilosella, H. aurantiacum, H... control, and the use of biological control organisms. The use of herbicides, while effective, is limited...

  4. Using consumption rate to assess potential predators for biological control of white perch

    Directory of Open Access Journals (Sweden)

    Gosch N.J.C.

    2011-08-01

    Full Text Available Control of undesirable fishes is important in aquatic systems, and using predation as a tool for biological control is an attractive option to fishery biologists. However, determining the appropriate predators for biological control is critical for success. The objective of this study was to evaluate the utility of consumption rate as an index to determine the most effective predators for biological control of an invasive fish. Consumption rate values were calculated for nine potential predators that prey on white perch Morone americana in Branched Oak and Pawnee reservoirs, Nebraska. The consumption rate index provided a unique and insightful means of determining the potential effectiveness of each predator species in controlling white perch. Cumulative frequency distributions facilitated interpretation by providing a graphical presentation of consumption rates by all individuals within each predator species. Largemouth bass Micropterus salmoides, walleye Sander vitreus and sauger S. canadensis were the most efficient white perch predators in both reservoirs; however, previous attempts to increase biomass of these predators have failed suggesting that successful biological control is unlikely using existing predator species in these Nebraska reservoirs.

  5. Category of Metabolic-Replication Systems in Biology and Medicine

    OpenAIRE

    I. C. Baianu

    2012-01-01

    Metabolic-repair models, or (M,R)-systems were introduced in Relational Biology by Robert Rosen. Subsequently, Rosen represented such (M,R)-systems (or simply MRs)in terms of categories of sets, deliberately selected without any structure other than the discrete topology of sets. Theoreticians of life's origins postulated that Life on Earth has begun with the simplest possible organism, called the primordial. Mathematicians interested in biology attempted to answer this important questio...

  6. Stochastic chemical kinetics theory and (mostly) systems biological applications

    CERN Document Server

    Érdi, Péter; Lente, Gabor

    2014-01-01

    This volume reviews the theory and simulation methods of stochastic kinetics by integrating historical and recent perspectives, presents applications, mostly in the context of systems biology and also in combustion theory. In recent years, due to the development in experimental techniques, such as optical imaging, single cell analysis, and fluorescence spectroscopy, biochemical kinetic data inside single living cells have increasingly been available. The emergence of systems biology brought renaissance in the application of stochastic kinetic methods.

  7. Using biological control research in the classroom to promote scientific inquiry and literacy

    Science.gov (United States)

    Many scientists who research biological control also teach at universities or more informally through cooperative outreach. The purpose of this paper is to review biological control activities for the classroom in four refereed journals, The American Biology Teacher, Journal of Biological Education...

  8. Micrasterias as a model system in plant cell biology

    Directory of Open Access Journals (Sweden)

    Ursula Luetz-Meindl

    2016-07-01

    Full Text Available The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its extraordinary star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 µm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells.

  9. Biologically inspired collision avoidance system for unmanned vehicles

    Science.gov (United States)

    Ortiz, Fernando E.; Graham, Brett; Spagnoli, Kyle; Kelmelis, Eric J.

    2009-05-01

    In this project, we collaborate with researchers in the neuroscience department at the University of Delaware to develop an Field Programmable Gate Array (FPGA)-based embedded computer, inspired by the brains of small vertebrates (fish). The mechanisms of object detection and avoidance in fish have been extensively studied by our Delaware collaborators. The midbrain optic tectum is a biological multimodal navigation controller capable of processing input from all senses that convey spatial information, including vision, audition, touch, and lateral-line (water current sensing in fish). Unfortunately, computational complexity makes these models too slow for use in real-time applications. These simulations are run offline on state-of-the-art desktop computers, presenting a gap between the application and the target platform: a low-power embedded device. EM Photonics has expertise in developing of high-performance computers based on commodity platforms such as graphic cards (GPUs) and FPGAs. FPGAs offer (1) high computational power, low power consumption and small footprint (in line with typical autonomous vehicle constraints), and (2) the ability to implement massively-parallel computational architectures, which can be leveraged to closely emulate biological systems. Combining UD's brain modeling algorithms and the power of FPGAs, this computer enables autonomous navigation in complex environments, and further types of onboard neural processing in future applications.

  10. Dynamic Analysis of a Phytoplankton-Fish Model with Biological and Artificial Control

    OpenAIRE

    Wang, Yapei; Zhao, Min; Pan, Xinhong; Dai, Chuanjun

    2014-01-01

    We investigate a nonlinear model of the interaction between phytoplankton and fish, which uses a pair of semicontinuous systems with biological and artificial control. First, the existence of an order-1 periodic solution to the system is analyzed using a Poincaré map and a geometric method. The stability conditions of the order-1 periodic solution are obtained by a theoretical mathematical analysis. Furthermore, based on previous analysis, we investigate the bifurcation in the order-1 periodi...

  11. Biological Control of Diseases of Vegetables Grown Hydroponically in Thailand: Challenge and Opportunity.

    Science.gov (United States)

    Kanjanamaneesathian, Mana

    2015-01-01

    In Thailand, yield loss due to plant diseases in vegetables grown hydroponically is very high as a result of the growers` lack of knowledge for controlling diseases and their un- willingness to invest in setting-up the proper hydroponic system from the beginning. Severe root rot disease caused by Pythium spp. is frequent and can be anticipated in the hot climate in Thailand. This review focuses on the diseases in temperate lettuces which have been produced hydroponically and have been attacked by plant pathogens, particularly Pythium spp. Biological control of vegetable diseases grown hydroponically has been investigated in Thailand. Research is being carried out to identify effective strains of the antagonists, formulating the applicable products and delivering them appropriately to control the disease. Products of Bacillus subtilis, Chaetomium globosom and Trichoderma harzianum have been recommended for use to control diseases in vegetables grown hydroponically. Control efficacy of these products is varied as the biological products have been used by the growers in the paradigm of using chemical fungicide for disease control in hydroponic production system, overlooking the intrinsic characteristics of the biological control products. The recent patent, which minimizes the effects of sunlight and heat on the nutrient solution without the use of an external energy for cooling the nutrient, should be applied in producing hydroponic vegetables to mitigate poor plant growth and root rot disease outbreak in Thailand.

  12. Exploring Synthetic and Systems Biology at the University of Edinburgh.

    Science.gov (United States)

    Fletcher, Liz; Rosser, Susan; Elfick, Alistair

    2016-06-15

    The Centre for Synthetic and Systems Biology ('SynthSys') was originally established in 2007 as the Centre for Integrative Systems Biology, funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the Engineering and Physical Sciences Research Council (EPSRC). Today, SynthSys embraces an extensive multidisciplinary community of more than 200 researchers from across the University with a common interest in synthetic and systems biology. Our research is broad and deep, addressing a diversity of scientific questions, with wide ranging impact. We bring together the power of synthetic biology and systems approaches to focus on three core thematic areas: industrial biotechnology, agriculture and the environment, and medicine and healthcare. In October 2015, we opened a newly refurbished building as a physical hub for our new U.K. Centre for Mammalian Synthetic Biology funded by the BBSRC/EPSRC/MRC as part of the U.K. Research Councils' Synthetic Biology for Growth programme. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  13. Fast removal of oxygen from biological systems

    International Nuclear Information System (INIS)

    Dewey, D.L.; Michael, B.D.

    1975-01-01

    Reference is made to the fact that if radiation is given at a high enough dose rate, the biological effect of oxygen is less than at low dose rates. Examples are given of 'break-point' experiments showing the effect. It is stated that the rapid removal of a substance by radiation is not confined to oxygen: the only criterion required to demonstrate the effect is that the chemical causes a measurable sensitization or protection at a concentration small enough so that it can be depleted at a relatively low dose of radiation. Sufficient confidence is now placed in the effect that it can be used the other way round; that is, to measure the position of the break-point and from this measurement determine the oxygen concentration at the target site at the instant before irradiation. Examples are given of the use of the high dose rate technique for measuring the oxygen concentration inside mammalian cells (Chinese hamster cells). The effects of partial pressures of inert gases, and the effect of elevated gas pressures, are discussed. (U.K.)

  14. Primary energy-transformations in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Lehninger, A.L.

    1980-10-01

    In this paper I shall review the main outlines of current research on the molecular aspects of the primary energy-coupling mechanisms in cells, those carried out by energy-transducing membranes. They include the capture of solar energy by the chloroplast membranes of green plants, used to generate carbohydrates and molecular oxygen from carbon dioxide and water, and the counterpart of photosynthesis, the process of respiration in heterotrophic organisms, in which reduced organic products generated by photosynthesis are oxidized at the expense of dioxygen to form carbon dioxide and water. Although the cycling of dioxygen, carbon dioxide, and organic matter between the plant and animal worlds is well known, it is not generally appreciated that the magnitude of biological energy flux in these cycles is huge compared to the total energy flux in man-made devices. A major consequence is that the concentration of carbon dioxide in the atmosphere has been increasing at a significant rate, at a time when there is also a decrease, at least in some parts of the world, in the counterbalancing utilization of CO/sub 2/ by green plants, due to deforestation. The greenhouse effect of increased atmospheric CO/sub 2/ may not only change the earth's climate, but also may influence the rate of photosynthesis. It is also not generally appreciated that energy flow in the biosphere leads to production of enormous amounts of organic matter potentially useful in furnishing man's energy requirements.

  15. System chemical biology studies of endocrine disruptors

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Oprea, Tudor I.

    Endocrine disrupting chemicals (EDCs) alter hormonal balance and other physiological systems through inappropriate developmental or adult exposure, perturbing the reproductive function of further generations. While disruption of key receptors (e.g., estrogen, androgen, and thyroid) at the ligand...

  16. Approaches to Quality Risk Management When Using Single-Use Systems in the Manufacture of Biologics.

    Science.gov (United States)

    Ishii-Watabe, Akiko; Hirose, Akihiko; Katori, Noriko; Hashii, Norikata; Arai, Susumu; Awatsu, Hirotoshi; Eiza, Akira; Hara, Yoshiaki; Hattori, Hideshi; Inoue, Tomomi; Isono, Tetsuya; Iwakura, Masahiro; Kajihara, Daisuke; Kasahara, Nobuo; Matsuda, Hiroyuki; Murakami, Sei; Nakagawa, Taishiro; Okumura, Takehiro; Omasa, Takeshi; Takuma, Shinya; Terashima, Iyo; Tsukahara, Masayoshi; Tsutsui, Maiko; Yano, Takahiro; Kawasaki, Nana

    2015-10-01

    Biologics manufacturing technology has made great progress in the last decade. One of the most promising new technologies is the single-use system, which has improved the efficiency of biologics manufacturing processes. To ensure safety of biologics when employing such single-use systems in the manufacturing process, various issues need to be considered including possible extractables/leachables and particles arising from the components used in single-use systems. Japanese pharmaceutical manufacturers, together with single-use suppliers, members of the academia and regulatory authorities have discussed the risks of using single-use systems and established control strategies for the quality assurance of biologics. In this study, we describe approaches for quality risk management when employing single-use systems in the manufacturing of biologics. We consider the potential impact of impurities related to single-use components on drug safety and the potential impact of the single-use system on other critical quality attributes as well as the stable supply of biologics. We also suggest a risk-mitigating strategy combining multiple control methods which includes the selection of appropriate single-use components, their inspections upon receipt and before releasing for use and qualification of single-use systems. Communication between suppliers of single-use systems and the users, as well as change controls in the facilities both of suppliers and users, are also important in risk-mitigating strategies. Implementing these control strategies can mitigate the risks attributed to the use of single-use systems. This study will be useful in promoting the development of biologics as well as in ensuring their safety, quality and stable supply.

  17. Generic device controller for accelerator control systems

    International Nuclear Information System (INIS)

    Mariotti, R.; Buxton, W.; Frankel, R.; Hoff, L.

    1987-01-01

    Distributed intelligence for accelerator control systems has become possible as a result of advances in microprocessor technology. A system based on distributed intelligence is inherently versatile, readily expandable, and reduces both information flow across the system and software complexity in each unit

  18. A Generic Language for Biological Systems based on Bigraphs

    DEFF Research Database (Denmark)

    Damgaard, Troels Christoffer; Krivine, Jean

    Several efforts have shown that process calculi developed for reasoning about concurrent and mobile systems may be employed for modelling biological systems at the molecular level. In this paper, we initiate investigation of the meta-language framework bigraphical reactive systems, due to Milner et...

  19. Hybrid dynamical systems observation and control

    CERN Document Server

    Defoort, Michael

    2015-01-01

    This book is a collection of contributions defining the state of current knowledge and new trends in hybrid systemssystems involving both continuous dynamics and discrete events – as described by the work of several well-known groups of researchers. Hybrid Dynamical Systems presents theoretical advances in such areas as diagnosability, observability and stabilization for various classes of system. Continuous and discrete state estimation and self-triggering control of nonlinear systems are advanced. The text employs various methods, among them, high-order sliding modes, Takagi–Sugeno representation and sampled-data switching to achieve its ends. The many applications of hybrid systems from power converters to computer science are not forgotten; studies of flexible-joint robotic arms and – as representative biological systems – the behaviour of the human heart and vasculature, demonstrate the wide-ranging practical significance of control in hybrid systems. The cross-disciplinary origins of study ...

  20. Biocellion: accelerating computer simulation of multicellular biological system models.

    Science.gov (United States)

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-11-01

    Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Coordination control of distributed systems

    CERN Document Server

    Villa, Tiziano

    2015-01-01

    This book describes how control of distributed systems can be advanced by an integration of control, communication, and computation. The global control objectives are met by judicious combinations of local and nonlocal observations taking advantage of various forms of communication exchanges between distributed controllers. Control architectures are considered according to  increasing degrees of cooperation of local controllers:  fully distributed or decentralized controlcontrol with communication between controllers,  coordination control, and multilevel control.  The book covers also topics bridging computer science, communication, and control, like communication for control of networks, average consensus for distributed systems, and modeling and verification of discrete and of hybrid systems. Examples and case studies are introduced in the first part of the text and developed throughout the book. They include: control of underwater vehicles, automated-guided vehicles on a container terminal, contro...

  2. Biological forcing controls the chemistry of the coral exoskeleton

    Science.gov (United States)

    Meibom, A.; Mostefaoui, S.; Cuif, J.; Yurimoto, H.; Dauphin, Y.; Houlbreque, F.; Dunbar, R.; Constantz, B.

    2006-12-01

    A multitude of marine organisms produce calcium carbonate skeletons that are used extensively to reconstruct water temperature variability of the tropical and subtropical oceans - a key parameter in global climate-change models. Such paleo-climate reconstructions are based on the notion that skeletal oxygen isotopic composition and certain trace-element abundances (e.g., Sr/Ca and Mg/Ca ratios) vary in response to changes in the water temperature. However, it is a fundamental problem that poorly understood biological processes introduce large compositional deviations from thermodynamic equilibrium and hinder precise calibrations of many paleo-climate proxies. Indeed, the role of water temperature in controlling the composition of the skeleton is far from understood. We have studied trace-element abundances as well as oxygen and carbon isotopic compositions of individual skeletal components in the zooxanthellate and non-zooxanthellate corals at ultra-structural, i.e. micrometer to sub-micrometer length scales. From this body of work we draw the following, generalized conclusions: 1) Centers of calcification (COC) are not in equilibrium with seawater. Notably, the Sr/Ca ratio is higher than expected for aragonite equilibrium with seawater at the temperature at which the skeleton was formed. Furthermore, the COC are further away from equilibrium with seawater than fibrous skeleton in terms of stable isotope composition. 2) COC are dramatically different from the fibrous aragonite skeleton in terms of trace element composition. 3) Neither trace element nor stable isotope variations in the fibrous (bulk) part of the skeleton are directly related to changes in SST. In fact, changes in SST can have very little to do with the observed compositional variations. 4) Trace element variations in the fibrous (bulk) part of the skeleton are not related to the activity of zooxanthellae. These observations are directly relevant to the issue of biological versus non-biological

  3. Biological oceanography of the red oceanic system

    Science.gov (United States)

    Theil, Hjalmar; Weikert, Horst

    1. In 1977, 1979 and 1980-81, investigations were carried out which aimed at evaluating the potential risks from mining metalliferous muds precipating in the Atlantis II Deep of the central Red Sea. This environmental research was initiated by the Saudi Sudanese Red Sea Joint Commission in order to avoid any danger for the Red Sea ecosystem. The broad environmental research programme coherent studies in physical, chemical, biological, and geological oceanography as well as toxicological investigations in the oceanic and in reef zones. We summarise the results from our biological fiels studies in the open sea. 2. The biological investigations were concentrated on the area of the Atlantis II Deep. Benthos was sampled between 700-2000m. For comparison a few samples were also taken further north in the central Red Sea, and to east and west along the flanking deep terraces (500-1000m). Plankton studies covered the total water column above the Deep, and were extended along the axial through to north and south. 3. Benthos sampling was carried out using a heavy closing trawl, a large box grab (box size 50 × 50 cm), Van Veen grabs and traps; photographic surveys were made a phototrap and a photosled. Community respiration was measured with a ship-board method using grab subsamples. Nutrient concentrations, seston and phytoplankton standing stocks as well as in situ primary production were determined from hydrocast samples. Data on zooplankton and micronekton composition and standing stock were obtained from samples collected using different multiple opening-and-closing nets equipped with 100 μm, 300 μm, and 1000 μm mesh sizes. Daily and ontogenetical vertical migration patterns were studied by comparisons of data from midday and midnight tows. 4. Throughout the whole area the sediment is a pteropod ooze containing low contentrations of organic matter; measured organic carbon and nitrogen contents were 0.5 and 0.05% respectively, and chloroplastic pigment equivalents

  4. Biological Characteristics and Control of Orobanche Crenata Forsk., a Review

    Directory of Open Access Journals (Sweden)

    Alessia Restuccia

    2009-03-01

    Full Text Available Orobanche crenata is a holoparasitic phanerogam which is particularly noxious to legumes, such as faba bean (Vicia faba L., pea (Pisum sativum L., chickpea (Cicer arietinum L., lentil (Lens culinaris Medik., etc., and commonly considered one of the major causes which has contributed to re-rizing the area designed to their cultivation. After a few brief references on the origin and diffusion of O. crenata, in this work summarises the results of research into biological aspects and control of this species. The information obtained especially concerns seed production, seed viability, seed longevity and dormancy, seed conditioning and germination, parasitism phases, the effects of parasite attacks on host plants and the means of control.

  5. Biological Characteristics and Control of Orobanche Crenata Forsk., a Review

    Directory of Open Access Journals (Sweden)

    Giuseppe Restuccia

    2011-02-01

    Full Text Available Orobanche crenata is a holoparasitic phanerogam which is particularly noxious to legumes, such as faba bean (Vicia faba L., pea (Pisum sativum L., chickpea (Cicer arietinum L., lentil (Lens culinaris Medik., etc., and commonly considered one of the major causes which has contributed to re-rizing the area designed to their cultivation. After a few brief references on the origin and diffusion of O. crenata, in this work summarises the results of research into biological aspects and control of this species. The information obtained especially concerns seed production, seed viability, seed longevity and dormancy, seed conditioning and germination, parasitism phases, the effects of parasite attacks on host plants and the means of control.

  6. Modeling life the mathematics of biological systems

    CERN Document Server

    Garfinkel, Alan; Guo, Yina

    2017-01-01

    From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. This book develops the mathematical tools essential for students in the life sciences to describe these interacting systems and to understand and predict their behavior. Complex feedback relations and counter-intuitive responses are common in dynamical systems in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models ...

  7. Amoxicillin in a biological water recovery system

    International Nuclear Information System (INIS)

    Morse, A.; Jackson, A.; Rainwater, K.; Pickering, K.

    2002-01-01

    Pharmaceuticals are new contaminants of concern in the aquatic environment, having been identified in groundwater, surface water, and residential tap water. Possible sources of pharmaceuticals include household wastewaters, runoff from feedlots, or waste discharges from pharmaceutical manufacturing plants. When surface water or groundwater supplies impacted by pharmaceuticals are used in drinking water production, the contaminants may reduce drinking water quality. Many pharmaceuticals, such as amoxicillin, pass through the body largely unmetabolized and directly enter wastewater collection systems. Pharmaceuticals are designed to persist in the body long enough to have the desired therapeutic effect. Therefore, they may also have the ability to persist in the environment (Seiler et al, 1999). The purpose of this work is to determine the overall transformation potential of a candidate pharmaceutical in wastewater treatment with specific emphasis on recycle systems. Amoxicillin is the selected pharmaceutical agent, an orally absorbed broad-spectrum antibiotic with a variety of clinical uses including ear, nose, and throat infections and lower respiratory tract infections. Experiments were conducted using an anaerobic reactor (with NO 3 - and NO 2 - as the e - acceptors) followed by a two-phase nitrifying tubular reactor. Influent composed of water, urine and surfactant was spiked with amoxicillin and fed into the wastewater recycle system. The concentration of amoxicillin in the feed and effluent was quantified using an HPLC. Results from this study include potential for long-term buildup in recycled systems, accumulation of breakdown products and possible transfer of antibiotic resistance to microorganisms in the system effluent. In addition, the results of this study may provide information on contamination potential for communities that are considering supplementing drinking water supplies with recovered wastewater or for entities considering a closed loop

  8. Division 1137 property control system

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, D.J.

    1982-01-01

    An automated data processing property control system was developed by Mobile and Remote Range Division 1137. This report describes the operation of the system and examines ways of using it in operational planning and control.

  9. Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions.

    Science.gov (United States)

    Kaufman, Leyla V; Wright, Mark G

    2017-07-07

    The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in Hawaii to validate a probabilistic risk assessment (PRA) procedure for non-target impacts. We use data on known host range and habitat use in the place of origin of the parasitoids to determine whether contemporary levels of non-target parasitism could have been predicted using PRA. Our results show that reasonable predictions of potential non-target impacts may be made if comprehensive data are available from places of origin of biological control agents, but scant data produce poor predictions. Using apparent mortality data rather than marginal attack rate estimates in PRA resulted in over-estimates of predicted non-target impact. Incorporating ecological data into PRA models improved the predictive power of the risk assessments.

  10. INTEGRATED MANAGEMENT OF CHROMOLAENA ODORATA EMPHASIZING THE CLASSICAL BIOLOGICAL CONTROL

    Directory of Open Access Journals (Sweden)

    SOEKISMAN TJITROSEMITO

    1998-01-01

    Full Text Available Chromolaena odorata, Siam weed, a very important weed of Java Island (Indonesia is native to Central and South America. In the laboratory it showed rapid growth (1.15 g/g/week in the first 8 weeks of its growth. The biomass was mainly as leaves (LAR : 317.50 cm'/g total weight. It slowed down in the following month as the biomass was utilized for stem and branch formation. This behavior supported the growth of C. odorata into a very dense stand. It flowered, fruited during the dry season, and senesced following maturation of seeds from inflorescence branches. These branches dried out, but soon the stem resumed aggressive growth following the wet season. Leaf biomass was affected by the size of the stem in its early phase of regrowth, but later on it was more affected by the number of branches. The introduction of Pareuchaetes pseudoinsulata to Indonesia, was successful only in North Sumatera. In Java it has not been reported to establish succesfully. The introduction of another biological control agent, Procecidochares conneca to Indonesia was shown to be sp ecific and upon release in West Java it established immediately. It spread exponentia lly in the first 6 months of its release. Field monitoring continues to eval uate the impact of the agents. Other biocontrol agents (Actmole anteas and Conotrachelus wilt be introduced to Indonesia in 1997 through ACIAR Project on the Biological Control of Chromolaena odorata in Indonesia and Papua New Guinea.

  11. Reevaluation of the value of autoparasitoids in biological control.

    Directory of Open Access Journals (Sweden)

    Lian-Sheng Zang

    Full Text Available Autoparasitoids with the capacity of consuming primary parasitoids that share the same hosts to produce males are analogous to intraguild predators. The use of autoparasitoids in biological control programs is a controversial matter because there is little evidence to support the view that autoparasitoids do not disrupt and at times may promote suppression of insect pests in combination with primary parasitoids. We found that Encarsia sophia, a facultative autoparasitoid, preferred to use heterospecific hosts as secondary hosts for producing males. The autoparasitoids mated with males originated from heterospecifics may parasitize more hosts than those mated with males from conspecifics. Provided with an adequate number of males, the autoparasitoids killed more hosts than En. formosa, a commonly used parasitoid for biological control of whiteflies. This study supports the view that autoparasitoids in combination with primary parasitoids do not disrupt pest management and may enhance such programs. The demonstrated preference of an autoparasitoid for heterospecifics and improved performance of males from heterospecifics observed in this study suggests these criteria should be considered in strategies that endeavor to mass-produce and utilize autoparasitoids in the future.

  12. Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions

    Directory of Open Access Journals (Sweden)

    Leyla V. Kaufman

    2017-07-01

    Full Text Available The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in Hawaii to validate a probabilistic risk assessment (PRA procedure for non-target impacts. We use data on known host range and habitat use in the place of origin of the parasitoids to determine whether contemporary levels of non-target parasitism could have been predicted using PRA. Our results show that reasonable predictions of potential non-target impacts may be made if comprehensive data are available from places of origin of biological control agents, but scant data produce poor predictions. Using apparent mortality data rather than marginal attack rate estimates in PRA resulted in over-estimates of predicted non-target impact. Incorporating ecological data into PRA models improved the predictive power of the risk assessments.

  13. Augmenting Plant Immune Responses and Biological Control by Microbial Determinants

    Directory of Open Access Journals (Sweden)

    Sang Moo Lee

    2015-09-01

    Full Text Available Plant have developed sophisticated defence mechanisms against microbial pathogens. The recent accumulated information allow us to understand the nature of plant immune responses followed by recognition of microbial factors/determinants through cutting-edge genomics and multi-omics techniques. However, the practical approaches to sustain plant health using enhancement of plant immunity is yet to be fully appreciated. Here, we overviewed the general concept and representative examples on the plant immunity. The fungal, bacterial, and viral determinants that was previously reported as the triggers of plant immune responses are introduced and described as the potential protocol of biological control. Specifically, the role of chitin, glucan, lipopolysaccharides/extracellular polysaccharides, microbe/pathogen-associated molecular pattern, antibiotics, mimic-phytohormones, N-acyl homoserine lactone, harpin, vitamins, and volatile organic compounds are considered. We hope that this review stimulates scientific community and farmers to broaden their knowledge on the microbial determinant-based biological control and to apply the technology on the integrated pest management program.

  14. PathSys: integrating molecular interaction graphs for systems biology

    Directory of Open Access Journals (Sweden)

    Raval Alpan

    2006-02-01

    Full Text Available Abstract Background The goal of information integration in systems biology is to combine information from a number of databases and data sets, which are obtained from both high and low throughput experiments, under one data management scheme such that the cumulative information provides greater biological insight than is possible with individual information sources considered separately. Results Here we present PathSys, a graph-based system for creating a combined database of networks of interaction for generating integrated view of biological mechanisms. We used PathSys to integrate over 14 curated and publicly contributed data sources for the budding yeast (S. cerevisiae and Gene Ontology. A number of exploratory questions were formulated as a combination of relational and graph-based queries to the integrated database. Thus, PathSys is a general-purpose, scalable, graph-data warehouse of biological information, complete with a graph manipulation and a query language, a storage mechanism and a generic data-importing mechanism through schema-mapping. Conclusion Results from several test studies demonstrate the effectiveness of the approach in retrieving biologically interesting relations between genes and proteins, the networks connecting them, and of the utility of PathSys as a scalable graph-based warehouse for interaction-network integration and a hypothesis generator system. The PathSys's client software, named BiologicalNetworks, developed for navigation and analyses of molecular networks, is available as a Java Web Start application at http://brak.sdsc.edu/pub/BiologicalNetworks.

  15. Generic device controller for accelerator control systems

    International Nuclear Information System (INIS)

    Mariotti, R.; Buxton, W.; Frankel, R.; Hoff, L.

    1987-01-01

    A new distributed intelligence control system has become operational at the AGS for transport, injection, and acceleration of heavy ions. A brief description of the functionality of the physical devices making up the system is given. An attempt has been made to integrate the devices for accelerator specific interfacing into a standard microprocessor system, namely, the Universal Device Controller (UDC). The main goals for such a generic device controller are to provide: local computing power; flexibility to configure; and real time event handling. The UDC assemblies and software are described

  16. On Restructurable Control System Theory

    Science.gov (United States)

    Athans, M.

    1983-01-01

    The state of stochastic system and control theory as it impacts restructurable control issues is addressed. The multivariable characteristics of the control problem are addressed. The failure detection/identification problem is discussed as a multi-hypothesis testing problem. Control strategy reconfiguration, static multivariable controls, static failure hypothesis testing, dynamic multivariable controls, fault-tolerant control theory, dynamic hypothesis testing, generalized likelihood ratio (GLR) methods, and adaptive control are discussed.

  17. Construction of a Linux based chemical and biological information system.

    Science.gov (United States)

    Molnár, László; Vágó, István; Fehér, András

    2003-01-01

    A chemical and biological information system with a Web-based easy-to-use interface and corresponding databases has been developed. The constructed system incorporates all chemical, numerical and textual data related to the chemical compounds, including numerical biological screen results. Users can search the database by traditional textual/numerical and/or substructure or similarity queries through the web interface. To build our chemical database management system, we utilized existing IT components such as ORACLE or Tripos SYBYL for database management and Zope application server for the web interface. We chose Linux as the main platform, however, almost every component can be used under various operating systems.

  18. Circadian systems biology: When time matters

    Directory of Open Access Journals (Sweden)

    Luise Fuhr

    2015-01-01

    In this manuscript we review the combination of experimental methodologies, bioinformatics and theoretical models that have been essential to explore this remarkable timing-system. Such an integrative and interdisciplinary approach may provide new strategies with regard to chronotherapeutic treatment and new insights concerning the restoration of the circadian timing in clock-associated diseases.

  19. Statistical Model Checking for Biological Systems

    DEFF Research Database (Denmark)

    David, Alexandre; Larsen, Kim Guldstrand; Legay, Axel

    2014-01-01

    Statistical Model Checking (SMC) is a highly scalable simulation-based verification approach for testing and estimating the probability that a stochastic system satisfies a given linear temporal property. The technique has been applied to (discrete and continuous time) Markov chains, stochastic...

  20. Hybrid spacecraft attitude control system

    OpenAIRE

    Renuganth Varatharajoo; Ramly Ajir; Tamizi Ahmad

    2016-01-01

    The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS) consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl...