WorldWideScience

Sample records for biological control organisms

  1. Self-Organized Biological Dynamics and Nonlinear Control

    Science.gov (United States)

    Walleczek, Jan

    2006-04-01

    The frontiers and challenges of biodynamics research Jan Walleczek; Part I. Nonlinear Dynamics in Biology and Response to Stimuli: 1. External signals and internal oscillation dynamics - principal aspects and response of stimulated rhythmic processes Friedemann Kaiser; 2. Nonlinear dynamics in biochemical and biophysical systems: from enzyme kinetics to epilepsy Raima Larter, Robert Worth and Brent Speelman; 3. Fractal mechanisms in neural control: human heartbeat and gait dynamics in health and disease Chung-Kang Peng, Jeffrey M. Hausdorff and Ary L. Goldberger; 4. Self-organising dynamics in human coordination and perception Mingzhou Ding, Yanqing Chen, J. A. Scott Kelso and Betty Tuller; 5. Signal processing in biochemical reaction networks Adam P. Arkin; Part II. Nonlinear Sensitivity of Biological Systems to Electromagnetic Stimuli: 6. Electrical signal detection and noise in systems with long-range coherence Paul C. Gailey; 7. Oscillatory signals in migrating neutrophils: effects of time-varying chemical and electrical fields Howard R. Petty; 8. Enzyme kinetics and nonlinear biochemical amplification in response to static and oscillating magnetic fields Jan Walleczek and Clemens F. Eichwald; 9. Magnetic field sensitivity in the hippocampus Stefan Engström, Suzanne Bawin and W. Ross Adey; Part III. Stochastic Noise-Induced Dynamics and Transport in Biological Systems: 10. Stochastic resonance: looking forward Frank Moss; 11. Stochastic resonance and small-amplitude signal transduction in voltage-gated ion channels Sergey M. Bezrukov and Igor Vodyanoy; 12. Ratchets, rectifiers and demons: the constructive role of noise in free energy and signal transduction R. Dean Astumian; 13. Cellular transduction of periodic and stochastic energy signals by electroconformational coupling Tian Y. Tsong; Part IV. Nonlinear Control of Biological and Other Excitable Systems: 14. Controlling chaos in dynamical systems Kenneth Showalter; 15. Electromagnetic fields and biological

  2. Decreased functional diversity and biological pest control in conventional compared to organic crop fields.

    Directory of Open Access Journals (Sweden)

    Jochen Krauss

    Full Text Available Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short

  3. Decreased functional diversity and biological pest control in conventional compared to organic crop fields.

    Science.gov (United States)

    Krauss, Jochen; Gallenberger, Iris; Steffan-Dewenter, Ingolf

    2011-01-01

    Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional) and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short-term effects on aphid

  4. Effect of biological activated carbon pre-treatment to control organic fouling in the microfiltration of biologically treated secondary effluent.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua

    2014-10-15

    Biological activated carbon (BAC) filtration was investigated as a pre-treatment for reducing the organic fouling of a microfiltration membrane (0.1 μm polyvinylidene fluoride) in the treatment of a biologically treated secondary effluent (BTSE) from a municipal wastewater treatment plant. BAC treatment of the BTSE resulted in a marked improvement in permeate flux, which was attributed to the effective removal of organic foulants and particulates. Although the BAC removed significantly less dissolved organic carbon than the granular activated carbon (GAC) treatment which was used as a control for comparison, it led to a markedly greater flux. This was attributed to the effective removal of the very high molecular weight substances such as biopolymers by the BAC through biodegradation and adsorption of those molecules on the biofilm. Size exclusion chromatography showed the BAC treatment led to approximately 30% reduction in these substances, whereas the GAC did not greatly remove these molecules. The BAC treatment led to a greater reduction of loosely-attached and firmly-attached membrane surface foulant, and this was confirmed by attenuated total reflection-fourier transform infrared spectroscopy analysis. This study demonstrated the potential of BAC pre-treatment for reducing organic fouling and thus improving flux for the microfiltration of BTSE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Distinguishing Biologically Controlled Calcareous Biomineralization in Fossil Organisms Using Electron Backscatter Diffraction (EBSD)

    Science.gov (United States)

    Päßler, Jan-Filip; Jarochowska, Emilia; Bestmann, Michel; Munnecke, Axel

    2018-02-01

    Although carbonate-precipitating cyanobacteria are ubiquitous in aquatic ecosystems today, the criteria used to identify them in the geological record are subjective and rarely testable. Differences in the mode of biomineralization between cyanobacteria and eukaryotes, i.e. biologically induced calcification (BIM) vs. biologically controlled calcification (BCM), result in different crystallographic structures which might be used as a criterion to test cyanobacterial affinities. Cyanobacteria are often used as a ‘wastebasket taxon’, to which various microfossils are assigned. The lack of a testable criterion for the identification of cyanobacteria may bias their fossil record severely. We employed electron backscatter diffraction (EBSD) to investigate the structure of calcareous skeletons in two microproblematica widespread in Palaeozoic marine ecosystems: Rothpletzella, hypothesized to be a cyanobacterium, and an incertae sedis microorganism Allonema. We used a calcareous trilobite shell as a BCM reference. The mineralized structure of Allonema has a simple single-layered structure of acicular crystals perpendicular to the surface of the organism. The c-axes of these crystals are parallel to the elongation and thereby normal to the surface of the organism. EBSD pole figures and misorientation axes distribution reveal a fibre texture around the c-axis with a small degree of variation (up to 30°), indicating a highly ordered structure. A comparable pattern was found in the trilobite shell. This structure allows excluding biologically induced mineralization as the mechanism of shell formation in Allonema. In Rothpletzella, the c-axes of the microcrystalline sheath show a broader clustering compared to Allonema, but still reveal crystals tending to be perpendicular to the surface of the organism. The misorientation axes of adjacent crystals show an approximately random distribution. Rothpletzella also shares morphological similarities with extant cyanobacteria. We

  6. Suppressive composts from organic wastes as agents of biological control of fusariosis in Tatartan Republic (Russia)

    Science.gov (United States)

    Gumerova, Raushaniya; Galitskaya, Polina; Beru, Franchesca; Selivanovskaya, Svetlana

    2015-04-01

    Plant diseases are one of the seriously limiting factors of agriculture efficiency around the world. Diseases caused by fungi are the major threat to plants. Crop protection in modern agriculture heavily depends on chemical fungicides. Disadvantages of chemical pesticides soon became apparent as damage to the environment and a hazard to human health. In this regard use of biopesticides becomes an attractive alternative method of plant protection. For biological control of fungal plant diseases, separate bacterial or fungal strains as well as their communities can be used. Biopreparations must consist of microbes that are typical for local climate and soil conditions and therefore are able to survive in environments for a long time. Another option of plant pests' biological control is implementation of suppressive composts made of agricultural or other organic wastes. These composts can not only prevent the development of plant diseases, but also improve the soil fertility. The objective of this work was estimation of potential of composts and strains isolated from these composts as means for biological control of fusariosis that is one of the most widespread plant soil born disease. The composts were made up of the commonly produced agricultural wastes produced in Tatarstan Republic (Russia). Fusarium oxysporum f. sp. radicis-lycopersici was used as a model phytopathogen. Ten types of organic waste (Goat manure (GM), Chicken dung (CD), Chicken dung with straw addition (CS), Rabbit dung (RD), Cow manure (CM), Rerotting pork manure (RPM), Fresh pork manure (FPM), Pork manure with sawdust and straw (PMS), the remains of plants and leaves (PL), the vegetable waste (VW) were sampled in the big farms situated in Tatarstan Republic which is one of the main agricultural regions of Russia. The initial wastes were composted for 150 days. Further, the following characteristics of the composts were assessed: pH, electro conductivity, TOC, DOC, Ntot. On petri dishes with meat

  7. Biological control of toxic cyanobacteria

    CSIR Research Space (South Africa)

    Ndlela, L

    2016-04-01

    Full Text Available harmful algal blooms and their impacts in over 30 countries. Biological control is a method of introducing natural enemies to control an organism and has been more successful using microorganisms....

  8. Organics and mineral fertilizers and biological control on the incidence of stalk rot and corn yield

    Directory of Open Access Journals (Sweden)

    Elena Blume

    2014-06-01

    Full Text Available The expansion of area under maize (Zea mays L. and the use of no tillage have favored the incidence of stalk rot on this crop. The study aimed to evaluate the organic fertilizers and the treatment of corn seeds with Trichoderma spp. on the production of dry matter (DM of shoot, incidence of stalk rot and corn yield. The experiment consisted in a factorial with split-plot in strips, on the randomized block design with four replicates, and the fertilization treatments (pig slurry; swine deep bedding; cattle slurry; mineral fertilizer; control treatment were applied to the plots and the seeds treatment (with and without Trichoderma spp. in the subplots. At the flowering stage, three corn plants per subplot were collected for the assessment of DM production. At physiological maturity stage, the incidence of stalk rot was assessed, and the ears of corn harvested for productivity assessment. The organic and mineral fertilizers increased the production of DM and productivity of corn. Trichoderma spp. increased the production of DM of corn, but had no reflection on productivity. The incidence of stalk rot in corn was higher in treatments with organic and mineral fertilization. Organic fertilizers increase dry matter production of shoot and corn yield, and Trichoderma spp. provides an increase in dry matter production of shoot.

  9. Integrated Biological Control

    International Nuclear Information System (INIS)

    JOHNSON, A.R.

    2002-01-01

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response

  10. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity

    DEFF Research Database (Denmark)

    Birkhofer, K.; Bezemer, TM; Bloem, J

    2008-01-01

     Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological...... with (CONFYM) or without manure (CONMIN) and herbicide application within a long-term agricultural experiment (DOK trial, Switzerland). Soil carbon content was significantly higher in systems receiving farmyard manure and concomitantly microbial biomass (fungi and bacteria) was increased. Microbial activity...... parameters, such as microbial basal respiration and nitrogen mineralization, showed an opposite pattern, suggesting that soil carbon in the conventional system (CONFYM) was more easily accessible to microorganisms than in organic systems. Bacterivorous nematodes and earthworms were most abundant in systems...

  11. Handling of vegetable biodiversity and the biological control of insect-plague: Case of an organic vineyard

    International Nuclear Information System (INIS)

    Nicholls, Clara I

    2000-01-01

    In the handling of plagues it is feasible to increase natural enemies, populations diversifying the habitat. In the agro ecosystems the importance of the marginal vegetation is recognized for the parasitoids survival and predators. In commercial cultivations of vineyards, managed organically, was ahead this work, corridors of 65 different species from plants with flowers were settled down. The covering cultivations were sowed in array for half every year. The vineyards received 2 tons of compost on average for hectare. For the control of illnesses it was used sulfur preventively. It sought to be necessary if the corridor 200 meters long could increase the biological control of insect's plague in the vineyard. It was evaluated the contribution of the corridor like supplier of alternative nutritious resources, consistent, abundant and well distributed of natural enemies. It was proven the utility of the corridor to increase the populational levels of beneficent insects

  12. Assimilable organic carbon (AOC) variation in reclaimed water: Insight on biological stability evaluation and control for sustainable water reuse.

    Science.gov (United States)

    Chen, Zhuo; Yu, Tong; Ngo, Huu Hao; Lu, Yun; Li, Guoqiang; Wu, Qianyuan; Li, Kuixiao; Bai, Yu; Liu, Shuming; Hu, Hong-Ying

    2018-04-01

    This review highlights the importance of conducting biological stability evaluation due to water reuse progression. Specifically, assimilable organic carbon (AOC) has been identified as a practical indicator for microbial occurrence and regrowth which ultimately influence biological stability. Newly modified AOC bioassays aimed for reclaimed water are introduced. Since elevated AOC levels are often detected after tertiary treatment, the review emphasizes that actions can be taken to either limit AOC levels prior to disinfection or conduct post-treatment (e.g. biological filtration) as a supplement to chemical oxidation based approaches (e.g. ozonation and chlorine disinfection). During subsequent distribution and storage, microbial community and possible microbial regrowth caused by complex interactions are discussed. It is suggested that microbial surveillance, AOC threshold values, real-time field applications and surrogate parameters could provide additional information. This review can be used to formulate regulatory plans and strategies, and to aid in deriving relevant control, management and operational guidance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Exotic biological control agents

    NARCIS (Netherlands)

    Hajek, Ann E.; Hurley, Brett P.; Kenis, Marc; Garnas, Jeffrey R.; Bush, Samantha J.; Wingfield, Michael J.; Lenteren, van Joop C.; Cock, Matthew J.W.

    2016-01-01

    Biological control is a valuable and effective strategy for controlling arthropod pests and has been used extensively against invasive arthropods. As one approach for control of invasives, exotic natural enemies from the native range of a pest are introduced to areas where control is needed.

  14. Stable States of Biological Organisms

    Science.gov (United States)

    Yukalov, V. I.; Sornette, D.; Yukalova, E. P.; Henry, J.-Y.; Cobb, J. P.

    2009-04-01

    A novel model of biological organisms is advanced, treating an organism as a self-consistent system subject to a pathogen flux. The principal novelty of the model is that it describes not some parts, but a biological organism as a whole. The organism is modeled by a five-dimensional dynamical system. The organism homeostasis is described by the evolution equations for five interacting components: healthy cells, ill cells, innate immune cells, specific immune cells, and pathogens. The stability analysis demonstrates that, in a wide domain of the parameter space, the system exhibits robust structural stability. There always exist four stable stationary solutions characterizing four qualitatively differing states of the organism: alive state, boundary state, critical state, and dead state.

  15. Insecticides and Biological Control

    Science.gov (United States)

    Furness, G. O.

    1972-01-01

    Use of insecticides has been questioned due to their harmful effects on edible items. Biological control of insects along with other effective practices for checking spread of parasites on crops are discussed. (PS)

  16. Control theory meets synthetic biology.

    Science.gov (United States)

    Del Vecchio, Domitilla; Dy, Aaron J; Qian, Yili

    2016-07-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology. © 2016 The Author(s).

  17. Biological control of ticks

    Science.gov (United States)

    Samish, M.; Ginsberg, H.; Glazer, I.; Bowman, A.S.; Nuttall, P.

    2004-01-01

    Ticks have numerous natural enemies, but only a few species have been evaluated as tick biocontrol agents (BCAs). Some laboratory results suggest that several bacteria are pathogenic to ticks, but their mode of action and their potential value as biocontrol agents remain to be determined. The most promising entomopathogenic fungi appear to be Metarhizium anisopliae and Beauveria bassiana, strains of which are already commercially available for the control of some pests. Development of effective formulations is critical for tick management. Entomopathogenic nematodes that are pathogenic to ticks can potentially control ticks, but improved formulations and selection of novel nematode strains are needed. Parasitoid wasps of the genus Ixodiphagus do not typically control ticks under natural conditions, but inundative releases show potential value. Most predators of ticks are generalists, with a limited potential for tick management (one possible exception is oxpeckers in Africa). Biological control is likely to play a substantial role in future IPM programmes for ticks because of the diversity of taxa that show high potential as tick BCAs. Considerable research is required to select appropriate strains, develop them as BCAs, establish their effectiveness, and devise production strategies to bring them to practical use.

  18. Quality transformation of dissolved organic carbon during water transit through lakes: contrasting controls by photochemical and biological processes

    Science.gov (United States)

    Berggren, Martin; Klaus, Marcus; Panneer Selvam, Balathandayuthabani; Ström, Lena; Laudon, Hjalmar; Jansson, Mats; Karlsson, Jan

    2018-01-01

    Dissolved organic carbon (DOC) may be removed, transformed, or added during water transit through lakes, resulting in changes in DOC composition and pigmentation (color). However, the process-based understanding of these changes is incomplete, especially for headwater lakes. We hypothesized that because heterotrophic bacteria preferentially consume noncolored DOC, while photochemical processing removes colored fractions, the overall changes in DOC color upon water passage through a lake depend on the relative importance of these two processes, accordingly. To test this hypothesis we combined laboratory experiments with field studies in nine boreal lakes, assessing both the relative importance of different DOC decay processes (biological or photochemical) and the loss of color during water transit time (WTT) through the lakes. We found that influence from photo-decay dominated changes in DOC quality in the epilimnia of relatively clear headwater lakes, resulting in systematic and selective net losses of colored DOC. However, in highly pigmented brown-water lakes (absorbance at 420 nm > 7 m-1) biological processes dominated, and there was no systematic relationship between color loss and WTT. Moreover, in situ data and dark experiments supported our hypothesis on the selective microbial removal of nonpigmented DOC, mainly of low molecular weight, leading to persistent water color in these highly colored lakes. Our study shows that brown headwater lakes may not conform to the commonly reported pattern of the selective removal of colored constituents in freshwaters, as DOC can show a sustained degree of pigmentation upon transit through these lakes.

  19. Conserving and enhancing biological control of nematodes.

    Science.gov (United States)

    Timper, Patricia

    2014-06-01

    Conservation biological control is the modification of the environment or existing practices to protect and enhance antagonistic organisms to reduce damage from pests. This approach to biological control has received insufficient attention compared with inundative applications of microbial antagonists to control nematodes. This review provides examples of how production practices can enhance or diminish biological control of plant-parasitic nematodes and other soilborne pests. Antagonists of nematodes can be enhanced by providing supplementary food sources such as occurs when organic amendments are applied to soil. However, some organic amendments (e.g., manures and plants containing allelopathic compounds) can also be detrimental to nematode antagonists. Plant species and genotype can strongly influence the outcome of biological control. For instance, the susceptibility of the plant to the nematode can determine the effectiveness of control; good hosts will require greater levels of suppression than poor hosts. Plant genotype can also influence the degree of rhizosphere colonization and antibiotic production by antagonists, as well the expression of induced resistance by plants. Production practices such as crop rotation, fallow periods, tillage, and pesticide applications can directly disrupt populations of antagonistic organisms. These practices can also indirectly affect antagonists by reducing their primary nematode host. One of the challenges of conservation biological control is that practices intended to protect or enhance suppression of nematodes may not be effective in all field sites because they are dependent on indigenous antagonists. Ultimately, indicators will need to be identified, such as the presence of particular antagonists, which can guide decisions on where it is practical to use conservation biological control. Antagonists can also be applied to field sites in conjunction with conservation practices to improve the consistency, efficacy, and

  20. A Usages of Herb Extracts by Stream Integrated with Micro-organism to Control Insect Pests and Phytophagus Mites by Biological Control

    Energy Technology Data Exchange (ETDEWEB)

    Uraisakul, Kanok [Rajamangala University of Technology Suvarnabhumi Phranakhonsiayathaya, Hantra Campus, Phranakhonsiayathaya (Thailand); Piadang, Nattaya [Office of Atoms for Peace, Bangkok (Thailand)

    2006-09-15

    A usages of herb extracts by stream integrated rith micro-organism to control insect pests and phytophagus mites by biological control was compared with insecticide to investigate the responses of chili tree and kieffer lime tree. Moreover, herb extracts were tested in controlling insect pests. Herb extracts were selected from many effective kinds such as: Azadirachta indica, Hyptis suaveolens, Citronella grass, Eucalyptus, Stemona, Galangal, Zingiber, cassumunar Roxb. Chronmolaena oderatum, Derris elyptica, Ginger, Annona seed, Malueraca sp., Andrographis paniculata, Veronia aquarrosa, Garlic, Thevetia peruviana, and Tobacco. The experiment was set at Herb Laboratory Ayutthaya Campus, Rajamangala University of Technology, Suvarnabhumi during August 2004 to June 2006. From testing herb extracts at 100 ppm. On Chili germination, the result was that the Chromolaena extracts made highest germination of 69.50%, Citronella grass at 500 ppm., made highest germination of chili seed at 86.00% within 12 days. Garlic extracts could kill 75.90% of aphids in 24 hrs., maximized in this experiments. Malueraca extracts at 500 ppm. Could kill 92.65% of chili aphids similar to the activity of insecticides action in 24 hrs. However at 5,000 ppm. It found that chemical treatment gave difference results from herbal treatments. Annona extracts could kill 64.58% of chili aphids better that others treatments. There are 18 treatment of time at 6 hrs. , 15 hrs., and 24 hrs., respectively. The results found that at 6 hrs., Kelthane could kill 93.75% of red spider mite. At 15 hrs. Stemona could kill 95.50% of red spider mite. At 24 hrs. Stemona or Chromolaena could kill 100% of red spider mite equally, Chrolaena could kill more than 83% of chili thrips at 24 hrs. Annona extracts could harvest the maximum of fruit fresh weight and numbers of fruits. After cutting leaves for producing new leaves, spraying herbal extracts was not different in statistic; however, Eucalyptus extracts, Neem plus

  1. A Usages of Herb Extracts by Stream Integrated with Micro-organism to Control Insect Pests and Phytophagus Mites by Biological Control

    International Nuclear Information System (INIS)

    Uraisakul, Kanok; Piadang, Nattaya

    2006-09-01

    A usages of herb extracts by stream integrated rith micro-organism to control insect pests and phytophagus mites by biological control was compared with insecticide to investigate the responses of chili tree and kieffer lime tree. Moreover, herb extracts were tested in controlling insect pests. Herb extracts were selected from many effective kinds such as: Azadirachta indica, Hyptis suaveolens, Citronella grass, Eucalyptus, Stemona, Galangal, Zingiber, cassumunar Roxb. Chronmolaena oderatum, Derris elyptica, Ginger, Annona seed, Malueraca sp., Andrographis paniculata, Veronia aquarrosa, Garlic, Thevetia peruviana, and Tobacco. The experiment was set at Herb Laboratory Ayutthaya Campus, Rajamangala University of Technology, Suvarnabhumi during August 2004 to June 2006. From testing herb extracts at 100 ppm. On Chili germination, the result was that the Chromolaena extracts made highest germination of 69.50%, Citronella grass at 500 ppm., made highest germination of chili seed at 86.00% within 12 days. Garlic extracts could kill 75.90% of aphids in 24 hrs., maximized in this experiments. Malueraca extracts at 500 ppm. Could kill 92.65% of chili aphids similar to the activity of insecticides action in 24 hrs. However at 5,000 ppm. It found that chemical treatment gave difference results from herbal treatments. Annona extracts could kill 64.58% of chili aphids better that others treatments. There are 18 treatment of time at 6 hrs. , 15 hrs., and 24 hrs., respectively. The results found that at 6 hrs., Kelthane could kill 93.75% of red spider mite. At 15 hrs. Stemona could kill 95.50% of red spider mite. At 24 hrs. Stemona or Chromolaena could kill 100% of red spider mite equally, Chrolaena could kill more than 83% of chili thrips at 24 hrs. Annona extracts could harvest the maximum of fruit fresh weight and numbers of fruits. After cutting leaves for producing new leaves, spraying herbal extracts was not different in statistic; however, Eucalyptus extracts, Neem plus

  2. BIOLOGICAL CONTROL OF WEEDS BY MEANS OF PLANT PATHOGENS

    OpenAIRE

    Marija Ravlić; Renata Baličević

    2014-01-01

    Biological control is the use of live beneficial organisms and products of their metabolism in the pests control. Plant pathogens can be used for weed control in three different ways: as classical, conservation and augmentative (inoculative and inundated) biological control. Inundated biological control involves the use of bioherbicides (mycoherbicides) or artificial breeding of pathogens and application in specific stages of crops and weeds. Biological control of weeds can be used where chem...

  3. Mixed effects of organic farming and landscape compexity on farmland biodiversity and biological control potential across Europe

    NARCIS (Netherlands)

    Winqvist, C.; Bengtsson, J.; Aavik, T.; Berendse, F.; Clement, L.W.; Eggers, S.; Fischer, C.; Flohre, A.; Geiger, F.; Liira, J.

    2011-01-01

    1. Organic farming in Europe has been shown to enhance biodiversity locally, but potential interactions with the surrounding landscape and the potential effects on ecosystem services are less well known. 2. In cereal fields on 153 farms in five European regions, we examined how the species richness

  4. Organization and PprB-dependent control of the Pseudomonas aeruginosa tad Locus, involved in Flp pilus biology.

    Science.gov (United States)

    Bernard, Christophe S; Bordi, Christophe; Termine, Elise; Filloux, Alain; de Bentzmann, Sophie

    2009-03-01

    Bacterial attachment to the substratum involves several cell surface organelles, including various types of pili. The Pseudomonas aeruginosa Tad machine assembles type IVb pili, which are required for adhesion to abiotic surfaces and to eukaryotic cells. Type IVb pili consist of a major subunit, the Flp pilin, processed by the FppA prepilin peptidase. In this study, we investigated the regulatory mechanism of the tad locus. We showed that the flp gene is expressed late in the stationary growth phase in aerobic conditions. We also showed that the tad locus was composed of five independent transcriptional units. We used transcriptional fusions to show that tad gene expression was positively controlled by the PprB response regulator. We subsequently showed that PprB bound to the promoter regions, directly controlling the expression of these genes. We then evaluated the contribution of two genes, tadF and rcpC, to type IVb pilus assembly. The deletion of these two genes had no effect on Flp production, pilus assembly, or Flp-mediated adhesion to abiotic surfaces in our conditions. However, our results suggest that the putative RcpC protein modifies the Flp pilin, thereby promoting Flp-dependent adhesion to eukaryotic cells.

  5. Control in Complex Organizations

    DEFF Research Database (Denmark)

    Rennstam, Jens; Kärreman, Dan

    The extant research on organizational control builds on the assumption of vertical control – managers are thought to develop orders, rules and norms to control the operating core. Yet it is claimed that work becomes increasingly “knowledge intensive” and that organizations rely heavily for their ......The extant research on organizational control builds on the assumption of vertical control – managers are thought to develop orders, rules and norms to control the operating core. Yet it is claimed that work becomes increasingly “knowledge intensive” and that organizations rely heavily...... for their productivity on the knowledge and creativity of their work force. In this type of “knowledge work,” the strong focus on vertical control is insufficient as it fails to account for the important operative and horizontal interactions upon which many contemporary organizations depend. Drawing on practice theory...... and an ethnographic study of engineering work, this paper theorizes control as a form of work that does not only belong to formal management, but is dispersed among various work activities, including horizontal ones. The article introduces the idea of control work as a key practice in contemporary organizations...

  6. Effect of biological and coagulation pre-treatments to control organic and biofouling potential components of ultrafiltration membrane in the treatment of lake water.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Kajol, Annaduzzaman; Suja, Fatihah; Md Zain, Shahrom

    2017-03-01

    Biological aerated filter (BAF), sand filtration (SF), alum and Moringa oleifera coagulation were investigated as a pre-treatment for reducing the organic and biofouling potential component of an ultrafiltration (UF) membrane in the treatment of lake water. The carbohydrate content was mainly responsible for reversible fouling of the UF membrane compared to protein or dissolved organic carbon (DOC) content. All pre-treatment could effectively reduce these contents and led to improve the UF filterability. Both BAF and SF markedly led to improvement in flux than coagulation processes, and alum gave greater flux than M. oleifera. This was attributed to the effective removal and/or breakdown of high molecular weight (MW) organics by biofilters. BAF led to greater improvement in flux than SF, due to greater breakdown of high MW organics, and this was also confirmed by the attenuated total reflection-Fourier transform infrared spectroscopy analysis. Coagulation processes were ineffective in removing biofouling potential components, whereas both biofilters were very effective as shown by the reduction of low MW organics, biodegradable dissolved organic carbon and assimilable organic carbon contents. This study demonstrated the potential of biological pre-treatments for reducing organic and biofouling potential component and thus improving flux for the UF of lake water treatment.

  7. BIOLOGICAL CONTROL OF WEEDS BY MEANS OF PLANT PATHOGENS

    Directory of Open Access Journals (Sweden)

    Marija Ravlić

    2014-06-01

    Full Text Available Biological control is the use of live beneficial organisms and products of their metabolism in the pests control. Plant pathogens can be used for weed control in three different ways: as classical, conservation and augmentative (inoculative and inundated biological control. Inundated biological control involves the use of bioherbicides (mycoherbicides or artificial breeding of pathogens and application in specific stages of crops and weeds. Biological control of weeds can be used where chemical herbicides are not allowed, if resistant weed species are present or in the integrated pest management against weeds with reduced herbicides doses and other non-chemical measures, but it has certain limitations and disadvantages.

  8. Computing chemical organizations in biological networks.

    Science.gov (United States)

    Centler, Florian; Kaleta, Christoph; di Fenizio, Pietro Speroni; Dittrich, Peter

    2008-07-15

    Novel techniques are required to analyze computational models of intracellular processes as they increase steadily in size and complexity. The theory of chemical organizations has recently been introduced as such a technique that links the topology of biochemical reaction network models to their dynamical repertoire. The network is decomposed into algebraically closed and self-maintaining subnetworks called organizations. They form a hierarchy representing all feasible system states including all steady states. We present three algorithms to compute the hierarchy of organizations for network models provided in SBML format. Two of them compute the complete organization hierarchy, while the third one uses heuristics to obtain a subset of all organizations for large models. While the constructive approach computes the hierarchy starting from the smallest organization in a bottom-up fashion, the flux-based approach employs self-maintaining flux distributions to determine organizations. A runtime comparison on 16 different network models of natural systems showed that none of the two exhaustive algorithms is superior in all cases. Studying a 'genome-scale' network model with 762 species and 1193 reactions, we demonstrate how the organization hierarchy helps to uncover the model structure and allows to evaluate the model's quality, for example by detecting components and subsystems of the model whose maintenance is not explained by the model. All data and a Java implementation that plugs into the Systems Biology Workbench is available from http://www.minet.uni-jena.de/csb/prj/ot/tools.

  9. "Protected biological control"- Biological pest management in the greenhouse industry

    NARCIS (Netherlands)

    Pilkington, L.J.; Messelink, G.J.; Lenteren, van J.C.; Mottee, Le K.

    2010-01-01

    This paper briefly describes the foundations and characteristics of biological control in protected cropping and what drivers are behind adoption of this management system within this industry. Examining a brief history of biological control in greenhouses and what makes it a successful management

  10. Biological control of tortricids and aphids in strawberries

    DEFF Research Database (Denmark)

    Sigsgaard, Lene; Enkegaard, Annie; Eilenberg, Jørgen

    Cropping practice and biological control can contribute to reduced pesticide use in strawberries. Organic strawberries are less attacked by strawberry tortricid and buckwheat flower strips can augment its natural enemies. Against shallot aphid the two-spot ladybird is promising....

  11. Biological control and sustainable food production

    NARCIS (Netherlands)

    Bale, J.S.; Lenteren, van J.C.; Bigler, F.

    2008-01-01

    The use of biological control for the management of pest insects pre-dates the modern pesticide era. The first major successes in biological control occurred with exotic pests controlled by natural enemy species collected from the country or area of origin of the pest (classical control).

  12. An Integrated Biological Control System At Hanford

    International Nuclear Information System (INIS)

    Johnson, A.R.; Caudill, J.G.; Giddings, R.F.; Rodriguez, J.M.; Roos, R.C.; Wilde, J.W.

    2010-01-01

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimate spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  13. AN INTEGRATED BIOLOGICAL CONTROL SYSTEM AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON AR; CAUDILL JG; GIDDINGS RF; RODRIGUEZ JM; ROOS RC; WILDE JW

    2010-02-11

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimated spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  14. Biology and Water Pollution Control.

    Science.gov (United States)

    Warren, Charles E.

    Within this text, the reader is attuned to the role biology can and should play in combating the alarming increase in water pollution. Both the urgency of the problem and the biological techniques that are being developed to cope with the water pollution crisis are scrutinized; what is and is not known about the problem is explained; past,…

  15. Biological Control in Brazil: an overview

    OpenAIRE

    Parra,José Roberto Postali

    2014-01-01

    The use of Biological Control methods is on the increase, mainly as a result of the mobilization of human resources in entomology studies since the establishment of graduate programs in this country in the 1960s. This review approaches the retrospective of Biological Control in Brazil in recent decades, with an emphasis on the "culture of applying agrochemicals" adopted by Brazilian growers, which constrains progress in this area. Successful cases of Biological Control have been reported on i...

  16. Review of Pasteuria penetrans: Biology, Ecology, and Biological Control Potential.

    Science.gov (United States)

    Chen, Z X; Dickson, D W

    1998-09-01

    Pasteuria penetrans is a mycelial, endospore-forming, bacterial parasite that has shown great potential as a biological control agent of root-knot nematodes. Considerable progress has been made during the last 10 years in understanding its biology and importance as an agent capable of effectively suppressing root-knot nematodes in field soil. The objective of this review is to summarize the current knowledge of the biology, ecology, and biological control potential of P. penetrans and other Pasteuria members. Pasteuria spp. are distributed worldwide and have been reported from 323 nematode species belonging to 116 genera of free-living, predatory, plant-parasitic, and entomopathogenic nematodes. Artificial cultivation of P. penetrans has met with limited success; large-scale production of endospores depends on in vivo cultivation. Temperature affects endospore attachment, germination, pathogenesis, and completion of the life cycle in the nematode pseudocoelom. The biological control potential of Pasteuria spp. have been demonstrated on 20 crops; host nematodes include Belonolaimus longicaudatus, Heterodera spp., Meloidogyne spp., and Xiphinema diversicaudatum. Pasteuria penetrans plays an important role in some suppressive soils. The efficacy of the bacterium as a biological control agent has been examined. Approximately 100,000 endospores/g of soil provided immediate control of the peanut root-knot nematode, whereas 1,000 and 5,000 endospores/g of soil each amplified in the host nematode and became suppressive after 3 years.

  17. Viscosity and not biological mechanisms often controls the effects of temperature on ciliary activity and swimming velocity of small aquatic organisms

    DEFF Research Database (Denmark)

    Larsen, Poul Scheel; Riisgård, H. U.

    2009-01-01

    organisms using cilia or small appendages for propulsion. Here we summarize results from the literature and from own studies on bio-mechanical activities in response to changing temperature or manipulated viscosity at constant temperature, both having the same change in kinematic viscosity. The survey......A number of studies have shown that temperature-dependent viscosity of the ambient water controls or strongly affects bio-mechanical activity such as beat frequency of water-pumping cilia in mussels and ascidians, swimming velocity of sperm cells, ciliates and small (micro- and meso-scale) aquatic...

  18. Methods for isolation and viability assessment of biological organisms

    Science.gov (United States)

    Letant, Sonia Edith; Baker, Sarah Elyse; Bond, Tiziana; Chang, Allan Shih-Ping

    2015-02-03

    Isolation of biological or chemical organisms can be accomplished using a surface enhanced Raman scattering (SERS) system. The SERS system can be a single or a stacked plurality of photonic crystal membranes with noble-metal lined through pores for flowing analyte potentially containing the biological or chemical organisms. The through pores can be adapted to trap individual biological or chemical organisms and emit SERS spectra, which can then be detected by a detector and further analyzed for viability of the biological or chemical organism.

  19. Synthetic biology expands chemical control of microorganisms.

    Science.gov (United States)

    Ford, Tyler J; Silver, Pamela A

    2015-10-01

    The tools of synthetic biology allow researchers to change the ways engineered organisms respond to chemical stimuli. Decades of basic biology research and new efforts in computational protein and RNA design have led to the development of small molecule sensors that can be used to alter organism function. These new functions leap beyond the natural propensities of the engineered organisms. They can range from simple fluorescence or growth reporting to pathogen killing, and can involve metabolic coordination among multiple cells or organisms. Herein, we discuss how synthetic biology alters microorganisms' responses to chemical stimuli resulting in the development of microbes as toxicity sensors, disease treatments, and chemical factories. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. 75 FR 64984 - Availability of an Environmental Assessment for a Biological Control Agent for Hawkweeds

    Science.gov (United States)

    2010-10-21

    ... hawkweed gall wasp, Aulacidea subterminalis, into the continental United States as a biological control... United States for the biological control of hawkweeds (Hieracium pilosella, H. aurantiacum, H... control, and the use of biological control organisms. The use of herbicides, while effective, is limited...

  1. [Classification of organisms and structuralism in biology].

    Science.gov (United States)

    Vasil'eva, L I

    2001-01-01

    Structuralism in biology is the oldest trend oriented to the search for natural "laws of forms" comparable with laws of growth of crystal, was revived at the end of 20th century on the basis of structuralist thought in socio-humanitarian sciences. The development of principal ideas of the linguistic structuralism in some aspects is similar to that of biological systematics, especially concerning the relationships between "system" and "evolution". However, apart from this general similarity, biological structuralism is strongly focused on familiar problems of the origin of diversity in nature. In their striving for the renovation of existing views, biological structuralists oppose the neo-darwinism emphasizing the existence of "law of forms", that are independent on heredity and genetic "determinism". The trend to develop so-called "rational taxonomy" is also characteristic of biological structuralism but this attempt failed being connected neither with Darwin's historicism nor with Plato's typology.

  2. Biological Systems Thinking for Control Engineering Design

    Directory of Open Access Journals (Sweden)

    D. J. Murray-Smith

    2004-01-01

    Full Text Available Artificial neural networks and genetic algorithms are often quoted in discussions about the contribution of biological systems thinking to engineering design. This paper reviews work on the neuromuscular system, a field in which biological systems thinking could make specific contributions to the development and design of automatic control systems for mechatronics and robotics applications. The paper suggests some specific areas in which a better understanding of this biological control system could be expected to contribute to control engineering design methods in the future. Particular emphasis is given to the nonlinear nature of elements within the neuromuscular system and to processes of neural signal processing, sensing and system adaptivity. Aspects of the biological system that are of particular significance for engineering control systems include sensor fusion, sensor redundancy and parallelism, together with advanced forms of signal processing for adaptive and learning control

  3. Internal Control Organization Procedure

    OpenAIRE

    Radu Dorin Lenghel

    2013-01-01

    Internal control represents the totality of policies and procedures adopted by management, which contribute: to the fulfilment of managerial objectives, to the prevention and detection of frauds or errors, to the accuracy and exhaustiveness of accounting entries, as well as to the preparation in due course of financial accounting information. Internal control represents a managerial instrument which assures the fulfilment of objectives of the entity, being an ongoing process in which administ...

  4. Opportunities for biological weed control in Europe

    NARCIS (Netherlands)

    Scheepens, P.C.; Müller-Schärer, H.; Kempenaar, C.

    2001-01-01

    The development and application of biological weed control offer greatopportunities not only for farmers, nature conservationists and othervegetation managers but also for institutions and companies that wish tosell plant protection services and products, and for the general publicthat demands safe

  5. Flexible Organic Electronics in Biology: Materials and Devices.

    Science.gov (United States)

    Liao, Caizhi; Zhang, Meng; Yao, Mei Yu; Hua, Tao; Li, Li; Yan, Feng

    2015-12-09

    At the convergence of organic electronics and biology, organic bioelectronics attracts great scientific interest. The potential applications of organic semiconductors to reversibly transmit biological signals or stimulate biological tissues inspires many research groups to explore the use of organic electronics in biological systems. Considering the surfaces of movable living tissues being arbitrarily curved at physiological environments, the flexibility of organic bioelectronic devices is of paramount importance in enabling stable and reliable performances by improving the contact and interaction of the devices with biological systems. Significant advances in flexible organic bio-electronics have been achieved in the areas of flexible organic thin film transistors (OTFTs), polymer electrodes, smart textiles, organic electrochemical ion pumps (OEIPs), ion bipolar junction transistors (IBJTs) and chemiresistors. This review will firstly discuss the materials used in flexible organic bioelectronics, which is followed by an overview on various types of flexible organic bioelectronic devices. The versatility of flexible organic bioelectronics promises a bright future for this emerging area. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Organizing quality control programmes

    International Nuclear Information System (INIS)

    Hjardemaal, O.

    1989-01-01

    When procuring new equipment, performance and safety should be specified, if possible by reference to international standards. Some of the characteristics of the International Electrotechnical Commission (IEC) standard for X-ray generators, in particular the accuracy of the operating data, are described. The quality control tests to be performed after installation comprise acceptance test, status test and constancy test. The first two involve absolute measurements and will be the responsibility of physicists or engineers. Apparently limiting values stipulated by users are a factor of two lower than the limits of the IEC standard. By means of an example it is shown that modern X-ray generators can meet the lower limits of the users without problems. In order to obtain optimum initial quality when procuring new equipment operating data, limiting values must be specified and must be verified by acceptance testing, etc. However, in many countries physicists and engineers are not available for this job. A relatively uncomplicated test object can be used by radiographers for checks on fluoroscopic systems. The findings from such tests in Denmark are compared with other published findings and good agreement is found. Therefore it is proposed that such uncomplicated tests could form the basis for quality evaluation. (author)

  7. Biological control of livestock pests: Pathogens

    Science.gov (United States)

    Interest in biological methods for livestock and poultry pest management is largely motivated by the development of resistance to most of the available synthetic pesticides by the major pests. There also has been a marked increase in organic systems, and those that promote animal welfare by reducing...

  8. Use of nuclear techniques in biological control

    International Nuclear Information System (INIS)

    Greany, Patrick D.; Carpenter, James E.

    2000-01-01

    As pointed out by Benbrook (1996), pest management is at a crossroads, and there is a great need for new, biointensive pest management strategies. Among these approaches, biological control is a keystone. However, because of increasing concerns about the introduction of exotic natural enemies of insect pests and weeds (Howarth 1991, Delfosse 1997), the overall thrust of biological control has moved toward augmentative biological control, involving releases of established natural enemy species (Knipling 1992). This in turn has created a need to develop more cost-effective mass rearing technologies for beneficial insects. Nuclear techniques could play an especially important role in augmentative biological control, not only in facilitating mass rearing, but in several other ways, as indicated below. Recognising the potential value for use of nuclear techniques in biological control, the Insect and Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, sponsored a Consultants' Group Meeting on this subject in April 1997. The Group produced a document entitled Use of Nuclear Techniques in Biological Control: Managing Pests, Facilitating Trade and Protecting the Environment. The consultants included the authors of this paper as well as Ernest Delfosse (at that time, with the USDA-APHIS National Biological Control Institute), Garry Hill (Intl. Institute for Biological Control), Sinthya Penn (Beneficial Insectary), and Felipe Jeronimo (USDA-APHIS PPQ, Guatemala). The remarks presented in this paper reflect the thoughts presented by these consultants and other participants at the IAEA-sponsored meeting. Several potential uses for nuclear techniques were identified by the Consultants' Group, including: 1) improvements in rearing media (either artificial diets or natural hosts/prey), 2) provision of sterilised natural prey to be used as food during shipment, to ameliorate concerns relating to the

  9. Biological control component [Management of water hyacinth

    International Nuclear Information System (INIS)

    Harley, K.L.S.

    1981-01-01

    Both chemical and biological control have been used with limited success for the management of water hyacinth in Fiji. In some cases heavy application of chemicals have been successful in completely killing limited areas of water hyacinth, but have resulted in the destruction of biological agents introduced to control the water hyacinth and high contamination of natural water supplies. It is proposed that under the direction of Mr S R Singh, the Senior Research Scientist (Entomology) of the Koronivia Research Station, Suva, Fiji, a collaborative programme with Dr Harley of Australia on chemical and biological control of water hyacinth be initiated. This programme would be fundamentally short-term with the prime objective being an investigation of levels of insect population following varying levels of application of chemical sprays. By comparison with control areas, observations would be made of both chemical damage and insect damage within the limited time span of the period

  10. Maternal feeding controls fetal biological clock.

    Directory of Open Access Journals (Sweden)

    Hidenobu Ohta

    Full Text Available BACKGROUND: It is widely accepted that circadian physiological rhythms of the fetus are affected by oscillators in the maternal brain that are coupled to the environmental light-dark (LD cycle. METHODOLOGY/PRINCIPAL FINDINGS: To study the link between fetal and maternal biological clocks, we investigated the effects of cycles of maternal food availability on the rhythms of Per1 gene expression in the fetal suprachiasmatic nucleus (SCN and liver using a transgenic rat model whose tissues express luciferase in vitro. Although the maternal SCN remained phase-locked to the LD cycle, maternal restricted feeding phase-advanced the fetal SCN and liver by 5 and 7 hours respectively within the 22-day pregnancy. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that maternal feeding entrains the fetal SCN and liver independently of both the maternal SCN and the LD cycle. This indicates that maternal-feeding signals can be more influential for the fetal SCN and particular organ oscillators than hormonal signals controlled by the maternal SCN, suggesting the importance of a regular maternal feeding schedule for appropriate fetal molecular clockwork during pregnancy.

  11. Tracing organizing principles: Learning from the history of systems biology

    DEFF Research Database (Denmark)

    Green, Sara; Wolkenhauer, Olaf

    2014-01-01

    on this historical background in order to increase the understanding of the motivation behind the search for general principles and to clarify different epistemic aims within systems biology. We pinpoint key aspects of earlier approaches that also underlie the current practice. These are i) the focus on relational......With the emergence of systems biology, the identification of organizing principles is being highlighted as a key research aim. Researchers attempt to “reverse engineer” the functional organization of biological systems using methodologies from mathematics, engineering and computer science while...... taking advantage of data produced by new experimental techniques. While systems biology is a relatively new approach, the quest for general principles of biological organization dates back to systems theoretic approaches in early and mid-twentieth century. The aim of this paper is to draw...

  12. Control of self-organizing nonlinear systems

    CERN Document Server

    Klapp, Sabine; Hövel, Philipp

    2016-01-01

    The book summarizes the state-of-the-art of research on control of self-organizing nonlinear systems with contributions from leading international experts in the field. The first focus concerns recent methodological developments including control of networks and of noisy and time-delayed systems. As a second focus, the book features emerging concepts of application including control of quantum systems, soft condensed matter, and biological systems. Special topics reflecting the active research in the field are the analysis and control of chimera states in classical networks and in quantum systems, the mathematical treatment of multiscale systems, the control of colloidal and quantum transport, the control of epidemics and of neural network dynamics.

  13. Using Biological-Control Research in the Classroom to Promote Scientific Inquiry & Literacy

    Science.gov (United States)

    Richardson, Matthew L.; Richardson, Scott L.; Hall, David G.

    2012-01-01

    Scientists researching biological control should engage in education because translating research programs into classroom activities is a pathway to increase scientific literacy among students. Classroom activities focused on biological control target all levels of biological organization and can be cross-disciplinary by drawing from subject areas…

  14. Simulation Techniques and Prosthetic Approach Towards Biologically Efficient Artificial Sense Organs- An Overview

    OpenAIRE

    Neogi, Biswarup; Ghosal, Soumya; Mukherjee, Soumyajit; Das, Achintya; Tibarewala, D. N.

    2011-01-01

    An overview of the applications of control theory to prosthetic sense organs including the senses of vision, taste and odor is being presented in this paper. Simulation aspect nowadays has been the centre of research in the field of prosthesis. There have been various successful applications of prosthetic organs, in case of natural biological organs dis-functioning patients. Simulation aspects and control modeling are indispensible for knowing system performance, and to generate an original a...

  15. A functional overview of conservation biological control

    DEFF Research Database (Denmark)

    Begg, Graham S; Cook, Samantha M; Dye, Richard

    2017-01-01

    Conservation biological control (CBC) is a sustainable approach to pest management that can contribute to a reduction in pesticide use as part of an Integrated Pest Management (IPM) strategy. CBC is based on the premise that countering habitat loss and environmental disturbance associated...... CBC prescriptions have proved elusive. To tackle this, we consolidate existing knowledge of CBC using a simple conceptual model that organises the functional elements of CBC into a common, unifying framework. We identify and integrate the key biological processes affecting natural enemies...... and their biological control function across local and regional scales, and consider the interactions, interdependencies and constraints that determine the outcome of CBC strategies. Conservation measures are often effective in supporting natural enemy populations but their success cannot be guaranteed; the greatest...

  16. Developing powerful tritide technique: Organic and biological molecule labeling

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Complex hydrides are very important reagents in organic synthesis due to the range of reducing powers and selectivities available from different agents. Unfortunately, the availability of these compounds for radiosynthesis has been extremely limited due to the difficulty of making them with adequate levels of tritium. Investigators at the Lawrence Berkeley Laboratory (LBL) National Tritium Labeling Facility have developed a new addition to the repertoire of the tritium-labeling chemist. The new method allows site-specific incorporation of tritium into organic and biological molecules by efficient reduction processes. Exceptionally reactive and selective reducing agents are prepared and used for labeling in a on-pot process. Three new tritide reagents - supertritide (lithium triethyl borotritide), LiAlT 4 (lithium aluminum tritide), and L-Selectride (sterically hindered lithium tri-sec-butyl borotritide) - have been synthesized at carrier-free levels, and have been demonstrated to be fully reactive. The availability of these versatile and reactive reagents gives the tritium radiochemist great control over chemoselectivity and stereoselectivity. The LBL tritide reagents can drive numerous conventional chemical reactions, and have been used to reduce p-toluene sulfonates, amides, lactones, esters, and aldehydes. These reactions produce good yields and result in products with maximum specific activities. The reagents clearly exhibit superior reactivity and may be used in many more synthetic processes than sodium borohydride, which is the currently used reagent. In addition, tritide reagents such as L-selectride have been shown to give greater control over stereochemistry and selectivity than sodium borohydride

  17. Characterization and Control of Biological Microrobots

    NARCIS (Netherlands)

    Khalil, I.S.M.; Pichel, Marc Philippe; Pichel, M.P.; Zondervan, L.; Abelmann, Leon; Misra, Sarthak

    2012-01-01

    This work addresses the characterization and control of Magnetotactic Bacterium (MTB) which can be considered as a biological microrobot. Magnetic dipole moment of the MTB and response to a field-with-alternating-direction are characterized. First, the magnetic dipole moment is characterized using

  18. Characterization and control of biological microrobots

    NARCIS (Netherlands)

    Khalil, I.S.M.; Pichel, Marc Philippe; Zondervan, L.; Abelmann, Leon; Misra, Sarthak; Desai, Jaydev P.; Dudek, Gregory; Khatib, Oussama; Kumar, Vijay

    2013-01-01

    This work addresses the characterization and control of Magnetotactic Bacterium (MTB) which can be considered as a biological microrobot. Magnetic dipole moment of the MTB and response to a field-with-alternating-direction are characterized. First, the magnetic dipole moment is characterized using

  19. Incorporating biological control into IPM decision making

    Science.gov (United States)

    Of the many ways biological control can be incorporated into Integrated Pest Management (IPM) programs, natural enemy thresholds are arguably most easily adopted by stakeholders. Integration of natural enemy thresholds into IPM programs requires ecological and cost/benefit crop production data, thr...

  20. Selection of Trichogramma for inundative biological control

    NARCIS (Netherlands)

    Pak, G.A.

    1988-01-01

    This thesis presents a study of the potential for biological control of lepidopterous pests on cabbage crops in the Netherlands, by means of inundative releases of the egg parasite Trichogramma (Hymenoptera, Trichogrammatidae). The objective of this study is to investigate the

  1. Biological control of Meloidogyne incognita by Trichoderma ...

    African Journals Online (AJOL)

    Biological control against the root-knot nematode, Meloidogyne incognita was proven to occur in tomato, Solanum lycopersicom, soil-drenched with different isolates of Trichoderma harzianum and a commercial suspension of Serratia marcescens (Nemaless). The potential of such biocontrol agents to trigger plant defense ...

  2. Organic chemistry and biology of the interstellar medium

    Science.gov (United States)

    Sagan, C.

    1973-01-01

    Interstellar organic chemistry is discussed as the field of study emerging from the discovery of microwave lines of formaldehyde and of hydrogen cyanide in the interstellar medium. The reliability of molecular identifications and comparisons of interstellar and cometary compounds are considered, along with the degradational origin of simple organics. It is pointed out that the contribution of interstellar organic chemistry to problems in biology is not substantive but analogical. The interstellar medium reveals the operation of chemical processes which, on earth and perhaps on vast numbers of planets throughout the universe, led to the origin of life, but the actual molecules of the interstellar medium are unlikely to play any significant biological role.

  3. Green Algae as Model Organisms for Biological Fluid Dynamics

    Science.gov (United States)

    Goldstein, Raymond E.

    2015-01-01

    In the past decade, the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimeters), their geometric regularity, the ease with which they can be cultured, and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

  4. Transcription control engineering and applications in synthetic biology

    Directory of Open Access Journals (Sweden)

    Michael D. Engstrom

    2017-09-01

    Full Text Available In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein, a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators (cis-factors were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators (trans-factors, giving examples of how cis- and trans-acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli, we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.

  5. Transcription control engineering and applications in synthetic biology.

    Science.gov (United States)

    Engstrom, Michael D; Pfleger, Brian F

    2017-09-01

    In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein), a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity) levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators ( cis -factors) were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators ( trans- factors), giving examples of how cis- and trans -acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli , we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.

  6. Explaining Biological Functionality: Is Control Theory Enough ...

    African Journals Online (AJOL)

    I argue that the etiological approach, as understood in terms of control theory, suffers from a problem of symmetry, by which function can equally well be placed in the environment as in the organism. Focusing on the autonomy view, I note that it can be understood to some degree in terms of control theory in its version called ...

  7. Onchocerciasis control: biological research is still needed

    Directory of Open Access Journals (Sweden)

    Boussinesq M.

    2008-09-01

    Full Text Available Achievements obtained by the onchocerciasis control programmes should not lead to a relaxation in the biological research on Onchocerca volvulus. Issues such as the Loa loa-related postivermectin serious adverse events, the uncertainties as to whether onchocerciasis can be eliminated by ivermectin treatments, and the possible emergence of ivermectin-resistant O. volvulus populations should be addressed proactively. Doxycycline, moxidectin and emodepside appear to be promising as alternative drugs against onchocerciasis but support to researches in immunology and genomics should also be increased to develop new control tools, including both vaccines and macrofilaricidal drugs.

  8. Biology, genome organization and evolution of parvoviruses in marine shrimp

    Science.gov (United States)

    A number of parvoviruses are now know to infect marine shrimp, and these viruses alone or in combination with other viruses have the potential to cause major losses in shrimp aquaculture globally. This review provides a comprehensive overview of the biology, genome organization, gene expression, and...

  9. Complexity: the organizing principle at the interface of biological (dis ...

    Indian Academy of Sciences (India)

    RAMRAY BHAT

    2017-07-05

    Jul 5, 2017 ... opment of complexity theory in the context of biological systems. ... (DST), a mathematical enterprise that deals with the behaviour of ... and application of programming to trace the dynamical .... with the resultant organization being regulated by the ... more regular the pattern, the smaller the program needed.

  10. Biologically controlled minerals as potential indicators of life

    Science.gov (United States)

    Schwartz, D. E.; Mancinelli, R. L.; Kaneshiro, E.

    1991-01-01

    Minerals can be produced and deposited either by abiotic or biologic means. Regardless of their origin, mineral crystals reflect the environment conditions (e.g., temperature, pressure, chemical composition, and redox potential) present during crystal formation. Biologically-produced mineral crystals are grown or reworked under the control of their host organism and reflect an environment different from the abiotic environment. In addition, minerals of either biologic or abiotic origin have great longevities. For these reasons, biologically produced minerals have been proposed as biomarkers. Biomarkers are key morphological, chemical, and isotopic signatures of living systems that can be used to determine if life processes have occurred. Studies of biologically controlled minerals produced by the protist, Paramecium tetraurelia, were initiated since techniques have already been developed to culture them and isolate their crystalline material, and methods are already in place to analyze this material. Two direct crystalline phases were identified. One phase, whose chemical composition is high in Mg, was identified as struvite. The second phase, whose chemical composition is high in Ca, has not been previously found occurring naturally and may be considered a newly discovered material. Analyses are underway to determine the characteristics of these minerals in order to compare them with characteristics of these minerals in order to compare them with characteristics of minerals formed abiotically, but with the same chemical composition.

  11. Biological control of Fusarium moniliforme in maize.

    Science.gov (United States)

    Bacon, C W; Yates, I E; Hinton, D M; Meredith, F

    2001-05-01

    Fusarium moniliforme Sheldon, a biological species of the mating populations within the (italic)Gibberella fujikuroi species complex, i.e., population A [= G. moniliformis (Sheld.) Wineland], is an example of a facultative fungal endophyte. During the biotrophic endophytic association with maize, as well as during saprophytic growth, F. moniliforme produces the fumonisins. The fungus is transmitted vertically and horizontally to the next generation of plants via clonal infection of seeds and plant debris. Horizontal infection is the manner by which this fungus is spread contagiously and through which infection occurs from the outside that can be reduced by application of certain fungicides. The endophytic phase is vertically transmitted. This type infection is important because it is not controlled by seed applications of fungicides, and it remains the reservoir from which infection and toxin biosynthesis takes place in each generation of plants. Thus, vertical transmission of this fungus is just as important as horizontal transmission. A biological control system using an endophytic bacterium, Bacillus subtilis, has been developed that shows great promise for reducing mycotoxin accumulation during the endophytic (vertical transmission) growth phase. Because this bacterium occupies the identical ecological niche within the plant, it is considered an ecological homologue to F. moniliforme, and the inhibitory mechanism, regardless of the mode of action, operates on the competitive exclusion principle. In addition to this bacterium, an isolate of a species of the fungus Trichoderma shows promise in the postharvest control of the growth and toxin accumulation from F. moniliforme on corn in storage.

  12. Peptide π-Electron Conjugates: Organic Electronics for Biology?

    Science.gov (United States)

    Ardoña, Herdeline Ann M; Tovar, John D

    2015-12-16

    Highly ordered arrays of π-conjugated molecules are often viewed as a prerequisite for effective charge-transporting materials. Studies involving these materials have traditionally focused on organic electronic devices, with more recent emphasis on biological systems. In order to facilitate the transition to biological environments, biomolecules that can promote hierarchical ordering and water solubility are often covalently appended to the π-electron unit. This review highlights recent work on π-conjugated systems bound to peptide moieties that exhibit self-assembly and aims to provide an overview on the development and emerging applications of peptide-based supramolecular π-electron systems.

  13. Biological control of corky root in tomato.

    Science.gov (United States)

    Fiume, G; Fiume, F

    2008-01-01

    Corky root caused by Pyrenochaeta lycopersici (Schneider et Gerlach) is one of the most important soil borne fungal pathogens which develops in the soils, causing diseases in different crops. The research was carried out to evaluate the effectiveness of the biological control of corky root on tomato. Biological control was performed by using Trichoderma viride Pers. 18/17 SS, Streptomyces spp. AtB42 and Bacillus subtilis M51 PI. According to present and future regulations on the use of chemical fungicides and considering that treatments must avoids environmental pollution, the main object of this research was to find alternative strategies by using biocontrol agents against P. lycopersici that affect tomato plants. In laboratory, the effectiveness of T. viride 18/17 SS, Streptomyces spp. AtB42 and B. subtilis M51 PI to control P. lycopersici were studied. In greenhouse, the research was carried out comparing the following treatments: 1) untreated control; 2) T. viride 18/17 SS; 3) Streptomyces spp. AtB42; 4) B. subtilis M51 PI. Roots of plants of tomato H3028 Hazera were treated with the antagonist suspensions just prior of transplant. Treatments were repeated about 2 months after, with the same suspensions sprayed on the soil to the plant collar. In dual culture, the inhibition of P. lycopersici ranged up to 81.2% (caused from T. viride 18/17 SS), 75.6% (from Streptomyces spp. AtB42) and 66.8% (from B. subtilis M51 PI). In greenhouse trials, with regard to corky root symptoms, all treated plots showed signifycative differences compared to untreated. T. viride gave the better results followed by Streptomyces spp. and then by B. subtilis. The fungus antagonist showed good root surface competence such as demonstrated its persistence on the roots surface of the tomato plants whose roots were treated with T. viride 18/17 SS up to 2 months before.

  14. Biological control agents elevate hantavirus by subsidizing deer mouse populations

    Science.gov (United States)

    Dean E. Pearson; Ragan M. Callaway

    2006-01-01

    Biological control of exotic invasive plants using exotic insects is practiced under the assumption that biological control agents are safe if they do not directly attack non-target species. We tested this assumption by evaluating the potential for two host-specific biological control agents (Urophora spp.), widely established in North America for spotted...

  15. Organ-on-a-Chip: New Platform for Biological Analysis

    Directory of Open Access Journals (Sweden)

    Fan An

    2015-01-01

    Full Text Available Direct detection and analysis of biomolecules and cells in physiological microenvironment is urgently needed for fast evaluation of biology and pharmacy. The past several years have witnessed remarkable development opportunities in vitro organs and tissues models with multiple functions based on microfluidic devices, termed as “organ-on-a-chip”. Briefly speaking, it is a promising technology in rebuilding physiological functions of tissues and organs, featuring mammalian cell co-culture and artificial microenvironment created by microchannel networks. In this review, we summarized the advances in studies of heart-, vessel-, liver-, neuron-, kidney- and Multi-organs-on-a-chip, and discussed some noteworthy potential on-chip detection schemes.

  16. Organization of excitable dynamics in hierarchical biological networks.

    Directory of Open Access Journals (Sweden)

    Mark Müller-Linow

    Full Text Available This study investigates the contributions of network topology features to the dynamic behavior of hierarchically organized excitable networks. Representatives of different types of hierarchical networks as well as two biological neural networks are explored with a three-state model of node activation for systematically varying levels of random background network stimulation. The results demonstrate that two principal topological aspects of hierarchical networks, node centrality and network modularity, correlate with the network activity patterns at different levels of spontaneous network activation. The approach also shows that the dynamic behavior of the cerebral cortical systems network in the cat is dominated by the network's modular organization, while the activation behavior of the cellular neuronal network of Caenorhabditis elegans is strongly influenced by hub nodes. These findings indicate the interaction of multiple topological features and dynamic states in the function of complex biological networks.

  17. Predicted allowable doses to normal organs for biologically targeted radiotherapy

    International Nuclear Information System (INIS)

    O'Donoghue, J.A.; Wheldon, T.E.; Western Regional Hospital Board, Glasgow

    1988-01-01

    The authors have used Dale's extension to the ''linear quadratic'' (LQ) model (Dale, 1985) to evaluate ''equivalent doses'' in cases involving exponentially decaying dose rates. This analysis indicates that the dose-rate effect will be a significant determinant of allowable doses to organs such as liver, kidney and lung. These organ tolerance doses constitute independent constraints on the therapeutic intensity of biologically targeted radiotherapy in exactly the same way as for conventional external beam radiotherapy. In the context of marrow rescue they will in all likelihood constitute the dose-limiting side-effects and thus be especially important. (author)

  18. Systems of organic farming in spring vetch I: Biological response of sucking insect pests

    Directory of Open Access Journals (Sweden)

    Ivelina Nikolova

    2015-04-01

    Full Text Available Four systems of organic farming and a conventional farming system were studied over the period 2012-2014. The organic system trial variants included: I – an organic farming system without any biological products used (growth under natural soil fertility – Control; II – an organic farming system involving the use of a biological foliar fertilizer and a biological plant growth regulator (Polyversum+Biofa; III – an organic farming system in which a biological insecticide (NeemAzal T/S was used; IV – an organic farming system including a combination of three organic products: the foliar fertilizer, the plant growth regulator and the bioinsecticide (Polyversum+Biofa+NeemAzal T/S. Variant V represented a conventional farming system in which synthetic products were used in combination (foliar fertilizer, plant growth regulator and insecticide: Masterblend+Flordimex 420+Nurelle D. Treatment of vetch plants with the biological insecticide NeemAzal in combination with Biofa and Polyversum resulted in the lowest density of sucking pests, compared to all other organic farming methods tested (i.e. without NeemAzal, with NeemAzal alone, and its combination with Biofa and Polyversum. The greatest reduction in pest numbers during the vegetation period in that variant was observed in species of the order Thysanoptera (36.0-41.4%, followed by Hemiptera, and the families Aphididae (31.6-40.3% and Cicadellidae (27.3-28.6%. This combination showed an efficient synergistic interaction and an increase in biological efficacy as compared to individual application of NeemAzal. The highest toxic impact was found against Thrips tabaci, followed by Acyrthosiphon pisum. An analysis of variance regarding the efficacy against the species A. pisum, E. pteridis and T. tabaci showed that type of treatment had the most dominant influence and statistically significant impact.

  19. Carotenoids from Marine Organisms: Biological Functions and Industrial Applications

    Directory of Open Access Journals (Sweden)

    Christian Galasso

    2017-11-01

    Full Text Available As is the case for terrestrial organisms, carotenoids represent the most common group of pigments in marine environments. They are generally biosynthesized by all autotrophic marine organisms, such as bacteria and archaea, algae and fungi. Some heterotrophic organisms also contain carotenoids probably accumulated from food or partly modified through metabolic reactions. These natural pigments are divided into two chemical classes: carotenes (such as lycopene and α- and β-carotene that are composed of hydrogen and carbon; xanthophylls (such as astaxanthin, fucoxanthin and lutein, which are constituted by hydrogen, carbon and oxygen. Carotenoids, as antioxidant compounds, assume a key role in the protection of cells. In fact, quenching of singlet oxygen, light capture and photosynthesis protection are the most relevant biological functions of carotenoids. The present review aims at describing (i the biological functions of carotenoids and their benefits for human health, (ii the most common carotenoids from marine organisms and (iii carotenoids having large success in pharmaceutical, nutraceutical and cosmeceutical industries, highlighting the scientific progress in marine species cultivation for natural pigments production.

  20. Biological control of Phytophthora root rot of avocato with microorganisms grown in organic mulches Controle biológico da podridão radicular de Phytophthora no abacateiro utilizando substratos orgânicos colonizados

    Directory of Open Access Journals (Sweden)

    Jefferson L. da S. Costa

    2000-10-01

    Full Text Available Organic mulches colonized with microbial biocontrol agents, termed bioenhanced mulches, were tested for their ability to reduce Phytophthora root rot of avocado (Persea americana Mill.. Benomyl-resistant mutants of Gliocladium virens (KA 230-1 and Trichoderma harzianum (KA 159.2 isolated from suppressive soils and selected as efficient antagonists of P. cinnamomi were evaluated for their ability to colonize different mulches under controlled laboratory conditions. Sudangrass and a coarse yardwaste were found to be better substrates than a fine yardwaste, woodwaste or rice hulls for biocontrol agents propagules production. The most suitable conditions for colonization were an optimum temperature of 24°C, a moisture content of 20% for sudangrass and 30% for the coarse yardwaste, and a continuous light exposure during a 15-day incubation period. In the greenhouse, fresh sudangrass and a coarse yardwaste colonized with G. virens and used as a surface mulch proved to be the best combination for reducing the population of P. cinnamomi in 4-liter pots containing artificially-infested soil. Healthy avocado roots made up 31-37% of the roots in the G. virens-mulch combinations compared to 0% healthy in infested controls after two months.Compostos orgânicos colonizados com agentes de controle microbiológico, então denominados compostos bioativados, foram testados quanto a sua habilidadade controlar à podridão radicular de Phytophtora no abacateiro (Persea americana Mill. Mutantes de Gliocladium virens (KA 230-1 e Trichoderma harzianun (KA 159-2 resistentes a benomyl recuperados de solos supressivos e selecionados como eficientes antagonistas à P. cinnamoni foram avaliados quanto à sua capacidade de colonizar diversos compostos orgânicos em condições de laboratório. O Capim Sudão e um Composto de Jardim de alta granulação demonstraram quanto à sua capacidade de multiplicar propágulos de agentes de biocontrole, serem superiores à um

  1. Biological soil crusts: a fundamental organizing agent in global drylands

    Science.gov (United States)

    Belnap, J.; Zhang, Y.

    2013-12-01

    Ecosystem function is profoundly affected by plant community composition, which is ultimately determined by factors that govern seed retention. Dryland ecosystems constitute ~35% of terrestrial surfaces, with most soils in these regions covered by biological soil crusts (biocrusts), a community whose autotrophs are dominated by cyanobacteria, lichens, and mosses. Studies at 550 sites revealed that plant community composition was controlled by the interaction among biocrust type, disturbance regime, and external morphology of seeds. In bare soils (due to disturbance), all seed types were present in the seedbank and plant community. As biocrusts became better developed (i.e., the cover of lichens and mosses increased), they more strongly filtered out seeds with appendages. Thus, soils under late successional biocrusts contained seedbanks dominated by smooth seeds and vascular plants growing in late successional biocrusts were dominated by those with smooth seeds. Therefore, the tension between the removal of biocrusts by soil surface disturbance and their recovery creates a shifting mosaic of plant patch types in both space and time. Because changes in vascular plant communities reverberate throughout both below ground and above ground food webs and thus affect multiple trophic levels, we propose that biocrusts are a fundamental organizing agent in drylands worldwide. Future increased demand for resources will intensify land use both temporally and spatially, resulting in an increased rate of biocrust loss across larger areas. As a result, we can expect shifts in the composition and distribution of plant communities, accompanied by concomitant changes in many aspects of dryland ecosystems. Conceptual model of shifting dryland plant mosaics through space and time. Within the large circles, soil surface type changes with time in the same space, going from bare uncrusted soil (B) to cyanobacterial biocrust (C) to lichen/moss (L/M) biocrust. Disturbance (D) drives the

  2. Biological Control of Bacterial Wilt in South East Asia

    OpenAIRE

    Arwiyanto, Triwidodo

    2014-01-01

    Bacterial wilt disease caused by Ralstonia solanacearum destroys many crops of different plant families in South East Asia despite many researches about the disease, and the availability of developed control method in other parts of the world. There is no chemical available for the bacterial wilt pathogen and biological control is then chosen as an alternative to save the crops. Most of the biological control studies were based on antagonism between biological control agent and the pathogen. ...

  3. Complexity, Analysis and Control of Singular Biological Systems

    CERN Document Server

    Zhang, Qingling; Zhang, Xue

    2012-01-01

    Complexity, Analysis and Control of Singular Biological Systems follows the control of real-world biological systems at both ecological and phyisological levels concentrating on the application of now-extensively-investigated singular system theory. Much effort has recently been dedicated to the modelling and analysis of developing bioeconomic systems and the text establishes singular examples of these, showing how proper control can help to maintain sustainable economic development of biological resources. The book begins from the essentials of singular systems theory and bifurcations before tackling  the use of various forms of control in singular biological systems using examples including predator-prey relationships and viral vaccination and quarantine control. Researchers and graduate students studying the control of complex biological systems are shown how a variety of methods can be brought to bear and practitioners working with the economics of biological systems and their control will also find the ...

  4. Matrices for Sensors from Inorganic, Organic, and Biological Nanocomposites

    Directory of Open Access Journals (Sweden)

    Eugenia Pechkova

    2011-08-01

    Full Text Available Matrices and sensors resulting from inorganic, organic and biological nanocomposites are presented in this overview. The term nanocomposite designates a solid combination of a matrix and of nanodimensional phases differing in properties from the matrix due to dissimilarities in structure and chemistry. The nanoocomposites chosen for a wide variety of health and environment sensors consist of Anodic Porous Allumina and P450scc, Carbon nanotubes and Conductive Polymers, Langmuir Blodgett Films of Lipases, Laccases, Cytochromes and Rhodopsins, Three-dimensional Nanoporous Materials and Nucleic Acid Programmable Protein Arrays.

  5. Dose inhomogeneities at various levels of biological organization

    International Nuclear Information System (INIS)

    Bond, V.P.

    1988-01-01

    Dose inhomogeneities in both tumor and normal tissue, inherent to the application of boron neutron capture therapy (BNCT), can be the result not only of ununiform distribution of 10 B at various levels of biological organization, but also of the distribution of the thermal neutrons and of the energy depositions from more energetic neutrons and other radiations comprising the externally-applied beams. The severity of the problems resulting from such inhomogeneities, and approaches to evaluating them, are illustrated by three examples, at the macro, micro and intermediate levels

  6. Importance of the hexagonal lipid phase in biological membrane organization.

    Science.gov (United States)

    Jouhet, Juliette

    2013-01-01

    Domains are present in every natural membrane. They are characterized by a distinctive protein and/or lipid composition. Their size is highly variable from the nano- to the micrometer scale. The domains confer specific properties to the membrane leading to original structure and function. The determinants leading to domain organization are therefore important but remain obscure. This review presents how the ability of lipids to organize into hexagonal II or lamellar phases can promote particular local structures within membranes. Since biological membranes are composed of a mixture of lipids, each with distinctive biophysical properties, lateral and transversal sorting of lipids can promote creation of domains inside the membrane through local modulation of the lipid phase. Lipid biophysical properties have been characterized for long based on in vitro analyses using non-natural lipid molecules; their re-examinations using natural lipids might open interesting perspectives on membrane architecture occurring in vivo in various cellular and physiological contexts.

  7. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering.

    Science.gov (United States)

    He, Fei; Murabito, Ettore; Westerhoff, Hans V

    2016-04-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. © 2016 The Author(s).

  8. Phylogenetically informed logic relationships improve detection of biological network organization

    Science.gov (United States)

    2011-01-01

    Background A "phylogenetic profile" refers to the presence or absence of a gene across a set of organisms, and it has been proven valuable for understanding gene functional relationships and network organization. Despite this success, few studies have attempted to search beyond just pairwise relationships among genes. Here we search for logic relationships involving three genes, and explore its potential application in gene network analyses. Results Taking advantage of a phylogenetic matrix constructed from the large orthologs database Roundup, we invented a method to create balanced profiles for individual triplets of genes that guarantee equal weight on the different phylogenetic scenarios of coevolution between genes. When we applied this idea to LAPP, the method to search for logic triplets of genes, the balanced profiles resulted in significant performance improvement and the discovery of hundreds of thousands more putative triplets than unadjusted profiles. We found that logic triplets detected biological network organization and identified key proteins and their functions, ranging from neighbouring proteins in local pathways, to well separated proteins in the whole pathway, and to the interactions among different pathways at the system level. Finally, our case study suggested that the directionality in a logic relationship and the profile of a triplet could disclose the connectivity between the triplet and surrounding networks. Conclusion Balanced profiles are superior to the raw profiles employed by traditional methods of phylogenetic profiling in searching for high order gene sets. Gene triplets can provide valuable information in detection of biological network organization and identification of key genes at different levels of cellular interaction. PMID:22172058

  9. Budgeting-Based Organization of Internal Control

    Science.gov (United States)

    Rogulenko, Tatiana; Ponomareva, Svetlana; Bodiaco, Anna; Mironenko, Valentina; Zelenov, Vladimir

    2016-01-01

    The article suggests methodical approaches to the budgeting-based organization of internal control, determines the tasks and subtasks of control that consist in the construction of an efficient system for the making, implementation, control, and analysis of managerial decisions. The organization of responsibility centers by means of implementing…

  10. Will the Convention on Biological Diversity put an end to biological control?

    NARCIS (Netherlands)

    Lenteren, van J.C.; Cock, M.J.W.; Brodeur, J.; Barratt, B.I.P.; Bigler, F.; Bolckmans, K.; Haas, F.; Mason, P.G.; Parra, J.R.P.

    2011-01-01

    Will the Convention on Biological Diversity put an end to biological control? Under the Convention on Biological Diversity countries have sovereign rights over their genetic resources. Agreements governing the access to these resources and the sharing of the benefits arising from their use need to

  11. Effectiveness of a biological control agent Palexorista gilvoides in ...

    African Journals Online (AJOL)

    ACSS

    Effectiveness of a biological control agent Palexorista gilvoides in controlling Gonometa podorcarpi in conifer ... gilvoides as a potential biological control agent for G. podocarpi. Field and laboratory studies further established that P. .... version for windows (SPSS, 2002). Results. Gonometa podocarpi was present in.

  12. Status of biological control in vegetation management in forestry

    Science.gov (United States)

    George P. Markin; Donald E. Gardner

    1993-01-01

    Biological control traditionally depends upon importing the natural enemies of introduced weeds. Since vegetation management in forestry has primarily been aimed at protecting economic species of trees from competition from other native plants, biological control has been of little use in forestry. An alternative approach to controlling unwanted native plants,...

  13. Levels of biological organization and the origin of novelty.

    Science.gov (United States)

    Hall, Brian K; Kerney, Ryan

    2012-09-01

    The concept of novelty in evolutionary biology pertains to multiple tiers of biological organization from behavioral and morphological changes to changes at the molecular level. Identifying novel features requires assessments of similarity (homology and homoplasy) of relationships (phylogenetic history) and of shared developmental and genetic pathways or networks. After a brief discussion of how novelty is used in recent literature, we discuss whether the evolutionary approach to homology and homoplasy initially formulated by Lankester in the 19th century informs our understanding of novelty today. We then discuss six examples of morphological features described in the recent literature as novelties, and assess the basis upon which they are regarded as novel. The six are: origin of the turtle shell, transition from fish fins to tetrapod limbs, origination of the neural crest and neural crest cells, cement glands in frogs and casquettes in fish, whale bone-eating tubeworms, and the digestion of plant proteins by nematodes. The article concludes with a discussion of means of acquiring novel genetic information that can account for novelty recognized at higher levels. These are co-options of existing genetic circuitry, gene duplication followed by neofunctionalization, gene rearrangements through mobile genetic elements, and lateral gene transfer. We conclude that on the molecular level only the latter category provides novel genetic information, in that there is no homologous precursor. However, novel phenotypes can be generated through both neofunctionalization and gene rearrangements. Therefore, assigning phenotypic or genotypic "novelty" is contingent on the level of biological organization addressed. Copyright © 2011 Wiley Periodicals, Inc.

  14. Biological stability of drinking water: controlling factors, methods and challenges

    Directory of Open Access Journals (Sweden)

    Emmanuelle ePrest

    2016-02-01

    Full Text Available Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g. development of opportunistic pathogens, aesthetic (e.g. deterioration of taste, odour, colour or operational (e.g. fouling or biocorrosion of pipes problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors such as (i type and concentration of available organic and inorganic nutrients, (ii type and concentration of residual disinfectant, (iii presence of predators such as protozoa and invertebrates, (iv environmental conditions such as water temperature, and (v spatial location of microorganisms (bulk water, sediment or biofilm. Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i existing knowledge on biological stability controlling factors and (ii how these factors are affected by drinking water production and distribution conditions. In addition, (iii the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discuss how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order to

  15. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    Science.gov (United States)

    Prest, Emmanuelle I.; Hammes, Frederik; van Loosdrecht, Mark C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  16. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    KAUST Repository

    Prest, Emmanuelle I.

    2016-02-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  17. Low doses of ionizing radiation: Biological effects and regulatory control. Contributed papers

    International Nuclear Information System (INIS)

    1997-11-01

    The International Atomic Energy Agency and the World Health Organization, in cooperation with the United Nations Scientific Committee on the Effects of Atomic Radiation, organized an international conference on Low Doses of Ionizing Radiation: Biological Effects and Regulatory Control, held in seville, Spain, from 17 to 21 November 1997. This technical document contains concise papers submitted to the conference

  18. Low doses of ionizing radiation: Biological effects and regulatory control. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The International Atomic Energy Agency and the World Health Organization, in cooperation with the United Nations Scientific Committee on the Effects of Atomic Radiation, organized an international conference on Low Doses of Ionizing Radiation: Biological Effects and Regulatory Control, held in seville, Spain, from 17 to 21 November 1997. This technical document contains concise papers submitted to the conference. Refs, figs, tabs.

  19. Augmenting Plant Immune Responses and Biological Control by Microbial Determinants

    Directory of Open Access Journals (Sweden)

    Sang Moo Lee

    2015-09-01

    Full Text Available Plant have developed sophisticated defence mechanisms against microbial pathogens. The recent accumulated information allow us to understand the nature of plant immune responses followed by recognition of microbial factors/determinants through cutting-edge genomics and multi-omics techniques. However, the practical approaches to sustain plant health using enhancement of plant immunity is yet to be fully appreciated. Here, we overviewed the general concept and representative examples on the plant immunity. The fungal, bacterial, and viral determinants that was previously reported as the triggers of plant immune responses are introduced and described as the potential protocol of biological control. Specifically, the role of chitin, glucan, lipopolysaccharides/extracellular polysaccharides, microbe/pathogen-associated molecular pattern, antibiotics, mimic-phytohormones, N-acyl homoserine lactone, harpin, vitamins, and volatile organic compounds are considered. We hope that this review stimulates scientific community and farmers to broaden their knowledge on the microbial determinant-based biological control and to apply the technology on the integrated pest management program.

  20. Organization of a radioisotope based molecular biology laboratory

    International Nuclear Information System (INIS)

    2006-12-01

    Polymerase chain reaction (PCR) has revolutionized the application of molecular techniques to medicine. Together with other molecular biology techniques it is being increasingly applied to human health for identifying prognostic markers and drug resistant profiles, developing diagnostic tests and genotyping systems and for treatment follow-up of certain diseases in developed countries. Developing Member States have expressed their need to also benefit from the dissemination of molecular advances. The use of radioisotopes, as a step in the detection process or for increased sensitivity and specificity is well established, making it ideally suitable for technology transfer. Many molecular based projects using isotopes for detecting and studying micro organisms, hereditary and neoplastic diseases are received for approval every year. In keeping with the IAEA's programme, several training activities and seminars have been organized to enhance the capabilities of developing Member States to employ in vitro nuclear medicine technologies for managing their important health problems and for undertaking related basic and clinical research. The background material for this publication was collected at training activities and from feedback received from participants at research and coordination meetings. In addition, a consultants' meeting was held in June 2004 to compile the first draft of this report. Previous IAEA TECDOCS, namely IAEA-TECDOC-748 and IAEA-TECDOC-1001, focused on molecular techniques and their application to medicine while the present publication provides information on organization of the laboratory, quality assurance and radio-safety. The technology has specific requirements of the way the laboratory is organized (e.g. for avoiding contamination and false positives in PCR) and of quality assurance in order to provide accurate information to decision makers. In addition while users of the technology accept the scientific rationale of using radio

  1. Biological control of the terrestrial carbon sink

    Science.gov (United States)

    Schulze, E.-D.

    2006-03-01

    This lecture reviews the past (since 1964 when the International Biological Program began) and the future of our understanding of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary-, ecosystem-, and biome-productivity. Photosynthetic capacity is related to the nitrogen concentration of leaves, but the capacity is only rarely reached under field conditions. Average rates of photosynthesis and stomatal conductance are closely correlated and operate near 50% of their maximal rate, with light being the limiting factor in humid regions and air humidity and soil water the limiting factor in arid climates. Leaf area is the main factor to extrapolate from leaves to canopies, with maximum surface conductance being dependent on leaf level stomatal conductance. Additionally, gas exchange depends also on rooting depth which determines the water and nutrient availability and on mycorrhizae which regulate the nutrient status. An important anthropogenic disturbance is the nitrogen uptake from air pollutants, which is not balanced by cation uptake from roots and this may lead to damage and breakdown of the plant cover. Photosynthesis is the main carbon input into ecosystems, but it alone does not represent the ecosystem carbon balance, which is determined by respiration of various kinds. Plant respiration and photosynthesis determine growth (net primary production) and microbial respiration balances the net ecosystem flux. In a spruce forest, 30% of the assimilatory carbon gain is used for respiration of needles, 20% is used for respiration in stems. Soil respiration is about 50% the carbon gain, half of which is root respiration, half is microbial respiration. In addition, disturbances lead to carbon losses, where fire, harvest and grazing bypass the chain of respiration. In total, the carbon balance at the biome level is only about 1% of the photosynthetic carbon input, or may indeed become negative. The recent observed increase in plant growth has

  2. Biological control of the terrestrial carbon sink

    Directory of Open Access Journals (Sweden)

    E.-D. Schulze

    2006-01-01

    Full Text Available This lecture reviews the past (since 1964 when the International Biological Program began and the future of our understanding of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary-, ecosystem-, and biome-productivity. Photosynthetic capacity is related to the nitrogen concentration of leaves, but the capacity is only rarely reached under field conditions. Average rates of photosynthesis and stomatal conductance are closely correlated and operate near 50% of their maximal rate, with light being the limiting factor in humid regions and air humidity and soil water the limiting factor in arid climates. Leaf area is the main factor to extrapolate from leaves to canopies, with maximum surface conductance being dependent on leaf level stomatal conductance. Additionally, gas exchange depends also on rooting depth which determines the water and nutrient availability and on mycorrhizae which regulate the nutrient status. An important anthropogenic disturbance is the nitrogen uptake from air pollutants, which is not balanced by cation uptake from roots and this may lead to damage and breakdown of the plant cover. Photosynthesis is the main carbon input into ecosystems, but it alone does not represent the ecosystem carbon balance, which is determined by respiration of various kinds. Plant respiration and photosynthesis determine growth (net primary production and microbial respiration balances the net ecosystem flux. In a spruce forest, 30% of the assimilatory carbon gain is used for respiration of needles, 20% is used for respiration in stems. Soil respiration is about 50% the carbon gain, half of which is root respiration, half is microbial respiration. In addition, disturbances lead to carbon losses, where fire, harvest and grazing bypass the chain of respiration. In total, the carbon balance at the biome level is only about 1% of the photosynthetic carbon input, or may indeed become negative. The recent observed increase in

  3. Understanding Federal regulations as guidelines for classical biological control programs

    Science.gov (United States)

    Michael E. Montgomery

    2011-01-01

    This chapter reviews the legislation and rules that provide the foundation for federal regulation of the introduction of natural enemies of insects as biological control agents. It also outlines the steps for complying with regulatory requirements, using biological control of Adelges tsugae Annand, the hemlock woolly adelgid (HWA), as an example. The...

  4. Efficiency of using green algae as biological controllers against toxic ...

    African Journals Online (AJOL)

    Efficiency of using green algae as biological controllers against toxic algal taxa in cultured ... of two green algal species as biological control of the growth of toxic blue-green algae. ... African Journal of Aquatic Science 2014, 39(4): 443–450 ...

  5. Self-Organized Fission Control for Flocking System

    Directory of Open Access Journals (Sweden)

    Mingyong Liu

    2015-01-01

    Full Text Available This paper studies the self-organized fission control problem for flocking system. Motivated by the fission behavior of biological flocks, information coupling degree (ICD is firstly designed to represent the interaction intensity between individuals. Then, from the information transfer perspective, a “maximum-ICD” based pairwise interaction rule is proposed to realize the directional information propagation within the flock. Together with the “separation/alignment/cohesion” rules, a self-organized fission control algorithm is established that achieves the spontaneous splitting of flocking system under conflict external stimuli. Finally, numerical simulations are provided to demonstrate the effectiveness of the proposed algorithm.

  6. The Control of Chemical and Biological Weapons.

    Science.gov (United States)

    Alexander, Archibald S.; And Others

    This book is composed of four papers prepared to illuminate the problem areas which might arise if the policies of the 1925 Geneva Protocol and other measures to limit chemical and biological weapons are ratified by the United States Senate. The papers included are: Legal Aspects of the Geneva Protocol of 1925; The Use of Herbicides in War: A…

  7. Biological Control Strategies for Mosquito Vectors of Arboviruses.

    Science.gov (United States)

    Huang, Yan-Jang S; Higgs, Stephen; Vanlandingham, Dana L

    2017-02-10

    Historically, biological control utilizes predatory species and pathogenic microorganisms to reduce the population of mosquitoes as disease vectors. This is particularly important for the control of mosquito-borne arboviruses, which normally do not have specific antiviral therapies available. Although development of resistance is likely, the advantages of biological control are that the resources used are typically biodegradable and ecologically friendly. Over the past decade, the advancement of molecular biology has enabled optimization by the manipulation of genetic materials associated with biological control agents. Two significant advancements are the discovery of cytoplasmic incompatibility induced by Wolbachia bacteria, which has enhanced replacement programs, and the introduction of dominant lethal genes into local mosquito populations through the release of genetically modified mosquitoes. As various arboviruses continue to be significant public health threats, biological control strategies have evolved to be more diverse and become critical tools to reduce the disease burden of arboviruses.

  8. Biological Control Strategies for Mosquito Vectors of Arboviruses

    Directory of Open Access Journals (Sweden)

    Yan-Jang S. Huang

    2017-02-01

    Full Text Available Historically, biological control utilizes predatory species and pathogenic microorganisms to reduce the population of mosquitoes as disease vectors. This is particularly important for the control of mosquito-borne arboviruses, which normally do not have specific antiviral therapies available. Although development of resistance is likely, the advantages of biological control are that the resources used are typically biodegradable and ecologically friendly. Over the past decade, the advancement of molecular biology has enabled optimization by the manipulation of genetic materials associated with biological control agents. Two significant advancements are the discovery of cytoplasmic incompatibility induced by Wolbachia bacteria, which has enhanced replacement programs, and the introduction of dominant lethal genes into local mosquito populations through the release of genetically modified mosquitoes. As various arboviruses continue to be significant public health threats, biological control strategies have evolved to be more diverse and become critical tools to reduce the disease burden of arboviruses.

  9. Biology and control of Varroa destructor.

    Science.gov (United States)

    Rosenkranz, Peter; Aumeier, Pia; Ziegelmann, Bettina

    2010-01-01

    The ectoparasitic honey bee mite Varroa destructor was originally confined to the Eastern honey bee Apis cerana. After a shift to the new host Apis mellifera during the first half of the last century, the parasite dispersed world wide and is currently considered the major threat for apiculture. The damage caused by Varroosis is thought to be a crucial driver for the periodical colony losses in Europe and the USA and regular Varroa treatments are essential in these countries. Therefore, Varroa research not only deals with a fascinating host-parasite relationship but also has a responsibility to find sustainable solutions for the beekeeping. This review provides a survey of the current knowledge in the main fields of Varroa research including the biology of the mite, damage to the host, host tolerance, tolerance breeding and Varroa treatment. We first present a general view on the functional morphology and on the biology of the Varroa mite with special emphasis on host-parasite interactions during reproduction of the female mite. The pathology section describes host damage at the individual and colony level including the problem of transmission of secondary infections by the mite. Knowledge of both the biology and the pathology of Varroa mites is essential for understanding possible tolerance mechanisms in the honey bee host. We comment on the few examples of natural tolerance in A. mellifera and evaluate recent approaches to the selection of Varroa tolerant honey bees. Finally, an extensive listing and critical evaluation of chemical and biological methods of Varroa treatments is given. This compilation of present-day knowledge on Varroa honey bee interactions emphasizes that we are still far from a solution for Varroa infestation and that, therefore, further research on mite biology, tolerance breeding, and Varroa treatment is urgently needed. Copyright 2009 Elsevier Inc. All rights reserved.

  10. Biological forcing controls the chemistry of the coral exoskeleton

    Science.gov (United States)

    Meibom, A.; Mostefaoui, S.; Cuif, J.; Yurimoto, H.; Dauphin, Y.; Houlbreque, F.; Dunbar, R.; Constantz, B.

    2006-12-01

    A multitude of marine organisms produce calcium carbonate skeletons that are used extensively to reconstruct water temperature variability of the tropical and subtropical oceans - a key parameter in global climate-change models. Such paleo-climate reconstructions are based on the notion that skeletal oxygen isotopic composition and certain trace-element abundances (e.g., Sr/Ca and Mg/Ca ratios) vary in response to changes in the water temperature. However, it is a fundamental problem that poorly understood biological processes introduce large compositional deviations from thermodynamic equilibrium and hinder precise calibrations of many paleo-climate proxies. Indeed, the role of water temperature in controlling the composition of the skeleton is far from understood. We have studied trace-element abundances as well as oxygen and carbon isotopic compositions of individual skeletal components in the zooxanthellate and non-zooxanthellate corals at ultra-structural, i.e. micrometer to sub-micrometer length scales. From this body of work we draw the following, generalized conclusions: 1) Centers of calcification (COC) are not in equilibrium with seawater. Notably, the Sr/Ca ratio is higher than expected for aragonite equilibrium with seawater at the temperature at which the skeleton was formed. Furthermore, the COC are further away from equilibrium with seawater than fibrous skeleton in terms of stable isotope composition. 2) COC are dramatically different from the fibrous aragonite skeleton in terms of trace element composition. 3) Neither trace element nor stable isotope variations in the fibrous (bulk) part of the skeleton are directly related to changes in SST. In fact, changes in SST can have very little to do with the observed compositional variations. 4) Trace element variations in the fibrous (bulk) part of the skeleton are not related to the activity of zooxanthellae. These observations are directly relevant to the issue of biological versus non-biological

  11. Biologically inspired rate control of chaos.

    Science.gov (United States)

    Olde Scheper, Tjeerd V

    2017-10-01

    The overall intention of chaotic control is to eliminate chaos and to force the system to become stable in the classical sense. In this paper, I demonstrate a more subtle method that does not eliminate all traces of chaotic behaviour; yet it consistently, and reliably, can provide control as intended. The Rate Control of Chaos (RCC) method is derived from metabolic control processes and has several remarkable properties. RCC can control complex systems continuously, and unsupervised, it can also maintain control across bifurcations, and in the presence of significant systemic noise. Specifically, I show that RCC can control a typical set of chaotic models, including the 3 and 4 dimensional chaotic Lorenz systems, in all modes. Furthermore, it is capable of controlling spatiotemporal chaos without supervision and maintains control of the system across bifurcations. This property of RCC allows a dynamic system to operate in parameter spaces that are difficult to control otherwise. This may be particularly interesting for the control of forced systems or dynamic systems that are chaotically perturbed. These control properties of RCC are applicable to a range of dynamic systems, thereby appearing to have far-reaching effects beyond just controlling chaos. RCC may also point to the existence of a biochemical control function of an enzyme, to stabilise the dynamics of the reaction cascade.

  12. Grapevine downy mildew control in organic farming.

    Science.gov (United States)

    La Torre, A; Spera, G; Lolletti, D

    2005-01-01

    Cupric products at low dose and alternative compounds have been tested to control the downy mildew in an organic vineyard. It has found that copper compounds control downy mildew in a satisfactory way, reducing, at the same time, the dose of copper metal. The alternative products were not satisfactory to control Plasmopara viticola.

  13. Biology of Leptoypha hospita (Hemiptera: Tingidae), a Potential Biological Control Agent of Chinese Privet

    Science.gov (United States)

    Yanzhuo Zhang; James L. Hanula; Scott Horn; Kristine Braman; Jianghua Sun

    2011-01-01

    The biology of Leptoypha hospita Drake et Poor (Hemiptera: Tingidae), a potential biological control agent from China for Chinese privet, Ligustrum sinense Lour., was studied in quarantine in the United States. Both nymphs and adults feed on Chinese privet mesophyll cells that lead to a bleached appearance of leaves and dieback of branch tips. L. hospita has five...

  14. Biological Control of Plant Disease Caused by Bacteria

    Directory of Open Access Journals (Sweden)

    Triwidodo Arwiyanto

    2014-07-01

    Full Text Available Bacterial diseases in plants are difficult to control. The emphasis is on preventing the spread of the bacteria rather than curing the diseased plant. Integrated management measures for bacterial plant pathogens should be applied for successfull control. Biological control is one of the control measures viz. through the use of microorganisms to suppress the growth and development of bacterial plant pathogen and ultimately reduce the possibility of disease onset. The study of biological control of bacterial plant pathogen was just began compared with of fungal plant pathogen. The ecological nature of diverse bacterial plant pathogens has led scientists to apply different approach in the investigation of its biological control. The complex process of entrance to its host plant for certain soil-borne bacterial plant pathogens need special techniques and combination of more than one biological control agent. Problem and progress in controlling bacterial plant pathogens biologically will be discussed in more detail in the paper and some commercial products of biological control agents (biopesticides will be introduced.     Penyakit tumbuhan karena bakteri sulit dikendalikan. Penekanan pengendalian adalah pada pencegahan penyebaran bakteri patogen dan bukan pada penyembuhan tanaman yang sudah sakit. Untuk suksesnya pengendalian bakteri patogen tumbuhan diperlukan cara pengelolaan yang terpadu. Pengendalian secara biologi merupakan salah satu cara pengendalian dengan menggunakan mikroorganisme untuk menekan pertumbuhan dan perkembangan bakteri patogen tumbuhan dengan tujuan akhir menurunkan kemungkinan timbulnya penyakit. Sifat ekologi bakteri patogen tumbuhan yang berbeda-beda mengharuskan pendekatan yang berbeda pula dalam pengendaliannya secara biologi. Masalah dan perkembangan dalam pengendalian bakteri patogen tumbuhan secara biologi didiskusikan secara detail dalam makalah ini.

  15. Biological Control of Bacterial Wilt in South East Asia

    Directory of Open Access Journals (Sweden)

    Triwidodo Arwiyanto

    2014-12-01

    Full Text Available Bacterial wilt disease caused by Ralstonia solanacearum destroys many crops of different plant families in South East Asia despite many researches about the disease, and the availability of developed control method in other parts of the world. There is no chemical available for the bacterial wilt pathogen and biological control is then chosen as an alternative to save the crops. Most of the biological control studies were based on antagonism between biological control agent and the pathogen. The biological control agents were intended to reduce the initial inoculum of the pathogen. The effort to minimize the initial inoculum of the pathogen by baiting with the use of hypersensitive host-plant was only reliable when conducted in the greenhouse experiments. Various microorganisms have been searched as possible biological control agents, for instance avirulent form of the pathogen, soil or rhizosphere bacteria (Bacillus spp. and fluorescent pseudomonads, actinomycetes (Streptomyces spp., yeast (Pichia uillermondii, Candida ethanolica, and a consortium of microorganisms known as effective microorganisms (EM. None of these biological control agents has been used in field application and they need further investigation in order to effectively control bacterial wilt. Opportunities and challenges in developing biological control to combat bacterial wilt are discussed in the paper. Penyakit layu bakteri yang disebabkan oleh Ralstonia solanacearum menghancurkan banyak tanaman dalam famili yang berbeda di Asia Tenggara meskipun telah banyak penelitian tentang metode pengendaliannya. Penyakit ini sulit dikendalikan karena banyaknya variabilitas patogen dan belum tersedianya sumber ketahanan yang mapan. Di samping itu, sampai saat ini belum ada bahan kimia yang tersedia untuk patogen layu bakteri ini sehingga pengendalian biologi kemudian dipilih sebagai cara alternatif untuk menyelamatkan tanaman. Sebagian besar penelitian pengendalian biologi didasarkan

  16. Introduction to theory of control in organizations

    CERN Document Server

    Burkov, Vladimir N; Korgin, Nikolay

    2015-01-01

    IntroductionControl and Mechanisms in OrganizationsControl Problems in Organizational SystemsModels of Decision MakingBasics of Game TheoryClassification of Control Problems in Organizational SystemsExamples of Control MechanismsPlanning MechanismsTaxation and Pricing MechanismsMultichannel MechanismsIncentive Mechanisms for Cost ReductionIncentive MechanismsIncentive ProblemBasic Incentive MechanismsIncentive Mechanisms in Multi-Agent Systems

  17. Microbiome studies in the biological control of plant pathogens

    Science.gov (United States)

    Biological control of plant pathogens, although it has been a successful alternative that has allowed to select microorganisms for the generation of bioproducts and to understand multiple biological mechanisms, cannot be considered as a strategy defined only from the selection of a range of cultiva...

  18. Biological control agents for suppression of post-harvest diseases of potatoes: strategies on discovery and development

    Science.gov (United States)

    As used in plant pathology, the term "biological control" or its short form “biocontrol” commonly refers to the decrease in the inoculum or the disease-producing activity of a pathogen accomplished through one or more organisms, including the host plant but excluding man. Biological control of plant...

  19. labelling and quality control of some 99m Tc-radiopharmaceuticals of expected biological activity

    International Nuclear Information System (INIS)

    Abdallah, A.B.I.

    2009-01-01

    this thesis addresses the labelling and quality control of some 99m Tc-radiopharmaceuticals which could be used for infection imaging. this study focuses on the labelling of sarafloxation, gatifloxation and cefepine with technetium-99m and biological evaluation of these labeled complexes and biodistribution in both normal and inflamed mice. the thesis is organized into two chapters: chapter I :labelling of some antibiotics chapter II :biological evaluation.

  20. Arms Control: US and International efforts to ban biological weapons

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The Bacteriological (Biological) and Toxin Weapons Convention, the treaty that bans the development, production, and stockpiling and acquisition of biological weapons was opened for signature in 1972 and came into force in 1975 after being ratified by 22 governments, including the depository nations of the USA, the United Kingdom, and the former Soviet Union. In support of the Convention, the USA later established export controls on items used to make biological weapons. Further, in accordance with the 1990 President`s Enhanced Proliferation Control Initiative, actions were taken to redefine and expand US export controls, as well as to encourage multilateral controls through the Australia Group. Thus far, the Convention has not been effective in stopping the development of biological weapons. The principal findings as to the reasons of the failures of the Convention are found to be: the Convention lacks universality, compliance measures are effective, advantage of verification may outweigh disadvantages. Recommendations for mitigating these failures are outlined in this report.

  1. Isolation of microorganisms for biological control the moniliophthora roreri

    OpenAIRE

    suarez contreras, liliana yanet; Rangel Riaño, Alba Luz

    2014-01-01

    Moniliophlhora roreri is the causal agent of cocoa Moniliasis, which produces losses of up to 60% of the crop, as it affects only its commercial product, the cob. Biological control appears as an alternative management, using endophytic microorganisms. The reason because of this research came up was that it was aimed to isolate microorganisms with antagonist potential for biological control towards the phytopathogen M. roreri in Norte de Santander. This is done through isolation and identifica...

  2. Leading an IT Organization Out of Control

    Science.gov (United States)

    Jackson, Gregory A.

    2011-01-01

    With the era of control ending for campus IT organizations, leaders need to learn to use some known management approaches and methods in radically different ways. In this article, the author begins with some examples of how technology change, organizational change, and contextual change are eroding centralized control over campus information…

  3. Biology and control of hemlock woolly adelgid

    Science.gov (United States)

    Nathan P. Havill; Ligia C. Vieira; Scott M. Salom

    2014-01-01

    This publication is a substantial revision of FHTET 2001-03, Hemlock Woolly Adelgid, which was published in 2001. This publication contains information on the native range of hemlock and range of hemlock woolly adelgid, the importance of hemlocks in eastern forest ecosystems, and on hosts, life cycle, control, and population trends of the hemlock woolly adelgid.

  4. Controllability and observability of Boolean networks arising from biology

    Science.gov (United States)

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  5. Thyrotropin-releasing hormone controls mitochondrial biology in human epidermis.

    Science.gov (United States)

    Knuever, Jana; Poeggeler, Burkhard; Gáspár, Erzsébet; Klinger, Matthias; Hellwig-Burgel, Thomas; Hardenbicker, Celine; Tóth, Balázs I; Bíró, Tamás; Paus, Ralf

    2012-03-01

    Mitochondrial capacity and metabolic potential are under the control of hormones, such as thyroid hormones. The most proximal regulator of the hypothalamic-pituitary-thyroid (HPT) axis, TRH, is the key hypothalamic integrator of energy metabolism via its impact on thyroid hormone secretion. Here, we asked whether TRH directly modulates mitochondrial functions in normal, TRH-receptor-positive human epidermis. Organ-cultured human skin was treated with TRH (5-100 ng/ml) for 12-48 h. TRH significantly increased epidermal immunoreactivity for the mitochondria-selective subunit I of respiratory chain complex IV (MTCO1). This resulted from an increased MTCO1 transcription and protein synthesis and a stimulation of mitochondrial biogenesis as demonstrated by transmission electron microscopy and TRH-enhanced mitochondrial DNA synthesis. TRH also significantly stimulated the transcription of several other mitochondrial key genes (TFAM, HSP60, and BMAL1), including the master regulator of mitochondrial biogenesis (PGC-1α). TRH significantly enhanced mitochondrial complex I and IV enzyme activity and enhanced the oxygen consumption of human skin samples, which shows that the stimulated mitochondria are fully vital because the main source for cellular oxygen consumption is mitochondrial endoxidation. These findings identify TRH as a potent, novel neuroendocrine stimulator of mitochondrial activity and biogenesis in human epidermal keratinocytes in situ. Thus, human epidermis offers an excellent model for dissecting neuroendocrine controls of human mitochondrial biology under physiologically relevant conditions and for exploring corresponding clinical applications.

  6. The aims of systems biology: between molecules and organisms.

    Science.gov (United States)

    Noble, D

    2011-05-01

    The systems approach to biology has a long history. Its recent rapid resurgence at the turn of the century reflects the problems encountered in interpreting the sequencing of the genome and the failure of that immense achievement to provide rapid and direct solutions to major multi-factorial diseases. This paper argues that systems biology is necessarily multilevel and that there is no privileged level of causality in biological systems. It is an approach rather than a separate discipline. Functionality arises from biological networks that interact with the genome, the environment and the phenotype. This view of biology is very different from the gene-centred views of neo-Darwinism and molecular biology. In neuroscience, the systems approach leads naturally to 2 important conclusions: first, that the idea of 'programs' in the brain is confusing, and second, that the self is better interpreted as a process than as an object. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Measuring and controlling method for organic impurities

    International Nuclear Information System (INIS)

    Aizawa, Motohiro; Igarashi, Hiroo

    1995-01-01

    The present invention concerns measurement and control for organic impurities contained in ultrapurified water for use in a nuclear power plant. A specimen containing organic impurities leached out of anionic exchange resins and cationic exchange resins is introduced to an organic material decomposing section to decompose organic impurities into organic carbon and other decomposed products. Sulfate ions, nitrate ions, nitrite ions and carbon dioxide are produced by the decomposition of the organic impurities. As a next step, carbon dioxide in the decomposed products is separated by deaerating with a nitrogen gas or an argon gas and then a TOC concentration is measured by a non-dispersion-type infrared spectrometer. Further, a specimen from which carbon dioxide was separated is introduced to a column filled with ion exchange resins and, after concentrating inorganic ion impurities, the inorganic ion impurities are identified by using a measuring theory of an ion chromatographic method of eluting and separating inorganic ion impurities and detecting them based on the change of electroconductivity depending on the kinds of the inorganic ion impurities. Organic impurities can be measured and controlled, to improve the reliability of water quality control. (N.H.)

  8. Biological effect of penetration controlled irradiation with ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi; Shimizu, Takashi; Kikuchi, Masahiro; Kobayashi, Yasuhiko; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Yamashita, Takao

    1997-03-01

    To investigate the effect of local irradiation with ion beams on biological systems, technique for penetration controlled irradiation has been established. The range in a target was controlled by changing the distance from beam window in the atmosphere, and could be controlled linearly up to about 31 {mu}m in biological material. In addition, the effects of the penetration controlled irradiations with 1.5 MeV/u C and He ions were examined using tobacco pollen. The increased frequency of leaky pollen produced by ion beams suggests that the efficient pollen envelope damages would be induced at the range-end of ion beams. (author)

  9. Short-term effects of different organic amendments on soil chemical, biochemical and biological indicators

    Science.gov (United States)

    Mondelli, Donato; Aly, Adel; Yirga Dagnachew, Ababu; Piscitelli, Lea; Dumontet, Stefano; Miano, Teodoro

    2014-05-01

    compared to control soil. Results concerning biochemical indicators revealed that phosphatase and β-glycosidase were significantly reduced, while activities of urease and FDA were improved in all amended plots in comparison to the control, regardless of amendment type. Data demonstrated the efficiency, the high sensitivity and a quick response of the biochemical indicators in assessing soil quality changes. As a conclusion, it is possible to emphasize that alternative and common soil organic amendments behave similarly in enhancing the chemical, biochemical and biological properties. The alternative soil organic amendments could, then, be candidates for substituting some commonly used one which are currently showing shortage in their supply and a lowering in their quality. Keywords: Organic agriculture, Soil quality, Enzymatic activities, Olive mill wastewater, Residues of mushroom cultivation, Coffee chaff.

  10. Use of rhizobacteria and endophytes for biological control of weeds

    Directory of Open Access Journals (Sweden)

    Trognitz, Friederike

    2014-02-01

    Full Text Available Weeds cause severe yield losses in agriculture, with a maximum estimate of 34% of yield loss worldwide due to competition between the crops and the weeds for nutrition, light and humidity (OERKE, 2006. Invasive plants contribute partially to other problems. The pollen of common ragweed, Ambrosia artemisiifolia L., for example, is five times more allergenic than grass pollen; already ten pollen grains per m3 air can trigger allergy in sensitized patients, including rhinitis, conjunctivitis and asthma. This neophyte from America has extended the season of allergy in European patients to October. Common ragweed is currently most frequent in Hungary, France and Italy. In Austria, ragweed populations along roads have increased dramatically since 2000. The effective means to control this weed of the Asteraceae family are limited; a single plant can produce up to 6000 seeds which stay in the soil for 40 years. Control using selective herbicides is not possible within stands of the Asteraceae member sunflower. Efforts to use herbivore insects as biological control agents also failed due to the unavailability of insects specializing on this ragweed. The use of plant-associated rhizobacteria and endophytes as bio-herbicides offers a novel alternative to conventional methods. By analogy to experiences from other plant-microbe systems, the chances to find microbes of the desired characteristics are highest when isolating and testing specimens directly from ragweed plants. These organisms often have an extremely narrow host range that permits their use for the control of among several even closely related plant species growing together in a field.

  11. Force control for mechanoinduction of impedance variation in cellular organisms

    International Nuclear Information System (INIS)

    Nam, Joo Hoo; Chen, Peter C Y; Lu, Zhe; Luo, Hong; Lin, Wei; Ge, Ruowen

    2010-01-01

    Constantly exposed to various forms of mechanical forces inherent in their physical environment (such as gravity, stress induced by fluid flow or cell–cell interactions, etc), cellular organisms sense such forces and convert them into biochemical signals through the processes of mechanosensing and mechanotransduction that eventually lead to biological changes. The effect of external forces on the internal structures and activities in a cellular organism may manifest in changes its physical properties, such as impedance. Studying variation in the impedance of a cellular organism induced by the application of an external mechanical force represents a meaningful endeavor (from a biosystems perspective) in exploring the complex mechanosensing and mechanotransduction mechanisms that govern the behavior of a cellular organism under the influence of external mechanical stimuli. In this paper we describe the development of an explicit force-feedback control system for exerting an indentation force on a cellular organism while simultaneously measuring its impedance. To demonstrate the effectiveness of this force-control system, we have conducted experiments using zebrafish embryos as a test model of a cellular organism. We report experimental results demonstrating that the application of a properly controlled external force leads to a significant change in the impedance of a zebrafish embryo. These results offer support for a plausible explanation that activities of pore canals in the chorion are responsible for the observed change in impedance.

  12. Organ preservation at low temperature: a physical and biological problem

    Science.gov (United States)

    Aussedat, J.; Boutron, P.; Coquilhat, P.; Descotes, J. L.; Faure, G.; Ferrari, M.; Kay, L.; Mazuer, J.; Monod, P.; Odin, J.; Ray, A.

    1993-02-01

    Before reporting the preliminary results obtained by our group, we first review the main problems to be solved in the preservation of organs at very low temperature, before being transplanted. This cryopreservation is being presently explored in order to increase the preservation tiine of transplants and to contribute to a better control of the donor recipient compatibility. We recall that, for the isolated cells to be preserved at nitrogen liquid temperatures, as now successfully performed at industrial scale, it is necessary to immerse the cells in a solution containing more or less t,oxical additives (so-called cryopro tect ants). Furthermore cooling and warming rates must be specific of each type of cells. We then show that cryo preservation could be extrapolated to whole organs by means of vitrification, the only way to avoid any ice crystallization. This vitrification will be the result of two directions of research, the one on the elaboration of cryoprotective solutions, the least toxic possible, the other on the obtention of high enough and homogeneous cooling and warming rates. After having briefly summarized the state of research on the heart and kidneys of small mammals, we present the first results that we have obtained on perfusion at 4 ^{circ}C and the auto-transplantation of rabbit kidneys, on the toxicity of a new cryoprotectant, 2,3-butanediol, on the heart rate, and on the cooling of experimental models of organs. Avant de présenter les résultats préliminaires obtenus par notre groupe, nous passons d'abord en revue les principaux problèmes à résoudre pour conserver à très basse température des organes en vue de leur transplantation. Cette cryopréservation est une voie de recherche actuellement explorée pour augmenter la durée de conservation des greffons et permettre ainsi de mieux contrôler la compatibilité donneur-receveur. Nous rappelons que la conservation des cellules isolées à la température de l'azote liquide, actuellement

  13. Local and global control of ecological and biological networks

    OpenAIRE

    Alessandro Ferrarini

    2014-01-01

    Recently, I introduced a methodological framework so that ecological and biological networks can be controlled both from inside and outside by coupling network dynamics and evolutionary modelling. The endogenous control requires the network to be optimized at the beginning of its dynamics (by acting upon nodes, edges or both) so that it will then go inertially to the desired state. Instead, the exogenous control requires that exogenous controllers act upon the network at each time step. By th...

  14. Agronomic aspects of strip intercropping lettuce with alyssum for biological control of aphids

    OpenAIRE

    Brennan, Eric B.

    2013-01-01

    Organic lettuce growers in California typically use insectary strips of alyssum (Lobularia maritima (L.) Desv.) to attract hoverflies (Syrphidae) that provide biological control of aphids. A two year study with transplanted organic romaine lettuce in Salinas, California investigated agronomic aspects of lettuce monoculture and lettuce-alyssum strip intercropping on beds in replacement intercropping treatments where alyssum transplants replaced 2 to 8% of the lettuce transplants, and in additi...

  15. Chromophoric Dissolved Organic Matter across a Marine Distributed Biological Observatory in the Pacific Arctic Region

    Science.gov (United States)

    Berman, S. L.; Frey, K. E.; Shake, K. L.; Cooper, L. W.; Grebmeier, J. M.

    2014-12-01

    Dissolved organic matter (DOM) plays an important role in marine ecosystems as both a carbon source for the microbial food web (and thus a source of CO2 to the atmosphere) and as a light inhibitor in marine environments. The presence of chromophoric dissolved organic matter (CDOM; the optically active portion of total DOM) can have significant controlling effects on transmittance of sunlight through the water column and therefore on primary production as well as the heat balance of the upper ocean. However, CDOM is also susceptible to photochemical degradation, which decreases the flux of solar radiation that is absorbed. Knowledge of the current spatial and temporal distribution of CDOM in marine environments is thus critical for understanding how ongoing and future changes in climate may impact these biological, biogeochemical, and physical processes. We describe the quantity and quality of CDOM along five key productive transects across a developing Distributed Biological Observatory (DBO) in the Pacific Arctic region. The samples were collected onboard the CCGS Sir Wilfred Laurier in July 2013 and 2014. Monitoring of the variability of CDOM along transects of high productivity can provide important insights into biological and biogeochemical cycling across the region. Our analyses include overall concentrations of CDOM, as well as proxy information such as molecular weight, lability, and source (i.e., autochthonous vs. allochthonous) of organic matter. We utilize these field observations to compare with satellite-derived CDOM concentrations determined from the Aqua MODIS satellite platform, which ultimately provides a spatially and temporally continuous synoptic view of CDOM concentrations throughout the region. Examining the current relationships among CDOM, sea ice variability, biological productivity, and biogeochemical cycling in the Pacific Arctic region will likely provide key insights for how ecosystems throughout the region will respond in future

  16. Biological control by ( Coccinella algerica , Kovar 1977) against the ...

    African Journals Online (AJOL)

    Inputs from chemicals, particularly pesticides, to control crop pests have adverse effects on soil and the environment, among others. To reduce pest attacks, biological control with indigenous predators is the alternative and the cleanest, most environmentally friendly and ecologically balanced way. In order to achieve this ...

  17. Augmentative biological control of arthropods in Latin America

    NARCIS (Netherlands)

    Lenteren, van J.C.; Bueno, V.H.P.

    2003-01-01

    Augmentative forms of biological control, where natural enemies are periodically introduced, are applied over large areas in various cropping systems in Latin America. About 25% of the world area under augmentative control is situated in this region. Well-known examples are the use of species of the

  18. Nematodes for the biological control of the woodwasp, Sirex noctilio

    Science.gov (United States)

    Robin A. Bedding

    2007-01-01

    The tylenchid nematode Beddingia (Deladenus) siricidicola (Bedding) is by far the most important control agent of Sirex noctilio F., a major pest of pine plantations. It sterilizes female sirex, is density dependent, can achieve nearly 100 percent parasitism and, as a result of its complicated biology can be readily manipulated for sirex control. Bedding and Iede (2005...

  19. Next-generation mammalian genetics toward organism-level systems biology.

    Science.gov (United States)

    Susaki, Etsuo A; Ukai, Hideki; Ueda, Hiroki R

    2017-01-01

    Organism-level systems biology in mammals aims to identify, analyze, control, and design molecular and cellular networks executing various biological functions in mammals. In particular, system-level identification and analysis of molecular and cellular networks can be accelerated by next-generation mammalian genetics. Mammalian genetics without crossing, where all production and phenotyping studies of genome-edited animals are completed within a single generation drastically reduce the time, space, and effort of conducting the systems research. Next-generation mammalian genetics is based on recent technological advancements in genome editing and developmental engineering. The process begins with introduction of double-strand breaks into genomic DNA by using site-specific endonucleases, which results in highly efficient genome editing in mammalian zygotes or embryonic stem cells. By using nuclease-mediated genome editing in zygotes, or ~100% embryonic stem cell-derived mouse technology, whole-body knock-out and knock-in mice can be produced within a single generation. These emerging technologies allow us to produce multiple knock-out or knock-in strains in high-throughput manner. In this review, we discuss the basic concepts and related technologies as well as current challenges and future opportunities for next-generation mammalian genetics in organism-level systems biology.

  20. Organization of Tax Control in Ukraine

    Directory of Open Access Journals (Sweden)

    Zamaslo Olha T.

    2017-04-01

    Full Text Available The article researches the essence and characteristics of tax control as an important element of the State regulation of economy. The main directions and modalities of tax control are considered in detail. The main tendencies and problem points of tax control in Ukraine have been studied. Efficiency of the controlling bodies has been analyzed, the main directions of their activities in the sphere of tax enforcement have been provided. Directions for improving the organization of tax control in the context of overcoming the existing deficiencies in the controlling and inspecting activities of the tax authorities have been determined. It has been concluded that the improvement of tax control is one of the key directions of reforming the Ukrainian tax system.

  1. Organized monolayers of biological macromolecules on Au(111) surfaces

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Chi, Qijin; Nielsen, Jens Ulrik

    2002-01-01

    Single-crystal electrochemistry and scanning tunneling microscopy directly in aqueous electrolyte solution (in situ STM) are established in physical electrochemistry but new in studies of adsorption and interfacial electrochemistry of biological macromolecules. These high-resolution techniques ha...

  2. Editorial: Molecular Organization of Membranes: Where Biology Meets Biophysics

    Czech Academy of Sciences Publication Activity Database

    Cebecauer, Marek; Holowka, D.

    2017-01-01

    Roč. 5, č. 113 (2017), s. 1-3 ISSN 2296-634X Institutional support: RVO:61388955 Keywords : nanodomains * membrane properties * cell membrane Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology

  3. Controlling Molecular Doping in Organic Semiconductors.

    Science.gov (United States)

    Jacobs, Ian E; Moulé, Adam J

    2017-11-01

    The field of organic electronics thrives on the hope of enabling low-cost, solution-processed electronic devices with mechanical, optoelectronic, and chemical properties not available from inorganic semiconductors. A key to the success of these aspirations is the ability to controllably dope organic semiconductors with high spatial resolution. Here, recent progress in molecular doping of organic semiconductors is summarized, with an emphasis on solution-processed p-type doped polymeric semiconductors. Highlighted topics include how solution-processing techniques can control the distribution, diffusion, and density of dopants within the organic semiconductor, and, in turn, affect the electronic properties of the material. Research in these areas has recently intensified, thanks to advances in chemical synthesis, improved understanding of charged states in organic materials, and a focus on relating fabrication techniques to morphology. Significant disorder in these systems, along with complex interactions between doping and film morphology, is often responsible for charge trapping and low doping efficiency. However, the strong coupling between doping, solubility, and morphology can be harnessed to control crystallinity, create doping gradients, and pattern polymers. These breakthroughs suggest a role for molecular doping not only in device function but also in fabrication-applications beyond those directly analogous to inorganic doping. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Examination of the biological half-life and organ d;stribution of tritiated lysin-vasopressin in Brattleboro rats

    International Nuclear Information System (INIS)

    Laczi, F.; Laszlo, F.

    1980-01-01

    15 μCi tritiated lysin-vasopressin (spec. act. 3.5 Ci per mmol) was administered to control and Brattleboro rats, suffering from hereditary hypothalamic diabetes insipidus. The biological half-life and the distribution of the labelled compound in the different organs were determined. The biological half-life demonstrated no significant difference, however, the vasopressin content of the small intestine was higher in the Brattleboro rats. In the other organs no significant difference was found. It can be concluded that the hereditary diabetes insipidus is not due to faster elimination of circulating vasopressin. (L.E.)

  5. Examination of the biological half-life and organ d; stribution of tritiated lysin-vasopressin in Brattleboro rats

    Energy Technology Data Exchange (ETDEWEB)

    Laczi, F; Laszlo, F [Szegedi Orvostudomanyi Egyetem Szeged (Hungary). 1. Belgyogyaszati Klinika; Keri, Gy; Teplan, I [Semmelweis Orvostudomanyi Egyetem, Budapest (Hungary)

    1980-04-01

    15 ..mu..Ci tritiated lysin-vasopressin (spec. act. 3.5 Ci per mmol) was administered to control and Brattleboro rats, suffering from hereditary hypothalamic diabetes insipidus. The biological half-life and the distribution of the labelled compound in the different organs were determined. The biological half-life demonstrated no significant difference, however, the vasopressin content of the small intestine was higher in the Brattleboro rats. In the other organs no significant difference was found. It can be concluded that the hereditary diabetes insipidus is not due to faster elimination of circulating vasopressin.

  6. Biological control of Mycosphaerella fragariae in strawberry culture

    Directory of Open Access Journals (Sweden)

    Anderson Luis Heling

    2015-12-01

    Full Text Available The Mycosphaerella spot is one of the main foliar diseases of strawberry, degrating great leaf regions and reducing the photosynthetic area. Its control is mainly by the use of chemical fungicides, but, due the increasing demand for food free of pesticide, alternative control methods have been researched, such as biological control. This work aimed to evaluate the effect on strawberry plants, treated with the biological control agents Bacillus cereus, Saccharomyces boulardii and Saccharomyces cerevisiae, in the severity of Mycosphaerella fragariae, productivity and in the activity of β-1.3 glucanases, peroxidases and chitinases enzymes. It was verified that S. cerevisiae and B. cereus treatments were similar to fungicide for disease control. However, even reducing the severity of the disease, there was no increase in productivity, and the different control agents do not cause changes in the evaluated defense mechanisms.

  7. Data Organization for Quality Control Test

    International Nuclear Information System (INIS)

    Yahaya Talib; Glam Hadzir Patai Mohamad; Wan Hamirul Bahrin Wan Kamal

    2011-01-01

    Test data and results for quality control of Mo-99/ Tc-99m generator shall be organized properly. A computer program was developed using Visual Basic 6.0 to process test data, store data and results to specific folder, generate test reports and certificates. Its performance has been evaluated and tested. (author)

  8. Management Control Packages in Public Sector Organizations

    NARCIS (Netherlands)

    van der Kolk, Berend

    2016-01-01

    This thesis examines configurations of management control (MC) packages in public sector organizations, and how they relate to employee motivation and behavior. Using multiple case studies and a survey study, this thesis contributes to the extant literature in three ways. First, it enhances the

  9. Insect pathogens as biological control agents: Back to the future.

    Science.gov (United States)

    Lacey, L A; Grzywacz, D; Shapiro-Ilan, D I; Frutos, R; Brownbridge, M; Goettel, M S

    2015-11-01

    The development and use of entomopathogens as classical, conservation and augmentative biological control agents have included a number of successes and some setbacks in the past 1years. In this forum paper we present current information on development, use and future directions of insect-specific viruses, bacteria, fungi and nematodes as components of integrated pest management strategies for control of arthropod pests of crops, forests, urban habitats, and insects of medical and veterinary importance. Insect pathogenic viruses are a fruitful source of microbial control agents (MCAs), particularly for the control of lepidopteran pests. Most research is focused on the baculoviruses, important pathogens of some globally important pests for which control has become difficult due to either pesticide resistance or pressure to reduce pesticide residues. Baculoviruses are accepted as safe, readily mass produced, highly pathogenic and easily formulated and applied control agents. New baculovirus products are appearing in many countries and gaining an increased market share. However, the absence of a practical in vitro mass production system, generally higher production costs, limited post application persistence, slow rate of kill and high host specificity currently contribute to restricted use in pest control. Overcoming these limitations are key research areas for which progress could open up use of insect viruses to much larger markets. A small number of entomopathogenic bacteria have been commercially developed for control of insect pests. These include several Bacillus thuringiensis sub-species, Lysinibacillus (Bacillus) sphaericus, Paenibacillus spp. and Serratia entomophila. B. thuringiensis sub-species kurstaki is the most widely used for control of pest insects of crops and forests, and B. thuringiensis sub-species israelensis and L. sphaericus are the primary pathogens used for control of medically important pests including dipteran vectors. These pathogens

  10. Effects Of Advance Organizers On Students\\' Achievement In Biology ...

    African Journals Online (AJOL)

    Science Education is emphasized in school curriculum in order to meet the country\\'s socioeconomic needs by producing a scientifically literate populace and professionals in science and technology based careers. Biology as a science subject is expected to make a contribution towards these objective. However, the ...

  11. Effect of biological sprays on the incidence of grey mould, fruit yield and fruit quality in organic strawberry production

    Directory of Open Access Journals (Sweden)

    S. PROKKOLA

    2008-12-01

    Full Text Available Plant diseases, especially grey mould (Botrytis cinerea, may cause severe losses in organic strawberry production. In a two-year period, 2001–2002, the effects of different biological sprays on grey mould, the fruit yield and fruit quality of organically grown strawberry ‘Jonsok’ were studied in field trials at MTT Agrifood Research Finland in Ruukki and Mikkeli. In Experiment 1 the biological sprays were seaweed, garlic and compost extracts, silicon and Trichoderma spp. on both trial sites. In Experiment 2, compost extract, Trichoderma spp. and Gliocladium catenulatum sprays were studied in Ruukki. The treatment time was chosen to control grey mould. The effect of different biological sprays on the incidence of grey mould and total and marketable yield was insignificant compared to the untreated control. In both years and in all trials the incidence of grey mould was low and rot occurred mainly in the latter part of the harvesting period, which may partly explain the small differences between treatments. Anyhow, despite of feasible biological control cultural control methods will be important to manage the fungus in organic strawberry production.;

  12. Organic chemistry and biology: chemical biology through the eyes of collaboration.

    Science.gov (United States)

    Hruby, Victor J

    2009-12-18

    From a scientific perspective, efforts to understand biology including what constitutes health and disease has become a chemical problem. However, chemists and biologists "see" the problems of understanding biology from different perspectives, and this has retarded progress in solving the problems especially as they relate to health and disease. This suggests that close collaboration between chemists and biologists is not only necessary but essential for progress in both the biology and chemistry that will provide solutions to the global questions of biology. This perspective has directed my scientific efforts for the past 45 years, and in this overview I provide my perspective of how the applications of synthetic chemistry, structural design, and numerous other chemical principles have intersected in my collaborations with biologists to provide new tools, new science, and new insights that were only made possible and fruitful by these collaborations.

  13. Organic Chemistry and Biology: Chemical Biology Through the Eyes of Collaboration

    Science.gov (United States)

    Hruby, Victor J.

    2011-01-01

    From a scientific perspective, efforts to understand biology including what constitutes health and disease has become a chemical problem. However, chemists and biologists “see” the problems of understanding biology from different perspectives, and this has retarded progress in solving the problems especially as they relate to health and disease. This suggests that close collaboration between chemists and biologists is not only necessary but essential for progress in both the biology and chemistry that will provide solutions to the global questions of biology. This perspective has directed my scientific efforts for the past 45 years, and in this overview I provide my perspective of how the applications of synthetic chemistry, structural design, and numerous other chemical principles have intersected in my collaborations with biologists to provide new tools, new science, and new insights that were only made possible and fruitful by these collaborations. PMID:20000552

  14. Biologically Active Organic Matter in Soils of European Russia

    Science.gov (United States)

    Semenov, V. M.; Kogut, B. M.; Zinyakova, N. B.; Masyutenko, N. P.; Malyukova, L. S.; Lebedeva, T. N.; Tulina, A. S.

    2018-04-01

    Experimental and literature data on the contents and stocks of active organic matter in 200 soil samples from the forest-tundra, southern-taiga, deciduous-forest, forest-steppe, dry-steppe, semidesert, and subtropical zones have been generalized. Natural lands, agrocenoses, treatments of long-term field experiments (bare fallow, unfertilized and fertilized crop rotations, perennial plantations), and different layers of soil profile are presented. Sphagnum peat and humus-peat soil in the tundra and forest-tundra zones are characterized by a very high content of active organic matter (300-600 mg C/100 g). Among the zonal soils, the content of active organic matter increases from the medium (75-150 mg C/100 g) to the high (150-300 mg C/100 g) level when going from soddy-podzolic soil to gray forest and dark-gray forest soils and then to leached chernozem. In the series from typical chernozem to ordinary and southern chernozem and chestnut and brown semidesert soils, a decrease in the content of active organic matter to the low (35-75 mg C/100 g) and very low (organic matter. Most arable soils are mainly characterized by low or very low contents of active organic matter. In the upper layers of soils, active organic matter makes up 1.2-11.1% of total Corg. The profile distribution of active organic matter in the studied soils coincides with that of Corg: their contents appreciably decrease with depth, except for brown semidesert soil. The stocks of active organic matter vary from 0.4 to 5.4 t/ha in the layer of 0-20 cm and from 1.0 to 12.4/ha in the layer of 0-50 cm of different soil types.

  15. Organization and diffusion in biological and material fabrication problems

    Science.gov (United States)

    Mangan, Niall Mari

    This thesis is composed of two problems. The first is a systems level analysis of the carbon concentrating mechanism in cyanobacteria. The second presents a theoretical analysis of femtosecond laser melting for the purpose of hyperdoping silicon with sulfur. While these systems are very distant, they are both relevant to the development of alternative energy (production of biofuels and methods for fabricating photovoltaics respectively). Both problems are approached through analysis of the underlying diffusion equations. Cyanobacteria are photosynthetic bacteria with a unique carbon concentrating mechanism (CCM) which enhances carbon fixation. A greater understanding of this mechanism would offer new insights into the basic biology and methods for bioengineering more efficient biochemical reactions. The molecular components of the CCM have been well characterized in the last decade, with genetic analysis uncovering both variation and commonalities in CCMs across cyanobacteria strains. Analysis of CCMs on a systems level, however, is based on models formulated prior to the molecular characterization. We present an updated model of the cyanobacteria CCM, and analytic solutions in terms of the various molecular components. The solutions allow us to find the parameter regime (expression levels, catalytic rates, permeability of carboxysome shell) where carbon fixation is maximized and oxygenation is minimized. Saturation of RuBisCO, maximization of the ratio of CO2 to O2, and staying below or at the saturation level for carbonic anhydrase are all needed for maximum efficacy. These constraints limit the parameter regime where the most effective carbon fixation can occur. There is an optimal non-specific carboxysome shell permeability, where trapping of CO2 is maximized, but HCO3 - is not detrimentally restricted. The shell also shields carbonic anhydrase activity and CO2 → HCO3- conversion at the thylakoid and cell membrane from one another. Co-localization of carbonic

  16. Contribution of assimilable organic carbon to biological fouling in seawater reverse osmosis membrane treatment.

    Science.gov (United States)

    Weinrich, Lauren; LeChevallier, Mark; Haas, Charles N

    2016-09-15

    Biological fouling occurs on RO membranes when bacteria and nutrients are present in conditions that are conducive to growth and proliferation of the bacteria. Controlling microbial growth on the membranes is typically limited to biocide application (i.e., disinfectants) in seawater RO plants. However, biological growth and subsequent fouling has not been well-managed. Pretreatment has not been focused on nutrient limitation. This project used a biological assay, the assimilable organic carbon (AOC) test to evaluate pretreatment effects on the nutrient supply. The AOC test provided a useful surrogate measurement for the biodegradability or biofouling potential of RO feed water. Biofouling observed in controlled conditions at the bench- and pilot-scale resulted in statistically significant correlations between AOC and the operational effects caused by biofouling. Membrane fouling rates are observed through operational changes over time such as increased differential pressure between the membrane feed and concentrate locations and decreased permeate flux through the membrane. In full scale plants there were strong correlations when AOC was used as a predictor variable for increased differential pressure (0.28-0.55 bar from September-December 2012) and decreased specific flux (1.40 L per hour/(m(2) · bar)). Increased differential pressure was associated with RO membrane biological fouling when the median AOC was 50 μg/L during pilot testing. Conditions were also evaluated at the bench-scale using a flat sheet RO membrane. In a comparison test using 30 and 1000 μg/L AOC, fouling was detected on more portions of the membrane when AOC was higher. Biofilm and bacterial deposits were apparent from scanning electron microscope imaging and biomass measurements using ATP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Conservation biological control and enemy diversity on a landscape scale

    NARCIS (Netherlands)

    Tscharntke, T.; Bommarco, R.; Clough, Y.; Crist, T.O.; Kleijn, D.; Rand, T.A.; Tylianakis, J.M.; Nouhuys, S.; Vidal, S.

    2007-01-01

    Conservation biological control in agroecosystems requires a landscape management perspective, because most arthropod species experience their habitat at spatial scales beyond the plot level, and there is spillover of natural enemies across the crop–noncrop interface. The species pool in the

  18. Methylene Diphosphonate Chemical and Biological control of MDP complex

    International Nuclear Information System (INIS)

    Aungurarat, Angkanan; Ngamprayad, Tippanan

    2000-01-01

    Technetium-9 9m MDP easy prepared from MDP kits which different sources such as OAP (In house), SIGMA. The resulting Tc 9 9m -MDP preparations were controlled in chemical and biological tests to compare the different results in these cases: radiochemical purity, the quantity of starting material and biodistribution result

  19. Biological control agent for mosquito larvae: Review on the killifish ...

    African Journals Online (AJOL)

    This review attempts to give an account on the recent advances on the killifish Aphanius dispar dispar as a biological control agent for mosquito larvae. Thirty six (36) articles of literature (scientific papers, technical and workshop reports) on this subject covering the period between 1980 and 2009 were reviewed.

  20. Studies on bacterial flora and biological control agent of Cydia ...

    African Journals Online (AJOL)

    In the present study, in order to find a more effective and safe biological control agent against Cydia pomonella, we investigated the bacterial flora and tested them for insecticidal effects on this insect. According to morphological, physiological and biochemical tests, bacterial flora were identified as Proteus rettgeri (Cp1), ...

  1. Stakeholder perceptions: Biological control of Russian olive (Elaeagnus angustifolia)

    Science.gov (United States)

    Sharlene E. Sing; Kevin J. Delaney

    2016-01-01

    An online survey was distributed through email lists provided by various stakeholder groups on behalf of the International Consortium for Biological Control of Russian Olive in spring of 2012. A total of 392 respondents replied from 24 U.S. states and 1 Canadian province. Questions posed in the survey were designed to identify and categorize 1) stakeholders by...

  2. The perception of corn farmers about biological control of Caradrina ...

    African Journals Online (AJOL)

    The purpose of this study was to analyze the perception of corn farmers about biological control of Caradrina by Braconid in Dezful Township, Khouzestan Province, Iran. The method used in this study was correlative descriptive and causal relation. A random sample of Dezful township corn farmers of Khouzestan Province, ...

  3. Funding needed for assessments of weed biological control

    Science.gov (United States)

    John L. Maron; Dean E. Pearson; Stephen M. Hovick; Walter P. Carson

    2010-01-01

    Invasive non-native plants are a serious economic and ecological problem worldwide, and major efforts are therefore devoted to reducing weed abundance in agricultural and natural settings. Effective options for reducing invasive abundance and spread are few, although one common approach is biological control - the introduction of specialist herbivores or pathogens from...

  4. Importance of the hexagonal lipid phase in biological membrane organization

    OpenAIRE

    Jouhet, Juliette

    2013-01-01

    Domains are present in every natural membrane. They are characterized by a distinctive protein and/or lipid composition. Their size is highly variable from the nano- to the micrometer scale. The domains confer specific properties to the membrane leading to original structure and function. The determinants leading to domain organization are therefore important but remain obscure. This review presents how the ability of lipids to organize into hexagonal II or lamellar phases can promote particu...

  5. Economic Benefit for Cuban Laurel Thrips Biological Control.

    Science.gov (United States)

    Shogren, C; Paine, T D

    2016-02-01

    The Cuban laurel thrips, Gynaikothrips ficorum Marchal (Thysanoptera: Phlaeothripidae), is a critical insect pest of Ficus microcarpa in California urban landscapes and production nurseries. Female thrips feed and oviposit on young Ficus leaves, causing the expanding leaves to fold or curl into a discolored leaf gall. There have been attempts to establish specialist predator natural enemies of the thrips, but no success has been reported. We resampled the same areas in 2013-2014 where we had released Montandoniola confusa (= morguesi) Streito and Matocq (Hemiptera: Anthocoridae) in southern California in 1995 but had been unable to recover individuals in 1997-1998. Thrips galls were significantly reduced in all three of the locations in the recent samples compared with the earlier samples. M. confusa was present in all locations and appears to be providing successful biological control. The value of the biological control, the difference between street trees in good foliage condition and trees with poor foliage, was $58,766,166. If thrips damage reduced the foliage to very poor condition, the value of biological control was $73,402,683. Total cost for the project was $61,830. The benefit accrued for every dollar spent on the biological control of the thrips ranged from $950, if the foliage was in poor condition, to $1,187, if the foliage was in very poor condition. The value of urban forest is often underappreciated. Economic analyses that clearly demonstrate the very substantial rates of return on investment in successful biological control in urban forests provide compelling arguments for supporting future efforts. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Patterns and controls on nitrogen cycling of biological soil crusts

    Science.gov (United States)

    Barger, Nichole N.; Zaady, Eli; Weber, Bettina; Garcia-Pichel, Ferran; Belnap, Jayne

    2016-01-01

    Biocrusts play a significant role in the nitrogen [N ] cycle within arid and semi-arid ecosystems, as they contribute major N inputs via biological fixation and dust capture, harbor internal N transformation processes, and direct N losses via N dissolved, gaseous and erosional loss processes (Fig. 1). Because soil N availability in arid and semi-arid ecosystems is generally low and may limit net primary production (NPP), especially during periods when adequate water is available, understanding the mechanisms and controls of N input and loss pathways in biocrusts is critically important to our broader understanding of N cycling in dryland environments. In particular, N cycling by biocrusts likely regulates short-term soil N availability to support vascular plant growth, as well as long-term N accumulation and maintenance of soil fertility. In this chapter, we review the influence of biocrust nutrient input, internal cycling, and loss pathways across a range of biomes. We examine linkages between N fixation capabilities of biocrust organisms and spatio-temporal patterns of soil N availability that may influence the longer-term productivity of dryland ecosystems. Lastly, biocrust influence on N loss pathways such as N gas loss, leakage of N compounds from biocrusts, and transfer in wind and water erosion are important to understand the maintenance of dryland soil fertility over longer time scales. Although great strides have been made in understanding the influence of biocrusts on ecosystem N cycling, there are important knowledge gaps in our understanding of the influence of biocrusts on ecosystem N cycling that should be the focus of future studies. Because work on the interaction of N cycling and biocrusts was reviewed in Belnap and Lange (2003), this chapter will focus primarily on research findings that have emerged over the last 15 years (2000-2015).

  7. Evaluation of Orius species for biological control of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae)

    NARCIS (Netherlands)

    Tommasini, M.G.

    2003-01-01

    Key words: Thysanoptera, Frankliniella occidentalis, Heteroptera, Orius leavigatu, Orius majusculu, Orius niger, Orius insidiosus, Biology, Diapause, Biological control.The overall aim of this research was to develop a biological control programme for F. occidentalis through the selection of

  8. Biological control in agro-systems by means of the handling of entomophagous insects

    International Nuclear Information System (INIS)

    Nicholls, Clara Ines; Altieri, Miguel A

    1998-01-01

    From several decades ago the importance of natural enemies of the noxious organisms has been recognized. Unfortunately the introduction of the biological control has not had the desired dimension. The indiscriminate use of biocides products has altered the biodiversity of the agro-ecosystem. The parasitoids and predators have suffered the noxious effects of the plaguicides. These natural enemies of the plagues play a momentous paper in the regulation of noxious insects population. The predators of the insecta class register in diverse orders and the abundance of species is impressive. But the knowledge of their importance is only partial. In many countries the kindness of these organisms has not been specified and does not protect them. In the case of parasitoids something similar occurs. It is say that their biotic diversity is incalculable but very few species are exploited. In these two groups rest the classic biological control projects. The successes in projects of biological control are recognized and they are enlarging in several countries but more impulse is required. Due to demands of a sustainable agricultural production it should support the biological control of plagues. In this document general looks on the topic are expounded

  9. Epigenetics and Why Biological Networks are More Controllable than Expected

    Science.gov (United States)

    Motter, Adilson

    2013-03-01

    A fundamental property of networks is that perturbations to one node can affect other nodes, potentially causing the entire system to change behavior or fail. In this talk, I will show that it is possible to exploit this same principle to control network behavior. This approach takes advantage of the nonlinear dynamics inherent to real networks, and allows bringing the system to a desired target state even when this state is not directly accessible or the linear counterpart is not controllable. Applications show that this framework permits both reprogramming a network to a desired task as well as rescuing networks from the brink of failure, which I will illustrate through various biological problems. I will also briefly review the progress our group has made over the past 5 years on related control of complex networks in non-biological domains.

  10. the organizing principle at the interface of biological (dis)order

    Indian Academy of Sciences (India)

    Complexity: the organizing principle at the interface of biological (dis)order ... in a quantifiable fashion, as the amount of information, an informatic template ... We propose that the complexity of living systems can be understood through two ...

  11. WILD PIGS: BIOLOGY, DAMAGE, CONTROL TECHINQUES AND MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, John; Brisbin, I. Lehr

    2009-12-31

    about anything; and, they can live just about anywhere. On top of that, wild pigs are both very difficult to control and, with the possible exception of island ecosystems, almost impossible to eradicate (Dickson et al. 2001, Sweeney et al. 2003). The solution to the wild pig problem has not been readily apparent. The ultimate answer as to how to control these animals has not been found to date. In many ways, wild pigs are America's most successful large invasive species. All of which means that wild pigs are a veritable nightmare for land and resource managers trying to keep the numbers of these animals and the damage that they do under control. Since the more that one knows about an invasive species, the easier it is to deal with and hopefully control. For wild pigs then, it is better to 'know thy enemy' than to not, especially if one expects to be able to successfully control them. In an effort to better 'know thy enemy,' a two-day symposium was held in Augusta, Georgia, on April 21-22, 2004. This symposium was organized and sponsored by U.S.D.A. Forest Service-Savannah River (USFS-SR), U. S. Department of Energy-Savannah River Operations Office (DOE-SR), the Westinghouse Savannah River Company (WSRC), the South Carolina Chapter of the Soil & Water Conservation Society, and the Savannah River Ecology Laboratory (SREL). The goal of this symposium was to assemble researchers and land managers to first address various aspects of the biology and damage of wild pigs, and then review the control techniques and management of this invasive species. The result would then be a collected synopsis of what is known about wild pigs in the United States. Although the focus of the symposium was primarily directed toward federal agencies, presenters also included professionals from academic institutions, and private-sector control contractors and land managers. Most of the organizations associated with implementing this symposium were affiliated with the

  12. Mining level of control in medical organizations.

    Science.gov (United States)

    Çalimli, Olgu; Türkeli, Serkan; Eken, Emir Gökberk; Gönen, Halil Emre

    2014-01-01

    In literature of strategic management, there are three layers of control defined in organizational structures. These layers are strategic, tactical and operational, in which resides senior, medium level and low level managers respectively. In strategic level, institutional strategies are determined according to senior managers' perceived state of organization. In tactical level, this strategy is processed into methods and activities of a business management plan. Operational level embodies actions and functions to sustain specified business management plan. An acknowledged lead organization in Turkish medical area is examined using case study and data mining method in the scope of this paper. The level of decisions regarded in managerial purposes evaluated through chosen organization's business intelligence event logs report. Hence specification of management level importance of medical organizations is made. Case study, data mining and descriptive statistical method of taken case's reports present that positions of "Chief Executive Officer", "Outpatient Center Manager", "General Manager", monitored and analyzed functions of operational level management more frequently than strategic and tactical level. Absence of strategic management decision level research in medical area distinguishes this paper and consequently substantiates its significant contribution.

  13. A theoretical approach on controlling agricultural pest by biological controls.

    Science.gov (United States)

    Mondal, Prasanta Kumar; Jana, Soovoojeet; Kar, T K

    2014-03-01

    In this paper we propose and analyze a prey-predator type dynamical system for pest control where prey population is treated as the pest. We consider two classes for the pest namely susceptible pest and infected pest and the predator population is the natural enemy of the pest. We also consider average delay for both the predation rate i.e. predation to the susceptible pest and infected pest. Considering a subsystem of original system in the absence of infection, we analyze the existence of all possible non-negative equilibria and their stability criteria for both the subsystem as well as the original system. We present the conditions for transcritical bifurcation and Hopf bifurcation in the disease free system. The theoretical evaluations are demonstrated through numerical simulations.

  14. Thresholds for HLB vector control in infected commercial citrus and compatibility with biological control

    OpenAIRE

    Monzo, C.; Hendricks, K.; Roberts, P.; Stansly, P. A.

    2014-01-01

    Control of the HLB vector, Diaphorina citri Kuwayama, is considered a basic component for management this disease, even in a high HLB incidence scenario. Such control is mostly chemically oriented. However, over use of insecticides would increase costs and be incompatible with biological control. Establishment of economic thresholds for psyllid control under different price scenarios could optimize returns on investment.

  15. Proton-Controlled Organic Microlaser Switch.

    Science.gov (United States)

    Gao, Zhenhua; Zhang, Wei; Yan, Yongli; Yi, Jun; Dong, Haiyun; Wang, Kang; Yao, Jiannian; Zhao, Yong Sheng

    2018-05-25

    Microscale laser switches have been playing irreplaceable roles in the development of photonic devices with high integration levels. However, it remains a challenge to switch the lasing wavelengths across a wide range due to relatively fixed energy bands in traditional semiconductors. Here, we report a strategy to switch the lasing wavelengths among multiple states based on a proton-controlled intramolecular charge-transfer (ICT) process in organic dye-doped flexible microsphere resonant cavities. The protonic acids can effectively bind onto the ICT molecules, which thus enhance the ICT strength of the dyes and lead to a red-shifted gain behavior. On this basis, the gain region was effectively modulated by using acids with different proton-donating ability, and as a result, laser switching among multiple wavelengths was achieved. The results will provide guidance for the rational design of miniaturized lasers with performances based on the characteristic of organic optoelectronic materials.

  16. Biological effects of 137Cs, incorporated into organism of rats

    International Nuclear Information System (INIS)

    Monakhov, A.S.; Strekalov, S.A.; Sokolov, A.V.; Aver'yanova, T.K.

    1987-01-01

    Results of investigating mutagenous and hemotoxic effects of 137 Cs on blood lymphocytes of rats are presented. 137 Cs was orally administrated into organism of rats as 270 kBq/g chloride solution. 137 Cs mutagenous effect was studied on metaphase plates of rat blood lymphocytes in course of rats lifetime experiment. It is stated that 137 Cs inducing severe disturbances of genetic material in a great quantity of blood lymphocytes, causes their total killing

  17. Thermal mud maturation: organic matter and biological activity.

    Science.gov (United States)

    Centini, M; Tredici, M R; Biondi, N; Buonocore, A; Maffei Facino, R; Anselmi, C

    2015-06-01

    Many of the therapeutic and cosmetic treatments offered in spas are centred on mud therapy, to moisturize the skin and prevent skin ageing and rheumatic diseases. Thermal mud is a complex matrix composed of organic and inorganic elements which contribute to its functions. It is a natural product derived from the long mixing of clay and thermal water. During its maturation, organic substances are provided by the microalgae, which develop characteristic of the composition of thermal water. The aim of this study was to identify methods for introducing objective parameters as a basis for characterizing thermal mud and assessing its efficacy. Samples of thermal mud were collected at the Saturnia spa, where there are several sulphureous pools. The maturation of the mud was evaluated by organic component determination using extractive methods and chromatographic analysis (HPLC, GC-MS, SPME). We also studied the radical scavenging activity of mud samples at different stages of maturation, in a homogeneous phase, using several tests (DPPH, ORAC, ABTS). We identified several classes of compounds: saturated and unsaturated fatty acids, hydroxyl acids, dicarboxylic acids, ketoacids, alcohols and others. SPME analysis showed the presence of various hydrocarbons compounds (C(11) -C(17)) and long-chain alcohols (C(12) -C(16)). Six or seven months seemed appropriate to complete the process of maturation, and the main effect of maturation time was the increase of lipids. Six-month mud showed the highest activity. The hydrophilic extract was more active than the lipophilic extract. The results indicate that maturation of thermal mud can be followed on the basis of the changes in its organic composition and antioxidant properties along the time. They also highlight the need to develop reference standards for thermal muds in relation to assess their use for therapeutic and cosmetic purposes. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  18. Pre-Biological Evolution of Organic Matter in the Universe

    Science.gov (United States)

    Wiebe, D. Z.

    2017-05-01

    Discovery of interstellar molecules has become one of the most prominent findings of 20th century. Initially (since late 1930-ies) only simple two-atom compounds have been known. However, the rapid development of radioastronomy during post-war years has allowed expanding this list significantly. Now, the number of known interstellar and circumstellar molecules approaches two hundred (not counting isomers and isotopologues). Among them we see both simple and quite complex molecules. The largest molecules with solid identification consist of 12 atoms (CH3OC2H5, C3H7CN). Nearly all molecules with more than five atoms represent are organic. More than once even discovery of the simplest amino acid (glycine) in the interstellar medium had been reported. While later all these reports has been refuted, there is no doubt that this is a purely technical problem, and there are no fundamental obstacles on a pathway to interstellar synthesis of simplest amino acids. Definitely, even more complex organic structures are present in the interstellar medium, like fullerenes and some kind of aromatic particles. Recently, this diversity quite often became an incentive to suggest that organic species might have arrived to Earth (and other forming planets) in a "ready-to-use" form. However, one has to remember that numerous factors causing effective molecule destruction are in action in the interstellar medium, in the vicinity of young stars, and in protoplanetary disks.

  19. Quality control of X-ray irradiator by biological markers

    International Nuclear Information System (INIS)

    Miura, Miwa; Lukmanul Hakkim, F.; Yoshida, Masahiro; Matsuda, Naoki; Morita, Naoko

    2011-01-01

    The exposure of animals or cultured cells to radiation is the essential and common step in experimental researches to elucidate biological effects of radiation. When an X-ray generator is used as a radiation source, physical parameters including dose, dose rate, and the energy spectrum of X-ray play crucial roles in biological outcome. Therefore, those parameters are the important points to be checked in quality control and to be carefully considered in advance to the irradiation to obtain the accurate and reproductive results. Here we measured radiation dose emitted from the X-ray irradiator for research purposes by using clonogenic survival of cultured mammalian cells as a biological marker in parallel with physical dosimetry. The results drawn from both methods exhibited good consistency in the dose distribution on the irradiation stage. Furthermore, the close relationship was observed between cell survival and the photon energy spectrum by using different filter components. These results suggest that biological dosimetry is applicable to quality control of X-ray irradiator in adjunct to physical dosimetry and that it possibly helps better understanding of the optimal irradiating condition by X-ray users in life-science field. (author)

  20. 3D-printed biological organs: medical potential and patenting opportunity.

    Science.gov (United States)

    Yoo, Seung-Schik

    2015-05-01

    Three-dimensional (3D) bioprinting has emerged as a new disruptive technology that may address the ever-increasing demand for organ transplants. 3D bioprinting offers many technical features that allow for building functional biological tissue constructs by dispensing the individual or group of cells into specific locations along with various types of bio-scaffold materials and extracellular matrices, and thus, may provide flexibility needed for on-demand individualized construction of biological organs. Several key classes of 3D bioprinting techniques are reviewed, including potential medical and industrial applications. Several unanswered engineering components for the ultimate creation of printed biological organs are also discussed. The complicated nature of the human organs, in addition to the legal and ethical requirements for safe implantation into the human body, would require significant research and development to produce marketable bioprinted organs. This also suggests the possibility for further patenting and licensing opportunities from different sectors of the economy.

  1. Dynamic respiration index as a descriptor of the biological stability of organic wastes.

    Science.gov (United States)

    Adani, Fabrizio; Confalonieri, Roberto; Tambone, Fulvia

    2004-01-01

    Analytical methods applicable to different organic wastes are needed to establish the extent to which readily biodegradable organic matter has decomposed (i.e., biological stability). The objective of this study was to test a new respirometric method for biological stability determination of organic wastes. Dynamic respiration index (DRI) measurements were performed on 16 organic wastes of different origin, composition, and biological stability degree to validate the test method and result expression, and to propose biological stability limits. In addition, theoretical DRI trends were obtained by using a mathematical model. Each test lasted 96 h in a 148-L-capacity respirometer apparatus, and DRI was monitored every hour. The biological stability was expressed as both single and cumulative DRI values. Results obtained indicated that DRI described biological stability in relation to waste typology and age well, revealing lower-stability waste characterized by a well-pronounced DRI profile (a marked peak was evident) that became practically flat for samples with higher biological stability. Fitting indices showed good model prediction compared with the experimental data, indicating that the method was able to reproduce the aerobic process, providing a reliable indication of the biological stability. The DRI can therefore be proposed as a useful method to measure the biological stability of organic wastes, and DRI values, calculated as a mean of 24 h of the highest microbial activity, of 1000 and 500 mg O(2) kg(-1) volatile solids (VS) h(-1) are proposed to indicate medium (e.g., fresh compost) and high (e.g., mature compost) biological stabilities, respectively.

  2. Mechanical weed control in organic winter wheat

    OpenAIRE

    Euro Pannacci; Francesco Tei; Marcello Guiducci

    2017-01-01

    Three field experiments were carried out in organic winter wheat in three consecutive years (exp. 1, 2005-06; exp. 2, 2006- 07; exp. 3, 2007-08) in central Italy (42°57’ N - 12°22’ E, 165 m a.s.l.) in order to evaluate the efficacy against weeds and the effects on winter wheat of two main mechanical weed control strategies: i) spring tine harrowing used at three different application times (1 passage at T1, 2 passages at the time T1, 1 passage at T1 followed by 1 passage at T1 + 14 days) in t...

  3. Biological control and invading freshwater snails. A case study.

    Science.gov (United States)

    Pointier, J P; Augustin, D

    1999-12-01

    Introductions of four species of freshwater snails occurred between 1972 and 1996 onto Guadeloupe Island. Two of them, Melanoides tuberculata and Marisa cornuarietis, were subsequently used as biological control agents against Biomphalaria glabrata, the snail intermediate host of intestinal schistosomiasis. In 1996, a general survey was carried out in 134 sites which had already been investigated in 1972. The total number of mollusc species had increased from 19 to 21. Site numbers housing B. glabrata and two other species had strongly declined. This decline may be mainly attributed to a competitive displacement by M. tuberculata and M. cornuarietis as illustrated by several biological control programmes. There were no changes in the remainder of the malacological fauna.

  4. Evaluation of impedance on biological Tissues using automatic control measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Kil, Sang Hyeong; Shin, Dong Hoon; Lee, Seong Mo [Pusan National University, Yangsan (Korea, Republic of); Lee, Moo Seok; Kim, Sang Sik [Pusan National University, Busan (Korea, Republic of); Kim, Gun FDo; Lee, Jong Kyu [Pukyung National University, Busan (Korea, Republic of)

    2015-08-15

    Each biological tissue has endemic electrical characteristics owing to various differences such as those in cellular arrangement or organization form. The endemic electrical characteristics change when any biological change occurs. This work is a preliminary study surveying the changes in the electrical characteristics of biological tissue caused by radiation exposure. For protection against radiation hazards, therefore the electrical characteristics of living tissue were evaluated after development of the automatic control measurement system using LabVIEW. No alteration of biological tissues was observed before and after measurement of the electrical characteristics, and the biological tissues exhibited similar patterns. Through repeated measurements using the impedance/gain-phase analyzer, the coefficient of variation was determined as within 10%. The reproducibility impedance phase difference in electrical characteristics of the biological tissue did not change, and the tissue had resistance. The absolute value of impedance decreased constantly in proportion to the frequency. It has become possible to understand the electrical characteristics of biological tissues through the measurements made possible by the use of the developed.

  5. Evaluation of impedance on biological Tissues using automatic control measurement system

    International Nuclear Information System (INIS)

    Kil, Sang Hyeong; Shin, Dong Hoon; Lee, Seong Mo; Lee, Moo Seok; Kim, Sang Sik; Kim, Gun FDo; Lee, Jong Kyu

    2015-01-01

    Each biological tissue has endemic electrical characteristics owing to various differences such as those in cellular arrangement or organization form. The endemic electrical characteristics change when any biological change occurs. This work is a preliminary study surveying the changes in the electrical characteristics of biological tissue caused by radiation exposure. For protection against radiation hazards, therefore the electrical characteristics of living tissue were evaluated after development of the automatic control measurement system using LabVIEW. No alteration of biological tissues was observed before and after measurement of the electrical characteristics, and the biological tissues exhibited similar patterns. Through repeated measurements using the impedance/gain-phase analyzer, the coefficient of variation was determined as within 10%. The reproducibility impedance phase difference in electrical characteristics of the biological tissue did not change, and the tissue had resistance. The absolute value of impedance decreased constantly in proportion to the frequency. It has become possible to understand the electrical characteristics of biological tissues through the measurements made possible by the use of the developed.

  6. Design control considerations for biologic-device combination products.

    Science.gov (United States)

    Anderson, Dave; Liu, Roger; Anand Subramony, J; Cammack, Jon

    2017-03-01

    Combination products are therapeutic and diagnostic medical products that combine drugs, devices, and/or biological products with one another. Historically, biologics development involved identifying efficacious doses administered to patients intravenously or perhaps by a syringe. Until fairly recently, there has been limited focus on developing an accompanying medical device, such as a prefilled syringe or auto-injector, to enable easy and more efficient delivery. For the last several years, and looking forward, where there may be little to distinguish biologics medicines with relatively similar efficacy profiles, the biotechnology market is beginning to differentiate products by patient-focused, biologic-device based combination products. As innovative as biologic-device combination products are, they can pose considerable development, regulatory, and commercialization challenges due to unique physicochemical properties and special clinical considerations (e.g., dosing volumes, frequency, co-medications, etc.) of the biologic medicine. A biologic-device combination product is a marriage between two partners with "cultural differences," so to speak. There are clear differences in the development, review, and commercialization processes of the biologic and the device. When these two cultures come together in a combination product, developers and reviewers must find ways to address the design controls and risk management processes of both the biologic and device, and knit them into a single entity with supporting product approval documentation. Moreover, digital medicine and connected health trends are pushing the boundaries of combination product development and regulations even further. Despite an admirable cooperation between industry and FDA in recent years, unique product configurations and design features have resulted in review challenges. These challenges have prompted agency reviewers to modernize consultation processes, while at the same time, promoting

  7. Non-biological removal of organic pollutants from water

    International Nuclear Information System (INIS)

    Mersmann, A.; Kutzer, S.; Kajszika, H.; Wintrich, H.

    1995-01-01

    Contaminants present in waste water, seepage water and ground water include salts, heavy metals and organic compounds of low biodegradability. This paper considers the wide range of physico-chemical processes available for separation of such compounds from water and points out their optimal and economic range of application. Main subjects are desorption processes (air/steam stripping), adsorption processes (activated carbon, polymeric resins) and membrane separation processes. Alternative water treatment technologies (evaporation, distillation, liquid-liquid-extraction, oxidation, flocculation and precipitation) and combined processes are presented and discussed. (orig.) [de

  8. Controlled polymer synthesis--from biomimicry towards synthetic biology.

    Science.gov (United States)

    Pasparakis, George; Krasnogor, Natalio; Cronin, Leroy; Davis, Benjamin G; Alexander, Cameron

    2010-01-01

    The controlled assembly of synthetic polymer structures is now possible with an unprecedented range of functional groups and molecular architectures. In this critical review we consider how the ability to create artificial materials over lengthscales ranging from a few nm to several microns is generating systems that not only begin to mimic those in nature but also may lead to exciting applications in synthetic biology (139 references).

  9. Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions

    OpenAIRE

    Kaufman, Leyla V.; Wright, Mark G.

    2017-01-01

    The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in H...

  10. Molecular depth profiling of organic and biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, John S. [Surface Analysis Research Centre, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M60 1QD (United Kingdom)]. E-mail: John.Fletcher@manchester.ac.uk; Conlan, Xavier A. [Surface Analysis Research Centre, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M60 1QD (United Kingdom); Lockyer, Nicholas P. [Surface Analysis Research Centre, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M60 1QD (United Kingdom); Vickerman, John C. [Surface Analysis Research Centre, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M60 1QD (United Kingdom)

    2006-07-30

    Atomic depth profiling using secondary ion mass spectrometry, SIMS, is common in the field micro-electronics; however, the generation of molecular information as a function of sample depth is difficult due to the accumulation of damage both on and beneath the sample surface. The introduction of polyatomic ion beams such as SF{sub 5} and C{sub 60} have raised the possibility of overcoming this problem as they deposit the majority of their energy in the upper surface of the sample resulting in increased sputter yields but with a complimentary reduction in sub-surface damage accumulation. In this paper we report the depth profile analysis of the bio-polymer polycaprolactone, PCL, using the polyatomic ions Au{sub 3}{sup +} and C{sub 60}{sup +} and the monoatomic Au{sup +}. Results are compared to recent analysis of a similar sample using SF{sub 5}{sup +}. C{sub 60}{sup +} depth profiling of cellulose is also demonstrated, an experiment that has been reported as unsuccessful when attempted with SF{sub 5}{sup +} implications for biological analysis are discussed.

  11. Growth Control and Optics of Organic Nanoaggregates

    DEFF Research Database (Denmark)

    Balzer, Frank; Rubahn, Horst-Günter

    2005-01-01

      Light-emitting organic nanofibers made of phenyl molecules like para-hexaphenyl (p-6P) and grown on muscovite mica form a model system well-suited for the study of optics in the sub-wavelength regime. We demonstrate that p-6P nanofibers can be grown with high control of the morphology of indivi......  Light-emitting organic nanofibers made of phenyl molecules like para-hexaphenyl (p-6P) and grown on muscovite mica form a model system well-suited for the study of optics in the sub-wavelength regime. We demonstrate that p-6P nanofibers can be grown with high control of the morphology...... of individual nanoaggregates and also of the mutual alignment of aggregates by the use of appropriate growth conditions and substrate surfaces. The nanofibers can be detached from the substrate, thus allowing one to study the optical response under a huge variety of fundamentally different conditions, from...... individual floating aggregates to dense bunches of interacting aggregates. We show examples of linear and nonlinear optical properties of the blue-light-emitting aggregates and mention possible applications in future submicrometer-sized optoelectronics....

  12. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils

    NARCIS (Netherlands)

    Diepeningen, van A.D.; Vos, de O.J.; Korthals, G.W.; Bruggen, van A.H.C.

    2006-01-01

    A comparative study of organic and conventional arable farming systems was conducted in The Netherlands to determine the effect of management practices on chemical and biological soil properties and soil health. Soils from thirteen accredited organic farms and conventionally managed neighboring

  13. Effect of continuous addition of an organic substrate to the anoxic phase on biological phosphorus removal

    DEFF Research Database (Denmark)

    Meinhold, Jens; Pedersen, Heinz; Arnold, Eva

    1998-01-01

    The continuous introduction of a biological phosphorus removal (BPR) promoting organic substrate to the denitrifying reactor of a BPR process is examined through a series of batch experiments using acetate as model organic substrate. Several observations are made regarding the influence of substr...

  14. Analysis of the Threat of Genetically Modified Organisms for Biological Warfare

    Science.gov (United States)

    2011-05-01

    biological warfare. The primary focus of the framework are those aspects of the technology directly affecting humans by inducing virulent infectious disease...applications. Simple organisms such as fruit flies have been used to study the effects of genetic changes across generations. Transgenic mice are...Analysis * Multi-cell pathogens * Toxins (Chemical products of living cells.) * Fungi (Robust organism; no genetic manipulation needed

  15. A novel biological hydrogen production system. Impact of organic loading

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, Hisham; Nakhla, George; El Naggar, Hesham [Western Ontario Univ. (Canada)

    2010-07-01

    The patent-pending system comprises a novel biohydrogen reactor with a gravity settler for decoupling of SRT from HRT. Two biohydrogenators were operated for 220 days at 37 C, hydraulic retention time 8 h and solids retention time ranged from 1.4 to 2 days under four different glucose concentrations of 2, 8, 16, 32, 48 and 64 g/L, corresponding to organic loading rates of 6.5-206 kg COD/m{sup 3}-d, and started up using anaerobically-digested sludge from the St. Marys wastewater treatment plant (St.Mary, Ontario, Canada) as the seed. The system steadily produced hydrogen with no methane. A maximum hydrogen yield of 3.1 mol H{sub 2} /mol glucose was achieved in the system for all the organic loading rates with an average of 2.8mol H{sub 2} /mol glucose. Acetate and butyrate were the main effluent liquid products at concentrations ranging from 640-7400 mg/L and 400-4600 mg/l, respectively, with no lactate detection. Microbial community analysis using denaturing gradient gel electrophoresis (DGGE) confirmed the absence of lactate producing bacteria Lactobacillus fermentum and other non-hydrogen producing species, and the predominance of various Clostridium species. Biomass concentrations in the biohydrogenators were steady, during the runs, varying form 1500 mg/L at the OLR of 6.5 kg COD/m{sup 3}-d to 14000 mg/L at the 104 kg COD/m{sup 3}-d, thus emphasizing the potential of this novel system for sustained stable hydrogen production and prevention of biomass washout. (orig.)

  16. Biologically-Inspired Control Architecture for Musical Performance Robots

    Directory of Open Access Journals (Sweden)

    Jorge Solis

    2014-10-01

    Full Text Available At Waseda University, since 1990, the authors have been developing anthropomorphic musical performance robots as a means for understanding human control, introducing novel ways of interaction between musical partners and robots, and proposing applications for humanoid robots. In this paper, the design of a biologically-inspired control architecture for both an anthropomorphic flutist robot and a saxophone playing robot are described. As for the flutist robot, the authors have focused on implementing an auditory feedback system to improve the calibration procedure for the robot in order to play all the notes correctly during a performance. In particular, the proposed auditory feedback system is composed of three main modules: an Expressive Music Generator, a Feed Forward Air Pressure Control System and a Pitch Evaluation System. As for the saxophone-playing robot, a pressure-pitch controller (based on the feedback error learning to improve the sound produced by the robot during a musical performance was proposed and implemented. In both cases studied, a set of experiments are described to verify the improvements achieved while considering biologically-inspired control approaches.

  17. Adaptive Fuzzy-Lyapunov Controller Using Biologically Inspired Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Alejandro Carrasco Elizalde

    2008-01-01

    Full Text Available The collective behaviour of swarms produces smarter actions than those achieved by a single individual. Colonies of ants, flocks of birds and fish schools are examples of swarms interacting with their environment to achieve a common goal. This cooperative biological intelligence is the inspiration for an adaptive fuzzy controller developed in this paper. Swarm intelligence is used to adjust the parameters of the membership functions used in the adaptive fuzzy controller. The rules of the controller are designed using a computing-with-words approach called Fuzzy-Lyapunov synthesis to improve the stability and robustness of an adaptive fuzzy controller. Computing-with-words provides a powerful tool to manipulate numbers and symbols, like words in a natural language.

  18. Effects of organic and biological fertilizers on fruit yield and essential oil of sweet fennel (Foeniculum vulgare var. dulce)

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, R.; Rezvani Moghaddam, P.; Nasiri Mahallati, M.; Nezhadali, A.

    2011-07-01

    In order to evaluate the effects of different organic and biological fertilizers on quantity and quality of fennel essential oil, an experiment was conducted in a completely randomized block design with three replications. The experimental treatments included two organic (compost and vermicompost) and two biological (Pseudomonas putida and Azotobacter chroococcum) fertilizers, their all twin combinations (Ps. putida + A. chroococcum, Ps. putida + compost, Ps. putida + vermicompost, A. chroococcum + compost, A. chroococcum + vermicompost and compost + vermicompost) and control (non fertilized). There were significant differences between treatments in terms of seed essential oil percentage, essential oil yield; anethole, fenchone, limonene and straggle content in seed essential oil. Results showed that the highest and the lowest percentages of essential oil were obtained in control (2.9%) and A. chroococcum + vermicompost (2.2%) treatments, respectively. The highest essential oil yield (29.9 L ha{sup -}1) and anethole content of essential oil (69.7%) and the lowest contents of fenchone (6.14%), limonene (4.84%) and estragole (2.78%) in essential oil were obtained in compost + vermicompost treatment. It seems that compost + vermicompost treatment compared to other treatments supplied the highest equilibrium of nutrients and water in the root zone of sweet fennel which is led to increasing the anethole content, there upon, decreasing other compounds. Essential oil yield and percentage of anethole content in essential oil were significantly higher in all organic and biological treatments compared with control. (Author) 43 refs.

  19. Commercial Biological Control Agents Targeted Against Plant-Parasitic Root-knot Nematodes

    Directory of Open Access Journals (Sweden)

    Marie-Stéphane Tranier

    2014-12-01

    Full Text Available Root-knot nematodes are microscopic round worms, which cause severe agricultural losses. Their attacks affect the productivity by reducing the amount and the caliber of the fruits. Chemical control is widely used, but biological control appears to be a better solution, mainly using microorganisms to reduce the quantity of pests infecting crops. Biological control is developing gradually, and with time, more products are being marketed worldwide. They can be formulated with bacteria, viruses or with filamentous fungi, which can destroy and feed on phytoparasitic nematodes. To be used by the farmers, biopesticides must be legalized by the states, which has led to the establishment of a legal framework for their use, devised by various governmental organizations.

  20. Hierarchical Recursive Organization and the Free Energy Principle: From Biological Self-Organization to the Psychoanalytic Mind

    Directory of Open Access Journals (Sweden)

    Patrick Connolly

    2017-09-01

    Full Text Available The present paper argues that a systems theory epistemology (and particularly the notion of hierarchical recursive organization provides the critical theoretical context within which the significance of Friston's (2010a Free Energy Principle (FEP for both evolution and psychoanalysis is best understood. Within this perspective, the FEP occupies a particular level of the hierarchical organization of the organism, which is the level of biological self-organization. This form of biological self-organization is in turn understood as foundational and pervasive to the higher levels of organization of the human organism that are of interest to both neuroscience as well as psychoanalysis. Consequently, central psychoanalytic claims should be restated, in order to be located in their proper place within a hierarchical recursive organization of the (situated organism. In light of the FEP the realization of the psychoanalytic mind by the brain should be seen in terms of the evolution of different levels of systematic organization where the concepts of psychoanalysis describe a level of hierarchical recursive organization superordinate to that of biological self-organization and the FEP. The implication of this formulation is that while “psychoanalytic” mental processes are fundamentally subject to the FEP, they nonetheless also add their own principles of process over and above that of the FEP. A model found in Grobbelaar (1989 offers a recursive bottom-up description of the self-organization of the psychoanalytic ego as dependent on the organization of language (and affect, which is itself founded upon the tendency toward autopoiesis (self-making within the organism, which is in turn described as formally similar to the FEP. Meaningful consilience between Grobbelaar's model and the hierarchical recursive description available in Friston's (2010a theory is described. The paper concludes that the valuable contribution of the FEP to psychoanalysis

  1. Biopesticides: An option for the biological pest control

    Directory of Open Access Journals (Sweden)

    Eusebio Nava Pérez

    2012-09-01

    Full Text Available The indiscriminate use of synthetic pesticides and the problems that its cause to human health, agriculture and the environment is comment, this paper also present general aspects about of biopesticides, and their uses in the biological pest control. By the nature these can be safely used in a sustainable agriculture. An example is the use of botanical pesticides whose active ingredient are the terpenes, alkaloids and phenolics, these have insecticide effects for many agriculture pests; also its are less expensive, are biodegradable and safe for humans and the environment, however havelittle residuality. Microbial pesticides are being introduced successfully to pests control in important crops such as; coffee, sugar cane, beans and corn. These products contain bacteria, fungi, viruses or nematodes. However, few entomopathogenic agents have been developed as effective biocontrol agents, one of them is the bacterium Bacillus thuringiensis (Berlinier for control of armyworm Spodoptera frugiperda (J.E Smith covering about 74% of the market,fungus 10% , viruses 5% and 11% others. Other upstanding case is the use of the fungus Beauveria bassiana (Balsamoagainst bean weevil Acanthoscelides obtectus (Say. Biopesticides have shown that when are used properly in the biological pest control its favor the practice of a sustainable agriculture, with less dependence of chemical insecticides.

  2. Acidity controls on dissolved organic carbon mobility in organic soils

    Czech Academy of Sciences Publication Activity Database

    Evans, Ch. D.; Jones, T.; Burden, A.; Ostle, N.; Zielinski, P.; Cooper, M.; Peacock, M.; Clark, J.; Oulehle, Filip; Cooper, D.; Freeman, Ch.

    2012-01-01

    Roč. 18, č. 11 (2012), s. 3317-3331 ISSN 1354-1013 Institutional support: RVO:67179843 Keywords : acidity * dissolved organic carbon * organic soil * peat * podzol * soil carbon * sulphur Subject RIV: EH - Ecology, Behaviour Impact factor: 6.910, year: 2012

  3. Multiple levels of epigenetic control for bone biology and pathology.

    Science.gov (United States)

    Montecino, Martin; Stein, Gary; Stein, Janet; Zaidi, Kaleem; Aguilar, Rodrigo

    2015-12-01

    Multiple dimensions of epigenetic control contribute to regulation of gene expression that governs bone biology and pathology. Once confined to DNA methylation and a limited number of post-translational modifications of histone proteins, the definition of epigenetic mechanisms is expanding to include contributions of non-coding RNAs and mitotic bookmarking, a mechanism for retaining phenotype identity during cell proliferation. Together these different levels of epigenetic control of physiological processes and their perturbations that are associated with compromised gene expression during the onset and progression of disease, have contributed to an unprecedented understanding of the activities (operation) of the genomic landscape. Here, we address general concepts that explain the contribution of epigenetic control to the dynamic regulation of gene expression during eukaryotic transcription. This article is part of a Special Issue entitled Epigenetics and Bone. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The Effects of Simultaneous Application of Different Organic and Biological Fertilizers on Quantitative and Qualitative Characteristics of Cucurbita pepo L.

    Directory of Open Access Journals (Sweden)

    M Jahan

    2013-08-01

    Full Text Available Understanding of relations and interactions between ecosystem’s components and plants is one of the main conditions for sustainable production of medicinal plants. To study the effect of simultaneous application of organic and biological fertilizers on yield and yield components of zucchini squash, a split plot arrangement of factors based on randomized complete block design with tree replications was used during 2009-10 growing season. The mainplot factor was the type of organic fertilizers, including 1-cow manure, 2-sheep manure, 3-chicken manure, 4-vermicompost and 5-control. The subplot factor was the biofertilizer (namely Nitragin, containing Azotobacter sp. , Azospirillum sp. and Pseudomonas sp., utilization. The results showed the positive but non significant effect of organic and biological fertilizers on yield and yield components of zucchini squash. Amongst the organic fertilizers, cow and chicken manure, have superiority compared the others. The highest seed oil and protein percent resulted in chicken manure, although there was not significant different between treatments due to seed oil percent. The positive effect of organic and biological fertilizers on seed yield was higher than fruit yield. Positive correlations found between fruit and seed yield, and between one fruit weight and one fruit seed weight (R2=0.72** and 0.56**, respectively. At a glance, cow manure solely application was better than its application with nitragin. Nitragin application has no significant effect on some traits, when utilized with sheep manure and vermicompost. The possibilities of antagonistic effect among organic and biological fertilizers needs to be more studied.

  5. A Biomechanical Comparison of Proportional Electromyography Control to Biological Torque Control Using a Powered Hip Exoskeleton

    Directory of Open Access Journals (Sweden)

    Aaron J. Young

    2017-06-01

    Full Text Available BackgroundDespite a large increase in robotic exoskeleton research, there are few studies that have examined human performance with different control strategies on the same exoskeleton device. Direct comparison studies are needed to determine how users respond to different types of control. The purpose of this study was to compare user performance using a robotic hip exoskeleton with two different controllers: a controller that targeted a biological hip torque profile and a proportional myoelectric controller.MethodsWe tested both control approaches on 10 able-bodied subjects using a pneumatically powered hip exoskeleton. The state machine controller targeted a biological hip torque profile. The myoelectric controller used electromyography (EMG of lower limb muscles to produce a proportional control signal for the hip exoskeleton. Each subject performed two 30-min exoskeleton walking trials (1.0 m/s using each controller and a 10-min trial with the exoskeleton unpowered. During each trial, we measured subjects’ metabolic cost of walking, lower limb EMG profiles, and joint kinematics and kinetics (torques and powers using a force treadmill and motion capture.ResultsCompared to unassisted walking in the exoskeleton, myoelectric control significantly reduced metabolic cost by 13% (p = 0.005 and biological hip torque control reduced metabolic cost by 7% (p = 0.261. Subjects reduced muscle activity relative to the unpowered condition for a greater number of lower limb muscles using myoelectric control compared to the biological hip torque control. More subjects subjectively preferred the myoelectric controller to the biological hip torque control.ConclusionMyoelectric control had more advantages (metabolic cost and muscle activity reduction compared to a controller that targeted a biological torque profile for walking with a robotic hip exoskeleton. However, these results were obtained with a single exoskeleton device with specific

  6. A Biomechanical Comparison of Proportional Electromyography Control to Biological Torque Control Using a Powered Hip Exoskeleton.

    Science.gov (United States)

    Young, Aaron J; Gannon, Hannah; Ferris, Daniel P

    2017-01-01

    Despite a large increase in robotic exoskeleton research, there are few studies that have examined human performance with different control strategies on the same exoskeleton device. Direct comparison studies are needed to determine how users respond to different types of control. The purpose of this study was to compare user performance using a robotic hip exoskeleton with two different controllers: a controller that targeted a biological hip torque profile and a proportional myoelectric controller. We tested both control approaches on 10 able-bodied subjects using a pneumatically powered hip exoskeleton. The state machine controller targeted a biological hip torque profile. The myoelectric controller used electromyography (EMG) of lower limb muscles to produce a proportional control signal for the hip exoskeleton. Each subject performed two 30-min exoskeleton walking trials (1.0 m/s) using each controller and a 10-min trial with the exoskeleton unpowered. During each trial, we measured subjects' metabolic cost of walking, lower limb EMG profiles, and joint kinematics and kinetics (torques and powers) using a force treadmill and motion capture. Compared to unassisted walking in the exoskeleton, myoelectric control significantly reduced metabolic cost by 13% ( p  = 0.005) and biological hip torque control reduced metabolic cost by 7% ( p  = 0.261). Subjects reduced muscle activity relative to the unpowered condition for a greater number of lower limb muscles using myoelectric control compared to the biological hip torque control. More subjects subjectively preferred the myoelectric controller to the biological hip torque control. Myoelectric control had more advantages (metabolic cost and muscle activity reduction) compared to a controller that targeted a biological torque profile for walking with a robotic hip exoskeleton. However, these results were obtained with a single exoskeleton device with specific control configurations while level walking at a

  7. Biological response to radiation. Studies of model organism, C. elegans, with micro-ion beam

    International Nuclear Information System (INIS)

    Higashitani, Atsushi

    2006-01-01

    Described are mainly author's studies on radiation response and its biological significance in a nematode, C. elegans, particularly focusing its germ cells. The model organism is bisexual and the mature one is suitable to observe the development, differentiation and concomitant chromosome dynamics of male and female germ cells, and accordingly, the responses occurring in those cells at different stages post irradiation of the whole worm. Authors have shown in the organism irradiated by 100 Gy X-ray that pachytene cells in meiosis have high radio-resistance due to their increased expression of enzymes related with homologous recombination. They have also presented the apoptotic cascade in germ cells triggered by radiation by comparison of wild type and ab1-1-gene-deleted worms. Micro-beam of 12 C 5+ ion in Takasaki Ion Accelerators for Advanced Radiation Application (TIARA) has been used to irradiate the body parts of the worm to study the bystander effects, which has revealed that germ cells are shielded from the effect in the worm. It is thought important to use the micro-beam, with which the irradiation area can be precisely controllable, for studying the bystander effect in a body of higher animals like a mouse as well as in worm somatic cells. (T.I.)

  8. Biological response of HeLa cells to gold nanoparticles coated with organic molecules.

    Science.gov (United States)

    Cardoso Avila, P E; Rangel Mendoza, A; Pichardo Molina, J L; Flores Villavicencio, L L; Castruita Dominguez, J P; Chilakapati, M K; Sabanero Lopez, M

    2017-08-01

    In this work, gold nanospheres functionalized with low weight organic molecules (4-aminothiphenol and cysteamine) were synthesized in a one-step method for their in vitro cytotoxic evaluation on HeLa cells. To enhance the biocompatibility of the cysteamine-capped GNPs, BSA was used due to its broad PH stability and high binding affinity to gold nanoparticles. Besides, the widely reported silica coated gold nanorods were tested here to contrast their toxic response against our nanoparticles coated with organic molecules. Our results shown, the viability measured at 1.9×10 -5 M did not show significant differences against negative controls for all the samples; however, the metabolic activity of HeLa cells dropped when they were exposed to silica gold nanorods in the range of concentrations from 2.9×10 -7 M to 3.0×10 -4 M, while in the cases of gold nanospheres, we found that only at concentrations below 1.9×10 -5 M metabolic activity was normal. Our preliminary results did not indicate any perceivable harmful toxicity to cell membrane, cytoskeleton or nucleus due to our nanospheres at 1.9×10 -5 M. Additional test should be conducted in order to ensure a safe use of them for biological applications, and to determine the extent of possible damage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Biological Efficacy of Herbicides for Weed Control in Noncropped Areas

    Directory of Open Access Journals (Sweden)

    Tsvetanka Dimitrova

    2009-01-01

    Full Text Available An increasing problem facing agricultural producers is the invasion of weeds, perennial in particular, so that implementation of industrial technologies is impossible without their highly efficient and rational control. For the purpose of studying efficient herbicides for weed control in noncropped areas (stubbles, a biological study of five total systemic herbicides was conducted in areas under natural weed infestation and pressure from othersurrounding weeds at the Institute of Forage Crops in Pleven in 2005-2007. The trials were carried out in field conditions using the block method with plot size of 20 m². Treatment was conducted at the predominant stage of budding of perennial dicotyledonous weeds and earing of monocotyledonous weeds. Herbicidal efficacy was recorded on the EWRS 9-score scale (0-100% killed weeds = score 9-1. It was found that treatment of noncropped areas (stubbles with the total systemic herbicides Touchdown System 4 (360 g/l glyphosate; Cosmic (360 g/l glyphosate; Roundup Plus (441 g/l glyphosate potassium salt; Leon 36 SL (360 g/l glyphosate and Glyphos Super 45 SL (450 g/l glyphosate was highly efficient, so that it was a successful element of a strategy for controlling weeds of different biological groups, and was especially effective against perennial weeds.

  10. Control of the cassava mealybug in Africa: lessons from a biological ...

    African Journals Online (AJOL)

    Control of the cassava mealybug in Africa: lessons from a biological control project. ... Such studies are needed in order to attribute the observed effects to various causes and to advance the science of biological control. ( 4) It is concluded that biological control is the basis ofiPM but cannot usually be manipulated by the ...

  11. Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Naresh eSinghal

    2016-05-01

    Full Text Available Global water scarcity is driving the need for identifying new water source. Wastewater could be a potential water resource if appropriate treatment technologies could be developed. One of the barriers to obtaining high quality water from wastewater arises from the presence of organic micropollutants, which are biologically active at trace levels. Removal of these compounds from wastewater by current physico-chemical technologies is prohibitively expensive. While biological treatment processes are comparatively cheap, current systems are not capable of degrading the wide range of organic micropollutants present in wastewater. As current wastewater treatment processes were developed for treating conventional pollutants present at mg/L levels, degrading the ng/L levels of micropollutants will require a different approach to system design and operation. In this paper we discuss strategies that could be employed to develop biological wastewater treatment systems capable of degrading organic micropollutants.

  12. Using biological control research in the classroom to promote scientific inquiry and literacy

    Science.gov (United States)

    Many scientists who research biological control also teach at universities or more informally through cooperative outreach. The purpose of this paper is to review biological control activities for the classroom in four refereed journals, The American Biology Teacher, Journal of Biological Education...

  13. Asymmetric positive feedback loops reliably control biological responses.

    Science.gov (United States)

    Ratushny, Alexander V; Saleem, Ramsey A; Sitko, Katherine; Ramsey, Stephen A; Aitchison, John D

    2012-04-24

    Positive feedback is a common mechanism enabling biological systems to respond to stimuli in a switch-like manner. Such systems are often characterized by the requisite formation of a heterodimer where only one of the pair is subject to feedback. This ASymmetric Self-UpREgulation (ASSURE) motif is central to many biological systems, including cholesterol homeostasis (LXRα/RXRα), adipocyte differentiation (PPARγ/RXRα), development and differentiation (RAR/RXR), myogenesis (MyoD/E12) and cellular antiviral defense (IRF3/IRF7). To understand why this motif is so prevalent, we examined its properties in an evolutionarily conserved transcriptional regulatory network in yeast (Oaf1p/Pip2p). We demonstrate that the asymmetry in positive feedback confers a competitive advantage and allows the system to robustly increase its responsiveness while precisely tuning the response to a consistent level in the presence of varying stimuli. This study reveals evolutionary advantages for the ASSURE motif, and mechanisms for control, that are relevant to pharmacologic intervention and synthetic biology applications.

  14. Systems of organic farming in spring vetch II: Biological response of Aeolothrips intermedius Bagnall and Coccinella septempunctata L.

    Directory of Open Access Journals (Sweden)

    Ivelina Nikolova

    2015-09-01

    Full Text Available The effects of four systems of organic farming of spring vetsch on Aeolothrips intermedius Bagnall (Thysanoptera: Aeolothripidae and Coccinella septempunctata L. (Coleoptera: Coccinellidae population density and the toxicity of several products on predatory insects were studied. The variants were: Control (without using any biological products; combined treatment with Polyversum (biological foliar fertilizer and Biofa (biological plant growth regulator; treatment with NeemAzal T/S (biological insecticide, a.i. azadirachtin and treatment with a combination of NeemAzal with Polyversum and Biofa. Variant V was a conventional farming system in which a combination of Nurelle D (synthetic insecticide, Masterblend (foliar fertilizer and Flordimex 420 (growth regulator was used as a standard treatment. In the organic farming system that included treatment of plants with the biological insecticide NeemAzal (azadirachtin, the reduction in A. intermedius abundance was 20.7% when it was applied alone and 24.6 % in combination with the organic products Polyversum and Biofa. NeemAzal achieved a lower reduction in the counts of predatory ladybirds C. septempunctata, from 14.9% (alone to 21.9% (combination. The biological insecticide, applied alone or in combination, was mostly harmless and rarely harmful to A. intermedius. NeemAzal manifested harmlessness to C. septempunctata as its toxic action did not exceed 25%. An analysis of variance regarding product toxicity to A. intermedius and C. septempunctata demonstrated that the type of treatment (the application of insecticides alone or in combination had the strongest effect on product toxicity. Тhe use of neem-based insecticides can be a substantial contribution towards preservation of biodiversity in ecosystems.

  15. Biologically inspired autonomous structural materials with controlled toughening and healing

    Science.gov (United States)

    Garcia, Michael E.; Sodano, Henry A.

    2010-04-01

    The field of structural health monitoring (SHM) has made significant contributions in the field of prognosis and damage detection in the past decade. The advantageous use of this technology has not been integrated into operational structures to prevent damage from propagating or to heal injured regions under real time loading conditions. Rather, current systems relay this information to a central processor or human operator, who then determines a course of action such as altering the mission or scheduling repair maintenance. Biological systems exhibit advanced sensory and healing traits that can be applied to the design of material systems. For instance, bone is the major structural component in vertebrates; however, unlike modern structural materials, bone has many properties that make it effective for arresting the propagation of cracks and subsequent healing of the fractured area. The foremost goal for the development of future adaptive structures is to mimic biological systems, similar to bone, such that the material system can detect damage and deploy defensive traits to impede damage from propagating, thus preventing catastrophic failure while in operation. After sensing and stalling the propagation of damage, the structure must then be repaired autonomously using self healing mechanisms motivated by biological systems. Here a novel autonomous system is developed using shape memory polymers (SMPs), that employs an optical fiber network as both a damage detection sensor and a network to deliver stimulus to the damage site initiating adaptation and healing. In the presence of damage the fiber optic fractures allowing a high power laser diode to deposit a controlled level of thermal energy at the fractured sight locally reducing the modulus and blunting the crack tip, which significantly slows the crack growth rate. By applying a pre-induced strain field and utilizing the shape memory recovery effect, thermal energy can be deployed to close the crack and return

  16. Dynamics of Intracellular Polymers in Enhanced Biological Phosphorus Removal Processes under Different Organic Carbon Concentrations

    Directory of Open Access Journals (Sweden)

    Lizhen Xing

    2013-01-01

    Full Text Available Enhanced biological phosphorus removal (EBPR may deteriorate or fail during low organic carbon loading periods. Polyphosphate accumulating organisms (PAOs in EBPR were acclimated under both high and low organic carbon conditions, and then dynamics of polymers in typical cycles, anaerobic conditions with excess organic carbons, and endogenous respiration conditions were examined. After long-term acclimation, it was found that organic loading rates did not affect the yield of PAOs and the applied low organic carbon concentrations were advantageous for the enrichment of PAOs. A low influent organic carbon concentration induced a high production of extracellular carbohydrate. During both anaerobic and aerobic endogenous respirations, when glycogen decreased to around 80 ± 10 mg C per gram of volatile suspended solids, PAOs began to utilize polyphosphate significantly. Regressed by the first-order reaction model, glycogen possessed the highest degradation rate and then was followed by polyphosphate, while biomass decay had the lowest degradation rate.

  17. Mechanical weed control in organic winter wheat

    Directory of Open Access Journals (Sweden)

    Euro Pannacci

    2017-12-01

    Full Text Available Three field experiments were carried out in organic winter wheat in three consecutive years (exp. 1, 2005-06; exp. 2, 2006- 07; exp. 3, 2007-08 in central Italy (42°57’ N - 12°22’ E, 165 m a.s.l. in order to evaluate the efficacy against weeds and the effects on winter wheat of two main mechanical weed control strategies: i spring tine harrowing used at three different application times (1 passage at T1, 2 passages at the time T1, 1 passage at T1 followed by 1 passage at T1 + 14 days in the crop sowed at narrow (traditional row spacing (0.15 m; and ii split-hoeing and finger-weeder, alone and combined at T1, in the crop sowed at wider row spacing (0.30 m. At the time T1 winter wheat was at tillering and weeds were at the cotyledons-2 true leaves growth stage. The experimental design was a randomized block with four replicates. Six weeks after mechanical treatments, weed ground cover (% was rated visually using the Braun-Blanquet coverabundance scale; weeds on three squares (0.6×0.5 m each one per plot were collected, counted, weighed, dried in oven at 105°C to determine weed density and weed above-ground dry biomass. At harvest, wheat ears density, grain yield, weight of 1000 seeds and hectolitre weight were recorded. Total weed flora was quite different in the three experiments. The main weed species were: Polygonum aviculare L. (exp. 1 and 2, Fallopia convolvulus (L. Á. Löve (exp. 1 and 3, Stachys annua (L. L. (exp. 1, Anagallis arvensis L. (exp. 2, Papaver rhoeas L. (exp.3, Veronica hederifolia L. (exp. 3. In the winter wheat sowed at narrow rows, 2 passages with spring-tine harrowing at the same time seems to be the best option in order to reconcile a good efficacy with the feasibility of treatment. In wider rows spacing the best weed control was obtained by split hoeing alone or combined with finger-weeder. The grain yield, on average 10% higher in narrow rows, the lower costs and the good selectivity of spring-tine harrowing

  18. Biological Characteristics and Control of Orobanche Crenata Forsk., a Review

    Directory of Open Access Journals (Sweden)

    Alessia Restuccia

    2009-03-01

    Full Text Available Orobanche crenata is a holoparasitic phanerogam which is particularly noxious to legumes, such as faba bean (Vicia faba L., pea (Pisum sativum L., chickpea (Cicer arietinum L., lentil (Lens culinaris Medik., etc., and commonly considered one of the major causes which has contributed to re-rizing the area designed to their cultivation. After a few brief references on the origin and diffusion of O. crenata, in this work summarises the results of research into biological aspects and control of this species. The information obtained especially concerns seed production, seed viability, seed longevity and dormancy, seed conditioning and germination, parasitism phases, the effects of parasite attacks on host plants and the means of control.

  19. Entomopatogenic fungi as an alternative for biological pest control

    Directory of Open Access Journals (Sweden)

    Pablo Andrés Motta Delgado

    2011-08-01

    Full Text Available The entomopatogenic fungi are a diverse group of microorganisms that provide multiple services to agroecological systems. Among those the capacity to regulate the pests to keep them in suitable levels stands out. The present paper shows a description of the entomopatogenic fungi of most extensively used for the biological control of pests, their mechanism of action on their host, and also investigations about the in vitro and in situ behavior of the mostly used fungi for the control of some insects. Also, the formulations that are used for the development of this biotechnology in the field are described. In the development of bioinsecticides the entomopatogenic fungi are a viable option to minimize environmental damage.

  20. Biological Characteristics and Control of Orobanche Crenata Forsk., a Review

    Directory of Open Access Journals (Sweden)

    Giuseppe Restuccia

    2011-02-01

    Full Text Available Orobanche crenata is a holoparasitic phanerogam which is particularly noxious to legumes, such as faba bean (Vicia faba L., pea (Pisum sativum L., chickpea (Cicer arietinum L., lentil (Lens culinaris Medik., etc., and commonly considered one of the major causes which has contributed to re-rizing the area designed to their cultivation. After a few brief references on the origin and diffusion of O. crenata, in this work summarises the results of research into biological aspects and control of this species. The information obtained especially concerns seed production, seed viability, seed longevity and dormancy, seed conditioning and germination, parasitism phases, the effects of parasite attacks on host plants and the means of control.

  1. Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions.

    Science.gov (United States)

    Kaufman, Leyla V; Wright, Mark G

    2017-07-07

    The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in Hawaii to validate a probabilistic risk assessment (PRA) procedure for non-target impacts. We use data on known host range and habitat use in the place of origin of the parasitoids to determine whether contemporary levels of non-target parasitism could have been predicted using PRA. Our results show that reasonable predictions of potential non-target impacts may be made if comprehensive data are available from places of origin of biological control agents, but scant data produce poor predictions. Using apparent mortality data rather than marginal attack rate estimates in PRA resulted in over-estimates of predicted non-target impact. Incorporating ecological data into PRA models improved the predictive power of the risk assessments.

  2. INTEGRATED MANAGEMENT OF CHROMOLAENA ODORATA EMPHASIZING THE CLASSICAL BIOLOGICAL CONTROL

    Directory of Open Access Journals (Sweden)

    SOEKISMAN TJITROSEMITO

    1998-01-01

    Full Text Available Chromolaena odorata, Siam weed, a very important weed of Java Island (Indonesia is native to Central and South America. In the laboratory it showed rapid growth (1.15 g/g/week in the first 8 weeks of its growth. The biomass was mainly as leaves (LAR : 317.50 cm'/g total weight. It slowed down in the following month as the biomass was utilized for stem and branch formation. This behavior supported the growth of C. odorata into a very dense stand. It flowered, fruited during the dry season, and senesced following maturation of seeds from inflorescence branches. These branches dried out, but soon the stem resumed aggressive growth following the wet season. Leaf biomass was affected by the size of the stem in its early phase of regrowth, but later on it was more affected by the number of branches. The introduction of Pareuchaetes pseudoinsulata to Indonesia, was successful only in North Sumatera. In Java it has not been reported to establish succesfully. The introduction of another biological control agent, Procecidochares conneca to Indonesia was shown to be sp ecific and upon release in West Java it established immediately. It spread exponentia lly in the first 6 months of its release. Field monitoring continues to eval uate the impact of the agents. Other biocontrol agents (Actmole anteas and Conotrachelus wilt be introduced to Indonesia in 1997 through ACIAR Project on the Biological Control of Chromolaena odorata in Indonesia and Papua New Guinea.

  3. Reevaluation of the value of autoparasitoids in biological control.

    Directory of Open Access Journals (Sweden)

    Lian-Sheng Zang

    Full Text Available Autoparasitoids with the capacity of consuming primary parasitoids that share the same hosts to produce males are analogous to intraguild predators. The use of autoparasitoids in biological control programs is a controversial matter because there is little evidence to support the view that autoparasitoids do not disrupt and at times may promote suppression of insect pests in combination with primary parasitoids. We found that Encarsia sophia, a facultative autoparasitoid, preferred to use heterospecific hosts as secondary hosts for producing males. The autoparasitoids mated with males originated from heterospecifics may parasitize more hosts than those mated with males from conspecifics. Provided with an adequate number of males, the autoparasitoids killed more hosts than En. formosa, a commonly used parasitoid for biological control of whiteflies. This study supports the view that autoparasitoids in combination with primary parasitoids do not disrupt pest management and may enhance such programs. The demonstrated preference of an autoparasitoid for heterospecifics and improved performance of males from heterospecifics observed in this study suggests these criteria should be considered in strategies that endeavor to mass-produce and utilize autoparasitoids in the future.

  4. Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions

    Directory of Open Access Journals (Sweden)

    Leyla V. Kaufman

    2017-07-01

    Full Text Available The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in Hawaii to validate a probabilistic risk assessment (PRA procedure for non-target impacts. We use data on known host range and habitat use in the place of origin of the parasitoids to determine whether contemporary levels of non-target parasitism could have been predicted using PRA. Our results show that reasonable predictions of potential non-target impacts may be made if comprehensive data are available from places of origin of biological control agents, but scant data produce poor predictions. Using apparent mortality data rather than marginal attack rate estimates in PRA resulted in over-estimates of predicted non-target impact. Incorporating ecological data into PRA models improved the predictive power of the risk assessments.

  5. Tongue and Taste Organ Biology and Function: Homeostasis Maintained by Hedgehog Signaling.

    Science.gov (United States)

    Mistretta, Charlotte M; Kumari, Archana

    2017-02-10

    The tongue is an elaborate complex of heterogeneous tissues with taste organs of diverse embryonic origins. The lingual taste organs are papillae, composed of an epithelium that includes specialized taste buds, the basal lamina, and a lamina propria core with matrix molecules, fibroblasts, nerves, and vessels. Because taste organs are dynamic in cell biology and sensory function, homeostasis requires tight regulation in specific compartments or niches. Recently, the Hedgehog (Hh) pathway has emerged as an essential regulator that maintains lingual taste papillae, taste bud and progenitor cell proliferation and differentiation, and neurophysiological function. Activating or suppressing Hh signaling, with genetic models or pharmacological agents used in cancer treatments, disrupts taste papilla and taste bud integrity and can eliminate responses from taste nerves to chemical stimuli but not to touch or temperature. Understanding Hh regulation of taste organ homeostasis contributes knowledge about the basic biology underlying taste disruptions in patients treated with Hh pathway inhibitors.

  6. Drosophila melanogaster--the model organism of choice for the complex biology of multi-cellular organisms

    Science.gov (United States)

    Beckingham, Kathleen M.; Armstrong, J. Douglas; Texada, Michael J.; Munjaal, Ravi; Baker, Dean A.

    2005-01-01

    Drosophila melanogaster has been intensely studied for almost 100 years. The sophisticated array of genetic and molecular tools that have evolved for analysis of gene function in this organism are unique. Further, Drosophila is a complex multi-cellular organism in which many aspects of development and behavior parallel those in human beings. These combined advantages have permitted research in Drosophila to make seminal contributions to the understanding of fundamental biological processes and ensure that Drosophila will continue to provide unique insights in the genomic era. An overview of the genetic methodologies available in Drosophila is given here, together with examples of outstanding recent contributions of Drosophila to our understanding of cell and organismal biology. The growing contribution of Drosophila to our knowledge of gravity-related responses is addressed.

  7. Teleology and its constitutive role for biology as the science of organized systems in nature.

    Science.gov (United States)

    Toepfer, Georg

    2012-03-01

    'Nothing in biology makes sense, except in the light of teleology'. This could be the first sentence in a textbook about the methodology of biology. The fundamental concepts in biology, e.g. 'organism' and 'ecosystem', are only intelligible given a teleological framework. Since early modern times, teleology has often been considered methodologically unscientific. With the acceptance of evolutionary theory, one popular strategy for accommodating teleological reasoning was to explain it by reference to selection in the past: functions were reconstructed as 'selected effects'. But the theory of evolution obviously presupposes the existence of organisms as organized and regulated, i.e. functional systems. Therefore, evolutionary theory cannot provide the foundation for teleology. The underlying reason for the central methodological role of teleology in biology is not its potential to offer particular forms of (evolutionary) explanations for the presence of parts, but rather an ontological one: organisms and other basic biological entities do not exist as physical bodies do, as amounts of matter with a definite form. Rather, they are dynamic systems in stable equilibrium; despite changes of their matter and form (in metabolism and metamorphosis) they maintain their identity. What remains constant in these kinds of systems is their 'organization', i.e. the causal pattern of interdependence of parts with certain effects of each part being relevant for the working of the system. Teleological analysis consists in the identification of these system-relevant effects and at the same time of the system as a whole. Therefore, the identity of biological systems cannot be specified without teleological reasoning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. The sensitivity of Turing self-organization to biological feedback delays: 2D models of fish pigmentation

    KAUST Repository

    Gaffney, E. A.; Lee, S. S.

    2013-01-01

    © The authors 2013. Turing morphogen models have been extensively explored in the context of large-scale self-organization in multicellular biological systems. However, reconciling the detailed biology of morphogen dynamics, while accounting

  9. Organization of infection control in European hospitals.

    Science.gov (United States)

    Hansen, S; Zingg, W; Ahmad, R; Kyratsis, Y; Behnke, M; Schwab, F; Pittet, D; Gastmeier, P

    2015-12-01

    The Prevention of Hospital Infections by Intervention and Training (PROHIBIT) survey was initiated to investigate the status of healthcare-associated infection (HCAI) prevention across Europe. This paper presents the methodology of the quantitative PROHIBIT survey and outlines the findings on infection control (IC) structure and organization including management's support at the hospital level. Hospitals in 34 countries were invited to participate between September 2011 and March 2012. Respondents included IC personnel and hospital management. Data from 309 hospitals in 24 countries were analysed. Hospitals had a median (interquartile range) of four IC nurses (2-6) and one IC doctor (0-2) per 1000 beds. Almost all hospitals (96%) had defined IC objectives, which mainly addressed hand hygiene (87%), healthcare-associated infection reduction (84%), and antibiotic stewardship (66%). Senior management provided leadership walk rounds in about half of hospitals, most often in Eastern and Northern Europe, 65% and 64%, respectively. In the majority of hospitals (71%), sanctions were not employed for repeated violations of IC practices. Use of sanctions varied significantly by region (P hospitals should be a public health priority. Copyright © 2015. Published by Elsevier Ltd.

  10. The biological basis for the control of prenatal irradiation

    International Nuclear Information System (INIS)

    1988-01-01

    The embryo and fetus have been generally considered to be more sensitive than the adult to the detrimental effects of radiation exposure. In particular, recent re-evaluations of epidemiological data on human population exposed to radiation have suggested that there may be greater sensitivity than heretofore recognized to the induction of mental retardation and reduced intelligence by exposure during gestation. To assist national authorities in evaluating this problem and establishing appropriate protection measures for limiting the dose to the embryo and fetus and, thus, to pregnant or potentially pregnant women, the Nuclear Energy Agency has appointed a Group of Consultants to assemble and evaluate the biological data relevant to the protection of the human conceptus, and to make recommendations for achieving this in the operational practice. The Group has surveyed the human data dealing with the biologcal effects of radiation exposure at low doses, and has supplemented this with information derived from animal studies. The Group has also taken full account of the studies and recommendations issued in this area by other international organizations, primarily the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) and the International Commission on Radiological Protection (ICRP). This report is published under the responsibility of the Secretary General of the OECD, and does not commit Member governments of the Organization

  11. Social and economic factors for the adoption of biological control of ...

    African Journals Online (AJOL)

    The results also showed that the decision on the application of biological control is determined by the educational level, income, mechanization level, extension activities, biological control awareness, social participation, attitude toward biological control and access to information sources which have significant influence.

  12. 77 FR 46373 - Availability of an Environmental Assessment for a Biological Control Agent for Hemlock Woolly...

    Science.gov (United States)

    2012-08-03

    ...] Availability of an Environmental Assessment for a Biological Control Agent for Hemlock Woolly Adelgid AGENCY... States for use as a biological control agent to reduce the severity of hemlock woolly adelgid... beetle from the western United States, into the eastern United States for use as a biological control...

  13. 75 FR 28232 - Availability of an Environmental Assessment for a Biological Control Agent for Hemlock Woolly...

    Science.gov (United States)

    2010-05-20

    ...] Availability of an Environmental Assessment for a Biological Control Agent for Hemlock Woolly Adelgid AGENCY..., into the continental United States for use as a biological control agent to reduce the severity of... biological control agent to reduce the severity of hemlock woolly adelgid (HWA) infestations. HWA, an...

  14. 75 FR 69396 - Availability of an Environmental Assessment for a Biological Control Agent for Arundo donax

    Science.gov (United States)

    2010-11-12

    ... Biological Control Agent for Arundo donax AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION... alternatives to, the release of Arundo scale into the continental United States for use as a biological control... a biological control agent to reduce the severity of Arundo donax infestations. A. donax is a highly...

  15. BIOMASS PRODUCTION AND FORMULATION OF Bacillus subtilis FOR BIOLOGICAL CONTROL

    Directory of Open Access Journals (Sweden)

    Amran Muis

    2016-10-01

    Full Text Available Bacillus subtilis is a widespread bacterium found in soil, water, and air. It controls the growth of certain harmful bacteria and fungi, presumably by competing for nutrients, growth sites on plants, and by directly colonizing and attaching to fungal pathogens. When applied to seeds, it colonizes the developing root system of the plants and continues to live on the root system and provides protection throughout the growing season. The study on biomass production and formulation of B. subtilis for biological control was conducted in the laboratory of Department of Plant Pathology, College of Agriculture, University of the Philippines Los Baños (UPLB-CA, College, Laguna from May to July 2005. The objective of the study was to determine the optimum pH and a good carbon source for biomass production of B. subtilis and to develop a seed treatment formulation of B. subtilis as biological control agent. Results showed that the optimum pH for growth of B. subtilis was pH 6 (1.85 x 109 cfu/ml. In laboratory tests for biomass production using cassava flour, corn flour, rice flour, and brown sugar as carbon sources, it grew best in brown sugar plus yeast extract medium (6.8 x 108 cfu ml-1 in sterile distilled water and 7.8 x 108 cfu ml-1 in coconut water. In test for bacterial biomass carriers, talc proved to be the best in terms of number of bacteria recovered from the seeds (3.98 x 105 cfu seed-1.

  16. Models for integrated pest control and their biological implications.

    Science.gov (United States)

    Tang, Sanyi; Cheke, Robert A

    2008-09-01

    Successful integrated pest management (IPM) control programmes depend on many factors which include host-parasitoid ratios, starting densities, timings of parasitoid releases, dosages and timings of insecticide applications and levels of host-feeding and parasitism. Mathematical models can help us to clarify and predict the effects of such factors on the stability of host-parasitoid systems, which we illustrate here by extending the classical continuous and discrete host-parasitoid models to include an IPM control programme. The results indicate that one of three control methods can maintain the host level below the economic threshold (ET) in relation to different ET levels, initial densities of host and parasitoid populations and host-parasitoid ratios. The effects of host intrinsic growth rate and parasitoid searching efficiency on host mean outbreak period can be calculated numerically from the models presented. The instantaneous pest killing rate of an insecticide application is also estimated from the models. The results imply that the modelling methods described can help in the design of appropriate control strategies and assist management decision-making. The results also indicate that a high initial density of parasitoids (such as in inundative releases) and high parasitoid inter-generational survival rates will lead to more frequent host outbreaks and, therefore, greater economic damage. The biological implications of this counter intuitive result are discussed.

  17. Self-organizing sensing and actuation for automatic control

    Science.gov (United States)

    Cheng, George Shu-Xing

    2017-07-04

    A Self-Organizing Process Control Architecture is introduced with a Sensing Layer, Control Layer, Actuation Layer, Process Layer, as well as Self-Organizing Sensors (SOS) and Self-Organizing Actuators (SOA). A Self-Organizing Sensor for a process variable with one or multiple input variables is disclosed. An artificial neural network (ANN) based dynamic modeling mechanism as part of the Self-Organizing Sensor is described. As a case example, a Self-Organizing Soft-Sensor for CFB Boiler Bed Height is presented. Also provided is a method to develop a Self-Organizing Sensor.

  18. Modularity in developmental biology and artificial organs: a missing concept in tissue engineering.

    Science.gov (United States)

    Lenas, Petros; Luyten, Frank P; Doblare, Manuel; Nicodemou-Lena, Eleni; Lanzara, Andreina Elena

    2011-06-01

    Tissue engineering is reviving itself, adopting the concept of biomimetics of in vivo tissue development. A basic concept of developmental biology is the modularity of the tissue architecture according to which intermediates in tissue development constitute semiautonomous entities. Both engineering and nature have chosen the modular architecture to optimize the product or organism development and evolution. Bioartificial tissues do not have a modular architecture. On the contrary, artificial organs of modular architecture have been already developed in the field of artificial organs. Therefore the conceptual support of tissue engineering by the field of artificial organs becomes critical in its new endeavor of recapitulating in vitro the in vivo tissue development. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  19. Integrating soil physical and biological properties in contrasting tillage systems in organic and conventional farming

    NARCIS (Netherlands)

    Crittenden, S.J.; Goede, de R.G.M.

    2016-01-01

    Though soil physical and soil biological properties are intrinsically linked in the soil environment they are often studied separately. This work adds value to analyses of soil biophysical quality of tillage systems under organic and conventional farming systems by correlating physical and

  20. Remediation of Biological Organic Fertilizer and Biochar in Paddy Soil Contaminated by Cd and Pb

    Directory of Open Access Journals (Sweden)

    MA Tie-zheng

    2015-02-01

    Full Text Available The effect of application of biological organic fertilizer and biochar on the immobilized remediation of paddy soil contaminated by Cd and Pb was studied under the field experiment. The results showed that biological organic fertilizer and biochar increased the soil pH and soil nutrient contents, and reduced the soil available Cd and Pb concentrations significantly. The soil pH had significantly negative correla-tion with the soil available Cd and Pb contents. The application of biological organic fertilizer and biochar decreased Cd and Pb concentration in all parts of the rice plant, with Cd concentration in brown rice decrease by 22.00% and 18.34% and Pb decease in brown rice by 33.46% and 12.31%. The concentration of Cd and Pb in brown rice had significant positive correlation with the soil available Cd and Pb concentra-tions. It was observed that both biological organic fertilizer and biochar had a positive effect on the remediation of paddy soil contaminated by Cd and Pb.

  1. Using Biocatalysis to Integrate Organic Chemistry into a Molecular Biology Laboratory Course

    Science.gov (United States)

    Beers, Mande; Archer, Crystal; Feske, Brent D.; Mateer, Scott C.

    2012-01-01

    Current cutting-edge biomedical investigation requires that the researcher have an operational understanding of several diverse disciplines. Biocatalysis is a field of science that operates at the crossroads of organic chemistry, biochemistry, microbiology, and molecular biology, and provides an excellent model for interdisciplinary research. We…

  2. THE ADVERSE OUTCOME PATHWAY (AOP) FRAMEWORK: A FRAMEWORK FOR ORGANIZING BIOLOGICAL KNOWLEDGE LEADING TO HEALTH RISKS.

    Science.gov (United States)

    An Adverse Outcome Pathway (AOP) represents the organization of current and newly acquired knowledge of biological pathways. These pathways contain a series of nodes (Key Events, KEs) that when sufficiently altered influence the next node on the pathway, beginning from an Molecul...

  3. Biology and life history of Argopistes tsekooni (Coleoptera: Chrysomelidae) in China, a promising biological control agent of Chinese privet.

    Science.gov (United States)

    Y-Z Zhang; J. Sun; J.L. Hanula

    2009-01-01

    The biology and life history of Argopistes tsekooni Chen (Coleoptera: Chrysomelidae), a potential biological control agent of Chinese privet, Ligustrum sinense Lour., was studied under laboratory and outdoor conditions in Huangshan City of Anhui Province, China, in 2006. A. tsekooni larvae are leafminers that...

  4. Rearing and Release of Megamelus scutellaris Berg (Hemiptera: Delphacidae) for Biological Control of Water hyacinth in 2015

    Science.gov (United States)

    2017-06-01

    Hemiptera: Delphacidae) for Biological Control of Waterhyacinth in 2015 by Jan Freedman and Nathan Harms PURPOSE: Waterhyacinth biological control ... control agents. Three insects were released in the United States for biological control of waterhyacinth during the 1970s; two weevils, Neochetina...content) and competitive interactions with other biological control agents (e.g., Neochetina spp.), though their consideration in other biological

  5. Proceedings of the XIII International Symposium on Biological Control of Weeds; September 11-16, 2011; Waikoloa, Hawaii, USA

    Science.gov (United States)

    Yun Wu; Tracy Johnson; Sharlene Sing; S. Raghu; Greg Wheeler; Paul Pratt; Keith Warner; Ted Center; John Goolsby; Richard Reardon

    2013-01-01

    A total of 208 participants from 78 organizations in 19 countries gathered at the Waikoloa Beach Marriott on the Big Island of Hawaii on September 11-16, 2011 for the XIII International Symposium on Biological Control of Weeds. Following a reception on the first evening, Symposium co-chairs Tracy Johnson and Pat Conant formally welcomed the attendees on the morning of...

  6. Quagga and zebra mussels: biology, impacts, and control

    Science.gov (United States)

    Nalepa, Thomas F.; Schloesser, Don W.; Nalepa, Thomas F.; Schloesser, Don W.

    2013-01-01

    Quagga and Zebra Mussels: Biology, Impacts, and Control, Second Edition provides a broad view of the zebra/quagga mussel issue, offering a historic perspective and up-to-date information on mussel research. Comprising 48 chapters, this second edition includes reviews of mussel morphology, physiology, and behavior. It details mussel distribution and spread in Europe and across North America, and examines policy and regulatory responses, management strategies, and mitigation efforts. In addition, this book provides extensive coverage of the impact of invasive mussel species on freshwater ecosystems, including effects on water clarity, phytoplankton, water quality, food web changes, and consequences to other aquatic fauna. It also reviews and offers new insights on how zebra and quagga mussels respond and adapt to varying environmental conditions. This new edition includes seven video clips that complement chapter text and, through visual documentation, provide a greater understanding of mussel behavior and distribution.

  7. Biological control of biofilms on membranes by metazoans.

    Science.gov (United States)

    Klein, Theresa; Zihlmann, David; Derlon, Nicolas; Isaacson, Carl; Szivak, Ilona; Weissbrodt, David G; Pronk, Wouter

    2016-01-01

    Traditionally, chemical and physical methods have been used to control biofouling on membranes by inactivating and removing the biofouling layer. Alternatively, the permeability can be increased using biological methods while accepting the presence of the biofouling layer. We have investigated two different types of metazoans for this purpose, the oligochaete Aelosoma hemprichi and the nematode Plectus aquatilis. The addition of these grazing metazoans in biofilm-controlled membrane systems resulted in a flux increase of 50% in presence of the oligochaetes (Aelosoma hemprichi), and a flux increase of 119-164% in presence of the nematodes (Plectus aquatilis) in comparison to the control system operated without metazoans. The change in flux resulted from (1) a change in the biofilm structure, from a homogeneous, cake-like biofilm to a more heterogeneous, porous structure and (2) a significant reduction in the thickness of the basal layer. Pyrosequencing data showed that due to the addition of the predators, also the community composition of the biofilm in terms of protists and bacteria was strongly affected. The results have implications for a range of membrane processes, including ultrafiltration for potable water production, membrane bioreactors and reverse osmosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Potential biological indicators of multi-organ damage: Application to radiation accident victims

    International Nuclear Information System (INIS)

    Bertho, J.M.; Souidi, M.; Gourmelon, P.

    2009-01-01

    Accidental irradiations induce a complex pathological situation, difficult to assess and to treat. However, recent results describing new biological indicators of radiation-induced damages such as Flt3-ligand, citrulline and oxy-sterol concentration in the plasma, together with results obtained in large animal models of high dose irradiation, allowed a better understanding of pathophysiological mechanisms induced by uncontrolled irradiations. This conducted to leave the classical paradigm of the acute radiation syndrome, described as the association of three individual syndromes, the hematopoietic syndrome, the gastro-intestinal syndrome and the cerebrovascular syndrome, in favour of a multiple organ dysfunction syndrome, with the implication of other organs and systems. Follow-up of victims from two recent radiation accidents brings a confirmation of the usefulness of the newly described biological indicators, and also a partial confirmation of this new concept of a multiple organ dysfunction syndrome. (authors)

  9. Percutaneous BioOrganic Sealing of Duodenal Fistulas: Case Report and Review of Biological Sealants with Potential Use in Interventional Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Wadhwa, Vibhor, E-mail: vwadhwa1@jhmi.edu [Johns Hopkins University School of Medicine, Division of Vascular & Interventional Radiology (United States); Leeper, William R., E-mail: rob.leeper@jhmi.edu [Johns Hopkins University School of Medicine, Department of Surgery (United States); Tamrazi, Anobel, E-mail: atamraz1@jhmi.edu [Johns Hopkins University School of Medicine, Division of Vascular & Interventional Radiology (United States)

    2015-08-15

    Biological sealants are being increasingly used in a variety of surgical specialties for their hemostatic and sealing capabilities. However, their use in interventional radiology has not been widely reported. The authors describe a case of duodenal perforation occurring after 15 years of gastric bypass surgery, in whom surgical diversion was unsuccessfully attempted and the leakage was successfully controlled using percutaneous administration of a combination of biological and organic sealants.

  10. Biological fixation and nitrogen transfer by three legume species in mango and soursop organic orchards

    International Nuclear Information System (INIS)

    Paulino, Gleicia Miranda; Barroso, Deborah Guerra

    2009-01-01

    The objective of this work was to evaluate the biological nitrogen fixation (BNF) and the N transfer derived from BNF of the legume species - Gliricidia sepium (gliricidia), Crotalaria juncea (sunnhemp) and Cajanus cajan (pigeon pea) - for an intercropped organic orchard with mango and soursop, through the 15 N natural abundance method. The following inter cropping systems were evaluated: mango and soursop with gliricidia; mango and soursop with sunnhemp; mango and soursop with pigeon pea; and mango and soursop as control. Gliricidia showed the highest BNF potential (80%) , followed by sunnhemp (64.5%) and pigeon pea (45%). After two sunnhemp prunes, 149.5 kg ha -1 of N per year were supplied, with 96.5 kg derived from BNF. After three annual prunes, gliricidia supplied 56.4 and 80.3 kg ha -1 of N per year, with 45 and 64 kg derived from BNF, in two consecutive years. The quantity of N supplied to the system was higher than the mango and soursop requirements. Variations in the natural abundance of 15 N were found only in soursop leaves. Gliricidia and sunnhemp were prominent in N transfer, with approximately 22.5 and 40% respectively. Green manuring using gliricidia permits fractioning of the N supply, which is an advantage in N obtention by the fruit trees (author)

  11. Systems biology from micro-organisms to human metabolic diseases: the role of detailed kinetic models.

    Science.gov (United States)

    Bakker, Barbara M; van Eunen, Karen; Jeneson, Jeroen A L; van Riel, Natal A W; Bruggeman, Frank J; Teusink, Bas

    2010-10-01

    Human metabolic diseases are typically network diseases. This holds not only for multifactorial diseases, such as metabolic syndrome or Type 2 diabetes, but even when a single gene defect is the primary cause, where the adaptive response of the entire network determines the severity of disease. The latter may differ between individuals carrying the same mutation. Understanding the adaptive responses of human metabolism naturally requires a systems biology approach. Modelling of metabolic pathways in micro-organisms and some mammalian tissues has yielded many insights, qualitative as well as quantitative, into their control and regulation. Yet, even for a well-known pathway such as glycolysis, precise predictions of metabolite dynamics from experimentally determined enzyme kinetics have been only moderately successful. In the present review, we compare kinetic models of glycolysis in three cell types (African trypanosomes, yeast and skeletal muscle), evaluate their predictive power and identify limitations in our understanding. Although each of these models has its own merits and shortcomings, they also share common features. For example, in each case independently measured enzyme kinetic parameters were used as input. Based on these 'lessons from glycolysis', we will discuss how to make best use of kinetic computer models to advance our understanding of human metabolic diseases.

  12. Biological Aging and Life Span Based on Entropy Stress via Organ and Mitochondrial Metabolic Loading

    Directory of Open Access Journals (Sweden)

    Kalyan Annamalai

    2017-10-01

    Full Text Available The energy for sustaining life is released through the oxidation of glucose, fats, and proteins. A part of the energy released within each cell is stored as chemical energy of Adenosine Tri-Phosphate molecules, which is essential for performing life-sustaining functions, while the remainder is released as heat in order to maintain isothermal state of the body. Earlier literature introduced the availability concepts from thermodynamics, related the specific irreversibility and entropy generation rates to metabolic efficiency and energy release rate of organ k, computed whole body specific entropy generation rate of whole body at any given age as a sum of entropy generation within four vital organs Brain, Heart, Kidney, Liver (BHKL with 5th organ being the rest of organs (R5 and estimated the life span using an upper limit on lifetime entropy generated per unit mass of body, σM,life. The organ entropy stress expressed in terms of lifetime specific entropy generated per unit mass of body organs (kJ/(K kg of organ k was used to rank organs and heart ranked highest while liver ranked lowest. The present work includes the effects of (1 two additional organs: adipose tissue (AT and skeletal muscles (SM which are of importance to athletes; (2 proportions of nutrients oxidized which affects blood temperature and metabolic efficiencies; (3 conversion of the entropy stress from organ/cellular level to mitochondrial level; and (4 use these parameters as metabolism-based biomarkers for quantifying the biological aging process in reaching the limit of σM,life. Based on the 7-organ model and Elia constants for organ metabolic rates for a male of 84 kg steady mass and using basic and derived allometric constants of organs, the lifetime energy expenditure is estimated to be 2725 MJ/kg body mass while lifetime entropy generated is 6050 kJ/(K kg body mass with contributions of 190; 1835.0; 610; 290; 700; 1470 and 95 kJ/K contributed by AT-BHKL-SM-R7 to 1 kg body

  13. Biologically labile photoproducts from riverine non-labile dissolved organic carbon in the coastal waters

    Science.gov (United States)

    Kasurinen, V.; Aarnos, H.; Vähätalo, A.

    2015-06-01

    In order to assess the production of biologically labile photoproducts (BLPs) from non-labile riverine dissolved organic carbon (DOC), we collected water samples from ten major rivers, removed labile DOC and mixed the residual non-labile DOC with artificial seawater for microbial and photochemical experiments. Bacteria grew on non-labile DOC with a growth efficiency of 11.5% (mean; range from 3.6 to 15.3%). Simulated solar radiation transformed a part of non-labile DOC into BLPs, which stimulated bacterial respiration and production, but did not change bacterial growth efficiency (BGE) compared to the non-irradiated dark controls. In the irradiated water samples, the amount of BLPs stimulating bacterial production depended on the photochemical bleaching of chromophoric dissolved organic matter (CDOM). The apparent quantum yields for BLPs supporting bacterial production ranged from 9.5 to 76 (mean 39) (μmol C mol photons-1) at 330 nm. The corresponding values for BLPs supporting bacterial respiration ranged from 57 to 1204 (mean 320) (μmol C mol photons-1). According to the calculations based on spectral apparent quantum yields and local solar radiation, the annual production of BLPs ranged from 21 (St. Lawrence) to 584 (Yangtze) mmol C m-2 yr-1 in the plumes of the examined rivers. Complete photobleaching of riverine CDOM in the coastal ocean was estimated to produce 10.7 Mt C BLPs yr-1 from the rivers examined in this study and globally 38 Mt yr-1 (15% of riverine DOC flux from all rivers), which support 4.1 Mt yr-1 of bacterial production and 33.9 Mt yr-1 bacterial respiration.

  14. Space Biology Model Organism Research on the Deep Space Gateway to Pioneer Discovery and Advance Human Space Exploration

    Science.gov (United States)

    Sato, K. Y.; Tomko, D. L.; Levine, H. G.; Quincy, C. D.; Rayl, N. A.; Sowa, M. B.; Taylor, E. M.; Sun, S. C.; Kundrot, C. E.

    2018-02-01

    Model organisms are foundational for conducting physiological and systems biology research to define how life responds to the deep space environment. The organisms, areas of research, and Deep Space Gateway capabilities needed will be presented.

  15. Economic value of biological control in integrated pest management of managed plant systems.

    Science.gov (United States)

    Naranjo, Steven E; Ellsworth, Peter C; Frisvold, George B

    2015-01-07

    Biological control is an underlying pillar of integrated pest management, yet little focus has been placed on assigning economic value to this key ecosystem service. Setting biological control on a firm economic foundation would help to broaden its utility and adoption for sustainable crop protection. Here we discuss approaches and methods available for valuation of biological control of arthropod pests by arthropod natural enemies and summarize economic evaluations in classical, augmentative, and conservation biological control. Emphasis is placed on valuation of conservation biological control, which has received little attention. We identify some of the challenges of and opportunities for applying economics to biological control to advance integrated pest management. Interaction among diverse scientists and stakeholders will be required to measure the direct and indirect costs and benefits of biological control that will allow farmers and others to internalize the benefits that incentivize and accelerate adoption for private and public good.

  16. The Principles of Organization of Internal Control of Companies

    Directory of Open Access Journals (Sweden)

    Panteleiev

    2017-02-01

    Full Text Available The question to give a convincing assessment of the Rules of the internal controls and present them in the form of principles of organization of internal control. Since the final decision in the form of an exhaustive list and universal principles of internal control is no scientific research continues these principles. It is necessary to examine the logic of the main provisions of the organization's internal control due consideration of the requirements of international practice controls and propose principles of internal control. For this purpose, conducted a critical analysis of the main provisions of internal controls contained in the publications and in the regulations on internal control proceedings. Synthesis of articles of authors of lead scientific and practical journal Ukraine "Accounting and Auditing" for the 1994-2015 biennium pointed out that despite the coverage of current journal articles provisions, principles, requirements, rules and other modern techniques. On internal control and comprehensive set of reasonable response to the organization and classification of internal control is absent. This leads to continue the search key components of the organization's internal control. The above basic concepts in publications on the organization of internal control were used in the formation of a set of principles of control. According to the requirements of the OECD field of internal control includes risk management, cost control, change in control, complete information to guarantee the effectiveness of internal control systems, providing the ability to make decisions and so on. COSO model contains an exhaustive list of five components. The results of the questionnaire trainees have provided compelling arguments for classifying and establishing relevant principles of organization and internal controls were rejected. A list of the basic principles of the organization of internal control, which consists of 25 elements that are shaped

  17. Organizing principles as tools for bridging the gap between system theory and biological experimentation.

    Science.gov (United States)

    Mekios, Constantinos

    2016-04-01

    Twentieth-century theoretical efforts towards the articulation of general system properties came short of having the significant impact on biological practice that their proponents envisioned. Although the latter did arrive at preliminary mathematical formulations of such properties, they had little success in showing how these could be productively incorporated into the research agenda of biologists. Consequently, the gap that kept system-theoretic principles cut-off from biological experimentation persisted. More recently, however, simple theoretical tools have proved readily applicable within the context of systems biology. In particular, examples reviewed in this paper suggest that rigorous mathematical expressions of design principles, imported primarily from engineering, could produce experimentally confirmable predictions of the regulatory properties of small biological networks. But this is not enough for contemporary systems biologists who adopt the holistic aspirations of early systemologists, seeking high-level organizing principles that could provide insights into problems of biological complexity at the whole-system level. While the presented evidence is not conclusive about whether this strategy could lead to the realization of the lofty goal of a comprehensive explanatory integration, it suggests that the ongoing quest for organizing principles is pragmatically advantageous for systems biologists. The formalisms postulated in the course of this process can serve as bridges between system-theoretic concepts and the results of molecular experimentation: they constitute theoretical tools for generalizing molecular data, thus producing increasingly accurate explanations of system-wide phenomena.

  18. Where have the organizers gone? - The growth control system as a foundation of physiology.

    Science.gov (United States)

    Li, Zhimin; Shang, Charles

    2017-01-01

    A model of growth control system suggests that the organizers in embryogenesis continue to exist and partially retain their function after embryogenesis. The organizers are the macroscopic singular points of the morphogen gradient and bioelectric fields. They have higher metabolic rate, higher density of gap junctions and stem cells than the surrounding tissue. The growth control model predicts that the organizers are likely to exist at the extreme points of surface or interface curvature of the body. Changes in bioelectric field at organizers precede the morphological and anatomical changes in morphogenesis and pathogenesis. Subtle perturbations at organizers can cause long lasting systemic effects. These features of organizers can be used for diagnostic and therapeutic purposes such as regenerative medicine. There is increasing evidence that acupuncture points are likely to have originated from organizers in embryogenesis. Many corollaries and predictions of the growth control model have been independently confirmed in developmental biology, physiology, as well as basic and clinical acupuncture research. This model set the first example of a truly integrative biological basis of acupuncture and conventional biomedical sciences which has met the gold standard of science with multiple confirmed predictions in both fields. The growth control system is embedded in various physiological systems and is part of the foundation of physiology and pathophysiology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Organic Based Solar Cells with Morphology Control

    DEFF Research Database (Denmark)

    Andersen, Thomas Rieks

    The field of organic solar cells has in the last years gone through an impressive development with efficiencies reported up to 12 %. For organic solar cells to take the leap from primarily being a laboratory scale technology to being utilized as renewable energy source, several issues need...... Microscopy and as solar cells in a blend with PCBM. It was concluded that these particles did not show a potential large enough for continuous work due to a high material loss and low efficiency when applied in solar cells. The second method to achieve was preparation of pre-arranged morphology organic...... nanoparticles consisting of a blend of donor and acceptor in an aqueous dispersion, thereby addressing two of the issues remaining in the field of organic solar cells. This approach was used on six different polymers, which all had the ability to prepare aqueous nanoparticle inks. The morphology...

  20. The Mouse Lemur, a Genetic Model Organism for Primate Biology, Behavior, and Health.

    Science.gov (United States)

    Ezran, Camille; Karanewsky, Caitlin J; Pendleton, Jozeph L; Sholtz, Alex; Krasnow, Maya R; Willick, Jason; Razafindrakoto, Andriamahery; Zohdy, Sarah; Albertelli, Megan A; Krasnow, Mark A

    2017-06-01

    Systematic genetic studies of a handful of diverse organisms over the past 50 years have transformed our understanding of biology. However, many aspects of primate biology, behavior, and disease are absent or poorly modeled in any of the current genetic model organisms including mice. We surveyed the animal kingdom to find other animals with advantages similar to mice that might better exemplify primate biology, and identified mouse lemurs ( Microcebus spp.) as the outstanding candidate. Mouse lemurs are prosimian primates, roughly half the genetic distance between mice and humans. They are the smallest, fastest developing, and among the most prolific and abundant primates in the world, distributed throughout the island of Madagascar, many in separate breeding populations due to habitat destruction. Their physiology, behavior, and phylogeny have been studied for decades in laboratory colonies in Europe and in field studies in Malagasy rainforests, and a high quality reference genome sequence has recently been completed. To initiate a classical genetic approach, we developed a deep phenotyping protocol and have screened hundreds of laboratory and wild mouse lemurs for interesting phenotypes and begun mapping the underlying mutations, in collaboration with leading mouse lemur biologists. We also seek to establish a mouse lemur gene "knockout" library by sequencing the genomes of thousands of mouse lemurs to identify null alleles in most genes from the large pool of natural genetic variants. As part of this effort, we have begun a citizen science project in which students across Madagascar explore the remarkable biology around their schools, including longitudinal studies of the local mouse lemurs. We hope this work spawns a new model organism and cultivates a deep genetic understanding of primate biology and health. We also hope it establishes a new and ethical method of genetics that bridges biological, behavioral, medical, and conservation disciplines, while

  1. Connecting biology and organic chemistry introductory laboratory courses through a collaborative research project.

    Science.gov (United States)

    Boltax, Ariana L; Armanious, Stephanie; Kosinski-Collins, Melissa S; Pontrello, Jason K

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an interdisciplinary, medically relevant, project intended to help students see connections between chemistry and biology. Second term organic chemistry laboratory students designed and synthesized potential polymer inhibitors or inducers of polyglutamine protein aggregation. The use of novel target compounds added the uncertainty of scientific research to the project. Biology laboratory students then tested the novel potential pharmaceuticals in Huntington's disease model assays, using in vitro polyglutamine peptide aggregation and in vivo lethality studies in Drosophila. Students read articles from the primary literature describing the system from both chemical and biological perspectives. Assessment revealed that students emerged from both courses with a deeper understanding of the interdisciplinary nature of biology and chemistry and a heightened interest in basic research. The design of this collaborative project for introductory biology and organic chemistry labs demonstrated how the local interests and expertise at a university can be drawn from to create an effective way to integrate these introductory courses. Rather than simply presenting a series of experiments to be replicated, we hope that our efforts will inspire other scientists to think about how some aspect of authentic work can be brought into their own courses, and we also welcome additional collaborations to extend the scope of the scientific exploration. © 2015 The International Union of Biochemistry and Molecular Biology.

  2. BIOLOGICAL CONTROL - AS A MEANS TO CONTROL INSECT PESTS IN AZERBAIJAN

    Directory of Open Access Journals (Sweden)

    Z. M. Mamedov

    2013-01-01

    Full Text Available Two hundreds and twenty species parasites and predators of pests of various agricultures are revealed in Azerbaijan. The complex of entomophages of certain pests of agricultures is studied: 48 species of parasites and predators of Chloridea obsoleta 21 species of entomophages of Pectinophora malvella Hb., over 160 species of entomophages of pests of ozehards and vegetables, 34 species of entomophages of pests of forests. The hundreds species of entomophages and some entomophogenous microbes and antagonists are revealed. Biology and ecology of over 60 species of entomophages and useful microorganisims which are prospective as biological control agents are studied.

  3. Qualitative and qualitative characteristics of milk thistle (Silybum marianum L. in response to organic, biological and chemical fertilizers

    Directory of Open Access Journals (Sweden)

    R. Yazdani Biuki

    2016-04-01

    Full Text Available In order to evaluate the effects of organic, biological and chemical fertilizers on yield and yield components of milk thistle (Silybum marianum L., an experiment was conducted at the Research Station of Ferdowsi University of Mashhad based on complete randomized block design with three replications and six treatments during year 2007. Treatments included inoculated seeds with Azotobacter, compost, vermicompost, combination of both Azotobacter and compost treatments, chemical NPK fertilizer and control (without any fertilizer. The traits such as number of branches per plant, plant height, number of inflorescences per plant, inflorescence diameter, number of seeds per capitol, 1000 seed weight, seed yield, biological yield, harvest index, oil percentage, silymarin percentage, silybin percentage, oil yield and silymarin yield were measured. The results showed that application of different types of organic fertilizers had no effect on yield components, but had significant effect on oil percentage of oil, silymarin and silybin of seed. Compost application resulted the highest oil percentage (20.1 compared to other treatments. There was no significant difference between control, chemical fertilizer, compost and Azotobacter treatments on silymarin percentage. In terms of silybin percentage, there was no significant difference between control, compost, Azotobacter and aztobacter+compost treatments. The chemical fertilizer treatment showed the lowest silybin percentage (16.4. There was a positive correlation between plant height and seed yield (r=0.68**. It seems that biofertilizers can consider as a replacement for chemical fertilizers in Milk thistle medicinal plant production.

  4. Structure and behavior as determinants: United States nuclear test ban and chemical and biological arms control policy

    International Nuclear Information System (INIS)

    Reich, J.C.

    1991-01-01

    US efforts to control chemical and biological warfare and nuclear testing are examined with the aim of explaining the paucity of US backed agreements in these areas. Two theoretical perspectives, the behavioral and structural approaches, are used to explore US arms control outcomes. In the behavioral approach, the effects of governmental organization and the bargaining dynamics of policy-making elites with different cognitive styles are posited as important influences on US nuclear test ban and chemical and biological arms control policy outcomes. The behavioral perspective accounts for the timing of all US failed and successful entries (with one exception) into nuclear test bans and chemical and biological warfare restraints. A shortcoming of the behavior approach, however, is that it tends to overemphasize the chances for successful US entry into nuclear test and chemical and biological warfare limitations. Analysis of the same events from the structural perspective helps to correct for expectations generated by behavioral variables for a higher success rate than ultimately resulted. In the structural approach, the focus is on the effect of the organization of international politics on US nuclear test ban and chemical and biological arms control policy outcomes

  5. Control biológico del entrenamiento de resistencia. Biological control of endurance training.

    Directory of Open Access Journals (Sweden)

    González Gross, Marcela

    2006-01-01

    plasma concentrations of metabolic substrates (glucose and fatty acids are not parameters that can be used to control the training, due to their low specificity and sensitivity. However, the concentration of certain enzymes that takes part in the use of the substrates can be important. Creatin kinase values higher than 200 U/l, in healthy persons suggest that the total load of the training session has been elevated. The plasma concentration of some product of catabolism can also indicate the adaptation of the organism to the training. Lactic concentration in plasma is used frequently in the control of training load. The urea concentration is a good biological marker of training load. Higher values than 8 mmol/l in male and of 6.5 mmol/l in female, indicate that the training has been very hard. The determination of other products (ammonium or substrates (glutamine has been used to detect the overtraining.

  6. Modelling of environmental impacts from biological treatment of organic municipal waste in EASEWASTE

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Neidel, Trine Lund; Damgaard, Anders

    2011-01-01

    The waste-LCA model EASEWASTE quantifies potential environmental effects from biological treatment of organic waste, based on mass and energy flows, emissions to air, water, soil and groundwater as well as effects from upstream and downstream processes. Default technologies for composting......, anaerobic digestion and combinations hereof are available in the model, but the user can change all key parameters in the biological treatment module so that specific local plants and processes can be modelled. EASEWASTE is one of the newest waste LCA models and the biological treatment module was built...... partly on features of earlier waste-LCA models, but offers additional facilities, more flexibility, transparency and user-friendliness. The paper presents the main features of the module and provides some examples illustrating the capability of the model in environmentally assessing and discriminating...

  7. Bions: a family of biomimetic mineralo-organic complexes derived from biological fluids.

    Directory of Open Access Journals (Sweden)

    Cheng-Yeu Wu

    Full Text Available Mineralo-organic nanoparticles form spontaneously in human body fluids when the concentrations of calcium and phosphate ions exceed saturation. We have shown previously that these mineralo-organic nanoparticles possess biomimetic properties and can reproduce the whole phenomenology of the so-called nanobacteria-mineralized entities initially described as the smallest microorganisms on earth. Here, we examine the possibility that various charged elements and ions may form mineral nanoparticles with similar properties in biological fluids. Remarkably, all the elements tested, including sodium, magnesium, aluminum, calcium, manganese, iron, cobalt, nickel, copper, zinc, strontium, and barium form mineralo-organic particles with bacteria-like morphologies and other complex shapes following precipitation with phosphate in body fluids. Upon formation, these mineralo-organic particles, which we term bions, invariably accumulate carbonate apatite during incubation in biological fluids; yet, the particles also incorporate additional elements and thus reflect the ionic milieu in which they form. Bions initially harbor an amorphous mineral phase that gradually converts to crystals in culture. Our results show that serum produces a dual inhibition-seeding effect on bion formation. Using a comprehensive proteomic analysis, we identify a wide range of proteins that bind to these mineral particles during incubation in medium containing serum. The two main binding proteins identified, albumin and fetuin-A, act as both inhibitors and seeders of bions in culture. Notably, bions possess several biomimetic properties, including the possibility to increase in size and number and to be sub-cultured in fresh culture medium. Based on these results, we propose that bions represent biological, mineralo-organic particles that may form in the body under both physiological and pathological homeostasis conditions. These mineralo-organic particles may be part of a

  8. Human Development VII: A Spiral Fractal Model of Fine Structure of Physical Energy Could Explain Central Aspects of Biological Information, Biological Organization and Biological Creativity

    Directory of Open Access Journals (Sweden)

    Søren Ventegodt

    2006-01-01

    Full Text Available In this paper we have made a draft of a physical fractal essence of the universe, a sketch of a new cosmology, which we believe to lay at the root of our new holistic biological paradigm. We present the fractal roomy spiraled structures and the energy-rich dancing “infinite strings” or lines of the universe that our hypothesis is based upon. The geometric language of this cosmology is symbolic and both pre-mathematical and pre-philosophical. The symbols are both text and figures, and using these we step by step explain the new model that at least to some extent is able to explain the complex informational system behind morphogenesis, ontogenesis, regeneration and healing. We suggest that it is from this highly dynamic spiraled structure that organization of cells, organs, and the wholeness of the human being including consciousness emerge. The model of ““dancing fractal spirals” carries many similarities to premodern cultures descriptions of the energy of the life and universe. Examples are the Native American shamanistic descriptions of their perception of energy and the old Indian Yogis descriptions of the life-energy within the body and outside. Similar ideas of energy and matter are found in the modern superstring theories. The model of the informational system of the organism gives new meaning to Bateson’s definition of information: “A difference that makes a difference”, and indicates how information-directed self-organization can exist on high structural levels in living organisms, giving birth to their subjectivity and consciousness.

  9. Modelling the Influence of Shielding on Physical and Biological Organ Doses

    CERN Document Server

    Ballarini, Francesca; Ferrari, Alfredo; Ottolenghi, Andrea; Pelliccioni, Maurizio; Scannicchio, Domenico

    2002-01-01

    Distributions of "physical" and "biological" dose in different organs were calculated by coupling the FLUKA MC transport code with a geometrical human phantom inserted into a shielding box of variable shape, thickness and material. While the expression "physical dose" refers to the amount of deposited energy per unit mass (in Gy), "biological dose" was modelled with "Complex Lesions" (CL), clustered DNA strand breaks calculated in a previous work based on "event-by-event" track-structure simulations. The yields of complex lesions per cell and per unit dose were calculated for different radiation types and energies, and integrated into a version of FLUKA modified for this purpose, allowing us to estimate the effects of mixed fields. As an initial test simulation, the phantom was inserted into an aluminium parallelepiped and was isotropically irradiated with 500 MeV protons. Dose distributions were calculated for different values of the shielding thickness. The results were found to be organ-dependent. In most ...

  10. Dynamics and thermodynamics in hierarchically organized systems applications in physics, biology and economics

    CERN Document Server

    Auger, P

    2013-01-01

    One of the most fundamental and efficient ways of conceptualizing complex systems is to organize them hierarchically. A hierarchically organized system is represented by a network of interconnected subsystems, each of which has its own network of subsystems, and so on, until some elementary subsystems are reached that are not further decomposed. This original and important book proposes a general mathematical theory of a hierarchical system and shows how it can be applied to very different topics such as physics (Hamiltonian systems), biology (coupling the molecular and the cellular levels), e

  11. Ferrocenyl and organic novobiocin derivatives: Synthesis and their in vitro biological activity.

    Science.gov (United States)

    Mbaba, Mziyanda; Mabhula, Amanda N; Boel, Natasha; Edkins, Adrienne L; Isaacs, Michelle; Hoppe, Heinrich C; Khanye, Setshaba D

    2017-07-01

    A focused series of novobiocin derivatives containing a ferrocene unit together with their corresponding organic novobiocin analogues have been synthesized in modest to good yields. These compounds were screened for biological activity against a chloroquine-sensitive strain of Plasmodium falciparum (3D7) and human breast cancer cell line (HCC38). With the exception of compounds 5c and 5d, the general trend observed is that incorporation of the ferrocene moiety into novobiocin scaffold resulted in compounds 6a-d/6f showing enhanced activity compared to organic analogues 5a-b and 5e-f. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Implications of Plasmodium vivax Biology for Control, Elimination, and Research

    Science.gov (United States)

    Olliaro, Piero L.; Barnwell, John W.; Barry, Alyssa; Mendis, Kamini; Mueller, Ivo; Reeder, John C.; Shanks, G. Dennis; Snounou, Georges; Wongsrichanalai, Chansuda

    2016-01-01

    This paper summarizes our current understanding of the biology of Plasmodium vivax, how it differs from Plasmodium falciparum, and how these differences explain the need for P. vivax-tailored interventions. The article further pinpoints knowledge gaps where investments in research are needed to help identify and develop such specific interventions. The principal obstacles to reduce and eventually eliminate P. vivax reside in 1) its higher vectorial capacity compared with P. falciparum due to its ability to develop at lower temperature and over a shorter sporogonic cycle in the vector, allowing transmission in temperate zones and making it less sensitive to vector control measures that are otherwise effective on P. falciparum; 2) the presence of dormant liver forms (hypnozoites), sustaining multiple relapsing episodes from a single infectious bite that cannot be diagnosed and are not susceptible to any available antimalarial except primaquine, with routine deployment restricted by toxicity; 3) low parasite densities, which are difficult to detect with current diagnostics leading to missed diagnoses and delayed treatments (and protracted transmission), coupled with 4) transmission stages (gametocytes) occurring early in acute infections, before infection is diagnosed. PMID:27799636

  13. Biological control of alien and invasive species in agriculture

    International Nuclear Information System (INIS)

    Calvitti, Maurizio; Moretti Riccardo; Lampazzi, Elena

    2015-01-01

    Agricultural production in Europe faces many challenges including limited availability of water, nitrogen input and fossil fuels. It is necessary, therefore, to identify methods of production and new technologies to increase the efficiency of the primary systems, guaranteeing amount of food, quality, safety and eco-sustainability . One of the most important aspects, though often undervalued in relation to the food chain, is the adversity of biological management of agricultural crops due to pests, pathogens or fitomizi with potential invasive already present in the territory or of recent origin alien. In this context, two main objectives should be implemented at the same time reduce production losses and protect the agro-ecosystem. To meet these expectations, as of January 1, 2015 all farms in the European Union countries are bound to the application of the Integrated Defense principles, as indicated by the Directive on the sustainable use of plant protection products (128/09 / EC) .In response to this and other new entomological emergencies plant health and medical-veterinary entomologist researchers of the Laboratory sustainable management of Agro-Ecosystems in ENEA, have directed their research towards the development of innovative systems for the sustainable control of invasive species of insects is in the agricultural sector that health. [it

  14. Biological Control of Meloidogyne hapla Using an Antagonistic Bacterium

    Directory of Open Access Journals (Sweden)

    Jiyeong Park

    2014-09-01

    Full Text Available We examined the efficacy of a bacterium for biocontrol of the root-knot nematode (RKN Meloidogyne hapla in carrot (Daucus carota subsp. sativus and tomato (Solanum lycopersicum. Among 542 bacterial isolates from various soils and plants, the highest nematode mortality was observed for treatments with isolate C1-7, which was identified as Bacillus cereus based on cultural and morphological characteristics, the Biolog program, and 16S rRNA sequencing analyses. The population density and the nematicidal activity of B. cereus C1-7 remained high until the end of culture in brain heart infusion broth, suggesting that it may have sustainable biocontrol potential. In pot experiments, the biocontrol efficacy of B. cereus C1-7 was high, showing complete inhibition of root gall or egg mass formation by RKN in carrot and tomato plants, and subsequently reducing RKN damage and suppressing nematode population growth, respectively. Light microscopy of RKN-infected carrot root tissues treated with C1-7 showed reduced formation of gall cells and fully developed giant cells, while extensive gall cells and fully mature giant cells with prominent cell wall ingrowths formed in the untreated control plants infected with RKNs. These histopathological characteristics may be the result of residual or systemic biocontrol activity of the bacterium, which may coincide with the biocontrol efficacies of nematodes in pots. These results suggest that B. cereus C1-7 can be used as a biocontrol agent for M. hapla.

  15. Synthesis, chemical and biological quality control of radioiodinated peptides

    International Nuclear Information System (INIS)

    Rafii, H.; Khalaj, A.; Beiki, D.; Motameidi, F.; Maloobi, M.; Karimian-dehghan, M.; Keshavarrzi, F.

    2002-01-01

    Iodinated compounds with I-131, 125 and 123 have been widely used for biochemical function studies. In conjunction with SPECT, [I-123] labelled proteins have various diagnostic and therapeutic applications in nuclear medicine. Preparation of some radioiodinated peptides with tyrosine and/or lysine groups on their main chain molecules can be carried out with both direct and indirect methods, but lack of these groups in molecule cause the molecule dose not lend itself for direct radioiodination. In this study, human IgG and Formyl-Methyl-Leucyl-Phenylalanine, FMLF, have been chosen as a model compounds for direct and indirect radioiodination respectively. Here, we will describe the labelling procedure of [I-125] IgG using chloramine-T as a suitable oxidant agent and [I-125 and I-131] FMLF by indirect method using ATE/SIB as a prosthetic group in multi-step reactions. The obtained results for chemical quality control of intermediate radioiodinated SIB by HPLC and two labelled IgG and FMLF will be also discussed. Biological results, biodistribution studies and SPECT scans on mice per-injected labelled FMLF show a low uptake of thyroid but a high at urine and bladder, perhaps because of low molecular weight of FMLF. In this case, it seems to be better to separate the reaction mixture of labelled FMLF by BPLC than Sephadex-G50 gel filtration. (Author)

  16. Implications of Plasmodium vivax Biology for Control, Elimination, and Research.

    Science.gov (United States)

    Olliaro, Piero L; Barnwell, John W; Barry, Alyssa; Mendis, Kamini; Mueller, Ivo; Reeder, John C; Shanks, G Dennis; Snounou, Georges; Wongsrichanalai, Chansuda

    2016-12-28

    This paper summarizes our current understanding of the biology of Plasmodium vivax, how it differs from Plasmodium falciparum, and how these differences explain the need for P. vivax-tailored interventions. The article further pinpoints knowledge gaps where investments in research are needed to help identify and develop such specific interventions. The principal obstacles to reduce and eventually eliminate P. vivax reside in 1) its higher vectorial capacity compared with P. falciparum due to its ability to develop at lower temperature and over a shorter sporogonic cycle in the vector, allowing transmission in temperate zones and making it less sensitive to vector control measures that are otherwise effective on P. falciparum; 2) the presence of dormant liver forms (hypnozoites), sustaining multiple relapsing episodes from a single infectious bite that cannot be diagnosed and are not susceptible to any available antimalarial except primaquine, with routine deployment restricted by toxicity; 3) low parasite densities, which are difficult to detect with current diagnostics leading to missed diagnoses and delayed treatments (and protracted transmission), coupled with 4) transmission stages (gametocytes) occurring early in acute infections, before infection is diagnosed. © The American Society of Tropical Medicine and Hygiene.

  17. Biologically-transformed zinc and its availability for bioaccumulation by marine organisms

    International Nuclear Information System (INIS)

    Fowler, S.W.; Heyraud, M.

    1980-01-01

    Zinc which occurs in sea water as a trace element exists in several different stable or meta-stable forms in the aquatic environment. One of them is ''complexed'' form which is relatively stable. Radiotracer studies were carried out to investigate the mode of formation of the complexed zinc fraction and to find whether this fraction once formed by biological means is available for accumulation by marine biota. Sea water solutions used in the experiments were filtered through double 0.45 μm Millipore filters. Chelex-100 resin which quantitatively removes zinc from sea water was used to measure the relative degree of binding of different species of 65 Zn formed by association with marine organisms. 65 Zn in exometabolites from living animals represented in this case by shrimp (Lymata seticaudata), influence of organic detritus represented in this case by dead shrimp on the conversion of different forms of zinc and bioavailability of biologically processed 65 Zn were studied. It was observed that: (1) living and dead marine animals can produce a soluble species of complexed, possibly organically bound, zinc, (2) uptake of this species is reduced relative to that of the ionic form indicating that zinc which has passed through biological cycles may be less available for bioaccumulation than zinc which has been directly introduced into the marine environment in inorganic forms. (M.G.B.)

  18. Organization of Control Units with Operational Addressing

    OpenAIRE

    Alexander A. Barkalov; Roman M. Babakov; Larysa A. Titarenko

    2012-01-01

    The using of operational addressing unit as the block of control unit is proposed. The new structure model of Moore finite-state machine with reduced hardware amount is developed. The generalized structure of operational addressing unit is suggested. An example of synthesis process for Moore finite-state machine with operational addressing unit is given. The analytical researches of proposed structure of control unit are executed.

  19. Self-Organization of Genome Expression from Embryo to Terminal Cell Fate: Single-Cell Statistical Mechanics of Biological Regulation

    Directory of Open Access Journals (Sweden)

    Alessandro Giuliani

    2017-12-01

    Full Text Available A statistical mechanical mean-field approach to the temporal development of biological regulation provides a phenomenological, but basic description of the dynamical behavior of genome expression in terms of autonomous self-organization with a critical transition (Self-Organized Criticality: SOC. This approach reveals the basis of self-regulation/organization of genome expression, where the extreme complexity of living matter precludes any strict mechanistic approach. The self-organization in SOC involves two critical behaviors: scaling-divergent behavior (genome avalanche and sandpile-type critical behavior. Genome avalanche patterns—competition between order (scaling and disorder (divergence reflect the opposite sequence of events characterizing the self-organization process in embryo development and helper T17 terminal cell differentiation, respectively. On the other hand, the temporal development of sandpile-type criticality (the degree of SOC control in mouse embryo suggests the existence of an SOC control landscape with a critical transition state (i.e., the erasure of zygote-state criticality. This indicates that a phase transition of the mouse genome before and after reprogramming (immediately after the late 2-cell state occurs through a dynamical change in a control parameter. This result provides a quantitative open-thermodynamic appreciation of the still largely qualitative notion of the epigenetic landscape. Our results suggest: (i the existence of coherent waves of condensation/de-condensation in chromatin, which are transmitted across regions of different gene-expression levels along the genome; and (ii essentially the same critical dynamics we observed for cell-differentiation processes exist in overall RNA expression during embryo development, which is particularly relevant because it gives further proof of SOC control of overall expression as a universal feature.

  20. Peculiarities of organization and methodology of indicative control in nonbudget unprofitable organizations

    Directory of Open Access Journals (Sweden)

    O.O. Vysochan

    2017-12-01

    Full Text Available The stability of development and the results of activity of organizations representing noncommercial economic sector depend on a properly organized and effectively operated system of control about payments and funds, property, reporting and other items. To arrange the control function of management for nonbudget unprofitable organizations we single out four groups of control according to the feature of entity initiative, they are: state, public, donative, managerial. Each of them differs in its application form and sphere of interests. The article establishes common and distinct features of organizations of commercial and noncommercial economic sectors, which influence upon the organization and methodology of their control. The most significant for nonbudget unprofitable organizations are: the aim and direction of activity, the absence of production, the sources of financing, the ways of efficiency control. The paper substantiates the importance of indicative control for increasing the efficiency of the activity of nonbudget unprofitable organizations. It describes the main financial indicators of possible inefficiency for nonbudget unprofitable organization activity: debit and credit indebtedness; the mobility of own funds; a part of stocks in current assets; the rhythm of movement of funds; penalty sanctions on the part of controlling bodies; monetary circulation related to counteragents; the deviation of actual indices from planned (estimated; atypical operations for an organization; the concentration of the capital attracted; the specific gravity of administrative costs in the costs of operating activity.

  1. Visual Control for Multirobot Organized Rendezvous.

    Science.gov (United States)

    Lopez-Nicolas, G; Aranda, M; Mezouar, Y; Sagues, C

    2012-08-01

    This paper addresses the problem of visual control of a set of mobile robots. In our framework, the perception system consists of an uncalibrated flying camera performing an unknown general motion. The robots are assumed to undergo planar motion considering nonholonomic constraints. The goal of the control task is to drive the multirobot system to a desired rendezvous configuration relying solely on visual information given by the flying camera. The desired multirobot configuration is defined with an image of the set of robots in that configuration without any additional information. We propose a homography-based framework relying on the homography induced by the multirobot system that gives a desired homography to be used to define the reference target, and a new image-based control law that drives the robots to the desired configuration by imposing a rigidity constraint. This paper extends our previous work, and the main contributions are that the motion constraints on the flying camera are removed, the control law is improved by reducing the number of required steps, the stability of the new control law is proved, and real experiments are provided to validate the proposal.

  2. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering

    NARCIS (Netherlands)

    He, F.; Murabito, E.; Westerhoff, H.V.

    2016-01-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out throughin silicotheoretical studies with the aim to guide and complement furtherin vitroandin vivoexperimental

  3. Pythium species and isolate diversity influence inhibition by the biological control agent Streptomyces lydicus

    Science.gov (United States)

    Disease control of soilborne pathogens by biological control agents has often been inconsistent under field conditions. One factor that may contribute to this inconsistency is the variability in response among pathogen populations and/or communities to the selected biological control agent. One hund...

  4. 76 FR 3076 - Availability of an Environmental Assessment for a Biological Control Agent for Air Potato

    Science.gov (United States)

    2011-01-19

    ...] Availability of an Environmental Assessment for a Biological Control Agent for Air Potato AGENCY: Animal and... environmental assessment (EA) relative to the control of air potato (Dioscorea bulbifera). The EA considers the... States for use as a biological control agent to reduce the severity of air potato infestations. We are...

  5. Management Control in Enterprise System Enabled Organizations

    DEFF Research Database (Denmark)

    Rikhardsson, Pall; Rohde, Carsten; Rom, Anders

    2007-01-01

    The objective of this paper is to add to the limited body of knowledge on the relationship between enterprise systems (ES) and management control. Based on a literature review, we describe and classify studies that empirically address this relationship. Apart from not being extensive, the research...... done so far primarily addresses the relationship between management control and ES based on a limited number of methodologies and approaches. We argue that there seems to be a need for more research done from functionalistic and critical perspectives, as well which employs a greater variety...

  6. Zebrafish whole-adult-organism chemogenomics for large-scale predictive and discovery chemical biology.

    Directory of Open Access Journals (Sweden)

    Siew Hong Lam

    2008-07-01

    Full Text Available The ability to perform large-scale, expression-based chemogenomics on whole adult organisms, as in invertebrate models (worm and fly, is highly desirable for a vertebrate model but its feasibility and potential has not been demonstrated. We performed expression-based chemogenomics on the whole adult organism of a vertebrate model, the zebrafish, and demonstrated its potential for large-scale predictive and discovery chemical biology. Focusing on two classes of compounds with wide implications to human health, polycyclic (halogenated aromatic hydrocarbons [P(HAHs] and estrogenic compounds (ECs, we generated robust prediction models that can discriminate compounds of the same class from those of different classes in two large independent experiments. The robust expression signatures led to the identification of biomarkers for potent aryl hydrocarbon receptor (AHR and estrogen receptor (ER agonists, respectively, and were validated in multiple targeted tissues. Knowledge-based data mining of human homologs of zebrafish genes revealed highly conserved chemical-induced biological responses/effects, health risks, and novel biological insights associated with AHR and ER that could be inferred to humans. Thus, our study presents an effective, high-throughput strategy of capturing molecular snapshots of chemical-induced biological states of a whole adult vertebrate that provides information on biomarkers of effects, deregulated signaling pathways, and possible affected biological functions, perturbed physiological systems, and increased health risks. These findings place zebrafish in a strategic position to bridge the wide gap between cell-based and rodent models in chemogenomics research and applications, especially in preclinical drug discovery and toxicology.

  7. Vliegenbestrijding in de biologische varkenshouderij: een enquête en evaluatie van een meetmethode = Fly control on organic pig farms: a survey and evaluation of a monitoring method

    NARCIS (Netherlands)

    Kijlstra, A.

    2009-01-01

    Organic farming is associated with biological solutions for pest control. Flies can be such a nuisance on organic pig farms that the farmers turn to chemical weapons for controlling the problem. This became apparent after an interview of 39 organic pig farmers. Half of the farmers used chemicals to

  8. Novel Micro-organisms controlling plant pathogens

    NARCIS (Netherlands)

    Köhl, J.

    2009-01-01

    The invention relates to control of pathogen caused diseases on leaves, fruits and ears in plants, such as apple scab (Venturia inaequalis by treatment of plant with an isolate of Cladosporium cladosporioides. The treatment is effective in both prevention and treatment of the fungal infection

  9. Novel Micro-organisms controlling plant pathogens

    NARCIS (Netherlands)

    Köhl, J.

    2010-01-01

    The invention relates to control of pathogen caused diseases on leaves, fruits and ears in plants, such as apple scab (Venturia inaequalis by treatment of plant with an isolate of Cladosporium cladosporioides. The treatment is effective in both prevention and treatment of the fungal infection

  10. New control system: ADA softwares organization

    International Nuclear Information System (INIS)

    David, L.

    1992-01-01

    On VAX/VMS, ADA compiler is integrated in a workshop of ACS software engineering which allows a coherent development by control of source and executable programs, by separation of applications in various levels of visibility and by management of existing links between different modules of a same application. (A.B.)

  11. Augmentative biological control in the Mexican national fruit fly campaign

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, P [Campana Nacional Moscas de la Fruta, DGSV-SAGARPA (Mexico); Cancino, J; Gutierrez, J M; Santiago, G [Campana Nacional Moscas de la Fruta, DGSV-SAGARPA (Mexico)

    2005-07-01

    Full text: Tephritid fruit flies are some of the most economically important species of insects worldwide. In Mexico, the native Anastrepha ludens, A. obliqua, A. serpentina and A. striata, are among the most important problems because of the great number of commercial fruits they attack. In an attempt to solve the Anastrepha fruit flies problems, the Mexican Government created the National Campaign against Fruit Flies in 1992. Using an area-wide approach and an integrated pest management framework, that included the use of environment-friendly strategies to suppress/eradicate fruit flies, the Mexican Campaign has integrated different technologies such as the application of specific toxic bait, the use of the Sterile Insect Technique (SIT), and the release of the endoparasitoid Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae), which attacks preferably third instar larvae of fruit flies. Since 1995, the Moscafrut mass-rearing facility has the capacity to produce an average of 50 millions of parasitised pupae per week, with 65-70% of parasitoid emergence using irradiated A. ludens larvae as host. The mass-rearing procedures of D. longicaudata have been fully described by Cancino. Parasitised pupae are sent via commercial flights to several states of the country (i.e. Michoacan, Sinaloa, Nayarit, Tamaulipas), according to a yearly national plan. This plan derives from industry requirements and/or availability of biological material. In the target zones, parasitoids are released in specific periods and specific areas where the environmental, biological and social conditions are considered as adequate. Packing and release procedures of parasitoids follow those that Montoya et al used. The releases are focused on Anastrepha spp. host trees located in marginal areas (i.e backyard orchards), with the objective to prevent the migration of fruit fly populations into commercial orchards. The impact of parasitoids on fruit fly populations is evaluated through

  12. The biology and polymer physics underlying large-scale chromosome organization.

    Science.gov (United States)

    Sazer, Shelley; Schiessel, Helmut

    2018-02-01

    Chromosome large-scale organization is a beautiful example of the interplay between physics and biology. DNA molecules are polymers and thus belong to the class of molecules for which physicists have developed models and formulated testable hypotheses to understand their arrangement and dynamic properties in solution, based on the principles of polymer physics. Biologists documented and discovered the biochemical basis for the structure, function and dynamic spatial organization of chromosomes in cells. The underlying principles of chromosome organization have recently been revealed in unprecedented detail using high-resolution chromosome capture technology that can simultaneously detect chromosome contact sites throughout the genome. These independent lines of investigation have now converged on a model in which DNA loops, generated by the loop extrusion mechanism, are the basic organizational and functional units of the chromosome. © 2017 The Authors. Traffic published by John Wiley & Sons Ltd.

  13. Whole-body and Whole-Organ Clearing and Imaging Techniques with Single-Cell Resolution: Toward Organism-Level Systems Biology in Mammals.

    Science.gov (United States)

    Susaki, Etsuo A; Ueda, Hiroki R

    2016-01-21

    Organism-level systems biology aims to identify, analyze, control and design cellular circuits in organisms. Many experimental and computational approaches have been developed over the years to allow us to conduct these studies. Some of the most powerful methods are based on using optical imaging in combination with fluorescent labeling, and for those one of the long-standing stumbling blocks has been tissue opacity. Recently, the solutions to this problem have started to emerge based on whole-body and whole-organ clearing techniques that employ innovative tissue-clearing chemistry. Here, we review these advancements and discuss how combining new clearing techniques with high-performing fluorescent proteins or small molecule tags, rapid volume imaging and efficient image informatics is resulting in comprehensive and quantitative organ-wide, single-cell resolution experimental data. These technologies are starting to yield information on connectivity and dynamics in cellular circuits at unprecedented resolution, and bring us closer to system-level understanding of physiology and diseases of complex mammalian systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The effect of graphic organizers on students' attitudes and academic performance in undergraduate general biology

    Science.gov (United States)

    Cleveland, Lacy

    High attrition among undergraduate Science Technology Engineering and Mathematics (STEM) majors has led national and business leaders in the United States to call for both research and educational reform within the collegiate STEM classrooms. Included among suggestions for reform are ideas to improve retention of first-year students and to improve critical thinking and depth of knowledge, instead of covering large quantities of materials. Past research on graphic organizers suggest these tools assist students in learning information and facilitate conceptual and critical thinking. Despite their widespread use in high school science departments, collegiate humanities departments, and even medical schools, their use is considerably less prevalent in the undergraduate biology classroom. In addition to their lack of use, little research has been conducted on their academic benefits in the collegiate classroom. Based on national calls for improving retention among undergraduate STEM majors and research suggesting that academic success during an individual first major's related course highly determine if that individual will continue on in their intended major, the researcher of this dissertation chose to conduct research on an introductory general biology class. Using both quantitative and qualitative methods, the research in this dissertation examines the effectiveness of graphic organizers in promoting academic success and also examines their influence on student attitudes. This research is grounded in the theories of constructivism and cognitive load theory. Constructivism suggests that individuals must build their knowledge from their personal experiences, while the cognitive load theory recognizes the limited nature of one's working memory and suggests that instructional practices minimize cognitive overload. The results of this dissertation suggest that the use of graphic organizers in an undergraduate general biology classroom can increase students' academic

  15. Integration of systems biology with organs-on-chips to humanize therapeutic development

    Science.gov (United States)

    Edington, Collin D.; Cirit, Murat; Chen, Wen Li Kelly; Clark, Amanda M.; Wells, Alan; Trumper, David L.; Griffith, Linda G.

    2017-02-01

    "Mice are not little people" - a refrain becoming louder as the gaps between animal models and human disease become more apparent. At the same time, three emerging approaches are headed toward integration: powerful systems biology analysis of cell-cell and intracellular signaling networks in patient-derived samples; 3D tissue engineered models of human organ systems, often made from stem cells; and micro-fluidic and meso-fluidic devices that enable living systems to be sustained, perturbed and analyzed for weeks in culture. Integration of these rapidly moving fields has the potential to revolutionize development of therapeutics for complex, chronic diseases, including those that have weak genetic bases and substantial contributions from gene-environment interactions. Technical challenges in modeling complex diseases with "organs on chips" approaches include the need for relatively large tissue masses and organ-organ cross talk to capture systemic effects, such that current microfluidic formats often fail to capture the required scale and complexity for interconnected systems. These constraints drive development of new strategies for designing in vitro models, including perfusing organ models, as well as "mesofluidic" pumping and circulation in platforms connecting several organ systems, to achieve the appropriate physiological relevance.

  16. Behavior of selected organic pollutants in municipal waste during the mechanical-biological progress of composting

    International Nuclear Information System (INIS)

    Drahosch, W.

    1998-06-01

    Municipal waste was investigated during the mechanical-biological process of composting. Waste from Burgenland is treated mechanically and biologically to reduce organic matter in the material and to keep gas building potential low before deposition. Samples were taken and analyzed during a period of 80 days. The parameters: temperature, dry-weight, glow loss, ammonium, nitrate and phenolic substances were measured to follow the composting process. It was found that the process was almost finished after a period of 40 days in which the material was breathed intensively. The content of polycyclic aromatic hydrocarbons and polychlorinated phenols decreased slightly. It was not clear whether this was due to microbiological activity or blowing-out effects. Polychlorinated biphenyls were found to be stable during composting. The concentrations were considered as high. Hepta- and octachlorinated dibenzodioxines were formed during the first 10 days. The increase of octachlorinated dibenzodioxin was threefold. Other dioxines and furanes remained unchanged. Finally it was found out that mechanical-biological waste treatment is insufficient in order to reduce organic pollutants effectively. (author)

  17. Synthetic biology approaches for the production of plant metabolites in unicellular organisms.

    Science.gov (United States)

    Moses, Tessa; Mehrshahi, Payam; Smith, Alison G; Goossens, Alain

    2017-07-10

    Synthetic biology is the repurposing of biological systems for novel objectives and applications. Through the co-ordinated and balanced expression of genes, both native and those introduced from other organisms, resources within an industrial chassis can be siphoned for the commercial production of high-value commodities. This developing interdisciplinary field has the potential to revolutionize natural product discovery from higher plants, by providing a diverse array of tools, technologies, and strategies for exploring the large chemically complex space of plant natural products using unicellular organisms. In this review, we emphasize the key features that influence the generation of biorefineries and highlight technologies and strategic solutions that can be used to overcome engineering pitfalls with rational design. Also presented is a succinct guide to assist the selection of unicellular chassis most suited for the engineering and subsequent production of the desired natural product, in order to meet the global demand for plant natural products in a safe and sustainable manner. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Impact parameter determination for the passage of cosmic heavy ions through mesoscopic biological test organisms

    International Nuclear Information System (INIS)

    Facius, R.; Reitz, G.; Buecker, H.; Nevzgodina, L.V.; Maximova, E.N.

    1992-01-01

    Seeds of the plant Lactuca sativa as a prototype of a mesoscopic, i.e. neither micro- nor truly macroscopic, biological test organism, were exposed during the Biocosmos 9 mission to cosmic heavy ions within stacks of visual track detectors in order to explore the not yet properly understood radiobiological effects of single heavy ions. In such an investigation, the establishment of the geometrical correlation between the ion trajectories and the location of radiation-sensitive biological substructures is an essential task. We describe how this was achieved for biological test organisms, whose location and orientation had to be derived from contact photographs displaying their outlines and those of the holder plates only. The overall qualitative and quantitative precision achieved, as well as the contributing sources of uncertainties are discussed in detail. A precision of ≅ 10μm was accomplished for the coordinates of particle trajectories, which is near the limit set by the mechanical precision and stability of the detector material. The precision of the impact parameter is limited by the uncertainty in the location of the internal structures, which at best is around 50 and at worst around 150 μm, but is still acceptable when compared with the extension of the sensitive structures. (author)

  19. Impact parameter determination for the passage of cosmic heavy ions through mesoscopic biological test organisms

    Energy Technology Data Exchange (ETDEWEB)

    Facius, R.; Reitz, G.; Buecker, H. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany)); Nevzgodina, L.V.; Maximova, E.N. (Institute of Biomedical Problems, Moscow (USSR))

    1992-01-01

    Seeds of the plant Lactuca sativa as a prototype of a mesoscopic, i.e. neither micro- nor truly macroscopic, biological test organism, were exposed during the Biocosmos 9 mission to cosmic heavy ions within stacks of visual track detectors in order to explore the not yet properly understood radiobiological effects of single heavy ions. In such an investigation, the establishment of the geometrical correlation between the ion trajectories and the location of radiation-sensitive biological substructures is an essential task. We describe how this was achieved for biological test organisms, whose location and orientation had to be derived from contact photographs displaying their outlines and those of the holder plates only. The overall qualitative and quantitative precision achieved, as well as the contributing sources of uncertainties are discussed in detail. A precision of {approx equal} 10{mu}m was accomplished for the coordinates of particle trajectories, which is near the limit set by the mechanical precision and stability of the detector material. The precision of the impact parameter is limited by the uncertainty in the location of the internal structures, which at best is around 50 and at worst around 150 {mu}m, but is still acceptable when compared with the extension of the sensitive structures. (author).

  20. Biological control of Aspergillus flavus growth and subsequent ...

    African Journals Online (AJOL)

    ONOS

    2010-07-05

    Jul 5, 2010 ... 1School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia,. 2Department of Botany, Osmania University, Hyderabad, India. ... the biocontrol agents tested, culture filtrate of Rhodococcus ...

  1. Effects of ozonation and temperature on the biodegradation of natural organic matter in biological granular activated carbon filters

    NARCIS (Netherlands)

    Van der Aa, L.T.J.; Rietveld, L.C.; Van Dijk, J.C.

    2011-01-01

    Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. The removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and

  2. Effects of ozonation and temperature on biodegradation of natural organic matter in biological granular activated carbon filters

    NARCIS (Netherlands)

    Van der Aa, L.T.J.; Rietveld, L.C.; Van Dijk, J.C.

    2010-01-01

    Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. Removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and oxygen

  3. Entomopathogenic fungi as biological controllers: New insights into their virulence and pathogenicity

    Directory of Open Access Journals (Sweden)

    Shahid Ali Ahmad

    2012-01-01

    Full Text Available Entomopathogenic fungi vary considerably in their mode of action and virulence. Successful infection depends primarily on the adherence and penetration ability of a fungus to the host integuments. A variety of extracellular enzymes is produced during the degradation of insect integument. The attempts to control insects have changed over time from chemicals to natural control methods. This is why the development of natural methods of insect control or biopesticides, is preferred. By the use of fungal entomopathogens, insect pests can be controlled. There is no doubt that insects have been used for many years, but their effective use in the field remains elusive. However, their additional role in nature has also been discovered. Comparison of entomopathogens with conventional chemical pesticides depends on their efficiency and cost. In addition to efficiency, there are advantages in using microbial control agents, such as human safety and other non-target organisms; pesticide residues are minimized in food and biodiversity increased in managed ecosystems. In the present review the pathogenicity and virulence of entomopathogenic fungi and their role as biological control agents using biotechnology will be discussed.

  4. Predicting spiral wave patterns from cell properties in a model of biological self-organization.

    Science.gov (United States)

    Geberth, Daniel; Hütt, Marc-Thorsten

    2008-09-01

    In many biological systems, biological variability (i.e., systematic differences between the system components) can be expected to outrank statistical fluctuations in the shaping of self-organized patterns. In principle, the distribution of single-element properties should thus allow predicting features of such patterns. For a mathematical model of a paradigmatic and well-studied pattern formation process, spiral waves of cAMP signaling in colonies of the slime mold Dictyostelium discoideum, we explore this possibility and observe a pronounced anticorrelation between spiral waves and cell properties (namely, the firing rate) and particularly a clustering of spiral wave tips in regions devoid of spontaneously firing (pacemaker) cells. Furthermore, we observe local inhomogeneities in the distribution of spiral chiralities, again induced by the pacemaker distribution. We show that these findings can be explained by a simple geometrical model of spiral wave generation.

  5. Behavior of oxyfluorfen in soils amended with different sources of organic matter. Effects on soil biology.

    Science.gov (United States)

    Gómez, Isidoro; Rodríguez-Morgado, Bruno; Parrado, Juan; García, Carlos; Hernández, Teresa; Tejada, Manuel

    2014-05-30

    We performed a laboratory study on the effect of oxyfluorfen at a rate of 4lha(-1) on biological properties of a soil amended with four organic wastes (two biostimulants/biofertilizers, obtained from rice bran, RB1 and RB2; municipal solid waste, MSW; and sheep manure, SM). Soil was mixed with SM at a rate of 1%, MSW at a rate of 0.52%, RB1 at a rate of 0.39% and RB2 at a rate of 0.30%, in order to apply the same amount of organic matter to the soil. The enzymatic activities and microbial community in the soil were determined during the incubation times. The application of RB1 and RB2 to soil without oxyfluorfen increased the enzymatic activities and biodiversity, peaking at day 10 of the incubation period. This stimulation was higher in the soil amended with RB2 than in that amended with RB1. In SM and CF-amended soils, the stimulation of enzymatic activities and soil biodiversity increased during the experiment. The application of herbicide in organic-amended soils decreased the inhibition of soil enzymatic activities and soil biodiversity. Possibly the low molecular weight protein content easily assimilated by soil microorganisms and the higher fat content in the biostimulants/biofertilizers are responsible for the lower inhibition of these soil biological properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The sensitivity of Turing self-organization to biological feedback delays: 2D models of fish pigmentation

    KAUST Repository

    Gaffney, E. A.

    2013-10-01

    © The authors 2013. Turing morphogen models have been extensively explored in the context of large-scale self-organization in multicellular biological systems. However, reconciling the detailed biology of morphogen dynamics, while accounting for time delays associated with gene expression, reveals aberrant behaviours that are not consistent with early developmental self-organization, especially the requirement for exquisite temporal control. Attempts to reconcile the interpretation of Turing\\'s ideas with an increasing understanding of the mechanisms driving zebrafish pigmentation suggests that one should reconsider Turing\\'s model in terms of pigment cells rather than morphogens (Nakamasu et al., 2009, PNAS, 106, 8429-8434; Yamaguchi et al., 2007, PNAS, 104, 4790-4793). Here the dynamics of pigment cells is subject to response delays implicit in the cell cycle and apoptosis. Hence we explore simulations of fish skin patterning, focussing on the dynamical influence of gene expression delays in morphogen-based Turing models and response delays for cell-based Turing models. We find that reconciling the mechanisms driving the behaviour of Turing systems with observations of fish skin patterning remains a fundamental challenge.

  7. The sensitivity of Turing self-organization to biological feedback delays: 2D models of fish pigmentation.

    Science.gov (United States)

    Gaffney, E A; Lee, S Seirin

    2015-03-01

    Turing morphogen models have been extensively explored in the context of large-scale self-organization in multicellular biological systems. However, reconciling the detailed biology of morphogen dynamics, while accounting for time delays associated with gene expression, reveals aberrant behaviours that are not consistent with early developmental self-organization, especially the requirement for exquisite temporal control. Attempts to reconcile the interpretation of Turing's ideas with an increasing understanding of the mechanisms driving zebrafish pigmentation suggests that one should reconsider Turing's model in terms of pigment cells rather than morphogens (Nakamasu et al., 2009, PNAS, 106: , 8429-8434; Yamaguchi et al., 2007, PNAS, 104: , 4790-4793). Here the dynamics of pigment cells is subject to response delays implicit in the cell cycle and apoptosis. Hence we explore simulations of fish skin patterning, focussing on the dynamical influence of gene expression delays in morphogen-based Turing models and response delays for cell-based Turing models. We find that reconciling the mechanisms driving the behaviour of Turing systems with observations of fish skin patterning remains a fundamental challenge. © The Authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  8. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  9. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  10. Using the Cambridge structure database of organic and organometalic compounds in structure biology

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jindřich

    2010-01-01

    Roč. 17, 1a (2010), b24-b26 ISSN 1211-5894. [Discussions in Structural Molecular Biology /8./. Nové Hrady, 18.03.2010-20.03.2010] R&D Projects: GA AV ČR IAA500500701; GA ČR GA305/07/1073 Institutional research plan: CEZ:AV0Z40500505 Keywords : organic chemistry * Cambridge Structure Data base * molecular structure Subject RIV: CD - Macromolecular Chemistry http://xray.cz/ms/bul2010-1a/friday2.pdf

  11. Advances in radiation biology: Relative radiation sensitivities of human organ systems. Volume 12

    International Nuclear Information System (INIS)

    Lett, J.T.; Altman, K.I.; Ehmann, U.K.; Cox, A.B.

    1987-01-01

    This volume is a thematically focused issue of Advances in Radiation Biology. The topic surveyed is relative radiosensitivity of human organ systems. Topics considered include relative radiosensitivities of the thymus, spleen, and lymphohemopoietic systems; relative radiosensitivities of the small and large intestine; relative rediosensitivities of the oral cavity, larynx, pharynx, and esophagus; relative radiation sensitivity of the integumentary system; dose response of the epidermal; microvascular, and dermal populations; relative radiosensitivity of the human lung; relative radiosensitivity of fetal tissues; and tolerance of the central and peripheral nervous system to therapeutic irradiation

  12. Advances in radiation biology: Relative radiation sensitivities of human organ systems. Volume 12

    Energy Technology Data Exchange (ETDEWEB)

    Lett, J.T.; Altman, K.I.; Ehmann, U.K.; Cox, A.B.

    1987-01-01

    This volume is a thematically focused issue of Advances in Radiation Biology. The topic surveyed is relative radiosensitivity of human organ systems. Topics considered include relative radiosensitivities of the thymus, spleen, and lymphohemopoietic systems; relative radiosensitivities of the small and large intestine; relative rediosensitivities of the oral cavity, larynx, pharynx, and esophagus; relative radiation sensitivity of the integumentary system; dose response of the epidermal; microvascular, and dermal populations; relative radiosensitivity of the human lung; relative radiosensitivity of fetal tissues; and tolerance of the central and peripheral nervous system to therapeutic irradiation.

  13. The role of ionizing radiation in biological control of agricultural pests

    International Nuclear Information System (INIS)

    Mansour, M.

    2011-01-01

    Although the commercial biological control industry is growing, it still represents only a small portion of the international market of pest control sales (about 3%). This low ratio is due to several factors including high cost of production of biological control agents and technical and regulatory difficulties that complicate the shipping procedures and create trade barriers. This article summarizes the role of ionizing radiation in supporting the use of biological control agents in insect pest control and concentrates on its role in the production, transport, distribution, and release of parasites and predators and the advantages that ionizing radiation can offer, in comparison with traditional techniques. (author)

  14. Radiochemical and biological control of metaiodobenzyl-guanidine (MIBG) labeled with 131I

    International Nuclear Information System (INIS)

    Barboza, M.R.F.F. de; Muramoto, E.; Colturato, M.T.; Silva Valente Goncalves, R. da; Pereira, N.P.S. de; Almeida, M.A.T.M. de; Silva, C.P.G. da.

    1988-07-01

    This study shows the standardization of the radiochemical control of MIBG - 131 I in eletrophoretic system and also the biological control in Wistar rat for a period of time, not longer than 60 minutes after tracer administration. (author) [pt

  15. Biological control of fusarium wilt of tomato by antagonist fungi and ...

    African Journals Online (AJOL)

    Yomi

    2012-01-16

    Jan 16, 2012 ... Key words: Biological control, fusarium wilt, tomato, antagonist fungi, cyanobacteria. INTRODUCTION ... severely affected by wilt disease caused by F. oxysporum f. sp. ..... Changing options for the control of deciduous fruit.

  16. Biological Control beneath the Feet: A Review of Crop Protection against Insect Root Herbivores

    Directory of Open Access Journals (Sweden)

    Alan Kergunteuil

    2016-11-01

    Full Text Available Sustainable agriculture is certainly one of the most important challenges at present, considering both human population demography and evidence showing that crop productivity based on chemical control is plateauing. While the environmental and health threats of conventional agriculture are increasing, ecological research is offering promising solutions for crop protection against herbivore pests. While most research has focused on aboveground systems, several major crop pests are uniquely feeding on roots. We here aim at documenting the current and potential use of several biological control agents, including micro-organisms (viruses, bacteria, fungi, and nematodes and invertebrates included among the macrofauna of soils (arthropods and annelids that are used against root herbivores. In addition, we discuss the synergistic action of different bio-control agents when co-inoculated in soil and how the induction and priming of plant chemical defense could be synergized with the use of the bio-control agents described above to optimize root pest control. Finally, we highlight the gaps in the research for optimizing a more sustainable management of root pests.

  17. Biological Control beneath the Feet: A Review of Crop Protection against Insect Root Herbivores.

    Science.gov (United States)

    Kergunteuil, Alan; Bakhtiari, Moe; Formenti, Ludovico; Xiao, Zhenggao; Defossez, Emmanuel; Rasmann, Sergio

    2016-11-29

    Sustainable agriculture is certainly one of the most important challenges at present, considering both human population demography and evidence showing that crop productivity based on chemical control is plateauing. While the environmental and health threats of conventional agriculture are increasing, ecological research is offering promising solutions for crop protection against herbivore pests. While most research has focused on aboveground systems, several major crop pests are uniquely feeding on roots. We here aim at documenting the current and potential use of several biological control agents, including micro-organisms (viruses, bacteria, fungi, and nematodes) and invertebrates included among the macrofauna of soils (arthropods and annelids) that are used against root herbivores. In addition, we discuss the synergistic action of different bio-control agents when co-inoculated in soil and how the induction and priming of plant chemical defense could be synergized with the use of the bio-control agents described above to optimize root pest control. Finally, we highlight the gaps in the research for optimizing a more sustainable management of root pests.

  18. The status of biological control and recommendations for improving uptake for the future

    NARCIS (Netherlands)

    Barratt, B.I.P.; Moran, V.C.; Bigler, F.; Lenteren, van J.C.

    2018-01-01

    Classical and augmentative biological control of insect pests and weeds has enjoyed a long history of successes. However, biocontrol practices have not been as universally accepted or optimally utilised as they could be. An International Organisation for Biological Control (IOBC) initiative brought

  19. 21 CFR 310.4 - Biologics; products subject to license control.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Biologics; products subject to license control... to license control. (a) If a drug has an approved license under section 351 of the Public Health.... (b) To obtain marketing approval for radioactive biological products for human use, as defined in...

  20. Managing conflict over biological control: the case of strawberry guava in Hawaii

    Science.gov (United States)

    Tracy Johnson

    2016-01-01

    Biological control researchers commonly avoid targets with potential for high conflict, but for certain highly damaging invaders with no viable management alternatives, it may be necessary to consider biological control even when it is likely to generate conflict. Discussed here is a case study, strawberry guava (Psidium cattleianum Sabine...

  1. Chemical characterisation of natural organic substrates for biological mitigation of acid mine drainage.

    Science.gov (United States)

    Gibert, Oriol; de Pablo, Joan; Luis Cortina, José; Ayora, Carlos

    2004-11-01

    The current approach of the biological treatment of acid mine drainage by means of a passive remediation system involves the choice of an appropriate organic substrate as electron donor for sulphate reducers. Nowadays this selection is one of the critical steps in the performance of such treatment, as this depends to a great extent on the degradability of the organic substrate. Thus, a prior characterisation of the organic substrate predicting its biodegradability would be desirable before embarking on an extensive large-scale application. The aim of this study was to correlate the chemical composition (lignin content) of four different natural organic substrates (compost, sheep and poultry manures, oak leaf) and their capacity to sustain bacterial activity in an attempt to predict biodegradation from chemical characterisation. The results showed that the lower the content of lignin in the organic substrate, the higher its biodegradability and capacity for developing bacterial activity. Of the four organic materials, sheep and poultry manures and oak leaf evolved reducing conditions and sustained active sulphidogenesis, which coupled with the decrease in sulphate concentration indicated bacterial activity. Sheep manure was clearly the most successful organic material as electron donor (sulphate removal >99%), followed by poultry manure and oak leaf (sulphate removal of 80%). Compost appeared to be too poor in carbon to promote sulphate-reducing bacteria activity by itself. Column experiments emphasised the importance of considering the residence time as a key factor in the performance of continuous systems. With a residence time of 0.73 days, sheep manure did not promote sulphidogenesis. However, extending residence time to 2.4 and 9.0 days resulted in an increase in the sulphate removal to 18% and 27%, respectively.

  2. Low acetate concentrations favor polyphosphate-accumulating organisms over glycogen-accumulating organisms in enhanced biological phosphorus removal from wastewater.

    Science.gov (United States)

    Tu, Yunjie; Schuler, Andrew J

    2013-04-16

    Glycogen-accumulating organisms (GAOs) are thought to compete with polyphosphate-accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) wastewater treatment systems. A laboratory sequencing batch reactor (SBR) was operated for one year to test the hypothesis that PAOs have a competitive advantage at low acetate concentrations, with a focus on low pH conditions previously shown to favor GAOs. PAOs dominated the system under conventional SBR operation with rapid acetate addition (producing high in-reactor concentrations) and pH values of 7.4-8.4. GAOs dominated when the pH was decreased (6.4-7.0). Decreasing the acetate addition rate led to very low reactor acetate concentrations, and PAOs recovered, supporting the study hypothesis. When the acetate feed rate was increased, EBPR failed again. Dominant PAOs and GAOs were Candidatus Accumulibacter phosphatis and Defluviicoccus Cluster 2, respectively, according to fluorescent in situ hybridization and 454 pyrosequencing. Surprisingly, GAOs were not the immediate causes of PAO failures, based on functional and population measurements. Pyrosequencing results suggested Dechloromonas and Tetrasphaera spp. may have also been PAOs, and additional potential GAOs were also identified. Full-scale systems typically have lower in-reactor acetate concentrations than laboratory SBRs, and so, previous laboratory studies may have overestimated the practical importance of GAOs as causes of EBPR failure.

  3. Vital forces and organization: philosophy of nature and biology in Karl Friedrich Kielmeyer.

    Science.gov (United States)

    Gambarotto, Andrea

    2014-12-01

    The historical literature on German life science at the end of the 18th century has tried to rehabilitate eighteenth century vitalism by stressing its difference from Naturphilosophie. Focusing on the work of Karl Friedrich Kielmeyer this paper argues that these positions are based on a historiographical bias and that the clear-cut boundary between German vitalism and Naturphilosophie is historically unattested. On the contrary, they both belong to the process of conceptual genealogy that contributed to the project of a general biology. The latter emerged as the science concerned with the laws that regulate the organization of living nature as a whole. The focus on organization was, at least partially, the result of the debate surrounding the notion of "vital force", which originated in the mid-eighteenth century and caused a shift from a regulative to a constitutive understanding of teleology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering

    Directory of Open Access Journals (Sweden)

    Ana Rubina Perestrelo

    2015-12-01

    Full Text Available Recent advances in biomedical technologies are mostly related to the convergence of biology with microengineering. For instance, microfluidic devices are now commonly found in most research centers, clinics and hospitals, contributing to more accurate studies and therapies as powerful tools for drug delivery, monitoring of specific analytes, and medical diagnostics. Most remarkably, integration of cellularized constructs within microengineered platforms has enabled the recapitulation of the physiological and pathological conditions of complex tissues and organs. The so-called “organ-on-a-chip” technology, which represents a new avenue in the field of advanced in vitro models, with the potential to revolutionize current approaches to drug screening and toxicology studies. This review aims to highlight recent advances of microfluidic-based devices towards a body-on-a-chip concept, exploring their technology and broad applications in the biomedical field.

  5. Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering

    Science.gov (United States)

    Perestrelo, Ana Rubina; Águas, Ana C. P.; Rainer, Alberto; Forte, Giancarlo

    2015-01-01

    Recent advances in biomedical technologies are mostly related to the convergence of biology with microengineering. For instance, microfluidic devices are now commonly found in most research centers, clinics and hospitals, contributing to more accurate studies and therapies as powerful tools for drug delivery, monitoring of specific analytes, and medical diagnostics. Most remarkably, integration of cellularized constructs within microengineered platforms has enabled the recapitulation of the physiological and pathological conditions of complex tissues and organs. The so-called “organ-on-a-chip” technology, which represents a new avenue in the field of advanced in vitro models, with the potential to revolutionize current approaches to drug screening and toxicology studies. This review aims to highlight recent advances of microfluidic-based devices towards a body-on-a-chip concept, exploring their technology and broad applications in the biomedical field. PMID:26690442

  6. Application of terahertz spectroscopy for characterization of biologically active organic molecules in natural environment

    Science.gov (United States)

    Karaliūnas, Mindaugas; Jakštas, Vytautas; Nasser, Kinan E.; Venckevičius, Rimvydas; Urbanowicz, Andrzej; Kašalynas, Irmantas; Valušis, Gintaras

    2016-09-01

    In this work, a comparative research of biologically active organic molecules in its natural environment using the terahertz (THz) time domain spectroscopy (TDS) and Fourier transform spectroscopy (FTS) systems is carried out. Absorption coefficient and refractive index of Nicotiana tabacum L. leaves containing nicotine, Cannabis sativa L. leaves containing tetrahydrocannabinol, and Humulu lupulus L. leaves containing α-acids, active organic molecules that obtain in natural environment, were measured in broad frequency range from 0.1 to 13 THz at room temperature. In the spectra of absorption coefficient the features were found to be unique for N. tabacum, C. sativa and H. lupulus. Moreover, those features can be exploited for identification of C. sativa sex and N. tabacum origin. The refractive index can be also used to characterize different species.

  7. Top-down models in biology: explanation and control of complex living systems above the molecular level.

    Science.gov (United States)

    Pezzulo, Giovanni; Levin, Michael

    2016-11-01

    It is widely assumed in developmental biology and bioengineering that optimal understanding and control of complex living systems follows from models of molecular events. The success of reductionism has overshadowed attempts at top-down models and control policies in biological systems. However, other fields, including physics, engineering and neuroscience, have successfully used the explanations and models at higher levels of organization, including least-action principles in physics and control-theoretic models in computational neuroscience. Exploiting the dynamic regulation of pattern formation in embryogenesis and regeneration requires new approaches to understand how cells cooperate towards large-scale anatomical goal states. Here, we argue that top-down models of pattern homeostasis serve as proof of principle for extending the current paradigm beyond emergence and molecule-level rules. We define top-down control in a biological context, discuss the examples of how cognitive neuroscience and physics exploit these strategies, and illustrate areas in which they may offer significant advantages as complements to the mainstream paradigm. By targeting system controls at multiple levels of organization and demystifying goal-directed (cybernetic) processes, top-down strategies represent a roadmap for using the deep insights of other fields for transformative advances in regenerative medicine and systems bioengineering. © 2016 The Author(s).

  8. Biological stability of drinking water : Controlling factors, methods, and challenges

    NARCIS (Netherlands)

    Prest, E.I.E.D.; Hammes, F.; Van Loosdrecht, M.C.M.; Vrouwenvelder, J.S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and

  9. The pros and cons of ecological risk assessment based on data from different levels of biological organization

    Science.gov (United States)

    Rohr, Jason R.; Salice, Christopher J.; Nisbet, Roger M.

    2016-01-01

    Ecological risk assessment (ERA) is the process used to evaluate the safety of manufactured chemicals to the environment. Here we review the pros and cons of ERA across levels of biological organization, including suborganismal (e.g. biomarkers), individual, population, community, ecosystem, and landscapes levels. Our review revealed that level of biological organization is often related negatively with ease at assessing cause-effect relationships, ease of high-throughput screening of large numbers of chemicals (it is especially easier for suborganismal endpoints), and uncertainty of the ERA because low levels of biological organization tend to have a large distance between their measurement (what is quantified) and assessment endpoints (what is to be protected). In contrast, level of biological organization is often related positively with sensitivity to important negative and positive feedbacks and context dependencies within biological systems, and ease at capturing recovery from adverse contaminant effects. Some endpoints did not show obvious trends across levels of biological organization, such as the use of vertebrate animals in chemical testing and ease at screening large numbers of species, and other factors lacked sufficient data across levels of biological organization, such as repeatability, variability, cost per study, and cost per species of effects assessment, the latter of which might be a more defensible way to compare costs of ERAs than cost per study. To compensate for weaknesses of ERA at any particular level of biological organization, we also review mathematical modeling approaches commonly used to extrapolate effects across levels of organization. Finally, we provide recommendations for next generation ERA, submitting that if there is an ideal level of biological organization to conduct ERA, it will only emerge if ERA is approached simultaneously from the bottom of biological organization up as well as from the top down, all while employing

  10. The pros and cons of ecological risk assessment based on data from different levels of biological organization.

    Science.gov (United States)

    Rohr, Jason R; Salice, Christopher J; Nisbet, Roger M

    2016-10-01

    Ecological risk assessment (ERA) is the process used to evaluate the safety of manufactured chemicals to the environment. Here we review the pros and cons of ERA across levels of biological organization, including suborganismal (e.g., biomarkers), individual, population, community, ecosystem and landscapes levels. Our review revealed that level of biological organization is often related negatively with ease at assessing cause-effect relationships, ease of high-throughput screening of large numbers of chemicals (it is especially easier for suborganismal endpoints), and uncertainty of the ERA because low levels of biological organization tend to have a large distance between their measurement (what is quantified) and assessment endpoints (what is to be protected). In contrast, level of biological organization is often related positively with sensitivity to important negative and positive feedbacks and context dependencies within biological systems, and ease at capturing recovery from adverse contaminant effects. Some endpoints did not show obvious trends across levels of biological organization, such as the use of vertebrate animals in chemical testing and ease at screening large numbers of species, and other factors lacked sufficient data across levels of biological organization, such as repeatability, variability, cost per study and cost per species of effects assessment, the latter of which might be a more defensible way to compare costs of ERAs than cost per study. To compensate for weaknesses of ERA at any particular level of biological organization, we also review mathematical modeling approaches commonly used to extrapolate effects across levels of organization. Finally, we provide recommendations for next generation ERA, submitting that if there is an ideal level of biological organization to conduct ERA, it will only emerge if ERA is approached simultaneously from the bottom of biological organization up as well as from the top down, all while employing

  11. TLD estimation of absorbed dose for 131I on the surface of biological organs of REMCAL phantom

    International Nuclear Information System (INIS)

    Tandon, Pankaj; Gaur, P.K.; Bhatt, B.C.; Soni, P.S.

    2001-01-01

    In nuclear medicine, the accuracy of absorbed dose of an internally distributed radiopharmaceuticals estimated by the MIRD (medical internal radiation dose) method depends on the cumulated activity of the source organs and their mass. The usual method for obtaining the cumulated activities are: 1) direct measurements by a) positron emission tomography (PET) and b) single photon emission computed tomography (SPECT) 2) extrapolation from animal data and 3) calculations based on the mathematical biokinetic model. Among these methods, extrapolation of animal data to humans includes inevitable inaccuracy due to large interspecies metabolic differences with regard to the administered radiochemical. Biokinetic modeling requires adequate knowledge of various kinetic parameters, which is based on some biological assumptions. Direct measurements can provide cumulated distributions with fewer biological assumptions. But direct measurements of PET/SPECT are difficult to perform routinely. A method has been developed to obtain the surface dose of different biological organs by using TLDs. Here, a number of TLDs are placed just above the surface of the biological organs of the REMCAL Alderson human phantom filled with water. Firstly, investigation of the accuracy of this method by calibration studies using the said phantom, which is having the entire biological organ intact and simulate the organs as human body is done. These organs are filled with the known activity of the radioisotope. In the present study, estimation of radiation dose received by fifteen different target organs, when the known activity was filled in the three major organs of interest was carried out

  12. The characterization of the soil biological quality of organic viticulture can be achieved by analyzing soil nematofauna

    OpenAIRE

    Coll, P; Le Cadre, E; Mérot, A; Villenave, C

    2013-01-01

    Soil nematofauna is a bioindicator that can highlight changes in biological functioning when changing agricultural practices. In the present study, the effects of conversion of vineyards to organic agriculture on biological soil quality were evaluated. Twenty four conventional plots and organic plots in Cruscades (Aude) were studied: they were divided into four groups: (1) conventional, (2) converted for 7 years (Bio 7 years), (3) converted for 11 years (Bio 11) and (4) converted for 17 (Bio ...

  13. Biological and environmental reference materials for trace elements, nuclides and organic microcontaminants

    International Nuclear Information System (INIS)

    Cortes Toro, E.; Parr, R.M.; Clements, S.A.

    1990-01-01

    This report has been produced from a database on analytical reference materials of biological and environmental origin, which is maintained at the International Atomic Energy Agency. It is an updated version of an earlier report, published in 1985, which focussed mainly on reference materials for trace elements. In the present version of the report, reference materials for trace elements still constitute the major part of the data; however, information is also now included on a number of other selected analytes of relevance to IAEA programmes, i.e. radionuclides, stable isotopes and organic microcontaminants. The database presently contains 2,694 analyte values for 117 analytes in 116 biological and 77 environmental (non-biological) reference materials produced by 20 different suppliers. Additional information on the cost of the material, the unit size supplied, (weight or volume), and the minimum weight of material recommended for analysis is also provided (if available to the authors). It is expected that this report will help analysts to select the reference material that matches as closely as possible, with respect to matrix type and concentrations of the analytes of interest, the ''real'' samples that are to be analysed. Refs, 12 tabs

  14. Environmental risk assessment for Neodryinus typhlocybae, biological control agent against Metcalfa pruinosa, for Austria

    Directory of Open Access Journals (Sweden)

    Gudrun Strauss

    2013-03-01

    Full Text Available The potential environmental risks of Neodryinus typhlocybae, a parasitic wasp from North America, were evaluated with regard to its safe use as an exotic biocontrol agent for the planthopper Metcalfa pruinosa in Austria. Following an earlier host range study of N. typhlocybae conducted in the laboratory, the present study assessed the potential for establishment and spread as well as negative indirect effects on non-target organisms. The potential release sites in Austria were analysed for matching of the climatic requirements for establishment of N. typhlocybae. The two proposed release locations, Vienna and Graz, have a predominantly similar climate to the parasitoid’s region of origin, though the comparably cooler mean summer temperatures might result in a low emergence rate of the partial second generation. The natural spread potential of N. typhlocybae was reviewed and is considered to be sufficiently good for released individuals to reach nearby sites infested with M. pruinosa. However, a perceptible spreading of N. typhlocybae females only occurs a few years after release and seems to be strongly dependent on the host density. Gelis areator, a hyperparasitoid of N. typhlocybae known to occur in Austria, might have negative effects on the population of the beneficial organism. Advantages and disadvantages of chemical and biological control methods against M. pruinosa were evaluated. It is concluded that N. typhlocybae is very well suited as a biological control agent for M. pruinosa in Austria, as no adverse effects on non-target species are expected but its release offers advantages with regard to sustainable and environmentally friendly pest management.

  15. Biological control strategies of mycotoxigenic fungi and associated mycotoxins in Mediterranean basin crops

    Directory of Open Access Journals (Sweden)

    Dimitrios I. TSITSIGIANNIS

    2012-05-01

    Full Text Available Fungi that belong to the genera Aspergillus, Fusarium, and Penicillium pose serious phytopathological and mycotoxicological risks at pre-harvest and post-harvest stages, as well as in processed food products because they can produce several mycotoxins. Mycotoxins pose a serious problem for animal and human health and have a significant economic impact worldwide. The Mediterranean basin is a large geographical region with a temperate climate supporting the cultivation of a wealth of field and greenhouse crops with a high risk of mycotoxin contamination. The most important mycotoxins that occur in the Mediterranean basin are aflatoxins (B1, B2, G1 and G2 in dried fruits and nuts, ochratoxin A in grapes and raisins as well as trichothecenes and fumonisins in cereals. A variety of chemical, biological and physical strategies have been developed to control the mycotoxigenic pathogens; to minimize mycotoxin production at pre- or post-harvest level; to contribute to decontamination and/or detoxification of mycotoxins from contaminated foods and feeds; or to inhibit mycotoxin absorption in the gastrointestinal tract. Biological control using microbial antagonists either alone or as part of an integrated control strategy to reduce pesticide inputs, has emerged as a promising approach for control of mycotoxins in crops, both pre- and post-harvest. Several organisms including atoxigenic Aspergilli, yeasts, bacteria and fungi have been tested for their ability to reduce both fungal infection and mycotoxin contamination. For instance, atoxigenic fungal strains are being used widely to prevent pre-harvest aflatoxin contamination of crops such as peanuts, pistachios, maize, and cottonseed in several parts of the world including the Mediterranean area. Recent advancements in the use of biocontrol strategies have led to registration of commercial products with increased practical applications for the benefit of growers in several countries.

  16. Effects of Single and Combined Application of Organic and Biological Fertilizers on Quantitative and Qualitative Yield of Anisum (Pimpinella anisum

    Directory of Open Access Journals (Sweden)

    N Kamayestani

    2015-07-01

    Full Text Available In order to study the effects of single and combined applications of biofertilazer and organic fertilizers on quantitative and qualitative characteristics of anisum (Pimpinella anisum, an experiment was conducted based on a Randomized Complete Block Design with three replications and fifteen treatments at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, in 2011 year. Treatments were: (1 mycorrhiza (Glomus intraradices, (2 mycorrhiza + cow manure, (3 mycorrhiza + vermicompost, (4 mycorrhiza+ compost, (5 mycorrhiza + chemical fertilizer, (6 biosulfur (Thiobacillus sp. + Bentonite, (7 biosulfur + chemical fertilizer, (8 biosulfur + cow manure, (9 biosulfur + vermicompost, (10 biosulfur+compost,11 (cow manure, (12 vermicompost, (13 chemical fertilizer (NPK, (14compost and (15 control. The results showed that application of fertilizer treatments had significant effect on most characteristics of anisum. The highest number of seed per umbelet (7.24, economic yield (1263.4kg/ha were obtained fram biosulfur treatment. The highest dry matter yield (4504.1 kg/ha resulted from combined application of biosulfur + chemical fertilizer and the highest harvest index (25.97% observed in biosulfur+cow manure. The combined application of mycorrhiza affected some qualification traits, as the highest number of umbel per plant (65.7, 1000 seed-weight (3.24 g and essential oil percentage (5.3% resulted from combined application of mycorrhiza+chemical fertilizer. In general, it can be concluded that application of organic and biological fertilizer particularly mycorrhiza and biosulfur had a significant effect on improving of quantitative and qualitative characteristics of anisum. Furthermore, the combined application of organic and biological fertilizer had higher positive effects than their single application.

  17. Biological control of fruit-tree red spider mite

    NARCIS (Netherlands)

    Rabbinge, R.

    1976-01-01

    During the last decade, integrated pest control systems have been developed for several crops. One of the main fields of research in integrated control has been the control of orchard pests. Experience with modified spraying programmes in apple orchards, the increasing resistance of spider

  18. The biological control as a strategy to support nontraditional agricultural exports in Peru: An empirical analysis

    Directory of Open Access Journals (Sweden)

    Franklin Duarte Cueva

    2012-12-01

    Full Text Available The study is oriented to explore the general characteristics of agriculture, the biological control as a pest control mechanism and agro export industry. In this context, we try to promote the use of biological control as a strategy to support nontraditional exports related to products such as asparagus and fresh avocados grown in the La Libertad Department (Peru, through an agronomic and management approach. Biological control is the basis of integrated pest management (IPM and contributes to the conservation of agricultural ecosystems allowing to export companies reduce costs, fulfill international phytosanitary measures and supports the preservation of the environment and health. Thus, the Peruvian agro export companies could build a sustainable competitive advantage and seek a positioning as socially responsible firms. We analyze variables such as crop statistics, comparative costs between biological control and chemical control, main destination markets for asparagus and fresh avocados, international standards, among others.

  19. Biological and remote sensing perspectives of pigmentation in coral reef organisms.

    Science.gov (United States)

    Hedley, John D; Mumby, Peter J

    2002-01-01

    Coral reef communities face unprecedented pressures on local, regional and global scales as a consequence of climate change and anthropogenic disturbance. Optical remote sensing, from satellites or aircraft, is possibly the only means of measuring the effects of such stresses at appropriately large spatial scales (many thousands of square kilometres). To map key variables such as coral community structure, percentages of living coral or percentages of dead coral, a remote sensing instrument must be able to distinguish the reflectance spectra (i.e. "spectral signature", reflected light as a function of wavelength) of each category. For biotic classes, reflectance is a complex function of pigmentation, structure and morphology. Studies of coral "colour" fall into two disparate but potentially complementary types. Firstly, biological studies tend to investigate the structure and significance of pigmentation in reef organisms. These studies often lack details that would be useful from a remote sensing perspective such as intraspecific variation in pigment concentration or the contribution of fluorescence to reflectance. Secondly, remote sensing studies take empirical measurements of spectra and seek wavelengths that discriminate benthic categories. Benthic categories used in remote sensing sometimes consist of species groupings that are biologically or spectrally inappropriate (e.g. merging of algal phyla with distinct pigments). Here, we attempt to bridge the gap between biological and remote sensing perspectives of pigmentation in reef taxa. The aim is to assess the extent to which spectral discrimination can be given a biological foundation, to reduce the ad hoc nature of discriminatory criteria, and to understand the fundamental (biological) limitations in the spectral separability of biotic classes. Sources of pigmentation in reef biota are reviewed together with remote sensing studies where spectral discrimination has been effectively demonstrated between benthic

  20. Enhancing biological control of basal stem rot disease (Ganoderma boninense) in oil palm plantations.

    Science.gov (United States)

    Susanto, A; Sudharto, P S; Purba, R Y

    2005-01-01

    Basal Stem Rot (BSR) disease caused by Ganoderma boninense is the most destructive disease in oil palm, especially in Indonesia and Malaysia. The available control measures for BSR disease such as cultural practices and mechanical and chemical treatment have not proved satisfactory due to the fact that Ganoderma has various resting stages such as melanised mycelium, basidiospores and pseudosclerotia. Alternative control measures to overcome the Ganoderma problem are focused on the use of biological control agents and planting resistant material. Present studies conducted at Indonesian Oil Palm Research Institute (IOPRI) are focused on enhancing the use of biological control agents for Ganoderma. These activities include screening biological agents from the oil palm rhizosphere in order to evaluate their effectiveness as biological agents in glasshouse and field trials, testing their antagonistic activities in large scale experiments and eradicating potential disease inoculum with biological agents. Several promising biological agents have been isolated, mainly Trichoderma harzianum, T. viride, Gliocladium viride, Pseudomonas fluorescens, and Bacillus sp. A glasshouse and field trial for Ganoderma control indicated that treatment with T. harzianum and G. viride was superior to Bacillus sp. A large scale trial showed that the disease incidence was lower in a field treated with biological agents than in untreated fields. In a short term programme, research activities at IOPRI are currently focusing on selecting fungi that can completely degrade plant material in order to eradicate inoculum. Digging holes around the palm bole and adding empty fruit bunches have been investigated as ways to stimulate biological agents.

  1. Report from the 2nd Summer School in Computational Biology organized by the Queen's University of Belfast

    Directory of Open Access Journals (Sweden)

    Frank Emmert-Streib

    2014-12-01

    Full Text Available In this paper, we present a meeting report for the 2nd Summer School in Computational Biology organized by the Queen's University of Belfast. We describe the organization of the summer school, its underlying concept and student feedback we received after the completion of the summer school.

  2. Removal of Natural Organic Matter Fractions by Anion Exchange : Impact on drinking water treatment processes and biological stability

    NARCIS (Netherlands)

    Grefte, A.

    2013-01-01

    This researched focused on improving drinking water quality, specifically the biological stability of the produced drinking water. Natural organic matter (NOM) can be a source of nutrients for bacteria present in the distribution system, which can cause regrowth. Specifically, small organic acids

  3. Microbial control of the dark end of the biological pump

    NARCIS (Netherlands)

    Herndl, G.J.; Reinthaler, T.

    2013-01-01

    A fraction of the carbon captured by phytoplankton in the sunlit surface ocean sinks to depth as dead organic matter and faecal material. The microbial breakdown of this material in the subsurface ocean generates carbon dioxide. Collectively, this microbially mediated flux of carbon from the

  4. Complete Host Range Testing on Common Reed with Potential Biological Control Agents and Investigation into Biological Control for Flowering Rush

    Science.gov (United States)

    2016-07-01

    CR-16-5 v Preface This report was prepared by Drs. Patrick Häfliger and Hariet Hinz, Centre for Agriculture and Bioscience International (CABI...through Cornell University, the Washington Department of Agriculture , the Washington Department of Ecology, the Washington Department of Natural...capacity during biological invasion in an aquatic plant Butomus umbellatus (Butomaceae). American Journal of Botany 92:495–502. Dieckmann, L. 1983

  5. Anaerobic Digestion. Student Manual. Biological Treatment Process Control.

    Science.gov (United States)

    Carnegie, John W., Ed.

    This student manual contains the textual material for a four-lesson unit on anaerobic digestion control. Areas addressed include: (1) anaerobic sludge digestion (considering the nature of raw sludge, purposes of anaerobic digestion, the results of digestion, types of equipment, and other topics); (2) digester process control (considering feeding…

  6. Design in nature how the constructal law governs evolution in biology, physics, technology, and social organization

    CERN Document Server

    Bejan, Adrian

    2013-01-01

    In this groundbreaking book, Adrian Bejan takes the recurring patterns in nature—trees, tributaries, air passages, neural networks, and lightning bolts—and reveals how a single principle of physics, the constructal law, accounts for the evolution of these and many other designs in our world. Everything—from biological life to inanimate systems—generates shape and structure and evolves in a sequence of ever-improving designs in order to facilitate flow. River basins, cardiovascular systems, and bolts of lightning are very efficient flow systems to move a current—of water, blood, or electricity. Likewise, the more complex architecture of animals evolve to cover greater distance per unit of useful energy, or increase their flow across the land. Such designs also appear in human organizations, like the hierarchical “flowcharts” or reporting structures in corporations and political bodies. All are governed by the same principle, known as the constructal law, and configure and reconfigure themselves...

  7. Breeding biology of the freshwater copepoda, heliodiaptomus viduus (gurney) and its prospects as live food organism

    International Nuclear Information System (INIS)

    Altaff, K.

    2003-01-01

    The tropical freshwater copepoda, Heliodiaptomus viduus occur commonly in the peninsular India. This species is comparatively bigger (total mean length of female and male is 2.05 plus minus 0.09 mm and 1.7 plus minus 0.04 mm respectively) than other freshwater diaptomids. Aspects of reproductive biology such as sexual dimorphism, organization of female and male reproductive system, oogenesis, spermatogenesis and spermatophore formation are described for the first time. Details pertaining to fertilization, embryonic and post embryonic development of this specie is reported. Studies on live span and reproductive potential of this specie indicate continuous breeding with short interclutch period. Importance of the live food in aquahatcheries and prospects of H. viduus as alternate live food to Artemia nauplii is discussed. (author)

  8. Surface self-organization: From wear to self-healing in biological and technical surfaces

    International Nuclear Information System (INIS)

    Nosonovsky, Michael; Bhushan, Bharat

    2010-01-01

    Wear occurs at most solid surfaces that come in contact with other solid surfaces. While biological surfaces and tissues usually have the ability for self-healing, engineered self-healing materials only started to emerge recently. These materials are currently created using the trial-and-error approach and phenomenological models, so there is a need of a general first-principles theory of self-healing. We discuss the conditions under which the self-healing occurs and provide a general theoretical framework and criteria for self-healing using the concept of multiscale organization of entropy and non-equilibrium thermodynamics. The example of epicuticular wax regeneration of plant leaves is discussed as a case study.

  9. The biological model of postradiation restoration of plants on the organismic and population levels of organization

    International Nuclear Information System (INIS)

    Ivanishvili, N.I.; Gogebashvili, M.E.

    2012-01-01

    Full text : When studying postradiating restoration of plants, the question of working out of biological models for testing of biosystems' reliability has become rather urgent. It is known that each organization level of a live organism is characterized by certain mechanisms of postradiating restoration at the formation of various radiobiological reactions. For example, the basic processes at cellular, tissue and organism levels are reparation and regeneration whereas at cenosis level the leading processes are often the forms of population restoration. Besides, in spite of the fact that the population restoration at cenosis level is continuously inked with restoration at the lower organization levels, at this level the specific forms of restoration characterized for only this level are seen. It is natural that studying of the mechanisms of response to the influence of damaging factors needs new methodological approaches on various forms of population restoration with the use of adequate test systems. For this purpose the species of duckweed was used. It was seen that this test-system is characterized by the two levels of response to radiation influence. The first one - at a rather low level of radiation influence (up to 50Gy) when decrease in intensity of leaf growth as well as in colony formation was observed and the second one - at a high level of radiation influence (up to 200Gy) when a crushing of colonies took place and an increase in quantity of undeveloped plant leaves was seen. Thus, thanks to the step character of response of culture duckweed it becomes possible to definite quantity indicators for the investigated populations, not only at the influence of concrete physical and chemical factors but also at multifactorial influences that is often difficult to be calculated. It can be concluded that at the first level of damage an increase of plant resistance to unfavorable factors takes place that is due to the inhibition of growth processes

  10. First controlled vertical flight of a biologically inspired microrobot

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Arancibia, Nestor O; Ma, Kevin Y; Greenberg, Jack D; Wood, Robert J [School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Galloway, Kevin C, E-mail: nperez@seas.harvard.edu, E-mail: kevinma@seas.harvard.edu, E-mail: kevin.galloway@wyss.harvard.edu, E-mail: jdgreenb@seas.harvard.edu, E-mail: rjwood@eecs.harvard.edu [Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 (United States)

    2011-09-15

    In this paper, we present experimental results on altitude control of a flying microrobot. The problem is approached in two stages. In the first stage, system identification of two relevant subsystems composing the microrobot is performed, using a static flapping experimental setup. In the second stage, the information gathered through the static flapping experiments is employed to design the controller used in vertical flight. The design of the proposed controller relies on the idea of treating an exciting signal as a subsystem of the microrobot. The methods and results presented here are a key step toward achieving total autonomy of bio-inspired flying microrobots.

  11. First controlled vertical flight of a biologically inspired microrobot

    International Nuclear Information System (INIS)

    Perez-Arancibia, Nestor O; Ma, Kevin Y; Greenberg, Jack D; Wood, Robert J; Galloway, Kevin C

    2011-01-01

    In this paper, we present experimental results on altitude control of a flying microrobot. The problem is approached in two stages. In the first stage, system identification of two relevant subsystems composing the microrobot is performed, using a static flapping experimental setup. In the second stage, the information gathered through the static flapping experiments is employed to design the controller used in vertical flight. The design of the proposed controller relies on the idea of treating an exciting signal as a subsystem of the microrobot. The methods and results presented here are a key step toward achieving total autonomy of bio-inspired flying microrobots.

  12. ANALISIS ARGUMENTASI MAHASISWA PENDIDIKAN BIOLOGI PADA ISU SOSIOSAINFIK KONSUMSI GENETICALLY MODIFIED ORGANISM (GMO

    Directory of Open Access Journals (Sweden)

    Y. Herlanti

    2014-04-01

    Full Text Available Penelitian ini bertujuan untuk menganalisis argumentasi yang dikemukakan oleh mahasiswa pendidikan biologi terkait isu sosiosaintifik yaitu konsumsi pangan Genetically Modified Organism (GMO.  Penelitian menggunakan metode survei secara online.  Partisipan yang berasal dari semester III-VII Universitas Islam Negeri Jakarta yang secara sukarela mengisi kuisioner online yang diunggah pada weblog. Hasil penelitian menunjukkan isu sosiosaintifik GMO lebih banyak ditanggapi secara saintifik oleh partisipan.  Argumentasi sebagian besar berada pada level II, yaitu telah mampu mengungkapkan sebuah klaim disertai dengan alasan. Hanya sedikit yang sudah mampu memberikan argumen secara holistik (level IV, yaitu mampu mengungkapkan argumen dengan alasan yang kuat yang tidak mudah dibantah.  Umumnya argumentasi yang dikemukan partisipan berjenis argumentasi sederhana dan argumentasi tipe rantai.  Berdasarkan temuan ini, perlu dikembangkan sebuah model perkuliahan yang dapat meningkatkan keterampilan berargumentasi. This research aimed to analyze the argument for socioscientifik issue “Genetically Modified Organism (GMO Food Consumtion”.  This reseach used online survey.  Participant filled online questionaire that uploaded in weblog.  Participants are student of biology education in Jakarta Islamic State University. The result showed most participants gave scientific view in their argument.  Most of argumentations were in level II; participants gave a klaim within a warrant.  Only a few argument were in level IV, it’s a holistic argument that contained a klaim, a warrant, a backing, and a rebuttal.  Most of argument had simple type or chain type.  From this result, university must develop strategies of lecturing to improve argumentation skill.

  13. Biological control and management of the detoxication wastewater treatment technologies

    Directory of Open Access Journals (Sweden)

    Topalova Yana

    2007-01-01

    Full Text Available Detoxication technologies require the combination of theoretical and practical knowledge of xenobiotic biodegradation, wastewater treatment technologies, and management rules. The purpose of this complicated combination is to propose specialized strategies for detoxication, based on lab- and pilot-scale modeling. These strategies include preliminary created algorithms for preventing the risk of water pollution and sediments. The technologies and algorithms are essentially important outcome, applied in the textile, pharmaceutical, cosmetic, woodtreating, and oiltreating industries. In this paper four rehabilitation technologies for pretreatment of water contaminated by pentachlorophenol (PCP have been developed in the frame of the European and Bulgarian National projects. Emphasize is put on the biological systems and their potential of detoxication management. The light and transmission electron microscopy of the reconstructed activated sludges the microbial, kinetic and enzymological indicators are presented and approved as critical points in the biocontrol.

  14. Agronomy of strip intercropping broccoli with alyssum for biological control of aphids

    Science.gov (United States)

    Organic broccoli growers in California typically control aphids by intercropping broccoli with strips of alyssum (Lobularia maritima (L.) Desv.) which attracts hoverflies (Diptera: Syrphidae) that are important predators of aphids. A three year study with transplanted organic broccoli in Salinas, ...

  15. Organization and control of independent work of students

    Directory of Open Access Journals (Sweden)

    Kaydalova L.G.

    2010-01-01

    Full Text Available The theoretical methodical aspects of independent work of students, organization and control, educational methodical providing, forms and types of independent work are examined. Efficiency of independent work is provided high-quality educational literature. The basic forms of control is: current, result and module, examinations, term papers, diploma works, licensed computer-integrated examinations, state attestation. Control can be conducted in a kind: expressquestioning, interview. Control is an information generator for a teacher about motion of independent capture the student of educational by material.

  16. SOME ASPECTS OF THE BIOLOGY AND CONTROL OF ...

    African Journals Online (AJOL)

    Key Words: Callosobruchus maculatus, developmental period, soya bean, Azadirachta indica, Citrus sinensis. ASPECTS DE LA BIOLOGIE ET DU CONTROLE DU CALLOSOBRUCHUS MACULATUS (F.) SUR LA CONSERVATION DES GRAINES DE SOJA DES VARIETES GLYCINE MAX (L.) MERR NOTE DE SYNTHESE

  17. Biological control of schistosome transmission in flowing water habitats.

    Science.gov (United States)

    Jobin, W R; Laracuente, A

    1979-09-01

    Marisa cornuarietis was evaluated in Puerto Rico for control of schistosome transmission in flowing water. A population of Biomphalaria glabrata and their schistosome infections disappeared after introduction of 20,000 M. cornuarietis to an endemic stream, while in nearby untreated streams the B. glabrata population remained stable and the schistosome prevalence increased. This method cost U.S. $0.10 per capita for over a year of protection, 5%-10% of the cost of chemical control.

  18. Education Organization Baseline Control Protection and Trusted Level Security

    Directory of Open Access Journals (Sweden)

    Wasim A. Al-Hamdani

    2007-12-01

    Full Text Available Many education organizations have adopted for security the enterprise best practices for implementation on their campuses, while others focus on ISO Standard (or/and the National Institution of Standards and Technology.All these adoptions are dependent on IT personal and their experiences or knowledge of the standard. On top of this is the size of the education organizations. The larger the population in an education organization, the more the problem of information and security become very clear. Thus, they have been obliged to comply with information security issues and adopt the national or international standard. The case is quite different when the population size of the education organization is smaller. In such education organizations, they use social security numbers as student ID, and issue administrative rights to faculty and lab managers – or they are not aware of the Family Educational Rights and Privacy Act (FERPA – and release some personal information.The problem of education organization security is widely open and depends on the IT staff and their information security knowledge in addition to the education culture (education, scholarships and services has very special characteristics other than an enterprise or comparative organizationThis paper is part of a research to develop an “Education Organization Baseline Control Protection and Trusted Level Security.” The research has three parts: Adopting (standards, Testing and Modifying (if needed.

  19. Persistent organic pollutants and related biological responses measured in coastal fish using chemical and biological screening methods

    DEFF Research Database (Denmark)

    Tairova, Zhanna; Strand, Jakob; Bossi, Rossana

    2017-01-01

    The aim of this study was to investigate the spatial distribution, levels of dioxin-like compounds (DLC), and biological responses in two fish species. The viviparous eelpout (Zoarces viviparus) was collected from various locations in the Baltic Sea and in fjords of Kattegat and Skagerrak, while ...

  20. Differential physiological responses of dalmatian toadflax, Linaria dalmatica L. Miller, to injury from two insect biological control agents: Implications for decision-making in biological control

    Science.gov (United States)

    Robert K. D. Peterson; Sharlene E. Sing; David K. Weaver

    2005-01-01

    Successful biological control of invasive weeds with specialist herbivorous insects is predicated on the assumption that the injury stresses the weeds sufficiently to cause reductions in individual fitness. Because plant gas exchange directly impacts growth and fitness, characterizing how injury affects these primary processes may provide a key indicator of...

  1. Invertebrate fauna associated with Torpedograss, Panicum repens (Cyperales: Poaceae), in Lake Okeechobee, Florida, and prospects for biological control

    International Nuclear Information System (INIS)

    Cuda, J.P.; Dunford, J.C.; Leavengood, J.M. Jr.

    2007-01-01

    Torpedograss, Panicum repens L., is an adventive, rhizomatous grass species that has become an invasive weed of terrestrial, wetland, and aquatic environments in tropical and subtropical regions worldwide. Until recently, strategies for controlling torpedograss in the USA have focused almost exclusively on mechanical and chemical methods, either alone or in combination, with varied results. A survey of the arthropods and nematodes currently associated with the plant in Lake Okeechobee, Florida, was conducted as part of a feasibility study to determine whether torpedograss is an appropriate target for a classical biological control program. Overall, approximately 4,000 arthropods and 400 nematode specimens were collected. Sweep, clipped vegetation, and soil core samples were dominated by representatives of the arthropod orders Hemiptera, Hymenoptera, Diptera, and Acari. Lesion nematodes of the genus Pratylenchus were commonly associated with the roots of torpedograss. None of the organisms collected were torpedograss specialists. Although classical biological control of torpedograss is feasible based on the extent of the infestation, economic losses, resistance to conventional controls, and the report of a potentially host specific natural enemy in India, the botanical position of this grass weed will require a formal risk assessment before proceeding with a classical biological control program. (author) [es

  2. Do biological-based strategies hold promise to biofouling control in MBRs?

    KAUST Repository

    Malaeb, Lilian; Le-Clech, Pierre; Vrouwenvelder, Johannes S.; Ayoub, George M.; Saikaly, Pascal

    2013-01-01

    . The reason for the slow advancement in successful control of biofouling is largely attributed to the complex interactions of involved biological compounds and the lack of representative-for-practice experimental approaches to evaluate potential effective

  3. Holarchical Systems and Emotional Holons : Biologically-Inspired System Designs for Control of Autonomous Aerial Vehicles

    Science.gov (United States)

    Ippolito, Corey; Plice, Laura; Pisanich, Greg

    2003-01-01

    The BEES (Bio-inspired Engineering for Exploration Systems) for Mars project at NASA Ames Research Center has the goal of developing bio-inspired flight control strategies to enable aerial explorers for Mars scientific investigations. This paper presents a summary of our ongoing research into biologically inspired system designs for control of unmanned autonomous aerial vehicle communities for Mars exploration. First, we present cooperative design considerations for robotic explorers based on the holarchical nature of biological systems and communities. Second, an outline of an architecture for cognitive decision making and control of individual robotic explorers is presented, modeled after the emotional nervous system of cognitive biological systems. Keywords: Holarchy, Biologically Inspired, Emotional UAV Flight Control

  4. Biological control of saltcedar (Tamarix spp.) by saltcedar leaf beetles (Diorhabda spp.): effects on small mammals

    Science.gov (United States)

    The spread of introduced saltcedar (Tamarix spp.) throughout many riparian systems across the western United States motivated the introduction of biological control agents that are specific to saltcedar, saltcedar leaf beetles (Diorhabda carinulata, D. elongata; Chrysomelidae). I monitored small mam...

  5. Costs and benefits of biological control of invasive alien plants: case studies from South Africa

    CSIR Research Space (South Africa)

    Van Wilgen, BW

    2004-01-01

    Full Text Available Invasive alien species can have significant negative environmental and economic impacts. Such species are often controlled biologically by means of introducing host-specific insects or pathogens that can reduce the species' invasive potential...

  6. Parasitoids attacking emerald ash borers in western Pennsylvania and their potential use in biological control

    Science.gov (United States)

    J.J. Duan; R.W. Fuester; J. Wildonger; P.B. Taylor; S. Barth; S-E. Spichiger

    2009-01-01

    Current biological control programs against the emerald ash borer (EAB, Agrilus planipennis Fairmaire) have primarily focused on the introduction and releases of exotic parasitoids from China, home of the pest origin....

  7. Biological control of toxic cyanobacteria by mixotrophic predators: an experimental test of intraguild predation theory

    NARCIS (Netherlands)

    Wilken, S.; Verspagen, J.M.H.; Naus-Wiezer, S.M.H.; Van Donk, E.; Huisman, Jef

    2014-01-01

    Intraguild predators both feed on and compete with their intraguild prey. In theory, intraguild predators can therefore be very effective as biological control agents of intraguild prey species, especially in productive environments. We investigated this hypothesis using the mixotrophic chrysophyte

  8. Effects of organic, biological and chemical fertilizers on vegetative indices and essential oil content of coriander (Coriandrum sativum L.

    Directory of Open Access Journals (Sweden)

    M Aghhavani Shajari

    2016-05-01

    Full Text Available This experiment was conducted to study the effects of single and combined application of organic, biological and chemical fertilizers on qualitative and quantitative characteristics of vegetative part of coriander, (Coriandrum sativum L.. The experiment was carried out as split plot in time based on Complete Randomized Block Design with three replications and 12 treatments at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, during growing season of 2010-2011. Treatments included: (1 mycorrhiza (Glomus mosseae, (2 biosulfur (Thiobacillus sp., (3 chemical fertilizer (NPK, (4 cow manure, (5 vermicompost, (6 mycorrhiza + chemical fertilizer, (7 mycorrhiza + cow manure, (8 mycorrhiza + vermicompost, (9 biosulfur + chemical fertilizer, (10 biosulfur + cow manure, (11 biosulfur + vermicompost and (12 control. Vegetative parts of coriander were cut at 5% of flowering stage in two dates (19 May and 5 June. Results showed that the highest plant height (28 cm and lateral branches (5.2 were obtained in combined application of biosulfur with cow manure treatment. The highest fresh and dry leaf weight, fresh and dry matter yield and stem dry matter weight were obtained in single application of chemical fertilizer. Single application of biosulfur increased leaf/stem ratio. The highest essential oil percentage and essential oil yield were observed in cow manure treatment (0.2% and 1753 g.ha-1, respectively. The maximum leaf/stem ratio were observed in the first cutting, while the highest lateral branches, stem fresh and dry matter yield, essential oil percentage and essential oil yield were obtained in second cut. Overall, results of this study showed that the plant vegetative yield increased by using chemical fertilizer, while essential oil percentage and essential oil yield of coriander were improved by using organic and biological fertilizers.

  9. Controlling Thermal Expansion: A Metal?Organic Frameworks Route

    OpenAIRE

    Balestra, Salvador R. G.; Bueno-Perez, Rocio; Hamad, Said; Dubbeldam, David; Ruiz-Salvador, A. Rabdel; Calero, Sofia

    2016-01-01

    Controlling thermal expansion is an important, not yet resolved, and challenging problem in materials research. A conceptual design is introduced here, for the first time, for the use of metal?organic frameworks (MOFs) as platforms for controlling thermal expansion devices that can operate in the negative, zero, and positive expansion regimes. A detailed computer simulation study, based on molecular dynamics, is presented to support the targeted application. MOF-5 has been selected as model m...

  10. Biological control of banana black Sigatoka disease with Trichoderma

    Directory of Open Access Journals (Sweden)

    Poholl Adan Sagratzki Cavero

    2015-06-01

    Full Text Available Black Sigatoka disease caused by Mycosphaerella fijiensis is the most severe banana disease worldwide. The pathogen is in an invasive phase in Brazil and is already present in most States of the country. The potential of 29 isolates of Trichoderma spp. was studied for the control of black Sigatoka disease under field conditions. Four isolates were able to significantly reduce disease severity and were further tested in a second field experiment. Isolate 2.047 showed the best results in both field experiments and was selected for fungicide sensitivity tests and mass production. This isolate was identified as Trichoderma atroviride by sequencing fragments of the ITS region of the rDNA and tef-1α of the RNA polymerase. Trichoderma atroviride was as effective as the fungicide Azoxystrobin, which is recommended for controlling black Sigatoka. This biocontrol agent has potential to control the disease and may be scaled-up for field applications on rice-based solid fermentation

  11. Synthesis of Amphiphilic Hyperbranched AIE-active Fluorescent Organic Nanoparticles and Their Application in Biological Application.

    Science.gov (United States)

    Lv, Qiulan; Wang, Ke; Xu, Dazhuang; Liu, Meiying; Wan, Qing; Huang, Hongye; Liang, Shangdong; Zhang, Xiaoyong; Wei, Yen

    2016-02-01

    Aggregation-induced emission (AIE) dyes have recently attracted much attention for biomedical applications for their remarkable AIE properties. However, the hydrophobic nature of AIE dyes made them difficult to be dispersed in physiological solution and problematic for biomedical application directly. Great efforts have been made to overcome this problem, and different strategies for preparation of water dispersible AIE based nanoprobes had been explored previously. However, a facile and effective strategy is still highly desirable and of great importance for the biomedical applications of AIE dye based on nanoprobes. In this work, the fabrication of amphiphilic hyperbranched fluorescent organic nanoparticles with a core-shell structure based on an AIE dye [tetraphenylethene acrylate (TPE-O-E)] and a hyperbranched polyamino compound [polyethylene imine (PEI)] through Michael addition reaction is described for the first time. The AIE dye as well as the final product PEI-TPE-O-E was characterized in detail by a number of techniques. To test their biomedical application potential, the cell viability as well as cell imaging properties of the PEI-TPE-O-E was also examined. The results showed that the PEI-TPE-O-E organic nanoparticles presented high water dispersiblity, ultrabright fluroerescence, low cytotoxicity and excellent biocompatibility, making them promising for biological imaging and gene delivery applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Interferon Lambda Genetics and Biology in Regulation of Viral Control

    Directory of Open Access Journals (Sweden)

    Emily A. Hemann

    2017-12-01

    Full Text Available Type III interferons, also known as interferon lambdas (IFNλs, are the most recent addition to the IFN family following their discovery in 2003. Initially, IFNλ was demonstrated to induce expression of interferon-stimulated genes and exert antiviral properties in a similar manner to type I IFNs. However, while IFNλ has been described to have largely overlapping expression and function with type I IFNs, it has become increasingly clear that type III IFNs also have distinct functions from type I IFNs. In contrast to type I IFNs, whose receptor is ubiquitously expressed, type III IFNs signal and function largely at barrier epithelial surfaces, such as the respiratory and gastrointestinal tracts, as well as the blood–brain barrier. In further support of unique functions for type III IFNs, single nucleotide polymorphisms in IFNL genes in humans are strongly associated with outcomes to viral infection. These biological linkages have also been more directly supported by studies in mice highlighting roles of IFNλ in promoting antiviral immune responses. In this review, we discuss the current understanding of type III IFNs, and how their functions are similar to, and different from, type I IFN in various immune cell subtypes and viral infections.

  13. Biology and control of the raspberry crown borer (Lepidoptera: Sesiidae).

    Science.gov (United States)

    McKern, Jacquelyn A; Johnson, Donn T; Lewis, Barbara A

    2007-04-01

    This study explored the biology of raspberry crown borer, Pennisetia marginata (Harris) (Lepidoptera: Sesiidae), in Arkansas and the optimum timing for insecticide and nematode applications. The duration of P. marginata's life cycle was observed to be 1 yr in Arkansas. Insecticide trials revealed that bifenthrin, chlorpyrifos, imidacloprid, metaflumizone, and metofluthrin efficacy were comparable with that of azinphosmethyl, the only labeled insecticide for P. marginata in brambles until 2005. Applications on 23 October 2003 for plots treated with bifenthrin, chlorpyrifos, and azinphosmethyl resulted in >88% reduction in larvae per crown. Applications on 3 November 2004 of metaflumizone, metofluthrin, and bifenthrin resulted in >89% reduction in larvae per crown. Applications on 7 April 2005 for metofluthrin, imidacloprid, bifenthrin, metaflumizone, and benzoylphenyl urea resulted in >64% reduction in the number of larvae per crown. Applications on 6 May 2004 did not reduce larval numbers. The optimum timing for treatments was found to be between October and early April, before the larvae tunneled into the crowns of plants. Applying bifenthrin with as little as 468 liters water/ha (50 gal/acre) was found to be as effective against larvae as higher volumes of spray. Nematode applications were less successful than insecticides. Nematode applications of Steinernemafeltiae, Steinernema carpocapsae, and Heterorhabditis bacteriophora reduced larvae counts per plant by 46, 53, and 33%, respectively.

  14. Primary and Secondary Organic Marine Aerosol and Oceanic Biological Activity: Recent Results and New Perspectives for Future Studies

    Directory of Open Access Journals (Sweden)

    Matteo Rinaldi

    2010-01-01

    Full Text Available One of the most important natural aerosol systems at the global level is marine aerosol that comprises both organic and inorganic components of primary and secondary origin. The present paper reviews some new results on primary and secondary organic marine aerosol, achieved during the EU project MAP (Marine Aerosol Production, comparing them with those reported in the recent literature. Marine aerosol samples collected at the coastal site of Mace Head, Ireland, show a chemical composition trend that is influenced by the oceanic biological activity cycle, in agreement with other observations. Laboratory experiments show that sea-spray aerosol from biologically active sea water can be highly enriched in organics, and the authors highlight the need for further studies on the atmospheric fate of such primary organics. With regard to the secondary fraction of organic aerosol, the average chemical composition and molecular tracer (methanesulfonic-acid, amines distribution could be successfully characterized by adopting a multitechnique analytical approach.

  15. Anaerobic Digestion. Instructor's Guide. Biological Treatment Process Control.

    Science.gov (United States)

    Carnegie, John W., Ed.

    This instructor's guide contains materials needed to teach a four-lesson unit on anaerobic digestion control. These materials include: (1) unit overview; (2) lesson plans; (3) lecture outlines; (4) student worksheets for each lesson (with answers); and (5) two copies of a final quiz (with and without answers). Lesson 1 is a review of the theory of…

  16. Ecological risks of biological control agents: impacts on IPM

    NARCIS (Netherlands)

    Hokkanen, H.M.T.; Lenteren, van J.C.; Menzler-Hokkanen, I.

    2007-01-01

    Since the early days of integrated pest management a sound ecological foundation has been considered essential for the development of effective systems. From time to time, there have been attempts to evaluate the ways in which ecological theory is exploited in pest control, and to review the lessons

  17. Comparison between chemical and biological control of Fusarium ...

    African Journals Online (AJOL)

    ... College of Education, Jeddah, Saudi Arabia. The results revealed that treatment with the fungicide carbomar or T. harzianum as well as with B. subtilis, in presence of F. solani increased the % of healthy seedlings as well as their length , fresh and dry weight than in presence of F. solani alone but still less than the control.

  18. Identifying Ant-Mirid Spatial Interactions to Improve Biological Control in Cacao-Based Agroforestry System.

    Science.gov (United States)

    Bagny Beilhe, Leïla; Piou, Cyril; Tadu, Zéphirin; Babin, Régis

    2018-06-06

    The use of ants for biological control of insect pests was the first reported case of conservation biological control. Direct and indirect community interactions between ants and pests lead to differential spatial pattern. We investigated spatial interactions between mirids, the major cocoa pest in West Africa and numerically dominant ant species, using bivariate point pattern analysis to identify potential biological control agents. We assume that potential biological control agents should display negative spatial interactions with mirids considering their niche overlap. The mirid/ant data were collected in complex cacao-based agroforestry systems sampled in three agroecological areas over a forest-savannah gradient in Cameroon. Three species, Crematogaster striatula Emery (Hymenoptera: Formicidae), Crematogaster clariventris Mayr (Hymenoptera: Formicidae), and Oecophylla longinoda Latreille (Hymenoptera: Formicidae) with high predator and aggressive behaviors were identified as dominant and showed negative spatial relationships with mirids. The weaver ant, O. longinoda was identified as the only potential biological control agent, considering its ubiquity in the plots, the similarity in niche requirements, and the spatial segregation with mirids resulting probably from exclusion mechanisms. Combining bivariate point pattern analysis to good knowledge of insect ecology was an effective method to identify a potentially good biological control agent.

  19. Issues of control in hybrids and “new” organizations

    NARCIS (Netherlands)

    Annosi, Maria Carmela

    2017-01-01

    Substantial further research is yet needed on how to design and manage organizations that can respond to the uncertainties and demands of new business. Organizational control-broadly defined as any process by which organizational members direct attention, motivate, and encourage others to act in

  20. The interrelations amongst control system elements in public sector organizations.

    NARCIS (Netherlands)

    Verbeeten, F.H.M.

    2013-01-01

    The aim of this study is to explain the decisions that public sector organizations make with regard to the design and use of their management control system. New Public Management, based on economics theory, suggests that employees in the public sector should be freed from traditional bureaucratic

  1. A biologically inspired neural network controller for ballistic arm movements

    Directory of Open Access Journals (Sweden)

    Schmid Maurizio

    2007-09-01

    Full Text Available Abstract Background In humans, the implementation of multijoint tasks of the arm implies a highly complex integration of sensory information, sensorimotor transformations and motor planning. Computational models can be profitably used to better understand the mechanisms sub-serving motor control, thus providing useful perspectives and investigating different control hypotheses. To this purpose, the use of Artificial Neural Networks has been proposed to represent and interpret the movement of upper limb. In this paper, a neural network approach to the modelling of the motor control of a human arm during planar ballistic movements is presented. Methods The developed system is composed of three main computational blocks: 1 a parallel distributed learning scheme that aims at simulating the internal inverse model in the trajectory formation process; 2 a pulse generator, which is responsible for the creation of muscular synergies; and 3 a limb model based on two joints (two degrees of freedom and six muscle-like actuators, that can accommodate for the biomechanical parameters of the arm. The learning paradigm of the neural controller is based on a pure exploration of the working space with no feedback signal. Kinematics provided by the system have been compared with those obtained in literature from experimental data of humans. Results The model reproduces kinematics of arm movements, with bell-shaped wrist velocity profiles and approximately straight trajectories, and gives rise to the generation of synergies for the execution of movements. The model allows achieving amplitude and direction errors of respectively 0.52 cm and 0.2 radians. Curvature values are similar to those encountered in experimental measures with humans. The neural controller also manages environmental modifications such as the insertion of different force fields acting on the end-effector. Conclusion The proposed system has been shown to properly simulate the development of

  2. Supramolecular Approaches to Nanoscale Morphological Control in Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Alexander M. Haruk

    2015-06-01

    Full Text Available Having recently surpassed 10% efficiency, solar cells based on organic molecules are poised to become a viable low-cost clean energy source with the added advantages of mechanical flexibility and light weight. The best-performing organic solar cells rely on a nanostructured active layer morphology consisting of a complex organization of electron donating and electron accepting molecules. Although much progress has been made in designing new donor and acceptor molecules, rational control over active layer morphology remains a central challenge. Long-term device stability is another important consideration that needs to be addressed. This review highlights supramolecular strategies for generating highly stable nanostructured organic photovoltaic active materials by design.

  3. The Rotator Cuff Organ: Integrating Developmental Biology, Tissue Engineering, and Surgical Considerations to Treat Chronic Massive Rotator Cuff Tears.

    Science.gov (United States)

    Rothrauff, Benjamin B; Pauyo, Thierry; Debski, Richard E; Rodosky, Mark W; Tuan, Rocky S; Musahl, Volker

    2017-08-01

    The torn rotator cuff remains a persistent orthopedic challenge, with poor outcomes disproportionately associated with chronic, massive tears. Degenerative changes in the tissues that comprise the rotator cuff organ, including muscle, tendon, and bone, contribute to the poor healing capacity of chronic tears, resulting in poor function and an increased risk for repair failure. Tissue engineering strategies to augment rotator cuff repair have been developed in an effort to improve rotator cuff healing and have focused on three principal aims: (1) immediate mechanical augmentation of the surgical repair, (2) restoration of muscle quality and contractility, and (3) regeneration of native enthesis structure. Work in these areas will be reviewed in sequence, highlighting the relevant pathophysiology, developmental biology, and biomechanics, which must be considered when designing therapeutic applications. While the independent use of these strategies has shown promise, synergistic benefits may emerge from their combined application given the interdependence of the tissues that constitute the rotator cuff organ. Furthermore, controlled mobilization of augmented rotator cuff repairs during postoperative rehabilitation may provide mechanotransductive cues capable of guiding tissue regeneration and restoration of rotator cuff function. Present challenges and future possibilities will be identified, which if realized, may provide solutions to the vexing condition of chronic massive rotator cuff tears.

  4. From Grouping to Coupling: A New Perceptual Organization in Vision, Psychology, and Biology

    Science.gov (United States)

    Pinna, Baingio; Porcheddu, Daniele; Deiana, Katia

    2016-01-01

    In this work, perceptual organization has been studied with the same spirit and phenomenological methods used by Gestalt psychologists. This was accomplished through new conditions that cannot be explained in terms of the classical principles of grouping. Perceptual grouping represents the way through which our visual system builds integrated elements on the basis of the maximal homogeneity among the components of the stimulus pattern. Our results demonstrated the inconsistency of organization by grouping, and more importantly, the inconsistency of the principle of similarity. On the contrary, they suggested the unique role played by the principle of dissimilarity among elements that behaves like an accent or a visual emphasis within a whole. The principle of accentuation was here considered as imparting a directional structure to the elements and to the whole object thus creating new phenomena. The salience of the resulting phenomena reveals the supremacy of dissimilarity in relation to similarity and the fact that it belongs to a further organization dynamics that we called “coupling.” In biology, coupling and its principle of accentuation are very strongly related to disruptive camouflage. Moreover, they are source of sexual attraction. They advertise the presence and elicit species identification/communication. In human beings accentuation is needed to show ourselves to others, to understand the way we dress, choose, and create clothes or invent fashion, the way we change our body accentuating several parts and hiding some others, the way we use maquillage. The existence of maquillage itself is derived from the need to accentuate something with the purpose to increase sexual attraction, to exhibit physical strength and beauty, to show or hide social status (e.g., being the king, a warrior, a priest, etc.). Last but not least, accentuation plays a basic role also in making it easier or difficult to read and understand written words. PMID:27471483

  5. Screening of chitinolytic actinomycetes for biological control of Sclerotium rolfsii stem rot disease of chilli

    Directory of Open Access Journals (Sweden)

    Pranee Pattanapipitpaisal

    2012-09-01

    Full Text Available Two hundred and eighty three strains were isolated from rhizoshere-associated soils, from Ubon Ratchathani andSrisaket province, using Enrichment Media for isolation of Chitinase-producing Actinomycetes agar (EMCA agar. All strainswere screened for chitinolytic activity and sixty eight strains gave significant clear zone on EMCA agar plates. The selectedchitinolytic strains were assayed for in vitro antagonism against Sclerotium rolfsii using cornmeal agar (CMA agar assayprocedure and the result showed that thirteen isolates have remarkable inhibiting the growth of the fungus and the top fiveantagonistic actinomycetes were PACCH 277, PACCH129, PACCH225, PACCH24 and PACCH246, respectively. The resultindicated that these actinomycetes produce chitinase which catalyze the degradation of chitin, resulting in inhibition of S.rolfsii growth. Their abilities to control the disease development were tested for in vivo biocontrol assay on chilli seedlings.Two out of thirteen candidate, PACCH24 and PACCH225, antagonists reduced the disease development at 90%. It wassuggested that the ability to inhibit the growth of pathogen in vitro was not related to the disease reduction in vivo. Thestrain PACCH24 was further identified as Streptomyces hygroscopicus according to morphological characteristic, cell walland cellular sugar analysis and 16S rDNA sequencing. The study implies a novel chitinolytic actinomycete which could bedeveloped to be a biological agent which would be included as a complement with organic fertilizers in order to control stemrot disease and promote growth of chilli.

  6. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems

    Science.gov (United States)

    Vitousek, Peter M.; Menge, Duncan N.L.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    New techniques have identified a wide range of organisms with the capacity to carry out biological nitrogen fixation (BNF)—greatly expanding our appreciation of the diversity and ubiquity of N fixers—but our understanding of the rates and controls of BNF at ecosystem and global scales has not advanced at the same pace. Nevertheless, determining rates and controls of BNF is crucial to placing anthropogenic changes to the N cycle in context, and to understanding, predicting and managing many aspects of global environmental change. Here, we estimate terrestrial BNF for a pre-industrial world by combining information on N fluxes with 15N relative abundance data for terrestrial ecosystems. Our estimate is that pre-industrial N fixation was 58 (range of 40–100) Tg N fixed yr−1; adding conservative assumptions for geological N reduces our best estimate to 44 Tg N yr−1. This approach yields substantially lower estimates than most recent calculations; it suggests that the magnitude of human alternation of the N cycle is substantially larger than has been assumed.

  7. Procurement of a Large Area Mapping FTIR Microscope for Organic-Inorganic Interfacial Analysis in Biological Materials

    Science.gov (United States)

    2015-12-31

    SECURITY CLASSIFICATION OF: After acquiring the Infrared Imaging Microscope with large area mapping capabilities for structure -function research and...Inorganic Interfacial Analysis in Biological Materials The views, opinions and/or findings contained in this report are those of the author(s) and should...of a Large Area Mapping FTIR Microscope for Organic-Inorganic Interfacial Analysis in Biological Materials Report Title After acquiring the Infrared

  8. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode.

    Science.gov (United States)

    Zhu, Xiuping; Ni, Jinren; Wei, Junjun; Xing, Xuan; Li, Hongna

    2011-05-15

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12h, the COD was decreased from 532 to 99 mg L(-1) (destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode

    International Nuclear Information System (INIS)

    Zhu, Xiuping; Ni, Jinren; Wei, Junjun; Xing, Xuan; Li, Hongna

    2011-01-01

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12 h, the COD was decreased from 532 to 99 mg L -1 ( -1 , the National Discharge Standard of China). More importantly, the destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters.

  10. Mechanization and Control Concepts for Biologically Inspired Micro Aerial Vehicles

    Science.gov (United States)

    Raney, David L.; Slominski, Eric C.

    2003-01-01

    It is possible that MAV designs of the future will exploit flapping flight in order to perform missions that require extreme agility, such as rapid flight beneath a forest canopy or within the confines of a building. Many of nature's most agile flyers generate flapping motions through resonant excitation of an aeroelastically tailored structure: muscle tissue is used to excite a vibratory mode of their flexible wing structure that creates propulsion and lift. A number of MAV concepts have been proposed that would operate in a similar fashion. This paper describes an ongoing research activity in which mechanization and control concepts with application to resonant flapping MAVs are being explored. Structural approaches, mechanical design, sensing and wingbeat control concepts inspired by hummingbirds, bats and insects are examined. Experimental results from a testbed capable of generating vibratory wingbeat patterns that approximately match those exhibited by hummingbirds in hover, cruise, and reverse flight are presented.

  11. Biological Control of Mosquito Vectors: Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Giovanni Benelli

    2016-10-01

    Full Text Available Mosquitoes represent the major arthropod vectors of human disease worldwide transmitting malaria, lymphatic filariasis, and arboviruses such as dengue virus and Zika virus. Unfortunately, no treatment (in the form of vaccines or drugs is available for most of these diseases andvectorcontrolisstillthemainformofprevention. Thelimitationsoftraditionalinsecticide-based strategies, particularly the development of insecticide resistance, have resulted in significant efforts to develop alternative eco-friendly methods. Biocontrol strategies aim to be sustainable and target a range of different mosquito species to reduce the current reliance on insecticide-based mosquito control. In thisreview, weoutline non-insecticide basedstrategiesthat havebeenimplemented orare currently being tested. We also highlight the use of mosquito behavioural knowledge that can be exploited for control strategies.

  12. Computational Biomathematics: Toward Optimal Control of Complex Biological Systems

    Science.gov (United States)

    2016-09-26

    SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS...neighbor or bi-linear interpolation). The following paper is in preparation: Scaling methods and heuristic algorithms for agent-based models. Matt...The actual method of control used is in the form of heuristic algorithms. In general, these algorithms search through a virtually infinite set of

  13. Biological control of banana black Sigatoka disease with Trichoderma

    OpenAIRE

    Poholl Adan Sagratzki Cavero; Rogério Eiji Hanada; Luadir Gasparotto; Rosalee Albuquerque Coelho Neto; Jorge Teodoro de Souza

    2015-01-01

    Black Sigatoka disease caused by Mycosphaerella fijiensis is the most severe banana disease worldwide. The pathogen is in an invasive phase in Brazil and is already present in most States of the country. The potential of 29 isolates of Trichoderma spp. was studied for the control of black Sigatoka disease under field conditions. Four isolates were able to significantly reduce disease severity and were further tested in a second field experiment. Isolate 2.047 showed the best results in both f...

  14. Combined strategies to control antinematicidal -resistant gastrointestinal nematodes in small ruminants on organized farms in pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, K. K. [University of Agriculture, Faisalabad (Pakistan). Dept. of Parasitology

    2014-03-15

    Combined strategies to control antinematicidal -resistant gastrointestinal nematodes in small ruminants on organized farms in Pakistan Antinematicidal resistance has been rooted on all the continents particularly in areas where ovine and caprine are being reared intensively due to frequent annual use of broad-spectrum dewormers. Farmers rely on mono-strategic scheme by using synthetic drugs to treat their livestock which is deemed the easier way to control gastrointestinal nematode infections as compared to the other strategies. On the other hand, recurrent employment of antinematicidal chemotherapeutics has conduced to development and prevalence of resistance among nematode populations. In this regard, other advocating strategies such as grazing management, rotation of antinematicidal drugs (although it is too late), amelioration of animal immunity, genetic approaches, biological control, nutritional supplementation, avoidance of mass treatment, improvement of management, eradication of concurrent diseases, and phytotherapy should be considered too. Although, by far there are no commercialized substantial alternatives to chemotherapy, but the current substitutes could decrease the parasitic burden, which, in turn, restrict indiscriminate use of synthetic drugs. The resistance is more rampant on organized farms as compared to non organized farms in rural areas in Asian, African and South Latin American countries because tamed animal raisers in those areas depend on ethnobotanicals to treat parasitism due to high cost of allopathic drugs. Therefore, in this review, the different strategies to control the antinematicidal resistance on organized farms in Pakistan will be elaborated. (author)

  15. Combined strategies to control antinematicidal -resistant gastrointestinal nematodes in small ruminants on organized farms in pakistan

    International Nuclear Information System (INIS)

    Hamad, K.K.

    2014-01-01

    Combined strategies to control antinematicidal -resistant gastrointestinal nematodes in small ruminants on organized farms in Pakistan Antinematicidal resistance has been rooted on all the continents particularly in areas where ovine and caprine are being reared intensively due to frequent annual use of broad-spectrum dewormers. Farmers rely on mono-strategic scheme by using synthetic drugs to treat their livestock which is deemed the easier way to control gastrointestinal nematode infections as compared to the other strategies. On the other hand, recurrent employment of antinematicidal chemotherapeutics has conduced to development and prevalence of resistance among nematode populations. In this regard, other advocating strategies such as grazing management, rotation of antinematicidal drugs (although it is too late), amelioration of animal immunity, genetic approaches, biological control, nutritional supplementation, avoidance of mass treatment, improvement of management, eradication of concurrent diseases, and phytotherapy should be considered too. Although, by far there are no commercialized substantial alternatives to chemotherapy, but the current substitutes could decrease the parasitic burden, which, in turn, restrict indiscriminate use of synthetic drugs. The resistance is more rampant on organized farms as compared to non organized farms in rural areas in Asian, African and South Latin American countries because tamed animal raisers in those areas depend on ethnobotanicals to treat parasitism due to high cost of allopathic drugs. Therefore, in this review, the different strategies to control the antinematicidal resistance on organized farms in Pakistan will be elaborated. (author)

  16. Biological control of Egyptian broomrape (Orobanche aegyptiaca using Fusarium spp.

    Directory of Open Access Journals (Sweden)

    I. Ghannam

    2007-08-01

    Full Text Available The broomrape (Orobanche spp. is an obligate holoparasitic weed that causes severe damage to many important vegetable crops. Many broomrape control strategies have been tested over the years. In this investigation, 125 Fusarium spp. isolates were recovered from diseased broomrape spikes collected from fields in agricultural areas near Hebron. The pathogenicity of isolates on broomrape was evaluated using an inoculum suspension containing mycelia and conidia. The most effective Fusarium isolates significantly increased the dead spikes of broomrape by 33.6–72.7% compared to the control; there was no obvious pathogenic effect on the tomato plants. Fusarium spp. isolates Fu 20, 25 and 119 were identified as F. solani, while Fu 30, 52, 59, 87 and 12-04 were F. oxysporum. In addition, the two previously known Fusarium strains, F. oxysporum strain EId (CNCM-I-1622 (Foxy and F. arthrosporioides strain E4a (CNCM-I-1621 (Farth were equally effective in controlling broomrape parasitizing tomato plants grown in pots, where the dead spikes of broomrape increased by 50.0 and 51.6%, respectively.

  17. 75 FR 28233 - Availability of an Environmental Assessment for a Biological Control Agent for Asian Citrus Psyllid

    Science.gov (United States)

    2010-05-20

    ...] Availability of an Environmental Assessment for a Biological Control Agent for Asian Citrus Psyllid AGENCY... radiata, into the continental United States for use as a biological control agent to reduce the severity... of an alternative biological control agent, an encyrtid wasp, (Diaphorencyrtus aligarhensis). However...

  18. 77 FR 46373 - Field Release of Aphelinus glycinis for the Biological Control of the Soybean Aphid in the...

    Science.gov (United States)

    2012-08-03

    ... Inspection Service [Docket No APHIS-2012-0061] Field Release of Aphelinus glycinis for the Biological Control... for the biological control of the soybean aphid, Aphis glycines, in the continental United States. We... glycinis for the Biological Control of the Soybean Aphid in the Continental United States'' (March 2012...

  19. Geometric triangular chiral hexagon crystal-like complexes organization in pathological tissues biological collision order.

    Directory of Open Access Journals (Sweden)

    Jairo A Díaz

    Full Text Available The present study describes and documents self-assembly of geometric triangular chiral hexagon crystal like complex organizations (GTCHC in human pathological tissues. The authors have found this architectural geometric expression at macroscopic and microscopic levels mainly in cancer processes. This study is based essentially on macroscopic and histopathologic analyses of 3000 surgical specimens: 2600 inflammatory lesions and 400 malignant tumours. Geometric complexes identified photographically at macroscopic level were located in the gross surgical specimen, and these areas were carefully dissected. Samples were taken to carry out histologic analysis. Based on the hypothesis of a collision genesis mechanism and because it is difficult to carry out an appropriate methodological observation in biological systems, the authors designed a model base on other dynamic systems to obtain indirect information in which a strong white flash wave light discharge, generated by an electronic device, hits over the lines of electrical conductance structured in helicoidal pattern. In their experimental model, the authors were able to reproduce and to predict polarity, chirality, helicoid geometry, triangular and hexagonal clusters through electromagnetic sequential collisions. They determined that similar events among constituents of extracelular matrix which drive and produce piezoelectric activity are responsible for the genesis of GTCHC complexes in pathological tissues. This research suggests that molecular crystals represented by triangular chiral hexagons derived from a collision-attraction event against collagen type I fibrils emerge at microscopic and macroscopic scales presenting a lateral assembly of each side of hypertrophy helicoid fibers, that represent energy flow in cooperative hierarchically chiral electromagnetic interaction in pathological tissues and arises as a geometry of the equilibrium in perturbed biological systems. Further

  20. Geometric triangular chiral hexagon crystal-like complexes organization in pathological tissues biological collision order.

    Science.gov (United States)

    Díaz, Jairo A; Jaramillo, Natalia A; Murillo, Mauricio F

    2007-12-12

    The present study describes and documents self-assembly of geometric triangular chiral hexagon crystal like complex organizations (GTCHC) in human pathological tissues. The authors have found this architectural geometric expression at macroscopic and microscopic levels mainly in cancer processes. This study is based essentially on macroscopic and histopathologic analyses of 3000 surgical specimens: 2600 inflammatory lesions and 400 malignant tumours. Geometric complexes identified photographically at macroscopic level were located in the gross surgical specimen, and these areas were carefully dissected. Samples were taken to carry out histologic analysis. Based on the hypothesis of a collision genesis mechanism and because it is difficult to carry out an appropriate methodological observation in biological systems, the authors designed a model base on other dynamic systems to obtain indirect information in which a strong white flash wave light discharge, generated by an electronic device, hits over the lines of electrical conductance structured in helicoidal pattern. In their experimental model, the authors were able to reproduce and to predict polarity, chirality, helicoid geometry, triangular and hexagonal clusters through electromagnetic sequential collisions. They determined that similar events among constituents of extracelular matrix which drive and produce piezoelectric activity are responsible for the genesis of GTCHC complexes in pathological tissues. This research suggests that molecular crystals represented by triangular chiral hexagons derived from a collision-attraction event against collagen type I fibrils emerge at microscopic and macroscopic scales presenting a lateral assembly of each side of hypertrophy helicoid fibers, that represent energy flow in cooperative hierarchically chiral electromagnetic interaction in pathological tissues and arises as a geometry of the equilibrium in perturbed biological systems. Further interdisciplinary studies must

  1. New experimental approaches to the biology of flight control systems.

    Science.gov (United States)

    Taylor, Graham K; Bacic, Marko; Bomphrey, Richard J; Carruthers, Anna C; Gillies, James; Walker, Simon M; Thomas, Adrian L R

    2008-01-01

    Here we consider how new experimental approaches in biomechanics can be used to attain a systems-level understanding of the dynamics of animal flight control. Our aim in this paper is not to provide detailed results and analysis, but rather to tackle several conceptual and methodological issues that have stood in the way of experimentalists in achieving this goal, and to offer tools for overcoming these. We begin by discussing the interplay between analytical and empirical methods, emphasizing that the structure of the models we use to analyse flight control dictates the empirical measurements we must make in order to parameterize them. We then provide a conceptual overview of tethered-flight paradigms, comparing classical ;open-loop' and ;closed-loop' setups, and describe a flight simulator that we have recently developed for making flight dynamics measurements on tethered insects. Next, we provide a conceptual overview of free-flight paradigms, focusing on the need to use system identification techniques in order to analyse the data they provide, and describe two new techniques that we have developed for making flight dynamics measurements on freely flying birds. First, we describe a technique for obtaining inertial measurements of the orientation, angular velocity and acceleration of a steppe eagle Aquila nipalensis in wide-ranging free flight, together with synchronized measurements of wing and tail kinematics using onboard instrumentation and video cameras. Second, we describe a photogrammetric method to measure the 3D wing kinematics of the eagle during take-off and landing. In each case, we provide demonstration data to illustrate the kinds of information available from each method. We conclude by discussing the prospects for systems-level analyses of flight control using these techniques and others like them.

  2. Control of biological hazards in cold smoked salmon production

    DEFF Research Database (Denmark)

    Huss, Hans Henrik; Embarek, Peter Karim Ben; Jeppesen, V.F.

    1995-01-01

    An outline of the common processing technology for cold smoked salmon in Denmark is presented. The safety hazards related to pathogenic bacteria, parasites and biogenic amines are discussed with special emphasis on hazards related to Clostridium botulinum and Listeria monocytogenes. Critical...... control points are identified for all hazards except growth of L. monocytogenes. For this reason a limitation of shelf life to three weeks at +5 degrees C far cold smoked vacuum-packed salmon having greater than or equal to 3% water phase salt is recommended...

  3. [Development of a new type of biological organic fertilizer and its effect on the growth promotion of tomato].

    Science.gov (United States)

    Liu, Qiu Mei; Chen, Xing; Meng, Xiao Hui; Ye, Qi; Li, Tuo; Liu, Dong Yang; Shen, Qi Rong

    2017-10-01

    The objective of this study was to improve the ability of sporulation production of Trichoderma guizhouense NJAU4742 under solid state fermentation by using rice straw and amino acids as resources, and the fermentation products were used as inoculants of the organic fertilizers adding with different ratios of amino acids solution to develop a new type of biological organic fertilizer. The results indicated that the optimal condition for sporulation by T. guizhouense NJAU4742 was soaking in 30 times diluted amino acid solution for one whole night, with initial pH 3.5, 75% of moisture content and 30% of corn powder, under which the sporulation reached to 2.40×10 10 CFU·g -1 . The fermentation products were inoculated at 2% into the mature organic fertilizer containing 20% of amino acids solution, and the sporulation and IAA content were 6.40×10 9 CFU·g -1 and 38.66 mg·kg -1 , which were 1142.30 and 1.42 times higher than that of CK after 7 days, respectively. Pot experiment showed that biological organic fertilizer could significantly promote the growth of tomato, and the height of the tomato increased by 98.8% and 23.8%, respectively, compared with CK. The stem diameters of AT (amino acids + mature organic fertilizer + T. guizhouense NJAU4742) and AA (amino acids + mature organic fertilizer) were increased by 58.9% and 10.3%, respectively, compared with CK. As for the chlorophyll, leaf length and leaf width, the values also increased significantly. The highest spore content was obtained by using amino acids and rice straw as substrates under solid state fermentation (SSF), which overcame the difficulties of producing new type of biological organic fertilizer during the large scale industrial production. Biological organic fertilizer and amino acids organic fertilizer could significantly promote the growth of tomato compared with the chemical fertilizer, and had a good application prospect in intensive agriculture.

  4. Control of BTEX migration using a biologically enhanced permeable barrier

    International Nuclear Information System (INIS)

    Borden, R.C.; Goin, R.T.; Kao, C.M.

    1997-01-01

    A permeable barrier system, consisting of a line of closely spaced wells, was installed perpendicular to ground water flow to control the migration of a dissolved hydrocarbon plume. The wells were charged with concrete briquets that release oxygen and nitrate at a controlled rate, enhancing aerobic biodegradation in the downgradient aquifer. Laboratory batch reactor experiments were conducted to identify concrete mixtures that slowly released oxygen over an extended time period. A full-scale permeable barrier system using ORC was constructed at a gasoline-spill site. During the first 242 days of operation, total BTEX decreased from 17 to 3.4 mg/L and dissolved oxygen increased from 0.4 to 1.8 mg/L during transport through the barrier. Over time, BTEX treatment efficiencies declined, indicating the barrier system had become less effective in releasing oxygen and nutrients to the highly contaminated portion of the aquifer. Point dilution tests and sediment analyses performed at the conclusion of the project indicated that the aquifer in the vicinity of the remediation wells had been clogged by precipitation with iron minerals

  5. Can Flowering Greencover Crops Promote Biological Control in German Vineyards?

    Directory of Open Access Journals (Sweden)

    Christoph Hoffmann

    2017-11-01

    Full Text Available Greencover crops are widely recommended to provide predators and parasitoids with floral resources for improved pest control. We studied parasitism and predation of European grapevine moth (Lobesia botrana eggs and pupae as well as predatory mite abundances in an experimental vineyard with either one or two sowings of greencover crops compared to spontaneous vegetation. The co-occurrence between greencover flowering time and parasitoid activity differed greatly between the two study years. Parasitism was much higher when flowering and parasitoid activity coincided. While egg predation was enhanced by greencover crops, there were no significant benefits of greencover crops on parasitism of L. botrana eggs or pupae. Predatory mites did not show an as strong increase on grapevines in greencover crop plots as egg predation. Overall, our study demonstrates only limited pest control benefits of greencover crops. Given the strong within- and between year variation in natural enemy activity, studies across multiple years will be necessary to adequately describe the role of greencover crops for pest management and to identify the main predators of L. botrana eggs.

  6. Quality controls in integrative approaches to detect errors and inconsistencies in biological databases

    Directory of Open Access Journals (Sweden)

    Ghisalberti Giorgio

    2010-12-01

    Full Text Available Numerous biomolecular data are available, but they are scattered in many databases and only some of them are curated by experts. Most available data are computationally derived and include errors and inconsistencies. Effective use of available data in order to derive new knowledge hence requires data integration and quality improvement. Many approaches for data integration have been proposed. Data warehousing seams to be the most adequate when comprehensive analysis of integrated data is required. This makes it the most suitable also to implement comprehensive quality controls on integrated data. We previously developed GFINDer (http://www.bioinformatics.polimi.it/GFINDer/, a web system that supports scientists in effectively using available information. It allows comprehensive statistical analysis and mining of functional and phenotypic annotations of gene lists, such as those identified by high-throughput biomolecular experiments. GFINDer backend is composed of a multi-organism genomic and proteomic data warehouse (GPDW. Within the GPDW, several controlled terminologies and ontologies, which describe gene and gene product related biomolecular processes, functions and phenotypes, are imported and integrated, together with their associations with genes and proteins of several organisms. In order to ease maintaining updated the GPDW and to ensure the best possible quality of data integrated in subsequent updating of the data warehouse, we developed several automatic procedures. Within them, we implemented numerous data quality control techniques to test the integrated data for a variety of possible errors and inconsistencies. Among other features, the implemented controls check data structure and completeness, ontological data consistency, ID format and evolution, unexpected data quantification values, and consistency of data from single and multiple sources. We use the implemented controls to analyze the quality of data available from several

  7. The role and control of sludge age in biological nutrient removal activated sludge systems.

    Science.gov (United States)

    Ekama, G A

    2010-01-01

    The sludge age is the most fundamental and important parameter in the design, operation and control of biological nutrient removal (BNR) activated sludge (AS) systems. Generally, the better the effluent and waste sludge quality required from the system, the longer the sludge age, the larger the biological reactor and the more wastewater characteristics need to be known. Controlling the reactor concentration does not control sludge age, only the mass of sludge in the system. When nitrification is a requirement, sludge age control becomes a requirement and the secondary settling tanks can no longer serve the dual purpose of clarifier and waste activated sludge thickeners. The easiest and most practical way to control sludge age is with hydraulic control by wasting a defined proportion of the reactor volume daily. In AS plants with reactor concentration control, nitrification fails first. With hydraulic control of sludge age, nitrification will not fail, rather the plant fails by shedding solids over the secondary settling tank effluent weirs.

  8. Performance effect of multiple control forms in a Lean organization

    DEFF Research Database (Denmark)

    Kristensen, Thomas Borup; Israelsen, Poul

    2012-01-01

    Over the last decades Lean has developed into a prominent management philosophy reaching beyond shop floor tools. However, substantial support of performance effects from Lean is still scarce and at best with mixed results. Recently, research has turned its focus towards perceiving Lean...... as a control package. In this paper we present statistical support for enhanced performance coming from Lean. Furthermore, our results strongly support the perception of Lean as a set of multiple control forms (output, behavioral, and social controls) that complement each other. Therefore, performance...... is increased if the average level of control forms is increased, and performance is further increased if the control forms are balanced at the same level representing a complementary effect between them. Our data are archival data spanning multiple years in a strong Lean organization. The dependent performance...

  9. Removal of Refractory Organics from Biologically Treated Landfill Leachate by Microwave Discharge Electrodeless Lamp Assisted Fenton Process

    Directory of Open Access Journals (Sweden)

    Jiuyi Li

    2015-01-01

    Full Text Available Biologically treated leachate usually contains considerable amount of refractory organics and trace concentrations of xenobiotic pollutants. Removal of refractory organics from biologically treated landfill leachate by a novel microwave discharge electrodeless lamp (MDEL assisted Fenton process was investigated in the present study in comparison to conventional Fenton and ultraviolet Fenton processes. Conventional Fenton and ultraviolet Fenton processes could substantially remove up to 70% of the refractory organics in a membrane bioreactor treated leachate. MDEL assisted Fenton process achieved excellent removal performance of the refractory components, and the effluent chemical oxygen demand concentration was lower than 100 mg L−1. Most organic matters were transformed into smaller compounds with molecular weights less than 1000 Da. Ten different polycyclic aromatic hydrocarbons were detected in the biologically treated leachate, most of which were effectively removed by MDEL-Fenton treatment. MDEL-Fenton process provides powerful capability in degradation of refractory and xenobiotic organic pollutants in landfill leachate and could be adopted as a single-stage polishing process for biologically treated landfill leachate to meet the stringent discharge limit.

  10. Investigating Biological Control Agents for Controlling Invasive Populations of the Mealybug Pseudococcus comstocki in France.

    Directory of Open Access Journals (Sweden)

    Thibaut Malausa

    Full Text Available Pseudococcus comstocki (Hemiptera: Pseudococcidae is a mealybug species native to Eastern Asia and present as an invasive pest in northern Italy and southern France since the start of the century. It infests apple and pear trees, grapevines and some ornamental trees. Biocontrol programmes against this pest proved successful in central Asia and North America in the second half of the 20th century. In this study, we investigated possible biocontrol agents against P. comstocki, with the aim of developing a biocontrol programme in France. We carried out systematic DNA-barcoding at each step in the search for a specialist parasitoid. First we characterised the French target populations of P. comstocki. We then identified the parasitoids attacking P. comstocki in France. Finally, we searched for foreign mealybug populations identified a priori as P. comstocki and surveyed their hymenopteran parasitoids. Three mealybug species (P. comstocki, P. viburni and P. cryptus were identified during the survey, together with at least 16 different parasitoid taxa. We selected candidate biological control agent populations for use against P. comstocki in France, from the species Allotropa burrelli (Hymenoptera: Platygastridae and Acerophagus malinus (Hymenoptera: Encyrtidae. The coupling of molecular and morphological characterisation for both pests and natural enemies facilitated the programme development and the rejection of unsuitable or generalist parasitoids.

  11. Investigation on thiosulfate-involved organics and nitrogen removal by a sulfur cycle-based biological wastewater treatment process.

    Science.gov (United States)

    Qian, Jin; Lu, Hui; Cui, Yanxiang; Wei, Li; Liu, Rulong; Chen, Guang-Hao

    2015-02-01

    Thiosulfate, as an intermediate of biological sulfate/sulfite reduction, can significantly improve nitrogen removal potential in a biological sulfur cycle-based process, namely the Sulfate reduction-Autotrophic denitrification-Nitrification Integrated (SANI(®)) process. However, the related thiosulfate bio-activities coupled with organics and nitrogen removal in wastewater treatment lacked detailed examinations and reports. In this study, S2O3(2-) transformation during biological SO4(2-)/SO3(2-) co-reduction coupled with organics removal as well as S2O3(2-) oxidation coupled with chemolithotrophic denitrification were extensively evaluated under different experimental conditions. Thiosulfate is produced from the co-reduction of sulfate and sulfite through biological pathway at an optimum pH of 7.5 for organics removal. And the produced S2O3(2-) may disproportionate to sulfide and sulfate during both biological S2O3(2-) reduction and oxidation most possibly carried out by Desulfovibrio-like species. Dosing the same amount of nitrate, pH was found to be the more direct factor influencing the denitritation activity than free nitrous acid (FNA) and the optimal pH for denitratation (7.0) and denitritation (8.0) activities were different. Spiking organics significantly improved both denitratation and denitritation activities while minimizing sulfide inhibition of NO3(-) reduction during thiosulfate-based denitrification. These findings in this study can improve the understanding of mechanisms of thiosulfate on organics and nitrogen removal in biological sulfur cycle-based wastewater treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Control of neuronal network organization by chemical surface functionalization of multi-walled carbon nanotube arrays

    International Nuclear Information System (INIS)

    Liu Jie; Bibari, Olivier; Marchand, Gilles; Benabid, Alim-Louis; Sauter-Starace, Fabien; Appaix, Florence; De Waard, Michel

    2011-01-01

    Carbon nanotube substrates are promising candidates for biological applications and devices. Interfacing of these carbon nanotubes with neurons can be controlled by chemical modifications. In this study, we investigated how chemical surface functionalization of multi-walled carbon nanotube arrays (MWNT-A) influences neuronal adhesion and network organization. Functionalization of MWNT-A dramatically modifies the length of neurite fascicles, cluster inter-connection success rate, and the percentage of neurites that escape from the clusters. We propose that chemical functionalization represents a method of choice for developing applications in which neuronal patterning on MWNT-A substrates is required.

  13. Control of neuronal network organization by chemical surface functionalization of multi-walled carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jie; Bibari, Olivier; Marchand, Gilles; Benabid, Alim-Louis; Sauter-Starace, Fabien [CEA, LETI-Minatec, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Appaix, Florence; De Waard, Michel, E-mail: fabien.sauter@cea.fr, E-mail: michel.dewaard@ujf-grenoble.fr [Inserm U836, Grenoble Institute of Neuroscience, Site Sante la Tronche, Batiment Edmond J Safra, Chemin Fortune Ferrini, BP170, 38042 Grenoble Cedex 09 (France)

    2011-05-13

    Carbon nanotube substrates are promising candidates for biological applications and devices. Interfacing of these carbon nanotubes with neurons can be controlled by chemical modifications. In this study, we investigated how chemical surface functionalization of multi-walled carbon nanotube arrays (MWNT-A) influences neuronal adhesion and network organization. Functionalization of MWNT-A dramatically modifies the length of neurite fascicles, cluster inter-connection success rate, and the percentage of neurites that escape from the clusters. We propose that chemical functionalization represents a method of choice for developing applications in which neuronal patterning on MWNT-A substrates is required.

  14. Zika virus: History, emergence, biology, and prospects for control.

    Science.gov (United States)

    Weaver, Scott C; Costa, Federico; Garcia-Blanco, Mariano A; Ko, Albert I; Ribeiro, Guilherme S; Saade, George; Shi, Pei-Yong; Vasilakis, Nikos

    2016-06-01

    Zika virus (ZIKV), a previously obscure flavivirus closely related to dengue, West Nile, Japanese encephalitis and yellow fever viruses, has emerged explosively since 2007 to cause a series of epidemics in Micronesia, the South Pacific, and most recently the Americas. After its putative evolution in sub-Saharan Africa, ZIKV spread in the distant past to Asia and has probably emerged on multiple occasions into urban transmission cycles involving Aedes (Stegomyia) spp. mosquitoes and human amplification hosts, accompanied by a relatively mild dengue-like illness. The unprecedented numbers of people infected during recent outbreaks in the South Pacific and the Americas may have resulted in enough ZIKV infections to notice relatively rare congenital microcephaly and Guillain-Barré syndromes. Another hypothesis is that phenotypic changes in Asian lineage ZIKV strains led to these disease outcomes. Here, we review potential strategies to control the ongoing outbreak through vector-centric approaches as well as the prospects for the development of vaccines and therapeutics. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Biological control of dodder (Cuscuta campestris L. by fungi pathogens

    Directory of Open Access Journals (Sweden)

    F. Fallahpour

    2016-04-01

    Full Text Available Parasite weeds are the most important yield reducing factors, and among them dodder (Cuscuta campestris L. is an obligate parasite of many plant families. In order to find a suitable biocontrol agent for dodder a study was conducted based on a randomized complete design with four replications at research greenhouse of Faculty of Agriculture, Ferdowsi University of Mashhad, Iran during 2007-2009. Diseased dodders sampled from sugarbeet farms of Chenaran, Iran. After culturing and isolating exiting fungi from infected tissues of dodder, Fusarium sp., Alternaria sp. and Colletotrichum sp. were recognized. Inoculation of isolates was carried out with concenteration of 1×108 spores per ml sterile water at different growth stages of dodder in labratoary and greenhouse. Among different fungi, isolate of 323 of F. oxysporum showed an effective control on germination of dodder seeds and the highest level of plant pathogencity was before the contact of dodder with host and infection in older plants decreased. Infection of this isolate with crops such as sugarbeet (Beta vulgaris L., alfalfa (Medigago sativa L., basil (Ocimum basilicum L., wheat (Triticum aestivum L. and barley (Hordeum vulgare L. showed no symptoms.

  16. Biology and control of swamp dodder (Cuscuta gronovii)

    International Nuclear Information System (INIS)

    Bewick, T.A.

    1987-01-01

    A simple model predicting swamp dodder (Cuscuta gronovii Willd.) emergence was developed. The model states that 0.1% of the cranberry seedlings will emerge after 150 to 170 GDD have accumulated after the winter ice has melted on the cranberry beds, using 0 C as the low temperature threshold. Experiments in cranberry showed that pronamide [3,5-dichloro-(N-1,1-dimethyl-2-propynyl)benzamide] was effective in controlling swamp dodder when applied preemergence. Rates below 2.4 kg ai/ha appeared to be safe for cranberry plants and fruit. Experiments with 14 C glyphosate showed that the herbicide moved out of carrot leaves to the physiological sinks in the plant. In carrots parasitized by swamp dodder the dodder acted as one of the strongest sinks for photosynthates from the host. In cranberry glyphosate moved out of the leaves, but most remained in the stem to which the treated leaves were attached. The only physiological sinks that accumulated significant amounts of label were the stem apices. The concentration of the herbicide in this sink decreased with time. Swamp dodder stems were able to absorb glyphosate directly from solution

  17. Assessing the status of biological control as a management tool for suppression of invasive alien plants in South Africa

    OpenAIRE

    Zachariades, Costas; Paterson, Iain D.; Strathie, Lorraine W.; Hill, Martin P.; van Wilgen, Brian W.

    2017-01-01

    Background: Biological control of invasive alien plants (IAPs) using introduced natural enemies contributes significantly to sustained, cost-effective management of natural resources in South Africa. The status of, and prospects for, biological control is therefore integral to National Status Reports (NSRs) on Biological Invasions, the first of which is due in 2017. Objectives: Our aim was to evaluate the status of, and prospects for, biological control of IAPs in South Africa. We discuss...

  18. Effect of Organic and Biological Fertilizers on Growth and Yield of Tomatoes (Lycopersicon esculentum Mill. and Bacterial Colonization

    Directory of Open Access Journals (Sweden)

    H. Makarian

    2016-02-01

    Full Text Available Introduction: In recent decades, excessive use of chemical fertilizers causes environmental problems such as water resource pollution and decrease in soil fertility. Organic matters are excellent sources of plant-available nutrients and their addition to soil could maintain high microbial populations and activities. In crop studies, Prabha et al. (2007 reported that there was excellent plant growth as well as yield in garlic plants that received vermicompost as nutrient in the field (28. Recent studies confirmed that, a number of bacterial species mostly associated with the plant rhizosphere, are found to be beneficial for plant growth, yield and crop quality. Therefore, the objective of this study is to investigate the growth promoting effects of organic and bio-fertilizers on tomato growth and yield. Materials and Methods: A factorial experiment in randomized complete block design with three replications was conducted at the College of Agricultural, University of Shahrood in 2011. Geographically, the site is located in Bastam (36° 25’E, 54° 58’N, 1349 m a.s.l..The climate of this region is semi-arid. Treatments included three levels of organic fertilizers: vermicompost (1300 kgha-1, cow manure (3350 kgha-1, and control, biological fertilizer in four levels (Pseudomonas putyda, Pseudomonas fluorescens, Azotobacter chrococcum and control. The bacterial suspension for each species was applied at a rate of 3 liters per hectare. Metribuzin herbicide (wettable 80% powder was used at a rate of 1000 gr. ha-1. Petopride No. 2' variety of tomato (Lycopersicon esculentum Mill. was used in the present experiment. At the time of harvesting, the plant characteristics namely lengths and diameter of stem, number and weight of fruit, weight of stem and leaf were also registered. Statistical analyses of data were performed with statistical software Mstatc. Significant differences between means refer to the probability level of 0.05 by LSD test. Results

  19. The Effects of Organic, Chemical and Biological Fertilizers on Seed Yield and Yield Components of Dwarf Chicory (Cichorium pumilum Jacq.

    Directory of Open Access Journals (Sweden)

    Farima Doaei

    2017-08-01

    Full Text Available Introduction: In order to response to greater demand for wild medicinal plants consumption, it has been recommended that wild medicinal plants can be brought into cultivation systems. Cichorium pumilum Jacq. is an annual species of Asteraceae family, that has a long history of herbal use and is especially of great value for its tonic effects upon the liver and digestive tract. The root and the leaves of chicory are digestive, hypoglycemic, diuretic, laxative and tonic. Using chemical fertilizers can be easily lost from soils through fixation, leaching or gas emission that can lead to reduced fertilizer efficiency. The applications of organic fertilizers such as compost and vermicompost can be considered as a good management practice to increase cropping system sustainability, reducing soil erosion and improving soil physical, chemical and biological properties. Soil microorganisms have a significant role in regulating the dynamics of organic matter breakdown and the availability of plant nutrients such as nitrogen, phosphate and sulfur. Materials and Methods: For evaluating the effects of organic, mineral and biological fertilizers on seed yield and yield components of dwarf chicory (Cichorium pumilum Jacq., a field experiment was conducted at the Agricultural Research Station, the Ferdowsi University of Mashhad (36016/ N, 59036/ E, elevation 985 m during growing season of 2011-2012. The experimental layout was factorial based on randomized complete block design with four replications. The experimental treatments were all combination of organic and chemical fertilizers (compost 4 t/ha, vermicompost 4 t/ha, urea fertilizer 130 kg/ha and control and biological fertilizer (biosulfur biofertilizer + pure sulfur 100 kg/ ha and control. Before conducting the experiment, soil sample were taken from the depth of 0-30 cm, and physical and chemical characteristics of the soil and also used compost and vermicompost were determined. All fertilizer

  20. A Conceptual Framework for Organizing Active Learning Experiences in Biology Instruction

    Science.gov (United States)

    Gardner, Joel; Belland, Brian R.

    2012-01-01

    Introductory biology courses form a cornerstone of undergraduate instruction. However, the predominantly used lecture approach fails to produce higher-order biology learning. Research shows that active learning strategies can increase student learning, yet few biology instructors use all identified active learning strategies. In this paper, we…

  1. Biological monitoring of organic substances in workers of a hazardous waste incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Agramunt, C.; Domingo, J.L.; Bocio, A.; Nadal, M. [Lab. of Toxicology and Environmental Health, Reus (Spain); Muller, L. [SGS GmbH, Antwerpen (Belgium)

    2004-09-15

    In recent years, incineration has been one of the most frequently used technologies for hazardous waste treatment. However, health risks and the potential environmental impact of hazardous waste incinerators (HWI) are still issues of major concern. The reason is the association of stack emissions of semivolatile and volatile compounds from HWI with their potential adverse health effects. Some compounds of special interest are polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). In relation to this, HWI workers can be potentially exposed to PCDD/Fs, polychlorinated biphenyls (PCBs) and other pollutants with a well-known toxicity. Since 1999, the only HWI in Spain has been operating in Constanti (Tarragona, Catalonia). It has a burning furnace that operates at a temperature of 1100 C and can burn 30,000 tons of hazardous waste per year. The purpose of the present survey was to determine after four years of regular operations in the facility, the concentrations in blood and urine of the HWI workers of a number of organic substances directly related with HWI and to which workers could be exposed. Human biological monitoring evaluates the degree of internal exposure to a defined environmental or occupational pollutant of individuals or population groups. The results of the current study have been compared with the baseline levels.

  2. Biotransformation of trace organic compounds by activated sludge from a biological nutrient removal treatment system.

    Science.gov (United States)

    Inyang, Mandu; Flowers, Riley; McAvoy, Drew; Dickenson, Eric

    2016-09-01

    The removal of trace organic compounds (TOrCs) and their biotransformation rates, kb (LgSS(-)(1)h(-)(1)) was investigated across different redox zones in a biological nutrient removal (BNR) system using an OECD batch test. Biodegradation kinetics of fourteen TOrCs with initial concentration of 1-36μgL(-)(1) in activated sludge were monitored over the course of 24h. Degradation kinetic behavior for the TOrCs fell into four groupings: Group 1 (atenolol) was biotransformed (0.018-0.22LgSS(-)(1)h(-)(1)) under anaerobic, anoxic, and aerobic conditions. Group 2 (meprobamate and trimethoprim) biotransformed (0.01-0.21LgSS(-)(1)h(-)(1)) under anoxic and aerobic conditions, Group 3 (DEET, gemfibrozil and triclosan) only biotransformed (0.034-0.26LgSS(-)(1)h(-)(1)) under aerobic conditions, and Group 4 (carbamazepine, primidone, sucralose and TCEP) exhibited little to no biotransformation (<0.001LgSS(-)(1)h(-)(1)) under any redox conditions. BNR treatment did not provide a barrier against Group 4 compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Biologically inspired control of humanoid robot arms robust and adaptive approaches

    CERN Document Server

    Spiers, Adam; Herrmann, Guido

    2016-01-01

    This book investigates a biologically inspired method of robot arm control, developed with the objective of synthesising human-like motion dynamically, using nonlinear, robust and adaptive control techniques in practical robot systems. The control method caters to a rising interest in humanoid robots and the need for appropriate control schemes to match these systems. Unlike the classic kinematic schemes used in industrial manipulators, the dynamic approaches proposed here promote human-like motion with better exploitation of the robot’s physical structure. This also benefits human-robot interaction. The control schemes proposed in this book are inspired by a wealth of human-motion literature that indicates the drivers of motion to be dynamic, model-based and optimal. Such considerations lend themselves nicely to achievement via nonlinear control techniques without the necessity for extensive and complex biological models. The operational-space method of robot control forms the basis of many of the techniqu...

  4. Quantifying conservation biological control for management of Bemisia tabaci (Hemiptera: Aleyrodidae) in cotton

    Science.gov (United States)

    Conservation biological control can be an effective tactic for minimizing insect-induced damage to agricultural production. The most effective manner of applying CBC is through an Integrated Pest Management (IPM) strategy, combining many tactics including cultural controls, pest sampling, the use of...

  5. Hybridization between a native and introduced predator of Adelgidae: An unintended result of classical biological control

    Science.gov (United States)

    N.P. Havill; Gina Davis; David Mausel; Joanne Klein; Richard McDonald; Cera Jones; Melissa Fischer; Scott Salom; Adelgisa. Caccone

    2012-01-01

    Hybridization between introduced biological control agents and native species has the potential to impact native biodiversity and pest control efforts. This study reports progress towards predicting the outcome of hybridization between two beetle species, the introduced Laricobius nigrinus Fender and the native L. rubidus LeConte...

  6. Compatible biological and chemical control systems for Rhizoctonia solani in potato

    NARCIS (Netherlands)

    Boogert, van den P.H.J.F.; Luttikholt, A.J.G.

    2004-01-01

    A series of chemical and biological control agents were tested for compatibility with the Rhizoctonia-specific biocontrol fungus Verticillium biguttatum aimed at designing novel control strategies for black scurf (Rhizoctonia solani) and other tuber diseases in potato. The efficacy of chemicals,

  7. Candidate predators for biological control of the poultry red mite Dermanyssus gallinae

    NARCIS (Netherlands)

    Lesna, I.; Wolfs, P.; Faraji, F.; Roy, L.; Komdeur, J.; Sabelis, M.W.

    2009-01-01

    The poultry red mite, Dermanyssus gallinae, is currently a significant pest in the poultry industry in Europe. Biological control by the introduction of predatory mites is one of the various options for controlling poultry red mites. Here, we present the first results of an attempt to identify

  8. Candidate predators for biological control of the poultry red mite Dermanyssus gallinae

    NARCIS (Netherlands)

    Lesna, Izabela; Wolfs, Peter; Faraji, Farid; Roy, Lise; Komdeur, Jan; Sabelis, Maurice W.

    The poultry red mite, Dermanyssus gallinae, is currently a significant pest in the poultry industry in Europe. Biological control by the introduction of predatory mites is one of the various options for controlling poultry red mites. Here, we present the first results of an attempt to identify

  9. Informational Closed-Loop Coding-Decoding Control Concept as the Base of the Living or Organized Systems Theory

    Science.gov (United States)

    Kirvelis, Dobilas; Beitas, Kastytis

    2008-10-01

    The aim of this work is to show that the essence of life and living systems is their organization as bioinformational technology on the base of informational anticipatory control. Principal paradigmatic and structural schemes of functional organization of life (organisms and their systems) are constructed on the basis of systemic analysis and synthesis of main phenomenological features of living world. Life is based on functional elements that implement engineering procedures of closed-loop coding-decoding control (CL-CDC). Phenomenon of natural bioinformational control appeared and developed on the Earth 3-4 bln years ago, when the life originated as a result of chemical and later biological evolution. Informatics paradigm considers the physical and chemical transformations of energy and matter in organized systems as flows that are controlled and the signals as means for purposive informational control programs. The social and technical technological systems as informational control systems are a latter phenomenon engineered by man. The information emerges in organized systems as a necessary component of control technology. Generalized schemes of functional organization on levels of cell, organism and brain neocortex, as the highest biosystem with CL-CDC, are presented. CL-CDC concept expands the understanding of bioinformatics.

  10. Self-organized global control of carbon emissions

    Science.gov (United States)

    Zhao, Zhenyuan; Fenn, Daniel J.; Hui, Pak Ming; Johnson, Neil F.

    2010-09-01

    There is much disagreement concerning how best to control global carbon emissions. We explore quantitatively how different control schemes affect the collective emission dynamics of a population of emitting entities. We uncover a complex trade-off which arises between average emissions (affecting the global climate), peak pollution levels (affecting citizens’ everyday health), industrial efficiency (affecting the nation’s economy), frequency of institutional intervention (affecting governmental costs), common information (affecting trading behavior) and market volatility (affecting financial stability). Our findings predict that a self-organized free-market approach at the level of a sector, state, country or continent can provide better control than a top-down regulated scheme in terms of market volatility and monthly pollution peaks. The control of volatility also has important implications for any future derivative carbon emissions market.

  11. Biological control of mycotoxin-producing molds Controle biológico de fungos de armazenamento produtores de micotoxinas

    Directory of Open Access Journals (Sweden)

    Flávio Henrique Vasconcelos de Medeiros

    2012-10-01

    Full Text Available Mycotoxins are produced by the secondary metabolism of many fungi and can be found in almost 25% of the world's agricultural commodities. These compounds are toxic to humans, animals, and plants and therefore, efforts should be made to avoid mycotoxin contamination in food and feed. Besides, up to 25% of all harvested fruits and vegetables are lost due to storage molds and/or mycotoxin contamination and many methods have been applied to mitigate these issues, but most of them rely on the use of fungicides. Although chemicals are often the first defensive line against mycotoxigenic fungi, the indiscriminate use of fungicides are awakening the public perception due to their noxious effects on the environment and human/animal health. Thus, there is an increasing public pressure for a safer and eco-friendly alternative to control these organisms. In this background, biological control using microbial antagonists such as bacteria, fungi and yeasts have been shown to be a feasible substitute to reduce the use of chemical compounds. Despite of the positive findings using the biocontrol agents only a few products have been registered and are commercially available to control mycotoxin-producing fungi. This review brings about the up-to-date biological control strategies to prevent or reduce harvested commodity damages caused by storage fungi and the contamination of food and feed by mycotoxins.As micotoxinas são produzidas pelo metabolismo secundário de várias espécies de fungos e podem ser encontradas em quase 25% das commodities agrícolas. Esses compostos são tóxicos a humanos, animais e plantas e, portanto, esforços para evitar a contaminação de micotoxinas em alimentos e rações devem ser feitos. Além disso, até 25% das frutas e legumes em pós-colheita são perdidos em decorrência do ataque de fungos de armazenamento e/ou contaminações por micotoxinas. Vários métodos têm sido aplicados para mitigar os problemas de micotoxinas

  12. The Main Biological Hazards in Animal Biosafety Level 2 Facilities and Strategies for Control.

    Science.gov (United States)

    Li, Xiao Yan; Xue, Kang Ning; Jiang, Jin Sheng; Lu, Xuan Cheng

    2016-04-01

    Concern about the biological hazards involved in microbiological research, especially research involving laboratory animals, has increased in recent years. Working in an animal biosafety level 2 facility (ABSL-2), commonly used for research on infectious diseases, poses various biological hazards. Here, the regulations and standards related to laboratory biosafety in China are introduced, the potential biological hazards present in ABSL-2 facilities are analyzed, and a series of strategies to control the hazards are presented. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  13. Short term recovery of soil biological functions in a new vineyard cultivated in organic farming

    Science.gov (United States)

    Costantini, Edoardo; Agnelli, Alessandro; Fabiani, Arturo; Gagnarli, Elena; Mocali, Stefano; Priori, Simone; Simoni, Sauro; Valboa, Giuseppe

    2014-05-01

    Deep earthwork activities carried out before vineyard plantation completely upset soil profile and characteristics. The resulting soil features are often much more similar to the underlying substratum than original soil profile. The time needed to recover soil functions is ecologically relevant and affects vine phenology and grape yield, particularly in organic viticulture. The general aim of this research work was to investigate the time needed to recover soil functions after the earthworks made before vine plantation. This study compared for a four years period physical and chemical properties, microbial and mesofauna communities, in new and old vineyards, cultivated on the same soil type. The experiment was conducted in a farm of the Chianti Classico district (Central Italy), on hills of high altitude (400-500 m a.s.l.) on clayey-calcareous flysches, with stony and calcareous soils (Haplic Cambisol (Calcaric, Skeletic)). The reference vine cultivar was Sangiovese. The older vineyard was planted in 2000, after slope reshaping by bulldozing and back hoe ploughing down to about 0.8-1.0 m. The new vineyard was planted in 2011 after an equivalent earthwork carried out in the summer of 2009. Both vineyards were organically managed and only compost at the rate of 1,000 kg ha-1 -a was added every year. The new vineyard was periodically cultivated by mechanical tillage, while the older only at alternate rows. Soil samples from the first 15 cm depth were collected in 4 replicates in the younger as well as in the older vineyard during the springtime of 2010-2013; in the older vineyard, two samples were from the periodically cultivated swaths and two under permanent grass cover. Samples were analysed for physical (particle size, field capacity, wilting point), chemical (pH, electrical conductivity, lime, active lime, organic carbon, total nitrogen), microbiological (soil respiration, microbial biomass, DGGE), and mesofauna features (abundance, taxa richness, BSQ index and

  14. Two Methods of Determining Total Phenolic Content of Foods and Juices in a General, Organic, and Biological (GOB) Chemistry Lab

    Science.gov (United States)

    Shaver, Lee Alan; Leung, Sam H.; Puderbaugh, Amy; Angel, Stephen A.

    2011-01-01

    The determination of total phenolics in foods and fruit juices was used successfully as a laboratory experiment in our undergraduate general, organic, and biological (GOB) chemistry course. Two different colorimetric methods were used over three years and comparative student results indicate that a ferrous ammonium sulfate (FAS) indicator…

  15. Evaluating the influence of organ motion during photon vs. proton therapy for locally advanced prostate cancer using biological models

    DEFF Research Database (Denmark)

    Busch, Kia; G Andersen, Andreas; Casares-Magaz, Oscar

    2017-01-01

    beam angles for pelvic irradiation, we aimed to evaluate the influence of organ motion for PT using biological models, and to compare this with contemporary photon-based RT. MATERIAL AND METHODS: Eight locally advanced prostate cancer patients with a planning CT (pCT) and 8-9 repeated CT scans (r...

  16. The effect of humus on biological cleaning of soils - association of harmful organic substances from mineral oil contaminators

    International Nuclear Information System (INIS)

    Richnow, H.H.; Seifert, R.; Michaelis, W.

    1993-01-01

    The association of organic harmful substances and particularly their metabolites with the humin fraction is a process which has great ecological importance. The knowledge of the type and extent of such associations of harmful substances with the humin fraction of the soil plays a central part in the assessment of loading by harmful substances or the success of biological cleaning up measures. (orig.) [de

  17. Biological nitrogen fixation in three long-term organic and conventional arable crop rotation experiments in Denmark

    DEFF Research Database (Denmark)

    Pandey, Arjun; Li, Fucui; Askegaard, Margrethe

    2017-01-01

    Biological nitrogen (N) fixation (BNF) by legumes in organic cropping systems has been perceived as a strategy to substitute N import from conventional sources. However, the N contribution by legumes varies considerably depending on legumes species, as well as local soil and climatic conditions...

  18. Ants: Major Functional Elements in Fruit Agro-Ecosystems and Biological Control Agents

    Directory of Open Access Journals (Sweden)

    Lamine Diamé

    2017-12-01

    Full Text Available Ants are a very diverse taxonomic group. They display remarkable social organization that has enabled them to be ubiquitous throughout the world. They make up approximately 10% of the world’s animal biomass. Ants provide ecosystem services in agrosystems by playing a major role in plant pollination, soil bioturbation, bioindication, and the regulation of crop-damaging insects. Over recent decades, there have been numerous studies in ant ecology and the focus on tree cropping systems has given added importance to ant ecology knowledge. The only missing point in this knowledge is the reasons underlying difference between the positive and negative effects of ants in tree cropping systems. This review article provides an overview of knowledge of the roles played by ants in orchards as functional elements, and on the potential of Oecophylla weaver ants as biological control agents. It also shows the potential and relevance of using ants as an agro-ecological diagnosis tool in orchards. Lastly, it demonstrates the potential elements which may determine the divergent negative and positive of their effects on cropping systems.

  19. Modes of action for biological control of Botrytis cinerea by antagonistic bacteria

    Directory of Open Access Journals (Sweden)

    Rana HAIDAR

    2017-01-01

    Full Text Available The role of beneficial bacteria in biocontrol of plant diseases, particularly those caused by the necrotrophic fungus Botrytis cinerea, has been investigated by testing many bacteria under laboratory and field conditions. Bacteria may protect plants against B. cinerea by direct antagonistic interactions between biocontrol agents and this pathogen, as well as indirect effects through the induction of host resistance. This review focuses on various bacteria that act as biological control agents (BCAs of B. cinerea and their associated mechanisms. The modes of action (MoAs include: i synthesis of anti-fungal metabolites, such as antibiotics, cell wall-degrading enzymes and volatile organic compounds (VOCs; ii competition for nutrients and/or a niche; and iii induction of host resistance. The challenge for development of BCAs is to reduce the variability of efficiency and to prove persistence under a large range of conditions. We discuss the advantages and drawbacks of MoA for future applications of bacteria in the field and in post-harvest storage, as well as combination of different MoAs as a strategy to achieve a more regular efficacy.

  20. Biologically Inspired Modular Neural Control for a Leg-Wheel Hybrid Robot

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Wörgötter, Florentin; Laksanacharoen, Pudit

    2014-01-01

    In this article we present modular neural control for a leg-wheel hybrid robot consisting of three legs with omnidirectional wheels. This neural control has four main modules having their functional origin in biological neural systems. A minimal recurrent control (MRC) module is for sensory signal...... processing and state memorization. Its outputs drive two front wheels while the rear wheel is controlled through a velocity regulating network (VRN) module. In parallel, a neural oscillator network module serves as a central pattern generator (CPG) controls leg movements for sidestepping. Stepping directions...... or they can serve as useful modules for other module-based neural control applications....

  1. Modelling approach for biological control of insect pest by releasing infected pest

    International Nuclear Information System (INIS)

    Tan Yuanshun; Chen Lansun

    2009-01-01

    Models of biological control have a long history of theoretical development that have focused on the interactions between a predator and a prey. Here we have extended the classical epidemic model to include a continuous and impulsive pest control strategies by releasing the infected pests bred in laboratory. For the continuous model, the results imply that the susceptible pest goes to extinct if the threshold condition R 0 0 > 1, the positive equilibrium of continuous model is globally asymptotically stable. Similarly, the threshold condition which guarantees the global stability of the susceptible pest-eradication periodic solution is obtained for the model with impulsive control strategy. Consequently, based on the results obtained in this paper, the control strategies which maintain the pests below an acceptably low level are discussed by controlling the release rate and impulsive period. Finally, the biological implications of the results and the efficiency of two control strategies are also discussed

  2. Hybridization of an invasive shrub affects tolerance and resistance to defoliation by a biological control agent

    OpenAIRE

    Williams, Wyatt I; Friedman, Jonathan M; Gaskin, John F; Norton, Andrew P

    2014-01-01

    Evolution has contributed to the successful invasion of exotic plant species in their introduced ranges, but how evolution affects particular control strategies is still under evaluation. For instance, classical biological control, a common strategy involving the utilization of highly specific natural enemies to control exotic pests, may be negatively affected by host hybridization because of shifts in plant traits, such as root allocation or chemical constituents. We investigated introgressi...

  3. Natural biological control of pest mites in Brazilian sun coffee agroecosystems.

    Science.gov (United States)

    Teodoro, Adenir V; Sarmento, Renato A; Rêgo, Adriano S; da Graça S Maciel, Anilde

    2010-06-01

    Coffee is one of the leading commodities in tropical America. Although plantations are usually established under a canopy of trees in most producing countries in the region, Brazilian coffee is mostly produced under full sun conditions. Such simple, single-crop agroecosystems with intensive agrochemical inputs often suffer with pests like mites. Predatory mites of the family Phytoseiidae are the main natural enemies associated with pest mites in the field. However, these beneficial arthropods struggle to survive in intensive agroecosystems such as coffee monocultures due to unfavorable microclimatic conditions, widespread pesticide use, and lack of alternative food (pollen, nectar). Conservation biological control uses a range of management strategies to sustain and enhance populations of indigenous natural enemies such as predatory mites. We discuss here conservation biological control as a strategy to improve biological control of pest mites by native predatory mites in Brazilian coffee monocultures as well as some related patents.

  4. Border control and/or control of organized crime members in the scope of WMD non-proliferation politics

    International Nuclear Information System (INIS)

    Gudlin, S.

    2009-01-01

    Ex-communist countries in Southeast Europe during the 70s and 80s have been working intensively on nuclear, chemical and biological weapons development programs, and some of them have even been producing chemical and biological weapons, while the other have attained it as a part of the Warsaw Pact as allies of the USSR. The latter, although they have not been developing their own WMD had their finest experts take part in WMD development in USSR institutes, laboratories and production facilities and have therefore acquired know-how. It is a known fact that the secret police and security and intelligence service in those countries at the time recruited their informers, yes-men and operatives among criminals who were often accused of most serious crimes, as well as among officers and scientists who took part in top secret projects, such as WMD development projects. Only after the wars on the territory of former Yugoslavia, it became known that chemical and biological agents were used in the form of CB terrorism, which was organized and performed jointly by those involved in organized crime and then secret services, with the help of persons involved in nuclear-chemical-biological weapons development programs. In the last couple of years while processing mafia conflicts in ex-communist countries in Southeastern Europe fascinating information has been revealed that the people accused and often convicted because of organized crime in the past have also been members of secret police, intelligence services, special forces etc. and in closing the deals and their execution the criminals do not care about nationality and nation-state borders. The authors will try to come up with answers whether organized crime on the territory of Southeastern Europe could get hold of WMD deriving from development programs from ex-communist countries and whether these weapons will be used in their mutual conflicts and conflicts with those in power in their own or other EU countries, or they can

  5. Using consumption rate to assess potential predators for biological control of white perch

    Directory of Open Access Journals (Sweden)

    Gosch N.J.C.

    2011-08-01

    Full Text Available Control of undesirable fishes is important in aquatic systems, and using predation as a tool for biological control is an attractive option to fishery biologists. However, determining the appropriate predators for biological control is critical for success. The objective of this study was to evaluate the utility of consumption rate as an index to determine the most effective predators for biological control of an invasive fish. Consumption rate values were calculated for nine potential predators that prey on white perch Morone americana in Branched Oak and Pawnee reservoirs, Nebraska. The consumption rate index provided a unique and insightful means of determining the potential effectiveness of each predator species in controlling white perch. Cumulative frequency distributions facilitated interpretation by providing a graphical presentation of consumption rates by all individuals within each predator species. Largemouth bass Micropterus salmoides, walleye Sander vitreus and sauger S. canadensis were the most efficient white perch predators in both reservoirs; however, previous attempts to increase biomass of these predators have failed suggesting that successful biological control is unlikely using existing predator species in these Nebraska reservoirs.

  6. Blood miRNAs as sensitive and specific biological indicators of environmental and occupational exposure to volatile organic compound (VOC).

    Science.gov (United States)

    Song, Mi-Kyung; Ryu, Jae-Chun

    2015-10-01

    To date, there is still shortage of highly sensitive and specific minimally invasive biomarkers for assessment of environmental toxicants exposure. Because of the significance of microRNA (miRNA) in various diseases, circulating miRNAs in blood may be unique biomarkers for minimally invasive prediction of toxicants exposure. We identified and validated characteristic miRNA expression profiles of human whole blood in workers exposed to volatile organic compounds (VOCs) and compared the usefulness of miRNA indicator of VOCs with the effectiveness of the already used urinary biomarkers of occupational exposure. Using a microarray based approach we screened and detected deregulated miRNAs in their expression in workers exposed to VOCs (toluene [TOL], xylene [XYL] and ethylbenzene [EBZ]). Total 169 workers from four dockyards were enrolled in current study, and 50 subjects of them were used for miRNA microarray analysis. We identified 467 miRNAs for TOL, 211 miRNAs for XYL, and 695 miRNAs for XYL as characteristic discernible exposure indicator, which could discerned each VOC from the control group with higher accuracy, sensitivity, and specificity than urinary biomarkers. Current observations from this study point out that the altered levels of circulating miRNAs can be a reliable novel, minimally invasive biological indicator of occupational exposure to VOCs. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Control of volatile organic compound emissions: the issues

    Energy Technology Data Exchange (ETDEWEB)

    Woodfield, M.; Marlowe, I.

    1989-11-01

    This review paper outlines the problems caused by the emissions of volatile organic compounds (VOC) which are causing increasing concern because of their part in the formation of photochemical oxidation that causes damage to crops and vegetation and because of the toxic and climatic effects. It briefly summarises current knowledge of VOC emissions and their effects and then suggests options for abatement of VOC emissions in the UK and the EEC. A comparison of anthropogenic VOC emission in the UK and the EEC from various sources is given. Further information is needed on current emissions, on the costs and efficiencies of control technologies and on the effects of control on industry before decisions can be made on the suitability, extent and strategy to control VOC emissions in the UK. The report was prepared for the UK Department of Trade and Industry (Headquarters).

  8. Functional profiles reveal unique ecological roles of various biological soil crust organisms

    Science.gov (United States)

    Bowker, M.A.; Mau, R.L.; Maestre, F.T.; Escolar, C.; Castillo-Monroy, A. P.

    2011-01-01

    1. At the heart of the body of research on biodiversity effects on ecosystem function is the debate over whether different species tend to be functionally singular or redundant. When we consider ecosystem multi-function, the provision of multiple ecosystem functions simultaneously, we may find that seemingly redundant species may in fact play unique roles in ecosystems. 2. Over the last few decades, the significance of biological soil crusts (BSCs) as ecological boundaries and ecosystem engineers, and their multi-functional nature, has become increasingly well documented. We compiled 'functional profiles' of the organisms in this understudied community, to determine whether functional singularity emerges when multiple ecosystem functions are considered. 3. In two data sets, one representing multiple sites around the semi-arid regions of Spain (regional scale), and another from a single site in central Spain (local scale), we examined correlations between the abundance or frequency of BSC species in a community, and multiple surrogates of ecosystem functioning. There was a wide array of apparent effects of species on specific functions. 4. Notably, in gypsiferous soils and at regional scale, we found that indicators of carbon (C) and phosphorus cycling were apparently suppressed and promoted by the lichens Diploschistes diacapsis and Squamarina lentigera, respectively. The moss Pleurochaete squarrosa appears to promote C cycling in calcareous soils at this spatial scale. At the local scale in gypsiferous soils, D. diacapsis positively correlated with carbon cycling, but negatively with nitrogen cycling, whereas numerous lichens exhibited the opposite profile. 5. We found a high degree of functional singularity, i.e. that species were highly individualistic in their effects on multiple functions. Many functional attributes were not easily predictable from existing functional grouping systems based primarily on morphology. 6. Our results suggest that maintaining

  9. The C–F bond as a conformational tool in organic and biological chemistry

    Directory of Open Access Journals (Sweden)

    Luke Hunter

    2010-04-01

    Full Text Available Organofluorine compounds are widely used in many different applications, ranging from pharmaceuticals and agrochemicals to advanced materials and polymers. It has been recognised for many years that fluorine substitution can confer useful molecular properties such as enhanced stability and hydrophobicity. Another impact of fluorine substitution is to influence the conformations of organic molecules. The stereoselective introduction of fluorine atoms can therefore be exploited as a conformational tool for the synthesis of shape-controlled functional molecules. This review will begin by describing some general aspects of the C–F bond and the various conformational effects associated with C–F bonds (i.e. dipole–dipole interactions, charge–dipole interactions and hyperconjugation. Examples of functional molecules that exploit these conformational effects will then be presented, drawing from a diverse range of molecules including pharmaceuticals, organocatalysts, liquid crystals and peptides.

  10. Colour and organic removal of biologically treated coffee curing wastewater by electrochemical oxidation method.

    Science.gov (United States)

    Bejankiwar, Rajesh S; Lokesh, K S; Gowda, T P Halappa

    2003-05-01

    The treatment of biologically treated wastewater of coffee-curing industry by the electrochemical oxidation using steel anode was investigated. Bench-scale experiments were conducted for activated sludge process on raw wastewater and the treated effluents were further treated by electrochemical oxidation method for its colour and organic content removal. The efficiency of the process was determined in terms of removal percentage of COD, BOD and colour during the course of reaction. Several operating parameters like time, pH and current density were examined to ascertain their effects on the treatment efficiency. Steel anode was found to be effective for the COD and colour removal with anode efficiency of 0.118 kgCOD x h(-1) x A(-1) x m(-2) and energy consumption 20.61 kWh x kg(-1) of COD at pH 9. The decrease in pH from 9 to 3 found to increase the anode efficiency from 0.118 kgCOD x h(-1) x A(-1) x m(-2) to 0.144 kWh x kg(-1) of COD while decrease the energy consumption from 20.61 kWh x kg(-1) of COD to 12.86 kWh x kg(-1) of COD. The pH of 5 was considered an ideal from the present treatment process as it avoids the addition of chemicals for neutralization of treated effluents and also economical with respect to energy consumption. An empirical relation developed for relationship between applied current density and COD removal efficiency showed strong predictive capability with coefficient of determination of 96.5%.

  11. The Effects of Urban Sprawl on Birds at Multiple Levels of Biological Organization

    Directory of Open Access Journals (Sweden)

    Robert Blair

    2004-12-01

    Full Text Available Urban sprawl affects the environment in myriad ways and at multiple levels of biological organization. In this paper I explore the effects of sprawl on native bird communities by comparing the occurrence of birds along gradients of urban land use in southwestern Ohio and northern California and by examining patterns at the individual, species, community, landscape, and continental levels. I do this by assessing the distribution and abundance of all bird species occupying sites of differing land-use intensity in Ohio and California. Additionally, I conducted predation experiments using artificial nests, tracked the nest fate of American Robins and Northern Cardinals, and assessed land cover in these sites. At the individual level, predation on artificial nests decreased with urbanization; however, this trend was not reflected in the nesting success of robins and cardinals, which did not increase with urbanization. At the species level, sprawl affected local patterns of extinction and invasion; the density of different species peaked at different levels of urbanization. At the community level, species richness and diversity peaked at moderate levels of urbanization, and the number of low-nesting species and of species with multiple broods increased with urbanization. The community-level results may reflect both the species-level patterns of local extinction and invasion as well as broader landscape-level patterns. At the landscape level, a linear combination of spatial heterogeneity and density of woody patches accurately predicted both species richness and Shannon Diversity. At the continental level, local extinction of endemic species, followed by the invasion of ubiquitous weedy species, leads to faunal homogenization between ecoregions.

  12. Biotransformation and sorption of trace organic compounds in biological nutrient removal treatment systems.

    Science.gov (United States)

    Lakshminarasimman, Narasimman; Quiñones, Oscar; Vanderford, Brett J; Campo-Moreno, Pablo; Dickenson, Eric V; McAvoy, Drew C

    2018-05-28

    This study determined biotransformation rates (k bio ) and sorption-distribution coefficients (K d ) for a select group of trace organic compounds (TOrCs) in anaerobic, anoxic, and aerobic activated sludge collected from two different biological nutrient removal (BNR) treatment systems located in Nevada (NV) and Ohio (OH) in the United States (US). The NV and OH facilities operated at solids retention times (SRTs) of 8 and 23 days, respectively. Using microwave-assisted extraction, the biotransformation rates of the chosen TOrCs were measured in the total mixed liquor. Sulfamethoxazole, trimethoprim, and atenolol biotransformed in all three redox regimes irrespective of the activated sludge source. The biotransformation of N, N-diethyl-3-methylbenzamide (DEET), triclosan, and benzotriazole was observed in aerobic activated sludge from both treatment plants; however, anoxic biotransformation of these three compounds was seen only in anoxic activated sludge from NV. Carbamazepine was recalcitrant in all three redox regimes and both sources of activated sludge. Atenolol and DEET had greater biotransformation rates in activated sludge with a higher SRT (23 days), while trimethoprim had a higher biotransformation rate in activated sludge with a lower SRT (8 days). The remaining compounds did not show any dependence on SRT. Lyophilized, heat inactivated sludge solids were used to determine the sorption-distribution coefficients. Triclosan was the most sorptive compound followed by carbamazepine, sulfamethoxazole, DEET, and benzotriazole. The sorption-distribution coefficients were similar across redox conditions and sludge sources. The biotransformation rates and sorption-distribution coefficients determined in this study can be used to improve fate prediction of the target TOrCs in BNR treatment systems. Copyright © 2018. Published by Elsevier B.V.

  13. Self-organization principles result in robust control of flexible manufacturing systems

    DEFF Research Database (Denmark)

    Nature shows us in our daily life how robust, flexible and optimal self-organized modular constructions work in complex physical, chemical and biological systems, which successfully adapt to new and unexpected situations. A promising strategy is therefore to use such self-organization and pattern...... problems with several autonomous robots and several targets are considered as model of flexible manufacturing systems. Each manufacturing target has to be served in a given time interval by one and only one robot and the total working costs have to be minimized (or total winnings maximized). A specifically...... constructed dynamical system approach (coupled selection equations) is used which is based on pattern formation principles and results in fault resistant and robust behaviour. An important feature is that this type of control also guarantees feasiblitiy of the assignment solutions. In previous work...

  14. Multimodal microfluidic platform for controlled culture and analysis of unicellular organisms

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Tao; Smallwood, Chuck R.; Bredeweg, Erin L.; Pomraning, Kyle R.; Plymale, Andrew E.; Baker, Scott E.; Evans, James E.; Kelly, Ryan T.

    2017-09-01

    Modern live-cell imaging approaches permit real-time visualization of biological processes, yet limitations exist for unicellular organism isolation, culturing and long-term imaging that preclude fully understanding how cells sense and respond to environmental perturbations and the link between single-cell variability and whole-population dynamics. Here we present a microfluidic platform that provides fine control over the local environment with the capacity to replace media components at any experimental time point, and provides both perfused and compartmentalized cultivation conditions depending on the valve configuration. The functionality and flexibility of the platform were validated using both bacteria and yeast having different sizes, motility and growth media. The demonstrated ability to track the growth and dynamics of both motile and non-motile prokaryotic and eukaryotic organisms emphasizes the versatility of the devices, which with further scale-up should enable studies in bioenergy and environmental research.

  15. Multimodal microfluidic platform for controlled culture and analysis of unicellular organisms.

    Science.gov (United States)

    Geng, Tao; Smallwood, Chuck R; Bredeweg, Erin L; Pomraning, Kyle R; Plymale, Andrew E; Baker, Scott E; Evans, James E; Kelly, Ryan T

    2017-09-01

    Modern live-cell imaging approaches permit real-time visualization of biological processes, yet limitations exist for unicellular organism isolation, culturing, and long-term imaging that preclude fully understanding how cells sense and respond to environmental perturbations and the link between single-cell variability and whole-population dynamics. Here, we present a microfluidic platform that provides fine control over the local environment with the capacity to replace media components at any experimental time point, and provides both perfused and compartmentalized cultivation conditions depending on the valve configuration. The functionality and flexibility of the platform were validated using both bacteria and yeast having different sizes, motility, and growth media. The demonstrated ability to track the growth and dynamics of both motile and non-motile prokaryotic and eukaryotic organisms emphasizes the versatility of the devices, which should enable studies in bioenergy and environmental research.

  16. Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes.

    Science.gov (United States)

    Gottschalk, Julia; Skinner, Luke C; Lippold, Jörg; Vogel, Hendrik; Frank, Norbert; Jaccard, Samuel L; Waelbroeck, Claire

    2016-05-17

    Millennial-scale climate changes during the last glacial period and deglaciation were accompanied by rapid changes in atmospheric CO2 that remain unexplained. While the role of the Southern Ocean as a 'control valve' on ocean-atmosphere CO2 exchange has been emphasized, the exact nature of this role, in particular the relative contributions of physical (for example, ocean dynamics and air-sea gas exchange) versus biological processes (for example, export productivity), remains poorly constrained. Here we combine reconstructions of bottom-water [O2], export production and (14)C ventilation ages in the sub-Antarctic Atlantic, and show that atmospheric CO2 pulses during the last glacial- and deglacial periods were consistently accompanied by decreases in the biological export of carbon and increases in deep-ocean ventilation via southern-sourced water masses. These findings demonstrate how the Southern Ocean's 'organic carbon pump' has exerted a tight control on atmospheric CO2, and thus global climate, specifically via a synergy of both physical and biological processes.

  17. Low doses of ionizing radiation: Biological effects and regulatory control. Invited papers and discussions. Proceedings of an international conference

    International Nuclear Information System (INIS)

    1998-01-01

    The levels and biological effects resulting from exposure to ionizing radiation are continuously reviewed by the United Nations Committee on the Effects of Atomic Radiation (UNSCEAR). Since its creation in 1928, the International Commission on Radiological Protection (ICRP) has issued recommendations on protection against ionizing radiation. The UNSCEAR estimates and the ICRP recommendations have served as the basis for national and international safety standards on radiation safety, including those developed by the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO). Concerning health effects of low doses of ionizing radiation, the international standards are based on the plausible assumption that, above the unavoidable background radiation dose, the probability of effects increases linearly with dose, i.e. on a 'linear, no threshold' (LNT) assumption. However, in recent years the biological estimates of health effects of low doses of ionizing radiation and the regulatory approach to the control of low level radiation exposure have been much debated. To foster information exchange on the relevant issues, an International Conference on Low Doses of Ionizing Radiation: Biological Effects and Regulatory Control, jointly sponsored by the IAEA and WHO in co-operation with UNSCEAR, was held from 17-21 November 1997 at Seville, Spain. These Proceedings contain the invited special reports, keynote papers, summaries of discussions, session summaries and addresses presented at the opening and closing of the Conference

  18. Effects of organic pollution on biological communities of marine biofilm on hard substrata

    International Nuclear Information System (INIS)

    Sanz-Lázaro, C.; Fodelianakis, S.; Guerrero-Meseguer, L.; Marín, A.; Karakassis, I.

    2015-01-01

    We examined the effect of organic enrichment on diatom and bacterial assemblages of marine epilithic biofilms on two locations in the Mediterranean, one situated in Spain and the other in Greece. Total organic carbon, total organic nitrogen, stable isotopes (δ 13 C and δ 15 N) and chlorophyll a indicated significant incorporation of organic wastes, increased primary production and trophic niche modifications on the biofilms close to the organic enrichment source. In Spain, where the organic load was higher than in Greece, diatom and, to some extent, bacterial assemblages varied following the organic enrichment gradient. The taxonomic richness of diatom and bacterial communities was not influenced by organic enrichment. Classical community parameters showed consistent patterns to organic pollution in both locations, whereas community assemblages were only influenced when organic pollution was greatest. The successional patterns of these communities were similar to other epilithic communities. The modification of community assemblages induced by organic pollution may affect ecological functions. - Highlights: • We examined the effect of organic enrichment on assemblages of marine biofilms. • Classical community parameters showed consistent patterns to organic pollution. • Diatom and bacterial assemblages were affected under high level of organic enrichment. • Successional patterns were similar to other communities inhabiting hard substrata. • Assemblage modifications induced by organic pollution may affect ecological functions. - Organic pollution modifies the assemblages of biofilm communities which may affect important ecological functions

  19. Biologically inspired control and modeling of (biorobotic systems and some applications of fractional calculus in mechanics

    Directory of Open Access Journals (Sweden)

    Lazarević Mihailo P.

    2013-01-01

    Full Text Available In this paper, the applications of biologically inspired modeling and control of (biomechanical (nonredundant mechanisms are presented, as well as newly obtained results of author in mechanics which are based on using fractional calculus. First, it is proposed to use biological analog-synergy due to existence of invariant features in the execution of functional motion. Second, the model of (biomechanical system may be obtained using another biological concept called distributed positioning (DP, which is based on the inertial properties and actuation of joints of considered mechanical system. In addition, it is proposed to use other biological principles such as: principle of minimum interaction, which takes a main role in hierarchical structure of control and self-adjusting principle (introduce local positive/negative feedback on control with great amplifying, which allows efficiently realization of control based on iterative natural learning. Also, new, recently obtained results of the author in the fields of stability, electroviscoelasticity, and control theory are presented which are based on using fractional calculus (FC. [Projekat Ministarstva nauke Republike Srbije, br. 35006

  20. The role of evolutionary biology in research and control of liver flukes in Southeast Asia.

    Science.gov (United States)

    Echaubard, Pierre; Sripa, Banchob; Mallory, Frank F; Wilcox, Bruce A

    2016-09-01

    Stimulated largely by the availability of new technology, biomedical research at the molecular-level and chemical-based control approaches arguably dominate the field of infectious diseases. Along with this, the proximate view of disease etiology predominates to the exclusion of the ultimate, evolutionary biology-based, causation perspective. Yet, historically and up to today, research in evolutionary biology has provided much of the foundation for understanding the mechanisms underlying disease transmission dynamics, virulence, and the design of effective integrated control strategies. Here we review the state of knowledge regarding the biology of Asian liver Fluke-host relationship, parasitology, phylodynamics, drug-based interventions and liver Fluke-related cancer etiology from an evolutionary biology perspective. We consider how evolutionary principles, mechanisms and research methods could help refine our understanding of clinical disease associated with infection by Liver Flukes as well as their transmission dynamics. We identify a series of questions for an evolutionary biology research agenda for the liver Fluke that should contribute to an increased understanding of liver Fluke-associated diseases. Finally, we describe an integrative evolutionary medicine approach to liver Fluke prevention and control highlighting the need to better contextualize interventions within a broader human health and sustainable development framework. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The inception and evolution of a unique masters program in cancer biology, prevention and control.

    Science.gov (United States)

    Cousin, Carolyn; Blancato, Jan

    2010-09-01

    The University of the District of Columbia (UDC) and the Lombardi Comprehensive Cancer Center (LCCC), Georgetown University Medical Center established a Masters Degree Program in Cancer Biology, Prevention and Control at UDC that is jointly administered and taught by UDC and LCCC faculty. The goal of the Masters Degree Program is to educate students as master-level cancer professionals capable of conducting research and service in cancer biology, prevention, and control or to further advance the education of students to pursue doctoral studies. The Program's unique nature is reflected in its philosophy "the best cancer prevention and control researchers are those with a sound understanding of cancer biology". This program is a full-time, 2-year, 36-credit degree in which students take half of their coursework at UDC and half of their coursework at LCCC. During the second year, students are required to conduct research either at LCCC or UDC. Unlike most cancer biology programs, this unique Program emphasizes both cancer biology and cancer outreach training.

  2. Organic Law Of Judicial Guarantees And Constitutional Control

    Directory of Open Access Journals (Sweden)

    Ernesto López Freire

    2013-01-01

    Full Text Available This paper demonstrates the various unconstitutional and fallacies of the Organic Law of Judicial guarantees and Constitutional Control. For that, there will be a comprehensive collation between the mentioned law and the Constitution of the Republic of Ecuador and force. Through this analysis shows a lack of knowledge of Ecuadorian law or legal science by their authors. This study elucidated, inter alia, the inconsistencies in matters relating to the interpretation of constitutional provisions, full compensation, material and integral; challenge administrative acts, judicial unit.

  3. Genetic control of organ shape and tissue polarity.

    Directory of Open Access Journals (Sweden)

    Amelia A Green

    2010-11-01

    Full Text Available The mechanisms by which genes control organ shape are poorly understood. In principle, genes may control shape by modifying local rates and/or orientations of deformation. Distinguishing between these possibilities has been difficult because of interactions between patterns, orientations, and mechanical constraints during growth. Here we show how a combination of growth analysis, molecular genetics, and modelling can be used to dissect the factors contributing to shape. Using the Snapdragon (Antirrhinum flower as an example, we show how shape development reflects local rates and orientations of tissue growth that vary spatially and temporally to form a dynamic growth field. This growth field is under the control of several dorsoventral genes that influence flower shape. The action of these genes can be modelled by assuming they modulate specified growth rates parallel or perpendicular to local orientations, established by a few key organisers of tissue polarity. Models in which dorsoventral genes only influence specified growth rates do not fully account for the observed growth fields and shapes. However, the data can be readily explained by a model in which dorsoventral genes also modify organisers of tissue polarity. In particular, genetic control of tissue polarity organisers at ventral petal junctions and distal boundaries allows both the shape and growth field of the flower to be accounted for in wild type and mutants. The results suggest that genetic control of tissue polarity organisers has played a key role in the development and evolution of shape.

  4. Potential for widespread application of biological control of stored-product pests

    DEFF Research Database (Denmark)

    Hansen, Lise Stengaard

    2007-01-01

    Biological control of stored product pests has substantial potential in Europe". This is essentially the conclusion of the activities of a European working group funded by the COST system, an intergovernmental networking system. Working group 4 of COST action 842 (2000-2005) focussed on biologica...... for these situations will contribute to ensuring that stored food products are protected from insect and mite pests using techniques that are safe for consumers, workers and the environment.......Biological control of stored product pests has substantial potential in Europe". This is essentially the conclusion of the activities of a European working group funded by the COST system, an intergovernmental networking system. Working group 4 of COST action 842 (2000-2005) focussed on biological...

  5. Use of Nuclear Techniques in Biological Control: Managing Pests, Facilitating Trade and Protecting the Environment. Report of a Consultants Group Meeting. Working Material

    International Nuclear Information System (INIS)

    1999-01-01

    High-priority opportunities are proposed for use of nuclear techniques to effect improved production and shipping of augmentative biological control agents. Proposed subprojects include use of ionizing radiation to improve the production of insect natural enemies on natural hosts/prey or on artificial diets. Other subprojects pertain to improving the ability to move beneficial organisms in international trade, and in using them in the field. Additional high priority activities were identified proposing use of nuclear techniques to produce sterile and/or substerile F-1 weed biological control agents to help evaluate potential impact on non-target species in the pre-release phase, integration of augmentative releases and F-1 sterility in IPM and area-wide pest management programmes, and utilization of by-products from SIT mass-rearing facilities in augmentative biological control programmes. (author)

  6. Biologic Effects of Atmospheric Pollutants: Asbestos - The Need For and Feasibility of Air Pollution Controls

    Science.gov (United States)

    This 1971 report sets forth in a well-organized fashion the currently available information on asbestos as an air pollutant, with special attention to sources health effects, measurements, and feasibility of control.

  7. Biological Control of Diseases of Vegetables Grown Hydroponically in Thailand: Challenge and Opportunity.

    Science.gov (United States)

    Kanjanamaneesathian, Mana

    2015-01-01

    In Thailand, yield loss due to plant diseases in vegetables grown hydroponically is very high as a result of the growers` lack of knowledge for controlling diseases and their un- willingness to invest in setting-up the proper hydroponic system from the beginning. Severe root rot disease caused by Pythium spp. is frequent and can be anticipated in the hot climate in Thailand. This review focuses on the diseases in temperate lettuces which have been produced hydroponically and have been attacked by plant pathogens, particularly Pythium spp. Biological control of vegetable diseases grown hydroponically has been investigated in Thailand. Research is being carried out to identify effective strains of the antagonists, formulating the applicable products and delivering them appropriately to control the disease. Products of Bacillus subtilis, Chaetomium globosom and Trichoderma harzianum have been recommended for use to control diseases in vegetables grown hydroponically. Control efficacy of these products is varied as the biological products have been used by the growers in the paradigm of using chemical fungicide for disease control in hydroponic production system, overlooking the intrinsic characteristics of the biological control products. The recent patent, which minimizes the effects of sunlight and heat on the nutrient solution without the use of an external energy for cooling the nutrient, should be applied in producing hydroponic vegetables to mitigate poor plant growth and root rot disease outbreak in Thailand.

  8. Controlled biomass removal - the key parameter to achieve enhanced biological phosphorus removal in biofilm systems

    DEFF Research Database (Denmark)

    Morgenroth, E.

    1999-01-01

    the influence of the following processes on EBPR in biofilms was evaluated: (1) mass transfer limitation for oxygen (2) mass transfer limitation for organic substrate, (3) lack of controlled removal of biomass from the system. It was shown that mass transfer of soluble components (oxygen and organic substrate...

  9. Utility of the molecular biology techniques to the analytical control of the microbiological quality of waters

    International Nuclear Information System (INIS)

    Codony, F.; Martin Perez, L.; Morato, J.; Dominguez Gual, M. C.

    2009-01-01

    The molecular biology techniques made accessible to the water industry the ability to detect and quantify, in a few hours, any organism known. given this scenario, it is important to realize the strengths and weaknesses of these techniques to get a better picture of the scope of its implementation and its most that probably usefulness. We must be familiar with these techniques to understand the results and properly evaluate its detection limit. (Author) 4 refs.

  10. Fundamental host range of Leptoypha hospita (Hemiptera: Tingidae), a potential biological control agent of Chinese privet

    Science.gov (United States)

    Yanzhuo Zhang; James L. Hanula; Scott Horn; Cera Jones; S. Kristine Braman; Jianghua Sun

    2016-01-01

    Chinese privet, Ligustrum sinense Lour., is an invasive shrub within riparian areas of the southeastern United States. Biological control is considered the most suitable management option for Chinese privet. The potential host range of the lace bug, Leptoypha hospita Drake et...

  11. Leveraging culture collections for the discovery and development of microbial biological control agents

    Science.gov (United States)

    The incorporation of living microbial biological control agents into integrated pest management programs is highly desirable because it reduces the use of chemical insecticides harmful to livestock, humans and the environment. In addition, it provides an alternative means to combat resistance to che...

  12. The potential use of lures for thrips biological control in greenhouses: practice and theory

    NARCIS (Netherlands)

    Teulon, D.A.J.; Davidson, M.M.; Nielsen, M.C.; Perry, N.B.; Tol, van R.W.H.M.; Kogel, de W.J.

    2008-01-01

    Exploiting the response of thrips pest species to odours has long been a goal for improving thrips pest management including biological control. Applications of attractants could include improved monitoring, push-pull (in conjunction with a repellent odour), lure and kill, and lure and infect

  13. Conservation Biological Control of Pests in the Molecular Era: New Opportunities to Address Old Constraints

    Science.gov (United States)

    Gurr, Geoff M.; You, Minsheng

    2016-01-01

    Biological control has long been considered a potential alternative to pesticidal strategies for pest management but its impact and level of use globally remain modest and inconsistent. A rapidly expanding range of molecular – particularly DNA-related – techniques is currently revolutionizing many life sciences. This review identifies a series of constraints on the development and uptake of conservation biological control and considers the contemporary and likely future influence of molecular methods on these constraints. Molecular approaches are now often used to complement morphological taxonomic methods for the identification and study of biological control agents including microbes. A succession of molecular techniques has been applied to ‘who eats whom’ questions in food-web ecology. Polymerase chain reaction (PCR) approaches have largely superseded immunological approaches such as enzyme-linked immunosorbent assay (ELISA) and now – in turn – are being overtaken by next generation sequencing (NGS)-based approaches that offer unparalleled power at a rapidly diminishing cost. There is scope also to use molecular techniques to manipulate biological control agents, which will be accelerated with the advent of gene editing tools, the CRISPR/Cas9 system in particular. Gene editing tools also offer unparalleled power to both elucidate and manipulate plant defense mechanisms including those that involve natural enemy attraction to attacked plants. Rapid advances in technology will allow the development of still more novel pest management options for which uptake is likely to be limited chiefly by regulatory hurdles. PMID:26793225

  14. Economic evaluation of the successful biological control of Azolla filiculoides in South Africa

    CSIR Research Space (South Africa)

    McConnachie, AJ

    2003-09-01

    Full Text Available that it was no longer considered a problem in South Africa. The results reflect the dynamics of biological control on site-specific survey information, and place higher benefit–cost ratios achieved in other national level studies in a better context. It also raises...

  15. The effect of initial density and parasitoid intergenerational survival rate on classical biological control

    International Nuclear Information System (INIS)

    Xiao Yanni; Tang Sanyi

    2008-01-01

    Models of biological control have a long history of theoretical development that have focused on the interaction of a parasitoid and its host. The host-parasitoid systems have identified several important and general factors affecting the long-term dynamics of interacting populations. However, much less is known about how the initial densities of host-parasitoid populations affect the biological control as well as the stability of host-parasitoid systems. To do this, the classical Nicholson-Bailey model with host self-regulation and parasitoid intergenerational survival rate is used to uncover the effect of initial densities on the successful biological control. The results indicate that the simplest Nicholson-Bailey model has various coexistence with a wide range of parameters, including boundary attractors where the parasitoid population is absent and interior attractors where host-parasitoid coexists. The final stable states of host-parasitoid populations depend on their initial densities as well as their ratios, and those results are confirmed by basins of attraction of initial densities. The results also indicate that the parasitoid intergenerational survival rate increases the stability of the host-parasitoid systems. Therefore, the present research can help us to further understand the dynamical behavior of host-parasitoid interactions, to improve the classical biological control and to make management decisions

  16. The Erythraeoidea (Trombidiformes: Prostigmata) as Biological Control Agents, with Special Reference to the Genus Balaustium

    NARCIS (Netherlands)

    Muñoz-Cárdenas, K.; Fuentes-Quintero, L.S.; Rueda-Ramirez, D.; Rodríguez, C.D.; Cantor, R.F.; Carrillo, D.; de Moraes, G.J.; Peña, J.E.

    2015-01-01

    Erythraeoidea is a widely distributed group with great potential for practical use in biological control programs, but whose study has been limited due to the complex life cycle that often includes alteration in feeding behaviour and habitat. Several associations of these mites to different species

  17. Potentials of biological control of plant diseases in the tropics | Ofor ...

    African Journals Online (AJOL)

    This paper highlights the various categories of biological control, which are employed in an Integrated Disease Management (IDM) scheme. These include conservation, classical biocontrol and augmentation. Also, the various types of biocontrol agents/agencies which are currently in use in various parts of the world like, ...

  18. Use of pupal parasitoids as biological control agents of filth flies on equine facilities

    Science.gov (United States)

    House flies, Musca domestica L., and stable flies, Stomoxys calcitrans (L.), (Diptera: Muscidae), are common pests on horse farms. The use of pupal parasitoids as biological control agents for filth flies is becoming more popular on equine facilities; however, there is a lack of information on the e...

  19. Prospects for biological soil-borne disease control: application of indigenous versus synthetic microbiomes

    Science.gov (United States)

    Biological disease control of soil-borne plant diseases has traditionally employed the biopesticide approach whereby single strains or strain mixtures are introduced into production systems through inundative/inoculative release. The approach has significant barriers that have long been recognized,...

  20. Nuclear polyhedrosis virus as a biological control agent for Malacosoma americanum (Lepidoptera: Lasiocampidae)

    Science.gov (United States)

    R.A. Progar; M.J. Rinella; D. Fekedulegn; L. Butler

    2010-01-01

    In addition to damaging trees, the eastern tent caterpillar is implicated in early fetal loss and late-term abortion in horses. In a field study, we evaluated the potential biological control of the caterpillar using eastern tent caterpillar nuclear polyhedrosis virus (ETNPV), a naturally occurring virus that is nearly species-specific. Egg masses were hatched and...

  1. Assessing risks and benefits of floral supplements in conservation biological control

    NARCIS (Netherlands)

    Winkler, K.; Wackers, F.L.; Termorshuizen, A.J.; Lenteren, van J.C.

    2010-01-01

    The use of flowering field margins is often proposed as a method to support biological control in agro-ecosystems. In addition to beneficial insects, many herbivores depend on floral food as well. The indiscriminate use of flowering species in field margins can therefore lead to higher pest numbers.

  2. Host range of Secusio extensa (Lepidoptera: Arctiidae), and potential for biological control of Senecio madagascariensis (Asteraceae)

    Science.gov (United States)

    M. M. Ramadan; K. T. Murai; T. Johnson

    2010-01-01

    Secusio extensa (Lepidoptera: Arctiidae) was evaluated as a potential biological control agent for Madagascar fireweed, Senecio madagascariensis (Asteraceae), which has invaded over 400 000 acres of rangeland in the Hawaiian Islands and is toxic to cattle and horses. The moth was introduced from southeastern Madagascar...

  3. 41 CFR 101-42.1102-5 - Drugs, biologicals, and reagents other than controlled substances.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Drugs, biologicals, and reagents other than controlled substances. 101-42.1102-5 Section 101-42.1102-5 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS...

  4. Using matrix population models to inform biological control management of the wheat stem sawfly, Cephus cinctus

    Science.gov (United States)

    Demographic models are a powerful means of identifying vulnerable life stages of pest species and assessing the potential effectiveness of various management approaches in reducing pest population growth and spread. In a biological control context, such models can be used to focus foreign explorati...

  5. Biological control of Alternaria radicina in seed production of carrots with Ulocladium atrum

    NARCIS (Netherlands)

    Köhl, J.; Langerak, C.J.; Meekes, E.T.M.; Molhoek, W.M.L.

    2004-01-01

    Black rot of carrots is caused by seed-borne Alternaria radicina. Biological control of seed infestation by treatments applied to plants in flower during seed production with the fungal antagonist Ulocladium atrum was investigated in laboratory and field experiments resulting in a reduction of seed

  6. External rostral characters for differentiation of sexes in the biological control agent Mecinus janthinus (Coleoptera: Curculionidae)

    Science.gov (United States)

    Marjolein Schat; Sharlene E. Sing; Robert K. D. Peterson

    2007-01-01

    The stem-boring weevil, Mecinus janthinus (Germar), is a promising, well established classical biological control agent for the exotic invasive weed Dalmatian toadflax (Linaria dalmatica (L.) Mill.) (Scrophulariaceae). In this paper we present readily apparent rostral characters that can be used for sex differentiation of live stem-boring weevils at low magnification....

  7. Status of biological control projects on terrestrial invasive alien weeds in California

    Science.gov (United States)

    In cooperation with foreign scientists, we are currently developing new classical biological control agents for five species of invasive alien terrestrial weeds. Cape-Ivy. A gall-forming fly, Parafreutreta regalis, and a stem-boring moth, Digitivalva delaireae, have been favorably reviewed by TAG...

  8. Effects of biological control agents and exotic plant invasion on deer mouse populations

    Science.gov (United States)

    Yvette K. Ortega; Dean E. Pearson; Kevin S. McKelvey

    2004-01-01

    Exotic insects are commonly introduced as biological control agents to reduce densities of invasive exotic plants. Although current biocontrol programs for weeds take precautions to minimize ecological risks, little attention is paid to the potential nontarget effects of introduced food subsidies on native consumers. Previous research demonstrated that two gall flies (...

  9. Releases of natural enemies in Hawaii since 1980 for classical biological control of weeds

    Science.gov (United States)

    P. Conant; J. N. Garcia; M. T. Johnson; W. T. Nagamine; C. K. Hirayama; G. P. Markin; R. L. Hill

    2013-01-01

    A comprehensive review of biological control of weeds in Hawaii was last published in 1992, covering 74 natural enemy species released from 1902 through 1980. The present review summarizes releases of 21 natural enemies targeting seven invasive weeds from 1981 to 2010. These projects were carried out by Hawaii Department of Agriculture (HDOA), USDA Forest Service (USFS...

  10. Potential biological control agents for management of cogongrass (Cyperales: Poaceae) in the southeastern USA

    Science.gov (United States)

    Cogongrass, Imperata cylindrica (L.) Palisot de Beauvois (Cyperales: Poaceae), is a noxious invasive weed in the southeastern USA. Surveys for potential biological control agents of cogongrass were conducted in Asia and East Africa from 2013 to 2016. Several insect herbivores were found that may hav...

  11. Ex-ante analysis of economic returns from biological control of coconut mite in Tanzania

    NARCIS (Netherlands)

    Oleke, J.M.; Manyong, V.; Mignouna, D.; Isinika, A.; Mutabazi, K.; Hanna, R.; Sabelis, M.

    2013-01-01

    The coconut mite, Aceria guerreronis Keifer, has been identified as one of the pests that pose a threat to the coconut industry in Benin. The study presents the simulation results of the economic benefits of the biological control of coconut mites in Benin using a standard economic surplus model. In

  12. Biological control of fusarium wilt of tomato by antagonist fungi and ...

    African Journals Online (AJOL)

    Biological control of Fusarium oxysporum f. sp. lycopersici (FOL) causing wilt disease of tomato was studied in vitro as well as under pot conditions. Dual culture technique showed that Aspergillus niger, Penicillium citrinum, Penicillium sp. and Trichoderma harzianum inhibited the radial colony growth of the test pathogen.

  13. Genome sequences of three strains of Aspergillus flavus for the biological control of Aflatoxin

    Science.gov (United States)

    The genomes of three strains of Aspergillus flavus with demonstrated utility for the biological control of aflatoxin were sequenced. These sequences were assembled with MIRA and annotated with Augustus using A. flavus strain 3357 (NCBI EQ963472) as a reference. Each strain had a genome of 36.3 to ...

  14. Effective landscape scale management of Cirsium arvense (Canada thistle) utilizing biological control

    Science.gov (United States)

    G. P. Markin; D. Larson

    2013-01-01

    The stem mining weevil, Ceutorhynchus litura Fabricius, the gall forming fly, Urophora cardui L., and the seedhead weevil, Larinus planus Fabricius, were established as biological control agents on an 1800 hectare multiple-habitat wildlife refuge in northwestern Oregon in the mid-1990s. At the time, Canada thistle was the most wide spread, aggressive, and difficult...

  15. Status of biological control of the shrub gorse (Ulex europaeus) on the Island of Hawaii

    Science.gov (United States)

    G. P. Markin; P. Conant

    2013-01-01

    On the island of Hawaii, gorse (Ulex europaeus L.) is limited to an isolated core infestation of approximately 2000 hectares with scattered plants and small patches in the surrounding 10,000 hectares. Between 1985 and 2000, seven biological control agents were introduced, five of which successfully established. By 2000, their combined impact had reduced the yearly...

  16. Integration of biological control and transgenic insect protection for mitigation of mycotoxins in corn

    Science.gov (United States)

    Biological control is known to be effective in reducing aflatoxin contamination of corn and some transgenic corn hybrids incur greatly reduced damage from corn earworm (Helicoverpa zea). We conducted seven field trials over two years to test the hypothesis that transgenic insect protection and biol...

  17. Control of Green Apple Aphid (Aphis pomi De Geer in Organic Apple Production

    Directory of Open Access Journals (Sweden)

    Slobodan Milenković

    2013-12-01

    Full Text Available The efficacy of different methods for controlling populations of green apple aphid (Aphis pomi De Geer in organic apple orchard was compared over three consecutive years. The following three control methods were tested: a predator activity (Coccinela septempunctata, b predator activity (C. septempunctata + selective spraying of trees with infestation level exceeding 10% with a botanical insecticide (NeemAzal T/S, and c predator activity (C. septempunctata + total spraying of all orchard trees with the botanical insecticide (NeemAzal T/S. In terms of maintaining a biological balance within an orchard, the combination of natural regulation by C. septempunctata and selective spraying of individual trees with NeemAzal T/S proved to be the most efficient method.

  18. Evaluation of biological control of fusarium wilt in gerbera with Trichoderma asperellum

    OpenAIRE

    Daiani Brandler; Luan Junior Divensi; Rodrigo José Tonin; Thalita Pedrozo Pilla; Ines Rezendes; Paola Mendes Milanesi

    2017-01-01

    The increase in flower cultivation in recent years has been reflecting the higher incidence of soil pathogens that can cause serious problems. This study aimed to evaluate the biological control of Fusarium wilt in gerbera with Trichoderma asperellum. The evaluated treatments were: T1) Control, only sterile substrate; T2) Substrate + Fusarium oxysporum; T3) Substrate + Fusarium oxysporum + Trichoderma asperellum; and T4) Substrate + Trichoderma asperellum. For this, the pathogen was isolated ...

  19. Improving the cost-effectiveness, trade and safety of biological control for agricultural insect pests using nuclear techniques

    Science.gov (United States)

    If appropriately applied, biological control offers one of the most promising, environmentally sound, and sustainable control tactics for arthropod pests and weeds for application as part of an integrated pest management (IPM) approach. Public support for biological control as one of the preferred m...

  20. Hydroperiod regime controls the organization of plant species in wetlands.

    Science.gov (United States)

    Foti, Romano; del Jesus, Manuel; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio

    2012-11-27

    With urban, agricultural, and industrial needs growing throughout the past decades, wetland ecosystems have experienced profound changes. Most critically, the biodiversity of wetlands is intimately linked to its hydrologic dynamics, which in turn are being drastically altered by ongoing climate changes. Hydroperiod regimes, e.g., percentage of time a site is inundated, exert critical control in the creation of niches for different plant species in wetlands. However, the spatial signatures of the organization of plant species in wetlands and how the different drivers interact to yield such signatures are unknown. Focusing on Everglades National Park (ENP) in Florida, we show here that cluster sizes of each species follow a power law probability distribution and that such clusters have well-defined fractal characteristics. Moreover, we individuate and model those signatures via the interplay between global forcings arising from the hydroperiod regime and local controls exerted by neighboring vegetation. With power law clustering often associated with systems near critical transitions, our findings are highly relevant for the management of wetland ecosystems. In addition, our results show that changes in climate and land management have a quantifiable predictable impact on the type of vegetation and its spatial organization in wetlands.