WorldWideScience

Sample records for biological coal gasification

  1. Considerations on coal gasification

    Science.gov (United States)

    Franzen, J. E.

    1978-01-01

    Commercial processes for the gasification of coal with oxygen are discussed. The Koppers-Totzek process for the gasification of coal dust entrained in a stream of gasifying agents is described in particular detail. The outlook for future applications of coal gasification is presented.

  2. Development of biological coal gasification (MicGAS) process

    Energy Technology Data Exchange (ETDEWEB)

    Walia, D.S.; Srivastava, K.C.; Barik, S.

    1992-11-01

    Biomethanation of coal is a phenomenon carried out in concert by a mixed population (consortium) of at least three different groups of anaerobic bacteria and can be considered analogous to that of anaerobic digestion of municipal waste. The exception, however, is that unlike municipal waste; coal is a much complex and difficult substrate to degrade. This project was focused on studying the types of microorganisms involved in coal degradation, rates of methane production, developing a cost-effective synthetic culture medium for these microbial consortia and determining the rate of methane production in bench scale bioreactors.

  3. Development of biological coal gasification (MicGAS) process

    Energy Technology Data Exchange (ETDEWEB)

    Walia, D.S.; Srivastava, K.C.; Barik, S.

    1992-01-01

    Biomethanation of coal is a phenomenon carried out in concert by a mixed population (consortium) of at least three different groups of anaerobic bacteria and can be considered analogous to that of anaerobic digestion of municipal waste. The exception, however, is that unlike municipal waste; coal is a much complex and difficult substrate to degrade. This project was focused on studying the types of microorganisms involved in coal degradation, rates of methane production, developing a cost-effective synthetic culture medium for these microbial consortia and determining the rate of methane production in bench scale bioreactors.

  4. State of the art of biological processes for coal gasification wastewater treatment.

    Science.gov (United States)

    Zhao, Qian; Liu, Yu

    2016-01-01

    The treatment of coal gasification wastewater (CGW) poses a serious challenge on the sustainable development of the global coal industry. The CGW contains a broad spectrum of high-strength recalcitrant substances, including phenolic, monocyclic and polycyclic aromatic hydrocarbons, heterocyclic nitrogenous compounds and long chain aliphatic hydrocarbon. So far, biological treatment of CGW has been considered as an environment-friendly and cost-effective method compared to physiochemical approaches. Thus, this reviews aims to provide a comprehensive picture of state of the art of biological processes for treating CGW wastewater, while the possible biodegradation mechanisms of toxic and refractory organic substances were also elaborated together with microbial community involved. Discussion was further extended to advanced bioprocesses to tackle high-concentration ammonia and possible options towards in-plant zero liquid discharge.

  5. Integrated coal gasification combined cycle

    Science.gov (United States)

    Richards, P. C.; Wijffels, J.-B.; Zuideveld, P. L.

    Features of the integrated coal gasification combined cycle power plants are described against the backdrop of the development and first commercial application of the shell coal gasification process. Focus is on the efficiency and excellent environmental performance of the integrated coal gasification combined power plants. Current IGCC projects are given together with an outline of some of the options for integrating coal gasification with combined cycles and also other applications of synthesis gas.

  6. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous catalytic ozonation and biological process.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Jia, Shengyong; Hou, Baolin; Zhao, Qian

    2014-08-01

    Advanced treatment of biologically pretreated coal gasification wastewater (CGW) was investigated employing heterogeneous catalytic ozonation integrated with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process. The results indicated that catalytic ozonation with the prepared catalyst (i.e. MnOx/SBAC, sewage sludge was converted into sludge based activated carbon (SBAC) which loaded manganese oxides) significantly enhanced performance of pollutants removal by generated hydroxyl radicals. The effluent of catalytic ozonation process was more biodegradable and less toxic than that in ozonation alone. Meanwhile, ANMBBR-BAF showed efficient capacity of pollutants removal in treatment of the effluent of catalytic ozonation at a shorter reaction time, allowing the discharge limits to be met. Therefore, the integrated process with efficient, economical and sustainable advantages was suitable for advanced treatment of real biologically pretreated CGW.

  7. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous Fenton oxidation and biological process.

    Science.gov (United States)

    Xu, Peng; Han, Hongjun; Zhuang, Haifeng; Hou, Baolin; Jia, Shengyong; Xu, Chunyan; Wang, Dexin

    2015-04-01

    Laboratorial scale experiments were conducted in order to investigate a novel system integrating heterogeneous Fenton oxidation (HFO) with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process on advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that HFO with the prepared catalyst (FeOx/SBAC, sewage sludge based activated carbon (SBAC) which loaded Fe oxides) played a key role in eliminating COD and COLOR as well as in improving the biodegradability of raw wastewater. The surface reaction and hydroxyl radicals (OH) oxidation were the mechanisms for FeOx/SBAC catalytic reaction. Compared with ANMBBR-BAF process, the integrated system was more effective in abating COD, BOD5, total phenols (TPs), total nitrogen (TN) and COLOR and could shorten the retention time. Therefore, the integrated system was a promising technology for engineering applications.

  8. Underground gasification of coal

    Energy Technology Data Exchange (ETDEWEB)

    Koranda, J.

    1986-11-01

    A brief history is given of research in Czechoslovakia, which took 3 main factors into account: environmental protection, geological situation and need to produce gas for use both within the plant and elsewhere. In order to assess economic viability, model studies were performed on following mines: Podlesice (North Bohemia), Vatovce (South Slovakia), Syrenov (East Moravia), Zukovsky Hrbet (Ostrava-Karvina), Stonovska (Ostrava-Karvina) and Merkur (North Bohemia). Figures given in tabular form show that underground gasification at these sites would be cheaper than importing natural gas. Problems are discussed associated with underground gasification and it is concluded that research must be conducted into drilling techniques, drill design, methods of cutting through coal seam between shafts, underground generator design, methods of gasifying several seams with one shaft and methods of dealing with residual pillars.

  9. Advanced treatment of biologically pretreated coal gasification wastewater by a novel heterogeneous Fenton oxidation process.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Ma, Wencheng; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2015-07-01

    Sewage sludge from a biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl2 as activation agent, which was used as a support for ferric oxides to form a catalyst (FeOx/SBAC) by a simple impregnation method. The new material was then used to improve the performance of Fenton oxidation of real biologically pretreated coal gasification wastewater (CGW). The results indicated that the prepared FeOx/SBAC significantly enhanced the pollutant removal performance in the Fenton process, so that the treated wastewater was more biodegradable and less toxic. The best performance was obtained over a wide pH range from 2 to 7, temperature 30°C, 15 mg/L of H2O2 and 1g/L of catalyst, and the treated effluent concentrations of COD, total phenols, BOD5 and TOC all met the discharge limits in China. Meanwhile, on the basis of significant inhibition by a radical scavenger in the heterogeneous Fenton process as well as the evolution of FT-IR spectra of pollutant-saturated FeOx/BAC with and without H2O2, it was deduced that the catalytic activity was responsible for generating hydroxyl radicals, and a possible reaction pathway and interface mechanism were proposed. Moreover, FeOx/SBAC showed superior stability over five successive oxidation runs. Thus, heterogeneous Fenton oxidation of biologically pretreated CGW by FeOx/SBAC, with the advantages of being economical, efficient and sustainable, holds promise for engineering application.

  10. The shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Koenders, L.O.M.; Zuideveld, P.O. [Shell Internationale Petroleum Maatschappij B.V., The Hague (Netherlands)

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  11. Determination of biological removal of recalcitrant organic contaminants in coal gasification waste water.

    Science.gov (United States)

    Ji, Qinhong; Tabassum, Salma; Yu, Guangxin; Chu, Chunfeng; Zhang, Zhenjia

    2015-01-01

    Coal gasification waste water treatment needed a sustainable and affordable plan to eliminate the organic contaminants in order to lower the potential environmental and human health risk. In this paper, a laboratory-scale anaerobic-aerobic intermittent system carried out 66 operational cycles together for the treatment of coal gasification waste water and the removal capacity of each organic pollutant. Contaminants included phenols, carboxylic acids, long-chain hydrocarbons, and heterocyclic compounds, wherein the relative content of phenol is up to 57.86%. The long-term removal of 77 organic contaminants was evaluated at different hydraulic retention time (anaerobic24 h + aerobic48 h and anaerobic48 h +aerobic48 h). Contaminant removal ranged from no measurable removal to near-complete removal with effluent concentrations below the detection limit. Contaminant removals followed one of four trends: steady-state removal throughout, increasing removal to steady state (acclimation), decreasing removal, and no removal. Organic degradation and transformation in the reaction were analysed by gas chromatography/mass spectrometry technology.

  12. Coal gasification and occupational health.

    Science.gov (United States)

    Young, R J; McKay, W J; Evans, J M

    1978-12-01

    Identification and prevention of health effects due to occupational exposures in coal gasification processes requires a basic knowledge of the technological process by which gasification proceeds. This paper presents an overview of the technology and a rational approach to health hazard identification based upon the concept of the unit operation specific micro environment. A final section is devoted to summarizing current research efforts being carried out under the aegis of the National Institute for Occupational Safety and Health.

  13. Environmental benefits of underground coal gasification.

    Science.gov (United States)

    Liu, Shu-qin; Liu, Jun-hua; Yu, Li

    2002-04-01

    Environmental benefits of underground coal gasification are evaluated. The results showed that through underground coal gasification, gangue discharge is eliminated, sulfur emission is reduced, and the amount of ash, mercury, and tar discharge are decreased. Moreover, effect of underground gasification on underground water is analyzed and CO2 disposal method is put forward.

  14. Environmental benefits of underground coal gasification

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Environmental benefits of underground coal gasification are evaluated. The results showed that through underground coal gasification,gangue discharge is eliminated, sulfur emission is reduced, and the amount of ash, mercury, and tar discharge are decreased. Moreover, effect of underground gasification on underground water is analyzed and CO2 disposal method is put forward.

  15. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of catalytic ultrasound oxidation and membrane bioreactor.

    Science.gov (United States)

    Jia, Shengyong; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Hou, Baolin

    2015-01-01

    Laboratorial scale experiments were conducted to investigate a novel system integrating catalytic ultrasound oxidation (CUO) with membrane bioreactor (CUO-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. Results indicated that CUO with catalyst of FeOx/SBAC (sewage sludge based activated carbon (SBAC) which loaded Fe oxides) represented high efficiencies in eliminating TOC as well as improving the biodegradability. The integrated CUO-MBR system with low energy intensity and high frequency was more effective in eliminating COD, BOD5, TOC and reducing transmembrane pressure than either conventional MBR or ultrasound oxidation integrated MBR. The enhanced hydroxyl radical oxidation, facilitation of substrate diffusion and improvement of cell enzyme secretion were the mechanisms for CUO-MBR performance. Therefore, the integrated CUO-MBR was the promising technology for advanced treatment in engineering applications.

  16. Bioaugmentation of biological contact oxidation reactor (BCOR) with phenol-degrading bacteria for coal gasification wastewater (CGW) treatment.

    Science.gov (United States)

    Fang, Fang; Han, Hongjun; Zhao, Qian; Xu, Chunyan; Zhang, Linghan

    2013-12-01

    This study was conducted to evaluate the performance of the biological contact oxidation reactor (BCOR) treating coal gasification wastewater (CGW) after augmented with phenol degrading bacteria (PDB). The PDB were isolated with phenol, 4-methyl phenol, 3,5-dimethyl phenol and resorcinol as carbon resources. Much of the refractory phenolic compounds were converted into easily-biodegradable compounds in spite of low TOC removal. The bioaugmentation with PDB significantly enhanced the removal of COD, total phenols (TP) and NH3-N, with efficiencies from 58% to 78%, 66% to 80%, and 5% to 25%, respectively. In addition, the augmented BCOR exhibited strong recovery capability in TP and COD removal while recovery of NH3-N removal needed longer time. Microbial community analysis revealed that the PDB presented as dominant populations in the bacteria consortia, which in turn determined the overall performance of the system.

  17. Biological removal of organic constituents in quench waters from high-Btu coal-gasification pilot plants

    Energy Technology Data Exchange (ETDEWEB)

    Stamoudis, V C; Luthy, R G

    1980-02-01

    Studies were initiated to assess the efficiency of bench-scale, activated-sludge treatment for removal of organic constituents from coal-gasification process effluents. Samples of pilot-plant, raw-gas quench waters were obtained from the HYGAS process of the Institute of Gas Technology and from the slagging, fixed-bed (SFB) process of the Grand Forks Energy Technology Center. The types of coal employed were Bituminous Illinois No. 6 for the HYGAS and Indian Head lignite for the SFB process. These pilot-plant quench waters, while not strictly representative of commercial condensates, were considered useful to evaluate the efficiency of biological oxidation for the removal of organics. Biological-reactor influent and effluent samples were extracted using a methylene chloride pH-fractionation method into acid, base, and neutral fractions, which were analyzed by capillary-column gas-chromatography/mass-spectrometry. Influent acid fractions of both HYGAS and SFB condensates showed that nearly 99% of extractable and chromatographable organic material comprised phenol and alkylated phenols. Activated-sludge treatment removed these compounds almost completely. Removal efficiency of base-fraction organics was generally good, except for certain alkylated pyridines. Removal of neutral-fraction organics was also good, except for certain alkylated benzenes, certain polycyclic aromatic hydrocarbons, and certain cycloalkanes and cycloalkenes, especially at low influent concentrations.

  18. Underground gasification of coal pillars

    Energy Technology Data Exchange (ETDEWEB)

    Koranda, J.; Haas, K. (Ustav pro Vyzkum a Vyuziti Paliv, Prague (Czechoslovakia))

    1989-10-01

    Gives details of a feasibility study of underground gasification of the remaining non-extractable pillars at the Merkur coal mine, Tusimice. Briefly describes geological conditions and explains calculation of amount of heat held in coal pillars: seam is on average 11.7 m thick and generator area contains 7,182,300 t of coal with mean ash content of 29.71% and calorific value of 10.49 MJ/kg. Assuming losses of 15%, generator should be able to produce about 70,000 m{sup 3}/h of gas, equal to a lifetime of 20 years for coal pillars at the Merkur mine. Reviews gasification techniques and describes design of underground generator, which is to produce 70,000 m{sup 3}/h of gas at pressure of 0.4-0.45 MPa, temperature 350 C, humidity up to 0.25 kg/m{sup 3}. Describes equipment for compressing, cleaning and cooling gas and construction of access roads for positioning equipment and pipelines. It would not be viable to transport the type of gas produced over long distances; it should be used within the immediate area, e.g. at the Prunerov II power plant 2 km away. Concludes by calculating manpower required to operate gasification scheme (122) and cost benefit of scheme, which should provide gas at 31.1 Crowns per GJ (town gas currently costs 46.4 Crowns per GJ and imported natural gas costs 35.58 Crowns per GJ). 4 refs.

  19. Development of Biological Coal Gasification (MicGAS Process). Topical report, July 1991--February 1993

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, K.C.

    1993-06-01

    Laboratory and bench scale reactor research carried out during the report period confirms the feasibility of biomethanation of Texas lignite (TxL) and some other low-rank coals to methane by specifically developed unique anaerobic microbial consortia. The data obtained demonstrates specificity of a particular microbial consortium to a given lignite. Development of a suitable microbial consortium is the key to the success of the process. The Mic-1 consortium was developed to tolerate higher coal loadings of 1 and 5% TxL in comparison to initial loadings of 0.01% and 0.1% TxL. Moreover, the reaction period was reduced from 60 days to 14 to 21 days. The cost of the culture medium for bioconversion was reduced by studying the effect of different growth factors on the biomethanation capability of Mic-1 consortium. Four different bench scale bioreactor configurations, namely Rotating Biological Contactor (RBC), Upflow Fluidized Bed Reactor (UFBR), Trickle Bed Reactor (TBR), and Continuously Stirred Tank Reactor (CSTR) were evaluated for scale up studies. Preliminary results indicated highest biomethanation of TxL by the Mic-1 consortium in the CSTR, and lowest in the trickle bed reactor. However, highest methane production and process efficiency were obtained in the RBC.

  20. Influence of phenol on ammonia removal in an intermittent aeration bioreactor treating biologically pretreated coal gasification wastewater.

    Science.gov (United States)

    Xu, Chunyan; Han, Hongjun; Jia, Shengyong; Zhao, Qian

    2016-05-01

    A laboratory-scale intermittent aeration bioreactor was investigated to treat biologically pretreated coal gasification wastewater that was mainly composed of NH3-N and phenol. The results showed that increasing phenol loading had an adverse effect on NH3-N removal; the concentration in effluent at phenol loading of 40mgphenol/(L·day) was 7.3mg/L, 36.3% of that at 200mg phenol/(L·day). The enzyme ammonia monooxygenase showed more sensitivity than hydroxylamine oxidoreductase to the inhibitory effect of phenol, with 32.2% and 10.5% activity inhibition, respectively at 200mg phenol/(L·day). Owing to intermittent aeration conditions, nitritation-type nitrification and simultaneous nitrification and denitrification (SND) were observed, giving a maximum SND efficiency of 30.5%. Additionally, ammonia oxidizing bacteria (AOB) and denitrifying bacteria were the main group identified by fluorescent in situ hybridization. However, their relative abundance represented opposite variations as phenol loading increased, ranging from 30.1% to 17.5% and 7.6% to 18.2% for AOB and denitrifying bacteria, respectively.

  1. Spectrum of underground coal gasification in Tianjin

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yongsheng; Bai Xiaohong [Tianjin Urban Construction Inst. (China)

    1997-12-31

    A feasibility study on underground coal gasification in Tianjin is conducted and a program for exploitation of these coal reserves with UCG techniques is suggested. Some issues, such as the coal resources in Tianjin, the geological features of the selected for UCG trial, the characteristics of local coal deposits and the coal quality are discussed. A proposal for a combination of the production of coalbed methane and underground coal gas was summarized.

  2. Plasma gasification of coal in different oxidants

    Energy Technology Data Exchange (ETDEWEB)

    Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B. [Applied Plasma Technology, Mclean, VA (USA)

    2008-12-15

    Oxidant selection is the highest priority for advanced coal gasification-process development. This paper presents comparative analysis of the Powder River Basin bituminous-coal gasification processes for entrained-flow plasma gasifier. Several oxidants, which might be employed for perspective commercial applications, have been chosen, including air, steam/carbon-dioxide blend, carbon dioxide, steam, steam/air, steam/oxygen, and oxygen. Synthesis gas composition, carbon gasification degree, specific power consumptions, and power efficiency for these processes were determined. The influence of the selected oxidant composition on the gasification-process main characteristics have been investigated.

  3. Coal gasification for electric power generation.

    Science.gov (United States)

    Spencer, D F; Gluckman, M J; Alpert, S B

    1982-03-26

    The electric utility industry is being severely affected by rapidly escalating gas and oil prices, restrictive environmental and licensing regulations, and an extremely tight money market. Integrated coal gasification combined cycle (IGCC) power plants have the potential to be economically competitive with present commercial coal-fired power plants while satisfying stringent emission control requirements. The current status of gasification technology is discussed and the critical importance of the 100-megawatt Cool Water IGCC demonstration program is emphasized.

  4. Power coal plasma gasification. Computation and experiment

    Energy Technology Data Exchange (ETDEWEB)

    N.A. Bastyrev; V.I. Golysh; M.A. Gorokhovski; Yu.E. Karpenko; V.G. Lukiaschenko; V.E. Messerle; A.O. Nagibin; E.F. Osadchaya; S.F. Osadchy; I.G. Stepanov; K.A. Umbetkaliev; A.B. Ustimenko [Combustion Problems Institute, Almaty (Kazakhstan)

    2005-07-01

    Results of complex experimental and numerical investigation of coal plasma gasification in steam and air are presented. To analyse numerically the universal thermodynamic calculation code TERRA was used. The data base of it contains thermodynamic properties for 3500 individual components in temperature interval from 300 to 6000 K. Experiments were fulfilled at an original installation for coal plasma gasification. Nominal power of the plasma gasifier is 100 kW and sum consumption of the reagents is up to 25 kg/h. High integral indexes of the gasification processes were achieved. The numerical and experimental results comparison showed their satisfied agreement. 7 refs., 7 figs., 3 tabs.

  5. WABASH RIVER COAL GASIFICATION REPOWERING PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-09-01

    The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

  6. Advanced treatment of biologically pretreated coal gasification wastewater using a novel anoxic moving bed biofilm reactor (ANMBBR)-biological aerated filter (BAF) system.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Jia, Shengyong; Zhao, Qian; Hou, Baolin

    2014-04-01

    A novel system integrating anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) with short-cut biological nitrogen removal (SBNR) process was investigated as advanced treatment of real biologically pretreated coal gasification wastewater (CGW). The results showed the system had efficient capacity of degradation of pollutants especially nitrogen removal. The best performance was obtained at hydraulic residence times of 12h and nitrite recycling ratios of 200%. The removal efficiencies of COD, total organic carbon, NH4(+)-N, total phenols and total nitrogen (TN) were 74.6%, 70.0%, 85.0%, 92.7% and 72.3%, the corresponding effluent concentrations were 35.1, 18.0, 4.8, 2.2 and 13.6mg/L, respectively. Compared with traditional A(2)/O process, the system had high performance of NH4(+)-N and TN removal, especially under the high toxic loading. Moreover, ANMBBR played a key role in eliminating toxicity and degrading refractory compounds, which was beneficial to improve biodegradability of raw wastewater for SBNR process.

  7. Groundwater Pollution from Underground Coal Gasification

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In situ coal gasification poses a potential environmental risk to groundwater pollution although it depends mainly on local hydrogeological conditions.In our investigation, the possible processes of groundwater pollution originating from underground coal gasification (UCG) were analyzed.Typical pollutants were identified and pollution control measures are proposed.Groundwater pollution is caused by the diffusion and penetration of contaminants generated by underground gasification processes towards surrounding strata and the possible leaching of underground residue by natural groundwater flow after gasification.Typical organic pollutants include phenols, benzene, minor components such as PAHs and heterocyclics.Inorganic pollutants involve cations and anions.The natural groundwater flow after gasification through the seam is attributable to the migration of contaminants, which can be predicted by mathematical modeling.The extent and concentration of the groundwater pollution plume depend primarily on groundwater flow velocity, the degree of dispersion and the adsorption and reactions of the various contaminants.The adsorption function of coal and surrounding strata make a big contribution to the decrease of the contaminants over time and with the distance from the burn cavity.Possible pollution control measures regarding UCG include identifying a permanently, unsuitable zone, setting a hydraulic barrier and pumping contaminated water out for surface disposal.Mitigation measures during gasification processes and groundwater remediation after gasification are also proposed.

  8. A novel integration of three-dimensional electro-Fenton and biological activated carbon and its application in the advanced treatment of biologically pretreated Lurgi coal gasification wastewater.

    Science.gov (United States)

    Hou, Baolin; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Jia, Shengyong; Li, Kun

    2015-11-01

    A novel integrated process with three-dimensional electro-Fenton (3D EF) and biological activated carbon (BAC) was employed in advanced treatment of biologically pretreated Lurgi coal gasification wastewater. SAC-Fe (sludge deserved activated carbon from sewage and iron sludge) and SAC (sludge deserved activated carbon) were used in 3D EF as catalytic particle electrodes (CPEs) and in BAC as carriers respectively. Results indicated that 3D EF with SAC-Fe as CPEs represented excellent pollutants and COLOR removals as well as biodegradability improvement. The efficiency enhancement attributed to generating more H2O2 and OH. The integrated process exhibited efficient performance of COD, BOD5, total phenols, TOC, TN and COLOR removals at a much shorter retention time, with the corresponding concentrations in effluent of 31.18, 6.69, 4.29, 17.82, 13.88mg/L and <20 times, allowing discharge criteria to be met. The integrated system was efficient, cost-effective and ecological sustainable and could be a promising technology for engineering applications.

  9. Coal properties and system operating parameters for underground coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L. [China University of Mining & Technology, Xuzhou (China)

    2008-07-01

    Through the model experiment for underground coal gasification, the influence of the properties for gasification agent and gasification methods on underground coal gasifier performance were studied. The results showed that pulsating gasification, to some extent, could improve gas quality, whereas steam gasification led to the production of high heating value gas. Oxygen-enriched air and backflow gasification failed to improve the quality of the outlet gas remarkably, but they could heighten the temperature of the gasifier quickly. According to the experiment data, the longitudinal average gasification rate along the direction of the channel in the gasifying seams was 1.212 m/d, with transverse average gasification rate 0.069 m/d. Experiment indicated that, for the oxygen-enriched steam gasification, when the steam/oxygen ratio was 2:1, gas compositions remained stable, with H{sub 2} + CO content virtually standing between 60% and 70% and O{sub 2} content below 0.5%. The general regularities of the development of the temperature field within the underground gasifier and the reasons for the changes of gas quality were also analyzed. The 'autopneumatolysis' and methanization reaction existing in the underground gasification process were first proposed.

  10. Investigation of plasma-aided bituminous coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B. [Applied Plasma Technology, Mclean, VA (United States)

    2009-04-15

    This paper presents thermodynamic and kinetic modeling of plasma-aided bituminous coal gasification. Distributions of concentrations, temperatures, and velocities of the gasification products along the gasifier are calculated. Carbon gasification degree, specific power consumptions, and heat engineering characteristics of synthesis gas at the outlet of the gasifier are determined at plasma air/steam and oxygen/steam gasification of Powder River Basin bituminous coal. Numerical simulation showed that the plasma oxygen/steam gasification of coal is a more preferable process in comparison with the plasma air/steam coal gasification. On the numerical experiments, a plasma vortex fuel reformer is designed.

  11. Fixed-bed gasification research using US coals. Volume 14. Gasification of Kemmerer subbituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the fourteen volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Kemmerer subbituminous coal, from August 11, 1984 to August 15, 1984. 4 refs., 20 figs., 13 tabs.

  12. Studies of catalytic coal gasification with steam

    Directory of Open Access Journals (Sweden)

    Porada Stanisław

    2016-09-01

    Full Text Available One of the promising processes, belonging to the so-called clean coal technologies, is catalytic coal gasification. The addition of a catalyst results in an increased process rate, in which synthesis gas is obtained. Therefore, the subject of this research was catalytic gasification of low-ranking coal which, due to a high reactivity, meets the requirements for fuels used in the gasification process. Potassium and calcium cations in an amount of 0.85, 1.7 and 3.4% by weight were used as catalytically active substances. Isothermal measurements were performed at 900°C under a pressure of 2 MPa using steam as a gasifying agent. On the basis of kinetic curves, the performance of main gasification products as well as carbon conversion degree were determined. The performed measurements allowed the determination of the type and amount of catalyst that ensure the most efficient gasification process of the coal ‘Piast’ in an atmosphere of steam.

  13. Underground coal gasification. Gasificacion subterranea del carbon

    Energy Technology Data Exchange (ETDEWEB)

    Del Amor, G.; Obis, A. (ITGE, Madrid (Spain))

    1990-07-01

    In spite of the low price of both oil and gas, underground coal gasification is still an attractive option because of the possibility for exploiting coal which it would be uneconomic to mine by conventional methods. New technology has recently made gasification into a reality and methods have been developed to gasify both deep and superficial inclined seams. Recent tests in nearly level seams in the USA have been successful so that the process has become competitive in spite of current oil prices. 3 figs.

  14. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2014-08-01

    Sewage sludge of biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl₂ as activation agent, which supported manganese and ferric oxides as catalysts (including SBAC) to improve the performance of ozonation of real biologically pretreated Lurgi coal gasification wastewater. The results indicated catalytic ozonation with the prepared catalysts significantly enhanced performance of pollutants removal and the treated wastewater was more biodegradable and less toxic than that in ozonation alone. On the basis of positive effect of higher pH and significant inhibition of radical scavengers in catalytic ozonation, it was deduced that the enhancement of catalytic activity was responsible for generating hydroxyl radicals and the possible reaction pathway was proposed. Moreover, the prepared catalysts showed superior stability and most of toxic and refractory compounds were eliminated at successive catalytic ozonation runs. Thus, the process with economical, efficient and sustainable advantages was beneficial to engineering application.

  15. A breakthrough in coal gasification technology

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Tearning up with engineers of the Jincheng Anthracite Mining Group in north China's Shanxi Province, CAS researchers have successfully carried out a 1.0MPa, long-period (up to 72 hours) high-pressure test on a semi- industrial platform of pressurized ash agglomerating fluidized bed (AFB) coal gasification.

  16. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of three-dimensional catalytic electro-Fenton and membrane bioreactor.

    Science.gov (United States)

    Jia, Shengyong; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng

    2015-12-01

    Laboratorial scale experiments were conducted to investigate a novel system three-dimensional catalytic electro-Fenton (3DCEF, catalyst of sewage sludge based activated carbon which loaded Fe3O4) integrating with membrane bioreactor (3DCEF-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. The results indicated that 3DCEF-MBR represented high efficiencies in eliminating COD and total organic carbon, giving the maximum removal efficiencies of 80% and 75%, respectively. The integrated 3DCEF-MBR system significantly reduced the transmembrane pressure, giving 35% lower than conventional MBR after 30 days operation. The enhanced hydroxyl radical oxidation and bacteria self repair function were the mechanisms for 3DCEF-MBR performance. Therefore, the integrated 3DCEF-MBR was expected to be the promising technology for advanced treatment in engineering applications.

  17. Fixed-bed gasification research using US coals. Volume 4. Gasification of Leucite Hills subbituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-03-31

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the fourth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Leucite Hills subbituminous coal from Sweetwater County, Wyoming. The period of the gasification test was April 11-30, 1983. 4 refs., 23 figs., 27 tabs.

  18. Effect of gasification parameter on coal gasification in thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shen, S.; Pang, X.; Bao, W.; Lo, Y.; Zhu, S. [Taiyuan University of Technology, Taiyuan (China)

    2004-12-01

    The influence of several parameters such as the power input of plasma jet, vapor and air input etc on gas composition and carbon conversion from coal gasification in an air-steam plasma jet was studied. The main gaseous products are H{sub 2}, CO, CO{sub 2}, CH{sub 2}4 and tar was discovered. Results show that the concentration of H{sub 2}, CO and carbon conversion increases, and the concentration of CO{sub 2} significantly decreases, when the power input of plasma jet is raised. The concentration of H{sub 2} increases when the vapor flux is increased, but excessive steam can decrease carbon conversion. The carbon conversion is enhanced by decreasing feed rate. The air flux should be reduced to improve the quality of coal gas in a certain range. The carbon conversion of Datong coal can exceed 95% at appropriate condition. 18 refs., 4 figs., 2 tabs.

  19. High-Btu coal gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, C.F.; Baker, N.R.; Tison, R.R.

    1979-01-01

    This evaluation provides estimates of performance and cost data for advanced technology, high-Btu, coal gasification facilities. The six processes discussed reflect the current state-of-the-art development. Because no large commercial gasification plants have yet been built in the United States, the information presented here is based only on pilot-plant experience. Performance characteristics that were investigated include unit efficiencies, product output, and pollution aspects. Total installed plant costs and operating costs are tabulated for the various processes. The information supplied here will assist in selecting energy conversion units for an Integrated Community Energy System (ICES).

  20. Assessment of Advanced Coal Gasification Processes

    Science.gov (United States)

    McCarthy, John; Ferrall, Joseph; Charng, Thomas; Houseman, John

    1981-01-01

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process; Bell Single-Stage High Mass Flux (HMF) Process; Cities Service/Rockwell (CS/R) Hydrogasification Process; Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier. The report makes the following assessments: 1) while each process has significant potential as coal gasifiers, the CS/R and Exxon processes are better suited for SNG production; 2) the Exxon process is the closest to a commercial level for near-term SNG production; and 3) the SRT processes require significant development including scale-up and turndown demonstration, char processing and/or utilization demonstration, and reactor control and safety features development.

  1. An advanced coal gasification desulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Rehmat, A. (Institute of Gas Technology, Chicago, IL (USA)); Leppin, D. (Gas Research Inst., Chicago, IL (USA)); Banerjee, D.D. (Center for Research on Sulfur in Coal, Carterville, IL (USA))

    1990-01-01

    The Institute of Gas Technology (IGT) is in the process of developing an advanced coal gasification desulfurization process in which a calcium-based sorbent such as limestone or dolomite is injected into the fluidized-bed gasifier with coal to achieve in-bed desulfurization of coal as it is converted into clean fuel gas. The reactions involving calcium-based sorbents takes place in two steps. In the first step, the desulfurization reaction takes place between hydrogen sulfide and calcium oxide in the reducing zone of the reactor to produce calcium sulfide. The latter subsequently reacts with oxygen in the oxidizing zone of the reactor to produce calcium sulfate which can be safely disposed of along with the coal ash. This process will reduce the capital requirement for coal gasification plants and provide cost effective alternatives to scrubbers for industrial and utility use of high-sulfur coal. This paper addresses the basic research being conducted at IGT to confirm the viability of this process. 9 refs., 3 figs., 1 tab.

  2. Coal gasification: New challenge for the Beaumont rotary feeder

    Science.gov (United States)

    Stelian, J.

    1977-01-01

    The use of rotary feeders in the coal gasification process is described with emphasis on the efficient conversion of coal to clean gaseous fuels. Commercial applications of the rotary feeder system are summarized.

  3. Disposal of Soluble Salt Waste from Coal Gasification,

    Science.gov (United States)

    1980-06-01

    AD-A090 419 ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND ABERO-ETC F/S 13/2 DISPOSAL OF SOLUBLE SALT VBASTE FROM COAL GASIFICATION . 1W JUN 80 C E...use as pipe- line gasjof the Lurgi type will be used as a basis to explain the disposal process. The purpose of the coal gasification plant is to 470 MC...KNIGHT produce methane starting with coal, gasifying it and hydrogenating it. As supplies of low-sulfur coal diminish, coal gasification must operate

  4. The feasibility of using combined TiO2 photocatalysis oxidation and MBBR process for advanced treatment of biologically pretreated coal gasification wastewater.

    Science.gov (United States)

    Xu, Peng; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Wang, Dexin; Li, Kun; Zhao, Qian

    2015-01-01

    The study examined the feasibility of using combined heterogeneous photocatalysis oxidation (HPO) and moving bed biofilm reactor (MBBR) process for advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that the TOC removal efficiency was significantly improved in HPO. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that the HPO could be employed to eliminate bio-refractory and toxic compounds. Meanwhile, the BOD5/COD of the raw wastewater was increased from 0.08 to 0.49. Furthermore, in the integration of TiO2 photocatalysis oxidation and MBBR process, the effluent of COD, BOD5, TOC, NH4(+)-N and TN were 22.1 mg/L, 1.1 mg/L, 11.8 mg/L, 4.1mg/L and 13.7 mg/L, respectively, which all met class-I criteria of the Integrated Wastewater Discharge Standard (GB18918-2002, China). The total operating cost was 2.8CNY/t. Therefore, there is great potential for the combined system in engineering applications as a final treatment for biologically pretreated CGW.

  5. Kinetic study of coals gasification into carbon dioxide atmosphere

    Directory of Open Access Journals (Sweden)

    Korotkikh A.G.

    2015-01-01

    Full Text Available The solid fuel gasification process was investigated to define chemical reactions rate and activation energy for a gas-generator designing and regime optimizing. An experimental procedure includes coal char samples of Kuznetskiy and Kansko-Achinskiy deposits consequent argon pyrolysis into argon and oxidating into carbon dioxide with different temperatures. The thermogravimetric analysis data of coal char gasification into carbon dioxide was obtained in the temperature range 900–1200 ºC. The mass loss and gasification time dependencies from temperature were defined to calculate chemical reaction frequency factor and activation energy. Two coal char gasification physico-mathematical models were proposed and recommendations for them were formed.

  6. Wabash River coal gasification repowering project: Public design report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Wabash River Coal Gasification Repowering Project (the Project), conceived in October of 1990 and selected by the US Department of Energy as a Clean Coal IV demonstration project in September 1991, is expected to begin commercial operations in August of 1995. The Participants, Destec Energy, Inc., (Destec) of Houston, Texas and PSI Energy, Inc., (PSI) of Plainfield, Indiana, formed the Wabash River Coal Gasification Repowering Project Joint Venture (the JV) to participate in the DOE`s Clean Coal Technology (CCT) program by demonstrating the coal gasification repowering of an existing 1950`s vintage generating unit affected by the Clean Air Act Amendments (CAAA). The Participants, acting through the JV, signed the Cooperative Agreement with the DOE in July 1992. The Participants jointly developed, and separately designed, constructed, own, and will operate an integrated coal gasification combined cycle (CGCC) power plant using Destec`s coal gasification technology to repower Unit {number_sign}1 at PSI`s Wabash River Generating Station located in Terre Haute, Indiana. PSI is responsible for the new power generation facilities and modification of the existing unit, while Destec is responsible for the coal gasification plant. The Project demonstrates integration of the pre-existing steam turbine generator, auxiliaries, and coal handling facilities with a new combustion turbine generator/heat recovery steam generator tandem and the coal gasification facilities.

  7. Report to Congress on Contracting Approaches to Coal Gasification

    Science.gov (United States)

    2007-07-01

    of specific contracting approaches to coal gasification technology projects and submit a report on the findings by March 1, 2007. The report requests...if any, that may prevent the Department from effectively implementing coal gasification technology projects and recommendations for new authorities necessary to enable the effective implementation of such projects."

  8. Refractory Degradation by Slag Attack in Coal Gasification

    Science.gov (United States)

    2009-02-01

    REFRACTORY DEGRADATION BY SLAG ATTACK IN COAL GASIFICATION Jinichiro Nakano 1,2 , Sridhar Seetharaman 1,2 , James Bennett 3 , Kyei-Sing...00-2009 4. TITLE AND SUBTITLE Refractory Degradation by Slag Attack in Coal Gasification 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  9. Basic equations of channel model for underground coal gasification

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The underground coal gasification has advantages of zero rubbish, nonpollution, low cost and high safety. According to the characteristics of the gasification, the channel model of chemical fluid mechanics is used to set up the fluid equations and chemical equations by some reasonable suppositions in this paper, which lays a theoretical foundation on requirements of fluid movement rules in the process of underground coal gasification.

  10. Catalytic coal gasification: an emerging technology.

    Science.gov (United States)

    Hirsch, R L; Gallagher, J E; Lessard, R R; Wesslhoft, R D

    1982-01-08

    Catalytic coal gasification is being developed as a more efficient and less costly approach to producing methane from coal. With a potassium catalyst all the reactions can take place at one temperature, so that endothermic and exothermic reactions can be integrated in a single reactor. A key aspect of the concept involves continuous recycling of product carbon monoxide and hydrogen to the gasifier following separation of methane. Development of the process has advanced steadily since the basic concept was proposed in 1971. A 23-day demonstration run was recently completed in a process development unit with a coal feed rate of 1 ton per day. The next major step in the program will be to design and construct a large pilot plant to bring the technology to commercial readiness in the late 1980's.

  11. Robustness studies on coal gasification process variables

    Directory of Open Access Journals (Sweden)

    RLJ Coetzer

    2004-12-01

    Full Text Available Optimisation of the Sasol-Lurgi gasification process was carried out by utilising the method of Factorial Experimental Design on the process variables of interest from a specifically equipped full-scale test gasifier. The process variables that govern gasification are not always fully controllable during normal operation. This paper discusses the application of statistical robustness studies as a method for determining the most efficient combination of process variables that might be hard-to-control during normal operation. Response surface models were developed in the process variables for each of the performance variables. It will be shown how statistical robustness studies provided the optimal conditions for sustainable gasifier operability and throughput. In particular, the optimum operability region is significantly expanded towards higher oxygen loads by changing and controlling the particle size distribution of the coal.

  12. Economics of coal conversion processing. Advances in coal gasification: support research. Advances in coal gasification: process development and analysis

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The fall meeting of the American Chemical Society, Division of Fuel Chemistry, was held at Miami Beach, Florida, September 10-15, 1978. Papers involved the economics of coal conversion processing and advances in coal gasification, especially support research and process development and analysis. Fourteen papers have been entered individually into EDB and ERA; three papers had been entered previously from other sources. (LTN)

  13. Monitoring of Underground Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wagoner, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ramirez, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-08-31

    For efficient and responsible UCG operations, a UCG process must be monitored in the following three categories: 1) process parameters such as injection and product gas flow rates, temperature, pressure and syngas content and heating value; 2) geomechanical parameters, e.g., cavity and coal seam pressures, cavity development, subsidence and ground deformation; and 3) environmental parameters, e.g., groundwater chemistry and air quality. This report focuses on UCG monitoring with geophysical techniques that can contribute to monitoring of subsurface temperature, cavity development, burn front, subsidence and deformation.

  14. Clean fuels from coal gasification.

    Science.gov (United States)

    Squires, A M

    1974-04-19

    The quickest way to establish a visible new margin against energy demand is the historic producer serving small industry and gasifying Pennsylvania anthracite. In 2 years many producers could be in operation. The quickest way to obtain significant supplies of "new" gas or oil is to retrofit existing electricity and industrial boilers for power or industrial gas. Important results could be achieved in 6 years. Table 3 identifies development activities deserving high priority to speed the capture of gas and oil now burned in boilers, and to speed realization the advantages of combined-cycle equipment running on coal (8). Obviously, these activities are not enough. Many exciting and worthwhile concepts at various stages of development can furnish improved techniques for converting coal to pipeline gas and liquid fuels for the long run. Reviews of these concepts are available (6, 32, 35). I have neglected them in this article not to deny their importance but to stress the earlier opportunities from technology that is ready now, or nearly ready. The oil and gas industries might well consider the historical progression from Wells Fargo to Western Union to American Telephone and Telegraph to Radio Corporation of America. These industries will miss the boat if they regard themselves simply as purveyors of their historical fuels and not as purveyors of clean energy. The gas industry especially will be in trouble if it lets its major industrial customers, such as steel and electricity, provide their own supplies of power and industrial gas.

  15. Carbon dioxide sorption capacities of coal gasification residues.

    Science.gov (United States)

    Kempka, Thomas; Fernández-Steeger, Tomás; Li, Dong-Yong; Schulten, Marc; Schlüter, Ralph; Krooss, Bernhard M

    2011-02-15

    Underground coal gasification is currently being considered as an economically and environmentally sustainable option for development and utilization of coal deposits not mineable by conventional methods. This emerging technology in combination with carbon capture and sorptive CO2 storage on the residual coke as well as free-gas CO2 storage in the cavities generated in the coal seams after gasification could provide a relevant contribution to the development of Clean Coal Technologies. Three hard coals of different rank from German mining districts were gasified in a laboratory-scale reactor (200 g of coal at 800 °C subjected to 10 L/min air for 200 min). High-pressure CO2 excess sorption isotherms determined before and after gasification revealed an increase of sorption capacity by up to 42%. Thus, physical sorption represents a feasible option for CO2 storage in underground gasification cavities.

  16. Fixed-bed gasification research using US coals. Volume 10. Gasification of Benton lignite

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the tenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Benton lignite. The period of gasification test was November 1-8, 1983. 16 refs., 22 figs., 19 tabs.

  17. Investigation of polycyclic aromatic hydrocarbons from coal gasification

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hong-cang; JIN Bao-sheng; ZHONG Zhao-ping; HUANG Ya-ji; XIAO Rui; LI Da-ji

    2005-01-01

    The hazardous organic pollutants generated from coal gasification, such as polycyclic aromatic hydrocarbons(PAHs), are highly mutagenic and carcinogenic. More researchers have paid particular attention to them. Using air and steam as gasification medium, the experiments of three kinds of coals were carried out in a bench-scale atmospheric fluidized bed gasifier. The contents of the 16 PAHs specified by US EPA in raw coal, slag, bag house coke, cyclone coke and gas were measured by HPLC to study the contents of PAHs in raw coal and the effects of the inherent characters of coals on the formation and release of PAHs in coal gasification. The experimental results showed that the distributions of PAHs in the gasified products are similar to raw coals and the total-PAHs content in coal gasification is higher than in raw coal(except Coal C). The total-PAHs contents increase and then decrease with the rise of fixed carbon and sulfur of coal while there has an opposite variation when volatile matters content increase. The quantities of PAHs reduce with the increase of ash content or the drop of heating value during coal gasification.

  18. Investigation of polycyclic aromatic hydrocarbons from coal gasification.

    Science.gov (United States)

    Zhou, Hong-cang; Jin, Bao-sheng; Zhong, Zhao-ping; Huang, Ya-ji; Xiao, Rui; Li, Da-ji

    2005-01-01

    The hazardous organic pollutants generated from coal gasification, such as polycyclic aromatic hydrocarbons(PAHs), are highly mutagenic and carcinogenic. More researchers have paid particular attention to them. Using air and steam as gasification medium, the experiments of three kinds of coals were carried out in a bench-scale atmospheric fluidized bed gasifier. The contents of the 16 PAHs specified by US EPA in raw coal, slag, bag house coke, cyclone coke and gas were measured by HPLC to study the contents of PAHs in raw coal and the effects of the inherent characters of coals on the formation and release of PAHs in coal gasification. The experimental results showed that the distributions of PAHs in the gasified products are similar to raw coals and the total-PAHs content in coal gasification is higher than in raw coal(except Coal C). The total-PAHs contents increase and then decrease with the rise of fixed carbon and sulfur of coal while there has an opposite variation when volatile matters content increase. The quantities of PAHs reduce with the increase of ash content or the drop of heating value during coal gasification.

  19. Coal gasification. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The conversion of coal to high-Btu gas requires a chemical and physical transformation of solid coal. However, because coal has widely differing chemical and physical properties, depending on where it is mined, it is difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, ERDA, together with the American Gas Association, is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, the processes under development have unique characteristics. A number of the processes for converting coal to high Btu and to low Btu gas have reached the pilot plant stage. The responsibility for designing, constructing and operating each of these pilot plants is defined and progress on each during the quarter is described briefly. The accumulation of data for a coal gasification manual and the development of mathematical models of coal gasification processes are reported briefly. (LTN)

  20. Coal Integrated Gasification Fuel Cell System Study

    Energy Technology Data Exchange (ETDEWEB)

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

    2004-01-31

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

  1. Japan's Sunshine Project 1988 annual summary of coal liquefaction and gasification

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Describes work carried out during the year on coal liquefaction and gasification technologies, bituminous and brown coal liquefaction, development of machinery and materials for coal liquefaction plant, coal type selection studies, data collection and processing, utilization and upgrading technology of coal derived products, toxicological and environmental effects of liquefied coal, coal-based hydrogen production technology and technology for entrained flow coal gasification.

  2. Development of biological coal gasification (MicGAS process). Final report, May 1, 1990--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    ARCTECH has developed a novel process (MicGAS) for direct, anaerobic biomethanation of coals. Biomethanation potential of coals of different ranks (Anthracite, bitumious, sub-bitumious, and lignites of different types), by various microbial consortia, was investigated. Studies on biogasification of Texas Lignite (TxL) were conducted with a proprietary microbial consortium, Mic-1, isolated from hind guts of soil eating termites (Zootermopsis and Nasutitermes sp.) and further improved at ARCTECH. Various microbial populations of the Mic-1 consortium carry out the multi-step MicGAS Process. First, the primary coal degraders, or hydrolytic microbes, degrade the coal to high molecular weight (MW) compounds. Then acedogens ferment the high MW compounds to low MW volatile fatty acids. The volatile fatty acids are converted to acetate by acetogens, and the methanogens complete the biomethanation by converting acetate and CO{sub 2} to methane.

  3. Coal gasification with water under supercritical conditions

    Energy Technology Data Exchange (ETDEWEB)

    A.A. Vostrikov; S.A. Psarov; D.Yu. Dubov; O.N. Fedyaeva; M.Ya. Sokol [Russian Academy of Sciences, Novosibirsk (Russian Federastion). Kutateladze Institute of Thermophysics, Siberian Division

    2007-08-15

    The conversion of an array of coal particles in supercritical water (SCW) was studied in a semibatch reactor at a pressure of 30 MPa, 500-750{sup o}C, and a reaction time of 1-12 min. The bulk conversion, surface conversion, and random pore models were used to describe the conversion. The quantitative composition of reaction products was determined, and the dependence of the rate of reaction on the degree of coal conversion, reaction time, and reaction temperature was obtained on the assumption of a first-order reaction and the Arrhenius function. It was found that the gasification of coal under SCW conditions without the addition of oxidizing agents is a weakly endothermic process. The addition of CO{sub 2} to SCW decreased the rate of conversion and increased the yield of CO. It was found that, at a 90% conversion of the organic matter of coal (OMC) in a flow of SCW in a time of 2 min, the process power was 26 W/g per gram of OMC.

  4. Coal gasification systems engineering and analysis. Appendix A: Coal gasification catalog

    Science.gov (United States)

    1980-01-01

    The scope of work in preparing the Coal Gasification Data Catalog included the following subtasks: (1) candidate system subsystem definition, (2) raw materials analysis, (3) market analysis for by-products, (4) alternate products analysis, (5) preliminary integrated facility requirements. Definition of candidate systems/subsystems includes the identity of and alternates for each process unit, raw material requirements, and the cost and design drivers for each process design.

  5. Coal gasification. (Latest citations from the EI compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The bibliography contains citations concerning the development and assessment of coal gasification technology. Combined-cycle gas turbine power plants are reviewed. References also discuss dry-feed gasification, gas turbine interface, coal gasification pilot plants, underground coal gasification, gasification with nuclear heat, and molten bath processes. Clean-coal based electric power generation and environmental issues are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Coal gasification. Quarterly report, July-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    The status of 18 coal gasification pilot plants or supporting projects supported by US DOE is reviewed under the following headings: company involved, location, contract number, funding, gasification process, history, process description, flowsheet and progress in the July-September 1979 quarter. (LTN)

  7. Coal gasification characteristics in a downer reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.J.; Lee, S.H.; Kim, S.D. [Korea Advanced Institute of Science and Technology, Taejon (Republic of Korea). Dept. of Chemical Engineering and Energy & Environmental Research Center

    2001-10-26

    Subbituminous coal (Shenwha) was gasified at atmospheric pressure in a downer reactor (0.1 m.I.D. x 5.0 high). The effects of reaction temperature (750-850{degree}C), steam/coal mass ratio (0.23 - 0.86), O{sub 2}/H{sub 2}O mole ratio (0.81) and coal feeding rate (5.3-9.0 kg h{sup -1}) on the composition of product gas, carbon conversion, cold gas efficiency, gas yield and calorific value have been determined. In the case of steam injection into the loop-seal, compositions of the product gas (vol. %; N{sub 2} free basis) in the gasification ration are H{sub 2}, CH{sub 4}, CO, CO{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}, C{sub 3}H{sub 6} and C{sub 3}H{sub 8} with a calorific value of 13.0-15.2 MJ/m{sup 3}. By changing the reactant gas supplied into the loop-seal for solid circulating from steam to air, product gas yield and carbon conversion increase, whereas calorific value of the product gas decreases from 13.0-15.2 to 6.3-10.6 with reaction temperature. 22 refs., 12 figs., 1 tab.

  8. Impact of RCRA on coal gasification wastes

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-08-01

    Coal conversion processes offer the potential for almost every possible mode of environmental contamination. Potential environmental pollution will occur from huge streams of wastewater, scores of gaseous vents and enormous quantities of solid materials. The nature of the waste streams is of particular concern in view of the recently enacted Resource Conservation and Recovery Act (RCRA). The passage and implementation of RCRA poses new levels of control for the traditional solid waste disposal process and establishes a new set of material standards for hazardous wastes in which conforming materials will require even more stringent controls. Key definitions in the Act which may pertain to coal gasification wastes include hazardous waste, sludge and solid waste. It is the goal of this report to collect, analyze, and interpret data and other technical information relevant to solid waste by-product generation, handling, and disposal at existing and future coal conversion plants. The analysis and interpretation of the collected data has been directed towards identifying gaps in the data, potential problem areas in solid waste disposal in view of RCRA, and needed research activities in the area of solid waste disposal.

  9. Exergetic analysis of coal gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P.; Conger, W.L.

    1980-12-01

    In this study, the efficiency and economics of the Synthane Gasification process are evaluated and discussed. The efficiency of the Synthane process was determined using the exergy analysis (availability) approach to process evaluation. The exergy analysis utilizes both the first and second laws of thermodynamics to determine the efficiency of a process, and is very useful in determining the causes of inefficiency. In order to accurately apply the exergy analysis, it is essential that the absolute enthalpy and entropy values of each stream be determined. In this study, methods for predicting the enthalpy and entropy of coal, char, tar, and ash, as a function of temperature and material composition previously developed were used. A computer simulation of the Synthane process was developed which allowed for the effect of changes in plant operating parameters on both the efficiency and economics. The simulation included a three-section model of the Synthane fluidized bed gasifier.

  10. Kinetic study of coals gasification into carbon dioxide atmosphere

    OpenAIRE

    Korotkikh A.G.; Slyusarskiy K.V.

    2015-01-01

    The solid fuel gasification process was investigated to define chemical reactions rate and activation energy for a gas-generator designing and regime optimizing. An experimental procedure includes coal char samples of Kuznetskiy and Kansko-Achinskiy deposits consequent argon pyrolysis into argon and oxidating into carbon dioxide with different temperatures. The thermogravimetric analysis data of coal char gasification into carbon dioxide was obtained in the temperature range 900–1200 ºC. The ...

  11. Rock massif observation from underground coal gasification point of view

    Directory of Open Access Journals (Sweden)

    T. Sasvári

    2009-04-01

    Full Text Available The Underground coal gasification (UCG of the coal seams is determined by suitable geological structure of the area. The assumption of the qualitative changes of the rock massif can be also enabled by application of geophysical methods (electric resisting methods and geoelectric tomography. This article shows the example of evaluating possibilities of realization of the underground coal gasification in the area of the Upper Nitra Coal Basin in Cíge¾ and Nováky deposits, and recommend the needs of cooperation among geological, geotechnical and geophysical researchers.

  12. Current experiences in applied underground coal gasification

    Science.gov (United States)

    Peters, Justyn

    2010-05-01

    The world is experiencing greater stress on its ability to mine and exploit energy resources such as coal, through traditional mining methods. The resources available by extraction from traditional mining methods will have a finite time and quantity. In addition, the high quality coals available are becoming more difficult to find substantially increasing exploration costs. Subsequently, new methods of extraction are being considered to improve the ability to unlock the energy from deep coals and improve the efficiency of the exploitation of the resources while also considering the mitigation of global warming. Underground Coal Gasification (UCG) is a leading commercial technology that is able to maximize the exploitation of the deep coal through extraction of the coal as a syngas (CO and H2) in situ. The syngas is then brought to the surface and efficiently utilized in any of combined cycle power generation, liquid hydrocarbon transport fuel production, fertilizer production or polymer production. Commercial UCG has been successfully operating for more than 50 years at the Yerostigaz facility in Angren, Uzbekistan. Yerostigaz is the only remaining UCG site in the former Soviet Union. Linc Energy currently owns 91.6% of this facility. UCG produces a high quality synthetic gas (syngas), containing carbon monoxide, hydrogen and methane. UCG produced syngas can be economically used for a variety of purposes, including: the production of liquid fuels when combined with Gas to Liquids (GTL) technology power generation in gas turbine combined cycle power stations a feedstock for different petrochemical processes, for example producing chemicals or other gases such as hydrogen, methane, ammonia, methanol and dimethyl ether Linc Energy has proven the combined use of UCG to Gas to Liquids (GTL) technologies. UCG to GTL technologies have the ability to provide energy alternatives to address increasing global demand for energy products. With these technologies, Linc Energy is

  13. Wabash River coal gasification repowering project -- first year operation experience

    Energy Technology Data Exchange (ETDEWEB)

    Troxclair, E.J. [Destec Energy, Inc., Houston, TX (United States); Stultz, J. [PSI Energy, Inc., West Terre Haute, IN (United States)

    1997-12-31

    The Wabash River Coal Gasification Repowering Project (WRCGRP), a joint venture between Destec Energy, Inc. and PSI Energy, Inc., began commercial operation in November of 1995. The Project, selected by the United States Department of Energy (DOE) under the Clean Coal Program (Round IV) represents the largest operating coal gasification combined cycle plant in the world. This Demonstration Project has allowed PSI Energy to repower a 1950`s vintage steam turbine and install a new syngas fired combustion turbine to provide 262 MW (net) of electricity in a clean, efficient manner in a commercial utility setting while utilizing locally mined high sulfur Indiana bituminous coal. In doing so, the Project is also demonstrating some novel technology while advancing the commercialization of integrated coal gasification combined cycle technology. This paper discusses the first year operation experience of the Wabash Project, focusing on the progress towards achievement of the demonstration objectives.

  14. Coal gasification. Quarterly report, October--December 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-05-01

    A number of the processes for converting coal to gas supported by US DOE have reached the pilot plant stage. Laboratory research is also continuing in order to develop data for verifying the feasibility of the specific process and for supporting the operation of the plant. Responsibility for designing, constructing, and operating these pilot plants is given. The most successful test to date was completed in the pilot plant of the BI-GAS Process. The HYGAS Process pilot plant continued testing with Illinois bituminous coal to acquire data necessary to optimize the design of a commercial demonstration plant using the HYGAS process. The Synthane Process pilot plant continued studies of Illinois No. 6 coal. Other processes discussed are: Agglomerating Burner Process, Liquid Phase Methanation Process, Molten Salt Gasification Process, Advanced Coal Gasification System, and Lo-Btu Gasification of Coal for Electric Power Generation. Each project is described briefly with funding, history, and progress during the quarter. (LTN)

  15. Imaging the Underground Coal Gasification Zone with Microgravity Surveys

    Directory of Open Access Journals (Sweden)

    Kotyrba Andrzej

    2015-06-01

    Full Text Available The paper describes results of microgravity measurements made on the surface over an underground geo reactor where experimental coal gasification was performed in a shallow seam of coal. The aim of the research was to determine whether, and to what extent, the microgravity method can be used to detect and image a coal gasification zone, especially caverns where the coal was burnt out. In theory, the effects of coal gasification process create caverns and cracks, e.g., zones of altered bulk density. Before the measurements, theoretical density models of completely and partially gasified coal were analysed. Results of the calculations of gravity field response showed that in both cases on the surface over the gasification zone there should be local gravimetric anomalies. Over the geo reactor, two series of gravimetric measurements prior to and after gasification were conducted. Comparison of the results of two measurement series revealed the presence of gravimetric anomalies that could be related to the cavern formation process. Data from these measurements were used to verify theoretical models. After the experiment, a small cavern was detected at the depth of the coal seam by the test borehole drilled in one of the anomalous areas.

  16. Imaging the Underground Coal Gasification Zone with Microgravity Surveys

    Science.gov (United States)

    Kotyrba, Andrzej; Kortas, Łukasz; Stańczyk, Krzysztof

    2015-06-01

    The paper describes results of microgravity measurements made on the surface over an underground geo reactor where experimental coal gasification was performed in a shallow seam of coal. The aim of the research was to determine whether, and to what extent, the microgravity method can be used to detect and image a coal gasification zone, especially caverns where the coal was burnt out. In theory, the effects of coal gasification process create caverns and cracks, e.g., zones of altered bulk density. Before the measurements, theoretical density models of completely and partially gasified coal were analysed. Results of the calculations of gravity field response showed that in both cases on the surface over the gasification zone there should be local gravimetric anomalies. Over the geo reactor, two series of gravimetric measurements prior to and after gasification were conducted. Comparison of the results of two measurement series revealed the presence of gravimetric anomalies that could be related to the cavern formation process. Data from these measurements were used to verify theoretical models. After the experiment, a small cavern was detected at the depth of the coal seam by the test borehole drilled in one of the anomalous areas.

  17. Application and development status of coal gasification technology in China

    Institute of Scientific and Technical Information of China (English)

    BU Xue-peng; XU Zhen-gang

    2004-01-01

    Introduced the application and development status of coal gasification technology in China. The most widely used coal gasification technology in China is the atmospheric fixed-bed gasifier, its total number is about 9 000. About 30 pressurized fixed-bed gasifiers are in operation, and more than 10 atmospheric fluidized-bed gasifiers were used. There are 13 Texaco entrained-flow bed gasifiers are under operation,10 Texaco and 11 Shell gasifiers that are being installed or imported. About 10 underground gasifiers are under running now. The present R&D of coal gasification technologies are to improve the operation and controlling level of fixed-bed gasification technology, and developing or demonstration of fluidized-bed and entrained-flow bed gasifiers.

  18. A contrast study on different gasifying agents of underground coal gasification at Huating Coal Mine

    Institute of Scientific and Technical Information of China (English)

    WANG Zuo-tang; HUANG Wen-gang; ZHANG Peng; XIN Lin

    2011-01-01

    To optimize the technological parameter of underground coal gasification (UCG), the experimental results of air gasification, air-steam gasification, oxygen-enrichment steam gasification, pure oxygen steam gasification and two-stage gasification were studied contrastively based on field trial at the Huating UCG project. The results indicate that the average low heat value of gas from air experiment is the lowest (4.1 MJ/Nm3) and the water gas from two-stage gasification experiment is the highest (10.72 MJ/Nm3). The gas productivity of air gasification is the highest and the pure oxygen steam gasification is the lowest. The gasification efficiency of air gasification, air-steam gasification, oxygen-enriched steam gasification, pure oxygen steam gasification and two-stage gasification is listed in ascending order, ranging from 69.88% to 84.81%. Described a contract study on results of a field test using steam and various levels of oxygen enrichment of 21%, 32%, 42% and 100%. The results show that, with the increasing of O2 content in gasifying agents, the gas caloricity rises, and the optimal O2 concentration range to increase the gas caloricity is 30%~40%. Meanwhile, the consumption of O2 and steam increase, and the air consumption and steam decomposition efficiency fall.

  19. Underground coal gasification technology impact on coal reserves in Colombia

    Directory of Open Access Journals (Sweden)

    John William Rosso Murillo

    2013-12-01

    Full Text Available In situ coal gasification technology (Underground Coal Gasification–UCG– is an alternative to the traditional exploitation, due to it allows to reach the today’s inaccessible coal reserves’ recovery, to conventional mining technologies. In this article I answer the question on how the today’s reserves available volume, can be increased, given the possibility to exploit further and better the same resources. Mining is an important wealth resource in Colombia as a contributor to the national GDP. According with the Energy Ministry (Ministerio de Minas y Energía [1] mining has been around 5% of total GDP in the last years. This is a significant fact due to the existence of a considerable volume of reserves not accounted for (proved reserves at year 2010 were 6.700 million of tons. Source: INGEOMINAS and UPME, and the coal future role’s prospect, in the world energy production.

  20. Fixed-bed gasification research using US coals. Volume 8. Gasification of River King Illinois No. 6 bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the eighth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of River King Illinois No. 6 bituminous coal. The period of gasification test was July 28 to August 19, 1983. 6 refs., 23 figs., 25 tabs.

  1. Coal gasification. Quarterly report, July--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    The conversion of coal to high-Btu gas requires a chemical and physical transformation of solid coal. However, because coal has widely differing chemical and physical properties, depending on where it is mined, it is difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, ERDA, together with the American Gas Association, is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, the processes under development have unique characteristics. There are, for example, important differences in reactor configurations and methods of supplying heat for gasification. Moreover, because these processes require high temperatures and some require high pressures, temperature-resistant alloys and new pressure vessels must be developed to obtain reliable performance. A number of the processes for converting coal to high-Btu and to low-Btu gas have reached the pilot plant stage. The responsibility for designing, constructing and operating each of these pilot plants is defined and progress on each during the quarter is described briefly. The accumulation of data for a coal gasification manual and the development of mathematical models of coal gasification processes are reported briefly. (LTN)

  2. New projects for CCGTs with coal gasification (Review)

    Science.gov (United States)

    Olkhovskii, G. G.

    2016-10-01

    Perspectives of using coal in combined-cycle gas turbine units (CCGTs), which are significantly more efficient than steam power plants, have been associated with preliminary coal gasification for a long time. Due to gasification, purification, and burning the resulting synthesis gas at an increased pressure, there is a possibility to intensify the processes occurring in them and reduce the size and mass of equipment. Physical heat evolving from gasification can be used without problems in the steam circuit of a CCGT. The downside of these opportunities is that the unit becomes more complex and expensive, and its competitiveness is affected, which was not achieved for CCGT power plants with coal gasification built in the 1990s. In recent years, based on the experience with these CCGTs, several powerful CCGTs of the next generation, which used higher-output and cost-effective gas-turbine plants (GTPs) and more advanced systems of gasification and purification of synthesis gas, were either built or designed. In a number of cases, the system of gasification includes devices of CO vapor reforming and removal of the emitted CO2 at a high pressure prior to fuel combustion. Gasifiers with air injection instead of oxygen injection, which is common in coal chemistry, also find application. In this case, the specific cost of the power station considerably decreases (by 15% and more). In units with air injection, up to 40% air required for separation is drawn from the intermediate stage of the cycle compressor. The range of gasified coals has broadened. In order to gasify lignites in one of the projects, a transfer reactor was used. The specific cost of a CCGT with coal gasification rose in comparison with the period when such units started being designed, from 3000 up to 5500 dollars/kW.

  3. APPRAISAL OF THE POPULATION THREAT RISK BY CARBON LEAKAGE PRODUCED BY UNDERGROUND COAL GASIFICATION

    OpenAIRE

    Šofranko, Marian; Škvareková, Erika; Laciak, Marek

    2013-01-01

    The UCG /underground coal gasification/ technology could increase energy production resulting in improving the economic situation. Even if the risk of accidents may occur in the both coal gasification and underground mining, the other parameters suggest that the coal gasification method is much safer that the underground mining.

  4. Steam and air plasma gasification of bituminous coal and petrocoke

    Directory of Open Access Journals (Sweden)

    Vladimir Messerle

    2012-12-01

    Full Text Available This paper presents a numerical analysis and experimental investigation of two very different solid fuels, low-rank bituminous coal of 40 % ash content and petrocoke of 3 % ash content, gasification under steam and air plasma conditions with an aim of producing synthesis gas. Numerical analysis was fulfilled using the software package TERRA for equilibrium computation. Using the results of the numerical simulation, experiments on plasma steam gasification of the petrocoke and air and steam gasification of the coal were conducted in an original installation. Nominal power of the plasma installation is 100 kWe and sum consumption of the reagents is up to 20 kg/h. High quality synthesis gas was produced in the experiments on solid fuels plasma gasification. It has been found that the synthesis gas content at about 97.4 vol.% can be produced. Comparison between the numerical and experimental results showed satisfactory agreement. 

  5. Advanced Hydrogen Transport Membrane for Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Joseph [Praxair, Inc., Tonawanda, NY (United States); Porter, Jason [Colorado School of Mines, Golden, CO (United States); Patki, Neil [Colorado School of Mines, Golden, CO (United States); Kelley, Madison [Colorado School of Mines, Golden, CO (United States); Stanislowski, Josh [Univ. of North Dakota, Grand Forks, ND (United States); Tolbert, Scott [Univ. of North Dakota, Grand Forks, ND (United States); Way, J. Douglas [Colorado School of Mines, Golden, CO (United States); Makuch, David [Praxair, Inc., Tonawanda, NY (United States)

    2015-12-23

    A pilot-scale hydrogen transport membrane (HTM) separator was built that incorporated 98 membranes that were each 24 inches long. This separator used an advanced design to minimize the impact of concentration polarization and separated over 1000 scfh of hydrogen from a hydrogen-nitrogen feed of 5000 scfh that contained 30% hydrogen. This mixture was chosen because it was representative of the hydrogen concentration expected in coal gasification. When tested with an operating gasifier, the hydrogen concentration was lower and contaminants in the syngas adversely impacted membrane performance. All 98 membranes survived the test, but flux was lower than expected. Improved ceramic substrates were produced that have small surface pores to enable membrane production and large pores in the bulk of the substrate to allow high flux. Pd-Au was chosen as the membrane alloy because of its resistance to sulfur contamination and good flux. Processes were developed to produce a large quantity of long membranes for use in the demonstration test.

  6. Steam and air plasma gasification of bituminous coal and petrocoke

    OpenAIRE

    Vladimir Messerle; Alexander Ustimenko

    2012-01-01

    This paper presents a numerical analysis and experimental investigation of two very different solid fuels, low-rank bituminous coal of 40 % ash content and petrocoke of 3 % ash content, gasification under steam and air plasma conditions with an aim of producing synthesis gas. Numerical analysis was fulfilled using the software package TERRA for equilibrium computation. Using the results of the numerical simulation, experiments on plasma steam gasification of the petrocoke and air and steam ga...

  7. Utilization of chemical looping strategy in coal gasification processes

    Institute of Scientific and Technical Information of China (English)

    Liangshih Fan; Fanxing Li; Shwetha Ramkumar

    2008-01-01

    Three chemical looping gasification processes, i. e. Syngas Chemical Looping (SCL) process, Coal Direct Chemical Looping (CDCL) process, and Calcium Looping process (CLP), are being developed at the Ohio State University (OSU). These processes utilize simple reaction schemes to convert carbonaceous fuels into products such as hydrogen, electricity, and synthetic fuels through the transformation of a highly reactive, highly recyclable chemical intermediate. In this paper, these novel chemical looping gasification processes are described and their advantages and potential challenges for commercialization are discussed.

  8. Hydrogen production by coal plasma gasification for fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Galvita, V. [Max-Planck-Institute, Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg (Germany); Messerle, V.E.; Ustimenko, A.B. [Research Department of Plasmotechnics, 22 Zvereva str., 050100 Almaty (Kazakhstan)

    2007-11-15

    Coal gasification in steam and air atmosphere under arc plasma conditions has been investigated with Podmoskovnyi brown coal, Kuuchekinski bituminous coal and Canadian petrocoke. It was found that for those coals the gasification degree to synthesis gas were 92.3%, 95.8 and 78.6% correspondingly. The amount of produced syngas was 30-40% higher in steam than in air gasification of the coal. The reduction of the carbon monoxide content in the hydrogen-rich reformate gas for low-temperature fuel cell applications normally involves high- and low-temperature water gas shift reactors followed by selective oxidation of residual carbon monoxide. It is shown that the carbon monoxide content can be reduced in one single reactor, which is based on an iron redox cycle. During the reduction phase of the cycle, the raw gas mixture of H{sub 2} and CO reduces a Fe{sub 3}O{sub 4}-CeO{sub 2}-ZrO{sub 2} sample, while during the oxidation phase steam re-oxidizes the iron and simultaneously hydrogen is being produced. The integration of the redox iron process with a coal plasma gasification technology in future allows the production of CO{sub x}-free hydrogen. (author)

  9. Development program to support industrial coal gasification. Quarterly report 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-15

    The Development Program to Support Industrial Coal Gasification is on schedule. The efforts have centered on collecting background information and data, planning, and getting the experimental program underway. The three principal objectives in Task I-A were accomplished. The technical literature was reviewed, the coals and binders to be employed were selected, and tests and testing equipment to be used in evaluating agglomerates were developed. The entire Erie Mining facility design was reviewed and a large portion of the fluidized-bed coal gasification plant design was completed. Much of the work in Task I will be experimental. Wafer-briquette and roll-briquette screening tests will be performed. In Task II, work on the fluidized-bed gasification plant design will be completed and work on a plant design involving entrained-flow gasifiers will be initiated.

  10. Coal gasification. Quarterly report, January--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    High-Btu natural gas has a heating value of 950 to 1,000 Btu per standard cubic foot, is composed essentially of methane, and contains virtually no sulfur, carbon monoxide, or free hydrogen. The conversion of coal to high-Btu gas requires a chemical and physical transformation of solid coal. However, because coal has widely differing chemical and physical properties, depending on where it is mined, it is difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, ERDA, together with the American Gas Association is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, the processes under development have unique characteristics. A number of the processes for converting coal to high Btu and to low Btu gas have reached the pilot plant stage. The responsibility for designing, constructing and operating each of these pilot plants is defined and progress on each during the quarter is described briefly. The accumulation of data for a coal gasification manual and the development of mathematical models of coal gasification processes are reported briefly. (LTN)

  11. Flow Simulation and Optimization of Plasma Reactors for Coal Gasification

    Institute of Scientific and Technical Information of China (English)

    冀春俊; 张英姿; 马腾才

    2003-01-01

    This paper reports a 3-d numerical simulation system to analyze the complicatedflow in plasma reactors for coal gasification, which involve complex chemical reaction, two-phaseflow and plasma effect. On the basis of analytic results, the distribution of the density, tempera-ture and components' concentration are obtained and a different plasma reactor configuration isproposed to optimize the flow parameters. The numerical simulation results show an improvedconversion ratio of the coal gasification. Different kinds of chemical reaction models are used tosimulate the complex flow inside the reactor. It can be concluded that the numerical simulationsystem can be very useful for the design and optimization of the plasma reactor.

  12. Flow Simulation and Optimization of Plasma Reactors for Coal Gasification

    Science.gov (United States)

    Ji, Chunjun; Zhang, Yingzi; Ma, Tengcai

    2003-10-01

    This paper reports a 3-d numerical simulation system to analyze the complicated flow in plasma reactors for coal gasification, which involve complex chemical reaction, two-phase flow and plasma effect. On the basis of analytic results, the distribution of the density, temperature and components' concentration are obtained and a different plasma reactor configuration is proposed to optimize the flow parameters. The numerical simulation results show an improved conversion ratio of the coal gasification. Different kinds of chemical reaction models are used to simulate the complex flow inside the reactor. It can be concluded that the numerical simulation system can be very useful for the design and optimization of the plasma reactor.

  13. Fixed-bed gasification research using US coals. Volume 3. Gasification of Rosebud sub-bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-03-31

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the third volume in a series of documents prepared by Black, Sivalls and Bryson, Incorporated and describes the gasification of Rosebud subbituminous coal during the time period November 2-20, 1982. Test results and data are presented for the gasification of the coal and the operation of a slipstream tar scrubber to cool the gas and remove condensed tar. 5 refs., 29 figs., 18 tabs.

  14. Fixed-bed gasification research using US coals. Volume 12. Gasification of Absaloka/Robinson subbituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial particpants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the twelfth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. this specific reports describes the gasification of Absaloka/Robinson subbituminous coal. This volume covers the test period June 18, 1984 to June 30, 1984. 4 refs., 20 figs., 18 tabs.

  15. Dry coal feeder development program at Ingersoll-Rand Research, Incorporated. [for coal gasification systems

    Science.gov (United States)

    Mistry, D. K.; Chen, T. N.

    1977-01-01

    A dry coal screw feeder for feeding coal into coal gasification reactors operating at pressures up to 1500 psig is described. Results on the feeder under several different modes of operation are presented. In addition, three piston feeder concepts and their technical and economical merits are discussed.

  16. Comparison of an Internal Combustion Engine Derating Operated on Producer Gas from Coal and Biomass Gasification

    Directory of Open Access Journals (Sweden)

    Muhammad Ade Andriansyah Efendi

    2016-06-01

    Full Text Available Gasification is an effective and clean way to convert coal and biomass into useful fuels and chemical feedstocks. Producer gas utilization for internal combustion engine has been studied, not only from biomass gasification but also from coal gasification. This paper compares the research that has done author using coal gasification with other research results using biomass gasification. Coal gasifier performance test conducted with capacity of 20 kg/h coal. The proximate and ultimate analysis of raw coal, ash product and producer gas was conducted and comparised. The result of analysis shows that the efficiency of the coal gasification was 61% while range of gasifier efficiency for biomass is between 50-80%. Meanwhile, the experimental results on the performance of internal combustion engines using gas producer shows that the derating for power generation using coal producer gas was 46% and biomass was 20-50% depend on compression ratio of engine and characteristic of producer gas. 

  17. In-situ coal gasification as a progressive coal utilization method

    Energy Technology Data Exchange (ETDEWEB)

    Petrenko, E.V.; Saltykov, I.F.

    1988-02-01

    Describes the Podzemgaz coal gasification station at Angren that was put into operation in 1961. It exploits a 15 m thick and 120-250 m deep seam of brown coal. Technology of in-situ coal gasification is described and its results are compared in regard to cost and efficiency with the results of conventional surface mining. Air blowing is used for most in-situ coal gasification in USSR. Trials using air enriched in oxygen for this purpose were conducted in 1953 and 1957 but did not find wider application. A station using oxygen enrichment technology is planned for Angren at the Apartak section, as cheaper oxygen production methods have emerged. A new concept for in-situ coal gasification using membrane technology (molecular sieves) is set out. This technology assures total chemical and power utilization of coal, yielding not only coal gas but also liquid nitrogen, hydrogen, a mixture of both these gases for ammonia production, and carbonic acid. Prospective site selection for in-situ coal gasification stations is discussed and conditions required for the respective coalfields are outlined.

  18. Sinopec and Shell Launch Their First Coal Gasification Joint Venture

    Institute of Scientific and Technical Information of China (English)

    Cheng Lixin

    2001-01-01

    @@ (Nov. 2, 2001, Beijing)Shell China BV(50 per cent) and Sinopec Corp. (50per cent) today signed a co-operation agreement to form a joint venture to construct and operate a US$ 136 million coal gasification project in Yueyang,Hunan Province.

  19. Coal Chemical Gasification Process Schedule Control%煤气化工艺研究

    Institute of Scientific and Technical Information of China (English)

    李振

    2015-01-01

    介绍了Lurgi炉固定床加压气化、Texaco水煤浆加压气化、Shell 煤气化工艺和 GSP 粉煤气化工艺4种煤气化工艺,阐述了Shell 煤气化工艺和 GSP 粉煤气化工艺的工艺流程,并对其进行了技术分析。%Introduces the Lurgi fixed bed gasification furnace,Texaco coal-water slurry gasification,Shell coal gasifica-tion Process,GSP coal gasification process four kinds of coal gasification process,and which elaborates technical character-istics and process of coal gasification process control of Shell coal gasification process and GSP process.

  20. Investigating the Integration of a Solid Oxide Fuel Cell and a Gas Turbine System with Coal Gasification Technologies

    Science.gov (United States)

    2001-09-01

    conceptually integrate the hybrid power system with existing and imminent coal gasification technologies. The gasification technologies include the Kellogg...Brown Root (KBR) Transport Reactor and entrained coal gasification . Parametric studies will be performed wherein pertinent fuel cell stack process...dependent variables of interest. Coal gasification data and a proven SOFC model will be used to test the theoretical integration. Feasibility and

  1. Effect of petroleum coke addition on coal gasification

    Science.gov (United States)

    Sinnathambi, Chandra Mohan; Najib, Nur Khadijah Mohamad

    2014-10-01

    The main fuel for power generation is combustion of coal and/or natural gas. Natural gas is expensive but clean and less problematic, whereas coal is the reverse of natural gas. Natural gas resources are expected to last until 2020 where else coal has another 200 years expectancy. To replace the natural gas, synthetic gas (syngas) can be used as a substitute fuel. Syngas can be produced using coal as fuel. In this study we blend petcoke, a cheap solid carboneous fuel as an alternative to coal for the production of syngas using a 30 Kwattheat bubbling fluidized bed gasifier. The equivalent ratio (ER) was set at 2.8 and a gasification temperature was maintained between 680 to 710°C by manipulating between the feed flow rates and fluidizing medium. This condition was chosen as it proved to be the optimum based on the work by the same group. Various blend of coal:petcoke between 0 to 100% was analyzed. It was found that a 20:80, petcoke to coal gives a good correlation with 100% coal gasification.

  2. Coal gasification. Quarterly report, April-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    In DOE's program for the conversion of coal to gaseous fuels both high-and low-Btu gasification processes are being developed. High-Btu gas can be distributed economically to consumers in the same pipeline systems now used to carry natural gas. Low-Btu gas, the cheapest of the gaseous fuels produced from coal, can be used economically only on site, either for electric power generation or by industrial and petrochemical plants. High-Btu natural gas has a heating value of 950 to 1000 Btu per standard cubic foot, is composed essentially of methane, and contains virtually no sulfur, carbon monoxide, or free hydrogen. The conversion of coal to High-Btu gas requires a chemical and physical transformation of solid coal. Coals have widely differing chemical and physical properties, depending on where they are mined, and are difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, DOE, together with the American Gas Association (AGA), is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, each of the processes under development have unique characteristics. A number of the processes for converting coal to high-Btu gas have reached the pilot plant Low-Btu gas, with a heating value of up to 350 Btu per standard cubic foot, is an economical fuel for industrial use as well as for power generation in combined gas-steam turbine power cycles. Because different low-Btu gasification processes are optimum for converting different types of coal, and because of the need to provide commercially acceptable processes at the earliest possible date, DOE is sponsoring the concurrent development of several basic types of gasifiers (fixed-bed, fluidized-bed, and entrained-flow).

  3. Coal gasification. Quarterly report, October-December 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    DOE's program for the conversion of coal to gaseous fuels was started by two of its predecessor agencies: the Office of Coal Research (OCR) and ERDA. The US Bureau of Mines, Department of Interior, had previously done research in the 1930's. Both high- and low-Btu gasification processes are being developed. High-Btu gas can be distributed economically to consumers in the same pipeline systems now used to carry natural gas. Low-Btu gas, the cheapest of the gaseous fuels produced from coal, can be used economically only on site, either for electric power generation or by industrial and petrochemical plants. The conversion of coal to high-Btu gas requires a chemical and physical transformation of solid coal. Coals have widely differing chemical and physical properties depending on where they are mined, and are difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, DOE, together with the American Gas Association (AGA), is sponsoring the development of several conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, each of the processes under development have unique characteristics. There are, for example, important differences in reactor configurations and methods of supplying heat for gasification. Moreover, because these processes require high temperatures, because some require high pressures, and because all produce corrosive and chemically-active gases, resistant alloys and new pressure vessels must be developed to obtain reliable performance. A number of the processes for converting coal to high-Btu gas have reached the pilot plant stage. Laboratory research is also continuing in order to develop data for verifying the feasibility of each specific process and for supporting the operation of each plant. Responsibility for designing, constructing, and operating these pilot plants is contracted to individual companies. Each process is described briefly.

  4. Coal gasification. Quarterly report, July-September 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    To develop the most suitable techniques for gasifying coal, DOE, together with the American Gas Association, is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, each of the processes under development has unique characteristics. There are, for example, important differences in reactor configurations and in methods of supplying heat for gasification. Moreover, because these processes require high temperatures, because some require high pressures, and because all produce corrosive and chemically-active gases, resistant alloys and new pressure vessels must be developed to obtain reliable performance. A number of processes for making high Btu gas and for making low Btu gas are described with the contractor identification, contract, site, funding, and current progress. Projects on mathematical modeling and preparation of a coal conversion systems technical data book are also described. (LTN)

  5. Entrained flow gasification of coal/bio-oil slurries

    DEFF Research Database (Denmark)

    Feng, Ping; Lin, Weigang; Jensen, Peter Arendt;

    2016-01-01

    Coal/bio-oil slurry (CBS) is a new partial green fuel for bio-oil utilization. CBS reacts with gasification agents at high temperatures and converts into hydrogen and carbon monoxide. This paper provides a feasibility study for the gasification of CBS in an atmospheric entrained flow reactor...... for syngas production. Experiments have shown that CBS can be successfully processed and gasified in the entrained flow reactor to produce syngas with almost no tar content and low residual carbon formation. High reactor temperature and steam/carbon ratio is favourable for H2 production. At 1400 °C...

  6. Coal gasification systems engineering and analysis. Volume 1: Executive summary

    Science.gov (United States)

    1980-01-01

    Feasibility analyses and systems engineering studies for a 20,000 tons per day medium Btu (MBG) coal gasification plant to be built by TVA in Northern Alabama were conducted. Major objectives were as follows: (1) provide design and cost data to support the selection of a gasifier technology and other major plant design parameters, (2) provide design and cost data to support alternate product evaluation, (3) prepare a technology development plan to address areas of high technical risk, and (4) develop schedules, PERT charts, and a work breakdown structure to aid in preliminary project planning. Volume one contains a summary of gasification system characterizations. Five gasification technologies were selected for evaluation: Koppers-Totzek, Texaco, Lurgi Dry Ash, Slagging Lurgi, and Babcock and Wilcox. A summary of the trade studies and cost sensitivity analysis is included.

  7. Production of synthetic hydrocarbons from coal through its underground gasification

    Institute of Scientific and Technical Information of China (English)

    Kreynin Efim Vulfovich

    2013-01-01

    The problem of the high-level processing of coal into synthetic motor fuels assumes worldwide actual meaning nowadays.Thereat,it is important especially for countries and regions which possess extensive coal resources and are forced to be guided by the import of liquid and gas hydrocarbons.However,a greater emphasis is paid to the given issue in Russia-The development of the federal program for highlevel processing of coal into synthetic motor fuels was initiated.This article describes options of underground coal gasification (UCG) use for the generation of hydrocarbons from UCG gas in the process of the Fischer-Tropsch synthesis (FTS).The technical and economic analysis of the integrated UCG-FTS powerchemical factories has detected their investment attractiveness and practicability of experimental-industrial testing at coal deposits of the Russian Federation.

  8. Wabash River Coal Gasification Repowering Project: A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2002-01-15

    The goal of the U.S. Department of Energy (DOE) Clean Coal Technology Program (CCT) is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Wabash River Coal Gasification Repowering (WRCGR) Project, as described in a Report to Congress (U.S. Department of Energy 1992). Repowering consists of replacing an existing coal-fired boiler with one or more clean coal technologies to achieve significantly improved environmental performance. The desire to demonstrate utility repowering with a two-stage, pressurized, oxygen-blown, entrained-flow, integrated gasification combined-cycle (IGCC) system prompted Destec Energy, Inc., and PSI Energy, Inc., to form a joint venture and submit a proposal for this project. In July 1992, the Wabash River Coal Gasification Repowering Project Joint Venture (WRCGRPJV, the Participant) entered into a cooperative agreement with DOE to conduct this project. The project was sited at PSI Energy's Wabash River Generating Station, located in West Terre Haute, Indiana. The purpose of this CCT project was to demonstrate IGCC repowering using a Destec gasifier and to assess long-term reliability, availability, and maintainability of the system at a fully commercial scale. DOE provided 50 percent of the total project funding (for capital and operating costs during the demonstration period) of $438 million.

  9. Moving Bed Gasification of Low Rank Alaska Coal

    Directory of Open Access Journals (Sweden)

    Mandar Kulkarni

    2012-01-01

    Full Text Available This paper presents process simulation of moving bed gasifier using low rank, subbituminous Usibelli coal from Alaska. All the processes occurring in a moving bed gasifier, drying, devolatilization, gasification, and combustion, are included in this model. The model, developed in Aspen Plus, is used to predict the effect of various operating parameters including pressure, oxygen to coal, and steam to coal ratio on the product gas composition. The results obtained from the simulation were compared with experimental data in the literature. The predicted composition of the product gas was in general agreement with the established results. Carbon conversion increased with increasing oxygen-coal ratio and decreased with increasing steam-coal ratio. Steam to coal ratio and oxygen to coal ratios impacted produced syngas composition, while pressure did not have a large impact on the product syngas composition. A nonslagging moving bed gasifier would have to be limited to an oxygen-coal ratio of 0.26 to operate below the ash softening temperature. Slagging moving bed gasifiers, not limited by operating temperature, could achieve carbon conversion efficiency of 99.5% at oxygen-coal ratio of 0.33. The model is useful for predicting performance of the Usibelli coal in a moving bed gasifier using different operating parameters.

  10. CFD Analysis of Coal and Heavy Oil Gasification for Syngas Production

    DEFF Research Database (Denmark)

    Sreedharan, Vikram

    2012-01-01

    phases. Gasification consists of the processes of passive heating, devolatilization, volatiles oxidation, char gasification and gas phase reactions. Attention is given here to the chemical kinetics of the gasification processes. The coal gasification model has been validated for entrained-flow gasifiers...... dioxide is overestimated. The deviation is fairly small, particularly for the improved chemical kinetics scheme. The heavy oil gasification model has been validated for a pilot-scale entrained-flow gasifier operating under different oxygen ratios. A gasification model similar to that developed for coal...... gasification is proposed for heavy oil gasification, using a single chemical kinetics scheme. Predictions of heavy oil gasification are rare in the literature, so that the present work holds some significance. The predictions of the temperature along the gasifier centerline and the species mole fractions...

  11. Research of Heating Rates Influence on Layer Coal Gasification of Krasnogorsky And Borodinsky Coal Deposit

    Directory of Open Access Journals (Sweden)

    Jankovskiy Stanislav

    2015-01-01

    Full Text Available Experimental research of heating rate influence on coal samples gasification process of Krasnogorsky and Borodinsky coal deposit ranks A and 2B was done to define optimal heating mode in high intensification of dispersal of inflammable gases conditions. Abundance ratio of carbon monoxide and nitrogen monoxide, water vapor, carbon dioxide at four values of heating rate within the range of 5 to 30 K/min. with further definition of optimal heating rate of coals was stated.

  12. Flow simulation and optimization of plasma reactors for coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Ji, C.J.; Zhang, Y.Z.; Ma, T.C. [Dalian University of Technology, Dalian (China). Power Engineering Dept.

    2003-10-01

    This paper reports a 3-D numerical simulation system to analyze the complicated flow in plasma reactors for coal gasification, which involve complex chemical reaction, two-phase flow and plasma effect. On the basis of analytic results, the distribution of the density, temperature and components' concentration are obtained and a different plasma reactor configuration is proposed to optimize the flow parameters. The numerical simulation results show an improved conversion ratio of the coal gasification. Different kinds of chemical reaction models are used to simulate the complex flow inside the reactor. It can be concluded that the numerical simulation system can be very useful for the design and optimization of the plasma reactor.

  13. Effect of powdered activated carbon technology on short-cut nitrogen removal for coal gasification wastewater.

    Science.gov (United States)

    Zhao, Qian; Han, Hongjun; Xu, Chunyan; Zhuang, Haifeng; Fang, Fang; Zhang, Linghan

    2013-08-01

    A combined process consisting of a powdered activated carbon technology (PACT) and short-cut biological nitrogen removal reactor (SBNR) was developed to enhance the removal efficiency of the total nitrogen (TN) from the effluent of an upflow anaerobic sludge bed (UASB) reactor, which was used to treat coal gasification wastewater (CGW). The SBNR performance was improved with the increasing of COD and TP removal efficiency via PACT. The average removal efficiencies of COD and TP in PACT were respectively 85.80% and 90.30%. Meanwhile, the NH3-N to NO2-N conversion rate was achieved 86.89% in SBNR and the total nitrogen (TN) removal efficiency was 75.54%. In contrast, the AOB in SBNR was significantly inhibited without PACT or with poor performance of PACT in advance, which rendered the removal of TN. Furthermore, PAC was demonstrated to remove some refractory compounds, which therefore improved the biodegradability of the coal gasification wastewater.

  14. Proceedings of second annual underground coal gasification symposium

    Energy Technology Data Exchange (ETDEWEB)

    Shuck, L Z [ed.

    1976-01-01

    The Second Annual Underground Coal Gasification Symposium was sponsored by the Morgantown Energy Research Center of the US Energy Research and Development Administration and held at Morgantown, WV, August 10-12, 1976. Fifty papers of the proceedings have been entered individually into EDB and ERA. While the majority of the contribution involved ERDA's own work in this area, there were several papers from universities, state organizations, (industrial, engineering or utility companies) and a few from foreign countries. (LTN)

  15. Gasification of high ash, high ash fusion temperature bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  16. Early Ideas in Underground Coal Gasification and Their Evolution

    Directory of Open Access Journals (Sweden)

    Alexander Y. Klimenko

    2009-06-01

    Full Text Available This article follows the development of early UCG (underground coal gasification ideas. Historical facts are discussed mainly from the technological perspective and early experiments in UCG are analyzed. Our search for the first successful UCG experiment brings to light a new finding, which was commonly overlooked in previous reviews. We also outline the key role that engineer and inventor A. G. Betts played in introducing technologies utilizing unmined coal; his original ideas are visible in the first successful UCG experiments and in modern UCG technology.

  17. Japan`s sunshine project. 17.. 1992 annual summary of coal liquefaction and gasification

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report describes the achievement of coal liquefaction and gasification technology development in the Sunshine Project for FY 1992. It presents the research and development of coal liquefaction which includes studies on reaction mechanism of coal liquefaction and catalysts for coal liquefaction, the research and development of coal gasification technologies which includes studies on gasification characteristics of various coals and improvement of coal gasification efficiency, the development of bituminous coal liquefaction which includes engineering, construction and operation of a bituminous coal liquefaction pilot plant and research by a process supporting unit (PSU), the development of brown coal liquefaction which includes research on brown coal liquefaction with a pilot plant and development of techniques for upgrading coal oil from brown coal, the development of common base technologies which includes development of slurry letdown valves and study on upgrading technology of coal-derived distillates, the development of coal-based hydrogen production technology with a pilot plant, the development of technology for entrained flow coal gasification, the assessment of coal hydrogasification, and the international co-operation. 4 refs., 125 figs., 39 tabs.

  18. The ENCOAL Mild Coal Gasification Project, A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2002-03-15

    This report is a post-project assessment of the ENCOAL{reg_sign} Mild Coal Gasification Project, which was selected under Round III of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) Demonstration Program. The CCT Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of commercial-scale facilities. The ENCOAL{reg_sign} Corporation, a wholly-owned subsidiary of Bluegrass Coal Development Company (formerly SMC Mining Company), which is a subsidiary of Ziegler Coal Holding Company, submitted an application to the DOE in August 1989, soliciting joint funding of the project in the third round of the CCT Program. The project was selected by DOE in December 1989, and the Cooperative Agreement (CA) was approved in September 1990. Construction, commissioning, and start-up of the ENCOAL{reg_sign} mild coal gasification facility was completed in June 1992. In October 1994, ENCOAL{reg_sign} was granted a two-year extension of the CA with the DOE, that carried through to September 17, 1996. ENCOAL{reg_sign} was then granted a six-month, no-cost extension through March 17, 1997. Overall, DOE provided 50 percent of the total project cost of $90,664,000. ENCOAL{reg_sign} operated the 1,000-ton-per-day mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming, for over four years. The process, using Liquids From Coal (LFC{trademark}) technology originally developed by SMC Mining Company and SGI International, utilizes low-sulfur Powder River Basin (PRB) coal to produce two new fuels, Process-Derived Fuel (PDF{trademark}) and Coal-Derived Liquids (CDL{trademark}). The products, as alternative fuel sources, are capable of significantly lowering current sulfur emissions at industrial and utility boiler sites throughout the nation thus reducing pollutants causing acid rain. In support of this overall

  19. Fixed-bed gasification research using US coals. Volume 11. Gasification of Minnesota peat. [Peat pellets and peat sods

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a coooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the eleventh volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of peat pellets and peat sods during 3 different test periods. 2 refs., 20 figs., 13 tabs.

  20. Temporal measurements and kinetics of selenium release during coal combustion and gasification in a fluidized bed.

    Science.gov (United States)

    Shen, Fenghua; Liu, Jing; Zhang, Zhen; Yang, Yingju

    2016-06-05

    The temporal release of selenium from coal during combustion and gasification in a fluidized bed was measured in situ by an on-line analysis system of trace elements in flue gas. The on-line analysis system is based on an inductively coupled plasma optical emission spectroscopy (ICP-OES), and can measure concentrations of trace elements in flue gas quantitatively and continuously. The results of on-line analysis suggest that the concentration of selenium in flue gas during coal gasification is higher than that during coal combustion. Based on the results of on-line analysis, a second-order kinetic law r(x)=0.94e(-26.58/RT)(-0.56 x(2) -0.51 x+1.05) was determined for selenium release during coal combustion, and r(x)=11.96e(-45.03/RT)(-0.53 x(2) -0.56 x+1.09) for selenium release during coal gasification. These two kinetic laws can predict respectively the temporal release of selenium during coal combustion and gasification with an acceptable accuracy. Thermodynamic calculations were conducted to predict selenium species during coal combustion and gasification. The speciation of selenium in flue gas during coal combustion differs from that during coal gasification, indicating that selenium volatilization is different. The gaseous selenium species can react with CaO during coal combustion, but it is not likely to interact with mineral during coal gasification.

  1. Plasma-enhanced gasification of low-grade coals for compact power plants

    Science.gov (United States)

    Uhm, Han S.; Hong, Yong C.; Shin, Dong H.; Lee, Bong J.

    2011-10-01

    A high temperature of a steam torch ensures an efficient gasification of low-grade coals, which is comparable to that of high-grade coals. Therefore, the coal gasification system energized by microwaves can serve as a moderately sized power plant due to its compact and lightweight design. This plasma power plant of low-grade coals would be useful in rural or sparsely populated areas without access to a national power grid.

  2. Gas core reactors for coal gasification

    Science.gov (United States)

    Weinstein, H.

    1976-01-01

    The concept of using a gas core reactor to produce hydrogen directly from coal and water is presented. It is shown that the chemical equilibrium of the process is strongly in favor of the production of H2 and CO in the reactor cavity, indicating a 98% conversion of water and coal at only 1500 K. At lower temperatures in the moderator-reflector cooling channels the equilibrium strongly favors the conversion of CO and additional H2O to CO2 and H2. Furthermore, it is shown the H2 obtained per pound of carbon has 23% greater heating value than the carbon so that some nuclear energy is also fixed. Finally, a gas core reactor plant floating in the ocean is conceptualized which produces H2, fresh water and sea salts from coal.

  3. Stabilization of solid wastes from coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.H.; Wangerow, J.R.; Rehmat, A. (Institute of Gas Technology, Chicago, IL (United States)); Banerjee, D.D. (Center for Research on Sulfur in Coal, Carterville, IL (United States))

    1991-01-01

    The sulfur compounds present in coal are converted to hydrogen sulfide when coal is gasified. To comply with environmental regulations, a high fraction of the sulfur must be removed from the product gas stream. Calcium-based sorbents are the prime candidates for in-bed capture of sulfur. The removal of sulfur takes place through the reaction of hydrogen sulfide with calcium-based sorbent and produces calcium sulfide, which is not stable and therefore not suitable for disposal. Calcium sulfide, however, can be reacted with oxygen to produce stable and environmentally acceptable compounds for disposal. This paper addresses the results of a basic research program undertaken to determine the effects of operating variables on the successful stabilization of sulfide containing solid wastes from coal gasifiers.

  4. Stabilization of solid wastes from coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.H.; Wangerow, J.R.; Rehmat, A. [Institute of Gas Technology, Chicago, IL (United States); Banerjee, D.D. [Center for Research on Sulfur in Coal, Carterville, IL (United States)

    1991-12-31

    The sulfur compounds present in coal are converted to hydrogen sulfide when coal is gasified. To comply with environmental regulations, a high fraction of the sulfur must be removed from the product gas stream. Calcium-based sorbents are the prime candidates for in-bed capture of sulfur. The removal of sulfur takes place through the reaction of hydrogen sulfide with calcium-based sorbent and produces calcium sulfide, which is not stable and therefore not suitable for disposal. Calcium sulfide, however, can be reacted with oxygen to produce stable and environmentally acceptable compounds for disposal. This paper addresses the results of a basic research program undertaken to determine the effects of operating variables on the successful stabilization of sulfide containing solid wastes from coal gasifiers.

  5. Method for using fast fluidized bed dry bottom coal gasification

    Science.gov (United States)

    Snell, George J.; Kydd, Paul H.

    1983-01-01

    Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500.degree.-1850.degree. F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solids are returned through an injection nozzle together with additional steam and oxygen-containing gas to an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges from about 3-15 ft/sec and is maintained at 1600.degree.-200.degree. F. temperature. This gasification arrangement provides for increased utilization of the secondary char material to produce higher overall carbon conversion and product yields in the process.

  6. UTILIZATION OF LIGHTWEIGHT MATERIALS MADE FROM COAL GASIFICATION SLAGS

    Energy Technology Data Exchange (ETDEWEB)

    Vas Choudhry; Stephen Kwan; Steven R. Hadley

    2001-07-01

    The objective of the project entitled ''Utilization of Lightweight Materials Made from Coal Gasification Slags'' was to demonstrate the technical and economic viability of manufacturing low-unit-weight products from coal gasification slags which can be used as substitutes for conventional lightweight and ultra-lightweight aggregates. In Phase I, the technology developed by Praxis to produce lightweight aggregates from slag (termed SLA) was applied to produce a large batch (10 tons) of expanded slag using pilot direct-fired rotary kilns and a fluidized bed calciner. The expanded products were characterized using basic characterization and application-oriented tests. Phase II involved the demonstration and evaluation of the use of expanded slag aggregates to produce a number of end-use applications including lightweight roof tiles, lightweight precast products (e.g., masonry blocks), structural concrete, insulating concrete, loose fill insulation, and as a substitute for expanded perlite and vermiculite in horticultural applications. Prototypes of these end-use applications were made and tested with the assistance of commercial manufacturers. Finally, the economics of expanded slag production was determined and compared with the alternative of slag disposal. Production of value-added products from SLA has a significant potential to enhance the overall gasification process economics, especially when the avoided costs of disposal are considered.

  7. H sub 2 S removal from fuel gas during coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Rehmat, A. (Institute of Gas Technology, Chicago, IL (USA)); Leppin, D. (Gas Research Institute, Chicago, IL (USA)); Banerjee, D.D. (Center for Research on Sulfur in Coal, Carterville, IL (USA))

    1990-01-01

    Work on the desulfurization reactions in the literature has not sufficiently addressed the reaction conditions in the context of coal gasification processes and the kinetics of the sulfidation reaction at the gasification conditions. This study, which was jointly funded by the Gas Research institute and the State of Illinois Center for Research on sulfur in Coal (CRSC), was undertaken to obtain comprehensive experimental data on the sulfidation reactions at gasification conditions to determine the kinetics of this gas/solid reaction.

  8. Coal gasification in Spain. Experience and future

    Energy Technology Data Exchange (ETDEWEB)

    Francisco Garcia Pena; Pedro Casero Cabezon; Maria Belen Garcia Garcia

    2005-07-01

    The article reports the present status of the Puertollano IGCC Power Plant, which is the largest coal IGCC power plant. Operating results of this plant is presented with the aim of showing that the advantages of this technology are tangible, and that also the obstacles that hinder the deployment of this technology are fading away. 7 figs., 4 tabs.

  9. An analysis of new generation coal gasification projects

    Institute of Scientific and Technical Information of China (English)

    Kreynin Efim Vulfovich

    2012-01-01

    The global trends of increasing oil and gas costs have compelled coal possessing countries to start long term underground coal gasification (UCG) projects.These enhance national energy security and are among the cleanest,ecologically safest coal utilization technologies.This paper delineates the major characteristics of such technologies and analyzes technical solutions.Highlighting the desire to develop large scale industrial UCG plants,pilot level projects are presented using a new UCG method developed in Russia by Joint Stock Company Gazprom Promgaz.This method is distinct for its high controllability,stability,and energy efficiency.New,efficient technical solutions have been developed over the last 10-15 years and are patented in Russia.They guarantee controllability and stability of UCG gas production.Over one hundred injection and gas production wells have been operated simultaneously.

  10. Gasification Characteristics of Coal/Biomass Mixed Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Reginald

    2013-09-30

    A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co- produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomass and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle

  11. Wabash River Coal Gasification Repowering Project: A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2002-01-15

    The goal of the U.S. Department of Energy (DOE) Clean Coal Technology Program (CCT) is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Wabash River Coal Gasification Repowering (WRCGR) Project, as described in a Report to Congress (U.S. Department of Energy 1992). Repowering consists of replacing an existing coal-fired boiler with one or more clean coal technologies to achieve significantly improved environmental performance. The desire to demonstrate utility repowering with a two-stage, pressurized, oxygen-blown, entrained-flow, integrated gasification combined-cycle (IGCC) system prompted Destec Energy, Inc., and PSI Energy, Inc., to form a joint venture and submit a proposal for this project. In July 1992, the Wabash River Coal Gasification Repowering Project Joint Venture (WRCGRPJV, the Participant) entered into a cooperative agreement with DOE to conduct this project. The project was sited at PSI Energy's Wabash River Generating Station, located in West Terre Haute, Indiana. The purpose of this CCT project was to demonstrate IGCC repowering using a Destec gasifier and to assess long-term reliability, availability, and maintainability of the system at a fully commercial scale. DOE provided 50 percent of the total project funding (for capital and operating costs during the demonstration period) of $438 million. Construction for the demonstration project was started in July 1993. Pre-operational tests were initiated in August 1995, and construction was completed in November 1995. Commercial operation began in November 1995, and the demonstration period was completed in

  12. Prediction of cavity growth rate during underground coal gasification using multiple regression analysis

    Institute of Scientific and Technical Information of China (English)

    Mehdi Najafi; Seyed Mohammad Esmaiel Jalali; Reza KhaloKakaie; Farrokh Forouhandeh

    2015-01-01

    During underground coal gasification (UCG), whereby coal is converted to syngas in situ, a cavity is formed in the coal seam. The cavity growth rate (CGR) or the moving rate of the gasification face is affected by controllable (operation pressure, gasification time, geometry of UCG panel) and uncontrollable (coal seam properties) factors. The CGR is usually predicted by mathematical models and laboratory experiments, which are time consuming, cumbersome and expensive. In this paper, a new simple model for CGR is developed using non-linear regression analysis, based on data from 11 UCG field trials. The empirical model compares satisfactorily with Perkins model and can reliably predict CGR.

  13. Gasification Characteristics of Coal/Biomass Mixed Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Reginald [Stanford Univ., CA (United States). Mechanical Engineering Dept.

    2014-09-01

    A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co-produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomass and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle

  14. Geochemical Proxies for Enhanced Process Control of Underground Coal Gasification

    Science.gov (United States)

    Kronimus, A.; Koenen, M.; David, P.; Veld, H.; van Dijk, A.; van Bergen, F.

    2009-04-01

    Underground coal gasification (UCG) represents a strategy targeting at syngas production for fuel or power generation from in-situ coal seams. It is a promising technique for exploiting coal deposits as an energy source at locations not allowing conventional mining under economic conditions. Although the underlying concept has already been suggested in 1868 and has been later on implemented in a number of field trials and even at a commercial scale, UCG is still facing technological barriers, impeding its widespread application. Field UCG operations rely on injection wells enabling the ignition of the target seam and the supply with oxidants (air, O2) inducing combustion (oxidative conditions). The combustion process delivers the enthalpy required for endothermic hydrogen production under reduction prone conditions in some distance to the injection point. The produced hydrogen - usually accompanied by organic and inorganic carbon species, e.g. CH4, CO, and CO2 - can then be retrieved through a production well. In contrast to gasification of mined coal in furnaces, it is difficult to measure the combustion temperature directly during UCG operations. It is already known that geochemical parameters such as the relative production gas composition as well as its stable isotope signature are related to the combustion temperature and, consequently, can be used as temperature proxies. However, so far the general applicability of such relations has not been proven. In order to get corresponding insights with respect to coals of significantly different rank and origin, four powdered coal samples covering maturities ranging from Ro= 0.43% (lignite) to Ro= 3.39% (anthracite) have been gasified in laboratory experiments. The combustion temperature has been varied between 350 and 900 ˚ C, respectively. During gasification, the generated gas has been captured in a cryo-trap, dried and the carbon containing gas components have been catalytically oxidized to CO2. Thereafter, the

  15. Plasma-fuel systems for environment and economy indexes of pulverized coal incineration and gasification improvement

    Energy Technology Data Exchange (ETDEWEB)

    E. Karpenko; V. Messerle; A. Ustimenko [United Power System of Russia, Gusinoozersk (Russian Federation). Branch Centre of Plasma-Power Technologies of Russian J.S.Co.

    2003-07-01

    Coal is one of the main energy resources. To improve efficiency of coal incineration new plasma-energy technologies are developing. Steam-productivity 75t/h 670t/h boilers were tested for their starting up by plasma ignition of pulverized coal and flame stabilization. Laboratory (coal consumption to 20kg/h) and pilot (coal consumption 300kg/h and 32000kg/h) plasma gasification experiments are given. Plasma air and steam gasification of coal with its mineral mass utilization is studied. 8 refs., 10 figs., 4 tabs.

  16. A continuous two stage solar coal gasification system

    Science.gov (United States)

    Mathur, V. K.; Breault, R. W.; Lakshmanan, S.; Manasse, F. K.; Venkataramanan, V.

    The characteristics of a two-stage fluidized-bed hybrid coal gasification system to produce syngas from coal, lignite, and peat are described. Devolatilization heat of 823 K is supplied by recirculating gas heated by a solar receiver/coal heater. A second-stage gasifier maintained at 1227 K serves to crack remaining tar and light oil to yield a product free from tar and other condensables, and sulfur can be removed by hot clean-up processes. CO is minimized because the coal is not burned with oxygen, and the product gas contains 50% H2. Bench scale reactors consist of a stage I unit 0.1 m in diam which is fed coal 200 microns in size. A stage II reactor has an inner diam of 0.36 m and serves to gasify the char from stage I. A solar power source of 10 kWt is required for the bench model, and will be obtained from a central receiver with quartz or heat pipe configurations for heat transfer.

  17. DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Angel Sanjurjo

    2004-05-01

    Heat-exchangers, filters, turbines, and other components in integrated coal gasification combined cycle system must withstand demanding conditions of high temperatures and pressure differentials. Under the highly sulfiding conditions of the high temperature coal gas, the performance of components degrade significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. A review of the literature indicates that the corrosion reaction is the competition between oxidation and sulfidation reactions. The Fe- and Ni-based high-temperature alloys are susceptible to sulfidation attack unless they are fortified with high levels of Cr, Al, and Si. To impart corrosion resistance, these elements need not be in the bulk of the alloy and need only be present at the surface layers.

  18. Lock hopper values for coal gasification plant service

    Science.gov (United States)

    Schoeneweis, E. F.

    1977-01-01

    Although the operating principle of the lock hopper system is extremely simple, valve applications involving this service for coal gasification plants are likewise extremely difficult. The difficulties center on the requirement of handling highly erosive pulverized coal or char (either in dry or slurry form) combined with the requirement of providing tight sealing against high-pressure (possibly very hot) gas. Operating pressures and temperatures in these applications typically range up to 1600 psi (110bar) and 600F (316C), with certain process requirements going even higher. In addition, and of primary concern, is the need for reliable operation over long service periods with the provision for practical and economical maintenance. Currently available data indicate the requirement for something in the order of 20,000 to 30,000 open-close cycles per year and a desire to operate at least that long without valve failure.

  19. Groundwater Management During Intermediate-to-Deep Underground Coal Gasification

    Science.gov (United States)

    Lavis, Shaun; Stanley, Edward; Mostade, Marc; Turner, Matthew

    2010-05-01

    Underground coal gasification (UCG) is a safe, economic way to extract energy from coal with significant environmental benefits compared with other coal-based energy production methods. However, in the wrong hands, UCG can adversely impact groundwater systems in two ways: 1) by contamination with inorganic and organic compounds; and 2) groundwater depletion. The hydrogeological conditions of UCG are highly site-specific and so the risks to groundwater have to be evaluated on a case-by-case basis. Site selection plays a fundamental role in managing these risks and it is possible to identify the general characteristics that will minimise risks of environmental impacts. However, large volumes of water, much of which will come from groundwater, are consumed during UCG projects, leading to possible significant groundwater depletion at such settings. Insufficient water supplies will impact the quality of the syngas produced by UCG because coal conversion efficiencies will decrease. Furthermore, depletion of groundwater levels may extend beyond the UCG site boundary, with consequent implications for regulatory regimes and any off-site groundwater users. Additional artificial water supplies may therefore be required, although the manner in which the water is delivered to the UCG system will also likely have an impact on syngas quality. Large volumes of water delivered via the injection well will likely impact gasification efficiency because 1) large amounts of heat will be used to vaporise the water leading to suppression of the reactor temperature and inhibition of (endothermic) gasification reactions; and 2) the "steam jacket" originally present around the UCG reactor will be absent, which will lead to further heat loss from the system. Additional water may therefore have to be supplied via the surrounding strata and/or coal seam, thus mimicking the natural conditions prior to groundwater depletion. Much of the hydrogeological modelling to date has focussed on a single

  20. Plasma aided coal gasification and the variables in this process

    Energy Technology Data Exchange (ETDEWEB)

    Pang, X.; Lu, Y.; Zhu, S. [Taiyuan University of Technology, Taiyuan (China)

    2005-12-15

    In order to investigate the characters of plasma aided coal gasification in the industry-scale equipment, the tests with changing feeding rate, steam output pressure, feeding gas flux, input power of plasma generator and the additives were carried out with Datong coal. The produced gas components were analyzed by gas chromatography. And the optimal process conditions, such as, the feeding rate of 150 g/min, the feeding gas flow of 18 m{sup 3}/h, the output power of plasma generator of 100 kW, the steam output pressure of 0.3 MPa are obtained. When the contents of CaO and CaCO{sub 3} in the whole feed are 10 and 5% respectively, the experimental data show their catalytic effect is the best. Considering the molar mass of CaO and CaCO{sub 3}, it is concluded that the catalytic effect of CaO is more important than the reduction of CO{sub 2} in the gasification. 12 refs., 2 figs., 3 tabs.

  1. Status of health and environmental research relative to coal gasification 1976 to the present

    Energy Technology Data Exchange (ETDEWEB)

    Wilzbach, K.E.; Reilly, C.A. Jr. (comps.)

    1982-10-01

    Health and environmental research relative to coal gasification conducted by Argonne National Laboratory, the Inhalation Toxicology Research Institute, and Oak Ridge National Laboratory under DOE sponsorship is summarized. The studies have focused on the chemical and toxicological characterization of materials from a range of process streams in five bench-scale, pilot-plant and industrial gasifiers. They also address ecological effects, industrial hygiene, environmental control technology performance, and risk assessment. Following an overview of coal gasification technology and related environmental concerns, integrated summaries of the studies and results in each area are presented and conclusions are drawn. Needed health and environmental research relative to coal gasification is identified.

  2. DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Angel Sanjurjo

    2004-05-01

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. A review of the literature indicated that the Fe- and Ni-based high-temperature alloys are susceptible to sulfidation attack unless they are fortified with high levels of Cr, Al, and Si. To impart corrosion resistance, these elements need not be in the bulk of the alloy and need only be present at the surface layers. We selected diffusion coatings of Cr and Al, and surface coatings of Si and Ti for the preliminary testing. These coatings will be applied using the fluidized bed chemical vapor deposition technique developed at SRI which is rapid and relatively inexpensive. We have procured coupons of typical alloys used in a gasifier. These coupons will be coated with Cr, Al, Si, and Ti. The samples will be tested in a bench-scale reactor using simulated coal gas compositions. In addition, we will be sending coated samples for insertion in the gas stream of the coal gasifier.

  3. Toxicologic studies of emissions from coal gasification process. I. Subchronic feeding studies.

    Science.gov (United States)

    Kostial, K; Kello, D; Blanusa, M; Maljković, T; Rabar, I; Bunarević, A; Stara, J F

    1980-09-01

    The increasing use of new sources of energy may result in additional contamination of the human environment with inorganic and organic pollutants which are not yet adequately investigated with regard to their potential impact on human health. However, some evidence exists that several trace inorganic and organic contaminants found in coal processing residues may constitute potential health problems. Therefore, the comparative biological hazards of solid wastes and effluents from a Lurgi coal gasification plant were initially evaluated using acute and chronic feeding experiments in male and female rats. In the subchronic experiment, six-week old animals were fed diets wih various levels of ash (slag) additive (0.5%, 1%, and 5%) for period of 16 weeks. Following exposure, blood samples were taken and 22-hour urine samples were collected. Livers and kidneys, and testicles in males, were taken for trace element analysis or histologic examination. The urinary values, erythrocyte and leucocyte count, hemoglobin, packed cell volume, and concentration of trace elements in exposed animals were determined. The addition of ash (slag) to the diet in concentrations much higher than expected in conditions of environmental contamination had no measurable health effects. Although these initial results obtained in relatively short-term experiments cannot be directly extrapolated to human health effects, particularly not for carcinogenic assessment, there is an indication that exposure to solid wastes from the coal gasification plant may not be toxic.

  4. Availability (energetic) analysis of coal gasification process. Pt. 1. Theoretical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P.; Conger, W.L.

    1981-10-01

    The concepts of availability, energy, and of exergetic efficiency are developed for use in evaluating coal gasification processes. The problem of defining the thermodynamic surroundings is discussed, and the approach of Bosnjakovic is used to select surroundings. In the second paper in this series the analysis is illustrated by applying it in evaluating the Synthane Gasification process. (13 refs.)

  5. Coal gasification. Quarterly report, January-March 1979. [US DOE supported

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    Progress in DOE-supported coal gasification pilot plant projects is reported: company, location, contract number, funding, process description, history and progress in the current quarter. Two support projects are discussed: preparation of a technical data book and mathematical modeling of gasification reactors. (LTN)

  6. Recent regulatory experience of low-Btu coal gasification. Volume III. Supporting case studies

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, E.; Hart, D.; Lethi, M.; Park, W.; Rifkin, S.

    1980-02-01

    The MITRE Corporation conducted a five-month study for the Office of Resource Applications in the Department of Energy on the regulatory requirements of low-Btu coal gasification. During this study, MITRE interviewed representatives of five current low-Btu coal gasification projects and regulatory agencies in five states. From these interviews, MITRE has sought the experience of current low-Btu coal gasification users in order to recommend actions to improve the regulatory process. This report is the third of three volumes. It contains the results of interviews conducted for each of the case studies. Volume 1 of the report contains the analysis of the case studies and recommendations to potential industrial users of low-Btu coal gasification. Volume 2 contains recommendations to regulatory agencies.

  7. Development conditions and limitations of the underground coal gasification in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Kapusta, K.; Stanczyk, K. [Glowny Instytut Gornictwa, Katowice (Poland)

    2009-04-15

    Fundamentals and technologies. for underground coal gasification (UCG) were reviewed. The economic analysis of the UCG process was carried out The applicability of UCG under Polish conditions was discussed.

  8. Applied research and evaluation of process concepts for liquefaction and gasification of western coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, W. H.

    1980-09-01

    Fourteen sections, including five subsections, of the final report covering work done between June 1, 1975 to July 31, 1980 on research programs in coal gasification and liquefaction have been entered individually into EDB and ERA. (LTN)

  9. Synergistic evaluation of the biomass/coal blends for co-gasification purposes

    Directory of Open Access Journals (Sweden)

    S Gaqa, S Mamphweli, D Katwire, E Meyer

    2014-01-01

    Full Text Available Approximately 95% of electricity in South Africa is generated from coal, which is a fossil fuel that has detrimental environmental impacts. Eskom has started investigating the possibility of co-firing coal with biomass to improve their carbon footprint. However, co-firing utilizes approximately 80% of water and results in extensive environmental impacts. This research seeks to investigate the possibility of co-gasification of coal and biomass, which is a thermochemical process that uses about a third of the water required by a coal-fired power station, and results in much lower emissions. Thermogravimetric analysis (TGA was conducted to investigate the existence of a synergy between coal and biomass during gasification. Various coal/biomass blends were investigated using TGA. The synergistic effect between the two feedstock as determined through TGA allowed the prediction of the gasification characteristics of the blends that most likely gave the highest conversion efficiency. Preliminary results suggested the existence of this synergy.

  10. Analysis of coal dust combustion and gasification in the cyclone furnace

    Directory of Open Access Journals (Sweden)

    Zarzycki Robert

    2017-01-01

    Full Text Available This study presents the design and operation of the cyclone furnace fuelled with coal dust. The main function of the furnace is coal dust gasification. The combustible gases that mainly contain CO can be used to feed a pulverized coal-fired boiler. The results of numerical calculations presented in the study demonstrated that cyclone furnace can operate over a wide range of fuel flow rates: from the conditions of coal dust combustion, which ensure maintaining the cyclone furnace in a state of hot reserve to the conditions of coal dust gasification, which allow for production of CO. Gasification process helps control temperature under conditions of elevated oxygen concentration. The results allow for the use of the furnace to improve flexibility and coal dust operation through the reduction in its technological minimum.

  11. Corrosion and mechanical behavior of materials for coal gasification applications

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.

    1980-05-01

    A state-of-the-art review is presented on the corrosion and mechanical behavior of materials at elevated temperatures in coal-gasification environments. The gas atmosphere in coal-conversion processes are, in general, complex mixtures which contain sulfur-bearing components (H/sub 2/S, SO/sub 2/, and COS) as well as oxidants (CO/sub 2//CO and H/sub 2/O/H/sub 2/). The information developed over the last five years clearly shows sulfidation to be the major mode of material degradation in these environments. The corrosion behavior of structural materials in complex gas environments is examined to evaluate the interrelationships between gas chemistry, alloy chemistry, temperature, and pressure. Thermodynamic aspects of high-temperature corrosion processes that pertain to coal conversion are discussed, and kinetic data are used to compare the behavior of different commercial materials of interest. The influence of complex gas environments on the mechanical properties such as tensile, stress-rupture, and impact on selected alloys is presented. The data have been analyzed, wherever possible, to examine the role of environment on the property variation. The results from ongoing programs on char effects on corrosion and on alloy protection via coatings, cladding, and weld overlay are presented. Areas of additional research with particular emphasis on the development of a better understanding of corrosion processes in complex environments and on alloy design for improved corrosion resistance are discussed. 54 references, 65 figures, 24 tables.

  12. Reaction Kinetic Equation for Char Combustion of Underground Coal Gasification

    Institute of Scientific and Technical Information of China (English)

    YU Hong-guan; YANG Lan-he; FENG Wei-min; LIU Shu-qin; SONG Zhen-qi

    2006-01-01

    Based on the quasi-steady-state approximation, the dynamic equation of char combustion in the oxidation zone of underground coal gasification (UCG) was derived. The parameters of the dynamic equation were determined at 900℃ using a thermo-gravimetric (TG) analyzer connected to a flue gas analyzer and this equation. The equation was simplified for specific coals, including high ash content, low ash content, and low ash fusibility ones. The results show that 1) the apparent reaction rate constant increases with an increase in volatile matter value as dry ash-free basis, 2) the effective coefficient of diffusion decreases with an increase in ash as dry basis, and 3) the mass transfer coefficient is independent of coal quality on the whole. The apparent reaction rate constant, mass-transfer coefficient and effective coefficient of diffusion of six char samples range from 7.51×104 m/s to 8.98×104 m/s, 3.05×106 m/s to 3.23×106 m/s and 5.36×106 m2/s to 8.23×106 m2/s at 900℃, respectively.

  13. Diffusion Coatings for Corrosion Resistant Components in Coal Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2005-01-01

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve its resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period we focused on getting a bench-scale test system to expose alloy coupons to simulated gasifier environment. The test facility was designed to allow about 20 specimen coupons to be exposed simultaneously for an extend period to a simulated coal gas stream at temperatures up to 1000 C. The simulated gas stream contained about 26%H{sub 2}, 39%CO, 17%CO{sub 2}, 1.4% H{sub 2}S and balance steam. We successfully ran a 100+h test with coated and uncoated stainless steel coupons. The tested alloys include SS304, SS316, SS405, SS409, SS410, and IN800. The main finding is that Ti/Ta coating provides excellent protection to SS405 under conditions where uncoated austenitic and ferritic stainless steel alloy coupons are badly corroded. Cr coatings also appear to afford some protection against corrosion.

  14. ENCOAL mild coal gasification project public design and construction report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This Public Design Report describes the 1000 ton per day ENCOAL mild coal gasification demonstration plant now in operation at the Buckskin Mine near Gillette, Wyoming. The objective of the project is to demonstrate that the proprietary Liquids From Coal (LFC) technology can reliably and economically convert low Btu PRB coal into a superior, high-Btu solid fuel (PDF), and an environmentally attractive low-sulfur liquid fuel (CDL). The Project`s plans also call for the production of sufficient quantities of PDF and CDL to permit utility companies to carry out full scale burn tests. While some process as well as mechanical design was done in 1988, the continuous design effort was started in July 1990. Civil construction was started in October 1990; mechanical erection began in May 1991. Virtually all of the planned design work was completed by July 1991. Most major construction was complete by April 1992 followed by plant testing and commissioning. Plant operation began in late May 1992. This report covers both the detailed design and initial construction aspects of the Project.

  15. Proceedings of the ninth annual underground coal gasification symposium

    Energy Technology Data Exchange (ETDEWEB)

    Wieber, P.R.; Martin, J.W.; Byrer, C.W. (eds.)

    1983-12-01

    The Ninth Underground Coal Gasification Symposium was held August 7 to 10, 1983 at the Indian Lakes Resort and Conference Center in Bloomingdale, Illinois. Over one-hundred attendees from industry, academia, National Laboratories, State Government, and the US Government participated in the exchange of ideas, results and future research plans. Representatives from six countries including France, Belgium, United Kingdom, The Netherlands, West Germany, and Brazil also participated by presenting papers. Fifty papers were presented and discussed in four formal sessions and two informal poster sessions. The presentations described current and future field testing plans, interpretation of field test data, environmental research, laboratory studies, modeling, and economics. All papers were processed for inclusion in the Energy Data Base.

  16. Corrosion performance of alumina scales in coal gasification environments

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K. [Argonne National Laboratory, Argonne, IL (United States)

    1997-12-31

    Corrosion of metallic structural materials in complex gas environments of coal gasification is a potential problem. The corrosion process is dictated by concentrations of two key constituents: sulfur as H{sub 2}s and C1 as HCl. This paper examines the corrosion performance of alumina scales that are thermally grown on Fe-base alloys during exposure to O/S mixed-gas environments. The results are compared with the performance of chromia-forming alloys in similar environments. The valuable information on corrosion performance of alloys whose surfaces were enriched with Al by the pack-diffusion process, by the electrospark deposition process, or by weld overlay techniques, is also discussed.

  17. Corrosion performance of alumina scales in coal gasification environments

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.

    1997-02-01

    Corrosion of metallic structural materials in complex gas environments of coal gasification is a potential problem. The corrosion process is dictated by concentrations of two key constituents: sulfur as H{sub 2}S and Cl as HCl. This paper examines the corrosion performance of alumina scales that are thermally grown on Fe-base alloys during exposure to O/S mixed-gas environments. The results are compared with the performance of chromia-forming alloys in similar environments. The paper also discusses the available information on corrosion performance of alloys whose surfaces were enriched with Al by the pack-diffusion process, by the electrospark deposition process, or by weld overlay techniques.

  18. Anaerobic filters for the treatment of coal gasification wastewater.

    Science.gov (United States)

    Suidan, M T; Siekerka, G L; Kao, S W; Pfeffer, J T

    1983-06-01

    A process train consisting of the following sequence of unit processes, a berl-saddle-packed anaerobic filter, an expanded bed, granular activated carbon anaerobic filter, and an activated sludge nitrification system was evaluated for the treatment of a synthetically prepared coal gasification wastewater. The first-stage anaerobic filter resulted in very little removal of organic matter and no methane production. Excellent reduction in organic matter occurred in the granular activated carbon anaerobic filter. The removal mechanism was initially adsorptive and near the end of the study, removal of organic matter was primarily through conversion to methane gas. It is felt that the success of the activated carbon anaerobic filter was due to the ability of the activated carbon to sequester some components of the wastewater that were toxic to the mixed culture of anaerobic microorganisms. The activated sludge nitrification system resulted in complete ammonia oxidation and was very efficient in final effluent polishing.

  19. Chemical looping coal gasification with calcium ferrite and barium ferrite via solid--solid reactions

    Energy Technology Data Exchange (ETDEWEB)

    Siriwardane, Ranjani [U.S. Department of Energy/NETL; Riley, Jarrett [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); Tian, Hanjing [West Virginia Univ., Morgantown, WV (United States); Richards, George [U.S. Department of Energy/NETL

    2016-01-01

    Coal gasification to produce synthesis gas by chemical looping was investigated with two oxygen carriers, barium ferrite (BaFe2O4) and calcium ferrite (CaFe2O4). Thermo-gravimetric analysis (TGA) and fixed-bed flow reactor data indicated that a solid–solid interaction occurred between oxygen carriers and coal to produce synthesis gas. Both thermodynamic analysis and experimental data indicated that BaFe2O4 and CaFe2O4 have high reactivity with coal but have a low reactivity with synthesis gas, which makes them very attractive for the coal gasification process. Adding steam increased the production of hydrogen (H2) and carbon monoxide (CO), but carbon dioxide (CO2) remained low because these oxygen carriers have minimal reactivity with H2 and CO. Therefore, the combined steam–oxygen carrier produced the highest quantity of synthesis gas. It appeared that neither the water–gas shift reaction nor the water splitting reaction promoted additional H2 formation with the oxygen carriers when steam was present. Wyodak coal, which is a sub-bituminous coal, had the best gasification yield with oxygen carrier–steam while Illinois #6 coal had the lowest. The rate of gasification and selectivity for synthesis gas production was significantly higher when these oxygen carriers were present during steam gasification of coal. The rates and synthesis gas yields during the temperature ramps of coal–steam with oxygen carriers were better than with gaseous oxygen.

  20. Chemometric Study of the Ex Situ Underground Coal Gasification Wastewater Experimental Data.

    Science.gov (United States)

    Smoliński, Adam; Stańczyk, Krzysztof; Kapusta, Krzysztof; Howaniec, Natalia

    2012-11-01

    The main goal of the study was the analysis of the parameters of wastewater generated during the ex situ underground coal gasification (UCG) experiments on lignite from Belchatow, and hard coal from Ziemowit and Bobrek coal mines, simulated in the ex situ reactor. The UCG wastewater may pose a potential threat to the groundwater since it contains high concentrations of inorganic (i.e., ammonia nitrogen, nitrites, chlorides, free and bound cyanides, sulfates and trace elements: As, B, Cr, Zn, Al, Cd, Co, Mn, Cu, Mo, Ni, Pb, Hg, Se, Ti, Fe) and organic (i.e., phenolics, benzene and their alkyl derivatives, and polycyclic aromatic hydrocarbons) contaminants. The principal component analysis and hierarchical clustering analysis enabled to effectively explore the similarities and dissimilarities between the samples generated in lignite and hard coal oxygen gasification process in terms of the amounts and concentrations of particular components. The total amount of wastewater produced in lignite gasification process was higher than the amount generated in hard coal gasification experiments. The lignite gasification wastewater was also characterized by the highest contents of acenaphthene, phenanthrene, anthracene, fluoranthene, and pyrene, whereas hard coal gasification wastewater was characterized by relatively higher concentrations of nitrites, As, Cr, Cu, benzene, toluene, xylene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene.

  1. Online compositional analysis in coal gasification environment using laser-induced plasma technology

    Science.gov (United States)

    Deng, Kung-Li; Wu, Juntao; Wang, Zhe; Lee, Boon; Guida, Renato

    2006-08-01

    Integrated Gasification Combined Cycle (IGCC) power plants have great potential for future clean-coal power generation. Today, the quality of coal is measured by sampling coal using various offline methods, and the syn-gas composition is determined by taking samples downstream of the gasifier and measured by gas chromatograph (GC). Laser induced plasma technology has demonstrated high sensitivity for elementary detection. The capability of free space transmission and focusing of laser beam makes laser induced plasma a unique technology for online compositional analysis in coal gasification environment and optimization control.

  2. [Inhibition of Denitrification by Total Phenol Load of Coal Gasification Wastewater].

    Science.gov (United States)

    Zhang, Yu-ying; Chen, Xiu-rong; Wang, Lu; Li, Jia-hui; Xu, Yan; Zhuang, You-jun; Yu, Ze-ya

    2016-03-15

    High loaded phenolic pollutants, refractory and high toxic, which existed in coal gasification wastewater, could cause the inhibition of sludge activity. In biological denitrification process of activated sludge treatment system, people tend to focus on the phenol inhibition on the efficiency and activity of nitrifying bacteria while there are few researches on the denitrification process. In order to investigate the inhibition of phenolic compounds from coal gasification wastewater on the denitrification and sludge activity, we used anoxic denitrification system to indentify the influence of different phenol load on denitrification efficiency (removal efficiency of NO₃⁻-N and NO₂⁻-N) as well as the stress and degradation activity of sludge. The results showed that when the concentration of total phenol was changed from 50 mg · L⁻¹ to 200 mg · L⁻¹, the removal rates of NO₃⁻-N and NO₂⁻-N were changed from 55% and 25% to 83% and 83% respectively. In the process of sludge domestication, the characteristics of denitrifying sludge were influenced to a certain degree.

  3. Great Plains Coal Gasification Project: Quarterly technical progress report, April-June 1988 (Fourth fiscal quarter, 1987-1988)

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-29

    This progress report describes the operation of the Great Plains Gasification Plant, including lignite coal production, SNG production, gas quality, by-products, and certain problems encountered. (LTN)

  4. DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2005-01-01

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period we coated coupons of selected alloy steels with diffusion coatings of Cr and Al, as well as with titanium and tantalum nitrides. The coated samples were analyzed for their surface composition. In several instances, the samples were also cut to determine the depth profile of the coating. Several of the early runs did not yield uniform or deep enough coatings and hence a significant portion of the effort in this period was devoted fixing the problems with our fluidized bed reactor. Before the end of the quarter we had prepared a number of samples, many of them in duplicates, and sent one set to Wabash River Energy Laboratory for them to install in their gasifier. The gasifier was undergoing a scheduled maintenance and thus presented an opportunity to place some of our coupons in the stream of an operating gasifier. The samples submitted included coated and uncoated pairs of different alloys.

  5. Co-Gasification of Coal and Biomass in an IGCC Power Plant: Gasifier Modeling

    Directory of Open Access Journals (Sweden)

    Luis Correas

    2004-12-01

    Full Text Available Co-gasification of coal and biomass in an existing coal-fired IGCC power plant is proposed as an efficient, flexible and environmentally friendly way to increase the biomass contribution to electricity generation. A model of an entrained flow gasifier is described and validated with nearly 3,000 actual steady-state operational data points (4,800 hours. The model is then used to study co-gasification of coal, petroleum coke and up to 10 percent of several types of biomass. As a result, the influence of fuel variations on gasifier performance and modifications in operation that should be made in co-gasification are obtained. A conclusion of our study is that co-gasification is possible provided that operation is properly adapted. A validated model can be very useful for predicting operating points for new fuel mixtures.

  6. Biological production of ethanol from coal

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H[sub 2], CO[sub 2], CH[sub 4] and sulfur gases, is first produced using traditional gasification techniques. The CO, CO[sub 2] and H[sub 2] are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the wild strain'' produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

  7. DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2005-03-01

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period we conducted two exposure tests with coated and uncoated coupons. The first one was aborted after a short period, because of a leak in the pressure regulator of a CO/CO{sub 2}/H{sub 2} gas mixture gas cylinder that was used to prepare the simulated coal gas stream. Nevertheless, this run was very instructive as it showed that during the brief exposure when the concentration of H{sub 2}S increased to 8.6%, even specialty alloys such as HR160 and I800 were badly corroded, yet the sample of a SS405-steel that was coated with Ti/Ta showed no signs of corrosion. After replacing the pressure regulator, a second run was conducted with a fresh set of coated and uncoated samples. The Ti/Ta-coated on to SS405 steel from the earlier runs was also exposed in this test. The run proceeded smoothly, and at the end of test the uncoated steels were badly damaged, some evidence of corrosion was found on coupons of HR160 and I800 alloys and the Cr-coated steels, but again, the Ti/Ta-coated sample appeared unaffected.

  8. Fundamental research on novel process alternatives for coal gasification: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hill, A H; Knight, R A; Anderson, G L; Feldkirchner, H L; Babu, S P

    1986-10-01

    The Institute of Gas Technology has conducted a fundamental research program to determine the technical feasibility of and to prepare preliminary process evaluations for two new approaches to coal gasification. These two concepts were assessed under two major project tasks: Task 1. CO/sub 2/-Coal Gasification Process Concept; Task 2. Internal Recirculation Catalysts Coal Gasification Process Concept. The first process concept involves CO/sub 2/-O/sub 2/ gasification of coal followed by CO/sub 2/ removal from the hot product gas by a solid MgO-containing sorbent. The sorbent is regenerated by either a thermal- or a pressure-swing step and the CO/sub 2/ released is recycled back to the gasifier. The product is a medium-Btu gas. The second process concept involves the use of novel ''semivolatile'' materials as internal recirculating catalysts for coal gasification. These materials remain in the gasifier because their vapor pressure-temperature behavior is such that they will be in the vapor state at the hotter, char exit part of the reactor and will condense in the colder, coal-inlet part of the reactor. 21 refs., 43 figs., 43 tabs.

  9. Efficient volatile metal removal from low rank coal in gasification, combustion, and processing systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Bland, Alan E.; Sellakumar, Kumar Muthusami; Newcomer, Jesse D.

    2017-03-21

    Efficient coal pre-processing systems (69) integrated with gasification, oxy-combustion, and power plant systems include a drying chamber (28), a volatile metal removal chamber (30), recirculated gases, including recycled carbon dioxide (21), nitrogen (6), and gaseous exhaust (60) for increasing the efficiencies and lowering emissions in various coal processing systems.

  10. Coal gasification systems engineering and analysis. Appendix G: Commercial design and technology evaluation

    Science.gov (United States)

    1980-01-01

    A technology evaluation of five coal gasifier systems (Koppers-Totzek, Texaco, Babcock and Wilcox, Lurgi and BGC/Lurgi) and procedures and criteria for evaluating competitive commercial coal gasification designs is presented. The technology evaluation is based upon the plant designs and cost estimates developed by the BDM-Mittelhauser team.

  11. Safety research in the gasification process of novel multi-thermal-source coal gasifier

    Institute of Scientific and Technical Information of China (English)

    TIAN Yu-xian; WU Min-huan; WANG Xiao-gang; ZHANG Ya-ping; QIANG Jun-feng; TIAN Xin-wei; WANG Xi-lian

    2009-01-01

    In order to collect the gas safely produced in the gasification process of the novel multi-thermal-source coal gasifier,based on its gasification skill and the characteristics of the products, this paper analyzes the possible dangers in the gasification process, devises the gasifier eruption and explosion experiments, explores the conditions of gasifier eruption and gas explosion, studies their effects on the gasification process and establishes safe operation measures. Gasifier eruption hazard occurs easily in the gasification process of one-thermal-source coal gasifier when Msio: is far higher than that in the normal adjuvant. The gas permeability in the gasifier is not the same and the power supply is too large. However, similar conditions in the gasification of multi-thermal-source coal gasifier do not produce a gasifier eruption accident so easily. When it erupts, the gasifier should be stopped and then cooled down naturally or inert gas can be sprayed on the gasifier to cool it off, and thus gas explosion can be avoided. There is a possibility of direct gas explosion, but it can be avoided when the gas in the gas collecting space is replaced slowly by supplying a small amount of power or the inert gas fills the space in the previous gasification. The time a fire is lit is strictly controlled, the gas is drawn in by using the aspirator pump, and the gasifier pressure is kept in the state of micro-positive pressure in the middle and later gasification process. The conclusion is that the gasification process of the novel multi-thermal-source coal gasifier is safe according to normal operation rules.

  12. 3rd international conference on coal gasification and liquefaction, University of Pittsburgh

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-01-01

    The third annual international conference on ''Coal Gasification and Liquefaction: What Needs to be Done Now'' was held at the University of Pittsburgh, Pittsburgh, PA on August 3-5, 1976. The majority of the papers dealt with coal gasification and liquefaction (often on the basis of process pilot plant experience) and on flue gas desulfurization by a variety of processes; fewer papers involved fluidized bed combustion, combined cycle power plants, coal desulfurization, government policy on environmental effects and on synthetic fuels, etc. Twenty-eight papers have been entered individually into EDB and ERA. (LTN)

  13. Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics and Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Francine [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Agblevor, Foster [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Klein, Michael [Univ. of Delaware, Newark, DE (United States); Sheikhi, Reza [Northeastern Univ., Boston, MA (United States)

    2015-12-31

    A collaborative effort involving experiments, kinetic modeling, and computational fluid dynamics (CFD) was used to understand co-gasification of coal-biomass mixtures. The overall goal of the work was to determine the key reactive properties for coal-biomass mixed fuels. Sub-bituminous coal was mixed with biomass feedstocks to determine the fluidization and gasification characteristics of hybrid poplar wood, switchgrass and corn stover. It was found that corn stover and poplar wood were the best feedstocks to use with coal. The novel approach of this project was the use of a red mud catalyst to improve gasification and lower gasification temperatures. An important results was the reduction of agglomeration of the biomass using the catalyst. An outcome of this work was the characterization of the chemical kinetics and reaction mechanisms of the co-gasification fuels, and the development of a set of models that can be integrated into other modeling environments. The multiphase flow code, MFIX, was used to simulate and predict the hydrodynamics and co-gasification, and results were validated with the experiments. The reaction kinetics modeling was used to develop a smaller set of reactions for tractable CFD calculations that represented the experiments. Finally, an efficient tool was developed, MCHARS, and coupled with MFIX to efficiently simulate the complex reaction kinetics.

  14. Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics and Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Francine [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Agblevor, Foster [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Klein, Michael [Univ. of Delaware, Newark, DE (United States); Sheikhi, Reza [Northeastern Univ., Boston, MA (United States)

    2015-09-30

    A collaborative effort involving experiments, kinetic modeling, and computational fluid dynamics (CFD) was used to understand co-gasification of coal-biomass mixtures. The overall goal of the work was to determine the key reactive properties for coal-biomass mixed fuels. Sub-bituminous coal was mixed with biomass feedstocks to determine the fluidization and gasification characteristics of hybrid poplar wood, switchgrass and corn stover. It was found that corn stover and poplar wood were the best feedstocks to use with coal. The novel approach of this project was the use of a red mud catalyst to improve gasification and lower gasification temperatures. An important results was the reduction of agglomeration of the biomass using the catalyst. An outcome of this work was the characterization of the chemical kinetics and reaction mechanisms of the co-gasification fuels, and the development of a set of models that can be integrated into other modeling environments. The multiphase flow code, MFIX, was used to simulate and predict the hydrodynamics and co-gasification, and results were validated with the experiments. The reaction kinetics modeling was used to develop a smaller set of reactions for tractable CFD calculations that represented the experiments. Finally, an efficient tool was developed, MCHARS, and coupled with MFIX to efficiently simulate the complex reaction kinetics.

  15. Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: a synoptic view.

    Science.gov (United States)

    Kronbauer, Marcio A; Izquierdo, Maria; Dai, Shifeng; Waanders, Frans B; Wagner, Nicola J; Mastalerz, Maria; Hower, James C; Oliveira, Marcos L S; Taffarel, Silvio R; Bizani, Delmar; Silva, Luis F O

    2013-07-01

    The nano-mineralogy, petrology, and chemistry of coal gasification products have not been studied as extensively as the products of the more widely used pulverized-coal combustion. The solid residues from the gasification of a low- to medium-sulfur, inertinite-rich, volatile A bituminous coal, and a high sulfur, vitrinite-rich, volatile C bituminous coal were investigated. Multifaceted chemical characterization by XRD, Raman spectroscopy, petrology, FE-SEM/EDS, and HR-TEM/SEAD/FFT/EDS provided an in-depth understanding of coal gasification ash-forming processes. The petrology of the residues generally reflected the rank and maceral composition of the feed coals, with the higher rank, high-inertinite coal having anisotropic carbons and inertinite in the residue, and the lower rank coal-derived residue containing isotropic carbons. The feed coal chemistry determines the mineralogy of the non-glass, non-carbon portions of the residues, with the proportions of CaCO₃ versus Al₂O₃ determining the tendency towards the neoformation of anorthite versus mullite, respectively. Electron beam studies showed the presence of a number of potentially hazardous elements in nanoparticles. Some of the neoformed ultra-fine/nano-minerals found in the coal ashes are the same as those commonly associated with oxidation/transformation of sulfides and sulfates.

  16. The potential for adding plastic waste fuel at a coal gasification power plant.

    Science.gov (United States)

    Campbell, P E; Evans, R H; McMullan, J T; Williams, B C

    2001-12-01

    Plastics wastes from a municipal solid waste plant have a high energy content which make it an interesting option for co-processing with coal. The potential for adding plastic waste to a coal fired Texaco IGCC (Integrated Gasification Combined Cycle) power station is examined. The resulting efficiency increases due to the improved gasification qualities of plastic over coal. For the overall economics to be the same as the coal only case, the maximum amount that the power station can afford to spend on preparing the plastic waste for use is similar to the assumed coal cost, plus the avoided landfill cost, minus the transport cost. The location of the power station plays a key role, since this has an effect on the transport costs as well as on the landfill charges. The sensitivity of the economics of co-processing plastic waste with coal for a variety of power station operational parameters is presented.

  17. Chemical and toxicological evaluation of underground coal gasification (UCG) effluents. The coal rank effect.

    Science.gov (United States)

    Kapusta, Krzysztof; Stańczyk, Krzysztof

    2015-02-01

    The effect of coal rank on the composition and toxicity of water effluents resulting from two underground coal gasification experiments with distinct coal samples (lignite and hard coal) was investigated. A broad range of organic and inorganic parameters was determined in the sampled condensates. The physicochemical tests were supplemented by toxicity bioassays based on the luminescent bacteria Vibrio fischeri as the test organism. The principal component analysis and Pearson correlation analysis were adopted to assist in the interpretation of the raw experimental data, and the multiple regression statistical method was subsequently employed to enable predictions of the toxicity based on the values of the selected parameters. Significant differences in the qualitative and quantitative description of the contamination profiles were identified for both types of coal under study. Independent of the coal rank, the most characteristic organic components of the studied condensates were phenols, naphthalene and benzene. In the inorganic array, ammonia, sulphates and selected heavy metals and metalloids were identified as the dominant constituents. Except for benzene with its alkyl homologues (BTEX), selected polycyclic aromatic hydrocarbons (PAHs), zinc and selenium, the values of the remaining parameters were considerably greater for the hard coal condensates. The studies revealed that all of the tested UCG condensates were extremely toxic to V. fischeri; however, the average toxicity level for the hard coal condensates was approximately 56% higher than that obtained for the lignite. The statistical analysis provided results supporting that the toxicity of the condensates was most positively correlated with the concentrations of free ammonia, phenols and certain heavy metals.

  18. Presence of an unusual methanogenic bacterium in coal gasification waste.

    Science.gov (United States)

    Tomei, F A; Rouse, D; Maki, J S; Mitchell, R

    1988-12-01

    Methanogenic bacteria growing on a pilot-scale, anaerobic filter processing coal gasification waste were enriched in a mineral salts medium containing hydrogen and acetate as potential energy sources. Transfer of the enrichments to methanol medium resulted in the initial growth of a strain of Methanosarcina barkeri, but eventually small cocci became dominant. The cocci growing on methanol produced methane and exhibited the typical fluorescence of methanogenic bacteria. They grew in the presence of the cell wall synthesis-inhibiting antibiotics d-cycloserine, fosfomycin, penicillin G, and vancomycin as well as in the presence of kanamycin, an inhibitor of protein synthesis in eubacteria. The optimal growth temperature was 37 degrees C, and the doubling time was 7.5 h. The strain lysed after reaching stationary phase. The bacterium grew poorly with hydrogen as the energy source and failed to grow on acetate. Morphologically, the coccus shared similarities with Methanosarcina sp. Cells were 1 mum wide, exhibited the typical thick cell wall and cross-wall formation, and formed tetrads. Packets and cysts were not formed.

  19. Novel fragmentation model for pulverized coal particles gasification in low temperature air thermal plasma

    OpenAIRE

    Jovanović Rastko D.; Cvetinović Dejan B.; Stefanović Predrag Lj.; Škobalj Predrag D.; Marković Zoran J.

    2016-01-01

    New system for start-up and flame support based on coal gasification by low temperature air thermal plasma is planned to supplement current heavy oil system in Serbian thermal power plants in order to decrease air pollutions emission and operational costs. Locally introduced plasma thermal energy heats up and ignites entrained coal particles, thus starting chain process which releases heat energy from gasified coal particles inside burner channel. Important...

  20. Japan`s New Sunshine Project. 20. 1995 annual summary of coal liquefaction and gasification

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The paper described a summary of the 1995 study on coal liquefaction and gasification under the New Sunshine Project. As for coal liquefaction, a study was made of liquefaction characteristics and catalysts of various coals. Also studied were liquefaction conditions for quality improvement of liquefaction products, an evaluation method of quality of coal liquid, and a utilization method of coal liquid. In order to prevent carbonization and realize effective liquefaction, a study was conducted for elucidation of the reaction mechanism of high pressure hydrogenation. In a 150t/d pilot plant using hydrogen transfer hydrogenation solvents, the NEDOL method was studied using various catalysts and kinds of coals. This is a step prior to data acquisition for engineering, actual construction of equipment and operation. A 1t/d process supporting unit is a unit to support it. The unit conducts studies on slurry letdown valves and synthetic iron sulfide catalysts, screening of Chinese coals, etc. As to coal gasification, the paper added to the basic research the combined cycle power generation using entrained flow coal gasification for improvement of thermal efficiency and environmental acceptability and the HYCOL method for hydrogen production. 68 refs., 40 figs.

  1. The Texaco coal gasification process for manufacture of medium BTU gas

    Science.gov (United States)

    Schlinger, W. G.

    1978-01-01

    The development of the Texaco coal gasification process is discussed with particular emphasis on its close relationship to the fully commercialized Texaco synthesis gas generation process for residual oil gasification. The end uses of the product gas are covered, with special attention to electric power generation via combined cycle technology. Control of SO2, NOx, and particulate emissions in the power generating mode is also covered. The application of this technology in a proposed Texaco-Southern California Edison demonstration project is mentioned. Investment information released for a 1000-megawatt advanced combined cycle gasification facility, is also reviewed.

  2. Fluidized-Bed Gasification of Plastic Waste, Wood, and Their Blends with Coal

    Directory of Open Access Journals (Sweden)

    Lucio Zaccariello

    2015-08-01

    Full Text Available The effect of fuel composition on gasification process performance was investigated by performing mass and energy balances on a pre-pilot scale bubbling fluidized bed reactor fed with mixtures of plastic waste, wood, and coal. The fuels containing plastic waste produced less H2, CO, and CO2 and more light hydrocarbons than the fuels including biomass. The lower heating value (LHV progressively increased from 5.1 to 7.9 MJ/Nm3 when the plastic waste fraction was moved from 0% to 100%. Higher carbonaceous fines production was associated with the fuel containing a large fraction of coal (60%, producing 87.5 g/kgFuel compared to only 1.0 g/kgFuel obtained during the gasification test with just plastic waste. Conversely, plastic waste gasification produced the highest tar yield, 161.9 g/kgFuel, while woody biomass generated only 13.4 g/kgFuel. Wood gasification showed a carbon conversion efficiency (CCE of 0.93, while the tests with two fuels containing coal showed lowest CCE values (0.78 and 0.70, respectively. Plastic waste and wood gasification presented similar cold gas efficiency (CGE values (0.75 and 0.76, respectively, while that obtained during the co-gasification tests varied from 0.53 to 0.73.

  3. The role of catalyst precursor anions in coal gasification. Final technical report, September 1991--June 1994

    Energy Technology Data Exchange (ETDEWEB)

    Abotsi, G.M.K.

    1995-01-01

    The utilization of coal is currently limited by several factors, including the environmental impacts of coal use and the lack of cost-effective technologies to convert coal into useful gaseous and liquid products. Several catalysts have been evaluated for coal gasification and liquefaction. The activities of the catalysts are dependent on many factors such as the method of catalyst addition to the coal and the catalyst precursor type. Since catalyst addition to coal is frequently conducted in aqueous solution, the surface chemistry of colloidal coal particles will be expected to exert an influence on catalyst uptake. However, the effects of the various coal gasification catalyst precursors on the interfacial properties of coal during catalyst loading from solution has received little attention. The aim of this study is to ascertain the influence of the metal salts (i): calcium acetate (Ca(OOCCH{sub 3}){sub 2}), calcium chloride (CaCl{sub 2}) or calcium nitrate (Ca(NO{sub 3}){sub 2}) and (ii): potassium acetate (KOOCCH{sub 3}), potassium chloride (KCl), potassium nitrate (KNO{sub 3}), potassium carbonate (K{sub 2}CO{sub 3}) and potassium sulfate (K{sub 2}SO{sub 4}) on the electrokinetic and adsorptive properties of coal and determine the relationship, if any, between coal surface electrokinetic properties, and catalyst loading and eventually its effects on the reactivities of coal chars.

  4. Developmental research study of coal-fines agglomeration for fixed-bed gasification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Elmquist, S.A.; Girimont, J.A.; Korosi, F.A.; Kuby, O.A.; Nelson, S.G.; Paulin, M.O.; Peterson, C.A.; Baker, R.L.; Saller, E.

    1983-05-31

    This report presents the results of an intensive program to develop and evaluate agglomerates made from coal fines for use in a fixed-bed gasifier. There were several tasks completed earlier and their results published prior to this final report. These included: Task 1-A, a literature survey of coal agglomeration, binders and techniques used in coal agglomeration, coal and binder treatments and the results of work done by others; Task 1-B, an examination of performance of lump coals in coal gasification, testing and evaluation of the properties of these coals, and evaluation of mine site coal upgrading methods; and Task 1-C/D, a laboratory investigation of coal agglomerates, including wafers, briquettes and pellets, in which the agglomerated coal fines were formed and tested, and the performance of various coal/binder combinations was recorded and evaluated, and factors affecting commercial scale coal agglomeration and gasification were evaluated. These three prior tasks are presented in this report in condensed form.

  5. High-pressure co-gasification of coal with biomass and petroleum coke

    Energy Technology Data Exchange (ETDEWEB)

    Fermoso, J.; Arias, B.; Plaza, M.G.; Pevida, C.; Rubiera, F.; Pis, J.J. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain); Garcia-Pena, F.; Casero, P. [Elcogas S.A. C.T. GICC Puertollano, Carretera Calzada de Calatrava, km 27, 13500 Puertollano, Ciudad Real (Spain)

    2009-07-15

    The effects of the main operation variables (temperature, pressure and gasifying agent composition) on gas production and other process parameters, such as carbon conversion, cold gas efficiency and high heating value, during the steam-oxygen gasification of a bituminous coal were studied. It was observed that temperature and oxygen concentration were the most influential variables during the gasification process. In addition, co-gasification tests of binary blends of a bituminous coal with different types of biomass (up to 10%) and petroleum coke (up to 60%), as well as ternary blends of coal-petcoke-biomass (45-45-10%) were conducted in order to study the effect of blending on gas production and carbon conversion. (author)

  6. Study of early appearance of skin lesions in coal gasification workers.

    Science.gov (United States)

    Begraca, M; Ukmata, H; Morris, S C; Canhasi, B; Haxhiu, M A

    1991-09-01

    A retrospective cohort morbidity study was conducted among workers employed at the Kosovo coal gasification plant and a reference population of open-pit lignite miners. The aim was to determine the rate of early skin cancer and pre-cancerous skin lesions. In 15 years of commercial operation of the coal gasification plant, seven workers were diagnosed with benign skin tumors, six with pre-cancerous skin diseases, but none with skin cancer. The lesions were significantly fewer than were reported earlier over a shorter time period and in a smaller population at a coal hydrogenation plant. Compared to the reference population who received medical care in the same clinic, gasification workers had a lower skin cancer rate, but a higher rate of benign skin tumors and potentially pre-cancerous skin diseases.

  7. Novel fragmentation model for pulverized coal particles gasification in low temperature air thermal plasma

    Directory of Open Access Journals (Sweden)

    Jovanović Rastko D.

    2016-01-01

    Full Text Available New system for start-up and flame support based on coal gasification by low temperature air thermal plasma is planned to supplement current heavy oil system in Serbian thermal power plants in order to decrease air pollutions emission and operational costs. Locally introduced plasma thermal energy heats up and ignites entrained coal particles, thus starting chain process which releases heat energy from gasified coal particles inside burner channel. Important stages during particle combustion, such as particle devolatilisation and char combustion, are described with satisfying accuracy in existing commercial CFD codes that are extensively used as powerful tool for pulverized coal combustion and gasification modeling. However, during plasma coal gasification, high plasma temperature induces strong thermal stresses inside interacting coal particles. These stresses lead to “thermal shock” and extensive particle fragmentation during which coal particles with initial size of 50-100 m disintegrate into fragments of at most 5-10 m. This intensifies volatile release by a factor 3-4 and substantially accelerates the oxidation of combustible matter. Particle fragmentation, due to its small size and thus limited influence on combustion process is commonly neglected in modelling. The main focus of this work is to suggest novel approach to pulverized coal gasification under high temperature conditions and to implement it into commercial comprehensive code ANSYS FLUENT 14.0. Proposed model was validated against experimental data obtained in newly built pilot scale D.C plasma burner test facility. Newly developed model showed very good agreement with experimental results with relative error less than 10%, while the standard built-in gasification model had error up to 25%.

  8. Hoe Creek II field experiment on underground coal gasification, preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Aiman, W.R.; Thorsness, C.B.; Hill, R.W.; Rozsa, R.B.; Cena, R.; Gregg, D.W.; Stephens, D.R.

    1978-02-27

    A second in-situ coal gasification experiment was performed by Lawrence Livermore Laboratory at Hoe Creek in Wyoming. The Linked Vertical Wells scheme for in-situ coal gasification was used. The experiment took 100 days for air flow testing, reverse combustion linking, forward combustion gasification, and post-burn steam flow. Air was used for gasification except for a 2-day test with oxygen and steam. Reverse combustion linking took 14 days at 1.6 m/day. Air requirements for linking were 0.398 Mgmol per meter of link assuming a single direct link. The coal pyrolysed during linking was 17 m/sup 3/, which corresponds to a single link 1.0 m in diameter. There was, however, strong evidence of at least two linkage paths. The detected links stayed below the 3 m level in the 7.6 coal seam; however, the product flow from the forward-burn gasification probably followed the coal-overburden interface not the reverse burn channels at the 3 m level. A total of 232 Mgmols (194 Mscf) of gas was produced with heating value above 125 kJ/mol (140 Btu/scf) for significant time periods and an average of 96 kJ/mol (108 Btu/scf). During the oxygen-steam test the heating value was above 270 kJ/gmol (300 Btu/scf) twice and averaged 235 kJ/gmol (265 Btu/scf). The coal recovery was 1310 m/sup 3/ (1950 ton). Gasification was terminated because of decreasing product quality not because of burn through. The product quality decreased because of increasing underground heat loss.

  9. Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: A synoptic view

    Energy Technology Data Exchange (ETDEWEB)

    Kronbauer, Marcio A. [Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração, Victor Barreto, 2288 Centro, 92010-000 Canoas, RS (Brazil); Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Departamento de Metalurgia, Centro de Tecnologia, Av. Bento Gonçalves, 9500, Bairro Agronomia, CEP: 91501-970, Porto Alegre, RS (Brazil); Izquierdo, Maria [School of Applied Sciences, Cranfield University, Bedfordshire MK43 0AL (United Kingdom); Dai, Shifeng [State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083 (China); Waanders, Frans B. [School of Chemical and Minerals Engineering, North West University (Potchefstroom campus), Potchefstroom 2531 (South Africa); Wagner, Nicola J. [School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg (South Africa); Mastalerz, Maria [Indiana Geological Survey, Indiana University, Bloomington, IN 47405-2208 (United States); Hower, James C. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States); Oliveira, Marcos L.S. [Environmental Science and Nanotechnology Department, Catarinense Institute of Environmental Research and Human Development, IPADHC, Capivari de Baixo, Santa Catarina (Brazil); Taffarel, Silvio R.; Bizani, Delmar [Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração, Victor Barreto, 2288 Centro, 92010-000 Canoas, RS (Brazil); and others

    2013-07-01

    The nano-mineralogy, petrology, and chemistry of coal gasification products have not been studied as extensively as the products of the more widely used pulverized-coal combustion. The solid residues from the gasification of a low- to medium-sulfur, inertinite-rich, volatile A bituminous coal, and a high sulfur, vitrinite-rich, volatile C bituminous coal were investigated. Multifaceted chemical characterization by XRD, Raman spectroscopy, petrology, FE-SEM/EDS, and HR-TEM/SEAD/FFT/EDS provided an in-depth understanding of coal gasification ash-forming processes. The petrology of the residues generally reflected the rank and maceral composition of the feed coals, with the higher rank, high-inertinite coal having anisotropic carbons and inertinite in the residue, and the lower rank coal-derived residue containing isotropic carbons. The feed coal chemistry determines the mineralogy of the non-glass, non-carbon portions of the residues, with the proportions of CaCO{sub 3} versus Al{sub 2}O{sub 3} determining the tendency towards the neoformation of anorthite versus mullite, respectively. Electron beam studies showed the presence of a number of potentially hazardous elements in nanoparticles. Some of the neoformed ultra-fine/nano-minerals found in the coal ashes are the same as those commonly associated with oxidation/transformation of sulfides and sulfates. - Highlights: • Coal waste geochemisty can provide increased environmental information in coal-mining areas. • Oxidation is the major process for mineral transformation in coal ashes. • The electron bean methodology has been applied to investigate neoformed minerals.

  10. Air-based coal gasification in a two-chamber gas reactor with circulating fluidized bed

    Science.gov (United States)

    Dubinin, A. M.; Tuponogov, V. G.; Kagramanov, Y. A.

    2017-01-01

    During the bed gasification of solid fuels, the process temperature in the reaction zone is not high enough for reaching the maximum rate of the chemical efficiency factor of the gasification process. In order to increase the chemical efficiency factor, it is necessary to supply extra heat to the reaction zone to increase the reaction temperature. In this article, coal gasification in a chamber with forced fluidized bed is considered and it is proposed to supply extra heat with a circulating flow of an inert particulate heat transfer agent. Circulating inert particulate material is successively heated by coal combustion in a cone chamber with bubbling fluidized bed and in a combustion chamber with a spherical nozzle that inhibits the forced fluidized bed. After that, the heat transfer agent heated to 930-950°C enters first in a gasification chamber with bubbling bed and then in a chamber with forced fluidized bed, where it transfers the physical heat to the air fuel mixture. The experiments conducted with crushed Borodinsky coal and inert particulate heat transfer agent (electrocorundum) showed the temperature rise in a gasification chamber with from 760 to 870°C and the increase in the combustible component (CO) concentration in the gasification products by 5.5%. Based on the kinetic equations of the fuel combustion reactions and the CO2 reduction to CO and on the thermal balance equations of combustion and gasification chambers, the simulation model for the gas composition and the temperature rate calculated by the height of reaction chambers was developed. The experimental temperature rates and product gas compositions are in good agreement with the simulation results based on the proposed kinetic gasification model.

  11. Coal conversion processes and analysis methodologies for synthetic fuels production. [technology assessment and economic analysis of reactor design for coal gasification

    Science.gov (United States)

    1979-01-01

    Information to identify viable coal gasification and utilization technologies is presented. Analysis capabilities required to support design and implementation of coal based synthetic fuels complexes are identified. The potential market in the Southeast United States for coal based synthetic fuels is investigated. A requirements analysis to identify the types of modeling and analysis capabilities required to conduct and monitor coal gasification project designs is discussed. Models and methodologies to satisfy these requirements are identified and evaluated, and recommendations are developed. Requirements for development of technology and data needed to improve gasification feasibility and economies are examined.

  12. Carbon formation and metal dusting in advanced coal gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    DeVan, J.H.; Tortorelli, P.F.; Judkins, R.R.; Wright, I.G.

    1997-02-01

    The product gases generated by coal gasification systems contain high concentrations of CO and, characteristically, have relatively high carbon activities. Accordingly, carbon deposition and metal dusting can potentially degrade the operation of such gasifier systems. Therefore, the product gas compositions of eight representative gasifier systems were examined with respect to the carbon activity of the gases at temperatures ranging from 480 to 1,090 C. Phase stability calculations indicated that Fe{sub 3}C is stable only under very limited thermodynamic conditions and with certain kinetic assumptions and that FeO and Fe{sub 0.877}S tend to form instead of the carbide. As formation of Fe{sub 3}C is a necessary step in the metal dusting of steels, there are numerous gasifier environments where this type of carbon-related degradation will not occur, particularly under conditions associated with higher oxygen and sulfur activities. These calculations also indicated that the removal of H{sub 2}S by a hot-gas cleanup system may have less effect on the formation of Fe{sub 3}C in air-blown gasifier environments, where the iron oxide phase can exist and is unaffected by the removal of sulfur, than in oxygen-blown systems, where iron sulfide provides the only potential barrier to Fe{sub 3}C formation. Use of carbon- and/or low-alloy steels dictates that the process gas composition be such that Fe{sub 3}C cannot form if the potential for metal dusting is to be eliminated. Alternatively, process modifications could include the reintroduction of hydrogen sulfide, cooling the gas to perhaps as low as 400 C and/or steam injection. If higher-alloy steels are used, a hydrogen sulfide-free gas may be processed without concern about carbon deposition and metal dusting.

  13. Combined-cycle power stations using ``clean-coal-technologies``: Thermodynamic analysis of full gasification vs. fluidized bed combustion with partial gasification

    Energy Technology Data Exchange (ETDEWEB)

    Lozza, G.; Chiesa, P. [Politecnico di Milano, Milan (Italy). Dept. of Energetics; DeVita, L. [Eniricerche, Milan (Italy)

    1994-12-31

    A novel class of power plants for clean conversion of coal into power has been recently proposed, based on the concept of partial coal gasification and fluidized-bed combustion of unconverted char from gasification. This paper focuses on the thermodynamic aspects of these plants, in comparison with full gasification cycles, assessing their performance on the basis of a common advanced power plant technology level. Several plant configurations are considered, including pressurized or atmospheric fluidized-bed, air- or steam-cooled, with different carbon conversion in the gasifier. The calculation method, used for reproducing plant energy balances and for performance prediction, is described in the paper. A complete second-law analysis is carried out, pointing out the efficiency loss breakdown for both technologies. Results show that partial gasification plants can achieve efficiencies consistently higher than IGCC, depending on plant configuration and carbon conversion, making this solution a viable and attractive option for efficient coal utilization.

  14. Combined-cycle power stations using clean-coal technologies: Thermodynamic analysis of full gasification versus fluidized bed combustion with partial gasification

    Energy Technology Data Exchange (ETDEWEB)

    Lozza, G.; Chiesa, P. [Politecnico di Milano, Milan (Italy). Dept. of Energetics; DeVita, L. [Eniricerche, Milan (Italy)

    1996-10-01

    A novel class of power plants for clean conversion of coal into power has been recently proposed, based on the concept of partial coal gasification and fluidized-bed combustion of unconverted char from gasification. This paper focuses on the thermodynamic aspects of these plants, in comparison with full gasification cycles, assessing their performance on the basis of a common advanced power plant technology level. Several plant configurations are considered, including pressurized or atmospheric fluidized-bed, air- or steam-cooled, with different carbon conversion in the gasifier. The calculation method, used for reproducing plant energy balances and for performance prediction, is described in the paper. A complete second-law analysis is carried out, pointing out the efficiency loss breakdown for both technologies. Results show that partial gasification plants can achieve efficiencies consistently higher than IGCC, depending on plant configuration and carbon conversion, making this solution a viable and attractive option for efficient coal utilization.

  15. The underground coal gasification First step of community collaboration; Gasification Subterranea del Carbon. Primer Intento en el Ambito de una Colaboracion Comunitaria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The objective of the project was to demonstrate the technical feasibility of underground coal gasification in coal seams at 600 metre depth, in order to asses its potential as a means of energy exploitation in Europe. The trial was based on the use of deviated boreholes and a retractable injection system techniques, which have both been developed by the oil and gas industries. One borehole, the injection well, was drilled in the coal seam. The other, the vertical production well, was run to intercept it in the lower part of the coal seam as closely as possible, in order to construct a continuous channel for gasification. The well were completed with casing and concentric tubing to provide the necessary paths for production, injection, purging gas and cooling water flows. A coiled tubing located in the injection well was used to execute the retraction (or CRIP) manoeuvre, which is a process in which the injector head for the gasification agents, i. e. oxygen and water, and the ignitor, are directed to a specific section of the coal seam. The gasification products passes to a surface production line for flow measurement and sampling of gas and condensate products. Production gases were either flared or incinerated, while the liquids were collected for appropriate disposal. The first trial achieved its principal objectives of in seam drilling, channel communication, the CRIP manoeuvres and the gasification of significant quantity of coal. The post-gasification study also identified the shape and extent of the cavity. The study has demonstrated the technical feasibility of underground coal gasification at the intermediate depths of European coal and proposals are made for further development and semi-commercial exploitation of this promising extraction technology. (Author) 11 refs.

  16. Catalytic gasification of char from co-pyrolysis of coal and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenkui [State key Laboratory of Multi-phase Complex system, the Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080 (China); Graduate University, Chinese Academy of Sciences, Beijing 100080 (China); Song, Wenli; Lin, Weigang [State key Laboratory of Multi-phase Complex system, the Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080 (China)

    2008-09-15

    The catalytic gasification of char from co-pyrolysis of coal and wheat straw was studied. Alkali metal salts, especially potassium salts, are considered as effective catalysts for carbon gasification by steam and CO{sub 2}, while too expensive for industry application. The herbaceous type of biomass, which has a high content of potassium, may be used as an inexpensive source of catalyst by co-processing with coal. The reactivity of chars from co-pyrolysis of coal and straw was experimentally examined. The chars were prepared in a spout-entrained reactor with different ratios of coal to straw. The gasification characteristics of chars were measured by thermogravimetric analysis (TGA). The co-pyrolysis chars revealed higher gasification reactivity than that of char from coal, especially at high level of carbon conversion. The influence of the alkali in the char and the pyrolysis temperature on the reactivity of co-pyrolysis char was investigated. The experimental results show that the co-pyrolysis char prepared at 750 C have the highest alkali concentration and reactivity. (author)

  17. Mathematical model for the gasification of coal under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Biba, V.; Macak, J.; Kloss, E.; Malecha, J.

    1978-01-01

    A mathematical model for the the high-pressure gasification of solid fuels in the charged layer is presented which permits the quantitative description of the the static behavior of the generator. Deals with the parameters of reaction kinetics and of the transfer of matter and energy which are necessary for developing the model of a fixed-bed reactor. To obtain a practical model, simplifications are needed which concern the gasification, degasification, and drying processes. They are dealt with individually. For calculating the concentration and temperature profiles for the solid and gas phases along the gasification bed height, a system of differential equations was obtained which was supplemented by some algebraic equations.

  18. EVALUATION OF BIOMASS AND COAL CO-GASIFICATION OF BRAZILIAN FEEDSTOCK USING A CHEMICAL EQUILIBRIUM MODEL

    Directory of Open Access Journals (Sweden)

    R. Rodrigues

    Full Text Available Abstract Coal and biomass are energy sources with great potential for use in Brazil. Coal-biomass co-gasification enables the combination of the positive characteristics of each fuel, besides leading to a cleaner use of coal. The present study evaluates the potential of co-gasification of binary coal-biomass blends using sources widely available in Brazil. This analysis employs computational simulations using a reliable thermodynamic equilibrium model. Favorable operational conditions at high temperatures are determined in order to obtain gaseous products suitable for energy cogeneration and chemical synthesis. This study shows that blends with biomass ratios of 5% and equivalence ratios ≤ 0.3 lead to high cold gas efficiencies. Suitable gaseous products for chemical synthesis were identified at biomass ratios ≤ 35% and moisture contents ≥ 40%. Formation of undesirable nitrogen and sulfur compounds was also analyzed.

  19. Non-catalytic co-gasification of sub-bituminous coal and biomass

    Science.gov (United States)

    Nyendu, Guevara Che

    Fluidization characteristics and co-gasification of pulverized sub-bituminous coal, hybrid poplar wood, corn stover, switchgrass, and their mixtures were investigated. Co-gasification studies were performed over temperature range from 700°C to 900°C in different media (N2, CO2, steam) using a bubbling fluidized bed reactor. In fluidization experiments, pressure drop (Delta P) observed for coal-biomass mixtures was higher than those of single coal and biomass bed materials in the complete fluidization regime. There was no systematic trend observed for minimum fluidization velocity ( Umf) with increasing biomass content. However, porosity at minimum fluidization (εmf) increased with increasing biomass content. Channeling effects were observed in biomass bed materials and coal bed with 40 wt.% and 50 wt.% biomass content at low gas flowrates. The effect of coal pressure overshoot reduced with increasing biomass content. Co-gasification of coal and corn stover mixtures showed minor interactions. Synergetic effects were observed with 10 wt.% corn stover. Coal mixed with corn stover formed agglomerates during co-gasification experiments and the effect was severe with increase in corn stover content and at 900°C. Syngas (H2 + CO) concentrations obtained using CO2 as co-gasification medium were higher (~78 vol.% at 700°C, ~87 vol.% at 800°C, ~93 vol.% at 900°C) than those obtained with N2 medium (~60 vol.% at 700°C, ~65 vol.% at 800°C, ~75 vol.% at 900°C). Experiments involving co-gasification of coal with poplar showed no synergetic effects. Experimental yields were identical to predicted yields. However, synergetic effects were observed on H2 production when steam was used as the co-gasification medium. Additionally, the presence of steam increased H2/CO ratio up to 2.5 with 10 wt.% hybrid poplar content. Overall, char and tar yields decreased with increasing temperature and increasing biomass content, which led to increase in product gas.

  20. Low/medium Btu coal-gasification assessment program for potential users in New Jersey. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bianco, J. [BRISC; Schavlan, S. [BRISC; Ku, W. S. [PSE& G; Piascik, T. M. [PSE& G; Hynds, J. A. [PSE& G; West, A. [SDC

    1981-01-01

    In order to evaluate the potential for coal utilization, a preliminary technical and economic assessment of district coal gasification in New Jersey was conducted. This evaluation addressed the possibility of installing a coal gasification plant to use a high sulfur eastern coal to produce a medium Btu content gas (MBG) having a heating value of approximately 300 Btu/SCF. In addition, the work also appraised the regulatory, environmental and marketing, and financial considerations of such a facility. The preliminary study evaluation has manifested an overall technical and economic feasibility for producing a medium Btu quality gas (MBG) from coal at PSE and G's Sewaren Generating Station in New Jersey. The production of MBG for use in on-site power plant boilers or for distribution to industrial customers appears to be economically attractive. The economic attractiveness of MBG is very dependent on the location of sufficient numbers of industrial customers near the gasification facilities and on high utilization of the gasification plant. The Sewaren Generating Station was identified as potentially the most suitable site for a gasification plant. The Texaco Coal Gasification Process was selected as the gasifier type due to a combination of efficiency and pilot plant experience. It is projected that a nominal 2000 tons-per-day coal gasification plant would supply supplemental utility boiler fuel, fuel grade methanol and some by-products.

  1. Simulation of circulating fluidized bed gasification for characteristic study of pakistani coal

    Directory of Open Access Journals (Sweden)

    Ramzan Naveed

    2015-03-01

    Full Text Available A process model for turbulent pressurized circulating fluidized-bed coal gasifier is created using ASPEN PLUS software. Both hydrodynamic and reaction kinetics parameter are taken into account, whose expressions for fluidized bed are adopted from the literature. Various reactor models available in ASPEN PLUS with calculator as External Block are nested to solve hydrodynamics and kinetics. Multiple operational parameters for a pilot-plant circulating fluidized-bed coal gasifier are used to demonstrate the effects on coal gasification characteristics. This paper presents detailed information regarding the simulation model, including robust analysis of the effect of stoichiometric ratio, steam to coal ratio, gasification temperature and gasification agent temperature. It is observed that, with the increase in the flow rate of air, the components hydrogen, carbon monoxide, carbon dioxide and methane reduce, which causes the Lower Heating Value (LHV of synthesis gas (Syn. Gas to decrease by about 29.3%, while increment in the steam flow rate shows a minute increase in heating value of only 0.8%. Stoichiometric ratio has a direct relationship to carbon conversion efficiency and carbon dioxide production. Increasing the steam to coal ratio boosts the production of hydrogen and carbon monoxide, and causes a drop in both carbon dioxide concentration and the conversion efficiency of carbon. High gasifying agent temperature is desired because of high concentration of CO and H2, increasing carbon conversion and LHV. A high gasifying agent temperature is the major factor that affects the coal gasification to enhance H2 and CO production rapidly along with other gasification characteristics.

  2. Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration

    Science.gov (United States)

    Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.

    1981-01-01

    A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.

  3. Kosova coal gasification plant health effects study: Volume 3, Retrospective epidemiology

    Energy Technology Data Exchange (ETDEWEB)

    Morris, S.C.; Haxhiu, M.A.; Canhasi, B.; Begraca, M.; Ukmata, H.

    1987-12-01

    Disease incidence in coal gasification plant workers in Kosova, Yugoslavia, was compared to that in lignite surface miners who received medical care in the same clinic. No statistically significant difference in incidence rate was found for any of twelve disease categories examined. Early development of a high skin cancer rate, as reported within five years of first exposure at a coal hydrogenation plant in Institute, West Virginia, did not occur. Exploratory analysis indicated trends among gasification plant workers in disease incidence with increasing years of service and increasing occupational exposure levels for chronic bronchitis and mental diseases. Particulate exposures in workers' homes were of the same order as exposures at the gasification plant and further study of residential air pollution levels is recommended. 21 refs., 2 figs., 80 tabs.

  4. Novel plasma arc reactor with molted metal electrodes for coal gasification technology

    Energy Technology Data Exchange (ETDEWEB)

    Predtechensky, M.R.; Kuropyatnik, I.N.; Tukhto, O.M. [International Scientific Center on Thermophysics and Energetics, Novosibirsk, Russia Institute of Thermophysics SB RAS, Novosibirsk (Russian Federation)

    2001-07-01

    The process of steam gasification of coal has been studied using the new type of plasma chemical reactor with molten metal electrodes. Using of molten metal electrodes allows to increase significantly the continuous operation of the plasma arc reactor and to realize some additional advantages. (authors)

  5. Enhanced anaerobic biodegradability of real coal gasification wastewater with methanol addition.

    Science.gov (United States)

    Wang, Wei; Han, Hongjun; Yuan, Min; Li, Huiqiang

    2010-01-01

    Coal gasification effluent is a typical refractory industrial wastewater with a very poor anaerobic biodegradability due to its toxicity. Methanol was introduced to improve anaerobic biodegradability of real coal gasification wastewater, and the effect of methanol addition on the performance was investigated in a mesophilic upflow anaerobic sludge bed reactor with a hydraulic retention time of 24 hr. Experimental results indicated that anaerobic treatment of coal gasification wastewater was feasible with the addition of methanol. The corresponding maximum COD and phenol removal rates were 71% and 75%, respectively, with methanol concentration of 500 mg COD/L for a total organic loading rate of 3.5 kg COD/(m3 x day) and a phenol loading rate of 0.6 kg/(m3 x day). The phenol removal rate was not improved with a higher methanol concentration of 1000 mg COD/L. Substrate utilization rate (SUR) tests indicated that the SURs of phenol were 106, 132, and 83 mg phenol/(g VSS x day) at methanol concentrations of 250, 500, and 1000 mg COD/L, respectively, and only 45 mg phenol/(g VSS x day) in the control reactor. The presence of methanol could reduce the toxicity of coal gasification wastewater and increase the biodegradation of phenolic compounds.

  6. Energetic analysis and optimisation of an integrated coal gasification-combined cycle power plant

    NARCIS (Netherlands)

    Vlaswinkel, E.E.

    1992-01-01

    Methods are presented to analyse and optimise the energetic performance of integrated coal gasification-combined cycle (IGCC) power plants. The methods involve exergy analysis and pinch technology and can be used to identify key process parameters and to generate alternative design options for impro

  7. Effects of coal combustion and gasification upon lung structure and function. Quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Hinton, Dr., David E.

    1980-12-12

    The effects on lungs of emissions from fluidized-bed combustion and coal gasification on man are being studied by inhalation experiments and intratracheal administration of fly ash to hamsters. The hamsters are sacrificed at 1, 3, 6, 9 and 30 days and the lungs examined by methods which are described. (LTN)

  8. Exergy Analysis of Methanol-IGCC Polygeneration Technology Based on Coal Gasification

    Institute of Scientific and Technical Information of China (English)

    段远源; 张晋; 史琳; 朱明善; 韩礼钟

    2002-01-01

    Polygeneration is a key strategy for making ultra-clean energy products highly competitive with conventional energy systems. A polygeneration system based on coal gasification was analyzed using the exergy method to calculate the system thermal efficiency. The results show that the polygeneration system has less pollutants and higher efficiency than the separate systems.

  9. Meditation on the construction of exemplar plant for briquetted coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Kuiyi [China National Coal Industry Import and Export Corporation, Beijing (China)

    1997-12-31

    China uses a considerable amount of anthracite, but the fines from anthracite mining are not sufficiently used. This project involved the construction of a plant for the manufacture of anthracite briquettes under high pressure, for use in gasification plants. The characteristics of the coals used and the types of briquette formed are described. 2 tabs.

  10. Coal Gasification Unit Using CO2 as Gasifying Agent Developed by Shell

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The Zhongyuan Dahua Group of Henan province has announced that the first in the world Shell's coal gasification unit using CO2 as the gasifying agent has been operating successfully,delivering syngas produced by the gasifier to fully meet the needs for methanol synthesis,which can increase the methanol output by 200 tons a day under full load of the methanol unit.

  11. Subtask 4.2 - Coal Gasification Short Course

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Galbreath

    2009-06-30

    Major utilities, independent power producers, and petroleum and chemical companies are intent on developing a fleet of gasification plants primarily because of high natural gas prices and the implementation of state carbon standards, with federal standards looming. Currently, many projects are being proposed to utilize gasification technologies to produce a synthesis gas or fuel gas stream for the production of hydrogen, liquid fuels, chemicals, and electricity. Financing these projects is challenging because of the complexity, diverse nature of gasification technologies, and the risk associated with certain applications of the technology. The Energy & Environmental Research Center has developed a gasification short course that is designed to provide technical personnel with a broad understanding of gasification technologies and issues, thus mitigating the real or perceived risk associated with the technology. Based on a review of research literature, tutorial presentations, and Web sites on gasification, a short course presentation was prepared. The presentation, consisting of about 500 PowerPoint slides, provides at least 7 hours of instruction tailored to an audience's interests and needs. The initial short course is scheduled to be presented September 9 and 10, 2009, in Grand Forks, North Dakota.

  12. Biological upgrading of coal liquids

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Culture screening and performance studies were performed with a variety of cultures in removing nitrogen compounds from coal liquid. Two cultures were shown to be effective in removing 17 and 26 percent of the nitrogen in coal liquid as determined by elemental analysis. Experiments will continue in an effort to find additional cultures and isolates able to degrade nitrogen, as well as oxygen and sulfur as heteroatom compounds, from coal liquids. A biological process for upgrading of coal liquids would offer significant advantages, such as operation at ordinary temperature and pressure with better energy efficiency. Of greater importance is the fact that microorganisms do not require an external supply of hydrogen for heteroatom removal, obtaining required hydrogen from water. Furthermore, the biocatalysts are continuously regenerated by growth on the heteroatom compounds. Ring structures are degraded as the heteroatoms are removed. The heteroatoms are in an inocuous form, such as NH[sub 3], SO[sub 4][sup 2[minus

  13. Thermogravimetric and model-free kinetic studies on CO2 gasification of low-quality, high-sulphur Indian coals

    Science.gov (United States)

    Das, Tonkeswar; Saikia, Ananya; Mahanta, Banashree; Choudhury, Rahul; Saikia, Binoy K.

    2016-10-01

    Coal gasification with CO2 has emerged as a cleaner and more efficient way for the production of energy, and it offers the advantages of CO2 mitigation policies through simultaneous CO2 sequestration. In the present investigation, a feasibility study on the gasification of three low-quality, high-sulphur coals from the north-eastern region (NER) of India in a CO2 atmosphere using thermogravimetric analysis (TGA-DTA) has been made in order to have a better understanding of the physical and chemical characteristics in the process of gasification of coal. Model-free kinetics was applied to determine the activation energies (E) and pre-exponential factors (A) of the CO2 gasification process of the coals. Multivariate non-linear regression analyses were performed to find out the formal mechanisms, kinetic model, and the corresponding kinetic triplets. The results revealed that coal gasification with CO2 mainly occurs in the temperature range of 800∘-1400∘C and a maximum of at around 1100∘C. The reaction mechanisms responsible for CO2 gasification of the coals were observed to be of the ` nth order with autocatalysis (CnB)' and ` nth order (Fn) mechanism'. The activation energy of the CO2 gasification was found to be in the range 129.07-146.81 kJ mol-1.

  14. Thermogravimetric and model-free kinetic studies on CO2 gasification of low-quality, high-sulphur Indian coals

    Indian Academy of Sciences (India)

    Tonkeswar Das; Ananya Saikia; Banashree Mahanta; Rahul Choudhury; Binoy K Saikia

    2016-10-01

    Coal gasification with CO$_2$ has emerged as a cleaner and more efficient way for the production of energy, and it offers the advantages of CO$_2$ mitigation policies through simultaneous CO$_2$ sequestration. In the present investigation, a feasibility study on the gasification of three low-quality, high-sulphur coals fromthe north-eastern region (NER) of India in a CO$_2$ atmosphere using thermogravimetric analysis (TGADTA) has been made in order to have a better understanding of the physical and chemical characteristics in the process of gasification of coal. Model-free kinetics was applied to determine the activation energies (E) and pre-exponential factors (A) of the CO$_2$ gasification process of the coals. Multivariate nonlinear regression analyses were performed to find out the formal mechanisms, kinetic model, and the corresponding kinetic triplets. The results revealed that coal gasification with CO$_2$ mainly occurs in the temperature range of 800◦–1400◦C and a maximum of at around 1100◦C. The reaction mechanisms responsible for CO$_2$ gasification of the coals were observed to be of the ‘nth order with autocatalysis (CnB)’ and ‘nth order (Fn) mechanism’. The activation energy of the CO$_2$ gasification was found to be in the range 129.07–146.81 kJ mol$^{−1}$.

  15. Calculation of the fixed bed coal gasification regimes by the use of thermodynamic model with macrokinetic constraints

    Science.gov (United States)

    Donskoi, I. G.; Keiko, A. V.; Kozlov, A. N.; Svishchev, D. A.; Shamanskii, V. A.

    2013-12-01

    We discuss an equilibrium model of a fixed-bed solid fuel gasification process that takes into account macrokinetic constraints imposed on the rates of heterophase processes and allows the pyrolysis and gasification processes to be described in a fairly simple manner with the use of thermal analysis data. The results of calculations are compared with the measured parameters characterizing the Azeisk coal steam-air gasification process that were obtained in experiments on a laboratory setup.

  16. A back analysis of the temperature field in the combustion volume space during underground coal gasification

    Institute of Scientific and Technical Information of China (English)

    Chen Liang; Hou Chaohu; Chen Jiansheng; Xu Jiting

    2011-01-01

    The exact shape and size of the gasification channel during underground coal gasification (UGC) are of vital importance for the safety and stability of the upper parts of the geological formation.In practice existing geological measurements are insufficient to obtain such information because the coal seam is typically deeply buried and the geological conditions are often complex.This paper introduces a cylindrical model for the gasification channel.The rock and soil masses are assumed to be homogeneous and isotropic and the effect of seepage on the temperature field was neglected.The theory of heat conduction was used to write the equation predicting the temperature field around the gasification channel.The idea of an excess temperature was introduced to solve the equations.Applying this model to UCG in the field for an influence radius,r,of 70 m gave the model parameters,u1,2.3..,of 2.4,5.5,8.7...By adjusting the radius (2,4,or 6 m) reasonable temperatures of the gasification channel were found for 4 m.The temperature distribution in the vertical direction,and the combustion volume,were also calculated.Comparison to field measurements shows that the results obtained from the proposed model are very close to practice.

  17. Numerical and experimental study of strata behavior and land subsidence in an underground coal gasification project

    Science.gov (United States)

    Sirdesai, N. N.; Singh, R.; Singh, T. N.; Ranjith, P. G.

    2015-11-01

    Underground Coal Gasification, with enhanced knowledge of hydrogeological, geomechanical and environmental aspects, can be an alternative technique to exploit the existing unmineable reserves of coal. During the gasification process, petro-physical and geomechanical properties undergo a drastic change due to heating to elevated temperatures. These changes, caused due to the thermal anisotropy of various minerals, result in the generation of thermal stresses; thereby developing new fracture pattern. These fractures cause the overhead rock strata to cave and fill the gasification chamber thereby causing subsidence. The degree of subsidence, change in fluid transport and geomechanical properties of the rock strata, in and around the subsidence zone, can affect the groundwater flow. This study aims to predict the thermo-geomechanical response of the strata during UCG. Petro-physical and geomechanical properties are incorporated in the numerical modelling software COMSOL Multiphysics and an analytical strength model is developed to validate and further study the mechanical response and heat conduction of the host rock around the gasification chamber. Once the problems are investigated and solved, the enhanced efficiency and the economic exploitation of gasification process would help meet country's energy demand.

  18. Effects of fluxing agents on gasification reactivity and gas composition of high ash fusion temperature coal

    Directory of Open Access Journals (Sweden)

    Zhao Ruifang

    2015-01-01

    Full Text Available A Na-based fluxing agent Na2O (NBFA and a composite fluxing agent (mixture of CaO and Fe2O3 with mass ratio of 3:1, CFA for short were used to decrease the ash fusion temperature of the Dongshan and Xishan coal from Shanxi of China and make these coal meet the requirements of the specific gasification process. The main constituents of the fluxing agents used in this study can play a catalyst role in coal gasification. So it is necessary to understand the effect of fluxing agents on coal gasification reactivity and gas composition. The results showed that the ash fusion temperature of the two coal used decreased to the lowest point due to the eutectic phenomenon when 5 wt% of CFA or NBFA was added. Simultaneously, the gas molar ratio of H2/CO changed when CFA was added. A key application was thus found where the gas molar ratio of H2/CO can be adjusted by controlling the fluxing agent amount to meet the synthetic requirements for different chemical products.

  19. Co-gasification of Colombian coal and biomass in fluidized bed: An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Jhon F. Velez; Farid Chejne; Carlos F. Valdes; Eder J. Emery; Carlos A. Londono [Universidad Nacional de Colombia, Antioquia (Colombia). Grupo de Termodinamica Aplicada y Energias Alternativas

    2009-03-15

    The main results of an experimental work on co-gasification of Colombian biomass/coal blends in a fluidized bed working at atmospheric pressure are reported in this paper. Several samples of blends were prepared by mixing 6-15wt% biomass (sawdust, rice or coffee husk) with coal. Experimental assays were carried out by using mixtures of different steams/blends (Rvc) and air/blend (Rac) ratios showing the feasibility to implement co-gasification as energetic alternative to produce fuel gas to heat and to generate electricity and the possibility of converting clean and efficiently the refuse coal to a low-heating value gas. 29 refs., 5 figs., 4 tabs.

  20. Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

  1. Gasification of biomass and coal in a pressurised fluidised bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Andries, J.; Jong, W. de; Hein, K.R.G. [Technische Univ. Delft (Netherlands)

    1998-09-01

    During a 3 year (1996-1998) multinational JOULE project, partly funded by the EU, experimental and theoretical research is being done on co-gasification of biomass (pelletised straw and Miscanthus) and coal in a pressurised fluidised bed reactor. The influence of feedstock and operating conditions on gasification characteristics has been studied using a 1.5 MW{sub th} gasifier, which has been operated at a pressure of 5 bar and temperatures up to 900 C. The project and the test rig are described and results obtained in the first part of the project are presented and analysed. (orig.)

  2. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Maghzi, Shawn [General Electric Global Research, Niskayuna, NY (United States); Subramanian, Ramanathan [General Electric Global Research, Niskayuna, NY (United States); Rizeq, George [General Electric Global Research, Niskayuna, NY (United States); Singh, Surinder [General Electric Global Research, Niskayuna, NY (United States); McDermott, John [General Electric Global Research, Niskayuna, NY (United States); Eiteneer, Boris [General Electric Global Research, Niskayuna, NY (United States); Ladd, David [General Electric Global Research, Niskayuna, NY (United States); Vazquez, Arturo [General Electric Global Research, Niskayuna, NY (United States); Anderson, Denise [General Electric Global Research, Niskayuna, NY (United States); Bates, Noel [General Electric Global Research, Niskayuna, NY (United States)

    2011-12-11

    The U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE's bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation

  3. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Maghzi, Shawn; Subramanian, Ramanathan; Rizeq, George; Singh, Surinder; McDermott, John; Eiteneer, Boris; Ladd, David; Vazquez, Arturo; Anderson, Denise; Bates, Noel

    2011-09-30

    The U.S. Department of Energy‘s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE‘s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and

  4. Valve development for coal gasification plants. Phase II. Monthly/quarterly technical program report, January--March 1979

    Energy Technology Data Exchange (ETDEWEB)

    Bellezza, D.

    1979-04-01

    The eleventh in a series of Quarterly Technical Progress Reports relating to the Valve Development for Coal Gasification Plants Program discusses engineering progress during the period of January to March 1979.

  5. Assessment of underground coal gasification in bituminous coals: potential UCG products and markets. Final report, Phase I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-31

    The following conclusions were drawn from the study: (1) The US will continue to require new sources of energy fuels and substitutes for petrochemical feedstocks into the foreseeable future. Most of this requirement will be met using coal. However, the cost of mining, transporting, cleaning, and preparing coal, disposing of ash or slag and scrubbing stack gases continues to rise; particularly, in the Eastern US where the need is greatest. UCG avoids these pitfalls and, as such, should be considered a viable alternative to the mining of deeper coals. (2) Of the two possible product gases LBG and MBG, MBG is the most versatile. (3) The most logical use for UCG product in the Eastern US is to generate power on-site using a combined-cycle or co-generation system. Either low or medium Btu gas (LBG or MBG) can be used. (4) UCG should be an option whenever surface gasification is considered; particularly, in areas where deeper, higher sulfur coal is located. (5) There are environmental and social benefits to use of UCG over surface gasification in the Eastern US. (6) A site could be chosen almost anywhere in the Illinois and Ohio area where amenable UCG coal has been determined due to the existence of existing transportation or transmission systems. (7) The technology needs to be demonstrated and the potential economic viability determined at a site in the East-North-Central US which has commercial quantities of amenable bituminous coal before utilities will show significant interest.

  6. TVA coal-gasification commercial demonstration plant project. Volume 5. Plant based on Koppers-Totzek gasifier. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This volume presents a technical description of a coal gasification plant, based on Koppers-Totzek gasifiers, producing a medium Btu fuel gas product. Foster Wheeler carried out a conceptual design and cost estimate of a nominal 20,000 TPSD plant based on TVA design criteria and information supplied by Krupp-Koppers concerning the Koppers-Totzek coal gasification process. Technical description of the design is given in this volume.

  7. Evaluation of Coal Gasification/Combined Cycle Power Plant Feasibility at the Sewells Point Naval Complex, Norfolk, Virginia.

    Science.gov (United States)

    1981-07-01

    This study evaluates the feasibility of installing a coal gasification /combined cycle cogeneration plant at Sewells Point Naval Complex, Norfolk...fired cogeneration cycles. The utility interface, site considerations and economic analyses are also presented. The study includes that a coal ... gasification /combined cycle cogeneration plant supplying 50 MW of electric power and 290,000 lb/hr of steam is technically feasible. (Author)

  8. Evaluation of Coal Gasification/Combined Cycle Power Plant Feasibility at the Sewells Point Naval Complex, Norfolk, Virginia. Summary.

    Science.gov (United States)

    1981-07-01

    This study evaluates the feasibility of installing a coal gasification /combined cycle cogeneration plant at Sewells Point Naval Complex, Norfolk...fired cogeneration cycles. The utility interface, site considerations and economic analyses are also presented. The study concludes that a coal ... gasification /combined cycle cogeneration plant supplying 50 MW of electric power and 290,000 lb/hr of steam is technically feasible. (Author)

  9. Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions.

    Science.gov (United States)

    Chen, Luguang; Bhattacharya, Sankar

    2013-02-05

    Sulfur emission from a Victorian brown coal was quantitatively determined through controlled experiments in a continuously fed drop-tube furnace under three different atmospheres: pyrolysis, oxy-fuel combustion, and carbon dioxide gasification conditions. The species measured were H(2)S, SO(2), COS, CS(2), and more importantly SO(3). The temperature (873-1273 K) and gas environment effects on the sulfur species emission were investigated. The effect of residence time on the emission of those species was also assessed under oxy-fuel condition. The emission of the sulfur species depended on the reaction environment. H(2)S, SO(2), and CS(2) are the major species during pyrolysis, oxy-fuel, and gasification. Up to 10% of coal sulfur was found to be converted to SO(3) under oxy-fuel combustion, whereas SO(3) was undetectable during pyrolysis and gasification. The trend of the experimental results was qualitatively matched by thermodynamic predictions. The residence time had little effect on the release of those species. The release of sulfur oxides, in particular both SO(2) and SO(3), is considerably high during oxy-fuel combustion even though the sulfur content in Morwell coal is only 0.80%. Therefore, for Morwell coal utilization during oxy-fuel combustion, additional sulfur removal, or polishing systems will be required in order to avoid corrosion in the boiler and in the CO(2) separation units of the CO(2) capture systems.

  10. Theoretical and experimental studies of fixed-bed coal gasification reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, B.; Bhattacharya, A.; Salam, L.; Dudukovic, M.P.

    1983-09-01

    A laboratory fixed-bed gasification reactor was designed and built with the objective of collecting operational data for model validation and parameter estimation. The reactor consists of a 4 inch stainless steel tube filled with coal or char. Air and steam is fed at one end of the reactor and the dynamic progress of gasification in the coal or char bed is observed through thermocouples mounted at various radial and axial locations. Product gas compositions are also monitored as a function of time. Results of gasification runs using Wyoming coal are included in this report. In parallel with the experimental study, a two-dimensional model of moving bed gasifiers was developed, coded into a computer program and tested. This model was used to study the laboratory gasifier by setting the coal feed rate equal to zero. The model is based on prior work on steady state and dynamic modeling done at Washington University and published elsewhere in the literature. Comparisons are made between model predictions and experimental results. These are also included in this report. 23 references, 18 figures, 6 tables.

  11. The Scientific Development of Coal Gasification Process%煤气化的科学发展

    Institute of Scientific and Technical Information of China (English)

    张斌

    2011-01-01

    煤气化是一种大型化、适用煤种广、低成本、低污染和易净化气体的技术。文章介绍了煤气化技术发展的前景,着重介绍等离子体煤气化制合成气,焦炉煤气转化为合成气等技术,并且介绍煤气化技术在多级联产,合成醇醚燃料和电力方面的应用,根据现有状况预测其发展趋势。%Coal gasification process is a large-scale process technology, which has the benefits of low cost. low pollution and more adaptability in coal type. It can also produce gas which is easy to purify. The article introduces the prospect of Coal gasification process, and highlights the technology of synthetic gas which is produced by plasma coal gasification process and by the conversion of the coke oven gas, and also introduces the application in synthetic alcohol ether fuel and power fields, and predicts the development trends.

  12. Retention of arsenic and selenium compounds using limestone in a coal gasification flue gas.

    Science.gov (United States)

    Diaz-Somoano, Mercedes; Martinez-Tarazona, M Rosa

    2004-02-01

    Volatile arsenic and selenium compounds present in coals may cause environmental problems during coal combustion and gasification. A possible way to avoid such problems may be the use of solid sorbents capable of retaining these elements from flue gases in gas cleaning systems. Lime and limestone are materials that are extensively employed for the capture of sulfur during coal processing. Moreover, they have also proven to have good retention characteristics for arsenic and selenium during combustion. The aim of this work was to ascertain whether this sorbent is also useful for retaining arsenic and selenium species in gases produced in coal gasification. The study was carried out in a laboratory-scale reactor in which the sorbent was employed as a fixed bed, using synthetic gas mixtures. In these conditions, retention capacities for arsenic may reach 17 mg g(-1) in a gasification atmosphere free of H2S, whereas the presence of H2S implies a significant decrease in arsenic retention. In the case of selenium, H2S does not influence retention which may reach 65 mg g(-1). Post-retention sorbent characterization, thermal stability, and water solubility tests have shown that chemical reaction is one of the mechanisms responsible for the capture of arsenic and selenium, with Ca(AsO2)2 and CaSe being the main compounds formed.

  13. Slag Behavior in Gasifiers. Part I: Influence of Coal Properties and Gasification Conditions

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2013-02-01

    Full Text Available In the entrained-flow gasifiers used in integrated gasification combined cycle (IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter is entrained (as fly ash with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. To improve gasification availability through better design and operation of the gasification process, a better understanding of slag behavior and the characteristics of the slagging process is needed. Char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio all affect slagging behavior. Because coal has varying ash content and composition, different operating conditions are required to maintain the slag flow and limit problems downstream. In Part I, we review the main types and the operating conditions of entrained-flow gasifiers and coal properties used in IGCC plants; we identify and discuss the key coal ash properties and the operating conditions impacting slag behavior; finally, we summarize the coal quality criteria and the operating conditions in entrained-flow gasifiers. In Part II, we discuss the constitutive modeling related to the rheological studies of slag flow.

  14. A Modified Gibbs Free Energy Minimisation Model for Fluid Bed Coal Gasification

    Directory of Open Access Journals (Sweden)

    Ściążko Marek

    2015-03-01

    Full Text Available A modified approach to equilibrium modelling of coal gasification is presented, based on global thermodynamic analysis of both homogeneous and heterogeneous reactions occurring during a gasification process conducted in a circulating fluid bed reactor. The model is based on large-scale experiments (ca. 200 kg/h with air used as a gasification agent and introduces empirical modifications governing the quasi-equilibrium state of two reactions: water-gas shift and Boudouard reaction. The model predicts the formation of the eight key gaseous species: CO, CO2, H2O, H2, H2S, N2, COS and CH4, volatile hydrocarbons represented by propane and benzene, tar represented by naphthalene, and char containing the five elements C, H, O, N, S and inorganic matter.

  15. Clean and economical gasification of combined coal and biomass pelletized fuels by industries worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Carlo Amorino; Alberto Pettinau; Rolf E. Maurer; Evan Hughes; Filippo Larceri; Francesco Repetto; Phil Wellhausen; Peter Lange [Sotacarbo S.p.A. (Italy)

    2007-07-01

    Industrial clean coal utilization is enhanced when gasifying low cost high ash coals combined with locally available biomass and/or biowaste from agricultural and/or industrial operations. The cost of the biowaste is near zero if there is a cost associated with the removal of the biowaste from the industrial site. The clean gas and liquids generated for industrial usage are in the range of 0.12 to 0.15 euro/nM{sup 3} displacing much costlier petroleum or gaseous fuels. Sotacarbo S.P.A. and Ansaldo Ricerche S.r.l. with collaboration of Hamilton Maurer International, Inc. (HMI) have designed, installed and commissioned an advanced single stage fixed-bed gasifier in Sotacarbo's R&D facility in April 2007. Clean coal utilization is enhanced when coal is combined with a biomass or biowaste feedstock. Ansaldo Ricerche and HMI, Inc. designed a single-stage fixed bed biomass gasifier, installed and successfully commissioned in 2001 at ARI's research facility in Genova, Italy. This presentation highlights the simplicity and high efficiency (82 to 87%) of the coal and coal/biomass gasification process. CPM both in the US and Europe has extensive experience with coal fuels preparation (pelletization). The economics and ability to combine coals with biomass to generate an economical and viable gasification fuel pellets are reviewed. This paper presents the ability to utilize coal cleanly with biomass (Bio-coal) to lower fuel costs while enhancing the availability and reliability of industrial energy and reducing CO{sub 2} emissions provides a quantum jump forward for both industries and the environment. 21 refs., 4 figs.

  16. Encoal mild coal gasification project: Encoal project final report, July 1, 1997--July 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This document is the summative report on the ENCOAL Mild Coal Gasification Project. It covers the time period from September 17, 1990, the approval date of the Cooperative Agreement between ENCOAL and the US Department of Energy (DOE), to July 17, 1997, the formal end of DOE participation in the Project. The Cooperative Agreement was the result of an application by ENCOAL to the DOE soliciting joint funding under Round III of the Clean Coal Technology Program. By June 1992, the ENCOAL Plant had been built, commissioned and started up, and in October 1994, ENCOAL was granted a two-year extension, carrying the project through to September 17, 1996. No-cost extensions have moved the Cooperative Agreement end date to July 17, 1997 to allow for completion of final reporting requirements. At its inception, ENCOAL was a subsidiary of Shell Mining Company. In November 1992, Shell Mining Company changed ownership, becoming a subsidiary of Zeigler Coal Holding Company (Zeigler) of Fairview Heights, Illinois. Renamed successively as SMC Mining Company and then Bluegrass Coal Development Company, it remained the parent entity for ENCOAL, which has operated a 1,000-ton/day mild coal gasification demonstration plant near Gillette, Wyoming for nearly 5 years. ENCOAL operates at the Buckskin Mine owned by Triton Coal Company (Triton), another Zeigler subsidiary.

  17. Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2015-09-01

    Full Text Available Chemical-looping technology is one of the promising CO2 capture technologies. It generates a CO2 enriched flue gas, which will greatly benefit CO2 capture, utilization or sequestration. Both chemical-looping combustion (CLC and chemical-looping gasification (CLG have the potential to be used to generate power, chemicals, and liquid fuels. Chemical-looping is an oxygen transporting process using oxygen carriers. Recently, attention has focused on solid fuels such as coal. Coal chemical-looping reactions are more complicated than gaseous fuels due to coal properties (like mineral matter and the complex reaction pathways involving solid fuels. The mineral matter/ash and sulfur in coal may affect the activity of oxygen carriers. Oxygen carriers are the key issue in chemical-looping processes. Thermogravimetric analysis (TGA has been widely used for the development of oxygen carriers (e.g., oxide reactivity. Two proposed processes for the CLC of solid fuels are in-situ Gasification Chemical-Looping Combustion (iG-CLC and Chemical-Looping with Oxygen Uncoupling (CLOU. The objectives of this review are to discuss various chemical-looping processes with coal, summarize TGA applications in oxygen carrier development, and outline the major challenges associated with coal chemical-looping in iG-CLC and CLOU.

  18. Coal waste slurries as a fuel for integrated gasification combined cycle plants

    Directory of Open Access Journals (Sweden)

    Lutynski Marcin A.

    2016-01-01

    Full Text Available The article summarizes recent development in integrated gasification combined cycle technology and lists existing and planned IGCC plants. A brief outlook on the IGCC gasification technology is given with focus on entrained-flow gasifiers where the low-quality coal waste slurry fuel can be used. Desired properties of coal and ash for entrained-flow gasifiers are listed. The coal waste slurries, which were deposited at impoundments in Upper Silesian Coal Basin, were considered as a direct feed for such gasifiers. The average ash content, moisture content and lower heating value were analysed and presented as an average values. Entrained-flow commercial gasifiers can be considered as suitable for the coal slurry feed, however the ash content of coal slurries deposited in impoundments is too high for the direct use as the feed for the gasifiers. The moisture content of slurries calculated on as received basis meets the requirements of entrained-flow slurry feed gasifiers. The content of fines is relatively high which allow to use the slurries in entrained-flow gasifiers.

  19. Release of inorganic trace elements from high-temperature gasification of coal

    Energy Technology Data Exchange (ETDEWEB)

    Blaesing, Marc

    2012-05-30

    The development of cleaner, more efficient techniques in next-generation coal power plants is becoming increasingly important, especially regarding to the discussion of the influence of CO{sub 2} emissions on global warming. A promising coal utilisation process is the integrated gasification combined cycle process. The direct use of the raw gas requires gas clean-up to prevent downstream parts of the gasifier from several problems. An increased efficiency and a decreased amount of harmful species can be achieved through hot fuel gas cleaning. This clean-up technique requires a comprehensive knowledge of the release characteristics of inorganic coal constituents. The aim of this thesis was to provide enhanced knowledge of the effect of key process parameters and of the chemical constitution of coal on the release of Na, K, S, and Cl species from high-temperature coal gasification. The experimental setup consisted of atmospheric flow tube furnaces and a pressurised furnace. In-situ analysis of the product gas was carried out using molecular beam mass spectrometry. A broad spectrum of different coals with assumed qualitative and quantitative differences in the release characteristics was investigated. Additionally, experiments with model substances were performed. The results of the experimental investigation were compared with thermodynamic calculations. Finally, recommendations, for the operation of a high-temperature gasifier are formulated. (orig.)

  20. Method of oxygen-enriched two-stage underground coal gasification

    Institute of Scientific and Technical Information of China (English)

    Liu Hongtao; Chen Feng; Pan Xia; Yao Kai; Liu Shuqin

    2011-01-01

    Two-stage underground coal gasification was studied to improve the caloric value of the syngas and to extend gas production times. A model test using the oxygen-enriched two-stage coal gasification method was carried out. The composition of the gas produced, the time ratio of the two stages, and the role of the temperature field were analysed. The results show that oxygen-enriched two-stage gasification shortens the time of the first stage and prolongs the time of the second stage. Feed oxygen concentrations of 30%,35%, 40%, 45%, 60%, or 80% gave time ratios (first stage to second stage) of 1:0.12, 1:0.21, 1:0.51, 1:0.64,1:0.90, and 1:4.0 respectively. Cooling rates of the temperature field after steam injection decreased with time from about 19.1-27.4 ℃/min to 2.3-6.8 ℃/min. But this rate increased with increasing oxygen concentrations in the first stage. The caloric value of the syngas improves with increased oxygen concentration in the first stage. Injection of 80% oxygen-enriched air gave gas with the highest caloric value and also gave the longest production time. The caloric value of the gas obtained from the oxygenenriched two-stage gasification method lies in the range from 5.31 MJ/Nm3 to 10.54 MJ/Nm3.

  1. Nitrogen removal from coal gasification wastewater by activated carbon technologies combined with short-cut nitrogen removal process.

    Science.gov (United States)

    Zhao, Qian; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Fang, Fang

    2014-11-01

    A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anaerobically treated coal gasification wastewater with less need for external carbon resources. The TN removal efficiency in SBNR was significantly improved by introducing the effluent from the GAC process into SBNR during the anoxic stage, with removal percentage increasing from 43.8%-49.6% to 68.8%-75.8%. However, the TN removal rate decreased with the progressive deterioration of GAC adsorption. After adding activated sludge to the GAC compartment, the granular carbon had a longer service-life and the demand for external carbon resources became lower. Eventually, the TN removal rate in SBNR was almost constant at approx. 43.3%, as compared to approx. 20.0% before seeding with sludge. In addition, the production of some alkalinity during the denitrification resulted in a net savings in alkalinity requirements for the nitrification reaction and refractory chemical oxygen demand (COD) degradation by autotrophic bacteria in SBNR under oxic conditions. PACT showed excellent resilience to increasing organic loadings. The microbial community analysis revealed that the PACT had a greater variety of bacterial taxons and the dominant species associated with the three compartments were in good agreement with the removal of typical pollutants. The study demonstrated that pre-adsorption by the GAC-sludge process could be a technically and economically feasible method to enhance TN removal in coal gasification wastewater (CGW).

  2. Taguchi approach for co-gasification optimization of torrefied biomass and coal.

    Science.gov (United States)

    Chen, Wei-Hsin; Chen, Chih-Jung; Hung, Chen-I

    2013-09-01

    This study employs the Taguchi method to approach the optimum co-gasification operation of torrefied biomass (eucalyptus) and coal in an entrained flow gasifier. The cold gas efficiency is adopted as the performance index of co-gasification. The influences of six parameters, namely, the biomass blending ratio, oxygen-to-fuel mass ratio (O/F ratio), biomass torrefaction temperature, gasification pressure, steam-to-fuel mass ratio (S/F ratio), and inlet temperature of the carrier gas, on the performance of co-gasification are considered. The analysis of the signal-to-noise ratio suggests that the O/F ratio is the most important factor in determining the performance and the appropriate O/F ratio is 0.7. The performance is also significantly affected by biomass along with torrefaction, where a torrefaction temperature of 300°C is sufficient to upgrade eucalyptus. According to the recommended operating conditions, the values of cold gas efficiency and carbon conversion at the optimum co-gasification are 80.99% and 94.51%, respectively.

  3. Kinetic of Catalytic CO{sub 2} Gasification for Cyprus Coal by Gas-Solid Reaction Model

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Soon Choel; Lee, Do Kyun; Kim, Sang Kyum; Rhee, Young Woo [Chungnam National University, Daejeon (Korea, Republic of); Lee, Si Hyun [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-10-15

    In general, the coal gasification has to be operated under high temperature (1300~1400 .deg. C) and pressure (30~40 bar). However, to keep this conditions, it needs unnecessary and excessive energy. In this work, to reduce the temperature of process, alkali catalysts such as K{sub 2}CO{sub 3} and Na{sub 2}CO{sub 3} were added into Cyprus coal. We investigated the kinetic of Cyprus char-CO{sub 2} gasification. To determine the gasification conditions, the coal (with and without catalysts) gasified with fixed variables (catalyst loading, catalytic effects of Na{sub 2}CO{sub 3} and K{sub 2}CO{sub 3}, temperatures) by using TGA. When catalysts are added by physical mixing method into Cyprus coal the reaction rate of coal added 7 wt% Na{sub 2}CO{sub 3} is faster than raw coal for Cyprus char-CO{sub 2} gasification. The activation energy of coal added 7 wt% Na{sub 2}CO{sub 3} was calculated as 63 kJ/mol which was lower than raw char. It indicates that Na{sub 2}CO{sub 3} can improve the reactivity of char-CO{sub 2} gasification.

  4. Combustion of producer gas from gasification of south Sumatera lignite coal using CFD simulation

    Directory of Open Access Journals (Sweden)

    Vidian Fajri

    2017-01-01

    Full Text Available The production of gasses from lignite coal gasification is one of alternative fuel for the boiler or gas turbine. The prediction of temperature distribution inside the burner is important for the application and optimization of the producer gas. This research aims to provide the information about the influence of excess air on the temperature distribution and combustion product in the non-premixed burner. The process was carried out using producer gas from lignite coal gasification of BA 59 was produced by the updraft gasifier which is located on Energy Conversion Laboratory Mechanical Engineering Department Universitas Sriwijaya. The excess air used in the combustion process were respectively 10%, 30% and 50%. CFD Simulations was performed in this work using two-dimensional model of the burner. The result of the simulation showed an increase of excess air, a reduction in the gas burner temperature and the composition of gas (carbon dioxide, nitric oxide and water vapor.

  5. Three Stage Equilibrium Model for Coal Gasification in Entrained Flow Gasifiers Based on Aspen Plus

    Institute of Scientific and Technical Information of China (English)

    KONG Xiangdong; ZHONG Weimin; DU Wenli; QIAN Feng

    2013-01-01

    A three stage equilibrium model is developed for coal gasification in the Texaco type coal gasifiers based on Aspen Plus to calculate the composition of product gas,carbon conversion,and gasification temperature.The model is divided into three stages including pyrolysis and combustion stage,char gas reaction stage,and gas phase reaction stage.Part of the water produced in the pyrolysis and combustion stage is assumed to be involved in the second stage to react with the unburned carbon.Carbon conversion is then estimated in the second stage by steam participation ratio expressed as a function of temperature.And the gas product compositions are calculated from gas phase reactions in the third stage.The simulation results are consistent with published experimental data.

  6. Analysis of a Coal Fired Combined Cycle with Carried—Heat Gasification

    Institute of Scientific and Technical Information of China (English)

    XuXiangdong; F.N.Fett; 等

    1994-01-01

    In the research of a more effcient,less costly,more environmentally responsible and less technically difficult method for generating electrical power from coal.the Carried-heat Gasification combined Cycle (CGCC) is introduced by Tsinghua University.The high efficiency cycle includes carried-heat partial gasification,compressed air heating in a fluidized bed immersed air heater followed by a combustor and the heat recovery of gas turbine exhaust used as the combustion air for the differential-velocity atmospheric circulating fluidized bed(DFBC),Superheat steam is raised in the DFBC boiler,The comparison of results identifies the causes of performance difference between eight cases,Features of the cycle ensure a high coal conversion efficiency within current state of the art.

  7. Development and demonstration plant operation of an opposed multi-burner coal-water slurry gasification technology

    Institute of Scientific and Technical Information of China (English)

    WANG Fuchen; ZHOU Zhijie; DAI Zhenhua; GONG Xin; YU Guangsuo; LIU Haifeng; WANG Yifei; YU Zunhong

    2007-01-01

    The features of the opposed multi-burner (OMB) gasification technology,the method and process of the research,and the operation results of a pilot plant and demon stration plants have been introduced.The operation results of the demonstration plants show that when Beisu coal was used as feedstock,the OMB CWS gasification process at Yankuang Cathy Coal Co.Ltd had a higher carbon conversion of 3%,a lower specific oxygen consumption of about 8%,and a lower specific carbon consumption of 2%-3% than that of Texaco CWS gasification at the Lunan Fertilizer Plant.When Shenfu coal was used as feedstock,the OMB CWS gasification process at Hua-lu Heng-sheng Chemical Co.Ltd had a higher carbon conversion of more than 3%,a lower specific oxygen consumption of about 2%,and a lower specific coal consumption of about 8% than that of the Texaco CWS gasification process at Shanghai Coking & Chemical Corporation.The OMB CWS gasification technology is proven by industrial experience to have a high product yield,low oxygen and coal consumption and robust and safe operation.

  8. A Study on the Applicability of Kinetic Models for Shenfu Coal Char Gasification with CO2 at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Jinsheng Gao

    2009-07-01

    Full Text Available In this paper, measurements of the CO2 gasification kinetics for two types of Shenfu coal chars, which were respectively prepared by slow and rapid pyrolysis at temperatures of 950 °C and 1,400 °C, were performed by an isothermal thermo-gravimetric analysis under ambient pressure and elevated temperature conditions. Simultaneously, the applicability of the kinetic model for the CO2 gasification reaction of Shenfu coal chars was discussed. The results showed: (i the shrinking un-reacted core model was not appropriate to describe the gasification reaction process of Shenfu coal chars with CO2 in the whole experimental temperature range; (ii at the relatively low temperatures, the modified volumetric model was as good as the random pore model to simulate the CO2 gasification reaction of Shenfu coal chars, while at the elevated temperatures, the modified volumetric model was superior to the random pore model for this process; (iii the integral expression of the modified volumetric model was more favorable than the differential expression of that for fitting the experimental data. Moreover, by simply introducing a function: A = A★exp(ft, it was found that the extensive model of the modified volumetric model could make much better predictions than the modified volumetric model. It was recommended as a convenient empirical model for comprehensive simulation of Shenfu coal char gasification with under conditions close to those of entrained flow gasification.

  9. 煤质变化对Shell粉煤气化工艺的影响%THE EFFECT OF COAL QUALITY CHANGE ON SHELL PULVERIZED-COAL GASIFICATION PROCESS

    Institute of Scientific and Technical Information of China (English)

    吴国祥

    2011-01-01

    The Shell pulverized-coal gasification process is introduced,the specific requirement for coal quality by Shell pulverized-coal gasification process summarized,several factors related to coal quality and the effect of the changes of these factors on Shell pulverized-coal gasification plant highlighted and the preventive measures based on the effects concluded.%介绍Shell粉煤气化工艺流程,总结Shell粉煤气化工艺对煤质的具体要求,阐述与煤质相关的几方面因素及这些因素的变化对Shell粉煤气化装置的影响,并根据这些影响得出相应的预防措施。

  10. Epidemiological data base for a health effects study at a coal gasification plant

    OpenAIRE

    Morris, S C; Ukmata, H.; Begraca, M.; Canhasi, B.; Haxhiu, M.A.

    1988-01-01

    An occupational population is characterized as a basis for epidemiological study. Parameters include age, smoking history, years of work, job title, all medical diagnoses by 3-digit ICD code, and selected Iaboratory test results. By example analyses differences are examined in the incidence of chrome bronchitis and circulatory system disease by smoking history and job title. The data base includes coal gasification plant workers and surface lignite minors in Kosovo, Yugoslavia. Because of the...

  11. Coal gasification systems engineering and analysis. Appendix H: Work breakdown structure

    Science.gov (United States)

    1980-01-01

    A work breakdown structure (WBS) is presented which encompasses the multiple facets (hardware, software, services, and other tasks) of the coal gasification program. The WBS is shown to provide the basis for the following: management and control; cost estimating; budgeting and reporting; scheduling activities; organizational structuring; specification tree generation; weight allocation and control; procurement and contracting activities; and serves as a tool for program evaluation.

  12. Reserch process geomigration during underground gasification and coal combustion

    Directory of Open Access Journals (Sweden)

    Zholudyev S.V.

    2014-12-01

    Full Text Available The chemical composition of subsoil water in the over- and subcoal deposits during underground combustion of brown coal can vary under coals thermal development product and pollution. Analysis of the substances-contaminants migratory in water is one of the main issues of further implementation of technologies UCG and UCC.

  13. Nitrogen mineralization from sludge in an alkaline, saline coal gasification ash environment.

    Science.gov (United States)

    Mbakwe, Ikenna; De Jager, Pieter C; Annandale, John G; Matema, Taurai

    2013-01-01

    Rehabilitating coal gasification ash dumps by amendment with waste-activated sludge has been shown to improve the physical and chemical properties of ash and to facilitate the establishment of vegetation. However, mineralization of organic N from sludge in such an alkaline and saline medium and the effect that ash weathering has on the process are poorly understood and need to be ascertained to make decisions regarding the suitability of this rehabilitation option. This study investigated the rate and pattern of N mineralization from sludge in a coal gasification ash medium to determine the prevalent inorganic N form in the system and assess the effect of ash weathering on N mineralization. An incubation experiment was performed in which fresh ash, weathered ash, and soil were amended with the equivalent of 90 Mg ha sludge, and N mineralization was evaluated over 63 d. More N (24%) was mineralized in fresh ash than in weathered ash and soil, both of which mineralized 15% of the initial organic N in sludge. More nitrification occurred in soil, and most of the N mineralized in ash was in the form of ammonium, indicating an inhibition of nitrifying organisms in the ash medium and suggesting that, at least initially, plants used for rehabilitation of coal gasification ash dumps will take up N mostly as ammonium.

  14. Thermodynamic Analysis of Blast Furnace Slag Waste Heat-Recovery System Integrated with Coal Gasification

    Science.gov (United States)

    Duan, W. J.; Li, P.; Lei, W.; Chen, W.; Yu, Q. B.; Wang, K.; Qin, Q.

    2015-05-01

    The blast furnace (BF) slag waste heat was recovered by an integrated system stage by stage, which combined a physical and chemical method. The water and coal gasification reactions were used to recover the heat in the system. Based on the first and second law of thermodynamics, the thermodynamic analysis of the system was carried out by the enthalpy-exergy diagram. The results showed that the concept of the "recovery-temperature countercurrent, energy cascade utilization" was realized by this system to recover and use the high-quality BF slag waste heat. In this system, the high-temperature waste heat was recovered by coal gasification and the relatively low-temperature waste heat was used to produce steam. The system's exergy and thermal recycling efficiency were 52.6% and 75.4%, respectively. The exergy loss of the integrated system was only 620.0 MJ/tslag. Compared with the traditional physical recycling method producing steam, the exergy and thermal efficiencies of the integrated system were improved significantly. Meanwhile, approximately 182.0 m3/tslag syngas was produced by coal gasification. The BF slag waste heat will be used integrally and efficiently by the integrated system. The results provide the theoretical reference for recycling and using the BF slag waste heat.

  15. U-GAS coal gasification process with in-situ desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Rehmat, A.; Abbasian, J.; Lau, F.

    1990-01-01

    Calcium based sorbents such as limestone and dolomite have been used in conjunction with the U-GAS coal gasification process for in-situ capture of sulfur present in the coal. Under the reducing conditions of the gasifier, these sorbents react with sulfur compounds to form calcium sulfide. As a unique feature of the U-GAS process, the calcium sulfide could be further reacted with air in the ash discharge zone to form calcium sulfate, which is environmentally acceptable for disposal directly from the gasifier along with the agglomerated ash. The Institute of Gas Technology (IGT) has conducted considerable testing in this area under different programs. The suitability of dolomite as in-situ sulfur capturing agent has been verified in U-GAS process using high-sulfur Pittsburgh coal. The gasification tests were conducted at 1850{degree}F in pressure ranges of 100 to 450 psig. The kinetics of the reaction between calcium based sorbents and hydrogen sulfide at these gasification conditions have been derived separately using a thermogravimetric technique. Effect of temperature, pressure, and particle size on the reaction rate were also included in these latter tests. Furthermore, the operating conditions and the type of sorbents suitable for achieving maximum calcium conversion to calcium sulfate during the oxidation step of the process have also been identified. 9 refs., 8 figs., 10 tabs.

  16. Application Of Relevance Maps Method To Evaluate The Suitability Of Coal Samples For Fluidal Gasification Process

    Directory of Open Access Journals (Sweden)

    Jamroz Dariusz

    2016-01-01

    The methods being used to visualization of multidimensional data through transformation of multidimensional space into two-dimensional space allow to present multidimensional data on computer screen. Among such methods, relevance maps method can be found which was used in this paper to present and analyze set of seven-dimensional data describing coal samples originating from both mines. It was decided to check whether this method of visualization of multidimensional data allows to divide the samples space into subspaces of various usefulness to the process of fluidal gasification or not. The method enables the visualisation of the optimal subspace containing the set requirements concerning the properties of coals intended for this process.

  17. Electric power and desalinated water co-production from Sulcis coal gasification project - Sardinia, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Manca, E.; Utzeri, B.; Figus, M. (IST Engineers and Contractors, Cagliari (Italy))

    1991-01-01

    Because of environmental constraints, coal gasification is the only process which can be used to process Sulcis coal. Pilot plant IGCC tests have shown that high carbon conversion rates are possible, minimum emissions are achievable, and chemically and physically inert slag can be produced. Studies have also been undertaken of a co-production plant with the capability of recovering the discharged thermal energy into water cooling condensers feeding a desalination plant for production of industrial water from sea water. 1 fig., 4 tabs.

  18. Advances in the development of wire mesh reactor for coal gasification studies.

    Science.gov (United States)

    Zeng, Cai; Chen, Lei; Liu, Gang; Li, Wenhua; Huang, Baoming; Zhu, Hongdong; Zhang, Bing; Zamansky, Vladimir

    2008-08-01

    In an effort to further understand the coal gasification behavior in entrained-flow gasifiers, a high pressure and high temperature wire mesh reactor with new features was recently built. An advanced LABVIEW-based temperature measurement and control system were adapted. Molybdenum wire mesh with aperture smaller than 70 mum and type D thermocouple were used to enable high carbon conversion (>90%) at temperatures >1000 degrees C. Gaseous species from wire mesh reactor were quantified using a high sensitivity gas chromatography. The material balance of coal pyrolysis in wire mesh reactor was demonstrated for the first time by improving the volatile's quantification techniques.

  19. Industrial-scale Fixed-bed Coal Gasification:Modeling, Simulation and Thermodynamic Analysis

    Institute of Scientific and Technical Information of China (English)

    何畅; 冯霄; 李安学; 刘永健

    2014-01-01

    We have developed a process model to simulate the behavior of an industrial-scale pressurized Lurgi fixed-bed coal gasifier using Aspen Plus and General Algebraic Modeling System (GAMS). Reaction characteristics in the fixed-bed gasifier comprising four sequential reaction zones-drying, pyrolysis, combustion and gasification are respectively modeled. A non-linear programming (NLP) model is developed for the pyrolysis zone to estimate the products composition which includes char, coal gases and distillable liquids. A four-stage model with restricted equilibrium temperature is used to study the thermodynamic equilibrium characteristics and calculate the composi-tion of syngas in the combustion and gasification zones. The thermodynamic analysis shows that the exergetic effi-ciency of the fixed-bed gasifier is mainly determined by the oxygen/coal ratio. The exergetic efficiency of the proc-ess will reach an optimum value of 78.3%when the oxygen/coal and steam/coal mass ratios are 0.14 and 0.80, re-spectively.

  20. Gasification trends

    Energy Technology Data Exchange (ETDEWEB)

    Simbeck, D.R.; Dickenson, R.L.; Karp, A.D. [SFA Pacific, Inc., Mountain View, CA (United States)

    1997-05-01

    The traditional use of gasification for high value chemicals will continue where fuel prices make gasification more competitive than steam methane reforming. However, oil companies already have the essentials--expertise, fuels, and financing--to be a dominant force in the new world of competitive energy markets. Refinery-based gasification therefore can be expected to proliferate as deregulation of electric power generation promotes the efficiency and economic advantages of cogeneration and trigeneration. The greatest market potential for gasification in the future is electric power generation. In traditional electric utility applications, the efficiency and overall economics of coal gasification may be only marginally superior to those of well-designed, coal-fired steam cycles having state-of-the-art emission controls. Offsetting gasification`s environmental and efficiency advantages in such applications are concerns about capital cost and the need for chemical process expertise. However, power industry deregulation and competition are likely to diminish the importance of large, new central power plants, while imparting increased value to gasification`s strategic advantages, which include: Gasification`s superior environmental performance, particularly in the area of solid wastes; gasification`s superior ability to exploit high-efficiency combustion turbine-based opportunities for combined-cycle and especially cogeneration applications; gasification`s superior ability to exploit a range of fuels--from natural gas and opportunity fuels in the near-to-intermediate term to coal in the longer term, when natural gas prices escalate; and gasification`s superior market economics and flexibility to create and profit from combined power and synthesis gas chemical applications.

  1. Measurements of Gasification Characteristics of Coal and Char in CO2-Rich Gas Flow by TG-DTA

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    2013-01-01

    Full Text Available Pyrolysis, combustion, and gasification properties of pulverized coal and char in CO2-rich gas flow were investigated by using gravimetric-differential thermal analysis (TG-DTA with changing O2%, heating temperature gradient, and flow rate of CO2-rich gases provided. Together with TG-DTA, flue gas generated from the heated coal, such as CO, CO2, and hydrocarbons (HCs, was analyzed simultaneously on the heating process. The optimum O2% in CO2-rich gas for combustion and gasification of coal or char was discussed by analyzing flue gas with changing O2 from 0 to 5%. The experimental results indicate that O2% has an especially large effect on carbon oxidation at temperature less than 1100°C, and lower O2 concentration promotes gasification reaction by producing CO gas over 1100°C in temperature. The TG-DTA results with gas analyses have presented basic reference data that show the effects of O2 concentration and heating rate on coal physical and chemical behaviors for the expected technologies on coal gasification in CO2-rich gas and oxygen combustion and underground coal gasification.

  2. Metal-oxide-catalyzed CO{sub 2} gasification of coal using a solar furnace simulator

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, T.; Funatoh, A.; Shimizu, T.; Kitayama, Y. [Niigata University, Niigata (Japan). Department of Chemistry & Chemical Engineering, Faculty of Engineering

    2000-12-01

    Metal-oxide-catalyzed CO{sub 2} gasification of coal was demonstrated in small packed-bed and fluidized-bed reactors using a solar furnace simulator, for the purpose of converting solar high-temperature heat to chemical fuels. The catalytic activities of In{sub 2}O{sub 3} and ZnO were investigated because used In{sub 2}O{sub 3} or ZnO catalyst may be separated from remaining coal ash by In{sub 2}O{sub 3} and Zn evaporation at high temperatures and at a reducing atmosphere. Bituminous coal with or without the metal-oxide catalyst in the quartz-tube reactor was directly irradiated by the concentrated Xe-lamp beam and CO{sub 2} was fed to the reactor at pCO{sub 2} = 1.0. In the packed-bed reactor, In{sub 2}O{sub 3} and ZnO much improved the chemical coal conversion by about 4-5 and 2-3 times at the catalyst loading of 17 wt%-In and 30 wt %-Zn in the coal-metal-oxide mixture, respectively, at temperatures around 1000-1400 K. In the fluidized-bed reactor at a small catalyst loading (8-10 wt%-metal in the coal-metal-oxide mixture) and at 1073-1163 K, In{sub 2}O{sub 3} catalytically increased the coal-conversion rate by 3 times but ZnO scarcely showed the catalytic activity. This metal-catalyzed coal gasification process offers the efficient solar production of the syngas calorifically upgraded by solar energy. 24 refs., 11 figs., 3 tabs.

  3. Control of combustion area using electrical resistivity method for underground coal gasification

    Institute of Scientific and Technical Information of China (English)

    Selivanova Tatiana; Grebenyuk Igor; Belov Alexey

    2012-01-01

    Underground coal gasification (UCG) is one of the clean technologies to collect heat energy and gases (hydrogen,methane,etc.) in an underground coal seam.It is necessary to further developing environmentally friendly UCG system construction.One of the most important UCG's problems is underground control of combustion area for efficient gas production,estimation of subsidence and gas leakage to the surface.For this objective,laboratory experiments were conducted according to the UCG model to identify the process of combustion cavity development by monitoring the electrical resistivity activity on the coal samples to setup fundamental data for the technology engineering to evaluate combustion area.While burning coal specimens,that had been sampled from various coal deposits,electrical resistivity was monitored.Symmetric four electrodes system (ABMN) of direct and low-frequency current electric resistance method was used.for laboratory resistivity measurement of rock samples.Made research and the results suggest that front-end of electro conductivity activity during heating and combusting of coal specimen depended on heating temperature.Combusting coal electro conductivity has complicated multistage type of change.Electrical resistivity method is expected to be a useful geophysical tool to for evaluation of combustion volume and its migration in the coal seam.

  4. Coal gasification power generation, and product market study. Topical report, March 1, 1995--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Sheesley, D.; King, S.B.

    1998-12-31

    This Western Research Institute (WRI) project was part of a WRI Energy Resource Utilization Program to stimulate pilot-scale improved technologies projects to add value to coal resources in the Rocky Mountain region. The intent of this program is to assess the application potential of emerging technologies to western resources. The focus of this project is on a coal resource near the Wyoming/Colorado border, in Colorado. Energy Fuels Corporation/Kerr Coal Company operates a coal mine in Jackson County, Colorado. The coal produces 10,500 Btu/lb and has very low sulfur and ash contents. Kerr Coal Company is seeking advanced technology for alternate uses for this coal. This project was to have included a significant cost-share from the Kerr Coal Company ownership for a market survey of potential products and technical alternatives to be studied in the Rocky Mountain Region. The Energy Fuels Corporation/Kerr Coal Company and WRI originally proposed this work on a cost reimbursable basis. The total cost of the project was priced at $117,035. The Kerr Coal Company had scheduled at least $60,000.00 to be spent on market research for the project that never developed because of product market changes for the company. WRI and Kerr explored potential markets and new technologies for this resource. The first phase of this project as a preliminary study had studied fuel and nonfuel technical alternatives. Through related projects conducted at WRI, resource utilization was studied to find high-value materials that can be targeted for fuel and nonfuel use and eventually include other low-sulfur coals in the Rocky Mountain region. The six-month project work was spread over about a three-year period to observe, measure, and confirm over time-any trends in technology development that would lead to economic benefits in northern Colorado and southern Wyoming from coal gasification and power generation.

  5. Effect of CO2 gasification reaction on oxycombustion of pulverized coal char.

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Alejandro (Universidad Nacional de Colombia, Medellin, Colombia); Hecht, Ethan S.; Shaddix, Christopher R.; Haynes, Brian S. (University of Sydney, New South Wales, Australia)

    2010-07-01

    For oxy-combustion with flue gas recirculation, as is commonly employed, it is recognized that elevated CO{sub 2} levels affect radiant transport, the heat capacity of the gas, and other gas transport properties. A topic of widespread speculation has concerned the effect of the CO{sub 2} gasification reaction with coal char on the char burning rate. To give clarity to the likely impact of this reaction on the oxy-fuel combustion of pulverized coal char, the Surface Kinetics in Porous Particles (SKIPPY) code was employed for a range of potential CO{sub 2} reaction rates for a high-volatile bituminous coal char particle (130 {micro}m diameter) reacting in several O{sub 2} concentration environments. The effects of boundary layer chemistry are also examined in this analysis. Under oxygen-enriched conditions, boundary layer reactions (converting CO to CO{sub 2}, with concomitant heat release) are shown to increase the char particle temperature and burning rate, while decreasing the O{sub 2} concentration at the particle surface. The CO{sub 2} gasification reaction acts to reduce the char particle temperature (because of the reaction endothermicity) and thereby reduces the rate of char oxidation. Interestingly, the presence of the CO{sub 2} gasification reaction increases the char conversion rate for combustion at low O{sub 2} concentrations, but decreases char conversion for combustion at high O{sub 2} concentrations. These calculations give new insight into the complexity of the effects from the CO{sub 2} gasification reaction and should help improve the understanding of experimentally measured oxy-fuel char combustion and burnout trends in the literature.

  6. Synergetic and inhibition effects in carbon dioxide gasification of blends of coals and biomass fuels of Indian origin.

    Science.gov (United States)

    Satyam Naidu, V; Aghalayam, P; Jayanti, S

    2016-06-01

    The present study investigates the enhancement of CO2 gasification reactivity of coals due to the presence of catalytic elements in biomass such as K2O, CaO, Na2O and MgO. Co-gasification of three Indian coal chars with two biomass chars has been studied using isothermal thermogravimetric analysis (TGA) in CO2 environment at 900, 1000 and 1100°C. The conversion profiles have been used to establish synergetic or inhibitory effect on coal char reactivity by the presence of catalytic elements in biomass char by comparing the 90% conversion time with and without biomass. It is concluded that both biomasses exhibit synergistic behavior when blended with the three coals with casuarina being more synergetic than empty fruit bunch. Some inhibitory effect has been noted for the high ash coal at the highest temperature with higher 90% conversion time for the blend over pure coal, presumably due to diffusional control of the conversion rate.

  7. Coal gasification in steam and air medium under plasma conditions. A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jieshan; He, Xiaojun; Sun, Tianjun; Zhao, Zongbin; Zhou, Ying [Carbon Research Laboratory, Department of Materials Science and Chemical Engineering, Dalian University of Technology, 158 Zhongshan Road, P.O. Box 49, Dalian 116012 (China); Guo, Shuhong; Zhang, Jialiang; Ma, Tengcai [State Key Laboratory for Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024 (China)

    2004-07-15

    The gasification of coal under steam and air plasma conditions at atmospheric pressure was investigated in a tube-type setup with an aim of producing synthesis gas. The plasma was diagnosed by optical emission spectroscopy (OES) and the synthesis gas was analyzed by gas chromatography (GC). It has been found that the content of H{sub 2} and CO in gas increases with increasing the arc input power, and passes through a maximum with the increase of current in electromagnetic coil. This is also the case for the variation trend of CO content in gas with the increase of the feeding rate of coal, but the H{sub 2} content in gas decreases as the feeding rate of coal increases. Under the experimental conditions tested, the content of H{sub 2}+CO in the gas could reach 75% in volume with CO{sub 2} being less than 3.0 vol.%. The OES diagnosis reveals that CO{sup +} ion and CH radical are present in the plasma and the variation trend of their intensities is, to some degree, in accordance with the variation trend of CO content in the gas, indicating that the CO{sup +} ion and CH radical are the precursors or origins of CO species in the gas. The preliminary results presented here demonstrate that the gasification of coal under steam and air plasma conditions might become a new approach for production of synthesis gas.

  8. Thermodynamic analysis of the gasification of coal water slurry fuels for a circulating fluidized bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, H.; Yavuzkurt, S.; Scaroni, A. [National Taiwan University, Taipei (Taiwan)

    2002-07-01

    To validate the concept of coal gasification in the integrated coal gasification combined cycle (IGCC), a novel laboratory gasifier consisting of a circulating fluidized bed and a cyclone combustor has been constructed. This paper reports a thermodynamic analysis conducted to predict the maximum capacity and the condition for best operation of this circulating fluidized bed gasifier, which has an inside diameter of 0.3048 m and a height of 2.5 m. The equilibrium feed rates of materials and the quality of the product gas are described as a function of the reactor temperature, the thermal capacity of the gasifier, and the water concentration in coal water slurry fuel. The results of parametric analysis show that the thermal efficiency decreases, but the efficiency of desulfurization increases as the reactor temperature increases. The thermal capacity of the gasifier has no influence on the quality of the product gas. The thermal efficiency and the efficiency of desulfurization decrease as the water concentration in the coal water slurry increases. The desulfurization in the gasifier at equilibrium conditions is very efficient and meets the EPA regulations of the USA.

  9. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez-Mariano; Angel Sanjurjo

    2006-12-31

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this period, we analyzed several coated and exposed samples of 409 steel by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX), and report on the findings of four samples: (1) Analysis of two porous coupons after exposure to the porous metal particulate filter of the coal gasification power plant at 370 C for 2140 hours revealed that corrosion takes place in the bulk of the sample while the most external zone surface survived the test. (2) Coating and characterization of several porous 409 steel coupons after being coated with nitrides of Ti, Al and/or Si showed that adjusting experimental conditions results in thicker coatings in the bulk of the sample. (3) Analysis of coupons exposed to simulated coal gas at 370 C for 300 hours showed that a better corrosion resistance is achieved by improving the coatings in the bulk of the samples.

  10. Coal gasification by indirect heating in a single moving bed reactor: Process development & simulation

    Directory of Open Access Journals (Sweden)

    Junaid Akhlas

    2015-10-01

    Full Text Available In this work, the development and simulation of a new coal gasification process with indirect heat supply is performed. In this way, the need of pure oxygen production as in a conventional gasification process is avoided. The feasibility and energetic self-sufficiency of the proposed processes are addressed. To avoid the need of Air Separation Unit, the heat required by gasification reactions is supplied by the combustion flue gases, and transferred to the reacting mixture through a bayonet heat exchanger installed inside the gasifier. Two alternatives for the flue gas generation have been investigated and compared. The proposed processes are modeled using chemical kinetics validated on experimental gasification data by means of a standard process simulator (Aspen PlusTM, integrated with a spreadsheet for the modeling of a special type of heat exchanger. Simulation results are presented and discussed for proposed integrated process schemes. It is shown that they do not need external energy supply and ensure overall efficiencies comparable to conventional processes while producing syngas with lower content of carbon dioxide.

  11. Hanna, Wyoming underground coal gasification data base. Volume 3. The Hanna II, Phase I field test

    Energy Technology Data Exchange (ETDEWEB)

    Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

    1985-08-01

    This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project, and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Hanna II, Phase I was conducted during the spring and summer of 1975, at a site about 700 feet up dip (to the southwest) of the Hanna I test. The test was conducted in two stages - Phase IA and IB. Phase IA consisted of linking and gasification operations between Wells 1 and 3 and Phase IB of linking from the 1-3 gasification zone to Well 2, followed by a short period of gasification from Well 2 to Well 3 over a broad range of air injection rates, in order to determine system turndown capabilities and response times. This report covers: (1) site selection and characteristics; (2) test objectives; (3) facilities description; (4) pre-operational testing; (5) test operations summary; and (6) post-test activity. 7 refs., 11 figs., 8 tabs.

  12. Low/medium-Btu coal-gasification assessment program for specific sites of two New York utilities

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The scope of this study is to investigate the technical and economic aspects of coal gasification to supply low- or medium-Btu gas to the two power plant boilers selected for study. This includes the following major studies (and others described in the text): investigate coals from different regions of the country, select a coal based on its availability, mode of transportation and delivered cost to each power plant site; investigate the effects of burning low- and medium-Btu gas in the selected power plant boilers based on efficiency, rating and cost of modifications and make recommendations for each; and review the technical feasibility of converting the power plant boilers to coal-derived gas. The following two coal gasification processes have been used as the basis for this Study: the Combustion Engineering coal gasification process produces a low-Btu gas at approximately 100 Btu/scf at near atmospheric pressure; and the Texaco coal gasification process produces a medium-Btu gas at 292 Btu/scf at 800 psig. The engineering design and economics of both plants are described. Both plants meet the federal, state, and local environmental requirements for air quality, wastewater, liquid disposal, and ground level disposal of byproduct solids. All of the synthetic gas alternatives result in bus bar cost savings on a yearly basis within a few years of start-up because the cost of gas is assumed to escalate at a lower rate than that of fuel oil, approximately 4 to 5%.

  13. Gasification Studies Task 4 Topical Report, Utah Clean Coal Program

    Energy Technology Data Exchange (ETDEWEB)

    Whitty, Kevin [Univ. of Utah, Salt Lake City, UT (United States); Fletcher, Thomas [Univ. of Utah, Salt Lake City, UT (United States); Pugmire, Ronald [Univ. of Utah, Salt Lake City, UT (United States); Smith, Philip [Univ. of Utah, Salt Lake City, UT (United States); Sutherland, James [Univ. of Utah, Salt Lake City, UT (United States); Thornock, Jeremy [Univ. of Utah, Salt Lake City, UT (United States); Hunsacker, Isaac [Univ. of Utah, Salt Lake City, UT (United States); Li, Suhui [Univ. of Utah, Salt Lake City, UT (United States); Kelly, Kerry [Univ. of Utah, Salt Lake City, UT (United States); Puntai, Naveen [Univ. of Utah, Salt Lake City, UT (United States); Reid, Charles [Univ. of Utah, Salt Lake City, UT (United States); Schurtz, Randy [Univ. of Utah, Salt Lake City, UT (United States)

    2011-10-01

    A key objective of the Task 4 activities has been to develop simulation tools to support development, troubleshooting and optimization of pressurized entrained-flow coal gasifiers. The overall gasifier models (Subtask 4.1) combine submodels for fluid flow (Subtask 4.2) and heat transfer (Subtask 4.3) with fundamental understanding of the chemical (Subtask 4.4) and physical (Subtask 4.5) processes that take place as coal particles are converted to synthesis gas and slag. However, it is important to be able to compare predictions from the models against data obtained from actual operating coal gasifiers, and Subtask 4.6 aims to provide an accessible, non-proprietary system, which can be operated over a wide range of conditions to provide well-characterized data for model validation.

  14. Storing syngas lowers the carbon price for profitable coal gasification.

    Science.gov (United States)

    Newcomer, Adam; Apt, Jay

    2007-12-01

    Integrated gasification combined cycle (IGCC) electric power generation systems with carbon capture and sequestration have desirable environmental qualities but are not profitable when the carbon dioxide price is less than approximately $50 per metric ton. We examine whether an IGCC facility that operates its gasifier continuously butstores the syngas and produces electricity only when daily prices are high may be profitable at significantly lower CO2 prices. Using a probabilistic analysis, we have calculated the plant-level return on investment (ROI) and the value of syngas storage for IGCC facilities located in the U.S. Midwest using a range of storage configurations. Adding a second turbine to use the stored syngas to generate electricity at peak hours and implementing 12 h of above-ground high-pressure syngas storage significantly increases the ROI and net present value. Storage lowers the carbon price at which IGCC enters the U.S. generation mix by approximately 25%.

  15. Construction of First GSP Gasification Unit Was Kicked off at Shenhua Ningxia Coal Industry (Group)Co.,Ltd.in China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The construction of the core unit for the coal-based olefin project-the GSP gasification unit,the investment in which totals 20 billion RMB,has been kicked off at Shenhua Ningxia Coal Industry (Group) Co.,Ltd.,in Ningxia,China.It is told that this is the first gasification unit that adopts the GSP gasification technology in China.The GSP gasification unit adopts the Siemens technology,the basic design of which is implemented by the Uhde Engineering Company and the detailed design and procurement service of which will be performed by the No.2 Design Institute of Chemical Industry under the China National Chemical Engineering Group Corporation.

  16. Minerals in the Ash and Slag from Oxygen-Enriched Underground Coal Gasification

    Directory of Open Access Journals (Sweden)

    Shuqin Liu

    2016-03-01

    Full Text Available Underground coal gasification (UCG is a promising option for the recovery of low-rank and inaccessible coal resources. Detailed mineralogical information is essential to understand underground reaction conditions far from the surface and optimize the operation parameters during the UCG process. It is also significant in identifying the environmental effects of UCG residue. In this paper, with regard to the underground gasification of lignite, UCG slag was prepared through simulation tests of oxygen-enriched gasification under different atmospheric conditions, and the minerals were identified by X-Ray diffraction (XRD and a scanning electron microscope coupled to an energy-dispersive spectrometer (SEM-EDS. Thermodynamic calculations performed using FactSage 6.4 were used to help to understand the transformation of minerals. The results indicate that an increased oxygen concentration is beneficial to the reformation of mineral crystal after ash fusion and the resulting crystal structures of minerals also tend to be more orderly. The dominant minerals in 60%-O2 and 80%-O2 UCG slag include anorthite, pyroxene, and gehlenite, while amorphous substances almost disappear. In addition, with increasing oxygen content, mullite might react with the calcium oxide existed in the slag to generate anorthite, which could then serve as a calcium source for the formation of gehlenite. In 80%-O2 UCG slag, the iron-bearing mineral is transformed from sekaninaite to pyroxene.

  17. Advanced technology applications for second and third general coal gasification systems

    Science.gov (United States)

    Bradford, R.; Hyde, J. D.; Mead, C. W.

    1980-01-01

    The historical background of coal conversion is reviewed and the programmatic status (operational, construction, design, proposed) of coal gasification processes is tabulated for both commercial and demonstration projects as well as for large and small pilot plants. Both second and third generation processes typically operate at higher temperatures and pressures than first generation methods. Much of the equipment that has been tested has failed. The most difficult problems are in process control. The mechanics of three-phase flow are not fully understood. Companies participating in coal conversion projects are ordering duplicates of failure prone units. No real solutions to any of the significant problems in technology development have been developed in recent years.

  18. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez Mariano; Angel Sanjurjo

    2006-09-30

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. The primary activity this period was preparation and presentation of the findings on this project at the Twenty-Third annual Pittsburgh Coal Conference. Dr. Malhotra attended this conference and presented a paper. A copy of his presentation constitutes this quarterly report.

  19. Gasification in pulverized coal flames. First annual progress report, July 1975--June 1976

    Energy Technology Data Exchange (ETDEWEB)

    Lenzer, R. C.; George, P. E.; Thomas, J. F.; Laurendeau, N. M.

    1976-07-01

    This project concerns the production of power and synthesis gas from pulverized coal via suspension gasification. Swirling flow in both concentric jet and cyclone gasifiers will separate oxidation and reduction zones. Gasifier performance will be correlated with internally measured temperature and concentration profiles. A literature review of vortex and cyclone reactors is complete. Preliminary reviews of confined jet reactors and pulverized coal reaction models have also been completed. A simple equilibrium model for power gas production is in agreement with literature correlations. Cold gas efficiency is not a suitable performance parameter for combined cycle operation. The coal handling facility, equipped with crusher, pulverizer and sieve shaker, is in working order. Test cell flow and electrical systems have been designed, and most of the equipment has been received. Construction of the cyclone gasifier has begun. A preliminary design for the gas sampling system, which will utilize a UTI Q-30C mass spectrometer, has been developed.

  20. Aerosol emissions near a coal gasification plant in the Kosovo region, Yugoslavia

    Science.gov (United States)

    Boueres, Luis Carlos S.; Patterson, Ronald K.

    1981-03-01

    Ambient aerosol samples from the region of Kosovo, Yugoslavia, were collected and analyzed for their elemental composition in order to determine the effect on ambient air quality of Lurgi coal gasification carried out there using low BTU lignite. Low-volume aerosol samples were used to collect air particulate matter during May of 1979. These samplers were deployed at five sites near the Kosovo industrial complex which is comprised of coal gasifier, a coal-fired power plant and a fertilizer plant which uses the waste products from the gasifier and power plant. A total of 126 impactor sets and 10 week-long "streaker" filters were analyzed by PIXE at FSU for 16-18 elements providing a data base of approximately 16 000 elemental concentrations. Preliminary results are reported here with emphasis on the following elements: Si, S, Ca, Fe, Zn and Pb.

  1. Thermodynamic analyses of a biomass-coal co-gasification power generation system.

    Science.gov (United States)

    Yan, Linbo; Yue, Guangxi; He, Boshu

    2016-04-01

    A novel chemical looping power generation system is presented based on the biomass-coal co-gasification with steam. The effects of different key operation parameters including biomass mass fraction (Rb), steam to carbon mole ratio (Rsc), gasification temperature (Tg) and iron to fuel mole ratio (Rif) on the system performances like energy efficiency (ηe), total energy efficiency (ηte), exergy efficiency (ηex), total exergy efficiency (ηtex) and carbon capture rate (ηcc) are analyzed. A benchmark condition is set, under which ηte, ηtex and ηcc are found to be 39.9%, 37.6% and 96.0%, respectively. Furthermore, detailed energy Sankey diagram and exergy Grassmann diagram are drawn for the entire system operating under the benchmark condition. The energy and exergy efficiencies of the units composing the system are also predicted.

  2. Underground coal gasification (UCG: A new trend of supply-side economics of fossil fuels

    Directory of Open Access Journals (Sweden)

    Fei Mao

    2016-10-01

    Full Text Available China has a huge demand for energy. Under the present energy structure of rich coal, lean oil, less gas, limited and low-rising rate renewable energy, discussion focus is now on the high-efficient mining of coal as well as its clean-and-low-carbon use. In view of this, based on an analysis of the problems in the coal chemical industry and the present coal utilization ways such as Integrated Gasification Combined Cycle (IGCC, this paper proposes that underground coal gasification (UCG technology is a realistic choice. By virtue of its advantages in many aspects such as safety & environment, integrated use of superior resources, economic feasibility, etc. this technology can serve as the front-end support and guarantee for coal chemical industry and IGCC. Under the present situation, the following proposals were presented to promote the development of this technology. First, R&D of technical products should be strengthened, a comprehensive feasibility study assessment system should be established, and the relevant criteria in the industry should be formulated. Second, precise market positioning of UCG products should be made with much concern on the integrated economic indicators of each product's complete flow scheme, following the principle of “Technical Feasibility First, Economic Optimization Followed”. Third, a perfect operation and management pattern should be established with strict control over high-efficient, environmentally-friendly, safe, harmonious & compact objectives in the whole industry chain. In conclusion, to realize the large-scale UCG commercial production will strongly promote the optimization and innovation of fossil fuels supply-side economics in China.

  3. Coal reserves and resources as well as potentials for underground coal gasification in connection with carbon capture and storage (CCS)

    Science.gov (United States)

    Ilse, Jürgen

    2010-05-01

    . However, these otherwise unprofitable coal deposits can be mined economically by means of underground coal gasification, during which coal is converted into a gaseous product in the deposit. The synthesis gas can be used for electricity generation, as chemical base material or for the production of petrol. This increases the usability of coal resources tremendously. At present the CCS technologies (carbon capture and storage) are a much discussed alternative to other CO2 abatement techniques like efficiency impovements. The capture and subsequent storage of CO2 in the deposits created by the actual underground gasification process seem to be technically feasible.

  4. Coal Gasification Processes for Retrofitting Military Central Heating Plants: Overview

    Science.gov (United States)

    1992-11-01

    inorganic material remainitig after coal is completely combusted. At high temperatures, the ash will melt and clinkers may form. The ash composition ...was employed until 1941 by more than 9000 producers worldwide. Units installed in 1933 and 1948 are currently operating in South Africa . In 1980...Springs. South Africa Vaal Potteries Ltd. 1 8.5 Bituminous Operational Meyerton, South Africa Union Steel Corporation 2 10 Bituminous Operational

  5. Low- and medium-Btu coal gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    Baker, N.R.; Blazek, C.F.; Tison, R.R.

    1979-01-01

    Coal gasifiers, for the production of low- and medium-Btu fuel gases, come in a wide variety of designs and capacities. For single gasifier vessels gas energy production rates range from about 1 to 18 billion Btu/day. The key characteristics of gasifiers that would be of importance for their application as an energy source in Integrated Community Energy Systems (ICES) are evaluated here. The types of gasifiers considered here are single- and two-stage, fixed-bed units; fluidized-bed units; and entrained-bed units, as producers of both low-Btu (less than 200 Btu/SCF and medium-Btu (200 to 400 Btu/SCF) gases. The gasifiers are discussed with respect to maximum and minimum capacity, the effect of feed coal parameters, product characteristics, thermal efficiency, environmental effects, operating and maintenance requirements, reliability, and cost. Some of the most recent development work in this area of coal conversion, and use of these gas products also is considered. Except in small plant installations (< 10/sup 9/ Btu/day) the annual operating costs for the various gasifier types are approximately the same. This is somewhat surprising in view of the personnel requirements, efficiencies, utility requirements, heating value of the product gas, and operating characteristics associated with each. Operating costs tend to increase with a power function exponent of 0.92 (i.e., a doubling in plant capacity increases the operating cost by about 1.9).

  6. Hazardous air pollutant testing at the LGTI coal gasification plant

    Energy Technology Data Exchange (ETDEWEB)

    Wetherold, R.G.; Williams, W.A.; Maxwell, D.P.; Mann, R.M.

    1995-06-01

    A comprehensive hazardous air pollutant test program was conducted in November 1994 at the Louisiana Gasification Technology, Inc. (LGTI), plant in Plaquemine, Louisiana. This program was sponsored by DOE/PETC, the Electric Power Research Institute (EPRI), and Destec Energy. In May of 1995, additional testing of the hot syngas stream was conducted at the LGTI facility under this same program. DOE/METC provided additional technical support for the hot gas testing effort. In this paper, the sampling and analytical methods used during the November and May test program are summarized. The hot gas testing is described in greater detail. In particular, the hot gas sampling probe and probe insertion/withdrawal system are discussed. The sampling probe was designed to collect particulate and extract gas samples at process temperature and pressure. The design of the probe system is described, and the operating procedures are summarized. The operation of the probe during the testing is discussed, and photographs of the testing are provided. In addition to the summaries and descriptions of the test methodologies, selected preliminary emissions results of the November sampling are included in the paper.

  7. Biological production of ethanol from coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H{sub 2}, CO{sub 2}, CH{sub 4} and sulfur gases, is first produced using traditional gasification techniques. The CO, CO{sub 2} and H{sub 2} are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the ``wild strain`` produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

  8. Conceptual design and retrofitting of the coal-gasification wastewater treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Gai, H.; Jiang, Y.; Qian, Y.; Kraslawski, A. [South China University of Technology, Ghangzhou (China). School of Chemical Engineering

    2008-05-15

    The coal-gasification wastewater treatment is the most difficult pollution control task for coal-gasification plants. It is identified that there are two serious problems occurring in the current treatment process, i.e., low performance of phenols removal and plugging induced by ammonia salts. A new treatment process is proposed in this paper to solve these severe problems and pursue clean production. First, ammonia stripping is accomplished before phenols recovery to reduce pH value of the wastewater and to improve the phenols removal performance of extraction. Second, a complex stripper with a side draw is introduced to stripping ammonia and sour gas simultaneously. It is done to eliminate the ionic interaction during stripping and to improve the removal performance of ammonia and sour gas (carbon dioxide and hydrogen sulphide). Finally, methyl isobutyl ketone (MIBK) is used as extraction solvent instead of diisopropyl ether (DIPE) for further improvement of the phenols removal performance. Conceptual design of the proposed process is accomplished for a large-scale coal-gasification plant based on process simulation. With the proposed process, the concentration of carbon dioxide, hydrogen sulphide and ammonia in wastewater are reduced to trace, less than 10 mg/L, and about 30 mg/L, respectively. As a result, pH value of the wastewater is reduced from >9 to <7 before extraction, thus the phenols removal performance is greatly improved. Compare to the current process, the removal ratios increase from 60% to 99% for carbon dioxide, 96% to 99.6% for ammonia, and 80% to 94% for total phenols using the proposed process. In consequence, the biochemical treatment of wastewater becomes easier. The economical analysis shows that the operating cost of the proposed process is much lower than that of the current process.

  9. Current Status of Coal Gasification Technology in China%国内煤气化技术现状

    Institute of Scientific and Technical Information of China (English)

    孙曙光

    2014-01-01

    简要介绍煤气化技术的原理和种类,重点阐述国内煤气化技术的研究进展和工业应用现状,指出国内煤气化技术发展存在的问题及未来的发展方向。%The paper describes the principle and classification of coal-gasification technology and points out the problems that are encountered in the development of the coal-gasification technology and the developing trend in China.

  10. Fugitive emission testing at the Kosovo coal gasification plant. Final task report Apr 79-Sep 81. [Yugoslavia

    Energy Technology Data Exchange (ETDEWEB)

    Honerkamp, R.L.; Dalrymple, D.A.

    1983-06-01

    The report summarizes results of a test program to characterize fugitive emissions from the Kosovo coal gasification plant in Yugoslavia, a test program implemented by the EPA in response to a need for representative data on the potential environmental impacts of Lurgi coal gasification technology. Major objectives of the fugitive emissions assessment were to: (1) determine the frequency of leak occurrence, (2) measure leak rates from leak sources, (3) estimate total fugitive emissions from leakage, and (4) compare the results to other fugitive emission test data. Study results show similarities to results of fugitive emission testing in U.S. oil refineries and organic chemical plants.

  11. Circulating fluidized bed gasification of low rank coal: Influence of O2/C molar ratio on gasification performance and sulphur transformation

    Science.gov (United States)

    Zhang, Haixia; Zhang, Yukui; Zhu, Zhiping; Lu, Qinggang

    2016-08-01

    To promote the utilization efficiency of coal resources, and to assist with the control of sulphur during gasification and/or downstream processes, it is essential to gain basic knowledge of sulphur transformation associated with gasification performance. In this research we investigated the influence of O2/C molar ratio both on gasification performance and sulphur transformation of a low rank coal, and the sulphur transformation mechanism was also discussed. Experiments were performed in a circulating fluidized bed gasifier with O2/C molar ratio ranging from 0.39 to 0.78 mol/mol. The results showed that increasing the O2/C molar ratio from 0.39 to 0.78 mol/mol can increase carbon conversion from 57.65% to 91.92%, and increase sulphur release ratio from 29.66% to 63.11%. The increase of O2/C molar ratio favors the formation of H2S, and also favors the retained sulphur transforming to more stable forms. Due to the reducing conditions of coal gasification, H2S is the main form of the released sulphur, which could be formed by decomposition of pyrite and by secondary reactions. Bottom char shows lower sulphur content than fly ash, and mainly exist as sulphates. X-ray photoelectron spectroscopy (XPS) measurements also show that the intensity of pyrite declines and the intensity of sulphates increases for fly ash and bottom char, and the change is more obvious for bottom char. During CFB gasification process, bigger char particles circulate in the system and have longer residence time for further reaction, which favors the release of sulphur species and can enhance the retained sulphur transforming to more stable forms.

  12. An effect of Blade geometry on heat transfer performance in stirred vessel – coal water slurry system using coal gasification

    Directory of Open Access Journals (Sweden)

    C.M.Raguraman,

    2010-04-01

    Full Text Available The effect of the geometrical parameter of blades on heat transfer co-efficient were experimentally studied for agitated vessels using coal slurry in coal gasification. The intensity of hear transfer during mixing of fluids depends on the type of the stirrer, the design of the vessel and conditions of the process. The type and size of the stirrer, as well as its location in the vessel, also affect the rate of hear transfer. In this study, the effect of some importantdesign parameter such as the type of stirrer, angle and shape of blades, number of blades and location of stirrer, etc., were investigated and optimized. Besides, the Taguchi method can successfully be applied to heat transfer investigation to save energy, time and material in experimentation.

  13. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  14. Coal gasification systems engineering and analysis. Appendix F: Critical technology items/issues

    Science.gov (United States)

    1980-01-01

    Critical technology items and issues are defined in which there is a need for developmental research in order to assure technical and economic success for the state of the art of coal gasification in the United States. Technology development needs for the main processing units and the supporting units are discussed. While development needs are shown for a large number of systems, the most critical areas are associated with the gasifier itself and those systems which either feed the gasifier or directly receive products form the gasifier.

  15. Effects of Pressure on the Properties of Coal Char Under Gasification Conditions at High Initial Heating Rates

    Science.gov (United States)

    Shurtz, Randy Clark

    The effects of elevated pressure and high heating rates on coal pyrolysis and gasification were investigated. A high-pressure flat-flame burner (HPFFB) was designed and built to conduct these studies. The HPFFB was designed to provide an environment with laminar, dispersed entrained flow, with particle heating rates of ˜105 K/s, pressures of up to 15 atm, and gas temperatures of up to 2000 K. Residence times were varied from 30 to 700 ms in this study. Pyrolysis experiments were conducted at particle heating rates of ˜10 5 K/s and maximum gas temperatures of ˜1700 K at pressures of 1 to 15 atm. A new coal swelling correlation was developed that predicts the effects of heating rate, pressure, and coal rank on the swelling ratio at heating rates above ˜104 K/s. A coal swelling rank index system based on 13C-NMR chemical structural parameters was devised. The empirical swelling model requires user inputs of the coal ultimate and proximate analyses and the use of a transient particle energy balance to predict the maximum particle heating rate. The swelling model was used to explain differences in previously reported bituminous coal swelling ratios that were measured in facilities with different heating rates. Char gasification studies by CO2 were conducted on a subbituminous coal and 4 bituminous coals in the HPFFB. Pressures of 5, 10, and 15 atmospheres were used with gas compositions of 20, 40, and 90 mole % CO2. Gas conditions with peak temperatures of 1700 K to 2000 K were used, which resulted in char particle temperatures of 1000 K to 1800 K. Three gasification models were developed to fit and analyze the gasification data. A simple 1 st--order model was used to show that the measured gasification rates were far below the film-diffusion limit. The other two models, designated CCK and CCKN, were based on three versions of the CBK models. CCKN used an nth--order kinetic mechanism and CCK used a semi-global Langmuir-Hinshelwood kinetic mechanism. The two CCK

  16. Coal gasification systems engineering and analysis. Appendix B: Medium B+U gas design

    Science.gov (United States)

    1980-01-01

    A four module, 20,000 TPD, based on KT coal gasification technology was designed. The plant processes Kentucky No. 9 coal with provisions for up to five percent North Alabama coal. Medium BTU gas with heat content of 305 BTU/SCF and not more than 200 ppm sulfur is the primary plant product. Sulfur is recovered for scale as prilled sulfur. Ash disposal is on site. The plant is designed for zero water discharge. Trade studies provided the basis for not using boiler produced steam to drive prime movers. Thus process derived steam in excess of process requirements in superheated for power use in prime movers. Electricity from the TVA grid is used to supply the balance of the plant prime mover power requirements. A study of the effect of mine mouth coal cleaning showed that coal cleaning is not an economically preferred route. The design procedure involved defining available processes to meet the requirements of each system, technical/economic trade studies to select the preferred processes, and engineering design and flow sheet development for each module. Cost studies assumed a staggered construction schedule for the four modules beginning spring 1981 and a 90% on stream factor.

  17. Mutagenicity of products from coal gasification and liquefaction in the Salmonella/microsome assay.

    Science.gov (United States)

    Schoeny, R; Warshawsky, D; Hollingsworth, L; Hund, M; Moore, G

    1981-01-01

    As a first step in the assessment of their possible bio-effects, coal-related materials were tested for mutagenicity in the Salmonella/microsome assay. Of three coal gasification by-products tested, only a tar was mutagenic for any of four Salmonella strains. The following liquefaction materials were mutagenic for strains TA1538, TA98, and/or TA100: A liquefaction vehicle oil and coal hydrogenation filtered liquid, separated bottoms, vacuum overhead, and vacuum bottoms. Neither powdered coal nor water produced as a by-product of the hydrogenation process was positive in the Salmonella test. No coal-related material was mutagenic for the missense mutant TA1535 or for any strain in the absence of metabolic activation provided by rat hepatic homogenates (S9). In all but one instance Aroclor 1254-induced S9 provided the maximum activation for mutagenesis. Fractionation of all samples was undertaken by serial extraction with organic solvents of increasing polarity (hexane, toluene, methylene chloride, acetonitrile). Highly mutagenic materials were found in fractions of the hydrogenation filtered liquid, vacuum overhead, and vacuum bottoms. Thus far non-mutagenic samples have not yielded mutagenic components upon fractionation.

  18. Effect of Gasifying Medium on the Coal Chemical Looping Gasification with CaSO4 as Oxygen Carrier☆

    Institute of Scientific and Technical Information of China (English)

    Yongzhuo Liu; Weihua Jia; Qingjie Guo; Hojung Ryu

    2014-01-01

    The chemical looping gasification uses an oxygen carrier for solid fuel gasification by supplying insufficient lattice oxygen. The effect of gasifying medium on the coal chemical looping gasification with CaSO4 as oxygen carrier is investigated in this paper. The thermodynamical analysis indicates that the addition of steam and CO2 into the system can reduce the reaction temperature, at which the concentration of syngas reaches its maximum value. Experimental result in thermogravimetric analyzer and a fixed-bed reactor shows that the mixture sample goes through three stages, drying stage, pyrolysis stage and chemical looping gasification stage, with the temper-ature for three different gaseous media. The peak fitting and isoconversional methods are used to determine the reaction mechanism of the complex reactions in the chemical looping gasification process. It demonstrates that the gasifying medium (steam or CO2) boosts the chemical looping process by reducing the activation energy in the overall reaction and gasification reactions of coal char. However, the mechanism using steam as the gasifying medium differs from that using CO2. With steam as the gasifying medium, parallel reactions occur in the begin-ning stage, followed by a limiting stage shifting from a kinetic to a diffusion regime. It is opposite to the reaction mechanism with CO2 as the gasifying medium.

  19. Isolation of a highly mutagenic aminophenanthrene from a coal gasification process tar.

    Science.gov (United States)

    Haugen, D A; Stamoudis, V C; Peak, M J; Boparai, A S

    1986-02-01

    A major portion of the mutagenic activity associated with products and by-products of coal conversion can be ascribed to nitrogen-containing bases. We improved the extraction efficiencies for three- to five-ring aromatic bases by extracting them with a mixture of methanol and aqueous HCl, rather than with aqueous HCl alone. A complex mutagenic basic fraction of a coal gasification process tar was successively fractionated using cation exchange and reversed phase high-performance liquid chromatography. The fractions were assayed for mutagenic activity and were chemically analyzed by gas chromatography and gas chromatography-mass spectrometry. Aminophenanthrenes were identified as major contributors to the mutagenicity of the basic fraction. Aminonaphthalenes, aminobiphenyls, and their alkyl homologs were also present but were not detected as principal mutagens.

  20. Availability (exergetic) analysis of coal gasification processes. Part II. The Synthane process

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P.; Conger, W.L.

    1982-01-01

    The efficiency and economics of the Synthane Gasification process are evaluated and discussed. The efficiency of the Synthane process was determined using the 'availability analysis' approach to process evaluation and is given here as an example of the use of that approach. Computer simulation of the Synthane process was used to study the effect of changes in plant operating parameters on both the efficiency and economics of the process. Results of the availability analysis include an overall exergetic efficiency of 61.2 % for the operation of the Synthane plant with a Pittsburgh Seam feed coal, and an overall exergetic efficiency of 61.1 % for a Wyodak Seam feed coal. Increasing the ratio of steam to oxygen fed to the gasifier from 6.83 to 10.0 was found to increase the overall exergetic efficiency from 61.2 % to 64.6 % with a Pittsburgh feed coal. Utilizing an alternative methanator design similar to one presented in a IGT HYGAS process design was found to increase the overall efficiency to 62.3 % with the Pittsburgh feed coal and to 61.9 percent of the Wyodak feed coal. The production cost of the synthetic natural gas (SNG) product from the Synthane process was found to be 4.61 dollars/GJ with the Pittsburgh feed coal, and 6.23 dollars/GJ with the Wyodak feed coal, in third quarter 1979 dollars. The SNG production cost was found to decrease from 4.61 dollars/GJ to 4.37 dollars/GJ when the ratio of steam to oxygen fed to the gasifier was increased from 6.83 to 10.0. A 50 % increase in coal cost was found to increase the SNG production cost by 15 % and 18 % for the Pittsburgh and Wyodak feed coals, respectively, while a 100 % increase in coal cost increased the SNG production cost by 30 % and 36 %, respectively. Changing to the alternative (HYGAS) methanator design resulted in a decrease of 0.21 dollars/GJ in the SNG production cost for the Pittsburg feed coal, and a decrease of 0.26 dollars/GJ for the Wyodak coal.

  1. Molten salt coal gasification process development unit. Phase 1. Volume 1. PDU operations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kohl, A.L.

    1980-05-01

    This report summarizes the results of a test program conducted on the Molten Salt Coal Gasification Process, which included the design, construction, and operation of a Process Development Unit. In this process, coal is gasified by contacting it with air in a turbulent pool of molten sodium carbonate. Sulfur and ash are retained in the melt, and a small stream is continuously removed from the gasifier for regeneration of sodium carbonate, removal of sulfur, and disposal of the ash. The process can handle a wide variety of feed materials, including highly caking coals, and produces a gas relatively free from tars and other impurities. The gasification step is carried out at approximately 1800/sup 0/F. The PDU was designed to process 1 ton per hour of coal at pressures up to 20 atm. It is a completely integrated facility including systems for feeding solids to the gasifier, regenerating sodium carbonate for reuse, and removing sulfur and ash in forms suitable for disposal. Five extended test runs were made. The observed product gas composition was quite close to that predicted on the basis of earlier small-scale tests and thermodynamic considerations. All plant systems were operated in an integrated manner during one of the runs. The principal problem encountered during the five test runs was maintaining a continuous flow of melt from the gasifier to the quench tank. Test data and discussions regarding plant equipment and process performance are presented. The program also included a commercial plant study which showed the process to be attractive for use in a combined-cycle, electric power plant. The report is presented in two volumes, Volume 1, PDU Operations, and Volume 2, Commercial Plant Study.

  2. DOE Coal Gasification Multi-Test Facility: fossil fuel processing technical/professional services

    Energy Technology Data Exchange (ETDEWEB)

    Hefferan, J.K.; Lee, G.Y.; Boesch, L.P.; James, R.B.; Rode, R.R.; Walters, A.B.

    1979-07-13

    A conceptual design, including process descriptions, heat and material balances, process flow diagrams, utility requirements, schedule, capital and operating cost estimate, and alternative design considerations, is presented for the DOE Coal Gasification Multi-Test Facility (GMTF). The GMTF, an engineering scale facility, is to provide a complete plant into which different types of gasifiers and conversion/synthesis equipment can be readily integrated for testing in an operational environment at relatively low cost. The design allows for operation of several gasifiers simultaneously at a total coal throughput of 2500 tons/day; individual gasifiers operate at up to 1200 tons/day and 600 psig using air or oxygen. Ten different test gasifiers can be in place at the facility, but only three can be operated at one time. The GMTF can produce a spectrum of saleable products, including low Btu, synthesis and pipeline gases, hydrogen (for fuel cells or hydrogasification), methanol, gasoline, diesel and fuel oils, organic chemicals, and electrical power (potentially). In 1979 dollars, the base facility requires a $288 million capital investment for common-use units, $193 million for four gasification units and four synthesis units, and $305 million for six years of operation. Critical reviews of detailed vendor designs are appended for a methanol synthesis unit, three entrained flow gasifiers, a fluidized bed gasifier, and a hydrogasifier/slag-bath gasifier.

  3. A study of toxic emissions from a coal-fired gasification plant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Under the Fine Particulate Control/Air Toxics Program, the US Department of Energy (DOE) has been performing comprehensive assessments of toxic substance emissions from coal-fired electric utility units. An objective of this program is to provide information to the US Environmental Protection Agency (EPA) for use in evaluating hazardous air pollutant emissions as required by the Clean Air Act Amendments (CAAA) of 1990. The Electric Power Research Institute (EPRI) has also performed comprehensive assessments of emissions from many power plants and provided the information to the EPA. The DOE program was implemented in two. Phase 1 involved the characterization of eight utility units, with options to sample additional units in Phase 2. Radian was one of five contractors selected to perform these toxic emission assessments.Radian`s Phase 1 test site was at southern Company Service`s Plant Yates, Unit 1, which, as part of the DOE`s Clean Coal Technology Program, was demonstrating the CT-121 flue gas desulfurization technology. A commercial-scale prototype integrated gasification-combined cycle (IGCC) power plant was selected by DOE for Phase 2 testing. Funding for the Phase 2 effort was provided by DOE, with assistance from EPRI and the host site, the Louisiana Gasification Technology, Inc. (LGTI) project This document presents the results of that effort.

  4. Instrumentation for in situ coal gasification: an assessment of techniques evaluated on the Hanna II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Northrop, D.A.; Beard, S.G.; Bartel, L.C.; Beckham, L.W.; Hommert, P.J.

    1977-09-01

    The Hanna II in-situ coal gasification experiment was conducted by the Laramie Energy Research Center during 1975 to 76. Sandia Laboratories designed, fielded, and evaluated variations of seven instrumentation techniques belonging to two general classes: (a) diagnostic techniques (thermal, in-seam gas sampling and pressure, and overburden tilt and displacement) to obtain data for process characterization and (b) remote monitoring techniques (electrical, passive acoustic, and induced seismic) being developed to provide a continuous, real-time map of the in-situ process for application in a process control system. Assessments of these techniques have been made with respect to feasibility, information obtainable, and possible future development and applications. In general, very positive assessments were obtained. Extensive thermocouple arrays, which incorporated special branched circuitry for data validation, provided the most detailed characterization of in-situ coal gasification yet obtained. The feasibility of in-seam gas sampling and pressure measurements was demonstrated and composition changes due to the advancing reaction front were detailed. The thermocouple circuits and gas sampling and pressure canisters are part of a diagnostic well specification now under development for general in-situ applications. Promising results were obtained for two remote monitoring techniques. Direct excitation electrical potential and a modified Schlumberger technique. Contour maps of potential data from a surface array showed the location and movement of the reaction at 300 ft depth. Mapping the source of process-related acoustic signals was shown to be feasible. Borehole-to-borehole induced seismic techniques were able to delineate the advance of the gasification process.

  5. Co-gasification of meat and bone meal with coal in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    E. Cascarosa; L. Gasco; G. Gea; J.L. Sanchez; J. Arauzo [Universidad de Zaragoza (Spain). Thermochemical Processes Group

    2011-08-15

    After the Bovine Spongiform Encephalopathy illness appeared, the meat and bone meat (MBM) produced from animal residues became an important waste. In spite of being a possible fuel due to its heating value (around 21.4 MJ/kg), an important fraction of the meat and bone meal is being sent to landfills. The aim of this work is to evaluate the co-gasification of low percentages of meat and bone meal with coal in a fluidised bed reactor as a potential waste management alternative. The effect of the bed temperature (800-900{sup o}C), the equivalence ratio (0.25-0.35) and the percentage of MBM in the solid fed (0-1 wt.%) on the co-gasification product yields and properties is evaluated. The results show the addition of 1 wt.% of MBM in a coal gasification process increases the gas and the liquid yield and decreases the solid yield at 900{sup o}C and 0.35 of temperature and equivalence ratio operational conditions. At operational conditions of 900{sup o}C and equivalence ratio of 0.35, the specific yield to gas (y{sub gas}) increases from 3.18 m{sup 3}(STP)/kg to 4.47 m{sup 3}(STP)/kg. The gas energy yield decreased 24.1% and the lower heating value of the gas decreases from 3.36 MJ/m{sup 3}(STP) to 2.16 MJ/m{sup 3}(STP). The concentration of the main gas components (H{sub 2}, CO and CO{sub 2}) hardly varies with the addition of MBM, however the light hydrocarbon concentrations decrease and the H{sub 2}S concentration increases at the higher temperature (900{sup o}C). 32 refs., 9 figs., 7 tabs.

  6. The Buggenum coal gasification power plant - associated material and residue investigations; Das Kohlevergasungswerk Buggenum - begleitende Werkstoff- und Rueckstandsuntersuchungen

    Energy Technology Data Exchange (ETDEWEB)

    Liere, J. van [N.V. KEMA, Arnheim (Netherlands); Bakker, W.T. [EPRI, Palo Alto, CA (United States); Bolt, N. [N.V. KEMA, Arnheim (Netherlands)

    1995-01-01

    Following an introduction on the present status of coal gasification technology, a review follows of current knowledge about materials for high-reducing synthetic gas in coal gasification plants. Present practice indicates that most metal alloys are used as heat exchangers for evaporation at 350 to 450 C. Materials for gasification technology have been researched since the end of the 1970s; several commercially available materials have been investigated. In addition, the utilization of slag is being examined. Today, a multiplicity of applications are available. (orig.) [Deutsch] Nach der Vorstellung des heutigen Standes der Kohlevergasungstechnologie folgt eine Uebersicht der heutigen Kenntnisse ueber Werkstoffe fuer hochreduzierendes Syngas in Kohlevergasungsanlagen. Die heutige Praxis zeigt, dass die meisten Metallegierungen als Waermeaustauscher benutzt werden fuer das Verdampfen bei 350 bis 450 C. Werkstoffe fuer die Vergasungstechnologie werden seit Ende der 70er Jahre erforscht; mehrere kommerziell erhaeltliche Werkstoffe wurden untersucht. Auch die Verwendung der Schlacke ist untersucht worden. Heute steht eine Vielzahl von Anwendungen zur Verfuegung. (orig.)

  7. Up against Giants: The National Indian Youth Council, the Navajo Nation, and Coal Gasification, 1974-77

    Science.gov (United States)

    Shreve, Bradley Glenn

    2006-01-01

    In the spring of 1977, members of the National Indian Youth Council (NIYC), along with the Coalition for Navajo Liberation, barraged the Secretary of the Interior and the chairman of the Navajo Nation with petitions calling for a halt to the proposed construction of several coal gasification plants on the Navajo Reservation in northwestern New…

  8. Toxicity studies of underground coal gasification and tarsands processes. Progress report, February 1, 1982-January 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Process waters were obtained from trial coal gasification experiments at Hanna, Wyoming and Vernal, Utah. Samples were assayed for toxicity using the Ames test and the Paramecium bioassay. Results indicate that both the Paramecium and Ames bioassays show sporadic genotoxic response to the process waters. (DMC)

  9. Valve development for coal gasification plants. Phase II (Draft). Quarterly technical program report, October--December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Bellezza, D.

    1979-01-01

    This is the tenth in a series of Quarterly Technical Progress Reports relating to the Valve Development for Coal Gasification Plants Program. This document discusses engineering progress during the period of October to December 1978. Work performed is discussed briefly. (LTN)

  10. Current Status and Progress of Coal Gasification Technology%煤气化技术的发展现状及研究进展

    Institute of Scientific and Technical Information of China (English)

    陈俊峰

    2012-01-01

    The importance of coal gasification technology was elucidated after the raise of clean coal technology conception based on the energy utilization and environment situation in China.Some typical industrialized coal gasification technologies were reviewed,and the latest progress of coal gasification technology was summarized.Finally,the development orientation and trend of coal gasification technology were presented.%从我国能源利用及环境现状出发,由洁净煤技术概念引出煤气化技术的重要性,介绍了当前典型的商业化运用的煤气化技术,总结了煤气化技术的一些最新研究进展情况,最后展望了未来我国煤气化技术的发展方向及趋势。

  11. Analysis on coal gasification technology and its development trend%浅析煤炭气化技术及发展趋势

    Institute of Scientific and Technical Information of China (English)

    郭冠龙; 滑怀田

    2011-01-01

    主要阐述了煤炭气化技术的基本原理和过程,并对煤炭气化的一些主要工艺方法作了简要的分析说明。同时对该技术的发展趋势以及发展煤炭气化的必要性进行了相关介绍。%This paper described the basic principles and processes of coal gasification technology,analyzed some processes of coal gasification and introduced the necessity and trends of developing coal gasification.

  12. Reactions of calcium-based sorbents with sulfur in coal during gasification

    Energy Technology Data Exchange (ETDEWEB)

    Rehmat, A.; Abbasian, M.J.; Leppin, D.; Banerjee, D.D.

    1987-01-01

    This status report outlines the results obtained to date of the current research program supported jointly by the Gas Research Institute and the State of Illinois Center for Research on Sulfur in Coal. The overall objective is to obtain data related to the efficient utilization of high-sulfur Illinois coal in a One-Step Desulfurization Process by employing in-situ removal of sulfur using calcium-based sorbents. The project includes a study of fluidization behavior of coal char/sorbent mixtures and the reactions of calcium-based sorbents with sulfur present in the coal during gasification. The tests are conducted in bench-scale units; an 8-inch fluidization column is utilized for fluidization tests, and a thermobalance reactor is used for gas-solid reactions. The test parameters include the choice of sorbent, sorbent size, the effect of temperature on sulfation and sulfidation reactions, the effect of the steam-to-hydrogen sulfide ratio on the sulfidation reaction, the effect of the steam on the sulfation reaction, and the influence of exposure time on sulfation of the presulfided sorbent. The reaction conditions for these reactions have been chosen to be directly applicable to scale-up of the One-Step Desulfurization Process. 7 refs., 9 figs., 11 tabs.

  13. Japan`s New Sunshine Project. 1996 Annual Summary of Coal Liquefaction and Gasification; 1996 nendo new sunshine keikaku seika hokokusho gaiyoshu. Sekitan no ekika gasuka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    In reference to the results of the research and development under the fiscal 1996 New Sunshine Project, a report was summed up on coal liquefaction and coal gasification. As to the R and D of coal liquefaction technology, researches were conducted on liquefaction characteristics and engineering properties by coal kind, catalysts for coal liquefaction, liquefaction reaction of coal and reformation utilization of the liquefied products, liquefaction reaction mechanism and coking mechanism, solubility of coal in solvent and catalytic reaction mechanism, solvent reaction mechanism by hydrogen donor solvent, etc. Concerning the R and D of coal gasification technology, made were the basic study of eco-technology adaptable gasification technology and the study of coal gasification enhancing technology. Further, as to the development of bituminous coal liquefaction technology, carried out were the study in pilot plants and the support study of pilot plants. Additionally, R and D were done of the basic technology of coal liquefaction such as upgrading technology and environmentally acceptable coal liquefaction technology, and of coal hydrogasification technology. 3 refs., 81 figs., 25 tabs.

  14. Comparison of steam-gasification characteristics of coal char and petroleum coke char in drop tube furnace

    Institute of Scientific and Technical Information of China (English)

    Lu Ding; Zhijie Zhou; Wei Huo; Guangsuo Yu

    2015-01-01

    The steam-gasification reaction characteristics of coal and petroleum coke (PC) were studied in the drop tube fur-nace (DTF). The effects of various factors such as types of carbonaceous material, gasification temperature (1100–1400 °C) and mass ratio of steam to char (0.4:1, 0.6:1 and 1:1 separately) on gasification gas or solid products were investigated. The results showed that for al carbonaceous materials studied, H2 content exhibited the larg-est part of gasification gaseous products and CH4 had the smal est part. For the two petroleum cokes, CO2 content was higher than CO, which was similar to Zun-yi char. When the steam/char ratio was constant, the carbon con-version of both Shen-fu and PC chars increased with increasing temperature. When the gasification temperature was constant, the carbon conversions of al char samples increased with increasing steam/char ratio. For al the steam/char ratios, compared to water gas shift reaction, char-H2O and char-CO2 reaction were further from the thermodynamic equilibrium due to a much lower char gasification rate than that of water gas shift reaction rate. Therefore, kinetic effects may play a more important role in a char gasification step than thermodynamic ef-fects when the gasification reaction of char was held in DTF. The calculating method for the equilibrium shift in this study wil be a worth reference for analysis of the gaseous components in industrial gasifier. The reactivity of residual cokes decreased and the crystal layer (L002/d002) numbers of residual cokes increased with increasing gasification temperature. Therefore, L002/d002, the carbon crystallite structure parameter, can be used to evaluate the reactivity of residual cokes.

  15. Three-dimensional non-linear numerical analysis on the oxygen concentration field in underground coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lanhe [College of Mineral Resources and Geosciences, China University of Mining and Technology, Xuzhou, Jiangsu Province 221008 (China)

    2004-10-15

    The stability of the process of underground coal gasification and its gas compositions depend on, to a large extent, the features of the convection diffusion of the gas and the dynamical conditions of chemical reactions. The dynamic distribution of the gasification agent concentration, in particular, has a great influence on the combustion and gasification reactions. In this paper, the basic features of convection diffusion for the gas produced in underground coal gasification are studied. On the basis of the model experiment, through the analysis of the distribution and patterns of variation for the fluid concentration field in the process of the combustion and gasification of the coal seams within the gasifier, the 3-D non-linear unstable mathematical models on the convection diffusion for oxygen are established. Additionally, the determination method of the major model parameters is explained. In order to curb such pseudo-physical effects as numerical oscillation and surfeit frequently occurred in the solution of the complex mathematical models, the novel finite unit algorithm-the upstream weighted multi-cell balance method is adopted in this paper to solve the numerical models established. The author also analyzed and discussed the simulated calculation results, which show that, except very few points in loosening zone, where the relative calculation error is comparatively high (>20%) resulting from the low oxygen concentration, the relative calculation error of other points falls between 7% and 17%. Therefore, the calculation value and the experiment value take on a good conformity. According to the simulated results, the calculation value of the oxygen concentration is a little bit lower than the experiment one. On top of that, with the prolonging of gasification time, in high temperature zone, the change gradient of oxygen concentration for experiment value is bigger than that of the calculation value. The oxygen concentration is in direct proportion to its

  16. Analysis of industrial markets for low and medium Btu coal gasification. [Forecasting

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-30

    Low- and medium-Btu gases (LBG and MBG) can be produced from coal with a variety of 13 existing and 25 emerging processes. Historical experience and previous studies indicate a large potential market for LBG and MBG coal gasification in the manufacturing industries for fuel and feedstocks. However, present use in the US is limited, and industry has not been making substantial moves to invest in the technology. Near-term (1979-1985) market activity for LBG and MBG is highly uncertain and is complicated by a myriad of pressures on industry for energy-related investments. To assist in planning its program to accelerate the commercialization of LBG and MBG, the Department of Energy (DOE) contracted with Booz, Allen and Hamilton to characterize and forecast the 1985 industrial market for LBG and MBG coal gasification. The study draws five major conclusions: (1) There is a large technically feasible market potential in industry for commercially available equipment - exceeding 3 quadrillion Btu per year. (2) Early adopters will be principally steel, chemical, and brick companies in described areas. (3) With no additional Federal initiatives, industry commitments to LBG and MBG will increase only moderately. (4) The major barriers to further market penetration are lack of economic advantage, absence of significant operating experience in the US, uncertainty on government environmental policy, and limited credible engineering data for retrofitting industrial plants. (5) Within the context of generally accepted energy supply and price forecasts, selected government action can be a principal factor in accelerating market penetration. Each major conclusion is discussed briefly and key implications for DOE planning are identified.

  17. 煤气化装置运行总结%RUNNING SUMMARY OF COAL-GASIFICATION PLANT

    Institute of Scientific and Technical Information of China (English)

    吴奇洪

    2012-01-01

    To sum up the typical method in managing the raw coal quality in a long-term running of coal-gasification plant and analyze and investigate the problems appeared during the operation and solutions thereof to accumulate the experience based on the summary and perfection and further improve and optimize a safe, long-term and stable running of the coal-gasification plant.%总结煤气化装置长周期运行中原料煤的煤质管理等典型做法,分析和探讨运行过程中出现的问题及解决措施,力求在总结、完善的基础上积累经验,进一步改进和优化煤气化装置的安稳长运行。

  18. Comparison of kinetic models for isothermal CO2 gasification of coal char-biomass char blended char

    Science.gov (United States)

    Zuo, Hai-bin; Geng, Wei-wei; Zhang, Jian-liang; Wang, Guang-wei

    2015-04-01

    This study investigated the isothermal gasification reactivity of biomass char (BC) and coal char (CC) blended at mass ratios of 1:3, 1:1, and 3:1 via isothermal thermogravimetric analysis (TGA) at 900, 950, and 1000°C under CO2. With an increase in BC blending ratio, there were an increase in gasification rate and a shortening of gasification time. This could be attributed to the high specific surface area of BC and the high uniformity of carbon structures in CC when compared to those in BC. Three representative gas-solid kinetic models, namely, the volumetric model (VM), grain model (GM), and random pore model (RPM), were applied to describe the reaction behavior of the char. Among them, the RPM model was considered the best model to describe the reactivity of the char gasification reaction. The activation energy of BC and CC isothermal gasification as determined using the RPM model was found to be 126.7 kJ/mol and 210.2 kJ/mol, respectively. The activation energy was minimum (123.1 kJ/mol) for the BC blending ratio of 75%. Synergistic effect manifested at all mass ratios of the blended char, which increased with the gasification temperature.

  19. Combined coal gasification and Fe{sub 3}O{sub 4}-reduction using high-temperature solar process heat

    Energy Technology Data Exchange (ETDEWEB)

    Tamaura, Y. [Tokyo Inst. of Technology, Tokyo (Japan); Ehrensberger, K.; Steinfeld, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The coal/Fe{sub 3}O{sub 4} system was experimentally studied at PSI solar furnace. The reactants were directly exposed to a solar flux irradiation of 3,000 suns (1 sun = 1 kW/m{sup 2}). The combined gasification of coal and reduction of Fe{sub 2}O{sub 3} proceeded rapidly after only one second exposure, suggesting an efficient heat transfer and chemical conversion by direct solar energy absorption at the reaction site. The proposed solar thermochemical process offers the possibility of converting coal to a cleaner fluid fuel with a solar-upgraded calorific value. (author) 2 figs., 8 refs.

  20. Gasification in pulverized coal flames. Second quarterly progress report, October--December 1975. [Contains literature survey on vortex gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Lenzer, R. C.; George, P. E.; Laurendeau, N. M.

    1976-01-01

    This project is concerned with the production of power and synthesis gases from pulverized coal via suspension gasification. A literature review concerning the vortex type gasifier has been completed and a survey concerning the confined jet gasifier is underway. Preliminary design of the vortex gasifier is nearing completion. Test cell and coal handling facilities are in the final stages of design and coal handling equipment has been received. A mass spectrometer has been ordered and a preliminary survey of high-temperature probes is complete.

  1. Development of a model of entrained flow coal gasification and study of aerodynamic mechanisms of action on gasifier operation

    Science.gov (United States)

    Abaimov, N. A.; Ryzhkov, A. F.

    2015-11-01

    Problems requiring solution in development of modern highly efficient gasification reactor of a promising high power integrated gasification combined-cycle plant are formulated. The task of creating and testing a numerical model of an entrained-flow reactor for thermochemical conversion of pulverized coal is solved. The basic method of investigation is computational fluid dynamics. The submodel of thermochemical processes, including a single-stage scheme of volatile substances outlet and three heterogeneous reactions of carbon residue conversion (complete carbon oxidation, Boudouard reaction and hydrogasification), is given. The mass loss rate is determined according to the basic assumptions of the diffusion-kinetic theory. The equations applied for calculation of the process of outlet of volatile substances and three stages of fuel gasifi-cation (diffusion of reagent gas toward the surface of the coal particle, heterogeneous reactions of gas with carbon on its surface, and homogeneous reactions beyond the particle surface) are presented. The universal combined submodel Eddy Dissipation/Finite Rate Chemistry with standard (built-in) constants is used for numerical estimates. Aerodynamic mechanisms of action on thermochemical processes of solid fuel gasification are studied, as exemplified by the design upgrade of a cyclone reactor of preliminary thermal fuel preparation. Volume concentrations of combustible gases and products of complete combustion in the syngas before and after primary air and pulverized coal flows' redistribution are given. Volume concentrations of CO in syngas at different positions of tangential secondary air inlet nozzle are compared.

  2. Effects and characterization of an environmentally-friendly, inexpensive composite Iron-Sodium catalyst on coal gasification

    Science.gov (United States)

    Monterroso, Rodolfo

    Coal gasification has been commercially used for more than 60 years in the production of fuels and chemicals. Recently, and due to the lowered environmental impacts and high efficiency derived from integrated gasification combined cycle (IGCC), this process has received increased attention. Furthermore, upcoming strict CO2 emissions regulations by the U.S. Environmental Protection Agency (EPA) will no longer be achievable by traditional means of coal combustion, therefore, growing dependence on different energy sources has drawn attention to clean coal technologies, such as coal-to-liquids processing, and the core of this process is also gasification. Gasification is an energy intensive process that can be substantially improved in terms of efficiency through the use of catalysts. In this study, the effect of the composite catalyst, FeCO3-Na2CO3, on gasification of a low-sulfur sub-bituminous Wyodak coal from the Powder River Basin (PRB) of Wyoming was investigated. The catalytic effects of the composite catalysts were evaluated by comparing their effluent gas compositions and carbon conversion kinetics to those achieved in the presence of either FeCO3 or Na2CO3 catalyst alone or without the presence of any catalyst. All of the evaluation work was conducted in a fixed bed gasifier at atmospheric pressure. Compared to raw coal with no catalyst, the composite catalyst is efficient in increasing the carbon conversion rate constant by as much as two times within the 700-800°C range due to its ability to reduce the activation energy of gasification by about 30-40%. Compared to pure sodium and iron catalysts, the composite catalyst can increase the yields of desired products H2 and CO at 800°C by 15% and 40%, respectively. The composite catalyst can not only synergize the advantages, but also overcome the challenges of pure iron or pure sodium based catalytic coal gasification processes. Moreover, the mechanisms of this particular catalytic coal gasification process

  3. Behaviour of gaseous alkali compounds in coal gasification; Kaasumaisten alkaliyhdisteiden kaeyttaeytyminen kivihiilien kaasutuksessa

    Energy Technology Data Exchange (ETDEWEB)

    Nykaenen, J. [Imatran Voima Oy, Vantaa (Finland)

    1997-10-01

    In this project the behaviour of alkali compounds emitting from CO{sub 2}/O{sub 2}- and airblown gasification are studied. This research project is closely connected to an EU-project coordinated by the Delft University of Technology (DUT). In that project alkali emissions from a 1.6 MW pilot plant will be measured. The results from those measurements will be compared with the calculations performed in this LIEKKI 2 project. The equilibrium calculations show that the major gaseous alkali compounds emitting from combustion and gasification are chlorides and hydroxides. This applies both to air- and CO{sub 2}/O{sub 2}-blown processes. In all the cases studied the concentration of gaseous alkali compounds is determined mainly by the amount of chlorides. The key parameters, with respect to alkali behaviour, are the temperature of the process and chlorine content of the coal. By cooling the gases down to 600 deg C prior to a ceramic filter the alkali concentration can be kept about at 100 ppbv. In combustion, the addition of calcium carbonate increases the amount of gaseous alkali compounds by decreasing the amount of alkali sulphates. In the case of gasification the importance of limestone is negligible. The difference between air- and CO{sub 2}/O{sub 2}-blown processes, in terms of gaseous alkali emissions, is small. This is because CO{sub 2} concentration of the gas does not have a strong impact on alkali chlorides. Furthermore, the effect of CO{sub 2}/O{sub 2}-ratio of the recirculation process is negligible. (orig.)

  4. TEMPERATURE FIELD MODEL OF TWO-STAGE UNDERGROUND COAL GASIFICATION%两阶段煤炭地下气化温度场模型

    Institute of Scientific and Technical Information of China (English)

    杨兰和

    2001-01-01

    Two-stage underground coal gasification is an effective method which can produce water gas with high heating value,while the temperature is the key factor that determines on its producing process. On the basis of model test, the mathematical model for two dimensions, non-linear, unsteady temperature field is established through analyzing the distribution law of temperature field for combustion and gasification of coal seam in the stove, and outlining and treating the boundary conditions. A selection method of the model parameters has been introduced. The mathematical model is solved by the control volume method,and calculation results are analysed. The uniformity of calculation and real measurement value indicate that the numerical simulation of dynamic state temperature field for the coal seam medium in the gasification stove is correct.Thereby,it provides a necessarily theoretical base for further quantitative study on process of underground coal gasification.

  5. Overseas Coal Gasification Equipment Technology and Its Application in China%国外煤气化设备技术及在中国的应用

    Institute of Scientific and Technical Information of China (English)

    钱伯章

    2016-01-01

    对几种煤气化炉炉型进行了技术对比。论述了煤气化技术的选用原则。分析了我国煤气化技术装备需要解决的一些问题。通过实例较详细地介绍了国外煤气化技术在中国的应用。%The technical comparison between different types of the coal gasification furnaces is presented and the selection principal of the coal gasification technology is discussed. Furthermore, the unsolved problems in the coal gasification equipment of Chinese enterprises are analyzed. The applications of the overseas coal gasification technology in China are introduced through case study.

  6. Characterization, leachability and valorization through combustion of residual chars from gasification of coals with pine.

    Science.gov (United States)

    Galhetas, Margarida; Lopes, Helena; Freire, Márcia; Abelha, Pedro; Pinto, Filomena; Gulyurtlu, Ibrahim

    2012-04-01

    This paper presents the study of the combustion of char residues produced during co-gasification of coal with pine with the aim of characterizing them for their potential use for energy. These residues are generally rich in carbon with the presence of other elements, with particular concern for heavy metals and pollutant precursors, depending on the original fuel used. The evaluation of environmental toxicity of the char residues was performed through application of different leaching tests (EN12457-2, US EPA-1311 TCLP and EA NEN 7371:2004). The results showed that the residues present quite low toxicity for some of pollutants. However, depending on the fuel used, possible presence of other pollutants may bring environmental risks. The utilization of these char residues for energy was in this study evaluated, by burning them as a first step pre-treatment prior to landfilling. The thermo-gravimetric analysis and ash fusibility studies revealed an adequate thermochemical behavior, without presenting any major operational risks. Fluidized bed combustion was applied to char residues. Above 700°C, very high carbon conversion ratios were obtained and it seemed that the thermal oxidation of char residues was easier than that of the coals. It was found that the char tendency for releasing SO(2) during its oxidation was lower than for the parent coal, while for NO(X) emissions, the trend was observed to increase NO(X) formation. However, for both pollutants the same control techniques might be applied during char combustion, as for coal. Furthermore, the leachability of ashes resulting from the combustion of char residues appeared to be lower than those produced from direct coal combustion.

  7. Lawrence Livermore National Laboratory underground coal gasification data base. [US DOE-supported field tests; data

    Energy Technology Data Exchange (ETDEWEB)

    Cena, R. J.; Thorsness, C. B.

    1981-08-21

    The Department of Energy has sponsored a number of field projects to determine the feasibility of converting the nation's vast coal reserves into a clean efficient energy source via underground coal gasification (UCG). Due to these tests, a significant data base of process information has developed covering a range of coal seams (flat subbituminous, deep flat bituminous and steeply dipping subbituminous) and processing techniques. A summary of all DOE-sponsored tests to data is shown. The development of UCG on a commercial scale requires involvement from both the public and private sectors. However, without detailed process information, accurate assessments of the commercial viability of UCG cannot be determined. To help overcome this problem the DOE has directed the Lawrence Livermore National Laboratory (LLNL) to develop a UCG data base containing raw and reduced process data from all DOE-sponsored field tests. It is our intent to make the data base available upon request to interested parties, to help them assess the true potential of UCG.

  8. Producing fired bricks using coal slag from a gasification plant in indiana

    Science.gov (United States)

    Chen, L.-M.; Chou, I.-Ming; Chou, S.-F.J.; Stucki, J.W.

    2009-01-01

    Integrated gasification combined cycle (IGCC) is a promising power generation technology which increases the efficiency of coal-to-power conversion and enhances carbon dioxide concentration in exhaust emissions for better greenhouse gas capture. Two major byproducts from IGCC plants are bottom slag and sulfur. The sulfur can be processed into commercially viable products, but high value applications need to be developed for the slag material in order to improve economics of the process. The purpose of this study was to evaluate the technical feasibility of incorporating coal slag generated by the Wabash River IGCC plant in Indiana as a raw material for the production of fired bricks. Full-size bricks containing up to 20 wt% of the coal slag were successfully produced at a bench-scale facility. These bricks have color and texture similar to those of regular fired bricks and their water absorption properties met the ASTM specifications for a severe weathering grade. Other engineering properties tests, including compressive strength tests, are in progress.

  9. Thermal expansion of slag and fly ash from coal gasification in IGCC power plant

    Energy Technology Data Exchange (ETDEWEB)

    M. Aineto; A. Acosta; J.M.A. Rincon; M. Romero [University of Castilla La Mancha, Ciudad Real (Spain). Laboratory of Applied Mineralogy

    2006-11-15

    Integrated gasification in combined cycle (IGCC) is an electrical power generation system which is characterized to be a clean coal technology different than conventional process in combustible treatment. IGCC process gives rise to inorganic solid wastes in the form of vitreous slag and fly ashes with singular thermal properties. The gasification of the fuel takes place at high temperature and pressure in reducing atmosphere. Under that conditions, gases such as H{sub 2}, N{sub 2} or CO, which are the main components of the gas mixture in the gasifier, show a high solubility in the melt and during the cooling remain enclosed in the vitreous slag. When these wastes are afterward thermal treated in oxidizing conditions, two phenomena occur. The development of a crystalline phase by devitrification of the glassy matrix and the releasing of the enclosed gas, which starts at temperatures nearly to the softening point. At higher temperatures the bubbles with increasing kinetic energy tend to ascend with difficulty through the viscous liquid phase and promotes an expansive reaction, giving rise to a foam glass-ceramic product. This paper has been focused on the study of thermal expansion in slag and fly ash samples from the ELCOGAS IGCC power plant located in Puertollano (Spain). 18 refs., 11 figs., 1 tab.

  10. FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hurt; Joseph Calo; Thomas H. Fletcher; Alan Sayre

    2005-04-29

    The goal of this project was to carry out the necessary experiments and analyses to extend current capabilities for modeling fuel transformations to the new conditions anticipated in next-generation coal-based, fuel-flexible combustion and gasification processes. This multi-organization, multi-investigator project has produced data, correlations, and submodels that extend present capabilities in pressure, temperature, and fuel type. The combined experimental and theoretical/computational results are documented in detail in Chapters 1-8 of this report, with Chapter 9 serving as a brief summary of the main conclusions. Chapters 1-3 deal with the effect of elevated pressure on devolatilization, char formation, and char properties. Chapters 4 and 5 deal with advanced combustion kinetic models needed to cover the extended ranges of pressure and temperature expected in next-generation furnaces. Chapter 6 deals with the extension of kinetic data to a variety of alternative solid fuels. Chapter 7 focuses on the kinetics of gasification (rather than combustion) at elevated pressure. Finally, Chapter 8 describes the integration, testing, and use of new fuel transformation submodels into a comprehensive CFD framework. Overall, the effects of elevated pressure, temperature, heating rate, and alternative fuel use are all complex and much more work could be further undertaken in this area. Nevertheless, the current project with its new data, correlations, and computer models provides a much improved basis for model-based design of next generation systems operating under these new conditions.

  11. A study of toxic emissions from a coal-fired gasification plant

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.; Behrens, G. [Radian Corporation, Austin, TX (United States)

    1995-11-01

    Toxic emissions were measured in the gaseous, solid and aqueous effluent streams in a coal-fired gasification plant. Several internal process streams were also characterized to assess pollution control device effectiveness. The program, consisted of three major phases. Phase I was the toxics emission characterization program described above. phase II included the design, construction and shakedown testing of a high-temperature, high-pressure probe for collecting representative trace composition analysis of hot (1200{degrees}F) syngas. Phase III consisted of the collection of hot syngas samples utilizing the high-temperature probe. Preliminary results are presented which show the emission factors and removal efficiencies for several metals that are on the list of compounds defined by the Clean Air Act Amendments of 1990.

  12. Degradation of Phenolic Compounds in Coal Gasification Wastewater by Biofilm Reactor with Isolated Klebsiella sp

    Institute of Scientific and Technical Information of China (English)

    Fang Fang; HongJun Han; ChunYan Xu; Qian Zhao; LingHan Zhang

    2014-01-01

    This study was conducted to evaluate the degradation of phenolic compounds by one strain isolated from coal gasification wastewater ( CGW ) . 16S rRNA gene sequences homology and phylogenetic analysis showed that the isolate is belonged to the genus Klebsiella sp. The effect of different phenolic compounds on the isolate was investigated by determining OD600 and phenoloxidase activity, of which the results showed that the isolate can utilize phenol, 4-methyl phenol, 3, 5-dimethyl phenol and resorcinol as carbon resources. The biofilm reactor ( formed by the isolate) can resist the influent concentration of phenolic compounds as high as 750 mg/L when fed with synthetic CGW and incubated at optimum conditions. The capacity of improving the biodegradability of CGW through degrading phenolic compounds was testified with fed the biofilm reactor with real CGW. Thus, it might be an effective strain for bioaugmentation of CGW treatment.

  13. Some studies on a solid state sulfur probe for coal gasification systems

    Science.gov (United States)

    Jacob, K. T.; Rao, D. B.; Nelson, H. G.

    1977-01-01

    Measurements on the solid electrolyte cell (Ar + H(2) + H(2)S/CaS + CaF(2) + (Pt)//CaF(2)//(Pt) + CaF(2) + CaS/H(2) + H(2)+Ar) show that the emf of the cell is directly related to the difference in sulfur potentials established at the Ar + H(2) + H(2)S/electrode interfaces. The electrodes convert the sulfur potential gradient across the calcium fluoride electrolyte into an equivalent fluorine potential gradient. Response time of the probe varies from approximately 9 hr at 990 K to 2.5 hr at 1225 K. The conversion of calcium sulfide and/or calcium fluoride into calcium oxide is not a problem anticipated in commercial coal gasification systems. Suggestions are presented for improving the cell for such commercial applications.

  14. Treatment of coal gasification wastewater by membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system.

    Science.gov (United States)

    Jia, Shengyong; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Fang, Fang; Zhao, Qian

    2014-12-01

    A laboratory-scale membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system was developed to treat coal gasification wastewater to enhance the COD, total phenols (TPh), NH4+ removals and migrate the membrane fouling. Since the MBR–PAC system operated with PAC dosage of 4 g L−1, the maximum removal efficiencies of COD, TPh and NH4+ reached 93%, 99% and 63%, respectively with the corresponding influent concentrations of 2.27 g L−1, 497 mg L−1 and 164 mg N L−1; the PAC extraction efficiencies of COD, TPh and NH4+ were 6%, 3% and 13%, respectively; the transmembrane pressure decreased 34% with PAC after 50 d operation. The results demonstrate that PAC played a key role in the enhancement of biodegradability and mitigation of membrane fouling.

  15. Inhibition and recovery of nitrification in treating real coal gasification wastewater with moving bed biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    Huiqiang Li; Hongjun Han; Maoan Du; Wei Wang

    2011-01-01

    Moving bed biofilm reactor (MBBR) was used to treat real coal gasification wastewater.Nitrification of the MBBR was inhibited almost completely during start-up period.Sudden increase of influent total NH3 concentration was the main factor inducing nitrification inhibition.Increasing DO concentration in the bulk liquid (from 2 to 3 mg/L) had little effect on nitrification recovery.Nitrification of the MBBR recovered partially by the addition of nitrifying sludge into the reactor and almost ceased within 5 days.Nitrification ratio of the MBBR achieved 65% within 12 days by increasing dilute ratio of the influent wastewater with tap water.The ratio of nitrification decreased to 25% when infiuent COD concentration increased from 650 to 1000 mg/L after nitrification recovery and recovered 70%for another 4 days.

  16. Chronic studies in rats exposed to liquid effluent from coal gasification process.

    Science.gov (United States)

    Kostial, K; Blanusa, M; Rabar, I; Maljković, T; Kello, D; Landeka, M; Bunarević, A; Stara, J F

    1981-02-01

    The health effects of the E-effluent (water for quenching ash) from a coal gasification plant were assayed in a chronic experiment (16 month exposure) and a three generation reproduction study. Animals exposed to 100% E-effluent had an increased daily intake of various inorganic elements (Fe, Cu, K, I, Se, Cd, Hg, Pb, As, F and Cr). In spite of that, the exposed and control animals had the same mortality rate, haematological findings, urinary protein excretion, trace element concentrations in kidneys, liver and femur, bone composition and morphometry, and histological findings. The pre- and post-natal development and growth was unchanged during three generations. It is concluded that the higher intake of various inorganics caused no change in the parameters measured.

  17. Removal of phenols, thiocyanate and ammonium from coal gasification wastewater using moving bed biofilm reactor.

    Science.gov (United States)

    Li, Hui-qiang; Han, Hong-jun; Du, Mao-an; Wang, Wei

    2011-04-01

    A laboratory-scale moving bed biofilm reactor (MBBR) with a volume of 4 L was used to study the biodegradation of coal gasification wastewater. Maximum removal efficiencies of 81%, 89%, 94% and 93% were obtained for COD, phenols, SCN(-) and NH(4)(+)-N, respectively. NO(2)(-)-N accumulation induced increase of effluent COD concentration when the hydraulic residence time (HRT) decreased. Phenols removal was not affected when the HRT decreased from 48 to 32 h. Effluent SCN(-) and NH(4)(+)-N concentration increased with the decrease of the HRT, and decreased gradually when the HRT returned to 48 h. Batch experiments were carried out to study performance of the suspended and attached growth biomass in the MBBR.

  18. Inhibition and recovery of nitrification in treating real coal gasification wastewater with moving bed biofilm reactor.

    Science.gov (United States)

    Li, Huiqiang; Han, Hongjun; Du, Maoan; Wang, Wei

    2011-01-01

    Moving bed biofilm reactor (MBBR) was used to treat real coal gasification wastewater. Nitrification of the MBBR was inhibited almost completely during start-up period. Sudden increase of influent total NH3 concentration was the main factor inducing nitrification inhibition. Increasing DO concentration in the bulk liquid (from 2 to 3 mg/L) had little effect on nitrification recovery. Nitrification of the MBBR recovered partially by the addition of nitrifying sludge into the reactor and almost ceased within 5 days. Nitrification ratio of the MBBR achieved 65% within 12 days by increasing dilute ratio of the influent wastewater with tap water. The ratio of nitrification decreased to 25% when influent COD concentration increased from 650 to 1000 mg/L after nitrification recovery and recovered 70% for another 4 days.

  19. Removal of phenols, thiocyanate and ammonium from coal gasification wastewater using moving bed biofilm reactor

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.Q.; Han, H.J.; Du, M.A.; Wang, W. [Harbin Institute of Technology, Harbin (China)

    2011-04-15

    A laboratory-scale moving bed biofilm reactor (MBBR) with a volume of 4 L was used to study the biodegradation of coal gasification wastewater. Maximum removal efficiencies of 81%, 89%, 94% and 93% were obtained for COD, phenols, SCN{sup -} and NH{sub 4}{sup +}-N, respectively. NO{sub 2}{sup -}-N accumulation induced increase of effluent COD concentration when the hydraulic residence time (HRT) decreased. Phenols removal was not affected when the HRT decreased from 48 to 32 h. Effluent SCN{sup -} and NH{sub 4}{sup +}-N concentration increased with the decrease of the HRT, and decreased gradually when the HRT returned to 48 h. Batch experiments were carried out to study performance of the suspended and attached growth biomass in the MBBR.

  20. Transformation of chlorine in NaCl-loaded Victorian brown coal during the gasification in steam

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shu; Mohammad Asadullah; Rosalie Hocking; LIN Jian-ying; LI Chun-zhu

    2012-01-01

    This study is to examine the changes in Cl volatilizations and chemical forms in NaCl-loaded Victorian brown coal during gasification in steam at 800 ℃ using Cl K-edge X-ray absorption near-edge structure (XANES) spectroscopy.The char samples were prepared in a novel one-stage fluidised-bed/fixed-bed quartz reactor at a fast heating rate.The samples were then collected and sealed in an argon-filled bag in order to minimise possible oxidation of char and Cl by air prior to analysis by XANES.Char-steam reactions were found to significantly affect the transformation of Cl,including the possible formation of chlorine-containing organic structures.On the other hand,volatile-char interactions during the gasificauon appeared to enhance the Cl retention and prevent the formation of organic chlorine compounds in chars.

  1. Application of response surface methodology to assess the combined effect of operating variables on high-pressure coal gasification for H2-rich gas production

    OpenAIRE

    Fermoso Domínguez, Javier; Gil Matellanes, María Victoria; Arias Rozada, Borja; González Plaza, Marta; Pevida García, Covadonga; Pis Martínez, José Juan; Rubiera González, Fernando

    2010-01-01

    Coal gasification was performed by means of a high-pressure fixed bed gasifier fitted with a solids feeding system in continuous mode, using oxygen and steam as gasifying agents. The main aim of the paper was to assess the combined effects of the operating variables (temperature, oxygen and steam concentrations) on high-pressure coal gasification. To this end a face centered central composite design (FCCCD) based on response surface methodology (RSM) was used. The response variables studied w...

  2. Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

  3. Mechanism of coal gasification in a steam medium under arc plasma conditions

    Science.gov (United States)

    He, Xiaojun; Ma, Tengcai; Qiu, Jieshan; Sun, Tianjun; Zhao, Zongbin; Zhou, Ying; Zhang, Jialiang

    2004-08-01

    The coal gasification mechanism in a steam medium under arc plasma conditions was investigated at atmospheric pressure in a tube-type setup. The gases obtained were analysed by gas chromatography. The active species in the plasma were monitored and analysed in situ by optical emission spectroscopy (OES). The effects of operating parameters such as the current in the electromagnetic coil and the flow rate of carrier gas (air) on the gas yields as well as on the emission intensities of the active species were studied. The quantitative emission intensities of the active species are correlated with the yields of main components in the gas products. The results show that as the current in the electromagnetic coil increases, the yields of H2, CO, CO2 and O2 as well as the peak intensities of C atom, H atom, CH radical and CO+ ion detected by OES pass through a maximum. It is also found that as the flow rate of carrier gas (air) increases, the yields of CO, CO2 and O2 increase; at the same time, the yield of H2 and the peak intensities of C atoms, H atoms, CH radicals and OH radicals decrease. The presence of C atoms or H atoms in the reaction system favours the formation of H2, which is evidenced by the fact that the yield of H2 increases as the optical emission intensity of C atom or H atom species increases. Based on the experimental results, a possible mechanism of coal gasification in steam medium under plasma conditions is proposed and discussed.

  4. Mechanism of coal gasification in a steam medium under arc plasma conditions

    Energy Technology Data Exchange (ETDEWEB)

    He, X.J.; Ma, T.C.; Qiu, J.S.; Sun, T.J.; Zhao, Z.B.; Zhou, Y.; Zhang, J.L. [Dalian University of Technology, Dalian (China). Carbon Research Laboratory, Center for Nano Materials and Science

    2004-08-01

    The coal gasification mechanism in a steam medium under arc plasma conditions was investigated at atmospheric pressure in a tube-type setup. The gases obtained were analysed by gas chromatography. The active species in the plasma were monitored and analysed in situ by optical emission spectroscopy (OES). The effects of operating parameters such as the current in the electromagnetic coil and the flow rate of carrier gas (air) on the gas yields as well as on the emission intensities of the active species were studied. The quantitative emission intensities of the active species are correlated with the yields of main components in the gas products. The results show that as the current in the electromagnetic coil increases, the yields of H{sub 2}, CO, CO{sub 2} and O{sub 2} as well as the peak intensities of C atom, H atom, CH radical and CO{sup +} ion detected by OES pass through a maximum. It is also found that as the flow rate of carrier gas (air) increases, the yields of CO, CO{sub 2} and O{sub 2} increase; at the same time, the yield of H{sub 2} and the peak intensities of C atoms, H atoms, CH radicals and OH radicals decrease. The presence of C atoms or H atoms in the reaction system favours the formation of H{sub 2}, which is evidenced by the fact that the yield of H{sub 2} increases as the optical emission intensity of C atom or H atom species increases. Based on the experimental results, a possible mechanism of coal gasification in steam medium under plasma conditions is proposed and discussed.

  5. Stabilization of spent sorbents from coal gasification. Final technical report, September 1, 1992--August 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.H.; Rue, D.M.; Wangerow, J.R. [Institute of Gas Technology, Chicago, IL (United States)

    1993-12-31

    The objective of this investigation was to determine the rates of reactions involving partially sulfided dolomite and oxygen, which is needed for the design of the reactor system for the stabilization of sulfide-containing solid wastes from gasification of high sulfur coals. To achieve this objective, samples of partially sulfided dolomite were reacted with oxygen at a variety of operating conditions in a fluidized-bed reactor. The effect of external diffusion was eliminated by using small quantities of the sorbent and maintaining a high flow rate of the reactant gas. The reacted sorbents were analyzed to determine the extent of conversion as a function of operating variables including sorbent particle size, reaction temperature and pressure, and oxygen concentration. The results of sulfation tests indicate that the rate of reaction increases with increasing temperature, increasing oxygen partial pressure, and decreasing sorbent particle size. The rate of the sulfation reaction can be described by a diffuse interface model where both chemical reaction and intraparticle diffusion control the reaction rate. The kinetic model of the sulfation reaction was used to determine the requirements for the reactor system, i.e., reactor size and operating conditions, for successful stabilization of sulfide-containing solid wastes from gasification of high sulfur coals (with in-bed desulfurization using calcium based sorbents). The results indicate that the rate of reaction is fast enough to allow essentially complete sulfation in reactors with acceptable dimensions. The optimum sulfation temperature appears to be around 800{degrees}C for high pressure as well as atmospheric stabilization of the spent sorbents.

  6. 煤气废水酸化破乳预处理功效探讨%Pretreatment of Coal Gasification Wastewater by Acidification Demulsion

    Institute of Scientific and Technical Information of China (English)

    张文启; 马军; 杨世东; 张涛; 李永峰

    2006-01-01

    General pretreatment processes of ammonia stripping and phenols solvent extraction can reduce the concentration of toxic compounds of the coal gasification wastewater for the following biological treatment. However, some emulsified coal tar still exists in the influent and many substances in coal tar are refractory and toxic to microorganisms. This study is mainly on the removal of emulsified coal tar by acidification demulsion. The experimental results show that the acidification process of the wastewater by pure hydrochloric acid can reduce the chemical oxygen demand (COD), total organic carbon (TOC), total phenolics and oil about 3.1%-11.3%, 6%10.8%, 5.3%-8.6% and 25.2%-57.4% respectively with pH value in the range of 4 to 7. The analysis of molecular weight distribution indicates that compounds removed from the wastewater by this process are large molecular substances. The experiment also shows that the efficiency of COD removal in the demulsion process by different acids is different and the phosphoric acid is prominent. The preserved time of the wastewater also affects the efficiency of demulsion. Small amount low-cost solid additives including kaolin and diatomite can improve the rate of coal tar sedimentation and enhance the removal efficiency of organics in the phosphoric acidification process.

  7. Technological Analysis on Choren High-Pressure Pulverized Coal Gasification Process%科林高压干粉煤气化工艺技术分析

    Institute of Scientific and Technical Information of China (English)

    赵小倩; 胡长胜

    2011-01-01

    The process and features of Choren high-pressure pulveried coal gasification are presented. Operability of the gasification technology is analysed. And the operation data as compared with the other two coal gasification processes, i.e. pulverized coal gasification process with waste heat boiler and coal-water slurry pressure gasification process, using in China are described briefly. Choren high-pressure pulverized coal gasification process is featured with simple in equipment structure, wider applicability of coal variety, lower consumption and high localization of equipment.%介绍了科林高压干粉煤气化的工艺流程、工艺特点.对该气化技术的可操作性进行了分析,并与国内应用的2种煤气化工艺(干粉煤废锅气化工艺和水煤浆加压气化工艺)数据进行了简单对比.科林高压干粉煤气化工艺具有设备结构简单、煤种适用性更宽、消耗低和设备国产化程度高的特点.

  8. Prediction and measurement of entrained flow coal gasification processes. Interim report, September 8, 1981-September 7, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Hedman, P.O.; Smoot, L.D.; Fletcher, T.H.; Smith, P.J.; Blackham, A.U.

    1984-01-31

    This volume reports interim experimental and theoretical results of the first two years of a three year study of entrained coal gasification with steam and oxygen. The gasifier facility and testing methods were revised and improved. The gasifier was also modified for high pressure operation. Six successful check-out tests at elevated pressure were performed (55, 75, 100, 130, 170, and 215 psig), and 8 successful mapping tests were performed with the Utah bituminous coal at an elevated pressure of 137.5 psig. Also, mapping tests were performed at atmospheric pressure with a Utah bituminous coal (9 tests) and with a Wyoming subbituminous coal (14 tests). The LDV system was used on the cold-flow facility to make additional nonreactive jets mixing measurements (local mean and turbulent velocity) that could be used to help validate the two-dimensional code. The previously completed two-dimensional entrained coal gasification code, PCGC-2, was evaluated through rigorous comparison with cold-flow, pulverized coal combustion, and entrained coal gasification data. Data from this laboratory were primarily used but data from other laboratories were used when available. A complete set of the data used has been compiled into a Data Book which is included as a supplemental volume of this interim report. A revised user's manual for the two-dimensional code has been prepared and is also included as a part of this interim report. Three technical papers based on the results of this study were published or prepared. 107 references, 57 figures, 35 tables.

  9. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez-Mariano; Angel Sanjurjo

    2006-06-30

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this period, we analyzed several coated and exposed samples of 409 steel by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). We report here on findings of this analysis: (1) A SS409 coupon that was coated with multilayered combined nitrides of Ti, Al, and Si showed adherent coatings on the surface; (2) A similarly coated coupon, after exposure to simulated coal gas at 900 C for 300 h, revealed that the coating has cracked during the exposure; (3) An SS409 coupon that was coated with nitrides of Ti and Si with a barrier layer of tungsten in between to improve the adhesion of the coating and to prevent outward diffusion of iron to the surface. (4) A porous coupon was coated with nitrides of Ti and Al and examination of the coupon revealed deposition of Ti at the interior surfaces. A similarly prepared coupon was exposed to simulated coal gas at 370 C for 300 h, and it showed no corrosion.

  10. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez-Mariano; Angel Sanjurjo

    2007-03-31

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the hightemperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this period, we analyzed several 409 low alloy steel samples after coating them in our fluidized bed reactor and also after exposing them to our corrosion test. We report the following findings: 1. A protective coating was deposited inside a porous 409 steel sample to protect it from sulfidation attack. The coating was based on a combination of Si diffusion layer, Nb interlayer and nitrides of titanium and silicon. 2. Analysis of solid coupons exposed to simulated coal gas at 900 C for 300 h showed that multilayer metal/ceramic coatings provide a better protection than ceramic coatings. 3. Deposition of several ceramic/metal multilayer coatings showed that coatings with niobium and tantalum interlayers have good adhesion. However, coatings with a tungsten interlayer suffered localized delaminating and coatings with Zr interlayers showed poor adhesion. 4. Analysis of solid coupons, coated with the above-mentioned multilayer films, after exposure to simulated coal gas at 900 C for 300 h showed that niobium is the best candidate for interlayer material.

  11. 煤加氢气化技术研究进展%Progress of Researching Technology of Coal and Hydro-gasification

    Institute of Scientific and Technical Information of China (English)

    袁申富; 曲旋; 张荣; 毕继诚

    2012-01-01

    阐述了煤加氢气化生产替代天然气(SNG)的优势,分析了国内外几种先进的煤加氢气化技术,并详细介绍了气流床煤加氢气化的研究进展。%The authors expounded advantages of substitution natural gas through technology of coal and hydro-gasification. Then, the authors analyzed some advanced technologies of coal and hydro-gasification at home and abroad, and introduced progress of hydro-gasification of entrained flow.

  12. Wabash River Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The proposed project would result in a combined-cycle power plant with lower emissions and higher efficiency than most existing coal-fired power plants of comparable size. The net plant heat rate (energy content of the fuel input per useable electrical generation output; i.e., Btu/kilowatt hour) for the new repowered unit would be a 21% improvement over the existing unit, while reducing SO{sub 2} emissions by greater than 90% and limiting NO{sub x} emissions by greater than 85% over that produced by conventional coal-fired boilers. The technology, which relies on gasified coal, is capable of producing as much as 25% more electricity from a given amount of coal than today`s conventional coal-burning methods. Besides having the positive environmental benefit of producing less pollutants per unit of power generated, the higher overall efficiency of the proposed CGCC project encourages greater utilization to meet base load requirements in order to realize the associated economic benefits. This greater utilization (i.e., increased capacity factor) of a cleaner operating plant has global environmental benefits in that it is likely that such power would replace power currently being produced by less efficient plants emitting a greater volume of pollutants per unit of power generated.

  13. Forming the Composition of Underground Coal Gasification Products in the Simulation of Various Heat and Mass Transfer Conditions in the Coal Seam

    Directory of Open Access Journals (Sweden)

    Masanik A.S.

    2016-01-01

    Full Text Available The mathematical model describing the heat and mass transfer processes in underground coal gasification is proposed. Numerical studies have allowed to determine the composition of gases depending on the temperature, pressure products of gasification, and the composition of the heated oxidant injected. Relations the composition of the concentration of combustible gas component of the oxidant injected: dry air, a mixture of oxygen, nitrogen and water vapor in different proportions were prepared. It is found that, depending on the oxygen content in the oxidizer low-temperature gasification mode is implemented (up to 15%. At higher values of the oxygen concentration in the oxidizer the high-temperature mode is realized, in which the fuel gas output increases significantly.

  14. Chemical process modelling of Underground Coal Gasification (UCG) and evaluation of produced gas quality for end use

    Science.gov (United States)

    Korre, Anna; Andrianopoulos, Nondas; Durucan, Sevket

    2015-04-01

    Underground Coal Gasification (UCG) is an unconventional method for recovering energy from coal resources through in-situ thermo-chemical conversion to gas. In the core of the UCG lays the coal gasification process which involves the engineered injection of a blend of gasification agents into the coal resource and propagating its gasification. Athough UCG technology has been known for some time and considered a promising method for unconventional fossil fuel resources exploitation, there are limited modelling studies which achieve the necessary accuracy and realistic simulation of the processes involved. This paper uses the existing knowledge for surface gasifiers and investigates process designs which could be adapted to model UCG. Steady state simulations of syngas production were developed using the Advanced System for Process ENgineering (Aspen) Plus software. The Gibbs free energy minimisation method was used to simulate the different chemical reactor blocks which were combined using a FORTRAN code written. This approach facilitated the realistic simulation of the gasification process. A number of model configurations were developed to simulate different subsurface gasifier layouts considered for the exploitation of underground coal seams. The two gasifier layouts considered here are the linked vertical boreholes and the controlled retractable injection point (CRIP) methods. Different stages of the UCG process (i.e. initialisation, intermediate, end-phase) as well as the temperature level of the syngas collection point in each layout were found to be the two most decisive and distinctive parameters during the design of the optimal model configuration for each layout. Sensitivity analyses were conducted to investigate the significance of the operational parameters and the performance indicators used to evaluate the results. The operational parameters considered were the type of reagents injected (i.e. O2, N2, CO2, H2O), the ratio between the injected reagents

  15. Effect of Injection Flow Rate on Product Gas Quality in Underground Coal Gasification (UCG Based on Laboratory Scale Experiment: Development of Co-Axial UCG System

    Directory of Open Access Journals (Sweden)

    Akihiro Hamanaka

    2017-02-01

    Full Text Available Underground coal gasification (UCG is a technique to recover coal energy without mining by converting coal into a valuable gas. Model UCG experiments on a laboratory scale were carried out under a low flow rate (6~12 L/min and a high flow rate (15~30 L/min with a constant oxygen concentration. During the experiments, the coal temperature was higher and the fracturing events were more active under the high flow rate. Additionally, the gasification efficiency, which means the conversion efficiency of the gasified coal to the product gas, was 71.22% in the low flow rate and 82.42% in the high flow rate. These results suggest that the energy recovery rate with the UCG process can be improved by the increase of the reaction temperature and the promotion of the gasification area.

  16. 壳牌干煤粉气化技术与壳牌下行水激冷流程气化技术的比较%Comparison of Shell Coal Gasification Technology with Shell Coal Gasification Process Bottom Quench

    Institute of Scientific and Technical Information of China (English)

    胡庆丽; 赖智乐; 王盘峰; 胡步千

    2014-01-01

    Afterwards entering the Chinese market of Shell coal gasification technology, Shell Company has again developed the bottom water quench process gasification technology in order to simplify traditional process, to eliminate stoppage problem of dried ash, and to decrease the investment cost. Author has made comparison for 2 kinds of gasification technologies from aspects of process feature, gasifier structure, equipment arrangement, investment cost and so on, has separately indicated the advantage and shortage between Shell dried and pulverized coal gasification technology and the bottom water quench process gasification technology, result indicates that:①The traditional Shell dried and pulverized coal gasification process technology is ripe and reliable with high heat recovery rate, better economy and environmental protection, but with more investment cost at present stage, more equipment in plant, more difficulty in construction/installation and in piping arrangement;②The structure of gasifier is simple forbottom water quench process gasifica-tion technology newly developed with less equipment in plant, less investment of project, but only one set of plant is now put into operation, so its environ-ment protection property and stability of plant are required to be observed.%继壳牌干煤粉气化技术( SCGP)进入中国市场后,壳牌公司又开发了下行水激冷流程气化技术( SCGP Bot-tom Quench),以简化传统流程,消除干灰堵塞问题,降低投资成本。本文从工艺特点、气化炉结构、设备布置以及投资成本等方面进行了2种气化技术的比较,分别指出了SCGP和SCGP Bottom Quench的优势和劣势,结果表明:①传统的SCGP工艺技术成熟可靠,热回收率高,经济环保,但项目前期投资较大,装置设备较多,施工吊装与管道布置难度较大;②新开发的SCGP Bottom Quench气化炉结构简单,装置设备减少,项目投资缩减,但国内仅有1套装

  17. IGDS/TRAP Interface Program (ITIP). Software User Manual (SUM). [network flow diagrams for coal gasification studies

    Science.gov (United States)

    Jefferys, S.; Johnson, W.; Lewis, R.; Rich, R.

    1981-01-01

    This specification establishes the requirements, concepts, and preliminary design for a set of software known as the IGDS/TRAP Interface Program (ITIP). This software provides the capability to develop at an Interactive Graphics Design System (IGDS) design station process flow diagrams for use by the NASA Coal Gasification Task Team. In addition, ITIP will use the Data Management and Retrieval System (DMRS) to maintain a data base from which a properly formatted input file to the Time-Line and Resources Analysis Program (TRAP) can be extracted. This set of software will reside on the PDP-11/70 and will become the primary interface between the Coal Gasification Task Team and IGDS, DMRS, and TRAP. The user manual for the computer program is presented.

  18. SOTACARBO R&D project for hydrogen and clean fuels production from coal gasification and CO{sub 2} removal

    Energy Technology Data Exchange (ETDEWEB)

    Carlo Amorino; Enrico Maggio, Alessandro Orsini; Francesco Repetto; Maria Luisa Pelizza; Federica Pratola; Giuseppe Girardi; Antonio Calabro; Giorgio Cau; Daniele Cocco [Sotacarbo SpA - Centro servizi Consorzio NISI, Portoscuso (Italy)

    2005-07-01

    Sotacarbo in co-operation with Ansaldo Ricerche, ENEA and the University of Cagliari - Department of Mechanical Engineering, has developed a research project for design, construction and testing on a pilot plant for hydrogen and other environmental value fuel gas production, from Sulcis coal gasification. The project has been funded by Ministry of Education, University and Research (MIUR). The test facilities will be located in the Sotacarbo Research Centre, which is under construction in Carbonia, South East Sardinia (Italy). The test facility is designed to increase the environmental value of coal through the integration of gasification and suitable downstream syngas treatment sections for power and hydrogen enriched stream production which is employable as an energy carrier itself or into an internal combustion engine or potentially into fuel cells. 2 refs., 3 figs., 2 tabs.

  19. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez-Mariano; Angel Sanjurjo

    2005-03-15

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this period, we conducted two 300-hour tests. In the first test, we exposed samples at 900 C under conditions simulating the high-temperature heat recovery unit (HTHRU). The second test was at 370 C, corresponding to the filter units following the HTHRU. The tests were showed the resilience of silicon nitride as a coating component, and the new coating procedures better penetrated the pores in sintered metal filter samples. Finally, we also received samples that were exposed in the Wabash River plant. Unfortunately, all these samples, that were prepared last year, were severely eroded and/or corroded.

  20. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2005-09-01

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period, we conducted several exposure tests with coated and uncoated coupons including a ''500-h'' test. The first experiment was a 316-h test and was designed to look at the performance of Ti/Ta nitride coatings, which seemed to fare the best in earlier tests. The next experiment was a 112-h test with a range of pure metals and commercially available materials. Its purpose was to help identify those metals that best withstood gasifier environment, and hence should be good ingredients for coatings. Finally, we ran a ''500-h'' test, which was also our milestone, with coupons coated with Ti/Ta nitride or Cr/Al coatings.

  1. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2005-12-01

    Heat exchangers, particle filters, turbines, and other components in an integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high-alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period, we conducted a simulated gasifier test primarily with TiN-coated steel samples. Although the test showed these coatings to offer significant protection against corrosion, they also revealed a lack of uniformity in the coatings. We spent a considerable amount of effort improving our coatings procedure as well as the fluidized bed reactor and its heater. Based on the results collected thus far, we selected 12 samples and sent them to ConocoPhillips for testing in their gasifier at the Wabash River Energy plant.

  2. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2006-06-01

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. In previous tests, we had frequently encountered problems with our steam generator that were exacerbated by the very low flow rates that we needed. During this period we installed a new computer-controlled system for injecting water into the steam generator that eliminated this problem. We also tested alloy coupons coated by using the improved procedures described in our last quarterly report. Most of these coatings were nitrided Ti and Ta coatings, either by themselves, or sometimes with barrier layers of Al and Si nitrides. The samples were tested for 300 h at 900 C in a gas stream designed to mimic the environment in the high temperature heat recovery unit (HTHRU). Three samples that showed least corrosion were exposed for an additional 100 h.

  3. Analysis on Treatment of Coal Gasification Wastewater Containing Phenols%煤气化含酚废水处理技术分析

    Institute of Scientific and Technical Information of China (English)

    付敏明; 王赟

    2016-01-01

    以鲁奇碎煤加压气化含酚废水为例,介绍了煤气化含酚废水的特性及危害,分析了处理含酚废水的生化、化学和物理技术,提出了对气化含酚废水解决方案的思考,为煤气化废水处理技术及方案选择提供了新的思路。%In this paper, taking Lurgi coal gasification phenol ̄containing wastewater as an example, the characteristics and hazards of the coal gasification wastewater containing phenol are introduced, and the biochemical, chemical and physical treatment technologies of wastewater are analyzed. The thinking about the treatment solution for the gasification wastewater is presented, which provides a new way for the coal gasification wastewater treatment technology and scheme selection.

  4. The formation of impurities in fluidized-bed gasification of biomass, peat and coal; Epaepuhtauksien muodostuminen leijukerroskaasutuksessa

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Laatikainen-Luntama, J.; Kurkela, M.; Leppaelahti, J.; Koljonen, T.; Oesch, P. [VTT Energy, Espoo (Finland); Alen, R. [Jyvaeskylae Univ. (Finland)

    1996-12-01

    The objective of this three-year-long project was to study the effects of different process parameters and bed materials on the formation of impurities in pressurized fluidized-bed gasification. The main emphasis of the project was focused on the formation of tars and nitrogen compounds in wood, peat and coal gasification. The aims of the research were to find out such operating conditions, where the formation of problematic high-molecular-weight tars can be minimised and to create a better understanding on the fate of fuel nitrogen in fluidized-bed gasifiers. Main part of the research was carried out in a bench-scale pressurised fluidized-bed reactor (ID 30 mm), where the effects of pressure, temperature, gas atmosphere and bed material were studied with different feedstocks. Most of the test series were carried out using the same feedstocks as earlier used in the PDU-scale fluidized-bed gasification tests of VTT (pine wood, pine bark, wheat straw, two peats, Rhenish brown coal, Polish and Illinois No.6 bituminous coals). The effects of operating parameters on the product yields (gas components, tars, char) were first studied under inert nitrogen atmosphere. The conversion of fuel nitrogen into ammonia and HCN were also determined for the different feedstocks over the different operating conditions. These studies showed that ammonia is the main fixed nitrogen compound of fluidized-bed pyrolysis with all the feedstocks studied. The conversions of fuel nitrogen into ammonia and HCN was highest with the high volatile fuels and lowest with the two hard coals. Gas atmosphere had a dramatic effect on the conversion of fuel nitrogen; much higher ammonia yields were determined in real gasification gas atmosphere than in inert pyrolysis carried out in N{sub 2} or Argon atmosphere. In addition to the pressurised fluidized-bed pyrolysis tests, laboratory scale pyrolysis research was carried out in order to compare the pyrolysis behaviour of the different feedstocks

  5. A novel approach to highly dispersing catalytic materials in coal for gasification. Final technical report, September 1989--November 1992

    Energy Technology Data Exchange (ETDEWEB)

    Abotsi, G.M.K.; Bota, K.B.

    1992-12-01

    The objectives of this project were to investigate the effects of coal surface charge on the uptake of aqueous soluble metal catalysts from solution and to determine the influence of the interfacial interaction on char reactivity. Another goal is to assess the potential of using potassium carbonate, potassium acetate or their mixtures as catalysts for char gasification. The lower cost and the high catalytic activity of the latter compound will produce economic benefits by reducing the amount of potassium carbonate required for efficient char reactivities on a commercial scale. To minimize the interference of the coals` inherent inorganic materials with the added calcium or potassium, the gasification studies were restricted to the demineralized coals. In a manner similar to the effect of pH on the surface electrochemistry of the coals, the reactivities of the calcium- or potassium-loaded chars in bon dioxide at 800{degree}C were dependent upon the pH at which the catalysts were ion-exchanged onto the coals. For the calcium-containing chars, the reactivities increased in the order: pH 6 > pH 10 > pH 1. In contrast, the variation of the gasification rates with potassium loading pH was: pH 6 {approximately} pH 10 {much_gt} pH 1. However, simultaneous adsorption of the metals at {approximately} pH 1 enhanced char reactivity relative to metals loading at pH 6 or 10. These findings are attributed to the differences in the extent of electrostatic interaction between the calcium or potassium ions and the charged coal surface during catalyst loading from solution.

  6. Plasma-Augmented Fluidized Bed Gasification of Sub-bituminous Coal in CO2-O2 Atmospheres

    Science.gov (United States)

    Lelievre, C.; Pickles, C. A.; Hultgren, S.

    2016-01-01

    The gasification of a sub-bituminous coal using CO2-O2 gas mixtures was studied in a plasma-augmented fluidized bed gasifier. Firstly, the coal was chemically characterized and the gasification process was examined using Thermogravimetric and Differential Thermal Analysis (TGA/DTA) in CO2, O2 and at a CO2 to O2 ratio of 3 to 1. Secondly, the equilibrium gas compositions were obtained using the Gibbs free energy minimization method (HSC Chemistry®7). Thirdly, gasification tests were performed in a plasma-augmented fluidized bed and the off-gas temperatures and compositions were determined. Finally, for comparison purposes, control tests were conducted using a conventional fluidized bed coal gasifier and these results were compared to those achieved in the plasma-augmented fluidized bed gasifier. The effects of bed temperature and CO2 to O2 ratio were studied. For both gasifiers, at a given bed temperature, the off-gas compositions were in general agreement with the equilibrium values. Also, for both gasifiers, an experimental CO2 to O2 ratio of about 3 to 1 resulted in the highest syngas grade (%CO + %H2). Both higher off-gas temperatures and syngas grades could be achieved in the plasma-augmented gasifier, in comparison to the conventional gasifier. These differences were attributed to the higher bed temperatures in the plasma-augmented fluidized bed gasifier.

  7. Wabash Valley Integrated Gasification Combined Cycle, Coal to Fischer Tropsch Jet Fuel Conversion Study

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jayesh [Lummus Technology Inc., Bloomfield, NJ (United States); Hess, Fernando [Lummus Technology Inc., Bloomfield, NJ (United States); Horzen, Wessel van [Lummus Technology Inc., Bloomfield, NJ (United States); Williams, Daniel [Lummus Technology Inc., Bloomfield, NJ (United States); Peevor, Andy [JM Davy, London (United Kingdom); Dyer, Andy [JM Davy, London (United Kingdom); Frankel, Louis [Canonsburgh, PA (United States)

    2016-06-01

    This reports examines the feasibility of converting the existing Wabash Integrated Gasification Combined Cycle (IGCC) plant into a liquid fuel facility, with the goal of maximizing jet fuel production. The fuels produced are required to be in compliance with Section 526 of the Energy Independence and Security Act of 2007 (EISA 2007 §526) lifecycle greenhouse gas (GHG) emissions requirements, so lifecycle GHG emissions from the fuel must be equal to or better than conventional fuels. Retrofitting an existing gasification facility reduces the technical risk and capital costs associated with a coal to liquids project, leading to a higher probability of implementation and more competitive liquid fuel prices. The existing combustion turbine will continue to operate on low cost natural gas and low carbon fuel gas from the gasification facility. The gasification technology utilized at Wabash is the E-Gas™ Technology and has been in commercial operation since 1995. In order to minimize capital costs, the study maximizes reuse of existing equipment with minimal modifications. Plant data and process models were used to develop process data for downstream units. Process modeling was utilized for the syngas conditioning, acid gas removal, CO2 compression and utility units. Syngas conversion to Fischer Tropsch (FT) liquids and upgrading of the liquids was modeled and designed by Johnson Matthey Davy Technologies (JM Davy). In order to maintain the GHG emission profile below that of conventional fuels, the CO2 from the process must be captured and exported for sequestration or enhanced oil recovery. In addition the power utilized for the plant’s auxiliary loads had to be supplied by a low carbon fuel source. Since the process produces a fuel gas with sufficient energy content to power the plant’s loads, this fuel gas was converted to hydrogen and exported to the existing gas turbine for low carbon power production. Utilizing low carbon fuel gas and

  8. Some Trace Elements Enrichment Features during Coal Gasification Process in Ningdong Coal Gasification Plant%宁东气化厂煤气化过程中几种微量元素的富集特性

    Institute of Scientific and Technical Information of China (English)

    王晓帅; 唐跃刚; 桓斌斌; 徐靖杰

    2016-01-01

    Through plasma mass spectrometric, atomic fluorescence spectrometric methods carried out trace elements V, Cr, Cu, Zn, Ba, Se, As and Pb content determination and analysis for coal and its residue during coal gasification process in the Ningdong coal gas⁃ification plant. The result has shown that compared with in the raw coal, the majority of these elements have showed better enrichment trend during gasification, enrichment extent of different gasified residues of same element can be 2~10 times as high. The lithophile ele⁃ments in the gasification coal showed better correlativity. Based on the GB15618-2008“Environmental Quality Standards for Soils”, el⁃ements As, Cu, Pb, Cr and Zn can be directly discharged, as for other elements should be continued to pay attention to and study their environmental effects further.%运用等离子体质谱分析法、原子荧光法等方法对宁东气化厂气化过程煤及其残渣进行了V、Cr、Cu、Zn、Ba、Se、As、Pb微量元素含量的测定与分析。结果表明:气化过程中这8种微量元素与原煤相比多数表现富集的趋势,相同元素不同气化残渣富集程度可达2~10倍;气化用煤中亲石元素表现出较好的相关性;根据GB15618-1995《土壤环境质量标准》,气化残渣中As、Cu、Pb、Cr、Zn元素可直接排放,其它元素需继续关注和进一步研究其环境效应。

  9. Mutagenic and toxic activity of environmental effluents from underground coal gasification experiments.

    Science.gov (United States)

    Timourian, H; Felton, J S; Stuermer, D H; Healy, S; Berry, P; Tompkins, M; Battaglia, G; Hatch, F T; Thompson, L H; Carrano, A V; Minkler, J; Salazar, E

    1982-01-01

    Using bacterial bioassays, we have screened for the presence of mutagens and toxins in extracts from groundwater, and in tar from product gas, at the sites of two Lawrence Livermore National Laboratory (LLNL) in situ experiments: Hoe Creek II and Hoe Creek III. The sites exhibited different potential biological hazards, suggesting that different gasification processes may represent different human health concerns. We found that mutagens are present in groundwater, persist for at least 2 yr after gasification has been terminated, and show a change in activity with time-possibly in parallel with changes in chemical composition. Preliminary evidence suggests that the mutagens in groundwater are quinoline and aniline derivatives, while the toxins in groundwater may be phenolic compounds. In tar from the product gas, the organic bases and neutrals were found to be genotoxic in both bacterial and mammalian cells; the neutral compounds appear to be the major mutagenic health hazards. Neutral compounds constitute most of the tar (85-97 wt%) and were mutagenic in both the bacterial and mammalian cell assays. Tar in the gas stream may be a problem for the aboveground environment if gas escapes through fractures in the overburden. Because it is mutagenic and induces chromosomal damage to mammalian cells, the tar may represent a disposal problem as well. However, it is difficult to assess tar quantitatively as a health hazard because its mutagenic activity is low, possibly due to contaminants in the neutral fraction that act to suppress mutagenicity.

  10. Effect of Colombian coal rank and its feeding technology on substitute natural gas production by entrained gasification

    Directory of Open Access Journals (Sweden)

    Juan Fernando Pérez-Bayer

    2016-01-01

    Full Text Available The effect of coal rank (from sub-bituminous to semi-anthracite and type of fuel feeding technology (slurry and dry on the production of substitute natural gas (SNG in entrained flow gasifiers is studied. Ten coals from important Colombian mines were selected. The process is modeled under thermochemical equilibrium using Aspen Plus, and its performance is evaluated in function of output parameters that include SNG heating value, Wobbe index, coal conversion efficiency, cold gas efficiency, process efficiency, global efficiency, and SNG production rate, among others. In descending order, the coal-to-SNG process improves energetically with the use of coals with: higher volatile-matter to fixed-carbon ratio, lower ash content, higher C+H/O ratio, and higher coal heating value. The overall energy efficiency of the slurry-feed technology (S-FT to produce SNG by gasification is 17% higher than the dry-feed technology (D-FT, possibly as a consequence of the higher CH4 concentration in the syngas (around 7 vol. % when the coal is fed as aqueous slurry. As the simulated SNG meets the natural gas (NG quality standards in Colombia, the substitute gaseous fuel could be directly transported through pipelines. Therefore, the coal-to-SNG process is a technically feasible and unconventional alternative for NG production.

  11. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    Energy Technology Data Exchange (ETDEWEB)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  12. Effect of coal rank and mineral matter on gasification reactivity of coal char treated at high temperature; Netsushorishita sekitan char no gas ka tokusei ni taisuru tanshu oyobi kobutsushitsu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, K.; Takei, H.; Harano, A.; Takarada, T. [Gunma University, Gunma (Japan). Faculty of Engineering

    1996-10-28

    In the wide range from brown coal to anthracite, an investigation was made of effects of heat treatment on physical/chemical properties and of coal rank dependence. For the experiment, 12 kinds of coal samples were used, and for heat treatment, the fluidized bed heated by the electric furnace and the infrared-ray gold image furnace were used. To examine characteristics of the heat-treated coal char, conducted were oxygen gasification, TPD measurement, XRD measurement, alkali metal measurement, and pore distribution measurement. The following were obtained from the experiment. The gasification reaction rate of the char heat-treated in the temperature range between 900{degree}C to 1700{degree}C decreases with a rise of the temperature of heat treatment, and the degree of decrease in the rate depends on coal rank. The order of gasification rate between coal ranks depends on the temperature of heat treatment, and the lower the heat treatment temperature is, the more largely the gasification rate is influenced by catalysis of mineral matters included in the coal. As causes of the decrease in gasification rate associated with the rise in temperature of heat treatment, indicated were release of alkali metal having catalysis and decrease of active sites by carbonaceous crystallinity. 6 figs.

  13. Experimental study on the removal of ammonia nitrogen and total nitrogen with algae from coal-gasification wastewater%藻类去除煤气化废水氨氮及总氮的实验研究

    Institute of Scientific and Technical Information of China (English)

    刘肃力; 纪钦洪; 于广欣; 卿人韦

    2013-01-01

    The column photo-bioreactor has been used for algae removing ammonia nitrogen and total nitrogen with algae from coal-gasification wastewater.Experimental results show that under the optimized conditions,Scenedesmus quadricanda,Scnedesmus obliquus and compound algae (Tribonema and Phormidium) can make statistically thorough removal of the ammonia nitrogen from coal-gasification wastewater within 3 d,and the removing efficiency of total nitrogen from coal-gasification wastewater has reached the maximum on the 5th day,which is 86.02% with Scenedesmus quadricanda,83.33% with Senedesmus obliquus,and 71.81% with the compound algae.The results reveal that it is feasible to remove ammonia nitrogen and total nitrogen from coal gasification wastewater by using appropriate algae.Besides,compared with the biological nitrification/denitrification denitrogenation process,the process is also significantly original.%采用柱式光合反应器对藻类去除煤气化废水的氨氮及总氮开展了探索性实验研究.实验结果表明:优化条件下,四尾栅藻、斜生栅藻、混合藻(黄丝藻和席藻)都在3d内完全去除氨氮,同时总氮去除率都在第5天达到最大,分别是四尾栅藻86.02%,斜生栅藻83.33%,混合藻71.81%.说明选用合适的藻类去除煤气化废水的氨氮及总氮可行,同时相比生物硝化/反硝化脱氮工艺该方法具有一定的新颖性.

  14. Research progress in calcium catalytic action during coal gasification%煤气化过程中钙催化作用的研究进展

    Institute of Scientific and Technical Information of China (English)

    高美琪; 王玉龙; 李凡

    2015-01-01

    Catalytic gasification of coal has been widely investigated. As a catalyst for coal gasification,calcium has been concerned by many researchers. In this paper,the types of calcium that can play catalyst role in coal gasification are summarized. The mechanism and influencing factors of calcium catalytic coal gasification are discussed. It is pointed out that calcium can accelerate the coal gasification rate more effectively because of the synergistic effect when it is selected to catalyze coal gasification together with other materials. Meanwhile , the research on calcium catalytic coal gasification in the near future is prospected. It is suggested that the mechanism of calcium catalytic coal gasification should be further discussed. It is necessary to develop the catalytic coal gasification technology using limestone or slaked lime mixed with other materials,such as black-liquor.%煤的催化气化在国内外已被广泛研究,Ca 作为一种对煤气化反应具有催化作用的碱土金属催化剂也受到许多研究者的关注。本文总结了可作为煤气化反应催化剂的Ca的类型,论述了Ca催化煤气化反应的机理,分析了影响Ca催化作用的主要因素,指出当Ca与其他物质共同作为煤气化反应的催化剂时,往往可以产生协同效应,更有效地催化煤气化反应的进行。同时提出了今后在Ca催化煤气化反应方面所应进行的研究内容,认为进一步探讨Ca在煤气化反应过程中发生的催化机理,开发使用廉价的石灰石、熟石灰,并且与其他物质,尤其是纸浆黑液共同作为煤气化反应的催化剂很有必要。

  15. Revised users manual, Pulverized Coal Gasification or Combustion: 2-dimensional (87-PCGC-2): Final report, Volume 2. [87-PCGC-2

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.; Smoot, L.D.; Brewster, B.S.

    1987-12-01

    A two-dimensional, steady-state model for describing a variety of reactive and non-reactive flows, including pulverized coal combustion and gasification, is presented. Recent code revisions and additions are described. The model, referred to as 87-PCGC-2, is applicable to cylindrical axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using either a flux method or discrete ordinates method. The particle phase is modeled in a Lagrangian framework, such that mean paths of particle groups are followed. Several multi-step coal devolatilization schemes are included along with a heterogeneous reaction scheme that allows for both diffusion and chemical reaction. Major gas-phase reactions are modeled assuming local instantaneous equilibrium, and thus the reaction rates are limited by the turbulent rate mixing. A NO/sub x/ finite rate chemistry submodel is included which integrates chemical kinetics and the statistics of the turbulence. The gas phase is described by elliptic partial differential equations that are solved by an iterative line-by-line technique. Under-relaxation is used to achieve numerical stability. The generalized nature of the model allows for calculation of isothermal fluid mechanicsgaseous combustion, droplet combustion, particulate combustion and various mixtures of the above, including combustion of coal-water and coal-oil slurries. Both combustion and gasification environments are permissible. User information and theory are presented, along with sample problems. 106 refs.

  16. Research and Development of Coal Gasification Technology%煤气化技术的研究现状与发展

    Institute of Scientific and Technical Information of China (English)

    蔡国峰; 刘勇; 安德成

    2011-01-01

    Coal gasification was the key technology for clean and high-efficiency coal utilization,and also the basis of the development of coal chemical processing.The characteristics of coal gasification technology of Texco,Lugri,Shell,GSP,and Opposed Multi-burner,Two Stage Pulverized Coal,and Ash Agglomerating were introduced,which would provide reference for choice of coal gasification technology.The prospect of China's coal gasification technology was forecasted.%煤气化技术是煤炭高效清洁利用的核心技术,是发展煤化工技术的基础。本文介绍了德士古、鲁奇、壳牌、GSP等国外煤气化技术的工艺特点以及多喷嘴对置、二段干粉及灰熔聚等国内气化技术,为我国企业选择合适的煤气化技术提供参考,并展望了我国煤气化技术的发展方向。

  17. Piping Design of Jinchengtai Coal Gasification Plant%金诚泰煤制甲醇项目气化装置管线设计

    Institute of Scientific and Technical Information of China (English)

    蔡国峰

    2012-01-01

    煤气化技术是煤炭高效清洁利用的核心技术,非熔渣—熔渣分级气化技术是我国完全自主知识产权的煤气化技术。本文以金诚泰煤制甲醇项目气化装置为例介绍了非熔渣—熔渣分级气化装置工艺流程、设备布置、部分管线材料的选择、阀门的选型和关键工艺管线的布置,提出了优化管道布置设计的建议。%Coal gasification was the key process for clean and high-efficiency coal utilization.Non-slag and slag stage technology was our country's own gasification technology.The characteristics of the coal gasification technology,the equipment layout of this coal gasification technology,the piping materials,valves selection and piping design were introduced by Jinchengtai Coal Gasification Plant,and the proposal for piping design was proposed.

  18. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2006-01-01

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this period we tested coated alloy coupons under conditions designed to mimic the conditions in the filter unit after the high-temperature heat recovery unit (HTHRU). The filter unit is another important area where corrosion has caused unscheduled downtime, and the remedy has been the use of sintered metal tubes made of expensive alloys such as inconel. The objective of our test was to determine if those coatings on 400-series steel that were not able to withstand the harsher conditions of the HTHRU, may be sufficiently resistant for use in the filter unit, at the reduced temperatures. Indeed, most of our coatings survived well; the exceptions were the coated porous samples of SS316. We continued making improvements to our coatings apparatus and the procedure began during the last quarter. As a result of these modifications, the coupons we are now producing are uniform. We describe the improved procedure for preparing diffusion coatings. Finally, because porous samples of steel in grades other than SS316 are not readily available, we also decided to procure SS409 powder and fabricate our own sintered porous coupons.

  19. Conditions for testing the corrosion rates of ceramics in coal gasification systems

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, J.P.; Nowok, J.W. [Univ. of North Dakota, Grand Forks, ND (United States)

    1996-08-01

    Coal gasifier operating conditions and gas and ash compositions affect the corrosion rates of ceramics used for construction in three ways: (1) through direct corrosion of the materials, (2) by affecting the concentration and chemical form of the primary corrodents, and (3) by affecting the mass transport rate of the primary corrodents. To perform an accurate corrosion test on a system material, the researcher must include all relevant corrodents and simulate conditions in the gasifier as closely as possible. In this paper, the authors present suggestions for conditions to be used in such corrosion tests. Two main types of corrosion conditions are discussed: those existing in hot-gas cleanup systems where vapor and dry ash may contribute to corrosion and those experienced by high-temperature heat exchangers and refractories where the main corrodent will be coal ash slag. Only the fluidized-bed gasification systems such as the Sierra Pacific Power Company Pinon Pine Power Project system are proposing the use of ceramic filters for particulate cleanup. The gasifier is an air-blown 102-MWe unit employing a Westinghouse{trademark} ceramic particle filter system operating at as high as 1100{degrees}F at 300 psia. Expected gas compositions in the filter will be approximately 25% CO, 15% H{sub 2}, 5% CO{sub 2}, 5% H{sub 2}O, and 50% N{sub 2}. Vapor-phase sodium chloride concentrations are expected to be 10 to 100 times the levels in combustion systems at similar temperatures, but in general the concentrations of the minor primary and secondary corrodents are not well understood. Slag corrosiveness will depend on its composition as well as viscosity. For a laboratory test, the slag must be in a thermodynamically stable form before the beginning of the corrosion test to assure that no inappropriate reactions are allowed to occur. Ideally, the slag would be flowing, and the appropriate atmosphere must be used to assure realistic slag viscosity.

  20. Refractory Materials based on Magnesia-Alumina Spinel for Improved Performance in Coal Gasification Environments

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Armstrong, Beth L [ORNL; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.; Smith, Jeffrey D [ORNL; O' Hara, Kelley [University of Missouri, Rolla

    2013-01-01

    As part of a larger project to develop novel refractory systems and techniques to reduce energy consumption of refractory lined vessels, a team composed of Oak Ridge National Laboratory, refractory manufacturer Minteq International, Inc., and academic partner Missouri University of Science and Technology have developed new refractory materials and coating systems specifically for application in coal gasification environments. Materials were developed under this U.S. DOE funded project to address the need for innovative refractory compositions by developing MgO-Al2O3 spinel gunnable refractory compositions utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques. Work was conducted to develop and deploy these new materials and to develop and apply low cost coatings using a colloidal approach for protection against attack of the refractory brick by the serviced environment. Additionally, a light-weight back-up refractory system was developed to help offset the high thermal conductivity inherent in spinel materials. This paper discusses the efforts involved in the development of these materials, along with the laboratory testing and evaluation of these materials leading to relevant results achieved toward the reduction of chemical reactions and mechanical degradation by the service environment though compositional and processing modifications.

  1. SPINEL-BASED REFRACTORIES FOR IMPROVED PERFORMANCE IN COAL GASIFICATION ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Armstrong, Beth L [ORNL; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.; Smith, Jeffrey D [ORNL; O' Hara, Kelley [University of Missouri, Rolla

    2013-01-01

    Oak Ridge National Laboratory, in collaboration with refractory manufacturer Minteq International, Inc., academic partner Missouri University of Science and Technology and refractory end users have developed novel refractory systems and techniques to reduce energy consumption of refractory lined vessels. The objective of this U.S. DOE funded project was to address the need for innovative refractory compositions by developing MgO-Al 2O3 spinel gunnable refractory compositions utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques. Materials have been developed specifically for coal gasification environments and work has been performed to develop and apply low cost coatings using a colloidal approach for protection against attack of the refractory brick by the service environment and to develop a light-weight back-up refractory system to help offset the high thermal conductivity inherent in spinel materials. This paper discusses the systematic development of these materials, laboratory testing and evaluation of these materials, and relevant results achieved toward the reduction of chemical reactions and mechanical degradation by the service environment though compositional and processing modifications.

  2. DEVELOPMENT OF NOVEL SPINEL REFRACTORIES FOR USE IN COAL GASIFICATION ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Armstrong, Beth L [ORNL; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.; Smith, Jeffrey D [ORNL; O' Hara, Kelley [University of Missouri, Rolla

    2011-01-01

    Work has been performed by Oak Ridge National Laboratory (ORNL), in collaboration with industrial refractory manufacturer (Minteq International, Inc.), academic research partner (Missouri University of Science and Technology) and end users to employ novel refractory systems and techniques to reduce energy consumption of refractory lined vessels found in industries such as aluminum, chemical, glass, and pulp and paper. The objective of the project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3 spinel structured unshaped refractory compositions (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques. As part of the four-year project funded by the U.S. Department of Energy (DOE), materials have been developed specifically for coal gasification environments. Additionally, work has been performed to develop and apply low cost coatings using a colloidal approach for protection against corrosion attack of the refractory brick and to develop a light-weight back-up refractory system to help offset the high thermal conductivity inherent in spinel materials. This paper discusses the development of these materials, along with preliminary results achieved toward the reduction of chemical reactions and mechanical degradation by the service environment.

  3. Modeling of the coal gasification processes in a hybrid plasma torch

    Energy Technology Data Exchange (ETDEWEB)

    Matveev, I.B.; Serbin, S.I. [Applied Plasma Technology, Mclean, VA (USA)

    2007-12-15

    The major advantages of plasma treatment systems are cost effectiveness and technical efficiency. A new efficient electrodeless 1-MW hybrid plasma torch for waste disposal and coal gasification is proposed. This product merges several solutions such as the known inductive-type plasma torch, innovative reverse-vortex (RV) reactor and the recently developed nonequilibrium plasma pilot and plasma chemical reactor. With the use of the computational-fluid-dynamics-computational method, preliminary 3-D calculations of heat exchange in a 1-MW plasma generator operating with direct vortex and RV have been conducted at the air flow rate of 100 g/s. For the investigated mode and designed parameters, reduction of the total wall heat transfer for the reverse scheme is about 65 kW, which corresponds to an increase of the plasma generator efficiency by approximately 6.5%. This new hybrid plasma torch operates as a multimode, high power plasma system with a wide range of plasma feedstock gases and turn down ratio, and offers convenient and simultaneous feeding of several additional reagents into the discharge zone.

  4. Thermophilic anaerobic digestion of Lurgi coal gasification wastewater in a UASB reactor.

    Science.gov (United States)

    Wang, Wei; Ma, Wencheng; Han, Hongjun; Li, Huiqiang; Yuan, Min

    2011-02-01

    Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (35±2°C) reactor as a control, thermophilic anaerobic digestion (55±2°C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m(3) d) and HRT of 24 h; the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pretreatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW.

  5. Pseudomonas frederiksbergensis sp. nov., isolated from soil at a coal gasification site.

    Science.gov (United States)

    Andersen, S M; Johnsen, K; Sørensen, J; Nielsen, P; Jacobsen, C S

    2000-11-01

    Phenotypic and genotypic characterization indicated that a group of 29 closely related phenanthrene-degrading bacteria from a coal gasification site in Frederiksberg, Copenhagen, Denmark, belonged to the genus Pseudomonas. The strains were isolated at two sampling occasions 2 years apart. The isolates were phenotypically different from any known species of the genus Pseudomonas and were therefore subject to further identification. Colonies were smooth and pale yellowish and did not produce pigments fluorescent in UV light when grown on King's B agar. Cells were rod-shaped, approximately 0.5-0.8 x 1.5-3.0 microm, and grew at 4 and 30 degrees C, but not 37 degrees C. The bacteria were oxidase- and catalase-positive, accumulated poly-beta-hydroxybutyrate and denitrified, but did not utilize D-xylose. The mean G+C content was 59.6 mol%. Phenotypic data and 16S rDNA sequence data information for Pseudomonas amygdali and Pseudomonas corrugata, and 16S rDNA sequence data for Pseudomonas chlororaphis and Pseudomonas syringae showed close relationships to these strains. However, DNA-DNA hybridization data showed that the isolates belong to a new species, for which the name Pseudomonas frederiksbergensis sp. nov. is proposed. The type strain is JAJ28T (DSM 13022T).

  6. Embryotoxic and teratogenic effects of aqueous extracts of tar from a coal gasification electrostatic precipitator.

    Science.gov (United States)

    Schultz, T W; Dumont, J N; Clark, B R; Buchanan, M V

    1982-01-01

    Aqueous extracts of tar from a coal gasification electrostatic precipitator were tested for its toxic and teratogenic potential in vitro on embryos of the amphibian Xenopus laevis. The 96-h LC50 and EC50 were determined to be 0.83% and 0.48%, respectively. The developmental stage of normal-appearing exposed embryos is not affected by increasing concentrations of the extract. Embryo growth, however, is significantly reduced at concentrations as low as 0.25%. Motility and pigmentation were effectively reduced relative to controls by extract concentrations of 0.5% and greater. Exposed embryos are shorter and stockier than controls. Malformations of head, eyes, viscera, and spine are common, and cartilage formation is abnormal. The epidermis is often hyperplastic, and large blisters occur over the somatic surface. The severity of abnormal development is directly related to the concentration of the toxicant to which the embryos are exposed. Chemical analysis shows that the aqueous extracts contain phenols, furans, monoaromatic and diaromatic hydrocarbons, and mono- and diazaarenes and/or monoaromatic amines.

  7. Gas Production Strategy of Underground Coal Gasification Based on Multiple Gas Sources

    Directory of Open Access Journals (Sweden)

    Duan Tianhong

    2014-01-01

    Full Text Available To lower stability requirement of gas production in UCG (underground coal gasification, create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.

  8. Gas production strategy of underground coal gasification based on multiple gas sources.

    Science.gov (United States)

    Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

    2014-01-01

    To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.

  9. Some studies on a solid-state sulfur probe for coal gasification systems

    Science.gov (United States)

    Jacob, K. T.; Rao, D. B.; Nelson, H. G.

    1978-01-01

    As a part of a program for the development of a sulfur probe for monitoring the sulfur potential in coal gasification reactors, an investigation was conducted regarding the efficiency of the solid electrolyte cell Ar+H2+H2S/CaS+CaF2+(Pt)//CaF2//Pt)+CaF2+CaS/H2S+H2+Ar. A demonstration is provided of the theory, design, and operation of a solid-state sulfur probe based on CaF2 electrolyte. It was found that the cell responds to changes in sulfur potential in a manner predicted by the Nernst equation. The response time of the cell at 1225 K, after a small change in temperature or gas composition, was 2.5 Hr, while at a lower temperature of 990 K the response time was approximately 9 hr. The cell emf was insensitive to a moderate increase in the flow rate of the test gas and/or the reference gas. The exact factors affecting the slow response time of galvanic cells based on a CaF2 electrolyte have not yet been determined. The rate-limiting steps may be either the kinetics of electrode reactions or the rate of transport through the electrolyte.

  10. Characterization of airborne trace metal and trace organic species from coal gasification.

    Science.gov (United States)

    Osborn, J F; Santhanam, S; Davidson, C I; Flotard, R D; Stetter, J R

    1984-12-01

    Fugitive emissions from a slagging fixed-bed coal-gasification pilot plant were analyzed by flameless atomic absorption spectrophotometry, gas chromatography, and mass spectrometry for trace metal and trace organic species. Analysis of the size distributions of airborne particulate matter inside the plant showed an abundance of large metal-containing particles; outdoor distributions in the vicinity of the plant resembled the indoor distributions, suggesting the importance of the gasifier in influencing ambient air quality. This conclusion was further supported by identification of similar organic compounds inside and outside the plant. Trace element enrichment factors based on the earth's crustal composition were greater than those based on the composition of the lignite used in the gasifier, showing the importance of characterizing the proper source material when inverstigating chemical fraction during aerosol formation. Enrichments in the present study were much greater than those found in previous sampling during aborted start-up and cleaning procedures, where normal operating temperatures had not yet been reached. Both studies showed evidence of enrichment factors which decreased with increasing particle size. Although much of the airborne mass was associated with large particles having low respirability, the high concentrations of some metals indoors suggests that further assessment of potential occupational exposures is warranted.

  11. Stabilization of spent sorbents from coal gasification. Technical report, December 1, 1992--February 28, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.H.; Wangerow, J.R. [Institute of Gas Technology, Chicago, IL (United States); Banerjee, D.D. [Illinois Clean Coal Inst., Carterville, IL (United States)

    1993-05-01

    The objective of this investigation is to determine the kinetics of reactions involving partially sulfided dolomite and oxygen, which is needed for the design of the reactor system for the stabilization of sulfide-containing solid wastes from gasification of high sulfur coals. To achieve this objective, samples of partially sulfided dolomite are reacted with oxygen at a variety of operating conditions in a fluidized-bed reactor, where external diffusion limitations are avoided by using small quantities of the sorbent and maintaining a high flow rate of the reactant gas. The reacted sorbents are analyzed to determine the extent of conversion as a function of operating variables including sorbent particle size, reaction temperature and pressure, and oxygen concentration. Samples of the partially sulfided dolomite were reacted with oxygen in the fluidized-bed rector at different operating conditions. The test parameters included the effects of solid residence time, oxygen concentration, and reaction temperature. The reacted solids were analyzed to determine the extent of CaS conversion to CaSO{sub 4}. The results of the tests conducted so far in the project indicate that the extent of conversion increase with increasing oxygen concentration and the solid residence time. The rate of reaction appears to be very sensitive to the reaction temperature.

  12. Underground coal gasification with extended CO2 utilization as economic and carbon neutral approach to address energy and fertilizer supply shortages in Bangladesh

    OpenAIRE

    Natalie Christine Nakaten; Rafiqul Islam; Thomas Kempka

    2014-01-01

    The application of underground coal gasification (UCG) with proven carbon mitigation techniques may provide a carbon neutral approach to tackle electricity and fertilizer supply shortages in Bangladesh. UCG facilitates the utilization of deep-seated coal seams, not economically exploitable by conventional coal mining. The high- calorific synthesis gas produced by UCG can be used for e.g. electricity generation or as chemical raw material for hydrogen, methanol and fertilizer production....

  13. Biological conversion of coal gas to methane

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S.; Vega, J.L.; Clausen, E.C.; Gaddy, J.L.

    1988-08-01

    Biological conversion of low-Btu coal synthesis gas to higher Btu methane was demonstrated using both pure co-cultures and/or adapted-mixed anaerobic bacteria. Peptostreptococcus productus metabolized coal gas to mainly acetate and CO/sub 2/. The co-cultures containing methanogens converted these products to methane. In mixed culture studies, CH/sub 4/ and small amounts of acetate were produced. Reactor studies using stirred-tank and immobilized cell reactors exhibited excellent potential to convert CO, CO/sub 2/ and H/sub 2/ to methane at higher gas flow rates. Gas retention times ranging from 0.7 to 2 hours and high agitation were required for 90 percent CO conversion in these systems. This paper also illustrates the potential of biological methanation and demonstrates the need for good mass transfer in converting gas phase substrates. 21 refs., 1 fig., 7 tabs.

  14. 配煤技术在Shell粉煤气化中的应用及优化%THE APPLICATION AND OPTIMIZATION OF COAL BLENDING IN SHELL PULVERIZED-COAL GASIFICATION PROCESS

    Institute of Scientific and Technical Information of China (English)

    吴国祥

    2012-01-01

    The requirement for coal property on Shell pulverized-coal gasification process is simply introduced and the definition and theoretical foundation of Coal blending technology are described.The main reasons for coal blending measure to Shell coal gasification plant are analyzed and concrete procedures of coal blending technology and corresponding cases are discussed in detail and the optimized measures for coal blending are resulted in.%介绍Shell粉煤气化工艺对煤质的要求,阐述配煤技术的定义及理论依据,分析Shell气化采用配煤措施的主要原因,详细论述配煤技术的具体实施步骤及相应案例,得出优化配煤的措施。

  15. Characterization and Failure Analysis of Ceramic Filters Utilized for Emission Control Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Mei; Jianren Zhou; Ziaul Huque

    1998-03-01

    Advanced integrated gasification combined cycle (IGCC) and pressurized fluidized bed combustion (PFBC) power system requires both hot gas desulfurization and particulate filtration to improve system thermal efficiency and overall performance. Therefore, effective high temperature ceramic filters are indispensable key component in both of the advanced IGCC and PFBC coal based power systems to perform hot gas cleanup work. To meet the environmental particulate emission requirements and improve thermal efficiency, ceramic filters are mainly utilized to cleanup the hot gas particulate to protect downstream heat exchanger and gas turbine components from fouling and corrosion. The mechanical integrity of ceramic filters and an efficient dust cake removal system are the key issues for hot gas cleanup systems. The filters must survive combined stresses due to mechanical, thermal, chemical and steam attack throughout normal operations (cold back pulse cleaning jets), unexpected excessive ash accumulation, and the start up and shut down conditions. To evaluate the design and performance of ceramic filters, different long term filter testing programs were conducted. To fulfill this purpose, two Advanced Particle Filter (APF) systems were complete at Tidd PFBC Demonstration Plant, in Brilliant, Ohio in late 1990 as part of the Department of Energy's (DOE) Clean Coal Technology Program. But the most undesirable thing ever happened was the sudden functional and physical failures of filters prior to its designed life time. In Tidd APF filter vessel, twenty eight (28) filters failed one time. Significant research effort has been carried out to find out the causes that led to the early failure of filters. In this work, the studies are emphasized on the possible failure causes analysis of rigid ceramic candle filters. The objectives of this program were to provide an systematic study on the characterization of filters, material laboratory analysis on filter micro-structure, the

  16. A Brief Review of Viscosity Models for Slag in Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Massoudi, Mehrdad; Wang, Ping

    2011-11-01

    Many researchers have defined the phenomenon of 'slagging' as the deposition of ash in the radiative section of a boiler, while 'fouling' refers to the deposition of ash in the convective-pass region. Among the important parameters affecting ash deposition that need to be studied are ash chemistry, its transport, deposit growth, and strength development; removability of the ash deposit; heat transfer mechanisms; and the mode of operation for boilers. The heat transfer at the walls of a combustor depends on many parameters including ash deposition. This depends on the processes or parameters controlling the impact efficiency and the sticking efficiency. For a slagging combustor or furnace, however, the temperatures are so high that much of the coal particles are melted and the molten layer, in turn, captures more particles as it flows. The main problems with ash deposition are reduced heat transfer in the boiler and corrosion of the tubes. Common ways of dealing with these issues are soot blowing and wall blowing on a routine basis; however, unexpected or uncontrolled depositions can also complicate the situation, and there are always locations inaccessible to the use of such techniques. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1300 C and 1500 C, the viscosity is approximately 25 Pa {center_dot} s. As the operating temperature decreases, the slag cools and solid crystals begin to form. In such cases the slag should be regarded as a non-Newtonian suspension, consisting of liquid silicate and crystals. A better understanding of the rheological properties of the slag, such as yield stress and shear-thinning, are critical in determining the optimum operating conditions. To develop an accurate heat transfer model in any type of coal combustion or gasification process, the heat transfer and to some extent the rheological properties

  17. 煤转气技术在沥青搅拌设备上的应用%Application of Coal Gasification Technique to Pitch Mixer

    Institute of Scientific and Technical Information of China (English)

    刘波; 李自光

    2014-01-01

    Working principle of coal gasification generator and mixer structure and process flow have been de -scribed.In practical application , compared with conventional mixer , coal gasification mixer was provided with promi-nent energy saving benefit and environmental conservation advantage , which offered reference to coal gasification tech-nique development in future .%介绍了煤转气发生装置的工作原理及煤转气搅拌设备的结构和工艺流程。在实际应用中与传统的搅拌设备对比,煤转气搅拌设备具有突出的节能效益与环保优势,为今后煤转气技术的发展提供了参考。

  18. 两种加压煤气化工艺的比较%Comparison Between Two Types of Coal Gasification Processes

    Institute of Scientific and Technical Information of China (English)

    蔡洪涛; 范贵鑫

    2012-01-01

    Inherent advantages and disadvantages of the pressurized entrained flow coal gasification process and the pressurized fixed bed coal gasification process is introduced. By analyzing the utilization rate of the high temperature sensible heat from the gas gained from the pressurized entrained flow coal gasification process and the comparison of the features between two different pressurized gasification processes the paper concluded that the pressurized fixed bed coal gasification is a more advantageous process in producing SNG.%介绍了加压气流床煤气化工艺和加压固定床煤气化工艺固有的优点和缺点.分析了加压气流床煤气高温显热的利用率,探讨了加压固定床蒸汽消耗高、废水处理成本高和气化工艺氧耗低的原因.认为煤制天然气选择加压固定床煤气化工艺具有更多的优点.

  19. Assessment of the chemical, microbiological and toxicological aspects of post-processing water from underground coal gasification.

    Science.gov (United States)

    Pankiewicz-Sperka, Magdalena; Stańczyk, Krzysztof; Płaza, Grażyna A; Kwaśniewska, Jolanta; Nałęcz-Jawecki, Grzegorz

    2014-10-01

    The purpose of this paper is to provide a comprehensive characterisation (including chemical, microbiological and toxicological parameters) of water after the underground coal gasification (UCG) process. This is the first report in which these parameters were analysed together to assess the environmental risk of the water generated during the simulation of the underground coal gasification (UCG) process performed by the Central Mining Institute (Poland). Chemical analysis of the water indicated many hazardous chemical compounds, including benzene, toluene, ethylbenzene, xylene, phenols and polycyclic aromatic hydrocarbons (PAHs). Additionally, large quantities of inorganic compounds from the coal and ashes produced during the volatilisation process were noted. Due to the presence of refractory and inhibitory compounds in the post-processing water samples, the microbiological and toxicological analyses revealed the high toxicity of the UCG post-processing water. Among the tested microorganisms, mesophilic, thermophilic, psychrophilic, spore-forming, anaerobic and S-oxidizing bacteria were identified. However, the number of detected microorganisms was very low. The psychrophilic bacteria dominated among tested bacteria. There were no fungi or Actinomycetes in any of the water samples. Preliminary study revealed that hydrocarbon-oxidizing bacteria were metabolically active in the water samples. The samples were very toxic to the biotests, with the TU50 reaching 262. None of biotests was the most sensitive to all samples. Cytotoxicity and genotoxicity testing of the water samples in Vicia uncovered strong cytotoxic and clastogenic effects. Furthermore, TUNEL indicated that all of the water samples caused sporadic DNA fragmentation in the nuclei of the roots.

  20. Social impact assessment of the proposed Dodds-RoundHill coal gasification project : project report : executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Parkins, J.R. (ed.)

    2009-07-01

    A public disclosure document was released for a proposed Dodds-RoundHill coal gasification project in January 2007, and the project was placed on hold in 2008 given some uncertainty around its future. However, there was a general sense that a project of this nature would be proposed for this coal-rich region at some point in the future. This report presented the results of a project completed by 14 graduate and undergraduate students in a social impact assessment course in 2009 at the University of Alberta. The purpose of the project was to learn specific concepts and methods for social impact assessment by undertaking such an assessment for the proposed Dodds-RoundHill coal gasification project, located southeast of Edmonton, Alberta. The 4 major components of a social impact assessment include scoping of relevant social indicators; social impacts within municipalities; social impacts within the farming region; and a comparative case study of social impacts. All of the research participants indicated that the project would have an impact on their community.

  1. The development and selection of coal gasification technology%浅谈煤气化技术进展及选择

    Institute of Scientific and Technical Information of China (English)

    赵伟

    2009-01-01

    The significance of researching and developing coal gasification technology were elaborated. The key technologys were introduced and the advantages of every technology were analyzed. Some opinion were given on choo- sing coal gasification technology.%阐述了研究和开发煤气化技术的重要意义,详细介绍了目前国内外主流煤气化技术的进展及应用,比较了各种煤气化技术的优缺点,并对如何选择煤气化技术提出了自己的看法.

  2. 煤气化技术的发展及在IGCC中的应用%Development of Coal Gasification Technology and Its Application in IGCC

    Institute of Scientific and Technical Information of China (English)

    张东亮; 许世森

    2001-01-01

    本文阐述了煤气化技术的发展过程及各种气化工艺的技术特点。提出了中国第一座IGCC示范电站在煤气化技术选择方面应注意的问题。%The paper reviews the development course of the coal gasificationand the technical feature of various gasification process, some suggestions on the choice of coal gasification process about the China's first IGCC demonstra tion facilities are also put forward.

  3. Evaluation of wood chip gasification to produce reburrn fuel for coal-fired boilers: AWMA

    Science.gov (United States)

    Gasification or reburn testing with biomass and other wastes is of interest to both the U.S. Environmental Protection Agency (EPA) and the Italian Ministry of the Environment & Territory (IMET). Gasification systems that use wastes as feedstock should provide a clean, efficient s...

  4. Evaluation of wood chip gasification to produce reburn fuel for coal-fired boilers

    Science.gov (United States)

    Gasification/reburn testing with biomass and other wastes is of interest to both the U.S. Environmental Protection Agency (EPA) and the Italian Ministry of the Environment & Territory (IMET). Gasification systems that use wastes as feedstock should provide a clean, efficient sour...

  5. Valve development for coal gasification plants: Phase I to Phase II transition. Quarterly technical program report, May--July 1978

    Energy Technology Data Exchange (ETDEWEB)

    Bellezza, D.

    1978-08-01

    This is the eighth in a series of Quarterly Technical Progress Reports relating to the Valve Development for Coal Gasification Plants Program. This document discusses engineering progress during the period of May to July 1978. The work described herein represents a continuation of the Phase I seat development effort for the Task III valve and the continuation of design engineering effort, necessary to prepare detail manufacturing drawings for use in the production of prototype valves during Phase II of this program. Work performed during this quarter consists of: valve design, thermal and stress analysis of valves, design detailing and specifications, quality assurance planning and various tests as outlined.

  6. Laser-absorption sensing of gas composition of products from coal gasification

    Science.gov (United States)

    Jeffries, Jay B.; Sur, Ritobrata; Sun, Kai; Hanson, Ronald K.

    2014-06-01

    A prototype in-situ laser-absorption sensor for the real-time composition measurement (CO, CH4, H2O and CO2) of synthesis gas products of coal gasification (called here syngas) was designed, tested in the laboratory, and demonstrated during field-measurement campaigns in a pilot-scale entrained flow gasifier at the University of Utah and in an engineering-scale, fluidized-bed transport gasifier at the National Carbon Capture Center (NCCC). The prototype design and operation were improved by the lessons learned from each field test. Laser-absorption measurements are problematic in syngas flows because efficient gasifiers operate at elevated pressures (10-50 atm) where absorption transitions are collision broadened and absorption transitions that are isolated at 1 atm become blended into complex features, and because syngas product streams can contain significant particulate, producing significant non-absorption scattering losses of the transmission of laser light. Thus, the prototype sensor used a new wavelength-scanned, wavelength-modulation spectroscopy strategy with 2f-detection and 1f-normalization (WMS-2f/1f) that can provide sensitive absorption measurements of species with spectra blended by collision broadening even in the presence of large non-absorption laser transmission losses (e.g., particulate scattering, beam steering, etc.). The design of the sensor for detection of CO, CH4, H2O and CO2 was optimized for the specific application of syngas monitoring at the output of large-scale gasifiers. Sensor strategies, results and lessons learned from these field measurement campaigns are discussed.

  7. Chemical composition of glass and crystalline phases in coarse coal gasification ash

    Energy Technology Data Exchange (ETDEWEB)

    R.H. Matjie; Zhongsheng Li; Colin R. Ward; David French [Sasol Technology (Pty) Ltd., Sasolburg (South Africa)

    2008-05-15

    A procedure has been developed for determining the chemical composition and relative abundance of the amorphous or glassy material, as well as crystalline phases, present in coarse coal gasification ash, in order to assist in predicting the behaviour of the material in cement/brick/concrete applications. The procedure is based on a combination of quantitative X-ray diffraction (XRD), chemical analysis and electron microprobe studies. XRD analysis indicates that the clinker samples contain a number of crystalline high temperature phases, including anorthite, mullite, cristobalite, quartz and diopside. Quantitative evaluation using Rietveld-based techniques has been used to determine the percentages of both the individual crystalline phases and the glass component. These data were then combined with the chemistry of the crystalline phases and the overall chemical composition of the ash to estimate the chemical composition of the glass phase, which is typically the most abundant component present in the different materials. Although there is some degree of scatter, comparison between the inferred glass composition from XRD and bulk chemistry and actual data on the glass composition using electron microprobe techniques suggest that the two approaches are broadly consistent. The microprobe further indicates that a range of compositions are present in the glassy and crystalline components of the ashes, including Si-Al-rich glass, metakaolin and Fe-Ca-Mg-Ti phases, as well as quartz, anorthite and an aluminophosphate material. Electron microprobe and XRD studies also show that pyrrhotite (FeS), representing a high temperature transformation product of pyrite, is present in some clinker and partially burnt carbonaceous shale samples. 27 refs., 5 figs., 7 tabs.

  8. Prediction of coal slag foaming under gasification conditions by thermodynamic equilibrium calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lim, S.; Oh, M. [Hongik University, Seoul (Republic of Korea). School of Chemical Engineering

    2007-09-15

    In slagging gasifiers, slag foaming can cause serious operational problems, so there is a need for investigation into the conditions causing slag foaming. Viscosity experiments were carried out examining viscosity, extent of swelling and Fe formation. Although extensive swelling was not observed, FeO reduction was observed under an N{sub 2}/CO gas atmosphere, but not under CO{sub 2}/CO. In order to predict FeO reduction conditions in the gasifier, a model for an adiabatic equilibrium gasifier was developed. The gas composition, the amount of gas to slag, and PO{sub 2} were calculated for a slurry-feed gasifier, and the results of the calculation were used to predict the reduction of FeO in slag by using FactSage. Under typical gasification conditions for Denisovsky coal, the predicted -O{sub 2} in the gasifier was not low enough to cause FeO reduction. The FactSage simulation for the viscometer conditions predicted no FeO reduction under a CO/CO{sub 2} atmosphere, but did predict Fe formation under CO/N{sub 2} conditions. At a 20% CO concentration, FeO reduction starts at temperatures above 1,600{sup o}C. Since the slag has a low viscosity at 1,600{sup o}C, the oxygen bubble may have escaped as it formed. Therefore, slag foaming, caused by FeO reduction in the slag, can only occur when the right conditions of viscosity and oxygen partial pressure are met.

  9. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction

    Science.gov (United States)

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-11-01

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450-1650 oC) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society.

  10. The formation mechanism of CO2 and its conversion in the process of coal gasification under arc plasma conditions

    Science.gov (United States)

    He, Xiaojun; Zheng, Mingdong; Qiu, Jieshan; Zhao, Zongbin; Ma, Tengcai

    2006-05-01

    The carbon dioxide (CO2) formation mechanism and co-conversion of CO2 with coal was investigated in the process of coal gasification in a steam medium at atmospheric pressure under arc plasma conditions in a tube-type setup. The arc plasma was diagnosed in situ by optical emission spectroscopy and the gas products were analysed by gas chromatography. CO2 yields are correlated with the quantitative emission peak intensity of the active species in plasma when the operating parameter is changed. The results show that the greater the emission peak intensity of the CH radicals, C2 radicals, OH radicals or O atoms, the smaller the CO2 yield is, which means that the CO2 formation process is inhibited by increasing the concentration of the mentioned active species under arc plasma conditions. On the basis of the diagnosis results, co-conversion of CO2 and coal in a steam medium under plasma conditions was carried out in the same setup and the results show that CO2 conversion reaches 88.6% while the concentration of CO + H2 reaches 87.4%; at the same time, coal conversion is in the range 54.7-68.7%, which proves that co-conversion of CO2 and coal in a steam medium under plasma conditions might be a prospective way to utilize CO2 and the production of synthesis gas.

  11. Steam-Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture

    Energy Technology Data Exchange (ETDEWEB)

    Siefert, Nicholas S. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Carnegie Mellon Univ., Pittsburgh, PA (United States); Shekhawat, Dushyant [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Litster, Shawn [Carnegie Mellon Univ., Pittsburgh, PA (United States); Berry, David A. [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2013-08-15

    We present experimental results of coal gasification with and without the addition of calcium oxide and potassium hydroxide as dual-functioning catalyst-capture agents. Using two different coal types and temperatures between 700 and 900 °C, we studied the effect of these catalyst-capture agents on (1) the syngas composition, (2) CO2 and H2S capture, and (3) the steam-coal gasification kinetic rate. The syngas composition from the gasifier was roughly 20% methane, 70% hydrogen, and 10% other species when a CaO/C molar ratio of 0.5 was added. We demonstrated significantly enhanced steam–coal gasification kinetic rates when adding small amounts of potassium hydroxide to coal when operating a CaO-CaCO3 chemical looping gasification reactor. For example, the steam–coal gasification kinetic rate increased 250% when dry mixing calcium oxide at a Ca/C molar ratio of 0.5 with a sub-bituminous coal, and the kinetic rate increased 1000% when aqueously mixing calcium oxide at a Ca/C molar ratio of 0.5 along with potassium hydroxide at a K/C molar ratio of 0.06. In addition, we conducted multi-cycle studies in which CaCO3 was calcined by heating to 900 °C to regenerate the CaO, which was then reused in repeated CaO-CaCO3 cycles. The increased steam-coal gasification kinetics rates for both CaO and CaO + KOH persisted even when the material was reused in six cycles of gasification and calcination. The ability of CaO to capture carbon dioxide decreased roughly 2-4% per CaO-CaCO3 cycle. We also discuss an important application of this combined gasifier-calciner to electricity generation and selling the purge stream as a precalcined feedstock to a cement kiln. In this scenario, the amount of purge stream required is fixed not by the degradation in the capture ability but rather by the requirements at the cement kiln on the amount of CaSO4 and ash in the precalcined feedstock.

  12. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Jordi Perez; Marc Hornbostel; Kai-Hung Lau; Angel Sanjurjo

    2007-05-31

    Advanced electric power generation systems use a coal gasifier to convert coal to a gas rich in fuels such as H{sub 2} and CO. The gas stream contains impurities such as H{sub 2}S and HCl, which attack metal components of the coal gas train, causing plant downtime and increasing the cost of power generation. Corrosion-resistant coatings would improve plant availability and decrease maintenance costs, thus allowing the environmentally superior integrated-gasification-combined-cycle (IGCC) plants to be more competitive with standard power-generation technologies. Heat-exchangers, particle filters, turbines, and other components in the IGCC system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy will improve is resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. The Fe- and Ni-based high-temperature alloys are susceptible to sulfidation attack unless they are fortified with high levels of Cr, Al, and Si. To impart corrosion resistance, these elements need not be in the bulk of the alloy and need only be present at the surface layers. In this study, the use of corrosion-resistant coatings on low alloy steels was investigated for use as high-temperature components in IGCC systems. The coatings were deposited using SRI's fluidized-bed reactor chemical vapor deposition technique. Diffusion coatings of Cr and Al were deposited by this method on to dense and porous, low alloy stainless steel substrates. Bench-scale exposure tests at 900 C with a simulated coal gas stream containing 1.7% H{sub 2}S showed that the low alloy steels such SS405 and SS409 coated with

  13. Temperature effect on the pressure drop across the cake of coal gasification ash formed on a ceramic filter

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H.; Liang, Y.; Sakong, K.M.; Choi, J.H.; Bak, Y.C. [Gyeongsang National University, Jinju (Republic of Korea). Dept. of Biology & Chemical Engineering

    2008-01-15

    In order to predict the pressure drop across the cake of coal gasification (CG) ash formed on ceramic filter, an empirical equation was developed taking into account several factors, such as the face velocity, ash load, shape factor and size of particles, and especially the operating temperature. The hot air stream of well classified fine particles of CG ash was simulated as the syngas derived from the coal gasification process. The pressure drop behavior and cleaning efficiency of the filter were carefully investigated within the temperature range from room temperature to 673 K. The pressure drop across the ash cake was dominantly governed by the air viscosity, which increased with temperature. It was well expressed by the previously reported-empirical equation (J.H. Choi, Y.C. Bak, H.J. Jang, J.H. Kim, and J.H. Kim, Korean J. Chern. Eng., 21(3) (2004) 726.) with the modification of the viscosity term in the equation for different temperatures. The residual pressure drop rate across the ash cake also increased while the cleaning efficiency of the ceramic filter decreased as temperature increased.

  14. Removal of COD, phenols and ammonium from Lurgi coal gasification wastewater using A2O-MBR system.

    Science.gov (United States)

    Wang, Zixing; Xu, Xiaochen; Gong, Zheng; Yang, Fenglin

    2012-10-15

    As a typical industrial wastewater, coal gasification wastewater has poor biodegradability and high toxicity. In this paper, a laboratory-scale anaerobic-anoxic-oxic membrane reactor (A(2)O-MBR) system was developed to investigate the treatment ability of coal gasification wastewater. The removal capacity of each pollutants used in this system were determined at different hydraulic residence times (HRT) and mixed liquor recycle ratios (R). The experimental results showed that this system could effectively deal with COD and phenol removal and remain in a stable level when the operational parameters altered, while the nitrification was sensitive to operational conditions. The best performance was obtained at HRT of 48 h and R of 3. The maximum removal efficiencies of COD, NH(4)(+)-N and phenols were 97.4%, 92.8% and 99.7%, with final concentrations in the effluent of 71 mg/L, 9.6 mg/L and 3 mg/L, respectively. Organics degradation and transformation were analyzed by GC/MS and it was found that anaerobic process played an important role in degradation of refractory compounds.

  15. Recovery strategies for tackling the impact of phenolic compounds in a UASB reactor treating coal gasification wastewater.

    Science.gov (United States)

    Wang, Wei; Han, Hongjun

    2012-01-01

    The impact of phenolic compounds (around 3.2 g/L) resulted in a completely failed performance in a mesophilic UASB reactor treating coal gasification wastewater. The recovery strategies, including extension of HRT, dilution, oxygen-limited aeration, and addition of powdered activated carbon were evaluated in batch tests, in order to obtain the most appropriate way for the quick recovery of the failed reactor performance. Results indicated that addition of powdered activated carbon and oxygen-limited aeration were the best recovery strategies in the batch tests. In the UASB reactor, addition of powdered activated carbon of 1 g/L shortened the recovery time from 25 to 9 days and oxygen-limited aeration of 0-0.5 mgO2/L reduced the recovery time to 17 days. Reduction of bioavailable concentration of phenolic compounds and recovery of sludge activity were the decisive factors for the recovery strategies to tackle the impact of phenolic compounds in anaerobic treatment of coal gasification wastewater.

  16. Environmental life cycle assessment of methanol and electricity co-production system based on coal gasification technology.

    Science.gov (United States)

    Śliwińska, Anna; Burchart-Korol, Dorota; Smoliński, Adam

    2017-01-01

    This paper presents a life cycle assessment (LCA) of greenhouse gas emissions generated through methanol and electricity co-production system based on coal gasification technology. The analysis focuses on polygeneration technologies from which two products are produced, and thus, issues related to an allocation procedure for LCA are addressed in this paper. In the LCA, two methods were used: a 'system expansion' method based on two approaches, the 'avoided burdens approach' and 'direct system enlargement' methods and an 'allocation' method involving proportional partitioning based on physical relationships in a technological process. Cause-effect relationships in the analysed production process were identified, allowing for the identification of allocation factors. The 'system expansion' method involved expanding the analysis to include five additional variants of electricity production technologies in Poland (alternative technologies). This method revealed environmental consequences of implementation for the analysed technologies. It was found that the LCA of polygeneration technologies based on the 'system expansion' method generated a more complete source of information on environmental consequences than the 'allocation' method. The analysis shows that alternative technologies chosen for generating LCA results are crucial. Life cycle assessment was performed for the analysed, reference and variant alternative technologies. Comparative analysis was performed between the analysed technologies of methanol and electricity co-production from coal gasification as well as a reference technology of methanol production from the natural gas reforming process.

  17. Effects of coal gasification slag as a substrate for the plant Cyperus esculentus and the worm Eisenia fetida.

    Science.gov (United States)

    Jenner, H A; Janssen-Mommen, J P; Koeman, J H

    1992-08-01

    A further development of the coal gasification process will result in an increase of the amount of coal gasification slag (CGS). As yet little is known about the effects of storage in uncovered dumps. If there are any environmental effects, they are most likely caused by accumulation of metals from the CGS or by unacceptable physical properties of the CGS. Growth inhibition, mortality, and metal accumulation were analyzed for the plant Cyperus esculentus and the worm Eisenia fetida on CGS substrate. Pulverized fuel ash (PFA) was used as a reference. Both in the substrate and in tissues the concentrations of the cations Cu, Ni, Pb, and Zn and the anions As, B, Cr, Mo, Sb, and Se were determined. The availability of anions for C. esculentus and for E. fetida is greater in PFA than in CGS. The extent and rate of uptake of anionic metals by the plants is on the whole higher in the wetland situation. The availability of metals, expressed as the concentration factor (CF), in most cases appears to be smaller than 1 for nearly all elements. In E. fetida a CF greater than 1 was found only for the element As, in PFA substrate and 50% CGS. In C. esculentus a CF greater than 1 was found for B and Mo in the PFA substrate as well.

  18. Variation in the temperature field of rocks overlying a high-temperature cavity during underground coal gasification

    Institute of Scientific and Technical Information of China (English)

    Luo Ji'an; Wang Lianguo; Tang Furong; He Yan; Zheng Lin

    2011-01-01

    High temperature affects rocks in a way that changes the physical and mechanical properties of them.The temperature field in rock overlying a high temperature zone has been estimated using experimental research on thermal conductivity of the overlying strata.Numerical analysis software was used to estimate rock thermal conductivity at different temperatures.These estimates were then used with COMSOL Multiphysics to perform a numerical analysis with the heat conduction model.The results show that rock thermal conductivity decreases as the temperature increases and that various lithologies show similar behavior.The thermal conductivity of each rock type differs from the others at a given temperature.Exact values for the temperature distribution in the overlying strata during the process of underground coal gasification are obtained from the numerical simulation.The temperature in the rock changes with the height and direction from the gasifier.Temperature gradients vary for different types of rock.This result provides an important reference for further study of the strength of overlying strata subject to the process of underground coal gasification.

  19. DISCUSSION ON OPERATING TEMPERATURE OF TEXACO COAL GASIFICATION FURNACE%Texaco 煤气化炉操作温度的探讨

    Institute of Scientific and Technical Information of China (English)

    李聿营

    2015-01-01

    简要分析Texaco煤气化工艺技术特点以及操作温度对气化工艺的影响,对气化炉操作温度的影响因素、判断方法进行了深入探讨,结合齐鲁煤气化装置运行经验提出了气化炉操作温度的具体控制措施。%This paper briefly analyzed the characteristics of Texaco coal gasification tech-nology and influence of operating temperature on the gasification process.Influence factors and the judging methods for operating temperature of the gasifier were discussed.Specific control measures for operating temperature of the gasifier were given combining with the running experi-ence of the Qilu coal gasification plant.

  20. Properties and Developments of Combustion and Gasification of Coal and Char in a CO2-Rich and Recycled Flue Gases Atmosphere by Rapid Heating

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    2012-01-01

    Full Text Available Combustion and gasification properties of pulverized coal and char have been investigated experimentally under the conditions of high temperature gradient of order 200°C·s−1 by a CO2 gas laser beam and CO2-rich atmospheres with 5% and 10% O2. The laser heating makes a more ideal experimental condition compared with previous studies with a TG-DTA, because it is able to minimize effects of coal oxidation and combustion by rapid heating process like radiative heat transfer condition. The experimental results indicated that coal weight reduction ratio to gases followed the Arrhenius equation with increasing coal temperature; further which were increased around 5% with adding H2O in CO2-rich atmosphere. In addition, coal-water mixtures with different water/coal mass ratio were used in order to investigate roles of water vapor in the process of coal gasification and combustion. Furthermore, char-water mixtures with different water/char mass ratio were also measured in order to discuss the generation ratio of CO/CO2, and specified that the source of Hydrocarbons is volatile matter from coal. Moreover, it was confirmed that generations of CO and Hydrocarbons gases are mainly dependent on coal temperature and O2 concentration, and they are stimulated at temperature over 1000°C in the CO2-rich atmosphere.

  1. Novel approach to coal gasification using chemically incorporated catalysts (Phase II). Appendix A-F. Final report, May 1978-June 1981

    Energy Technology Data Exchange (ETDEWEB)

    Feldmann, H.F.; Conkle, H.N.; Appelbaum, H.R.; Chauhan, S.P.

    1981-01-01

    This volume contains six appendices: experimental apparatus, test conditions, and results of catalytic coal treatment; direct hydrogasification; summary of test runs for hydrogasification of BTC; summary of test runs for hydrogasification of char; summary of steam/O/sub 2/ gasification runs; and process analysis. Forty tables and nine figures are also included.

  2. HT-L与Shell及Texaco粉煤气化技术的比较%Technological Comparison of HT-L with Shell and Texaco Pulverized Coal Gasification Processes

    Institute of Scientific and Technical Information of China (English)

    吴胜军

    2011-01-01

    介绍了HT-L粉煤气化技术的工艺特点,并从比氧耗、有效气成分、煤气化效率、能耗等方面与Shell 及Texaco粉煤气化技术进行了分析比较.结果表明:HT-L粉煤气化技术具有高效节能、煤种适用范围广、气化效率高、能耗低、建设和运行成本低、工艺成熟可靠并具有自主知识产权的优点,具有广阔的发展前景.%Process features are described of the HT-L pulverized coal gasification technology, and an analytical comparison is done with the Shell and Texaco pulverized coal gasification technology in terms of specific oxygen consumption, active gas constituent, coal gasification efficiency, and energy consumption. The results show that the HT-L technology has the advantages of highly efficient energy saving, wide scope of application to various coal types, high gasification efficiency, low energy consumption, low construction and operation cost, mature and reliable technology, and possession of independent intellectual property, and so it brings about broad prospects for development.

  3. 德士古煤气化装置设计问题探讨%Study on Design of Texaco Coal Gasification Units

    Institute of Scientific and Technical Information of China (English)

    王旭宾

    2001-01-01

    本文对国内德士古煤气化装置运行中暴露出的设计问题进行了探讨。%This paper studies the design problems which are exposed at therunning of Texaco coal gasification units in China.

  4. GE与Shell两种煤制气方法的技术特点比较%Technologies and Process Comparison of GE and Shell Coal Gasification

    Institute of Scientific and Technical Information of China (English)

    翟延平

    2012-01-01

    对GE和Shell两种煤制气方法的技术现状进行剖析,对其工艺特点进行比较。%To analyze the present situation of GE and Shell.Two kinds of coal gasification technologies.To compare the process characteristics of these two technologies.

  5. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part IV. Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Dimple Mody Quyn; Hongwei Wu; Jun-ichiro Hayashi; Chun-Zhu Li, [Monash University, Monash, Vic. (Australia). CRC for Clean Power from Lignite, Department of Chemical Engineering

    2003-03-01

    The purpose of this study is to investigate the catalytic effects of Na as NaCl or as sodium carboxylates ( COONa) in Victorian brown coal on the char reactivity. A Na-exchanged coal and a set of NaCl-loaded coal samples prepared from a Loy Yang brown coal were pyrolysed in a fluidised-bed/fixed-bed reactor and in a thermogravimetric analyser (TGA). The reactivities of the chars were measured in air at 400{sup o}C using the TGA. The experimental data indicate that the Na in coal as NaCl and as sodium carboxylates ( COONa) had very different catalytic effects on the char reactivity. It is the chemical form and dispersion of Na in char, not in coal, that govern the catalytic effects of Na. For the Na-form (Na-exchanged) coal, the char reactivity increased with increasing pyrolysis temperature from 500 to 700{sup o}C and then decreased with pyrolysis temperature from 700 to 900{sup o}C. The increase in reactivity with pyrolysis temperature (500 700{sup o}C) is mainly due to the changes in the relative distribution of Na in the char matrix and on the pore surface. For the NaCl-loaded coals, when Cl was released during pyrolysis or gasification, the Na originally present in coal as NaCl showed good catalytic effects for the char gasification. Otherwise, Cl would combine with Na in the char to form NaCl during gasification, preventing Na from becoming an active catalyst. Controlling the pyrolysis conditions to favour the release of Cl can be a promising way to transform NaCl in coal into an active catalyst for char gasification. 38 refs., 5 figs.

  6. Economic competitiveness of underground coal gasification combined with carbon capture and storage in the Bulgarian energy network

    Energy Technology Data Exchange (ETDEWEB)

    Nakaten, Natalie Christine

    2014-11-15

    Underground coal gasification (UCG) allows for exploitation of deep-seated coal seams not economically exploitable by conventional coal mining. Aim of the present study is to examine UCG economics based on coal conversion into a synthesis gas to fuel a combined cycle gas turbine power plant (CCGT) with CO2 capture and storage (CCS). Thereto, a techno-economic model is developed for UCG-CCGT-CCS costs of electricity (COE) determination which, considering sitespecific data of a selected target area in Bulgaria, sum up to 72 Euro/MWh in total. To quantify the impact of model constraints on COE, sensitivity analyses are undertaken revealing that varying geological model constraints impact COE with 0.4% to 4%, chemical with 13%, technical with 8% to 17% and market-dependent with 2% to 25%. Besides site-specific boundary conditions, UCG-CCGT-CCS economics depend on resources availability and infrastructural characteristics of the overall energy system. Assessing a model based implementation of UCG-CCGT-CCS and CCS power plants into the Bulgarian energy network revealed that both technologies provide essential and economically competitive options to achieve the EU environmental targets and a complete substitution of gas imports by UCG synthesis gas production.

  7. 煤炭地下气化空间扩展规律及控制方法研究综述%REVIEW ON CAVITY GROWTH LAWS AND CONTROL IN UNDERGROUND COAL GASIFICATION

    Institute of Scientific and Technical Information of China (English)

    王在泉; 华安增

    2001-01-01

    The influences of cavity growth in underground coal gasification on gasification process are analyzed on the basis of introduction of underground coal gasification. The development of space expanding laws and control methods in underground coal gasification are reviewed. The problems and ideas to be studied deeply are put forward combining with the gasification characteristics of China.%在介绍煤炭地下气化特点的基础上,对地下气化空间扩展及气化过程影响进行了分析,综述了国内外在煤炭地下气化空间扩展规律及控制方法的研究进展,结合中国的气化工艺特点,提出了需进一步研究的课题。

  8. Gasification technology assessment of sterile coal to clean electrical power generation.

    OpenAIRE

    2013-01-01

    Sterile coal is a low-value residue associated to the coal extraction and mining activity. According to the type and origin of the coal bed configuration, sterile coal production can mainly vary on quantity, calorific value and presence of sulphur compounds. In addition, the potential availability of sterile coal within Spain is apparently high and its contribution to the local power generation would be of interest playing a significant role. The proposed study evaluates the availability an...

  9. Engineering support services for the DOE/GRI coal-gasification research program. Technical and economical comparisons of the Westinghouse and I. G. T. U-Gas coal-gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    Bostwick, L.E.; Hubbard, D.A.; Laramore, R.W.; Koneru, P.B.

    1981-07-01

    Kellogg was requested by DOE/GRI to prepare technical and economic assessments of the Westinghouse and IGT U-Gas processes such that comparison of the two would be on a consistent basis. Kellogg carried out this task in essentially two phases: (a) preparation of consistent designs of coal-to-SNG plants using the two processes, and (b) evaluation of the design bases in light of research data. Comparable designs and economics were prepared for grass-roots facilities to produce SNG equivalent to 250 billion Btu/day from Pittsburgh No. 8 coal, using the Westinghouse and U-Gas gasifiers. The C.F. Braun Guidelines were followed. The capital and operating costs are almost identical for the two processes. In Kellogg's view, the economics as developed during this study do not show cause to favor either process over the other. The small differences in costs are well within the accuracies of the estimates and should be considered insignificant. Nine differences between the Westinghouse and U-Gas processes are listed which could possibly provide an advantage to one or to the other. Opportunities exist for both processes to enhance efficiencies and/or to reduce costs by optimization of the gas treating and byproduct recovery areas. Kellogg observes that both Westinghouse and U-Gas appear to be very competitive (in economics as developed during this study) with other coal gasification processes evaluated under the Joint DOE/GRI Program.

  10. PRESENT STATUS OF COAL GASIFICATION TECHNOLOGY AND ITS TREND IN DEVELOPMENT%当前煤气化技术现状及发展趋势

    Institute of Scientific and Technical Information of China (English)

    亢万忠

    2012-01-01

    由于我国能源结构的特点,确定了我国发展煤化工的重要性和紧迫性,煤气化技术作为煤化工产业链中的基础和龙头技术,对整个产业链的经济性、可靠性和环境效果影响很大,分析当前国内煤气化技术的现状和发展趋势,阐述煤气化技术今后的发展方向。%The features of China's energy structure have determined both the importance and urgency in the country's development of coal-based chemical industry; the coal gasification technology, acting as the basic and leading one in the coal-chemical industrial chain,has a great influence on the economy,reliability and environmental effect of entire industrial chain;this paper has analyzed the present status of domestic coal gasification technology and its trend in development and the future orientation in development of coal gasification technology.

  11. Corrosion behavior of Haynes {sup registered} 230 {sup registered} nickel-based super-alloys for integrated coal gasification combined cycle syngas plants. A plant exposure study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungkyu; Lee, Jieun; Kang, Suk-Hwan; Lee, Seung-Jong; Yun, Yongseung [Institute for Advanced Engineering (IAE), Gyeonggi-do (Korea, Republic of). Plant Engineering Center; Kim, Min Jung [Sungkyunkwan Univ, Gyeonggi-do (Korea, Republic of). Advanced Materials Technology Research Center

    2015-07-01

    The corrosion behavior of commercially available Haynes {sup registered} 230 {sup registered} nickel-based alloy samples was investigated by exposure to coal-gasifying integrated coal gasification combined cycle pilot plant facilities affiliated with the Institute for Advanced Engineering (2.005 MPa and 160-300 C). The morphological and microstructural analyses of the exposed samples were conducted using scanning electron microscopy and energy-dispersive X-ray spectroscopy analysis on the external surface of the recovered corrosion test samples to obtain information of the corrosion scale. These analyses based on the pre- and post-exposure corrosion test samples combined with thermodynamic Ellingham-Pourbaix stability diagrams provided preliminary insight into the mechanism of the observed corrosion behavior prevailing in the piping materials that connected the particulate removal unit and water scrubber of the integrated coal gasification combined cycle pilot plant. Uniform material wastage was observed after 46 hours of operation, and a preliminary corrosion mechanism was suggested: the observed material waste and corrosion behavior of the Haynes {sup registered} 230 {sup registered} nickel-based alloy samples cut off from the coal syngas integrated coal gasification combined cycle plant were explained by the formation of discontinuous (complex) oxide phases and subsequent chlorine-induced active oxidation under the predominantly reducing environment encountered. This contribution continues the already published studies of the Fe-Ni-Cr-Co alloy Haynes {sup registered} 556 {sup registered}.

  12. Theoretical study on composition of gas produced by coal gasification; Sekitan gas ka de seiseisuru gas no sosei ni kansuru kosatsu (HYCOL data no doteki kaiseki)

    Energy Technology Data Exchange (ETDEWEB)

    Kaiho, M.; Yasuda, H.; Kobayashi, M.; Yamada, O.; Soneda, Y.; Makino, M. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    In relation to considerations on composition of gas produced by coal gasification, the HYCOL hydrogen generation process data were analyzed. From the fact that CO concentration (Y) decreases linearly with CO2 concentration (X), element balance of gasification of reacted coal was used to introduce a reaction analysis equation. The equation includes a term of oxygen excess {Delta}(amount of oxygen consumed for combustion of CO and H2 in excess of the theoretical amount), derived by subtracting the stoichiometric oxygen amount used to gasify coal into CO and H2 from the consumed oxygen amount. The {Delta} can be used as a reference to oxygen utilization efficiency. An equation for the {Delta} was introduced. Also introduced was a term for steam decomposition amount derived by subtracting the generated steam from the supplied steam. These terms may be used as a clue to permeate into the gasifying reaction process. This suggestion was discussed by applying the terms to gas composition value during operation. According to the HYCOL analysis, when a gasification furnace is operated at higher than the reference oxygen amount, coal supply variation is directly reflected to the combustion reaction, making the {Delta} distribution larger. In an inverse case, unreacted carbon remains in the furnace due to oxygen shortage, and shift reaction may occur more easily even if oxygen/coal supply ratio varies. 6 figs., 1 ref.

  13. Hydrogen production from co-gasification of coal and biomass in supercritical water by continuous flow thermal-catalytic reaction system

    Institute of Scientific and Technical Information of China (English)

    YAN Qiuhui; GUO Liejin; LIANG Xing; ZHANG Ximin

    2007-01-01

    Hydrogen is a clean energy carrier.Converting abundant coal sources and green biomass energy into hydrogen effectively and without any pollution promotes environmental protection.The co-gasification performance of coal and a model compound of biomass,carboxymethylcellulose (CMC)in supercritical water (SCW),were investigated experimentally.The influences of temperature,pressure and concentration on hydrogen production from co-gasification of coal and CMC in SCW under the given conditions (20-25 MPa,650℃,15-30 s) are discussed in detail.The experimental results show that H2,CO2 and CH4 are the main gas products,and the molar fraction of hydrogen reaches in excess of 60%.The higher pressure and higher CMC content facilitate hydrogen production;production is decreased remarkably given a longer residence time.

  14. 煤气化的工艺技术与发展趋势的分析%Process Technology and Development Trend of Coal Gasification

    Institute of Scientific and Technical Information of China (English)

    夏茂胜

    2016-01-01

    Characteristics of texaco as typical examples of gas technology,the process were detailed analysis,expounds the positive influence of coal gasification technology to the special period of the lean coal rich,and the protection of ecological environment urgent,and a simple analysis of the opportunities for the development of coal gasification technology.%以德士古为例对煤气化技术的特点、工艺流程进行详细分析,阐述了煤气化技术对我国当前贫油富煤,且保护生态环境刻不容缓的特殊时期的积极影响,并简单分析了煤气化技术的发展机遇。

  15. Simulation of Synthesis Gas Production from Steam Oxygen Gasification of Colombian Coal Using Aspen Plus®

    Directory of Open Access Journals (Sweden)

    Jorge E. Preciado

    2012-11-01

    Full Text Available A steady state simulation of syngas production from a Steam Oxygen Gasification process using commercial technologies was performed using Aspen Plus®. For the simulation, the average proximate and ultimate compositions of bituminous coal obtained from the Colombian Andean region were employed. The simulation was applied to conduct sensitivity analyses in the O2 to coal mass ratio, coal slurry concentration, WGS operating temperature and WGS steam to dry gas molar ratio (SDG over the key parameters: syngas molar composition, overall CO conversion in the WGS reactors, H2 rich-syngas lower heating value (LHV and thermal efficiency. The achieved information allows the selection of critical operating conditions leading to improve system efficiency and environmental performance. The results indicate that the oxygen to carbon ratio is a key variable as it affects significantly both the LHV and thermal efficiency. Nevertheless, the process becomes almost insensitive to SDG values higher than 2. Finally, a thermal efficiency of 62.6% can be reached. This result corresponds to a slurry solid concentration of 0.65, a WGS process SDG of 0.59, and a LTS reactor operating temperature of 473 K. With these fixed variables, a syngas with H2 molar composition of 92.2% and LHV of 12 MJ Nm−3 was attained.

  16. A Study on Huainan Coal Gasification Cinder Characteristics%淮南煤气化灰渣特性研究

    Institute of Scientific and Technical Information of China (English)

    李寒旭; 刘铭; 李金知; 代廷魁

    2015-01-01

    Taking the high ash-fusion temperature Huainan coal (from Zhujixi and Xieqiao coalmines) as the subject investigated, under a weak reducing atmosphere analyzed cinder samples apparent configuration, micromorphology and crystalline mineral composition changes of two kinds of coal under different temperatures. The result has shown that Huainan coal gasification cinder samples have cer-tain caking property under temperature 1 300℃and 1 500℃, and some amorphous eutectics in cinder samples. Along with tempera-ture rising, crystalline minerals have gradually transformed into mullite.%以高灰熔融温度淮南煤(朱集西煤和谢桥煤)为研究对象,在弱还原性气氛下,分析两种煤在不同温度下制得渣样的表观形态、微观形貌和晶体矿物组成的变化.结果表明:淮南煤气化渣样在1 300℃、1 500℃下具有一定粘结性,渣样中有非晶态的共熔物生成,晶体矿物随着温度的升高逐渐转变为莫来石.

  17. Behavior of mineral matters in Chinese coal ash melting during char-CO{sub 2}/H{sub 2}O gasification reaction

    Energy Technology Data Exchange (ETDEWEB)

    Xiaojiang Wu; Zhongxiao Zhang; Guilin Piao; Xiang He; Yushuang Chen; Nobusuke Kobayashi; Shigekatsu Mori; Yoshinori Itaya [University of Shanghai for Science & Technology, Shanghai (China). Department of Power Engineering

    2009-05-15

    The typical Chinese coal ash melting behavior during char-CO{sub 2}/H{sub 2}O gasification reaction was studied by using TGA, XRD, and SEM-EDX analysis. It was found that ash melting behavior during char gasification reaction is quite different from that during coal combustion process. Far from the simultaneously ash melting behavior during coal combustion, the initial melting behavior of ash usually occurs at a middle or later stage of char-CO{sub 2}/H{sub 2}O reaction because of endothermic reaction and more reactivity of char gasification reaction as compared with that of mineral melting reactions in ash. In general, the initial melting temperature of ash is as low as 200-300 K below the deformation temperature (T{sub def}) of ash with ASTM test. The initial molten parts in ash are mainly caused by iron bearing minerals such as wustite and iron-rich ferrite phases under gasification condition. Along with the proceeding of ash melting, the melting behavior appears to be accelerated by the presence of calcium to form eutectic mixtures in the FeO-SiO{sub 2}-Al{sub 2}O{sub 3} and CaO-SiO{sub 2}-Al{sub 2}O{sub 3} system. The different states of iron are the dominant reason for different melting behaviors under gasification and combustion conditions. Even under both reducing conditions, the ash fusion temperature (AFT) of coal under char-CO{sub 2} reaction is about 50-100 K lower than that under char-H{sub 2}O reaction condition. The main reason of that is the higher content of CO under char-CO{sub 2} reaction, which can get a lower ratio of Fe{sup 3+}/{Sigma}Fe in NaO-Al{sub 2}O{sub 3}-SiO{sub 2}-FeO melts. 38 refs., 8 figs., 4 tabs.

  18. Optimization and performance prediction of a new near-zero emission coal utilization system with combined gasification and combustion

    Institute of Scientific and Technical Information of China (English)

    GUAN Jian; WANG Qinhui; LI Xiaomin; LUO Zhongyang; CEN Kefa

    2007-01-01

    In accordance with the new near-zero emission coal utilization system with combined gasification and combustion,which is based on the CO2 acceptor gasification process,the product gas composition of the gasifier and the combustor was calculated by means of thermodynamic equilibrium calculation software FactSage 5.2.Based on these calculations,the whole system efficiency calculation method that complies with the mass and energy conservation prin ciple was established.To enhance the system efficiency,the system pressure and the gasifier carbon conversion ratio were optimized.The results indicate that the system efficiency increases with increasing pressure and gasifier carbon conversion ratio.After taking into consideration the influence of the pressure and carbon conversion ratio on the performance of the system,the gasifier and the combustor were synthetically studied.The optimum system pressure and carbon conversion ratio were obtained as 2.5 MPa and 0.7,respectively.The system efficiency could reach around 62.1% when operated in these two optimum parameters.If the advanced ion transport membrane (ITM) air separation technology is used,there would be an increase of another 1.3%.

  19. Impact of Calcium on Pyrolysis and Gasification Characteristics of Brown Coal%钙元素对褐煤热解和气化特性的影响

    Institute of Scientific and Technical Information of China (English)

    王磊; 余江龙; 尹丰魁; 王冬梅

    2012-01-01

    综述了钙元素对褐煤热解和气化特性的影响,讨论了钙元素对热解产物中挥发分、焦油产率和气体产物分布的影响,以及对褐煤半焦气化的催化作用.结果表明,与酸洗煤相比,热解过程中,钙元素降低焦油产率,提高半焦产率;气化过程中,钙元素的植入提高褐煤半焦的反应活性,缩短了反应时间.高温时钙元素主要以氧化态的形式存在,低温时则不断与半焦基体键合而参与交联反应,少部分挥发.%This paper provides an overview on the impact of calcium on the pyrolysis and gasification characteristics of brown coal. The impact of calcium on the total volatile matter yield, the tar yield and the distribution of gaseous products during pyrolysis as well as its influences on the catalysis of the gasification of brown coal and chars are discussed. It is shown that the tar yield of the Ca-enriched coal is lower than that of the acid-washed coal and the char yield is higher than that of the acid-washed coal in the pyrolysis process. The reactivity of brown coal is increased and the reaction time is shortened in the gasification process because of the calcium implantation into the brown coal. Calcium oxide is the main form existing in the coal at high temperatures, but it is strongly bonded to the char structure and attends cross linking reactions and a small proportion of volatilizes.

  20. Impact of high external circulation ratio on the performance of anaerobic reactor treating coal gasification wastewater under thermophilic condition.

    Science.gov (United States)

    Jia, Shengyong; Han, Hongjun; Zhuang, Haifeng; Hou, Baolin; Li, Kun

    2015-09-01

    A laboratory-scale external circulation anaerobic reactor (ECAR) was developed to treat actual coal gasification wastewater. The external circulation ratio (R) was selected as the main operating variable for analysis. From the results, with the hydraulic retention time of 50h, pH > 8.0 and R of 3, the COD, total phenols, volatile phenol and NH4(+)-N removal efficiencies were remarkably increased to 10 ± 2%, 22 ± 5%, 18 ± 1%, and -1 ± 2%, respectively. Besides, increasing R resulted in more transformation from bound extracellular polymeric substances (EPS) to free EPS in the liquid and the particle size distribution of anaerobic granular sludge accumulated in the middle size range of 1.0-2.5mm. Results showed the genus Saccharofermentans dominanted in the ECAR and the bacterial community shift was observed at different external circulation ratio, influencing the pollutants removal profoundly.

  1. Toxicity of granular activated carbon treated coal gasification water as determined by the Microtox test and Escherichia coli.

    Science.gov (United States)

    Makino, Y; Adams, J C; McTernan, W F

    1986-01-01

    The Microtox assay and various parameters (growth, ATP concentration and electrochemical detection) of Escherichia coli were used to assess the toxicity of various levels of granular activated carbon treated coal gasification process water. The generation time of E. coli was statistically significantly slower at the level of 50 percent treatment than any other level of treatment. No differences were seen for ATP concentration per cell or in the electrochemical detection methods for any level treatment. There was a very high correlation between total organic carbon removal by GAC treatment and reduction in toxicity as measured by the Microtox system. However, even the treated water which had 91 percent of the TOC removed was still highly toxic.

  2. A Pilot-scale Study on Coal Gasification Wastewater Reclamation Using Pretreatment Alternatives Combined with Ultrafiltration and Reverse Osmosis

    Institute of Scientific and Technical Information of China (English)

    Qian Zhao; Hongjun Han; Fang Fang; Peng Xu; Kun Li; Dexin Wang

    2015-01-01

    Aims to investigate the performance of the pilot⁃scale reclamation plant for coal gasification wastewater ( CGW) using ultrafiltration and reverse osmosis with appropriate pretreatment alternatives, different pre⁃treatment alternatives⁃coagulation, adsorption, and ozonation methods were employed to treat the secondary effluent of coal gasification wastewater ( SECGW ) in a pilot⁃scale pressurized membrane system. The performance was compared to choose the most suitable pre⁃treatment alternative for the SECGW reclamation. Ozone reaction achieved highest COD removal efficiency (79.6%-91.0%), resulting in the stable normalized parameters of the subsequent ultrafiltration and reverse osmoses. In contrast, the coagulation and adsorption processes achieved only 32. 8%-45. 7% and 53. 1%-64. 6% decreases in COD, respectively. The residual organic pollutants in the reverse osmosis feed water led to an increase in normalized pressure drop and a decrease in normalized permeability ( or membrane transference coefficient) . The hydrophobic fraction was the main constituent ( approx. 70% of DOC ) in pretreated SECGW, and the hydrophobic⁃neutral fraction contributed mostly to the UV absorbance ( 53%) . Fluorescence excitation emission matrices revealed that ozonation removed most of the hydrophobic and aromatic proteins such as tyrosine and tryptophan which dominated in raw wastewater. The recalcitrant compounds such as phenolic compounds, heterocyclic compounds, especially long⁃chain hydrocarbons, which were easily attached to the membrane surface and contributed to organic fouling, could be oxidized and mineralized by ozone. Among the three pretreatments, ozonation showed highest removal efficiencies of hydrophobic and aromatic proteins, therefore resulting in highest normalized permeability.

  3. The stability of arsenic and selenium compounds that were retained in limestone in a coal gasification atmosphere.

    Science.gov (United States)

    Díaz-Somoano, M; López-Antón, M A; Huggins, F E; Martínez-Tarazona, M R

    2010-01-15

    The aim of this work was to evaluate the stability of arsenic and selenium species retained in a lime/limestone mixture obtained by using limestone as a sorbent for gas cleaning in a coal gasification atmosphere. It was found that the stability of arsenic and selenium species produced by the gas-solid reactions with lime/limestone may be affected by their exposure to air and by their contact with water. The results confirm the conclusions of a previous work in which Ca(AsO(2))(2) and CaSe was postulated as the products of the reaction between the arsenic and selenium species present in a coal gasification atmosphere with lime/limestone. Moreover it was proved that the compounds (Ca(AsO(2))(2) and CaSe) may undergo transformations when the sorbents post-retention are stored or disposed of in air. From the results obtained by XAFS it was possible to identify the Ca(3)(AsO(4))(2) produced by the oxidation of the Ca(AsO(2))(2) on the sorbent surface. The XAFS results for selenium showed that the CaSe formed on the sorbent was transformed to form several species, but mainly elemental Se. These changes in the speciation of arsenic and selenium may explain the behavior of the sorbent post-retention during the water solubility test. Although the selenium compounds and the products that may originate from their decomposition in water are not toxic, in the case of arsenic, species like Ca(AsO(2))(2) and Ca(3)(AsO(4))(2) may lixiviate, and generate toxic arsenic compounds in solution that could pose a risk when the sorbent is finally disposed of.

  4. Reequipment of a GST-power plant operating with natural gas for the adaptation to coal gas - gasification of residual substances. Umruestung eines GuD-Erdgaskraftwerkes auf Kohlegas - Vergasung von Reststoffen

    Energy Technology Data Exchange (ETDEWEB)

    Jelich, W. (Babcock Lentjes Kraftwerkstechnik GmbH, Oberhausen (Germany)); Klauke, F. (Babcock Lentjes Kraftwerkstechnik GmbH, Oberhausen (Germany)); Koenig, D. (Babcock Lentjes Kraftwerkstechnik GmbH, Oberhausen (Germany))

    1994-04-01

    The paper deals with the possibility of readjusting a planned GST gas-fired power station to brown coal gasification plant to be installed at a later date. It comments on measures to be taken into consideration for the natural gas power plant project with regard to a subsequent reequipment of the plant. In addition to this, the article describes the gasification technology as well as the components needed for gasification quoting data on the efficiency, availability and experience gained from the operation of existing plants. In conclusion, the paper gives a brief description of the disposal of residues by gasification. (orig.)

  5. 主流煤炭气化技术性能的对比研究%Technical performance comparison of three different coal gasification technologies

    Institute of Scientific and Technical Information of China (English)

    吴同舫

    2016-01-01

    通过对GSP粉煤气化、GE水煤浆气化以及Shell粉煤气化的实地考察,结合气化炉近年来的实际生产运行情况,分别从工艺流程、技术特点、操作参数、关键设备、环保指标等几个方面对三种不同类型的煤炭气化技术进行了比较探讨,得出多喷嘴壳牌粉煤气化技术性能优越,在洁净煤化工领域发展前景广阔。%Based on the spot investigation of improved GS P, GE CWS and Shell coal gasification plants, combined with the actual operation experiences of gasifiers in recent years, the three different types of coal gasification were compared and discussed from process, technical characteristics, operating parameters, key equipments and environmental indexes.It concludesthat the Shell coal gasification technology has superior performances,and will have bright prospects in the clean coal chemical industry.

  6. Volatilisation of alkali and alkaline earth metallic species during the gasification of a Victorian brown coal in CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Quyn, Dimple Mody; Li, Chun-Zhu [CRC for Clean Power from Lignite, Department of Chemical Engineering, PO Box 36, Monash University, Victoria 3800 (Australia); Hayashi, Jun-ichiro [Centre for Advanced Research of Energy Conversion Materials, Hokkaido University, N13-W8, Kita-ku, Sapporo 060-8628 (Japan)

    2005-08-25

    A Victorian brown coal was gasified in a bench-scale quartz fluidised-bed/fixed-bed reactor in order to study the volatilisation of Na, Ca, and Mg during devolatilisation and gasification and their roles in the reactivity of chars. It was found that the majority of Na was volatilised at 900 {sup o}C under all conditions and that a Na retention limit was achieved in the char with the progress of CO{sub 2} gasification. In some cases, the presence of CO{sub 2} during devolatilisation enhanced the Na retention in the char. In contrast, the retention of Ca (and Mg) was unaffected by CO{sub 2} during devolatilisation at 900C but decreased drastically upon nascent char gasification. The fundamental differences in volatilisation between the alkali and alkaline earth metallic species are discussed in this paper.

  7. Regional-scale geomechanical impact assessment of underground coal gasification by coupled 3D thermo-mechanical modeling

    Science.gov (United States)

    Otto, Christopher; Kempka, Thomas; Kapusta, Krzysztof; Stańczyk, Krzysztof

    2016-04-01

    Underground coal gasification (UCG) has the potential to increase the world-wide coal reserves by utilization of coal deposits not mineable by conventional methods. The UCG process involves combusting coal in situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from its high economic potentials, UCG may induce site-specific environmental impacts such as fault reactivation, induced seismicity and ground subsidence, potentially inducing groundwater pollution. Changes overburden hydraulic conductivity resulting from thermo-mechanical effects may introduce migration pathways for UCG contaminants. Due to the financial efforts associated with UCG field trials, numerical modeling has been an important methodology to study coupled processes considering UCG performance. Almost all previous UCG studies applied 1D or 2D models for that purpose, that do not allow to predict the performance of a commercial-scale UCG operation. Considering our previous findings, demonstrating that far-field models can be run at a higher computational efficiency by using temperature-independent thermo-mechanical parameters, representative coupled simulations based on complex 3D regional-scale models were employed in the present study. For that purpose, a coupled thermo-mechanical 3D model has been developed to investigate the environmental impacts of UCG based on a regional-scale of the Polish Wieczorek mine located in the Upper Silesian Coal Basin. The model size is 10 km × 10 km × 5 km with ten dipping lithological layers, a double fault and 25 UCG reactors. Six different numerical simulation scenarios were investigated, considering the transpressive stress regime present in that part of the Upper Silesian Coal Basin. Our simulation results demonstrate that the minimum distance between the UCG reactors is about the six-fold of the coal seam thickness to avoid hydraulic communication between the single UCG

  8. Pyrolysis and Gasification

    DEFF Research Database (Denmark)

    Astrup, Thomas; Bilitewski, B.

    2011-01-01

    Pyrolysis and gasification include processes that thermally convert carbonaceous materials into products such as gas, char, coke, ash, and tar. Overall, pyrolysis generates products like gas, tar, and char, while gasification converts the carboncontaining materials (e.g. the outputs from pyrolysis....... Today gasification is used within a range of applications, the most important of which are conversion of coal into syngas for use as chemical feedstock or energy production; but also gasification of biomass and waste is gaining significant interest as emerging technologies for sustainable energy. From...

  9. Kinetic models comparison for steam gasification of coal/biomass blend chars.

    Science.gov (United States)

    Xu, Chaofen; Hu, Song; Xiang, Jun; Yang, Haiping; Sun, Lushi; Su, Sheng; Wang, Baowen; Chen, Qindong; He, Limo

    2014-11-01

    The non-isothermal thermogravimetric method (TGA) was applied to different chars produced from lignite (LN), sawdust (SD) and their blends at the different mass ratios in order to investigate their thermal reactivity under steam atmosphere. Through TGA analysis, it was determined that the most prominent interaction between sawdust and lignite occurred at the mass ratio of sawdust/lignite as 1:4, but with further dose of more sawdust into its blends with lignite, the positive interaction deteriorated due to the agglomeration and deactivation of the alkali mineral involved in sawdust at high steam gasification temperature. Through systematic comparison, it could be observed that the random pore model was the most suitable among the three gas-solid reaction models adopted in this research. Finally, rational kinetic parameters were reached from these gas-solid reaction models, which provided a basis for design and operation of the realistic system of co-gasification of lignite and sawdust in this research.

  10. Effect of tar fractions from coal gasification on nickel-yttria stabilized zirconia and nickel-gadolinium doped ceria solid oxide fuel cell anode materials

    Science.gov (United States)

    Lorente, E.; Berrueco, C.; Millan, M.; Brandon, N. P.

    2013-11-01

    The allowable tar content in gasification syngas is one of the key questions for the exploitation of the full potential of fuel cell concepts with integrated gasification systems. A better understanding of the interaction between tars and the SOFC anodes which leads to carbon formation and deposition is needed in order to design systems where the extent of gas cleaning operations is minimized. Model tar compounds (toluene, benzene, naphthalene) have been used in experimental studies to represent those arising from biomass/coal gasification. However, the use of toluene as a model tar overestimates the negative impact of a real gasification tar on SOFC anode degradation associated with carbon formation. In the present work, the effect of a gasification tar and its distillation fractions on two commercially available fuel cell anodes, Ni/YSZ (yttria stabilized zirconia) and Ni/CGO (gadolinium doped ceria), is reported. A higher impact of the lighter tar fractions was observed, in terms of more carbon formation on the anodes, in comparison with the whole tar sample. The characterization of the recovered tars after contact with the anode materials revealed a shift towards a heavier molecular weight distribution, reinforcing the view that these fractions have reacted on the anode.

  11. The pollutants removal and bacterial community dynamics relationship within a full-scale British Gas/Lurgi coal gasification wastewater treatment using a novel system.

    Science.gov (United States)

    Jia, Shengyong; Han, Hongjun; Zhuang, Haifeng; Hou, Baolin

    2016-01-01

    The novel system of EBA (based on external circulation anaerobic (EC) process-biological enhanced (BE) process-anoxic/oxic (A/O) process) was applied to treat the British Gas/Lurgi coal gasification wastewater in Erdos, China. After a long time of commissioning, the EBA system represented a stable and highly efficient performance, particularly, the concentrations of COD, NH4(+)-N, total organic carbon, total nitrogen and volatile phenols in the final effluent reached 53, 0.3, 18, 106mg/L and not detected, respectively. Both the GC-MS and fluorescence excitation-emission matrix analyses revealed significant variations of organic compositions in the effluent of different process. The results of high-throughput sequencing represented the EBA system composed 34 main bacteria which were affiliated to 7 phyla. In addition, the canonical correspondence analysis indicated high coherence among community composition, wastewater characteristics and environmental variables, in which the pH, mixed liquid suspended solids and total phenols loading were the most three significant variables.

  12. Molecular biological enhancement of coal biodesulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J. II; Bielaga, B.A.

    1991-12-01

    The overall objective of this project was to use molecular genetics to develop strains of bacteria with enhanced ability to remove sulfur from coal, and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. (VC)

  13. A Critical Review of Mineral Matter Related Issues during Gasification of Coal in Fixed, Fluidized, and Entrained Flow Gasifiers

    Directory of Open Access Journals (Sweden)

    Vijayaragavan Krishnamoorthy

    2015-09-01

    Full Text Available Gasification of coal is gaining more popularity due to its clean operation, and its ability to generate products for various markets. However, these technologies are not widely commercialized due to reliability and economic issues. Mineral matter in coal plays an important role in affecting the availability/reliability of a gasifier. Agglomeration in the bed, slag mobility and blockage of the syngas exit section are some of the operations related concerns in fixed-bed gasifiers, while ash deposition and sudden defluidization are the major concerns in fluidized bed gasifiers. In the case of entrained flow gasifiers, syngas cooler fouling and blockage, corrosion and erosion of refractory, and slag mobility are some of the major issues affecting the operations and the reliability of the gasifier. This review is aimed at critically examining various mineral matter related issues contributing to the operation and reliability problems in three types of generic gasifiers (fixed bed, fluidized bed and entrained flow gasifiers. Based on the review, some strategies to counter the potential mineral matter related issues are presented.

  14. Analysis of the organic contaminants in the condensate produced in the in situ underground coal gasification process.

    Science.gov (United States)

    Smoliński, Adam; Stańczyk, Krzysztof; Kapusta, Krzysztof; Howaniec, Natalia

    2013-01-01

    Addressing the environmental risks related to contamination of groundwater with the phenolics, benzene, toluene, ethyl benzene, xylene (BTEX) and polycyclic aromatic hydrocarbons (PAHs), which might be potentially released from the underground coal gasification (UCG) under adverse hydrogeological and/or operational conditions, is crucial in terms of wider implementation of the process. The aim of this study was to determine the main organic pollutants present in the process condensate generated during the UCG trial performed on hard coal seam in the Experimental Mine 'Barbara', Poland; 8,933 L of condensate was produced in 813 h of experiment duration (including 456 h of the post-process stage) with average phenolics, BTEX and PAH concentrations of 576,000, 42.3 and 1,400.5 μg/L, respectively. The Hierarchical Clustering Analysis was used to explore the differences and similarities between the samples. The sample collected during the first 48 h of the process duration was characterized by the lowest phenanthrene, anthracene, fluoranthene and pyrene contents, high xylene content and the highest concentrations of phenolics, benzene, toluene and ethyl benzene. The samples collected during the stable operation of the UCG process were characterized by higher concentrations of naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, while in the samples acquired in the post-process stage the lowest concentrations of benzene, toluene, naphthalene, acenaphthene and fluorene were observed.

  15. Economic efficiency of coal gasification in Poland in reference to the price of CO2 emission rights

    Directory of Open Access Journals (Sweden)

    Kopacz Michał

    2016-01-01

    Full Text Available The article presents the impact of prices of carbon dioxide on the economic efficiency of 14 coal gasification technologies employed for producing electricity, hydrogen and methanol measured with the use of NPV method. All technical, technological and economic assumptions in the assessment have been made for Polish conditions. The impact of CO2 prices were examined in the range of 30-200 PLN/Mg. The production capacity of the base technology corresponds with the fuel consumption of indicative coal having the calorific value of 20.5 GJ/Mg, used in the amount of 100 Mg/h. On the basis of the conducted research, with respect to all technical and economic assumptions, it can be stated that for the base scale there is a clear impact of prices of CO2 emission allowances above the 90 PLN/Mg CO2. Such a level of carbon dioxide prices makes the decision concerning construction of geological sequestration systems (CCS, carbon capture and storage worthwhile. This applies in particular to the production of electric energy. For the variants focused on hydrogen production there is a dominance of variants with CCS system only at the price exceeding 120 PLN/Mg CO2, and in the case of methanol such a situation occurs above 150 PLN/Mg CO2.

  16. Are integrated coal gasification combined-cycle power plants competitive?; Sind Kombi-Kraftwerke mit integrierter Kohlevergasung wettbewerbsfaehig?

    Energy Technology Data Exchange (ETDEWEB)

    Pruschek, R. [Essen Univ. (Gesamthochschule) (Germany); Haupt, G.; Zimmermann, G. [Siemens AG Energieerzeugung KWU, Erlangen (Germany); Ullrich, N. [Krupp Uhde GmbH, Dortmund (Germany)

    1999-08-01

    From investigations into improvements that are feasible already today for integrated coal gasification combined-cycle power plants net plant efficiencies of 51.5% (with reference to the calorifica value), not considering the calorific value of the separated elemental sulfur. Specific investment costs (plant supply price) have been determined with US-dollars 1100/kW. With the given market conditions, assumptions and investigation results the IGCC power plant is in a position to compete with a modern hard coal-fired steam power plant. Detailed investigations show a further efficiency potential of about 56% under consideration of future developments. With SOFC fuel cells upstream of the plant a further increase is conceivable. (orig.) [Deutsch] Aus Untersuchungen von bereits heute durchfuehrbaren Verbesserungen bei Kombi-Kraftwerken mit integrierter Kohlevergasung errechnet sich ein Netto-Anlagenwirkungsgrad von 51,5% (auf den Heizwert bezogen). Dabei ist der Heizwert des in der Entschwefelungsanlage abgetrennten elementaren Schwefels nicht beruecksichtigt. Die spezifische Investition (Anlagenlieferpreis) wurde zu US-Dollar 1100/kW ermittelt. Unter den beschriebenen Marktbedingungen, Annahmen und Untersuchungsergebnissen kann das IGCC-Kraftwerk bei einer Ausnutzungsdauer von 7000 h/a mit einem modernen Steinkohle-Dampfkraftwerk konkurrieren. Detaillierte Untersuchungen zeigen unter Einbeziehung zukuenftiger Entwicklungsschritte ein weiteres Wirkungsgradpotential bis etwa 56%. Mit SOFC-Brennstoffzellen als Vorschaltstufe ist eine weitere Erhoehung denkbar. (orig.)

  17. 壳牌煤气化技术及其在工厂安全稳定中应用%Shell Coal Gasification Technology and its Application in Security and Stability in factory

    Institute of Scientific and Technical Information of China (English)

    高宇

    2016-01-01

    The gasification technology through the development of recent years has made considerable progress,has formed a coal-water slurry gasification technology GE,Siemens GSP dry pulverized coal gasification technology,Shell dry pulverized coal gasification technology as the representative of the second generation clean coal technology.Among them,the Shell coal gasification technology has wide application of coal,gas good quality,high efficiency conversion of some of the advantages of the column,and is widely attention.This paper briefly introduces the concept of Shell coal gasification technology,combined with specific engineering applications,it is described from several aspects of coal gasification technology features and applications and other difficulties.%煤气化技术经过近些年的发展取得了长足进步,已形成了以GE水煤浆气化工艺、西门子GSP干煤粉气化工艺、壳牌干煤粉气化工艺为代表的第二代洁净煤气技术。其中,壳牌煤气化技术具有适用煤种广、气体质量好、转化效率高等一系列优点,而被广泛关注。简单介绍了壳牌煤气化技术的概念,并结合具体工程应用,从煤气化技术的特点和应用难点等几个方面进行了阐述。

  18. Investigations of the surface tension of coal ash slags under gasification conditions; Untersuchungen zur Oberflaechenspannung von Kohleschlacken unter Vergasungsbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Melchior, Tobias

    2011-10-26

    In the context of CO{sub 2}-emission-induced global warming, greenhouse gases resulting from the production of electricity in coal-fired power plants gain increasing attention. One possible way to reduce such emissions is to gasify coal instead of burning it. The corresponding process is referred to as Integrated Gasification Combined Cycle and allows for the separation of CO{sub 2} before converting a synthesis gas into electrical energy. However, further improvements in efficiency and availability of this plant technology are needed to render the alternative generation of electricity sensible from an economic point of view. One corresponding approach introduces hot gas cleaning facilities to the gasification plant which guarantee a removal of slag particles from the synthesis gas at high temperatures. The development of such filters depends on the availability of data on the material properties of the coal ash slags to be withdrawn. In this respect, the surface tension is a relevant characteristic. Currently, the surface tension of real coal ash slags as well as of synthetic model systems was measured successfully by means of the sessile drop and the maximum bubble pressure method. With regard to the sessile drop technique, those experiments were conducted in a gasification-like atmosphere at temperatures of up to 1500 C. Furthermore, the pressure inside the experimental vessel was raised to 10 bar in order to allow for deriving the influence of this variable on the surface tension. In contrast, maximum bubble pressure trials were realised at atmospheric pressure while the gas atmosphere assured inert conditions. For performing sessile drop measurements, a corresponding apparatus was set up and is described in detail in this thesis. Three computer algorithms were employed to calculate surface tensions out of the photos of sessile drops and their individual performance was evaluated. A very good agreement between two of the codes was found while the third one

  19. Slurry pumping techniques for feeding high-pressure coal gasification reactors

    Science.gov (United States)

    Bair, W. G.; Tarman, P. B.

    1977-01-01

    Operating experience in pumping coal and coal char slurries at pressures up to 1500 psig is discussed. The design specifications for the mixing tanks, pumps, piping, and slurry heaters are given along with pressure drop and minimum flow velocity data on water-lignite slurries.

  20. Advanced technology applications for second and third generation coal gasification systems. Appendix

    Science.gov (United States)

    Bradford, R.; Hyde, J. D.; Mead, C. W.

    1980-01-01

    Sixteen coal conversion processes are described and their projected goals listed. Tables show the reactants used, products derived, typical operating data, and properties of the feed coal. A history of the development of each process is included along with a drawing of the chemical reactor used.

  1. Thermochemical Equilibrium Model of Synthetic Natural Gas Production from Coal Gasification Using Aspen Plus

    Directory of Open Access Journals (Sweden)

    Rolando Barrera

    2014-01-01

    Full Text Available The production of synthetic or substitute natural gas (SNG from coal is a process of interest in Colombia where the reserves-to-production ratio (R/P for natural gas is expected to be between 7 and 10 years, while the R/P for coal is forecasted to be around 90 years. In this work, the process to produce SNG by means of coal-entrained flow gasifiers is modeled under thermochemical equilibrium with the Gibbs free energy approach. The model was developed using a complete and comprehensive Aspen Plus model. Two typical technologies used in entrained flow gasifiers such as coal dry and coal slurry are modeled and simulated. Emphasis is put on interactions between the fuel feeding technology and selected energy output parameters of coal-SNG process, that is, energy efficiencies, power, and SNG quality. It was found that coal rank does not significantly affect energy indicators such as cold gas, process, and global efficiencies. However, feeding technology clearly has an effect on the process due to the gasifying agent. Simulations results are compared against available technical data with good accuracy. Thus, the proposed model is considered as a versatile and useful computational tool to study and optimize the coal to SNG process.

  2. 煤气化废水深度处理与回用研究进展%Research progress on deep treatment and reclamation of coal gasification wastewater

    Institute of Scientific and Technical Information of China (English)

    张润楠; 范晓晨; 贺明睿; 苏延磊; 姜忠义

    2015-01-01

    The treatment of coal gasification wastewater is difficult because of its complex composition and many contaminants with high concentrations, such as oils, phenols and NH3-N. In this paper, the compositions and characteristics of the wastewater from coal gasification were analyzed and the feasibility of recent technologies for the deep treatment and reclamation of it were reviewed. Aiming to overcome the shortcomings of different technologies and to obtain high water recovery, the feasibility of multi-membrane technologies (ultrafiltration, nanofiltration, reverse osmosis, electrodialysis) for treating it deeply was specially discussed. At last, an outlook on the development trends of the technologies for the deep treatment and reclamation of coal gasification wastewater was given.%煤气化废水水质复杂,污染物浓度高,处理难度大.分析了煤气化废水的组成及特点,概述了煤气化废水深度处理与回用的工艺现状.针对不同工艺存在的问题,以提高水回收率为重点,探讨了多膜工艺(超滤、纳滤、反渗透、电渗析)深度处理煤气化废水的可行性,展望了煤气化废水深度处理与资源化利用工艺的发展方向.

  3. Water management issues in the underground gasification of coal and the subsequent use of the voids for long-term carbon dioxide storage

    Energy Technology Data Exchange (ETDEWEB)

    Younger, P.L. [Newcastle Univ., Newcastle Upon Tyne (United Kingdom). Newcastle Inst. for Research on Sustainability; Gonzalez, G. [Newcastle Univ., Newcastle Upon Tyne (United Kingdom). Sir Joseph Swan Inst. for Energy Research; Amezaga, J.M. [Newcastle Univ., Newcastle Upon Tyne (United Kingdom). School of Civil Engineering and Geosciences, Hydrogeochemical Engineering Research and Outreach

    2010-07-01

    A coupled underground coal gasification (UCG) and carbon capture and storage (CCS) technology was discussed. The technologies can be coupled so that voids created by mining can be uses as carbon dioxide (CO{sub 2}) storage sites. UCG involves the in-situ gasification of coal using directionally-drilled wells. The gasification is achieved by spontaneous combustion initiated by the injection of steam and oxygen. The rate of UCG is controlled by varying the availability of oxygen. The syngas produced during the process is drawn to the surface via neighbouring production boreholes where it can then be transported by pipeline for use in range of applications. Voids created by the UCG process will collapse, leaving high permeability zones isolated from the surface by low permeability superincumbent strata. The UCG goaf and relaxed roof strata will have permeabilities 1 to 3 orders of magnitude greater than the permeabilities of deep saline aquifers or hydrocarbon reservoirs. The void volume needed to store the CO{sub 2} produced from the syngas can be 4 or 5 times the volume occupied by the extracted coal. Risks for groundwater arising from UCG are groundwater depletion, contamination, and gas leakage. Prudent site selection and the use of an effective risk assessment framework are needed to ensure the successful implementation of UCG-CCS processes. 11 refs., 2 figs.

  4. Biological upgrading of coal liquids. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    A large number of bacterial enrichments have been developed for their ability to utilize nitrogen and sulfur in coal liquids and the model compound naphtha. These bacteria include the original aerobic bacteria isolated from natural sources which utilize heteroatom compounds in the presence of rich media, aerobic nitrogen-utilizing bacteria and denitrifying bacteria. The most promising isolates include Mix M, a mixture of aerobic bacteria; ER15, a pyridine-utilizing isolate; ERI6, an aniline-utilizing isolate and a sewage sludge isolate. Culture optimization experiments have led to these bacteria being able to remove up to 40 percent of the sulfur and nitrogen in naphtha and coal liquids in batch culture. Continuous culture experiments showed that the coal liquid is too toxic to the bacteria to be fed without dilution or extraction. Thus either semi-batch operation must be employed with continuous gas sparging into a batch of liquid, or acid extracted coal liquid must be employed in continuous reactor studies with continuous liquid flow. Isolate EN-1, a chemical waste isolate, removed 27 percent of the sulfur and 19 percent of the nitrogen in fed batch experiments. Isolate ERI5 removed 28 percent of the nitrogen in coal liquid in 10 days in fed batch culture. The sewage sludge isolate removed 22.5 percent of the sulfur and 6.5 percent of the nitrogen from extracted coal liquid in continuous culture, and Mix M removed 17.5 percent of the nitrogen from medium containing extracted coal liquid. An economic evaluation has been prepared for the removal of nitrogen heteroatom compounds from Wilsonville coal liquid using acid extraction followed by fermentation. Similar technology can be developed for sulfur removal. The evaluation indicates that the nitrogen heteroatom compounds can be removed for $0.09/lb of coal liquid treated.

  5. Highly Selective H2 Separation Zeolite Membranes for Coal Gasification Membrane Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mei Hong; Richard D. Noble; John L. Falconer

    2006-09-24

    Zeolite membranes are thermally, chemically, and mechanically stable. They also have tunable molecular sieving and catalytic ability. These unique properties make zeolite membrane an excellent candidate for use in catalytic membrane reactor applications related to coal conversion and gasification, which need high temperature and high pressure range separation in chemically challenging environment where existing technologies are inefficient or unable to operate. Small pore, good quality, and thin zeolite membranes are needed for highly selective H{sub 2} separation from other light gases (CO{sub 2}, CH{sub 4}, CO). However, zeolite membranes have not been successful for H{sub 2} separation from light gases because the zeolite pores are either too big or the membranes have a large number of defects. The objective of this study is to develop zeolite membranes that are more suitable for H{sub 2} separation. In an effort to tune the size of zeolite pores and/or to decrease the number of defects, medium-pore zeolite B-ZSM-5 (MFI) membranes were synthesized and silylated. Silylation on B-ZSM-5 crystals reduced MFI-zeolite pore volume, but had little effect on CO{sub 2} and CH{sub 4} adsorption. Silylation on B-ZSM-5 membranes increased H{sub 2} selectivity both in single component and in mixtures with CO{sub 2}CO{sub 2}, CH{sub 4}, or N2. Single gas and binary mixtures of H{sub 2}/CO{sub 2} and H{sub 2}/CH{sub 4} were separated through silylated B-ZSM-5 membranes at feed pressures up to 1.7 MPa and temperatures up to 773 K. For one BZSM-5 membrane after silylation, the H2/CO{sub 2} separation selectivity at 473 K increased from 1.4 to 37, whereas the H{sub 2}/CH{sub 4} separation selectivity increased from 1.6 to 33. Hydrogen permeance through a silylated B-ZSM-5 membrane was activated, but the CO{sub 2} and CH4 permeances decreased slightly with temperature in both single gas and in mixtures. Therefore, the H{sub 2} permeance and H{sub 2}/CO{sub 2} and H{sup 2} /CH{sub 4

  6. Development of high energy density fuels from mild gasification of coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily ``skimmed`` from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in l-, 2-, and 3-ring aromatics. The co-product char material can be used in place of coal as a pulverized fuel (pf) for power generation in a coal combustor. In this situation where the original coal has a high sulfur content, the MCG process can be practiced with a coal-lime mixture and the calcium values retained on the char can tie up the unconverted coal sulfur upon pf combustion of the char. Lime has also been shown to improve the yield and quality of the MCG liquids.

  7. Development of high energy density fuels from mild gasification of coal

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Marvin

    1991-12-01

    METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily skimmed'' from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in l-, 2-, and 3-ring aromatics. The co-product char material can be used in place of coal as a pulverized fuel (pf) for power generation in a coal combustor. In this situation where the original coal has a high sulfur content, the MCG process can be practiced with a coal-lime mixture and the calcium values retained on the char can tie up the unconverted coal sulfur upon pf combustion of the char. Lime has also been shown to improve the yield and quality of the MCG liquids.

  8. Co-gasification of biomass and coal in a pressurised fluidised bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Andries, L.; Hein, K.R.G. [Lab. for Thermal Power Engineering, Dept. of Mechanical Engineering and Marine Technology, Delft Univ. of Technology (Netherlands)

    1996-12-31

    The Laboratory for Thermal Power Engineering of the Delft University of Technology is participating in an EU funded, international, R + D project which is designed to aid European industry in addressing issues regarding co-utilisation of biomass and/or waste in advanced coal conversion processes. The project comprises three main programmes, each of which includes a number of smaller subprogrammes. The three main programmes are: Coal-biomass systems component development and design; Coal-biomass environmental studies; Techno-economic assessment studies. (orig)

  9. Energy, Environmental, and Economic Analyses of Design Concepts for the Co-Production of Fuels and Chemicals with Electricity via Co-Gasification of Coal and Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Eric Larson; Robert Williams; Thomas Kreutz; Ilkka Hannula; Andrea Lanzini; Guangjian Liu

    2012-03-11

    The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercialized component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO

  10. Nitrite accumulation performance of aerobic MBBR treating Lurgi coal gasification waste water by adjusting pollutant load and DO concentration.

    Science.gov (United States)

    Li, Hui-Qiang; Han, Hong-Jun

    2015-01-01

    An aerobic moving bed biofilm reactor (MBBR) was adopted to treat Lurgi coal gasification waste water (LCGW) in about 10 months. The pollutant load and dissolve oxygen (DO) concentration were adjusted by trying to maximize the accumulation of [Formula: see text] in the MBBR for LCGW treatment. The highest [Formula: see text] accumulation proportion [Formula: see text] was 73.9%, but was not stable with influent chemical oxygen demand (COD) and DO concentrations of around 1000 and 1.5 mg/L, respectively. Around 1500 mg/L of influent COD concentration and 1.5 mg/L of DO concentration were proper operation conditions for the aerobic MBBR to achieve relatively stable [Formula: see text] accumulation, with [Formula: see text] ratio at 53% and [Formula: see text] ratio at just 4.3% in the effluent. More specifically, free ammonia concentration and DO concentration affected [Formula: see text] accumulation much more obvious than phenols concentration. The activity and quantity of nitrifying bacteria growth in suspended sludge and biofilm of the MBBR were monitored simultaneously to explain the variations of [Formula: see text] accumulation performance under different operation conditions. An aerobic moving bed biofilm reactor (MBBR) was adopted to treat Lurgi coal gasification waste water (LCGW)in about 10 months. The pollutant load and dissolve oxygen (DO) concentration were adjusted by trying to maximize the accumulation of NO(−)(2)−N in the MBBR for LCGW treatment. The highest NO(−)(2)−N accumulation proportion(NO(−)(2)−Neffluent/TN effluent) was 73.9%, but was not stable with influent chemical oxygen demand (COD) and DO concentrations of around 1000 and 1.5 mg/L, respectively. Around 1500 mg/L of influent COD concentration and 1.5 mg/L of DO concentration were proper operation conditions for the aerobic MBBR to achieve relatively stable NO(−)(2)−N accumulation,with NO(−)(2)−N/TN ratio at 53% and NO(-)(3)−N/TN ratio at just 4.3% in the

  11. CO2 GASIFICATION REACTIVITY OF BROWN COAL CHAR%一种褐煤热解煤焦的CO2气化反应特性

    Institute of Scientific and Technical Information of China (English)

    范冬梅; 张海霞; 朱治平; 吕清刚

    2012-01-01

    Based on the step utilization of brown coal pyrolysis, partial gasification, and residual carbon combustion, a brown coal from Shigouyi Coal Mine in Ningxia was chosen as research object to produce the rapid and slow coal chars at temperature of 700 ℃-950 ℃ in a hori- zontal tube furnace. The effect of pyrolysis conditions on carbon microcrystal structure and BET surface area of chars was investigated. The carbon dioxide gasification reactivity was analyzed by thermogravimetric-mass spectrometric technology, and different evolution indexes were used to characterize the reactivity of chars. It is found that the gasification rate of Shigouyi chars increases by more than 50% with the temperature increasing by 50 ℃. When the pyrolysis temperature rises, the carbon microcrystal structure of coal chars becomes more orderly and the BET surface area decreases. However, the gasification reactivity is mainly controlled by gasification temperature. The gasification reactivity of rapid pyrolyzed coal char is better than that of slow pyrolyzed coal char, and the difference between them become greater as gasification temperature rises. Average specific reaction rates of both rapid and slow pyrolyzed chars have a linear relationship with reaction index.%针对褐煤的热解-部分气化-残炭燃烧梯级利用工艺,以宁夏石沟驿褐煤为原料,采用水平管式炉在700℃~950℃温度范围内分别制备快速和慢速热解煤焦,考察了煤焦微晶结构和比表面积随制焦条件的变化.利用热重-质谱联用技术研究煤焦CO2气化反应特性,并采用不同评价指标对煤焦气化活性进行了表征.结果表明:气化温度每升高50℃,煤焦CO2气化反应速率增加50%以上;热解温度升高,虽然煤焦微晶结构的有序化程度加深,比表面积减小,但煤焦CO2气化反应活性主要受气化温度影响;快速热解煤焦的CO2气化反应活性高于慢速热解煤焦,二者的差异随着气化温度升

  12. Identification and separation of the organic compounds in coal-gasification condensate waters. [5,5 dimethyl hydantoin, dihydroxy benzenes, acetonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, D.H. Jr.; King, C.J.

    1983-08-01

    A substantial fraction of the organic solutes in condensate waters from low-temperature coal-gasification processes are not identified by commonly employed analytical techniques, have low distriution coefficients (K/sub C/) into diisopropyl ether (DIPE) or methyl isobutyl ketone (MIBK), and are resistant to biological oxidation. These compounds represent an important wastewater-treatment problem. Analytical techniques were developed to detect these polar compounds, and the liquid-liquid phase equilibria were measured with several solvents. A high-performance liquid - chromatography (HPLC) technique was employed to analyze four condensate-water samples from a slagging fixed-bed gasifier. A novel sample-preparation technique, consisting of an azeotropic distillation with isopropanol, allowed identification of compounds in the HPLC eluant by combined gas chromatography and mass spectrometry. 5,5-dimethyl hydantoin and related compounds were identified in condensate waters for the first time, and they account for 1 to 6% of the chemical oxygen demand (COD). Dimethyl hydatoin has a K/sub D/ of 2.6 into tributyl phosphate (TBP) and much lower K/sub D/ values into six other solvents. It is also resistant to biological oxidation. Phenols (59 to 76% of the COD), dihydroxy benzenes (0.02 to 9.5% of the COD), and methanol, acetonitrile, and acetone (15% of the COD in one sample) were also detected. Extraction with MIBK removed about 90% of the COD. MIBK has much higher K/sub D/ values than DIPE for dihydroxy benzenes. Chemical reactions occurred during storage of condensate-water samples. The reaction products had low K/sub D/ values into MIBK. About 10% of the COD had a K/sub D/ of nearly zero into MIBK. These compounds were not extracted by MIBK over a wide range of pH. 73 references, 6 figures, 35 tables.

  13. Thermodynamic analysis of in situ gasification-chemical looping combustion (iG-CLC) of Indian coal.

    Science.gov (United States)

    Suresh, P V; Menon, Kavitha G; Prakash, K S; Prudhvi, S; Anudeep, A

    2016-10-01

    Chemical looping combustion (CLC) is an inherent CO2 capture technology. It is gaining much interest in recent years mainly because of its potential in addressing climate change problems associated with CO2 emissions from power plants. A typical chemical looping combustion unit consists of two reactors-fuel reactor, where oxidation of fuel occurs with the help of oxygen available in the form of metal oxides and, air reactor, where the reduced metal oxides are regenerated by the inflow of air. These oxides are then sent back to the fuel reactor and the cycle continues. The product gas from the fuel reactor contains a concentrated stream of CO2 which can be readily stored in various forms or used for any other applications. This unique feature of inherent CO2 capture makes the technology more promising to combat the global climate changes. Various types of CLC units have been discussed in literature depending on the type of fuel burnt. For solid fuel combustion three main varieties of CLC units exist namely: syngas CLC, in situ gasification-CLC (iG-CLC) and chemical looping with oxygen uncoupling (CLOU). In this paper, theoretical studies on the iG-CLC unit burning Indian coal are presented. Gibbs free energy minimization technique is employed to determine the composition of flue gas and oxygen carrier of an iG-CLC unit using Fe2O3, CuO, and mixed carrier-Fe2O3 and CuO as oxygen carriers. The effect of temperature, suitability of oxygen carriers, and oxygen carrier circulation rate on the performance of a CLC unit for Indian coal are studied and presented. These results are analyzed in order to foresee the operating conditions at which economic and smooth operation of the unit is expected.

  14. FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hurt; Joseph Calo; Thomas Fletcher; Alan Sayre

    2004-01-01

    The goal of this project is to carry out the necessary experiments and analyses to extend leading submodels of coal transformations to the new conditions anticipated in next-generation energy technologies. During the first two projects years, significant progress was made on most of the tasks, as described in detail in the two previous annual reports. In the current third annual report, we report in detail on the BYU task on the properties and intrinsic reactivities of chars prepared at high-pressure. A flat-flame burner was used in a high pressure laminar flow facility to conduct high temperature, high heating rate coal pyrolysis experiments. Heating rates were approximately 10{sup 5} K/s, which is higher than in conventional drop tube experiments. Char samples from a Pitt No.8 coal and lignite were collected at 1300 C at 1, 6, 10, and 15 atm. Swelling ratios of the lignite were less than 1.0, and only about 1.3 for the Pitt No.8 coal. All coals showed slight increases in swelling behavior as pressure increased. The swelling behavior observed for the Pitt No.8 coal at each pressure was lower than reported in high pressure drop tube experiments, indicating the effect of heating rate on particle swelling. This heating rate effect was similar to that observed previously at atmospheric pressure. SEM photos revealed that bituminous coal has large physical structure transformations, with popped bubbles due to the high heating rate. TGA char oxidation reactivities were measured at the same total pressure as the char preparation pressure. The general trend was that the TGA reactivity on a gram per gram available basis decreased for both Pitt No.8 and Knife River lignite coal chars with increasing char formation pressure. The Pitt No.8 char intrinsic activation energy and oxygen reaction order remained relatively constant with increasing pressure. This new data provides some of the only information available on the morphology, structure, and reactivity of chars prepared in

  15. An advanced anaerobic biofilter with effluent recirculation for phenol removal and methane production in treatment of coal gasification wastewater.

    Science.gov (United States)

    Li, Yajie; Tabassum, Salma; Zhang, Zhenjia

    2016-09-01

    An advanced anaerobic biofilter (AF) was introduced for the treatment of coal gasification wastewater (CGW), and effluent recirculation was adopted to enhance phenol removal and methane production. The results indicated that AF was reliable in treating diluted CGW, while its efficiency and stability were seriously reduced when directly treating raw CGW. However, its performance could be greatly enhanced by effluent recirculation. Under optimal effluent recirculation of 0.5 to the influent, concentrations of chemical oxygen demand (COD) and total phenol in the effluent could reach as low as 234.0 and 14.2mg/L, respectively. Also, the rate of methane production reached 169.0mLCH4/L/day. Though CGW seemed to restrain the growth of anaerobic microorganisms, especially methanogens, the inhibition was temporary and reversible, and anaerobic bacteria presented strong tolerance. The activities of methanogens cultivated in CGW could quickly recover on feeding with glucose wastewater (GW). However, the adaptability of anaerobic bacteria to the CGW was very poor and the activity of methanogens could not be improved by long-term domestication. By analysis using the Haldane model, it was further confirmed that high effluent recirculation could result in high activity for hydrolytic bacteria and substrate affinity for toxic matters, but only suitable effluent recirculation could result in high methanogenic activity.

  16. Performance of the Full-scale Loop Hybrid Reactor Treating Coal Gasification Wastewater under Different Recirculation Modes

    Institute of Scientific and Technical Information of China (English)

    Qian Zhao; Hongjun Han; Fang Fang; Wang Bing

    2015-01-01

    This paper aims to investigate the simultaneous removal efficiencies of both COD and nitrogen in a single reactor treating coal gasification wastewater ( CGW ) . A novel loop hybrid reactor was developed and operated under different recirculation modes in order to achieve simultaneous removal of refractory compounds and total nitrogen ( TN) in a full⁃scale CGW treatment plant. Mid⁃ditch recirculation was superior to other operational modes in terms of the NH3⁃N and TN removal, resulting in a TN removal efficiency of 52. 3%. Although the system achieved equal COD removal rates under different recirculation modes, hydrophobic acid ( HPO⁃A) fraction of effluent dissolved organic matter ( DOMef) in mid⁃ditch recirculation mode accounted for 35.7%, compared to the proportions of 59. 2%, 45. 3% and 39. 4% for the other modes. The ultraviolet absorbance to dissolved organic carbon ratio test revealed that effluent under mid⁃ditch recirculation mode contained more non⁃aromatic hydrophilic components. Furthermore, appropriate recirculation and anoxic/oxic ( A/O) partitions were also demonstrated to remove some refractory metabolites ( phenols, alkanes, aniline, etc.), which reduced the chromaticity and improved the biodegradability.

  17. Chars from gasification of coal and pine activated with K2CO3: acetaminophen and caffeine adsorption from aqueous solutions.

    Science.gov (United States)

    Galhetas, Margarida; Mestre, Ana S; Pinto, Moisés L; Gulyurtlu, Ibrahim; Lopes, Helena; Carvalho, Ana P

    2014-11-01

    The high carbon contents and low toxicity levels of chars from coal and pine gasification provide an incentive to consider their use as precursors of porous carbons obtained by chemical activation with K2CO3. Given the chars characteristics, previous demineralization and thermal treatments were made, but no improvement on the solids properties was observed. The highest porosity development was obtained with the biomass derived char (Pi). This char sample produced porous materials with preparation yields near 50% along with high porosity development (ABET≈1500m(2)g(-1)). For calcinations at 800°C, the control of the experimental conditions allowed the preparation of samples with a micropore system formed almost exclusively by larger micropores. A mesopore network was developed only for samples calcined at 900°C. Kinetic and equilibrium acetaminophen and caffeine adsorption data, showed that the processes obey to a pseudo-second order kinetic equation and to the Langmuir model, respectively. The results of sample Pi/1:3/800/2 outperformed those of the commercial carbons. Acetaminophen adsorption process was ruled by the micropore size distribution of the carbons. The caffeine monolayer capacities suggest a very efficient packing of this molecule in samples presenting monomodal micropore size distribution. The surface chemistry seems to be the determinant factor that controls the affinity of caffeine towards the carbons.

  18. Assessment of the labor impacts of coal gasification systems: Project No. 61027. Final report. [Considers a 250 billion Btu/day coal gasification plant, in each of 17 counties with sufficient coal, in terms of available labor and in-migration necessary

    Energy Technology Data Exchange (ETDEWEB)

    Donakowski, T.D.; Daniels, E.J.

    1980-12-01

    The Institute of Gas Technology has estimated the labor requirements and their impacts for construction and operation of coal gasification systems (mine and plant). Commercial-size high-, medium-, and low-Btu systems were studied. For the high-Btu system (1000 Btu/SCF) producing 250 billion Btu/day, the labor requirements are shown in Table ES-1. For small, low-Btu systems (150 Btu/SCF) producing 1.5 billion Btu/day, we determined that about 300 systems have equivalent labor requirements to one high-Btu system. Requirements include both mining and gasifying coal. Both basic and secondary (supportive) labor were considered during the 4-year construction and 20-year operation phases of the system. The requirements are expected values based on a sample of 17 counties that we consider as potential sites for gasification. Labor availability at the county level was obtained from the Social and Economic Assessment Model developed by Argonne National Laboratory. This model allowed us to estimate in-migration requirements. If one assmes a commercialization scenario of ten systems under construction simultaneously, the average number of workers required during the 4-year construction period is the sum of basic and secondary labor, or about 77,830. If ten systems are operating simultaneously, about 47,000 workers are required for 20 years. In-migration (or training) impacts during the construction phase of this scenario is about 49,270 workers; during the operation phase, it is about 13,900. A qualitative evaluation of future labor supply by types of occupations indicates that shortages are possible for engineers, painters, pipefitters, ironworkers, and cement masons as coal gasification technology becomes increasingly commercialized.

  19. H sub 2 S removal from fuel gas during coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Rehmat, A. (Institute of Gas Technology, Chicago, IL (USA)); Leppin, D. (Gas Research Inst., Chicago, IL (USA)); Banerjee, D.D. (Center for Research on Sulfur in Coal, Carterville, IL (USA))

    1990-01-01

    The Institute of Gas Technology (IGT) has already developed the U-GAS Process to produce fuel gas from coal. The U-GAS process uses a single-stage fluidized-bed reactor efficiently convert any type of coal either run-of-mine or washed, into low- or medium-Btu fuel gas that can be used in industrial plants or utility power plants. (2) The process has been developed during 10 years of testing in a 30 tons of coal per day capacity pilot plant located in Chicago and is currently being commercialized. In a new configuration of the U-GAS process, the U-GAS, One-Step Desulfurization Process, limestone or dolomite is fed into the coal gasifier to capture and remove sulfur compounds from the fuel gas within the gasifier. Under the reducing conditions of the gasifier, limestone reacts with sulfur compounds to significantly reduce the sulfur content of the fuel gas. 16 refs., 6 figs., 2 tabs.

  20. Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Howard

    2010-11-30

    This project met the objective to further the development of an integrated multi-contaminant removal process in which H2S, NH3, HCl and heavy metals including Hg, As, Se and Cd present in the coal-derived syngas can be removed to specified levels in a single/integrated process step. The process supports the mission and goals of the Department of Energy's Gasification Technologies Program, namely to enhance the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of gasification-based processes. The gasification program will reduce equipment costs, improve process environmental performance, and increase process reliability and flexibility. Two sulfur conversion concepts were tested in the laboratory under this project, i.e., the solventbased, high-pressure University of California Sulfur Recovery Process High Pressure (UCSRP-HP) and the catalytic-based, direct oxidation (DO) section of the CrystaSulf-DO process. Each process required a polishing unit to meet the ultra-clean sulfur content goals of <50 ppbv (parts per billion by volume) as may be necessary for fuel cells or chemical production applications. UCSRP-HP was also tested for the removal of trace, non-sulfur contaminants, including ammonia, hydrogen chloride, and heavy metals. A bench-scale unit was commissioned and limited testing was performed with simulated syngas. Aspen-Plus®-based computer simulation models were prepared and the economics of the UCSRP-HP and CrystaSulf-DO processes were evaluated for a nominal 500 MWe, coal-based, IGCC power plant with carbon capture. This report covers the progress on the UCSRP-HP technology development and the CrystaSulf-DO technology.

  1. 煤气化技术工业应用概况及工艺选择(上)%Industrial Application Survey and Process Selection of Coal Gasification Technology (Part I)

    Institute of Scientific and Technical Information of China (English)

    李建兵

    2014-01-01

    煤气化技术是煤化工产业发展的核心技术,我国庞大的煤化工市场促进了煤气化技术的研发和应用。根据国内、外煤气化技术的实际情况,评述了固定层、流化床、气流床煤气化工艺的主流技术路线及其工艺特点和发展概况,介绍了各种煤气化技术在国内的技术研发和产业化现状。%The coal gasification technology is the core technology in the development of coal chemical industry, and the enormous coal chemical market in China promotes the development and application of coal gasification technology.Based on actual situation at home and abroad, it is reviewed of mainstream technical routes and process characteristics of coal gasification technologies, including fixed-bed, fluid-bed and entrained flow bed, and technology research and development and industrialization status of each coal gasification technology in China is presented.

  2. Assessment and comparison of 100-MW coal gasification phosphoric acid fuel cell power plants

    Science.gov (United States)

    Lu, Cheng-Yi

    1988-01-01

    One of the advantages of fuel cell (FC) power plants is fuel versatility. With changes only in the fuel processor, the power plant will be able to accept a variety of fuels. This study was performed to design process diagrams, evaluate performance, and to estimate cost of 100 MW coal gasifier (CG)/phosphoric acid fuel cell (PAFC) power plant systems utilizing coal, which is the largest single potential source of alternate hydrocarbon liquids and gases in the United States, as the fuel. Results of this study will identify the most promising integrated CG/PAFC design and its near-optimal operating conditions. The comparison is based on the performance and cost of electricity which is calculated under consistent financial assumptions.

  3. Experimental Investigation of Thermal Characteristics of Kiwira Coal Waste with Rice Husk Blends for Gasification

    Directory of Open Access Journals (Sweden)

    Deodatus Kazawadi

    2014-01-01

    Full Text Available Eminent depletion of fossil fuels and environmental pollution are the key forces driving the implementation cofiring of fossil fuels and biomass. Cogasification as a technology is known to have advantages of low cost, high energy recovery, and environmental friendliness. The performance/efficiency of this energy recovery process substantially depends on thermal properties of the fuel. This paper presents experimental study of thermal behavior of Kiwira coal waste/rice husks blends. Compositions of 0, 20, 40, 60, 80, and 100% weight percentage rice husk were studied using thermogravimetric analyzer at the heating rate of 10 K/min to 1273 K. Specifically, degradation rate, conversion rate, and kinetic parameters have been studied. Thermal stability of coal waste was found to be higher than that of rice husks. In addition, thermal stability of coal waste/rice husk blend was found to decrease with an increase of rice husks. In contrast, both the degradation and devolatilization rates increased with the amount of rice husk. On the other hand, the activation energy dramatically reduced from 131 kJ/mol at 0% rice husks to 75 kJ/mol at 100% rice husks. The reduction of activation energy is advantageous as it can be used to design efficient performance and cost effective cogasification process.

  4. Behaviour of gaseous alkali compounds from coal gasification; Kaasumaisten alkaliyhdisteiden kaeyttaeytyminen kivihiilen kaasutuksessa

    Energy Technology Data Exchange (ETDEWEB)

    Nykaenen, J. [Imatran Voima Oy, Vantaa (Finland)

    1996-12-01

    In this project the behaviour of alkali compounds has been studied with a chemical equilibrium model. The goal is to evaluate the possibilities to remove the sodium and potassium compounds together with the fly ash particles by using a ceramic honeycomb filter. The studied processes include both CO{sub 2}/O{sub 2}- and air-blown gasification and combustion. The results show that the difference between the processes with flue gas recirculation and air-blown processes is small. This is due to that the equilibrium concentration of the dominant gaseous alkali compound, chloride, is more or less the same in both processes. This research project is closely connected to the EU-project coordinated by the Delft University of Technology (DUT). In that project alkali concentration of the fuel gas from a 1.6 MW pilot plant will be measured. During the next phase of this research the results from DUT will be compared with the results of this presentation. (author)

  5. Thermo-Mechanical Simulations of Rock Behavior in Underground Coal Gasification Show Negligible Impact of Temperature-Dependent Parameters on Permeability Changes

    Directory of Open Access Journals (Sweden)

    Christopher Otto

    2015-06-01

    Full Text Available A coupled thermo-mechanical model has been developed to assess permeability changes in the vicinity of an underground coal gasification (UCG reactor resulting from excavation and thermo-mechanical effects. Thereto, we consider a stepwise UCG reactor excavation based on a pre-defined coal consumption rate and dynamic thermal boundary conditions. Simulation results demonstrate that thermo-mechanical rock behavior is mainly driven by the thermal expansion coefficient, thermal conductivity, tensile strength and elastic modulus of the surrounding rock. A comparison between temperature-dependent and temperature-independent parameters applied in the simulations indicates notable variations in the distribution of total displacements in the UCG reactor vicinity related to thermal stress, but only negligible differences in permeability changes. Hence, temperature-dependent thermo-mechanical parameters have to be considered in the assessment of near-field UCG impacts only, while far-field models can achieve a higher computational efficiency by using temperature-independent thermo-mechanical parameters. Considering the findings of the present study in the large-scale assessment of potential environmental impacts of underground coal gasification, representative coupled simulations based on complex 3D large-scale models become computationally feasible.

  6. Do we have to consider temperature-dependent material properties in large-scale environmental impact assessments of underground coal gasification?

    Science.gov (United States)

    Otto, Christopher; Kempka, Thomas

    2015-04-01

    Underground coal gasification (UCG) can increase the world-wide coal reserves by utilization of coal deposits not mineable by conventional methods. The UCG process involves combusting coal in situ to produce a high-calorific synthesis gas which can be applied for electricity generation or chemical feedstock production. Apart from its high economic potentials, UCG may induce environmental impacts such as ground subsidence associated with groundwater pollution due to generation of hydraulic connectivities between the UCG reactor and adjacent aquifers. These changes overburden conductivity may introduce potential migration pathways for UCG contaminants such as organic (phenols, benzene, PAHs and heterocyclics) and inorganic (ammonia, sulphates, cyanides, and heavy metals) pollutants. Mitigation of potential environmental UCG impacts can be achieved by improving the understanding of coupled thermo-hydro-mechanical processes in the rocks surrounding the UCG reactor. In the present study, a coupled thermo-mechanical model has been developed to carry out a parameter sensitivity analysis and assess permeability changes derived from volumetric strain increments in the UCG reactor overburden. Our simulation results demonstrate that thermo-mechanical rock behavior is mainly influenced by the thermal expansion coefficient, tensile strength and elastic modulus of the surrounding rock. A comparison of temperature-dependent and temperature-independent simulation results indicates high variations in the distribution of total displacements in the UCG reactor vicinity related to thermal stress, but only negligible differences in permeability changes. Hence, temperature-dependent thermo-mechanical parameters have to be considered in the assessment of near-field UCG impacts, while far-field models can achieve a higher computational efficiency by using temperature-independent thermo-mechanical parameters. Considering the findings of the present study in the large-scale assessment of

  7. Protection by uridine diphosphoglucuronic acid and DT-diaphorase against the cytotoxicity of polycyclic aromatic hydrocarbons isolated from a complex coal gasification condensate.

    Science.gov (United States)

    Swanson, M S; Haugen, D A; Reilly, C A; Stamoudis, V C

    1986-06-30

    The cytotoxicities of polycyclic aromatic hydrocarbon (PAH) subclasses isolated from a complex organic mixture (coal gasification condensate) were studied in vitro in Chinese hamster ovary cells, in the presence of rat liver microsomes from animals pretreated with Aroclor. Toxicity was enhanced by microsomal metabolism and was inversely related to aromatic ring number. Rat liver cytosol, semipurified DT-diaphorase, and uridine diphosphoglucuronic acid decreased the cytotoxicity of a variety of PAH mixtures and representative PAH, as well as individual PAH metabolites. The results indicate that the in vitro toxicity of complex PAH mixtures is caused primarily by hydroxy-PAH and quinone metabolites of the predominant, nonmutagenic two- and three-ring PAHs.

  8. 煤焦与生物质焦共气化反应特性研究%Co-gasification properties of coal char and biomass char

    Institute of Scientific and Technical Information of China (English)

    任海君; 张永奇; 房倚天; 王洋

    2012-01-01

    以晋城无烟煤和生物质(肉骨粉Meat and Bone Meal∶MBM)为原料,在固定床上采用快速热解法制备了煤和生物质焦样.采用扫描电子显微镜结合X射线能谱分析仪(SEM-EDX)分析了煤焦和MBM焦的表面形态和组成;在热天平上采用等温热重法进行了煤焦/MBM焦混合物的水蒸气气化研究.实验结果表明,煤/MBM焦混合物的共气化实验碳转化率高于两者不存在协同作用时的计算值,这是由于MBM焦含有较多的Na、Ca等元素,这些物质对煤焦气化起到了催化作用.当对MBM焦进行脱灰处理后,其气化反应性显著下降.混合物中MBM焦的质量分数在20%~80%时,随着MBM焦含量的增加,混合物中的煤焦反应性相应提高.%An experimental study on the co-gasification property of coal char and biomass char with steam was performed in a thermogravimetric analyzer (TGA). The coal tested was Jincheng anthracite (JC) , and the biomass was meat and bone meal ( MBM). The chars were prepared by fast pyrolysis of coal and MBM individually. The morphology and composition of chars were analyzed by scanning electron microscope (SEM) equipped with an energy-dispersive X-ray analyzer (EDX). The results show that the co-gasification rate of JC/ MBM chars mixture is higher than that of results expected from independent behavior. The high content of Ca and Na in MBM char plays a catalytic effect during co-gasification. After washing with acid, the reactivity of MBM char declines markedly. The gasification rate of coal char in JC/MBM chars mixture increases with increasing MBM char content in rang of 20% ~ 80%.

  9. Comparative Assessment of Gasification Based Coal Power Plants with Various CO2 Capture Technologies Producing Electricity and Hydrogen.

    Science.gov (United States)

    Mukherjee, Sanjay; Kumar, Prashant; Hosseini, Ali; Yang, Aidong; Fennell, Paul

    2014-02-20

    Seven different types of gasification-based coal conversion processes for producing mainly electricity and in some cases hydrogen (H2), with and without carbon dioxide (CO2) capture, were compared on a consistent basis through simulation studies. The flowsheet for each process was developed in a chemical process simulation tool "Aspen Plus". The pressure swing adsorption (PSA), physical absorption (Selexol), and chemical looping combustion (CLC) technologies were separately analyzed for processes with CO2 capture. The performances of the above three capture technologies were compared with respect to energetic and exergetic efficiencies, and the level of CO2 emission. The effect of air separation unit (ASU) and gas turbine (GT) integration on the power output of all the CO2 capture cases is assessed. Sensitivity analysis was carried out for the CLC process (electricity-only case) to examine the effect of temperature and water-cooling of the air reactor on the overall efficiency of the process. The results show that, when only electricity production in considered, the case using CLC technology has an electrical efficiency 1.3% and 2.3% higher than the PSA and Selexol based cases, respectively. The CLC based process achieves an overall CO2 capture efficiency of 99.9% in contrast to 89.9% for PSA and 93.5% for Selexol based processes. The overall efficiency of the CLC case for combined electricity and H2 production is marginally higher (by 0.3%) than Selexol and lower (by 0.6%) than PSA cases. The integration between the ASU and GT units benefits all three technologies in terms of electrical efficiency. Furthermore, our results suggest that it is favorable to operate the air reactor of the CLC process at higher temperatures with excess air supply in order to achieve higher power efficiency.

  10. Molecular biological enhancement of coal biodesulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Litchfield, J.H.; Fry, I.; Wyza, R.E.; Palmer, D.T.; Zupancic, T.J.; Conkle, H.N. (Battelle, Columbus, OH (USA)); Delgado, O.; Tuovinen, O.H. (Ohio State Univ., Columbus, OH (USA))

    1990-12-14

    The following work was accomplished during the Sixth Quarterly Report period in the investigation of the microbial-mediated release of sulfur from coal as viable industrial process for coal desulfurization: Analysis of the carbon source utilization profile by strain C-18 using the Microlog 2N system indicated that this strain was not among the more than 400 bacteria included in this data base. A gradient elution HPLC system developed for separating 4S metabolites gave good resolution of 4S standards except for o,o'-biphenol and o-phenylphenol. The pC18L cosmid library purified by cesium chloride-ethidium bromide density gradient equilibrium centrifugation could be inserted by electroporation into Escherichia coli HB101 to give clones on the order of 10{sup 6} transformants/{mu}g DNA. However, no clones were obtained after electroporation of this preparation with Pseudomonas putida ATCC 33015. Electroporation of the HB101-packaged pC18L (cesium banded) cosmid library into P. putida ATCC 33015 resulted in very low transformation rates. Apparently, the presence of the Tol plasmid in the 33015 strain interfered with this electrotransformation. Battelle bacterial isolates obtained from fuel-contaminated soil showed evidence for utilizing a variety of organosulfonate and organosulfone compounds as sole sulfur sources. Further confirmatory experiments are planned. Antibiotic and metal sensitivity and resistance evaluation of T. ferrooxidans strains have led to the identification of one mercury-resistent strain (DSM 5083) and one selenite-sensitive strain (TFI 85). Plasmid and chromosomal DNA have been prepared from T. ferrooxidans strains. One plasmid, pTFI 91, is being mapped. 4 refs., 1 fig., 4 tabs.

  11. Modelling of Underground Coal Gasification Process Using CFD Methods / Modelowanie Procesu Podziemnego Zgazowania Węgla Kamiennego Z Zastosowaniem Metod CFD

    Science.gov (United States)

    Wachowicz, Jan; Łączny, Jacek Marian; Iwaszenko, Sebastian; Janoszek, Tomasz; Cempa-Balewicz, Magdalena

    2015-09-01

    The results of model studies involving numerical simulation of underground coal gasification process are presented. For the purpose of the study, the software of computational fluid dynamics (CFD) was selected for simulation of underground coal gasification. Based on the review of the literature, it was decided that ANSYS-Fluent will be used as software for the performance of model studies. The ANSYS- -Fluent software was used for numerical calculations in order to identify the distribution of changes in the concentration of syngas components as a function of duration of coal gasification process. The nature of the calculations was predictive. A geometric model has been developed based on construction data of the georeactor used during the researches in Experimental Mine "Barbara" and Coal Mine "Wieczorek" and it was prepared by generating a numerical grid. Data concerning the georeactor power supply method and the parameters maintained during the process used to define the numerical model. Some part of data was supplemented based on the literature sources. The main assumption was to base the simulation of the georeactor operation on a mathematical models describing reactive fluid flow. Components of the process gas and the gasification agent move along the gasification channel and simulate physicochemical phenomena associated with the transfer of mass and energy as well as chemical reactions (together with the energy effect). Chemical reactions of the gasification process are based on a kinetic equation which determines the course of a particular type of equation of chemical coal gasification. The interaction of gas with the surrounding coal layer has also been described as a part of the model. The description concerned the transport of thermal energy. The coal seam and the mass rock are treated as a homogeneous body. Modelling studies assumed the coal gasification process is carried out with the participation of separately oxygen and air as a gasification agent

  12. Engineering support services for the DOE/GRI coal-gasification research program. Monthly technical progress report, 22 August - 25 September, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Bostwick, L.E.; Ethridge, T.R.; Starr, D.W.; Hubbard, D.A.; Koneru, P.B.; Smith, M.R.; Ward, W.E.; Wong, E.W.

    1982-01-01

    The objective of this contract is to provide engineering support services to the Department of Energy/Gas Research Institute in the high Btu coal gasification research program. The gasification research program is to determine the specific process and/or combination of component processing steps that offer the greatest economic potential for commercial application. During September, Kellogg continued active monitoring of operations at Westinghouse, IGT, Peatgas, and BI-GAS. Efforts relative to Hygas, Rockwell, Exxon and Bell were minimal. Test runs monitored and reported here are BI-GAS tests 17E and 17F, Westinghouse PDU test TP-028-3, and IGT Peatgas test 3. Kellog attended meetings on 1 and 22 September to discuss the review of the Hygas final report. Comments on Kellogg's draft report on the Hygas data base evaluation were received. Kellogg's evaluations of PDU operating data from Westinghouse and Exxon continues. The Kellogg report on Peatgas PDU data base evaluation was issued in draft form. At DOE's request, Kellogg began work on an evaluation of the existing data base (by IGT) for single-stage gasification of peat. Work on the descriptive brochure continued, aimed toward issue of a draft in the near future. Kellogg also provided input regarding Westinghouse test runs to a DOE consultant.

  13. Coal gasification systems engineering and analysis. Appendix E: Cost estimation and economic evaluation methodology

    Science.gov (United States)

    1980-01-01

    The cost estimation and economic evaluation methodologies presented are consistent with industry practice for assessing capital investment requirements and operating costs of coal conversion systems. All values stated are based on January, 1980 dollars with appropriate recognition of the time value of money. Evaluation of project economic feasibility can be considered a two step process (subject to considerable refinement). First, the costs of the project must be quantified and second, the price at which the product can be manufacturd must be determined. These two major categories are discussed. The summary of methodology is divided into five parts: (1) systems costs, (2)instant plant costs, (3) annual operating costs, (4) escalation and discounting process, and (5) product pricing.

  14. Test and Application for Comprehensive Utilization Coal Sludge in Shell Coal Gasification Plant%壳牌煤气化装置之煤泥综合利用的试验及应用

    Institute of Scientific and Technical Information of China (English)

    蒋都钦

    2011-01-01

    河南龙宇煤化工有限公司正在运行的1套壳牌煤气化装置和正在安装的2台五环炉煤气化装置共产生煤泥220 t/d(设计排放量),该公司采用高压、高浓度、长距离、全封闭的管道输送方式,将煤泥输送到公用工程锅炉内进行二次焚烧,以实现大型煤气化装置生产资源的综合利用。简述了煤泥综合利用系统的工艺设备和工艺流程;论述了该系统的创新特点和技术优势;介绍了煤泥远距离管道输送以及配比燃烧的试验数据。结果表明,该系统投用后可处理气化装置废渣6万t/a,节约标煤0.9万t/a,直接经济效益约900万元/a。%One set of Shell coal Gasification plant has been operating and two sets of coal gasification plants with Wuhuan gasifier are installing in the Longyu Chemical Engineering Company Ltd.,from which 220 t/d(design quantity discharged)of coal sludge are formed totally,using high concentration,long distance and fully closed conveying mode by piping,this company will take the coal sludge to convey into the utility boiler for secondary incineration in order to realize the comprehensive utilization for production resource in the large-sized coal gasification plant.Author has simply described the process equipment and process flow for comprehensive utilization system;has discussed the innovation feature and the technology advantage of this system;has introduced the long distance conveyance of coal sludge by piping and the test data for combustion with a proper ratio of sludge.Result indicates that the 60 000 t/a of waste sludge can treated by this system after having been put into operation,9 000 t/a of standard coal is saved,direct economic benefit is about 9 million Yuan R.M.B.

  15. SLAG CHARACTERIZATION AND REMOVAL USING PULSE DETONATION TECHNOLOGY DURING COAL GASIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    DR. DANIEL MEI; DR. JIANREN ZHOU; DR. PAUL O. BINEY; DR. ZIAUL HUQUE

    1998-07-30

    Pulse detonation technology for the purpose of removing slag and fouling deposits in coal-fired utility power plant boilers offers great potential. Conventional slag removal methods including soot blowers and water lances have great difficulties in removing slags especially from the down stream areas of utility power plant boilers. The detonation wave technique, based on high impact velocity with sufficient energy and thermal shock on the slag deposited on gas contact surfaces offers a convenient, inexpensive, yet efficient and effective way to supplement existing slag removal methods. A slight increase in the boiler efficiency, due to more effective ash/deposit removal and corresponding reduction in plant maintenance downtime and increased heat transfer efficiency, will save millions of dollars in operational costs. Reductions in toxic emissions will also be accomplished due to reduction in coal usage. Detonation waves have been demonstrated experimentally to have exceptionally high shearing capability, important to the task of removing slag and fouling deposits. The experimental results describe the parametric study of the input parameters in removing the different types of slag and operating condition. The experimental results show that both the single and multi shot detonation waves have high potential in effectively removing slag deposit from boiler heat transfer surfaces. The results obtained are encouraging and satisfactory. A good indication has also been obtained from the agreement with the preliminary computational fluid dynamics analysis that the wave impacts are more effective in removing slag deposits from tube bundles rather than single tube. This report presents results obtained in effectively removing three different types of slag (economizer, reheater, and air-heater) t a distance of up to 20 cm from the exit of the detonation tube. The experimental results show that the softer slags can be removed more easily. Also closer the slag to the exit of

  16. Isolation of a naphthalene-degrading strain from activated sludge and bioaugmentation with it in a MBR treating coal gasification wastewater.

    Science.gov (United States)

    Xu, Peng; Ma, Wencheng; Han, Hongjun; Jia, Shengyong; Hou, Baolin

    2015-03-01

    A highly effective naphthalene-degrading bacterial strain was isolated from acclimated activated sludge from a coal gasification wastewater plant, and identified as a Streptomyces sp., designated as strain QWE-35. The optimal pH and temperature for naphthalene degradation were 7.0 and 35°C. The presence of additional glucose and methanol significantly increased the degradation efficiency of naphthalene. The strain showed tolerance to the toxicity of naphthalene at a concentration as great as 200 mg/L. The Andrews mode could be fitted to the degradation kinetics data well over a wide range of initial naphthalene concentrations (10-200 mg/L), with kinetic values q max = 0.84 h(-1), K s = 40.39 mg/L, and K i = 193.76 mg/L. Metabolic intermediates were identified by gas chromatography and mass spectrometry, allowing a new degradation pathway for naphthalene to be proposed for the first time. Strain QWE-35 was added into a membrane bioreactor (MBR) to enhance the treatment of real coal gasification wastewater. The results showed that the removal of chemical oxygen demand and total nitrogen were similar between bioaugmented and non-bioaugmented MBRs, however, significant removal of naphthalene was obtained in the bioaugmented reactor. The findings suggest a potential bioremediation role of Streptomyces sp. QWE-35 in the removal of naphthalene from wastewaters.

  17. Exxon catalytic coal-gasification process development program. Quarterly technical progress report, October-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Euker, Jr, C. A.

    1980-03-01

    Work continued on the catalyst recovery screening studies to evaluate the economic impacts of alternative processing approaches and solid-liquid separation techniques. Equipment specifications have been completed for two cases with countercurrent water washing using rotary-drum filters for the solid-liquid separations. Material and energy balances have been completed for an alternative methane recovery process configuration using low pressure stripping which requires 26% less horsepower than the Study Design system. A study has been initiated to identify trace components which might be present in the CCG gas loop and to assess their potential impacts on the CCG process. This information will be used to assist in planning an appropriate series of analyses for the PDU gasifier effluent. A study has been initiated to evaluate the use of a small conventional steam reformer operating in parallel with a preheat furnace for heat input to the catalytic gasifier which avoids the potential problem of carbon laydown. Preliminary replies from ten manufacturers are being evaluated as part of a study to determine the types and performance of coal crushing equipment appropriate for commercial CCG plants. A material and energy balance computer model for the CCG reactor system has been completed. The new model will provide accurate, consistent and cost-efficient material and energy balances for the extensive laboratory guidance and process definition studies planned under the current program. Other activities are described briefly.

  18. Biological conversion of coal synthesis gas to methane

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S.; Corder, R.E.; Clausen, E.C.; Gaddy, J.L.

    1987-09-01

    High temperatures and pressures are required, and therefore, high costs incurred during catalytic upgrading of coal synthesis gas to methane. Thus, the feasibility of biological reactions in converting synthesis gas to methane has been demonstrated in mixed and pure cultures. Complete conversion has been achieved in 2 hours with a mixed culture, and 45 minutes to 1.5 hours in pure cultures of P. productus and Methanothrix sp.. Typical sulfur levels involved during the process are found not to inhibit the bacteria and so sulfur does not have to be removed prior to biomethanation. Preliminary economic analyses indicate that coal gas may be biologically methanated for 50-60 cents/million Btu. Further studies with pure culture bacteria and increased pressure are expected to enhance biomethanation economics.

  19. Briefly Describing Problems Encountered in Underground Coal Gasification and Its Solution Measures%浅述煤炭地下气化面临的问题及解决措施

    Institute of Scientific and Technical Information of China (English)

    唐凤金; 李文军

    2011-01-01

    Author has introduced the basic principle for underground coal gasification and its typical process;has discussed the encountered problems for underground coal gasification and its solution measures from aspects of purpose of coal gas,utilization rate and safety and economy etc.during gasification at present;has looked forward to the comprehensive utilization prospect for underground coal gasification technology through analyzing the social benefit and economic benefit in China.%介绍了煤炭地下气化的基本原理及其典型工艺;从地下气化煤气的用途、利用率以及气化过程的安全性、经济性等方面论述了目前煤炭地下气化面临的问题及其解决措施;通过社会效益、经济效益和环保效益的分析,展望了我国地下煤炭气化技术的综合利用前景。

  20. Economic and Technical Comparison of Three Typical Coal Gasification Technologies for Hydrogen Preparation%3种典型煤气化技术制备氢气经济技术比较

    Institute of Scientific and Technical Information of China (English)

    潘华; 王乔炜

    2016-01-01

    According to coal quality analyzing data, this paper selects three suitable coal gasification technologies to conduct a comprehensive analysis and comparison of the technical characteristics, processing parameters, consumption indexes and techno-economics of three coal gasification technologies for hydrogen preparation, the results of which show that the crushed coal’s pressurized gasification technology for hydrogen preparation is the most competitive technology among the three coal gasification technologies for hydrogen preparation.%根据煤质分析数据,选择适宜的3种典型气化技术,对3种气化方式制氢的技术特点、工艺参数和消耗指标以及技术经济性进行全面的分析比较,结果显示碎煤加压气化制备氢气是3种煤制氢技术中最具有竞争力的技术。