WorldWideScience

Sample records for biological chemical target

  1. Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology.

    Science.gov (United States)

    Galdeano, Carles; Ciulli, Alessio

    2016-09-01

    Targeting epigenetic proteins is a rapidly growing area for medicinal chemistry and drug discovery. Recent years have seen an explosion of interest in developing small molecules binding to bromodomains, the readers of acetyl-lysine modifications. A plethora of co-crystal structures has motivated focused fragment-based design and optimization programs within both industry and academia. These efforts have yielded several compounds entering the clinic, and many more are increasingly being used as chemical probes to interrogate bromodomain biology. High selectivity of chemical probes is necessary to ensure biological activity is due to an on-target effect. Here, we review the state-of-the-art of bromodomain-targeting compounds, focusing on the structural basis for their on-target selectivity or lack thereof. We also highlight chemical biology approaches to enhance on-target selectivity.

  2. Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach

    Science.gov (United States)

    Wright, Megan H.; Clough, Barbara; Rackham, Mark D.; Rangachari, Kaveri; Brannigan, James A.; Grainger, Munira; Moss, David K.; Bottrill, Andrew R.; Heal, William P.; Broncel, Malgorzata; Serwa, Remigiusz A.; Brady, Declan; Mann, David J.; Leatherbarrow, Robin J.; Tewari, Rita; Wilkinson, Anthony J.; Holder, Anthony A.; Tate, Edward W.

    2014-02-01

    Malaria is an infectious disease caused by parasites of the genus Plasmodium, which leads to approximately one million deaths per annum worldwide. Chemical validation of new antimalarial targets is urgently required in view of rising resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase, which catalyses the attachment of the fatty acid myristate to protein substrates (N-myristoylation). Here, we report an integrated chemical biology approach to explore protein myristoylation in the major human parasite P. falciparum, combining chemical proteomic tools for identification of the myristoylated and glycosylphosphatidylinositol-anchored proteome with selective small-molecule N-myristoyltransferase inhibitors. We demonstrate that N-myristoyltransferase is an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and show that selective inhibition of N-myristoylation leads to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle. Our studies provide the basis for the development of new antimalarials targeting N-myristoyltransferase.

  3. Biological characterization of chemically diverse compounds targeting the Plasmodium falciparum coenzyme A synthesis pathway

    Directory of Open Access Journals (Sweden)

    Sabine Fletcher

    2016-11-01

    Full Text Available Abstract Background In the fight against malaria, the discovery of chemical compounds with a novel mode of action and/or chemistry distinct from currently used drugs is vital to counteract the parasite’s known ability to develop drug resistance. Another desirable aspect is efficacy against gametocytes, the sexual developmental stage of the parasite which enables the transmission through Anopheles vectors. Using a chemical rescue approach, we previously identified compounds targeting Plasmodium falciparum coenzyme A (CoA synthesis or utilization, a promising target that has not yet been exploited in anti-malarial drug development. Results We report on the outcomes of a series of biological tests that help to define the species- and stage-specificity, as well as the potential targets of these chemically diverse compounds. Compound activity against P. falciparum gametocytes was determined to assess stage-specificity and transmission-reducing potential. Against early stage gametocytes IC50 values ranging between 60 nM and 7.5 μM were obtained. With the exception of two compounds with sub-micromolar potencies across all intra-erythrocytic stages, activity against late stage gametocytes was lower. None of the compounds were specific pantothenate kinase inhibitors. Chemical rescue profiling with CoA pathway intermediates demonstrated that most compounds acted on either of the two final P. falciparum CoA synthesis enzymes, phosphopantetheine adenylyltransferase (PPAT or dephospho CoA kinase (DPCK. The most active compound targeted either phosphopantothenoylcysteine synthetase (PPCS or phosphopantothenoylcysteine decarboxylase (PPCDC. Species-specificity was evaluated against Trypanosoma cruzi and Trypanosoma brucei brucei. No specific activity against T. cruzi amastigotes was observed; however three compounds inhibited the viability of trypomastigotes with sub-micromolar potencies and were confirmed to act on T. b. brucei CoA synthesis. Conclusions

  4. Chemical biology based on target-selective degradation of proteins and carbohydrates using light-activatable organic molecules.

    Science.gov (United States)

    Toshima, Kazunobu

    2013-05-01

    Proteins and carbohydrates play crucial roles in a wide range of biological processes, including serious diseases. The development of novel and innovative methods for selective control of specific proteins and carbohydrates functions has attracted much attention in the field of chemical biology. In this account article, the development of novel chemical tools, which can degrade target proteins and carbohydrates by irradiation with a specific wavelength of light under mild conditions without any additives, is introduced. This novel class of photochemical agents promise bright prospects for finding not only molecular-targeted bioprobes for understanding of the structure-activity relationships of proteins and carbohydrates but also novel therapeutic drugs targeting proteins and carbohydrates.

  5. Periodic Table Target: A Game that Introduces the Biological Significance of Chemical Element Periodicity

    Science.gov (United States)

    Sevcik, Richard S.; McGinty, Ragan L.; Schultz, Linda D.; Alexander, Susan V.

    2008-01-01

    Periodic Table Target, a game for middle school or high school students, familiarizes students with the form of the periodic table and the biological significance of different elements. The Periodic Table Target game board is constructed as a class project, and the game is played to reinforce the content. Students are assigned several elements…

  6. Overcoming Chemical, Biological, and Computational Challenges in the Development of Inhibitors Targeting Protein-Protein Interactions

    Science.gov (United States)

    Laraia, Luca; McKenzie, Grahame; Spring, David R.; Venkitaraman, Ashok R.; Huggins, David J.

    2015-01-01

    Protein-protein interactions (PPIs) underlie the majority of biological processes, signaling, and disease. Approaches to modulate PPIs with small molecules have therefore attracted increasing interest over the past decade. However, there are a number of challenges inherent in developing small-molecule PPI inhibitors that have prevented these approaches from reaching their full potential. From target validation to small-molecule screening and lead optimization, identifying therapeutically relevant PPIs that can be successfully modulated by small molecules is not a simple task. Following the recent review by Arkin et al., which summarized the lessons learnt from prior successes, we focus in this article on the specific challenges of developing PPI inhibitors and detail the recent advances in chemistry, biology, and computation that facilitate overcoming them. We conclude by providing a perspective on the field and outlining four innovations that we see as key enabling steps for successful development of small-molecule inhibitors targeting PPIs. PMID:26091166

  7. Kinetic target-guided synthesis in drug discovery and chemical biology: a comprehensive facts and figures survey.

    Science.gov (United States)

    Bosc, Damien; Jakhlal, Jouda; Deprez, Benoit; Deprez-Poulain, Rebecca

    2016-01-01

    For the last 15 years, kinetic target-guided syntheses, including in situ click chemistry, have been used as alternative methods to find ligands to therapeutically relevant proteins. In this review, a comprehensive survey of biological targets used in kinetic target-guided synthesis covers historical and recent examples. The chemical reactions employed and practical aspects, including controls, library sizes and product detection, are presented. A particular focus is on the reagents and warhead selection and design with a critical overview of the challenges encountered. As protein supply remains a key success factor, it appears that increased efforts should be taken toward miniaturization in order to expand the scope of this strategy and qualify it as a fully fledged drug discovery tool.

  8. Behavioral, biological, and chemical perspectives on targeting CRF1 receptor antagonists to treat alcoholism

    Science.gov (United States)

    Zorrilla, Eric P.; Heilig, Markus; de Wit, Harriet; Shaham, Yavin

    2013-01-01

    Background Alcohol use disorders are chronic disabling conditions for which existing pharmacotherapies have only modest efficacy. In the present review, derived from the 2012 Behavior, Biology and Chemistry “Translational Research in Addiction” symposium, we summarize the anti-relapse potential of corticotropin-releasing factor type 1 (CRF1) receptor antagonists to reduce negative emotional symptoms of acute and protracted alcohol withdrawal and stress-induced relapse to alcohol seeking. Methods We review the biology of CRF1 systems, the activity of CRF1 receptor antagonists in animal models of anxiolytic and antidepressant activity, and experimental findings in alcohol addiction models. We also update the clinical trial status of CRF1 receptor antagonists, including pexacerfont (BMS-562086), emicerfont (GW876008), verucerfont (GSK561679), CP316311, SSR125543A, R121919/NBI30775, R317573/19567470/CRA5626, and ONO-2333Ms. Finally, we discuss the potential heterogeneity and pharmacogenomics of CRF1 receptor pharmacotherapy for alcohol dependence. Results The evidence suggests that brain penetrant-CRF1 receptor antagonists have therapeutic potential for alcohol dependence. Lead compounds with clinically desirable pharmacokinetic properties now exist, and longer receptor residence rates (i.e., slow dissociation) may predict greater CRF1 receptor antagonist efficacy. Functional variants in genes that encode CRF system molecules, including polymorphisms in Crhr1 (rs110402, rs1876831, rs242938) and Crhbp genes (rs10055255, rs3811939) may promote alcohol seeking and consumption by altering basal or stress-induced CRF system activation. Conclusions Ongoing clinical trials with pexacerfont and verucerfont in moderately to highly severe dependent anxious alcoholics may yield insight as to the role of CRF1 receptor antagonists in a personalized medicine approach to treat drug or alcohol dependence. PMID:23294766

  9. Biological targeting of radionuclides

    International Nuclear Information System (INIS)

    Wheldon, T.E.; Glasgow Univ.

    1993-01-01

    Targeted radionuclide therapy in several forms has now been investigated in the clinic for more than 10 years. Despite some promising indications, targeted radiotherapy has not yet had a large impact on cancer therapy. Theoretical analysis shows that tumour cure would not often be expected using existing treatments. Addition of external-beam irradiation appears to be a robust strategy, which is appropriate in a wide range of situations. In future, many new agents will be made available by progress in molecular biology. However, integration of targeted radionuclide therapy with other modalities, especially radiotherapy, may still be required. (Author)

  10. Chemical biology of Glycosylphosphatidylinositol (GPI) anchors

    Indian Academy of Sciences (India)

    Admin

    CSIR-IIIM. Chemical biology of GPI anchors. • Organic synthesis, biosynthesis and cell biology of PI/GPI molecules. • Design and synthesis of structural and functional mimics of. PI/GPI t b bi l i l ti. PI/GPIs to probe biological questions. • Targeting PI3K/AKT/mTOR pathway for anticancer drug discovery. • Role of PI3K isoforms ...

  11. Synthetic Biology for Specialty Chemicals.

    Science.gov (United States)

    Markham, Kelly A; Alper, Hal S

    2015-01-01

    In this review, we address recent advances in the field of synthetic biology and describe how those tools have been applied to produce a wide variety of chemicals in microorganisms. Here we classify the expansion of the synthetic biology toolbox into three different categories based on their primary function in strain engineering-for design, for construction, and for optimization. Next, focusing on recent years, we look at how chemicals have been produced using these new synthetic biology tools. Advances in producing fuels are briefly described, followed by a more thorough treatment of commodity chemicals, specialty chemicals, pharmaceuticals, and nutraceuticals. Throughout this review, an emphasis is placed on how synthetic biology tools are applied to strain engineering. Finally, we discuss organism and host strain diversity and provide a future outlook in the field.

  12. The aesthetics of chemical biology.

    Science.gov (United States)

    Parsons, Glenn

    2012-12-01

    Scientists and philosophers have long reflected on the place of aesthetics in science. In this essay, I review these discussions, identifying work of relevance to chemistry and, in particular, to the field of chemical biology. Topics discussed include the role of aesthetics in scientific theory choice, the aesthetics of molecular images, the beauty-making features of molecules, and the relation between the aesthetics of chemical biology and the aesthetics of industrial design. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. ChemProt: A disease chemical biology database

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Oprea, Tudor I.

    2013-01-01

    The integration of chemistry, biology, and informatics to study drug actions across multiple biological targets, pathways, and biological systems is an emerging paradigm in drug discovery. Rather than reducing a complex system to simplistic models, fields such as chemogenomics and translational...... chemical biology, drug repurposing, and off-target effects prediction....

  14. Chemical reporters for biological discovery.

    Science.gov (United States)

    Grammel, Markus; Hang, Howard C

    2013-08-01

    Functional tools are needed to understand complex biological systems. Here we review how chemical reporters in conjunction with bioorthogonal labeling methods can be used to image and retrieve nucleic acids, proteins, glycans, lipids and other metabolites in vitro, in cells as well as in whole organisms. By tagging these biomolecules, researchers can now monitor their dynamics in living systems and discover specific substrates of cellular pathways. These advances in chemical biology are thus providing important tools to characterize biological pathways and are poised to facilitate our understanding of human diseases.

  15. Chemical and biological evaluation of 153Sm and 46/47Sc complexes of indazolebisphosphonates for targeted radiotherapy

    International Nuclear Information System (INIS)

    Neves, Maria; Teixeira, Fatima C.; Antunes, Ines; Majkowska, Agnieszka; Gano, Lurdes; Santos, Ana Cristina

    2011-01-01

    Introduction: Novel 1-hydroxy-1,1-bisphosphonates derived from indazole and substituted at the C-3 position were labeled with the radionuclides 46 Sc and 153 Sm. Several parameters such as molar ligand concentration, pH, reaction time and temperature were studied. The radiolabelling yield, reaction kinetics and stability were assessed and radiocomplexes were evaluated by in vitro and in vivo experiments. Methods: The radionuclides 46 Sc and 153 Sm were obtained by neutron irradiation of natural Sc 2 O 3 and enriched 152 Sm 2 O 3 (98.4%) targets at the neutron flux of 3x10 14 n cm -2 s -1 . The radiolabelling yield, reaction kinetics and stability were accomplished by ascending instant thin layer chromatography. The radiocomplexes were submitted to in vitro experiments (hydroxyapatite binding and lipophilicity) and biodistribution studies in animal models. Results: The radionuclides 46 Sc and 153 Sm were produced with specific activities of 100 and 430 MBq mg -1 , respectively. High radiochemical yields were achieved and the hydrophilic radiocomplexes have shown high degree of binding to hydroxyapatite. Biodistribution studies at 1, 3 and 24 h of the 4 radiocomplexes under study, have showed a similar biodistribution profile with a relatively high bone uptake, slow clearance from blood and a very slow rate of total radioactivity excretion from the whole animal body. Conclusion: We have developed a new class of indazolebisphosphonates complexes with radioisotopes of samarium and scandium. All complexes have shown high degree of binding to hydroxyapatite, which could be attributed to the ionized phosphonate groups. The bone uptake and the bone-to-muscle ratios were relatively low.

  16. Chemical and biological evaluation of {sup 153}Sm and {sup 46/47}Sc complexes of indazolebisphosphonates for targeted radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Maria, E-mail: mneves@itn.p [Instituto Tecnologico e Nuclear, Sacavem (Portugal); Teixeira, Fatima C.; Antunes, Ines [INETI-Departamento de Tecnologia de Industrias Quimicas, Lisboa (Portugal); Majkowska, Agnieszka [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Gano, Lurdes [Instituto Tecnologico e Nuclear, Sacavem (Portugal); Santos, Ana Cristina [IBB-Instituto de Biofisica e Biomatematica, Coimbra (Portugal)

    2011-01-15

    Introduction: Novel 1-hydroxy-1,1-bisphosphonates derived from indazole and substituted at the C-3 position were labeled with the radionuclides {sup 46}Sc and {sup 153}Sm. Several parameters such as molar ligand concentration, pH, reaction time and temperature were studied. The radiolabelling yield, reaction kinetics and stability were assessed and radiocomplexes were evaluated by in vitro and in vivo experiments. Methods: The radionuclides {sup 46}Sc and {sup 153}Sm were obtained by neutron irradiation of natural Sc{sub 2}O{sub 3} and enriched {sup 152}Sm{sub 2}O{sub 3} (98.4%) targets at the neutron flux of 3x10{sup 14} n cm{sup -2} s{sup -1}. The radiolabelling yield, reaction kinetics and stability were accomplished by ascending instant thin layer chromatography. The radiocomplexes were submitted to in vitro experiments (hydroxyapatite binding and lipophilicity) and biodistribution studies in animal models. Results: The radionuclides {sup 46}Sc and {sup 153}Sm were produced with specific activities of 100 and 430 MBq mg{sup -1}, respectively. High radiochemical yields were achieved and the hydrophilic radiocomplexes have shown high degree of binding to hydroxyapatite. Biodistribution studies at 1, 3 and 24 h of the 4 radiocomplexes under study, have showed a similar biodistribution profile with a relatively high bone uptake, slow clearance from blood and a very slow rate of total radioactivity excretion from the whole animal body. Conclusion: We have developed a new class of indazolebisphosphonates complexes with radioisotopes of samarium and scandium. All complexes have shown high degree of binding to hydroxyapatite, which could be attributed to the ionized phosphonate groups. The bone uptake and the bone-to-muscle ratios were relatively low.

  17. Olefin Metathesis for Chemical Biology

    OpenAIRE

    Binder, Joseph B; Raines, Ronald T

    2008-01-01

    Chemical biology relies on effective synthetic chemistry for building molecules to probe and modulate biological function. Olefin metathesis in organic solvents is a valuable addition to this armamentarium, and developments during the previous decade are enabling metathesis in aqueous solvents for the manipulation of biomolecules. Functional group-tolerant ruthenium metathesis catalysts modified with charged moieties or hydrophilic polymers are soluble and active in water, enabling ring-openi...

  18. Biological and Chemical Information Technologies

    DEFF Research Database (Denmark)

    Amos, Martyn; Dittrich, Peter; McCaskill, John

    2011-01-01

    Biological and chemical information technologies (bio/chem IT) have the potential to reshape the scientific and technological landscape. In this paper we briefly review the main challenges and opportunities in the field, before presenting several case studies based on ongoing FP7 research projects....

  19. Biological, chemical and medical physics

    International Nuclear Information System (INIS)

    1990-01-01

    This is an overview of the actual situation in Brazil, concerning three important areas of physics: biological, chemical and medical. It gives a brief historical of research in these areas. It talks as well, about perspectives and financing. It contains many tables with the main research groups in activity in Brazilian institutions. (A.C.A.S.)

  20. Chemical and biological sensing using liquid crystals.

    Science.gov (United States)

    Carlton, Rebecca J; Hunter, Jacob T; Miller, Daniel S; Abbasi, Reza; Mushenheim, Peter C; Tan, Lie Na; Abbott, Nicholas L

    2013-01-01

    The liquid crystalline state of matter arises from orientation-dependent, non-covalent interaction between molecules within condensed phases. Because the balance of intermolecular forces that underlies formation of liquid crystals is delicate, this state of matter can, in general, be easily perturbed by external stimuli (such as an electric field in a display). In this review, we present an overview of recent efforts that have focused on exploiting the responsiveness of liquid crystals as the basis of chemical and biological sensors. In this application of liquid crystals, the challenge is to design liquid crystalline systems that undergo changes in organization when perturbed by targeted chemical and biological species of interest. The approaches described below revolve around the design of interfaces that selectively bind targeted species, thus leading to surface-driven changes in the organization of the liquid crystals. Because liquid crystals possess anisotropic optical and dielectric properties, a range of different methods can be used to read out the changes in organization of liquid crystals that are caused by targeted chemical and biological species. This review focuses on principles for liquid crystal-based sensors that provide an optical output.

  1. News: Synthetic biology leading to specialty chemicals ...

    Science.gov (United States)

    Synthetic biology can combine the disciplines of biology, engineering, and chemistry productively to form molecules of great scientific and commercial value. Recent advances in the new field are explored for their connection to new tools that have been used to elucidate production pathways to a wide variety of chemicals generated by microorganisms. The selection and enhancement of microbiological strains through the practice of strain engineering enables targets of design, construction, and optimization. This news column aspires to cover recent literature relating to the development and understanding of clean technology.

  2. Industrial chemical exposure: guidelines for biological monitoring

    National Research Council Canada - National Science Library

    Lauwerys, Robert R; Hoet, Perrine

    2001-01-01

    .... With Third Edition of Industrial Chemical Exposure you will understand the objectives of biological monitoring, the types of biological monitoring methods, their advantages and limitations, as well...

  3. Olefin metathesis for chemical biology.

    Science.gov (United States)

    Binder, Joseph B; Raines, Ronald T

    2008-12-01

    Chemical biology relies on effective synthetic chemistry for building molecules to probe and modulate biological function. Olefin metathesis in organic solvents is a valuable addition to this armamentarium, and developments during the previous decade are enabling metathesis in aqueous solvents for the manipulation of biomolecules. Functional group-tolerant ruthenium metathesis catalysts modified with charged moieties or hydrophilic polymers are soluble and active in water, enabling ring-opening metathesis polymerization, cross metathesis, and ring-closing metathesis. Alternatively, conventional hydrophobic ruthenium complexes catalyze a similar array of metathesis reactions in mixtures of water and organic solvents. This strategy has enabled cross metathesis on the surface of a protein. Continuing developments in catalyst design and methodology will popularize the bioorthogonal reactivity of metathesis.

  4. Olefin Metathesis for Chemical Biology

    Science.gov (United States)

    Binder, Joseph B; Raines, Ronald T

    2009-01-01

    Summary Chemical biology relies on effective synthetic chemistry for building molecules to probe and modulate biological function. Olefin metathesis in organic solvents is a valuable addition to this armamentarium, and developments during the previous decade are enabling metathesis in aqueous solvents for the manipulation of biomolecules. Functional group-tolerant ruthenium metathesis catalysts modified with charged moieties or hydrophilic polymers are soluble and active in water, enabling ring-opening metathesis polymerization, cross metathesis, and ring-closing metathesis. Alternatively, conventional hydrophobic ruthenium complexes catalyze a similar array of metathesis reactions in mixtures of water and organic solvents. This strategy has enabled cross metathesis on the surface of a protein. Continuing developments in catalyst design and methodology will popularize the bioorthogonal reactivity of metathesis. PMID:18935975

  5. Ranges of protons in biological targets

    Science.gov (United States)

    Pavlovič, Márius; Hammerle, Andreas

    2017-08-01

    The paper introduces a simple fitting function for quick assessment of proton ranges in biological targets and human tissues. The function has been found by fitting an extensive data set of Monte Carlo proton ranges obtained with the aid of the SRIM-2013 code. The data has been collected for 28 different targets at 8 energies in the interval from 60 MeV to 220 MeV. The paper shows that at a given kinetic proton-beam energy, the Monte Carlo ranges can be satisfactorily fitted by a power function that depends solely on the target density. This is a great advantage for targets, for which the exact chemical composition is not known, or the mean ionizing potential is not reliably known. The satisfactory fit is meant as the fit that stays within the natural range straggling of the Monte Carlo ranges. In the second step, the energy-scaling yielding a universal fitting formula for proton ranges as a function of proton-beam energy and target density is introduced and discussed.

  6. Biology Today. Thinking Chemically about Biology.

    Science.gov (United States)

    Flannery, Maura C.

    1990-01-01

    Discussed are applications of biochemistry. Included are designed drugs, clever drugs, carcinogenic structures, sugary wine, caged chemicals, biomaterials, marine chemistry, biopolymers, prospecting bacteria, and plant chemistry. (CW)

  7. ChemProt: a disease chemical biology database

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Nielsen, Sonny Kim; Audouze, Karine Marie Laure

    2011-01-01

    biology. Here, we report ChemProt, a disease chemical biology database, which is based on a compilation of multiple chemical-protein annotation resources, as well as disease-associated protein-protein interactions (PPIs). We assembled more than 700 000 unique chemicals with biological annotation for 30...... evaluation of environmental chemicals, natural products and approved drugs, as well as the selection of new compounds based on their activity profile against most known biological targets, including those related to adverse drug events. Results from the disease chemical biology database associate citalopram......, an antidepressant, with osteogenesis imperfect and leukemia and bisphenol A, an endocrine disruptor, with certain types of cancer, respectively. The server can be accessed at http://www.cbs.dtu.dk/services/ChemProt/....

  8. Reducing Future International Chemical and Biological Dangers.

    Energy Technology Data Exchange (ETDEWEB)

    Haddal, Chad [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hernandez, Patricia Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Foley, John T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    The International Biological and Chemical Threat Reduction Program at Sandia National Laboratories is developing a 15 - year technology road map in support the United States Government efforts to reduce international chemical and biological dangers . In 2017, the program leadership chartered an analysis team to explore dangers in the future international chemical and biological landscape through engagements with national security experts within and beyond Sandia to gain a multidisciplinary perspective on the future . This report offers a hi gh level landscape of future chemical and biological dangers based upon analysis of those engagements and provides support for further technology road map development.

  9. International Journal of Biological and Chemical Sciences

    African Journals Online (AJOL)

    The International Journal of Biological and Chemical Sciences (IJBCS) is a journal published by International Formulae Group (IFG). It is devoted to the publication of contributions in all fields of biology including microbiology, parasitology, biochemistry, biophysics, molecular biology, physiology, pathology, health sciences, ...

  10. International Journal of Biological and Chemical Sciences ...

    African Journals Online (AJOL)

    Author Guidelines. The International Journal of Biological and Chemical Sciences (IJBCS) is a journal published by International Formulae Group (IFG), and is devoted to the publication of contributions in all fields of biology including microbiology, parasitology, molecular biology, physiology, pathology, health sciences, ...

  11. Chemical biology approaches for studying posttranslational modifications.

    Science.gov (United States)

    Yang, Aerin; Cho, Kyukwang; Park, Hee-Sung

    2017-09-13

    Posttranslational modification (PTM) is a key mechanism for regulating diverse protein functions, and thus critically affects many essential biological processes. Critical for systematic study of the effects of PTMs is the ability to obtain recombinant proteins with defined and homogenous modifications. To this end, various synthetic and chemical biology approaches, including genetic code expansion and protein chemical modification methods, have been developed. These methods have proven effective for generating site-specific authentic modifications or structural mimics, and have demonstrated their value for in vitro and in vivo functional studies of diverse PTMs. This review will discuss recent advances in chemical biology strategies and their application to various PTM studies.

  12. Agroterrorism, Biological Crimes, and Biological Warfare Targeting Animal Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Terry M.; Logan-Henfrey, Linda; Weller, Richard E.; Kellman, Brian

    2000-04-12

    There is a rising level of concern that agriculture might be targeted for economic sabotage by terrorists. Knowledge gathered about the Soviet Union biological weapons program and Iraq following the Gulf War, confirmed that animals and agricultural crops were targets of bioweapon development. These revelations are particularly disturbing in light of the fact that both countries are States Parties to the Biological and Toxin Weapons Convention that entered into force in 1975. The potential for misusing biotechnology to create more virulent pathogens and the lack of international means to detect unethical uses of new technologies to create destructive bioweapons is of increasing concern. Disease outbreaks, whether naturally occurring or intentionally, involving agricultural pathogens that destroy livestock and crops would have a profound impact on a country's infrastructure, economy and export markets. This chapter deals with the history of agroterrorism, biological crimes and biological warfare directed toward animal agriculture, specifically, horses, cattle, swine, sheep, goats, and poultry.

  13. ChemProt: a disease chemical biology database.

    Science.gov (United States)

    Taboureau, Olivier; Nielsen, Sonny Kim; Audouze, Karine; Weinhold, Nils; Edsgärd, Daniel; Roque, Francisco S; Kouskoumvekaki, Irene; Bora, Alina; Curpan, Ramona; Jensen, Thomas Skøt; Brunak, Søren; Oprea, Tudor I

    2011-01-01

    Systems pharmacology is an emergent area that studies drug action across multiple scales of complexity, from molecular and cellular to tissue and organism levels. There is a critical need to develop network-based approaches to integrate the growing body of chemical biology knowledge with network biology. Here, we report ChemProt, a disease chemical biology database, which is based on a compilation of multiple chemical-protein annotation resources, as well as disease-associated protein-protein interactions (PPIs). We assembled more than 700,000 unique chemicals with biological annotation for 30,578 proteins. We gathered over 2-million chemical-protein interactions, which were integrated in a quality scored human PPI network of 428,429 interactions. The PPI network layer allows for studying disease and tissue specificity through each protein complex. ChemProt can assist in the in silico evaluation of environmental chemicals, natural products and approved drugs, as well as the selection of new compounds based on their activity profile against most known biological targets, including those related to adverse drug events. Results from the disease chemical biology database associate citalopram, an antidepressant, with osteogenesis imperfect and leukemia and bisphenol A, an endocrine disruptor, with certain types of cancer, respectively. The server can be accessed at http://www.cbs.dtu.dk/services/ChemProt/.

  14. Biological and Chemical Impact to Educational Facilities.

    Science.gov (United States)

    Manicone, Santo

    2002-01-01

    Discusses preparing an educational facility to address the threat of biological or chemical terrorism, including understanding the potential impact, implementing information and communication systems, and improving medical surveillance and awareness. (EV)

  15. Integrating chemical and biological control

    Science.gov (United States)

    Scott Salom; Albert Mayfield; Tom McAvoy

    2011-01-01

    Research and management efforts to establish an effective biological control program against HWA has received significant support by the U.S. Forest Service over the past 17 years. Other federal and state agencies, universities, and private entities have also contributed to this overall research and management effort. Although a number of HWA-specific predator species...

  16. Magnetic biosensor system to detect biological targets

    KAUST Repository

    Li, Fuquan

    2012-09-01

    Magneto-resistive sensors in combination with magnetic beads provide sensing platforms, which are small in size and highly sensitive. These platforms can be fully integrated with microchannels and electronics to enable devices capable of performing complex tasks. Commonly, a sandwich method is used that requires a specific coating of the sensor\\'s surface to immobilize magnetic beads and biological targets on top of the sensor. This paper concerns a micro device to detect biological targets using magnetic concentration, magnetic as well as mechanical trapping and magnetic sensing. Target detection is based on the size difference between bare magnetic beads and magnetic beads with targets attached. This method remedies the need for a coating layer and reduces the number of steps required to run an experiment. © 2012 IEEE.

  17. Chemical biology: Knockout for malaria

    Science.gov (United States)

    Krysiak, Joanna; Sieber, Stephan A.

    2014-02-01

    Discovering and validating new targets is urgently required to tackle the rise in resistance to antimalarial drugs. Now, inhibition of the enzyme N-myristoyltransferase has been shown to prevent the formation of a critical subcellular organelle in the parasite that causes malaria, leading to death of the parasite.

  18. Discovery of Chemical Toxicity via Biological Networks and Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Edward; Habib, Tanwir; Guan, Xin; Escalon, Barbara; Falciani, Francesco; Chipman, J.K.; Antczak, Philipp; Edwards, Stephen; Taylor, Ronald C.; Vulpe, Chris; Loguinov, Alexandre; Van Aggelen, Graham; Villeneuve, Daniel L.; Garcia-Reyero, Natalia

    2010-09-30

    Both soldiers and animals are exposed to many chemicals as the result of military activities. Tools are needed to understand the hazards and risks that chemicals and new materials pose to soldiers and the environment. We have investigated the potential of global gene regulatory networks in understanding the impact of chemicals on reproduction. We characterized effects of chemicals on ovaries of the model animal system, the Fathead minnow (Pimopheles promelas) connecting chemical impacts on gene expression to circulating blood levels of the hormones testosterone and estradiol in addition to the egg yolk protein vitellogenin. We describe the application of reverse engineering complex interaction networks from high dimensional gene expression data to characterize chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis that governs reproduction in fathead minnows. The construction of global gene regulatory networks provides deep insights into how drugs and chemicals effect key organs and biological pathways.

  19. History of chemical and biological warfare agents

    International Nuclear Information System (INIS)

    Szinicz, L.

    2005-01-01

    Chemical and biological warfare agents constitute a low-probability, but high-impact risk both to the military and to the civilian population. The use of hazardous materials of chemical or biological origin as weapons and for homicide has been documented since ancient times. The first use of chemicals in terms of weapons of mass destruction goes back to World War I, when on April 22, 1915 large amounts of chlorine were released by German military forces at Ypres, Belgium. Until around the 1970s of the 20th century, the awareness of the threat by chemical and biological agents had been mainly confined to the military sector. In the following time, the development of increasing range delivery systems by chemical and biological agents possessors sensitised public attention to the threat emanating from these agents. Their proliferation to the terrorists field during the 1990s with the expanding scale and globalisation of terrorist attacks suggested that these agents are becoming an increasing threat to the whole world community. The following article gives a condensed overview on the history of use and development of the more prominent chemical and biological warfare agents

  20. History of chemical and biological warfare agents.

    Science.gov (United States)

    Szinicz, L

    2005-10-30

    Chemical and biological warfare agents constitute a low-probability, but high-impact risk both to the military and to the civilian population. The use of hazardous materials of chemical or biological origin as weapons and for homicide has been documented since ancient times. The first use of chemicals in terms of weapons of mass destruction goes back to World War I, when on April 22, 1915 large amounts of chlorine were released by German military forces at Ypres, Belgium. Until around the 1970s of the 20th century, the awareness of the threat by chemical and biological agents had been mainly confined to the military sector. In the following time, the development of increasing range delivery systems by chemical and biological agents possessors sensitised public attention to the threat emanating from these agents. Their proliferation to the terrorists field during the 1990s with the expanding scale and globalisation of terrorist attacks suggested that these agents are becoming an increasing threat to the whole world community. The following article gives a condensed overview on the history of use and development of the more prominent chemical and biological warfare agents.

  1. Opportunities for Merging Chemical and Biological Synthesis

    Science.gov (United States)

    Wallace, Stephen; Balskus, Emily P.

    2014-01-01

    Organic chemists and metabolic engineers use largely orthogonal technologies to access small molecules like pharmaceuticals and commodity chemicals. As the use of biological catalysts and engineered organisms for chemical production grows, it is becoming increasingly evident that future efforts for chemical manufacture will benefit from the integration and unified expansion of these two fields. This review will discuss approaches that combine chemical and biological synthesis for small molecule production. We highlight recent advances in combining enzymatic and non-enzymatic catalysis in vitro, discuss the application of design principles from organic chemistry for engineering non-biological reactivity into enzymes, and describe the development of biocompatible chemistry that can be interfaced with microbial metabolism. PMID:24747284

  2. Chemically induced proximity in biology and medicine.

    Science.gov (United States)

    Stanton, Benjamin Z; Chory, Emma J; Crabtree, Gerald R

    2018-03-09

    Proximity, or the physical closeness of molecules, is a pervasive regulatory mechanism in biology. For example, most posttranslational modifications such as phosphorylation, methylation, and acetylation promote proximity of molecules to play deterministic roles in cellular processes. To understand the role of proximity in biologic mechanisms, chemical inducers of proximity (CIPs) were developed to synthetically model biologically regulated recruitment. Chemically induced proximity allows for precise temporal control of transcription, signaling cascades, chromatin regulation, protein folding, localization, and degradation, as well as a host of other biologic processes. A systematic analysis of CIPs in basic research, coupled with recent technological advances utilizing CRISPR, distinguishes roles of causality from coincidence and allows for mathematical modeling in synthetic biology. Recently, induced proximity has provided new avenues of gene therapy and emerging advances in cancer treatment. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. Organometallic compounds: an opportunity for chemical biology?

    Science.gov (United States)

    Patra, Malay; Gasser, Gilles

    2012-06-18

    Organometallic compounds are renowned for their remarkable applications in the field of catalysis, but much less is known about their potential in chemical biology. Indeed, such compounds have long been considered to be either unstable under physiological conditions or cytotoxic. As a consequence, little attention has been paid to their possible utilisation for biological purposes. Because of their outstanding physicochemical properties, which include chemical stability, structural diversity and unique photo- and electrochemical properties, however, organometallic compounds have the ability to play a leading role in the field of chemical biology. Indeed, remarkable examples of the use of such compounds-notably as enzyme inhibitors and as luminescent agents-have recently been reported. Here we summarise recent advances in the use of organometallic compounds for chemical biology purposes, an area that we define as "organometallic chemical biology". We also demonstrate that these recent discoveries are only a beginning and that many other organometallic complexes are likely to be found useful in this field of research in the near future. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Perspective: Reaches of chemical physics in biology.

    Science.gov (United States)

    Gruebele, Martin; Thirumalai, D

    2013-09-28

    Chemical physics as a discipline contributes many experimental tools, algorithms, and fundamental theoretical models that can be applied to biological problems. This is especially true now as the molecular level and the systems level descriptions begin to connect, and multi-scale approaches are being developed to solve cutting edge problems in biology. In some cases, the concepts and tools got their start in non-biological fields, and migrated over, such as the idea of glassy landscapes, fluorescence spectroscopy, or master equation approaches. In other cases, the tools were specifically developed with biological physics applications in mind, such as modeling of single molecule trajectories or super-resolution laser techniques. In this introduction to the special topic section on chemical physics of biological systems, we consider a wide range of contributions, all the way from the molecular level, to molecular assemblies, chemical physics of the cell, and finally systems-level approaches, based on the contributions to this special issue. Chemical physicists can look forward to an exciting future where computational tools, analytical models, and new instrumentation will push the boundaries of biological inquiry.

  5. Considerations for designing chemical screening strategies in plant biology

    Directory of Open Access Journals (Sweden)

    Mario eSerrano

    2015-04-01

    Full Text Available Traditionally, biologists regularly used classical genetic approaches to characterize and dissect plant processes. However, this strategy is often impaired by redundancy, lethality or pleiotropy of gene functions, which prevent the isolation of viable mutants. The chemical genetic approach has been recognized as an alternative experimental strategy, which has the potential to circumvent these problems. It relies on the capacity of small molecules to modify biological processes by specific binding to protein target(s, thereby conditionally modifying protein function(s, which phenotypically resemble mutation(s of the encoding gene(s. A successful chemical screening campaign comprises three equally important elements: (1 a reliable, robust, and quantitative bioassay, which allows to distinguish between potent and less potent compounds, (2 a rigorous validation process for candidate compounds to establish their selectivity, and (3 an experimental strategy for elucidating a compound’s mode of action and molecular target. In this review we will discuss details of this general strategy and additional aspects that deserve consideration in order to take full advantage of the power provided by the chemical approach to plant biology. In addition, we will highlight some success stories of recent chemical screenings in plant systems, which may serve as teaching examples for the implementation of future chemical biology projects.

  6. Considerations for designing chemical screening strategies in plant biology.

    Science.gov (United States)

    Serrano, Mario; Kombrink, Erich; Meesters, Christian

    2015-01-01

    Traditionally, biologists regularly used classical genetic approaches to characterize and dissect plant processes. However, this strategy is often impaired by redundancy, lethality or pleiotropy of gene functions, which prevent the isolation of viable mutants. The chemical genetic approach has been recognized as an alternative experimental strategy, which has the potential to circumvent these problems. It relies on the capacity of small molecules to modify biological processes by specific binding to protein target(s), thereby conditionally modifying protein function(s), which phenotypically resemble mutation(s) of the encoding gene(s). A successful chemical screening campaign comprises three equally important elements: (1) a reliable, robust, and quantitative bioassay, which allows to distinguish between potent and less potent compounds, (2) a rigorous validation process for candidate compounds to establish their selectivity, and (3) an experimental strategy for elucidating a compound's mode of action and molecular target. In this review we will discuss details of this general strategy and additional aspects that deserve consideration in order to take full advantage of the power provided by the chemical approach to plant biology. In addition, we will highlight some success stories of recent chemical screenings in plant systems, which may serve as teaching examples for the implementation of future chemical biology projects.

  7. Chemical Force Microscopy of Chemical and Biological Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Noy, A

    2006-01-02

    Interactions between chemical functionalities define outcomes of the vast majority of important events in chemistry, biology and materials science. Chemical Force Microscopy (CFM)--a technique that uses direct chemical functionalization of AFM probes with specific functionalities--allows researchers to investigate these important interactions directly. We review the basic principles of CFM, some examples of its application, and theoretical models that provide the basis for understanding the experimental results. We also emphasize application of modern kinetic theory of non-covalent interactions strength to the analysis of CFM data.

  8. Biological and chemical terrorism: recognition and management.

    Science.gov (United States)

    Noeller, T P

    2001-12-01

    Primary care physicians will be on the front line in detecting and managing any future terrorist attacks that use chemical or biological agents. This article reviews how to recognize and treat disease caused by exposure to nerve agents, blistering agents, hydrogen cyanide, ricin, anthrax, smallpox, plague, and botulinum toxin.

  9. Biological Art of Producing Useful Chemicals

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 3. Metabolic Engineering: Biological Art of Producing Useful Chemicals. Ram Kulkarni. General Article Volume 21 Issue 3 March 2016 pp 233-237. Fulltext. Click here to view fulltext PDF. Permanent link:

  10. Chemical and Biological Significance of Naturally Occurring ...

    African Journals Online (AJOL)

    PROF HORSFALL

    Chemical and Biological Significance of Naturally Occurring Additives on. African Black Soap and its Performance. IKOTUN, A. ... attribute of the soap includes gentleness on the skin, rich lather, protection against skin disorders ... soap, the effects of its modifications with some commonly used natural products, as well as the ...

  11. Wearable Sensors for Chemical & Biological Detection

    Energy Technology Data Exchange (ETDEWEB)

    Ozanich, Richard M.

    2017-08-31

    One of PNNL’s strengths is the ability to conduct comprehensive technology foraging and objective assessments of various technology areas. The following examples highlight leading research by others in the area of chemical and biological (chem/bio) detection that could be further developed into a robust, highly integrated wearables to aid preparedness, response and recovery.

  12. Chemical biology of Glycosylphosphatidylinositol (GPI) anchors

    Indian Academy of Sciences (India)

    Admin

    CSIR-IIIM. Chemical biology of. Glycosylphosphatidylinositol (GPI) anchors. Ram Vishwakarma. CSIR-Indian Institute of Integrative Medicine, Jammu. N ti l I tit t f I l. N. D lhi. National Institute of Immunology, New Delhi. Piramal Life Sciences Ltd, Mumbai ...

  13. Studies on Semantic Systems Chemical Biology

    Science.gov (United States)

    Chen, Bin

    2012-01-01

    Current "one disease, one target and one drug" drug development paradigm is under question as relatively few drugs have reached the market in the last two decades. Increasingly research focus is being placed on the study of drug action against biological systems as a whole rather than against a single component (called "Systems…

  14. Engineering Liposomes and Nanoparticles for Biological Targeting

    DEFF Research Database (Denmark)

    Jølck, Rasmus Irming; Feldborg, Lise Nørkjær; Andersen, Simon

    2011-01-01

    Our ability to engineer nanomaterials for biological and medical applications is continuously increasing, and nanomaterial designs are becoming more and more complex. One very good example of this is the drug delivery field where nanoparticle systems can be used to deliver drugs specifically...... to diseased tissue. In the early days, the design of the nanoparticles was relatively simple, but today we can surface functionalize and manipulate material properties to target diseased tissue and build highly complex drug release mechanisms into our designs. One of the most promising strategies in drug...

  15. Polyketide stereocontrol: a study in chemical biology

    Directory of Open Access Journals (Sweden)

    Kira J. Weissman

    2017-02-01

    Full Text Available The biosynthesis of reduced polyketides in bacteria by modular polyketide synthases (PKSs proceeds with exquisite stereocontrol. As the stereochemistry is intimately linked to the strong bioactivity of these molecules, the origins of stereochemical control are of significant interest in attempts to create derivatives of these compounds by genetic engineering. In this review, we discuss the current state of knowledge regarding this key aspect of the biosynthetic pathways. Given that much of this information has been obtained using chemical biology tools, work in this area serves as a showcase for the power of this approach to provide answers to fundamental biological questions.

  16. [Biological and chemical risks in haemodialysis centres].

    Science.gov (United States)

    De Grandis, D; D'Orsi, F; Narda, R; Pietrantonio, E; Scarlini, F; Soldati, P S

    2006-01-01

    Haemodialysis technique was introduced in 1965 for people afflicted to chronic renal insufficiency, permitting them to survive. The method purifies patient blood who is connected to the equipment by tubes. The equipment uses saline solutions and water and it operates by osmotic pressure and by filtration. In this paper biological and chemical occupational risks are analysed. Main biological risks are caused by haematic viruses such as HIV, HBV, HCV. Chemical risks are mainly caused by disinfection products such as acid, basic and saline solutions. Workers exposed to chemical and biological risks are nursing staff, doctors, assistants, maintenance men. The paper analyses these risks and it shows prevention and protection solutions to reduce significantly the risks. The S.Pre.S.A.L. (Prevention and Protection Service in Work Places) operators of ASL RMC (Health Local Agency of Rome) visited six haemodialysis centres situated in Rome in the ASL RMC territory. They verified the application of safety and healthy measures by use of a check list about risk assessment, the lay-out, the equipment, the preventive and protective measures and the application of law. Experimental data were organized in relation of legislative accomplishments and technical measures. The aim of our work was to improve workers' safety in the haemodialysis centres, proposing the better technical solutions to realise this objective.

  17. International Journal of Biological and Chemical Sciences: Contact

    African Journals Online (AJOL)

    International Journal of Biological and Chemical Sciences: Contact. Journal Home > About the Journal > International Journal of Biological and Chemical Sciences: Contact. Log in or Register to get access to full text downloads.

  18. Archives: International Journal of Biological and Chemical Sciences

    African Journals Online (AJOL)

    Items 1 - 50 of 61 ... Archives: International Journal of Biological and Chemical Sciences. Journal Home > Archives: International Journal of Biological and Chemical Sciences. Log in or Register to get access to full text downloads.

  19. International Journal of Biological and Chemical Sciences: About ...

    African Journals Online (AJOL)

    International Journal of Biological and Chemical Sciences: About this journal. Journal Home > International Journal of Biological and Chemical Sciences: About this journal. Log in or Register to get access to full text downloads.

  20. Chemical biology of peroxynitrite: kinetics, diffusion, and radicals.

    Science.gov (United States)

    Ferrer-Sueta, Gerardo; Radi, Rafael

    2009-03-20

    Peroxynitrite is formed by the very fast reaction of nitric oxide and superoxide radicals, a reaction that kinetically competes with other routes that chemically consume or physically sequester the reagents. It can behave either as an endogenous cytotoxin toward host tissues or a cytotoxic effector molecule against invading pathogens, depending on the cellular source and pathophysiological setting. Peroxynitrite is in itself very reactive against a few specific targets that range from efficient detoxification systems, such as peroxiredoxins, to reactions eventually leading to enhanced radical formation (e.g., nitrogen dioxide and carbonate radicals), such as the reaction with carbon dioxide. Thus, the chemical biology of peroxynitrite is dictated by the chemical kinetics of its formation and decay and by the diffusion across membranes of the species involved, including peroxynitrite itself. On the other hand, most durable traces of peroxynitrite passing (such as 3-nitrotyrosine) are derived from radicals formed from peroxynitrite by routes that represent extremely low-yield processes but that have potentially critical biological consequences. Here we have reviewed the chemical kinetics of peroxynitrite as a biochemical transient species in order to estimate its rates of formation and decay and then its steady-state concentration in different intra- or extracellular compartments, trying to provide a quantitative basis for its reactivity; additionally, we have considered diffusion across membranes to locate its possible effects. Finally, we have assessed the most successful attempts to intercept peroxynitrite by pharmacological intervention in their potential to increment the existing biological defenses that routinely deal with this cytotoxin.

  1. Chemical Biology of Microbial Anticancer Natural Products

    DEFF Research Database (Denmark)

    Bladt, Tanja Thorskov; Gotfredsen, Charlotte Held

    than 100 years. New natural products (NPs) are continually discovered and with the increase in selective biological assays, previously described compounds often also display novel bioactivities, justifying their presence in novel screening efforts. Screening and discovery of compounds with activity...... by cyanobacteria were discovered through target-guided isolation based on NMR. The micropeptins displayed inhibitory activity towards serine proteases: chymotrypsin and elastase with IC50 values between 5.9 and 28.0 μM. In conclusion, this PhD study adds to the knowledge of bioactive NPs produced by filamentous...

  2. Optimizing biologically targeted clinical trials for neurofibromatosis

    Science.gov (United States)

    Gutmann, David H; Blakeley, Jaishri O; Korf, Bruce R; Packer, Roger J

    2014-01-01

    Introduction The neurofibromatoses (neurofibromatosis type 1, NF1 and neurofibromatosis type 2, NF2) comprise the most common inherited conditions in which affected children and adults develop tumors of the central and peripheral nervous system. In this review, the authors discuss how the establishment of the Neurofibromatosis Clinical Trials Consortium (NFCTC) has positively impacted on the design and execution of treatment studies for individuals with NF1 and NF2. Areas covered Using an extensive PUBMED search in collaboration with select NFCTC members expert in distinct NF topics, the authors discuss the clinical features of NF1 and NF2, the molecular biology of the NF1 and NF2 genes, the development and application of clinically relevant Nf1 and Nf2 genetically engineered mouse models and the formation of the NFCTC to enable efficient clinical trial design and execution. Expert opinion The NFCTC has resulted in a more seamless integration of mouse preclinical and human clinical trials efforts. Leveraging emerging enabling resources, current research is focused on identifying subtypes of tumors in NF1 and NF2 to deliver the most active compounds to the patients most likely to respond to the targeted therapy. PMID:23425047

  3. CHEMGENIE: integration of chemogenomics data for applications in chemical biology.

    Science.gov (United States)

    Kutchukian, Peter S; Chang, Charlie; Fox, Sean J; Cook, Erica; Barnard, Richard; Tellers, David; Wang, Huijun; Pertusi, Dante; Glick, Meir; Sheridan, Robert P; Wallace, Iain M; Wassermann, Anne Mai

    2018-01-01

    Increasing amounts of biological data are accumulating in the pharmaceutical industry and academic institutions. However, data does not equal actionable information, and guidelines for appropriate data capture, harmonization, integration, mining, and visualization need to be established to fully harness its potential. Here, we describe ongoing efforts at Merck & Co. to structure data in the area of chemogenomics. We are integrating complementary data from both internal and external data sources into one chemogenomics database (Chemical Genetic Interaction Enterprise; CHEMGENIE). Here, we demonstrate how this well-curated database facilitates compound set design, tool compound selection, target deconvolution in phenotypic screening, and predictive model building. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Introduction: Applying Chemical Biology to Ion Channels.

    Science.gov (United States)

    Pless, Stephan A; Ahern, Christopher A

    2015-01-01

    Ion channels are membrane-spanning proteins that control the flow of ions across biological membranes through an aqueous pathway. The opening or closing of this pore can be controlled by a myriad of physiological inputs (voltage, ligands, temperature, metabolites, pH), which in turn allow for the controlled flux of ions across membranes, resulting in the generation of minute electrical signals. The functional implications of ion channel function on physiological processes are vast. Electrical impulses, in the form of action potentials or diverse chemo-electrical signals, coordinate the syncytium of the heart beat, support a myriad of neuronal communication pathways, insulin secretion, and are central to the immune response, with more roles being discovered virtually everyday. Thus, ion channel function is a biophysical process that is central to biological life at many levels. And with over 500 channel-forming subunits known today in humans, this large class of proteins is also increasingly recognised as important drug targets, as inherited or acquired ion channel dysfunction are known causes of disease.

  5. Synthetic and systems biology for microbial production of commodity chemicals.

    Science.gov (United States)

    Chubukov, Victor; Mukhopadhyay, Aindrila; Petzold, Christopher J; Keasling, Jay D; Martín, Héctor García

    2016-01-01

    The combination of synthetic and systems biology is a powerful framework to study fundamental questions in biology and produce chemicals of immediate practical application such as biofuels, polymers, or therapeutics. However, we cannot yet engineer biological systems as easily and precisely as we engineer physical systems. In this review, we describe the path from the choice of target molecule to scaling production up to commercial volumes. We present and explain some of the current challenges and gaps in our knowledge that must be overcome in order to bring our bioengineering capabilities to the level of other engineering disciplines. Challenges start at molecule selection, where a difficult balance between economic potential and biological feasibility must be struck. Pathway design and construction have recently been revolutionized by next-generation sequencing and exponentially improving DNA synthesis capabilities. Although pathway optimization can be significantly aided by enzyme expression characterization through proteomics, choosing optimal relative protein expression levels for maximum production is still the subject of heuristic, non-systematic approaches. Toxic metabolic intermediates and proteins can significantly affect production, and dynamic pathway regulation emerges as a powerful but yet immature tool to prevent it. Host engineering arises as a much needed complement to pathway engineering for high bioproduct yields; and systems biology approaches such as stoichiometric modeling or growth coupling strategies are required. A final, and often underestimated, challenge is the successful scale up of processes to commercial volumes. Sustained efforts in improving reproducibility and predictability are needed for further development of bioengineering.

  6. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Directory of Open Access Journals (Sweden)

    L. Deguillaume

    2008-07-01

    Full Text Available This paper discusses the influence of primary biological aerosols (PBA on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  7. Functionalized apertures for the detection of chemical and biological materials

    Science.gov (United States)

    Letant, Sonia E.; van Buuren, Anthony W.; Terminello, Louis J.; Thelen, Michael P.; Hope-Weeks, Louisa J.; Hart, Bradley R.

    2010-12-14

    Disclosed are nanometer to micron scale functionalized apertures constructed on a substrate made of glass, carbon, semiconductors or polymeric materials that allow for the real time detection of biological materials or chemical moieties. Many apertures can exist on one substrate allowing for the simultaneous detection of numerous chemical and biological molecules. One embodiment features a macrocyclic ring attached to cross-linkers, wherein the macrocyclic ring has a biological or chemical probe extending through the aperture. Another embodiment achieves functionalization by attaching chemical or biological anchors directly to the walls of the apertures via cross-linkers.

  8. Biological and Chemical Weapons: Criminal Sanctions and Federal Regulations

    National Research Council Canada - National Science Library

    Garcia, Michael J

    2004-01-01

    .... In accordance with these obligations, the United States has enacted various federal requirements and criminal sanctions applying to biological and chemical weapons, Re cent anti4errorisrn legislation...

  9. Chemical, Biological, and Explosive Sensors for Field Measurements

    International Nuclear Information System (INIS)

    Kyle, Kevin; Manard, Manuel; Weeks, Stephan

    2009-01-01

    Special Technologies Laboratory (STL) is developing handheld chemical, biological, and explosive (CBE) detection systems and sensor motes for wireless networked field operations. The CBE sensors are capable of detecting and identifying multiple targeted toxic industrial chemicals (TICs) and high-explosive vapor components. The CBE devices are based on differential mobility spectrometry (DMS) coupled with fast gas chromatography (GC) or mass spectrometry. The systems all include the concepts of: (1) Direct air/particulate 'smart' sampling; (2) Selective, continuous real-time (∼1 sec) alert monitoring using DMS; and (3) Highly selective, rapid dual technology separation/verification analysis The biosensor technology is based on Raman aerosol particle flow cytometry for target detection and identification. Monitoring and identifying trace level chemical vapors directly from ambient air will allow First Responders to quickly adapt situational response strategies and personal protective equipment needs to the specific response scenario being encountered. First Responders require great confidence in the measurements and ability of a given system to detect CBE below threshold levels without interferences. The concept of determining the background matrix in near real-time to allow subsequent automated field-programmable method selection and cueing of high-value assets in a wide range of environs will be presented. This provides CBE information for decisions prior to First Responders entering the response site or sending a portable mobile unit for a remote site survey of the hazards. The focus is on real-time information needed by those responsible for emergency response and national security

  10. Chemical, Biological, and Explosive Sensors for Field Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Kyle, Manuel Manard, Stephan Weeks

    2009-01-31

    Special Technologies Laboratory (STL) is developing handheld chemical, biological, and explosive (CBE) detection systems and sensor motes for wireless networked field operations. The CBE sensors are capable of detecting and identifying multiple targeted toxic industrial chemicals (TICs) and high-explosive vapor components. The CBE devices are based on differential mobility spectrometry (DMS) coupled with fast gas chromatography (GC) or mass spectrometry. The systems all include the concepts of: 1. Direct air/particulate “smart” sampling 2. Selective, continuous real-time (~1 sec) alert monitoring using DMS 3. Highly selective, rapid dual technology separation/verification analysis The biosensor technology is based on Raman aerosol particle flow cytometry for target detection and identification. Monitoring and identifying trace level chemical vapors directly from ambient air will allow First Responders to quickly adapt situational response strategies and personal protective equipment needs to the specific response scenario being encountered. First Responders require great confidence in the measurements and ability of a given system to detect CBE below threshold levels without interferences. The concept of determining the background matrix in near real-time to allow subsequent automated field-programmable method selection and cueing of high-value assets in a wide range of environs will be presented. This provides CBE information for decisions prior to First Responders entering the response site or sending a portable mobile unit for a remote site survey of the hazards. The focus is on real-time information needed by those responsible for emergency response and national security.

  11. Challenges and opportunities in synthetic biology for chemical engineers

    Energy Technology Data Exchange (ETDEWEB)

    Luo, YZ; Lee, JK; Zhao, HM

    2013-11-15

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement. (C) 2012 Elsevier Ltd. All rights reserved.

  12. Targeting Platinum Compounds : synthesis and biological activity

    NARCIS (Netherlands)

    Zutphen, Steven van

    2005-01-01

    Inspired by cisplatin, the inorganic drug discovered by Barnett Rosenberg in 1965, the research described in this thesis uses targeting ligands, or ligands varied in a combinatorial fashion, to find platinum complexes with more specific modes of action. These studies have lead to the development of

  13. PSL Chemical Biology Symposia First 2016 Edition: When Chemistry and Biology Share the Language of Discovery.

    Science.gov (United States)

    Gautier, Arnaud; Rodriguez, Raphaël

    2017-05-18

    Chemical biology, the science of understanding biological processes at the molecular level, has grown exponentially with the development of chemical strategies to manipulate and quantify biology with unprecedented precision. Recent advances presented at the Université Paris Sciences et Lettres symposium are discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Bugs and gas: Agreements banning chemical and biological weapons

    Science.gov (United States)

    Mikulak, Robert P.

    2017-11-01

    The use of chemical or biological weapons, whether by a State or terrorists, continues to be a serious security concern. Both types of weapons are prohibited by multilateral treaties that have very broad membership, but both the Biological Weapons Convention and the Chemical Weapons Convention are facing major challenges. In particular, the continued use of chemical weapons in the Syrian civil war by government forces risks eroding the norm against the use of such weapons. This paper briefly explore the recent history of efforts to constrain chemical and biological weapons and outlines challenges for the future.

  15. International Journal of Biological and Chemical Sciences: Editorial ...

    African Journals Online (AJOL)

    Focus and Scope. The International Journal of Biological and Chemical Sciences (IJBCS) is a journal published by International Formulae Group (IFG). It is devoted to the publication of contributions in all fields of biology including microbiology, parasitology, biochemistry, biophysics, molecular biology, physiology, ...

  16. 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors: From Chemical Biology to Agrochemicals.

    Science.gov (United States)

    Ndikuryayo, Ferdinand; Moosavi, Behrooz; Yang, Wen-Chao; Yang, Guang-Fu

    2017-10-04

    The development of new herbicides is receiving considerable attention to control weed biotypes resistant to current herbicides. Consequently, new enzymes are always desired as targets for herbicide discovery. 4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is an enzyme engaged in photosynthetic activity and catalyzes the transformation of 4-hydroxyphenylpyruvic acid (HPPA) into homogentisic acid (HGA). HPPD inhibitors constitute a promising area of discovery and development of innovative herbicides with some advantages, including excellent crop selectivity, low application rates, and broad-spectrum weed control. HPPD inhibitors have been investigated for agrochemical interests, and some of them have already been commercialized as herbicides. In this review, we mainly focus on the chemical biology of HPPD, discovery of new potential inhibitors, and strategies for engineering transgenic crops resistant to current HPPD-inhibiting herbicides. The conclusion raises some relevant gaps for future research directions.

  17. News: Synthetic biology leading to specialty chemicals

    Science.gov (United States)

    Synthetic biology can combine the disciplines of biology, engineering, and chemistry productively to form molecules of great scientific and commercial value. Recent advances in the new field are explored for their connection to new tools that have been used to elucidate productio...

  18. Chemical and Biological Warfare: A Selected Bibliography

    Science.gov (United States)

    1991-04-01

    WORLD ARMA - MENTS AND DISARMAMENT. SIPRI Yearbook 1990. New York: Oxford University Press, 1990. (REF JX1974 S775 1990) Pp. 107-133: "Chemical and...Report. Norton D. Zinder, Chairman. Washington: National Academy Press, 1984. (UG447 N33 1984) LEGACY OF CHEMICAL AND BIOLOGICA !L WARFARE Some 20th

  19. On-Demand Targeting: Investigating Biology with Proximity-Directed Chemistry.

    Science.gov (United States)

    Long, Marcus J C; Poganik, Jesse R; Aye, Yimon

    2016-03-23

    Proximity enhancement is a central chemical tenet underpinning an exciting suite of small-molecule toolsets that have allowed us to unravel many biological complexities. The leitmotif of this opus is "tethering"-a strategy in which a multifunctional small molecule serves as a template to bring proteins/biomolecules together. Scaffolding approaches have been powerfully applied to control diverse biological outcomes such as protein-protein association, protein stability, activity, and improve imaging capabilities. A new twist on this strategy has recently appeared, in which the small-molecule probe is engineered to unleash controlled amounts of reactive chemical signals within the microenvironment of a target protein. Modification of a specific target elicits a precisely timed and spatially controlled gain-of-function (or dominant loss-of-function) signaling response. Presented herein is a unique personal outlook conceptualizing the powerful proximity-enhanced chemical biology toolsets into two paradigms: "multifunctional scaffolding" versus "on-demand targeting". By addressing the latest advances and challenges in the established yet constantly evolving multifunctional scaffolding strategies as well as in the emerging on-demand precision targeting (and related) systems, this Perspective is aimed at choosing when it is best to employ each of the two strategies, with an emphasis toward further promoting novel applications and discoveries stemming from these innovative chemical biology platforms.

  20. Chromatin as an expansive canvas for chemical biology.

    Science.gov (United States)

    Fierz, Beat; Muir, Tom W

    2012-04-17

    Chromatin is extensively chemically modified and thereby acts as a dynamic signaling platform controlling gene function. Chromatin regulation is integral to cell differentiation, lineage commitment and organism development, whereas chromatin dysregulation can lead to age-related and neurodegenerative disorders as well as cancer. Investigating chromatin biology presents a unique challenge, as the issue spans many disciplines, including cell and systems biology, biochemistry and molecular biophysics. In recent years, the application of chemical biology methods for investigating chromatin processes has gained considerable traction. Indeed, chemical biologists now have at their disposal powerful chemical tools that allow chromatin biology to be scrutinized at the level of the cell all the way down to the single chromatin fiber. Here we present recent examples of how this rapidly expanding palette of chemical tools is being used to paint a detailed picture of chromatin function in organism development and disease.

  1. Dietary antioxidant synergy in chemical and biological systems.

    Science.gov (United States)

    Wang, Sunan; Zhu, Fan

    2017-07-24

    Antioxidant (AOX) synergies have been much reported in chemical ("test-tube" based assays focusing on pure chemicals), biological (tissue culture, animal and clinical models), and food systems during the past decade. Tentative synergies differ from each other due to the composition of AOX and the quantification methods. Regeneration mechanism responsible for synergy in chemical systems has been discussed. Solvent effects could contribute to the artifacts of synergy observed in the chemical models. Synergy in chemical models may hardly be relevant to biological systems that have been much less studied. Apparent discrepancies exist in understanding the molecular mechanisms in both chemical and biological systems. This review discusses diverse variables associated with AOX synergy and molecular scenarios for explanation. Future research to better utilize the synergy is suggested.

  2. Microwave-assisted synthesis of chromenes: biological and chemical importance.

    Science.gov (United States)

    Patil, Shivaputra A; Patil, Siddappa A; Patil, Renukadevi

    2015-01-01

    Chromenes constitute chemically important class of heterocyclic compounds having diverse biological and chemical importance. Development of environmentally benign, efficient and economical methods for the synthesis of chromenes remains a significant challenge in synthetic chemistry. The synthesis of chromenes, therefore, has attracted enormous attention from medicinal and organic chemists. Researchers have embraced the concepts of microwave (high speed) synthesis to produce biologically and chemically important chromenes in a time sensitive manner. This review will summarize the recent biological applications such as anticancer, antimicrobial, neurodegenerative and insecticidal activity of new chromenes prepared via microwave irradiation. The development of new methodologies for the synthesis of chromenes including green chemistry processes has also been discussed.

  3. Chemical biology: Protein modification in a trice

    Science.gov (United States)

    Maynard, Heather

    2015-10-01

    Organometallic reagents have been developed that chemically modify proteins and peptides specifically at cysteine amino-acid residues -- potentially offering a general route to making therapeutically useful compounds. See Letter p.687

  4. Construction of a Linux based chemical and biological information system.

    Science.gov (United States)

    Molnár, László; Vágó, István; Fehér, András

    2003-01-01

    A chemical and biological information system with a Web-based easy-to-use interface and corresponding databases has been developed. The constructed system incorporates all chemical, numerical and textual data related to the chemical compounds, including numerical biological screen results. Users can search the database by traditional textual/numerical and/or substructure or similarity queries through the web interface. To build our chemical database management system, we utilized existing IT components such as ORACLE or Tripos SYBYL for database management and Zope application server for the web interface. We chose Linux as the main platform, however, almost every component can be used under various operating systems.

  5. Integrative Chemical-Biological Read-Across Approach for Chemical Hazard Classification

    Science.gov (United States)

    Low, Yen; Sedykh, Alexander; Fourches, Denis; Golbraikh, Alexander; Whelan, Maurice; Rusyn, Ivan; Tropsha, Alexander

    2013-01-01

    Traditional read-across approaches typically rely on the chemical similarity principle to predict chemical toxicity; however, the accuracy of such predictions is often inadequate due to the underlying complex mechanisms of toxicity. Here we report on the development of a hazard classification and visualization method that draws upon both chemical structural similarity and comparisons of biological responses to chemicals measured in multiple short-term assays (”biological” similarity). The Chemical-Biological Read-Across (CBRA) approach infers each compound's toxicity from those of both chemical and biological analogs whose similarities are determined by the Tanimoto coefficient. Classification accuracy of CBRA was compared to that of classical RA and other methods using chemical descriptors alone, or in combination with biological data. Different types of adverse effects (hepatotoxicity, hepatocarcinogenicity, mutagenicity, and acute lethality) were classified using several biological data types (gene expression profiling and cytotoxicity screening). CBRA-based hazard classification exhibited consistently high external classification accuracy and applicability to diverse chemicals. Transparency of the CBRA approach is aided by the use of radial plots that show the relative contribution of analogous chemical and biological neighbors. Identification of both chemical and biological features that give rise to the high accuracy of CBRA-based toxicity prediction facilitates mechanistic interpretation of the models. PMID:23848138

  6. Chemical and biological sensing using tuning forks

    Science.gov (United States)

    Tao, Nongjian; Boussaad, Salah

    2012-07-10

    A device for sensing a chemical analyte is disclosed. The device is comprised of a vibrating structure having first and second surfaces and having an associated resonant frequency and a wire coupled between the first and second surfaces of the vibrating structure, wherein the analyte interacts with the wire and causes a change in the resonant frequency of the vibrating structure. The vibrating structure can include a tuning fork. The vibrating structure can be comprised of quartz. The wire can be comprised of polymer. A plurality of vibrating structures are arranged in an array to increase confidence by promoting a redundancy of measurement or to detect a plurality of chemical analytes. A method of making a device for sensing a chemical analyte is also disclosed.

  7. Extracting Chemical Reactions from Biological Literature

    Science.gov (United States)

    2014-05-16

    positive example is due to incorrect chemical  recognition. In the sentence, “ lactic   acid ” is a chemical used as an adjective describing the  bacteria  and...d-gluconate False Positive A study of the effects of histamine histidine and growth phase on histamine production by lactic acid bacteria isolated...from wine is reported here. lactic acid => histamine n/a False Negative Human 17 beta-hydroxysteroid dehydrogenase 17-HSD type 1 catalyzes

  8. Cutaneous reactions in nuclear, biological and chemical warfare

    Directory of Open Access Journals (Sweden)

    Arora Sandeep

    2005-03-01

    Full Text Available Nuclear, biological and chemical warfare have in recent times been responsible for an increasing number of otherwise rare dermatoses. Many nations are now maintaining overt and clandestine stockpiles of such arsenal. With increasing terrorist threats, these agents of mass destruction pose a risk to the civilian population. Nuclear and chemical attacks manifest immediately while biological attacks manifest later. Chemical and biological attacks pose a significant risk to the attending medical personnel. The large scale of anticipated casualties in the event of such an occurrence would need the expertise of all physicians, including dermatologists, both military and civilian. Dermatologists are uniquely qualified in this respect. This article aims at presenting a review of the cutaneous manifestations in nuclear, chemical and biological warfare and their management.

  9. Pyrrolizidine alkaloids: occurrence, biology, and chemical synthesis.

    Science.gov (United States)

    Robertson, Jeremy; Stevens, Kiri

    2017-01-04

    Covering: 2013 up to the end of 2015This review covers the isolation and structure of new pyrrolizidines; pyrrolizidine biosynthesis; biological activity, including the occurrence of pyrrolizidines as toxic components or contaminants in foods and beverages; and formal and total syntheses of naturally-occurring pyrrolizidine alkaloids and closely related non-natural analogues.

  10. Arrays in biological and chemical analysis

    DEFF Research Database (Denmark)

    Christensen, Claus Bo Vöge

    2002-01-01

    Recently a dramatic change has happened for biological and biochemical analysis. Originally developed as an academic massive parallel screening tool, industry has caught the idea as well of performing all kinds of assays in the new format of microarrays. From food manufacturers over water supply...

  11. Guidelines to improve airport preparedness against chemical and biological terrorism.

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Donna M.; Price, Phillip N. (Lawrence Berkeley National Laboratory, Berkeley, CA); Gordon, Susanna P.; Gadgil, Ashok (Lawrence Berkeley National Laboratory, Berkeley, CA)

    2005-05-01

    Guidelines to Improve Airport Preparedness Against Chemical and Biological Terrorism is a 100-page document that makes concrete recommendations on improving security and assessing vulnerable areas and helps its readers understand the nature of chemical and biological attacks. The report has been turned over to Airports Council International (ACI) and the American Association of Airport Executives (AAAE), two organizations that together represent the interests of thousands of airport personnel and facilities in the U.S. and around the world.

  12. Chemical and biological weapons: new questions, new answers.

    Science.gov (United States)

    Hood, E

    1999-12-01

    The words "chemical and biological weapons" (CBW) send a shiver down most spines these days. With the end of the Cold War, the possibility of a massive nuclear confrontation appears remote, so today many popular doomsday scenarios center on the aggressive use of chemical or biological warfare by rogue nations or terrorist groups. As exaggerated as some of the accounts are, with CBW cast as the latest unseen, unstoppable enemy, the threat posed by these weapons is all too real, and growing.

  13. System chemical biology studies of endocrine disruptors

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Oprea, Tudor I.

    Endocrine disrupting chemicals (EDCs) alter hormonal balance and other physiological systems through inappropriate developmental or adult exposure, perturbing the reproductive function of further generations. While disruption of key receptors (e.g., estrogen, androgen, and thyroid) at the ligand...... effects resulting in the perturbation of different proteins associated to particular diseases (e.g., cryptorchidism) were evaluated....

  14. Treatment of biomass to obtain a target chemical

    Science.gov (United States)

    Dunson, Jr., James B.; Tucker, III, Melvin P.; Elander, Richard T.; Hennessey, Susan Marie

    2010-08-24

    Target chemicals were produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

  15. Chemically-functionalized microcantilevers for detection of chemical, biological and explosive material

    Science.gov (United States)

    Pinnaduwage, Lal A [Knoxville, TN; Thundat, Thomas G [Knoxville, TN; Brown, Gilbert M [Knoxville, TN; Hawk, John Eric [Olive Branch, MS; Boiadjiev, Vassil I [Knoxville, TN

    2007-04-24

    A chemically functionalized cantilever system has a cantilever coated on one side thereof with a reagent or biological species which binds to an analyte. The system is of particular value when the analyte is a toxic chemical biological warfare agent or an explosive.

  16. A proposed chemical mechanism for biological phosphate removal ...

    African Journals Online (AJOL)

    This paper presents an alternative for the ";all biological"; phosphate removal model. It is postulated that a chemical substance in wastewater reacts with orthophosphate under anaerobic conditions to make the so-called luxury uptake of phosphorus possible in biological nutrient removal (BNR) activated sludge plants.

  17. Protein targeting protocols [Methods in molecular biology, v. 88

    National Research Council Canada - National Science Library

    Clegg, Roger A

    1998-01-01

    ... of intracellular environment. Because the concept of protein targeting is intuitive rather than explicitly defined, it has been variously used by different groups of researchers in cell biology, biochemistry, and molecular biology. For those working in the field of intracellular signaling, an influential introduction to the topic was the seminal article by Hubbard & Cohen (TIBS [1993] 18, 172- 177), which was based on the work of Cohen's laboratory on protein phosphatases. Subsequently, the ideas that t...

  18. Chemical and Biological Evaluation of Whey

    International Nuclear Information System (INIS)

    Mohamed, N.E.; Anwar, M.M.

    2013-01-01

    This Study has been carried out to extract whey protein concentrate (WPC) from sweet whey and to study the chemical composition, amino acids composition, amino acid scores and to investigate the possible role of WPC in ameliorating some biochemical disorders induced in γ-irradiated rats. Animals were divided into 4 groups. Group 1, fed on normal diet during experimental period. Group 2, fed on diet containing 15% WPC instead of soybean protein. Group 3, rats exposed to whole body γ-radiation with single dose of 5 Gy and fed on the normal diet. Group 4, rats exposed to 5 Gy then fed on diet containing 15% WPC. The rats were decapitated 14 and 28 days post irradiation. Chemical analysis of WPC revealed that it contains high amounts of protein (44%), total amino acids (71%) and all essential amino acids (EAA), phenylalanine (37%), isoleucine cystine and threonine were the major EAA and high amounts of sulphur amino acids. Methionine gave rich chemical score (102.67%) also, isoleucine (119.95%) and phenylalanine+ tyrosine gave maximum chemical score (198.8%), respectively. Exposure to γ-irradiation caused significant elevation of serum cholesterol, triglycerides, low density lipoprotein (LDL), lipid per oxidation end product (TBARS) and iron (Fe) with significant decrease in high density lipoprotein (HDL), glutathione (GSH) and catalase (CAT) in serum. Also, irradiated rats had significant decrease in copper (Cu), magnesium (Mg) and zinc (Zn) in serum. The histological examination of cardiac tissue showed severe structural damage. Irradiated rats fed on WPC revealed significant improvement of some biochemical parameters. It could be concluded that WPC must be added to diet for reducing radiation injury via metabolic pathway

  19. Biological and therapeutic properties of chemical propolis constituents.

    OpenAIRE

    Marcucci, MC

    1996-01-01

    Chemical composition of propolis, mainly the compounds identified in the last fourteen years, is presented. The chemical constituents which may be relevant to its biological and therapeutical activities are discussed. The antimicrobial and cytotoxic activities and pharmacological properties of propolis are presented. Some recent concepts about propolis and its use in medicine are showed.

  20. Group behaviour in physical, chemical and biological systems

    Indian Academy of Sciences (India)

    2014-03-15

    Mar 15, 2014 ... a gel; the collection of finite clusters is a sol, a complex entity that retains properties of a fluid.7 ... lowest internal energy).8 The physico-chemical approach to studying the behaviour of biological .... 12 The relative abundances of the chemical elements are explained by invoking a particular history of the ...

  1. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Laura R. Jarboe

    2010-01-01

    Full Text Available Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.

  2. Malaria Parasite Metabolic Pathways (MPMP) Upgraded with Targeted Chemical Compounds.

    Science.gov (United States)

    Ginsburg, Hagai; Abdel-Haleem, Alyaa M

    2016-01-01

    Malaria Parasite Metabolic Pathways (MPMP) is the website for the functional genomics of intraerythrocytic Plasmodium falciparum. All the published information about targeted chemical compounds has now been added. Users can find the drug target and publication details linked to a drug database for further information about the medicinal properties of each compound. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Malaria Parasite Metabolic Pathways (MPMP) Upgraded with Targeted Chemical Compounds

    KAUST Repository

    Ginsburg, Hagai

    2015-10-31

    Malaria Parasite Metabolic Pathways (MPMP) is the website for the functional genomics of intraerythrocytic Plasmodium falciparum. All the published information about targeted chemical compounds has now been added. Users can find the drug target and publication details linked to a drug database for further information about the medicinal properties of each compound.

  4. Integrated modelling of physical, chemical and biological weather

    DEFF Research Database (Denmark)

    Kurganskiy, Alexander

    Integrated modelling of physical, chemical and biological weather has been widely considered during the recent decades. Such modelling includes interactions of atmospheric physics and chemical/biological aerosol concentrations. Emitted aerosols are subject to atmospheric transport, dispersion...... and deposition, but in turn they impact the radiation as well as cloud and precipitation formation. The present study focuses on birch pollen modelling as well as on physical and chemical weather with emphasis on black carbon (BC) aerosol modelling. The Enviro-HIRLAM model has been used for the study...

  5. Nucleic Acid Templated Reactions for Chemical Biology.

    Science.gov (United States)

    Di Pisa, Margherita; Seitz, Oliver

    2017-06-21

    Nucleic acid directed bioorthogonal reactions offer the fascinating opportunity to unveil and redirect a plethora of intracellular mechanisms. Nano- to picomolar amounts of specific RNA molecules serve as templates and catalyze the selective formation of molecules that 1) exert biological effects, or 2) provide measurable signals for RNA detection. Turnover of reactants on the template is a valuable asset when concentrations of RNA templates are low. The idea is to use RNA-templated reactions to fully control the biodistribution of drugs and to push the detection limits of DNA or RNA analytes to extraordinary sensitivities. Herein we review recent and instructive examples of conditional synthesis or release of compounds for in cellulo protein interference and intracellular nucleic acid imaging. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. Identifying unexpected therapeutic targets via chemical-protein interactome.

    Directory of Open Access Journals (Sweden)

    Lun Yang

    Full Text Available Drug medications inevitably affect not only their intended protein targets but also other proteins as well. In this study we examined the hypothesis that drugs that share the same therapeutic effect also share a common therapeutic mechanism by targeting not only known drug targets, but also by interacting unexpectedly on the same cryptic targets. By constructing and mining an Alzheimer's disease (AD drug-oriented chemical-protein interactome (CPI using a matrix of 10 drug molecules known to treat AD towards 401 human protein pockets, we found that such cryptic targets exist. We recovered from CPI the only validated therapeutic target of AD, acetylcholinesterase (ACHE, and highlighted several other putative targets. For example, we discovered that estrogen receptor (ER and histone deacetylase (HDAC, which have recently been identified as two new therapeutic targets of AD, might already have been targeted by the marketed AD drugs. We further established that the CPI profile of a drug can reflect its interacting character towards multi-protein sets, and that drugs with the same therapeutic attribute will share a similar interacting profile. These findings indicate that the CPI could represent the landscape of chemical-protein interactions and uncover "behind-the-scenes" aspects of the therapeutic mechanisms of existing drugs, providing testable hypotheses of the key nodes for network pharmacology or brand new drug targets for one-target pharmacology paradigm.

  7. Nitrogenous air pollutants: Chemical and biological implications

    International Nuclear Information System (INIS)

    Grosjean, D.

    1979-01-01

    Theoretical and experimental studies on the health effects and chemistry of gaseous and particulate nitrogenous air pollutants are presented. Specific topics include Fourier transform infrared studies of nitrogenous compounds, the mechanism of peroxynitric acid formation, N-nitroso compounds in the air, the chemical transformations of nitrogen oxides during the sampling of combustion products, the atmospheric chemistry of peroxy nitrates, and the effects of nitrogen dioxide on lung metabolism. Attention is also given to the interaction of nitrogen oxides and aromatic hydrocarbons under simulated atmospheric conditions, the characterization of particulate amines, the role of ammonia in atmospheric aerosol chemistry, the relationship between sulfates and nitrates and tropospheric measurements of nitric acid vapor and particulate nitrates

  8. Integrated pathway clusters with coherent biological themes for target prioritisation.

    Directory of Open Access Journals (Sweden)

    Yi-An Chen

    Full Text Available Prioritising candidate genes for further experimental characterisation is an essential, yet challenging task in biomedical research. One way of achieving this goal is to identify specific biological themes that are enriched within the gene set of interest to obtain insights into the biological phenomena under study. Biological pathway data have been particularly useful in identifying functional associations of genes and/or gene sets. However, biological pathway information as compiled in varied repositories often differs in scope and content, preventing a more effective and comprehensive characterisation of gene sets. Here we describe a new approach to constructing biologically coherent gene sets from pathway data in major public repositories and employing them for functional analysis of large gene sets. We first revealed significant overlaps in gene content between different pathways and then defined a clustering method based on the shared gene content and the similarity of gene overlap patterns. We established the biological relevance of the constructed pathway clusters using independent quantitative measures and we finally demonstrated the effectiveness of the constructed pathway clusters in comparative functional enrichment analysis of gene sets associated with diverse human diseases gathered from the literature. The pathway clusters and gene mappings have been integrated into the TargetMine data warehouse and are likely to provide a concise, manageable and biologically relevant means of functional analysis of gene sets and to facilitate candidate gene prioritisation.

  9. The Industrial Toxics Project: Targeting chemicals for environmental results

    International Nuclear Information System (INIS)

    Burch, W.M.

    1991-01-01

    In September, 1990, the Administrator of the US Environmental Protection Agency committed the Agency to a program of targeting chemicals for multi-media risk reduction activities through pollution prevention. The Industrial Toxics Project will place emphasis on obtaining voluntary commitments from industry to reduce releases of toxic chemicals to the air, water, and land with a goal of reducing releases nationwide by 33% by 1992 and 50% by 1995. An initial list of 18 chemicals have been selected based on recommendations from each Agency program. The chemicals selected are subject to reporting under the Toxic Chemical Release Inventory Program which will provide the basis for tracking progress. The chemicals are characterized by high production volume, toxicity and releases and present the potential for significant risk reduction through pollution prevention. This presentation will discuss the focus and direction of this new initiative

  10. Chemical and biological nonproliferation program. FY99 annual report; ANNUAL

    International Nuclear Information System (INIS)

    NONE

    2000-01-01

    This document is the first of what will become an annual report documenting the progress made by the Chemical and Biological Nonproliferation Program (CBNP). It is intended to be a summary of the program's activities that will be of interest to both policy and technical audiences. This report and the annual CBNP Summer Review Meeting are important vehicles for communication with the broader chemical and biological defense and nonproliferation communities. The Chemical and Biological Nonproliferation Program Strategic Plan is also available and provides additional detail on the program's context and goals. The body of the report consists of an overview of the program's philosophy, goals and recent progress in the major program areas. In addition, an appendix is provided with more detailed project summaries that will be of interest to the technical community

  11. Chemical and biological nonproliferation program. FY99 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This document is the first of what will become an annual report documenting the progress made by the Chemical and Biological Nonproliferation Program (CBNP). It is intended to be a summary of the program's activities that will be of interest to both policy and technical audiences. This report and the annual CBNP Summer Review Meeting are important vehicles for communication with the broader chemical and biological defense and nonproliferation communities. The Chemical and Biological Nonproliferation Program Strategic Plan is also available and provides additional detail on the program's context and goals. The body of the report consists of an overview of the program's philosophy, goals and recent progress in the major program areas. In addition, an appendix is provided with more detailed project summaries that will be of interest to the technical community.

  12. The terrorist threat nuclear, radiological, biological, chemical - a medical approach

    International Nuclear Information System (INIS)

    Revel, M.C. de; Gourmelon, M.C.S.; Vidal, P.C.; Renaudeau, P.C.S.

    2005-01-01

    Since September 11, 2001, the fear of a large scale nuclear, biological and/or chemical terrorism is taken again into consideration at the highest level of national policies of risk prevention. The advent of international terrorism implies a cooperation between the military defense and the civil defense. The nuclear, radiological, biological and chemical (NRBC) experts of the health service of army and of civil defense will have to work together in case of major terror attack. This book presents this cooperation between civil and military experts in the NRBC domain: risk analysis, national defense plans, crisis management, syndromes and treatments. The different aspects linked with the use of nuclear, biological and chemical weapons are analyzed by the best experts from French medical and research institutes. All topics of each NRBC domain are approached: historical, basic, diagnostic, therapeutic and preventive. (J.S.)

  13. Journal of Medical Chemical, Biological and Radiological Defense

    International Nuclear Information System (INIS)

    Price, B.

    2007-01-01

    The Journal of Medical Chemical, Biological, and Radiological Defense is a free, on-line journal dedicated to providing an international, peer-reviewed journal of original scientific research and clinical and doctrinal knowledge in the area of medical treatment and countermeasures for chemical, biological and radiological defense; and to developing and maintaining an archive of current research and development information on training, doctrine, and professional discussions of problems related to chemical, biological and radiological casualties. The Journal, www.JMedCBR.org, now in its fifth year, is sponsored by the US Defense Threat Reduction Agency. Areas of interest include, but are not limited to: Neuroprotectants; Bioscavengers for Nerve Agents; Medical Diagnostic Systems and Technologies; Medical Effects of Low Level Exposures; Toxicology and Biological Effects of TICs and TIMs; Broad Spectrum Medical Countermeasures; Treatments and Therapeutics for Bacterial, Viral and Toxin Agents; Radiological Medical Countermeasures; Clinical Treatment of Chemical, Biological or Radiological Casualties; Toxins Structures and Treatments. The Journal is supported by an editorial advisory board of distinguished scientists and researchers in the fields of CBR defense and medical treatment and countermeasures in eleven countries.(author)

  14. Joining Forces: The Chemical Biology-Medicinal Chemistry Continuum.

    Science.gov (United States)

    Plowright, Alleyn T; Ottmann, Christian; Arkin, Michelle; Auberson, Yves P; Timmerman, Henk; Waldmann, Herbert

    2017-09-21

    The scientific advances being made across all disciplines are creating ever-increasing opportunities to enhance our knowledge of biological systems and how they relate to human disease. One of the central driving forces in discovering new medicines is medicinal chemistry, where the design and synthesis of novel compounds has led to multiple drugs. Chemical biology, sitting at the interface of many disciplines, has now emerged as a major contributor to the understanding of biological systems and is becoming an integral part of drug discovery. Bringing chemistry and biology much closer and blurring the boundaries between disciplines is creating new opportunities to probe and understand biology; both disciplines play key roles and need to join forces and work together effectively to synergize their impact. The power of chemical biology will then reach its full potential and drive innovation, leading to the discovery of transformative medicines to treat patients. Advances in cancer biology and drug discovery highlight this potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Biologic Drugs: A New Target Therapy in COPD?

    Science.gov (United States)

    Yousuf, Ahmed; Brightling, Christopher E

    2018-04-23

    Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease associated with significant morbidity and mortality. Current diagnostic criteria based on the presence of fixed airflow obstruction and symptoms do not integrate the complex pathological changes occurring within the lung and they do not define different airway inflammatory patterns. The current management of COPD is based on 'one size fits all' approach and does not take the importance of heterogeneity in COPD population into account. The available treatments aim to alleviate symptoms and reduce exacerbation frequency but do not alter the course of the disease. Recent advances in molecular biology have furthered our understanding of inflammatory pathways in pathogenesis of COPD and have led to development of targeted therapies (biologics and small molecules) based on predefined biomarkers. Herein we shall review the trials of biologics in COPD and potential future drug developments in the field.

  16. Modelling biological and chemically induced precipitation of calcium phosphate in enhanced biological phosphorus removal systems.

    Science.gov (United States)

    Barat, R; Montoya, T; Seco, A; Ferrer, J

    2011-06-01

    The biologically induced precipitation processes can be important in wastewater treatment, in particular treating raw wastewater with high calcium concentration combined with Enhanced Biological Phosphorus Removal. Currently, there is little information and experience in modelling jointly biological and chemical processes. This paper presents a calcium phosphate precipitation model and its inclusion in the Activated Sludge Model No 2d (ASM2d). The proposed precipitation model considers that aqueous phase reactions quickly achieve the chemical equilibrium and that aqueous-solid change is kinetically governed. The model was calibrated using data from four experiments in a Sequencing Batch Reactor (SBR) operated for EBPR and finally validated with two experiments. The precipitation model proposed was able to reproduce the dynamics of amorphous calcium phosphate (ACP) formation and later crystallization to hydroxyapatite (HAP) under different scenarios. The model successfully characterised the EBPR performance of the SBR, including the biological, physical and chemical processes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Biologics for Targeting Inflammatory Cytokines, Clinical Uses, and Limitations

    Directory of Open Access Journals (Sweden)

    Peleg Rider

    2016-01-01

    Full Text Available Proinflammatory cytokines are potent mediators of numerous biological processes and are tightly regulated in the body. Chronic uncontrolled levels of such cytokines can initiate and derive many pathologies, including incidences of autoimmunity and cancer. Therefore, therapies that regulate the activity of inflammatory cytokines, either by supplementation of anti-inflammatory recombinant cytokines or by neutralizing them by using blocking antibodies, have been extensively used over the past decades. Over the past few years, new innovative biological agents for blocking and regulating cytokine activities have emerged. Here, we review some of the most recent approaches of cytokine targeting, focusing on anti-TNF antibodies or recombinant TNF decoy receptor, recombinant IL-1 receptor antagonist (IL-1Ra and anti-IL-1 antibodies, anti-IL-6 receptor antibodies, and TH17 targeting antibodies. We discuss their effects as biologic drugs, as evaluated in numerous clinical trials, and highlight their therapeutic potential as well as emphasize their inherent limitations and clinical risks. We suggest that while systemic blocking of proinflammatory cytokines using biological agents can ameliorate disease pathogenesis and progression, it may also abrogate the hosts defense against infections. Moreover, we outline the rational need to develop new therapies, which block inflammatory cytokines only at sites of inflammation, while enabling their function systemically.

  18. Regional pharmaceutical preparation for biological and chemical terrorism.

    Science.gov (United States)

    Mrvos, Rita; Piposzar, J David; Stein, Thomas M; Locasto, Donald; Krenzelok, Edward P

    2003-01-01

    The United States National Office of Domestic Preparedness has determined that the threat of a biological or chemical attack is very real. As an active participant of a 13-county regional task force, one of the roles of the poison center was to determine the pharmaceutical needs of the community in the event of a terrorist action and develop a financially responsible method of acquisition and storage. Working with local health officials, an extensive literature review was conducted to identify possible biological and chemical poisons. Treatment recommendations were identified and an estimated amount to treat 5,000 people for 24hrs was determined. Instead of purchasing the medications, a unique solution utilizing a regional pharmacy wholesaler was used. An important element in a biological or chemical terrorist event is the availability of the pharmaceuticals and the capability of delivering them rapidly. The poison center is the ideal agency to help coordinate this endeavor since it is familiar with contemporary therapy and will be aware of the number, location, and status of casualties. Based on the expense involved in the purchase and storage of a large quantity of medications, utilizing a local pharmaceutical distribution company is fiscally responsible. Rotation through normal stock and being readily accessible is another benefit. The poison center serves a number of roles in the surveillance, recognition, and treatment of biological and chemical terrorism. Assisting in the development, implementation, and procurement of a pharmaceutical cache is yet another role.

  19. Chemical analysis and biological potential of Valerian root as used ...

    African Journals Online (AJOL)

    The herb prepared from this plant was studied to determine the chemical composition of its essential oil, carried out phytochemical screening and biological activities on ... rat paw oedema model comparable to aspirin, indicating anti-inflammatory activity; but lacked analgesic activity on the acetic acid-induced writhing test.

  20. A decontamination study of simulated chemical and biological agents

    Science.gov (United States)

    Uhm, Han S.; Lee, Han Y.; Hong, Yong C.; Shin, Dong H.; Park, Yun H.; Hong, Yi F.; Lee, Chong K.

    2007-07-01

    A comprehensive decontamination scheme of the chemical and biological agents, including airborne agents and surface contaminating agents, is presented. When a chemical and biological attack occurs, it is critical to decontaminate facilities or equipments to an acceptable level in a very short time. The plasma flame presented here may provide a rapid and effective elimination of toxic substances in the interior air in isolated spaces. As an example, a reaction chamber, with the dimensions of a 22cm diameter and 30cm length, purifies air with an airflow rate of 5000l/min contaminated with toluene, the simulated chemical agent, and soot from a diesel engine, the simulated aerosol for biological agents. Although the airborne agents in an isolated space are eliminated to an acceptable level by the plasma flame, the decontamination of the chemical and biological agents cannot be completed without cleaning surfaces of the facilities. A simulated sterilization study of micro-organisms was carried out using the electrolyzed ozone water. The electrolyzed ozone water very effectively kills endospores of Bacillus atrophaeus (ATCC 9372) within 3min. The electrolyzed ozone water also kills the vegetative micro-organisms, fungi, and virus. The electrolyzed ozone water, after the decontamination process, disintegrates into ordinary water and oxygen without any trace of harmful materials to the environment.

  1. On the transition period from chemical to biological evolution

    International Nuclear Information System (INIS)

    Chela-Flores, J.

    1991-06-01

    We discuss the consequences of the hypothesis that biological evolution was contemporary with an important event in chemical evolution, namely, the induction of a small chiral bias by the electroweak neutral interaction, amplified by the Salam enhancement factor, which we discuss in terms of familiar crystallographic terms. (author). 18 refs, 3 tabs

  2. Chemical and biological characterization of a crude venom extract ...

    African Journals Online (AJOL)

    Background: Sea-anemones, in common with other members of the phylum cnidaria (coelenterate) possess numerous tentacles containing specialized stinging cells of cnidocysts. Our main objective is to elucidate the chemical character and biological properties of this Nigerian species of sea anemone Bunodosoma ...

  3. Impact of Theoretical Chemistry on Chemical and Biological Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 4. Impact of Theoretical Chemistry on Chemical and Biological Sciences: Chemistry Nobel Prize – 2013. Saraswathi Vishveshwara. General Article Volume 19 Issue 4 April 2014 pp 347-367 ...

  4. Optimizing the Domestic Chemical, Biological, Radiological, and Nuclear Response Enterprise

    Science.gov (United States)

    2015-03-01

    Facility Location Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.14 Facility Location Problem Taxonomy ...at- tack on U.S. soil .” [42] – 2014 Quadrennial Defense Review 1.1 Background The use of a Chemical, Biological, Radiological, or Nuclear (CBRN) weapon...demonstrate specific applications, and present previous solution techniques. 2.14 Facility Location Problem Taxonomy We begin first with a brief overview of

  5. Methylene Diphosphonate Chemical and Biological control of MDP complex

    CERN Document Server

    Aungurarat, A

    2000-01-01

    Technetium-9 sup 9 sup m MDP easy prepared from MDP kits which different sources such as OAP (In house), SIGMA. The resulting Tc 9 sup 9 sup m -MDP preparations were controlled in chemical and biological tests to compare the different results in these cases: radiochemical purity, the quantity of starting material and biodistribution result.

  6. Physio-chemical evaluation and biological activity of Ajuga ...

    African Journals Online (AJOL)

    Physio-chemical evaluation and biological activity of Ajuga bracteosa wall and Viola odoroto Linn. Anwar Ali Shad, M. Zeeshan, Hina Fazal, Hamid Ullah Shah, Shabir Ahmed, Hasem Abeer, E. F. Abd_Allah, Riaz Ullah, Hamid Afridi, Akash tariq, Muhammad Adnan Asma ...

  7. Chemical and biological characteristics of Albion reef in the South ...

    African Journals Online (AJOL)

    The role of heterotrophic bacteria, pico-cyanobacteria and benthic cyanobacterial mats was assessed in the cycling of organic carbon and nitrogen in the Albion lagoon, Mauritius. Surveys and sampling for biological and chemical parameters were undertaken at three locations along one northern (T1) and one southern ...

  8. Integrated Ph. D. Programme in Biological, Chemical and Physical ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Integrated Ph. D. Programme in Biological, Chemical and Physical Sciences at Indian Institute of Sciences Introductory Summer School on Astronomy and Astrophysics. Information and Announcements Volume 1 Issue 2 February 1996 pp 121- ...

  9. Linking neuroethology to the chemical biology of natural products

    DEFF Research Database (Denmark)

    Olivera, Baldomero M.; Raghuraman, Shrinivasan; Schmidt, Eric W.

    2017-01-01

    From a biological perspective, a natural product can be defined as a compound evolved by an organism for chemical interactions with another organism including prey, predator, competitor, pathogen, symbiont or host. Natural products hold tremendous potential as drug leads and have been extensively...... studied by chemists and biochemists in the pharmaceutical industry. However, the biological purpose for which a natural product evolved is rarely addressed. By focusing on a well-studied group of natural products—venom components from predatory marine cone snails—this review provides a rationale for why...... a better understanding of the evolution, biology and biochemistry of natural products will facilitate both neuroscience and the potential for drug leads. The larger goal is to establish a new sub-discipline in the broader field of neuroethology that we refer to as “Chemical Neuroethology”, linking...

  10. Opportunities for synthetic biology in antibiotics: expanding glycopeptide chemical diversity.

    Science.gov (United States)

    Thaker, Maulik N; Wright, Gerard D

    2015-03-20

    Synthetic biology offers a new path for the exploitation and improvement of natural products to address the growing crisis in antibiotic resistance. All antibiotics in clinical use are facing eventual obsolesce as a result of the evolution and dissemination of resistance mechanisms, yet there are few new drug leads forthcoming from the pharmaceutical sector. Natural products of microbial origin have proven over the past 70 years to be the wellspring of antimicrobial drugs. Harnessing synthetic biology thinking and strategies can provide new molecules and expand chemical diversity of known antibiotic scaffolds to provide much needed new drug leads. The glycopeptide antibiotics offer paradigmatic scaffolds suitable for such an approach. We review these strategies here using the glycopeptides as an example and demonstrate how synthetic biology can expand antibiotic chemical diversity to help address the growing resistance crisis.

  11. A Chemical Reaction to the Historiography of Biology.

    Science.gov (United States)

    Creager, Angela N H

    2017-11-01

    This article examines the often-overlooked role of chemical ideas and practices in the history of modern biology. The first section analyses how the conventional histories of the life sciences have, through the twentieth century, come to focus nearly exclusively on evolutionary theory and genetics, and why this storyline is inadequate. The second section elaborates on what the restricted neo-Darwinian history of biology misses, noting a variety of episodes in the history of biology that relied on developments in - or tools from - chemistry, including an example from the author's own work. The diverse ways in which biologists have used chemical approaches often relate to the concrete, infrastructural side of research; a more inclusive history thus also connects to a historiography of materials and objects in science.

  12. Integrated modelling of physical, chemical and biological weather

    DEFF Research Database (Denmark)

    Kurganskiy, Alexander

    forecasts. The BC modelling study was performed for a modelling domain covering most of the Northern Hemisphere with focus on the EU and Arctic regions. Verification of BC concentrations against observations showed a good agreement for the EU air quality measurement sites. However, the Arctic region turned......Integrated modelling of physical, chemical and biological weather has been widely considered during the recent decades. Such modelling includes interactions of atmospheric physics and chemical/biological aerosol concentrations. Emitted aerosols are subject to atmospheric transport, dispersion...... and deposition, but in turn they impact the radiation as well as cloud and precipitation formation. The present study focuses on birch pollen modelling as well as on physical and chemical weather with emphasis on black carbon (BC) aerosol modelling. The Enviro-HIRLAM model has been used for the study...

  13. Biologic targeting in the treatment of inflammatory bowel diseases [Retraction

    Directory of Open Access Journals (Sweden)

    Bosani M

    2014-01-01

    Full Text Available Bosani M, Ardizzone S, Porro GB. Biologics: Targets and Therapy. 2009;3:77–97.This paper has been retracted after we were made aware that it contains a large amount of reused, and uncited material that was not placed within quotation marks.The following statement has been supplied by Dr Sandro Ardizzone:The review entitled "Biologic targeting in the treatment of inflammatory bowel disease" has been commissioned by this journal and published in 2009 (Matteo Bosani, Sandro Ardizzone, Gabriele Bianchi Porro. Biologics: Targets & Therapy 2009;3:77–97. The paper was written by our young coworker (Dr M Bosani. He has consulted many papers, including our previous reviews published years before. The not perfect knowledge of English language has greatly influenced the writing of the paper itself. So he saved in word file several parts of our previous papers (Ardizzone S, Bianchi Porro G. Inflammatory bowel disease: new insights into pathogenesis and treatment. J Intern Med 2002;252:475–496 – Ardizzone S, Bianchi Porro G. Biologic therapy for inflammatory bowel disease. Drugs 2005:2253–2286, and then transferred to the final paper. He was unaware as we are, of the fact that he could not reuse previously published material in other journals. The reuse of this material was made in good faith.Taking our responsibility for what happened, we intend to apologize for this inconvenience to the Editor (Dr Doris Benbrook and Publisher (Dr Tim Hill. Moreover, for the reasons mentioned above, I consider appropriate to retract the paper itself.This retraction relates to this paper.

  14. Functional annotation of chemical libraries across diverse biological processes.

    Science.gov (United States)

    Piotrowski, Jeff S; Li, Sheena C; Deshpande, Raamesh; Simpkins, Scott W; Nelson, Justin; Yashiroda, Yoko; Barber, Jacqueline M; Safizadeh, Hamid; Wilson, Erin; Okada, Hiroki; Gebre, Abraham A; Kubo, Karen; Torres, Nikko P; LeBlanc, Marissa A; Andrusiak, Kerry; Okamoto, Reika; Yoshimura, Mami; DeRango-Adem, Eva; van Leeuwen, Jolanda; Shirahige, Katsuhiko; Baryshnikova, Anastasia; Brown, Grant W; Hirano, Hiroyuki; Costanzo, Michael; Andrews, Brenda; Ohya, Yoshikazu; Osada, Hiroyuki; Yoshida, Minoru; Myers, Chad L; Boone, Charles

    2017-09-01

    Chemical-genetic approaches offer the potential for unbiased functional annotation of chemical libraries. Mutations can alter the response of cells in the presence of a compound, revealing chemical-genetic interactions that can elucidate a compound's mode of action. We developed a highly parallel, unbiased yeast chemical-genetic screening system involving three key components. First, in a drug-sensitive genetic background, we constructed an optimized diagnostic mutant collection that is predictive for all major yeast biological processes. Second, we implemented a multiplexed (768-plex) barcode-sequencing protocol, enabling the assembly of thousands of chemical-genetic profiles. Finally, based on comparison of the chemical-genetic profiles with a compendium of genome-wide genetic interaction profiles, we predicted compound functionality. Applying this high-throughput approach, we screened seven different compound libraries and annotated their functional diversity. We further validated biological process predictions, prioritized a diverse set of compounds, and identified compounds that appear to have dual modes of action.

  15. Active targeting in a random porous medium by chemical swarm robots with secondary chemical signaling

    Science.gov (United States)

    Grančič, Peter; Štěpánek, František

    2011-08-01

    The multibody dynamics of a system of chemical swarm robots in a porous environment is investigated. The chemical swarm robots are modeled as Brownian particles capable of delivering an encapsulated chemical payload toward a given target location and releasing it in response to an external stimulus. The presence of chemical signals (chemo-attractant) in the system plays a crucial role in coordinating the collective movement of the particles via chemotaxis. For a number of applications, such as distributed chemical processing and targeted drug delivery, the understanding of factors that govern the collective behavior of the particles, especially their ability to localize a given target, is of immense importance. A hybrid modeling methodology based on the combination of the Brownian dynamics method and diffusion problem coupled through the chemotaxis phenomena is used to analyze the impact of a varying signaling threshold and the strength of chemotaxis on the ability of the chemical robots to fulfill their target localization mission. The results demonstrate that the selected performance criteria (the localization half time and the success rate) can be improved when an appropriate signaling process is chosen. Furthermore, for an optimum target localization strategy, the topological complexity of the porous environment needs to be reflected.

  16. The chemical and biological weapon terrorism by the Aum Shnirikyo

    International Nuclear Information System (INIS)

    Furukawa, K.

    2009-01-01

    The Aum Shinrikyo, an obscure cult religious group, attacked the Tokyo subways employing sarin gas in March 1995, which was viewed as a mark of a new era in terrorism. The Aum Shinrikyo remains the one empirical example of a religiously motivated cult with an affluent amount of financial and human resources and motivations to use unconventional weapons. The Aum Shinrikyo's leaders included the scientific elite of a young generation as well as former Yakuza members who had close ties with organized crime networks. Aum succeeded in establishing an extensive network to procure weapons, material, and drug, primarily in Russia but also other countries including the United States and even North Korea. Despite the fact that the law enforcement authority had already obtained various pieces of information that reasonably indicated that Aum was producing sarin by late 1994, the law enforcement authority became too cautious to advance its investigation to arrest Aum members until it was too late. Japan's experience with the Aum Shinrikyo's threats provides valuable insights for democratic governments seeking to thwart the deadly plans of religiously motivated non-state actors. It reveals the tremendous difficulties for a democratic society to confront the terrorists who were willing to pursue their deadly 'divine' objectives, especially when the society had no experience to encounter such a threat. This presentation will explain the chemical and biological weapon programs of the Aum Shinrikyo, especially focusing on the following elements: Intention and capability of the Aum Shinrikyo; Weapon systems and mode of attacks, including their target selections; The lessons learned from this case for the prevention and crisis/consequence management n the event of CBW terrorism. The views expressed here are those of the author and do not represent those of the Research Institute for Science and Technology for Society or its research sponsors.(author)

  17. Chemical Genomics and Emerging DNA Technologies in the Identification of Drug Mechanisms and Drug Targets

    DEFF Research Database (Denmark)

    Olsen, Louise Cathrine Braun; Færgeman, Nils J.

    2012-01-01

    and validate therapeutic targets and to discover drug candidates for rapidly and effectively generating new interventions for human diseases. The recent emergence of genomic technologies and their application on genetically tractable model organisms like Drosophila melanogaster,Caenorhabditis elegans...... critical roles in the genomic age of biological research and drug discovery. In the present review we discuss how simple biological model organisms can be used as screening platforms in combination with emerging genomic technologies to advance the identification of potential drugs and their molecular...... and Saccharomyces cerevisiae have provided momentum to cell biological and biomedical research, particularly in the functional characterization of gene functions and the identification of novel drug targets. We therefore anticipate that chemical genomics and the vast development of genomic technologies will play...

  18. Chemical Genomics and Emerging DNA Technologies in the Identification of Drug Mechanisms and Drug Targets

    DEFF Research Database (Denmark)

    Olsen, Louise Cathrine Braun; Færgeman, Nils J.

    2012-01-01

    and validate therapeutic targets and to discover drug candidates for rapidly and effectively generating new interventions for human diseases. The recent emergence of genomic technologies and their application on genetically tractable model organisms like Drosophila melanogaster,Caenorhabditis elegans...... and Saccharomyces cerevisiae have provided momentum to cell biological and biomedical research, particularly in the functional characterization of gene functions and the identification of novel drug targets. We therefore anticipate that chemical genomics and the vast development of genomic technologies will play...... critical roles in the genomic age of biological research and drug discovery. In the present review we discuss how simple biological model organisms can be used as screening platforms in combination with emerging genomic technologies to advance the identification of potential drugs and their molecular...

  19. Effects of industrial chemicals and radioactive materials in biological systems

    International Nuclear Information System (INIS)

    Gangopadhyay, A.; Chatterjee, S.

    1987-01-01

    Much has been written on the effects of radiation and toxic chemicals on biological systems. In this communication general considerations regarding these topics will be discussed very briefly; the major emphasis will be focused on the effects of chemicals, namely ethyl methane sulfonate (EMS) on Amoeba, Advantages to the use of amoeba for studying the effects of radiation and chemicals include the following: large mononucleate unicellular organisms having a long generation time; opportunity to study cellular organelles and biochemical and genetic alterations in a single cell system; and a long cell cycle, the stages of which can be synchronized without resorting to chemical treatment or temperature shock and thereby readily permitting study at defined stages of the cell's life cycle. This, in turn, is discussed in light of current disposal methods for this type of waste and how it might be safely disposed of

  20. Classifying transcription factor targets and discovering relevant biological features

    Directory of Open Access Journals (Sweden)

    DeLisi Charles

    2008-05-01

    Full Text Available Abstract Background An important goal in post-genomic research is discovering the network of interactions between transcription factors (TFs and the genes they regulate. We have previously reported the development of a supervised-learning approach to TF target identification, and used it to predict targets of 104 transcription factors in yeast. We now include a new sequence conservation measure, expand our predictions to include 59 new TFs, introduce a web-server, and implement an improved ranking method to reveal the biological features contributing to regulation. The classifiers combine 8 genomic datasets covering a broad range of measurements including sequence conservation, sequence overrepresentation, gene expression, and DNA structural properties. Principal Findings (1 Application of the method yields an amplification of information about yeast regulators. The ratio of total targets to previously known targets is greater than 2 for 11 TFs, with several having larger gains: Ash1(4, Ino2(2.6, Yaf1(2.4, and Yap6(2.4. (2 Many predicted targets for TFs match well with the known biology of their regulators. As a case study we discuss the regulator Swi6, presenting evidence that it may be important in the DNA damage response, and that the previously uncharacterized gene YMR279C plays a role in DNA damage response and perhaps in cell-cycle progression. (3 A procedure based on recursive-feature-elimination is able to uncover from the large initial data sets those features that best distinguish targets for any TF, providing clues relevant to its biology. An analysis of Swi6 suggests a possible role in lipid metabolism, and more specifically in metabolism of ceramide, a bioactive lipid currently being investigated for anti-cancer properties. (4 An analysis of global network properties highlights the transcriptional network hubs; the factors which control the most genes and the genes which are bound by the largest set of regulators. Cell-cycle and

  1. Integrated chemical and biological assessment of contaminant impacts in selected European coastal and offshore marine areas.

    Science.gov (United States)

    Hylland, Ketil; Robinson, Craig D; Burgeot, Thierry; Martínez-Gómez, Concepción; Lang, Thomas; Svavarsson, Jörundur; Thain, John E; Vethaak, A Dick; Gubbins, Mattew J

    2017-03-01

    This paper reports a full assessment of results from ICON, an international workshop on marine integrated contaminant monitoring, encompassing different matrices (sediment, fish, mussels, gastropods), areas (Iceland, North Sea, Baltic, Wadden Sea, Seine estuary and the western Mediterranean) and endpoints (chemical analyses, biological effects). ICON has demonstrated the use of a framework for integrated contaminant assessment on European coastal and offshore areas. The assessment showed that chemical contamination did not always correspond with biological effects, indicating that both are required. The framework can be used to develop assessments for EU directives. If a 95% target were to be used as a regional indicator of MSFD GES, Iceland and offshore North Sea would achieve the target using the ICON dataset, but inshore North Sea, Baltic and Spanish Mediterranean regions would fail. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Organic chemistry and biology: chemical biology through the eyes of collaboration.

    Science.gov (United States)

    Hruby, Victor J

    2009-12-18

    From a scientific perspective, efforts to understand biology including what constitutes health and disease has become a chemical problem. However, chemists and biologists "see" the problems of understanding biology from different perspectives, and this has retarded progress in solving the problems especially as they relate to health and disease. This suggests that close collaboration between chemists and biologists is not only necessary but essential for progress in both the biology and chemistry that will provide solutions to the global questions of biology. This perspective has directed my scientific efforts for the past 45 years, and in this overview I provide my perspective of how the applications of synthetic chemistry, structural design, and numerous other chemical principles have intersected in my collaborations with biologists to provide new tools, new science, and new insights that were only made possible and fruitful by these collaborations.

  3. Modeling dynamics of biological and chemical components of aquatic ecosystems

    International Nuclear Information System (INIS)

    Lassiter, R.R.

    1975-05-01

    To provide capability to model aquatic ecosystems or their subsystems as needed for particular research goals, a modeling strategy was developed. Submodels of several processes common to aquatic ecosystems were developed or adapted from previously existing ones. Included are submodels for photosynthesis as a function of light and depth, biological growth rates as a function of temperature, dynamic chemical equilibrium, feeding and growth, and various types of losses to biological populations. These submodels may be used as modules in the construction of models of subsystems or ecosystems. A preliminary model for the nitrogen cycle subsystem was developed using the modeling strategy and applicable submodels. (U.S.)

  4. Epithelioid Sarcoma: Opportunities for Biology-driven Targeted Therapy

    Directory of Open Access Journals (Sweden)

    Jonathan eNoujaim

    2015-08-01

    Full Text Available Epithelioid sarcoma is a soft tissue sarcoma of children and young adults for which the preferred treatment for localised disease is wide surgical resection. Medical management is to a great extent undefined, and therefore for patients with regional and distal metastases, the development of targeted therapies is greatly desired. In this review we will summarize clinically-relevant biomarkers (e.g., SMARCB1, CA125, dysadherin and others with respect to targeted therapeutic opportunities. We will also examine the role of EGFR, mTOR and polykinase inhibitors (e.g., sunitinib in the management of local and disseminated disease. Towards building a consortium of pharmaceutical, academic and non-profit collaborators, we will discuss the state of resources for investigating epithelioid sarcoma with respect to cell line resources, tissue banks, and registries so that a roadmap can be developed towards effective biology-driven therapies.

  5. Rational design of chemical ligands for selective mitochondrial targeting

    Czech Academy of Sciences Publication Activity Database

    Rimpelová, S.; Bříza, T.; Králová, Jarmila; Záruba, K.; Kejík, Z.; Císařová, I.; Martásek, P.; Ruml, T.; Král, V.

    2013-01-01

    Roč. 24, č. 9 (2013), s. 1445-1454 ISSN 1520-4812 R&D Projects: GA ČR(CZ) GAP303/11/1291; GA ČR GA203/09/1311 Grant - others:GA AV ČR(CZ) KAN200100801; GA MŠk(CZ) ED0030/01/01 Program:KA Institutional support: RVO:68378050 Keywords : intracellular targeting * mitochondria * cardiolipin * pentamethine * fluorescent dyes Subject RIV: EB - Genetics ; Molecular Biology

  6. The promise of targeted proteomics for quantitative network biology.

    Science.gov (United States)

    Matsumoto, Masaki; Nakayama, Keiichi I

    2018-03-15

    Proteomics is a powerful tool for obtaining information on a large number of proteins with regard to their expression levels, interactions with other molecules, and posttranslational modifications. Whereas nontargeted, discovery proteomics uncovers differences in the proteomic landscape under different conditions, targeted proteomics has been developed to overcome the limitations of this approach with regard to quantitation. In addition to technical advances in instruments and informatics tools, the advent of the synthetic proteome composed of synthetic peptides or recombinant proteins has advanced the adoption of targeted proteomics across a wide range of research fields. Targeted proteomics can now be applied to measurement of the dynamics of any proteins of interest under a variety of conditions as well as to estimation of the absolute abundance or stoichiometry of proteins in a given network. Multiplexed targeted proteomics assays of high reproducibility and accuracy can provide insight at the quantitative level into entire networks that govern biological phenomena or diseases. Such assays will establish a new paradigm for data-driven science. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. A magnetic method to concentrate and trap biological targets

    KAUST Repository

    Li, Fuquan

    2012-11-01

    Magnetoresistive sensors in combination with magnetic particles have been used in biological applications due to, e.g., their small size and high sensitivity. A growing interest is to integrate magnetoresistive sensors with microchannels and electronics to fabricate devices that can perform complex analyses. A major task in such systems is to immobilize magnetic particles on top of the sensor surface, which is required to detect the particles\\' stray field. In the presented work, a bead concentrator, consisting of gold microstructures, at the bottom of a microchannel, is used to attract and move magnetic particles into a trap. The trap is made of a chamber with a gold microstructure underneath and is used to attract and immobilize a defined number of magnetic beads. In order to detect targets, two kinds of solutions were prepared; one containing only superparamagnetic particles, the other one containing beads with the protein Bovine serum albumin as the target and fluorescent markers. Due to the size difference between bare beads and beads with target, less magnetic beads were immobilized inside the volume chamber in case of magnetic beads with target as compared to bare magnetic beads. © 1965-2012 IEEE.

  8. Micro- and nanomechanical sensors for environmental, chemical, and biological detection.

    Science.gov (United States)

    Waggoner, Philip S; Craighead, Harold G

    2007-10-01

    Micro- and nanoelectromechanical systems, including cantilevers and other small scale structures, have been studied for sensor applications. Accurate sensing of gaseous or aqueous environments, chemical vapors, and biomolecules have been demonstrated using a variety of these devices that undergo static deflections or shifts in resonant frequency upon analyte binding. In particular, biological detection of viruses, antigens, DNA, and other proteins is of great interest. While the majority of currently used detection schemes are reliant on biomarkers, such as fluorescent labels, time, effort, and chemical activity could be saved by developing an ultrasensitive method of label-free mass detection. Micro- and nanoscale sensors have been effectively applied as label-free detectors. In the following, we review the technologies and recent developments in the field of micro- and nanoelectromechanical sensors with particular emphasis on their application as biological sensors and recent work towards integrating these sensors in microfluidic systems.

  9. The poison center role in biological and chemical terrorism.

    Science.gov (United States)

    Krenzelok, E P; Allswede, M P; Mrvos, R

    2000-10-01

    Nuclear, biological and chemical (NBC) terrorism countermeasures are a major priority with municipalities, healthcare providers, and the federal government. Significant resources are being invested to enhance civilian domestic preparedness by conducting education at every response level in anticipation of a NBC terroristic incident. The key to a successful response, in addition to education, is integration of efforts as well as thorough communication and understanding the role that each agency would play in an actual or impending NBC incident. In anticipation of a NBC event, a regional counter-terrorism task force was established to identify resources, establish responsibilities and coordinate the response to NBC terrorism. Members of the task force included first responders, hazmat, law enforcement (local, regional, national), government officials, the health department, and the regional poison information center. Response protocols were developed and education was conducted, culminating in all members of the response task force becoming certified NBC instructors. The poison center participated actively in 3 incidents of suspected biologic and chemical terrorism: an alleged anthrax-contaminated letter sent to a women's health clinic; a possible sarin gas release in a high school: and a potential anthrax/ebola contamination incident at an international airport. All incidents were determined hoaxes. The regional response plan establishes the poison information center as a common repository for all cases in a biological or chemical incident. The poison center is one of several critical components of a regional counterterrorism response force. It can conduct active and passive toxicosurveillance and identify sentinel events. To be responsive, the poison center staff must be knowledgeable about biological and chemical agents. The development of basic protocols and a standardized staff education program is essential. The use of the RaPiD-T (R-recognition, P

  10. Chemical and biological evaluation of propolis of Alagoas

    OpenAIRE

    Gisele Rocha Aguiar

    2015-01-01

    The red propolis originally from the state of Alagoas has a chemical composition rich in isoflavones and has been used as traditional popular medicine presented as an antioxidant and antiviral properties. Its relevance to this study is mainly due to the same present several biological properties, among them: antimicrobial, anti-cancer, cytotoxic and anti-tumor. In this work it was performed the study of the fixed compounds present in hexane fraction of propolis, which presented three ester...

  11. Hospital Preparedness to Respond to Biological and Chemical Terrorist Attack

    International Nuclear Information System (INIS)

    Florin, P.

    2007-01-01

    There is a growing concern about the terrorist use of chemical or biological agents against civilian population. A large proportion of hospitals are probably poorly prepared to handle victims of chemical or biological terrorism. At national level, starting with 2008 hospitals will be under the administration and control of local authorities. That is good opportunities for local authorities and public health office to tailor the activity of the hospitals to the real needs in the area of responsibility, and to allocate the suitable budget for them. Commonly hospitals are not fully prepared to respond to massive casualty disaster of any kind, either i their capacity to care for large numbers of victims or in their ability to provide care in coordination with a regional or national incident command structure. Preparedness activities to respond properly to chemical or biological attack including the adequate logistic, the principle of training and drill for the hospital emergency units and medical personal, communication and integration of the hospital team in local and regional civil response team are developed by the author.(author)

  12. Biological conversion of methane to chemicals and fuels: technical challenges and issues.

    Science.gov (United States)

    Hwang, In Yeub; Nguyen, Anh Duc; Nguyen, Thu Thi; Nguyen, Linh Thanh; Lee, Ok Kyung; Lee, Eun Yeol

    2018-04-01

    Methane is a promising next-generation carbon feedstock for industrial biotechnology due to its low price and huge availability. Biological conversion of methane to valuable products can mitigate methane-induced global warming as greenhouse gas. There have been challenges for the conversion of methane into various chemicals and fuels using engineered non-native hosts with synthetic methanotrophy or methanotrophs with the reconstruction of synthetic pathways for target products. Herein, we analyze the technical challenges and issues of potent methane bioconversion technology. Pros and cons of metabolic engineering of methanotrophs for methane bioconversion, and perspectives on the bioconversion of methane to chemicals and liquid fuels are discussed.

  13. Endowing carbon nanotubes with biological and biomedical properties by chemical modifications.

    Science.gov (United States)

    Battigelli, Alessia; Ménard-Moyon, Cécilia; Da Ros, Tatiana; Prato, Maurizio; Bianco, Alberto

    2013-12-01

    The scope of nanotechnology is gaining importance in biology and medicine. Carbon nanotubes (CNTs) have emerged as a promising tool due to their unique properties, high specific surface area, and capacity to cross biological barriers. These properties offer a variety of opportunities for applications in nanomedicine, such as diagnosis, disease treatment, imaging, and tissue engineering. Nevertheless, pristine CNTs are insoluble in water and in most organic solvents; thereby functionalization of their surface is necessary to increase biocompatibility. Derivatization of CNTs also gives the possibility to conjugate different biological and bioactive molecules including drugs, proteins, and targeting ligands. This review focuses on the chemical modifications of CNTs that have been developed to impart specific properties for biological and medical purposes. Biomolecules can be covalently grafted or non-covalently adsorbed on the nanotube surface. In addition, the inner core of CNTs can be exploited to encapsulate drugs, nanoparticles, or radioactive elements. © 2013.

  14. Improving integrative searching of systems chemical biology data using semantic annotation

    Directory of Open Access Journals (Sweden)

    Chen Bin

    2012-03-01

    Full Text Available Abstract Background Systems chemical biology and chemogenomics are considered critical, integrative disciplines in modern biomedical research, but require data mining of large, integrated, heterogeneous datasets from chemistry and biology. We previously developed an RDF-based resource called Chem2Bio2RDF that enabled querying of such data using the SPARQL query language. Whilst this work has proved useful in its own right as one of the first major resources in these disciplines, its utility could be greatly improved by the application of an ontology for annotation of the nodes and edges in the RDF graph, enabling a much richer range of semantic queries to be issued. Results We developed a generalized chemogenomics and systems chemical biology OWL ontology called Chem2Bio2OWL that describes the semantics of chemical compounds, drugs, protein targets, pathways, genes, diseases and side-effects, and the relationships between them. The ontology also includes data provenance. We used it to annotate our Chem2Bio2RDF dataset, making it a rich semantic resource. Through a series of scientific case studies we demonstrate how this (i simplifies the process of building SPARQL queries, (ii enables useful new kinds of queries on the data and (iii makes possible intelligent reasoning and semantic graph mining in chemogenomics and systems chemical biology. Availability Chem2Bio2OWL is available at http://chem2bio2rdf.org/owl. The document is available at http://chem2bio2owl.wikispaces.com.

  15. Engineered ion channels as emerging tools for chemical biology.

    Science.gov (United States)

    Mayer, Michael; Yang, Jerry

    2013-12-17

    Over the last 25 years, researchers have developed exogenously expressed, genetically engineered, semi-synthetic, and entirely synthetic ion channels. These structures have sufficient fidelity to serve as unique tools that can reveal information about living organisms. One of the most exciting success stories is optogenetics: the use of light-gated channels to trigger action potentials in specific neurons combined with studies of the response from networks of cells or entire live animals. Despite this breakthrough, the use of molecularly engineered ion channels for studies of biological systems is still in its infancy. Historically, researchers studied ion channels in the context of their own function in single cells or in multicellular signaling and regulation. Only recently have researchers considered ion channels and pore-forming peptides as responsive tools to report on the chemical and physical changes produced by other biochemical processes and reactions. This emerging class of molecular probes has a number of useful characteristics. For instance, these structures can greatly amplify the signal of chemical changes: the binding of one molecule to a ligand-gated ion channel can result in flux of millions of ions across a cell membrane. In addition, gating occurs on sub-microsecond time scales, resulting in fast response times. Moreover, the signal is complementary to existing techniques because the output is ionic current rather than fluorescence or radioactivity. And finally, ion channels are also localized at the membrane of cells where essential processes such as signaling and regulation take place. This Account highlights examples, mostly from our own work, of uses of ion channels and pore-forming peptides such as gramicidin in chemical biology. We discuss various strategies for preparing synthetically tailored ion channels that range from de novo designed synthetic molecules to genetically engineered or simply exogenously expressed or reconstituted wild

  16. Free Radicals in Chemical Biology: from Chemical Behavior to Biomarker Development

    Science.gov (United States)

    Chatgilialoglu, Chryssostomos; Ferreri, Carla; Masi, Annalisa; Melchiorre, Michele; Sansone, Anna; Terzidis, Michael A.; Torreggiani, Armida

    2013-01-01

    The involvement of free radicals in life sciences has constantly increased with time and has been connected to several physiological and pathological processes. This subject embraces diverse scientific areas, spanning from physical, biological and bioorganic chemistry to biology and medicine, with applications to the amelioration of quality of life, health and aging. Multidisciplinary skills are required for the full investigation of the many facets of radical processes in the biological environment and chemical knowledge plays a crucial role in unveiling basic processes and mechanisms. We developed a chemical biology approach able to connect free radical chemical reactivity with biological processes, providing information on the mechanistic pathways and products. The core of this approach is the design of biomimetic models to study biomolecule behavior (lipids, nucleic acids and proteins) in aqueous systems, obtaining insights of the reaction pathways as well as building up molecular libraries of the free radical reaction products. This context can be successfully used for biomarker discovery and examples are provided with two classes of compounds: mono-trans isomers of cholesteryl esters, which are synthesized and used as references for detection in human plasma, and purine 5',8-cyclo-2'-deoxyribonucleosides, prepared and used as reference in the protocol for detection of such lesions in DNA samples, after ionizing radiations or obtained from different health conditions. PMID:23629513

  17. Modeling drug- and chemical- induced hepatotoxicity with systems biology approaches

    Directory of Open Access Journals (Sweden)

    Sudin eBhattacharya

    2012-12-01

    Full Text Available We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of ‘toxicity pathways’ is described in the context of the 2007 US National Academies of Science report, Toxicity testing in the 21st Century: A Vision and A Strategy. Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically-based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity – a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular virtual tissue model of the liver lobule that combines molecular circuits in individual hepatocytes with cell-cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the AhR toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsymTM to understand drug-induced liver injury (DILI, the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological scales.

  18. Identifying targets for preventing epilepsy using systems biology.

    Science.gov (United States)

    Loeb, Jeffrey A

    2011-06-27

    While there are a plethora of medications that block seizures, these same drugs have little effect on preventing or curing epilepsy. This suggests that the molecular pathways for epileptogenesis are distinct from those that produce acute seizures and therefore will require the identification of novel truly 'antiepileptic' therapeutics. Identification and testing of potential antiepileptic drug targets first in animal models and then in humans is thus becoming an important next step in the battle against epilepsy. In focal forms of human epilepsy the battle, however, is complicated by the large and varied types of brain abnormalities capable of producing a state of chronic, recurrent seizures. Unfortunately, once the epileptic state develops, it often persists to produce a life-long seizure disorder that can only be suppressed by anticonvulsant medications, and cured only in some through surgical resection of the seizure focus. While deductive approaches to drug target identification use our current state of knowledge, based mostly on animal models of epileptogenesis, a growing reductionist approach often referred to as systems biology takes advantage of newer high-throughput technologies to profile large numbers and types of molecules simultaneously. Some of these approaches, such as functional genomics, proteomics, and metabolomics have been undertaken in both human and animal epileptic brain tissues and are beginning to hone in on new therapeutic targets. While these methods are highly sensitive, this same sensitivity also produces a high rate of false positives due to variables other than those of interest. The experimental design, therefore, needs to be tightly controlled to reduce these unintended results that can be misleading. Most importantly, epileptogenic targets need to be validated in animal models of epileptogenesis, so that, if successful, these new methods have the potential to identify unbiased, important new therapeutics. Copyright © 2011 Elsevier

  19. Denosumab for bone diseases: translating bone biology into targeted therapy.

    Science.gov (United States)

    Tsourdi, Elena; Rachner, Tilman D; Rauner, Martina; Hamann, Christine; Hofbauer, Lorenz C

    2011-12-01

    Signalling of receptor activator of nuclear factor-κB (RANK) ligand (RANKL) through RANK is a critical pathway to regulate the differentiation and activity of osteoclasts and, hence, a master regulator of bone resorption. Increased RANKL activity has been demonstrated in diseases characterised by excessive bone loss such as osteoporosis, rheumatoid arthritis and osteolytic bone metastases. The development and approval of denosumab, a fully MAB against RANKL, has heralded a new era in the treatment of bone diseases by providing a potent, targeted and reversible inhibitor of bone resorption. This article summarises the molecular and cellular biology of the RANKL/RANK system and critically reviews preclinical and clinical studies that have established denosumab as a promising novel therapy for metabolic and malignant bone diseases. We will discuss the potential indications for denosumab along with a critical review of safety and analyse its potential within the concert of established therapies.

  20. Comparative biological hazards of chemical pollutants and radiation

    International Nuclear Information System (INIS)

    Mukherjee, R.N.

    1978-01-01

    Chemical pollutants from conventional energy and industrial sources released to the environment presumably pose a hazard to man's health and environmental resources. Insufficient knowledge of their detailed mechanisms of interaction with the biological systems seems to provide the greatest drawback in current attempts for realistic assessment of the health risks of chemical pollutants in the short and long terms. Nevertheless, their detrimental health consequences are becoming more and more apparent as a result of recent epidemiological surveys of workers in conventional energy installations and of the chronically exposed general public. So far nuclear power has succeeded in achieving a remarkable health safety record. In view of its projected expansion, research on biological effects of low-level radiation and radionuclides should continue to re-evaluate the health safety consequences. However, a projection from past experiences together with continued efforts to improvements of health safety aspects seem to justify an expectation that the proposed expansions in the nuclear power programme should not have an unfavourable impact on the environment. The potential hazards and challenges from the associated radiation in man's environment have proved manageable. More attention now needs to be paid urgently to safeguard human health and environment against the chemical pollutants

  1. Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense.

    Directory of Open Access Journals (Sweden)

    Carsten Matz

    Full Text Available Many plants and animals are defended from predation or herbivory by inhibitory secondary metabolites, which in the marine environment are very common among sessile organisms. Among bacteria, where there is the greatest metabolic potential, little is known about chemical defenses against bacterivorous consumers. An emerging hypothesis is that sessile bacterial communities organized as biofilms serve as bacterial refuge from predation. By testing growth and survival of two common bacterivorous nanoflagellates, we find evidence that chemically mediated resistance against protozoan predators is common among biofilm populations in a diverse set of marine bacteria. Using bioassay-guided chemical and genetic analysis, we identified one of the most effective antiprotozoal compounds as violacein, an alkaloid that we demonstrate is produced predominately within biofilm cells. Nanomolar concentrations of violacein inhibit protozoan feeding by inducing a conserved eukaryotic cell death program. Such biofilm-specific chemical defenses could contribute to the successful persistence of biofilm bacteria in various environments and provide the ecological and evolutionary context for a number of eukaryote-targeting bacterial metabolites.

  2. Target sites for chemical regulation of strigolactone signaling

    Directory of Open Access Journals (Sweden)

    Hidemitsu eNakamura

    2014-11-01

    Full Text Available Demands for plant growth regulators (chemicals that control plant growth are increasing globally, especially in developing countries. Both positive and negative plant growth regulators are widely used to enhance crop production and to suppress unwanted shoot growth, respectively. Strigolactones (SLs are multifunctional molecules that function as phytohormones, inhibiting shoot branching and also functioning in the rhizospheric communication with symbiotic fungi and parasitic weeds. Therefore, it is anticipated that chemicals that regulate the functions of SLs will be widely used in agricultural applications. Although the SL biosynthetic pathway is not fully understood, it has been demonstrated that beta-carotene isomerases, carotenoid cleavage dioxygenases (CCDs, and a cytochrome P450 monooxygenase are involved in strigolactone biosynthesis. A CCD inhibitor, abamine, which is also an inhibitor of abscisic acid biosynthesis, reduces the levels of SL in several plant species and reduces the germination rate of Orobanche minor seeds grown with tobacco. On the basis of the structure of abamine, several chemicals have been designed to specifically inhibit CCDs during SL synthesis. Cytochrome P450 monooxygenase is another target enzyme in the development of SL biosynthesis inhibitors, and the triazole-derived TIS series of chemicals is known to include SL biosynthesis inhibitors, although their target enzyme has not been identified. Recently, DWARF14 (D14 has been shown to be a receptor for SLs, and the D-ring moiety of SL is essential for its recognition by D14. A variety of SL agonists are currently under development and most agonists commonly contain the D-ring or a D-ring-like moiety. Several research groups have also resolved the crystal structure of D14 in the last two years. It is expected that this information on the D14 structure will be invaluable not only for developing SL agonists with novel structures but also in the design of inhibitors

  3. Review on Physicochemical, Chemical, and Biological Processes for Pharmaceutical Wastewater

    Science.gov (United States)

    Li, Zhenchen; Yang, Ping

    2018-02-01

    Due to the needs of human life and health, pharmaceutical industry has made great progress in recent years, but it has also brought about severe environmental problems. The presence of pharmaceuticals in natural waters which might pose potential harm to the ecosystems and humans raised increasing concern worldwide. Pharmaceuticals cannot be effectively removed by conventional wastewater treatment plants (WWTPs) owing to the complex composition, high concentration of organic contaminants, high salinity and biological toxicity of pharmaceutical wastewater. Therefore, the development of efficient methods is needed to improve the removal effect of pharmaceuticals. This review provides an overview on three types of treatment technologies including physicochemical, chemical and biological processes and their advantages and disadvantages respectively. In addition, the future perspectives of pharmaceutical wastewater treatment are given.

  4. Chemical constituents and biological activities of the genus Linaria (Scrophulariaceae).

    Science.gov (United States)

    Cheriet, Thamere; Mancini, Ines; Seghiri, Ramdane; Benayache, Fadila; Benayache, Samir

    2015-01-01

    This is a review on 95 references dealing with the genus Linaria (Scrophularioideae-Antirrhineae tribe), a known genus of the Scrophulariaceae family, which comprises about 200 species mainly distributed in Europe, Asia and North Africa. The use of some Linaria species in folk medicine has attracted the attention for chemical and biological studies. This report is aimed to be a comprehensive overview on the isolated or identified known and often new metabolites from the 41 Linaria species so far cited. It is organised presenting first the phytochemical classes of alkaloids, polyphenols including flavonoids, the latter being quite diffused and mostly present as flavones, flavonols and their glycosides, and terpenoids including iridoids and steroids. Second, the results from biological investigation on plant extracts, pure natural products isolated from Linaria species and some synthetic derivatives are reported, with antitumour, anti-acetylcholinesterase, anti-inflammatory and analgesic, antioxidant and antibacterial activities.

  5. Biological and chemical technologies research. FY 1995 annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-03-01

    The annual summary report presents the fiscal year (FY) 1995 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1995 (ASR 95) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1995; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents; and awards arising from work supported by the BCTR.

  6. Thermotropic Liquid Crystal-Assisted Chemical and Biological Sensors

    Science.gov (United States)

    Honaker, Lawrence W.; Usol’tseva, Nadezhda; Mann, Elizabeth K.

    2017-01-01

    In this review article, we analyze recent progress in the application of liquid crystal-assisted advanced functional materials for sensing biological and chemical analytes. Multiple research groups demonstrate substantial interest in liquid crystal (LC) sensing platforms, generating an increasing number of scientific articles. We review trends in implementing LC sensing techniques and identify common problems related to the stability and reliability of the sensing materials as well as to experimental set-ups. Finally, we suggest possible means of bridging scientific findings to viable and attractive LC sensor platforms. PMID:29295530

  7. Photothermal stability of biologically and chemically synthesized gold nanoprisms

    Science.gov (United States)

    Klekotko, Magdalena; Olesiak-Banska, Joanna; Matczyszyn, Katarzyna

    2017-10-01

    We report here the influence of the irradiation with femtosecond laser pulses on the gold nanoprisms synthesized using biological and chemical methods. For the bio-mediated growth, we used plant extract as a source of reducing, structure-directing, and stabilizing agents, while for the chemical method, we applied three-step protocol, involving chemicals commonly used in the synthesis of nanostructures. Exposition of the nanostructures to the laser beam causes morphological changes, which affect their extinction spectra. These modifications were followed using absorption spectroscopy and transmission electron microscopy. The observed effects depend on the applied laser power and excitation wavelength. Under resonance conditions, rounding of the tips of triangular nanoparticles and transformation towards more stable, spherical form were noticed. These changes were faster under higher laser power. Such shape modifications were weaker under off-resonance conditions. Moreover, chemically synthesized gold nanoprisms were less susceptible to the morphological changes than those obtained using plant extract; however, their colloidal stability was disrupted by long-time irradiation. [Figure not available: see fulltext.

  8. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review.

    Science.gov (United States)

    Lofrano, Giusy; Meriç, Sureyya; Zengin, Gülsüm Emel; Orhon, Derin

    2013-09-01

    Although the leather tanning industry is known to be one of the leading economic sectors in many countries, there has been an increasing environmental concern regarding the release of various recalcitrant pollutants in tannery wastewater. It has been shown that biological processes are presently known as the most environmental friendly but inefficient for removal of recalcitrant organics and micro-pollutants in tannery wastewater. Hence emerging technologies such as advanced oxidation processes and membrane processes have been attempted as integrative to biological treatment for this sense. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater. It can be elucidated that according to less extent advances in wastewater minimization as well as in leather production technology and chemicals substitution, biological and chemical treatment processes have been progressively studied. However, there has not been a full scale application yet of those emerging technologies using advanced oxidation although some of them proved good achievements to remove xenobiotics present in tannery wastewater. It can be noted that advanced oxidation technologies integrated with biological processes will remain in the agenda of the decision makers and water sector to apply the best prevention solution for the future tanneries. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Mapping the patent landscape of synthetic biology for fine chemical production pathways.

    Science.gov (United States)

    Carbonell, Pablo; Gök, Abdullah; Shapira, Philip; Faulon, Jean-Loup

    2016-09-01

    A goal of synthetic biology bio-foundries is to innovate through an iterative design/build/test/learn pipeline. In assessing the value of new chemical production routes, the intellectual property (IP) novelty of the pathway is important. Exploratory studies can be carried using knowledge of the patent/IP landscape for synthetic biology and metabolic engineering. In this paper, we perform an assessment of pathways as potential targets for chemical production across the full catalogue of reachable chemicals in the extended metabolic space of chassis organisms, as computed by the retrosynthesis-based algorithm RetroPath. Our database for reactions processed by sequences in heterologous pathways was screened against the PatSeq database, a comprehensive collection of more than 150M sequences present in patent grants and applications. We also examine related patent families using Derwent Innovations. This large-scale computational study provides useful insights into the IP landscape of synthetic biology for fine and specialty chemicals production. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  10. 76 FR 68809 - Bureau of International Security and Nonproliferation; Termination of Chemical and Biological...

    Science.gov (United States)

    2011-11-07

    ... Nonproliferation; Termination of Chemical and Biological Weapons (CBW) Proliferation Sanctions Against a Foreign... CONTACT: Pamela K. Durham, Office of Missile, Biological, and Chemical Nonproliferation, Bureau of... government, project, or entity in its efforts to acquire chemical or biological weapons capability: Gerhard...

  11. Surface characterization of arsenopyrite during chemical and biological oxidation.

    Science.gov (United States)

    Deng, Sha; Gu, Guohua; Xu, Baoke; Li, Lijuan; Wu, Bichao

    2018-01-16

    The surface properties of arsenopyrite during chemical and biological oxidation were investigated by synchrotron X-ray diffraction (S-XRD), X-ray absorption near-edge structure (XANES) and scanning electron microscope (SEM), accompanying with leaching behaviors elucidation. The moderate thermophile S. thermosulfidooxdians was used as the bioleaching microorganism. Leaching experiments showed that only 16.26% and 44.37% of total arsenic extractions were obtained for sterile acid and culture medium controls, whereas 79.20% of total arsenic was recovered at the end of bioleaching. SEM indicated that new products were layered on the surface of arsenopyrite after chemical and biological oxidation. As displayed in S-XRD patterns, scorodite and elemental sulfur were formed after acid leaching, while only elemental sulfur was detected in the residue leached by acid culture medium. During bioleaching, elemental sulfur was produced from day 4 and jarosite was produced from day 9. The results of iron and arsenic L-edge XANES were in good consistence with S-XRD. The accumulation of scorodite and jarosite on arsenopyrite surface should be the main reason for the hindered dissolution of arsenopyrite during acid leaching and bioleaching. These studies are pretty meaningful for better understanding the oxidation mechanism of arsenopyrite and evaluating arsenic risk to the environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Nuclear, biological and chemical contamination survivability of Army material

    International Nuclear Information System (INIS)

    Feeney, J.J.

    1987-01-01

    Army Regulation (AR) 70-71, Nuclear, Biological and Chemical (NBC) Contamination Survivability of Army Material, published during 1984, establishes Army policy and procedures for the development and acquisition of material to ensure its survivablility and sustainability on the NBC-contaminated battlefield. This regulation defines NBC contamination as a term that includes both the individual and collective effects of residual radiological, biological, and chemical contamination. AR 70-71 applies to all mission-essential equipment within the Army. NBC contamination survivability is the capability of a system and its crew to withstand an NBC-contaminated environment, including decontamination, without losing the ability to accomplish the assigned mission. Characteristics of NBC contamination survivability are decontaminability, hardness, and compatability. These characteristics are engineering design criteria which are intended for use only in a developmental setting. To comply with AR 70-71, each mission-essential item must address all three criteria. The Department of Defense (DOD) has published a draft instruction addressing acquisition of NBC contamination survivable systems. This instruction will apply throughout DOD to those programs, systems and subsystems designated by the Secretary of Defense as major systems acquisition programs and to those non-major systems that have potential impact on critical functions

  13. How chemistry supports cell biology: the chemical toolbox at your service.

    Science.gov (United States)

    Wijdeven, Ruud H; Neefjes, Jacques; Ovaa, Huib

    2014-12-01

    Chemical biology is a young and rapidly developing scientific field. In this field, chemistry is inspired by biology to create various tools to monitor and modulate biochemical and cell biological processes. Chemical contributions such as small-molecule inhibitors and activity-based probes (ABPs) can provide new and unique insights into previously unexplored cellular processes. This review provides an overview of recent breakthroughs in chemical biology that are likely to have a significant impact on cell biology. We also discuss the application of several chemical tools in cell biology research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Mechanisms of sound seattering by biological targets and their aggregates

    Directory of Open Access Journals (Sweden)

    Natalia Gorska

    2006-03-01

    Full Text Available Natalia Gorska's thesis is based on a set of 9 papers published in scientific journals (Gorska & Klusek 1998, Gorska 2000, Gorska & Chu 2001a, b, Gorska & Ona 2003a, b and conference proceedings (Gorska & Klusek 1994, Gorska 1999, Gorska & Chu 2000, which broadly summarise her integrated research achievements in underwater acoustics from 1994 to 2003. She is the sole author of two of the articles (Gorska 1999, 2000, and is the first co-author, taking a leading part, in the others (Gorska & Klusek 1994, 1998, Gorska & Chu 2000, Gorska & Chu 200la, b, Gorska & Ona 2003a, b.     Her research objective was to work out the theoretical background to certain problems of sound scattering by biological targets - single individuals and aggregated layers of fish and zooplankton - in relation to environmental conditions in the sea. In the study she focused on acoustical extinction and backscattering, including the phenomenon of echo interference. In conjunction wit h the co-authors of papers Gorska & Ona 2003a, b, Gorska & Chu 2001a, b and Gorska & Chu 2000, she was able to apply and verify her theoretical results empirically.

  15. Chemical and biological characterization of urban particulate matter

    International Nuclear Information System (INIS)

    Agurell, E.; Alsberg, T.; Assefaz-Redda, Y.

    1990-11-01

    Airborne particulate matter has been collected on glass fiber filter by high volume sampling in the Goeteborg urban area. The samples were, after extraction with respect to organic components, tested for biological effect in the Salmonella mutagenicity assay, affinity to the cytosol TCDD receptor and toxicity towards a mammalian cell system and analysed chemically for selected polycyclic aromatic compounds. A series of samples collected simultaneously at a street level location and a rooftop site showed that most parameters associated with the organic compounds adsorbed to airborne particulate matter has similar concentrations at the two levels. The differences observed for the mutagenic effect in different strains and conditions showed that the rooftop samples had a different composition compared to the street samples indicating that atmospheric transformations have occurred. Chemical fractionation of representative samples showed that the distribution of mutagenic activity among different fractions is dissimilar to the distribution obtained in the fractionation of both gasoline and diesel engine exhaust particles. Partial least squares regression analysis showed qualitatively that diesel exhaust is a major source of airborne particulate mutagenic activity and source apportionment with chemical mass balance and multilinear regression corroborated this quantitatively. The multilinear regression analysis gave the result that the airborne activity in Salmonella TA90-S9 originated to 54±4% from diesel exhaust and to 26±3% from gasoline exhaust. The contribution is more equal for the activity measured with TA98+S9. The usefulness of short-term bioassays as an addition to chemical analysis of airborne particulate matter depends on whether only polycylic aromatic hydrocarbons (PAH) are major carcinogens, as has been suggested in the literature, or whether also other polycyclic aromatic compound (PAC) are of importance. (au)

  16. Mining Natural-Products Screening Data for Target-Class Chemical Motifs.

    Science.gov (United States)

    Coma, Isabel; Bandyopadhyay, Deepak; Diez, Emilio; Ruiz, Emilio Alvarez; de los Frailes, Maria Teresa; Colmenarejo, Gonzalo

    2014-06-01

    In this article, we describe two complementary data-mining approaches used to characterize the GlaxoSmithKline (GSK) natural-products set (NPS) based on information from the high-throughput screening (HTS) databases. Both methods rely on the aggregation and analysis of a large set of single-shot screening data for a number of biological assays, with the goal to reveal natural-product chemical motifs. One of them is an established method based on the data-driven clustering of compounds using a wide range of descriptors,(1)whereas the other method partitions and hierarchically clusters the data to identify chemical cores.(2,3)Both methods successfully find structural scaffolds that significantly hit different groups of discrete drug targets, compared with their relative frequency of demonstrating inhibitory activity in a large number of screens. We describe how these methods can be applied to unveil hidden information in large single-shot HTS data sets. Applied prospectively, this type of information could contribute to the design of new chemical templates for drug-target classes and guide synthetic efforts for lead optimization of tractable hits that are based on natural-product chemical motifs. Relevant findings for 7TM receptors (7TMRs), ion channels, class-7 transferases (protein kinases), hydrolases, and oxidoreductases will be discussed. © 2014 Society for Laboratory Automation and Screening.

  17. Recent developments and applications of clickable photoprobes in medicinal chemistry and chemical biology.

    Science.gov (United States)

    Lapinsky, David J; Johnson, Douglas S

    2015-01-01

    Photoaffinity labeling is a well-known biochemical technique that has grown significantly since the turn of the century, principally due to its combination with bioorthogonal/click chemistry reactions. This review highlights new developments and applications of clickable photoprobes in medicinal chemistry and chemical biology. In particular, recent examples of clickable photoprobes for target identification, activity- or affinity-based protein profiling (ABPP or AfBPP), characterization of sterol- or lipid-protein interactions and characterization of ligand-binding sites are presented.

  18. Chemical probes of quorum sensing: from compound development to biological discovery

    Science.gov (United States)

    Welsh, Michael A.; Blackwell, Helen E.

    2016-01-01

    Bacteria can utilize chemical signals to coordinate the expression of group-beneficial behaviors in a method of cell–cell communication called quorum sensing (QS). The discovery that QS controls the production of virulence factors and biofilm formation in many common pathogens has driven an explosion of research aimed at both deepening our fundamental understanding of these regulatory networks and developing chemical agents that can attenuate QS signaling. The inherently chemical nature of QS makes studying these pathways with small molecule tools a complementary approach to traditional microbiology techniques. Indeed, chemical tools are beginning to yield new insights into QS regulation and provide novel strategies to inhibit QS. Here, we review the most recent advances in the development of chemical probes of QS systems in Gram-negative bacteria, with an emphasis on the opportunistic pathogen Pseudomonas aeruginosa. We first describe reports of novel small molecule modulators of QS receptors and QS signal synthases. Next, in several case studies, we showcase how chemical tools have been deployed to reveal new knowledge of QS biology and outline lessons for how researchers might best target QS to combat bacterial virulence. To close, we detail the outstanding challenges in the field and suggest strategies to overcome these issues. PMID:27268906

  19. Chemical Constituents of Descurainia sophia L. and its Biological Activity

    Directory of Open Access Journals (Sweden)

    Nawal H. Mohamed

    2009-01-01

    Full Text Available Seven coumarin compounds were isolated for the first time from the aerial parts of DescurainiaSophia L. identified as scopoletine, scopoline, isoscopoline, xanthtoxol, xanthtoxin, psoralene and bergaptane.Three flavonoids namely kaempferol, quercetine and isorhamnetine and three terpenoid compounds -sitosterol-amyrine and cholesterol were also isolated and identified by physical and chemical methods; melting point, Rfvalues, UV and 1H NMR spectroscopy. Qualitative and quantitative analyses of free and protein amino acidsusing amino acid analyzer were performed. The plant contains 15 amino acids as free and protein amino acidswith different range of concentrations. Fatty acid analysis using GLC, revealed the presence of 10 fatty acids,the highest percentage was palmitic acid (27.45 % and the lowest was lauric acid (0.13%. Biological screeningof alcoholic extract showed that the plant is highly safe and has analgesic, antipyretic and anti-inflammatoryeffects.

  20. BCTR: Biological and Chemical Technologies Research 1994 annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G.

    1995-02-01

    The annual summary report presents the fiscal year (FY) 1994 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). Although the OIT was reorganized in 1991 and AICD no longer exists, this document reports on efforts conducted under the former structure. The annual summary report for 1994 (ASR 94) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1994; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents, and awards arising from work supported by BCTR.

  1. Surface treatments for biological, chemical and physical applications

    CERN Document Server

    Karaman, Mustafa

    2017-01-01

    A step-by-step guide to the topic with a mix of theory and practice in the fields of biology, chemistry and physics. Straightforward and well-structured, the first chapter introduces fundamental aspects of surface treatments, after which examples from nature are given. Subsequent chapters discuss various methods to surface modification, including chemical and physical approaches, followed by the characterization of the functionalized surfaces. Applications discussed include the lotus effect, diffusion barriers, enzyme immobilization and catalysis. Finally, the book concludes with a look at future technology advances. Throughout the text, tutorials and case studies are used for training purposes to grant a deeper understanding of the topic, resulting in an essential reference for students as well as for experienced engineers in R&D.

  2. Chemical composition and biological activities of the Agaricus mushrooms

    Directory of Open Access Journals (Sweden)

    L Munkhgerel

    2014-10-01

    Full Text Available Two species of Agaricus mushroom grown in Mongolia were analyzed for their element content. Biological activity and chemical components study of Agaricus, grown in the Mongolian flora has been investigated for the first time. The ethanol extracts of dried Agaricus sp. mushrooms were analyzed for antioxidant activity on 1,1-diphenyl-2- picrylhydrazyl (DPPH radicals and interferon-like activity. The ethanol extracts from Agaricus arvensis showed the most potent radical scavenging activity. The IC50 of A. silvaticus and A. arvensis were 216 and 17.75 g/ml respectively. Among the twenty three mushroom extracts, the extracts from A. silvatisus and A. arvensis have shown the interferon-like activity. DOI: http://dx.doi.org/10.5564/mjc.v14i0.197Mongolian Journal of Chemistry 14 (40, 2013, p41-45

  3. Biological efficiency of interaction between various radiation and chemicals

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Yu, Dong Han; Lee, Byoung Hun; Petin, Vladislav G.; Geras'kin, Stanislav A.; Cebulska-Wasilewska, Antonina; Panek, Agnieszka; Wiechec, Anna

    2004-06-01

    This research project has been carried out jointly with INP (Poland) to develop technologies to assess the biological efficiency of interaction between radiation and chemicals. Through the cooperative project, KAERI and INP have established wide variety of bioassay techniques applicable to radiation bioscience, human monitoring, molecular epidemiology and environmental science. The joint experiment, in special, made it possible to utilize the merits of both institutes and to upgrade and verify KAERI's current technology level. All results of the cooperative research will be jointly published in high standard scientific journals listed in the Science Citation Index (SCI), which can make the role of fundamental basis for improving relationship between Korea and Poland. Research skills such as Trad-MCN assay, SCGE assay, immunohistochemical assay and molecular assay developed through joint research will be further elaborated and will be continuously used for the collaboration between two institutes

  4. Characteristics, chemical compositions and biological activities of propolis from Al-Bahah, Saudi Arabia

    Science.gov (United States)

    Elnakady, Yasser A.; Rushdi, Ahmed I.; Franke, Raimo; Abutaha, Nael; Ebaid, Hossam; Baabbad, Mohannad; Omar, Mohamed O. M.; Al Ghamdi, Ahmad A.

    2017-02-01

    Propolis has been used to treat several diseases since ancient times, and is an important source of bioactive natural compounds and drug derivatives. These properties have kept the interest of investigators around the world, leading to the investigation of the chemical and biological properties and application of propolis. In this report, the chemical constituents that are responsible for the anticancer activities of propolis were analyzed. The propolis was sourced from Al-Baha in the southern part of the Kingdom of Saudi Arabia. Standard protocols for chemical fractionation and bioactivity-guided chemical analysis were used to identify the bio-active ethyl acetate fraction. The extraction was performed in methanol and then analyzed by gas chromatography-mass spectrometry (GC-MS). The major compounds are triterpenoids, with a relative concentration of 74.0%; steroids, with a relative concentration of 9.8%; and diterpenoids, with a relative concentration of 7.9%. The biological activity was characterized using different approaches and cell-based assays. Propolis was found to inhibit the proliferation of cancer cells in a concentration-dependent manner through apoptosis. Immunofluorescence staining with anti-α-tubulin antibodies and cell cycle analysis indicated that tubulin and/or microtubules are the cellular targets of the L-acetate fraction. This study demonstrates the importance of Saudi propolis as anti-cancer drug candidates.

  5. Physical, chemical, and biological properties of wonder kelp--Laminaria.

    Science.gov (United States)

    Kim, Se-Kwon; Bhatnagar, Ira

    2011-01-01

    Laminaria is a kelp that finds its place in the brown algae family. It has been an area of study for past many years, and its wonderful biological properties have always attracted medical professionals and researchers to explore more and more from this wonder kelp. The constituents of Laminaria include iodine, potassium, magnesium, calcium and iron. Iodine compounds, TEA-hydroiodide in particular, are great lipolytic agents as they stimulate lipase activity. Laminarins on the other hand are used as a tumor angiogenic blocker. This genus of the kelps is also rich in algin, a high molecular weight polysaccharide that forms viscous colloidal solutions or gels in water leading to the use of kelp derivatives as bulk laxatives. It has great applications in cosmeceutical science, as well as some antibacterial properties have also been assigned to Laminaria. A deeper insight into the physical, biological, and chemical properties of this wonder kelp would lead to further exploitation of Laminaria for medicinal and cosmeceutical purpose. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. The Chemical Information Ontology: Provenance and Disambiguation for Chemical Data on the Biological Semantic Web

    Science.gov (United States)

    Hastings, Janna; Chepelev, Leonid; Willighagen, Egon; Adams, Nico; Steinbeck, Christoph; Dumontier, Michel

    2011-01-01

    Cheminformatics is the application of informatics techniques to solve chemical problems in silico. There are many areas in biology where cheminformatics plays an important role in computational research, including metabolism, proteomics, and systems biology. One critical aspect in the application of cheminformatics in these fields is the accurate exchange of data, which is increasingly accomplished through the use of ontologies. Ontologies are formal representations of objects and their properties using a logic-based ontology language. Many such ontologies are currently being developed to represent objects across all the domains of science. Ontologies enable the definition, classification, and support for querying objects in a particular domain, enabling intelligent computer applications to be built which support the work of scientists both within the domain of interest and across interrelated neighbouring domains. Modern chemical research relies on computational techniques to filter and organise data to maximise research productivity. The objects which are manipulated in these algorithms and procedures, as well as the algorithms and procedures themselves, enjoy a kind of virtual life within computers. We will call these information entities. Here, we describe our work in developing an ontology of chemical information entities, with a primary focus on data-driven research and the integration of calculated properties (descriptors) of chemical entities within a semantic web context. Our ontology distinguishes algorithmic, or procedural information from declarative, or factual information, and renders of particular importance the annotation of provenance to calculated data. The Chemical Information Ontology is being developed as an open collaborative project. More details, together with a downloadable OWL file, are available at http://code.google.com/p/semanticchemistry/ (license: CC-BY-SA). PMID:21991315

  7. The chemical information ontology: provenance and disambiguation for chemical data on the biological semantic web.

    Directory of Open Access Journals (Sweden)

    Janna Hastings

    Full Text Available Cheminformatics is the application of informatics techniques to solve chemical problems in silico. There are many areas in biology where cheminformatics plays an important role in computational research, including metabolism, proteomics, and systems biology. One critical aspect in the application of cheminformatics in these fields is the accurate exchange of data, which is increasingly accomplished through the use of ontologies. Ontologies are formal representations of objects and their properties using a logic-based ontology language. Many such ontologies are currently being developed to represent objects across all the domains of science. Ontologies enable the definition, classification, and support for querying objects in a particular domain, enabling intelligent computer applications to be built which support the work of scientists both within the domain of interest and across interrelated neighbouring domains. Modern chemical research relies on computational techniques to filter and organise data to maximise research productivity. The objects which are manipulated in these algorithms and procedures, as well as the algorithms and procedures themselves, enjoy a kind of virtual life within computers. We will call these information entities. Here, we describe our work in developing an ontology of chemical information entities, with a primary focus on data-driven research and the integration of calculated properties (descriptors of chemical entities within a semantic web context. Our ontology distinguishes algorithmic, or procedural information from declarative, or factual information, and renders of particular importance the annotation of provenance to calculated data. The Chemical Information Ontology is being developed as an open collaborative project. More details, together with a downloadable OWL file, are available at http://code.google.com/p/semanticchemistry/ (license: CC-BY-SA.

  8. Biological and chemical characteristics of the coral gastric cavity

    Science.gov (United States)

    Agostini, S.; Suzuki, Y.; Higuchi, T.; Casareto, B. E.; Yoshinaga, K.; Nakano, Y.; Fujimura, H.

    2012-03-01

    All corals have a common structure: two tissue layers enclose a lumen, which forms the gastric cavity. Few studies have described the processes occurring inside the gastric cavity and its chemical and biological characteristics. Here, we show that the coral gastric cavity has distinct chemical characteristics with respect to dissolved O2, pH, alkalinity, and nutrients (vitamin B12, nitrate, nitrite, ammonium, and phosphate) and also harbors a distinct bacterial community. From these results, the gastric cavity can be described as a semi-closed sub-environment within the coral. Dissolved O2 shows very low constant concentrations in the deepest parts of the cavity, creating a compartmentalized, anoxic environment. The pH is lower in the cavity than in the surrounding water and, like alkalinity, shows day/night variations different from those of the surrounding water. Nutrient concentrations in the cavity are greater than the concentrations found in reef waters, especially for phosphate and vitamin B12. The source of these nutrients may be internal production by symbiotic bacteria and/or the remineralization of organic matter ingested or produced by the corals. The importance of the bacteria inhabiting the gastric cavity is supported by the finding of a high bacterial abundance and a specific bacterial community with affiliation to bacteria found in other corals and in the guts of other organisms. The findings presented here open a new area of research that may help us to understand the processes that maintain coral health.

  9. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining.

    Science.gov (United States)

    Skinnider, Michael A; Johnston, Chad W; Edgar, Robyn E; Dejong, Chris A; Merwin, Nishanth J; Rees, Philip N; Magarvey, Nathan A

    2016-10-18

    Microbial natural products are an evolved resource of bioactive small molecules, which form the foundation of many modern therapeutic regimes. Ribosomally synthesized and posttranslationally modified peptides (RiPPs) represent a class of natural products which have attracted extensive interest for their diverse chemical structures and potent biological activities. Genome sequencing has revealed that the vast majority of genetically encoded natural products remain unknown. Many bioinformatic resources have therefore been developed to predict the chemical structures of natural products, particularly nonribosomal peptides and polyketides, from sequence data. However, the diversity and complexity of RiPPs have challenged systematic investigation of RiPP diversity, and consequently the vast majority of genetically encoded RiPPs remain chemical "dark matter." Here, we introduce an algorithm to catalog RiPP biosynthetic gene clusters and chart genetically encoded RiPP chemical space. A global analysis of 65,421 prokaryotic genomes revealed 30,261 RiPP clusters, encoding 2,231 unique products. We further leverage the structure predictions generated by our algorithm to facilitate the genome-guided discovery of a molecule from a rare family of RiPPs. Our results provide the systematic investigation of RiPP genetic and chemical space, revealing the widespread distribution of RiPP biosynthesis throughout the prokaryotic tree of life, and provide a platform for the targeted discovery of RiPPs based on genome sequencing.

  10. Functional nanostructured platforms for chemical and biological sensing

    Science.gov (United States)

    Létant, S. E.

    2006-05-01

    The central goal of our work is to combine semiconductor nanotechnology and surface functionalization in order to build platforms for the selective detection of bio-organisms ranging in size from bacteria (micron range) down to viruses, as well as for the detection of chemical agents (nanometer range). We will show on three porous silicon platforms how pore geometry and pore wall chemistry can be combined and optimized to capture and detect specific targets. We developed a synthetic route allowing to directly anchor proteins on silicon surfaces and illustrated the relevance of this technique by immobilizing live enzymes onto electrochemically etched luminescent nano-porous silicon. The powerful association of the specific enzymes with the transducing matrix led to a selective hybrid platform for chemical sensing. We also used light-assisted electrochemistry to produce periodic arrays of through pores on pre-patterned silicon membranes with controlled diameters ranging from many microns down to tens of nanometers. We demonstrated the first covalently functionalized silicon membranes and illustrated their selective capture abilities with antibody-coated micro-beads. These engineered membranes are extremely versatile and could be adapted to specifically recognize the external fingerprints (size and coat composition) of target bio-organisms. Finally, we fabricated locally functionalized single nanopores using a combination of focused ion beam drilling and ion beam assisted oxide deposition. We showed how a silicon oxide ring can be grown around a single nanopore and how it can be functionalized with DNA probes to detect single viral-sized beads. The next step for this platform is the detection of whole viruses and bacteria.

  11. Acridones as antiviral agents: synthesis, chemical and biological properties.

    Science.gov (United States)

    Sepúlveda, C S; Fascio, M L; García, C C; D'Accorso, N B; Damonte, E B

    2013-01-01

    Acridones are a class of compounds that have attracted attention in recent years for their wide range of biological properties, including selective inhibition of diverse human pathogenic viruses. The wide spectrum of antiviral activity includes DNA and RNA viruses, such as herpes simplex virus, cytomegalovirus, adenovirus, hepatitis C virus, dengue virus, and Junin virus, among others, indicative of the involvement of cellular factors as potential targets of acridone derivatives. At the present, their precise mode of action is not clearly determined, although the predominant action seems to be centered on the synthesis of nucleic acids. Regarding this point, inhibitory activity against cellular and viral enzymes and the ability to intercalate into nucleic acid molecules was demonstrated for some acridone compounds. Then, the possibility of a multiple effect on different targets renewed interest in these agents for virus chemotherapy allowing a potent inhibitory effectiveness associated to less feasibility of generating antiviral resistance. This review summarizes the current knowledge regarding the methods of synthesis, the antiviral properties of acridone derivatives, their mechanism of action, and structural characteristics related to antiviral activity as well as the perspectives of this class of compounds for clinical application against human viral infections.

  12. Identifying Family-Member-Specific Targets of Mono-ARTDs by Using a Chemical Genetics Approach.

    Science.gov (United States)

    Carter-O'Connell, Ian; Jin, Haihong; Morgan, Rory K; Zaja, Roko; David, Larry L; Ahel, Ivan; Cohen, Michael S

    2016-01-26

    ADP-ribosyltransferases (ARTD1-16) have emerged as major downstream effectors of NAD(+) signaling in the cell. Most ARTDs (ARTD7 and 8, 10-12, and 14-17) catalyze the transfer of a single unit of ADP-ribose from NAD(+) to target proteins, a process known as mono-ADP-ribosylation (MARylation). Progress in understanding the cellular functions of MARylation has been limited by the inability to identify the direct targets for individual mono-ARTDs. Here, we engineered mono-ARTDs to use an NAD(+) analog that is orthogonal to wild-type ARTDs. We profiled the MARylomes of ARTD10 and ARTD11 in vitro, identifying isoform-specific targets and revealing a potential role for ARTD11 in nuclear pore complex biology. We found that ARTD11 targeting is dependent on both its regulatory and catalytic domains, which has important implications for how ARTDs recognize their targets. We anticipate that our chemical genetic strategy will be generalizable to all mono-ARTD family members based on the similarity of the mono-ARTD catalytic domains. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Identifying Family-Member-Specific Targets of Mono-ARTDs by Using a Chemical Genetics Approach

    Directory of Open Access Journals (Sweden)

    Ian Carter-O’Connell

    2016-01-01

    Full Text Available ADP-ribosyltransferases (ARTD1–16 have emerged as major downstream effectors of NAD+ signaling in the cell. Most ARTDs (ARTD7 and 8, 10–12, and 14–17 catalyze the transfer of a single unit of ADP-ribose from NAD+ to target proteins, a process known as mono-ADP-ribosylation (MARylation. Progress in understanding the cellular functions of MARylation has been limited by the inability to identify the direct targets for individual mono-ARTDs. Here, we engineered mono-ARTDs to use an NAD+ analog that is orthogonal to wild-type ARTDs. We profiled the MARylomes of ARTD10 and ARTD11 in vitro, identifying isoform-specific targets and revealing a potential role for ARTD11 in nuclear pore complex biology. We found that ARTD11 targeting is dependent on both its regulatory and catalytic domains, which has important implications for how ARTDs recognize their targets. We anticipate that our chemical genetic strategy will be generalizable to all mono-ARTD family members based on the similarity of the mono-ARTD catalytic domains.

  14. MECs: "Building Blocks" for Creating Biological and Chemical Instruments.

    Science.gov (United States)

    Hill, Douglas A; Anderson, Lindsey E; Hill, Casey J; Mostaghim, Afshin; Rodgers, Victor G J; Grover, William H

    2016-01-01

    The development of new biological and chemical instruments for research and diagnostic applications is often slowed by the cost, specialization, and custom nature of these instruments. New instruments are built from components that are drawn from a host of different disciplines and not designed to integrate together, and once built, an instrument typically performs a limited number of tasks and cannot be easily adapted for new applications. Consequently, the process of inventing new instruments is very inefficient, especially for researchers or clinicians in resource-limited settings. To improve this situation, we propose that a family of standardized multidisciplinary components is needed, a set of "building blocks" that perform a wide array of different tasks and are designed to integrate together. Using these components, scientists, engineers, and clinicians would be able to build custom instruments for their own unique needs quickly and easily. In this work we present the foundation of this set of components, a system we call Multifluidic Evolutionary Components (MECs). "Multifluidic" conveys the wide range of fluid volumes MECs operate upon (from nanoliters to milliliters and beyond); "multi" also reflects the multiple disciplines supported by the system (not only fluidics but also electronics, optics, and mechanics). "Evolutionary" refers to the design principles that enable the library of MEC parts to easily grow and adapt to new applications. Each MEC "building block" performs a fundamental function that is commonly found in biological or chemical instruments, functions like valving, pumping, mixing, controlling, and sensing. Each MEC also has a unique symbol linked to a physical definition, which enables instruments to be designed rapidly and efficiently using schematics. As a proof-of-concept, we use MECs to build a variety of instruments, including a fluidic routing and mixing system capable of manipulating fluid volumes over five orders of magnitude, an

  15. MECs: "Building Blocks" for Creating Biological and Chemical Instruments.

    Directory of Open Access Journals (Sweden)

    Douglas A Hill

    Full Text Available The development of new biological and chemical instruments for research and diagnostic applications is often slowed by the cost, specialization, and custom nature of these instruments. New instruments are built from components that are drawn from a host of different disciplines and not designed to integrate together, and once built, an instrument typically performs a limited number of tasks and cannot be easily adapted for new applications. Consequently, the process of inventing new instruments is very inefficient, especially for researchers or clinicians in resource-limited settings. To improve this situation, we propose that a family of standardized multidisciplinary components is needed, a set of "building blocks" that perform a wide array of different tasks and are designed to integrate together. Using these components, scientists, engineers, and clinicians would be able to build custom instruments for their own unique needs quickly and easily. In this work we present the foundation of this set of components, a system we call Multifluidic Evolutionary Components (MECs. "Multifluidic" conveys the wide range of fluid volumes MECs operate upon (from nanoliters to milliliters and beyond; "multi" also reflects the multiple disciplines supported by the system (not only fluidics but also electronics, optics, and mechanics. "Evolutionary" refers to the design principles that enable the library of MEC parts to easily grow and adapt to new applications. Each MEC "building block" performs a fundamental function that is commonly found in biological or chemical instruments, functions like valving, pumping, mixing, controlling, and sensing. Each MEC also has a unique symbol linked to a physical definition, which enables instruments to be designed rapidly and efficiently using schematics. As a proof-of-concept, we use MECs to build a variety of instruments, including a fluidic routing and mixing system capable of manipulating fluid volumes over five orders

  16. CIIPro: a new read-across portal to fill data gaps using public large-scale chemical and biological data.

    Science.gov (United States)

    Russo, Daniel P; Kim, Marlene T; Wang, Wenyi; Pinolini, Daniel; Shende, Sunil; Strickland, Judy; Hartung, Thomas; Zhu, Hao

    2017-02-01

    We have developed a public Chemical In vitro–In vivo Profiling (CIIPro) portal, which can automatically extract in vitro biological data from public resources (i.e. PubChem) for user-supplied compounds. For compounds with in vivo target activity data (e.g. animal toxicity testing results), the integrated cheminformatics algorithm will optimize the extracted biological data using in vitro–in vivo correlations. The resulting in vitro biological data for target compounds can be used for read-across risk assessment of target compounds. Additionally, the CIIPro portal can identify the most similar compounds based on their optimized bioprofiles. The CIIPro portal provides new powerful assessment capabilities to the scientific community and can be easily integrated with other cheminformatics tools. ciipro.rutgers.edu. danrusso@scarletmail.rutgers.edu or hao.zhu99@rutgers.edu

  17. Chemical, Biological, Radiological and Nuclear Regional Centres of Excellence Initiative

    International Nuclear Information System (INIS)

    Bril, L.V.

    2013-01-01

    This series of slides presents the initiative launched in May 2010 by the European Union to develop at national and regional levels the necessary institutional capacity to fight against the CBRN (Chemical, Biological, Radiological and Nuclear) risk. The origin of the risk can be: -) criminal (proliferation, theft, sabotage and illicit traffics), -) accidental (industrial catastrophes, transport accidents...) and -) natural (mainly pandemics). The initiative consists in the creation of Centres of Excellence for providing assistance and cooperation in the field of CBRN risk and the creation of experts networks for sharing best practices, reviewing laws and regulation, developing technical capacities in order to mitigate the CBRN risk. The initiative is complementary to the instrument for nuclear safety cooperation. Regional Centres of Excellence are being set up in 6 regions: South East Europe, South East Asia, North Africa, West Africa, Middle East, and Central Asia covering nearly 40 countries. A global budget of 100 million Euros will be dedicated to this initiative for the 2009-2013 period. (A.C.)

  18. Essential oils from neotropical Myrtaceae: chemical diversity and biological properties.

    Science.gov (United States)

    Stefanello, Maria Élida Alves; Pascoal, Aislan C R F; Salvador, Marcos J

    2011-01-01

    Myrtaceae family (121 genera, 3800-5800 spp.) is one of the most important families in tropical forests. They are aromatic trees or shrubs, which frequently produce edible fruits. In the neotropics, ca. 1000 species were found. Several members of this family are used in folk medicine, mainly as an antidiarrheal, antimicrobial, antioxidant, cleanser, antirheumatic, and anti-inflammatory agent and to decrease the blood cholesterol. In addition, some fruits are eaten fresh or used to make juices, liqueurs, and sweets very much appreciated by people. The flavor composition of some fruits belonging to the Myrtaceae family has been extensively studied due to their pleasant and intense aromas. Most of the essential oils of neotropical Myrtaceae analyzed so far are characterized by predominance of sesquiterpenes, some with important biological properties. In the present work, chemical and pharmacological studies carried out on neotropical Myrtaceae species are reviewed, based on original articles published since 1980. The uses in folk medicine and chemotaxonomic importance of secondary metabolites are also briefly discussed. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  19. Recycling of dyehouse effluents by biological and chemical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Krull, R.; Doepkens, E. [Inst. of Biochemical Engineering, Technical Univ. of Braunschweig, Braunschweig (Germany)

    2003-07-01

    The introduction of the production integrated environmental protection by closing raw material cycles is shown exemplary for the textile finishing industry. Colored process water with a high content of dissolved organic dyes has always been a non-trivial problem for the sewage engineering sector. The recycling of process water of textile mills is often hindered by remaining color of water-soluable azo dyes after conventional wastewater treatment. Rising costs of emitted wastewater, lawful limits and restricted availability of water makes it of great interest to introduce sophisticated techniques helping to purify dye effluents and to recycle process water. A combined biological and chemical process of purification and recycling of residual dyehouse split flows into the production was developed, investigated and installed by a textile finishing company which produces 330,000 m{sup 3} colored wastewater effluents per year. The process contains anaerobic dye-cleavage, aerobic mineralization of cleavage-products and the decolorization and partial oxidation of traces of dyeresiduals by advanced oxidation. (orig.)

  20. Pereskia aculeata Muller (Cactaceae Leaves: Chemical Composition and Biological Activities

    Directory of Open Access Journals (Sweden)

    Lucèia Fàtima Souza

    2016-09-01

    Full Text Available The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE/g. The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression.

  1. Chemical, Biological, Radiological, and Nuclear Terrorism: The Threat According to the Current Unclassified Literature

    Science.gov (United States)

    2002-05-31

    bioterrorism will differ greatly from responses to nuclear and chemical terrorism , probably much more closely resembling responses to �emerging infectious...Biological, and Chemical Terrorism and Covert Attack. Cambridge: MIT Press, 1998. With respect to CBRN threats from non-state actors, the authors contend...not probable; should it occur, �it would more likely be chemical or biological than nuclear, with chemical terrorism perhaps the most likely prospect

  2. Optical monitoring of surface anchoring changes for nematic liquid crystal based chemical and biological sensors

    Science.gov (United States)

    Zou, Yang

    In this dissertation, optically monitoring the surface anchoring changes of liquid crystal (LC) due to the chemical or biological bindings is presented. The deformation of LC director with different anchoring energies is simulated using Finite Element Method and continuum theory of nematic LC. The optical properties of the LC film are simulated using the Finite Difference Time Domain method. First, the interference color method was used to monitor the anchoring change. The calculated and experimental interference colors of liquid crystal films due to the optical retardation of two orthogonal electromagnetic components at different surface anchoring conditions and applied voltages are studied. The calculated colors were converted into sRGB parameters so that the corresponding colors can be displayed on a color computer monitor and printed out on a color printer. A gold micro-structure was fabricated and used to control the optical retardation. Polarizing micrographs were collected and compared with the calculated colors. Second, the influence of a bias voltage on the surface-driven orientational transition of liquid crystals resulted from the weakening anchoring and anchoring transition is analyzed theoretically and experimentally. The same interdigitated Au micro-structure was used in the nematic LC based chemical and biological sensors. With a suitable bias electric field, the process of the weakening anchoring energy and the uniform surface-driven orientational transition due to targeted molecules binding to a functionalized surface were observed optically. Finally, measurement of optical transmission was used to monitor the anchoring change. Polarizing micrographs were collected and compared with simulated textures. Experimental and simulation results both demonstrate the optical method can effectively monitor the surface anchoring change due to the presence of targeted analytes. These results show that these optical techniques are suitable for LC based sensing

  3. Exploration of the central dogma at the interface of chemistry and biology: 2010 Yale Chemical Biology Symposium.

    Science.gov (United States)

    Zhou, Alice Qinhua

    2010-09-01

    Ever since the term "central dogma" was coined in 1958, researchers have sought to control information flow from nucleic acids to proteins. Talks delivered by Drs. Anna Pyle and Hiroaki Suga at this year's Chemical Biology Symposium at Yale in May 2010 applauded recent advances in this area, at the interface between chemistry and biology.

  4. Targeted enrichment strategies for next-generation plant biology

    Science.gov (United States)

    Richard Cronn; Brian J. Knaus; Aaron Liston; Peter J. Maughan; Matthew Parks; John V. Syring; Joshua. Udall

    2012-01-01

    The dramatic advances offered by modem DNA sequencers continue to redefine the limits of what can be accomplished in comparative plant biology. Even with recent achievements, however, plant genomes present obstacles that can make it difficult to execute large-scale population and phylogenetic studies on next-generation sequencing platforms. Factors like large genome...

  5. Psychotria viridis: Chemical constituents from leaves and biological properties

    Directory of Open Access Journals (Sweden)

    DÉBORA B.S. SOARES

    Full Text Available ABSTRACT The phytochemical study of hexane, chloroform and methanol extracts from leaves of Psychotria viridis resulted in the identification of: the pentacyclic triterpenes, ursolic and oleanolic acid; the steroids, 24-methylene-cycloartanol, stigmasterol and β-sitosterol; the glycosylated steroids 3-O-β-D-glucosyl-β-sitosterol and 3-O-β-D-glucosyl-stigmasterol; a polyunsaturated triterpene, squalene; the esters of glycerol, 1-palmitoylglycerol and triacylglycerol; a mixture of long chain hydrocarbons; the aldehyde nonacosanal; the long chain fat acids hentriacontanoic, hexadecanoic and heptadenoic acid; the ester methyl heptadecanoate; the 4-methyl-epi-quinate and two indole alkaloids, N,N-dimethyltryptamine (DMT and N-methyltryptamine. The chemical structures were determined by means of spectroscopic (IR, 1H and 13C NMR, HSQC, HMBC and NOESY and spectrometric (CG-MS and LCMS-ESI-ITTOF methods. The study of biologic properties of P. viridis consisted in the evaluation of the acetylcholinesterase inhibition and cytotoxic activities. The hexane, chloroform, ethyl acetate and methanol extracts, the substances 24-methylene-cycloartanol, DMT and a mixture of 3-O-β-D-glucosyl-β-sitosterol and 3-O-β-D-glucosyl-stigmasterol showed cholinesterase inhibiting activity. This activity induced by chloroform and ethyl acetate extracts was higher than 90%. The methanol and ethyl acetate extracts inhibit the growth and/or induce the death of the tumor cells strains B16F10 and 4T1, without damaging the integrity of the normal cells BHK and CHO. DMT also demonstrated a marked activity against tumor cell strains B16F10 and 4T1.

  6. K-targeted metabolomic analysis extends chemical subtraction to DESIGNER extracts: selective depletion of extracts of hops (Humulus lupulus).

    Science.gov (United States)

    Ramos Alvarenga, René F; Friesen, J Brent; Nikolić, Dejan; Simmler, Charlotte; Napolitano, José G; van Breemen, Richard; Lankin, David C; McAlpine, James B; Pauli, Guido F; Chen, Shao-Nong

    2014-12-26

    This study introduces a flexible and compound targeted approach to Deplete and Enrich Select Ingredients to Generate Normalized Extract Resources, generating DESIGNER extracts, by means of chemical subtraction or augmentation of metabolites. Targeting metabolites based on their liquid-liquid partition coefficients (K values), K targeting uses countercurrent separation methodology to remove single or multiple compounds from a chemically complex mixture, according to the following equation: DESIGNER extract = total extract ± target compound(s). Expanding the scope of the recently reported depletion of extracts by immunoaffinity or solid phase liquid chromatography, the present approach allows a more flexible, single- or multi-targeted removal of constituents from complex extracts such as botanicals. Chemical subtraction enables both chemical and biological characterization, including detection of synergism/antagonism by both the subtracted targets and the remaining metabolite mixture, as well as definition of the residual complexity of all fractions. The feasibility of the DESIGNER concept is shown by K-targeted subtraction of four bioactive prenylated phenols, isoxanthohumol (1), 8-prenylnaringenin (2), 6-prenylnaringenin (3), and xanthohumol (4), from a standardized hops (Humulus lupulus L.) extract using specific solvent systems. Conversely, adding K-targeted isolates allows enrichment of the original extract and hence provides an augmented DESIGNER material. Multiple countercurrent separation steps were used to purify each of the four compounds, and four DESIGNER extracts with varying depletions were prepared. The DESIGNER approach innovates the characterization of chemically complex extracts through integration of enabling technologies such as countercurrent separation, K-by-bioactivity, the residual complexity concepts, as well as quantitative analysis by (1)H NMR, LC-MS, and HiFSA-based NMR fingerprinting.

  7. Methods used to characterize the chemical composition and biological activity of environmental waters throughout the United States, 2012-14

    Science.gov (United States)

    Romanok, Kristin M.; Reilly, Timothy J.; Barber, Larry B.; Boone, J. Scott; Buxton, Herbert T.; Foreman, William T.; Furlong, Edward T.; Hladik, Michelle; Iwanowicz, Luke R.; Journey, Celeste; Kolpin, Dana W.; Kuivila, Kathryn; Loftin, Keith A.; Mills, Marc A.; Meyer, Michael T.; Orlando, James L.; Smalling, Kelly L.; Villeneuve, Daniel L.; Bradley, Paul M.

    2017-03-22

    A vast array of chemical compounds are in wide commercial use in the United States, and the potential ecological and human-health effect of exposure to chemical mixtures has been identified as a high priority in environment health science. Awareness of the potential effects of low-level chemical exposures is rising. The U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, conducted a study in which samples were collected from 38 streams in 25 States to provide an overview of contaminants found in stream water across the Nation. Additionally, biological screening assays were used to help determine any potential ecological and human-health effects of these chemical mixtures and to prioritize target chemicals for future toxicological studies. This report describes the site locations and the sampling and analytical methods and quality-assurance procedures used in the study.

  8. Quinones from plants of northeastern Brazil: structural diversity, chemical transformations, NMR data and biological activities.

    Science.gov (United States)

    Lemos, Telma L G; Monte, Francisco J Q; Santos, Allana Kellen L; Fonseca, Aluisio M; Santos, Hélcio S; Oliveira, Mailcar F; Costa, Sonia M O; Pessoa, Otilia D L; Braz-Filho, Raimundo

    2007-05-20

    The present review focus in quinones found in species of Brazilian northeastern Capraria biflora, Lippia sidoides, Lippia microphylla and Tabebuia serratifolia. The review cover ethnopharmacological aspects including photography of species, chemical structure feature, NMR datea and biological properties. Chemical transformations of lapachol to form enamine derivatives and biological activities are discussed.

  9. Numerical Techniques for Chemical and Biological Engineers Using MATLAB A Simple Bifurcation Approach

    CERN Document Server

    Elnashaie, Said SEH; Affane, Chadia

    2007-01-01

    All reactive chemical and biological processes are highly nonlinear allowing for multiple steady states. This book addresses the bifurcation characteristics of chemical and biological processes as the general case and treats systems with a unique steady state as special cases. It includes a CD-ROM which contains nearly 100 MATLAB programs.

  10. Sequestration and utilization of carbon dioxide by chemical and biological methods for biofuels and biomaterials by chemoautotrophs: Opportunities and challenges.

    Science.gov (United States)

    Thakur, Indu Shekhar; Kumar, Manish; Varjani, Sunita J; Wu, Yonghong; Gnansounou, Edgard; Ravindran, Sindhu

    2018-05-01

    To meet the CO 2 emission reduction targets, carbon dioxide capture and utilization (CCU) comes as an evolve technology. CCU concept is turning into a feedstock and technologies have been developed for transformation of CO 2 into useful organic products. At industrial scale, utilization of CO 2 as raw material is not much significant as compare to its abundance. Mechanisms in nature have evolved for carbon concentration, fixation and utilization. Assimilation and subsequent conversion of CO 2 into complex molecules are performed by the photosynthetic and chemolithotrophic organisms. In the last three decades, substantial research is carry out to discover chemical and biological conversion of CO 2 in various synthetic and biological materials, such as carboxylic acids, esters, lactones, polymer biodiesel, bio-plastics, bio-alcohols, exopolysaccharides. This review presents an over view of catalytic transformation of CO 2 into biofuels and biomaterials by chemical and biological methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. The Biology and Targeting of FLT3 in Pediatric Leukemia

    Science.gov (United States)

    Annesley, Colleen E.; Brown, Patrick

    2014-01-01

    Despite remarkable improvement in treatment outcomes in pediatric leukemia over the past several decades, the prognosis for high-risk groups of acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL), as well as for relapsed leukemia, remains poor. Intensification of chemotherapy regimens for those at highest risk has improved success rates, but at the cost of significantly increased morbidity and long-term adverse effects. With the success of imatinib in Philadelphia-chromosome-positive leukemia and all-trans retinoic acid in acute promyelocytic leukemia, the quest to find additional molecularly targeted therapies has generated much excitement over recent years. Another such possible target in pediatric acute leukemia is FMS-like tyrosine kinase 3 (FLT3). FLT3 aberrations are among the most frequently identified transforming events in AML, and have significant clinical implications in both high-risk pediatric AML and in certain high-risk groups of pediatric ALL. Therefore, the successful targeting of FLT3 has tremendous potential to improve outcomes in these subsets of patients. This article will give an overview of the molecular function and signaling of the FLT3 receptor, as well as its pathogenic role in leukemia. We review the discovery of targeting FLT3, discuss currently available FLT3 inhibitors in pediatric leukemia and results of clinical trials to date, and finally, consider the future promise and challenges of FLT3 inhibitor therapy. PMID:25295230

  12. E2F target genes: unraveling the biology

    DEFF Research Database (Denmark)

    Bracken, Adrian P; Ciro, Marco; Cocito, Andrea

    2004-01-01

    The E2F transcription factors are downstream effectors of the retinoblastoma protein (pRB) pathway and are required for the timely regulation of numerous genes essential for DNA replication and cell cycle progression. Several laboratories have used genome-wide approaches to discover novel target...

  13. Biologically Inspired Target Recognition in Radar Sensor Networks

    Directory of Open Access Journals (Sweden)

    Liang Qilian

    2010-01-01

    Full Text Available One of the great mysteries of the brain is cognitive control. How can the interactions between millions of neurons result in behavior that is coordinated and appears willful and voluntary? There is consensus that it depends on the prefrontal cortex (PFC. Many PFC areas receive converging inputs from at least two sensory modalities. Inspired by human's innate ability to process and integrate information from disparate, network-based sources, we apply human-inspired information integration mechanisms to target detection in cognitive radar sensor network. Humans' information integration mechanisms have been modelled using maximum-likelihood estimation (MLE or soft-max approaches. In this paper, we apply these two algorithms to cognitive radar sensor networks target detection. Discrete-cosine-transform (DCT is used to process the integrated data from MLE or soft-max. We apply fuzzy logic system (FLS to automatic target detection based on the AC power values from DCT. Simulation results show that our MLE-DCT-FLS and soft-max-DCT-FLS approaches perform very well in the radar sensor network target detection, whereas the existing 2D construction algorithm does not work in this study.

  14. Experimental Simulations for Elimination of Biological and/or Chemical Agents

    Science.gov (United States)

    Hong, Yong C.; Kim, Jeong H.; Uhm, Han S.

    2003-10-01

    The threat of biological and/or chemical agents in a domestic terrorist attack and in military conflict is increasing worldwide. The 2oo1 anthrax terror throughout the USA, 1995 sarin nerve gas attack on Tokyo subway, and the like are evident for this threat. Elimination and decontamination of biological and/or chemical agents are needed for such an attack. Experimental simulation for elimination of biological and/or chemical agents using an atmospheric-pressure microwave plasma torch is carried out. The elimination of biological and/or chemical agents through the vitrification or burnout of sewage sludge powders and the decomposition of toluene gas as a chemical agent stimulant is presented. A detailed characterization for the elimination of the simulant chemicals using Fourier Transform Infrared (FT-IR) and Gas Chromatography (GC) is also presented.

  15. Chemical and biological attributes of a lowland soil affected by land leveling

    OpenAIRE

    José Maria Barbat Parfitt; Luís Carlos Timm; Klaus Reichardt; Luiz Fernando Spinelli Pinto; Eloy Antonio Pauletto; Danilo Dufech Castilhos

    2013-01-01

    The objective of this work was to evaluate the relationship between soil chemical and biological attributes and the magnitude of cuts and fills after the land leveling process of a lowland soil. Soil samples were collected from the 0 - 0.20 m layer, before and after leveling, on a 100 point grid established in the experimental area, to evaluate chemical attributes and soil microbial biomass carbon (MBC). Leveling operations altered the magnitude of soil chemical and biological attributes. Val...

  16. Identifying targets for preventing epilepsy using systems biology

    OpenAIRE

    Loeb, Jeffrey A.

    2011-01-01

    While there are a plethora of medications that block seizures, these same drugs have little effect on preventing or curing epilepsy. This suggests that the molecular pathways for epileptogenesis are distinct from those that produce acute seizures and therefore will require the identification of novel truly ‘antiepileptic’ therapeutics. Identification and testing of potential antiepileptic drug targets first in animal models and then in humans is thus becoming an important next step in the bat...

  17. Arbitrary protein−protein docking targets biologically relevant interfaces

    Directory of Open Access Journals (Sweden)

    Martin Juliette

    2012-05-01

    Full Text Available Abstract Background Protein-protein recognition is of fundamental importance in the vast majority of biological processes. However, it has already been demonstrated that it is very hard to distinguish true complexes from false complexes in so-called cross-docking experiments, where binary protein complexes are separated and the isolated proteins are all docked against each other and scored. Does this result, at least in part, reflect a physical reality? False complexes could reflect possible nonspecific or weak associations. Results In this paper, we investigate the twilight zone of protein-protein interactions, building on an interesting outcome of cross-docking experiments: false complexes seem to favor residues from the true interaction site, suggesting that randomly chosen partners dock in a non-random fashion on protein surfaces. Here, we carry out arbitrary docking of a non-redundant data set of 198 proteins, with more than 300 randomly chosen "probe" proteins. We investigate the tendency of arbitrary partners to aggregate at localized regions of the protein surfaces, the shape and compositional bias of the generated interfaces, and the potential of this property to predict biologically relevant binding sites. We show that the non-random localization of arbitrary partners after protein-protein docking is a generic feature of protein structures. The interfaces generated in this way are not systematically planar or curved, but tend to be closer than average to the center of the proteins. These results can be used to predict biological interfaces with an AUC value up to 0.69 alone, and 0.72 when used in combination with evolutionary information. An appropriate choice of random partners and number of docking models make this method computationally practical. It is also noted that nonspecific interfaces can point to alternate interaction sites in the case of proteins with multiple interfaces. We illustrate the usefulness of arbitrary docking

  18. Arbitrary protein−protein docking targets biologically relevant interfaces

    International Nuclear Information System (INIS)

    Martin, Juliette; Lavery, Richard

    2012-01-01

    Protein-protein recognition is of fundamental importance in the vast majority of biological processes. However, it has already been demonstrated that it is very hard to distinguish true complexes from false complexes in so-called cross-docking experiments, where binary protein complexes are separated and the isolated proteins are all docked against each other and scored. Does this result, at least in part, reflect a physical reality? False complexes could reflect possible nonspecific or weak associations. In this paper, we investigate the twilight zone of protein-protein interactions, building on an interesting outcome of cross-docking experiments: false complexes seem to favor residues from the true interaction site, suggesting that randomly chosen partners dock in a non-random fashion on protein surfaces. Here, we carry out arbitrary docking of a non-redundant data set of 198 proteins, with more than 300 randomly chosen "probe" proteins. We investigate the tendency of arbitrary partners to aggregate at localized regions of the protein surfaces, the shape and compositional bias of the generated interfaces, and the potential of this property to predict biologically relevant binding sites. We show that the non-random localization of arbitrary partners after protein-protein docking is a generic feature of protein structures. The interfaces generated in this way are not systematically planar or curved, but tend to be closer than average to the center of the proteins. These results can be used to predict biological interfaces with an AUC value up to 0.69 alone, and 0.72 when used in combination with evolutionary information. An appropriate choice of random partners and number of docking models make this method computationally practical. It is also noted that nonspecific interfaces can point to alternate interaction sites in the case of proteins with multiple interfaces. We illustrate the usefulness of arbitrary docking using PEBP (Phosphatidylethanolamine binding

  19. Suitability of Gray Water for Hydroponic Crop Production Following Biological and Physical Chemical and Biological Subsystems

    Science.gov (United States)

    Bubenheim, David L.; Harper, Lynn D.; Wignarajah, Kanapathipillai; Greene, Catherine

    1994-01-01

    The water present in waste streams from a human habitat must be recycled in Controlled Ecological Life Support Systems (CELSS) to limit resupply needs and attain self-sufficiency. Plants play an important role in providing food, regenerating air, and producing purified water via transpiration. However, we have shown that the surfactants present in hygiene waste water have acute toxic effects on plant growth (Bubenheim et al. 1994; Greene et al., 1994). These phytotoxic affects can be mitigated by allowing the microbial population on the root surface to degrade the surfactant, however, a significant suppression (several days) in crop performance is experienced prior to reaching sub-toxic surfactant levels and plant recovery. An effective alternative is to stabilize the microbial population responsible for degradation of the surfactant on an aerobic bioreactor and process the waste water prior to utilization in the hydroponic solution (Wisniewski and Bubenheim, 1993). A sensitive bioassay indicates that the surfactant phytotoxicity is suppressed by more than 90% within 5 hours of introduction of the gray water to the bioreactor; processing for more than 12 hours degrades more than 99% of the phytotoxin. Vapor Compression Distillation (VCD) is a physical / chemical method for water purification which employees sequential distillation steps to separate water from solids and to volatilize contaminants. The solids from the waste water are concentrated in a brine and the pure product water (70 - 90% of the total waste water volume depending on operating conditions) retains non of the phytotoxic effects. Results of the bioassay were used to guide evaluations of the suitability of recovered gray water following biological and VCD processing for hydroponic lettuce production in controlled environments. Lettuce crops were grown for 28 days with 100% of the input water supplied with recovered water from the biological processor or VCD. When compared with the growth of plants

  20. Physico-chemical characterization and biological studies of newly ...

    Indian Academy of Sciences (India)

    SANJOY SAHA

    2018-02-01

    Feb 1, 2018 ... of applications including biological, medicinal analyt- ical in addition to their vital role in organic synthesis and catalysis.22–26 We reported in previous articles the synthesis, characterization and biological influence of. Cu(II), Mn(II) and Co(II) complexes of analogous ionic liquid-supported Schiff bases.27 ...

  1. Impact of Theoretical Chemistry on Chemical and Biological Sciences

    Indian Academy of Sciences (India)

    IAS Admin

    molecular dynamics simulations and graph theory as applied to biological systems. Her group has developed network approaches to investigate functionally important amino acids in protein structures. Keywords. Quantum Chemistry, molecular mechanics, force fields, QM/MM hybrid method, systems biology, molecular ...

  2. Chemical Ligation Reactions of Oligonucleotides for Biological and Medicinal Applications.

    Science.gov (United States)

    Abe, Hiroshi; Kimura, Yasuaki

    2018-01-01

    Chemical ligation of oligonucleotides (ONs) is the key reaction for various ON-based technologies. We have tried to solve the problems of RNA interference (RNAi) technology by applying ON chemical ligation to RNAi. We designed a new RNAi system, called intracellular buildup RNAi (IBR-RNAi), where the RNA fragments are built up into active small-interference RNA (siRNA) in cells through a chemical ligation reaction. Using the phosphorothioate and iodoacetyl groups as reactive functional groups for the ligation, we achieved RNAi effects without inducing immune responses. Additionally, we developed a new chemical ligation for IBR-RNAi, which affords a more native-like structure in the ligated product. The new ligation method should be useful not only for IBR-RNAi but also for the chemical synthesis of biofunctional ONs.

  3. In-silico prediction of drug targets, biological activities, signal pathways and regulating networks of dioscin based on bioinformatics.

    Science.gov (United States)

    Yin, Lianhong; Zheng, Lingli; Xu, Lina; Dong, Deshi; Han, Xu; Qi, Yan; Zhao, Yanyan; Xu, Youwei; Peng, Jinyong

    2015-03-05

    Inverse docking technology has been a trend of drug discovery, and bioinformatics approaches have been used to predict target proteins, biological activities, signal pathways and molecular regulating networks affected by drugs for further pharmacodynamic and mechanism studies. In the present paper, inverse docking technology was applied to screen potential targets from potential drug target database (PDTD). Then, the corresponding gene information of the obtained drug-targets was applied to predict the related biological activities, signal pathways and processes networks of the compound by using MetaCore platform. After that, some most relevant regulating networks were considered, which included the nodes and relevant pathways of dioscin. 71 potential targets of dioscin from humans, 7 from rats and 8 from mice were screened, and the prediction results showed that the most likely targets of dioscin were cyclin A2, calmodulin, hemoglobin subunit beta, DNA topoisomerase I, DNA polymerase lambda, nitric oxide synthase and UDP-N-acetylhexosamine pyrophosphorylase, etc. Many diseases including experimental autoimmune encephalomyelitis of human, temporal lobe epilepsy of rat and ankylosing spondylitis of mouse, may be inhibited by dioscin through regulating immune response alternative complement pathway, G-protein signaling RhoB regulation pathway and immune response antiviral actions of interferons, etc. The most relevant networks (5 from human, 3 from rat and 5 from mouse) indicated that dioscin may be a TOP1 inhibitor, which can treat cancer though the cell cycle- transition and termination of DNA replication pathway. Dioscin can down regulate EGFR and EGF to inhibit cancer, and also has anti-inflammation activity by regulating JNK signaling pathway. The predictions of the possible targets, biological activities, signal pathways and relevant regulating networks of dioscin provide valuable information to guide further investigation of dioscin on pharmacodynamics and

  4. Stochastic chemical kinetics theory and (mostly) systems biological applications

    CERN Document Server

    Érdi, Péter; Lente, Gabor

    2014-01-01

    This volume reviews the theory and simulation methods of stochastic kinetics by integrating historical and recent perspectives, presents applications, mostly in the context of systems biology and also in combustion theory. In recent years, due to the development in experimental techniques, such as optical imaging, single cell analysis, and fluorescence spectroscopy, biochemical kinetic data inside single living cells have increasingly been available. The emergence of systems biology brought renaissance in the application of stochastic kinetic methods.

  5. Advanced photonic structures for biological and chemical detection

    CERN Document Server

    Fan, Xudong

    2009-01-01

    One of a series of books on Integrated Microanalytical Systems, this text discusses the latest applications of photonic technologies in bio/chemical sensing. The book is divided into four sections, each one being based on photonic structures.

  6. Chemical, Biological, and Radiological (CBR) Contamination Survivability, Large Item Interiors

    Science.gov (United States)

    2016-08-03

    the SUT should be inspected IAW TOP 08-2-50019. Inspection data, certificates of compliance, or similar documentation must be reviewed to ensure the...purity of the chemical agent and/or simulant used must be known (preferably 85% or greater) and recorded as test data. A purity certification must...approved contaminants [e.g., non-traditional agents (NTAs), toxic industrial chemicals ( TICs ), toxic industrial materials (TIMs)] as specified in

  7. CHEMICAL AND BIOLOGICAL EXAMINATION OF LEAVES OF MORUS INDICA

    OpenAIRE

    Pethakamsetty Lakshmi; Seru Ganapaty; K. Mary Bharathi

    2013-01-01

    Mulberry belongs to the genus Morus of the family Moraceae. It is an economically important plant being used for sericulture. Studies have been reported on the chemical composition and nutritional potentials of some mulberry species worldwide. In the present study the chemical examination of Morus indica leaves on conventional extraction and various chromatographic methods, led to the isolation of five compounds- β-sitosterol-3-O-β-D-glucoside, β-sitosterol, salvigenin, cirisimaritin and quer...

  8. Which chemicals drive biological effects in wastewater and recycled water?

    Science.gov (United States)

    Tang, Janet Y M; Busetti, Francesco; Charrois, Jeffrey W A; Escher, Beate I

    2014-09-01

    Removal of organic micropollutants from wastewater during secondary treatment followed by reverse osmosis and UV disinfection was evaluated by a combination of four in-vitro cell-based bioassays and chemical analysis of 299 organic compounds. Concentrations detected in recycled water were below the Australian Guidelines for Water Recycling. Thus the detected chemicals were considered not to pose any health risk. The detected pesticides in the wastewater treatment plant effluent and partially advanced treated water explained all observed effects on photosynthesis inhibition. In contrast, mixture toxicity experiments with designed mixtures containing all detected chemicals at their measured concentrations demonstrated that the known chemicals explained less than 3% of the observed cytotoxicity and less than 1% of the oxidative stress response. Pesticides followed by pharmaceuticals and personal care products dominated the observed mixture effects. The detected chemicals were not related to the observed genotoxicity. The large proportion of unknown toxicity calls for effect monitoring complementary to chemical monitoring. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Essential Oils from Thyme (Thymus vulgaris): Chemical Composition and Biological Effects in Mouse Model.

    Science.gov (United States)

    Vetvicka, Vaclav; Vetvickova, Jana

    2016-12-01

    Thymus species are popular spices and contain volatile oils as main chemical constituents. Recently, plant-derived essential oils are gaining significant attention due to their significant biological activities. Seven different thymus-derived essential oils were compared in our study. First, we focused on their chemical composition, which was followed up by testing their effects on phagocytosis, cytokine production, chemotaxis, edema inhibition, and liver protection. We found limited biological activities among tested oils, with no correlation between composition and biological effects. Similarly, no oils were effective in every reaction. Based on our data, the tested biological use of these essential oils is questionable.

  10. Chemistry and the worm: Caenorhabditis elegans as a platform for integrating chemical and biological research.

    Science.gov (United States)

    Hulme, S Elizabeth; Whitesides, George M

    2011-05-16

    This Review discusses the potential usefulness of the worm Caenorhabditis elegans as a model organism for chemists interested in studying living systems. C. elegans, a 1 mm long roundworm, is a popular model organism in almost all areas of modern biology. The worm has several features that make it attractive for biology: it is small (biology, the Review provides examples of current research with C. elegans that is chemically relevant. It also describes tools-biological, chemical, and physical-that are available to researchers studying the worm. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Magneto-mechanical trapping systems for biological target detection

    KAUST Repository

    Li, Fuquan

    2014-03-29

    We demonstrate a magnetic microsystem capable of detecting nucleic acids via the size difference between bare magnetic beads and bead compounds. The bead compounds are formed through linking nonmagnetic beads and magnetic beads by the target nucleic acids. The system comprises a tunnel magneto-resistive (TMR) sensor, a trapping well, and a bead-concentrator. The TMR sensor detects the stray field of magnetic beads inside the trapping well, while the sensor output depends on the number of beads. The size of the bead compounds is larger than that of bare magnetic beads, and fewer magnetic beads are required to fill the trapping well. The bead-concentrator, in turn, is capable of filling the trap in a controlled fashion and so to shorten the assay time. The bead-concentrator includes conducting loops surrounding the trapping well and a conducting line underneath. The central conducting line serves to attract magnetic beads in the trapping well and provides a magnetic field to magnetize them so to make them detectable by the TMR sensor. This system excels by its simplicity in that the DNA is incubated with magnetic and nonmagnetic beads, and the solution is then applied to the chip and analyzed in a single step. In current experiments, a signal-to-noise ratio of 40.3 dB was obtained for a solution containing 20.8 nM of DNA. The sensitivity and applicability of this method can be controlled by the size or concentration of the nonmagnetic bead, or by the dimension of the trapping well.

  12. Opportunity of interventional radiology: advantages and application of interventional technique in biological target therapy

    International Nuclear Information System (INIS)

    Teng Gaojun; Lu Qin

    2007-01-01

    Interventional techniques not only provide opportunity of treatment for many diseases, but also alter the traditional therapeutic pattern. With the new century of wide application of biological therapies, interventional technique also shows extensive roles. The current biological therapy, including gene therapy, cell transplantation therapy, immunobiologic molecule therapy containing cell factors, tumor antibody or vaccine, recombined proteins, radioactive-particles and targeting materials therapy, can be locally administrated by interventional techniques. The combination of targeting biological therapies and high-targeted interventional technique holds advantages of minimal invasion, accurate delivery, vigorous local effect, and less systemic adverse reactions. Authors believe that the biological therapy may arise a great opportunity for interventional radiology, therefore interventional colleagues should grasp firmly and promptly for the development and extension in this field. (authors)

  13. Chemical recovery of palladium-103 from irradiated silver target

    International Nuclear Information System (INIS)

    Lapshina, E.V.; Kokhanyuk, V.M.; Zhuikov, B.L.; Myasoedova, G.V.; Zakhartchenko, E.A.; Phillips, D.R.; Jamriska, D.J.

    2003-01-01

    The goal of this work is to develop an extraction method of no-carrier-added palladium-103 from silver. Metallic silver targets may be irradiated by protons with energy of 60-200 MeV or more to generate palladium-103 simultaneously with other radioactive isotopes of rhodium, ruthenium, technetium, palladium and silver. According to the dependence experimental production yield of Pd-103 and isotopes of other elements in thick silver target vs. Proton energy the most suitable energy for maximum yield of Pd-103 and minimum yield of other elements is from about 100 to about 140 MeV. Activity of radionuclides produced in silver target depends from many factors (target thickness, irradiation time, etc.). Two methods of Pd-103 recovering from irradiated silver target are considered in this work: (1) Silver target is dissolved in nitric acid followed by silver precipitation in the form of silver chloride by addition of HCl. The solution containing Pd, Rh and other radionuclides is passed through the layer of fibrous sorbent POLYORGS-15n. Then the sorbent is washed and Pd is desorbed by hot 12 M hydrochloric acid; (2) Silver target is dissolved in nitric acid followed by passing of the obtained solution (2 M HNO 3 ) through a disk set of complex forming sorbent POLYORGS-33n. Under these conditions palladium is sorbed by the sorbent while silver, rhodium, ruthenium and technetium are passed through the sorbent. Then the sorbent is washed with 2M nitric acid, and Pd is desorbed by 12 M hydrochloric acid. Extraction of palladium is occurred during the formation of palladium complex with a chelate sorbent specific to palladium in acidic solutions. Such a sorbent makes possible separation of palladium from accompanying radionuclides such as rhodium, ruthenium and technetium. The polymeric complex-forming sorbent of fibrous structure with the groups of 3(5)-methylpyrazole (POLYORGS-15) is used. The distinctive feature of the sorbents in the form of fibrous 'filled' material is

  14. Effects of chemical and biological pesticides on plant growth parameters and rhizospheric bacterial community structure in Vigna radiata

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sunil; Gupta, Rashi; Sharma, Shilpi, E-mail: shilpi@dbeb.iitd.ac.in

    2015-06-30

    Highlights: • Non-target effects of pesticides employing qualitative and quantitative approaches. • Qualitative shifts in resident and active bacterial community structure. • Abundance of 16S rRNA gene and transcripts were reduced significantly. • Effects of biological pesticide similar to chemical pesticides on rhizospheric bacteria. - Abstract: With increasing application of pesticides in agriculture, their non-target effects on soil microbial communities are critical to soil health maintenance. The present study aimed to evaluate the effects of chemical pesticides (chlorpyrifos and cypermethrin) and a biological pesticide (azadirachtin) on growth parameters and the rhizospheric bacterial community of Vigna radiata. Qualitative and quantitative analysis by PCR-denaturing gradient gel electrophoresis (DGGE) and q-PCR, respectively, of the 16S rRNA gene and transcript were performed to study the impact of these pesticides on the resident and active rhizospheric bacterial community. While plant parameters were not affected significantly by the pesticides, a shift in the bacterial community structure was observed with an adverse effect on the abundance of 16S rRNA gene and transcripts. Chlorpyrifos showed almost complete degradation toward the end of the experiment. These non-target impacts on soil ecosystems and the fact that the effects of the biopesticide mimic those of chemical pesticides raise serious concerns regarding their application in agriculture.

  15. Effects of chemical and biological pesticides on plant growth parameters and rhizospheric bacterial community structure in Vigna radiata

    International Nuclear Information System (INIS)

    Singh, Sunil; Gupta, Rashi; Sharma, Shilpi

    2015-01-01

    Highlights: • Non-target effects of pesticides employing qualitative and quantitative approaches. • Qualitative shifts in resident and active bacterial community structure. • Abundance of 16S rRNA gene and transcripts were reduced significantly. • Effects of biological pesticide similar to chemical pesticides on rhizospheric bacteria. - Abstract: With increasing application of pesticides in agriculture, their non-target effects on soil microbial communities are critical to soil health maintenance. The present study aimed to evaluate the effects of chemical pesticides (chlorpyrifos and cypermethrin) and a biological pesticide (azadirachtin) on growth parameters and the rhizospheric bacterial community of Vigna radiata. Qualitative and quantitative analysis by PCR-denaturing gradient gel electrophoresis (DGGE) and q-PCR, respectively, of the 16S rRNA gene and transcript were performed to study the impact of these pesticides on the resident and active rhizospheric bacterial community. While plant parameters were not affected significantly by the pesticides, a shift in the bacterial community structure was observed with an adverse effect on the abundance of 16S rRNA gene and transcripts. Chlorpyrifos showed almost complete degradation toward the end of the experiment. These non-target impacts on soil ecosystems and the fact that the effects of the biopesticide mimic those of chemical pesticides raise serious concerns regarding their application in agriculture

  16. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides?

    Science.gov (United States)

    Bardin, Marc; Ajouz, Sakhr; Comby, Morgane; Lopez-Ferber, Miguel; Graillot, Benoît; Siegwart, Myriam; Nicot, Philippe C.

    2015-01-01

    The durability of a control method for plant protection is defined as the persistence of its efficacy in space and time. It depends on (i) the selection pressure exerted by it on populations of plant pathogens and (ii) on the capacity of these pathogens to adapt to the control method. Erosion of effectiveness of conventional plant protection methods has been widely studied in the past. For example, apparition of resistance to chemical pesticides in plant pathogens or pests has been extensively documented. The durability of biological control has often been assumed to be higher than that of chemical control. Results concerning pest management in agricultural systems have shown that this assumption may not always be justified. Resistance of various pests to one or several toxins of Bacillus thuringiensis and apparition of resistance of the codling moth Cydia pomonella to the C. pomonella granulovirus have, for example, been described. In contrast with the situation for pests, the durability of biological control of plant diseases has hardly been studied and no scientific reports proving the loss of efficiency of biological control agents against plant pathogens in practice has been published so far. Knowledge concerning the possible erosion of effectiveness of biological control is essential to ensure a durable efficacy of biological control agents on target plant pathogens. This knowledge will result in identifying risk factors that can foster the selection of strains of plant pathogens resistant to biological control agents. It will also result in identifying types of biological control agents with lower risk of efficacy loss, i.e., modes of action of biological control agents that does not favor the selection of resistant isolates in natural populations of plant pathogens. An analysis of the scientific literature was then conducted to assess the potential for plant pathogens to become resistant to biological control agents. PMID:26284088

  17. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides?

    Directory of Open Access Journals (Sweden)

    Marc eBardin

    2015-07-01

    Full Text Available The durability of a control method for plant protection is defined as the persistence of its efficacy in space and time. It depends on (i the selection pressure exerted by it on populations of plant pathogens and (ii on the capacity of these pathogens to adapt to the control method. Erosion of effectiveness of conventional plant protection methods has been widely studied in the past. For example, apparition of resistance to chemical pesticides in plant pathogens or pests has been extensively documented. The durability of biological control has often been assumed to be higher than that of chemical control. Results concerning pest management in agricultural systems have shown that this assumption may not always be justified. Resistance of various pests to one or several toxins of Bacillus thuringensis and apparition of resistance of the codling moth Cydia pomonella to the Cydia pomonella granulovirus have, for example, been described. In contrast with the situation for pests, the durability of biological control of plant diseases has hardly been studied and no scientific reports proving the loss of efficiency of biological control agents against plant pathogens in practice has been published so far. Knowledge concerning the possible erosion of effectiveness of biological control is essential to ensure a durable efficacy of biological control agents on target plant pathogens. This knowledge will result in identifying risk factors that can foster the selection of strains of plant pathogens resistant to biological control agents. It will also result in identifying types of biological control agents with lower risk of efficacy loss i.e. modes of action of biological control agents that does not favor the selection of resistant isolates in natural populations of plant pathogens. An analysis of the scientific literature was then conducted to assess the potential for plant pathogens to become resistant to biological control agents.

  18. Mathematical description of drug-target interactions: application to biologics that bind to targets with two binding sites.

    Science.gov (United States)

    Gibiansky, Leonid; Gibiansky, Ekaterina

    2018-02-01

    The emerging discipline of mathematical pharmacology occupies the space between advanced pharmacometrics and systems biology. A characteristic feature of the approach is application of advance mathematical methods to study the behavior of biological systems as described by mathematical (most often differential) equations. One of the early application of mathematical pharmacology (that was not called this name at the time) was formulation and investigation of the target-mediated drug disposition (TMDD) model and its approximations. The model was shown to be remarkably successful, not only in describing the observed data for drug-target interactions, but also in advancing the qualitative and quantitative understanding of those interactions and their role in pharmacokinetic and pharmacodynamic properties of biologics. The TMDD model in its original formulation describes the interaction of the drug that has one binding site with the target that also has only one binding site. Following the framework developed earlier for drugs with one-to-one binding, this work aims to describe a rigorous approach for working with similar systems and to apply it to drugs that bind to targets with two binding sites. The quasi-steady-state, quasi-equilibrium, irreversible binding, and Michaelis-Menten approximations of the model are also derived. These equations can be used, in particular, to predict concentrations of the partially bound target (RC). This could be clinically important if RC remains active and has slow internalization rate. In this case, introduction of the drug aimed to suppress target activity may lead to the opposite effect due to RC accumulation.

  19. Guiding the United States Government Response to an Overseas Chemical, Biological, Radiological, or Nuclear Disaster

    National Research Council Canada - National Science Library

    Hrycaj, Roman

    2001-01-01

    ... government response to a Chemical, Biological, Radiological or Nuclear (CBRN) event overseas? In determining these factors, the author researched salient books, periodicals, published and unpublished papers, and credible Internet sites...

  20. Sample Preparation and Identification of Biological, Chemical and Mid-Spectrum Agents

    National Research Council Canada - National Science Library

    Hancock, J. R; Dragon, D. C

    2005-01-01

    A general survey of sample preparation and identification techniques for biological, chemical and mid-spectrum agents was conducted as part of Canada's contribution to a joint NATO Allied Engineering Publication (AEP) handbook...

  1. Individual Preparedness and Response to Chemical, Radiological, Nuclear, and Biological Terrorist Attacks: A Quick Guide

    National Research Council Canada - National Science Library

    Davis, Lynn

    2003-01-01

    .... Many people know how to respond in such disasters as fires and earthquakes, but few would know what to do if someone were to use a chemical, radiological, nuclear, or biological weapon in their vicinity...

  2. Prospects for improved detection of chemical, biological, radiological, and nuclear threats

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, Craig R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hart, Brad [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Slezak, Thomas R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-07-31

    Acquisition and use of Chemical, Biological, Radiological, and Nuclear (CBRN) weapons continue to be a major focus of concern form the security apparatus of nation states because of their potential for mass casualties when used by a determined adversary.

  3. In Situ Measurement of the Infrared Spectral Extinction for Various Chemical, Biological, and Background Aerosols

    National Research Council Canada - National Science Library

    Gurton, Kristan

    2003-01-01

    We conducted a series spectral extinction measurements on a variety of aerosolized chemical and biological simulants over the spectral range 3-13 microns using conventional Fourier transform infrared (FTIR...

  4. Leader Development in Nuclear, Biological, and Chemical Defense: Trained and Ready

    National Research Council Canada - National Science Library

    Van

    2001-01-01

    .... Careful and deliberate preparation and emphasis on leader development now will obviate the devastating role of WMD in the future and ensure that the Army is nuclear, biological, and chemical (NBC) trained and ready...

  5. Caenorhabditis elegans chemical biology: lessons from small molecules

    Science.gov (United States)

    How can we complement Caenorhabditis elegans genomics and proteomics with a comprehensive structural and functional annotation of its metabolome? Several lines of evidence indicate that small molecules of largely undetermined structure play important roles in C. elegans biology, including key pathw...

  6. A Review on Chemical Constituents and Biological Activities of the ...

    African Journals Online (AJOL)

    The current review is aimed to deliver some updates on the ethnobotany, phytochemistry and biological activities of Beilschmiedia species in order to throw more light on their therapeutic potentials and future research priorities. Phytochemical studies on Beilschmiedia genus yielded essential oils, endiandric acid ...

  7. Biological treatments affect the chemical composition of coffee pulp

    NARCIS (Netherlands)

    Ulloa Rojas, J.B.; Verreth, J.A.J.; Amato, S.; Huisman, E.A.

    2003-01-01

    Biological treatments were applied to fresh coffee pulp (CoP) to improve its nutritive value for monogastric animals by reducing its content of cellulose and antinutritional factors (ANFs) such as total phenols, tannins and caffeine. Treatments were: (1) ensiling with 0, 50 and 100 g kg¿1 molasses

  8. International Journal of Biological and Chemical Sciences - Vol 2 ...

    African Journals Online (AJOL)

    Some aspects of biology of Oreochromis niloticus L. (Perciformes: Cichlidae) recently introduced in Lake Toho (Benin, West Africa). S A Montcho, F A Laleye. http://dx.doi.org/10.4314/ijbcs.v2i1.39729 ...

  9. Group behaviour in physical, chemical and biological systems

    Indian Academy of Sciences (India)

    2014-03-15

    Mar 15, 2014 ... This permits an additional, typically biological, explanation for it in terms of reproductive advantage, whether of the individual or of the group. .... that of variation, makes it possible for a mode of long-term evolutionary change that is .... An alien, non-human intelligence looking at our world would presumably ...

  10. XFELs open a new era in structural chemical biology

    OpenAIRE

    Fromme, Petra

    2015-01-01

    X-ray crystallography, the workhorse of structural biology, has been revolutionized by the advent of serial femtosecond crystallography using X-ray free electron lasers. Here, the fast pace and history of discoveries are discussed together with current challenges and the method’s great potential to make new structural discoveries, such as the ability to generate molecular movies of biomolecules at work.

  11. Environmental parameters of the Tennessee River in Alabama. 2: Physical, chemical, and biological parameters. [biological and chemical effects of thermal pollution from nuclear power plants on water quality

    Science.gov (United States)

    Rosing, L. M.

    1976-01-01

    Physical, chemical and biological water quality data from five sites in the Tennessee River, two in Guntersville Reservoir and three in Wheeler Reservoir were correlated with climatological data for three annual cycles. Two of the annual cycles are for the years prior to the Browns Ferry Nuclear Power Plant operations and one is for the first 14 months of Plant operations. A comparison of the results of the annual cycles indicates that two distinct physical conditions in the reservoirs occur, one during the warm months when the reservoirs are at capacity and one during the colder winter months when the reservoirs have been drawn-down for water storage during the rainy months and for weed control. The wide variations of physical and chemical parameters to which the biological organisms are subjected on an annual basis control the biological organisms and their population levels. A comparison of the parameters of the site below the Power plant indicates that the heated effluent from the plant operating with two of the three reactors has not had any effect on the organisms at this site. Recommendations given include the development of prediction mathematical models (statistical analysis) for the physical and chemical parameters under specific climatological conditions which affect biological organisms. Tabulated data of chemical analysis of water and organism populations studied is given.

  12. Chemically induced aneuploidy in mammalian cells: mechanisms and biological significance in cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oshimura, M.; Barrett, J.C.

    1986-01-01

    A literature review with over 200 references examines the growing body of evidence from human and animal cancer cytogenetics that aneuploidy is an important chromosome change in carcinogenesis. Evidence from in vitro cell transformation studies supports the idea that aneuploidy has a direct effect on the conversion of a normal cell to a preneoplastic or malignant cell. Induction of an aneuploid state in a preneoplastic or neoplastic cell could have any of the following four biological effects: a change in gene dosage, a change in gene balance, expression of a recessive mutation, or a change in genetic instability (which could secondarily lead to neoplasia). There are a number of possible mechanisms by which chemicals might induce aneuploidy, including effects on microtubules, damage to essential elements for chromosome function reduction in chromosome condensation or pairing, induction of chromosome interchanges, unresolved recombination structures, increased chromosome stickiness, damage to centrioles, impairment of chromosome alignment ionic alterations during mitosis, damage to the nuclear membrane, and a physical disruption of chromosome segregation. Therefore, a number of different targets exist for chemically induced aneuploidy.

  13. Probes & Drugs portal: an interactive, open data resource for chemical biology

    Czech Academy of Sciences Publication Activity Database

    Škuta, Ctibor; Popr, M.; Muller, Tomáš; Jindřich, Jindřich; Kahle, Michal; Sedlák, David; Svozil, Daniel; Bartůněk, Petr

    2017-01-01

    Roč. 14, č. 8 (2017), s. 758-759 ISSN 1548-7091 R&D Projects: GA MŠk LO1220 Institutional support: RVO:68378050 Keywords : bioactive compound, ,, * chemical probe * chemical biology * portal Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 25.062, year: 2016

  14. Chemical and Biological Defense: Designated Entity Needed to Identify, Align, and Manage DOD’s Infrastructure

    Science.gov (United States)

    2015-06-01

    PAIO) , the analytical arm of the CBDP Enterprise, assessed the physical infrastructure capabilities that support the CBDP Enterprise’s mission and...of the physical infrastructure of the CBDP Enterprise. Page 3 GAO-15-257 Chemical and Biological Defense use threat data and the results...PAIO study made recommendations to address “ physical ” infrastructure capabilities, whereas the 2008 Chemical and Biological Defense Program (CBDP

  15. HExpoChem: a systems biology resource to explore human exposure to chemicals.

    Science.gov (United States)

    Taboureau, Olivier; Jacobsen, Ulrik Plesner; Kalhauge, Christian; Edsgärd, Daniel; Rigina, Olga; Gupta, Ramneek; Audouze, Karine

    2013-05-01

    Humans are exposed to diverse hazardous chemicals daily. Although an exposure to these chemicals is suspected to have adverse effects on human health, mechanistic insights into how they interact with the human body are still limited. Therefore, acquisition of curated data and development of computational biology approaches are needed to assess the health risks of chemical exposure. Here we present HExpoChem, a tool based on environmental chemicals and their bioactivities on human proteins with the objective of aiding the qualitative exploration of human exposure to chemicals. The chemical-protein interactions have been enriched with a quality-scored human protein-protein interaction network, a protein-protein association network and a chemical-chemical interaction network, thus allowing the study of environmental chemicals through formation of protein complexes and phenotypic outcomes enrichment. HExpoChem is available at http://www.cbs.dtu.dk/services/HExpoChem-1.0/.

  16. Structure and biological activity of chemically modified nisin A species

    NARCIS (Netherlands)

    Rollema, Harry S.; Metzger, Jörg W.; Both, Paula; Kuipers, Oscar P.; Siezen, Roland J.

    1996-01-01

    Nisin, a 34-residue peptide bacteriocin, contains the less common amino acids lanthionine, β-methyllanthionine, dehydroalanine (Dha), and dehydrobutyrine (Dhb). Several chemically modified nisin A species were purified by reverse-phase HPLC and characterized by two-dimensional NMR and electrospray

  17. Biocatalysis. Biological systems for the production of chemicals

    OpenAIRE

    Held, M.; Schmid, A.; van Beilen, J. B.; Witholt, B.

    2017-01-01

    Biocatalysis harnesses the catalytic potential of enzymes to produce building blocks and end-products for the pharmaceutical and chemical industry. Located at the interface between fermentation processes and petrol-based chemistry, biotransformation processes broaden the toolbox for bioconversion of organic compounds to functionalized products

  18. Impact of Theoretical Chemistry on Chemical and Biological Sciences

    Indian Academy of Sciences (India)

    IAS Admin

    mechanics (MM) force fields, using physical concepts. However, great challenges had to be met in order to obtain relevant param- eters for a vast number of chemical groups and molecules to reproduce experimentally observable properties. Experimentally and quantum mechanically derived quantities have been exten-.

  19. Molluscan biological and chemical diversity: secondary metabolites and medicinal resources produced by marine molluscs.

    Science.gov (United States)

    Benkendorff, Kirsten

    2010-11-01

    The phylum Mollusca represents an enormous diversity of species with eight distinct classes. This review provides a taxonomic breakdown of the published research on marine molluscan natural products and the medicinal products currently derived from molluscs, in order to identify priority targets and strategies for future research. Some marine gastropods and bivalves have been of great interest to natural products chemists, yielding a diversity of chemical classes and several drug leads currently in clinical trials. Molluscs also feature prominently in a broad range of traditional natural medicines, although the active ingredients in the taxa involved are typically unknown. Overall secondary metabolites have only been investigated from a tiny proportion (molluscs. Conversely, most molluscan medicines are derived from shelled gastropods and bivalves. The complete disregard for several minor classes of molluscs is unjustified based on their evolutionary history and unique life styles, which may have led to novel pathways for secondary metabolism. The Polyplacophora, in particular, have been identified as worthy of future investigation given their use in traditional South African medicines and their abundance in littoral ecosystems. As bioactive compounds are not always constitutively expressed in molluscs, future research should be targeted towards biosynthetic organs and inducible defence reactions for specific medicinal applications. Given the lack of an acquired immune system, the use of bioactive secondary metabolites is likely to be ubiquitous throughout the Mollusca and broadening the search field may uncover interesting novel chemistry. © 2010 The Author. Biological Reviews © 2010 Cambridge Philosophical Society.

  20. Dovetailing biology and chemistry: integrating the Gene Ontology with the ChEBI chemical ontology

    Science.gov (United States)

    2013-01-01

    Background The Gene Ontology (GO) facilitates the description of the action of gene products in a biological context. Many GO terms refer to chemical entities that participate in biological processes. To facilitate accurate and consistent systems-wide biological representation, it is necessary to integrate the chemical view of these entities with the biological view of GO functions and processes. We describe a collaborative effort between the GO and the Chemical Entities of Biological Interest (ChEBI) ontology developers to ensure that the representation of chemicals in the GO is both internally consistent and in alignment with the chemical expertise captured in ChEBI. Results We have examined and integrated the ChEBI structural hierarchy into the GO resource through computationally-assisted manual curation of both GO and ChEBI. Our work has resulted in the creation of computable definitions of GO terms that contain fully defined semantic relationships to corresponding chemical terms in ChEBI. Conclusions The set of logical definitions using both the GO and ChEBI has already been used to automate aspects of GO development and has the potential to allow the integration of data across the domains of biology and chemistry. These logical definitions are available as an extended version of the ontology from http://purl.obolibrary.org/obo/go/extensions/go-plus.owl. PMID:23895341

  1. Dovetailing biology and chemistry: integrating the Gene Ontology with the ChEBI chemical ontology.

    Science.gov (United States)

    Hill, David P; Adams, Nico; Bada, Mike; Batchelor, Colin; Berardini, Tanya Z; Dietze, Heiko; Drabkin, Harold J; Ennis, Marcus; Foulger, Rebecca E; Harris, Midori A; Hastings, Janna; Kale, Namrata S; de Matos, Paula; Mungall, Christopher J; Owen, Gareth; Roncaglia, Paola; Steinbeck, Christoph; Turner, Steve; Lomax, Jane

    2013-07-29

    The Gene Ontology (GO) facilitates the description of the action of gene products in a biological context. Many GO terms refer to chemical entities that participate in biological processes. To facilitate accurate and consistent systems-wide biological representation, it is necessary to integrate the chemical view of these entities with the biological view of GO functions and processes. We describe a collaborative effort between the GO and the Chemical Entities of Biological Interest (ChEBI) ontology developers to ensure that the representation of chemicals in the GO is both internally consistent and in alignment with the chemical expertise captured in ChEBI. We have examined and integrated the ChEBI structural hierarchy into the GO resource through computationally-assisted manual curation of both GO and ChEBI. Our work has resulted in the creation of computable definitions of GO terms that contain fully defined semantic relationships to corresponding chemical terms in ChEBI. The set of logical definitions using both the GO and ChEBI has already been used to automate aspects of GO development and has the potential to allow the integration of data across the domains of biology and chemistry. These logical definitions are available as an extended version of the ontology from http://purl.obolibrary.org/obo/go/extensions/go-plus.owl.

  2. The restoration project : decontamination of facilities from chemical, biological and radiological contamination after terrorist action

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, M.; Volchek, K.; Thouin, G.; Harrison, S.; Kuang, W. [Environment Canada, Ottawa, ON (Canada). Emergencies Science Div; Velicogna, D.; Hornof, M.; Punt, M. [SAIC Canada, Ottawa, ON (Canada); Payette, P.; Duncan, L.; Best, M.; Krishnan; Wagener, S.; Bernard, K.; Majcher, M. [Public Health Agency of Canada, Ottawa, ON (Canada); Cousins, T.; Jones, T. [Defence Research and Development Canada, Ottawa, ON (Canada)

    2005-07-01

    Bioterrorism poses a real threat to the public health and national security, and the restoration of affected facilities after a chemical, biological or radiological attack is a major concern. This paper reviewed aspects of a project conducted to collect information, test and validate procedures for site restoration after a terrorist attack. The project began with a review of existing technology and then examined new technologies. Restoration included pickup, neutralization, decontamination, removal and final destruction and deposition of contaminants as well as cleaning and neutralization of material and contaminated waste from decontamination. The project was also intended to test existing concepts and develop new ideas. Laboratory scale experiments consisted of testing, using standard laboratory techniques. Radiation decontamination consisted of removal and concentration of the radioisotopes from removal fluid. General restoration guidelines were provided, as well as details of factors considered important in specific applications, including growth conditions and phases of microorganisms in biological decontamination, or the presence of inhibitors or scavengers in chemical decontamination. Various agents were proposed that were considered to have broad spectrum capability. Test surrogates for anthrax were discussed. The feasibility of enhanced oxidation processes was examined in relation to the destruction of organophosphorus, organochlorine and carbamate pesticides. The goal was to identify a process for the treatment of surfaces contaminated with pesticides. Tests included removal from carpet, porous ceiling tile, steel plates, and floor tiles. General radiation contamination procedures and techniques were reviewed, as well as radiological decontamination waste treatment. It was concluded that there is no single decontamination technique applicable for all contaminants, and decontamination methods depend on economic, social and health factors. The amount of

  3. Chemical recovery of a palladium-103 from irradiated silver target

    International Nuclear Information System (INIS)

    Lapshina, E.V.; Kokhanyuk, V.M.; Zhuikov, B.L.; Myasoedova, G.V.; Zakhartchenko, E.A.; Phillips, D.R.; Jamriska, D.J.

    2003-01-01

    The goal of this work is to develop an extraction method of no-carrier-added palladium-103 from silver. Metallic silver targets were irradiated by protons with the energy of 60-140 MeV to generate palladium-103. Other radioactive isotopes of rhodium, ruthenium, technetium, palladium and silver are also formed at the same time. Two methods of Pd-103 recovering from irradiated silver target are considered. The first one includes the dissolving of the irradiated silver target in nitric acid followed by adding of hydrochloric acid to the solution. Palladium with rhodium, ruthenium and technetium completely remained in solution while silver was precipitated in the form of silver chloride. Extraction of palladium from the obtained solution was provided by the formation of palladium complex with a chelate sorbent which is specific to palladium in acidic solutions. The sorbent makes it possible to separate palladium from admixtures of rhodium, ruthenium and technetium isotopes. The polymeric complex-forming sorbent of fibrous structure with the groups of 3 (5) - methylpyrazole (POLYORGS-15n) is used. An other possible method has been also studied. It includes again dissolving of metallic silver in nitric acid, but does not need silver chloride precipitation. Silver may be sorbed by the complex-forming sorbents, but its sorption is very sensitive to acid concentration. Chelate sorbents of fibrous structure with the groups of amidoxime and hydrazidine (POLYORGS-33n) have been successfully used in our experiments. A high efficiency of palladium extraction by POLYORGS-33n from 2-4 M nitric acid solutions was achieved. Concentrated hydrochloric acid (without heating) was used for palladium desorption with higher yield than in the first method. (authors)

  4. Propolis volatile compounds: chemical diversity and biological activity: a review

    OpenAIRE

    Bankova, Vassya; Popova, Milena; Trusheva, Boryana

    2014-01-01

    Propolis is a sticky material collected by bees from plants, and used in the hive as building material and defensive substance. It has been popular as a remedy in Europe since ancient times. Nowadays, propolis use in over-the-counter preparations, “bio”-cosmetics and functional foods, etc., increases. Volatile compounds are found in low concentrations in propolis, but their aroma and significant biological activity make them important for propolis characterisation. Propolis is a plant-derived...

  5. Chemical and Biological Defense Program Annual Report to Congress

    Science.gov (United States)

    2006-03-01

    Training CBR-D Basic Engineering Core Course ( BECC ) Naval Training Center Great Lakes, IL Hospital Corpsman “A” School Naval Training Center Great Lakes...incorporation into CBR-D training. CBR-D courses that will be affected by the CPS ILE product include Basic Enlisted Common Core ( BECC ), Damage Control...Battledress Uniform BECC – Basic Engineering Core Course BES – Budget Estimate Submission BGAD – Blue Grass Army Depot BIDS – Biological Integrated

  6. Imidazothiazole and related heterocyclic systems. Synthesis, chemical and biological properties.

    Science.gov (United States)

    Fascio, Mirta L; Errea, María Inés; D'Accorso, Norma Beatriz

    2015-01-27

    Fused heterobicyclic systems have gained much importance in the field of medicinal chemistry because of their broad spectrum of physiological activities. Among the heterocyclic rings containing bridgehead nitrogen atom, imidazothiazoles derivatives are especially attractive because of their different biological activities. Since many imidazothiazoles derivatives are effective for treating several diseases, is interesting to analyze the behavior of some isosteric related heterocycles, such as pirrolothiazoles, imidazothiadiazoles and imidazotriazoles. In this context, this review summarizes the current knowledge about the syntheses and biological behavior of these families of heterocycles. Traditional synthetic methodologies as well as alternative synthetic procedures are described. Among these last methodologies, the use of multicomponent reaction, novel and efficient coupling reagents, and environmental friendly strategies, like microwave assistance and solvent-free condition in ionic liquids are also summarized. This review includes the biological assessments, docking research and studies of mechanism of action performed in order to obtain the compounds leading to the development of new drugs. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Bridging the gap between cell biology and organic chemistry: chemical synthesis and biological application of lipidated peptides and proteins.

    Science.gov (United States)

    Peters, Carsten; Wagner, Melanie; Völkert, Martin; Waldmann, Herbert

    2002-09-01

    We have developed a basic concept for studying cell biological phenomena using an interdisciplinary approach starting from organic chemistry. Based on structural information available for a given biological phenomenon, unsolved chemical problems are identified. For their solution, new synthetic pathways and methods are developed, which reflect the state of the art in synthesising lipidated peptide conjugates. These compounds are used as molecular probes for the investigation of biological phenomena that involve both the determination of biophysical properties and cell biological studies. The interplay between organic synthesis, biophysics and cell biology in the study of protein lipidation may open up new and alternative opportunities to gain knowledge about the biological phenomenon that could not be obtained by employing biological techniques alone. This fruitful combination is highlighted using the Ras protein as an outstanding example. Included herein is: the development of methods for the synthesis of Ras-derived peptides and fully functional Ras proteins, the determination of the biophysical properties, in particular the ability to bind to model membranes, and finally the use of synthetic Ras peptides and proteins in cell biological experiments.

  8. Ozonation of estrogenic chemicals in biologically treated sewage

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Andersen, Henrik Rasmus; Ledin, Anna

    2010-01-01

    The present study shows that ozonation of effluents from municipal wastewater treatment plants (WWTPs) is likely to be a future treatment solution to remove estrogens and xeno-estrogens. The required ozone dose and electrical energy for producing the ozone were determined in two WWTP effluents...... for removal of 17 estrogenic chemicals. The estrogenic compounds included parabens, industrial phenols, sunscreen chemicals, and steroid estrogens. The obtained values of Electrical Energy per Order (EEOs) for the treatment of the estrogens were in the range 0.14–1.1 kWh/m3 corresponding to 1.7–14 g O3/m3....... It is furthermore suggested that UV-absorbance is a useful parameter for online control of the ozone dose in a full scale application since the absorbance of the WWTP effluents and the remaining concentration of the estrogens and xeno-estrogens correlated well with the applied ozone dose....

  9. Tomato Derived Polysaccharides for Biotechnological Applications: Chemical and Biological Approaches

    Directory of Open Access Journals (Sweden)

    Barbara Nicolaus

    2008-06-01

    Full Text Available Recent studies concerning the isolation and purification of exopolysaccharides from suspension-cultured tomato (Lycopersicon esculentum L. var. San Marzano cells and the description of a simple, rapid and low environmental impact method with for obtaining polysaccharides from solid tomato-processing industry wastes are reported. Their chemical composition, rheological properties and partial primary structure were determined on the basis of spectroscopic analyses (UV, IR, GC-MS, 1H-, 13C-NMR. Moreover, the anticytotoxic activities of exopolysaccharides obtained from cultured tomato cells were tested in a brine shrimp bioassay and the preparation of biodegradable film by chemical processing of polysaccharides from solid tomato industry waste was also reported.

  10. 2011 Chemical, Biological, Radiological, and Nuclear Survivability Conference

    Science.gov (United States)

    2011-05-18

    System for additional CB protection • Worn with the CB RAM and CB balaclava Materials • Outer Layer: Flame Retardant Nonwoven Material (60/40 FR...Findings CB PRISM Integrated Filter Concept • Advantages: • Filter removed from front of face • High surface area available for filtration and...UNCLASSIFIED Traditional Threats • Chemical warfare agents (nerve, blood , and blister) • Agents designed for military operations/ applications • Toxic

  11. Receipt and Inspection of Chemical - Biological (CB) Materiel

    Science.gov (United States)

    2017-08-31

    Procedures will be altered only after full consideration of any possible effects on the reliability and validity of the data to be obtained. Such...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 31-08-2017 2. REPORT...TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Test Operations Procedure (TOP) 08-2-500A Receipt and Inspection of Chemical

  12. Amplification of biological targets via on-chip culture for biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Harper, Jason C.; Edwards, Thayne L.; Carson, Bryan; Finley, Melissa; Arndt, William

    2018-01-02

    The present invention, in part, relates to methods and apparatuses for on-chip amplification and/or detection of various targets, including biological targets and any amplifiable targets. In some examples, the microculture apparatus includes a single-use, normally-closed fluidic valve that is initially maintained in the closed position by a valve element bonded to an adhesive coating. The valve is opened using a magnetic force. The valve element includes a magnetic material or metal. Such apparatuses and methods are useful for in-field or real-time detection of targets, especially in limited resource settings.

  13. The effect on biological and moisture resistance of epichlorohydrin chemically modified wood

    Science.gov (United States)

    Rebecca E. Ibach; Beom-Goo Lee

    2002-01-01

    Southern pine solid wood and fiber were chemically modified with epichlorohydrin to help in understanding the role of moisture in the mechanism of biological effectiveness of chemically modified wood. The solid wood had weight gains from 11% to 34%, while the fiber had weight gains from 9% to 75%. After modification, part of the specimens were water leached for 2 weeks...

  14. 40 CFR 230.61 - Chemical, biological, and physical evaluation and testing.

    Science.gov (United States)

    2010-07-01

    ... appropriate physical and chemical environmental characteristics. (d) Physical tests and evaluation. The effect... physical tests and evaluations as are justified and deemed necessary. Such tests may include sieve tests... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Chemical, biological, and physical...

  15. HExpoChem: a systems biology resource to explore human exposure to chemicals

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Jacobsen, Ulrik Plesner; Kalhauge, Christian Gram

    2013-01-01

    of computational biology approaches are needed to assess the health risks of chemical exposure. Here we present HExpoChem, a tool based on environmental chemicals and their bioactivities on human proteins with the objective of aiding the qualitative exploration of human exposure to chemicals. The chemical......Summary: Humans are exposed to diverse hazardous chemicals daily. Although an exposure to these chemicals is suspected to have adverse effects on human health, mechanistic insights into how they interact with the human body are still limited. Therefore, acquisition of curated data and development......–protein interactions have been enriched with a quality-scored human protein–protein interaction network, a protein–protein association network and a chemical–chemical interaction network, thus allowing the study of environmental chemicals through formation of protein complexes and phenotypic outcomes enrichment...

  16. Indonesian propolis: chemical composition, biological activity and botanical origin.

    Science.gov (United States)

    Trusheva, Boryana; Popova, Milena; Koendhori, Eko Budi; Tsvetkova, Iva; Naydenski, Christo; Bankova, Vassya

    2011-03-01

    From a biologically active extract of Indonesian propolis from East Java, 11 compounds were isolated and identified: four alk(en)ylresorcinols (obtained as an inseparable mixture) (1-4) were isolated for the first time from propolis, along with four prenylflavanones (6-9) and three cycloartane-type triterpenes (5, 10 and 11). The structures of the components were elucidated based on their spectral properties. All prenylflavanones demonstrated significant radical scavenging activity against diphenylpicrylhydrazyl radicals, and compound 6 showed significant antibacterial activity against Staphylococcus aureus. For the first time Macaranga tanarius L. and Mangifera indica L. are shown as plant sources of Indonesian propolis.

  17. Use of carbonates for biological and chemical synthesis

    Science.gov (United States)

    Rau, Gregory Hudson

    2014-09-09

    A system of using carbonates, especially water-insoluble or sparing soluble mineral carbonates, for maintaining or increasing dissolved inorganic carbon concentrations in aqueous media. In particular, the system generates concentrated dissolve inorganic carbon substrates for photosynthetic, chemosynthetic, or abiotic chemical production of carbonaceous or other compounds in solution. In some embodiments, the invention can also enhance the dissolution and retention of carbon dioxide in aqueous media, and can produce pH buffering capacity, metal ions, and heat, which can be beneficial to the preceding syntheses.

  18. A review on biological and chemical diversity in Berberis (Berberidaceae)

    Science.gov (United States)

    Srivastava, Sharad; Srivastava, Manjoosha; Misra, Ankita; Pandey, Garima; Rawat, AKS

    2015-01-01

    Berberis is an important genus and well known in the Indian as well as European systems of traditional medicine. It is used since ancient times for curing eye disease, fever, jaundice, rheumatism, vomiting during pregnancy, kidney and gall balder stones and various other ailments due to the presence of biologically active alkaloid berberine. Action of the root extracts of few species are believed to be as powerful as quinine in the treatment of malarial fever. A plethora of literature pertaining to the taxonomy, biology, chemistry, traditional and ethnic uses of Berberis in different countries and indigenous cultures was collected by both offline (library, journals, textbooks etc.) and online mode (electronic search of available databases). In addition to this, books on traditional medicine and ethno pharmacological knowledge were also referred to extract ancient uses of Berberis in different traditional medicine systems. Most of the folklore, traditional and ethno botanical claims about Berberis species were validated by broad spectrum in vitro and vivo pharmacological studies. The present article summarizes its usage in eye and liver disorder, fever, kidney and gall stones along with anticancer activity. This comprehensive review will not only help researchers for further evaluation but also provide substantial information for future exploitation of species to develop novel herbal formulations. PMID:26535033

  19. Target identification of natural and traditional medicines with quantitative chemical proteomics approaches.

    Science.gov (United States)

    Wang, Jigang; Gao, Liqian; Lee, Yew Mun; Kalesh, Karunakaran A; Ong, Yong Siang; Lim, Jaehong; Jee, Joo-Eun; Sun, Hongyan; Lee, Su Seong; Hua, Zi-Chun; Lin, Qingsong

    2016-06-01

    Natural and traditional medicines, being a great source of drugs and drug leads, have regained wide interests due to the limited success of high-throughput screening of compound libraries in the past few decades and the recent technology advancement. Many drugs/bioactive compounds exert their functions through interaction with their protein targets, with more and more drugs showing their ability to target multiple proteins, thus target identification has an important role in drug discovery and biomedical research fields. Identifying drug targets not only furthers the understanding of the mechanism of action (MOA) of a drug but also reveals its potential therapeutic applications and adverse side effects. Chemical proteomics makes use of affinity chromatography approaches coupled with mass spectrometry to systematically identify small molecule-protein interactions. Although traditional affinity-based chemical proteomics approaches have made great progress in the identification of cellular targets and elucidation of MOAs of many bioactive molecules, nonspecific binding remains a major issue which may reduce the accuracy of target identification and may hamper the drug development process. Recently, quantitative proteomics approaches, namely, metabolic labeling, chemical labeling, or label-free approaches, have been implemented in target identification to overcome such limitations. In this review, we will summarize and discuss the recent advances in the application of various quantitative chemical proteomics approaches for the identification of targets of natural and traditional medicines. Copyright © 2016. Published by Elsevier Inc.

  20. Nano-FTIR chemical mapping of minerals in biological materials

    Directory of Open Access Journals (Sweden)

    Sergiu Amarie

    2012-04-01

    Full Text Available Methods for imaging of nanocomposites based on X-ray, electron, tunneling or force microscopy provide information about the shapes of nanoparticles; however, all of these methods fail on chemical recognition. Neither do they allow local identification of mineral type. We demonstrate that infrared near-field microscopy solves these requirements at 20 nm spatial resolution, highlighting, in its first application to natural nanostructures, the mineral particles in shell and bone. "Nano-FTIR" spectral images result from Fourier-transform infrared (FTIR spectroscopy combined with scattering scanning near-field optical microscopy (s-SNOM. On polished sections of Mytilus edulis shells we observe a reproducible vibrational (phonon resonance within all biocalcite microcrystals, and distinctly different spectra on bioaragonite. Surprisingly, we discover sparse, previously unknown, 20 nm thin nanoparticles with distinctly different spectra that are characteristic of crystalline phosphate. Multicomponent phosphate bands are observed on human tooth sections. These spectra vary characteristically near tubuli in dentin, proving a chemical or structural variation of the apatite nanocrystals. The infrared band strength correlates with the mineral density determined by electron microscopy. Since nano-FTIR sensitively responds to structural disorder it is well suited for the study of biomineral formation and aging. Generally, nano-FTIR is suitable for the analysis and identification of composite materials in any discipline, from testing during nanofabrication to even the clinical investigation of osteopathies.

  1. Facile Chemical Access to Biologically Active Norcantharidin Derivatives from Biomass

    Directory of Open Access Journals (Sweden)

    Konstantin I. Galkin

    2017-12-01

    Full Text Available Reductive amination of 2,5-diformylfuran (DFF was used to implement the transition from bio-derived 5-hydroxymethylfurfural (HMF to pharmaceuticals. The synthesized bis(aminomethylfurans were utilized as building blocks for the construction of new derivatives with structural cores of naturally occurring biologically active compounds. Using the one-pot procedure, which included the Diels–Alder reaction followed by hydrogenation of the double bond, bio-derived analogues of the anticancer drug norcantharidin were obtained. The cyclization process was diastereoselective, and resulted in the formation of tricyclic products with the endo configuration. Analysis of cytotoxycity for the resulting tricyclic amine-containing compounds showed an increase of anticancer activity as compared with the unsubstituted norcantharimide.

  2. Chemical Composition and Biological Properties of Rhododendron anthopogon Essential Oil

    Directory of Open Access Journals (Sweden)

    Gabbriella Innocenti

    2010-03-01

    Full Text Available The essential oil of Rhododendron anthopogon was investigated by GC-MS, and seventeen compounds (representing approximately 98% of the oil were identified. The major components of the aerial parts of the oil were the monoterpenes α-pinene, β-pinene, limonene and the sesquiterpene δ-cadinene. Biological studies revealed a weak topical anti-inflammatory activity; a significant killing effect against some Gram-positive reference strains: Staphylococcus aureus, Enterococcusfecalis, Bacillus subtilis was measured; Mycobacterium tuberculosis reference strain and a clinical isolate of Candida, C. pseudotropicalis were killed by as low as 0.04% (v/v essential oil. Moreover, the oil was able to reduce cancer cell growth independently of the cell line and the treatment protocols used.

  3. Design, Synthesis, and Some Aspects of the Biological Activity of Mitochondria-Targeted Antioxidants.

    Science.gov (United States)

    Korshunova, G A; Shishkina, A V; Skulachev, M V

    2017-07-01

    This review summarizes for the first time data on the design and synthesis of biologically active compounds of a new generation - mitochondria-targeted antioxidants, which are natural (or synthetic) p-benzoquinones conjugated via a lipophilic linker with (triphenyl)phosphonium or ammonium cations with delocalized charge. It also describes the synthesis of mitochondria-targeted antioxidants - uncouplers of oxidative phosphorylation - based on fluorescent dyes.

  4. A Systems Chemical Biology Study of Malate Synthase and Isocitrate Lyase Inhibition in Mycobacterium tuberculosis During Active and NRP Growth

    Science.gov (United States)

    May, Elebeoba E.; Leitão, Andrei; Tropsha, Alexander; Oprea, Tudor I.

    2013-01-01

    The ability of Mycobacterium tuberculosis (Mtb) to survive in low oxygen environments enables the bacterium to persist in a latent state within host tissues. In vitro studies of Mtb growth have identified changes in isocitrate lyase (ICL) and malate synthase (MS) that enable bacterial persistent under low oxygen and other environmentally limiting conditions. Systems chemical biology (SCB) enables us to evaluate the effects of small molecule inhibitors not only on the reaction catalyzed by malate synthase and isocitrate lyase, but the effect on the complete tricarboxylic acid cycle (TCA) by taking into account complex network relationships within that system. To study the kinetic consequences of inhibition on persistent bacilli, we implement a systems-chemical biology (SCB) platform and perform a chemistry-centric analysis of key metabolic pathways believed to impact Mtb latency. We explore consequences of disrupting the function of malate synthase (MS) and isocitrate lyase (ICL) during aerobic and hypoxic non-replicating persistence (NRP) growth by using the SCB method to identify small molecules that inhibit the function of MS and ICL, and simulating the metabolic consequence of the disruption. Results indicate variations in target and non-target reaction steps, clear differences in the normal and low oxygen models, as well as dosage dependent response. Simulation results from singular and combined enzyme inhibition strategies suggest ICL may be the more effective target for chemotherapeutic treatment against Mtb growing in a microenvironment where oxygen is slowly depleted, which may favor persistence. PMID:24121675

  5. 78 FR 55326 - Determinations Regarding Use of Chemical Weapons in Syria Under the Chemical and Biological...

    Science.gov (United States)

    2013-09-10

    ... DEPARTMENT OF STATE [Public Notice 8460] Determinations Regarding Use of Chemical Weapons in Syria... Control and Warfare Elimination Act of 1991, 22 U.S.C. 5604(a), that the Government of Syria has used...: (1) Determined that the Government of Syria has used chemical weapons in violation of international...

  6. TOPICAL REVIEW: Biological and chemical sensors for cancer diagnosis

    Science.gov (United States)

    Simon, Elfriede

    2010-11-01

    The great challenge for sensor systems to be accepted as a relevant diagnostic and therapeutic tool for cancer detection is the ability to determine the presence of relevant biomarkers or biomarker patterns comparably to or even better than the traditional analytical systems. Biosensor and chemical sensor technologies are already used for several clinical applications such as blood glucose or blood gas measurements. However, up to now not many sensors have been developed for cancer-related tests because only a few of the biomarkers have shown clinical relevance and the performance of the sensor systems is not always satisfactory. New genomic and proteomic tools are used to detect new molecular signatures and identify which combinations of biomarkers may detect best the presence or risk of cancer or monitor cancer therapies. These molecular signatures include genetic and epigenetic signatures, changes in gene expressions, protein biomarker profiles and other metabolite profile changes. They provide new changes in using different sensor technologies for cancer detection especially when complex biomarker patterns have to be analyzed. To address requirements for this complex analysis, there have been recent efforts to develop sensor arrays and new solutions (e.g. lab on a chip) in which sampling, preparation, high-throughput analysis and reporting are integrated. The ability of parallelization, miniaturization and the degree of automation are the focus of new developments and will be supported by nanotechnology approaches. This review recaps some scientific considerations about cancer diagnosis and cancer-related biomarkers, relevant biosensor and chemical sensor technologies, their application as cancer sensors and consideration about future challenges.

  7. Chemical composition and biological investigation of Pelargonium endlicherianum root extracts.

    Science.gov (United States)

    Şeker Karatoprak, Gökçe; Göger, Fatih; Yerer, Mükerrem Betül; Koşar, Müberra

    2017-12-01

    Pelargonium endlicherianum Fenzl. (Geraniaceae) roots and flowers are traditionally used in Turkey as a decoction treatment against intestinal parasites. Neither the chemical composition nor the potential bioactivity of the plant roots has been studied before. The phenolic content and effects of P. endlicherianum root extracts on antioxidant enzyme levels on A549 cells were studied for the first time. The chemical composition was analyzed via spectrophotometric and chromatographic (HPLC MS/MS and HPLC) techniques. The antioxidant activity was determined at different concentrations ranging from 0.001 to 2 mg/mL using DPPH • and ABTS •+ radical scavenging activity, β-carotene-linoleic acid co-oxidation assay, protection of 2-deoxyribose and bovine brain-derived phospholipids against a hydroxyl radical-mediated degradation assay. Glutathione peroxidase and superoxide dismutase activities were also studied as well as the effects of the extracts on nitric oxide levels on IL-1β stimulated A549 cells. The key parameters for the most active ethyl acetate extract included the following: DPPH • IC 50 : 0.23 mg/mL, TEAC/ABTS: 2.17 mmol/L Trolox, reduction: 0.41 mmol/g AsscE, and protection of lipid peroxidation IC 50 : 0.05 mg/mL. Furthermore, the ethyl acetate extract increased the SOD level significantly compared to control group (4.48 U/mL) at concentrations of 100 and 200 μg/mL SOD, 5.50 and 5.67 U/mL, respectively. Apocynin was identified as the major component, and the ethyl acetate fraction was found to be rich in phenolic compounds. Pelargonium endlicherianum root extracts displayed antioxidant activity and increased the antioxidant enzyme levels in IL-1β stimulated A549 cells, while decreasing the NO levels.

  8. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces.

    Science.gov (United States)

    Yamanishi, Yoshihiro; Araki, Michihiro; Gutteridge, Alex; Honda, Wataru; Kanehisa, Minoru

    2008-07-01

    The identification of interactions between drugs and target proteins is a key area in genomic drug discovery. Therefore, there is a strong incentive to develop new methods capable of detecting these potential drug-target interactions efficiently. In this article, we characterize four classes of drug-target interaction networks in humans involving enzymes, ion channels, G-protein-coupled receptors (GPCRs) and nuclear receptors, and reveal significant correlations between drug structure similarity, target sequence similarity and the drug-target interaction network topology. We then develop new statistical methods to predict unknown drug-target interaction networks from chemical structure and genomic sequence information simultaneously on a large scale. The originality of the proposed method lies in the formalization of the drug-target interaction inference as a supervised learning problem for a bipartite graph, the lack of need for 3D structure information of the target proteins, and in the integration of chemical and genomic spaces into a unified space that we call 'pharmacological space'. In the results, we demonstrate the usefulness of our proposed method for the prediction of the four classes of drug-target interaction networks. Our comprehensively predicted drug-target interaction networks enable us to suggest many potential drug-target interactions and to increase research productivity toward genomic drug discovery. Softwares are available upon request. Datasets and all prediction results are available at http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/.

  9. Reproductive toxicity: Male and female reproductive systems as targets for chemical injury

    Energy Technology Data Exchange (ETDEWEB)

    Mattison, D.R.; Plowchalk, D.R.; Meadows, M.J.; Al-Juburi, A.Z.; Gandy, J.; Malek, A. (Univ. of Arkansas for Medical Sciences, Little Rock (USA))

    1990-03-01

    On the basis of current knowledge of reproductive biology and toxicology, it is apparent that chemicals affecting reproduction may elicit their effects at a number of sites in both the male and the female reproductive system. This multiplicity of targets is attributable to the dynamic nature of the reproductive system, in which the hypothalamic-pituitary-gonadal axis is controlled by precise positive and negative feedback mechanisms among its components. Interference by a xenobiotic at any level in either the male or the female reproductive system may ultimately impair hypothalamic or pituitary function. Normal gonadal processes such as spermatogenesis or oogenesis, ejaculation or ovulation, hormone production by Leydig or granulosa cells, and the structure or function of the accessory reproductive structures (e.g., epididymis, fallopian tube) also appear vulnerable to xenobiotics. The reproductive system is a complex one that requires local and circulating hormones for control. This brief review illustrates a system for characterizing the mechanism of action of reproductive toxicants, as well as for defining the sites available for disruption of reproduction. Unfortunately, at present, data addressing the actual vulnerability of reproduction are sorely lacking. However, when experiments have been conducted and combined with epidemiologic data or clinical observation, it has been possible to demonstrate impairment of reproductive processes by xenobiotics. The role of environmental exposure to xenobiotics in the increase in infertility that has been observed remains to be defined. 87 references.

  10. Chemical constituents and biological activities of two Iranian Cystoseira species.

    Science.gov (United States)

    Yegdaneh, Afsaneh; Ghannadi, Alireza; Dayani, Ladan

    2016-07-01

    The marine environment represents approximately half of the global biodiversity and could provide unlimited biological resources for the production of therapeutic drugs. Marine seaweeds comprise few thousands of species representing a considerable part of the littoral biomass. Extracts of the Cystoseira indica and Cystoseira merica were subjected to phytochemical and cytotoxicity evaluation. The amount of total phenol was determined with Folin-Ciocalteu reagent. Cytotoxicity was characterized by IC50 of human cancer cell lines including MCF-7 (human breast adenocarcinoma), HeLa (cervical carcinoma), and HT-29 (human colon adenocarcinoma) using Sulforhodamin assay. Antioxidant activities were evaluated using 2,2-diphenylpicrylhydrazyl (DPPH) method. The analysis revealed that tannins, saponins, sterols and triterpenes were the most abundant constituents in these Cystoseira species while cyanogenic and cardiac glycosides were the least ones. C. indica had the higher content of total phenolics and also showed higher antioxidant activity. Cytotoxic results showed that both species inhibited cell growth effectively, especially against MCF-7 cell line. The present findings suggest potential pharmacological applications of selected seaweeds but require further investigation and identification of their bioactive principles.

  11. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis.

    Science.gov (United States)

    Crane, Erika A; Gademann, Karl

    2016-03-14

    Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody-drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  12. Role of biologics targeting type 2 airway inflammation in asthma : What have we learned so far?

    NARCIS (Netherlands)

    Parulekar, Amit D.; Diamant, Zuzana; Hanania, Nicola A.

    Purpose of reviewSevere asthma is a heterogeneous syndrome that can be classified into distinct phenotypes and endotypes. In the type 2 (T2)-high endotype, multiple cytokines are produced that lead to eosinophilic inflammation. These cytokines and their receptors are targets for biologic therapies

  13. Biological parameters of the non-target pest Aphis gossypii Glover ...

    African Journals Online (AJOL)

    In the present work, we aimed to evaluate: 1) the influence of the Cry1Ac protein expressed by the genetically modified cotton variety (Bt) NuOpal, on the biological parameters of a non-target pest, Aphis gossypii, reared under laboratory conditions; 2) the influence of plant age on aphid development. Cotton cultivars were ...

  14. Controlled droplet microfluidic systems for multistep chemical and biological assays.

    Science.gov (United States)

    Kaminski, T S; Garstecki, P

    2017-10-16

    Droplet microfluidics is a relatively new and rapidly evolving field of science focused on studying the hydrodynamics and properties of biphasic flows at the microscale, and on the development of systems for practical applications in chemistry, biology and materials science. Microdroplets present several unique characteristics of interest to a broader research community. The main distinguishing features include (i) large numbers of isolated compartments of tiny volumes that are ideal for single cell or single molecule assays, (ii) rapid mixing and negligible thermal inertia that all provide excellent control over reaction conditions, and (iii) the presence of two immiscible liquids and the interface between them that enables new or exotic processes (the synthesis of new functional materials and structures that are otherwise difficult to obtain, studies of the functions and properties of lipid and polymer membranes and execution of reactions at liquid-liquid interfaces). The most frequent application of droplet microfluidics relies on the generation of large numbers of compartments either for ultrahigh throughput screens or for the synthesis of functional materials composed of millions of droplets or particles. Droplet microfluidics has already evolved into a complex field. In this review we focus on 'controlled droplet microfluidics' - a portfolio of techniques that provide convenient platforms for multistep complex reaction protocols and that take advantage of automated and passive methods of fluid handling on a chip. 'Controlled droplet microfluidics' can be regarded as a group of methods capable of addressing and manipulating droplets in series. The functionality and complexity of controlled droplet microfluidic systems can be positioned between digital microfluidics (DMF) addressing each droplet individually using 2D arrays of electrodes and ultrahigh throughput droplet microfluidics focused on the generation of hundreds of thousands or even millions of

  15. Water quality index calculated from biological, physical and chemical attributes.

    Science.gov (United States)

    Rocha, Francisco Cleiton; Andrade, Eunice Maia; Lopes, Fernando Bezerra

    2015-01-01

    To ensure a safe drinking water supply, it is necessary to protect water quality. To classify the suitability of the Orós Reservoir (Northeast of Brazil) water for human consumption, a Water Quality Index (WQI) was enhanced and refined through a Principal Component Analysis (PCA). Samples were collected bi-monthly at seven points (P1 - P7) from July 2009 to July 2011. Samples were analysed for 29 physico-chemical attributes and 4 macroinvertebrate metrics associated with the macrophytes Pistia stratiotes and Eichhornia crassipes. PCA allowed us to reduce the number of attributes from 33 to 12, and 85.32% of the variance was explained in five dimensions (C1 - C5). Components C1 and C3 were related to water-soluble salts and reflect the weathering process, while C2 was related to surface runoff. C4 was associated with macroinvertebrate diversity, represented by ten pollution-resistant families. C5 was related to the nutrient phosphorus, an indicator of the degree of eutrophication. The mean values for the WQIs ranged from 49 to 65 (rated as fair), indicating that water can be used for human consumption after treatment. The lowest values for the WQI were recorded at the entry points to the reservoir (P3, P1, P5, and P4), while the best WQIs were recorded at the exit points (P6 and P7), highlighting the reservoir's purification ability. The proposed WQI adequately expressed water quality, and can be used for monitoring surface water quality.

  16. Systems biology-embedded target validation: improving efficacy in drug discovery.

    Science.gov (United States)

    Vandamme, Drieke; Minke, Benedikt A; Fitzmaurice, William; Kholodenko, Boris N; Kolch, Walter

    2014-01-01

    The pharmaceutical industry is faced with a range of challenges with the ever-escalating costs of drug development and a drying out of drug pipelines. By harnessing advances in -omics technologies and moving away from the standard, reductionist model of drug discovery, there is significant potential to reduce costs and improve efficacy. Embedding systems biology approaches in drug discovery, which seek to investigate underlying molecular mechanisms of potential drug targets in a network context, will reduce attrition rates by earlier target validation and the introduction of novel targets into the currently stagnant market. Systems biology approaches also have the potential to assist in the design of multidrug treatments and repositioning of existing drugs, while stratifying patients to give a greater personalization of medical treatment. © 2013 Wiley Periodicals, Inc.

  17. Cellular responses to implant materials: biological, physical and chemical factors.

    Science.gov (United States)

    Kawahara, H

    1983-12-01

    Adhesion of bone and epithelial cells to the dental implant are vital to its retention in alveolar bone and to the prevention of infection via its 'gingival' margin. Studies of cytotoxicity, tissue irritability and carcinogenicity of implantable polymers, metals and ceramics and of tissue adhesion to them have been carried out in tissue culture and in animal experiments. The more similar the polymeric materials are chemically to living tissue the more easily are they dissolved and digested in the host. Therefore, implant materials having a molecular structure similar to protein or polysaccharide, e.g. Nylon, cannot be expected to function. On the other hand, silicones, polyethylene and Teflon (polytetrafluroethylene), which have molecular structures completely different from living substances, are generally more stable in the tissues. However, these polymers are hydrophobic and have little adhesion to living cells in spite of their high stability. They are not, therefore, suitable materials for the construction of implants. Studies on antithrombotic polymers have demonstrated the possibility of creating implantable polymers which have high stability as well as strong adhesion to the surrounding tissues. These properties may be conferred by grafting a hydrophilic polymer on to the surface of a hydrophobic polymer. Of the metals, Ti, Zr and Ta are fairly stable in living tissue, and allow cells to adhere strongly. Alloys of Co-Cr-Mo, Fe-Ni-Cr-Mo, Ti-Al-V, Ti-Mo, Ti-Pd and Ti-Pt deserve to be better evaluated because they are low in density, have high mechanical strength, stability and corrosion resistance in living tissue, and there is direct adhesion to the surrounding tissues. Biodegradable or bioactive ceramics which induce bone formation around the implant do not have sufficient mechanical strength. Implant ceramics have to be stable, e.g. crystal alumina, vitreous carbon, synthetic hydroxypatite and silicon nitrate. These exhibit high biocompatibility and

  18. Chemical and biological evaluation of rejects from the wood industry

    Directory of Open Access Journals (Sweden)

    Daniel Granato

    2005-06-01

    Full Text Available This study aimed chemical characterization and microbiological evaluation of extracts obtained from the waste of woods marketed in Paraná State: Peroba-Rosa (Aspidosperma sp., Roxinho (Peltogyne sp., Jatobá(Hymenaea sp., Curupixá (Micropholis sp., Itaúba (Mezilaurus sp., Cedrilho (Erisma sp. and Imbúia (Licaria sp., whose botanical identifications were based on anatomical studies. The extracts were prepared with different solvents, analyzed by TLC and UV/VIS techniques, and tested against: Proteus mirabilis ATCC15290, Staphylococcus aureus ATCC25923, Escherichia coli ATCC25922, Enterobacter aerogenes ATCC13048, Micrococcus luteus ATCC9341, Klebsiella pneumoniae ATCC13883, Pseudomonas aeroginosa ATCC27853, Staphylococcus aureus, Streptococcus mutans and Bacillus cereus isolated from the clinic. The ethanol extract from Peroba-rosa containing alkaloids showed activity against P. mirabilis. Itaúba, Jatobá and Imbúia methanol extracts containing phenolics, and the Roxinho ethyl acetate extract containing terpenoids and phenolics were active against K. pneumoniae, M. luteus, E. coli, S. aureus and P. mirabilis. P. aeroginosa, S. mutans and E. aerogenes were resistant to the extracts.Este estudo visa a caracterização química e a avaliação da atividade antimicrobiana de extratos obtidos a partir de rejeitos resultantes do beneficiamento de madeiras nobres comercializadas no Paraná: Peroba-Rosa (Aspidosperma sp., Roxinho (Peltogyne sp., Jatobá (Hymenaea sp., Curupixá (Micropholis sp., Itaúba (Mezilaurus sp., Cedrilho (Erisma sp. e Imbúia-do-Norte (Licaria sp., cujas identificações botânicas basearam-se em estudos anatômicos. Os extratos foram preparados com diversos solventes, analisados por CCD e espectrometria UV/VIS, testando-se contra: Proteus mirabilis ATCC15290, Escherichia coli ATCC25922, Enterobacter aerogenes ATCC13048, Staphylococcus aureus ATCC25923, Micrococcus luteus ATCC9341, Klebsiella pneumoniae ATCC13883

  19. Grasping the nature of the cell interior: from Physiological Chemistry to Chemical Biology.

    Science.gov (United States)

    Kyne, Ciara; Crowley, Peter B

    2016-08-01

    Current models of the cell interior emphasise its crowded, chemically complex and dynamically organised structure. Although the chemical composition of cells is known, the cooperative intermolecular interactions that govern cell ultrastructure are poorly understood. A major goal of biochemistry is to capture these myriad interactions in vivo. We consider the landmark discoveries that have shaped this objective, starting from the vitalist framework established by early natural philosophers. Through this historical revisionism, we extract important lessons for the bioinspired chemists of today. Scientific specialisation tends to insulate seminal ideas and hamper the unification of paradigms across biology. Therefore, we call for interdisciplinary collaboration in grappling with the complex cell interior. Recent successes in integrative structural biology and chemical biology demonstrate the power of hybrid approaches. The future roles of the (bio)chemist and model systems are also discussed as starting points for in vivo explorations. © 2016 Federation of European Biochemical Societies.

  20. The effect of biological and chemical additives on the chemical composition and fermentation process of Dactylis glomerata silage

    Directory of Open Access Journals (Sweden)

    Jhonny E. Alba-Mejía

    2016-06-01

    Full Text Available This study was carried out to determine the chemical composition, silage quality and ensilability of ten cocksfoot cultivars using biological and chemical silage additives. The plant material was harvested from the first and second cut, cultivated at the Research Station of Fodder Crops in Vatín, Czech Republic. Wilted forage was chopped and ensiled in mini-silos with 3 replicates per treatment. The treatments were: 1 without additives, used as a control; 2 with bacterial inoculants; and 3 with chemical preservatives. The results indicated that the year factor (2012-2013 influenced significantly the chemical composition of the silage in both cuts. The use of biological inoculants reduced the content of crude fibre and acid detergent fibre; but it did not influence the content of neutral detergent fibre, in comparison with the control silage in both cuts. Furthermore, the application of biological inoculants reduced the concentration of lactic acid (LA and acetic acid (AA in contrast to the control silage in the first cut. Moreover, in the second cut the same values tended to be the opposite. Interestingly, ‘Amera’ was the unique variety that presented a high concentration of butyric acid (0.2% in comparison with other varieties in the first cut. In conclusion, the biological inoculants had a favourable effect on silage fermentation. Notably, only ‘Greenly’ and ‘Starly’ varieties from the first cut; and ‘Greenly’, ‘Sw-Luxor’, and ‘Otello’ varieties from the second cut were appropriate for ensiling because their pH-values; LA and AA concentrations were ideal according to the parameters of the fermentation process.

  1. The effect of biological and chemical additives on the chemical composition and fermentation process of Dactylis glomerata silage

    Energy Technology Data Exchange (ETDEWEB)

    Alba-Mejía, J.E.; Skladanka, J.; Hilger-Delgado, A.; Klíma, M.; Knot, P.; Doležal, P.; Horky, P.

    2016-11-01

    This study was carried out to determine the chemical composition, silage quality and ensilability of ten cocksfoot cultivars using biological and chemical silage additives. The plant material was harvested from the first and second cut, cultivated at the Research Station of Fodder Crops in Vatín, Czech Republic. Wilted forage was chopped and ensiled in mini-silos with 3 replicates per treatment. The treatments were: 1) without additives, used as a control; 2) with bacterial inoculants; and 3) with chemical preservatives. The results indicated that the year factor (2012-2013) influenced significantly the chemical composition of the silage in both cuts. The use of biological inoculants reduced the content of crude fibre and acid detergent fibre; but it did not influence the content of neutral detergent fibre, in comparison with the control silage in both cuts. Furthermore, the application of biological inoculants reduced the concentration of lactic acid (LA) and acetic acid (AA) in contrast to the control silage in the first cut. Moreover, in the second cut the same values tended to be the opposite. Interestingly, ‘Amera’ was the unique variety that presented a high concentration of butyric acid (0.2%) in comparison with other varieties in the first cut. In conclusion, the biological inoculants had a favourable effect on silage fermentation. Notably, only ‘Greenly’ and ‘Starly’ varieties from the first cut; and ‘Greenly’, ‘Sw-Luxor’, and ‘Otello’ varieties from the second cut were appropriate for ensiling because their pH-values; LA and AA concentrations were ideal according to the parameters of the fermentation process. (Author)

  2. Chemical proteomics reveals HSP70 1A as a target for the anticancer diterpene oridonin in Jurkat cells.

    Science.gov (United States)

    Dal Piaz, Fabrizio; Cotugno, Roberta; Lepore, Laura; Vassallo, Antonio; Malafronte, Nicola; Lauro, Gianluigi; Bifulco, Giuseppe; Belisario, Maria Antonietta; De Tommasi, Nunziatina

    2013-04-26

    Oridonin, an ent-kaurane diterpene isolated from well known Chinese medicinal plant Isodon rubescens, has been shown to have multiple biological activities. Among them, the anticancer activity has been repeatedly reported by many research groups. The chemopreventive and antitumor effects of oridonin have been related to its ability to interfere with several pathways which are involved in cell proliferation, cell cycle arrest, apoptosis and/or autophagy. Despite the number of studies performed on this diterpene, the molecular mechanism underlying its cellular activity remains to be elucidated. Hence, we tried to mine target protein(s) of oridonin by employing a mass spectrometry-based chemical proteomics approach, providing evidences that oridonin is able to directly bind the multifunctional, stress-inducible heat shock protein 70 1A (HSP70 1A). Oridonin/HSP70 complex formation was confirmed in leukemia-derived Jurkat cells. The characterization of HSP70 inhibition by oridonin was performed using chemical and biological approaches. Moreover, the binding site of oridonin on the chaperone was identified by a mass-based approach combined with Molecular Dynamics simulations. Although natural products showed high efficiency and several of these agents have now entered in clinical trials, information concerning the mechanisms of action at a molecular level of many of them is very poor or completely missed. Nevertheless, the identification of the molecular target of a drug candidate has several advantages. The most significant is the ability to set up target-based assays and to allow structure-activity relationship studies to guide medicinal chemistry efforts towards lead optimization. The knowledge of drug targets can also facilitate the identification of potential toxicities or side effects, if there is any precedent of toxicities for the identified target. Achieving this in an effective, unbiased and efficient manner subsists as a significant challenge for the new era

  3. Recent Progress of Propolis for Its Biological and Chemical Compositions and Its Botanical Origin

    Directory of Open Access Journals (Sweden)

    Viviane Cristina Toreti

    2013-01-01

    Full Text Available Propolis is the generic name given to the product obtained from resinous substances, which is gummy and balsamic and which is collected by bees from flowers, buds, and exudates of plants. It is a popular folk medicine possessing a broad spectrum of biological activities. These biological properties are related to its chemical composition and more specifically to the phenolic compounds that vary in their structure and concentration depending on the region of production, availability of sources to collect plant resins, genetic variability of the queen bee, the technique used for production, and the season in which propolis is produced. Many scientific articles are published every year in different international journal, and several groups of researchers have focused their attention on the chemical compounds and biological activity of propolis. This paper presents a review on the publications on propolis and patents of applications and biological constituents of propolis.

  4. Seeking the chemical roots of darwinism: bridging between chemistry and biology.

    Science.gov (United States)

    Pross, Addy

    2009-08-24

    Chemistry and biology are intimately connected sciences yet the chemistry-biology interface remains problematic and central issues regarding the very essence of living systems remain unresolved. In this essay we build on a kinetic theory of replicating systems that encompasses the idea that there are two distinct kinds of stability in nature-thermodynamic stability, associated with "regular" chemical systems, and dynamic kinetic stability, associated with replicating systems. That fundamental distinction is utilized to bridge between chemistry and biology by demonstrating that within the parallel world of replicating systems there is a second law analogue to the second law of thermodynamics, and that Darwinian theory may, through scientific reductionism, be related to that second law analogue. Possible implications of these ideas to the origin of life problem and the relationship between chemical emergence and biological evolution are discussed.

  5. Nuclear, biological and chemical warfare. Part I: Medical aspects of nuclear warfare.

    Science.gov (United States)

    Kasthuri, A S; Pradhan, A B; Dham, S K; Bhalla, I P; Paul, J S

    1990-04-01

    Casualties in earlier wars were due much more to diseases than to weapons. Mention has been made in history of the use of biological agents in warfare, to deny the enemy food and water and to cause disease. In the first world war chemical agents were used to cause mass casualties. Nuclear weapons were introduced in the second world war. Several countries are now involved in developing nuclear, biological and chemical weapon systems, for the mass annihilation of human beings, animals and plants, and to destroy the economy of their enemies. Recently, natural calamities and accidents in nuclear, chemical and biological laboratories and industries have caused mass instantaneous deaths in civilian population. The effects of future wars will not be restricted to uniformed persons. It is time that physicians become aware of the destructive potential of these weapons. Awareness, immediate protective measures and first aid will save a large number of persons. This series of articles will outline the medical aspects of nuclear, biological and chemical weapon systems in three parts. Part I will deal with the biological effects of a nuclear explosion. The short and long term effects due to blast, heat and associated radiation are highlighted. In Part II, the role of biological agents which cause commoner or new disease patterns is mentioned. Some of the accidents from biological warfare laboratories are a testimony to its potential deleterious effects. Part III deals with medical aspects of chemical warfare agents, which in view of their mass effects can overwhelm the existing medical resources, both civilian and military.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    CERN Document Server

    Demirel, Yasar

    2014-01-01

    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  7. SYNBIOCHEM Synthetic Biology Research Centre, Manchester – A UK foundry for fine and speciality chemicals production

    Directory of Open Access Journals (Sweden)

    Le Feuvre RA

    2016-12-01

    Full Text Available The UK Synthetic Biology Research Centre, SYNBIOCHEM, hosted by the Manchester Institute of Biotechnology at the University of Manchester is delivering innovative technology platforms to facilitate the predictable engineering of microbial bio-factories for fine and speciality chemicals production. We provide an overview of our foundry activities that are being applied to grand challenge projects to deliver innovation in bio-based chemicals production for industrial biotechnology.

  8. The biological exposure index: its use in assessing chemical exposures in the workplace.

    Science.gov (United States)

    Lowry, L K

    1987-12-01

    Human exposure to chemicals in the workplace has traditionally been assessed by determining the concentration of an airborne chemical in the workroom air. More recently, biological monitoring has been used to assess worker uptake of chemicals by all routes of exposure. Both approaches for the assessment of exposure and uptake are complementary. This relationship is examined, along with the advantages and limitations of using biological monitoring. The concept of the biological exposure index (BEI), developed by the American Conference of Governmental Industrial Hygienists (ACGIH), and information on the intended use and interpretation of BEIs are described. Examples are presented on the use of biological monitoring in NIOSH Health Hazard Evaluations (e.g., carboxyhemoglobin in blood to assess exposure to carbon monoxide, urinary metabolites of trichloroethylene to assess exposure to trichloroethanol, and 2-ethoxyacetic acid in urine to assess exposure to 2-ethoxyethanol). The progress of current research studies on the biological monitoring of volunteers exposed to paint spray solvents is presented, along with speculation on the future directions of biological monitoring research.

  9. Controlled multiphase interfaces in microfluidic systems for chemical/biological sensing

    Science.gov (United States)

    Cheng, Daming

    Multiphase interfaces, which are scale-dependant, play an important role in microfluidics to develop a broad range of applications. There are rising demands for interface control methods, which provide more precise control over the positions and the configurations of the interfaces, consume minimum or zero power, possess simple structures, and require fewer fabrication steps. In my studies, I explored the controlled interfaces in microfluidic systems to provide competitive alternatives in the development of chemical/biological sensors and devices. In Chapter 2, selective alkanethiol treatment on gold or copper surfaces is used to create hydrophilic-hydrophobic boundaries at the boundaries between glass and these metal surfaces in microfluidic channels. Robust liquid-air interfaces, featured with different 3-D structures, are formed at these boundaries. This method has been further extended into the application of liquid crystal for aqueous phase sensing in a microfluidic channel structure, which is described in Chapter 5. In Chapter 3, an interface of liquid crystal for vapor phase sensing application is stabilized using a micropillar array structure, which provided an effective tool for utilizing liquid crystal interface for sensing. The sensing performance was improved by better design and process optimization. In Chapter 4, a sensing interface between liquid crystal and the target aqueous phase is created using the laminar flow of the liquids within a packaged microfluidic sensing device. This study provided an autonomous sensing scheme, which can be used without technical personnel evolved, and contributed to fulfilling the demand of conducting sensing application in the hostile environments inaccessible to human beings. In Chapter 6, I describe a bubble control device for microfluidic systems, which harnesses the controlled liquid-air interfaces for bubble trapping and removal. This study provided a solution for the long-existing problem of inadvertently

  10. Mapping in vivo target interaction profiles of covalent inhibitors using chemical proteomics with label-free quantification.

    Science.gov (United States)

    van Rooden, Eva J; Florea, Bogdan I; Deng, Hui; Baggelaar, Marc P; van Esbroeck, Annelot C M; Zhou, Juan; Overkleeft, Herman S; van der Stelt, Mario

    2018-04-01

    Activity-based protein profiling (ABPP) has emerged as a valuable chemical proteomics method to guide the therapeutic development of covalent drugs by assessing their on-target engagement and off-target activity. We recently used ABPP to determine the serine hydrolase interaction landscape of the experimental drug BIA 10-2474, thereby providing a potential explanation for the adverse side effects observed with this compound. ABPP allows mapping of protein interaction landscapes of inhibitors in cells, tissues and animal models. Whereas our previous protocol described quantification of proteasome activity using stable-isotope labeling, this protocol describes the procedures for identifying the in vivo selectivity profile of covalent inhibitors with label-free quantitative proteomics. The optimization of our protocol for label-free quantification methods results in high proteome coverage and allows the comparison of multiple biological samples. We demonstrate our protocol by assessing the protein interaction landscape of the diacylglycerol lipase inhibitor DH376 in mouse brain, liver, kidney and testes. The stages of the protocol include tissue lysis, probe incubation, target enrichment, sample preparation, liquid chromatography-mass spectrometry (LC-MS) measurement, data processing and analysis. This approach can be used to study target engagement in a native proteome and to identify potential off targets for the inhibitor under investigation. The entire protocol takes at least 4 d, depending on the number of samples.

  11. A Systems Biology Approach for Identifying Hepatotoxicant Groups Based on Similarity in Mechanisms of Action and Chemical Structure.

    Science.gov (United States)

    Hebels, Dennie G A J; Rasche, Axel; Herwig, Ralf; van Westen, Gerard J P; Jennen, Danyel G J; Kleinjans, Jos C S

    2016-01-01

    When evaluating compound similarity, addressing multiple sources of information to reach conclusions about common pharmaceutical and/or toxicological mechanisms of action is a crucial strategy. In this chapter, we describe a systems biology approach that incorporates analyses of hepatotoxicant data for 33 compounds from three different sources: a chemical structure similarity analysis based on the 3D Tanimoto coefficient, a chemical structure-based protein target prediction analysis, and a cross-study/cross-platform meta-analysis of in vitro and in vivo human and rat transcriptomics data derived from public resources (i.e., the diXa data warehouse). Hierarchical clustering of the outcome scores of the separate analyses did not result in a satisfactory grouping of compounds considering their known toxic mechanism as described in literature. However, a combined analysis of multiple data types may hypothetically compensate for missing or unreliable information in any of the single data types. We therefore performed an integrated clustering analysis of all three data sets using the R-based tool iClusterPlus. This indeed improved the grouping results. The compound clusters that were formed by means of iClusterPlus represent groups that show similar gene expression while simultaneously integrating a similarity in structure and protein targets, which corresponds much better with the known mechanism of action of these toxicants. Using an integrative systems biology approach may thus overcome the limitations of the separate analyses when grouping liver toxicants sharing a similar mechanism of toxicity.

  12. Drug-loaded nanocarriers: passive targeting and crossing of biological barriers.

    Science.gov (United States)

    Rabanel, J M; Aoun, V; Elkin, I; Mokhtar, M; Hildgen, P

    2012-01-01

    Poor bioavailability and poor pharmacokinetic characteristics are some of the leading causes of drug development failure. Therefore, poorly-soluble drugs, fragile proteins or nucleic acid products may benefit from their encapsulation in nanosized vehicles, providing enhanced solubilization, protection against degradation, and increased access to pathological compartments. A key element for the success of drug-loaded nanocarriers is their ability to either cross biological barriers themselves, or allow loaded drugs to traverse them to achieve optimal pharmacological action at pathological sites. Depending on the mode of administration, nanocarriers may have to cross different physiological barriers in their journey towards their target. In this review, the crossing of biological barriers by passive targeting strategies will be presented for intravenous delivery (vascular endothelial lining, particularly for tumor vasculature and blood brain barrier targeting), oral administration (gastrointestinal lining), and upper airway administration (pulmonary epithelium). For each specific barrier, background information will be provided on the structure and biology of the tissues involved as well as available pathways for nano-objects or loaded drugs (diffusion and convection through fenestration, transcytosis, tight junction crossing, etc.). The determinants of passive targeting - size, shape, surface chemistry, surface patterning of nanovectors - will be discussed in light of current results. Perspectives on each mode of administration will be presented. The focus will be on polymeric nanoparticles and dendrimers, although advances in liposome technology will be also reported as they represent the largest body in the drug delivery literature.

  13. Enhancing cognate target elution efficiency in gel-free chemical proteomics

    Directory of Open Access Journals (Sweden)

    Branka Radic-Sarikas

    2015-12-01

    Full Text Available Gel-free liquid chromatography mass spectrometry coupled to chemical proteomics is a powerful approach for characterizing cellular target profiles of small molecules. We have previously described a fast and efficient elution protocol; however, altered target profiles were observed. We hypothesised that elution conditions critically impact the effectiveness of disrupting drug-protein interactions. Thus, a number of elution conditions were systematically assessed with the aim of improving the recovery of all classes of proteins whilst maintaining compatibility with immunoblotting procedures. A double elution with formic acid combined with urea emerged as the most efficient and generically applicable elution method for chemical proteomics

  14. Structural biology of antibody recognition of carbohydrate epitopes and potential uses for targeted cancer immunotherapies.

    Science.gov (United States)

    Dingjan, Tamir; Spendlove, Ian; Durrant, Lindy G; Scott, Andrew M; Yuriev, Elizabeth; Ramsland, Paul A

    2015-10-01

    Monoclonal antibodies represent the most successful class of biopharmaceuticals for the treatment of cancer. Mechanisms of action of therapeutic antibodies are very diverse and reflect their ability to engage in antibody-dependent effector mechanisms, internalize to deliver cytotoxic payloads, and display direct effects on cells by lysis or by modulating the biological pathways of their target antigens. Importantly, one of the universal changes in cancer is glycosylation and carbohydrate-binding antibodies can be produced to selectively recognize tumor cells over normal tissues. A promising group of cell surface antibody targets consists of carbohydrates presented as glycolipids or glycoproteins. In this review, we outline the basic principles of antibody-based targeting of carbohydrate antigens in cancer. We also present a detailed structural view of antibody recognition and the conformational properties of a series of related tissue-blood group (Lewis) carbohydrates that are being pursued as potential targets of cancer immunotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Sequence-targeted chemical modifications of nucleic acids by complementary oligonucleotides covalently linked to porphyrins.

    OpenAIRE

    Trung Le Doan; Perrouault, L; Chassignol, M; Nguyen, T T; Hélène, C

    1987-01-01

    Oligo-heptathymidylates covalently linked to porphyrins bind to complementary sequences and can induce local damages on the target molecule. In dark reactions, iron porphyrin derivatives exhibited various chemical reactivities resulting in base oxidation, crosslinking and chain scission reactions. Reactions induced by reductants, such as ascorbic acid, dithiothreitol or mercapto-propionic acid, led to very localised reactions. A single base was the target for more than 50% of the damages. Oxi...

  16. Nanobiotechnology meets plant cell biology: Carbon nanotubes as organelle targeting nanocarriers

    KAUST Repository

    Serag, Maged F.

    2013-01-01

    For years, nanotechnology has shown great promise in the fields of biomedical and biotechnological sciences and medical research. In this review, we demonstrate its versatility and applicability in plant cell biology studies. Specifically, we discuss the ability of functionalized carbon nanotubes to penetrate the plant cell wall, target specific organelles, probe protein-carrier activity and induce organelle recycling in plant cells. We also, shed light on prospective applications of carbon nanomaterials in cell biology and plant cell transformation. © 2013 The Royal Society of Chemistry.

  17. The journal of medical chemical, biological and radiological defense, an update

    International Nuclear Information System (INIS)

    Price, B. B. S.; Peitersen, L.E.

    2009-01-01

    The Journal of Medical Chemical, Biological, and Radiological Defense (www.JMedCBR.org) is a peer-reviewed scientific online journal focusing on the biology, chemistry, physiology, toxicology and treatment of exposure to threat agents. JMedCBR provides a central international forum for the publication of current research and development information on medical chemical, biological and radiological defense, as well as training, doctrine, and problems related to chemical, biological and radiological casualties. JMedCBR is sponsored by the US Defense Threat Reduction Agency (DTRA) Chem-Bio Technologies Directorate as part of its scientific outreach program in chemical and biological defense solutions for the Department of Defense. In addition to scientific and medical research, JMedCBR hosts an archive of related papers from authors in the field. Although organized into annual issues, articles are published on the web continuously. The complete JMedCBR is published electronically and is made available to the scientific community free of charge. JMedCBR is committed to providing its readers with quality scientific information and critical analyses. All submissions are peer-reviewed by an editorial board of recognized and respected international scientists who represent expertise in different aspects of medical chemical, biological and radiological defense. Contributions to JMedCBR must be original works of the author(s) and must not have been previously published or simultaneously submitted to other publications. The author(s) transfer the copyright of articles published in JMedCBR to the journal. A copyright transfer form must accompany each manuscript submission. For more information on submitting to JMedCBR, see the Authors' Guide, available at http://www.jmedcbr.org/authorGuide.html.(author)

  18. Vertical stratification of physical, chemical and biological components in two saline lakes Shira and Shunet (South Siberia, Russia)

    NARCIS (Netherlands)

    Degermendzhy, A.G.; Zadereev, E.S.; Rogozin, D.Y.; Prokopkin, I.; Barkhatov, Y.V.; Tolomeev, A.; Khromechek, E.B.; Janse, J.H.; Mooij, W.M.; Gulati, R.D.

    2010-01-01

    A feature of meromictic lakes is that several physicochemical and biological gradients affect the vertical distribution of different organisms. The vertical stratification of physical, chemical and biological components in saline, fishless meromictic lakes Shira and Shunet (Siberia, Russia) is quite

  19. Influence of physico-chemical treatment on the subsequent biological process treating paper industry wastewater.

    Science.gov (United States)

    el Khames Saad, Mouhamed; Moussaoui, Younes; Zaghbani, Asma; Mosrati, Imen; Elaloui, Elimame; Ben Salem, Ridha

    2012-01-01

    The present paper presents the main results of the biodegradation study of paper industry wastewater through physico-chemical treatment. Indeed, around 60% of chemical oxygen demand (COD) removal can be achieved by electroflocculation treatment. Furthermore, a removal efficiency of the COD of almost 91% has been obtained by biological treatment, with activated amount of sludge for 24 h of culture. Concerning the physico-chemical pre-treatment of the untreated, filtered and electroflocculated rejection effluents, it has been investigated through the degradation curve of COD studies.

  20. Enabling Technologies for Point and Remote Sensing of Chemical and Biological Agents Using Surface Enhanced Raman Scattering (SERS) Techniques

    Science.gov (United States)

    2009-09-01

    chemicals: brilliant cresyl blue ( BCB ; Sigma), phenylalanine (PHE; Sigma), diisopropyl methylphosphonate (DIMP; Sigma), dimethyl methylphosphonate...microscopy BCB brilliant cresyl blue CBW Chemical and biological warfare CCD charged coupled device COTS commercial-off-the-shelf CT charge transfer

  1. Progress towards the Conventionon Biological Diversity terrestrial2010 and marine 2012 targets forprotected area coverage

    DEFF Research Database (Denmark)

    Coad, Lauren; Burgess, Neil David; Fish, Lucy

    2010-01-01

    Protected area coverage targets set by the Convention on Biological Diversity (CBD) for both terrestrial and marine environments provide a major incentive for governments to review and upgrade their protected area systems. Assessing progress towards these targets will form an important component...... of the work of the Xth CBD Conference of Parties meeting to be held in Japan in 2010. The World Database on Protected Areas (WDPA) is the largest assembly of data on the world's terrestrial and marine protected areas and, as such, represents a fundamental tool in tracking progress towards protected area...

  2. Physical-chemical characterization and biological assessment of simple and lithium-doped biological-derived hydroxyapatite thin films for a new generation of metallic implants

    Science.gov (United States)

    Popescu, A. C.; Florian, P. E.; Stan, G. E.; Popescu-Pelin, G.; Zgura, I.; Enculescu, M.; Oktar, F. N.; Trusca, R.; Sima, L. E.; Roseanu, A.; Duta, L.

    2018-05-01

    We report on the synthesis by PLD of simple and lithium-doped biological-origin hydroxyapatite (HA) films. The role of doping reagents (Li2CO3, Li3PO4) on the morphology, structure, chemical composition, bonding strength and cytocompatibility of the films was investigated. SEM investigations of the films evidenced a surface morphology consisting of particles with mean diameters of (5-7) μm. GIXRD analyses demonstrated that the synthesized structures consisted of HA phase only, with different degrees of crystallinity, mainly influenced by the doping reagent type. After only three days of immersion in simulated body fluid, FTIR spectra showed a remarkable growth of a biomimetic apatitic film, indicative of a high biomineralization capacity of the coatings. EDS analyses revealed a quasi-stoichiometric target-to-substrate transfer, the values inferred for the Ca/P ratio corresponding to a biological apatite. All synthesized structures displayed a hydrophilic behavior, suitable for attachment of osteoblast cells. In vitro cell viability tests showed that the presence of Li2CO3 and Li3PO4 as doping reagents promoted the hMSC growth on film surfaces. Taking into consideration these enhanced characteristics, corroborated with a low fabrication cost generated by sustainable resources, one should consider the lithium-doped biological-derived materials as promising prospective solutions for a next generation of coated implants with rapid osteointegration.

  3. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils

    NARCIS (Netherlands)

    Diepeningen, van A.D.; Vos, de O.J.; Korthals, G.W.; Bruggen, van A.H.C.

    2006-01-01

    A comparative study of organic and conventional arable farming systems was conducted in The Netherlands to determine the effect of management practices on chemical and biological soil properties and soil health. Soils from thirteen accredited organic farms and conventionally managed neighboring

  4. 15 CFR 744.4 - Restrictions on certain chemical and biological weapons end-uses.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Restrictions on certain chemical and biological weapons end-uses. 744.4 Section 744.4 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT...

  5. Control of Rhizoctonia solani in potato by biological, chemical and integrated measures

    NARCIS (Netherlands)

    Jager, G.; Velvis, H.; Lamers, J.G.; Mulder, A.; Roosjen, J.

    1991-01-01

    The effects of biological, chemical and integrated control on the formation of selerotia ofRhizoctonia solani on new potato tubers were studied in experimental fields. Sprouts of seed tubers, sprouted in daylight, were inoculated withVerticillium biguttatum, an ecologically obligate mycoparasite

  6. Microwave-ultrasound combined reactor suitable for atmospheric sample preparation procedure of biological and chemical products

    NARCIS (Netherlands)

    Lagha, A.; Chemat, S.; Bartels, P.V.; Chemat, F.

    1999-01-01

    A compact apparatus in which a specific position can be irradiated by microwaves (MW) and ultrasound (US) simultaneously has been developed. The MW-US reactor has been designed for atmospheric pressure digestion and dissolution of biological and chemical products. The reactor can treat a range of

  7. Combined biological and physico-chemical treatment of filtered pig manure wastewater : pilot investigations

    NARCIS (Netherlands)

    Kalyuzhnyi, S.; Sklyar, V.; Epov, A.; Archipchenko, I.; Barboulina, I.; Orlova, O.; Klapwijk, A.

    2002-01-01

    Combined biological and physico-chemical treatment of filtered pig manure wastewater has been investigated on the pilot installation operated under ambient temperatures (15-20°C) and included: i) UASB-reactor for elimination of major part of COD from the filtrate; (ii) stripper of CO2 fluidised bed

  8. Weapons of mass destruction: Overview of the CBRNEs (Chemical, Biological, Radiological, Nuclear, and Explosives).

    Science.gov (United States)

    Prockop, Leon D

    2006-11-01

    The events of September 11, 2001, made citizens of the world acutely aware of disasters consequent to present-day terrorism. This is a war being waged for reasons obscure to many of its potential victims. The term "NBCs" was coined in reference to terrorist weapons of mass destruction, i.e., nuclear, biological and chemical. The currently accepted acronym is "CBRNE" which includes Chemical, Biological, Radiological, Nuclear, and Explosive weapons. Non-nuclear explosives are the most common terrorist weapon now in use. Nuclear and radiological weapons are beyond the scope of this publication, which focuses on the "CBEs", i.e. chemical, biological and explosive weapons. Although neurologists will not be the first responders to CBEs, they must know about the neurological effects in order to provide diagnosis and treatment to survivors. Neurological complications of chemical, biological and explosive weapons which have or may be used by terrorists are reviewed by international experts in this publication. Management and treatment profiles are outlined.

  9. Chapter 7. Management strategies for dwarf mistletoes: Biological, chemical, and genetic approaches

    Science.gov (United States)

    S. F. Shamoun; L. E. DeWald

    2002-01-01

    The opportunity and need for management of mistletoe populations with biological, chemical, and genetic approaches are greatest for application to the dwarf mistletoes. Although much information is available on these management strategies (see reviews by Hawksworth 1972, Knutson 1978), significant research and development are still required for these to become...

  10. Some aspect of the physico-chemical and biological properties of ...

    African Journals Online (AJOL)

    Some aspect of Physico-Chemical and Biological properties of Cross River was investigated once every month from May 2001-May 2002, measurements were made from the surface water at three locations, Ikot Okpora in Biase, Obubra, and Ikom. The temperature of the river varied from27.38±0.74°C at Ikot Okpora to ...

  11. The search for life's origins: Progress and future directions in planetary biology and chemical evolution

    Science.gov (United States)

    1990-01-01

    The current state is reviewed of the study of chemical evolution and planetary biology and the probable future is discussed of the field, at least for the near term. To this end, the report lists the goals and objectives of future research and makes detailed, comprehensive recommendations for accomplishing them, emphasizing those issues that were inadequately discussed in earlier Space Studies Board reports.

  12. Assessing environmental quality status by integrating chemical and biological effect data: The Cartagena coastal zone as a case.

    Science.gov (United States)

    Martínez-Gómez, Concepción; Fernández, Beatriz; Robinson, Craig D; Campillo, J Antonio; León, Víctor M; Benedicto, José; Hylland, Ketil; Vethaak, A Dick

    2017-03-01

    Cartagena coastal zone (W Mediterranean) was chosen for a practical case study to investigate the suitability of an integrated indicator framework for marine monitoring and assessment of chemicals and their effects, which was developed by ICES and OSPAR. Red mullet (Mullus barbatus) and the Mediterranean mussel (Mytilus galloprovincialis) were selected as target species. Concentrations of contaminants in sediment and biota, and contaminant-related biomarkers were analysed. To assess environmental quality in the Cartagena coastal zone with respect to chemical pollution, data were assessed using available assessment criteria, and then integrated for different environmental matrices. A qualitative scoring method was used to rank the overall assessments into selected categories and to evaluate the confidence level of the final integrated assessment. The ICES/OSPAR integrated assessment framework, originally designed for the North Atlantic, was found to be applicable for Mediterranean species and environmental matrices. Further development of assessment criteria of chemical and biological parameters in sediments and target species from the Mediterranean will, however, be required before this framework can be fully applied for determining Good Environmental Status (GES) of the Marine Strategy Framework Directive in these regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. FGFR a promising druggable target in cancer: Molecular biology and new drugs.

    Science.gov (United States)

    Porta, Rut; Borea, Roberto; Coelho, Andreia; Khan, Shahanavaj; Araújo, António; Reclusa, Pablo; Franchina, Tindara; Van Der Steen, Nele; Van Dam, Peter; Ferri, Jose; Sirera, Rafael; Naing, Aung; Hong, David; Rolfo, Christian

    2017-05-01

    The Fibroblast Growth Factor Receptor (FGFR) family consists of Tyrosine Kinase Receptors (TKR) involved in several biological functions. Recently, alterations of FGFR have been reported to be important for progression and development of several cancers. In this setting, different studies are trying to evaluate the efficacy of different therapies targeting FGFR. This review summarizes the current status of treatments targeting FGFR, focusing on the trials that are evaluating the FGFR profile as inclusion criteria: Multi-Target, Pan-FGFR Inhibitors and anti-FGF (Fibroblast Growth Factor)/FGFR Monoclonal Antibodies. Most of the TKR share intracellular signaling pathways; therefore, cancer cells tend to overcome the inhibition of one tyrosine kinase receptor by activating another. The future of TKI (Tyrosine Kinase Inhibitor) therapy will potentially come from multi-targeted TKIs that target different TKR simultaneously. It is crucial to understand the interaction of the FGF-FGFR axis with other known driver TKRs. Based on this, it is possible to develop therapeutic strategies targeting multiple connected TKRs at once. One correct step in this direction is the reassessment of multi target inhibitors considering the FGFR status of the tumor. Another opportunity arises from assessing the use of FGFR TKI on patients harboring FGFR alterations. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Li, Mingji; Borodina, Irina

    2015-02-01

    Synthetic biology and metabolic engineering enable generation of novel cell factories that efficiently convert renewable feedstocks into biofuels, bulk, and fine chemicals, thus creating the basis for biosustainable economy independent on fossil resources. While over a hundred proof-of-concept chemicals have been made in yeast, only a very small fraction of those has reached commercial-scale production so far. The limiting factor is the high research cost associated with the development of a robust cell factory that can produce the desired chemical at high titer, rate, and yield. Synthetic biology has the potential to bring down this cost by improving our ability to predictably engineer biological systems. This review highlights synthetic biology applications for design, assembly, and optimization of non-native biochemical pathways in baker's yeast Saccharomyces cerevisiae We describe computational tools for the prediction of biochemical pathways, molecular biology methods for assembly of DNA parts into pathways, and for introducing the pathways into the host, and finally approaches for optimizing performance of the introduced pathways. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  15. Biologic targets identified from dynamic 18FDG-PET and implications for image-guided therapy

    International Nuclear Information System (INIS)

    Rusten, Espen; Malinen, Eirik; Roedal, Jan; Bruland, Oeyvind S.

    2013-01-01

    Purpose: The outcome of biologic image-guided radiotherapy depends on the definition of the biologic target. The purpose of the current work was to extract hyper perfused and hypermetabolic regions from dynamic positron emission tomography (D-PET) images, to dose escalate either region and to discuss implications of such image guided strategies. Methods: Eleven patients with soft tissue sarcomas were investigated with D-PET. The images were analyzed using a two-compartment model producing parametric maps of perfusion and metabolic rate. The two image series were segmented and exported to a treatment planning system, and biological target volumes BTV per and BTV met (perfusion and metabolism, respectively) were generated. Dice's similarity coefficient was used to compare the two biologic targets. Intensity-modulated radiation therapy (IMRT) plans were generated for a dose painting by contours regime, where planning target volume (PTV) was planned to 60 Gy and BTV to 70 Gy. Thus, two separate plans were created for each patient with dose escalation of either BTV per or BTV met . Results: BTV per was somewhat smaller than BTV met (209 ±170 cm 3 against 243 ±143 cm 3 , respectively; population-based mean and s.d.). Dice's coefficient depended on the applied margin, and was 0.72 ±0.10 for a margin of 10 mm. Boosting BTV per resulted in mean dose of 69 ±1.0 Gy to this region, while BTV met received 67 ±3.2 Gy. Boosting BTV met gave smaller dose differences between the respective non-boost DVHs (such as D 98 ). Conclusions: Dose escalation of one of the BTVs results in a partial dose escalation of the other BTV as well. If tumor aggressiveness is equally pronounced in hyper perfused and hypermetabolic regions, this should be taken into account in the treatment planning

  16. Precautions against biological and chemical terrorism directed at food and water supplies.

    Science.gov (United States)

    Khan, A S; Swerdlow, D L; Juranek, D D

    2001-01-01

    Deliberate food and water contamination remains the easiest way to distribute biological or chemical agents for the purpose of terrorism, despite the national focus on dissemination of these agents as small-particle aerosols or volatile liquids. Moreover, biological terrorism as a result of sabotage of our food supply has already occurred in the United States. A review of naturally occurring food- and waterborne outbreaks exposes this vulnerability and reaffirms that, depending on the site of contamination, a significant number of people could be infected or injured over a wide geographic area. Major knowledge gaps exist with regard to the feasibility of current disinfection and inspection methods to protect our food and water against contamination by a number of biological and chemical agents. However, a global increase in food and water safety initiatives combined with enhanced disease surveillance and response activities are our best hope to prevent and respond quickly to food- and waterborne bioterrorism.

  17. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Borodina, Irina; Li, Mingji

    2015-01-01

    Synthetic biology and metabolic engineering enable generation of novel cell factories that efficiently convert renewable feedstocks into biofuels, bulk, and fine chemicals, thus creating the basis for biosustainable economy independent on fossil resources. While over a hundred proof-of-concept ch......Synthetic biology and metabolic engineering enable generation of novel cell factories that efficiently convert renewable feedstocks into biofuels, bulk, and fine chemicals, thus creating the basis for biosustainable economy independent on fossil resources. While over a hundred proof...... computational tools for the prediction of biochemical pathways, molecular biology methods for assembly of DNA parts into pathways, and for introducing the pathways into the host, and finally approaches for optimizing performance of the introduced pathways....

  18. Chemically different non-thermal plasmas target distinct cell death pathways

    Czech Academy of Sciences Publication Activity Database

    Lunov, O.; Zablotskyy, V.; Chrupina, O.; Lunova, M.; Jirsa, M.; Dejneka, A.; Kubinová, Šárka

    2017-01-01

    Roč. 7, apr (2017), s. 600 ISSN 2045-2322 R&D Projects: GA MŠk(CZ) LO1309 Institutional support: RVO:68378041 Keywords : chemically different * non-thermal plasmas * target distinct cell death pathways Subject RIV: FP - Other Medical Disciplines OBOR OECD: Biophysics Impact factor: 4.259, year: 2016

  19. Application of Advanced Functional Maps to the Radiation Treatment Plan for Biological Clinical Target Volumes

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Jung, Won Gyun; Suh, Tae Suk; Lee, Jeong Woo; Ahn, Kook Jin

    2010-01-01

    Anatomical images including computerized tomography (CT) and T1-weighted magnetic resonance (T1-MR) images have been generally used to determine target volumes in radiation treatment plan (RTP). As only conventional images were referenced, tumors have tendency not to be enhanced by administrating agents depending on the tumor grade and patients. Recent advanced MR images, however, could guide physiologically and pathologically significant tumor characteristics. Furthermore, if the multi-functional images are employed, errors from using only one type of image will be complemented and distinct biological parameters can be applied as histological activity index. In this study, biological clinical target volumes (bCTVs) considered vascularity and cellularity can be determined based on multifunctional parametric maps using the in-house software for image registration and analysis. Using the developed software, rCBV and ADC maps were analyzed and bCTVs can be resolved considering vascularity and cellularity. In result, the bCTVs are exported on conventional images for biological RTP using image registration. Based on the multi-functional parametric maps of overlapped tumor regions, malignant sub-volumes can be determined. Multi-functional parametric maps would contribute to the detection of physiological and pathological tumor characteristics which are not be found in conventional images. They would reflect individual tumor biological characteristics to RTP for local tumor control.

  20. Climate warming increases biological control agent impact on a non-target species.

    Science.gov (United States)

    Lu, Xinmin; Siemann, Evan; He, Minyan; Wei, Hui; Shao, Xu; Ding, Jianqing

    2015-01-01

    Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non-target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non-target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non-target effect magnitude and increase non-target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species. © 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  1. EGFR-Targeting as a Biological Therapy: Understanding Nimotuzumab's Clinical Effects

    International Nuclear Information System (INIS)

    Perez, Rolando; Moreno, Ernesto; Garrido, Greta; Crombet, Tania

    2011-01-01

    Current clinical trials of epidermal growth factor receptor (EGFR)-targeted therapies are mostly guided by a classical approach coming from the cytotoxic paradigm. The predominant view is that the efficacy of EGFR antagonists correlates with skin rash toxicity and induction of objective clinical response. Clinical benefit from EGFR-targeted therapies is well documented; however, chronic use in advanced cancer patients has been limited due to cumulative and chemotherapy-enhanced toxicity. Here we analyze different pieces of data from mechanistic and clinical studies with the anti-EGFR monoclonal antibody Nimotuzumab, which provides several clues to understand how this antibody may induce a biological control of tumor growth while keeping a low toxicity profile. Based on these results and the current state of the art on EGFR-targeted therapies, we discuss the need to evaluate new therapeutic approaches using anti-EGFR agents, which would have the potential of transforming advanced cancer into a long-term controlled chronic disease

  2. Distorted wave calculations for electron loss process induced by bare ion impact on biological targets

    International Nuclear Information System (INIS)

    Monti, J.M.; Tachino, C.A.; Hanssen, J.; Fojón, O.A.; Galassi, M.E.; Champion, C.; Rivarola, R.D.

    2014-01-01

    Distorted wave models are employed to investigate the electron loss process induced by bare ions on biological targets. The two main reactions which contribute to this process, namely, the single electron ionization as well as the single electron capture are here studied. In order to further assess the validity of the theoretical descriptions used, the influence of particular mechanisms are studied, like dynamic screening for the case of electron ionization and energy deposition on the target by the impacting projectile for the electron capture one. Results are compared with existing experimental data. - Highlights: ► Distorted wave models are used to investigate ion-molecule collisions. ► Differential and total cross-sections for capture and ionization are evaluated. ► The influence of dynamic screening is determined. ► Capture reaction dominates the mean energy deposited by the projectile on the target

  3. Chemical or Biological Terrorist Attacks: An Analysis of the Preparedness of Hospitals for Managing Victims Affected by Chemical or Biological Weapons of Mass Destruction

    Science.gov (United States)

    Bennett, Russell L.

    2006-01-01

    The possibility of a terrorist attack employing the use of chemical or biological weapons of mass destruction (WMD) on American soil is no longer an empty threat, it has become a reality. A WMD is defined as any weapon with the capacity to inflict death and destruction on such a massive scale that its very presence in the hands of hostile forces is a grievous threat. Events of the past few years including the bombing of the World Trade Center in 1993, the Murrah Federal Building in Oklahoma City in 1995 and the use of planes as guided missiles directed into the Pentagon and New York’s Twin Towers in 2001 (9/11) and the tragic incidents involving twenty-three people who were infected and five who died as a result of contact with anthrax-laced mail in the Fall of 2001, have well established that the United States can be attacked by both domestic and international terrorists without warning or provocation. In light of these actions, hospitals have been working vigorously to ensure that they would be “ready” in the event of another terrorist attack to provide appropriate medical care to victims. However, according to a recent United States General Accounting Office (GAO) nationwide survey, our nation’s hospitals still are not prepared to manage mass causalities resulting from chemical or biological WMD. Therefore, there is a clear need for information about current hospital preparedness in order to provide a foundation for systematic planning and broader discussions about relative cost, probable effectiveness, environmental impact and overall societal priorities. Hence, the aim of this research was to examine the current preparedness of hospitals in the State of Mississippi to manage victims of terrorist attacks involving chemical or biological WMD. All acute care hospitals in the State were selected for inclusion in this study. Both quantitative and qualitative methods were utilized for data collection and analysis. Six hypotheses were tested. Using a

  4. Leveraging 3D chemical similarity, target and phenotypic data in the identification of drug-protein and drug-adverse effect associations.

    Science.gov (United States)

    Vilar, Santiago; Hripcsak, George

    2016-01-01

    Drug-target identification is crucial to discover novel applications for existing drugs and provide more insights about mechanisms of biological actions, such as adverse drug effects (ADEs). Computational methods along with the integration of current big data sources provide a useful framework for drug-target and drug-adverse effect discovery. In this article, we propose a method based on the integration of 3D chemical similarity, target and adverse effect data to generate a drug-target-adverse effect predictor along with a simple leveraging system to improve identification of drug-targets and drug-adverse effects. In the first step, we generated a system for multiple drug-target identification based on the application of 3D drug similarity into a large target dataset extracted from the ChEMBL. Next, we developed a target-adverse effect predictor combining targets from ChEMBL with phenotypic information provided by SIDER data source. Both modules were linked to generate a final predictor that establishes hypothesis about new drug-target-adverse effect candidates. Additionally, we showed that leveraging drug-target candidates with phenotypic data is very useful to improve the identification of drug-targets. The integration of phenotypic data into drug-target candidates yielded up to twofold precision improvement. In the opposite direction, leveraging drug-phenotype candidates with target data also yielded a significant enhancement in the performance. The modeling described in the current study is simple and efficient and has applications at large scale in drug repurposing and drug safety through the identification of mechanism of action of biological effects.

  5. Descriptor Selection via Log-Sum Regularization for the Biological Activities of Chemical Structure.

    Science.gov (United States)

    Xia, Liang-Yong; Wang, Yu-Wei; Meng, De-Yu; Yao, Xiao-Jun; Chai, Hua; Liang, Yong

    2017-12-22

    The quantitative structure-activity relationship (QSAR) model searches for a reliable relationship between the chemical structure and biological activities in the field of drug design and discovery. (1) Background: In the study of QSAR, the chemical structures of compounds are encoded by a substantial number of descriptors. Some redundant, noisy and irrelevant descriptors result in a side-effect for the QSAR model. Meanwhile, too many descriptors can result in overfitting or low correlation between chemical structure and biological bioactivity. (2) Methods: We use novel log-sum regularization to select quite a few descriptors that are relevant to biological activities. In addition, a coordinate descent algorithm, which uses novel univariate log-sum thresholding for updating the estimated coefficients, has been developed for the QSAR model. (3) Results: Experimental results on artificial and four QSAR datasets demonstrate that our proposed log-sum method has good performance among state-of-the-art methods. (4) Conclusions: Our proposed multiple linear regression with log-sum penalty is an effective technique for both descriptor selection and prediction of biological activity.

  6. Changes in amino acid profile of alfalfa silage preserved by chemical and biological additives during fermentation

    Directory of Open Access Journals (Sweden)

    Jaroslava Michálková

    2009-01-01

    Full Text Available Changes in amino acid profile of alfalfa silage preserved with chemical or biological additives were studied in fresh and wilted silage. The chemical additive was formic acid and the biological additive consisted of Lactobacillus rhamnosus, L. plantarum, L. brevis, L. buchneri and Pediococcus pentosaceus. Second cut alfalfa (Medicago sativa L. was harvested at the bloom stage, ensiled in mini silos (15 dm3 and fermented at 20–23 °C for 12 weeks. The dry matter of the fresh silage was 228 g . kg−1 and 281.6 g . kg−1 for the wilted before ensiling. The amino acid content was estimated by using an automatic amino acid analyzer AAA (INGOS Prague. The results of the experiments indicated that amino acid breakdown was inhibited by increased dry matter and the use of chemical and biological additive. Additionally, the content of amino acids was found to change in relation to the degree of wilting and formic acid treatment yielded the lowest amino acid breakdown. The amino acid breakdown was also reduced by biological preservative especially in the silage with a higher level of dry matter content.

  7. Chemical analysis and biological testing of materials from the EDS coal liquefaction process: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.; Pelroy, R.A.; Wilson, B.W.

    1984-05-01

    Representative process materials were obtained from the EDS pilot plant for chemical and biological analyses. These materials were characterized for biological activity and chemical composition using a microbial mutagenicity assay and chromatographic and mass spectrometric analytical techniques. The two highest boiling distillation cuts, as well as process solvent (PS) obtained from the bottoms recycle mode operation, were tested for initiation of mouse skin tumorigenicity. All three materials were active; the crude 800/sup 0 +/F cut was substantially more potent than the crude bottoms recycle PS or 750 to 800/sup 0/F distillate cut. Results from chemical analyses showed the EDS materials, in general, to be more highly alkylated and have higher hydroaromatic content than analogous SRC II process materials (no in-line process hydrogenation) used for comparison. In the microbial mutagenicity assays the N-PAC fractions showed greater activity than did the aliphatic hydrocarbon, hydroxy-PAH, or PAH fractions, although mutagenicity was detected in certain PAH fractions by a modified version of the standard microbial mutagenicity assay. Mutagenic activities for the EDS materials were lower, overall, than those for the corresponding materials from the SRC II process. The EDS materials produced under different operational modes had distinguishable differences in both their chemical constituency and biological activity. The primary differences between the EDS materials studied here and their SRC II counterparts used for comparison are most likely attributable to the incorporation of catalytic hydrogenation in the EDS process. 27 references, 28 figures, 27 tables.

  8. K-Targeted Metabolomic Analysis Extends Chemical Subtraction to DESIGNER Extracts: Selective Depletion of Extracts of Hops (Humulus lupulus)⊥

    Science.gov (United States)

    2015-01-01

    This study introduces a flexible and compound targeted approach to Deplete and Enrich Select Ingredients to Generate Normalized Extract Resources, generating DESIGNER extracts, by means of chemical subtraction or augmentation of metabolites. Targeting metabolites based on their liquid–liquid partition coefficients (K values), K targeting uses countercurrent separation methodology to remove single or multiple compounds from a chemically complex mixture, according to the following equation: DESIGNER extract = total extract ± target compound(s). Expanding the scope of the recently reported depletion of extracts by immunoaffinity or solid phase liquid chromatography, the present approach allows a more flexible, single- or multi-targeted removal of constituents from complex extracts such as botanicals. Chemical subtraction enables both chemical and biological characterization, including detection of synergism/antagonism by both the subtracted targets and the remaining metabolite mixture, as well as definition of the residual complexity of all fractions. The feasibility of the DESIGNER concept is shown by K-targeted subtraction of four bioactive prenylated phenols, isoxanthohumol (1), 8-prenylnaringenin (2), 6-prenylnaringenin (3), and xanthohumol (4), from a standardized hops (Humulus lupulus L.) extract using specific solvent systems. Conversely, adding K-targeted isolates allows enrichment of the original extract and hence provides an augmented DESIGNER material. Multiple countercurrent separation steps were used to purify each of the four compounds, and four DESIGNER extracts with varying depletions were prepared. The DESIGNER approach innovates the characterization of chemically complex extracts through integration of enabling technologies such as countercurrent separation, K-by-bioactivity, the residual complexity concepts, as well as quantitative analysis by 1H NMR, LC-MS, and HiFSA-based NMR fingerprinting. PMID:25437744

  9. Evaluating legacy contaminants and emerging chemicals in marine environments using adverse outcome pathways and biological effects-directed analysis.

    Science.gov (United States)

    Hutchinson, Thomas H; Lyons, Brett P; Thain, John E; Law, Robin J

    2013-09-30

    important scientific, economic and health challenges. In order to meet these challenges and pursue cost-effective scientific approaches that can provide evidence necessary to support policy needs (e.g. the European Marine Strategy Framework Directive), it is widely recognised that there is a need to (i) provide marine exposure assessments for priority contaminants using a range of validated models, passive samplers and biomarkers; (ii) integrate chemical monitoring data with biological effects data across spatial and temporal scales (including quality controls); and (iii) strengthen the evidence base to understand the relationship between exposure to complex chemical mixtures, biological and ecological impacts through integrated approaches and molecular data (e.g. genomics, proteomics and metabolomics). Additionally, we support the widely held view that (iv) that rather than increasing the analytical chemistry monitoring of large number of emerging contaminants, it will be important to target analytical chemistry towards key groups of chemicals of concern using effects-directed analysis. It is also important to evaluate to what extent existing biomarkers and bioassays can address various classes of emerging chemicals using the adverse outcome pathway (AOP) approach now being developed by the Organization for Economic Cooperation and Development (OECD) with respect to human toxicology and ecotoxicology. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  10. Toward High School Biology: Helping Middle School Students Understand Chemical Reactions and Conservation of Mass in Nonliving and Living Systems.

    Science.gov (United States)

    Herrmann-Abell, Cari F; Koppal, Mary; Roseman, Jo Ellen

    2016-01-01

    Modern biology has become increasingly molecular in nature, requiring students to understand basic chemical concepts. Studies show, however, that many students fail to grasp ideas about atom rearrangement and conservation during chemical reactions or the application of these ideas to biological systems. To help provide students with a better foundation, we used research-based design principles and collaborated in the development of a curricular intervention that applies chemistry ideas to living and nonliving contexts. Six eighth grade teachers and their students participated in a test of the unit during the Spring of 2013. Two of the teachers had used an earlier version of the unit the previous spring. The other four teachers were randomly assigned either to implement the unit or to continue teaching the same content using existing materials. Pre- and posttests were administered, and the data were analyzed using Rasch modeling and hierarchical linear modeling. The results showed that, when controlling for pretest score, gender, language, and ethnicity, students who used the curricular intervention performed better on the posttest than the students using existing materials. Additionally, students who participated in the intervention held fewer misconceptions. These results demonstrate the unit's promise in improving students' understanding of the targeted ideas. © 2016 C. F. Herrmann-Abell et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. "Toward High School Biology": Helping Middle School Students Understand Chemical Reactions and Conservation of Mass in Nonliving and Living Systems

    Science.gov (United States)

    Herrmann-Abell, Cari F.; Koppal, Mary; Roseman, Jo Ellen

    2016-01-01

    Modern biology has become increasingly molecular in nature, requiring students to understand basic chemical concepts. Studies show, however, that many students fail to grasp ideas about atom rearrangement and conservation during chemical reactions or the application of these ideas to biological systems. To help provide students with a better…

  12. Activity profiles of 309 ToxCastTM chemicals evaluated across 292 biochemical targets

    International Nuclear Information System (INIS)

    Knudsen, Thomas B.; Houck, Keith A.; Sipes, Nisha S.; Singh, Amar V.; Judson, Richard S.; Martin, Matthew T.; Weissman, Arthur; Kleinstreuer, Nicole C.; Mortensen, Holly M.; Reif, David M.; Rabinowitz, James R.; Setzer, R. Woodrow; Richard, Ann M.; Dix, David J.; Kavlock, Robert J.

    2011-01-01

    Understanding the potential health risks posed by environmental chemicals is a significant challenge elevated by the large number of diverse chemicals with generally uncharacterized exposures, mechanisms, and toxicities. The present study is a performance evaluation and critical analysis of assay results for an array of 292 high-throughput cell-free assays aimed at preliminary toxicity evaluation of 320 environmental chemicals in EPA's ToxCast TM project (Phase I). The chemicals (309 unique, 11 replicates) were mainly precursors or the active agent of commercial pesticides, for which a wealth of in vivo toxicity data is available. Biochemical HTS (high-throughput screening) profiled cell and tissue extracts using semi-automated biochemical and pharmacological methodologies to evaluate a subset of G-protein coupled receptors (GPCRs), CYP450 enzymes (CYPs), kinases, phosphatases, proteases, HDACs, nuclear receptors, ion channels, and transporters. The primary screen tested all chemicals at a relatively high concentration 25 μM concentration (or 10 μM for CYP assays), and a secondary screen re-tested 9132 chemical-assay pairs in 8-point concentration series from 0.023 to 50 μM (or 0.009-20 μM for CYPs). Mapping relationships across 93,440 chemical-assay pairs based on half-maximal activity concentration (AC50) revealed both known and novel targets in signaling and metabolic pathways. The primary dataset, summary data and details on quality control checks are available for download at (http://www.epa.gov/ncct/toxcast/).

  13. Natural products used as a chemical library for protein-protein interaction targeted drug discovery.

    Science.gov (United States)

    Jin, Xuemei; Lee, Kyungro; Kim, Nam Hee; Kim, Hyun Sil; Yook, Jong In; Choi, Jiwon; No, Kyoung Tai

    2018-01-01

    Protein-protein interactions (PPIs), which are essential for cellular processes, have been recognized as attractive therapeutic targets. Therefore, the construction of a PPI-focused chemical library is an inevitable necessity for future drug discovery. Natural products have been used as traditional medicines to treat human diseases for millennia; in addition, their molecular scaffolds have been used in diverse approved drugs and drug candidates. The recent discovery of the ability of natural products to inhibit PPIs led us to use natural products as a chemical library for PPI-targeted drug discovery. In this study, we collected natural products (NPDB) from non-commercial and in-house databases to analyze their similarities to small-molecule PPI inhibitors (iPPIs) and FDA-approved drugs by using eight molecular descriptors. Then, we evaluated the distribution of NPDB and iPPIs in the chemical space, represented by the molecular fingerprint and molecular scaffolds, to identify the promising scaffolds, which could interfere with PPIs. To investigate the ability of natural products to inhibit PPI targets, molecular docking was used. Then, we predicted a set of high-potency natural products by using the iPPI-likeness score based on a docking score-weighted model. These selected natural products showed high binding affinities to the PPI target, namely XIAP, which were validated in an in vitro experiment. In addition, the natural products with novel scaffolds might provide a promising starting point for further medicinal chemistry developments. Overall, our study shows the potency of natural products in targeting PPIs, which might help in the design of a PPI-focused chemical library for future drug discovery. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Exploring chemoselective S-to-N acyl transfer reactions in synthesis and chemical biology

    Science.gov (United States)

    Burke, Helen M.; McSweeney, Lauren; Scanlan, Eoin M.

    2017-05-01

    S-to-N acyl transfer is a high-yielding chemoselective process for amide bond formation. It is widely utilized by chemists for synthetic applications, including peptide and protein synthesis, chemical modification of proteins, protein-protein ligation and the development of probes and molecular machines. Recent advances in our understanding of S-to-N acyl transfer processes in biology and innovations in methodology for thioester formation and desulfurization, together with an extension of the size of cyclic transition states, have expanded the boundaries of this process well beyond peptide ligation. As the field develops, this chemistry will play a central role in our molecular understanding of Biology.

  15. The sensitivity of real-time PCR amplification targeting invasive Salmonella serovars in biological specimens

    Directory of Open Access Journals (Sweden)

    Chau Tran

    2010-05-01

    Full Text Available Abstract Background PCR amplification for the detection of pathogens in biological material is generally considered a rapid and informative diagnostic technique. Invasive Salmonella serovars, which cause enteric fever, can be commonly cultured from the blood of infected patients. Yet, the isolation of invasive Salmonella serovars from blood is protracted and potentially insensitive. Methods We developed and optimised a novel multiplex three colour real-time PCR assay to detect specific target sequences in the genomes of Salmonella serovars Typhi and Paratyphi A. We performed the assay on DNA extracted from blood and bone marrow samples from culture positive and negative enteric fever patients. Results The assay was validated and demonstrated a high level of specificity and reproducibility under experimental conditions. All bone marrow samples tested positive for Salmonella, however, the sensitivity on blood samples was limited. The assay demonstrated an overall specificity of 100% (75/75 and sensitivity of 53.9% (69/128 on all biological samples. We then tested the PCR detection limit by performing bacterial counts after inoculation into blood culture bottles. Conclusions Our findings corroborate previous clinical findings, whereby the bacterial load of S. Typhi in peripheral blood is low, often below detection by culture and, consequently, below detection by PCR. Whilst the assay may be utilised for environmental sampling or on differing biological samples, our data suggest that PCR performed directly on blood samples may be an unsuitable methodology and a potentially unachievable target for the routine diagnosis of enteric fever.

  16. Chemical and biological attributes of a lowland soil affected by land leveling

    Directory of Open Access Journals (Sweden)

    José Maria Barbat Parfitt

    2013-11-01

    Full Text Available The objective of this work was to evaluate the relationship between soil chemical and biological attributes and the magnitude of cuts and fills after the land leveling process of a lowland soil. Soil samples were collected from the 0 - 0.20 m layer, before and after leveling, on a 100 point grid established in the experimental area, to evaluate chemical attributes and soil microbial biomass carbon (MBC. Leveling operations altered the magnitude of soil chemical and biological attributes. Values of Ca, Mg, S, cation exchange capacity, Mn, P, Zn, and soil organic matter (SOM decreased in the soil profile, whereas Al, K, and MBC increased after leveling. Land leveling decreased in 20% SOM average content in the 0 - 0.20 m layer. The great majority of the chemical attributes did not show relations between their values and the magnitude of cuts and fills. The relation was quadratic for SOM, P, and total N, and was linear for K, showing a positive slope and indicating increase in the magnitude of these attributes in cut areas and stability in fill areas. The relationships between these chemical attributes and the magnitude of cuts and fills indicate that the land leveling map may be a useful tool for degraded soil recuperation through amendments and organic fertilizers.

  17. Commercial Biological Control Agents Targeted Against Plant-Parasitic Root-knot Nematodes

    Directory of Open Access Journals (Sweden)

    Marie-Stéphane Tranier

    2014-12-01

    Full Text Available Root-knot nematodes are microscopic round worms, which cause severe agricultural losses. Their attacks affect the productivity by reducing the amount and the caliber of the fruits. Chemical control is widely used, but biological control appears to be a better solution, mainly using microorganisms to reduce the quantity of pests infecting crops. Biological control is developing gradually, and with time, more products are being marketed worldwide. They can be formulated with bacteria, viruses or with filamentous fungi, which can destroy and feed on phytoparasitic nematodes. To be used by the farmers, biopesticides must be legalized by the states, which has led to the establishment of a legal framework for their use, devised by various governmental organizations.

  18. Poplar-type Propolis: Chemical Composition, Botanical Origin and Biological Activity.

    Science.gov (United States)

    Ristivojević, Petar; Trifković, Jelena; Andrić, Filip; Milojković-Opsenica, Dusanka

    2015-11-01

    Propolis is one of the most used natural products known for centuries for its beneficial effects. Due to significant differences in chemical composition of samples originating from different geographic and climatic zones it is crucial to characterize reliably each type of propolis. This article comprises the latest findings concerning the poplar type propolis, i.e. it gives a cross section of chemical composition, botanical origin and biological activity of poplar type propolis in order to encourage further investigations that would indicate its beneficial effects.

  19. The chemical composition and biological properties of coconut (Cocos nucifera L.) water.

    Science.gov (United States)

    Yong, Jean W H; Ge, Liya; Ng, Yan Fei; Tan, Swee Ngin

    2009-12-09

    Coconut water (coconut liquid endosperm), with its many applications, is one of the world's most versatile natural product. This refreshing beverage is consumed worldwide as it is nutritious and beneficial for health. There is increasing scientific evidence that supports the role of coconut water in health and medicinal applications. Coconut water is traditionally used as a growth supplement in plant tissue culture/micropropagation. The wide applications of coconut water can be justified by its unique chemical composition of sugars, vitamins, minerals, amino acids and phytohormones. This review attempts to summarise and evaluate the chemical composition and biological properties of coconut water.

  20. Toward High School Biology: Helping Middle School Students Understand Chemical Reactions and Conservation of Mass in Nonliving and Living Systems

    Science.gov (United States)

    Herrmann-Abell, Cari F.; Koppal, Mary; Roseman, Jo Ellen

    2016-01-01

    Modern biology has become increasingly molecular in nature, requiring students to understand basic chemical concepts. Studies show, however, that many students fail to grasp ideas about atom rearrangement and conservation during chemical reactions or the application of these ideas to biological systems. To help provide students with a better foundation, we used research-based design principles and collaborated in the development of a curricular intervention that applies chemistry ideas to living and nonliving contexts. Six eighth grade teachers and their students participated in a test of the unit during the Spring of 2013. Two of the teachers had used an earlier version of the unit the previous spring. The other four teachers were randomly assigned either to implement the unit or to continue teaching the same content using existing materials. Pre- and posttests were administered, and the data were analyzed using Rasch modeling and hierarchical linear modeling. The results showed that, when controlling for pretest score, gender, language, and ethnicity, students who used the curricular intervention performed better on the posttest than the students using existing materials. Additionally, students who participated in the intervention held fewer misconceptions. These results demonstrate the unit’s promise in improving students’ understanding of the targeted ideas. PMID:27909024

  1. Chemical Proteomics for Target Discovery of Head-to-Tail Cyclized Mini-Proteins

    Directory of Open Access Journals (Sweden)

    Roland Hellinger

    2017-10-01

    Full Text Available Target deconvolution is one of the most challenging tasks in drug discovery, but a key step in drug development. In contrast to small molecules, there is a lack of validated and robust methodologies for target elucidation of peptides. In particular, it is difficult to apply these methods to cyclic and cysteine-stabilized peptides since they exhibit reduced amenability to chemical modification and affinity capture; however, such ribosomally synthesized and post-translationally modified peptide natural products are rich sources of promising drug candidates. For example, plant-derived circular peptides called cyclotides have recently attracted much attention due to their immunosuppressive effects and oral activity in the treatment of multiple sclerosis in mice, but their molecular target has hitherto not been reported. In this study, a chemical proteomics approach using photo-affinity crosslinking was developed to determine a target for the circular peptide [T20K]kalata B1. Using this prototypic nature-derived peptide enabled the identification of a possible functional modulation of 14-3-3 proteins. This biochemical interaction was validated via competition pull down assays as well as a cellular reporter assay indicating an effect on 14-3-3-dependent transcriptional activity. As proof of concept, the presented approach may be applicable for target elucidation of various cyclic peptides and mini-proteins, in particular cyclotides, which represent a promising class of molecules in drug discovery and development.

  2. Biologic and chemical terrorism in children: an assessment of residents' knowledge.

    Science.gov (United States)

    Schobitz, Erik P; Schmidt, James M; Poirier, Michael P

    2008-04-01

    This study was conducted to determine the baseline fund of knowledge of pediatric and emergency medicine residents at a single institution in the medical management of pediatric victims of biologic and chemical terrorism. A test covering essential content was developed and validated by experts. The test was given anonymously to volunteer pediatric and emergency medicine residents at a single institution. The test was readministered 5 months after a lecture on the content. The 34 pediatric residents and 15 emergency medicine residents scored a median of 65% and 73%, respectively (P = .03). Residents from both specialties combined scored a median of 70% correct versus those residents who did not attend the lecture. Pediatric and emergency medicine residents are significantly unprepared to manage pediatric victims of biologic and chemical terrorism. Education curriculums on this topic must be incorporated into these residencies. The traditional lecture format may not be the most effective technique.

  3. Neurological aspects of biological and chemical terrorism: a review for neurologists.

    Science.gov (United States)

    Martin, Coleman O; Adams, Harold P

    2003-01-01

    The Centers for Disease Control and Prevention urge physicians to become familiar with chemical and biological weapons. Preparedness among neurologists is especially important because several of these agents affect the nervous system. This article reviews 4 agents that have a history of military or terrorist use: cyanide poisons, organophosphate poisons, botulinum toxin, and anthrax. Cyanide and organophosphate poisons are characterized by dose-dependent impairment of neurological function with nonspecific symptoms such as headache or dizziness at one end of the spectrum and convulsions and coma at the other. Neurological examinations help clinicians to differentiate these agents from other intoxications. Botulinum toxin has a delayed onset of action and results in descending paralysis and prominent cranial nerve palsies. Anthrax frequently causes fulminating hemorrhagic meningitis. Early recognition of these chemical and biological weapons is key to instituting specific therapy and preventing casualties within the health care team and the community at large.

  4. HRI catalytic two-stage liquefaction (CTSL) process materials: chemical analysis and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Later, D.W.

    1985-12-01

    This report presents data from the chemical analysis and biological testing of coal liquefaction materials obtained from the Hydrocarbon Research, Incorporated (HRI) catalytic two-stage liquefaction (CTSL) process. Materials from both an experimental run and a 25-day demonstration run were analyzed. Chemical methods of analysis included adsorption column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, low-voltage probe-inlet mass spectrometry, and proton nuclear magnetic resonance spectroscopy. The biological activity was evaluated using the standard microbial mutagenicity assay and an initiation/promotion assay for mouse-skin tumorigenicity. Where applicable, the results obtained from the analyses of the CTSL materials have been compared to those obtained from the integrated and nonintegrated two-stage coal liquefaction processes. 18 refs., 26 figs., 22 tabs.

  5. Physical, chemical, and biological properties of radiocerium relevant to radiation protection guidelines

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Present knowledge of the relevant physical, chemical, and biological properties of radiocerium as a basis for establishing radiation protection guidelines is summarized. The first section of the report reviews the chemical and physical properties of radiocerium relative to the biological behavior of internally-deposited cerium and other lanthanides. The second section of the report gives the sources of radiocerium in the environment and the pathways to man. The third section of the report describes the metabolic fate of cerium in several mammalian species as a basis for predicting its metabolic fate in man. The fourth section of the report considers the biomedical effects of radiocerium in light of extensive animal experimentation. The last two sections of the report describe the history of radiation protection guidelines for radiocerium and summarize data required for evaluating the adequacy of current radiation protection guidelines. Each section begins with a summary of the most important findings that follow

  6. Effects of chemical and biological pesticides on plant growth parameters and rhizospheric bacterial community structure in Vigna radiata.

    Science.gov (United States)

    Singh, Sunil; Gupta, Rashi; Sharma, Shilpi

    2015-06-30

    With increasing application of pesticides in agriculture, their non-target effects on soil microbial communities are critical to soil health maintenance. The present study aimed to evaluate the effects of chemical pesticides (chlorpyrifos and cypermethrin) and a biological pesticide (azadirachtin) on growth parameters and the rhizospheric bacterial community of Vigna radiata. Qualitative and quantitative analysis by PCR-denaturing gradient gel electrophoresis (DGGE) and q-PCR, respectively, of the 16S rRNA gene and transcript were performed to study the impact of these pesticides on the resident and active rhizospheric bacterial community. While plant parameters were not affected significantly by the pesticides, a shift in the bacterial community structure was observed with an adverse effect on the abundance of 16S rRNA gene and transcripts. Chlorpyrifos showed almost complete degradation toward the end of the experiment. These non-target impacts on soil ecosystems and the fact that the effects of the biopesticide mimic those of chemical pesticides raise serious concerns regarding their application in agriculture. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Chemical and biological work-related risks across occupations in Europe: a review.

    Science.gov (United States)

    Montano, Diego

    2014-01-01

    Work-related health inequalities are determined to some extent by an unequal exposure to chemical and biological risk factors of disease. Although their potential economic burden in the European Union (EU-25) might be substantial, comprehensive reviews focusing on the distribution of these risks across occupational groups are limited. Thus, the main objective of this review is to provide a synopsis of the exposure to chemical and biological hazards across occupational groups. In addition, main industrial applications of hazardous substances are identified and some epidemiological evidence is discussed regarding societal costs and incidence rates of work-related diseases. Available lists of carcinogens, sensitisers, mutagens, reprotoxic substances and biological hazards were consulted. For each work-related hazard the main industrial application was identified in order to assess which ISCO occupational groups may be associated with direct exposure. Where available, information on annual tonnage production, risk assessment of the substances and pathogens, and other relevant data were collected and reported. Altogether 308 chemical and biological hazards were identified which may account to at least 693 direct exposures. These hazards concentrate on the following major occupational groups: technicians (ISCO 3), operators (ISCO 8), agricultural workers (ISCO 6) and workers in elementary occupations (ISCO 9). Common industrial applications associated with increased exposure rates relate among others to: (1) production or application of pigments, resins, cutting fluids, adhesives, pesticides and cleaning products, (2) production of rubber, plastics, textiles, pharmaceuticals and cosmetics, and (3) in agriculture, metallurgy and food processing industry, Societal costs of the unequal distribution of chemical and biological hazards across occupations depend on the corresponding work-related diseases and may range from 2900 EUR to 126000 EUR per case/year. Risk of exposure

  8. Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.)

    OpenAIRE

    Giulia Gigliarelli; Judith X. Becerra; Massimo Curini; Maria Carla Marcotullio

    2015-01-01

    Copal is the Spanish word used to describe aromatic resins from several genera of plants. Mexican copal derives from several Bursera spp., Protium copal, some Pinus spp. (e.g., P. pseudostrobus) and a few Fabaceae spp. It has been used for centuries as incense for religious ceremonies, as a food preservative, and as a treatment for several illnesses. The aim of this review is to analyze the chemical composition and biological activity of commercial Mexican Bursera copal.

  9. Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.).

    Science.gov (United States)

    Gigliarelli, Giulia; Becerra, Judith X; Curini, Massimo; Marcotullio, Maria Carla

    2015-12-12

    Copal is the Spanish word used to describe aromatic resins from several genera of plants. Mexican copal derives from several Bursera spp., Protium copal, some Pinus spp. (e.g., P. pseudostrobus) and a few Fabaceae spp. It has been used for centuries as incense for religious ceremonies, as a food preservative, and as a treatment for several illnesses. The aim of this review is to analyze the chemical composition and biological activity of commercial Mexican Bursera copal.

  10. Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.

    Directory of Open Access Journals (Sweden)

    Giulia Gigliarelli

    2015-12-01

    Full Text Available Copal is the Spanish word used to describe aromatic resins from several genera of plants. Mexican copal derives from several Bursera spp., Protium copal, some Pinus spp. (e.g., P. pseudostrobus and a few Fabaceae spp. It has been used for centuries as incense for religious ceremonies, as a food preservative, and as a treatment for several illnesses. The aim of this review is to analyze the chemical composition and biological activity of commercial Mexican Bursera copal.

  11. Thermal-work strain in law enforcement personnel during chemical, biological, radiological, and nuclear (CBRN) training

    OpenAIRE

    Yokota, M; Karis, A J; Tharion, W J

    2014-01-01

    Background: Thermal safety standards for the use of chemical, biological, radiological, and nuclear (CBRN) ensembles have been established for various US occupations, but not for law enforcement personnel. Objectives: We examined thermal strain levels of 30 male US law enforcement personnel who participated in CBRN field training in Arizona, Florida, and Massachusetts. Methods: Physiological responses were examined using unobtrusive heart rate (HR) monitors and a simple thermoregulatory model...

  12. Chemical, biological, radiological and nuclear training issues in India: A fresh perspective

    OpenAIRE

    Mudit Sharma

    2010-01-01

    Appropriate training is the key to the right level of preparedness against any disaster, and Chemical, Biological, Radiological and Nuclear (CBRN) disasters are no different. The presence of contamination precludes rescue operations to commence soon after the event and it takes a systematic approach to detect and decontaminate the CBRN hazard. Achieving such interventions poses a critical challenge because humans do not possess any inborn, natural sensors with which to recognize these dangers...

  13. Department of Defense Chemical and Biological Defense Program. Volume 1: Annual Report to Congress

    Science.gov (United States)

    2003-04-01

    cereus and Bacillus thuringiensis , near neighbors of Bacillus anthracis was completed. • Re-initiated sequencing of Franciscella tularensis in FY01...Acrobat (. pdf ) file. The information in this report is updated as of February 28, 2003 unless specifically noted otherwise. Executive Summary The... pdfs /721report_jan-june2002. pdf . Chemical & Biological Defense Program Annual Report 6 a quantity of purported enriched uranium (which in fact

  14. CBRN Decontamination: Multiservice Tactics, Techniques, and Procedures for Chemical, Biological, Radiological, and Nuclear Decontamination

    Science.gov (United States)

    2006-04-01

    conflict in the former Yugoslavia, Muslim forces deliberately positioned canisters of chlorine from the Tuzla industrial chemical plant to deter Serb...Listeriosis ( Listeria monocytogenes) Less than 24 hours Diffused light: 24 but not 48 hours In sun; soil surface: 12 days (2-3 cm...biological material Laboratories and storage facilities Radiological Nuclear fuel and medical sources Nuclear power plants , medical facilities, industrial

  15. Hazard identification and risk assessment for biologics targeting the immune system.

    Science.gov (United States)

    Weir, Andrea B

    2008-01-01

    Biologic pharmaceuticals include a variety of products, such as monoclonal antibodies, fusion proteins and cytokines. Products in those classes include immunomodulatory biologics, which are intended to enhance or diminish the activity of the immune system. Immunomodulatory biologics have been approved by the U.S. FDA for a variety of indications, including cancer and inflammatory conditions. Prior to gaining approval for marketing, sponsoring companies for all types of products must demonstrate a product's safety in toxicology studies conducted in animals and show safety and efficacy in clinical trials conducted in patients. The overall goal of toxicology studies, which applies to immunomodulatory and other product types, is to identify the hazards that products pose to humans. Because biologics are generally highly selective for specific targets (receptors/epitopes), conducting toxicology studies in animal models with the target is essential. Such animals are referred to as pharmacologically relevant. Endpoints routinely included in toxicology studies, such as hematology, organ weight and histopathology, can be used to assess the effect of a product on the structure of the immune system. Additionally, specialized endpoints, such as immunophenotyping and immune function tests, can be used to define effects of immunomodulatory products on the immune system. Following hazard identification, risks posed to patients are assessed and managed. Risks can be managed through clinical trial design and risk communication, a practice that applies to immunomodulatory and other product types. Examples of risk management in clinical trial design include establishing a safe starting dose, defining the appropriate patient population and establishing appropriate patient monitoring. Risk communication starts during clinical trials and continues after product approval. A combination of hazard identification, risk assessment and risk management allows for drug development to proceed

  16. A field survey of chemicals and biological products used in shrimp farming

    Energy Technology Data Exchange (ETDEWEB)

    Graeslund, S.; Holmstroem, K.; Wahlstroem, A

    2003-01-01

    This study documented the use of chemicals and biological products in marine and brackish water shrimp farming in Thailand, the world's top producer of farmed shrimp. Interviews were conducted with 76 shrimp farmers in three major shrimp producing regions, the eastern Gulf coast, the southern Gulf coast and the Andaman coast area. Farmers in the study used on average 13 different chemicals and biological products. The most commonly used products were soil and water treatment products, pesticides and disinfectants. Farmers in the southern Gulf coast area used a larger number of products than farmers in the other two areas. In the study, the use of more than 290 different chemicals and biological products was documented. Many of the pesticides, disinfectants and antibiotics used by the farmers could have negative effects on the cultured shrimps, cause a risk for food safety, occupational health, and/or have negative effects on adjacent ecosystems. Manufacturers and retailers of the products often neglected to provide farmers with necessary information regarding active ingredient and relevant instructions for safe and efficient use.

  17. Enhanced Removal of Lead by Chemically and Biologically Treated Carbonaceous Materials

    Directory of Open Access Journals (Sweden)

    Mohamed E. Mahmoud

    2012-01-01

    Full Text Available Hybrid sorbents and biosorbents were synthesized via chemical and biological treatment of active carbon by simple and direct redox reaction followed by surface loading of baker’s yeast. Surface functionality and morphology of chemically and biologically modified sorbents and biosorbents were studied by Fourier Transform Infrared analysis and scanning electron microscope imaging. Hybrid carbonaceous sorbents and biosorbents were characterized by excellent efficiency and superiority toward lead(II sorption compared to blank active carbon providing a maximum sorption capacity of lead(II ion as 500 μmol g−1. Sorption processes of lead(II by these hybrid materials were investigated under the influence of several controlling parameters such as pH, contact time, mass of sorbent and biosorbent, lead(II concentration, and foreign ions. Lead(II sorption mechanisms were found to obey the Langmuir and BET isotherm models. The potential applications of chemically and biologically modified-active carbonaceous materials for removal and extraction of lead from real water matrices were also studied via a double-stage microcolumn technique. The results of this study were found to denote to superior recovery values of lead (95.0–99.0±3.0–5.0% by various carbonaceous-modified-bakers yeast biosorbents.

  18. A field survey of chemicals and biological products used in shrimp farming

    International Nuclear Information System (INIS)

    Graeslund, S.; Holmstroem, K.; Wahlstroem, A.

    2003-01-01

    This study documented the use of chemicals and biological products in marine and brackish water shrimp farming in Thailand, the world's top producer of farmed shrimp. Interviews were conducted with 76 shrimp farmers in three major shrimp producing regions, the eastern Gulf coast, the southern Gulf coast and the Andaman coast area. Farmers in the study used on average 13 different chemicals and biological products. The most commonly used products were soil and water treatment products, pesticides and disinfectants. Farmers in the southern Gulf coast area used a larger number of products than farmers in the other two areas. In the study, the use of more than 290 different chemicals and biological products was documented. Many of the pesticides, disinfectants and antibiotics used by the farmers could have negative effects on the cultured shrimps, cause a risk for food safety, occupational health, and/or have negative effects on adjacent ecosystems. Manufacturers and retailers of the products often neglected to provide farmers with necessary information regarding active ingredient and relevant instructions for safe and efficient use

  19. Chemical and biological characterization of residential oil burner emission. A literature survey

    International Nuclear Information System (INIS)

    Westerholm, R.; Peterson, A.

    1994-02-01

    This literature study covers the time period 1980 to 1993 and is concerned with oil burners used for residential heating with a nominal heating power of less than 20 kW, which are normally used in one-family houses. Emission samples from domestic heaters using organic fuels consists of a very complex matrix of pollutants ranging from aggregate states solid to gaseous. Biological effects elicited by exhaust emissions have been detected and determined. It has been shown for diesel vehicles that selection of fuel properties has an impact on combustion reaction paths which results in different exhaust chemical compositions. It was also determined that diesel fuel properties have an impact on the biological activity of diesel exhaust emissions, which is to be expected from their chemical characterization. As a result of this, Sweden has an environmental classification of diesel fuels which has been in force since 1991. Analogously, the Swedish Environmental Protection Agency has asked whether detrimental environmental and health effects from residential heating can be reduced by selection of fuel properties, and if so by how much? In addition, which properties are most important to control in a future environmental classification of heating oils? As a first step in this process, a literature survey was performed. Major topics were: Sampling technology, chemical composition, biological activity, and risk assessment of emissions. 33 refs, 11 tabs

  20. Dealing with the Data Deluge: Handling the Multitude Of Chemical Biology Data Sources.

    Science.gov (United States)

    Guha, Rajarshi; Nguyen, Dac-Trung; Southall, Noel; Jadhav, Ajit

    2012-09-01

    Over the last 20 years, there has been an explosion in the amount and type of biological and chemical data that has been made publicly available in a variety of online databases. While this means that vast amounts of information can be found online, there is no guarantee that it can be found easily (or at all). A scientist searching for a specific piece of information is faced with a daunting task - many databases have overlapping content, use their own identifiers and, in some cases, have arcane and unintuitive user interfaces. In this overview, a variety of well known data sources for chemical and biological information are highlighted, focusing on those most useful for chemical biology research. The issue of using multiple data sources together and the associated problems such as identifier disambiguation are highlighted. A brief discussion is then provided on Tripod, a recently developed platform that supports the integration of arbitrary data sources, providing users a simple interface to search across a federated collection of resources.

  1. Green Jobs: Definition and Method of Appraisal of Chemical and Biological Risks.

    Science.gov (United States)

    Cheneval, Erwan; Busque, Marc-Antoine; Ostiguy, Claude; Lavoie, Jacques; Bourbonnais, Robert; Labrèche, France; Bakhiyi, Bouchra; Zayed, Joseph

    2016-04-01

    In the wake of sustainable development, green jobs are developing rapidly, changing the work environment. However a green job is not automatically a safe job. The aim of the study was to define green jobs, and to establish a preliminary risk assessment of chemical substances and biological agents for workers in Quebec. An operational definition was developed, along with criteria and sustainable development principles to discriminate green jobs from regular jobs. The potential toxicity or hazard associated with their chemical and biological exposures was assessed, and the workers' exposure appraised using an expert assessment method. A control banding approach was then used to assess risks for workers in selected green jobs. A double entry model allowed us to set priorities in terms of chemical or biological risk. Among jobs that present the highest risk potential, several are related to waste management. The developed method is flexible and could be adapted to better appraise the risks that workers are facing or to propose control measures. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  2. Chemical composition and biological activity of ripe pumpkin fruits (Cucurbita pepo L.) cultivated in Egyptian habitats.

    Science.gov (United States)

    Badr, Sherif E A; Shaaban, Mohamed; Elkholy, Yehya M; Helal, Maher H; Hamza, Akila S; Masoud, Mohamed S; El Safty, Mounir M

    2011-09-01

    The chemical composition and biological activity of three parts (rind, flesh and seeds) of pumpkin fruits (Cucurbita pepo L.) cultivated in Egypt were studied. Chemical analysis of fibre, protein, β-carotene, carbohydrates, minerals and fatty acids present in the rind, flesh, seeds and defatted seeds meal was conducted. Chemical, GC-MS and biological assays of organic extracts of the main fruit parts, rind and flesh established their unique constituents. Chromatographic purification of the extracts afforded triglyceride fatty acid mixture (1), tetrahydro-thiophene (2), linoleic acid (3), calotropoleanly ester (4), cholesterol (5) and 13(18)-oleanen-3-ol (6). GC-MS analysis of the extract's unpolar fraction revealed the existence of dodecane and tetradecane. Structures of the isolated compounds (1-6) were confirmed by NMR and EI-MS spectrometry. Antimicrobial, antiviral and antitumour activities of the fruit parts were discussed. The promising combined extract of rind and flesh was biologically studied for microbial and cytotoxic activities in comparison with the whole isolated components.

  3. Assessment of the biological and chemical availability of the freshly spiked and aged DDE in soil

    International Nuclear Information System (INIS)

    Škulcová, L.; Neuwirthová, N.; Hofman, J.; Bielská, L.

    2016-01-01

    The study compared the ability of various chemical methods (XAD, β-hydroxypropylcyclodextrin - HPCD) and solid phase micro-extraction (SPME)) to mimic earthworm uptake from two similar soils containing either spiked or aged p,p´-DDE, thus representing two extreme scenarios with regard to the length of pollutant-soil contact time and the way of contamination. The extent of bioaccumulation was assessed at fixed exposure periods (10 and 21 days) and at equilibrium derived from uptake curves by multiple-point comparison or kinetic modeling. The decision on the best chemical predictor of biological uptake differed. The degree of bioaccumulation at equilibrium was best predicted by XAD while HPCD rather reflected the extent of accumulation derived after 21 days when, however, steady-state was not reached for spiked p,p´-DDE. SPME seemed to underestimate the uptake of aged p,p´-DDE, probably of the fraction taken up via soil particles. Thus, the degree of predictability seems to be associated with the capability of the chemical method to mimic the complex earthworm uptake via skin and intestinal tract as well as with the quality of biological data where the insufficient length of exposure period appears to be the major concern. - Highlights: • The uptake kinetics of spiked and aged p,p´-DDE to earthworms/samplers was measured. • Three chemical methods were used to predict earthworm uptake. • Equilibrium was not reached within the OECD recommended 21 days for spiked p,p´-DDE. • SPME seems to underestimate the uptake of aged p,p´-DDE. • The best predictor of earthworm uptake seems to be the XAD method. - Capsule: The poor prediction of biological uptake by chemical methods may result from the absence of kinetic measurements and application of short exposure periods.

  4. Chemically different non-thermal plasmas target distinct cell death pathways

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg; Zablotskyy, Vitaliy A.; Churpita, Olexandr; Lunova, M.; Jirsa, M.; Dejneka, Alexandr; Kubinová, Šárka

    2017-01-01

    Roč. 7, č. 1 (2017), s. 1-17, č. článku 600. ISSN 2045-2322 Grant - others:AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378271 Keywords : chemically different * non-thermal plasmas * target distinct cell death pathways Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 4.259, year: 2016

  5. Biological effects of anthropogenic chemical stress: Tools for the assessment of ecosystem health (BEAST)

    DEFF Research Database (Denmark)

    Lehtonen, Kari K.; Sundelin, Brita; Lang, Thomas

    of Finland, Gulf of Riga, Gulf of Gdansk and the Belt Sea, most of which are characterised by scarce data on biological effects of hazardous substances. The data acquired will be combined with previous data (e.g. national monitoring activities, case studies, EU BEEP project) to reach the goals of WP2 and WP3......In the Baltic Sea Action Plan the urgent need to develop biological effects monitoring of hazardous substances and the assessment of ecosystem health has been clearly indicated. These goals will be tackled in the newly launched BEAST project (Biological Effects of Anthropogenic Chemical Stress...... and experiments in selected sub-regions of the Baltic Sea, WP2 - Application and validation of methods in monitoring and assessment in the Baltic Sea, and WP3 - Developing tools for ecosystem health assessment in the Baltic Sea. BEAST research activities are focused in the sub-regions of Gulf of Bothnia, Gulf...

  6. Geological and Chemical Factors that Impacted the Biological Utilization of Cobalt in the Archean Eon

    Science.gov (United States)

    Moore, Eli K.; Hao, Jihua; Prabhu, Anirudh; Zhong, Hao; Jelen, Ben I.; Meyer, Mike; Hazen, Robert M.; Falkowski, Paul G.

    2018-03-01

    The geosphere and biosphere coevolved and influenced Earth's biological and mineralogical diversity. Changing redox conditions influenced the availability of different transition metals, which are essential components in the active sites of oxidoreductases, proteins that catalyze electron transfer reactions across the tree of life. Despite its relatively low abundance in the environment, cobalt (Co) is a unique metal in biology due to its importance to a wide range of organisms as the metal center of vitamin B12 (aka cobalamin, Cbl). Cbl is vital to multiple methyltransferase enzymes involved in energetically favorable metabolic pathways. It is unclear how Co availability is linked to mineral evolution and weathering processes. Here we examine important biological functions of Co, as well as chemical and geological factors that may have influenced the utilization of Co early in the evolution of life. Only 66 natural minerals are known to contain Co as an essential element. However, Co is incorporated as a minor element in abundant rock-forming minerals, potentially representing a reliable source of Co as a trace element in marine systems due to weathering processes. We developed a mineral weathering model that indicates that dissolved Co was potentially more bioavailable in the Archean ocean under low S conditions than it is today. Mineral weathering, redox chemistry, Co complexation with nitrogen-containing organics, and hydrothermal environments were crucial in the incorporation of Co in primitive metabolic pathways. These chemical and geological characteristics of Co can inform the biological utilization of other trace metals in early forms of life.

  7. Detection of Chemical/Biological Agents and Stimulants using Quadrupole Ion Trap Mass Spectrometry

    International Nuclear Information System (INIS)

    Harmon, S.H.; Hart, K.J.; Vass, A.A.; Wise, M.B.; Wolf, D.A.

    1999-01-01

    Detection of Chemical/Biological Agents and Simulants A new detector for chemical and biological agents is being developed for the U. S. Army under the Chemical and Biological Mass Spectrometer Block II program. The CBMS Block II is designed to optimize detection of both chemical and biological agents through the use of direct sampling inlets[I], a multi- ported sampling valve and a turbo- based vacuum system to support chemical ionization. Unit mass resolution using air as the buffer gas[2] has been obtained using this design. Software to control the instrument and to analyze the data generated from the instrument has also been newly developed. Detection of chemical agents can be accomplished. using the CBMS Block II design via one of two inlets - a l/ I 6'' stainless steel sample line -Chemical Warfare Air (CW Air) or a ground probe with enclosed capillary currently in use by the US Army - CW Ground. The Block II design is capable of both electron ionization and chemical ionization. Ethanol is being used as the Cl reagent based on a study indicating best performance for the Biological Warfare (BW) detection task (31). Data showing good signal to noise for 500 pg of methyl salicylate injected into the CW Air inlet, 50 ng of dimethylmethylphosphonate exposed to the CW Ground probe and 5 ng of methyl stearate analyzed using the pyrolyzer inlet were presented. Biological agents are sampled using a ''bio-concentrator'' unit that is designed to concentrate particles in the low micron range. Particles are collected in the bottom of a quartz pyrolyzer tube. An automated injector is being developed to deliver approximately 2 pL of a methylating reagent, tetramethylamonium- hydroxide to 'the collected particles. Pyrolysis occurs by rapid heating to ca. 55OOC. Biological agents are then characterized by their fatty acid methyl ester profiles and by other biomarkers. A library of ETOH- Cl/ pyrolysis MS data of microorganisms used for a recently published study[3] has been

  8. Chemical, biological, radiological, and nuclear decontamination: Recent trends and future perspective

    Directory of Open Access Journals (Sweden)

    Vinod Kumar

    2010-01-01

    Full Text Available Chemical, biological, radiological, and nuclear (CBRN decontamination is the removal of CBRN material from equipment or humans. The objective of the decontamination is to reduce radiation burden, salvage equipment, and materials, remove loose CBRN contaminants, and fix the remaining in place in preparation for protective storage or permanent disposal work activities. Decontamination may be carried out using chemical, electrochemical, and mechanical means. Like materials, humans may also be contaminated with CBRN contamination. Changes in cellular function can occur at lower radiation doses and exposure to chemicals. At high dose, cell death may take place. Therefore, decontamination of humans at the time of emergency while generating bare minimum waste is an enormous task requiring dedication of large number of personnel and large amount of time. General principles of CBRN decontamination are discussed in this review with emphasis on radiodecontamination.

  9. Biological and chemical investigation of Allium cepa L. response to selenium inorganic compounds.

    Science.gov (United States)

    Michalska-Kacymirow, M; Kurek, E; Smolis, A; Wierzbicka, M; Bulska, E

    2014-06-01

    The aim of this study was to evaluate the biological and chemical response of Allium cepa L. exposed to inorganic selenium compounds. Besides the investigation of the total content of selenium as well as its chemical speciation, the Allium test was used to evaluate the growth of onion roots and mitotic activity in the roots' meristem. The total content of selenium was determined by inductively coupled plasma mass spectrometry (ICP MS). High-performance liquid chromatography (HPLC), coupled to ICP MS, was used for the selenium chemical speciation. Results indicated that A. cepa plants are able to biotransform inorganic selenium compounds into their organic derivatives, e.g., Se-methylselenocysteine from the Se(IV) inorganic precursor. Although the differences in the biotransformation of selenium are due mainly to the oxidation state of selenium, the experiment has also shown a fine effect of counter ions (H(+), Na(+), NH4 (+)) on the response of plants and on the specific metabolism of selenium.

  10. Initiated chemical vapor deposited nanoadhesive for bonding National Ignition Facility's targets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tom [Univ. of California, Berkeley, CA (United States)

    2016-05-19

    Currently, the target fabrication scientists in National Ignition Facility Directorate at Lawrence Livermore National Laboratory (LLNL) is studying the propagation force resulted from laser impulses impacting a target. To best study this, they would like the adhesive used to glue the target substrates to be as thin as possible. The main objective of this research project is to create adhesive glue bonds for NIF’s targets that are ≤ 1 μm thick. Polyglycidylmethacrylate (PGMA) thin films were coated on various substrates using initiated chemical vapor deposition (iCVD). Film quality studies using white light interferometry reveal that the iCVD PGMA films were smooth. The coated substrates were bonded at 150 °C under vacuum, with low inflow of Nitrogen. Success in bonding most of NIF’s mock targets at thicknesses ≤ 1 μm indicates that our process is feasible in bonding the real targets. Key parameters that are required for successful bonding were concluded from the bonding results. They include inert bonding atmosphere, sufficient contact between the PGMA films, and smooth substrates. Average bond strength of 0.60 MPa was obtained from mechanical shearing tests. The bonding failure mode of the sheared interfaces was observed to be cohesive. Future work on this project will include reattempt to bond silica aerogel to iCVD PGMA coated substrates, stabilize carbon nanotube forests with iCVD PGMA coating, and kinetics study of PGMA thermal crosslinking.

  11. Erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy

    Science.gov (United States)

    Zhu, Dao-Ming; Xie, Wei; Xiao, Yu-Sha; Suo, Meng; Zan, Ming-Hui; Liao, Qing-Quan; Hu, Xue-Jia; Chen, Li-Ben; Chen, Bei; Wu, Wen-Tao; Ji, Li-Wei; Huang, Hui-Ming; Guo, Shi-Shang; Zhao, Xing-Zhong; Liu, Quan-Yan; Liu, Wei

    2018-02-01

    Recently, red blood cell (RBC) membrane-coated nanoparticles have attracted much attention because of their excellent immune escapability; meanwhile, gold nanocages (AuNs) have been extensively used for cancer therapy due to their photothermal effect and drug delivery capability. The combination of the RBC membrane coating and AuNs may provide an effective approach for targeted cancer therapy. However, few reports have shown the utilization of combining these two technologies. Here, we design erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy. First, anti-EpCam antibodies were used to modify the RBC membranes to target 4T1 cancer cells. Second, the antitumor drug paclitaxel (PTX) was encapsulated into AuNs. Then, the AuNs were coated with the modified RBC membranes. These new nanoparticles were termed EpCam-RPAuNs. We characterized the capability of the EpCam-RPAuNs for selective tumor targeting via exposure to near-infrared irradiation. The experimental results demonstrate that EpCam-RPAuNs can effectively generate hyperthermia and precisely deliver the antitumor drug PTX to targeted cells. We also validated the biocompatibility of the EpCam-RAuNs in vitro. By combining the molecularly modified targeting RBC membrane and AuNs, our approach provides a new way to design biomimetic nanoparticles to enhance the surface functionality of nanoparticles. We believe that EpCam-RPAuNs can be potentially applied for cancer diagnoses and therapies.

  12. Pollution control in pulp and paper industrial effluents using integrated chemical-biological treatment sequences.

    Science.gov (United States)

    El-Bestawy, Ebtesam; El-Sokkary, Ibrahim; Hussein, Hany; Keela, Alaa Farouk Abu

    2008-11-01

    The main objective of the present study was to improve the quality of pulp and paper industrial wastewater of two local mills RAKTA and El-Ahlia, Alexandria, Egypt, and to bring their pollutant contents to safe discharge levels. Quality improvement was carried out using integrated chemical and biological treatment approaches after their optimization. Chemical treatment (alum, lime, and ferric chloride) was followed by oxidation using hydrogen peroxide and finally biological treatment using activated sludge (90 min for RAKTA and 60 min for El-Ahlia effluents). Chemical coagulation produced low-quality effluents, while pH adjustment during coagulation treatment did not enhance the quality of the effluents. Maximum removal of the tested pollutants was achieved using the integrated treatment and the pollutants recorded residual concentrations (RCs) of 34.67, 17.33, 0.13, and 0.43 mg/l and 15.0, 11.0, 0.0, and 0.13 mg/l for chemical oxygen demand (COD), biochemical oxygen demand (BOD5), tannin and lignin, and silica in RAKTA and El-Ahlia effluents, respectively, all of which were below their maximum permissible limits (MPLs) for the safe discharge into water courses. Specific oxygen uptake rate (SOUR) and sludge volume index (SVI) values reflect good conditions and healthy activated sludge. Based on the previous results, optimized conditions were applied as bench scale on the raw effluents of RAKTA and El-Ahlia via the batch chemical and the biological treatment sequences proposed. For RAKTA effluents, the sequence was as follows: (1) coagulation with 375 mg/l FeCl3, (2) oxidation with 50 mg/l hydrogen peroxide, and (3) biological treatment using activated sludge with 2,000 mg/l initial concentration and 90 min hydraulic retention time (HRT), while for El-Ahlia raw effluents, the sequence was (1) coagulation with 250 mg/l FeCl3, (2) oxidation with 45 mg/l hydrogen peroxide, and (3) biological treatment using activated sludge with 2,000 mg/l initial concentration and 60

  13. GRAPES: a software for parallel searching on biological graphs targeting multi-core architectures.

    Science.gov (United States)

    Giugno, Rosalba; Bonnici, Vincenzo; Bombieri, Nicola; Pulvirenti, Alfredo; Ferro, Alfredo; Shasha, Dennis

    2013-01-01

    Biological applications, from genomics to ecology, deal with graphs that represents the structure of interactions. Analyzing such data requires searching for subgraphs in collections of graphs. This task is computationally expensive. Even though multicore architectures, from commodity computers to more advanced symmetric multiprocessing (SMP), offer scalable computing power, currently published software implementations for indexing and graph matching are fundamentally sequential. As a consequence, such software implementations (i) do not fully exploit available parallel computing power and (ii) they do not scale with respect to the size of graphs in the database. We present GRAPES, software for parallel searching on databases of large biological graphs. GRAPES implements a parallel version of well-established graph searching algorithms, and introduces new strategies which naturally lead to a faster parallel searching system especially for large graphs. GRAPES decomposes graphs into subcomponents that can be efficiently searched in parallel. We show the performance of GRAPES on representative biological datasets containing antiviral chemical compounds, DNA, RNA, proteins, protein contact maps and protein interactions networks.

  14. Progress in chemical processing of LEU targets for 99Mo production -- 1997

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Conner, C.; Sedlet, J.; Wygmans, D.G.; Wu, D.; Iskander, F.; Landsberger, S.

    1997-10-01

    Presented here are recent experimental results of the continuing development activities associated with converting current processes for producing fission-product 99 Mo from targets using high-enriched uranium (HEU) to low-enriched uranium (LEU). Studies were focused in four areas: (1) measuring the chemical behavior of iodine, rhodium, and silver in the LEU-modified Cintichem process, (2) performing experiments and calculations to assess the suitability of zinc fission barriers for LEU metal foil targets, (3) developing an actinide separations method for measuring alpha contamination of the purified 99 Mo product, and (4) developing a cooperation with Sandia National Laboratories and Los Alamos National Laboratory that will lead to approval by the US Federal Drug Administration for production of 99 Mo from LEU targets. Experimental results continue to show the technical feasibility of converting current HEU processes to LEU

  15. Progress in chemical processing of LEU targets for 99Mo production - 1997

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Conner, C.; Sedlet, J.; Wygmans, D.G.; Wu, D.; Iskander, F.; Landsberger, S.

    1997-01-01

    Presented here are recent experimental results of our continuing development activities associated with converting current processes for producing fission-product 99 Mo from targets using high-enriched uranium (HEU) to low-enriched uranium (LEU). Studies were focused in four areas: (1) measuring the chemical behavior of iodine, rhodium, and silver in the LEU-modified Cintichem process, (2) performing experiments and calculations to assess the suitability of zinc fission barriers for LEU metal foil targets, (3) developing an actinide separations method for measuring alpha contamination of the purified 99 Mo product, and (4) developing a cooperation with Sandia National Laboratories and Los Alamos National Laboratory that will lead to approval by the U.S. Federal Drug Administration for production of 99 Mo from LEU targets. Experimental results continue to show the technical feasibility of converting current HEU processes to LEU. (author)

  16. Chemical investigations of isotope separation on line target units for carbon and nitrogen beams

    CERN Document Server

    Franberg, H; Gäggeler, H W; Köster, U

    2006-01-01

    Radioactive ion beams (RIBs) are of significant interest in a number of applications. Isotope separation on line (ISOL) facilities provide RIB with high beam intensities and good beam quality. An atom that is produced within the ISOL target will first diffuse out from the target material. During the effusion towards the transfer line and into the ion source the many contacts with the surrounding surfaces may cause unacceptable delays in the transport and, hence, losses of the shorter-lived isotopes. We performed systematic chemical investigations of adsorption in a temperature and concentration regime relevant for ISOL targets and ion source units, with regard to CO/sub x/ and NOmaterials are potential construction materials for the above-mentioned areas. Off-line and on-line tests have been performed using a gas thermochromatography setup with radioactive tracers. The experiments were performed at the production of tracers for atmospheric chemistry (PROTRAC) facility at the Paul Schener Institute in Villigen...

  17. Identification of serotonin 2A receptor as a novel HCV entry factor by a chemical biology strategy.

    Science.gov (United States)

    Cao, Lin; Chen, Jizheng; Wang, Yaxin; Yang, Yuting; Qing, Jie; Rao, Zihe; Chen, Xinwen; Lou, Zhiyong

    2018-03-14

    Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. Although several HCV protease/polymerase inhibitors were recently approved by U.S. FDA, the combination of antivirals targeting multiple processes of HCV lifecycle would optimize anti-HCV therapy and against potential drug-resistance. Viral entry is an essential target step for antiviral development, but FDA-approved HCV entry inhibitor remains exclusive. Here we identify serotonin 2A receptor (5-HT 2A R) is a HCV entry factor amendable to therapeutic intervention by a chemical biology strategy. The silencing of 5-HT 2A R and clinically available 5-HT 2A R antagonist suppress cell culture-derived HCV (HCVcc) in different liver cells and primary human hepatocytes at late endocytosis process. The mechanism is related to regulate the correct plasma membrane localization of claudin 1 (CLDN1). Moreover, phenoxybenzamine (PBZ), an FDA-approved 5-HT 2A R antagonist, inhibits all major HCV genotypes in vitro and displays synergy in combination with clinical used anti-HCV drugs. The impact of PBZ on HCV genotype 2a is documented in immune-competent humanized transgenic mice. Our results not only expand the understanding of HCV entry, but also present a promising target for the invention of HCV entry inhibitor.

  18. Interactions of physical, chemical, and biological weather calling for an integrated approach to assessment, forecasting, and communication of air quality.

    Science.gov (United States)

    Klein, Thomas; Kukkonen, Jaakko; Dahl, Aslög; Bossioli, Elissavet; Baklanov, Alexander; Vik, Aasmund Fahre; Agnew, Paul; Karatzas, Kostas D; Sofiev, Mikhail

    2012-12-01

    This article reviews interactions and health impacts of physical, chemical, and biological weather. Interactions and synergistic effects between the three types of weather call for integrated assessment, forecasting, and communication of air quality. Today's air quality legislation falls short of addressing air quality degradation by biological weather, despite increasing evidence for the feasibility of both mitigation and adaptation policy options. In comparison with the existing capabilities for physical and chemical weather, the monitoring of biological weather is lacking stable operational agreements and resources. Furthermore, integrated effects of physical, chemical, and biological weather suggest a critical review of air quality management practices. Additional research is required to improve the coupled modeling of physical, chemical, and biological weather as well as the assessment and communication of integrated air quality. Findings from several recent COST Actions underline the importance of an increased dialog between scientists from the fields of meteorology, air quality, aerobiology, health, and policy makers.

  19. Chemical dissection of the cell cycle: probes for cell biology and anti-cancer drug development.

    Science.gov (United States)

    Senese, S; Lo, Y C; Huang, D; Zangle, T A; Gholkar, A A; Robert, L; Homet, B; Ribas, A; Summers, M K; Teitell, M A; Damoiseaux, R; Torres, J Z

    2014-10-16

    Cancer cell proliferation relies on the ability of cancer cells to grow, transition through the cell cycle, and divide. To identify novel chemical probes for dissecting the mechanisms governing cell cycle progression and cell division, and for developing new anti-cancer therapeutics, we developed and performed a novel cancer cell-based high-throughput chemical screen for cell cycle modulators. This approach identified novel G1, S, G2, and M-phase specific inhibitors with drug-like properties and diverse chemotypes likely targeting a broad array of processes. We further characterized the M-phase inhibitors and highlight the most potent M-phase inhibitor MI-181, which targets tubulin, inhibits tubulin polymerization, activates the spindle assembly checkpoint, arrests cells in mitosis, and triggers a fast apoptotic cell death. Importantly, MI-181 has broad anti-cancer activity, especially against BRAF(V600E) melanomas.

  20. A Synthetic Biology Project - Developing a single-molecule device for screening drug-target interactions.

    Science.gov (United States)

    Firman, Keith; Evans, Luke; Youell, James

    2012-07-16

    This review describes a European-funded project in the area of Synthetic Biology. The project seeks to demonstrate the application of engineering techniques and methodologies to the design and construction of a biosensor for detecting drug-target interactions at the single-molecule level. Production of the proteins required for the system followed the principle of previously described "bioparts" concepts (a system where a database of biological parts - promoters, genes, terminators, linking tags and cleavage sequences - is used to construct novel gene assemblies) and cassette-type assembly of gene expression systems (the concept of linking different "bioparts" to produce functional "cassettes"), but problems were quickly identified with these approaches. DNA substrates for the device were also constructed using a cassette-system. Finally, micro-engineering was used to build a magnetoresistive Magnetic Tweezer device for detection of single molecule DNA modifying enzymes (motors), while the possibility of constructing a Hall Effect version of this device was explored. The device is currently being used to study helicases from Plasmodium as potential targets for anti-malarial drugs, but we also suggest other potential uses for the device. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Combination of aquifer thermal energy storage and enhanced bioremediation: Biological and chemical clogging.

    Science.gov (United States)

    Ni, Zhuobiao; van Gaans, Pauline; Rijnaarts, Huub; Grotenhuis, Tim

    2018-02-01

    Interest in the combination concept of aquifer thermal energy storage (ATES) and enhanced bioremediation has recently risen due to the demand for both renewable energy technology and sustainable groundwater management in urban areas. However, the impact of enhanced bioremediation on ATES is not yet clear. Of main concern is the potential for biological clogging which might be enhanced and hamper the proper functioning of ATES. On the other hand, more reduced conditions in the subsurface by enhanced bioremediation might lower the chance of chemical clogging, which is normally caused by Fe(III) precipitate. To investigate the possible effects of enhanced bioremediation on clogging with ATES, we conducted two recirculating column experiments with differing flow rates (10 and 50mL/min), where enhanced biological activity and chemically promoted Fe(III) precipitation were studied by addition of lactate and nitrate respectively. The pressure drop between the influent and effluent side of the column was used as a measure of the (change in) hydraulic conductivity, as indication of clogging in these model ATES systems. The results showed no increase in upstream pressure during the period of enhanced biological activity (after lactate addition) under both flow rates, while the addition of nitrate lead to significant buildup of the pressure drop. However, at the flow rate of 10mL/min, high pressure buildup caused by nitrate addition could be alleviated by lactate addition. This indicates that the risk of biological clogging is relatively small in the investigated areas of the mimicked ATES system that combines enhanced bioremediation with lactate as substrate, and furthermore that lactate may counter chemical clogging. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Synthesis, chemical and biological properties of the new mono- and bis-derivatives of imidazoles

    Directory of Open Access Journals (Sweden)

    E. V. Welchinska

    2014-12-01

    Full Text Available The aim of research. The problem of finding effective antitumour medical preparation with low toxicity is an important issue of medical and pharmaceutical chemistry. Knowledge of cancer cell features and its metabolism enables to predict the direction of chemical and biological research, to conduct a targeted synthesis of potential drugs, and to assess their applicability in oncological practice as antitumor agents. The purpose of work is to explain preformed heterocycles as purines, its synthesis and investigation of chemical and biological properties. After construction of the potential active structures we proposed the new method of original derivatives synthesis which are received on the base of imidazole, from one side, and fluorocontaining common anesthetic halothane (2-bromo-1,1,1-trifluoro-2-chloroethane from other side. Molecular complex of more perspective biologically active bis-imidazole with antitumour bacterial lectine has been received. With the purpose to synthesize potential antitumour compounds on the base of halothane and imidazole, new convenient methods for the preparation of original heterocyclic derivatives of imidazole have been described. The structure and composition of synthesized compound has been confirmed by the methods of elemental analysis, IR- and NMRІН-spectra. Materials and methods. The majority of the absolute organic solvents (benzene, dimethylformamide, ethyl ester employed in the present studies were distilled before their use. Organic solvents were dried over anhydrous magnesium sulfate or metallic sodium. Gas-liquid chromatography was carried out by Perkin Elmer chromatograph with UV-detector ("Perkin", Germany. IR spectra were recorded in a UR-20 spectrometer ("Charles Ceise Hena", Germany. The 1HNMR spectra were recorded in DMSO-d6 on a 200 MHz BrakerWP-200 ("Braker", Switzerland or Varian T-60 spectrometer ("Varian", USA. Investigation of critical toxicity of new compounds was carried out at

  3. Nitrous oxide production from reactive nitrification intermediates: a concerted action of biological and chemical processes

    Science.gov (United States)

    Brüggemann, Nicolas; Heil, Jannis; Liu, Shurong; Wei, Jing; Vereecken, Harry

    2017-04-01

    This contribution tries to open up a new perspective on biogeochemical N2O production processes, taking the term bio-geo-chemistry literally. What if a major part of N2O is produced from reactive intermediates of microbiological N turnover processes ("bio…") leaking out of the involved microorganisms into the soil ("…geo…") and then reacting chemically ("…chemistry") with the surrounding matrix? There are at least two major reactive N intermediates that might play a significant role in these coupled biological-chemical reactions, i.e. hydroxylamine (NH2OH) and nitrite (NO2-), both of which are produced during nitrification under oxic conditions, while NO2- is also produced during denitrification under anoxic conditions. Furthermore, NH2OH is assumed to be also a potential intermediate of DNRA and/or anammox. First, this contribution will summarize information about several chemical reactions involving NH2OH and NO2- leading to the formation of N2O. These abiotic reactions are: reactions of NO2- with reduced metal cations, nitrosation reactions of NO2- and soil organic matter (SOM), the reaction between NO2- and NH2OH, and the oxidation of NH2OH by oxidized metal ions. While these reactions can occur over a broad range of soil characteristics, they are ignored in most current N trace gas studies in favor of biological processes only. Disentangling microbiological from purely chemical N2O production is further complicated by the fact that the chemically formed N2O is either undiscernible from N2O produced during nitrification, or shows an intermediate 15N site preference between that of N2O from nitrification and denitrification, respectively. Results from experiments with live and sterilized soil samples, with artificial soil mixtures and with phenolic lignin decomposition model compounds will be presented that demonstrate the potential contribution of these abiotic processes to soil N trace gas emissions, given a substantial leakage rate of these reactive

  4. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells.

    Directory of Open Access Journals (Sweden)

    Anders Waldenström

    Full Text Available BACKGROUND: Shedding microvesicles are membrane released vesicles derived directly from the plasma membrane. Exosomes are released membrane vesicles of late endosomal origin that share structural and biochemical characteristics with prostasomes. Microvesicles/exosomes can mediate messages between cells and affect various cell-related processes in their target cells. We describe newly detected microvesicles/exosomes from cardiomyocytes and depict some of their biological functions. METHODOLOGY/PRINCIPAL FINDINGS: Microvesicles/exosomes from media of cultured cardiomyocytes derived from adult mouse heart were isolated by differential centrifugation including preparative ultracentrifugation and identified by transmission electron microscopy and flow cytometry. They were surrounded by a bilayered membrane and flow cytometry revealed presence of both caveolin-3 and flotillin-1 while clathrin and annexin-2 were not detected. Microvesicle/exosome mRNA was identified and out of 1520 detected mRNA, 423 could be directly connected in a biological network. Furthermore, by a specific technique involving TDT polymerase, 343 different chromosomal DNA sequences were identified in the microvesicles/exosomes. Microvesicle/exosomal DNA transfer was possible into target fibroblasts, where exosomes stained for DNA were seen in the fibroblast cytosol and even in the nuclei. The gene expression was affected in fibroblasts transfected by microvesicles/exosomes and among 333 gene expression changes there were 175 upregulations and 158 downregulations compared with controls. CONCLUSIONS/SIGNIFICANCE: Our study suggests that microvesicles/exosomes released from cardiomyocytes, where we propose that exosomes derived from cardiomyocytes could be denoted "cardiosomes", can be involved in a metabolic course of events in target cells by facilitating an array of metabolism-related processes including gene expression changes.

  5. Seasonal variations in chemical composition and in vitro biological effects of fine PM from Milan.

    Science.gov (United States)

    Perrone, Maria Grazia; Gualtieri, Maurizio; Ferrero, Luca; Lo Porto, Claudia; Udisti, Roberto; Bolzacchini, Ezio; Camatini, Marina

    2010-03-01

    Fine particulate matter (PM1 and PM2.5) was collected in Milan over the summer (August-September) and winter (January-March) seasons of 2007/2008. Particles were analyzed for their chemical composition (inorganic ions, elements and PAHs) and the effects produced on the human lung carcinoma epithelial cell line A549. In vitro tests were performed to assess cell viability with MTT assay, cytokine release (IL-6 and IL-8) with ELISA, and DNA damage with COMET assay. Results were investigated by bivariate analysis and multivariate data analysis (Principal Component Analysis, PCA) to investigate the relationship between PM chemical composition and the biological effects produced by cell exposure to 12 microg cm(-2). The different seasonal chemical composition of PM showed to influence some biological properties. Summer PM samples had a high mass contribution of SO(4)(=) (13+/-2%) and were enriched in some elements, like Al, As, Cr, Cu, and Zn, compared to winter PM samples. Cell viability reduction was two times higher for summer PM samples in comparison with winter ones (27+/-5% and 14+/-5%, respectively), and the highest correlation coefficients between cell viability reduction and single chemical components were with As (R(2)=0.57) and SO(4)(=) (R(2)=0.47). PM1 affected cell viability reduction and induced IL-8 release, and these events were interrelated (R(2)=0.95), and apparently connected with the same chemical compounds. PM2.5 fraction, which was enriched in Ca(++) and Mg(++) (from soil dust), and Al, Fe, Zn, Ba Mn, produced cell viability reduction and DNA damage (R(2)=0.73). Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  6. The chemical and biological characteristics of coke-oven wastewater by ozonation

    International Nuclear Information System (INIS)

    Chang, E.-E.; Hsing, H.-J.; Chiang, P.-C.; Chen, M.-Y.; Shyng, J.-Y.

    2008-01-01

    A bench-scale bubble column reactor was used to investigate the biological and chemical characteristics of coke-oven wastewater after ozonation treatment through the examination of selected parameters. Color and thiocyanate could be removed almost entirely; however, organic matter and cyanide could not, due to the inadequate oxidation ability of ozone to remove ozonated byproducts under given experimental conditions. The removal of cyanide and total organic carbon were pH-dependent and were found to be efficient under neutral to alkaline conditions. The removal rate for thiocyanate was about five times that of cyanide. The ozone consumption ratio approached to about 1 at the early stage of ozonation (time TOC ) increased to 30%, indicating that easily degraded pollutants were degraded almost entirely. The effect of ozonation on the subsequent biological treatment unit (i.e., activated sludge process) was determined by observing the ratio of 5-day biological oxygen demand to chemical oxygen demand (BOD 5 /COD) and the specific oxygen utilization rate (SOUR). The results indicated that the contribution of ozonation to inhibition reduction was very significant but limited to the enhancement of biodegradation. The operation for ozonation of coke-oven wastewater was feasible under neutral condition and short ozone contact time in order to achieve better performance and cost savings

  7. Biological and chemical terrorism scenarios and implications for detection systems needs

    Science.gov (United States)

    Gordon, Susanna P.; Chumfong, Isabelle; Edwards, Donna M.; Gleason, Nathaniel J.; West, Todd; Yang, Lynn

    2007-04-01

    Terrorists intent on causing many deaths and severe disruption to our society could, in theory, cause hundreds to tens of thousands of deaths and significant contamination of key urban facilities by using chemical or biological (CB) agents. The attacks that have occurred to date, such as the 1995 Aum Shinrikyo CB attacks and the 2001 anthrax letters, have been very small on the scale of what is possible. In order to defend against and mitigate the impacts of large-scale terrorist attacks, defensive systems for protection of urban areas and high-value facilities from biological and chemical threats have been deployed. This paper reviews analyses of such scenarios and of the efficacy of potential response options, discusses defensive systems that have been deployed and detectors that are being developed, and finally outlines the detection systems that will be needed for improved CB defense in the future. Sandia's collaboration with San Francisco International Airport on CB defense will also be briefly reviewed, including an overview of airport facility defense guidelines produced in collaboration with Lawrence Berkeley National Laboratory. The analyses that will be discussed were conducted by Sandia National Laboratories' Systems Studies Department in support of the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, and include quantitative analyses utilizing simulation models developed through close collaboration with subject matter experts, such as public health officials in urban areas and biological defense experts.

  8. Polyunsaturated fatty acid amides from the Zanthoxylum genus - from culinary curiosities to probes for chemical biology.

    Science.gov (United States)

    Chruma, Jason J; Cullen, Douglas J; Bowman, Lydia; Toy, Patrick H

    2018-01-25

    Covering up to February 2017The pericarps of several species from the Zanthoxylum genus, a.k.a. the "prickly ash", have long been used for culinary purposes throughout Asia, most notably in the Sichuan (previously Szechuan) cuisine of Southwestern China, due to the unique tingling and numbing orosensations arising from a collection of polyunsaturated fatty acid amide (alkamide) constituents. The past decade has experienced dramatically increased academic and industrial interest in these pungent Zanthoxylum-derived alkamides, with a concomitant explosion in studies aimed at elucidating the specific biochemical mechanisms behind several medically-relevant biological activities exhibited by the natural products. This rapid increase in interest is partially fueled by advances in organic synthesis reported within the past few years that finally have allowed for the production of diastereomerically-pure Zanthoxylum alkamides and related analogs in multigram quantities. Herein is a comprehensive review of the discovery, total synthesis, and biological evaluation of Zanthoxylum-derived polyunsaturated fatty acid amides and synthetic analogues. Critical insights into how chemical synthesis can further benefit future chemical biology efforts in the field are also provided.

  9. Application of Carbon Nanotubes in Chiral and Achiral Separations of Pharmaceuticals, Biologics and Chemicals.

    Science.gov (United States)

    Hemasa, Ayman L; Naumovski, Nenad; Maher, William A; Ghanem, Ashraf

    2017-07-18

    Carbon nanotubes (CNTs) possess unique mechanical, physical, electrical and absorbability properties coupled with their nanometer dimensional scale that renders them extremely valuable for applications in many fields including nanotechnology and chromatographic separation. The aim of this review is to provide an updated overview about the applications of CNTs in chiral and achiral separations of pharmaceuticals, biologics and chemicals. Chiral single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) have been directly applied for the enantioseparation of pharmaceuticals and biologicals by using them as stationary or pseudostationary phases in chromatographic separation techniques such as high-performance liquid chromatography (HPLC), capillary electrophoresis (CE) and gas chromatography (GC). Achiral MWCNTs have been used for achiral separations as efficient sorbent objects in solid-phase extraction techniques of biochemicals and drugs. Achiral SWCNTs have been applied in achiral separation of biological samples. Achiral SWCNTs and MWCNTs have been also successfully used to separate achiral mixtures of pharmaceuticals and chemicals. Collectively, functionalized CNTs have been indirectly applied in separation science by enhancing the enantioseparation of different chiral selectors whereas non-functionalized CNTs have shown efficient capabilities for chiral separations by using techniques such as encapsulation or immobilization in polymer monolithic columns.

  10. The Role of Molecular Biology in the Biomonitoring of Human Exposure to Chemicals

    Directory of Open Access Journals (Sweden)

    Balam Muñoz

    2010-11-01

    Full Text Available Exposure to different substances in an occupational environment is of utmost concern to global agencies such as the World Health Organization and the International Labour Organization. Interest in improving work health conditions, particularly of those employees exposed to noxious chemicals, has increased considerably and has stimulated the search for new, more specific and selective tests. Recently, the field of molecular biology has been indicated as an alternative technique for monitoring personnel while evaluating work-related pathologies. Originally, occupational exposure to environmental toxicants was assessed using biochemical techniques to determine the presence of higher concentrations of toxic compounds in blood, urine, or other fluids or tissues; results were used to evaluate potential health risk. However, this approach only estimates the presence of a noxious chemical and its effects, but does not prevent or diminish the risk. Molecular biology methods have become very useful in occupational medicine to provide more accurate and opportune diagnostics. In this review, we discuss the role of the following common techniques: (1 Use of cell cultures; (2 evaluation of gene expression; (3 the “omic” sciences (genomics, transcriptomics, proteomics and metabolomics and (4 bioinformatics. We suggest that molecular biology has many applications in occupational health where the data can be applied to general environmental conditions.

  11. The role of molecular biology in the biomonitoring of human exposure to chemicals.

    Science.gov (United States)

    Muñoz, Balam; Albores, Arnulfo

    2010-11-12

    Exposure to different substances in an occupational environment is of utmost concern to global agencies such as the World Health Organization and the International Labour Organization. Interest in improving work health conditions, particularly of those employees exposed to noxious chemicals, has increased considerably and has stimulated the search for new, more specific and selective tests. Recently, the field of molecular biology has been indicated as an alternative technique for monitoring personnel while evaluating work-related pathologies. Originally, occupational exposure to environmental toxicants was assessed using biochemical techniques to determine the presence of higher concentrations of toxic compounds in blood, urine, or other fluids or tissues; results were used to evaluate potential health risk. However, this approach only estimates the presence of a noxious chemical and its effects, but does not prevent or diminish the risk. Molecular biology methods have become very useful in occupational medicine to provide more accurate and opportune diagnostics. In this review, we discuss the role of the following common techniques: (1) Use of cell cultures; (2) evaluation of gene expression; (3) the "omic" sciences (genomics, transcriptomics, proteomics and metabolomics) and (4) bioinformatics. We suggest that molecular biology has many applications in occupational health where the data can be applied to general environmental conditions.

  12. Application of Carbon Nanotubes in Chiral and Achiral Separations of Pharmaceuticals, Biologics and Chemicals

    Directory of Open Access Journals (Sweden)

    Ayman L. Hemasa

    2017-07-01

    Full Text Available Carbon nanotubes (CNTs possess unique mechanical, physical, electrical and absorbability properties coupled with their nanometer dimensional scale that renders them extremely valuable for applications in many fields including nanotechnology and chromatographic separation. The aim of this review is to provide an updated overview about the applications of CNTs in chiral and achiral separations of pharmaceuticals, biologics and chemicals. Chiral single-walled carbon nanotubes (SWCNTs and multi-walled carbon nanotubes (MWCNTs have been directly applied for the enantioseparation of pharmaceuticals and biologicals by using them as stationary or pseudostationary phases in chromatographic separation techniques such as high-performance liquid chromatography (HPLC, capillary electrophoresis (CE and gas chromatography (GC. Achiral MWCNTs have been used for achiral separations as efficient sorbent objects in solid-phase extraction techniques of biochemicals and drugs. Achiral SWCNTs have been applied in achiral separation of biological samples. Achiral SWCNTs and MWCNTs have been also successfully used to separate achiral mixtures of pharmaceuticals and chemicals. Collectively, functionalized CNTs have been indirectly applied in separation science by enhancing the enantioseparation of different chiral selectors whereas non-functionalized CNTs have shown efficient capabilities for chiral separations by using techniques such as encapsulation or immobilization in polymer monolithic columns.

  13. Chemical and Biological Analysis of Malaysian Sting less Bee Propolis Extracts

    International Nuclear Information System (INIS)

    Nurhamizah Ibrahim; Nurul Farah Shakila Mohd Niza; Muhammad Muslim Mohd Rodi; Abdul Jamil Zakaria; Zhari Ismail; Khamsah Suryati Mohd; Khamsah Suryati Mohd

    2016-01-01

    The aim of this study is to evaluate chemical and biological profile of methanol extracts from Malaysian propolis produced by two commonly found sting less bee species, Heterotrigona itama (MHI) and Geniotrigona thoracica (MGT). Test samples were analyzed for physicochemical parameters such as moisture, fat, crude fibre, crude protein, carbohydrate and ash content. Tests for phyto chemical screening by thin layer chromatography of both extracts revealed that presence of terpenoids, flavonoids, phenols and essential oils but steroids, saponin and coumarins only occur in MHI. Both extracts displayed a characteristic profile and vary from each other. Accordingly, MHI possess higher antioxidant activity with an IC 50 of 15.0 ± 0.21 μg/ mL compared to MGT with IC 50 of 270.0 ± 0.19 μg/ mL. MHI showed moderate nitric oxide scavenging activity, while MGT only showed mild inhibition. Antidiabetic activity was determined by α-glucosidase inhibition and found significantly better than that of acarbose (positive control). In conclusion, data gathered in this study revealed that bee species play role in determining the chemical and biological profile of particular propolis and should put into account in decision of further development for propolis. (author)

  14. Biological assessment of contaminated land using earthworm biomarkers in support of chemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hankard, Peter K.; Svendsen, Claus; Wright, Julian; Wienberg, Claire; Fishwick, Samantha K.; Spurgeon, David J.; Weeks, Jason M

    2004-09-01

    Biological indicators can be used to assess polluted sites but their success depends on the availability of suitable assays. The aim of this study was to investigate the performance of two earthworm biomarkers, lysosomal membrane stability measured using the neutral red retention assay (NRR-T) and the total immune activity (TIA) assay, that have previously been established as responsive to chemical exposure. Responses of the two assays were measured following in situ exposure to complexly contaminated field soils at three industrial sites as well as urban and rural controls. The industrial sites were contaminated with a range of metal (cadmium, copper, lead, zinc, nickel and cobalt) and organic (including polycyclic aromatic hydrocarbons) contaminants, but at concentrations below the 'New Dutch List' Intervention concentrations. Exposed earthworms accumulated both metals and organic compounds at the contaminated sites, indicating that there was significant exposure. No effect on earthworm survival was found at any of the sites. Biomarker measurements, however, indicated significant effects, with lower NRR-T and TIA found in the contaminated soils when compared to the two controls. The results demonstrate that a comparison of soil pollutant concentrations with guideline values would not have unequivocally identified chemical exposure and toxic effect for soil organisms living in these soils. However, the earthworm biomarkers successfully identified significant exposure and biological effects caused by the mixture of chemicals present.

  15. Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2016-07-01

    Full Text Available Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding and quantitative (for predicting mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD as the revived precursor for comparative molecular field analyses (CoMFA and comparative molecular similarity indices analysis (CoMSIA; all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy-methyl]-6-(phenylthiothymine congeners’ (HEPT ligands antiviral activity against Human Immunodeficiency Virus of first type (HIV-1 and new pharmacophores in treating severe genetic disorders (like depression and psychosis, respectively, all involving 3D pharmacophore interactions.

  16. Biological assessment of contaminated land using earthworm biomarkers in support of chemical analysis

    International Nuclear Information System (INIS)

    Hankard, Peter K.; Svendsen, Claus; Wright, Julian; Wienberg, Claire; Fishwick, Samantha K.; Spurgeon, David J.; Weeks, Jason M.

    2004-01-01

    Biological indicators can be used to assess polluted sites but their success depends on the availability of suitable assays. The aim of this study was to investigate the performance of two earthworm biomarkers, lysosomal membrane stability measured using the neutral red retention assay (NRR-T) and the total immune activity (TIA) assay, that have previously been established as responsive to chemical exposure. Responses of the two assays were measured following in situ exposure to complexly contaminated field soils at three industrial sites as well as urban and rural controls. The industrial sites were contaminated with a range of metal (cadmium, copper, lead, zinc, nickel and cobalt) and organic (including polycyclic aromatic hydrocarbons) contaminants, but at concentrations below the 'New Dutch List' Intervention concentrations. Exposed earthworms accumulated both metals and organic compounds at the contaminated sites, indicating that there was significant exposure. No effect on earthworm survival was found at any of the sites. Biomarker measurements, however, indicated significant effects, with lower NRR-T and TIA found in the contaminated soils when compared to the two controls. The results demonstrate that a comparison of soil pollutant concentrations with guideline values would not have unequivocally identified chemical exposure and toxic effect for soil organisms living in these soils. However, the earthworm biomarkers successfully identified significant exposure and biological effects caused by the mixture of chemicals present

  17. Biological and chemical tests of contaminated soils to determine bioavailability and environmentally acceptable endpoints (EAE)

    International Nuclear Information System (INIS)

    Montgomery, C.R.; Menzie, C.A.; Pauwells, S.J.

    1995-01-01

    The understanding of the concept of bioavailability of soil contaminants to receptors and its use in supporting the development of EAE is growing but still incomplete. Nonetheless, there is increased awareness of the importance of such data to determine acceptable cleanup levels and achieve timely site closures. This presentation discusses a framework for biological and chemical testing of contaminated soils developed as part of a Gas Research Institute (GRI) project entitled ''Environmentally Acceptable Endpoints in Soil Using a Risk Based Approach to Contaminated Site Management Based on Bioavailability of Chemicals in Soil.'' The presentation reviews the GRI program, and summarizes the findings of the biological and chemical testing section published in the GRI report. The three primary components of the presentation are: (1) defining the concept of bioavailability within the existing risk assessment paradigm, (2) assessing the usefulness of the existing tests to measure bioavailability and test frameworks used to interpret these measurements, and (3) suggesting how a small selection of relevant tests could be incorporated into a flexible testing scheme for soils to address this issue

  18. Genetic and chemical knockdown: a complementary strategy for evaluating an anti-infective target

    Directory of Open Access Journals (Sweden)

    Ramachandran V

    2013-02-01

    Full Text Available Vasanthi Ramachandran,1,* Ragini Singh,2,* Xiaoyu Yang,1 Ragadeepthi Tunduguru,1 Subrat Mohapatra,2 Swati Khandelwal,2 Sanjana Patel,2 Santanu Datta21AstraZeneca India R&D, Bangalore, India; 2Cellworks India, Bangalore, India *These authors contributed equally to this workAbstract: The equity of a drug target is principally evaluated by its genetic vulnerability with tools ranging from antisense- and microRNA-driven knockdowns to induced expression of the target protein. In order to upgrade the process of antibacterial target identification and discern its most effective type of inhibition, an in silico toolbox that evaluates its genetic and chemical vulnerability leading either to stasis or cidal outcome was constructed and validated. By precise simulation and careful experimentation using enolpyruvyl shikimate-3-phosphate synthase and its specific inhibitor glyphosate, it was shown that genetic knockdown is distinct from chemical knockdown. It was also observed that depending on the particular mechanism of inhibition, viz competitive, uncompetitive, and noncompetitive, the antimicrobial potency of an inhibitor could be orders of magnitude different. Susceptibility of Escherichia coli to glyphosate and the lack of it in Mycobacterium tuberculosis could be predicted by the in silico platform. Finally, as predicted and simulated in the in silico platform, the translation of growth inhibition to a cidal effect was able to be demonstrated experimentally by altering the carbon source from sorbitol to glucose.Keywords: knockdown, inhibition, in silico, vulnerability

  19. Decree 152/013. It dictate norms concerning to the management of waste from the use of chemical or biological products in farming, forestry and agro fruit

    International Nuclear Information System (INIS)

    2013-01-01

    This decree is about the norms concerning to the management of waste from the use of chemical or biological products in farming, forestry and agro fruit. This includes chemical or biological containers.

  20. Chemical Biology of Hydropersulfides and Related Species: Possible Roles in Cellular Protection and Redox Signaling.

    Science.gov (United States)

    Álvarez, Lucía; Bianco, Christopher L; Toscano, John P; Lin, Joseph; Akaike, Takaaki; Fukuto, Jon M

    2017-10-01

    For >20 years, physiological signaling associated with the endogenous generation of hydrogen sulfide (H 2 S) has been of significant interest. Despite its presumed importance, the biochemical mechanisms associated with its actions have not been elucidated. Recent Advances: Recently it has been found that H 2 S-related or derived species are highly prevalent in mammalian systems and that these species may be responsible for some, if not the majority, of the biological actions attributed to H 2 S. One of the most prevalent and intriguing species are hydropersulfides (RSSH), which can be present at significant levels. Indeed, it appears that H 2 S and RSSH are intimately linked in biological systems and likely to be mutually inclusive. The fact that H 2 S and polysulfides such as RSSH are present simultaneously means that the biological actions previously assigned to H 2 S can be instead because of the presence of RSSH (or other polysulfides). Thus, it remains possible that hydropersulfides are the biological effectors, and H 2 S serves, to a certain extent, as a marker for persulfides and polysulfides. Addressing this possibility will to a large extent be based on the chemistry of these species. Currently, it is known that persulfides possess unique and novel chemical properties that may explain their biological prevalence. However, significantly more work will be required to establish the possible physiological roles of these species. Moreover, an understanding of the regulation of their biosynthesis and degradation will become important topics in piecing together their biology. Antioxid. Redox Signal. 00, 000-000.

  1. Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Paladini, F.; Picca, R.A.; Sportelli, M.C.; Cioffi, N.; Sannino, A.; Pollini, M.

    2015-01-01

    Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications and wound healing. This work aims to investigate the surface chemical composition and biological properties of silver nanoparticle-modified flax substrates. Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution, by means of a large-scale apparatus. The silver-coated materials were characterized through X-ray Photoelectron Spectroscopy (XPS), to assess the surface elemental composition of the coatings, and the chemical speciation of both the substrate and the antibacterial nanophases. A detailed investigation of XPS high resolution regions outlined that silver is mainly present on nanophases' surface as Ag 2 O. Scanning electron microscopy and energy dispersive X-ray spectroscopy were also carried out, in order to visualize the distribution of silver particles on the fibers. The materials were also characterized from a biological point of view in terms of antibacterial capability and cytotoxicity. Agar diffusion tests and bacterial enumeration tests were performed on Gram positive and Gram negative bacteria, namely Staphylococcus aureus and Escherichia coli. In vitro cytotoxicity tests were performed through the extract method on murine fibroblasts in order to verify if the presence of the silver coating affected the cellular viability and proliferation. Durability of the coating was also assessed, thus confirming the successful scaling up of the process, which will be therefore available for large-scale production. - Highlights: • Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications. • Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution. • Flax fabrics were characterized from a biological and surface chemical point of view. • Scaling up of the process was confirmed

  2. Biological – chemical regeneration of desulphurization sorbents based on zinc ferrite

    Directory of Open Access Journals (Sweden)

    Šepelák Vladimír

    2002-03-01

    Full Text Available One of the main sources of air pollution is the combustion of fuels by various thermal and power plants, transport facilities, and metallurgical plants. Main components of industrial gases that pollute air are carbon oxides, nitrogen oxides, sulphur oxides and hydrogen sulphide. Sulphur has received a more attention than any other contaminant, because the sulphur released into the atmosphere in the form of sulphur dioxide or hydrogen sulphide is a precursor of the “acid rain” formation. To meet environmental emission regulations, sulphur and other contaminant species released during the gasification of coal must be removed from the fuel gas stream. The removal of contaminat at high temperatures is referred to as hot-gas cleanup in general and hot-gas desulphurization in particular when sulphur species are the primary contaminants to be remove. In recent years, zinc ferrite is the leading candidate for hot-gas desulphurization, capable of removing sulphur-containing species from coal gas at gasifier exit temperatures. It can also be of being regenerated for a continuous use. The conventional methods of the regeneration of sulphurized sorbents are based on oxidizing pyrolysis of sulphides or on the pressure leaching of sulphides in the water environment at high temperatures. The first results of the experiments using the biological-chemical leaching, as a new way of regeneration of sulphurized sorbent based on zinc ferrite, are presented in this paper. The results show that the biological-chemical leaching leads to the removal of sulphides layers (á-ZnS, â-ZnS from the surface of the sorbent at room temperature. The biological-chemical leaching process results in the increase of the active surface area of the regenerated sorbent.

  3. Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Paladini, F., E-mail: federica.paladini@unisalento.it [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); Picca, R.A.; Sportelli, M.C.; Cioffi, N. [Department of Chemistry, University of Bari “Aldo Moro”, Via Orabona 4, 70126 Bari (Italy); Sannino, A.; Pollini, M. [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy)

    2015-07-01

    Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications and wound healing. This work aims to investigate the surface chemical composition and biological properties of silver nanoparticle-modified flax substrates. Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution, by means of a large-scale apparatus. The silver-coated materials were characterized through X-ray Photoelectron Spectroscopy (XPS), to assess the surface elemental composition of the coatings, and the chemical speciation of both the substrate and the antibacterial nanophases. A detailed investigation of XPS high resolution regions outlined that silver is mainly present on nanophases' surface as Ag{sub 2}O. Scanning electron microscopy and energy dispersive X-ray spectroscopy were also carried out, in order to visualize the distribution of silver particles on the fibers. The materials were also characterized from a biological point of view in terms of antibacterial capability and cytotoxicity. Agar diffusion tests and bacterial enumeration tests were performed on Gram positive and Gram negative bacteria, namely Staphylococcus aureus and Escherichia coli. In vitro cytotoxicity tests were performed through the extract method on murine fibroblasts in order to verify if the presence of the silver coating affected the cellular viability and proliferation. Durability of the coating was also assessed, thus confirming the successful scaling up of the process, which will be therefore available for large-scale production. - Highlights: • Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications. • Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution. • Flax fabrics were characterized from a biological and surface chemical point of view. • Scaling up of the process was confirmed.

  4. Biological responses to the chemical recovery of acidified fresh waters in the UK

    International Nuclear Information System (INIS)

    Monteith, D.T.; Hildrew, A.G.; Flower, R.J.; Raven, P.J.; Beaumont, W.R.B.; Collen, P.; Kreiser, A.M.; Shilland, E.M.; Winterbottom, J.H.

    2005-01-01

    We report biological changes at several UK Acid Waters Monitoring Network lakes and streams that are spatially consistent with the recovery of water chemistry induced by reductions in acid deposition. These include trends toward more acid-sensitive epilithic diatom and macroinvertebrate assemblages, an increasing proportional abundance of macroinvertebrate predators, an increasing occurrence of acid-sensitive aquatic macrophyte species, and the recent appearance of juvenile (<1 year old) brown trout in some of the more acidic flowing waters. Changes are often shown to be directly linked to annual variations in acidity. Although indicative of biological improvement in response to improving water chemistry, 'recovery' in most cases is modest and very gradual. While specific ecological recovery endpoints are uncertain, it is likely that physical and biotic interactions are influencing the rate of recovery of certain groups of organisms at particular sites. - Recently observed changes in the species composition of UK lakes and streams are consistent with chemical recovery from acidification

  5. Biological-inorganic hybrid systems as a generalized platform for chemical production.

    Science.gov (United States)

    Nangle, Shannon N; Sakimoto, Kelsey K; Silver, Pamela A; Nocera, Daniel G

    2017-12-01

    An expanding renewable energy market to supplant petrochemicals has motivated synthesis technologies that use renewable feedstocks, such as CO 2 . Hybrid biological-inorganic systems provide a sustainable, efficient, versatile, and inexpensive chemical synthesis platform. These systems comprise biocompatible electrodes that transduce electrical energy either directly or indirectly into bioavailable energy, such as H 2 and NAD(P)H. In combination, specific bacteria use these energetic reducing equivalents to fix CO 2 into multi-carbon organic compounds. As hybrid biological-inorganic technologies have developed, the focus has shifted from phenomenological and proof-of-concept discovery towards enhanced energy efficiency, production rate, product scope, and industrial robustness. In this review, we highlight the progress and the state-of-the-art of this field and describe the advantages and challenges involved in designing bio- and chemo- compatible systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The effect of biologically and chemically synthesized silver nanoparticles (AgNPs) on biofilm formation

    Science.gov (United States)

    Chojniak, Joanna; Biedroń, Izabela; Mendrek, Barbara; Płaza, Grażyna

    2017-11-01

    Bionanotechnology has emerged up as integration between biotechnology and nanotechnology for developing biosynthetic and environmental-friendly technology for synthesis of nanomaterials. Different types of nanomaterials like copper, zinc, titanium, magnesium, gold, and silver have applied in the various industries but silver nanoparticles have proved to be most effective against bacteria, viruses and eukaryotic microorganisms. The antimicrobial property of silver nanoparticles are widely known. Due to strong antibacterial property silver nanoparticles are used, e.g. in clothing, food industry, sunscreens, cosmetics and many household and environmental appliances. The aim of the study was to compare the effect of silver nanoparticles (AgNPs) synthesized biologically and chemically on the biofilm formation. The biofilm was formed by the bacteria isolated from the water supply network. The commonly used crystal violet assay (CV) was applied for biofilm analysis. In this study effect of biologically synthesized Ag-NPs on the biofilm formation was evaluated.

  7. Atom-scale depth localization of biologically important chemical elements in molecular layers.

    Science.gov (United States)

    Schneck, Emanuel; Scoppola, Ernesto; Drnec, Jakub; Mocuta, Cristian; Felici, Roberto; Novikov, Dmitri; Fragneto, Giovanna; Daillant, Jean

    2016-08-23

    In nature, biomolecules are often organized as functional thin layers in interfacial architectures, the most prominent examples being biological membranes. Biomolecular layers play also important roles in context with biotechnological surfaces, for instance, when they are the result of adsorption processes. For the understanding of many biological or biotechnologically relevant phenomena, detailed structural insight into the involved biomolecular layers is required. Here, we use standing-wave X-ray fluorescence (SWXF) to localize chemical elements in solid-supported lipid and protein layers with near-Ångstrom precision. The technique complements traditional specular reflectometry experiments that merely yield the layers' global density profiles. While earlier work mostly focused on relatively heavy elements, typically metal ions, we show that it is also possible to determine the position of the comparatively light elements S and P, which are found in the most abundant classes of biomolecules and are therefore particularly important. With that, we overcome the need of artificial heavy atom labels, the main obstacle to a broader application of high-resolution SWXF in the fields of biology and soft matter. This work may thus constitute the basis for the label-free, element-specific structural investigation of complex biomolecular layers and biological surfaces.

  8. Biochemical ripening of dredged sediments. Part 1. Kinetics of biological organic matter mineralization and chemical sulfur oxidation

    NARCIS (Netherlands)

    Vermeulen, J.; Gool, M.P.M. van; Dorleijn, A.S.; Joziasse, J.; Bruning, H.; Rulkens, W.H.; Grotenhuis, J.T.C.

    2007-01-01

    After dredged sediments have settled in a temporary upland disposal site, ripening starts, which turns waterlogged sediment into aerated soil. Aerobic biological mineralization of organic matter (OM) and chemical oxidation of reduced sulfur compounds are the major biochemical ripening processes.

  9. Biochemical ripening of dredged sediments. part 1. Kinetics of biological organic matter mineralization and chemical sulfur oxidation

    NARCIS (Netherlands)

    Vermeulen, J.; Gool, van M.P.M.; Dorleijn, A.S.; Joziasse, J.; Bruning, H.; Rulkens, W.H.; Grotenhuis, J.T.C.

    2007-01-01

    After dredged sediments have settled in a temporary upland disposal site, ripening starts, which turns waterlogged sediment into aerated soil. Aerobic biological mineralization of organic matter (OM) and chemical oxidation of reduced sulfur compounds are the major biochemical ripening processes.

  10. Physical, chemical, and biological data collected in Mobile Bay, Alabama in May 1989-December 1999 (NODC Accession 0116496)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains physical, chemical, and biological data collected during ten years of near-monthly shipboard surveys carried out in Mobile Bay between May 1989...

  11. Marine Corps NBC Warfare: Determining Clinical Supply Requirements for Treatment of Battlefield Casualties from Chemical and Biological Warfare

    National Research Council Canada - National Science Library

    Hill, Martin; Galameau, Mike; Pang, Gerry; Konoske, Paula

    2003-01-01

    ... to treat victims of biochemical agents on the battlefield. This study reviewed Marine Corps medical supply blocks for biological and chemical warfare casualties - Authorized Medical Allowance Lists (AMALs) 687 and 688...

  12. Physical, chemical, and biological data collected in Weeks Bay, Alabama (June 1990 - May 2000) (NODC Accession 0116469)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Abstract: This dataset contains ten years of physical, chemical, and biological data collected during shipboard surveys in Weeks Bay, Alabama, between June 1990 and...

  13. USING LONG-TERM CHEMICAL AND BIOLOGICAL INDICATORS TO ASSESS STREAM HEALTH IN THE UPPER OCONEE RIVER WATERSHED

    Science.gov (United States)

    Macroinvertebrates are commonly used as biological indicators of stream habitat and water quality. Chemical variables, such as dissolved oxygen (DO), specific conductance (SC), and turbidity are used to measure stream water quality. Many aquatic macroinvertebrates are sensitive...

  14. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli

    International Nuclear Information System (INIS)

    Whitaker, W. Brian; Bennett, R. Kyle

    2016-01-01

    Methanol is an attractive substrate for biological production of chemicals and fuels. Engineering methylotrophic Escherichia coli as a platform organism for converting methanol to metabolites is desirable. Prior efforts to engineer methylotrophic E. coli were limited by methanol dehydrogenases (Mdhs) with unfavorable enzyme kinetics. We engineered E. coli to utilize methanol using a superior NAD-dependent Mdh from Bacillus stearothermophilus and ribulose monophosphate (RuMP) pathway enzymes from B. methanolicus. Using 13 C-labeling, we demonstrate this E. coli strain converts methanol into biomass components. For example, the key TCA cycle intermediates, succinate and malate, exhibit labeling up to 39%, while the lower glycolytic intermediate, 3-phosphoglycerate, up to 53%. Multiple carbons are labeled for each compound, demonstrating a cycling RuMP pathway for methanol assimilation to support growth. In conclusion, by incorporating the pathway to synthesize the flavanone naringenin, we demonstrate the first example of in vivo conversion of methanol into a specialty chemical in E. coli.

  15. Physico-chemical and biological treatment of vegetable tannery effluents for the removal of organic matter

    International Nuclear Information System (INIS)

    Khan, A.R.; Mumtaz, M.; Aslam, T.; Anwer, T.

    2005-01-01

    Tannery wastewater samples were collected from vegetable tanneries located at Charsadda road Peshawar (Pakistan). The samples were chemically evaluated for parameters like; pH, dissolved oxygen (DO), total suspended solids (TSS), total dissolved solids (TDS), biochemical oxygen demand (BOD5) and chemical oxygen demand (COD). It was found that the effluents contained very high COD (>10,000 mg O/sub 2//L) and high concentrations of TSS, TDS and BOD, which render it harmful for aquatic life when discharged into the Kabul River without any treatment. A process has been developed to detoxify the tannery effluents applying physicochemical followed by biological method (sequencing batch reactor, SBR). The TSS, COD and BOD5 were substantially decreased employing the developed treatment technique. Overall, BOD and COD were both decreased by more than 87 and 81% respectively, whereas TS was decreased by 98.74%. The resulting sludge from SBR was found to have good settling characteristics. (author)

  16. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    Science.gov (United States)

    Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens

    2015-11-15

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Single-Molecule Sensing with Nanopore Confinement: from Chemical Reactions to Biological Interactions.

    Science.gov (United States)

    Lin, Yao; Ying, Yi-Lun; Gao, Rui; Long, Yi-Tao

    2018-03-25

    The nanopore can generate an electrochemical confinement for single-molecule sensing which help understand the fundamental chemical principle in nanoscale dimensions. By observing the generated ionic current, individual bond-making and bond-breaking steps, single biomolecule dynamic conformational changes and electron transfer processes that occur within pore can be monitored with high temporal and current resolution. These single-molecule studies in nanopore confinement are revealing information about the fundamental chemical and biological processes that cannot be extracted from ensemble measurements. In this concept, we introduce and discuss the electrochemical confinement effects on single-molecule covalent reactions, conformational dynamics of individual molecules and host-guest interactions in protein nanopores. Then, we extend the concept of nanopore confinement effects to confine electrochemical redox reactions in solid-state nanopores for developing new sensing mechanisms. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals

    DEFF Research Database (Denmark)

    Jullesson, David; David, Florian; Pfleger, Brian

    2015-01-01

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played...... an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine...... chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes....

  19. What Can We Learn from Bioactivity Data? Chemoinformatics Tools and Applications in Chemical Biology Research.

    Science.gov (United States)

    Humbeck, Lina; Koch, Oliver

    2017-01-20

    The ever increasing bioactivity data that are produced nowadays allow exhaustive data mining and knowledge discovery approaches that change chemical biology research. A wealth of chemoinformatics tools, web services, and applications therefore exists that supports a careful evaluation and analysis of experimental data to draw conclusions that can influence the further development of chemical probes and potential lead structures. This review focuses on open-source approaches that can be handled by scientists who are not familiar with computational methods having no expert knowledge in chemoinformatics and modeling. Our aim is to present an easily manageable toolbox for support of every day laboratory work. This includes, among other things, the available bioactivity and related molecule databases as well as tools to handle and analyze in-house data.

  20. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review

    Science.gov (United States)

    Dhifi, Wissal; Bellili, Sana; Jazi, Sabrine; Bahloul, Nada; Mnif, Wissem

    2016-01-01

    This review covers literature data summarizing, on one hand, the chemistry of essential oils and, on the other hand, their most important activities. Essential oils, which are complex mixtures of volatile compounds particularly abundant in aromatic plants, are mainly composed of terpenes biogenerated by the mevalonate pathway. These volatile molecules include monoterpenes (hydrocarbon and oxygenated monoterpens), and also sesquiterpenes (hydrocarbon and oxygenated sesquiterpens). Furthermore, they contain phenolic compounds, which are derived via the shikimate pathway. Thanks to their chemical composition, essential oils possess numerous biological activities (antioxidant, anti-inflammatory, antimicrobial, etc…) of great interest in food and cosmetic industries, as well as in the human health field. PMID:28930135

  1. Public health emergency planning for children in chemical, biological, radiological, and nuclear (CBRN) disasters.

    Science.gov (United States)

    Bartenfeld, Michael T; Peacock, Georgina; Griese, Stephanie E

    2014-01-01

    Children represent nearly a quarter of the US population, but their unique needs in chemical, biological, radiological, and nuclear (CBRN) emergencies may not be well understood by public health and emergency management personnel or even clinicians. Children are different from adults physically, developmentally, and socially. These characteristics have implications for providing care in CBRN disasters, making resulting illness in children challenging to prevent, identify, and treat. This article discusses these distinct physical, developmental, and social traits and characteristics of children in the context of the science behind exposure to, health effects from, and treatment for the threat agents potentially present in CBRN incidents.

  2. Application study of nuclear technologies for integration chemical, biological and radiological technology

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae Kon; Han, M. H.; Kim, Y. H.; Yang, J. E.; Jung, K. S.; Cha, H. K.; Moon, J.; La, K. H

    2001-02-01

    The projects are suggested the method to maximize the technology and research results which are being carried out by KAERI on the nuclear field. The study presents 1)the technology to rapidly and accurately determine and the nature of contamination, 2) the technology to predict the spread of contaminant and the magnitude of damage, and 3) the expert-aided decision making technology to identify the optimum counter-measures. And the solutions are also suggested the application to military technology in Chemical, Biological and Radiation field. In addition, I hope this kind of cooperation model come to be the good case of military civilian research harmony to improve the national competition capability.

  3. Effect of biological and chemical preparations on peroxidase activity in leaves of tomato plants

    Directory of Open Access Journals (Sweden)

    Yulia Kolomiets

    2016-10-01

    Full Text Available In terms of treating tomato variety Chaika with chemical preparations with active substances if aluminum phosphate, 570 g/l + phosphorous acid 80 g/,l and mankotseb in concentration of 640 g/kg, the maximum increase in peroxidase activity in leaves of plants was observed in12 hours. In terms of use of biological preparations based on living cells Bacillus subtilis and Azotobacter chroococcum its activity was maximum in 24 hours and ranged from 77.7 to 112.7 un.mg-1•s-1

  4. The effects of urbanization on the biological, physical, and chemical characteristics of coastal New England streams

    Science.gov (United States)

    Coles, James F.; Cuffney, Thomas F.; McMahon, Gerard; Beaulieu, Karen M.

    2004-01-01

    During August 2000, responses of biological communities (invertebrates, fish, and algae), physical habitat, and water chemistry to urban intensity were compared among 30 streams within 80 miles of Boston, Massachusetts. Sites chosen for sampling represented a gradient of the intensity of urban development (urban intensity) among drainage basins that had minimal natural variability. In this study, spatial differences were used as surrogates for temporal changes to represent the effects of urbanization over time. The degree of urban intensity for each drainage basin was characterized with a standardized urban index (0-100, lowest to highest) derived from land cover, infrastructure, and socioeconomic variables. Multivariate and multimetric analyses were used to compare urban index values with biological, physical, and chemical data to determine how the data indicated responses to urbanization. Multivariate ordinations were derived for the invertebrate-, fish-, and algae-community data by use of correspondence analysis, and ordinations were derived for the chemical and physical data by use of principal-component analysis. Site scores from each of the ordinations were plotted in relation to the urban index to test for a response. In all cases, the primary axis scores showed the strongest response to the urban index, indicating that urbanization was a primary factor affecting the data ordination. For the multimetric analyses, each of the biological data sets was used to calculate a series of community metrics. For the sets of chemical and physical data, the individual variables and various combinations of individual variables were used as measured and derived metrics, respectively. Metrics that were generally most responsive to the urban index for each data set included: EPT (Ephemeroptera, Plecoptera, Trichoptera) taxa for invertebrates; cyprinid taxa for fish; diatom taxa for algae; bicarbonate, conductivity, and nitrogen for chemistry; and water depth and temperature

  5. Formation of biologically relevant compounds of interest in chemical evolution from the radiolysis of succinonitrile solutions

    International Nuclear Information System (INIS)

    Albarran, G.; Juarez, C.; Negron-Mendoza, A.

    1991-01-01

    Low molecular weight compounds such as H 2 , CO 2 , NH 3 were identified among the radiolytic products. Irradiated samples exhibit positive biuret test. IR spectra of the dry residue confirm the presence of amide groups. These results suggest the presence of peptidic type material, which increased with the radiation dose. Other compounds identified were several di and tricarboxylic acids. The initial yield of formation of a variety of products was calculated from the concentration vs dose plots. Some of the radiolytic compounds are of biological importance and their formation is significant to chemical evolution studies. (author) 7 refs

  6. A Survey of Chemical Compositions and Biological Activities of Yemeni Aromatic Medicinal Plants.

    Science.gov (United States)

    Chhetri, Bhuwan K; Ali, Nasser A Awadh; Setzer, William N

    2015-05-28

    Yemen is a small country located in the southwestern part of the Arabian Peninsula. Yemen's coastal lowlands, eastern plateau, and deserts give it a diverse topography, which along with climatic factors make it opulent in flora. Despite the introduction of Western medicinal system during the middle of the twentieth century, herbal medicine still plays an important role in Yemen. In this review, we present a survey of several aromatic plants used in traditional medicine in Yemen, their traditional uses, their volatile chemical compositions, and their biological activities.

  7. Development and performance evaluation of a dynamic phantom for biological dosimetry of moving targets

    Science.gov (United States)

    Gemmel, A.; Bert, C.; Saito, N.; von Neubeck, C.; Iancu, G.; K-Weyrather, W.; Durante, M.; Rietzel, E.

    2010-06-01

    A dynamic phantom has been developed to allow for measurement of 3D cell survival distributions and the corresponding distributions of the RBE-weighted dose (RBED) in the presence of motion. The phantom consists of two 96-microwell plates holding Chinese hamster ovary cells inside a container filled with culture medium and is placed on a movable stage. Basic biological properties of the phantom were investigated without irradiation and after irradiation with a carbon ion beam, using both a stationary (reference) exposure and exposure during motion of the phantom perpendicular to the beam with beam tracking. There was no statistically significant difference between plating efficiency measured in the microwells with and without motion (0.75) and values reported in the literature. Mean differences between measured and calculated cell survival for these two irradiation modes were within ±5% of the target dose of 6 Gy (RBE).

  8. Phyto chemical and biological studies of certain plants with potential radioprotective activity

    International Nuclear Information System (INIS)

    Sherif, N.H.M.I

    2008-01-01

    One of the promising directions of radiation protection development is the search for natural radioprotective agents.The present work includes: I- Screening of certain edible and medicinal plants growing in Egypt for their radioprotective activities. II- Detailed phyto chemical and biolo-activity studies of the dried leaves of brassaia actinophylla endl. comprising: A-Phyto chemical screening and proximate analysis. B-Investigation of lipoidal matter. C- Isolation, characterization and structure elucidation of phenolic constituents. D- Isolation, characterization and structure elucidation of saponin constituents. E- Evaluation of radioprotective and antitumor activities. I- Evaluation of potential radioprotective activities of certain herbs: In vivo biological screening designed to investigate the radioprotective role of 70% ethanol extract of 11 different herbals was carried out by measuring the lipid peroxide content, as well as the activities of two antioxidant enzymes; viz glutathione, and superoxide dismutase in blood and liver tissues 1 and 7 days after radiation exposure. II : Phyto chemical and biolo-activity studies of the dried leaves of brassaia actinophylla Endl A : preliminary phyto chemical screening, determination and TLC examination of successive extractives. B : Investigation of lipoidal matter. GLC of unsaponifiable matter (USM)

  9. The Microphenotron: a robotic miniaturized plant phenotyping platform with diverse applications in chemical biology

    KAUST Repository

    Burrell, Thomas

    2017-03-01

    numbers of individual chemical treatments with a detailed analysis of whole-seedling development, and particularly root system development. The Microphenotron should provide a powerful new tool for chemical genetics and for wider chemical biology applications, including the development of natural and synthetic chemical products for improved agricultural sustainability.

  10. Encouraging chemical biology / international academic exchange programs promoted by the Ministry of Education; Chemical biology no susume / monbusho ni yoru kokusai gakujutsu koryu no suishin ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Imanaka, T. [Kyoto University, Kyoto (Japan)

    1998-06-01

    Described herein is encouraging chemical biology. Chemistry to elucidate fundamental elementary reactions involved in various phenomena and actual conditions of key molecules must be supported by physics for understanding behavior of electrons. The research themes attracting attention recently include sex pheromones of insects, photosynthesis, reactions involving antigens or antibodies, recognition of molecules, memorizing and leaning, and so on. Fundamentals of the life-related phenomena are being elucidated from structures of the related substances and reaction mechanisms involved by the NMR and X-ray diffraction analyses to determine structures of these substances and also by theoretical quantum chemistry to understand electron transfer phenomena within life-related molecules. Also described are international academic exchange programs promoted by the Ministry of Education. Academic researches for the pursuit of truth are crossing the borders in nature. International exchange to promote information exchange and joint researches by researchers of different nationalities pursuing common themes is indispensable for scientific development. The Ministry of Education has been promoting the international academic exchange programs by providing subsidies for international academic researches, promoting international exchange projects at various institutions, such as national universities, inter-university organizations and Japan Society for the Promotion of Science, and supporting scientific projects promoted by UNESCO. 1 fig., 1 tab.

  11. New treatment options and emerging drugs for axial spondyloarthritis: biological and targeted synthetic agents.

    Science.gov (United States)

    Toussirot, Eric

    2017-02-01

    Ankylosing spondylitis (AS) and axial spondyloarthritis (ax SpA) are chronic inflammatory diseases mainly involving the axial skeleton. Pharmacological treatments for AS and ax SpA usually include local glucocorticoid injections, NSAIDs and anti-TNFα agents. Since around 30% to 40% of patients are non responders or intolerant to anti-TNFα agents, we need new therapeutic options for AS and ax SpA. Areas covered: This review describes the new biological agents that can be used or are in development for AS or ax SpA as well as emerging synthetic targeted drugs. Expert opinion: Based on the rationale of the involvement of the IL-23/Th17 axis in AS, novel biological agents have been developed and include secukinumab, an anti-IL-17A agent and ustekinumab, an anti-IL-23 antibody. New compounds in the class of synthetic drugs are apremilast, a PDE4 inhibitor, and inhibitors of kinase pathways. Secukinumab gave positive results in the treatment of AS. Ustekinumab yielded promising results in AS in an open labeled study. Apremilast is not effective in AS while results with kinase inhibitors are preliminary. Future studies will clarify the place of secukinumab in the therapeutic management of AS, its influence on radiographic progression and its effects on the non radiographic form of the disease.

  12. The synthesis and biological evaluation of integrin receptor targeting molecules as potential radiopharmaceuticals

    Science.gov (United States)

    Pellegrini, Paul

    This thesis reports on the synthesis, characterisation and biological evaluation of a number of metal complexes designed to interact with the alphavbeta3 integrin receptor, an important biological target that is heavily involved in angiogenesis, and thus cancer related processes. Two approaches were used to synthesise the integrin-avid targets. The first was to attach a variety of bifunctional chelators (BFC's) for the incorporation of different metal centres to a known integrin antagonist, L-748,415, developed by Merck. The BFC's used were the hydrazinonicotinamide (HYNIC) and monoamine monoamide dithiol (MAMA) systems for coordination to Tc-99m and rhenium of which was used as a characterization surrogate for the unstable Tc core. The 1,4,7,10-tetraazacyclotridecanetetraacetic acid (TRITA) BFC was attached for the inclusion of copper and lutetium. This 'conjugate' approach was designed to yield information on how the BFC and the linker length would affect the affinity for the integrin receptor. The second approach was an 'integrated' method where the chelation moiety was integral to the biologically relevant part of the molecule, which in the case of the alphavbeta3 integrin receptor, is the arginine-glycine-aspartic acid (RGD) mimicking sequence. Two complexes were created with a modified MAMA derivative placed between a benzimidazole moiety (arginine mimick) and the aspartic acid mimicking terminal carboxylic acid to see how it would affect binding while keeping the molecular weight relatively low. The molecules were tested in vitro against purified human alphavbeta3 integrin receptor protein in a solid phase receptor binding assay to evaluate their inhibition constants against a molecule of known high affinity and selectivity in [I125]L-775,219, the I125 labelled alphavbeta3 integrin antagonist. The radiolabelled analogues were also tested in vivo against the A375 human melanoma cell line transplanted into balb/c nude mice as well as Fischer rats implanted

  13. Prioritizing drug targets in Clostridium botulinum with a computational systems biology approach.

    Science.gov (United States)

    Muhammad, Syed Aun; Ahmed, Safia; Ali, Amjad; Huang, Hui; Wu, Xiaogang; Yang, X Frank; Naz, Anam; Chen, Jake

    2014-07-01

    A computational and in silico system level framework was developed to identify and prioritize the antibacterial drug targets in Clostridium botulinum (Clb), the causative agent of flaccid paralysis in humans that can be fatal in 5 to 10% of cases. This disease is difficult to control due to the emergence of drug-resistant pathogenic strains and the only available treatment antitoxin which can target the neurotoxin at the extracellular level and cannot reverse the paralysis. This study framework is based on comprehensive systems-scale analysis of genomic sequence homology and phylogenetic relationships among Clostridium, other infectious bacteria, host and human gut flora. First, the entire 2628-annotated genes of this bacterial genome were categorized into essential, non-essential and virulence genes. The results obtained showed that 39% of essential proteins that functionally interact with virulence proteins were identified, which could be a key to new interventions that may kill the bacteria and minimize the host damage caused by the virulence factors. Second, a comprehensive comparative COGs and blast sequence analysis of these proteins and host proteins to minimize the risks of side effects was carried out. This revealed that 47% of a set of C. botulinum proteins were evolutionary related with Homo sapiens proteins to sort out the non-human homologs. Third, orthology analysis with other infectious bacteria to assess broad-spectrum effects was executed and COGs were mostly found in Clostridia, Bacilli (Firmicutes), and in alpha and beta Proteobacteria. Fourth, a comparative phylogenetic analysis was performed with human microbiota to filter out drug targets that may also affect human gut flora. This reduced the list of candidate proteins down to 131. Finally, the role of these putative drug targets in clostridial biological pathways was studied while subcellular localization of these candidate proteins in bacterial cellular system exhibited that 68% of the

  14. Chemical and protein structural basis for biological crosstalk between PPAR α and COX enzymes

    Science.gov (United States)

    Cleves, Ann E.; Jain, Ajay N.

    2015-02-01

    We have previously validated a probabilistic framework that combined computational approaches for predicting the biological activities of small molecule drugs. Molecule comparison methods included molecular structural similarity metrics and similarity computed from lexical analysis of text in drug package inserts. Here we present an analysis of novel drug/target predictions, focusing on those that were not obvious based on known pharmacological crosstalk. Considering those cases where the predicted target was an enzyme with known 3D structure allowed incorporation of information from molecular docking and protein binding pocket similarity in addition to ligand-based comparisons. Taken together, the combination of orthogonal information sources led to investigation of a surprising predicted relationship between a transcription factor and an enzyme, specifically, PPAR α and the cyclooxygenase enzymes. These predictions were confirmed by direct biochemical experiments which validate the approach and show for the first time that PPAR α agonists are cyclooxygenase inhibitors.

  15. Disasters and mass casualties: II. explosive, biologic, chemical, and nuclear agents.

    Science.gov (United States)

    Born, Christopher T; Briggs, Susan M; Ciraulo, David L; Frykberg, Eric R; Hammond, Jeffrey S; Hirshberg, Asher; Lhowe, David W; O'Neill, Patricia A; Mead, Joann

    2007-08-01

    Terrorists' use of explosive, biologic, chemical, and nuclear agents constitutes the potential for catastrophic events. Understanding the unique aspects of these agents can help in preparing for such disasters with the intent of mitigating injury and loss of life. Explosive agents continue to be the most common weapons of terrorists and the most prevalent cause of injuries and fatalities. Knowledge of blast pathomechanics and patterns of injury allows for improved diagnostic and treatment strategies. A practical understanding of potential biologic, chemical, and nuclear agents, their attendant clinical symptoms, and recommended management strategies is an important prerequisite for optimal preparation and response to these less frequently used agents of mass casualty. Orthopaedic surgeons should be aware of the principles of management of catastrophic events. Stress is less an issue when one is adequately prepared. Decontamination is essential both to manage victims and prevent further spread of toxic agents to first responders and medical personnel. It is important to assess the risk of potential threats, thereby allowing disaster planning and preparation to be proportional and aligned with the actual casualty event.

  16. Biological and chemical standardization of a hop (Humulus lupulus) botanical dietary supplement.

    Science.gov (United States)

    Krause, Elizabeth; Yuan, Yang; Hajirahimkhan, Atieh; Dong, Huali; Dietz, Birgit M; Nikolic, Dejan; Pauli, Guido F; Bolton, Judy L; van Breemen, Richard B

    2014-06-01

    Concerned about the safety of conventional estrogen replacement therapy, women are using botanical dietary supplements as alternatives for the management of menopausal symptoms such as hot flashes. Before botanical dietary supplements can be evaluated clinically for safety and efficacy, botanically authenticated and standardized forms are required. To address the demand for a standardized, estrogenic botanical dietary supplement, an extract of hops (Humulus lupulus L.) was developed. Although valued in the brewing of beer, hop extracts are used as anxiolytics and hypnotics and have well-established estrogenic constituents. Starting with a hop cultivar used in the brewing industry, spent hops (the residue remaining after extraction of bitter acids) were formulated into a botanical dietary supplement that was then chemically and biologically standardized. Biological standardization utilized the estrogen-dependent induction of alkaline phosphatase in the Ishikawa cell line. Chemical standardization was based on the prenylated phenols in hops that included estrogenic 8-prenylnaringenin, its isomer 6-prenylnaringenin, and pro-estrogenic isoxanthohumol and its isomeric chalcone xanthohumol, all of which were measured using high-performance liquid chromatography-tandem mass spectrometry. The product of this process was a reproducible botanical extract suitable for subsequent investigations of safety and efficacy. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications.

    Science.gov (United States)

    Paladini, F; Picca, R A; Sportelli, M C; Cioffi, N; Sannino, A; Pollini, M

    2015-01-01

    Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications and wound healing. This work aims to investigate the surface chemical composition and biological properties of silver nanoparticle-modified flax substrates. Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution, by means of a large-scale apparatus. The silver-coated materials were characterized through X-ray Photoelectron Spectroscopy (XPS), to assess the surface elemental composition of the coatings, and the chemical speciation of both the substrate and the antibacterial nanophases. A detailed investigation of XPS high resolution regions outlined that silver is mainly present on nanophases' surface as Ag2O. Scanning electron microscopy and energy dispersive X-ray spectroscopy were also carried out, in order to visualize the distribution of silver particles on the fibers. The materials were also characterized from a biological point of view in terms of antibacterial capability and cytotoxicity. Agar diffusion tests and bacterial enumeration tests were performed on Gram positive and Gram negative bacteria, namely Staphylococcus aureus and Escherichia coli. In vitro cytotoxicity tests were performed through the extract method on murine fibroblasts in order to verify if the presence of the silver coating affected the cellular viability and proliferation. Durability of the coating was also assessed, thus confirming the successful scaling up of the process, which will be therefore available for large-scale production. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Retinyl β-glucoronide: its occurrence in human serum, chemical synthesis and biological activity

    International Nuclear Information System (INIS)

    Barua, A.B.; Batres, R.O.; Olson, J.A.

    1986-01-01

    When retinol is administered to rats, retinyl and retinoyl β-glucuronides appear in the bile. Retinyl or retinoyl β-glucuronide is also synthesized in vitro when rat liver microsomes are incubated with uridinediphosphoglucuronic acid and either retinol or retinoic acid. Retinoyl β-glucuronide, a major metabolite of retinoic acid in a number of tissues, is highly active biologically, has been chemically synthesized, and is found in human blood. The physiological significance of the glucuronides of vitamin A are not known yet. To investigate further its metabolism and possible physiological role, retinyl β-glucuronide was chemically synthesized from retinol and characterized by study of its ultra-violet spectrum (γ/sub max/ 325 nm in methanol, 329 nm in water), 1 H-NMR and mass spectra. Retinyl β-glucuronide was extensively hydrolyzed by bacterial β-glucuronidase to retinol. Retinyl β-glucuronide is soluble in water and was detected in significant amounts in the serum of healthy human adults. The biological activity of synthetic retinyl β-glucuronide was determined in rats by the rat growth bioassay method

  19. The chemical and biological evolution of mature fine tailings in oil sands end-pit lakes

    International Nuclear Information System (INIS)

    Chen, M.; Weisener, C.; Ciborowski, J.

    2010-01-01

    This presentation described an innovative bench-scale technique to characterize oil sand tailings and their impact on sediment oxygen demand (SOD) for future end-pit lake model behaviour. SOD is a dominant contributor to oxygen depletion in wetlands. The function and sustainability of a wetland ecosystem depends on the biochemical processes occurring at the sediment-water interface. The biochemical reactions associated with natural sediment can change with the addition of oil sands processed material (OSPM), which can affect SOD and ecosystem viability. It is important to establishing the biotic and abiotic controls of SOD. In order to evaluate the effectiveness of current wetland reclamation designs, it is important to establish the biotic and abiotic controls of SOD. The REDOX chemistry of fresh tailings sediment (MFT) was measured in this laboratory microcosm to determine the chemical and biological influences, and to study the role of developing microbial communities as new mature fine tailings (MFT) age. The study evaluated the changes in the main chemical, physical and biological populations of the MFT in both aerobic and anaerobic microcosms. A combination of microelectrode arrays and DNA profiling at the tailings water interface was used in the study.

  20. Biological and Chemical Aspects of Natural Biflavonoids from Plants: A Brief Review.

    Science.gov (United States)

    Gontijo, Vanessa Silva; Dos Santos, Marcelo Henrique; Viegas, Claudio

    2017-01-01

    Biflavonoids belong to a subclass of the plant flavonoids family and are limited to several species in the plant kingdom. In the literature, biflavonoids are extensively reported for their pharmacological properties including anti-inflammatory, antioxidant, inhibitory activity against phospholipase A2 (PLA2) and antiprotozoal activity. These activities have been discovered from the small number of biflavonoid structures that have been investigated, although the natural biflavonoids library is likely to be large. In addition, many medicinal properties and traditional use of plants are attributed to the presence of bioflavonoids among their secondary metabolites. Structurally, biflavonoids are polyphenol compounds comprising of two identical or non-identical flavonflavonoid units joined in a symmetrical or unsymmetrical manner through an alkyl or an alkoxy-based linker of varying length. Due to their chemical and biological importance, several bioprospective phytochemical studies and chemical approaches using coupling and molecular rearrangement strategies have been developed to identify and synthesize new bioactive biflavonoids. In this brief review, we present some basic structural aspects for classification and nomenclature of bioflavonoids and a compilation of the literature data published in the last 7 years, concerning the discovery of new natural biflavonoids of plant origin and their pharmacological and biological properties. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. 78 FR 74218 - Imposition of Additional Sanctions on Syria Under the Chemical and Biological Weapons Control and...

    Science.gov (United States)

    2013-12-10

    ... DEPARTMENT OF STATE [Public Notice 8545] Imposition of Additional Sanctions on Syria Under the... determination was made that the Government of Syria used chemical weapons in violation of international law or... sanctions against the Government of Syria. Section 307(b) of the Chemical and Biological Weapons Control and...

  2. Use of chemicals and biological products in Asian aquacultire and their potential environmental risks: a critical review

    NARCIS (Netherlands)

    Rico, A.; Satapornvanit, K.; Haque, M.M.; Min, J.; Nguyen, P.T.; Telfer, T.; Brink, van den P.J.

    2012-01-01

    Over the past few decades, Asian aquaculture production has intensified rapidly through the adoption of technological advances, and the use of a wide array of chemical and biological products to control sediment and water quality and to treat and prevent disease outbreaks. The use of chemicals in

  3. Response of the bacterial community in oil-contaminated marine water to the addition of chemical and biological dispersants

    NARCIS (Netherlands)

    de Almeida Couto, Camila Rattes; Jurelevicius, Diogo de Azevedo; Alvarez, Vanessa Marques; van Elsas, Jan Dirk; Seldin, Lucy

    2016-01-01

    The use of dispersants in different stages of the oil production chain and for the remediation of water and soil is a well established practice. However, the choice for a chemical or biological dispersant is still a controversial subject. Chemical surfactants that persist long in the environment may

  4. The biological effectiveness of targeted radionuclide therapy based on a whole-body pharmacokinetic model

    Science.gov (United States)

    Grudzinski, Joseph J; Tomé, Wolfgang; Weichert, Jamey P; Jeraj, Robert

    2013-01-01

    Biologically effective dose (BED) may be more of a relevant quantity than absorbed dose for establishing tumour response relationships. By taking into account the dose rate and tissue-specific parameters such as repair and radiosensitivity, it is possible to compare the relative biological effects of different targeted radionuclide therapy (TRT) agents. The aim of this work was to develop an analytical tumour BED calculation for TRT that could predict a relative biological effect based on normal body and tumour pharmacokinetics. This work represents a step in the direction of establishing relative pharmacokinetic criteria of when the BED formalism is more applicable than absorbed dose for TRT. A previously established pharmacokinetic (PK) model for TRT was used and adapted into the BED formalism. An analytical equation for the protraction factor, which incorporates dose rate and repair rate, was derived. Dose rates within the normal body and tumour were related to the slopes of their time–activity curves which were determined by the ratios of their respective PK parameters. The relationships between the tumour influx-to-efflux ratio (k34:k43), central compartment efflux-to-influx ratio (k12:k21), central elimination (kel), and tumour repair rate (μ), and tumour BED were investigated. As the k34:k43 ratio increases and the k12:k21 ratio decreases, the difference between tumour BED and D increases. In contrast, as the k34:k43 ratios decrease and the k12:k21 ratios increase, the tumour BED approaches D. At large k34:k43 ratios, the difference between tumour BED and D increases to a maximum as kel increases. At small k34:k43 ratios, the tumour BED approaches D at very small kel. At small μ and small k34:k43 ratios, the tumour BED approaches D. For large k34:k43 ratios, large μ values cause tumour BED to approach D. This work represents a step in the direction of establishing relative PK criteria of when the BED formalism is more applicable than absorbed dose for

  5. Enumerating metabolic pathways for the production of heterologous target chemicals in chassis organisms

    Directory of Open Access Journals (Sweden)

    Carbonell Pablo

    2012-02-01

    Full Text Available Abstract Background We consider the possibility of engineering metabolic pathways in a chassis organism in order to synthesize novel target compounds that are heterologous to the chassis. For this purpose, we model metabolic networks through hypergraphs where reactions are represented by hyperarcs. Each hyperarc represents an enzyme-catalyzed reaction that transforms set of substrates compounds into product compounds. We follow a retrosynthetic approach in order to search in the metabolic space (hypergraphs for pathways (hyperpaths linking the target compounds to a source set of compounds. Results To select the best pathways to engineer, we have developed an objective function that computes the cost of inserting a heterologous pathway in a given chassis organism. In order to find minimum-cost pathways, we propose in this paper two methods based on steady state analysis and network topology that are to the best of our knowledge, the first to enumerate all possible heterologous pathways linking a target compounds to a source set of compounds. In the context of metabolic engineering, the source set is composed of all naturally produced chassis compounds (endogenuous chassis metabolites and the target set can be any compound of the chemical space. We also provide an algorithm for identifying precursors which can be supplied to the growth media in order to increase the number of ways to synthesize specific target compounds. Conclusions We find the topological approach to be faster by several orders of magnitude than the steady state approach. Yet both methods are generally scalable in time with the number of pathways in the metabolic network. Therefore this work provides a powerful tool for pathway enumeration with direct application to biosynthetic pathway design.

  6. Reliable discrimination of high explosive and chemical/biological artillery using acoustic UGS

    Science.gov (United States)

    Hohil, Myron E.; Desai, Sachi

    2005-10-01

    The Army is currently developing acoustic overwatch sensor systems that will provide extended range surveillance, detection, and identification for force protection and tactical security on the battlefield. A network of such sensors remotely deployed in conjunction with a central processing node (or gateway) will provide early warning and assessment of enemy threats, near real-time situational awareness to commanders, and may reduce potential hazards to the soldier. In contrast, the current detection of chemical/biological (CB) agents expelled into a battlefield environment is limited to the response of chemical sensors that must be located within close proximity to the CB agent. Since chemical sensors detect hazardous agents through contact, the sensor range to an airburst is the key-limiting factor in identifying a potential CB weapon attack. The associated sensor reporting latencies must be minimized to give sufficient preparation time to field commanders, who must assess if an attack is about to occur, has occurred, or if occurred, the type of agent that soldiers might be exposed to. The long-range propagation of acoustic blast waves from heavy artillery blasts, which are typical in a battlefield environment, introduces a feature for using acoustics and other disparate sensor technologies for the early detection and identification of CB threats. Employing disparate sensor technologies implies that warning of a potential CB attack can be provided to the solider more rapidly and from a safer distance when compared to that which conventional methods allow. This capability facilitates the necessity of classifying the types of rounds that have burst in a specified region in order to give both warning and provide identification of CB agents found in the area. In this paper, feature extraction methods based on the discrete wavelet transform (DWT) and multiresolution analysis facilitate the development of a robust classification algorithm that affords reliable

  7. Physico-chemical properties and biological effects of diesel and biomass particles

    KAUST Repository

    Longhin, Eleonora

    2016-05-15

    © 2016 Elsevier Ltd. Diesel combustion and solid biomass burning are the major sources of ultrafine particles (UFP) in urbanized areas. Cardiovascular and pulmonary diseases, including lung cancer, are possible outcomes of combustion particles exposure, but differences in particles properties seem to influence their biological effects.Here the physico-chemical properties and biological effects of diesel and biomass particles, produced under controlled laboratory conditions, have been characterized. Diesel UFP were sampled from a Euro 4 light duty vehicle without DPF fuelled by commercial diesel and run over a chassis dyno. Biomass UFP were collected from a modern automatic 25 kW boiler propelled by prime quality spruce pellet. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of both diesel and biomass samples showed aggregates of soot particles, but in biomass samples ash particles were also present. Chemical characterization showed that metals and PAHs total content was higher in diesel samples compared to biomass ones.Human bronchial epithelial (HBEC3) cells were exposed to particles for up to 2 weeks. Changes in the expression of genes involved in xenobiotic metabolism were observed after exposure to both UFP already after 24 h. However, only diesel particles modulated the expression of genes involved in inflammation, oxidative stress and epithelial-to-mesenchymal transition (EMT), increased the release of inflammatory mediators and caused phenotypical alterations, mostly after two weeks of exposure.These results show that diesel UFP affected cellular processes involved in lung and cardiovascular diseases and cancer. Biomass particles exerted low biological activity compared to diesel UFP. This evidence emphasizes that the study of different emission sources contribution to ambient PM toxicity may have a fundamental role in the development of more effective strategies for air quality improvement.

  8. Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Gottfried, Jennifer L; De Lucia, Frank C; Munson, Chase A; Miziolek, Andrzej W

    2008-04-01

    Laser-induced breakdown spectroscopy (LIBS) is a promising technique for real-time chemical and biological warfare agent detection in the field. We have demonstrated the detection and discrimination of the biological warfare agent surrogates Bacillus subtilis (BG) (2% false negatives, 0% false positives) and ovalbumin (0% false negatives, 1% false positives) at 20 meters using standoff laser-induced breakdown spectroscopy (ST-LIBS) and linear correlation. Unknown interferent samples (not included in the model), samples on different substrates, and mixtures of BG and Arizona road dust have been classified with reasonable success using partial least squares discriminant analysis (PLS-DA). A few of the samples tested such as the soot (not included in the model) and the 25% BG:75% dust mixture resulted in a significant number of false positives or false negatives, respectively. Our preliminary results indicate that while LIBS is able to discriminate biomaterials with similar elemental compositions at standoff distances based on differences in key intensity ratios, further work is needed to reduce the number of false positives/negatives by refining the PLS-DA model to include a sufficient range of material classes and carefully selecting a detection threshold. In addition, we have demonstrated that LIBS can distinguish five different organophosphate nerve agent simulants at 20 meters, despite their similar stoichiometric formulas. Finally, a combined PLS-DA model for chemical, biological, and explosives detection using a single ST-LIBS sensor has been developed in order to demonstrate the potential of standoff LIBS for universal hazardous materials detection.

  9. Physico-chemical properties and biological effects of diesel and biomass particles.

    Science.gov (United States)

    Longhin, Eleonora; Gualtieri, Maurizio; Capasso, Laura; Bengalli, Rossella; Mollerup, Steen; Holme, Jørn A; Øvrevik, Johan; Casadei, Simone; Di Benedetto, Cristiano; Parenti, Paolo; Camatini, Marina

    2016-08-01

    Diesel combustion and solid biomass burning are the major sources of ultrafine particles (UFP) in urbanized areas. Cardiovascular and pulmonary diseases, including lung cancer, are possible outcomes of combustion particles exposure, but differences in particles properties seem to influence their biological effects. Here the physico-chemical properties and biological effects of diesel and biomass particles, produced under controlled laboratory conditions, have been characterized. Diesel UFP were sampled from a Euro 4 light duty vehicle without DPF fuelled by commercial diesel and run over a chassis dyno. Biomass UFP were collected from a modern automatic 25 kW boiler propelled by prime quality spruce pellet. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of both diesel and biomass samples showed aggregates of soot particles, but in biomass samples ash particles were also present. Chemical characterization showed that metals and PAHs total content was higher in diesel samples compared to biomass ones. Human bronchial epithelial (HBEC3) cells were exposed to particles for up to 2 weeks. Changes in the expression of genes involved in xenobiotic metabolism were observed after exposure to both UFP already after 24 h. However, only diesel particles modulated the expression of genes involved in inflammation, oxidative stress and epithelial-to-mesenchymal transition (EMT), increased the release of inflammatory mediators and caused phenotypical alterations, mostly after two weeks of exposure. These results show that diesel UFP affected cellular processes involved in lung and cardiovascular diseases and cancer. Biomass particles exerted low biological activity compared to diesel UFP. This evidence emphasizes that the study of different emission sources contribution to ambient PM toxicity may have a fundamental role in the development of more effective strategies for air quality improvement. Copyright © 2016 Elsevier Ltd. All rights

  10. Chemical and botanical characterization of Chilean propolis and biological activity on cariogenic bacteria Streptococcus mutans and Streptococcus sobrinus

    Science.gov (United States)

    Barrientos, Leticia; Herrera, Christian L.; Montenegro, Gloria; Ortega, Ximena; Veloz, Jorge; Alvear, Marysol; Cuevas, Alejandro; Saavedra, Nicolás; Salazar, Luis A.

    2013-01-01

    Propolis is a non-toxic natural substance with multiple pharmacological properties including anti-cancer, antioxidant, fungicidal, antibacterial, antiviral, and anti-inflammatory among others. The aim of this study was to determine the chemical and botanical characterization of Chilean propolis samples and to evaluate their biological activity against the cariogenic bacteria Streptococcus mutans and Streptococcus sobrinus. Twenty propolis samples were obtained from beekeeping producers from the central and southern regions of Chile. The botanical profile was determined by palynological analysis. Total phenolic contents were determined using colorimetric assays. Reverse phase HPLC and HPLC-MS were used to determine the chemical composition. The minimum inhibitory concentration (MIC) was determined on S. mutans and S. sobrinus. All propolis samples were dominated by structures from native plant species. The characterization by HPLC/MS, evidenced the presence of quercetin, myricetin, kaempferol, rutine, pinocembrin, coumaric acid, caffeic acid and caffeic acid phenethyl ester, that have already been described in these propolis with conventional HPLC. Although all propolis samples inhibited the mutans streptococci growth, it was observed a wide spectrum of action (MIC 0.90 to 8.22 μg mL−1). Given that results it becomes increasingly evident the need of standardization procedures, where we combine both the determination of botanical and the chemical characterization of the extracts. Research conducted to date, describes a promising effectiveness of propolis in the prevention of caries and other diseases of the oral cavity, making it necessary to develop studies to identify and understand the therapeutic targets or mechanisms of molecular action of the various compounds present on them. PMID:24294257

  11. Chemical and botanical characterization of Chilean propolis and biological activity on cariogenic bacteria Streptococcus mutans and Streptococcus sobrinus.

    Science.gov (United States)

    Barrientos, Leticia; Herrera, Christian L; Montenegro, Gloria; Ortega, Ximena; Veloz, Jorge; Alvear, Marysol; Cuevas, Alejandro; Saavedra, Nicolás; Salazar, Luis A

    2013-01-01

    Propolis is a non-toxic natural substance with multiple pharmacological properties including anti-cancer, antioxidant, fungicidal, antibacterial, antiviral, and anti-inflammatory among others. The aim of this study was to determine the chemical and botanical characterization of Chilean propolis samples and to evaluate their biological activity against the cariogenic bacteria Streptococcus mutans and Streptococcus sobrinus. Twenty propolis samples were obtained from beekeeping producers from the central and southern regions of Chile. The botanical profile was determined by palynological analysis. Total phenolic contents were determined using colorimetric assays. Reverse phase HPLC and HPLC-MS were used to determine the chemical composition. The minimum inhibitory concentration (MIC) was determined on S. mutans and S. sobrinus. All propolis samples were dominated by structures from native plant species. The characterization by HPLC/MS, evidenced the presence of quercetin, myricetin, kaempferol, rutine, pinocembrin, coumaric acid, caffeic acid and caffeic acid phenethyl ester, that have already been described in these propolis with conventional HPLC. Although all propolis samples inhibited the mutans streptococci growth, it was observed a wide spectrum of action (MIC 0.90 to 8.22 μg mL(-1)). Given that results it becomes increasingly evident the need of standardization procedures, where we combine both the determination of botanical and the chemical characterization of the extracts. Research conducted to date, describes a promising effectiveness of propolis in the prevention of caries and other diseases of the oral cavity, making it necessary to develop studies to identify and understand the therapeutic targets or mechanisms of molecular action of the various compounds present on them.

  12. Chemical and botanical characterization of Chilean propolis and biological activity on cariogenic bacteria Streptococcus mutans and Streptococcus sobrinus

    Directory of Open Access Journals (Sweden)

    Leticia Barrientos

    2013-01-01

    Full Text Available Propolis is a non-toxic natural substance with multiple pharmacological properties including anticancer, antioxidant, fungicidal, antibacterial, antiviral, and anti-inflammatory among others. The aim of this study was to determine the chemical and botanical characterization of Chilean propolis samples and to evaluate their biological activity against the cariogenic bacteria Streptococcus mutans and Streptococcus sobrinus. Twenty propolis samples were obtained from beekeeping producers from the central and southern regions of Chile. The botanical profile was determined by palynological analysis. Total phenolic contents were determined using colorimetric assays. Reverse phase HPLC and HPLC-MS were used to determine the chemical composition. The minimum inhibitory concentration (MIC was determined on S. mutans and S. sobrinus. All propolis samples were dominated by structures from native plant species. The characterization by HPLC/MS, evidenced the presence of quercetin, myricetin, kaempferol, rutine, pinocembrin, coumaric acid, caffeic acid and caffeic acid phenethyl ester, that have already been described in these propolis with conventional HPLC. Although all propolis samples inhibited the mutans streptococci growth, it was observed a wide spectrum of action (MIC 0.90 to 8.22 µgmL-1. Given that results it becomes increasingly evident the need of standardization procedures, where we combine both the determination of botanical and the chemical characterization of the extracts. Research conducted to date, describes a promising effectiveness of propolis in the prevention of caries and other diseases of the oral cavity, making it necessary to develop studies to identify and understand the therapeutic targets or mechanisms of molecular action of the various compounds present on them.

  13. Yellow-Cedar, Callitropsis (Chamaecyparis) nootkatensis, Secondary Metabolites, Biological Activities, and Chemical Ecology.

    Science.gov (United States)

    Karchesy, Joseph J; Kelsey, Rick G; González-Hernández, M P

    2018-05-01

    Yellow-cedar, Callitropsis nootkatensis, is prevalent in coastal forests of southeast Alaska, western Canada, and inland forests along the Cascades to northern California, USA. These trees have few microbial or animal pests, attributable in part to the distinct groups of biologically active secondary metabolites their tissues store for chemical defense. Here we summarize the new yellow-cedar compounds identified and their biological activities, plus new or expanded activities for tissues, extracts, essential oils and previously known compounds since the last review more than 40 years ago. Monoterpene hydrocarbons are the most abundant compounds in foliage, while heartwood contains substantial quantities of oxygenated monoterpenes and oxygenated sesquiterpenes, with one or more tropolones. Diterpenes occur in foliage and bark, whereas condensed tannins have been isolated from inner bark. Biological activities expressed by one or more compounds in these groups include fungicide, bactericide, sporicide, acaricide, insecticide, general cytotoxicity, antioxidant and human anticancer. The diversity of organisms impacted by whole tissues, essential oils, extracts, or individual compounds now encompasses ticks, fleas, termites, ants, mosquitoes, bacteria, a water mold, fungi and browsing animals. Nootkatone, is a heartwood component with sufficient activity against arthropods to warrant research focused toward potential development as a commercial repellent and biopesticide for ticks, mosquitoes and possibly other arthropods that vector human and animal pathogens.

  14. Chemical Properties of Caffeic and Ferulic Acids in Biological System: Implications in Cancer Therapy. A Review.

    Science.gov (United States)

    Damasceno, Sarah S; Dantas, Bruna B; Ribeiro-Filho, Jaime; Antônio M Araújo, Demetrius; Galberto M da Costa, José

    2017-01-01

    The antioxidant properties of caffeic and ferulic acids in biological systems have been extensively demonstrated. As antioxidants, these compounds prevent the production of reactive oxygen species (ROS), which cause cell lesions that are associated with the development of several diseases, including cancer. Recent findings suggest that the chemoprotective action of these phenolic acids occurs through the following mechanisms: regulation of gene expression, chelation and / or reduction of transition metals, formation of covalent adducts and direct toxicity. The biological efficacy of these promising chemoprotective agents is strongly related with their chemical structure. Therefore, in this study, we discuss the structural characteristics of ferulic and caffeic acids that are responsible for their biological activities, as well as the mechanisms of action involved with the anti-cancer activity. Several reports indicated that the antioxidant effect of these phenylpropanoids results from reactions with free radicals with formation of stable products in the cells. The chelating effect of these compounds was also reported as an important protective mechanism against oxidative. Finally, the lipophilicity of these agents facilitates their entry into the cells, and thus, contributes to the anticancer activity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Biological Importance of Cotton By-Products Relative to Chemical Constituents of the Cotton Plant

    Directory of Open Access Journals (Sweden)

    Mary A. Egbuta

    2017-01-01

    Full Text Available Although cultivated for over 7000 years, mainly for production of cotton fibre, the cotton plant has not been fully explored for potential uses of its other parts. Despite cotton containing many important chemical compounds, limited understanding of its phytochemical composition still exists. In order to add value to waste products of the cotton industry, such as cotton gin trash, this review focuses on phytochemicals associated with different parts of cotton plants and their biological activities. Three major classes of compounds and some primary metabolites have been previously identified in the plant. Among these compounds, most terpenoids and their derivatives (51, fatty acids (four, and phenolics (six, were found in the leaves, bolls, stalks, and stems. Biological activities, such as anti-microbial and anti-inflammatory activities, are associated with some of these phytochemicals. For example, β-bisabolol, a sesquiterpenoid enriched in the flowers of cotton plants, may have anti-inflammatory product application. Considering the abundance of biologically active compounds in the cotton plant, there is scope to develop a novel process within the current cotton fibre production system to separate these valuable phytochemicals, developing them into potentially high-value products. This scenario may present the cotton processing industry with an innovative pathway towards a waste-to-profit solution.

  16. Chemical properties of soils treated with biological sludge from gelatin industry

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Melo Guimarães

    2012-04-01

    Full Text Available The impact of agro-industrial organic wastes in the environment can be reduced when used in agriculture. From the standpoint of soil fertility, residue applications can increase the organic matter content and provide nutrients for plants. This study evaluated the effect of biological sludge from gelatin industry on the chemical properties of two Ultisols (loamy sand and sandy clay and an Oxisol (clay. The experiment lasted 120 days and was carried out in laboratory in a completely randomized design with factorial arrangement, combining the three soils and six biological sludge rates (0, 100, 200, 300, 400, and 500 m³ ha-1, with three replications. Biological sludge rates of up to 500 m³ ha-1 decreased soil acidity and increased the effective cation exchange capacity (CEC and N, Ca, Mg, and P availability, without exceeding the tolerance limit for Na. The increase in exchangeable base content, greater than the effective CEC, indicates that the major part of cations added by the sludge remains in solution and can be lost by leaching.

  17. White mineral trioxide aggregate mixed with calcium chloride dihydrate: chemical analysis and biological properties

    Science.gov (United States)

    2017-01-01

    Objectives This study aimed to evaluate the chemical and biological properties of fast-set white mineral trioxide aggregate (FS WMTA), which was WMTA combined with calcium chloride dihydrate (CaCl2·2H2O), compared to that of WMTA. Materials and Methods Surface morphology, elemental, and phase analysis were examined using scanning electron microscope (SEM), energy dispersive X-ray microanalysis (EDX), and X-ray diffraction (XRD), respectively. The cytotoxicity and cell attachment properties were evaluated on human periodontal ligament fibroblasts (HPLFs) using methyl-thiazol-diphenyltetrazolium (MTT) assay and under SEM after 24 and 72 hours, respectively. Results Results showed that the addition of CaCl2·2H2O to WMTA affected the surface morphology and chemical composition. Although FS WMTA exhibited a non-cytotoxic profile, the cell viability values of this combination were lesser than WMTA, and the difference was significant in 7 out of 10 concentrations at the 2 time intervals (p < 0.05). HPLFs adhered over the surface of WMTA and at the interface, after 24 hours of incubation. After 72 hours, there were increased numbers of HPLFs with prominent cytoplasmic processes. Similar findings were observed with FS WMTA, but the cells were not as confluent as with WMTA. Conclusions The addition of CaCl2·2H2O to WMTA affected its chemical properties. The favorable biological profile of FS WMTA towards HPLFs may have a potential impact on its clinical application for repair of perforation defects. PMID:28808634

  18. Chemical composition and biological activities of extracts and essential oil of Boswellia dalzielii leaves.

    Science.gov (United States)

    Kohoude, Midéko Justin; Gbaguidi, Fernand; Agbani, Pierre; Ayedoun, Marc-Abel; Cazaux, Sylvie; Bouajila, Jalloul

    2017-12-01

    Boswellia dalzielii Hutch. (Burseraceae) is an aromatic plant. The leaves are used for beverage flavouring. This study investigates the chemical composition and biological activities of various extracts. The essential oil was prepared via hydrodistillation. Identification and quantification were realized via GC-MS and GC-FID. Consecutive extractions (cyclohexane, dichloromethane, ethyl acetate and methanol) were carried out and various chemical groups (phenolics, flavonoids, tannins, antocyanins and sugar) were quantified. The volatile compounds of organic extracts were identified before and after derivatization. Antioxidant, antihyperuricemia, anti-Alzheimer, anti-inflammatory and anticancer activities were evaluated. In the essential oil, 50 compounds were identified, including 3-carene (27.72%) and α-pinene (15.18%). 2,5-Dihydroxy acetophenone and β-d-xylopyranose were identified in the methanol extract. Higher phenolic (315.97 g GAE/kg dry mass) and flavonoid (37.19 g QE/kg dry mass) contents were observed in the methanol extract. The methanol extract has presented remarkable IC 50  =   6.10 mg/L for antiDPPH, 35.10 mg/L for antixanthine oxidase and 28.01 mg/L for anti-5-lipoxygenase. For acetylcholinesterase inhibition, the best IC 50 (76.20 and 67.10 mg/L) were observed, respectively, with an ethyl acetate extract and the essential oil. At 50 mg/L, the dichloromethane extract inhibited OVCAR-3 cell lines by 65.10%, while cyclohexane extract inhibited IGROV-1 cell lines by 92.60%. Biological activities were fully correlated with the chemical groups of the extracts. The ethyl acetate and methanol extracts could be considered as potential alternatives for use in dietary supplements for the prevention or treatment of diseases because of these extracts natural antioxidant, antihyperuricemic and anti-inflammatory activities.

  19. Chemical Diversity, Biological Activity, and Genetic Aspects of Three Ocotea Species from the Amazon

    Directory of Open Access Journals (Sweden)

    Joyce Kelly da Silva

    2017-05-01

    Full Text Available Ocotea species present economic importance and biological activities attributed to their essential oils (EOs and extracts. For this reason, various strategies have been developed for their conservation. The chemical compositions of the essential oils and matK DNA sequences of O. caudata, O. cujumary, and O. caniculata were subjected to comparison with data from O. floribunda, O. veraguensis, and O. whitei, previously reported. The multivariate analysis of chemical composition classified the EOs into two main clusters. Group I was characterized by the presence of α-pinene (9.8–22.5% and β-pinene (9.7–21.3% and it includes O. caudata, O. whitei, and O. floribunda. In group II, the oils of O. cujumary and O. caniculata showed high similarity due amounts of β-caryophyllene (22.2% and 18.9%, respectively. The EO of O. veraguensis, rich in p-cymene (19.8%, showed minor similarity among all samples. The oils displayed promising antimicrobial and cytotoxic activities against Escherichia coli (minimum inhibitory concentration (MIC < 19.5 µg·mL−1 and MCF-7 cells (median inhibitory concentration (IC50 ≅ 65.0 µg·mL−1, respectively. The analysis of matK gene displayed a good correlation with the main class of chemical compounds present in the EOs. However, the matK gene data did not show correlation with specific compounds.

  20. Synthetic biology to access and expand nature’s chemical diversity

    Science.gov (United States)

    Smanski, Michael J.; Zhou, Hui; Claesen, Jan; Shen, Ben; Fischbach, Michael; Voigt, Christopher A.

    2016-01-01

    Bacterial genomes encode the biosynthetic potential to produce hundreds of thousands of complex molecules with diverse applications, from medicine to agriculture and materials. Economically accessing the potential encoded within sequenced genomes promises to reinvigorate waning drug discovery pipelines and provide novel routes to intricate chemicals. This is a tremendous undertaking, as the pathways often comprise dozens of genes spanning as much as 100+ kiliobases of DNA, are controlled by complex regulatory networks, and the most interesting molecules are made by non-model organisms. Advances in synthetic biology address these issues, including DNA construction technologies, genetic parts for precision expression control, synthetic regulatory circuits, computer aided design, and multiplexed genome engineering. Collectively, these technologies are moving towards an era when chemicals can be accessed en mass based on sequence information alone. This will enable the harnessing of metagenomic data and massive strain banks for high-throughput molecular discovery and, ultimately, the ability to forward design pathways to complex chemicals not found in nature. PMID:26876034

  1. Technical Program of The Fifth World Congress on Chemical, Biological and Radiological Terrorism

    International Nuclear Information System (INIS)

    2009-01-01

    Many countries worldwide were interested in the part that CBMTS industry played in the overall protection schemes required of all nations. It was idea to develop a baseline of information on antidotes and planned medical treatment for military and civilian medical casualties, in both peace and war. It was an almost complete lack of international communications across the full spectrum of chemical and biological medical treatment. Based on actual incidents that affected their chemical, petrochemical and pharmaceutical industries during their recent war, countries highlighted a danger that every country could face in the event of military actions, sabotage and especially terrorist actions, as well as major incidents or accidents involving these industries. Today TICS and TIMS and chemical and pharmaceutical industries and accidents and incidents whether by man or nature are part of our daily lexicon. The very tragic events 9/11 graphically demonstrated the importance of our CBMTS approach at bringing together the world's very best professionals in science and medicine to explore at the outer edges of science and technology, the most important issue facing the international community. Although the success in this approach has been continually documented for many years, CBMTS will continually rededicate our total efforts towards defining the issues, surfacing the problems across the NBC science and medical spectrum and applying the best efforts at developing solutions that would most benefit our world community

  2. Medicinal plants for the treatment of obesity: ethnopharmacological approach and chemical and biological studies.

    Science.gov (United States)

    de Freitas Junior, Luciano Mamede; de Almeida, Eduardo B

    2017-01-01

    Obesity is a global epidemic that has shown a steady increase in morbimortality indicators; it is considered a social problem and entails serious health risks. One of the alternatives in the treatment of obesity is the traditional use of medicinal plants, which supports the research and development of obesity phytotherapy. In this article, we provide information about ethnopharmacological species used to treat obesity, through an electronic search of the periodical databases Web of Science , Scopus , PubMed and Scielo , considering the period 1996-2015 and using the descriptors "plants for obesity", "ethnopharmacology for obesity" and "anti-obesity plants" in both Portuguese and English. We analyzed and organized data on 76 plant species, cataloged per the taxonomy, geographic distribution, botanical aspects, popular use, and chemical and biological studies of the listed plants. The anti-obesity effect of the cataloged species was reported, describing actions on the delay of fat absorption, suppression of enzymatic activities, mediation of lipid levels and increase of lipolytic effects, attributed mainly to phenolic compounds. Given these findings, ethnopharmacological approaches are relevant scientific tools in the selection of plant species for studies that demonstrate anti-obesity action. Deeper botanical, chemical, pre-clinical and clinical studies are particularly necessary for species that present phenolic compounds in their chemical structure.

  3. Chemical Investigations of ISOL target units for carbon and nitrogen beams

    CERN Document Server

    Franberg, H; Gäggeler, H W; Köster, U

    2006-01-01

    Radioactive Ion Beams (RIB) are of significant interest in a number of applications. ISOL (Isotope Separation On Line) facilities provide RIB with high beam intensities and good beam quality. An atom that is produced within the ISOL target will first diffuse out from the target material. During the effusion towards the transfer line and into the ion source the many contacts with the surrounding surfaces may cause unacceptable delays in the transport and, hence, losses of the shorter-lived isotopes. We performed systematic chemical investigations of adsorption in a temperature and concentration regime relevant for ISOL targets and ion source units, with regard to COx and NOx on Al2O3 and SiO2. These materials are potential construction materials for the above mentioned areas. Off-line and on-line tests have been performed using a gas thermo-chromatography set-up with radioactive tracers. The experiments were performed at the PROTRAC facility at Paul Scherrer Institute in Villigen, Switzerland.

  4. The multicolored Asian lady beetle, Harmonia axyridis: A review of its biology, uses in biological control, and non-target impacts

    Directory of Open Access Journals (Sweden)

    R.L. Koch

    2003-10-01

    Full Text Available Throughout the last century, the multicolored Asian lady beetle, Harmonia axyridis (Pallas has been studied quite extensively, with topics ranging from genetics and evolution to population dynamics and applied biological control being covered. Much of the early work on H. axyridis was conducted in the native Asian range. From the 1980's to the present, numerous European and North American studies have added to the body of literature on H. axyridis. H. axyridis has recently gained attention in North America both as a biological control agent and as a pest. This literature review was compiled for two reasons. First, to assist other researchers as a reference, summarizing most of the voluminous body of literature on H. axyridis pertaining to its biology, life history, uses in biological control, and potential non-target impacts. Secondly, to be a case study on the impacts of an exotic generalist predator.

  5. Chemical kinetic mechanistic models to investigate cancer biology and impact cancer medicine

    International Nuclear Information System (INIS)

    Stites, Edward C

    2013-01-01

    Traditional experimental biology has provided a mechanistic understanding of cancer in which the malignancy develops through the acquisition of mutations that disrupt cellular processes. Several drugs developed to target such mutations have now demonstrated clinical value. These advances are unequivocal testaments to the value of traditional cellular and molecular biology. However, several features of cancer may limit the pace of progress that can be made with established experimental approaches alone. The mutated genes (and resultant mutant proteins) function within large biochemical networks. Biochemical networks typically have a large number of component molecules and are characterized by a large number of quantitative properties. Responses to a stimulus or perturbation are typically nonlinear and can display qualitative changes that depend upon the specific values of variable system properties. Features such as these can complicate the interpretation of experimental data and the formulation of logical hypotheses that drive further research. Mathematical models based upon the molecular reactions that define these networks combined with computational studies have the potential to deal with these obstacles and to enable currently available information to be more completely utilized. Many of the pressing problems in cancer biology and cancer medicine may benefit from a mathematical treatment. As work in this area advances, one can envision a future where such models may meaningfully contribute to the clinical management of cancer patients. (paper)

  6. Simulation of CNT-AFM tip based on finite element analysis for targeted probe of the biological cell

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, Amin Termeh, E-mail: at.tyousefi@gmail.com; Miyake, Mikio, E-mail: miyakejaist@gmail.com; Ikeda, Shoichiro, E-mail: sho16.ikeda@gmail.com [ChECA IKohza, Dept. Environmental & Green Technology (EGT), Malaysia, Japan International Institute of Technology (MJIIT), University Technology Malaysia - UTM, Kualalumpur (Malaysia); Mahmood, Mohamad Rusop, E-mail: nano@uitm.gmail.com [NANO-SciTech Centre, Institute of Science, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor (Malaysia)

    2016-07-06

    Carbon nanotubes (CNTs) are potentially ideal tips for atomic force microscopy (AFM) due to the robust mechanical properties, nano scale diameter and also their ability to be functionalized by chemical and biological components at the tip ends. This contribution develops the idea of using CNTs as an AFM tip in computational analysis of the biological cell’s. Finite element analysis employed for each section and displacement of the nodes located in the contact area was monitored by using an output database (ODB). This reliable integration of CNT-AFM tip process provides a new class of high performance nanoprobes for single biological cell analysis.

  7. Chemical biology of natural indolocarbazole products: 30 years since the discovery of staurosporine.

    Science.gov (United States)

    Nakano, Hirofumi; Omura, Satoshi

    2009-01-01

    Staurosporine was discovered at the Kitasato Institute in 1977 while screening for microbial alkaloids using chemical detection methods. It was during the same era that protein kinase C was discovered and oncogene v-src was shown to have protein kinase activity. Staurosporine was first isolated from a culture of Actinomyces that originated in a soil sample collected in Mizusawa City, Japan. Thereafter, indolocarbazole compounds have been isolated from a variety of organisms. The biosynthesis of staurosporine and related indolocarbazoles was finally elucidated during the past decade through genetic and biochemical studies. Subsequently, several novel indolocarbazoles have been produced using combinatorial biosynthesis. In 1986, 9 years since its discovery, staurosporine and related indolocarbazoles were shown to be nanomolar inhibitors of protein kinases. They can thus be viewed as forerunners of today's crop of novel anticancer drugs. The finding led many pharmaceutical companies to search for selective protein kinase inhibitors by screening natural products and through chemical synthesis. In the 1990s, imatinib, a Bcr-Abl tyrosine kinase inhibitor, was synthesized and, following human clinical trials for chronic myelogenous leukemia, it was approved for use in the USA in 2001. In 1992, mammalian topoisomerases were shown to be targets for indolocarbazoles. This opened up new possibilities in that indolocarbazole compounds could selectively interact with ATP-binding sites of not only protein kinases but also other proteins that had slight differences in ATP-binding sites. ABCG2, an ATP-binding cassette transporter, was recently identified as an important new target for indolocarbazoles.

  8. Monitoring Chemical and Biological Electron Transfer Reactions with a Fluorogenic Vitamin K Analogue Probe.

    Science.gov (United States)

    Belzile, Mei-Ni; Godin, Robert; Durantini, Andrés M; Cosa, Gonzalo

    2016-12-21

    We report herein the design, synthesis, and characterization of a two-segment fluorogenic analogue of vitamin K, B-VK Q , prepared by coupling vitamin K 3 , also known as menadione (a quinone redox center), to a boron-dipyrromethene (BODIPY) fluorophore (a lipophilic reporter segment). Oxidation-reduction reactions, spectroelectrochemical studies, and enzymatic assays conducted in the presence of DT-diaphorase illustrate that the new probe shows reversible redox behavior on par with that of vitamin K, provides a high-sensitivity fluorescence signal, and is compatible with biological conditions, opening the door to monitor remotely (i.e., via imaging) redox processes in real time. In its oxidized form, B-VK Q is non-emissive, while upon reduction to the hydroquinone form, B-VK QH 2 , BODIPY fluorescence is restored, with emission quantum yield values of ca. 0.54 in toluene. Density functional theory studies validate a photoinduced electron transfer intramolecular switching mechanism, active in the non-emissive quinone form and deactivated upon reduction to the emissive dihydroquinone form. Our results highlight the potential of B-VK Q as a fluorogenic probe to study electron transfer and transport in model systems and biological structures with optimal sensitivity and desirable chemical specificity. Use of such a probe may enable a better understanding of the role that vitamin K plays in biological redox reactions ubiquitous in key cellular processes, and help elucidate the mechanism and pathological significance of these reactions in biological systems.

  9. Analyses of Brucella pathogenesis, host immunity, and vaccine targets using systems biology and bioinformatics

    Directory of Open Access Journals (Sweden)

    Yongqun eHe

    2012-02-01

    Full Text Available Brucella is a Gram-negative, facultative intracellular bacterium that causes zoonotic brucellosis in humans and various animals. Out of ten classified Brucella species, B. melitensis, B. abortus, B. suis, and B. canis are pathogenic to humans. In the past decade, the mechanisms of Brucella pathogenesis and host immunity have been extensively investigated using the cutting edge systems biology and bioinformatics approaches. This article provides a comprehensive review of the applications of Omics (including genomics, transcriptomics, and proteomics and bioinformatics technologies for the analysis of Brucella pathogenesis, host immune responses, and vaccine targets. Based on more than 30 sequenced Brucella genomes, comparative genomics is able to identify gene variations among Brucella strains that help to explain host specificity and virulence differences among Brucella species. Diverse transcriptomics and proteomics gene expression studies have been conducted to analyze gene expression profiles of wild type Brucella strains and mutants under different laboratory conditions. High throughput Omics analyses of host responses to infections with virulent or attenuated Brucella strains have been focused on responses by mouse and cattle macrophages, bovine trophoblastic cells, mouse and boar splenocytes, and ram buffy coat. Differential serum responses in humans and rams to Brucella infections have been analyzed using high throughput serum antibody screening technology. The Vaxign reverse vaccinology has been used to predict many Brucella vaccine targets. More than 180 Brucella virulence factors and their gene interaction networks have been identified using advanced literature mining methods. The recent development of community-based Vaccine Ontology and Brucellosis Ontology provides an efficient way for Brucella data integration, exchange, and computer-assisted automated reasoning.

  10. The cytokinesis-block micronucleus assay as a biological dosimeter for targeted alpha therapy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Emma Y [Centre for Experimental Radiation Oncology, Cancer Care Centre, St George Hospital, Gray St, 2217 Kogarah (Australia); Rizvi, Syed M A [Centre for Experimental Radiation Oncology, Cancer Care Centre, St George Hospital, Gray St, 2217 Kogarah (Australia); Qu, Chang F [Centre for Experimental Radiation Oncology, Cancer Care Centre, St George Hospital, Gray St, 2217 Kogarah (Australia); Raja, Chand [Centre for Experimental Radiation Oncology, Cancer Care Centre, St George Hospital, Gray St, 2217 Kogarah (Australia); Yuen, Johnson [Division of cancer Services, St George Hospital, Gray St, Kogarah (Australia); Li, Yong [Centre for Experimental Radiation Oncology, Cancer Care Centre, St George Hospital, Gray St, 2217 Kogarah (Australia); Morgenstern, Alfred [European Commission, Joint Research Centre, Institute for Transuranium Elements, 76125 Karlsruhe (Germany); Apostolidis, Christos [European Commission, Joint Research Centre, Institute for Transuranium Elements, 76125 Karlsruhe (Germany); Allen, Barry J [Centre for Experimental Radiation Oncology, Cancer Care Centre, St George Hospital, Gray St, 2217 Kogarah (Australia)

    2008-01-21

    Ionizing radiation causes structural chromosomal aberrations, a proportion of which give rise to chromosome fragments without spindle attachment organelles. When a cell divides, some of these fragments are excluded from the main daughter nuclei and form small nuclei within the cytoplasm. The cytokinesis-block micronucleus assay allows these micronuclei (MN) to be counted, providing an in situ biological dosimeter. In this study, we evaluated the micronucleus frequency in peripheral blood lymphocytes after in vitro incubation with the alpha conjugates {sup 213}BiI{sub 3} and {sup 213}Bi-9.2.27 (AIC). Lymphocytes were inoculated in vitro AIC for 3 h. Further, we report the first MN measurements in melanoma patients after targeted alpha therapy (TAT) with {sup 213}Bi-9.2.27. Patients were injected with 260-360 MBq of AIC, and blood samples taken at 3 h, 2 weeks and 4 weeks post-treatment. Absorbed dose (MIRD) and effective total body dose (PED) were calculated. The MN frequency in lymphocytes was similar for equal in vitro incubation activities of {sup 213}BiI{sub 3} and {sup 213}Bi-9.2.27 (P = 0.5), indicating that there is no selective targeting of lymphocytes by the alpha conjugates. After inoculation with 10-1200 kBq mL - 1 of AIC, there was a substantial activity-related increase in MN. The number of MN in the blood of treated patients peaked at 3 h post-TAT, slowly returning to baseline levels by 4 weeks. The mean photon equivalent dose (PED) is 0.43 Gy (SD 0.15) and the mean MIRD calculated absorbed dose is 0.11 Gy (SD 0.03), giving an RBE = 4 {+-} 0.4 for this study.

  11. Analyses of Brucella Pathogenesis, Host Immunity, and Vaccine Targets using Systems Biology and Bioinformatics

    Science.gov (United States)

    He, Yongqun

    2011-01-01

    Brucella is a Gram-negative, facultative intracellular bacterium that causes zoonotic brucellosis in humans and various animals. Out of 10 classified Brucella species, B. melitensis, B. abortus, B. suis, and B. canis are pathogenic to humans. In the past decade, the mechanisms of Brucella pathogenesis and host immunity have been extensively investigated using the cutting edge systems biology and bioinformatics approaches. This article provides a comprehensive review of the applications of Omics (including genomics, transcriptomics, and proteomics) and bioinformatics technologies for the analysis of Brucella pathogenesis, host immune responses, and vaccine targets. Based on more than 30 sequenced Brucella genomes, comparative genomics is able to identify gene variations among Brucella strains that help to explain host specificity and virulence differences among Brucella species. Diverse transcriptomics and proteomics gene expression studies have been conducted to analyze gene expression profiles of wild type Brucella strains and mutants under different laboratory conditions. High throughput Omics analyses of host responses to infections with virulent or attenuated Brucella strains have been focused on responses by mouse and cattle macrophages, bovine trophoblastic cells, mouse and boar splenocytes, and ram buffy coat. Differential serum responses in humans and rams to Brucella infections have been analyzed using high throughput serum antibody screening technology. The Vaxign reverse vaccinology has been used to predict many Brucella vaccine targets. More than 180 Brucella virulence factors and their gene interaction networks have been identified using advanced literature mining methods. The recent development of community-based Vaccine Ontology and Brucellosis Ontology provides an efficient way for Brucella data integration, exchange, and computer-assisted automated reasoning. PMID:22919594

  12. Understanding XPO1 target networks using systems biology and mathematical modeling.

    Science.gov (United States)

    Muqbil, Irfana; Kauffman, Michael; Shacham, Sharon; Mohammad, Ramzi M; Azmi, Asfar S

    2014-01-01

    The nuclear transport protein Exportin 1 (XPO1), also called chromosome region maintenance 1 (CRM1), is over-expressed 2- 4 fold in cancer. XPO1 is one of seven nuclear exporter proteins, and is solely responsible for the transport of the major tumor suppressor proteins (TSPs) from the nucleus to the cytoplasm. XPO1 exports any protein that carries a leucine-rich, hydrophobic nuclear export sequence (NES). A number of inhibitors have been discovered that block XPO1 function and thereby restore TSPs to the nucleus of both malignant and normal cells. However, natural product, irreversible XPO1 antagonists such as leptomycin B (LMB) have proven toxic in both preclinical models and in the clinic. Recently, orally bioavailable, drug-like small molecule, potent and selective inhibitors of XPO1 mediated nuclear export ("SINE") have been designed and are undergoing clinical evaluations in both humans and canines with cancer. The breadth of clinical applicability and long-term viability of an XPO1 inhibition strategy requires a deeper evaluation of the consequence of global re-organization of proteins in cancer and normal cells. Unfortunately, most of the studies on XPO1 inhibitors have focused on evaluating a limited number of TSPs or other proteins. Because XPO1 carries ~220 mammalian proteins out of the nucleus, such reductionism has not permitted a global understanding of cellular behavior upon drug-induced disruption of XPO1 function. The consequence of XPO1 inhibition requires holistic investigations that consider the entire set of XPO1 targets and their respective pathways modulated without losing key details. Systems biology is one such holistic approach that can be applied to understand XPO1 regulated proteins along with the downstream players involved. This review provides comprehensive evaluations of the different computational tools that can be utilized in the better understanding of XPO1 and its target. We anticipate that such holistic approaches can allow for

  13. Alternative approaches for medical countermeasures to biological and chemical terrorism and warfare.

    Science.gov (United States)

    Hartung, Thomas; Zurlo, Joanne

    2012-01-01

    The desire to develop and evaluate drugs as potential countermeasures for biological and chemical threats requires test systems that can also substitute for the clinical trials normally crucial for drug development. Animal models have limited predictivity for drug efficacy, as is well known from many disappointments in clinical trials. Traditional in vitro and in silico approaches are not really game changers here, but the substantial investment into novel tools now underway might bring about a second generation of alternative approaches. The avenue pursued focuses primarily on the development of a Human on a Chip, i.e., the combination of different three-dimensional (stem) cell-based organ equivalents combined with microfluidics. The prospects of such approaches, their impact on the field of alternative approaches, and necessary complementary activities are discussed. The need to adapt quality assurance measures and experiences from validation is stressed.

  14. Nuclear, biological, and chemical terrorism: understanding the threat and designing responses.

    Science.gov (United States)

    Simon, J D

    1999-01-01

    Today nuclear, biological, and chemical (NBC) terrorism is a serious issue. The threat of terrorist or rogue states acquiring and using NBC weapons has ushered in a new age of terrorism; an age that is far more dangerous than any previous period. It is an age of terrorism with which no one yet knows how to deal. This article reviews recent trends in terrorism, and identifies groups that have both the potential and the motive to use weapons of mass destruction. In addition, it discusses the design and implemention of effective measures to meet this threat, as well as the role of CISM teams in preparation for, and in the aftermath of, an incident involving NBC weapons.

  15. A mini-review of chemical and biological properties of polysaccharides from Momordica charantia.

    Science.gov (United States)

    Zhang, Fan; Lin, Lihua; Xie, Jianhua

    2016-11-01

    Recently, isolation and characterization of bioactive polysaccharides from natural resources have attracted increasing interest. Momordica charantia L. (M. charantia), belongs to the Curcubitaceae family, which is widely distributed in the tropical and subtropical regions of the world, and has been used as herbal medicine and a vegetable for thousands of years. M. charantia polysaccharides, as major active ingredients of M. charantia, have attracted a great deal of attention because of their various biological activities, such as antitumor, immunomodulation, antioxidant, anti-diabetes, radioprotection, and hepatoprotection. The present review provides the most complete summary of the research progress on the polysaccharides isolated from M. charantia, including the extraction, separation, physical-chemical properties, structural characteristics, and bioactivities during the last ten years. This review also provides a foundation for the further development and application in the field of M. charantia polysaccharides. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Structural, Chemical and Biological Aspects of Antioxidants for Strategies Against Metal and Metalloid Exposure

    Directory of Open Access Journals (Sweden)

    Swaran J. S. Flora

    2009-01-01

    Full Text Available Oxidative stress contributes to the pathophysiology of exposure to heavy metals/metalloid. Beneficial renal effects of some medications, such as chelation therapy depend at least partially on the ability to alleviate oxidative stress. The administration of various natural or synthetic antioxidants has been shown to be of benefit in the prevention and attenuation of metal induced biochemical alterations. These include vitamins, N-acetylcysteine, α-lipoic acid, melatonin, dietary flavonoids and many others. Human studies are limited in this regard. Under certain conditions, surprisingly, the antioxidant supplements may exhibit pro-oxidant properties and even worsen metal induced toxic damage. To date, the evidence is insufficient to recommend antioxidant supplements in subject with exposure to metals. Prospective, controlled clinical trials on safety and effectiveness of different therapeutic antioxidant strategies either individually or in combination with chelating agent are indispensable. The present review focuses on structural, chemical and biological aspects of antioxidants particularly related to their chelating properties.

  17. Mössbauer spectroscopy: epoch-making biological and chemical applications

    Czech Academy of Sciences Publication Activity Database

    Lančok, Adriana; Volfová, Lenka

    2017-01-01

    Roč. 89, č. 4 (2017), s. 461-470 ISSN 0033-4545. [International Conference Solid State Chemistry 2016 /12./. Prague, 18.09.2016-23.09.2016] R&D Projects: GA MŠk(CZ) LO1409; GA MŠk(CZ) LM2015088 Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568 Institutional support: RVO:61388980 ; RVO:68378271 Keywords : biological tissue * boron chemistry * Fe2+ and Fe3+ * Mössbauer spectrometry * vivianite Subject RIV: CA - Inorganic Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) OBOR OECD: Inorganic and nuclear chemistry; Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) (FZU-D) Impact factor: 2.626, year: 2016

  18. Chemical and biological agent incident response and decision process for civilian and public sector facilities.

    Science.gov (United States)

    Raber, Ellen; Hirabayashi, Joy M; Mancieri, Saverio P; Jin, Alfred L; Folks, Karen J; Carlsen, Tina M; Estacio, Pete

    2002-04-01

    In the event of a terrorist attack or catastrophic release involving potential chemical and/or biological warfare agents, decisionmakers will need to make timely and informed choices about whether, or how, to respond. The objective of this article is to provide a decision framework to specify initial and follow-up actions, including possible decontamination, and to address long-term health and environmental issues. This decision framework consists of four phases, beginning with the identification of an incident and ending with verification that cleanup and remediation criteria have been met. The flowchart takes into account both differences and similarities among potential agents or toxins at key points in the decision-making process. Risk evaluation and communication of information to the public must be done throughout the process to ensure a successful effort.

  19. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G.; Bair, K.; Ross, J. [eds.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  20. Chemical constituents and biological activities of species of Justicia: a review

    Directory of Open Access Journals (Sweden)

    Geone M. Corrêa

    2012-02-01

    Full Text Available The Acanthaceae family is an important source of therapeutic drugs, and the ethnopharmacological knowledge of this family requires urgent documentation as several of its species are near extinction. Justicia is the largest genus of Acanthaceae, with approximately 600 species. The present work provides a review addressing the chemistry and pharmacology of the genus Justicia. In addition, the biological activities of compounds isolated from the genus are also covered. The chemical and pharmacological information in the present work may inspire new biomedical applications for the species of Justicia, considering atom economy, the synthesis of environmentally benign products without producing toxic by-products, the use of renewable sources of raw materials, and the search for processes with maximal efficiency of energy.