WorldWideScience

Sample records for biological assessment

  1. Biology Reflective Assessment Curriculum

    Science.gov (United States)

    Bayley, Cheryl Ann

    Often students and educators view assessments as an obligation and finality for a unit. In the current climate of high-stakes testing and accountability, the balance of time, resources and emphasis on students' scores related to assessment have been slanted considerably toward the summative side. This tension between assessment for accountability and assessment to inform teaching strains instruction and educators' ability to use that information to design learning opportunities that help students develop deeper conceptual understanding. A substantive body of research indicates that formative and reflective assessment can significantly improve student learning. Biology Reflective Assessment Curriculum (BRAC) examines support provided for high school science students through assessment practices. This investigation incorporates the usage of reflective assessments as a guiding practice for differentiated instruction and student choice. Reflective assessment is a metacognitive strategy that promotes self-monitoring and evaluation. The goals of the curriculum are to promote self-efficacy and conceptual understanding in students learning biology through developing their metacognitive awareness. BRAC was implemented in a high school biology classroom. Data from assessments, metacognitive surveys, self-efficacy surveys, reflective journals, student work, a culminating task and field notes were used to evaluate the effectiveness of the curriculum. The results suggest that students who develop their metacognitive skills developed a deeper conceptual understanding and improved feelings of self-efficacy when they were engaged in a reflective assessment unit embedded with student choice. BRAC is a tool for teachers to use assessments to assist students in becoming metacognitive and to guide student choice in learning opportunities.

  2. The Molecular Biology Capstone Assessment: A Concept Assessment for Upper-Division Molecular Biology Students

    Science.gov (United States)

    Couch, Brian A.; Wood, William B.; Knight, Jennifer K.

    2015-01-01

    Measuring students' conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in…

  3. The molecular biology capstone assessment: a concept assessment for upper-division molecular biology students.

    Science.gov (United States)

    Couch, Brian A; Wood, William B; Knight, Jennifer K

    2015-03-02

    Measuring students' conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in novel scenarios. Targeted at graduating students, the MBCA consists of 18 multiple-true/false (T/F) questions. Each question consists of a narrative stem followed by four T/F statements, which allows a more detailed assessment of student understanding than the traditional multiple-choice format. Questions were iteratively developed with extensive faculty and student feedback, including validation through faculty reviews and response validation through student interviews. The final assessment was taken online by 504 students in upper-division courses at seven institutions. Data from this administration indicate that the MBCA has acceptable levels of internal reliability (α=0.80) and test-retest stability (r=0.93). Students achieved a wide range of scores with a 67% overall average. Performance results suggest that students have an incomplete understanding of many molecular biology concepts and continue to hold incorrect conceptions previously documented among introductory-level students. By pinpointing areas of conceptual difficulty, the MBCA can provide faculty members with guidance for improving undergraduate biology programs. © 2015 B. A. Couch et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Assessment of variable application rates of biological amendment ...

    African Journals Online (AJOL)

    Assessment of variable application rates of biological amendment substances on establishment and growth characteristics of maize plants. ... Hence, a greenhouse experiment was conducted in 2008 to assess the effects of variable rates (50, 75 and 100% of the recommended rates) of industrial manufactured biological ...

  5. Biological methods used to assess surface water quality

    Directory of Open Access Journals (Sweden)

    Szczerbiñska Natalia

    2015-12-01

    Full Text Available In accordance with the guidelines of the Water Framework Directive 2000/60 (WFD, both ecological and chemical statuses determine the assessment of surface waters. The profile of ecological status is based on the analysis of various biological components, and physicochemical and hydromorphological indicators complement this assessment. The aim of this article is to present the biological methods used in the assessment of water status with a special focus on bioassay, as well as to provide a review of methods of monitoring water status. Biological test methods include both biomonitoring and bioanalytics. Water biomonitoring is used to assess and forecast the status of water. These studies aim to collect data on water pollution and forecast its impact. Biomonitoring uses organisms which are characterized by particular vulnerability to contaminants. Bioindicator organisms are algae, fungi, bacteria, larval invertebrates, cyanobacteria, macroinvertebrates, and fish. Bioanalytics is based on the receptors of contaminants that can be biologically active substances. In bioanalytics, biosensors such as viruses, bacteria, antibodies, enzymes, and biotests are used to assess degrees of pollution.

  6. Skill Assessment in Ocean Biological Data Assimilation

    Science.gov (United States)

    Gregg, Watson W.; Friedrichs, Marjorie A. M.; Robinson, Allan R.; Rose, Kenneth A.; Schlitzer, Reiner; Thompson, Keith R.; Doney, Scott C.

    2008-01-01

    There is growing recognition that rigorous skill assessment is required to understand the ability of ocean biological models to represent ocean processes and distributions. Statistical analysis of model results with observations represents the most quantitative form of skill assessment, and this principle serves as well for data assimilation models. However, skill assessment for data assimilation requires special consideration. This is because there are three sets of information in the free-run model, data, and the assimilation model, which uses Data assimilation information from both the flee-run model and the data. Intercom parison of results among the three sets of information is important and useful for assessment, but is not conclusive since the three information sets are intertwined. An independent data set is necessary for an objective determination. Other useful measures of ocean biological data assimilation assessment include responses of unassimilated variables to the data assimilation, performance outside the prescribed region/time of interest, forecasting, and trend analysis. Examples of each approach from the literature are provided. A comprehensive list of ocean biological data assimilation and their applications of skill assessment, in both ecosystem/biogeochemical and fisheries efforts, is summarized.

  7. A Diagnostic Assessment for Introductory Molecular and Cell Biology

    Science.gov (United States)

    Shi, Jia; Wood, William B.; Martin, Jennifer M.; Guild, Nancy A.; Vicens, Quentin; Knight, Jennifer K.

    2010-01-01

    We have developed and validated a tool for assessing understanding of a selection of fundamental concepts and basic knowledge in undergraduate introductory molecular and cell biology, focusing on areas in which students often have misconceptions. This multiple-choice Introductory Molecular and Cell Biology Assessment (IMCA) instrument is designed…

  8. Biological dosimetry: chromosomal aberration analysis for dose assessment

    International Nuclear Information System (INIS)

    1986-01-01

    In view of the growing importance of chromosomal aberration analysis as a biological dosimeter, the present report provides a concise summary of the scientific background of the subject and a comprehensive source of information at the technical level. After a review of the basic principles of radiation dosimetry and radiation biology basic information on the biology of lymphocytes, the structure of chromosomes and the classification of chromosomal aberrations are presented. This is followed by a presentation of techniques for collecting blood, storing, transporting, culturing, making chromosomal preparations and scaring of aberrations. The physical and statistical parameters involved in dose assessment are discussed and examples of actual dose assessments taken from the scientific literature are given

  9. Examining portfolio-based assessment in an upper-level biology course

    Science.gov (United States)

    Ziegler, Brittany Ann

    Historically, students have been viewed as empty vessels and passive participants in the learning process but students actually are active forming their own conceptions. One way student learning is impacted is through assessment. Alternative assessment, which contrasts traditional assessment methods, takes into account how students learn by promoting engagement and construction of knowledge This dissertation explores portfolio-based assessment, a method of alternative assessment, which requires students to compose a purposeful collection of work demonstrating their knowledge in an upper-level biology course. The research objectives include characterizing and contributing to the understanding of portfolio-based assessment in higher education, examining reflection and inquiry portfolio components, determining student knowledge of biological concepts, and investigating student integrative thinking through the transformation of reflections into concept webs One main finding includes the majority of reflections categorized as naive or novice in quality. There was no difference in quality of reflections among biological topic. There was a relatively equal amount of high and low cognitive level questions. Students' knowledge of biological concepts significantly increased from the beginning to end of the course. Student written reflections were transformed into concept webs to allow for examination of student integrative thinking. Concepts, relationships, and interconnections in concept webs showed variation but declined by the end of the semester This study is one of the first examining portfolio-based assessment in an upper-level biology course We do not contend that this method of assessment is the only way to promote student learning but portfolio-based assessment may be a tool that can transform science education but currently the role of portfolio-based assessment in science education remains unclear. Additional research needs to be conducted before we will fully

  10. Scientific Opinion on Risk Assessment of Synthetic Biology.

    Science.gov (United States)

    Epstein, Michelle M; Vermeire, Theo

    2016-08-01

    In 2013, three Scientific Committees of the European Commission (EC) drafted Scientific Opinions on synthetic biology that provide an operational definition and address risk assessment methodology, safety aspects, environmental risks, knowledge gaps, and research priorities. These Opinions contribute to the international discussions on the risk governance for synthetic biology developments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Bigheaded carps : a biological synopsis and environmental risk assessment

    Science.gov (United States)

    Kolar, Cindy S.; Chapman, Duane C.; Courtenay, Walter R.; Housel, Christine M.; Williams, James D.; Jennings, Dawn P.

    2007-01-01

    The book is a detailed risk assessment and biological synopsis of the bigheaded carps of the genus Hypophthalmichthys, which includes the bighead, silver, and largescale silver carps. It summarizes the scientific literature describing their biology, ecology, uses, ecological effects, and risks to the environment.

  12. Strategies for Assessment of the Biological Performance and Design of Hydroturbines

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Thomas J.; Richmond, Marshall C.

    2011-05-05

    The biological response of fish to turbine passage has been of concern for several decades and emphasized recently by consideration of hydro as a 'green' power source. The current state-of-the-art of hydro-turbine biological performance assessment, while still inadequate, has advanced considerably the past 10 years. For example, the importance of assessment of exposure to pressure changes during turbine passage has been emphasized by findings of laboratory studies of rapid decompression. It is now very clear that hydroturbine biological assessment must consider the physiological state and behavior of fish at turbine entry and changes in physiological state that drive aspects of behavior during tailrace passage. Such considerations are in addition to concerns about exposure of fish to mechanical and pressure sources of injury during turbine passage. Experimental designs and assessment tools have evolved for acclimation of test fish, observation of test fish behavior at approach and upon exit from the turbine environment, and precise estimation of turbine passage mortality. Fish condition assessment continues to improve permitting better classification of observed injuries to injury mechanisms. Computational fluid dynamics (CFD) models and other computer models permit detailed investigation of the turbine passage environment and development of hypotheses that can be tested in field studies using live fish. Risk assessment techniques permit synthesis of laboratory and in-field study findings and estimation of population level effects over a wide range of turbine operation scenarios. Risk assessment is also evolving to provide input to turbine runner design. These developments, and others, have resulted in more productive biological performance assessment studies and will continue to evolve and improve the quantity and quality of information obtained from costly live fish hydroturbine passage studies. This paper reviews the history of hydro-turbine biological

  13. Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions.

    Science.gov (United States)

    Kaufman, Leyla V; Wright, Mark G

    2017-07-07

    The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in Hawaii to validate a probabilistic risk assessment (PRA) procedure for non-target impacts. We use data on known host range and habitat use in the place of origin of the parasitoids to determine whether contemporary levels of non-target parasitism could have been predicted using PRA. Our results show that reasonable predictions of potential non-target impacts may be made if comprehensive data are available from places of origin of biological control agents, but scant data produce poor predictions. Using apparent mortality data rather than marginal attack rate estimates in PRA resulted in over-estimates of predicted non-target impact. Incorporating ecological data into PRA models improved the predictive power of the risk assessments.

  14. Advanced Level Biology Teachers' Attitudes towards Assessment and Their Engagement in Assessment for Learning

    Science.gov (United States)

    Bramwell-Lalor, Sharon; Rainford, Marcia

    2015-01-01

    This paper reports on a Mixed Methods study involving an investigation into the attitudes of advanced level biology teachers towards assessment and describes the teachers' experiences while being engaged in Assessment for Learning (AfL) practices such as sharing of learning objectives and peer- and self-assessment. Quantitative data were collected…

  15. A Test of the Relationship between Reading Ability & Standardized Biology Assessment Scores

    Science.gov (United States)

    Allen, Denise A.

    2014-01-01

    Little empirical evidence suggested that independent reading abilities of students enrolled in biology predicted their performance on the Biology I Graduation End-of-Course Assessment (ECA). An archival study was conducted at one Indiana urban public high school in Indianapolis, Indiana, by examining existing educational assessment data to test…

  16. Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions

    Directory of Open Access Journals (Sweden)

    Leyla V. Kaufman

    2017-07-01

    Full Text Available The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in Hawaii to validate a probabilistic risk assessment (PRA procedure for non-target impacts. We use data on known host range and habitat use in the place of origin of the parasitoids to determine whether contemporary levels of non-target parasitism could have been predicted using PRA. Our results show that reasonable predictions of potential non-target impacts may be made if comprehensive data are available from places of origin of biological control agents, but scant data produce poor predictions. Using apparent mortality data rather than marginal attack rate estimates in PRA resulted in over-estimates of predicted non-target impact. Incorporating ecological data into PRA models improved the predictive power of the risk assessments.

  17. Prospective Technology Assessment of Synthetic Biology: Fundamental and Propaedeutic Reflections in Order to Enable an Early Assessment.

    Science.gov (United States)

    Schmidt, Jan Cornelius

    2016-08-01

    Synthetic biology is regarded as one of the key technosciences of the future. The goal of this paper is to present some fundamental considerations to enable procedures of a technology assessment (TA) of synthetic biology. To accomplish such an early "upstream" assessment of a not yet fully developed technology, a special type of TA will be considered: Prospective TA (ProTA). At the center of ProTA are the analysis and the framing of "synthetic biology," including a characterization and assessment of the technological core. The thesis is that if there is any differentia specifica giving substance to the umbrella term "synthetic biology," it is the idea of harnessing self-organization for engineering purposes. To underline that we are likely experiencing an epochal break in the ontology of technoscientific systems, this new type of technology is called "late-modern technology." -I start this paper by analyzing the three most common visions of synthetic biology. Then I argue that one particular vision deserves more attention because it underlies the others: the vision of self-organization. I discuss the inherent limits of this new type of late-modern technology in the attempt to control and monitor possible risk issues. I refer to Hans Jonas' ethics and his early anticipation of the risks of a novel type of technology. I end by drawing conclusions for the approach of ProTA towards an early societal shaping of synthetic biology.

  18. WORKSHOP ON APPLICATION OF STATISTICAL METHODS TO BIOLOGICALLY-BASED PHARMACOKINETIC MODELING FOR RISK ASSESSMENT

    Science.gov (United States)

    Biologically-based pharmacokinetic models are being increasingly used in the risk assessment of environmental chemicals. These models are based on biological, mathematical, statistical and engineering principles. Their potential uses in risk assessment include extrapolation betwe...

  19. Quantitative assessment of biological impact using transcriptomic data and mechanistic network models

    International Nuclear Information System (INIS)

    Thomson, Ty M.; Sewer, Alain; Martin, Florian; Belcastro, Vincenzo; Frushour, Brian P.; Gebel, Stephan; Park, Jennifer; Schlage, Walter K.; Talikka, Marja; Vasilyev, Dmitry M.; Westra, Jurjen W.; Hoeng, Julia; Peitsch, Manuel C.

    2013-01-01

    Exposure to biologically active substances such as therapeutic drugs or environmental toxicants can impact biological systems at various levels, affecting individual molecules, signaling pathways, and overall cellular processes. The ability to derive mechanistic insights from the resulting system responses requires the integration of experimental measures with a priori knowledge about the system and the interacting molecules therein. We developed a novel systems biology-based methodology that leverages mechanistic network models and transcriptomic data to quantitatively assess the biological impact of exposures to active substances. Hierarchically organized network models were first constructed to provide a coherent framework for investigating the impact of exposures at the molecular, pathway and process levels. We then validated our methodology using novel and previously published experiments. For both in vitro systems with simple exposure and in vivo systems with complex exposures, our methodology was able to recapitulate known biological responses matching expected or measured phenotypes. In addition, the quantitative results were in agreement with experimental endpoint data for many of the mechanistic effects that were assessed, providing further objective confirmation of the approach. We conclude that our methodology evaluates the biological impact of exposures in an objective, systematic, and quantifiable manner, enabling the computation of a systems-wide and pan-mechanistic biological impact measure for a given active substance or mixture. Our results suggest that various fields of human disease research, from drug development to consumer product testing and environmental impact analysis, could benefit from using this methodology. - Highlights: • The impact of biologically active substances is quantified at multiple levels. • The systems-level impact integrates the perturbations of individual networks. • The networks capture the relationships between

  20. Assessing Students' Performances in Decision-Making: Coping Strategies of Biology Teachers

    Science.gov (United States)

    Steffen, Benjamin; Hößle, Corinna

    2017-01-01

    Decision-making in socioscientific issues (SSI) constitutes a real challenge for both biology teachers and learners. The assessment of students' performances in SSIs constitutes a problem, especially for biology teachers. The study at hand was conducted in Germany and uses a qualitative approach following the research procedures of grounded theory…

  1. Grays River Watershed and Biological Assessment Final Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  2. Grays River Watershed and Biological Assessment, 2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  3. Statistical issues in biological radiation dosimetry for risk assessment using stable chromosome aberrations

    International Nuclear Information System (INIS)

    Cologne, J.B.; Preston, D.L.

    1998-01-01

    Biological dosimeters are useful for epidemiologic risk assessment in populations exposed to catastrophic nuclear events and as a means of validating physical dosimetry in radiation workers. Application requires knowledge of the magnitude of uncertainty in the biological dose estimates and an understanding of potential statistical pitfalls arising from their use. This paper describes the statistical aspects of biological dosimetry in general and presents a detailed analysis in the specific case of dosimetry for risk assessment using stable chromosome aberration frequency. Biological dose estimates may be obtained from a dose-response curve, but negative estimates can result and adjustment must be made for regression bias due to imprecise estimation when the estimates are used in regression analyses. Posterior-mean estimates, derived as the mean of the distribution of true doses compatible with a given value of the biological endpoint, have several desirable properties: they are nonnegative, less sensitive to extreme skewness in the true dose distribution, and implicitly adjusted to avoid regression bias. The methods necessitate approximating the true-dose distribution in the population in which biological dosimetry is being applied, which calls for careful consideration of this distribution through other information. An important question addressed here is to what extent the methods are robust to misspecification of this distribution, because in many applications of biological dosimetry it cannot be characterized well. The findings suggest that dosimetry based solely on stable chromosome aberration frequency may be useful for population-based risk assessment

  4. Assessment of refinery effluents and receiving waters using biologically-based effect methods

    International Nuclear Information System (INIS)

    2012-01-01

    Within the EU it is apparent that the regulatory focus on the use of biologically-based effects methods in the assessment of refinery effluents and receiving waters has increased in the past decade. This has been reflected in a recent refinery survey which revealed an increased use of such methods for assessing the quality of refinery effluents and their receiving waters. This report provides an overview of recent techniques used for this purpose. Several case studies provided by CONCAWE member companies describe the application of biological methods to effluent discharge assessment and surface water monitoring. The case studies show that when biological methods are applied to refinery effluents and receiving waters they raise different questions compared with those obtained using physical and chemical methods. Although direct measurement of the toxicity of effluent and receiving to aquatic organisms is the most cited technique, more recent efforts include tests that also address the persistence of effluent toxicity once discharged into the receiving water. Similarly, ecological monitoring of receiving waters can identify effects of effluent inputs arising from species interactions and other secondary effects that would not always be apparent from the results of biological tests conducted on single aquatic organisms. In light of recent and proposed regulatory developments the objectives of this report are therefore to: Discuss the application of biologically-based effects methods (including ecological monitoring) to refinery discharges and receiving waters; Assess the implications of such methods for future regulation of refinery discharges; and Provide guidance on good practice that can be used by refineries and the downstream oil industry to carry out and interpret data obtained using biologically-based effects methods. While the emphasis is on the toxic effects of effluents, other properties will also be covered because of their interdependency in determining

  5. Assessment of refinery effluents and receiving waters using biologically-based effect methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-01-15

    Within the EU it is apparent that the regulatory focus on the use of biologically-based effects methods in the assessment of refinery effluents and receiving waters has increased in the past decade. This has been reflected in a recent refinery survey which revealed an increased use of such methods for assessing the quality of refinery effluents and their receiving waters. This report provides an overview of recent techniques used for this purpose. Several case studies provided by CONCAWE member companies describe the application of biological methods to effluent discharge assessment and surface water monitoring. The case studies show that when biological methods are applied to refinery effluents and receiving waters they raise different questions compared with those obtained using physical and chemical methods. Although direct measurement of the toxicity of effluent and receiving to aquatic organisms is the most cited technique, more recent efforts include tests that also address the persistence of effluent toxicity once discharged into the receiving water. Similarly, ecological monitoring of receiving waters can identify effects of effluent inputs arising from species interactions and other secondary effects that would not always be apparent from the results of biological tests conducted on single aquatic organisms. In light of recent and proposed regulatory developments the objectives of this report are therefore to: Discuss the application of biologically-based effects methods (including ecological monitoring) to refinery discharges and receiving waters; Assess the implications of such methods for future regulation of refinery discharges; and Provide guidance on good practice that can be used by refineries and the downstream oil industry to carry out and interpret data obtained using biologically-based effects methods. While the emphasis is on the toxic effects of effluents, other properties will also be covered because of their interdependency in determining

  6. Quantifying biological integrity by taxonomic completeness: its utility in regional and global assessments.

    Science.gov (United States)

    Hawkins, Charles P

    2006-08-01

    Water resources managers and conservation biologists need reliable, quantitative, and directly comparable methods for assessing the biological integrity of the world's aquatic ecosystems. Large-scale assessments are constrained by the lack of consistency in the indicators used to assess biological integrity and our current inability to translate between indicators. In theory, assessments based on estimates of taxonomic completeness, i.e., the proportion of expected taxa that were observed (observed/expected, O/E) are directly comparable to one another and should therefore allow regionally and globally consistent summaries of the biological integrity of freshwater ecosystems. However, we know little about the true comparability of O/E assessments derived from different data sets or how well O/E assessments perform relative to other indicators in use. I compared the performance (precision, bias, and sensitivity to stressors) of O/E assessments based on five different data sets with the performance of the indicators previously applied to these data (three multimetric indices, a biotic index, and a hybrid method used by the state of Maine). Analyses were based on data collected from U.S. stream ecosystems in North Carolina, the Mid-Atlantic Highlands, Maine, and Ohio. O/E assessments resulted in very similar estimates of mean regional conditions compared with most other indicators once these indicators' values were standardized relative to reference-site means. However, other indicators tended to be biased estimators of O/E, a consequence of differences in their response to natural environmental gradients and sensitivity to stressors. These results imply that, in some cases, it may be possible to compare assessments derived from different indicators by standardizing their values (a statistical approach to data harmonization). In situations where it is difficult to standardize or otherwise harmonize two or more indicators, O/E values can easily be derived from existing

  7. Synthetic biology ethics: a deontological assessment.

    Science.gov (United States)

    Heavey, Patrick

    2013-10-01

    In this article I discuss the ethics of synthetic biology from a broadly deontological perspective, evaluating its morality in terms of the integrity of nature, the dignity of life and the relationship between God and his creation. Most ethical analyses to date have been largely consequentialist in nature; they reveal a dual use dilemma, showing that synbio has potential for great good and great evil, possibly more so than any step humanity has taken before. A deontological analysis may help to resolve this dilemma, by evaluating whether synbio is right or wrong in itself. I also assess whether deontology alone is a sufficient methodological paradigm for the proper evaluation of synbio ethics. © 2013 John Wiley & Sons Ltd.

  8. [Biosafety provision on handling pathogenic biological agents on the concept of biorisk assessment and management].

    Science.gov (United States)

    Dobrokhotskiĭ, O N; Kolombet, L V

    2010-01-01

    The paper shows it urgent to realize the concept of biological risk assessment and management on handling pathogenic biological agents (PBA). It gives a number of objective reasons that impede development of a methodology to assess laboratory biological risks. A concept of continuous improvement (a process approach) is proposed for use as a biorisk management tool for biosafety assurance when handling PBA. It is demonstrated that development of international cooperation urgently requires that national concepts and standards be harmonized with international regulatory documents on biosafety assurance on handling PBA.

  9. Development of the Neuron Assessment for Measuring Biology Students' Use of Experimental Design Concepts and Representations

    Science.gov (United States)

    Dasgupta, Annwesa P.; Anderson, Trevor R.; Pelaez, Nancy J.

    2016-01-01

    Researchers, instructors, and funding bodies in biology education are unanimous about the importance of developing students' competence in experimental design. Despite this, only limited measures are available for assessing such competence development, especially in the areas of molecular and cellular biology. Also, existing assessments do not…

  10. Biological inquiry: a new course and assessment plan in response to the call to transform undergraduate biology.

    Science.gov (United States)

    Goldey, Ellen S; Abercrombie, Clarence L; Ivy, Tracie M; Kusher, Dave I; Moeller, John F; Rayner, Doug A; Smith, Charles F; Spivey, Natalie W

    2012-01-01

    We transformed our first-year curriculum in biology with a new course, Biological Inquiry, in which >50% of all incoming, first-year students enroll. The course replaced a traditional, content-driven course that relied on outdated approaches to teaching and learning. We diversified pedagogical practices by adopting guided inquiry in class and in labs, which are devoted to building authentic research skills through open-ended experiments. Students develop core biological knowledge, from the ecosystem to molecular level, and core skills through regular practice in hypothesis testing, reading primary literature, analyzing data, interpreting results, writing in disciplinary style, and working in teams. Assignments and exams require higher-order cognitive processes, and students build new knowledge and skills through investigation of real-world problems (e.g., malaria), which engages students' interest. Evidence from direct and indirect assessment has guided continuous course revision and has revealed that compared with the course it replaced, Biological Inquiry produces significant learning gains in all targeted areas. It also retains 94% of students (both BA and BS track) compared with 79% in the majors-only course it replaced. The project has had broad impact across the entire college and reflects the input of numerous constituencies and close collaboration among biology professors and students.

  11. METHODS OF ASSESSMENT OF THE RELATIVE BIOLOGICAL EFFECTIVENESS OF NEUTRONS IN NEUTRON THERAPY

    Directory of Open Access Journals (Sweden)

    V. A. Lisin

    2017-01-01

    Full Text Available The relative biological effectiveness (RBE of fast neutrons is an important factor influencing the quality of neutron therapy therefore, the assessment of RBE is of great importance. Experimental and clinical studies as well as different mathematical and radiobiological models are used for assessing RBE. Research is conducted for neutron sources differing in the method of producing particles, energy and energy spectrum. Purpose: to find and analyze the dose-dependence of fast neutron RBE in neutron therapy using the U-120 cyclotron and NG-12I generator. Material and methods: The optimal method for assessing the relative biological effectiveness of neutrons for neutron therapy was described. To analyze the dependence of the RBE on neutron dose, the multi-target model of cell survival was applied. Results: The dependence of the RBE of neutrons produced from the U-120 cyclotron and NG-120 generator on the dose level was found for a single irradiation of biological objects. It was shown that the function of neutron dose was consistent with similar dependencies found by other authors in the experimental and clinical studies.

  12. Hazard identification and risk assessment for biologics targeting the immune system.

    Science.gov (United States)

    Weir, Andrea B

    2008-01-01

    Biologic pharmaceuticals include a variety of products, such as monoclonal antibodies, fusion proteins and cytokines. Products in those classes include immunomodulatory biologics, which are intended to enhance or diminish the activity of the immune system. Immunomodulatory biologics have been approved by the U.S. FDA for a variety of indications, including cancer and inflammatory conditions. Prior to gaining approval for marketing, sponsoring companies for all types of products must demonstrate a product's safety in toxicology studies conducted in animals and show safety and efficacy in clinical trials conducted in patients. The overall goal of toxicology studies, which applies to immunomodulatory and other product types, is to identify the hazards that products pose to humans. Because biologics are generally highly selective for specific targets (receptors/epitopes), conducting toxicology studies in animal models with the target is essential. Such animals are referred to as pharmacologically relevant. Endpoints routinely included in toxicology studies, such as hematology, organ weight and histopathology, can be used to assess the effect of a product on the structure of the immune system. Additionally, specialized endpoints, such as immunophenotyping and immune function tests, can be used to define effects of immunomodulatory products on the immune system. Following hazard identification, risks posed to patients are assessed and managed. Risks can be managed through clinical trial design and risk communication, a practice that applies to immunomodulatory and other product types. Examples of risk management in clinical trial design include establishing a safe starting dose, defining the appropriate patient population and establishing appropriate patient monitoring. Risk communication starts during clinical trials and continues after product approval. A combination of hazard identification, risk assessment and risk management allows for drug development to proceed

  13. 76 FR 3076 - Availability of an Environmental Assessment for a Biological Control Agent for Air Potato

    Science.gov (United States)

    2011-01-19

    ...] Availability of an Environmental Assessment for a Biological Control Agent for Air Potato AGENCY: Animal and... environmental assessment (EA) relative to the control of air potato (Dioscorea bulbifera). The EA considers the... States for use as a biological control agent to reduce the severity of air potato infestations. We are...

  14. DNA barcodes for assessment of the biological integrity of aquatic ecosystems

    Science.gov (United States)

    Water quality regulations and aquatic ecosystem monitoring increasingly rely on direct assessments of biological integrity. Because these aquatic “bioassessments” evaluate the incidence and abundance of sensitive aquatic species, they are able to measure cumulative ecosystem eff...

  15. Biological Select Agents and Toxins: Risk-Based Assessment Management and Oversight.

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, LouAnn Crawford; Brodsky, Benjamin H.

    2016-12-01

    Sandia National Laboratories' International Biological and Chemical Threat Reduction (SNL/IBCTR) conducted, on behalf of the Federal Select Agent Program (FSAP), a review of risk assessment in modern select agent laboratories. This review and analysis consisted of literature review, interviews of FSAP staff, entities regulated by FSAP, and deliberations of an expert panel. Additionally, SNL/IBCTR reviewed oversight mechanisms used by industries, US agencies, and other countries for high-consequence risks (e.g, nuclear, chemical, or biological materials, aviation, off-shore drilling, etc.) to determine if alternate oversight mechanisms existed that might be applicable to FSAP oversight of biological select agents and toxins. This report contains five findings, based on these reviews and analyses, with recommendations and suggested actions for FSAP to consider.

  16. Impact of calcium and TOC on biological acidification assessment in Norwegian rivers.

    Science.gov (United States)

    Schneider, Susanne C

    2011-02-15

    Acidification continues to be a major impact in freshwaters of northern Europe, and the biotic response to chemical recovery from acidification is often not a straightforward process. The focus on biological recovery is relevant within the context of the EU Water Framework Directive, where a biological monitoring system is needed that detects differences in fauna and flora compared to undisturbed reference conditions. In order to verify true reference sites for biological analyses, expected river pH is modeled based on Ca and TOC, and 94% of variability in pH at reference sites is explained by Ca alone, while 98% is explained by a combination of Ca and TOC. Based on 59 samples from 28 reference sites, compared to 547 samples from 285 non-reference sites, the impact of calcium and total organic carbon (TOC) on benthic algae species composition, expressed as acidification index periphyton (AIP), is analyzed. Rivers with a high Ca concentration have a naturally higher AIP, and TOC affects reference AIP only at low Ca concentrations. Four biological river types are needed for assessment of river acidification in Norway based on benthic algae: very calcium-poor, humic rivers (CaTOC>2 mg/l); very calcium-poor, clear rivers (CaTOC4 mg/l). A biological assessment system for river acidification in Norway based on benthic algae is presented, following the demands of the Water Framework Directive. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Assessing isocyanate exposures in polyurethane industry sectors using biological and air monitoring methods.

    Science.gov (United States)

    Creely, K S; Hughson, G W; Cocker, J; Jones, K

    2006-08-01

    Isocyanates, as a chemical group, are considered to be the biggest cause of occupational asthma in the UK. Monitoring of airborne exposures to total isocyanate is costly, requiring considerable expertise, both in terms of sample collection and chemical analysis and cannot be used to assess the effectiveness of protection from wearing respiratory protective equipment (RPE). Biological monitoring by analysis of metabolites in urine can be a relatively simple and inexpensive way to assess exposure to isocyanates. It may also be a useful way to evaluate the effectiveness of control measures in place. In this study biological and inhalation monitoring were undertaken to assess exposure in a variety of workplaces in the non-motor vehicle repair sector. Companies selected to participate in the survey included only those judged to be using good working practices when using isocyanate formulations. This included companies that used isocyanates to produce moulded polyurethane products, insulation material and those involved in industrial painting. Air samples were collected by personal monitoring and were analysed for total isocyanate content. Urine samples were collected soon after exposure and analysed for the metabolites of different isocyanate species, allowing calculation of the total metabolite concentration. Details of the control measures used and observed contamination of exposed skin were also recorded. A total of 21 companies agreed to participate in the study, with exposure measurements being collected from 22 sites. The airborne isocyanate concentrations were generally very low (range 0.0005-0.066 mg m(-3)). A total of 50 of the 70 samples were polyurethane foam insulation (0.023 mg m(-3)). The most commonly detected isocyanate in the urine was hexamethylene diisocyanate, which was detected in 21 instances. The geometric mean total isocyanate metabolite concentration for the dataset was 0.29 micromol mol(-1) creatinine (range 0.05-12.64 micromol mol(-1

  18. Assessing Student Behaviors and Motivation for Actively Learning Biology

    Science.gov (United States)

    Moore, Michael Edward

    Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is why active learning is such an effective instructional tool and the limits of this instructional method’s ability to influence performance. This dissertation builds a case in three steps for why active learning is an effective instructional tool. In step one, I assessed the influence of different types of active learning (clickers, group activities, and whole class discussions) on student engagement behavior in one semester of two different introductory biology courses and found that active learning positively influenced student engagement behavior significantly more than lecture. For step two, I examined over four semesters whether student engagement behavior was a predictor of performance and found participation (engagement behavior) in the online (video watching) and in-class course activities (clicker participation) that I measure were significant predictors of performance. In the third, I assessed whether certain active learning satisfied the psychological needs that lead to students’ intrinsic motivation to participate in those activities when compared over two semesters and across two different institutions of higher learning. Findings from this last step show us that student’s perceptions of autonomy, competency, and relatedness in doing various types of active learning are significantly higher than lecture and consistent across two institutions of higher learning. Lastly, I tie everything together, discuss implications of the research, and address future directions for research on biology student motivation and behavior.

  19. 75 FR 28232 - Availability of an Environmental Assessment for a Biological Control Agent for Hemlock Woolly...

    Science.gov (United States)

    2010-05-20

    ...] Availability of an Environmental Assessment for a Biological Control Agent for Hemlock Woolly Adelgid AGENCY..., into the continental United States for use as a biological control agent to reduce the severity of... biological control agent to reduce the severity of hemlock woolly adelgid (HWA) infestations. HWA, an...

  20. Science and Biology Assessment in Hong Kong--Progress and Developments

    Science.gov (United States)

    Cheng, May Hung; Cheung, Wing Ming Francis

    2005-01-01

    A paper was published in JBE in 2001 which examined the background of the education reform launched in 2000 in Hong Kong, and reviewed existing practices as well as beliefs in science and biology assessment among secondary teachers in Hong Kong. The direction of the reform was to take the emphasis away from public examinations as the sole…

  1. 77 FR 46373 - Availability of an Environmental Assessment for a Biological Control Agent for Hemlock Woolly...

    Science.gov (United States)

    2012-08-03

    ...] Availability of an Environmental Assessment for a Biological Control Agent for Hemlock Woolly Adelgid AGENCY... States for use as a biological control agent to reduce the severity of hemlock woolly adelgid... beetle from the western United States, into the eastern United States for use as a biological control...

  2. Assessment of knowledge of participants on basic molecular biology techniques after 5-day intensive molecular biology training workshops in Nigeria.

    Science.gov (United States)

    Yisau, J I; Adagbada, A O; Bamidele, T; Fowora, M; Brai, B I C; Adebesin, O; Bamidele, M; Fesobi, T; Nwaokorie, F O; Ajayi, A; Smith, S I

    2017-07-08

    The deployment of molecular biology techniques for diagnosis and research in Nigeria is faced with a number of challenges, including the cost of equipment and reagents coupled with the dearth of personnel skilled in the procedures and handling of equipment. Short molecular biology training workshops were conducted at the Nigerian Institute of Medical Research (NIMR), to improve the knowledge and skills of laboratory personnel and academics in health, research, and educational facilities. Five-day molecular biology workshops were conducted annually between 2011 and 2014, with participants drawn from health, research facilities, and the academia. The courses consisted of theoretical and practical sessions. The impact of the workshops on knowledge and skill acquisition was evaluated by pre- and post-tests which consisted of 25 multiple choice and other questions. Sixty-five participants took part in the workshops. The mean knowledge of molecular biology as evaluated by the pre- and post-test assessments were 8.4 (95% CI 7.6-9.1) and 13.0 (95 CI 11.9-14.1), respectively. The mean post-test score was significantly greater than the mean pre-test score (p biology workshop significantly increased the knowledge and skills of participants in molecular biology techniques. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):313-317, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  3. 76 FR 8708 - Availability of an Environmental Assessment and Finding of No Significant Impact for a Biological...

    Science.gov (United States)

    2011-02-15

    ...] Availability of an Environmental Assessment and Finding of No Significant Impact for a Biological Control Agent... have been prepared by the Animal and Plant Health Inspection Service relative to a proposed biological... review and analysis of environmental impacts associated with the proposed biological control program...

  4. 75 FR 28233 - Availability of an Environmental Assessment for a Biological Control Agent for Asian Citrus Psyllid

    Science.gov (United States)

    2010-05-20

    ...] Availability of an Environmental Assessment for a Biological Control Agent for Asian Citrus Psyllid AGENCY... radiata, into the continental United States for use as a biological control agent to reduce the severity... of an alternative biological control agent, an encyrtid wasp, (Diaphorencyrtus aligarhensis). However...

  5. The pros and cons of ecological risk assessment based on data from different levels of biological organization

    Science.gov (United States)

    Rohr, Jason R.; Salice, Christopher J.; Nisbet, Roger M.

    2016-01-01

    Ecological risk assessment (ERA) is the process used to evaluate the safety of manufactured chemicals to the environment. Here we review the pros and cons of ERA across levels of biological organization, including suborganismal (e.g. biomarkers), individual, population, community, ecosystem, and landscapes levels. Our review revealed that level of biological organization is often related negatively with ease at assessing cause-effect relationships, ease of high-throughput screening of large numbers of chemicals (it is especially easier for suborganismal endpoints), and uncertainty of the ERA because low levels of biological organization tend to have a large distance between their measurement (what is quantified) and assessment endpoints (what is to be protected). In contrast, level of biological organization is often related positively with sensitivity to important negative and positive feedbacks and context dependencies within biological systems, and ease at capturing recovery from adverse contaminant effects. Some endpoints did not show obvious trends across levels of biological organization, such as the use of vertebrate animals in chemical testing and ease at screening large numbers of species, and other factors lacked sufficient data across levels of biological organization, such as repeatability, variability, cost per study, and cost per species of effects assessment, the latter of which might be a more defensible way to compare costs of ERAs than cost per study. To compensate for weaknesses of ERA at any particular level of biological organization, we also review mathematical modeling approaches commonly used to extrapolate effects across levels of organization. Finally, we provide recommendations for next generation ERA, submitting that if there is an ideal level of biological organization to conduct ERA, it will only emerge if ERA is approached simultaneously from the bottom of biological organization up as well as from the top down, all while employing

  6. The pros and cons of ecological risk assessment based on data from different levels of biological organization.

    Science.gov (United States)

    Rohr, Jason R; Salice, Christopher J; Nisbet, Roger M

    2016-10-01

    Ecological risk assessment (ERA) is the process used to evaluate the safety of manufactured chemicals to the environment. Here we review the pros and cons of ERA across levels of biological organization, including suborganismal (e.g., biomarkers), individual, population, community, ecosystem and landscapes levels. Our review revealed that level of biological organization is often related negatively with ease at assessing cause-effect relationships, ease of high-throughput screening of large numbers of chemicals (it is especially easier for suborganismal endpoints), and uncertainty of the ERA because low levels of biological organization tend to have a large distance between their measurement (what is quantified) and assessment endpoints (what is to be protected). In contrast, level of biological organization is often related positively with sensitivity to important negative and positive feedbacks and context dependencies within biological systems, and ease at capturing recovery from adverse contaminant effects. Some endpoints did not show obvious trends across levels of biological organization, such as the use of vertebrate animals in chemical testing and ease at screening large numbers of species, and other factors lacked sufficient data across levels of biological organization, such as repeatability, variability, cost per study and cost per species of effects assessment, the latter of which might be a more defensible way to compare costs of ERAs than cost per study. To compensate for weaknesses of ERA at any particular level of biological organization, we also review mathematical modeling approaches commonly used to extrapolate effects across levels of organization. Finally, we provide recommendations for next generation ERA, submitting that if there is an ideal level of biological organization to conduct ERA, it will only emerge if ERA is approached simultaneously from the bottom of biological organization up as well as from the top down, all while employing

  7. Noninvasive Assessment of Cell Fate and Biology in Transplanted Mesenchymal Stem Cells.

    Science.gov (United States)

    Franchi, Federico; Rodriguez-Porcel, Martin

    2017-01-01

    Recently, molecular imaging has become a conditio sine qua non for cell-based regenerative medicine. Developments in molecular imaging techniques, such as reporter gene technology, have increasingly enabled the noninvasive assessment of the fate and biology of cells after cardiovascular applications. In this context, bioluminescence imaging is the most commonly used imaging modality in small animal models of preclinical studies. Here, we present a detailed protocol of a reporter gene imaging approach for monitoring the viability and biology of Mesenchymal Stem Cells transplanted in a mouse model of myocardial ischemia reperfusion injury.

  8. Assessment tools for urban catchments: developing biological indicators based on benthic macroinvertebrates

    Science.gov (United States)

    Purcell, A.H.; Bressler, D.W.; Paul, M.J.; Barbour, M.T.; Rankin, E.T.; Carter, J.L.; Resh, V.H.

    2009-01-01

    Biological indicators, particularly benthic macroinvertebrates, are widely used and effective measures of the impact of urbanization on stream ecosystems. A multimetric biological index of urbanization was developed using a large benthic macroinvertebrate dataset (n = 1,835) from the Baltimore, Maryland, metropolitan area and then validated with datasets from Cleveland, Ohio (n = 79); San Jose, California (n = 85); and a different subset of the Baltimore data (n = 85). The biological metrics used to develop the multimetric index were selected using several criteria and were required to represent ecological attributes of macroinvertebrate assemblages including taxonomic composition and richness (number of taxa in the insect orders of Ephemeroptera, Plecoptera, and Trichoptera), functional feeding group (number of taxa designated as filterers), and habit (percent of individuals which cling to the substrate). Quantile regression was used to select metrics and characterize the relationship between the final biological index and an urban gradient (composed of population density, road density, and urban land use). Although more complex biological indices exist, this simplified multimetric index showed a consistent relationship between biological indicators and urban conditions (as measured by quantile regression) in three climatic regions of the United States and can serve as an assessment tool for environmental managers to prioritize urban stream sites for restoration and protection.

  9. ABSCISSA ASSESSMENT WITH ALGAE: A COMPARISON OF LOCAL AND LANDSCAPE IMPAIRMENT MEASURES FOR BIOLOGICAL ASSESSMENT USING BENTHIC DIATOMS

    Science.gov (United States)

    The development of rigorous biological assessments is dependent upon well-constructed abscissa, and various methods, both subjective and objective, exist to measure expected impairment at both the landscape and local scale. A new, landscape-scale method has recently been offered...

  10. Optimized assessment and usage of biological waste; Optimierte Erfassung und Verwertung von Bioabfall

    Energy Technology Data Exchange (ETDEWEB)

    Kern, Michael; Raussen, Thomas (eds.)

    2013-07-01

    The booklet on the optimized assessment and usage of biological waste includes contributions on the following issues: implementation of the bio-waste assessment in the federal states; economy and ecology of bio-waste fermentation; practice forum biogas: new bio-waste fermentation plants in Germany; effects of legal reforms on the usage and processing of bio-waste; flexible electricity input and power-to-gas.

  11. Development of tools for integrated monitoring and assessment of hazardous substances and their biological effects in the Baltic Sea.

    Science.gov (United States)

    Lehtonen, Kari K; Sundelin, Brita; Lang, Thomas; Strand, Jakob

    2014-02-01

    The need to develop biological effects monitoring to facilitate a reliable assessment of hazardous substances has been emphasized in the Baltic Sea Action Plan of the Helsinki Commission. An integrated chemical-biological approach is vitally important for the understanding and proper assessment of anthropogenic pressures and their effects on the Baltic Sea. Such an approach is also necessary for prudent management aiming at safeguarding the sustainable use of ecosystem goods and Services. The BEAST project (Biological Effects of Anthropogenic Chemical Stress: Tools for the Assessment of Ecosystem Health) set out to address this topic within the BONUS Programme. BEAST generated a large amount of quality-assured data on several biological effects parameters (biomarkers) in various marine species in different sub-regions of the Baltic Sea. New indicators (biological response measurement methods) and management tools (integrated indices) with regard to the integrated monitoring approach were suggested.

  12. Assessment procedures results of training in biology

    Directory of Open Access Journals (Sweden)

    Elena A. Galkina

    2018-04-01

    Full Text Available The article describes the procedures for evaluating the results of training in biology. The mechanisms for monitoring the learning outcomes of a biology teacher are presented. Examples of algorithms for procedures for evaluating learning outcomes in biology are demonstrated.

  13. A Study Assessing the Potential of Negative Effects in Interdisciplinary Math–Biology Instruction

    Science.gov (United States)

    Madlung, Andreas; Bremer, Martina; Himelblau, Edward; Tullis, Alexa

    2011-01-01

    There is increasing enthusiasm for teaching approaches that combine mathematics and biology. The call for integrating more quantitative work in biology education has led to new teaching tools that improve quantitative skills. Little is known, however, about whether increasing interdisciplinary work can lead to adverse effects, such as the development of broader but shallower skills or the possibility that math anxiety causes some students to disengage in the classroom, or, paradoxically, to focus so much on the mathematics that they lose sight of its application for the biological concepts in the center of the unit at hand. We have developed and assessed an integrative learning module and found disciplinary learning gains to be equally strong in first-year students who actively engaged in embedded quantitative calculations as in those students who were merely presented with quantitative data in the context of interpreting biological and biostatistical results. When presented to advanced biology students, our quantitative learning tool increased test performance significantly. We conclude from our study that the addition of mathematical calculations to the first year and advanced biology curricula did not hinder overall student learning, and may increase disciplinary learning and data interpretation skills in advanced students. PMID:21364099

  14. Policy implications of select student characteristics and their influence on the Florida biology end-of-course assessment

    Science.gov (United States)

    Bertolotti, Janine Cecelia

    In an attempt to improve student achievement in science in Florida, the Florida Department of Education implemented end-of-course (EOC) assessments in biology during the 2011-2012 academic school year. Although this first administration would only account for 30% of the student's overall final course grade in biology, subsequent administrations would be accompanied by increasing stakes for students, teachers, and schools. Therefore, this study sought to address gaps in empirical evidence as well as discuss how educational policy will potentially impact on teacher evaluation and professional development, student retention and graduation rates, and school accountability indicators. This study explored four variables- reading proficiency, ethnicity, socioeconomic status, and gender- to determine their influence and relationship on biology achievement on the Biology I EOC assessment at a Title 1 school. To do so, the results of the Biology I EOC assessment administered during the Spring 2012 school year was obtained from a small, rural Title 1 high school in North Florida. Additional data regarding each student's qualification for free and reduced-price lunch, FCAT Reading developmental scale scores, FCAT Reading level, grade level, gender, and ethnicity were also collected for the causal-comparative exploratory study. Of the 178 students represented, 48% qualified for free and reduced-price lunch, 54% were female, and 55% scored at FCAT Reading level 3 or higher. Additionally, 59% were White and 37% Black. A combination of descriptive statistics and other statistical procedures such as independent samples one-tailed t-test, one-way ANOVAs, ANCOVAs, multipleregression, and a Pearson r correlation was utilized in the analysis, with a significance level set at 0.05. Results indicate that of all four variables, FCAT Reading proficiency was the sole variable, after adjusting for other variables; that had a significant impact on biology achievement. Students with higher

  15. Biological assessment of remedial action at the abandoned uranium mill tailings site near Naturita, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, the U.S. Department of Energy (DOE) is proposing to conduct remedial action to clean up the residual radioactive materials (RRM) at the Naturita uranium processing site in Colorado. The Naturita site is in Montrose County, Colorado, and is approximately 2 miles (mi) (3 kilometer [km]) from the unincorporated town of Naturita. The proposed remedial action is to remove the RRM from the Naturita site to the Upper Burbank Quarry at the Uravan disposal site. To address the potential impacts of the remedial action on threatened and endangered species, the DOE prepared this biological assessment. Informal consultations with the U.S. Department of the Interior, Fish and Wildlife Service (FWS) were initiated in 1986, and the FWS provided a list of the threatened and endangered species that may occur in the Naturita study area. This list was updated by two FWS letters in 1988 and by verbal communication in 1990. A biological assessment was included in the environmental assessment (EA) of the proposed remedial action that was prepared in 1990. This EA addressed the impacts of moving the Naturita RRM to the Dry Flats disposal site. In 1993, the design for the Dry Flats disposal alternative was changed. The FWS was again consulted in 1993 and provided a new list of threatened and endangered species that may occur in the Naturita study area. The Naturita EA and the biological assessment were revised in response to these changes. In 1994, remedial action was delayed because an alternate disposal site was being considered. The DOE decided to move the FIRM at the Naturita site to the Upper Burbank Quarry at the Uravan site. Due to this delay, the FWS was consulted in 1995 and a list of threatened and endangered species was provided. This biological assessment is a revision of the assessment attached to the Naturita EA and addresses moving the Naturita RRM to the Upper Burbank Quarry disposal site.

  16. Understanding the Reading Attributes and Their Cognitive Relationships on a High-Stakes Biology Assessment

    Science.gov (United States)

    Rawlusyk, Kevin James

    Test items used to assess learners' knowledge on high-stakes science examinations contain contextualized questions that unintentionally assess reading skill along with conceptual knowledge. Therefore, students who are not proficient readers are unable to comprehend the text within the test item to demonstrate effectively their level of science knowledge. The purpose of this quantitative study was to understand what reading attributes were required to successfully answer the Biology 30 Diploma Exam. Furthermore, the research sought to understand the cognitive relationships among the reading attributes through quantitative analysis structured by the Attribute Hierarchy Model (AHM). The research consisted of two phases: (1) Cognitive development, where the cognitive attributes of the Biology 30 Exam were specified and hierarchy structures were developed; and (2) Psychometric analysis, that statistically tested the attribute hierarchy using the Hierarchy Consistency Index (HCI), and calculate attribute probabilities. Phase one of the research used January 2011, Biology 30 Diploma Exam, while phase two accessed archival data for the 9985 examinees who took the assessment on January 24th, 2011. Phase one identified ten specific reading attributes, of which five were identified as unique subsets of vocabulary, two were identified as reading visual representations, and three corresponded to general reading skills. Four hierarchical cognitive model were proposed then analyzed using the HCI as a mechanism to explain the relationship among the attributes. Model A had the highest HCI value (0.337), indicating an overall poor data fit, yet for the top achieving examinees the model had an excellent model fit with an HCI value of 0.888, and for examinees that scored over 60% there was a moderate model fit (HCI = 0.592). Linear regressions of the attribute probability estimates suggest that there is a cognitive relationship among six of the ten reading attributes (R2 = 0.958 and 0

  17. Biological monitoring and assessment of rivers as a basis for identifying and prioritising river management options

    CSIR Research Space (South Africa)

    Roux, DJ

    1999-01-01

    Full Text Available management objectives. This paper demonstrates how the results obtained with biological indices and system-specific knowledge, are combined to derive semi quantitative assessments of ecosystem condition. These assessments provide the basis for responding...

  18. Health effects of low-level ionising radiation: biological basis for risk assessment

    International Nuclear Information System (INIS)

    Upton, A.C.

    1987-01-01

    The biological basis for risk assessment is discussed. The risks of carcinogenic effects, teratogenic effects, and genetic (heritable) effects are estimated to vary in proportion with the dose of radiation in the low-dose domain; however, the risks also appear to vary with the LET of the radiation, age at the time of irradiation, and other variables. Although the data suffice to place the risks in perspective with other hazards of modern life, further research to refine the reliability of the risk assessment is called for. (author)

  19. Biological Activity Assessment in Mexican Tropical Soils with Different Hydrocarbon Contamination Histories

    OpenAIRE

    Riveroll-Larios, Jessica; Escalante-Espinosa, Erika; Fócil-Monterrubio, Reyna L.; Díaz-Ramírez, Ildefonso J.

    2015-01-01

    The use of soil health indicators linked to microbial activities, such as key enzymes and respirometric profiles, helps assess the natural attenuation potential of soils contaminated with hydrocarbons. In this study, the intrinsic physicochemical characteristics, biological activity and biodegradation potential were recorded for two soils with different contamination histories (>5 years and

  20. REVIEW OF SELECTED BIOLOGICAL METHODS OF ASSESSING THE QUALITY OF NATURAL ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Monika Beata Jakubus

    2015-04-01

    Full Text Available The xenobiotics introduced into the environment are the effect of human activities. It is especially soil contamination that leads to degradation of soils, which may finally be referred to the biological imbalance of the ecosystem. Normally chemical methods are used for the assessment of soil’s quality. Unfortunately, they are not always quick and inexpensive. Therefore, the practice and the science at environmental monitoring more frequently employ biological methods. Most of them meet the above mentioned conditions and become a supplement of routine laboratory practices. This publication shows an overview of selected common biological methods used to estimate the quality of the environment. The first part of the paper presents biomonitoring as a first step of environmental control which relies on the observation of indicator organisms. The next section was dedicated to the bioassays, indicating the greater or lesser practical applications confirmed by literature on the subject. Particular attention has been focused on phytotests and the tests based on the invertebrates.

  1. Assessment of biological leaf tissue using biospeckle laser imaging technique

    Science.gov (United States)

    Ansari, M. Z.; Mujeeb, A.; Nirala, A. K.

    2018-06-01

    We report on the application of an optical imaging technique, the biospeckle laser, as a potential tool to assess biological and medicinal plant leaves. The biospeckle laser technique is a non-invasive and non-destructive optical technique used to investigate biological objects. Just after their removal from plants, the torn leaves were used for biospeckle laser imaging. Quantitative evaluation of the biospeckle data using the inertia moment (IM) of the time history speckle pattern, showed that the IM can be utilized to provide a biospeckle signature to the plant leaves. It showed that leaves from different plants can have their own characteristic IM values. We further investigated the infected regions of the leaves that display a relatively lower biospeckle activity than the healthy tissue. It was easy to discriminate between the infected and healthy regions of the leaf tissue. The biospeckle technique can successfully be implemented as a potential tool for the taxonomy of quality leaves. Furthermore, the technique can help boost the quality of ayurvedic medicines.

  2. Eastern Baltic cod in distress: biological changes and challenges for stock assessment

    DEFF Research Database (Denmark)

    Eero, Margit; Hjelm, Joakim; Behrens, Jane

    2015-01-01

    The eastern Baltic (EB) cod (Gadus morhua) stock was depleted and overexploited for decades until the mid-2000s, when fishing mortality rapidly declined and biomass started to increase, as shown by stock assessments. These positive developments were partly assigned to effective management measures...... that the stock is in distress. In this study, we (i) summarize the knowledge of recent changes in cod biology and ecosystem conditions, (ii) describe the subsequent challenges for stock assessment, and (iii) highlight the key questions where answers are urgently needed to understand the present stock status...

  3. The impact of biology on risk assessment -- Workshop of the National Research Council's board on radiation effects research. Meeting report

    International Nuclear Information System (INIS)

    Fry, R.J.M.; Grosovsky, A.; Hanawalt, P.C.; Ullrich, R.L.

    1997-01-01

    The linear, nonthreshold extrapolation from a dose-response relationship for ionizing radiation derived at higher doses to doses for which regulatory standards are proposed is being challenged by some scientists and defended by others. It appears that the risks associated with exposures to doses of interest are below the risks that can be measured with epidemiologic studies. Therefore, many have looked to biology to provide information relevant to risk assessment. The workshop reported here, ''The Impact of biology on Risk Assessment,'' was planned to address the need for further information by bringing together scientists who have been working in key fields of biology and others who have been contemplating the issues associated specifically with this question. The goals of the workshop were to summarize and review the status of the relevant biology, to determine how the reported biologic data might influence risk assessment, and to identify subjects on which more data is needed

  4. Bibliographical database of radiation biological dosimetry and risk assessment: Part 2

    International Nuclear Information System (INIS)

    Straume, T.; Ricker, Y.; Thut, M.

    1990-09-01

    This is part 11 of a database constructed to support research in radiation biological dosimetry and risk assessment. Relevant publications were identified through detailed searches of national and international electronic databases and through our personal knowledge of the subject. Publications were numbered and key worded, and referenced in an electronic data-retrieval system that permits quick access through computerized searches on authors, key words, title, year, journal name, or publication number. Photocopies of the publications contained in the database are maintained in a file that is numerically arranged by our publication acquisition numbers. This volume contains 1048 additional entries, which are listed in alphabetical order by author. The computer software used for the database is a simple but sophisticated relational database program that permits quick information access, high flexibility, and the creation of customized reports. This program is inexpensive and is commercially available for the Macintosh and the IBM PC. Although the database entries were made using a Macintosh computer, we have the capability to convert the files into the IBM PC version. As of this date, the database cites 2260 publications. Citations in the database are from 200 different scientific journals. There are also references to 80 books and published symposia, and 158 reports. Information relevant to radiation biological dosimetry and risk assessment is widely distributed within the scientific literature, although a few journals clearly predominate. The journals publishing the largest number of relevant papers are Health Physics, with a total of 242 citations in the database, and Mutation Research, with 185 citations. Other journals with over 100 citations in the database, are Radiation Research, with 136, and International Journal of Radiation Biology, with 132

  5. Non-ionizing radiations : physical characteristics, biological effects and health hazard assessment

    International Nuclear Information System (INIS)

    Repacholi, M.H.

    1988-01-01

    The Workshop was a project of the International Non-Ionizing Radiation Committee of IRPA and comprised a series of educational lectures and demonstrations intended to give a comprehensive overview of non-ionizing electromagnetic radiation: physical characteristics, sources of concern, levels of exposure, mechanisms of interaction and reported effects of these fields and radiations with biological tissues, human studies, health risk assessment, national and international standards and guidelines, and protective measures

  6. PREDICTING LEVELS OF STRESS FROM BIOLOGICAL ASSESSMENT DATA: EMPIRICAL MODELS FROM THE EASTERN CORN BELT PLAINS

    Science.gov (United States)

    Biological assessment is becoming an increasingly popular tool in the evaluation of stream ecosystem integrity. However, little progress has been made to date in developing tools to relate assessment results to specific stressors. This paper continues the investigation of the f...

  7. Statistical assessment of crosstalk enrichment between gene groups in biological networks.

    Science.gov (United States)

    McCormack, Theodore; Frings, Oliver; Alexeyenko, Andrey; Sonnhammer, Erik L L

    2013-01-01

    Analyzing groups of functionally coupled genes or proteins in the context of global interaction networks has become an important aspect of bioinformatic investigations. Assessing the statistical significance of crosstalk enrichment between or within groups of genes can be a valuable tool for functional annotation of experimental gene sets. Here we present CrossTalkZ, a statistical method and software to assess the significance of crosstalk enrichment between pairs of gene or protein groups in large biological networks. We demonstrate that the standard z-score is generally an appropriate and unbiased statistic. We further evaluate the ability of four different methods to reliably recover crosstalk within known biological pathways. We conclude that the methods preserving the second-order topological network properties perform best. Finally, we show how CrossTalkZ can be used to annotate experimental gene sets using known pathway annotations and that its performance at this task is superior to gene enrichment analysis (GEA). CrossTalkZ (available at http://sonnhammer.sbc.su.se/download/software/CrossTalkZ/) is implemented in C++, easy to use, fast, accepts various input file formats, and produces a number of statistics. These include z-score, p-value, false discovery rate, and a test of normality for the null distributions.

  8. Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, Robert D.; Hadley, Donald L.; Armstrong, Peter R.; Buck, John W.; Hoopes, Bonnie L.; Janus, Michael C.

    2001-03-01

    Indoor air quality effects on human health are of increasing concern to public health agencies and building owners. The prevention and treatment of 'sick building' syndrome and the spread of air-borne diseases in hospitals, for example, are well known priorities. However, increasing attention is being directed to the vulnerability of our public buildings/places, public security and national defense facilities to terrorist attack or the accidental release of air-borne biological pathogens, harmful chemicals, or radioactive contaminants. The Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System (IA-NBC-HMAS) was developed to serve as a health impact analysis tool for use in addressing these concerns. The overall goal was to develop a user-friendly fully functional prototype Health Modeling and Assessment system, which will operate under the PNNL FRAMES system for ease of use and to maximize its integration with other modeling and assessment capabilities accessible within the FRAMES system (e.g., ambient air fate and transport models, water borne fate and transport models, Physiologically Based Pharmacokinetic models, etc.). The prototype IA-NBC-HMAS is designed to serve as a functional Health Modeling and Assessment system that can be easily tailored to meet specific building analysis needs of a customer. The prototype system was developed and tested using an actual building (i.e., the Churchville Building located at the Aberdeen Proving Ground) and release scenario (i.e., the release and measurement of tracer materials within the building) to ensure realism and practicality in the design and development of the prototype system. A user-friendly "demo" accompanies this report to allow the reader the opportunity for a "hands on" review of the prototype system's capability.

  9. Development of the Biology Card Sorting Task to Measure Conceptual Expertise in Biology

    Science.gov (United States)

    Smith, Julia I.; Combs, Elijah D.; Nagami, Paul H.; Alto, Valerie M.; Goh, Henry G.; Gourdet, Muryam A. A.; Hough, Christina M.; Nickell, Ashley E.; Peer, Adrian G.; Coley, John D.; Tanner, Kimberly D.

    2013-01-01

    There are widespread aspirations to focus undergraduate biology education on teaching students to think conceptually like biologists; however, there is a dearth of assessment tools designed to measure progress from novice to expert biological conceptual thinking. We present the development of a novel assessment tool, the Biology Card Sorting Task,…

  10. The impact of biology on risk assessment -- Workshop of the National Research Council`s board on radiation effects research. Meeting report

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M. [Oak Ridge National Lab., TN (United States); Grosovsky, A. [Univ. of California, Riverside, CA (United States); Hanawalt, P.C. [Stanford Univ., CA (United States). Dept. of Biological Sciences; Jostes, R.F. [National Academy of Sciences, Washington, DC (United States). Board on Radiation Effects Research; Little, J.B. [Harvard School of Public Health, Boston, MA (United States). Dept. of Cancer Biology; Morgan, W.F. [Univ. of California, San Francisco, CA (United States). Dept. of Radiation Oncology; Oleinick, N.L. [Case Western Reserve Univ., Cleveland, OH (United States); Ullrich, R.L. [Univ. of Texas Medical Branch, Galveston, TX (United States). Dept. of Radiation Therapy

    1997-12-31

    The linear, nonthreshold extrapolation from a dose-response relationship for ionizing radiation derived at higher doses to doses for which regulatory standards are proposed is being challenged by some scientists and defended by others. It appears that the risks associated with exposures to doses of interest are below the risks that can be measured with epidemiologic studies. Therefore, many have looked to biology to provide information relevant to risk assessment. The workshop reported here, ``The Impact of biology on Risk Assessment,`` was planned to address the need for further information by bringing together scientists who have been working in key fields of biology and others who have been contemplating the issues associated specifically with this question. The goals of the workshop were to summarize and review the status of the relevant biology, to determine how the reported biologic data might influence risk assessment, and to identify subjects on which more data is needed.

  11. Current Methods Applied to Biomaterials - Characterization Approaches, Safety Assessment and Biological International Standards.

    Science.gov (United States)

    Oliveira, Justine P R; Ortiz, H Ivan Melendez; Bucio, Emilio; Alves, Patricia Terra; Lima, Mayara Ingrid Sousa; Goulart, Luiz Ricardo; Mathor, Monica B; Varca, Gustavo H C; Lugao, Ademar B

    2018-04-10

    Safety and biocompatibility assessment of biomaterials are themes of constant concern as advanced materials enter the market as well as products manufactured by new techniques emerge. Within this context, this review provides an up-to-date approach on current methods for the characterization and safety assessment of biomaterials and biomedical devices from a physicalchemical to a biological perspective, including a description of the alternative methods in accordance with current and established international standards. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Assessment of network perturbation amplitudes by applying high-throughput data to causal biological networks

    Directory of Open Access Journals (Sweden)

    Martin Florian

    2012-05-01

    Full Text Available Abstract Background High-throughput measurement technologies produce data sets that have the potential to elucidate the biological impact of disease, drug treatment, and environmental agents on humans. The scientific community faces an ongoing challenge in the analysis of these rich data sources to more accurately characterize biological processes that have been perturbed at the mechanistic level. Here, a new approach is built on previous methodologies in which high-throughput data was interpreted using prior biological knowledge of cause and effect relationships. These relationships are structured into network models that describe specific biological processes, such as inflammatory signaling or cell cycle progression. This enables quantitative assessment of network perturbation in response to a given stimulus. Results Four complementary methods were devised to quantify treatment-induced activity changes in processes described by network models. In addition, companion statistics were developed to qualify significance and specificity of the results. This approach is called Network Perturbation Amplitude (NPA scoring because the amplitudes of treatment-induced perturbations are computed for biological network models. The NPA methods were tested on two transcriptomic data sets: normal human bronchial epithelial (NHBE cells treated with the pro-inflammatory signaling mediator TNFα, and HCT116 colon cancer cells treated with the CDK cell cycle inhibitor R547. Each data set was scored against network models representing different aspects of inflammatory signaling and cell cycle progression, and these scores were compared with independent measures of pathway activity in NHBE cells to verify the approach. The NPA scoring method successfully quantified the amplitude of TNFα-induced perturbation for each network model when compared against NF-κB nuclear localization and cell number. In addition, the degree and specificity to which CDK

  13. Uncertainty of fast biological radiation dose assessment for emergency response scenarios.

    Science.gov (United States)

    Ainsbury, Elizabeth A; Higueras, Manuel; Puig, Pedro; Einbeck, Jochen; Samaga, Daniel; Barquinero, Joan Francesc; Barrios, Lleonard; Brzozowska, Beata; Fattibene, Paola; Gregoire, Eric; Jaworska, Alicja; Lloyd, David; Oestreicher, Ursula; Romm, Horst; Rothkamm, Kai; Roy, Laurence; Sommer, Sylwester; Terzoudi, Georgia; Thierens, Hubert; Trompier, Francois; Vral, Anne; Woda, Clemens

    2017-01-01

    Reliable dose estimation is an important factor in appropriate dosimetric triage categorization of exposed individuals to support radiation emergency response. Following work done under the EU FP7 MULTIBIODOSE and RENEB projects, formal methods for defining uncertainties on biological dose estimates are compared using simulated and real data from recent exercises. The results demonstrate that a Bayesian method of uncertainty assessment is the most appropriate, even in the absence of detailed prior information. The relative accuracy and relevance of techniques for calculating uncertainty and combining assay results to produce single dose and uncertainty estimates is further discussed. Finally, it is demonstrated that whatever uncertainty estimation method is employed, ignoring the uncertainty on fast dose assessments can have an important impact on rapid biodosimetric categorization.

  14. Biological indicators capable of assessing thermal treatment efficiency of hydrocarbon mixture-contaminated soil.

    Science.gov (United States)

    Wang, Jiangang; Zhan, Xinhua; Zhou, Lixiang; Lin, Yusuo

    2010-08-01

    In China, there are many special sites for recycling and washing the used drums, which release a variety of C5-C40 hydrocarbon mixture into the soil around the site. The remediation of these contaminated sites by thermal treatment is adopted ubiquitously and needs to be assessed. Here we report the feasibility of biological indicators applied to assess thermal treatment efficiency in such contaminated soil. A series of biological indicators, including seed germination index (SGI), root elongation index (REI), plant growth height, biomass, carbon dioxide evolved (CDE), soil respiration inhibition (SRI) and soil enzymatic activities, were employed to monitor or assess hydrocarbon mixture removal in thermal treated soil. The results showed that residual hydrocarbon mixture content correlated strongly negatively with SGI for sesamum (Sesamum indicum L.), plant height, and biomass for ryegrass (Lolium perenne L.) in the concentration ranges of 0-3990, 0-3170 and 0-2910 mg kg(-1), respectively. In contrast, REI for sesamum was positively correlated with residual hydrocarbon mixture content from 0 to 1860 mg kg(-1). In addition, both CDE and SRI demonstrated that 600 mg kg(-1) of residual hydrocarbon mixture content caused the highest amount of soil carbon dioxide emission and inhabitation of soil respiration. The results of soil enzymes indicated that 1000 mg kg(-1) of residual hydrocarbon mixture content was the threshold value of stimulating or inhibiting the activities of phosphatase and catalase, or completely destroying the activities of dehydrogenase, invertase, and urease. In conclusion, these biological indicators can be used as a meaningful complementation for traditional chemical content measurement in evaluating the environmental risk of the contaminated sites before and after thermal treatment. (c) 2010 Elsevier Ltd. All rights reserved.

  15. Conceptual Elements: A Detailed Framework to Support and Assess Student Learning of Biology Core Concepts

    Science.gov (United States)

    Cary, Tawnya; Branchaw, Janet

    2017-01-01

    The Vision and Change in Undergraduate Biology Education: Call to Action report has inspired and supported a nationwide movement to restructure undergraduate biology curricula to address overarching disciplinary concepts and competencies. The report outlines the concepts and competencies generally but does not provide a detailed framework to guide the development of the learning outcomes, instructional materials, and assessment instruments needed to create a reformed biology curriculum. In this essay, we present a detailed Vision and Change core concept framework that articulates key components that transcend subdisciplines and scales for each overarching biological concept, the Conceptual Elements (CE) Framework. The CE Framework was developed using a grassroots approach of iterative revision and incorporates feedback from more than 60 biologists and undergraduate biology educators from across the United States. The final validation step resulted in strong national consensus, with greater than 92% of responders agreeing that each core concept list was ready for use by the biological sciences community, as determined by scientific accuracy and completeness. In addition, we describe in detail how educators and departments can use the CE Framework to guide and document reformation of individual courses as well as entire curricula. PMID:28450444

  16. Assessment of the biological effects of 'strange' radiation

    International Nuclear Information System (INIS)

    Pryakhin, E.A.; Tryapitsina, G.A.; Urutskoyev, L.I.; Akleyev, A.V.

    2006-01-01

    from explosion of Ti foils in water and aqueous solutions has the capacity to produce a biological effect. 2. The biological effect of 'strange' radiation is manifested by a 13% increase in the number of nucleated cells in the bone marrow, as compared to that in controls, after exposure of the animals to 10 explosions within 3 days of the experiment. 3. The assessment of micronucleus rate in the bone marrow erythrocytes did not reveal the genotoxic effect of 'strange' radiation. 4. The exposure of mice to 'strange' radiation resulting from 10 explosions carried out within 3 days leads to 1.5 fold decrease of genotoxic effect resulting from additional gamma-irradiation (2 Gy). Such reaction may be described as an adaptive response. 5. 'strange' radiation resulting from 10 explosions carried out within 3 days after the gamma irradiation (6 Gy) leads to decrease of bone marrow repopulation. 6. The exposure to 'strange' radiation can bring about an increase in the proportion of neutrophils in the peripheral blood of experimental animals. 7. It can be suggested by the results of the test exposures that 'strange' radiation can affect human health. 8. It has been shown by these preliminary studies that in order to gain an insight into the biological effects of 'strange' radiation further investigation would be necessary. (authors)

  17. Using alternative biological information in stock assessment: condition-corrected natural mortality of Eastern Baltic cod

    DEFF Research Database (Denmark)

    Casini, Michele; Eero, Margit; Carlshamre, Sofia

    2016-01-01

    ) assumed in the analytical stock assessment model. The results in terms of Spawning Stock Biomass (SSB), Fishing mortality (F) and Recruitment (R) in the final year from the stock assessment using M values adjusted for low condition were up to 40% different compared with the assessment assuming a constant......The inclusion of biological and ecological aspects in the assessment of fish population status is one of the bases for an ecosystem-based fisheries management. During the past two decades the Eastern Baltic cod has experienced a drastic reduction in growth and body condition that may have affected...

  18. Can mixed assessment methods make biology classes more equitable?

    Science.gov (United States)

    Cotner, Sehoya; Ballen, Cissy J

    2017-01-01

    Many factors have been proposed to explain the attrition of women in science, technology, engineering and math fields, among them the lower performance of women in introductory courses resulting from deficits in incoming preparation. We focus on the impact of mixed methods of assessment, which minimizes the impact of high-stakes exams and rewards other methods of assessment such as group participation, low-stakes quizzes and assignments, and in-class activities. We hypothesized that these mixed methods would benefit individuals who otherwise underperform on high-stakes tests. Here, we analyze gender-based performance trends in nine large (N > 1000 students) introductory biology courses in fall 2016. Females underperformed on exams compared to their male counterparts, a difference that does not exist with other methods of assessment that compose course grade. Further, we analyzed three case studies of courses that transitioned their grading schemes to either de-emphasize or emphasize exams as a proportion of total course grade. We demonstrate that the shift away from an exam emphasis consequently benefits female students, thereby closing gaps in overall performance. Further, the exam performance gap itself is reduced when the exams contribute less to overall course grade. We discuss testable predictions that follow from our hypothesis, and advocate for the use of mixed methods of assessments (possibly as part of an overall shift to active learning techniques). We conclude by challenging the student deficit model, and suggest a course deficit model as explanatory of these performance gaps, whereby the microclimate of the classroom can either raise or lower barriers to success for underrepresented groups in STEM.

  19. Biological indicators for the assessment of a radiation exposure

    International Nuclear Information System (INIS)

    Feinendegen, L.E.

    1980-01-01

    Measurement of the incidence of chromosomal aberrations in the peripheral lymphocytes, though a useful method of biological dosimetry, is techious, difficult to carry out, and time-consuming. It is most appropriate for an assessment of the probability of late damage of low doses up to 20 rad. The many attempts at using biochemical indicators for the absorbed dose have not had satisfactory results so far. Morphological changes especially of the peripheral blood cells and bone narrow cells are a sure sign of a radiolesion. However, there is the problem of quantitative measurement of these processes which has made it impossible so far to elaborate a useful biological dosimetry on this basis. Apart from the analysis of peripheral lymphocytes and leucocythes, there are three new approaches of potential value: 1. Analysis of up to 19 clinical and chemical parameters of the blood serum, - it gives a rough estimate of the probability of lethality of high prognostic value. 2. Observation of the peripheral reticulocyte count - a quick and rather uncomplicated method that does not require specific laboratories. 3. Measurement of the rate of incorporation of labelled iododeoxyuridine in bone narrow cells of radiation-exposed persons or in cell cultures in a medium containing serum of radiation-exposed persons; this method appears promising for the narrow dose range and also raises same questions concerning basic research into intercellular signal substances. (orig./MG) [de

  20. Development and Assessment of Modules to Integrate Quantitative Skills in Introductory Biology Courses.

    Science.gov (United States)

    Hoffman, Kathleen; Leupen, Sarah; Dowell, Kathy; Kephart, Kerrie; Leips, Jeff

    2016-01-01

    Redesigning undergraduate biology courses to integrate quantitative reasoning and skill development is critical to prepare students for careers in modern medicine and scientific research. In this paper, we report on the development, implementation, and assessment of stand-alone modules that integrate quantitative reasoning into introductory biology courses. Modules are designed to improve skills in quantitative numeracy, interpreting data sets using visual tools, and making inferences about biological phenomena using mathematical/statistical models. We also examine demographic/background data that predict student improvement in these skills through exposure to these modules. We carried out pre/postassessment tests across four semesters and used student interviews in one semester to examine how students at different levels approached quantitative problems. We found that students improved in all skills in most semesters, although there was variation in the degree of improvement among skills from semester to semester. One demographic variable, transfer status, stood out as a major predictor of the degree to which students improved (transfer students achieved much lower gains every semester, despite the fact that pretest scores in each focus area were similar between transfer and nontransfer students). We propose that increased exposure to quantitative skill development in biology courses is effective at building competency in quantitative reasoning. © 2016 K. Hoffman, S. Leupen, et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Ways of incorporating photographic images in learning and assessing high school biology: A study of visual perception and visual cognition

    Science.gov (United States)

    Nixon, Brenda Chaumont

    This study evaluated the cognitive benefits and costs of incorporating biology-textbook and student-generated photographic images into the learning and assessment processes within a 10th grade biology classroom. The study implemented Wandersee's (2000) 20-Q Model of Image-Based Biology Test-Item Design (20-Q Model) to explore the use of photographic images to assess students' understanding of complex biological processes. A thorough review of the students' textbook using ScaleMaster R with PC Interface was also conducted. The photographs, diagrams, and other representations found in the textbook were measured to determine the percentage of each graphic depicted in the book and comparisons were made to the text. The theoretical framework that guided the research included Human Constructivist tenets espoused by Mintzes, Wandersee and Novak (2000). Physiological and cognitive factors of images and image-based learning as described by Robin (1992), Solso (1997) and Wandersee (2000) were examined. Qualitative case study design presented by Yin (1994), Denzin and Lincoln (1994) was applied and data were collected through interviews, observations, student activities, student and school artifacts and Scale Master IIRTM measurements. The results of the study indicate that although 24% of the high school biology textbook is devoted to photographic images which contribute significantly to textbook cost, the teacher and students paid little attention to photographic images other than as aesthetic elements for creating biological ambiance, wasting valuable opportunities for learning. The analysis of the photographs corroborated findings published by the Association American Association for the Advancement of Science that indicated "While most of the books are lavishly illustrated, these representations are rarely helpful, because they are too abstract, needlessly complicated, or inadequately explained" (Roseman, 2000, p. 2). The findings also indicate that applying the 20-Q

  2. Development of the Biology Card Sorting Task to Measure Conceptual Expertise in Biology

    Science.gov (United States)

    Smith, Julia I.; Combs, Elijah D.; Nagami, Paul H.; Alto, Valerie M.; Goh, Henry G.; Gourdet, Muryam A. A.; Hough, Christina M.; Nickell, Ashley E.; Peer, Adrian G.; Coley, John D.; Tanner, Kimberly D.

    2013-01-01

    There are widespread aspirations to focus undergraduate biology education on teaching students to think conceptually like biologists; however, there is a dearth of assessment tools designed to measure progress from novice to expert biological conceptual thinking. We present the development of a novel assessment tool, the Biology Card Sorting Task, designed to probe how individuals organize their conceptual knowledge of biology. While modeled on tasks from cognitive psychology, this task is unique in its design to test two hypothesized conceptual frameworks for the organization of biological knowledge: 1) a surface feature organization focused on organism type and 2) a deep feature organization focused on fundamental biological concepts. In this initial investigation of the Biology Card Sorting Task, each of six analytical measures showed statistically significant differences when used to compare the card sorting results of putative biological experts (biology faculty) and novices (non–biology major undergraduates). Consistently, biology faculty appeared to sort based on hypothesized deep features, while non–biology majors appeared to sort based on either surface features or nonhypothesized organizational frameworks. Results suggest that this novel task is robust in distinguishing populations of biology experts and biology novices and may be an adaptable tool for tracking emerging biology conceptual expertise. PMID:24297290

  3. Biological exposure assessment to tetrachloroethylene for workers in the dry cleaning industry

    Directory of Open Access Journals (Sweden)

    Ashley David L

    2008-04-01

    Full Text Available Abstract Background The purpose of this study was to assess the feasibility of conducting biological tetrachloroethylene (perchloroethylene, PCE exposure assessments of dry cleaning employees in conjunction with evaluation of possible PCE health effects. Methods Eighteen women from four dry cleaning facilities in southwestern Ohio were monitored in a pilot study of workers with PCE exposure. Personal breathing zone samples were collected from each employee on two consecutive work days. Biological monitoring included a single measurement of PCE in blood and multiple measurements of pre- and post-shift PCE in exhaled breath and trichloroacetic acid (TCA in urine. Results Post-shift PCE in exhaled breath gradually increased throughout the work week. Statistically significant correlations were observed among the exposure indices. Decreases in PCE in exhaled breath and TCA in urine were observed after two days without exposure to PCE. A mixed-effects model identified statistically significant associations between PCE in exhaled breath and airborne PCE time weighted average (TWA after adjusting for a random participant effect and fixed effects of time and body mass index. Conclusion Although comprehensive, our sampling strategy was challenging to implement due to fluctuating work schedules and the number (pre- and post-shift on three consecutive days and multiplicity (air, blood, exhaled breath, and urine of samples collected. PCE in blood is the preferred biological index to monitor exposures, but may make recruitment difficult. PCE TWA sampling is an appropriate surrogate, although more field intensive. Repeated measures of exposure and mixed-effects modeling may be required for future studies due to high within-subject variability. Workers should be monitored over a long enough period of time to allow the use of a lag term.

  4. Assessment of compatibility among Armillaria cepistipes, A. sinapina, and North American biological species X and XI, using culture morphology and molecular biology

    Science.gov (United States)

    Mark T. Banik; Harold H. Burdsall

    1998-01-01

    Ten single-spore isolates each of Armillaria sinapina, A. cepistipes, and North American biological species (NABS)X and XI were paired in all combinations. A second set of ten single-spore isolates of each species was likewise paired. Each pairing was duplicated for a total of 3280 pairs. Using the standard morphological criteria (e.g., fluffy, crustose) to assess the...

  5. SYMBIOSIS: development, implementation, and assessment of a model curriculum across biology and mathematics at the introductory level.

    Science.gov (United States)

    Depelteau, Audrey M; Joplin, Karl H; Govett, Aimee; Miller, Hugh A; Seier, Edith

    2010-01-01

    "It takes a lot of courage to release the familiar and seemingly secure, to embrace the new. But there is no real security in what is no longer meaningful. There is more security in the adventurous and exciting, for in movement there is life, and in change there is power." Alan Cohen (Used by permission. All rights reserved. For more information on Alan Cohen's books and programs, see (www.alancohen.com.) With the support of the East Tennessee State University (ETSU) administration and a grant from Howard Hughes Medical Institute, the departments of Biological Sciences, Mathematics and Statistics, and Curriculum and Instruction have developed a biology-math integrated curriculum. An interdisciplinary faculty team, charged with teaching the 18 curriculum modules, designed this three-semester curriculum, known as SYMBIOSIS. This curriculum was piloted to two student cohorts during the developmental stage. The positive feedback and assessment results of this project have given us the foundation to implement the SYMBIOSIS curriculum as a replacement for the standard biology majors curriculum at the introductory level. This article addresses the history and development of the curriculum, previous assessment results and current assessment protocol, and the future of ETSU's approach to implementing the SYMBIOSIS curriculum.

  6. Can mixed assessment methods make biology classes more equitable?

    Directory of Open Access Journals (Sweden)

    Sehoya Cotner

    Full Text Available Many factors have been proposed to explain the attrition of women in science, technology, engineering and math fields, among them the lower performance of women in introductory courses resulting from deficits in incoming preparation. We focus on the impact of mixed methods of assessment, which minimizes the impact of high-stakes exams and rewards other methods of assessment such as group participation, low-stakes quizzes and assignments, and in-class activities. We hypothesized that these mixed methods would benefit individuals who otherwise underperform on high-stakes tests. Here, we analyze gender-based performance trends in nine large (N > 1000 students introductory biology courses in fall 2016. Females underperformed on exams compared to their male counterparts, a difference that does not exist with other methods of assessment that compose course grade. Further, we analyzed three case studies of courses that transitioned their grading schemes to either de-emphasize or emphasize exams as a proportion of total course grade. We demonstrate that the shift away from an exam emphasis consequently benefits female students, thereby closing gaps in overall performance. Further, the exam performance gap itself is reduced when the exams contribute less to overall course grade. We discuss testable predictions that follow from our hypothesis, and advocate for the use of mixed methods of assessments (possibly as part of an overall shift to active learning techniques. We conclude by challenging the student deficit model, and suggest a course deficit model as explanatory of these performance gaps, whereby the microclimate of the classroom can either raise or lower barriers to success for underrepresented groups in STEM.

  7. Methods for isolation and viability assessment of biological organisms

    Science.gov (United States)

    Letant, Sonia Edith; Baker, Sarah Elyse; Bond, Tiziana; Chang, Allan Shih-Ping

    2015-02-03

    Isolation of biological or chemical organisms can be accomplished using a surface enhanced Raman scattering (SERS) system. The SERS system can be a single or a stacked plurality of photonic crystal membranes with noble-metal lined through pores for flowing analyte potentially containing the biological or chemical organisms. The through pores can be adapted to trap individual biological or chemical organisms and emit SERS spectra, which can then be detected by a detector and further analyzed for viability of the biological or chemical organism.

  8. 76 FR 4859 - Availability of an Environmental Assessment and Finding of No Significant Impact for a Biological...

    Science.gov (United States)

    2011-01-27

    ... (Diaphorina citri Kuwayama). The environmental assessment considers the effects of, and alternatives to, the...) for the Biological Control of Asian Citrus Psyllid (Diaphorina citri Kuwayama) in the Continental...

  9. Techniques to assess biological variation in destructive data

    NARCIS (Netherlands)

    Tijskens, L.M.M.; Schouten, R.E.; Jongbloed, G.; Konopacki, P.J.

    2018-01-01

    Variation is present in all measured data, due to variation between individuals (biological variation) and variation induced by the measuring system (technical variation). Biological variation present in experimental data is not the result of a random process but strictly subject to deterministic

  10. Formative Assessment: Using Concept Cartoon, Pupils' Drawings, and Group Discussions to Tackle Children's Ideas about Biological Inheritance

    Science.gov (United States)

    Chin, Christine; Teou, Lay-Yen

    2010-01-01

    This study was carried out in the context of formative assessment where assessment and learning were integrated to enhance both teaching and learning. The purpose of the study was to: (a) identify pupils' ideas about biological inheritance through the use of a concept cartoon, pupils' drawings and talk, and (b) devise scaffolding structures that…

  11. Bibliographical database of radiation biological dosimetry and risk assessment: Part 1, through June 1988

    Energy Technology Data Exchange (ETDEWEB)

    Straume, T.; Ricker, Y.; Thut, M.

    1988-08-29

    This database was constructed to support research in radiation biological dosimetry and risk assessment. Relevant publications were identified through detailed searches of national and international electronic databases and through our personal knowledge of the subject. Publications were numbered and key worded, and referenced in an electronic data-retrieval system that permits quick access through computerized searches on publication number, authors, key words, title, year, and journal name. Photocopies of all publications contained in the database are maintained in a file that is numerically arranged by citation number. This report of the database is provided as a useful reference and overview. It should be emphasized that the database will grow as new citations are added to it. With that in mind, we arranged this report in order of ascending citation number so that follow-up reports will simply extend this document. The database cite 1212 publications. Publications are from 119 different scientific journals, 27 of these journals are cited at least 5 times. It also contains reference to 42 books and published symposia, and 129 reports. Information relevant to radiation biological dosimetry and risk assessment is widely distributed among the scientific literature, although a few journals clearly dominate. The four journals publishing the largest number of relevant papers are Health Physics, Mutation Research, Radiation Research, and International Journal of Radiation Biology. Publications in Health Physics make up almost 10% of the current database.

  12. Bibliographical database of radiation biological dosimetry and risk assessment: Part 1, through June 1988

    International Nuclear Information System (INIS)

    Straume, T.; Ricker, Y.; Thut, M.

    1988-01-01

    This database was constructed to support research in radiation biological dosimetry and risk assessment. Relevant publications were identified through detailed searches of national and international electronic databases and through our personal knowledge of the subject. Publications were numbered and key worded, and referenced in an electronic data-retrieval system that permits quick access through computerized searches on publication number, authors, key words, title, year, and journal name. Photocopies of all publications contained in the database are maintained in a file that is numerically arranged by citation number. This report of the database is provided as a useful reference and overview. It should be emphasized that the database will grow as new citations are added to it. With that in mind, we arranged this report in order of ascending citation number so that follow-up reports will simply extend this document. The database cite 1212 publications. Publications are from 119 different scientific journals, 27 of these journals are cited at least 5 times. It also contains reference to 42 books and published symposia, and 129 reports. Information relevant to radiation biological dosimetry and risk assessment is widely distributed among the scientific literature, although a few journals clearly dominate. The four journals publishing the largest number of relevant papers are Health Physics, Mutation Research, Radiation Research, and International Journal of Radiation Biology. Publications in Health Physics make up almost 10% of the current database

  13. Mathematical modeling in biology: A critical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Buiatti, M. [Florence, Univ. (Italy). Dipt. di Biologia Animale e Genetica

    1998-01-01

    The molecular revolution and the development of biology-derived industry have led in the last fifty years to an unprecedented `lead forward` of life sciences in terms of experimental data. Less success has been achieved in the organisation of such data and in the consequent development of adequate explanatory and predictive theories and models. After a brief historical excursus inborn difficulties of mathematisation of biological objects and processes derived from the complex dynamics of life are discussed along with the logical tools (simplifications, choice of observation points etc.) used to overcome them. `Autistic`, monodisciplinary attitudes towards biological modeling of mathematicians, physicists, biologists aimed in each case at the use of the tools of other disciplines to solve `selfish` problems are also taken into account and a warning against derived dangers (reification of mono disciplinary metaphors, lack of falsification etc.) is given. Finally `top.down` (deductive) and `bottom up` (inductive) heuristic interactive approaches to mathematisation are critically discussed with the help of serie of examples.

  14. Mathematical modeling in biology: A critical assessment

    International Nuclear Information System (INIS)

    Buiatti, M.

    1998-01-01

    The molecular revolution and the development of biology-derived industry have led in the last fifty years to an unprecedented 'lead forward' of life sciences in terms of experimental data. Less success has been achieved in the organisation of such data and in the consequent development of adequate explanatory and predictive theories and models. After a brief historical excursus inborn difficulties of mathematisation of biological objects and processes derived from the complex dynamics of life are discussed along with the logical tools (simplifications, choice of observation points etc.) used to overcome them. 'Autistic', monodisciplinary attitudes towards biological modeling of mathematicians, physicists, biologists aimed in each case at the use of the tools of other disciplines to solve 'selfish' problems are also taken into account and a warning against derived dangers (reification of mono disciplinary metaphors, lack of falsification etc.) is given. Finally 'top.down' (deductive) and 'bottom up' (inductive) heuristic interactive approaches to mathematisation are critically discussed with the help of serie of examples

  15. Biological Environmental Sampling Technologies Assessment

    Science.gov (United States)

    2015-12-01

    modular set of aerosol detector, collector, and identifier components. Before the award, the JBTDS program office engaged its combat developers and...collection and identification processes are not integrated into one unit. Concern was also expressed regarding operation of the smartphone -based Biomeme one3...DESCRIPTION (JBTDS) The Joint Biological Tactical Detection System (JBTDS) will be employed as a modular set of capabilities (detector, collector, and

  16. Assessing biological invasions in European Seas: Biological traits of the most widespread non-indigenous species

    Science.gov (United States)

    Cardeccia, Alice; Marchini, Agnese; Occhipinti-Ambrogi, Anna; Galil, Bella; Gollasch, Stephan; Minchin, Dan; Narščius, Aleksas; Olenin, Sergej; Ojaveer, Henn

    2018-02-01

    The biological traits of the sixty-eight most widespread multicellular non-indigenous species (MWNIS) in European Seas: Baltic Sea, Western European Margin of the Atlantic Ocean and the Mediterranean Sea were examined. Data for nine biological traits was analyzed, and a total of 41 separate categories were used to describe the biological and ecological functions of these NIS. Our findings show that high dispersal ability, high reproductive rate and ecological generalization are the biological traits commonly associated with MWNIS. The functional groups that describe most of the 68 MWNIS are: photoautotrophic, zoobenthic (both sessile and motile) and nektonic predatory species. However, these 'most widespread' species comprise a wide range of taxa and biological trait profiles; thereby a clear "identikit of a perfect invader" for marine and brackish environments is difficult to define. Some traits, for example: "life form", "feeding method" and "mobility", feature multiple behaviours and strategies. Even species introduced by a single pathway, e.g. vessels, feature diverse biological trait profiles. MWNIS likely to impact community organization, structure and diversity are often associated with brackish environments. For many traits ("life form", "sociability", "reproductive type", "reproductive frequency", "haploid and diploid dispersal" and "mobility"), the categories mostly expressed by the impact-causing MWNIS do not differ substantially from the whole set of MWNIS.

  17. A comparative analysis of multiple-choice and student performance-task assessment in the high school biology classroom

    Science.gov (United States)

    Cushing, Patrick Ryan

    This study compared the performance of high school students on laboratory assessments. Thirty-four high school students who were enrolled in the second semester of a regular biology class or had completed the biology course the previous semester participated in this study. They were randomly assigned to examinations of two formats, performance-task and traditional multiple-choice, from two content areas, using a compound light microscope and diffusion. Students were directed to think-aloud as they performed the assessments. Additional verbal data were obtained during interviews following the assessment. The tape-recorded narrative data were analyzed for type and diversity of knowledge and skill categories, and percentage of in-depth processing demonstrated. While overall mean scores on the assessments were low, elicited statements provided additional insight into student cognition. Results indicated that a greater diversity of knowledge and skill categories was elicited by the two microscope assessments and by the two performance-task assessments. In addition, statements demonstrating in-depth processing were coded most frequently in narratives elicited during clinical interviews following the diffusion performance-task assessment. This study calls for individual teachers to design authentic assessment practices and apply them to daily classroom routines. Authentic assessment should be an integral part of the learning process and not merely an end result. In addition, teachers are encouraged to explicitly identify and model, through think-aloud methods, desired cognitive behaviors in the classroom.

  18. Biological assessment of aquatic pollution: a review, with emphasis on plants as biomonitors.

    Science.gov (United States)

    Doust, J L; Schmidt, M; Doust, L L

    1994-05-01

    In a number of disciplines including ecology, ecotoxicology, water quality management, water resource management, fishery biology etc., there is significant interest in the testing of new materials, environmental samples (of water or sediments) and specific sites, in terms of their effects on biota. In the first instance, we consider various sources of aquatic pollution, sources typically associated with developed areas of the world. Historically, much water quality assessment has been performed by researchers with a background in chemistry or engineering, thus chemical analysis was a dominant form of assessment. However, chemical analyses, particularly of such materials as organochlorines and polyaromatic hydrocarbons can be expensive, and local environmental factors may cause the actual exposure of an organism to be little correlated with chemical concentrations in the surrounding water or sediments. To a large extent toxicity testing has proceeded independently of environmental quality assessment in situ, and the work has been done by different, and differently-trained researchers. Here we attempt to bring together the various forms of biological assessment of aquatic pollution, because in our opinion it is worth developing a coherent framework for the application of this powerful tool. Biotic assessment in its most primitive form involves the simple tracking of mortality in exposed organisms. However, in most natural environments it is extended, chronic exposure to contaminants that has the most wide-ranging and irreversible repercussions--thus measures of sub-lethal impairment are favoured. From an ecological standpoint, it is most valuable to assess ecological effects by direct study of in situ contaminant body burdens and impairment of growth and reproduction compared with 'clean' sites. A distinction is made here between bioindication and biomonitoring, and a case is made for including aquatic macrophytes (angiosperms) in studies of contaminant levels and

  19. Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology (Final Report)

    Science.gov (United States)

    EPA announced the release of the final report, Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology. This report describes new approaches that are faster, less resource intensive, and more robust that can help ...

  20. Analysis and assessment of the detriment in interventional radiology using biological dosimetry methods

    International Nuclear Information System (INIS)

    Montoro, A.; Almonacid, M.; Villaescusa, J.I.; Barquinero, J.F.; Rodriguez, P.; Barrios, L.; Verdu, G.; Ramos, M.

    2006-01-01

    Interventional radiologist and staff members usually are exposed to high levels of scattered radiation. As a result, the exposition to radiation procedures can produce detrimental effects that we would have to know. Effective dose is the quantity that better estimates the radiation risk. For this study we have realized an estimation of the radiological detriment to exposed workers of the Hospital la Fe de Valencia. For it, have been used physical doses registered in detectors T.L.D., and doses estimated by biological dosimetry in lymphocytes of peripheral blood. There has been estimated for every case the probability of effect of skin cancer and of non-solid cancers (leukaemia, lymphoma and myeloma), being compared with the baseline probability of natural effect. Biological doses were obtained by extrapolating the yield of dicentrics and translocations to their respective dose -effect curves. The discrepancies observed between physically recorded doses and biological estimated doses indicate that workers did not always wear their dosimeters or the dosimeters were not always in the radiation field. Cytogenetic studies should be extended to more workers to assess the risk derived from their occupational exposure. (authors)

  1. Analysis and assessment of the detriment in interventional radiology using biological dosimetry methods

    Energy Technology Data Exchange (ETDEWEB)

    Montoro, A.; Almonacid, M.; Villaescusa, J.I. [Hospital Univ. la Fe de Valen cian, Servicio de Proteccion Radiologica, Valencia (Spain); Barquinero, J.F.; Rodriguez, P. [Universitat Autonom a de Barcelona, Servicio de Dosimetria Biologica, Unidad de Antropologia, Departamento de Biologia Animal, Vegetal y Ecologia., Barcelona (Spain); Barrios, L. [Universidad Autonoma de Barcelona, Dept. de Biologia Celular y Fisiologia. Unidad de Biologia Celular, Barcelona (Spain); Verdu, G.; Ramos, M. [Universidad Politecnica de Valencia, Dept. de Ingenieria Quimica y Nuclear, Valencia, (Spain)

    2006-07-01

    Interventional radiologist and staff members usually are exposed to high levels of scattered radiation. As a result, the exposition to radiation procedures can produce detrimental effects that we would have to know. Effective dose is the quantity that better estimates the radiation risk. For this study we have realized an estimation of the radiological detriment to exposed workers of the Hospital la Fe de Valencia. For it, have been used physical doses registered in detectors T.L.D., and doses estimated by biological dosimetry in lymphocytes of peripheral blood. There has been estimated for every case the probability of effect of skin cancer and of non-solid cancers (leukaemia, lymphoma and myeloma), being compared with the baseline probability of natural effect. Biological doses were obtained by extrapolating the yield of dicentrics and translocations to their respective dose -effect curves. The discrepancies observed between physically recorded doses and biological estimated doses indicate that workers did not always wear their dosimeters or the dosimeters were not always in the radiation field. Cytogenetic studies should be extended to more workers to assess the risk derived from their occupational exposure. (authors)

  2. Practice makes pretty good: assessment of primary literature reading abilities across multiple large-enrollment biology laboratory courses.

    Science.gov (United States)

    Sato, Brian K; Kadandale, Pavan; He, Wenliang; Murata, Paige M N; Latif, Yama; Warschauer, Mark

    2014-01-01

    Primary literature is essential for scientific communication and is commonly utilized in undergraduate biology education. Despite this, there is often little time spent training our students how to critically analyze a paper. To address this, we introduced a primary literature module in multiple upper-division laboratory courses. In this module, instructors conduct classroom discussions that dissect a paper as researchers do. While previous work has identified classroom interventions that improve primary literature comprehension within a single course, our goal was to determine whether including a scientific paper module in our classes could produce long-term benefits. On the basis of performance in an assessment exam, we found that our module resulted in longitudinal gains, including increased comprehension and critical-thinking abilities in subsequent lab courses. These learning gains were specific to courses utilizing our module, as no longitudinal gains were seen in students who had taken other upper-division labs that lacked extensive primary literature discussion. In addition, we assessed whether performance on our assessment correlated with a variety of factors, including grade point average, course performance, research background, and self-reported confidence in understanding of the article. Furthermore, all of the study conclusions are independent of biology disciplines, as we observe similar trends within each course. © 2014 B. K. Sato et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Assessment of students’ health condition by indicators of adaptation potential, biological age and bio-energetic reserves of organism

    Directory of Open Access Journals (Sweden)

    O.V. Martyniuk

    2015-06-01

    Full Text Available Purpose: to assess students’ health condition by indicators of adaptation potential, biological age and express-assessment. Material: in the research 47 first and second year girl students participated, who belonged to main health group. Results: we distributed the girl students into three groups: 14.89% of them were included in group with “safe” health condition; 34.04% - in group of “third state”; 51.06% were related to group with “ dangerous” health condition. We established that dangerous level was characterized by energy potential of below middle and low level. It is accompanied by accelerated processes of organism’s age destructions and tension of regulation mechanisms. Conclusions: the received results permit to further develop and generalize the data of students’ health’s assessment by indicators of adaptation potentials, biological age and physical health’s condition.

  4. Characterization of Radiation Fields for Assessing Concrete Degradation in Biological Shields of NPPs

    Science.gov (United States)

    Remec, Igor; Rosseel, Thomas M.; Field, Kevin G.; Pape, Yann Le

    2017-09-01

    Life extensions of nuclear power plants (NPPs) to 60 years of operation and the possibility of subsequent license renewal to 80 years have renewed interest in long-term material degradation in NPPs. Large irreplaceable sections of most nuclear generating stations are constructed from concrete, including safety-related structures such as biological shields and containment buildings; therefore, concrete degradation is being considered with particular focus on radiation-induced effects. Based on the projected neutron fluence values (E > 0.1 MeV) in the concrete biological shields of the US pressurized water reactor fleet and the currently available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database is desirable to ensure reliable risk assessment for extended operation of nuclear power plants.

  5. Biological assessments for the low energy demonstration accelerator, 1996 and 1997

    Energy Technology Data Exchange (ETDEWEB)

    Cross, S.

    1998-12-31

    The Department of Energy (DOE) plans to build, install, and operate a Low Energy Demonstration Accelerator (LMA) in Technical Area 53 of the Los Alamos National Laboratory (LANL). LEDA will demonstrate the accelerator technology necessary to produce tritium, but is not designed to produce tritium at LANL. USFWS reviewers of the Biological Assessment prepared for LEDA insisted that the main drainage be monitored to measure and document changes to vegetation, soils, wildlife, and habitats due to LEDA effluent discharges. The Biology Team of ESH-20 (LANL`s Ecology Group) has performed these monitoring activities during 1996 and 1997 to document baseline conditions before LEDA released significant effluent discharges. Quarterly monitoring of the outfall which will discharge LEDA blowdown effluent had one exceedance of permitted parameters, a high chlorine discharge that was quickly remedied. Samples from 12 soil pits in the drainage area contained no hydric indicators, such as organic matter in the upper layers, streaking, organic pans, and oxidized rhizospheres. Vegetation transacts in the meadows that LEDA discharges will flow through contained 44 species of herbaceous plants, all upland taxa. Surveys of resident birds, reptiles, and amphibians documented a fauna typical of local dry canyons. No threatened or endangered species inhabit the project area, but increased effluent releases may make the area more attractive to many wildlife species, an endangered raptor, and several other species of concern. Biological best management practices especially designed for LEDA are discussed, including protection of floodplains, erosion control measures, hazards posed by increased usage of the area by deer and elk and revegetation of disturbed areas.

  6. A biological tool to assess flow connectivity in reference temporary streams from the Mediterranean Basin

    Energy Technology Data Exchange (ETDEWEB)

    Cid, N., E-mail: ncid@ub.edu [Grup de Recerca “Freshwater Ecology and Management (FEM)”, Departament d' Ecologia, Universitat de Barcelona, Catalonia (Spain); Verkaik, I. [Grup de Recerca “Freshwater Ecology and Management (FEM)”, Departament d' Ecologia, Universitat de Barcelona, Catalonia (Spain); García-Roger, E.M. [Grup de Recerca “Freshwater Ecology and Management (FEM)”, Departament d' Ecologia, Universitat de Barcelona, Catalonia (Spain); Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València (Spain); Rieradevall, M.; Bonada, N. [Grup de Recerca “Freshwater Ecology and Management (FEM)”, Departament d' Ecologia, Universitat de Barcelona, Catalonia (Spain); Sánchez-Montoya, M.M. [Department of Ecology and Hydrology, Regional Campus of International Excellence “Campus Mare Nostrum”—University of Murcia (Spain); Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin (Germany); Gómez, R.; Suárez, M.L.; Vidal-Abarca, M.R. [Department of Ecology and Hydrology, Regional Campus of International Excellence “Campus Mare Nostrum”—University of Murcia (Spain); Demartini, D.; Buffagni, A.; Erba, S. [Instituto di Ricerca Sulle Acque (CNR-IRSA) (Italy); Karaouzas, I.; Skoulikidis, N. [Hellenic Center for Marine Research (HCMR) (Greece); Prat, N. [Grup de Recerca “Freshwater Ecology and Management (FEM)”, Departament d' Ecologia, Universitat de Barcelona, Catalonia (Spain)

    2016-01-01

    Many streams in the Mediterranean Basin have temporary flow regimes. While timing for seasonal drought is predictable, they undergo strong inter-annual variability in flow intensity. This high hydrological variability and associated ecological responses challenge the ecological status assessment of temporary streams, particularly when setting reference conditions. This study examined the effects of flow connectivity in aquatic macroinvertebrates from seven reference temporary streams across the Mediterranean Basin where hydrological variability and flow conditions are well studied. We tested for the effect of flow cessation on two streamflow indices and on community composition, and, by performing random forest and classification tree analyses we identified important biological predictors for classifying the aquatic state either as flowing or disconnected pools. Flow cessation was critical for one of the streamflow indices studied and for community composition. Macroinvertebrate families found to be important for classifying the aquatic state were Hydrophilidae, Simuliidae, Hydropsychidae, Planorbiidae, Heptageniidae and Gerridae. For biological traits, trait categories associated to feeding habits, food, locomotion and substrate relation were the most important and provided more accurate predictions compared to taxonomy. A combination of selected metrics and associated thresholds based on the most important biological predictors (i.e. Bio-AS Tool) were proposed in order to assess the aquatic state in reference temporary streams, especially in the absence of hydrological data. Although further development is needed, the tool can be of particular interest for monitoring, restoration, and conservation purposes, representing an important step towards an adequate management of temporary rivers not only in the Mediterranean Basin but also in other regions vulnerable to the effects of climate change. - Highlights: • The effect of flow connectivity on macroinvertebrate

  7. The use of drawing as an alternative assessment tool in biology teaching

    Science.gov (United States)

    Nugraha, I.

    2018-05-01

    Science required the recording of data to build knowledge. The act of drawing an illustration is one of the oldest methods to record the data in science. Illustration in science provides information that the written word cannot, hence the old adage “A picture is worth a thousand words” is very important for studying science. Drawings an illustration is not only valuable for artists but also for scientists because some aspects of science process skills can also be developed through drawing. In terms of science teaching, applying the act of drawing can also be used as an assessment tool. In this study, we assessed drawing of human internal organs of 38 student teachers who enrolled human physiology course and its correlation to their final exam achievement. Guidance of biological drawing was employed to assess the quality, labelling, and annotations of the drawing. The finding of this study showed that there was a positive correlation between the quality of drawing and final exam achievement. It is suggested that using the method of drawing in combination with written responses assessment would provide a more complete information about student’s understanding of human internal organs.

  8. Assessment of biological variation and analytical imprecision of CA 125, CEA, and TPA in relation to monitoring of ovarian cancer

    DEFF Research Database (Denmark)

    Tuxen, M.K.; Sölétormos, G.; Petersen, P.H.

    1999-01-01

    biological variation. The aim of the study was to assess (i) the analytical imprecision (CVA) and the average inherent intra- and interindividual biological variation (CVTI and CVG, respectively) for CA 125, CEA, and TPA in a group of healthy women; (ii) the significance of changes in serial results of each...

  9. An in vivo model to assess magnesium alloys and their biological effect on human bone marrow stromal cells.

    Science.gov (United States)

    Yoshizawa, Sayuri; Chaya, Amy; Verdelis, Kostas; Bilodeau, Elizabeth A; Sfeir, Charles

    2015-12-01

    Magnesium (Mg) alloys have many unique qualities which make them ideal candidates for bone fixation devices, including biocompatibility and degradation in vivo. Despite a rise in Mg alloy production and research, there remains no standardized system to assess their degradation or biological effect on human stem cells in vivo. In this study, we developed a novel in vivo model to assess Mg alloys for craniofacial and orthopedic applications. Our model consists of a collagen sponge seeded with human bone marrow stromal cells (hBMSCs) around a central Mg alloy rod. These scaffolds were implanted subcutaneously in mice and analyzed after eight weeks. Alloy degradation and biological effect were determined by microcomputed tomography (microCT), histological staining, and immunohistochemistry (IHC). MicroCT showed greater volume loss for pure Mg compared to AZ31 after eight weeks in vivo. Histological analysis showed that hBMSCs were retained around the Mg implants after 8 weeks. Furthermore, immunohistochemistry showed the expression of dentin matrix protein 1 and osteopontin around both pure Mg and AZ31 with implanted hBMSCs. In addition, histological sections showed a thin mineral layer around all degrading alloys at the alloy-tissue interface. In conclusion, our data show that degrading pure Mg and AZ31 implants are cytocompatible and do not inhibit the osteogenic property of hBMSCs in vivo. These results demonstrate that this model can be used to efficiently assess the biological effect of corroding Mg alloys in vivo. Importantly, this model may be modified to accommodate additional cell types and clinical applications. Magnesium (Mg) alloys have been investigated as ideal candidates for bone fixation devices due to high biocompatibility and degradation in vivo, and there is a growing need of establishing an efficient in vivo material screening system. In this study, we assessed degradation rate and biological effect of Mg alloys by transplanting Mg alloy rod with

  10. Benefits of a Biological Monitoring Program for Assessing Remediation Performance and Long-Term Stewardship - 12272

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Mark [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2012-07-01

    The Biological Monitoring and Abatement Program (BMAP) is a long-running program that was designed to evaluate biological conditions and trends in waters downstream of Department of Energy (DOE) facilities in Oak Ridge, Tennessee. BMAP monitoring has focused on aquatic pathways from sources to biota, which is consistent with the sites' clean water regulatory focus and the overall cleanup strategy which divided remediation areas into watershed administrative units. Specific programmatic goals include evaluating operational and legacy impacts to nearby streams and the effectiveness of implemented remediation strategies at the sites. The program is characterized by consistent, long-term sampling and analysis methods in a multidisciplinary and quantitative framework. Quantitative sampling has shown conclusively that at most Oak Ridge stream sites, fish and aquatic macro-invertebrate communities have improved considerably since the 1980s. Monitoring of mercury and PCBs in fish has shown that remedial and abatement actions have also improved stream conditions, although in some cases biological monitoring suggests further actions are needed. Follow-up investigations have been implemented by BMAP to identify sources or causes, consistent with an adaptive management approach. Biological monitoring results to date have not only been used to assess regulatory compliance, but have provided additional benefits in helping address other components of the DOE's mission, including facility operations, natural resource, and scientific goals. As a result the program has become a key measure of long-term trends in environmental conditions and of high value to the Oak Ridge environmental management community, regulators, and the public. Some of the BMAP lessons learned may be of value in the design, implementation, and application of other long-term monitoring and stewardship programs, and assist environmental managers in the assessment and prediction of the effectiveness of

  11. Biological basis of detoxication

    National Research Council Canada - National Science Library

    Caldwell, John; Jakoby, William B

    1983-01-01

    This volume considers that premise that most of the major patterns of biological conversion of foreign compounds are known and may have predictive value in assessing the biological course for novel compounds...

  12. Integrating quantitative thinking into an introductory biology course improves students' mathematical reasoning in biological contexts.

    Science.gov (United States)

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students' apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students' understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students' inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students' biology learning.

  13. Integrating Quantitative Thinking into an Introductory Biology Course Improves Students’ Mathematical Reasoning in Biological Contexts

    Science.gov (United States)

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students’ apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students’ understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students’ inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students’ biology learning. PMID:24591504

  14. Assessment of biological effects of environmental pollution along the NW Mediterranean Sea using mussels as sentinel organisms

    International Nuclear Information System (INIS)

    Zorita, Izaskun; Apraiz, Itxaso; Ortiz-Zarragoitia, Maren; Orbea, Amaia; Cancio, Ibon; Soto, Manu; Marigomez, Ionan; Cajaraville, Miren P.

    2007-01-01

    With the aim of assessing the biological effects of pollution along three gradients of pollution in the NW Mediterranean Sea, a biomonitoring survey was implemented using a battery of biomarkers (lysosomal membrane stability, lysosomal structural changes, metallothionein (MT) induction and peroxisome proliferation) in mussels over a period of two years as part of the EU-funded BEEP project. Mussels from the most impacted zones (Fos, Genova and Barcelona harbours) showed enlarged lysosomes accompanied by reduced labilisation period of lysosomal membranes, indicating disturbed health. MT levels did not reveal significant differences between stations and were significantly correlated with gonad index, suggesting that they were influenced by gamete development. Peroxisomal acyl-CoA oxidase (AOX) activity was significantly inhibited in polluted stations possibly due to interactions among mixtures of pollutants. In conclusion, the application of a battery of effect and exposure biomarkers provided relevant data for the assessment of biological effects of environmental pollution along the NW Mediterranean Sea. - The biomarker approach is suitable for assessment of environmental pollution in the NW Mediterranean Sea

  15. Assessment of biological effects of environmental pollution along the NW Mediterranean Sea using mussels as sentinel organisms

    Energy Technology Data Exchange (ETDEWEB)

    Zorita, Izaskun [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Apraiz, Itxaso [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Ortiz-Zarragoitia, Maren [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Orbea, Amaia [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Cancio, Ibon [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Soto, Manu [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Marigomez, Ionan [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Cajaraville, Miren P. [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain)]. E-mail: mirenp.cajaraville@ehu.es

    2007-07-15

    With the aim of assessing the biological effects of pollution along three gradients of pollution in the NW Mediterranean Sea, a biomonitoring survey was implemented using a battery of biomarkers (lysosomal membrane stability, lysosomal structural changes, metallothionein (MT) induction and peroxisome proliferation) in mussels over a period of two years as part of the EU-funded BEEP project. Mussels from the most impacted zones (Fos, Genova and Barcelona harbours) showed enlarged lysosomes accompanied by reduced labilisation period of lysosomal membranes, indicating disturbed health. MT levels did not reveal significant differences between stations and were significantly correlated with gonad index, suggesting that they were influenced by gamete development. Peroxisomal acyl-CoA oxidase (AOX) activity was significantly inhibited in polluted stations possibly due to interactions among mixtures of pollutants. In conclusion, the application of a battery of effect and exposure biomarkers provided relevant data for the assessment of biological effects of environmental pollution along the NW Mediterranean Sea. - The biomarker approach is suitable for assessment of environmental pollution in the NW Mediterranean Sea.

  16. Mass balance to assess the efficiency of a mechanical-biological treatment

    International Nuclear Information System (INIS)

    Araujo Morais, J. de; Ducom, G.; Achour, F.; Rouez, M.; Bayard, R.

    2008-01-01

    Using mechanical-biological treatment of residual municipal solid waste, it is possible to significantly lower landfill volume and gas and leachate emissions. Moreover, the landfill characteristics are improved. The performance of the Mende (France) mechanical-biological treatment plant is assessed via mass balances coupled with manual sorting according to the MODECOM TM methodology and biochemical methane potential after 90 days of incubation. The site includes mechanical sorting operations, a rotary sequential bioreactor, controlled aerobic stabilisation corridors, maturation platforms, and a sanitary landfill site for waste disposal in separated cells. Results showed that several steps could be improved: after a first sieving step, about 12% of the potentially biodegradable matter is landfilled directly without any treatment; mechanical disintegration of papers and cardboards in the rotary sequential bioreactor is insufficient and leads to a high proportion of papers and cardboards being landfilled without further treatment. Two fine fractions go through stabilisation and maturation steps. At the end of the maturation step, about 54% of the potentially biodegradable matter is degraded. The biochemical methane potential after 90 days of incubation is reduced by 81% for one of the two fine fractions and reduced by 88% for the other one. Considering the whole plant, there is a reduction of nearly 20% DM of the entering residual municipal solid waste

  17. The Biological Rhythms Interview of Assessment in Neuropsychiatry in patients with bipolar disorder: correlation with affective temperaments and schizotypy

    Directory of Open Access Journals (Sweden)

    Ewa Dopierala

    Full Text Available Objective: To assess the relationship of biological rhythms, evaluated by the Biological Rhythms Interview of Assessment in Neuropsychiatry (BRIAN, with affective temperaments and schizotypy. Methods: The BRIAN assessment, along with the Temperament Evaluation of Memphis, Pisa, Paris, and San Diego-Autoquestionnaire (TEMPS-A and the Oxford-Liverpool Inventory for Feelings and Experiences (O-LIFE, was administered to 54 patients with remitted bipolar disorder (BD and 54 healthy control (HC subjects. Results: The TEMPS-A cyclothymic temperament correlated positively and the hyperthymic temperament correlated negatively with BRIAN scores in both the BD and HC groups, although the correlation was stronger in BD subjects. Depressive temperament was associated with BRIAN scores in BD but not in HC; conversely, the irritable temperament was associated with BRIAN scores in HC, but not in BD. Several positive correlations between BRIAN scores and the schizotypal dimensions of the O-LIFE were observed in both BD and HC subjects, especially with cognitive disorganization and less so with unusual experiences and impulsive nonconformity. A correlation with introversion/anhedonia was found only in BD subjects. Conclusion: Cyclothymic and depressive temperaments predispose to disturbances of biological rhythms in BD, while a hyperthymic temperament can be protective. Similar predispositions were also found for all schizotypal dimensions, mostly for cognitive disorganization.

  18. CLINICAL AND FUNCTIONAL ASSESSMENT OF THE BIOLOGICAL PROSTHESIS “ASPIRE” FOR SURGICAL CORRECTION OF MITRAL VALVE DISEASE

    Directory of Open Access Journals (Sweden)

    S. G. Esin

    2015-01-01

    Full Text Available Aim: To assess clinical and functional efficacy of implanted biological prosthesis “ASPIRE” (manufactured by Vascutek for correction of mitral valve disease.Materials and methods: From October 2008 to December 2013, biological prostheses “ASPIRE” (Vascutek were implanted to 34 patients with mitral valve disease (mean age 63.59 ± 4.96 years, 79.4% female. From these, 24 patients had mitral stenosis and 10 patients had mitral insufficiency. 73.5% of all patients had heart failure Strazhesko-Vasilenko IIA grade and 85.3% of patients had chronic heart failure NYHA III. Isolated mitral valve replacement was performed only in 8 (23.5% of patients. In 22 (64.7% of cases mitral valve replacement was combined with tricuspid valvuloplasty in various modifications. Duration of cardiopulmonary bypass and of aortic clamping was 88.09 ± 25.95 and 65.68 ± 25.51 minutes, respectively. Before and after surgery all patients underwent echocardiographic assessment and clinical assessment of their general status.Results: In-hospital mortality was 5.88% (n = 2 and was related to multiorgan failure in the early postoperative period. All 32 (94.12% surviving patients improved with decrease or complete disappearance of heart failure. Postoperative complications were typical for cardiac surgery. There were no episodes of embolism, structural dysfunction, thrombosis of the prosthesis and endocarditis of the prosthesis in the early postoperative period. Pressure gradients across prosthetic valves were not high and corresponded to good clinical and hemodynamic results in the early postoperative period.Conclusion: Taking into account good immediate results of mitral valve replacement, as well as no need in lifelong anticoagulation in patients with multiple concomitant disorders, implantation of the biological prosthesis “ASPIRE” (Vascutek could become a procedure of choice for correction of valve abnormalities in patients above 65 years. For more comprehensive

  19. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  20. Assessing the Soil Physiological Potential Using Pedo-Biological Diagnosis Under Minimum-Tillage System and Mineral Fertilization

    Directory of Open Access Journals (Sweden)

    Lazar Bireescu

    2014-11-01

    Full Text Available The main objective of sustainable agriculture is the protection of environment and natural vegetal and soil resources. Accordingly, the objective of this research was to assess the impact of technological systems by minimum tillage on soil biological activity, using the Pedo-Biological Diagnosis of Soil Resources. Our research was conducted on haplic chernozem from Experimental Station of UASVM of Iasi, Romania, during the seasonal dynamic, to the soybean crop, on unfertilized and fertilized agrofond, using moderate mineral doses (N80P80 as average of 2009–2010 period, under minimum tillage (2x disk, paraplow, chisel compared to conventional (plugging at 20 cm and 30 cm. In the case of soil works with chisel and paraplow without return of furrow, the Pedo-Biological Diagnosis highlights an increase of soil physiological potential, in the both variants (unfertilized and fertilized, unlike the method of alternating the depth of plugging that proved to be ineffective.

  1. Implementing the Science Assessment Standards: Developing and validating a set of laboratory assessment tasks in high school biology

    Science.gov (United States)

    Saha, Gouranga Chandra

    Very often a number of factors, especially time, space and money, deter many science educators from using inquiry-based, hands-on, laboratory practical tasks as alternative assessment instruments in science. A shortage of valid inquiry-based laboratory tasks for high school biology has been cited. Driven by this need, this study addressed the following three research questions: (1) How can laboratory-based performance tasks be designed and developed that are doable by students for whom they are designed/written? (2) Do student responses to the laboratory-based performance tasks validly represent at least some of the intended process skills that new biology learning goals want students to acquire? (3) Are the laboratory-based performance tasks psychometrically consistent as individual tasks and as a set? To answer these questions, three tasks were used from the six biology tasks initially designed and developed by an iterative process of trial testing. Analyses of data from 224 students showed that performance-based laboratory tasks that are doable by all students require careful and iterative process of development. Although the students demonstrated more skill in performing than planning and reasoning, their performances at the item level were very poor for some items. Possible reasons for the poor performances have been discussed and suggestions on how to remediate the deficiencies have been made. Empirical evidences for validity and reliability of the instrument have been presented both from the classical and the modern validity criteria point of view. Limitations of the study have been identified. Finally implications of the study and directions for further research have been discussed.

  2. A "weight of evidence" approach for the integration of environmental "triad" data to assess ecological risk and biological vulnerability.

    Science.gov (United States)

    Dagnino, Alessandro; Sforzini, Susanna; Dondero, Francesco; Fenoglio, Stefano; Bona, Elisa; Jensen, John; Viarengo, Aldo

    2008-07-01

    A new Expert Decision Support System (EDSS) that can integrate Triad data for assessing environmental risk and biological vulnerability at contaminated sites has been developed. Starting with ecosystem relevance, the EDSS assigns different weights to the results obtained from Triad disciplines. The following parameters have been employed: 1) chemical soil analyses (revealing the presence of potentially dangerous substances), 2) ecotoxicological bioassays (utilizing classical endpoints such as survival and reproduction rates), 3) biomarkers (showing sublethal pollutant effects), and 4) ecological parameters (assessing changes in community structure and functions). For each Triad discipline, the EDSS compares the data obtained at the studied field sites with reference values and calculates different 0-1 indexes (e.g., Chemical Risk Index, Ecotoxicological Risk Index, and Ecological Risk Index). The EDSS output consists of 3 indexes: 1) Environmental Risk index (EnvRI), quantifying the levels of biological damage at population-community level, 2) Biological Vulnerability Index (BVI), assessing the potential threats to biological equilibriums, and 3) Genotoxicity Index (GTI), screening genotoxicity effects. The EDSS has been applied in the integration of a battery of Triad data obtained during the European Union-funded Life Intervention in the Fraschetta Area (LINFA) project, which has been carried out in order to estimate the potential risk from soils of a highly anthropized area (Alessandria, Italy) mainly impacted by deposition of atmospheric pollutants. Results obtained during 4 seasonal sampling campaigns (2004-2005) show maximum values of EnvRI in sites A and B (characterized by industrial releases) and lower levels in site D (affected by vehicular traffic emissions). All 3 potentially polluted sites have shown high levels of BVI and GTI, suggesting a general change from reference conditions (site C).

  3. Human biological monitoring for exposure assessment in response to an incident involving hazardous materials.

    Science.gov (United States)

    Scheepers, Paul T J; van Brederode, Nelly E; Bos, Peter M J; Nijhuis, Nicole J; van de Weerdt, Rik H J; van der Woude, Irene; Eggens, Martin L

    2014-12-15

    Biological monitoring in humans (HBM) is widely used in the field of occupational and environmental health. In the situation of an unexpected release of hazardous materials HBM may contribute to the medical support and treatment of exposed individuals from the general population or of emergency responders. Such exposure information may also be used to respond to individual concerns such as questions about a possible relationship between the chemicals released during the incident and health effects. In The Netherlands a guideline was prepared to support early decision-making about the possible use of HBM for exposure assessment during or as soon as possible following a chemical incident. The application of HBM in such an emergency setting is not much different from situations where HBM is normally used but there are some issues that need extra attention such as the choice of the biomarker, the biological media to be sampled, the time point at which biological samples should be collected, the ethics approval and technical implementation of the study protocol and the interpretation and communication of the study results. These issues addressed in the new guideline will support the use of HBM in the management of chemical disasters. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. A biological tool to assess flow connectivity in reference temporary streams from the Mediterranean Basin.

    Science.gov (United States)

    Cid, N; Verkaik, I; García-Roger, E M; Rieradevall, M; Bonada, N; Sánchez-Montoya, M M; Gómez, R; Suárez, M L; Vidal-Abarca, M R; Demartini, D; Buffagni, A; Erba, S; Karaouzas, I; Skoulikidis, N; Prat, N

    2016-01-01

    Many streams in the Mediterranean Basin have temporary flow regimes. While timing for seasonal drought is predictable, they undergo strong inter-annual variability in flow intensity. This high hydrological variability and associated ecological responses challenge the ecological status assessment of temporary streams, particularly when setting reference conditions. This study examined the effects of flow connectivity in aquatic macroinvertebrates from seven reference temporary streams across the Mediterranean Basin where hydrological variability and flow conditions are well studied. We tested for the effect of flow cessation on two streamflow indices and on community composition, and, by performing random forest and classification tree analyses we identified important biological predictors for classifying the aquatic state either as flowing or disconnected pools. Flow cessation was critical for one of the streamflow indices studied and for community composition. Macroinvertebrate families found to be important for classifying the aquatic state were Hydrophilidae, Simuliidae, Hydropsychidae, Planorbiidae, Heptageniidae and Gerridae. For biological traits, trait categories associated to feeding habits, food, locomotion and substrate relation were the most important and provided more accurate predictions compared to taxonomy. A combination of selected metrics and associated thresholds based on the most important biological predictors (i.e. Bio-AS Tool) were proposed in order to assess the aquatic state in reference temporary streams, especially in the absence of hydrological data. Although further development is needed, the tool can be of particular interest for monitoring, restoration, and conservation purposes, representing an important step towards an adequate management of temporary rivers not only in the Mediterranean Basin but also in other regions vulnerable to the effects of climate change. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Biological functioning of PAH-polluted and thermal desorption-treated soils assessed by fauna and microbial bioindicators.

    Science.gov (United States)

    Cébron, Aurélie; Cortet, Jérôme; Criquet, Stéven; Biaz, Asmaa; Calvert, Virgile; Caupert, Cécile; Pernin, Céline; Leyval, Corinne

    2011-11-01

    A large number of soil bioindicators were used to assess biological diversity and activity in soil polluted with polycyclic aromatic hydrocarbons (PAHs) and the same soil after thermal desorption (TD) treatment. Abundance and biodiversity of bacteria, fungi, protozoa, nematodes and microarthropods, as well as functional parameters such as enzymatic activities and soil respiration, were assessed during a two year period of in situ monitoring. We investigated the influence of vegetation (spontaneous vegetation and Medicago sativa) and TD treatment on biological functioning. Multivariate analysis was performed to analyze the whole data set. A principal response curve (PRC) technique was used to evaluate the different treatments (various vegetation and contaminated vs. TD soil) contrasted with control (bare) soil over time. Our results indicated the value of using a number of complementary bioindicators, describing both diversity and functions, to assess the influence of vegetation on soil and discriminate polluted from thermal desorption (TD)-treated soil. Plants had an influence on the abundance and activity of all organisms examined in our study, favoring the whole trophic chain development. However, although TD-treated soil had a high abundance and diversity of microorganisms and fauna, enzymatic activities were weak because of the strong physical and chemical modifications of this soil. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. Biological effects of anthropogenic chemical stress: Tools for the assessment of ecosystem health (BEAST)

    DEFF Research Database (Denmark)

    Lehtonen, Kari K.; Sundelin, Brita; Lang, Thomas

    : Tools for the Assessment of Ecosystem Health, 2009-2011), which is part of the Baltic Sea BONUS+ Programme funded jointly by national funding agencies and FP7 ERA-NET+ of the European Commission. The BEAST project consists of three workpackages (WP) with the following main tasks: WP1- Field studies...... and experiments in selected sub-regions of the Baltic Sea, WP2 - Application and validation of methods in monitoring and assessment in the Baltic Sea, and WP3 - Developing tools for ecosystem health assessment in the Baltic Sea. BEAST research activities are focused in the sub-regions of Gulf of Bothnia, Gulf...... of Finland, Gulf of Riga, Gulf of Gdansk and the Belt Sea, most of which are characterised by scarce data on biological effects of hazardous substances. The data acquired will be combined with previous data (e.g. national monitoring activities, case studies, EU BEEP project) to reach the goals of WP2 and WP3...

  7. An integrated assessment of pollution and biological effects in flounder, mussels and sediment in the southern Baltic Sea coastal area.

    Science.gov (United States)

    Dabrowska, Henryka; Kopko, Orest; Lehtonen, Kari K; Lang, Thomas; Waszak, Ilona; Balode, Maija; Strode, Evita

    2017-02-01

    Organic and metal contaminants and biological effects were investigated in flounder, mussels, and sediments in the southern Baltic Sea coastal area in order to assess environmental quality status in that area. Four sites were selected, including two within the Gulf of Gdańsk (GoG). In biota and sediment at each site, DDTs dominated over PCBs and PBDEs were the least abundant among organic contaminants. Their concentrations decreased progressively outward from GoG. Among metal contaminants, the levels of Hg, Pb, and Cd were elevated in GoG. Biomarkers in flounder, EROD activity and DNA SB, showed moderate positive correlations with organic and metal contaminants. In flounder, the integrated biomarker index (IBR/n) presented a spatial trend coherent with chemical pollution index (CPI), but there was no clear spatial correspondence between IBR/n and CPI in mussels nor between sediment toxicity index (STI) and sediment CPI. The integrated assessment of contaminant and biological effect data against available assessment criteria indicated that in biota, the contaminant assessment thresholds were most often exceeded by CB-118, heptachlor, PBDE, and Hg (in the GoG sediments by p,p'-DDT, Hg and Cd), while of the biological determinants, the threshold was breeched by AChE activity in mussels in GoG. Applying the ICES/OSPAR traffic-light approach showed that of the 50 parameters assessed at each site, there were 18% of determinants in the red color category in the two GoG sites and 8% of determinants in the two sites outside GoG, which indicated that none of the four investigated sites attained good environmental status (GES).

  8. An Evaluation of Two Different Methods of Assessing Independent Investigations in an Operational Pre-University Level Examination in Biology in England.

    Science.gov (United States)

    Brown, Chris

    1998-01-01

    Explored aspects of assessment of extended investigation ("project") practiced in the operational examinations of The University of Cambridge Local Examinations Syndicate (UCLES) for the perspective of construct validity. Samples of the 1993 (n=333) and 1996 (n=259) biology test results reveal two methods of assessing the project. (MAK)

  9. Integrative assessment of Evolutionary theory acceptance and knowledge levels of Biology undergraduate students from a Brazilian university

    Science.gov (United States)

    Tavares, Gustavo Medina; Bobrowski, Vera Lucia

    2018-03-01

    The integrative role that Evolutionary theory plays within Biology is recognised by most scientific authors, as well as in governmental education policies, including Brazilian policies. However, teaching and learning evolution seems problematic in many countries, and Brazil is among those. Many factors may affect teachers' and students' perceptions towards evolution, and studies can help to reveal those factors. We used a conceptual questionnaire, the Measure of Acceptance of the Theory of Evolution (MATE) instrument, and a Knowledge test to assess (1) the level of acceptance and understanding of 23 undergraduate Biology students nearing the end of their course, (2) other factors that could affect these levels, including course structure, and (3) the most difficult topics regarding evolutionary biology. The results of this study showed that the students, on average, had a 'Very High Acceptance' (89.91) and a 'Very Low Knowledge' (59.42%) of Evolutionary theory, and also indicated a moderate positive correlation between the two (r = 0.66, p = .001). The most difficult topics were related to the definition of evolution and dating techniques. We believe that the present study provides evidence for policymakers to reformulate current school and university curricula in order to improve the teachers' acceptance and understanding of evolution and other biological concepts, consequently, helping students reduce their misconceptions related to evolutionary biology.

  10. Assessing Impacts of Climate Change on Forests: The State of Biological Modeling

    Science.gov (United States)

    Dale, V. H.; Rauscher, H. M.

    1993-04-06

    Models that address the impacts to forests of climate change are reviewed by four levels of biological organization: global, regional or landscape, community, and tree. The models are compared as to their ability to assess changes in greenhouse gas flux, land use, maps of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models consider the largest number of impacts. Developing landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research development are identified: (1) linking socioeconomic and ecologic models, (2) interfacing forest models at different scales, (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes, and (4) relating information from different scales.

  11. Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions

    OpenAIRE

    Kaufman, Leyla V.; Wright, Mark G.

    2017-01-01

    The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in H...

  12. Assessing Cross-disciplinary Efficiency of Soil Amendments for Agro-biologically, Economically, and Ecologically Integrated Soil Health Management

    Science.gov (United States)

    2010-01-01

    Preventive and/or manipulative practices will be needed to maintain soil's biological, physiochemical, nutritional, and structural health in natural, managed, and disturbed ecosystems as a foundation for food security and global ecosystem sustainability. While there is a substantial body of interdisciplinary science on understanding function and structure of soil ecosystems, key gaps must be bridged in assessing integrated agro-biological, ecological, economical, and environmental efficiency of soil manipulation practices in time and space across ecosystems. This presentation discusses the application of a fertilizer use efficiency (FUE) model for assessing agronomic, economic, ecological, environmental, and nematode (pest) management efficiency of soil amendments. FUE is defined as increase in host productivity and/or decrease in plant-parasitic nematode population density in response to a given fertilizer treatment. Using the effects of nutrient amendment on Heterodera glycines population density and normalized difference vegetative index (indicator of physiological activities) of a soybean cultivar ‘CX 252’, how the FUE model recognizes variable responses and separates nutrient deficiency and toxicity from nematode parasitism as well as suitability of treatments designed to achieve desired biological and physiochemical soil health conditions is demonstrated. As part of bridging gaps between agricultural and ecological approaches to integrated understanding and management of soil health, modifications of the FUE model for analyzing the relationships amongst nematode community structure, soil parameters (eg. pH, nutrients, %OM), and plant response to soil amendment is discussed. PMID:22736840

  13. Assessing impacts on biological resources from Site Characterization Activities of the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Green, R.A.; Cox, M.K.; Doerr, T.B.; O'Farrell, T.P.; Ostler, W.K.; Rautenstrauch, K.R.; Wills, C.A.

    1991-01-01

    An integrated impact assessment program was developed to monitor the possible effects of Site Characterization Activities (SCA) on the biological resources of the Yucca Mountain area. The program uses control and treatment sites incorporating both spatial and temporal controls. The selection of biotic variables for monitoring was based on their relative importance in the ecosystem and their ability to provide information on potential impacts. All measures of biotic and abiotic variables will be made on the same sample plots to permit linking changes in variables to each other

  14. Clarification of the Use of Biological Data and Information in the 2002 Integrated Water Quality Monitoring and Assessment Report Guidance

    Science.gov (United States)

    The memorandum modifies the 2002 Integrated Water Quality Monitoring and Assessment Report Guidance to provide clarity and promote consistency in the manner in which states use biological data and information in developing their 2002 submissions.

  15. Structural and Biological Assessment of Zinc Doped Hydroxyapatite Nanoparticles

    OpenAIRE

    Popa , Cristina ,; Deniaud , Aurélien; Michaud-Soret , Isabelle; Guégan , Régis; Motelica-Heino , Mikael; Predoi , Daniela

    2016-01-01

    International audience; The aim of the current research work was to study the physicochemical and biological properties of synthesized zinc doped hydroxyapatite (ZnHAp) nanoparticles with Zn concentrations í µí±¥ Zn = 0 (HAp), í µí±¥ Zn = 0.07 (7ZnHAp), and í µí±¥ Zn = 0.1 (10ZnHAp) for potential use in biological applications. The morphology, size, compositions, and incorporation of zinc into hydroxyapatite were characterized by scanning electron microscopy (SEM), transmission electron micro...

  16. Assessment of the effects of student response systems on student learning and attitudes over a broad range of biology courses.

    Science.gov (United States)

    Preszler, Ralph W; Dawe, Angus; Shuster, Charles B; Shuster, Michèle

    2007-01-01

    With the advent of wireless technology, new tools are available that are intended to enhance students' learning and attitudes. To assess the effectiveness of wireless student response systems in the biology curriculum at New Mexico State University, a combined study of student attitudes and performance was undertaken. A survey of students in six biology courses showed that strong majorities of students had favorable overall impressions of the use of student response systems and also thought that the technology improved their interest in the course, attendance, and understanding of course content. Students in lower-division courses had more strongly positive overall impressions than did students in upper-division courses. To assess the effects of the response systems on student learning, the number of in-class questions was varied within each course throughout the semester. Students' performance was compared on exam questions derived from lectures with low, medium, or high numbers of in-class questions. Increased use of the response systems in lecture had a positive influence on students' performance on exam questions across all six biology courses. Students not only have favorable opinions about the use of student response systems, increased use of these systems increases student learning.

  17. A Comparison of Two Low-Stakes Methods for Administering a Program-Level Biology Concept Assessment.

    Science.gov (United States)

    Couch, Brian A; Knight, Jennifer K

    2015-12-01

    Concept assessments are used commonly in undergraduate science courses to assess student learning and diagnose areas of student difficulty. While most concept assessments align with the content of individual courses or course topics, some concept assessments have been developed for use at the programmatic level to gauge student progress and achievement over a series of courses or an entire major. The broad scope of a program-level assessment, which exceeds the content of any single course, creates several test administration issues, including finding a suitable time for students to take the assessment and adequately incentivizing student participation. These logistical considerations must also be weighed against test security and the ability of students to use unauthorized resources that could compromise test validity. To understand how potential administration methods affect student outcomes, we administered the Molecular Biology Capstone Assessment (MBCA) to three pairs of matched upper-division courses in two ways: an online assessment taken by students outside of class and a paper-based assessment taken during class. We found that overall test scores were not significantly different and that individual item difficulties were highly correlated between these two administration methods. However, in-class administration resulted in reduced completion rates of items at the end of the assessment. Taken together, these results suggest that an online, outside-of-class administration produces scores that are comparable to a paper-based, in-class format and has the added advantages that instructors do not have to dedicate class time and students are more likely to complete the entire assessment.

  18. A review of the known biological characteristics of the Great Meteor East site together with a sampling programme for a biological site assessment

    International Nuclear Information System (INIS)

    Roe, H.S.J.

    1985-01-01

    Existing biological information on GME is reviewed. In common with most other oceanic areas there is very little data available from depths below 2000m. There is virtually no direct benthic information and none at all on the midwater/benthic boundary layer. Existing data from a wider geographic area are relevant to GME but the applicability of such data varies according to the hydrography. A sampling programme is outlined which will allow a comprehensive quantitative and qualitative assessment of the midwater and benthic ecosystems. Particular attention will be paid to the interactions between benthic and midwater communities just above the sea floor. (author)

  19. ASSESSMENT OF THE RESPONSE OF PATIENTS WITH CROHN'S DISEASE TO BIOLOGICAL THERAPY USING NEW NON-INVASIVE MARKERS: lactoferrin and calprotectin

    Directory of Open Access Journals (Sweden)

    Islaine Martins NOGUEIRA

    2013-04-01

    Full Text Available Context The use of fecal markers to monitor Crohn's disease is crucial for assessing the response to treatment. Objective To assess the inflammatory activity of Crohn's disease by comparing fecal markers (calprotectin and lactoferrin, colonoscopy combined with biopsy, and the Crohn's disease activity index (CDAI, as well as serum markers, before treatment with infliximab, after the end of induction, and after the end of maintenance. Methods Seventeen patients were included who had been previously diagnosed with Crohn's disease and were using conventional treatment but required the introduction of biological therapy with infliximab. Each patient underwent a colonoscopy with biopsy, serum, and fecal (calprotectin and lactoferrin tests to assess inflammatory activity, and CDAI assessments before treatment with infliximab, after induction (week 8, and after maintenance (week 32. Results The calprotectin levels exhibited significant reductions (P = 0.04 between the assessment before treatment with infliximab and the end of induction, which did not occur after the end of the maintenance phase. Lactoferrin remained positive throughout the three phases of the study. Regarding the histological assessment, a significant difference was found only between the assessment before treatment and after the end of maintenance (P = 0.036, and 60% of the patients exhibited histological improvements after the completion of the follow-up period. The CDAI exhibited a significant difference between the assessment before treatment with infliximab and after induction, as well as before treatment and after maintenance (P<0.01. Conclusion Calprotectin and lactoferrin are not useful for monitoring inflammatory activity in Crohn's disease patients who are subjected to biological therapy.

  20. Computational Assessment of Pharmacokinetics and Biological Effects of Some Anabolic and Androgen Steroids.

    Science.gov (United States)

    Roman, Marin; Roman, Diana Larisa; Ostafe, Vasile; Ciorsac, Alecu; Isvoran, Adriana

    2018-02-05

    The aim of this study is to use computational approaches to predict the ADME-Tox profiles, pharmacokinetics, molecular targets, biological activity spectra and side/toxic effects of 31 anabolic and androgen steroids in humans. The following computational tools are used: (i) FAFDrugs4, SwissADME and admetSARfor obtaining the ADME-Tox profiles and for predicting pharmacokinetics;(ii) SwissTargetPrediction and PASS online for predicting the molecular targets and biological activities; (iii) PASS online, Toxtree, admetSAR and Endocrine Disruptomefor envisaging the specific toxicities; (iv) SwissDock to assess the interactions of investigated steroids with cytochromes involved in drugs metabolism. Investigated steroids usually reveal a high gastrointestinal absorption and a good oral bioavailability, may inhibit someof the human cytochromes involved in the metabolism of xenobiotics (CYP2C9 being the most affected) and reflect a good capacity for skin penetration. There are predicted numerous side effects of investigated steroids in humans: genotoxic carcinogenicity, hepatotoxicity, cardiovascular, hematotoxic and genitourinary effects, dermal irritations, endocrine disruption and reproductive dysfunction. These results are important to be known as an occupational exposure to anabolic and androgenic steroids at workplaces may occur and because there also is a deliberate human exposure to steroids for their performance enhancement and anti-aging properties.

  1. Correlation of liquid chromatographic and biological assay for potency assessment of filgrastim and related impurities.

    Science.gov (United States)

    Skrlin, Ana; Kosor Krnic, Ela; Gosak, Darko; Prester, Berislav; Mrsa, Vladimir; Vuletic, Marko; Runac, Domagoj

    2010-11-02

    In vivo and in vitro potency assays have always been a critical tool for confirmation of protein activity. However, due to their complexity and time consuming procedures, it remains a challenge to find an alternative analytical approach that would enable their replacement with no impact on the quality of provided information. The goal of this research was to determine if a correlation between liquid chromatography assays and in vitro biological assay could be established for filgrastim (recombinant human granulocyte-colony stimulating factor, rhG-CSF) samples containing various amounts of related impurities. For that purpose, relevant filgrastim related impurities were purified to homogeneity and characterized by liquid chromatography and mass spectrometry. A significant correlation (R(2)>0.90) between the two types of assays was revealed. Potency of oxidized filgrastim was determined to be approximately 25% of filgrastim stated potency (1 x 10(8)IU/mg of protein). Formyl-methionine filgrastim had potency of 89% of the filgrastim stated potency, while filgrastim dimer had 67% of filgrastim stated potency. A mathematical model for the estimation of biological activity of filgrastim samples from chromatography data was established and a significant correlation between experimental potency values and potency values estimated by the mathematical model was obtained (R(2)=0.92). Based on these results a conclusion was made that reversed phase high performance liquid chromatography could be used as an alternative for the in vitro biological assay for potency assessment of filgrastim samples. Such an alternative model would enable substitution of a complex and time consuming biological assay with a robust and precise instrumental method in many practical cases. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  2. Compression-based classification of biological sequences and structures via the Universal Similarity Metric: experimental assessment.

    Science.gov (United States)

    Ferragina, Paolo; Giancarlo, Raffaele; Greco, Valentina; Manzini, Giovanni; Valiente, Gabriel

    2007-07-13

    Similarity of sequences is a key mathematical notion for Classification and Phylogenetic studies in Biology. It is currently primarily handled using alignments. However, the alignment methods seem inadequate for post-genomic studies since they do not scale well with data set size and they seem to be confined only to genomic and proteomic sequences. Therefore, alignment-free similarity measures are actively pursued. Among those, USM (Universal Similarity Metric) has gained prominence. It is based on the deep theory of Kolmogorov Complexity and universality is its most novel striking feature. Since it can only be approximated via data compression, USM is a methodology rather than a formula quantifying the similarity of two strings. Three approximations of USM are available, namely UCD (Universal Compression Dissimilarity), NCD (Normalized Compression Dissimilarity) and CD (Compression Dissimilarity). Their applicability and robustness is tested on various data sets yielding a first massive quantitative estimate that the USM methodology and its approximations are of value. Despite the rich theory developed around USM, its experimental assessment has limitations: only a few data compressors have been tested in conjunction with USM and mostly at a qualitative level, no comparison among UCD, NCD and CD is available and no comparison of USM with existing methods, both based on alignments and not, seems to be available. We experimentally test the USM methodology by using 25 compressors, all three of its known approximations and six data sets of relevance to Molecular Biology. This offers the first systematic and quantitative experimental assessment of this methodology, that naturally complements the many theoretical and the preliminary experimental results available. Moreover, we compare the USM methodology both with methods based on alignments and not. We may group our experiments into two sets. The first one, performed via ROC (Receiver Operating Curve) analysis, aims at

  3. Compression-based classification of biological sequences and structures via the Universal Similarity Metric: experimental assessment

    Directory of Open Access Journals (Sweden)

    Manzini Giovanni

    2007-07-01

    Full Text Available Abstract Background Similarity of sequences is a key mathematical notion for Classification and Phylogenetic studies in Biology. It is currently primarily handled using alignments. However, the alignment methods seem inadequate for post-genomic studies since they do not scale well with data set size and they seem to be confined only to genomic and proteomic sequences. Therefore, alignment-free similarity measures are actively pursued. Among those, USM (Universal Similarity Metric has gained prominence. It is based on the deep theory of Kolmogorov Complexity and universality is its most novel striking feature. Since it can only be approximated via data compression, USM is a methodology rather than a formula quantifying the similarity of two strings. Three approximations of USM are available, namely UCD (Universal Compression Dissimilarity, NCD (Normalized Compression Dissimilarity and CD (Compression Dissimilarity. Their applicability and robustness is tested on various data sets yielding a first massive quantitative estimate that the USM methodology and its approximations are of value. Despite the rich theory developed around USM, its experimental assessment has limitations: only a few data compressors have been tested in conjunction with USM and mostly at a qualitative level, no comparison among UCD, NCD and CD is available and no comparison of USM with existing methods, both based on alignments and not, seems to be available. Results We experimentally test the USM methodology by using 25 compressors, all three of its known approximations and six data sets of relevance to Molecular Biology. This offers the first systematic and quantitative experimental assessment of this methodology, that naturally complements the many theoretical and the preliminary experimental results available. Moreover, we compare the USM methodology both with methods based on alignments and not. We may group our experiments into two sets. The first one, performed via ROC

  4. Indicative and complementary effects of human biological indicators for heavy metal exposure assessment.

    Science.gov (United States)

    Xing, Ruiya; Li, Yonghua; Zhang, Biao; Li, Hairong; Liao, Xiaoyong

    2017-10-01

    Although human biological indicators have been widely utilized for biomonitoring environmental pollutants in health exposure assessment, the relationship between internal and external exposure has not yet been adequately established. In this study, we collected and analyzed 61 rice, 56 pepper, and 58 soil samples, together with 107 hair, 107 blood, and 107 urine samples from residents living in selected intensive mining areas in China. Concentrations of most of the four elements considered (Pb, Cd, Hg, and Se) exceeded national standards, implying high exposure risk in the study areas. Regression analysis also revealed a correlation (0.33, P human hair (as well as in human blood); to some extent, Pb content in hair and blood could therefore be used to characterize external Pb exposure. The correlation between Hg in rice and in human hair (up to 0.5, P human hair for Hg exposure. A significant correlation was also noted between concentrations of some elements in different human samples, for example, between Hg in hair and blood (0.641, P assessing heavy metal exposure.

  5. The effectiveness of spent coffee grounds and its biochar on the amelioration of heavy metals-contaminated water and soil using chemical and biological assessments.

    Science.gov (United States)

    Kim, Min-Suk; Min, Hyun-Gi; Koo, Namin; Park, Jeongsik; Lee, Sang-Hwan; Bak, Gwan-In; Kim, Jeong-Gyu

    2014-12-15

    Spent coffee grounds (SCG) and charred spent coffee grounds (SCG-char) have been widely used to adsorb or to amend heavy metals that contaminate water or soil and their success is usually assessed by chemical analysis. In this work, the effects of SCG and SCG-char on metal-contaminated water and soil were evaluated using chemical and biological assessments; a phytotoxicity test using bok choy (Brassica campestris L. ssp. chinensis Jusl.) was conducted for the biological assessment. When SCG and SCG-char were applied to acid mine drainage, the heavy metal concentrations were decreased and the pH was increased. However, for SCG, the phytotoxicity increased because a massive amount of dissolved organic carbon was released from SCG. In contrast, SCG-char did not exhibit this phenomenon because any easily released organic matter was removed during pyrolysis. While the bioavailable heavy metal content decreased in soils treated with SCG or SCG-char, the phytotoxicity only rose after SCG treatment. According to our statistical methodology, bioavailable Pb, Cu and As, as well as the electrical conductivity representing an increase in organic content, affected the phytotoxicity of soil. Therefore, applying SCG during environment remediation requires careful biological assessments and evaluations of the efficiency of this remediation technology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Silver nanoparticles in complex biological media: assessment of colloidal stability and protein corona formation

    Energy Technology Data Exchange (ETDEWEB)

    Argentiere, Simona, E-mail: simona.argentiere@fondazionefilarete.com; Cella, Claudia, E-mail: claudia.cella@unimi.it [Fondazione Filarete (Italy); Cesaria, Maura, E-mail: maura.cesaria@le.infn.it [Università del Salento, Dipartimento di Matematica e Fisica “Ennio De Giorgi” (Italy); Milani, Paolo, E-mail: paolo.milani@mi.infn.it; Lenardi, Cristina, E-mail: cristina.lenardi@mi.infn.it [Università degli Studi di Milano, CIMAINA and Dipartimento di Fisica (Italy)

    2016-08-15

    Engineered silver nanoparticles (AgNPs) are among the most used nanomaterials in consumer products, therefore concerns are raised about their potential for adverse effects in humans and environment. Although an increasing number of studies in vitro and in vivo are being reported on the toxicity of AgNPs, most of them suffer from incomplete characterization of AgNPs in the tested biological media. As a consequence, the comparison of toxicological data is troublesome and the toxicity evaluation still remains an open critical issue. The development of a reliable protocol to evaluate interactions of AgNPs with surrounding proteins as well as to assess their colloidal stability is therefore required. In this regard, it is of importance not only to use multiple, easy-to-access and simple techniques but also to understand limitations of each characterization methods. In this work, the morphological and structural behaviour of AgNPs has been studied in two relevant biological media, namely 10 % FBS and MP. Three different techniques (Dynamic Light Scattering, Transmission Electron Microscopy, UV–Vis spectroscopy) were tested for their suitability in detecting AgNPs of three different sizes (10, 40 and 100 nm) coated with either citrate or polyvinylpyrrolidone. Results showed that UV–Vis spectroscopy is the most versatile and informative technique to gain information about interaction between AgNPs and surrounding proteins and to determine their colloidal stability in the tested biological media. These findings are expected to provide useful insights in characterizing AgNPs before performing any further in vitro/in vivo experiment.

  7. [The safety of biologics : a risk-benefit assessment of treating rheumatoid arthritis with biologics based on registry data on mortality].

    Science.gov (United States)

    Sander, O

    2010-11-01

    The aim of this study is a risk-benefit assessment of treating rheumatoid arthritis with biologics based on registry data on mortality.UK, Sweden and Spain have published evaluable data on mortality. A parallel control group was conducted in the UK. Sweden and Spain used an historical cohort for comparison.Central registries supported British and Swedish research by sending details on all deaths. The variety of possible confounders prevents direct comparisons of the registers and safe predictions for individual patients.The death rate in TNF-inhibitor-treated patients is higher than in the general population but lower than in the control groups with RA. Thus comorbidities are not balanced, the weighted mortality rate scaled down the difference between exposed patients and controls. When TNF-inhibitors are given for the usual indication, mortality is reduced compared to conventional therapy.

  8. An assessment of the biological and physico-chemical ...

    African Journals Online (AJOL)

    Physico-chemical parameters and biological (phytoplanktons and macrophytes) composition of Bindare and Hanwa streams in Zaria, Nigeria were studied for a period of three months (September to November 2008). The streams have catchments of varying land use patterns ranging from agricultural (farming and animal ...

  9. Biological information systems: Evolution as cognition-based information management.

    Science.gov (United States)

    Miller, William B

    2018-05-01

    An alternative biological synthesis is presented that conceptualizes evolutionary biology as an epiphenomenon of integrated self-referential information management. Since all biological information has inherent ambiguity, the systematic assessment of information is required by living organisms to maintain self-identity and homeostatic equipoise in confrontation with environmental challenges. Through their self-referential attachment to information space, cells are the cornerstone of biological action. That individualized assessment of information space permits self-referential, self-organizing niche construction. That deployment of information and its subsequent selection enacted the dominant stable unicellular informational architectures whose biological expressions are the prokaryotic, archaeal, and eukaryotic unicellular forms. Multicellularity represents the collective appraisal of equivocal environmental information through a shared information space. This concerted action can be viewed as systematized information management to improve information quality for the maintenance of preferred homeostatic boundaries among the varied participants. When reiterated in successive scales, this same collaborative exchange of information yields macroscopic organisms as obligatory multicellular holobionts. Cognition-Based Evolution (CBE) upholds that assessment of information precedes biological action, and the deployment of information through integrative self-referential niche construction and natural cellular engineering antecedes selection. Therefore, evolutionary biology can be framed as a complex reciprocating interactome that consists of the assessment, communication, deployment and management of information by self-referential organisms at multiple scales in continuous confrontation with environmental stresses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Research toward the development of a biologically based dose response assessment for inorganic arsenic carcinogenicity: A progress report

    International Nuclear Information System (INIS)

    Clewell, Harvey J.; Thomas, Russell S.; Gentry, P. Robinan; Crump, Kenny S.; Kenyon, Elaina M.; El-Masri, Hisham A.; Yager, Janice W.

    2007-01-01

    Cancer risk assessments for inorganic arsenic have been based on human epidemiological data, assuming a linear dose response below the range of observation of tumors. Part of the reason for the continued use of the linear approach in arsenic risk assessments is the lack of an adequate biologically based dose response (BBDR) model that could provide a quantitative basis for an alternative nonlinear approach. This paper describes elements of an ongoing collaborative research effort between the CIIT Centers for Health Research, the U.S. Environmental Protection Agency, ENVIRON International, and EPRI to develop BBDR modeling approaches that could be used to inform a nonlinear cancer dose response assessment for inorganic arsenic. These efforts are focused on: (1) the refinement of physiologically based pharmacokinetic (PBPK) models of the kinetics of inorganic arsenic and its metabolites in the mouse and human; (2) the investigation of mathematical solutions for multi-stage cancer models involving multiple pathways of cell transformation; (3) the review and evaluation of the literature on the dose response for the genomic effects of arsenic; and (4) the collection of data on the dose response for genomic changes in the urinary bladder (a human target tissue for arsenic carcinogenesis) associated with in vivo drinking water exposures in the mouse as well as in vitro exposures of both mouse and human cells. An approach is proposed for conducting a biologically based margin of exposure risk assessment for inorganic arsenic using the in vitro dose response for the expression of genes associated with the obligatory precursor events for arsenic tumorigenesis

  11. The acquisition of dangerous biological materials: Technical facts sheets to assist risk assessments of 46 potential BW agents

    Energy Technology Data Exchange (ETDEWEB)

    Aceto, Donato Gonzalo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Astuto-Gribble, Lisa M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gaudioso, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2007-11-01

    Numerous terrorist organizations have openly expressed interest in producing and deploying biological weapons. However, a limiting factor for many terrorists has been the acquisition of dangerous biological agents, as evidenced by the very few successful instances of biological weapons use compared to the number of documented hoaxes. Biological agents vary greatly in their ability to cause loss of life and economic damage. Some agents, if released properly, can kill many people and cause an extensive number of secondary infections; other agents will sicken only a small number of people for a short period of time. Consequently, several biological agents can potentially be used to perpetrate a bioterrorism attack but few are likely capable of causing a high consequence event. It is crucial, from a US national security perspective, to more deeply understand the likelihood that terrorist organizations can acquire the range of these agents. Few studies have attempted to comprehensively compile the technical information directly relevant to the acquisition of dangerous bacteria, viruses and toxins. In this report, technical fact sheets were assembled for 46 potentially dangerous biological agents. Much of the information was taken from various research sources which could ultimately and significantly expedite and improve bioterrorism threat assessments. By systematically examining a number of specific agent characteristics included in these fact sheets, it may be possible to detect, target, and implement measures to thwart future terrorist acquisition attempts. In addition, the information in these fact sheets may be used as a tool to help laboratories gain a rudimentary understanding of how attractive a method laboratory theft is relative to other potential acquisition modes.

  12. Including a Service Learning Educational Research Project in a Biology Course-I: Assessing Community Awareness of Childhood Lead Poisoning

    Science.gov (United States)

    Abu-Shakra, Amal; Saliim, Eric

    2012-01-01

    A university course project was developed and implemented in a biology course, focusing on environmental problems, to assess community awareness of childhood lead poisoning. A set of 385 questionnaires was generated and distributed in an urban community in North Carolina, USA. The completed questionnaires were sorted first into yes and no sets…

  13. Classification of Recombinant Biologics in the EU

    DEFF Research Database (Denmark)

    Klein, Kevin; De Bruin, Marie L; Broekmans, Andre W

    2015-01-01

    BACKGROUND AND OBJECTIVE: Biological medicinal products (biologics) are subject to specific pharmacovigilance requirements to ensure that biologics are identifiable by brand name and batch number in adverse drug reaction (ADR) reports. Since Member States collect ADR data at the national level...... of biologics by national authorities responsible for ADR reporting. METHODS: A sample list of recombinant biologics from the European Medicines Agency database of European Public Assessment Reports was created to analyze five Member States (Belgium, the Netherlands, Spain, Sweden, and the UK) according...

  14. Biological assessment of contaminated land using earthworm biomarkers in support of chemical analysis

    International Nuclear Information System (INIS)

    Hankard, Peter K.; Svendsen, Claus; Wright, Julian; Wienberg, Claire; Fishwick, Samantha K.; Spurgeon, David J.; Weeks, Jason M.

    2004-01-01

    Biological indicators can be used to assess polluted sites but their success depends on the availability of suitable assays. The aim of this study was to investigate the performance of two earthworm biomarkers, lysosomal membrane stability measured using the neutral red retention assay (NRR-T) and the total immune activity (TIA) assay, that have previously been established as responsive to chemical exposure. Responses of the two assays were measured following in situ exposure to complexly contaminated field soils at three industrial sites as well as urban and rural controls. The industrial sites were contaminated with a range of metal (cadmium, copper, lead, zinc, nickel and cobalt) and organic (including polycyclic aromatic hydrocarbons) contaminants, but at concentrations below the 'New Dutch List' Intervention concentrations. Exposed earthworms accumulated both metals and organic compounds at the contaminated sites, indicating that there was significant exposure. No effect on earthworm survival was found at any of the sites. Biomarker measurements, however, indicated significant effects, with lower NRR-T and TIA found in the contaminated soils when compared to the two controls. The results demonstrate that a comparison of soil pollutant concentrations with guideline values would not have unequivocally identified chemical exposure and toxic effect for soil organisms living in these soils. However, the earthworm biomarkers successfully identified significant exposure and biological effects caused by the mixture of chemicals present

  15. SU-G-TeP3-07: On the Development of Mechano-Biological Assessment of Leukemia Cells Using Optical Tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Brost, E; Brooks, J; Piepenburg, J; Watanabe, Y; Hui, S [Therapeutic Radiology and Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States); Chakraborty, S; Das, T [Max Planck Institute for Intelligent Systems Department of New Materials and Biosystems Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur (India); Green, A [Department of Physics, University of Saint Thomas, Saint Paul, MN (United States)

    2016-06-15

    Purpose: Patients with BCR-ABL (Ph +ve) acute lymphoblastic leukemia are at very high risk of relapse and mortality. In line with the NIH mission to understand the physical and biological processes, we seek to report mechano-biological method to assessment and distinguish treated/untreated leukemia cells. Methods: BCR-ABL leukemia cell populations and silica microspheres were trapped in a 100x magnification optical trapping system (λ=660 nm, 70 mW). Light refracted through the trapped sample was collected in the back focal plane by a quadrant detector to measure the positions of individual cells. The sample was driven at a known frequency and amplitude with a flexure translation stage, and the target’s response was recorded. The measured response was calibrated using the known driving parameters, and information about cell movements due to mechano-biological effects was extracted. Two leukemia cell populations were tested: a control group and a group treated with 2 Gy. Results: The mechano-biological movements of 10 microspheres, control cells, and treated cells were tracked over a ∼30 minute window at 1 minute intervals. The microsphere population did not see significant change in mechano-biological movements over the testing interval and remained constant. The control cell population saw a two-fold rise in activity that peaked around 1200 seconds, then dropped off sharply. The treated cell population saw a two-fold rise in activity that peaked at 400 seconds, and dropped off slowly. Conclusion: The investigated technique allows for direct measurement the movements of a trapped object due to mechano-biological effects such as thermal and extracellular motion. When testing microspheres, the mechano-biological activity remained constant over time due to the lack of biological factors. In both the control and treated cell populations, the mechano-biological activity was increased, possibly due to mitochondrial activation. This extra activity decreased over time

  16. Funding needed for assessments of weed biological control

    Science.gov (United States)

    John L. Maron; Dean E. Pearson; Stephen M. Hovick; Walter P. Carson

    2010-01-01

    Invasive non-native plants are a serious economic and ecological problem worldwide, and major efforts are therefore devoted to reducing weed abundance in agricultural and natural settings. Effective options for reducing invasive abundance and spread are few, although one common approach is biological control - the introduction of specialist herbivores or pathogens from...

  17. The effect of network biology on drug toxicology

    DEFF Research Database (Denmark)

    Gautier, Laurent; Taboureau, Olivier; Audouze, Karine Marie Laure

    2013-01-01

    Introduction: The high failure rate of drug candidates due to toxicity, during clinical trials, is a critical issue in drug discovery. Network biology has become a promising approach, in this regard, using the increasingly large amount of biological and chemical data available and combining...... it with bioinformatics. With this approach, the assessment of chemical safety can be done across multiple scales of complexity from molecular to cellular and system levels in human health. Network biology can be used at several levels of complexity. Areas covered: This review describes the strengths and limitations...... of network biology. The authors specifically assess this approach across different biological scales when it is applied to toxicity. Expert opinion: There has been much progress made with the amount of data that is generated by various omics technologies. With this large amount of useful data, network...

  18. Functional near infrared spectroscopy as a potential biological assessment of addiction recovery: preliminary findings.

    Science.gov (United States)

    Dempsey, Jared P; Harris, Kitty S; Shumway, Sterling T; Kimball, Thomas G; Herrera, J Caleb; Dsauza, Cynthia M; Bradshaw, Spencer D

    2015-03-01

    Addiction science has primarily utilized self-report, continued substance use, and relapse factors to explore the process of recovery. However, the entry into successful abstinence substantially reduces our assessment abilities. Advances in neuroscience may be the key to objective understanding, treating, and monitoring long-term success in addiction recovery. To explore functional near infrared spectroscopy (fNIR) as a viable technique in the assessment of addiction-cue reactivity. Specifically, prefrontal cortex (PFC) activation to alcohol cues was explored among formally alcohol-dependent individuals, across varying levels of successful abstinence. The aim of the investigation was to identify patterns of PFC activation change consistent with duration of abstinence. A total of 15 formally alcohol-dependent individuals, with abstinence durations ranging from 1 month to 10 years, viewed alcohol images during fNIR PFC assessment. Participants also subjectively rated the same images for affect and arousal level. Subjective ratings of alcohol cues did not significantly correlate with duration of abstinence. As expected, days of abstinence did not significantly correlate with neutral cue fNIR reactivity. However, for alcohol cues, fNIR results showed increased days of abstinence was associated with decreased activation within the dorsolateral and dorsomedial prefrontal cortex regions. The present results suggest that fNIR may be a viable tool in the assessment of addiction-cue reactivity. RESULTS also support previous findings on the importance of dorsolateral and dorsomedial PFC in alcohol-cue activation. The findings build upon these past results suggesting that fNIR-assessed activation may represent a robust biological marker of successful addiction recovery.

  19. Biological dose assessment of 15 victims in Haerbin radiation accident

    International Nuclear Information System (INIS)

    Liu, Jian-xiang; Huang, Min-yan; Ruan, Jian-lei; Bai, Yu-shu; Xu, Su

    2008-01-01

    unstable aberrations were analyzed and biological dose was assessed according to the dose-effect curves built by our lab member. For micronucleus analysis, blood were added cytochalasin-B after culturing 40 hours. The doses were assessed according to the dose-effect curves built by our lab member. According to a human lymphocyte chromosome aberration and micronucleus analysis, the estimated maximum irradiation dose of 3 exposed patients is lower than 2 Gy, equal to the dose of once uneven total-body irradiation. In vitro dose-response calibration curves for (60)Co gamma rays have been established for unstable chromosome aberrations in human peripheral blood lymphocytes. The observed dose-response data were fitted to a linear quadratic model. The calibration curve parameters were used to estimate the equivalent whole-body dose and dose to the irradiated region in partial body irradiation of cancer patients. The derived partial body doses and fractions of lymphocytes irradiated were in agreement with those estimated from the radiotherapy regimes. (author)

  20. Assessing environmental quality status by integrating chemical and biological effect data: The Cartagena coastal zone as a case.

    Science.gov (United States)

    Martínez-Gómez, Concepción; Fernández, Beatriz; Robinson, Craig D; Campillo, J Antonio; León, Víctor M; Benedicto, José; Hylland, Ketil; Vethaak, A Dick

    2017-03-01

    Cartagena coastal zone (W Mediterranean) was chosen for a practical case study to investigate the suitability of an integrated indicator framework for marine monitoring and assessment of chemicals and their effects, which was developed by ICES and OSPAR. Red mullet (Mullus barbatus) and the Mediterranean mussel (Mytilus galloprovincialis) were selected as target species. Concentrations of contaminants in sediment and biota, and contaminant-related biomarkers were analysed. To assess environmental quality in the Cartagena coastal zone with respect to chemical pollution, data were assessed using available assessment criteria, and then integrated for different environmental matrices. A qualitative scoring method was used to rank the overall assessments into selected categories and to evaluate the confidence level of the final integrated assessment. The ICES/OSPAR integrated assessment framework, originally designed for the North Atlantic, was found to be applicable for Mediterranean species and environmental matrices. Further development of assessment criteria of chemical and biological parameters in sediments and target species from the Mediterranean will, however, be required before this framework can be fully applied for determining Good Environmental Status (GES) of the Marine Strategy Framework Directive in these regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Macroinvertebrate-based assessment of biological condition at selected sites in the Eagle River watershed, Colorado, 2000-07

    Science.gov (United States)

    Zuellig, Robert E.; Bruce, James F.; Healy, Brian D.; Williams, Cory A.

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Colorado River Water Conservation District, Eagle County, Eagle River Water and Sanitation District, Upper Eagle Regional Water Authority, Colorado Department of Transportation, City of Aurora, Town of Eagle, Town of Gypsum, Town of Minturn, Town of Vail, Vail Resorts, Colorado Springs Utilities, Denver Water, and the U.S. Department of Agriculture Forest Service (FS), compiled macroinvertebrate (73 sites, 124 samples) data previously collected in the Eagle River watershed from selected USGS and FS studies, 2000-07. These data were analyzed to assess the biological condition (that is, biologically ?degraded? or ?good?) at selected sites in the Eagle River watershed and determine if site class (for example, urban or undeveloped) described biological condition. An independently developed predictive model was applied to calculate a site-specific measure of taxonomic completeness for macroinvertebrate communities, where taxonomic completeness was expressed as the ratio of observed (O) taxa to those expected (E) to occur at each site. Macroinvertebrate communities were considered degraded at sites were O/E values were less than 0.80, indicating that at least 20 percent of expected taxa were not observed. Sites were classified into one of four classes (undeveloped, adjacent road or highway or both, mixed, urban) using a combination of riparian land-cover characteristics, examination of topographic maps and aerial imagery, screening for exceedances in water-quality standards, and best professional judgment. Analysis of variance was used to determine if site class accounted for variability in mean macroinvertebrate O/E values. Finally, macroinvertebrate taxa observed more or less frequently than expected at urban sites were indentified. This study represents the first standardized assessment of biological condition of selected sites distributed across the Eagle River watershed. Of the 73 sites evaluated, just over

  2. A timeless biology.

    Science.gov (United States)

    Tozzi, Arturo; Peters, James F; Chafin, Clifford; De Falco, Domenico; Torday, John S

    2018-05-01

    Contrary to claims that physics is timeless while biology is time-dependent, we take the opposite standpoint: physical systems' dynamics are constrained by the arrow of time, while living assemblies are time-independent. Indeed, the concepts of "constraints" and "displacements" shed new light on the role of continuous time flow in life evolution, allowing us to sketch a physical gauge theory for biological systems in long timescales. In the very short timescales of biological systems' individual lives, time looks like "frozen" and "fixed", so that the second law of thermodynamics is momentarily wrecked. The global symmetries (standing for biological constrained trajectories, i.e. the energetic gradient flows dictated by the second law of thermodynamics in long timescales) are broken by local "displacements" where time is held constant, i.e., modifications occurring in living systems. Such displacements stand for brief local forces, able to temporarily "break" the cosmic increase in entropy. The force able to restore the symmetries (called "gauge field") stands for the very long timescales of biological evolution. Therefore, at the very low speeds of life evolution, time is no longer one of the four phase space coordinates of a spacetime Universe: it becomes just a gauge field superimposed to three-dimensional biological systems. We discuss the implications in biology: when assessing living beings, the underrated role of isolated "spatial" modifications needs to be emphasized, living apart the evolutionary role of time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Biological assessments for the low energy demonstration accelerator, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Cross, S.

    1997-03-01

    This report discusses the biological impact to the area around the Los Alamos National Laboratory of the Low Energy Demonstration Accelerator. In particular the impact to the soils, water quality, vegetation, and wildlife are discussed.

  4. Baseline requirements for assessment of mining impact using biological monitoring

    International Nuclear Information System (INIS)

    Humphrey, C.L.; Dostine, P.L.

    1995-01-01

    Biological monitoring programmes for environmental protection should provide for both early detection of possible adverse effects, and assessment of the ecological significance of these effects. Monitoring techniques are required that include responses sensitive to the impact, that can be subjected to rigorous statistical analysis and for which statistical power is high. Such issues in baseline research of 'what and how to measure?' and 'for how long?' have been the focus of a programme being developed to monitor and assess effects of mining operations on the essentially pristine, freshwater ecosystems of the Alligator Rivers Region (ARR) in tropical northern Australia. Application of the BACIP (Before, After, Control, Impact, Paired differences) design, utilizing a form of temporal replication, to univariate (single species) and multivariate (community) data is described. The BACIP design incorporates data from single control and impact sites. We argue for modification of the design for particular studies conducted in streams, to incorporate additional independent control sites from adjacent catchment. Inferential power, by way of (i) more confidently attributing cause to an observed change and (ii) providing information about the ecological significance of the change, will be enhanced using a modified BACIP design. In highly valued environments such as the ARR, monitoring programmes require application of statistical tests with high power to guarantee that an impact no greater than a prescribed amount has gone undetected. A minimum number of baseline years using the BACIP approach would therefore be required in order to achieve some desired level of statistical power. This paper describes the results of power analyses conducted on 2-5 years (depending upon the technique) of baseline data from streams of the ARR and discuss the implications of these results for management. 44 refs., 1 tab., 3 figs

  5. How Important Is the Assessment of Practical Work? An Opinion Piece on the New Biology A-Level from BERG

    Science.gov (United States)

    Journal of Biological Education, 2014

    2014-01-01

    As education in England emerges from a major curriculum review (DfE 2013), the next few years will see significant changes in what is taught in schools and how this is assessed. As a core subject, under the current proposals, all students, from the beginning of primary school until age 16, will study science in some detail. Biology is an exciting,…

  6. The biological assessment of flora and fauna as standards for changes in the near-shore ocean environment: a study of Barbers Point Harbor.

    Science.gov (United States)

    Hokama, Y; Wachi, K M; Shiraki, A; Goo, C; Ebesu, J S

    2001-02-01

    The biological assessments of the flora and fauna in the near-shore ocean environment, specifically Barbers Point Harbor (BPH), demonstrate the usefulness of these biological analyses for evaluation of the changes occurring following man-made excavation for expansion of the harbor. The study included identification and enumeration of macroalgae and dinoflagellates and analyses of herbivores and carnivores in four areas within the perimeter of the harbor and the north and south entrances into the harbor. Numbers of macroalgae varied between 1994 and 1999 surveys, with significant decrease in numbers in stations C, D and E. Stations A and B were similar between 1994 and 1999 with a slight increase in 1999. The significant differences were shown with the appearance of Gambierdiscus toxicus (G toxicus) in 1999 among the algae in stations A and B. Assessment of herbivores and carnivores with the immunological membrane immunobead assay using monoclonal antibody to ciguatoxin and related polyethers demonstrated an increase in fish toxicity among the herbivore from 1994-1999 (22% increase) with a decrease (22%) in non-toxic fish. This was also demonstrated in the carnivores, but to a lesser degree. It is suggested that the biological analyses of the flora and the fauna of the near-shore ocean environment are appropriate to assess the changes that occur from natural and man-made alterations.

  7. Fishery Biology Database (AGDBS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Basic biological data are the foundation on which all assessments of fisheries resources are built. These include parameters such as the size and age composition of...

  8. Implementing recommendations for introductory biology by writing a new textbook.

    Science.gov (United States)

    Barsoum, Mark J; Sellers, Patrick J; Campbell, A Malcolm; Heyer, Laurie J; Paradise, Christopher J

    2013-01-01

    We redesigned the undergraduate introductory biology course by writing a new textbook (Integrating Concepts in Biology [ICB]) that follows first principles of learning. Our approach emphasizes primary data interpretation and the utility of mathematics in biology, while de-emphasizing memorization. This redesign divides biology into five big ideas (information, evolution, cells, emergent properties, homeostasis), addressing each at five levels of organization (molecules, cells, organisms, populations, ecological systems). We compared our course outcomes with two sections that used a traditional textbook and were taught by different instructors. On data interpretation assessments administered periodically during the semester, our students performed better than students in the traditional sections (p = 0.046) and exhibited greater improvement over the course of the semester (p = 0.015). On factual content assessments, our students performed similarly to students in the other sections (p = 0.737). Pre- and postsemester assessment of disciplinary perceptions and self-appraisal indicate that our students acquired a more accurate perception of biology as a discipline and may have developed a more realistic evaluation of their scientific abilities than did the control students (p biology.

  9. Comparison Between Water Quality Index (WQI) and Biological Water Quality Index (BWQI) for Water Quality Assessment: Case Study of Melana River, Johor

    International Nuclear Information System (INIS)

    Nor Zaiha Arman; Mohd Ismid Mohd Said; Shamila Azman; Muhammad Hazim Mat Hussin

    2013-01-01

    A study of water quality in Melana River, Johor was carried out in three consecutive months (March - May 2012). This study aims to determine the comparative results through biological monitoring as well as conventional method (physical and chemical analysis). Assessment is carried out through collection and identification of the biological indicator which comprises of macro benthos based on Biological Water Quality Index (BWQI). Comparison was done based on two methods namely invertebrate analysis and also laboratory analysis. For invertebrate analysis, Melana River consist of three types of Family groups namely Nymphs, Larvae and Molluscs. The result for Water Quality Index (WQI) and also Biological Water Quality Index (BWQI) analysis showed that the level of Melana River is polluted and classified in Class III. This study shows that even though different methods were used, the similar results were obtained for both rivers and can be applied to any river to identify their level of cleanliness. (author)

  10. EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2011 update)

    DEFF Research Database (Denmark)

    Hald, Tine

    ) assessment was developed by EFSA for its own use to provide a generic risk assessment approach applicable across EFSA’s scientific Panels, for biological agents notified for intentional use in the whole food chain. The safety of unambiguously defined biological agents at the highest taxonomic unit......EFSA is requested to assess the safety of a broad range of biological agents (including microorganisms and viruses) in the context of notifications for market authorisation as sources of food and feed additives, enzymes and plant protection products. The qualified presumption of safety (QPS...

  11. Tritium biological effects and perspective of the biological study

    International Nuclear Information System (INIS)

    Komatsu, Kenshi

    1998-01-01

    Since tritium is an emitter of weak β-rays (5.7keV) and is able to bind to DNA, i.e., the most important genome component, the biological effects should be expected to be more profound than that of X-rays and γ-rays. When carcinogenesis, genetical effects and the detriments for fetus and embryo were used as a biological endpoint, most of tritium RBE (relative biological effectiveness) ranged from 1 to 2. The tritium risk in man could be calculated from these RBEs and γ-ray risk for human exposure, which are obtained mainly from the data on Atomic Bomb survivors. However, the exposure modality from environmental tritium should be a chronic irradiation with ultra low dose rate or a fractionated irradiation. We must estimate the tritium effect in man based on biological experiments alone, due to lack of such epidemiological data. Low dose rate experiment should be always accompanied by the statistical problem of data, since their biological effects are fairy low, and they should involve a possible repair system, such as adaptive response (or hormesis effect) and 'Kada effect' observed in bacteria. Here we discuss future works for the tritium assessment in man, such as (1) developing a high radiation sensitive assay system with rodent hybrid cells containing a single human chromosome and also (2) study on mammal DNA repair at molecular levels using a radiosensitive hereditary disease, Nijmegen Breakage Syndrome. (author)

  12. Paleoreconstruction by biological markers

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, W K; Moldowan, J M

    1981-06-01

    During diagenesis and conversion of the original lipid fraction of biological systems to petroleum hydrocarbons, the following four basic events needed for paleoreconstruction may be monitored by biological markers: (1) sourcing, (2) maturation, (3) migration and (4) biodegradation. Actual cases of applying biological markers to petroleum exploration problems in different parts of the world are demonstrated. Cretaceous- and Phosphoria-sourced oils in the Wyoming Thrust Belt can be distinguished from one another by high quality source fingerprinting of biomarker terpanes using gas chromatography mass spectrometry. Identification of recently discovered biological markers, head-to-head isoprenoids, allows source differentiation between some oils from Sumatra. The degree of crude oil maturation in basins from California, Alaska, Russia, Wyoming and Louisiana can be assessed by specific biomarker ratios (20S/20R sterane epimers). Field evidence from such interpretation is augmented by laboratory pyrolysis of the rock. Extensive migration is documented by biomarkers in several oils. Biological marker results are consistent with the geological setting and add a dimension in assisting the petroleum explorationist towar paleoreconstruction.

  13. The biological effectiveness of antiproton irradiation

    DEFF Research Database (Denmark)

    Holzscheiter, Michael H.; Bassler, Niels; Agazaryan, Nzhde

    2006-01-01

    ever measurements of the biological effectiveness of antiprotons. Materials and methods: V79 cells were suspended in a semi-solid matrix and irradiated with 46.7 MeV antiprotons, 48 MeV protons, or 60Co c-rays. Clonogenic survival was determined as a function of depth along the particle beams. Dose...... and particle fluence response relationships were constructed from data in the plateau and Bragg peak regions of the beams and used to assess the biological effectiveness. Results: Due to uncertainties in antiproton dosimetry we defined a new term, called the biologically effective dose ratio (BEDR), which...... has a higher relative biological effectiveness (RBE). Conclusion: We have produced the first measurements of the biological consequences of antiproton irradiation. These data substantiate theoretical predictions of the biological effects of antiproton annihilation within the Bragg peak, and suggest...

  14. Dealing with immunogenicity of biologicals: assessment and clinical relevance

    NARCIS (Netherlands)

    Wolbink, Gerrit J.; Aarden, Lucien A.; Dijkmans, B. A. C.

    2009-01-01

    PURPOSE OF REVIEW: In the last decade, biologicals revolutionized rheumatology. An increasing number of patients benefit from biotherapeuticals. However, some patients do not respond to treatment and others lose their response after a certain time. Immunogenicity is one of the factors linked to

  15. Water pollution biology

    Energy Technology Data Exchange (ETDEWEB)

    Mason, C.F. [University of Essex, Colchester (United Kingdom). Dept. of Biology

    1996-12-31

    Chapter 4 of this book describes the effects of major types of pollutants on aquatic life. These are: organic pollution, eutrophication, acidification, toxic chemicals, oil, and radioactivity. The review includes an description of some of the methods of assessing the biological impacts of pollution. 50 refs., 8 figs., 3 tabs.

  16. Quantifying restoration success and recovery in a metal-polluted stream: A 17-year assessment of physicochemical and biological responses

    Science.gov (United States)

    Clements, W.H.; Vieira, N.K.M.; Church, S.E.

    2010-01-01

    Evaluating the effectiveness of stream restoration is often challenging because of the lack of pre-treatment data, narrow focus on physicochemical measures and insufficient post-restoration monitoring. Even when these fundamental elements are present, quantifying restoration success is difficult because of the challenges associated with distinguishing treatment effects from seasonal variation, episodic events and long-term climatic changes.2. We report results of one of the most comprehensive and continuous records of physical, chemical and biological data available to assess restoration success for a stream ecosystem in North America. Over a 17 year period we measured seasonal and annual changes in metal concentrations, physicochemical characteristics, macroinvertebrate communities, and brown trout Salmo trutta populations in the Arkansas River, a metal-contaminated stream in Colorado, USA.3. Although we observed significant improvements in water quality after treatment, the effectiveness of restoration varied temporally, spatially and among biological response variables. The fastest recovery was observed at stations where restoration eliminated point sources of metal contamination. Recovery of macroinvertebrates was significantly delayed at some stations because of residual sediment contamination and because extreme seasonal and episodic variation in metal concentrations prevented recolonization by sensitive species. Synthesis and applications. Because recovery trajectories after the removal of a stressor are often complex or nonlinear, long-term studies are necessary to assess restoration success within the context of episodic events and changes in regional climate. The observed variation in recovery among chemical and biological endpoints highlights the importance of developing objective criteria to assess restoration success. Although the rapid response of macroinvertebrates to reduced metal concentrations is encouraging, we have previously demonstrated that

  17. Biophysics and systems biology.

    Science.gov (United States)

    Noble, Denis

    2010-03-13

    Biophysics at the systems level, as distinct from molecular biophysics, acquired its most famous paradigm in the work of Hodgkin and Huxley, who integrated their equations for the nerve impulse in 1952. Their approach has since been extended to other organs of the body, notably including the heart. The modern field of computational biology has expanded rapidly during the first decade of the twenty-first century and, through its contribution to what is now called systems biology, it is set to revise many of the fundamental principles of biology, including the relations between genotypes and phenotypes. Evolutionary theory, in particular, will require re-assessment. To succeed in this, computational and systems biology will need to develop the theoretical framework required to deal with multilevel interactions. While computational power is necessary, and is forthcoming, it is not sufficient. We will also require mathematical insight, perhaps of a nature we have not yet identified. This article is therefore also a challenge to mathematicians to develop such insights.

  18. Development of the Statistical Reasoning in Biology Concept Inventory (SRBCI)

    Science.gov (United States)

    Deane, Thomas; Nomme, Kathy; Jeffery, Erica; Pollock, Carol; Birol, Gülnur

    2016-01-01

    We followed established best practices in concept inventory design and developed a 12-item inventory to assess student ability in statistical reasoning in biology (Statistical Reasoning in Biology Concept Inventory [SRBCI]). It is important to assess student thinking in this conceptual area, because it is a fundamental requirement of being…

  19. Supporting Treatment Decisions in Patients with Differentiated Thyroid Carcinoma (DTC) under Radioiodine-131 Therapy: Role of Biological Dosimetry Assessment

    International Nuclear Information System (INIS)

    Fadel, A.M.; Chebel, G.M.; Di Giorgio, M.; Vallerga, M.B.; Taja, M.R.; Radl, A.; Bubniak, R.V.; Oneto, A.

    2010-01-01

    Radioiodine-131 therapy is applied in patients with differentiated thyroid carcinoma (DTC), within the therapeutic scheme following thyroidectomy, for the ablation of thyroid remnants and treatment of metastatic disease. Several approaches for the selection of a therapeutic dose were applied. The aim of this therapy is to achieve a lethal dose in the tumor tissue, without exceeding the dose of tolerance in healthy tissues (doses greater than 2 Gy in bone marrow could lead to myelotoxicity). In this work, the treatment protocol used incorporates the assessment by biological dosimetry (BD) for estimating doses to whole body and bone marrow, to tailor patient's treatment. Biological Dosimetry prospective studies conducted on samples from patients with cumulative activities, before and after each therapeutic administration, allows to evaluate DNA damage and repair capacity in peripheral blood lymphocytes. (authors)

  20. Managing biological diversity

    Science.gov (United States)

    Samson, Fred B.; Knopf, Fritz L.

    1993-01-01

    Biological diversity is the variety of life and accompanying ecological processes (Off. Technol. Assess. 1987, Wilcove and Samson 1987, Keystone 1991). Conservation of biological diversity is a major environmental issue (Wilson 1988, Counc. Environ. Quality 1991). The health and future of the earth's ecological systems (Lubchenco et al. 1991), global climate change (Botkin 1990), and an ever-increasing rate in loss of species, communities, and ecological systems (Myers 1990) are among issues drawing biological diversity to the mainstream of conservation worldwide (Int. Union Conserv. Nat. and Nat. Resour. [IUCN] et al. 1991). The legal mandate for conserving biological diversity is now in place (Carlson 1988, Doremus 1991). More than 19 federal laws govern the use of biological resources in the United States (Rein 1991). The proposed National Biological Diversity Conservation and Environmental Research Act (H.R. 585 and S.58) notes the need for a national biological diversity policy, would create a national center for biological diversity research, and recommends a federal interagency strategy for ecosystem conservation. There are, however, hard choices ahead for the conservation of biological diversity, and biologists are grappling with how to set priorities in research and management (Roberts 1988). We sense disillusion among field biologists and managers relative to how to operationally approach the seemingly overwhelming charge of conserving biological diversity. Biologists also need to respond to critics like Hunt (1991) who suggest a tree farm has more biological diversity than an equal area of old-growth forest. At present, science has played only a minor role in the conservation of biological diversity (Weston 1992) with no unified approach available to evaluate strategies and programs that address the quality and quantity of biological diversity (Murphy 1990, Erwin 1992). Although actions to conserve biological diversity need to be clearly defined by

  1. Host cell proteins in biologics development: Identification, quantitation and risk assessment.

    Science.gov (United States)

    Wang, Xing; Hunter, Alan K; Mozier, Ned M

    2009-06-15

    Host cell proteins (HCPs) are those produced or encoded by the organisms and unrelated to the intended recombinant product. Some are necessary for growth, survival, and normal cellular processing whereas others may be non-essential, simply carried along as baggage. Like the recombinant product, HCPs may also be modified by the host with a number of post-translational modifications. Regardless of the utility, or lack thereof, HCPs are undesirable in the final drug substance. Though commonly present in small quantities (parts per million expressed as nanograms per milligrams of the intended recombinant protein) much effort and cost is expended by industry to remove them. The purpose of this review is to summarize what is of relevance in regards to the biology, the impact of genomics and proteomics on HCP evaluation, the regulatory expectations, analytical approaches, and various methodologies to remove HCPs with bioprocessing. Historical data, bioinformatics approaches and industrial case study examples are provided. Finally, a proposal for a risk assessment tool is provided which brings these facets together and proposes a means for manufacturers to classify and organize a control strategy leading to meaningful product specifications. 2009 Wiley Periodicals, Inc.

  2. Depressive symptoms, depression, and the effect of biologic therapy among patients in Psoriasis Longitudinal Assessment and Registry (PSOLAR).

    Science.gov (United States)

    Strober, Bruce; Gooderham, Melinda; de Jong, Elke M G J; Kimball, Alexa B; Langley, Richard G; Lakdawala, Nikita; Goyal, Kavitha; Lawson, Fabio; Langholff, Wayne; Hopkins, Lori; Fakharzadeh, Steve; Srivastava, Bhaskar; Menter, Alan

    2018-01-01

    Patients with psoriasis are at an increased risk for depression. However, the impact of treatment on this risk is unclear. Evaluate the incidence and impact of treatment on depression among patients with moderate-to-severe psoriasis. We defined a study population within the Psoriasis Longitudinal Assessment and Registry and measured the incidence of depressive symptoms (Hospital Anxiety and Depression Scale-Depression score ≥8) and adverse events (AEs) of depression within cohorts receiving biologics, conventional systemic therapies, or phototherapy. Patients were evaluated at approximately 6-month intervals. Multivariate modeling determined the impact of treatment on risk. The incidence rates of depressive symptoms were 3.01 per 100 patient-years (PYs) (95% confidence interval [CI], 2.73-3.32), 5.85 per 100 PYs (95% CI, 4.29-7.97), and 5.70 per 100 PYs (95% CI, 4.58-7.10) for biologics, phototherapy, and conventional therapy, respectively. Compared with conventional therapy, biologics reduced the risk for depressive symptoms (hazard ratio, 0.76; 95% CI, 0.59-0.98), whereas phototherapy did not (hazard ratio, 1.05; 95% CI, 0.71-1.54). The incidence rates for AEs of depression were 0.21 per 100 PYs (95% CI, 0.15-0.31) for biologics, 0.55 per 100 PYs (95% CI, 0.21-1.47) for phototherapy, and 0.14 per 100 PYs (95% CI, 0.03-0.55) for conventional therapy; the fact that there were too few events (37 AEs) precluded modeling. Incomplete capture of depression and confounders in the patients on registry. Compared with conventional therapy, biologics appear to be associated with a lower incidence of depressive symptoms among patients with psoriasis. Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  3. Assessment and biological treatment of effluent from textile industry

    African Journals Online (AJOL)

    hope&shola

    (DS), odour and colour intensity prior to biological treatment with mixed culture of Aspergillus niger and Aspergillus ... bioremediation of TSS < 30 mg/l (99.5%), DS (99.6%) and SS (99.3%). Key words: ... (chemical, organic and thermal wastes), pesticides and fertilizers ... decolorisation by microorganism under anaerobic.

  4. Assessment of Knowledge of Participants on Basic Molecular Biology Techniques after 5-Day Intensive Molecular Biology Training Workshops in Nigeria

    Science.gov (United States)

    Yisau, J. I.; Adagbada, A. O.; Bamidele, T.; Fowora, M.; Brai, B. I. C.; Adebesin, O.; Bamidele, M.; Fesobi, T.; Nwaokorie, F. O.; Ajayi, A.; Smith, S. I.

    2017-01-01

    The deployment of molecular biology techniques for diagnosis and research in Nigeria is faced with a number of challenges, including the cost of equipment and reagents coupled with the dearth of personnel skilled in the procedures and handling of equipment. Short molecular biology training workshops were conducted at the Nigerian Institute of…

  5. Statistical analysis of joint toxicity in biological growth experiments

    DEFF Research Database (Denmark)

    Spliid, Henrik; Tørslev, J.

    1994-01-01

    The authors formulate a model for the analysis of designed biological growth experiments where a mixture of toxicants is applied to biological target organisms. The purpose of such experiments is to assess the toxicity of the mixture in comparison with the toxicity observed when the toxicants are...... is applied on data from an experiment where inhibition of the growth of the bacteria Pseudomonas fluorescens caused by different mixtures of pentachlorophenol and aniline was studied.......The authors formulate a model for the analysis of designed biological growth experiments where a mixture of toxicants is applied to biological target organisms. The purpose of such experiments is to assess the toxicity of the mixture in comparison with the toxicity observed when the toxicants...

  6. Risk assessment, eradication, and biological control: global efforts to limit Australian acacia invasions

    Science.gov (United States)

    Wilson, John R.U.; Gairifo, Carla; Gibson, Michelle R.; Arianoutsou, Margarita; Bakar, Baki B.; Baret, Stephane; Celesti-Grapow, Laura; DiTomaso, Joseph M.; Dufour-Dror, Jean-Marc; Kueffer, Christoph; Kull, Christian A.; Hoffman, John H.; Impson, Fiona A.C.; Loope, Lloyd L.; Marchante, Elizabete; Harchante, Helia; Moore, Joslin L.; Murphy, Daniel J.; Tassin, Jacques; Witt, Arne; Zenni, Rafael D.; Richardson, David M.

    2011-01-01

    Aim Many Australian Acacia species have been planted around the world, some are highly valued, some are invasive, and some are both highly valued and invasive. We review global efforts to minimize the risk and limit the impact of invasions in this widely used plant group. Location Global. Methods Using information from literature sources, knowledge and experience of the authors, and the responses from a questionnaire sent to experts around the world, we reviewed: (1) a generalized life cycle of Australian acacias and how to control each life stage, (2) different management approaches and (3) what is required to help limit or prevent invasions. Results Relatively few Australian acacias have been introduced in large numbers, but all species with a long and extensive history of planting have become invasive somewhere. Australian acacias, as a group, have a high risk of becoming invasive and causing significant impacts as determined by existing assessment schemes. Moreover, in most situations, long-lived seed banks mean it is very difficult to control established infestations. Control has focused almost exclusively on widespread invaders, and eradication has rarely been attempted. Classical biological control is being used in South Africa with increasing success. Main conclusions A greater emphasis on pro-active rather than reactive management is required given the difficulties managing established invasions of Australian acacias. Adverse effects of proposed new introductions can be minimized by conducting detailed risk assessments in advance, planning for on-going monitoring and management, and ensuring resources are in place for long-term mitigation. Benign alternatives (e.g. sterile hybrids) could be developed to replace existing utilized taxa. Eradication should be set as a management goal more often to reduce the invasion debt. Introducing classical biological control agents that have a successful track-record in South Africa to other regions and identifying new

  7. Synthetic biology and occupational risk.

    Science.gov (United States)

    Howard, John; Murashov, Vladimir; Schulte, Paul

    2017-03-01

    Synthetic biology is an emerging interdisciplinary field of biotechnology that involves applying the principles of engineering and chemical design to biological systems. Biosafety professionals have done an excellent job in addressing research laboratory safety as synthetic biology and gene editing have emerged from the larger field of biotechnology. Despite these efforts, risks posed by synthetic biology are of increasing concern as research procedures scale up to industrial processes in the larger bioeconomy. A greater number and variety of workers will be exposed to commercial synthetic biology risks in the future, including risks to a variety of workers from the use of lentiviral vectors as gene transfer devices. There is a need to review and enhance current protection measures in the field of synthetic biology, whether in experimental laboratories where new advances are being researched, in health care settings where treatments using viral vectors as gene delivery systems are increasingly being used, or in the industrial bioeconomy. Enhanced worker protection measures should include increased injury and illness surveillance of the synthetic biology workforce; proactive risk assessment and management of synthetic biology products; research on the relative effectiveness of extrinsic and intrinsic biocontainment methods; specific safety guidance for synthetic biology industrial processes; determination of appropriate medical mitigation measures for lentiviral vector exposure incidents; and greater awareness and involvement in synthetic biology safety by the general occupational safety and health community as well as by government occupational safety and health research and regulatory agencies.

  8. Radiation biology for the non-biologist

    International Nuclear Information System (INIS)

    Myers, D.K.

    1978-06-01

    This colloquium introduces some of the general concepts used in cell biology and in the study of the effects of ionizing radiation on living organisms. The present research activities in radiation biology in the Biology Branch at the Chalk River Nuclear Laboratories cover a broad range of interests in the entire chain of events by which the initial radiation-induced changes in the living cell are translated into significant biological effects, including the eventual production of cancers and hereditary defects. The main theme of these research activities is an understanding of the mechanisms by which radiation damage to DNA (the carrier of hereditary information in all living organisms) can be actively repaired by the living cell. Advances in our understanding of these processes have broad implications for other areas of biology but also bear directly on the assessment of the biological hazards of ionizing radiation. The colloquium concludes with a brief discussion of the hazards of low-level radiation. (author)

  9. [The assessment of biological maturation for talent selection - which method can be used?].

    Science.gov (United States)

    Müller, L; Müller, E; Hildebrandt, C; Kapelari, K; Raschner, C

    2015-03-01

    The biological maturity status plays an important role in sports, since it influences the performance level and the talent selection in various types of sport. More mature athletes are favorably selected for regional and national squads. Therefore, the biological maturity status should be considered during the talent selection process. In this context, the relative age effect (RAE), which exists when the relative age quarter distribution of selected sports groups shows a biased distribution with an over-representation of athletes born in the first months after the specific cut-off-date for the competition categories, represents another problem in the talent development. From an ethical point of view, discrimination of young talented kids does exist: the relatively younger athletes have little to no chance of reaching the elite level, despite their talents and efforts. The causal mechanisms behind the RAE are still unclear and have to be assessed. In this context, the biological maturation seems to be a possible influential factor for the existence of a RAE in sport, which has to be examined. Several methods for estimating the biological maturity status exist; however, they are often expensive and not practicable. Consequently, the aim of the present study was to assess the concordance of a simple, yet accurate method of estimating biological maturation (prediction equation of age at peak height velocity, APHV) of Mirwald and co-workers, and the gold standard method of estimating skeletal age (SA, the x-ray of the left wrist). In total, 75 Austrian students (40♂, 35♀) aged 10 - 13 years, were examined. Thirty of the participants (17♂, 13♀) were students of a well-known Austrian ski boarding school, and 45 (23♂, 22♀) of a non-sportive secondary modern school of the same region. The participants included in the study had not experienced a rupture of the carpal bones of the left wrist. Parents and participants were informed of the study aims

  10. Towards the Identification of an In Vitro Tool for Assessing the Biological Behavior of Aerosol Supplied Nanomaterials

    Directory of Open Access Journals (Sweden)

    Luisana Di Cristo

    2018-03-01

    Full Text Available Nanoparticles (NP-based inhalation systems for drug delivery can be administered in liquid form, by nebulization or using pressurized metered dose inhalers, and in solid form by means of dry powder inhalers. However, NP delivery to the lungs has many challenges including the formulation instability due to particle-particle interactions and subsequent aggregation, causing poor deposition in the small distal airways and subsequent alveolar macrophages activity, which could lead to inflammation. This work aims at providing an in vitro experimental design for investigating the correlation between the physico-chemical properties of NP, and their biological behavior, when they are used as NP-based inhalation treatments, comparing two different exposure systems. By means of an aerosol drug delivery nebulizer, human lung cells cultured at air–liquid interface (ALI were exposed to two titanium dioxide NP (NM-100 and NM-101, obtained from the JRC repository. In parallel, ALI cultures were exposed to NP suspension by direct inoculation, i.e., by adding the NP suspensions on the apical side of the cell cultures with a pipette. The formulation stability of NP, measured as hydrodynamic size distributions, the cell viability, cell monolayer integrity, cell morphology and pro-inflammatory cytokines secretion were investigated. Our results demonstrated that the formulation stability of NM-100 and NM-101 was strongly dependent on the aggregation phenomena that occur in the conditions adopted for the biological experiments. Interestingly, comparable biological data between the two exposure methods used were observed, suggesting that the conventional exposure coupled to ALI culturing conditions offers a relevant in vitro tool for assessing the correlation between the physico-chemical properties of NP and their biological behavior, when NP are used as drug delivery systems.

  11. Biological dysrhythm in remitted bipolar I disorder.

    Science.gov (United States)

    Iyer, Aishwarya; Palaniappan, Pradeep

    2017-12-01

    Recent treatment guidelines support treatment of biological rhythm abnormalities as a part of treatment of bipolar disorder, but still, literature examining various domains (Sleep, Activity, Social, and Eating) of biological rhythm and its clinical predictors are less. The main aim of our study is to compare various domains of biological rhythm among remitted bipolar I subjects and healthy controls. We also explored for any association between clinical variables and biological rhythm among bipolar subjects. 40 subjects with Bipolar I disorder and 40 healthy controls who met inclusion and exclusion criteria were recruited for the study. Diagnoses were ascertained by a qualified psychiatrist using MINI 5.0. Sociodemographic details, biological rhythm (BRIAN-Biological Rhythm Interview of assessment in Neuropsychiatry) and Sleep functioning (PSQI- Pittsburgh Sleep Quality Index) were assessed in all subjects. Mean age of the Bipolar subjects and controls were 41.25±11.84years and 38.25±11.25 years respectively. Bipolar subjects experienced more biological rhythm disturbance when compared to healthy controls (total BRIAN score being 34.25±9.36 vs 28.2±6.53) (p=0.002). Subsyndromal depressive symptoms (HDRS) had significant positive correlation with BRIAN global scores(r=0.368, p=0.02). Linear regression analysis showed that number of episodes which required hospitalization (β=0.601, t=3.106, P=0.004), PSQI (β=0.394, t=2.609, p=0.014), HDRS (β=0.376, t=2.34, t=0.036) explained 31% of variance in BRIAN scores in remitted bipolar subjects. Biological rhythm disturbances seem to persist even after clinical remission of bipolar illness. More studies to look into the impact of subsyndromal depressive symptoms on biological rhythm are needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Minimal information: an urgent need to assess the functional reliability of recombinant proteins used in biological experiments

    Directory of Open Access Journals (Sweden)

    de Marco Ario

    2008-07-01

    Full Text Available Abstract Structural characterization of proteins used in biological experiments is largely neglected. In most publications, the information available is totally insufficient to judge the functionality of the proteins used and, therefore, the significance of identified protein-protein interactions (was the interaction specific or due to unspecific binding of misfolded protein regions? or reliability of kinetic and thermodynamic data (how much protein was in its native form?. As a consequence, the results of single experiments might not only become questionable, but the whole reliability of systems biology, built on these fundaments, would be weakened. The introduction of Minimal Information concerning purified proteins to add as metadata to the main body of a manuscript would render straightforward the assessment of their functional and structural qualities and, consequently, of results obtained using these proteins. Furthermore, accepted standards for protein annotation would simplify data comparison and exchange. This article has been envisaged as a proposal for aggregating scientists who share the opinion that the scientific community needs a platform for Minimum Information for Protein Functionality Evaluation (MIPFE.

  13. Sediment contaminants and biological effects in southern California: Use of a multivariate statistical approach to assess biological impact

    International Nuclear Information System (INIS)

    Maxon, C.L.; Barnett, A.M.; Diener, D.R.

    1997-01-01

    This study attempts to predict biological toxicity and benthic community impact in sediments collected from two southern California sites. Contaminant concentrations and grain size were evaluated as predictors using a two-step multivariate approach. The first step used principal component analysis (PCA) to describe contamination type and magnitude present at each site. Four dominant PC vectors, explaining 88% of the total variance, each corresponded to a unique physical and/or chemical signature. The four PC vectors, in decreasing order of importance, were: (1) high molecular weight polynuclear aromatic hydrocarbons (PAH), most likely from combusted or weathered petroleum; (2) low molecular weight alkylated PAH, primarily from weathered fuel product; (3) low molecular weight nonalkylated PAH, indicating a fresh petroleum-related origin; and (4) fine-grained sediments and metals. The second step used stepwise regression analysis to predict individual biological effects (dependent) variables using the four PC vectors as independent variables. Results showed that sediment grain size alone was the best predictor of amphipod mortality. Contaminant vectors showed discrete depositional areas independent of grain size. Neither contaminant concentrations nor PCA vectors were good predictors of biological effects, most likely due to the low concentrations in sediments

  14. Implementing Recommendations for Introductory Biology by Writing a New Textbook

    Science.gov (United States)

    Barsoum, Mark J.; Sellers, Patrick J.; Campbell, A. Malcolm; Heyer, Laurie J.; Paradise, Christopher J.

    2013-01-01

    We redesigned the undergraduate introductory biology course by writing a new textbook (Integrating Concepts in Biology [ICB]) that follows first principles of learning. Our approach emphasizes primary data interpretation and the utility of mathematics in biology, while de-emphasizing memorization. This redesign divides biology into five big ideas (information, evolution, cells, emergent properties, homeostasis), addressing each at five levels of organization (molecules, cells, organisms, populations, ecological systems). We compared our course outcomes with two sections that used a traditional textbook and were taught by different instructors. On data interpretation assessments administered periodically during the semester, our students performed better than students in the traditional sections (p = 0.046) and exhibited greater improvement over the course of the semester (p = 0.015). On factual content assessments, our students performed similarly to students in the other sections (p = 0.737). Pre- and postsemester assessment of disciplinary perceptions and self-appraisal indicate that our students acquired a more accurate perception of biology as a discipline and may have developed a more realistic evaluation of their scientific abilities than did the control students (p < 0.05). We conclude that ICB improves critical thinking, metacognition, and disciplinary perceptions without compromising content knowledge in introductory biology. PMID:23463233

  15. Assessing Student Behaviors and Motivation for Actively Learning Biology

    Science.gov (United States)

    Moore, Michael Edward

    2017-01-01

    Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is…

  16. Assessing the application of advanced oxidation processes, and their combination with biological treatment, to effluents from pulp and paper industry.

    Science.gov (United States)

    Merayo, Noemí; Hermosilla, Daphne; Blanco, Laura; Cortijo, Luis; Blanco, Angeles

    2013-11-15

    The closure of water circuits within pulp and paper mills has resulted in a higher contamination load of the final mill effluent, which must consequently be further treated in many cases to meet the standards imposed by the legislation in force. Different treatment strategies based on advanced oxidation processes (ozonation and TiO2-photocatalysis), and their combination with biological treatment (MBR), are herein assessed for effluents of a recycled paper mill and a kraft pulp mill. Ozone treatment achieved the highest efficiency of all. The consumption of 2.4 g O3 L(-1) resulted in about a 60% COD reduction treating the effluent from the kraft pulp mill at an initial pH=7; although it only reached about a 35% COD removal for the effluent of the recycled paper mill. Otherwise, photocatalysis achieved about a 20-30% reduction of the COD for both type of effluents. In addition, the effluent from the recycled paper mill showed a higher biodegradability, so combinations of these AOPs with biological treatment were tested. As a result, photocatalysis did not report any significant COD reduction improvement whether being performed as pre- or post-treatment of the biological process; whereas the use of ozonation as post-biological treatment enhanced COD removal a further 10%, summing up a total 90% reduction of the COD for the combined treatment, as well as it also supposed an increase of the presence of volatile fatty acids, which might ultimately enable the resultant wastewater to be recirculated back to further biological treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. The choice of a biological model in assessing internal dose equivalent

    International Nuclear Information System (INIS)

    Parodo, A.; Erre, N.

    1977-01-01

    Many are the biological models related to kinetic behavior of radioactive materials within the organism, or in an organ. This is true particularly for the metabolic kinetics of bone-seekers radionuclides described differently by various authors: as a consequence, different forms of the retention function have been used in calculating internal dose equivalent. In our opinion, the retention functions expressed as linear combinations of exponential terms with negative exponents are preferable. In fact, they can be obtained by coherent compartmental analysis and allow a mathematical formalism fairly well definite and easily adaptable to computers. Moreover, it is possible to make use of graphs and monograms already published. The role of the biological model in internal dosimetry, referred to the reliability of the quantitative informations on the kinetic behavior of the radionuclides in the organism and, therefrom, to the accuracy of the doses calculated, is discussed. By comparing the results obtained with different biological models, one finds that the choice of a model is less important than the choice of the value of the appropriate parameters

  18. Risk assessment for halogenated solvents

    International Nuclear Information System (INIS)

    Travis, C.C.

    1988-01-01

    A recent development in the cancer risk area is the advent of biologically based pharmacokinetic and pharmacodynamic models. These models allow for the incorporation of biological and mechanistic data into the risk assessment process. These advances will not only improve the risk assessment process for halogenated solvents but will stimulate and guide basic research in the biological area

  19. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  20. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  1. [Side effects of biologic therapies in psoriasis].

    Science.gov (United States)

    Altenburg, A; Augustin, M; Zouboulis, C C

    2018-04-01

    The introduction of biologics has revolutionized the treatment of moderate to severe plaque psoriasis. Due to the continuous expansion of biological therapies for psoriasis, it is particularly important to acknowledge efficacy and safety of the compounds not only in clinical trials but also in long-term registry-based observational studies. Typical side effects and significant risks of antipsoriatic biologic therapies considering psoriatic control groups are presented. A selective literature search was conducted in PubMed and long-term safety studies of the psoriasis registries PsoBest, PSOLAR and BADBIR were evaluated. To assess the long-term safety of biologics, the evaluation of the course of large patient cohorts in long-term registries is of particular medical importance. Newer biologic drugs seem to exhibit a better safety profile than older ones.

  2. Assessment of biological effects of environmental pollution in Mersin Bay (Turkey, northeastern Mediterranean Sea) using Mullus barbatus and Liza ramada as target organisms.

    Science.gov (United States)

    Yılmaz, Doruk; Kalay, Mustafa; Dönmez, Erdem; Yılmaz, Nejat

    2016-01-01

    The increasing emphasis on the assessment and monitoring of marine ecosystems has revealed the need to use appropriate biological indicators for these areas. Enzyme activities and histopathology are increasingly being used as indicators of environmental stress since they provide a definite biological end-point of pollutant exposure. As part of an ecotoxicological assessment of Mersin Bay, EROD enzyme activity and histopathological response in selected organs and tissues of two species of fish, Mullus barbatus (red mullet) and Liza ramada (thinlip grey mullet), captured from area were examined. Pollutant (Organochlorines (OC), alkylphenols (APs) and BPA) levels and biomarker responses in tissue samples were evaluated together for their potential to alter the metabolism and cellular aspects in liver and gonad. Elevated induction of EROD activity and histopathological alterations in contaminated samples from Mersin Bay was observed compared to reference site indicating the exposure to potential pollutants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Defining the Synthetic Biology Supply Chain

    Energy Technology Data Exchange (ETDEWEB)

    Frazar, Sarah L.; Hund, Gretchen E.; Bonheyo, George T.; Diggans, James; Bartholomew, Rachel A.; Gehrig, Lindsey; Greaves, Mark

    2017-08-01

    In this article, a team of experts in synthetic biology, data analytics, and national security describe the overall supply chain surrounding synthetic biology. The team analyzes selected interactions within that network to better understand the risks raised by synthetic biology and identifies opportunities for risk mitigation. To introduce the concept, the article will briefly describe how an understanding of supply chains has been important in promoting nuclear nonproliferation objectives. The article concludes by assessing the structure and networks identified in the supply chains to reveal potential opportunities for future biodefense research and development; options for additional information exchange; and means to interdict, detect, or deter suspicious activity.

  4. Using aquatic macroinvertebrate species traits to build test batteries for sediment toxicity assessment: accounting for the diversity of potential biological responses to toxicants.

    Science.gov (United States)

    Ducrot, Virginie; Usseglio-Polatera, Philippe; Péry, T Alexandre R R; Mouthon, Jacques; Lafont, Michel; Roger, Marie-Claude; Garric, Jeanne; Férard, Jean-François

    2005-09-01

    An original species-selection method for the building of test batteries is presented. This method is based on the statistical analysis of the biological and ecological trait patterns of species. It has been applied to build a macroinvertebrate test battery for the assessment of sediment toxicity, which efficiently describes the diversity of benthic macroinvertebrate biological responses to toxicants in a large European lowland river. First, 109 potential representatives of benthic communities of European lowland rivers were selected from a list of 479 taxa, considering 11 biological traits accounting for the main routes of exposure to a sediment-bound toxicant and eight ecological traits providing an adequate description of habitat characteristics used by the taxa. Second, their biological and ecological trait patterns were compared using coinertia analysis. This comparison allowed the clustering of taxa into groups of organisms that exhibited similar life-history characteristics, physiological and behavioral features, and similar habitat use. Groups exhibited various sizes (7-35 taxa), taxonomic compositions, and biological and ecological features. Main differences among group characteristics concerned morphology, substrate preferendum and habitat utilization, nutritional features, maximal size, and life-history strategy. Third, the best representatives of the mean biological and ecological characteristics of each group were included in the test battery. The final selection was composed of Chironomus riparius (Insecta: Diptera), Branchiura sowerbyi (Oligochaeta: Tubificidae), Lumbriculus variegatus (Oligochaeta: Lumbriculidae), Valvata piscinalis (Gastropoda: Valvatidae), and Sericostoma personatum (Trichoptera: Sericostomatidae). This approach permitted the biological and ecological variety of the battery to be maximized. Because biological and ecological traits of taxa determine species sensitivity, such maximization should permit the battery to better account

  5. Environmental risk assessment for Neodryinus typhlocybae, biological control agent against Metcalfa pruinosa, for Austria

    Directory of Open Access Journals (Sweden)

    Gudrun Strauss

    2013-03-01

    Full Text Available The potential environmental risks of Neodryinus typhlocybae, a parasitic wasp from North America, were evaluated with regard to its safe use as an exotic biocontrol agent for the planthopper Metcalfa pruinosa in Austria. Following an earlier host range study of N. typhlocybae conducted in the laboratory, the present study assessed the potential for establishment and spread as well as negative indirect effects on non-target organisms. The potential release sites in Austria were analysed for matching of the climatic requirements for establishment of N. typhlocybae. The two proposed release locations, Vienna and Graz, have a predominantly similar climate to the parasitoid’s region of origin, though the comparably cooler mean summer temperatures might result in a low emergence rate of the partial second generation. The natural spread potential of N. typhlocybae was reviewed and is considered to be sufficiently good for released individuals to reach nearby sites infested with M. pruinosa. However, a perceptible spreading of N. typhlocybae females only occurs a few years after release and seems to be strongly dependent on the host density. Gelis areator, a hyperparasitoid of N. typhlocybae known to occur in Austria, might have negative effects on the population of the beneficial organism. Advantages and disadvantages of chemical and biological control methods against M. pruinosa were evaluated. It is concluded that N. typhlocybae is very well suited as a biological control agent for M. pruinosa in Austria, as no adverse effects on non-target species are expected but its release offers advantages with regard to sustainable and environmentally friendly pest management.

  6. 75 FR 64984 - Availability of an Environmental Assessment for a Biological Control Agent for Hawkweeds

    Science.gov (United States)

    2010-10-21

    ... hawkweed gall wasp, Aulacidea subterminalis, into the continental United States as a biological control... United States for the biological control of hawkweeds (Hieracium pilosella, H. aurantiacum, H... control, and the use of biological control organisms. The use of herbicides, while effective, is limited...

  7. Biological Activity Assessment in Mexican Tropical Soils with Different Hydrocarbon Contamination Histories.

    Science.gov (United States)

    Riveroll-Larios, Jessica; Escalante-Espinosa, Erika; Fócil-Monterrubio, Reyna L; Díaz-Ramírez, Ildefonso J

    The use of soil health indicators linked to microbial activities, such as key enzymes and respirometric profiles, helps assess the natural attenuation potential of soils contaminated with hydrocarbons. In this study, the intrinsic physicochemical characteristics, biological activity and biodegradation potential were recorded for two soils with different contamination histories (>5 years and soil samples. Soil suspensions were tested as microbial inocula in biodegradation potential assays using contaminated perlite as an inert support. The basal respiratory rate of the recently contaminated soil was 15-38 mg C-CO 2  kg -1 h -1 , while the weathered soil presented a greater basal mineralisation capacity of 55-70 mg C-CO 2 kg -1 h -1 . The basal levels of lipase and dehydrogenase were significantly greater than those recorded in non-contaminated soils (551 ± 21 μg pNP g -1 ). Regarding the biodegradation potential assessment, the lipase (1000-3000 μg pNP g -1 of perlite) and dehydrogenase (~3000 μg INF g -1 of perlite) activities in the inoculum of the recently contaminated soil were greater than those recorded in the inoculum of the weathered soil. This was correlated with a high mineralisation rate (~30 mg C-CO 2 kg -1 h -1 ) in the recently contaminated soil and a reduction in hydrocarbon concentration (~30 %). The combination of an inert support and enzymatic and respirometric analyses made it possible to detect the different biodegradation capacities of the studied inocula and the natural attenuation potential of a recently contaminated soil at high hydrocarbon concentrations.

  8. Assessment of salivary flow rate: biologic variation and measure error.

    NARCIS (Netherlands)

    Jongerius, P.H.; Limbeek, J. van; Rotteveel, J.J.

    2004-01-01

    OBJECTIVE: To investigate the applicability of the swab method in the measurement of salivary flow rate in multiple-handicap drooling children. To quantify the measurement error of the procedure and the biologic variation in the population. STUDY DESIGN: Cohort study. METHODS: In a repeated

  9. An Assessment of Weight-Length Relationships for Muskellunge,Northern Pike, and Chain Pickerel In Carlander's Handbook of Freshwater Fishery Biology

    OpenAIRE

    Daviscourt, Joshua; Huertas, Joshua; Courtney, Michael

    2011-01-01

    Carlander's Handbook of Freshwater Fishery Biology (1969) contains life history data from many species of freshwater fish found in North America. It has been cited over 1200 times and used to produce standard-weight curves for some species. Recent work (Cole-Fletcher et al. 2011) suggests Carlander (1969) contains numerous errors in listed weight-length equations. This paper assesses the weight-length relationships listed in Carlander for muskellunge, northern pike, and chain pickerel by comp...

  10. “Biotecnological War” - A Conceptual And Perceptual Assessment Tool For Teaching Biotechnology And Protein Chemistry For Undergraduate Students In Biological Sciences.

    OpenAIRE

    C. R. C. Cruz et al.

    2017-01-01

    "Biotecnological War" board game, a conceptual and perceptual assessment tool for biotechnology and protein chemistry teaching for undergraduate students in biological sciences and related areas. It is a proposal initially conceived as an alternative complementary tool for biochemistry teaching of proteins and peptides, challenging students, aiming to review concepts transmitted in classroom, stimulating diverse student’s abilities, such as their creativity, competitiveness and resource manag...

  11. Using consumption rate to assess potential predators for biological control of white perch

    Directory of Open Access Journals (Sweden)

    Gosch N.J.C.

    2011-08-01

    Full Text Available Control of undesirable fishes is important in aquatic systems, and using predation as a tool for biological control is an attractive option to fishery biologists. However, determining the appropriate predators for biological control is critical for success. The objective of this study was to evaluate the utility of consumption rate as an index to determine the most effective predators for biological control of an invasive fish. Consumption rate values were calculated for nine potential predators that prey on white perch Morone americana in Branched Oak and Pawnee reservoirs, Nebraska. The consumption rate index provided a unique and insightful means of determining the potential effectiveness of each predator species in controlling white perch. Cumulative frequency distributions facilitated interpretation by providing a graphical presentation of consumption rates by all individuals within each predator species. Largemouth bass Micropterus salmoides, walleye Sander vitreus and sauger S. canadensis were the most efficient white perch predators in both reservoirs; however, previous attempts to increase biomass of these predators have failed suggesting that successful biological control is unlikely using existing predator species in these Nebraska reservoirs.

  12. Use of 15N methodology to assess biological nitrogen fixation

    International Nuclear Information System (INIS)

    Hardarson, G.

    1990-01-01

    One of the most important characteristics of legumes are their ability in symbiosis with Rhizobium bacteria to fix atmospheric nitrogen for growth. For proper management and a full realization of the benefits of this plant-microbial association, it is necessary to estimate how much nitrogen is fixed under different conditions in the field. It is only after this is known that various factors can be manipulated so as to increase the amount and proportion of N a plant derives from biological fixation. A suitable method for accurately measuring the amount of N crops derive from fixation is therefore an important requirement in any programme aimed at maximizing biological nitrogen fixation. There are several methods available to measure N 2 fixation (Bergersen, 1980) based on (1) increment in N yield and plant growth, (2) nitrogen balance (3) acetylene reduction and (4) the use of isotopes of N. Only isotopic methods will be illustrated here. 20 refs, 2 figs, 9 tabs

  13. Assessment of the biological and chemical availability of the freshly spiked and aged DDE in soil

    International Nuclear Information System (INIS)

    Škulcová, L.; Neuwirthová, N.; Hofman, J.; Bielská, L.

    2016-01-01

    The study compared the ability of various chemical methods (XAD, β-hydroxypropylcyclodextrin - HPCD) and solid phase micro-extraction (SPME)) to mimic earthworm uptake from two similar soils containing either spiked or aged p,p´-DDE, thus representing two extreme scenarios with regard to the length of pollutant-soil contact time and the way of contamination. The extent of bioaccumulation was assessed at fixed exposure periods (10 and 21 days) and at equilibrium derived from uptake curves by multiple-point comparison or kinetic modeling. The decision on the best chemical predictor of biological uptake differed. The degree of bioaccumulation at equilibrium was best predicted by XAD while HPCD rather reflected the extent of accumulation derived after 21 days when, however, steady-state was not reached for spiked p,p´-DDE. SPME seemed to underestimate the uptake of aged p,p´-DDE, probably of the fraction taken up via soil particles. Thus, the degree of predictability seems to be associated with the capability of the chemical method to mimic the complex earthworm uptake via skin and intestinal tract as well as with the quality of biological data where the insufficient length of exposure period appears to be the major concern. - Highlights: • The uptake kinetics of spiked and aged p,p´-DDE to earthworms/samplers was measured. • Three chemical methods were used to predict earthworm uptake. • Equilibrium was not reached within the OECD recommended 21 days for spiked p,p´-DDE. • SPME seems to underestimate the uptake of aged p,p´-DDE. • The best predictor of earthworm uptake seems to be the XAD method. - Capsule: The poor prediction of biological uptake by chemical methods may result from the absence of kinetic measurements and application of short exposure periods.

  14. Structural and Biological Assessment of Zinc Doped Hydroxyapatite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Cristina Liana Popa

    2016-01-01

    Full Text Available The aim of the current research work was to study the physicochemical and biological properties of synthesized zinc doped hydroxyapatite (ZnHAp nanoparticles with Zn concentrations xZn=0 (HAp, xZn=0.07 (7ZnHAp, and xZn=0.1 (10ZnHAp for potential use in biological applications. The morphology, size, compositions, and incorporation of zinc into hydroxyapatite were characterized by scanning electron microscopy (SEM, transmission electron microscopy (TEM, Fourier Transform Infrared Spectroscopy (FTIR, Raman scattering, and X-Ray Photoelectron Spectroscopy (XPS. In addition, the cytotoxicity of ZnHAp nanoparticles was tested on both E. coli bacteria and human hepatocarcinoma cell line HepG2. The results showed that ZnHAp nanoparticles (HAp, 7ZnHAp, and 10ZnHAp have slightly elongated morphologies with average diameters between 25 nm and 18 nm. On the other hand, a uniform and homogeneous distribution of the constituent elements (calcium, phosphorus, zinc, and oxygen in the ZnHAp powder was noticed. Besides, FTIR and Raman analyses confirmed the proper hydroxyapatite structure of the synthesized ZnHAp nanoparticles with the signature of phosphate, carbonate, and hydroxyl groups. Moreover, it can be concluded that Zn doping at the tested concentrations is not inducing a specific prokaryote or eukaryote toxicity in HAp compounds.

  15. Effect of biological and chemical oxidation on the removal of estrogenic compounds (NP and BPA) from wastewater: an integrated assessment procedure.

    Science.gov (United States)

    Bertanza, Giorgio; Pedrazzani, Roberta; Dal Grande, Mario; Papa, Matteo; Zambarda, Valerio; Montani, Claudia; Steimberg, Nathalie; Mazzoleni, Giovanna; Di Lorenzo, Diego

    2011-04-01

    A major source of the wide presence of EDCs (Endocrine Disrupting Compounds) in water bodies is represented by direct/indirect discharge of sewage. Recent scientific literature reports data about their trace concentration in water, sediments and aquatic organisms, as well as removal efficiencies of different wastewater treatment schemes. Despite the availability of a huge amount of data, some doubts still persist due to the difficulty in evaluating synergistic effects of trace pollutants in complex matrices. In this paper, an integrated assessment procedure was used, based on chemical and biological analyses, in order to compare the performance of two full scale biological wastewater treatment plants (either equipped with conventional settling tanks or with an ultrafiltration membrane unit) and tertiary ozonation (pilot scale). Nonylphenol and bisphenol A were chosen as model EDCs, together with the parent compounds mono- and di-ethoxylated nonylphenol (quantified by means of GC-MS). Water estrogenic activity was evaluated by applying the human breast cancer MCF-7 based reporter gene assay. Process parameters (e.g., sludge age, temperature) and conventional pollutants (e.g., COD, suspended solids) were also measured during monitoring campaigns. Conventional activated sludge achieved satisfactory removal of both analytes and estrogenicity. A further reduction of biological activity was exerted by MBR (Membrane Biological Reactor) as well as ozonation; the latter contributed also to decrease EDC concentrations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks

    KAUST Repository

    Lautenschlä ger, Karin; Hwang, Chiachi; Liu, Wentso; Boon, Nico; Kö ster, Oliver; Vrouwenvelder, Johannes S.; Egli, Thomas; Hammes, Frederik A.

    2013-01-01

    and sensitive tool to assess and evaluate biological stability and microbial processes in drinking water distribution systems. © 2013 Elsevier Ltd.

  17. A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks.

    Science.gov (United States)

    Lautenschlager, Karin; Hwang, Chiachi; Liu, Wen-Tso; Boon, Nico; Köster, Oliver; Vrouwenvelder, Hans; Egli, Thomas; Hammes, Frederik

    2013-06-01

    provides a powerful and sensitive tool to assess and evaluate biological stability and microbial processes in drinking water distribution systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks

    KAUST Repository

    Lautenschläger, Karin

    2013-06-01

    and sensitive tool to assess and evaluate biological stability and microbial processes in drinking water distribution systems. © 2013 Elsevier Ltd.

  19. Development and Assessment of Service Learning Projects in General Biology

    Science.gov (United States)

    Felzien, Lisa; Salem, Laura

    2008-01-01

    Service learning involves providing service to the community while requiring students to meet learning goals in a specific course. A service learning project was implemented in a general biology course at Rockhurst University to involve students in promoting scientific education in conjunction with community partner educators. Students were…

  20. Synthetic biology and its promises

    Directory of Open Access Journals (Sweden)

    José Manuel De Cózar Escalante

    2016-12-01

    Full Text Available Synthetic biology is a new science and emerging technology, or rather a technoscience, which converges with others such as nanotechnology, information technology, robotics, artificial intelligence and neuroscience. All have common features that could have highly concerning social and environmental impacts. With its ambitious goals of controlling complexity, redesigning and creating new living entities, synthetic biology perfectly exemplifies the new bioeconomic reality. This requires expanding the focus of the discussion beyond the limited comparative analysis of risks and benefits, to address uncertainties, reassign responsibilities and initiate a thorough social assessment of what is at stake.

  1. Assessment of the biological variation of plasma tissue inhibitor of metalloproteinases-1

    DEFF Research Database (Denmark)

    Frederiksen, C.B.; Lomholt, Anne Fog; Lottenburger, Tine

    2008-01-01

    BACKGROUND: Tissue inhibitor of metalloproteinases-1 (TIMP-1) measurements in plasma may be useful for the early detection and prognosis of colorectal cancer (CRC). Data on analytical performance and normal intra- and interindividual biological variation are required in order to interpret...... the utility of TIMP-1 in CRC. The aim of this study was to establish the biological and analytical variation of plasma TIMP-1 in volunteers. MATERIAL AND METHODS: Three separate studies were undertaken. 1: Plasma was collected from 23 volunteers 6 times within a 3-week period, first in September 2004 (round...

  2. Three forms of assessment of prior knowledge, and improved performance following an enrichment programme, of English second language biology students within the context of a marine theme

    Science.gov (United States)

    Feltham, Nicola F.; Downs, Colleen T.

    2002-02-01

    The Science Foundation Programme (SFP) was launched in 1991 at the University of Natal, Pietermaritzburg, South Africa in an attempt to equip a selected number of matriculants from historically disadvantaged schools with the skills, resources and self-confidence needed to embark on their tertiary studies. Previous research within the SFP biology component suggests that a major contributor to poor achievement and low retention rates among English second language (ESL) students in the Life Sciences is the inadequate background knowledge in natural history. In this study, SFP student background knowledge was assessed along a continuum of language dependency using a set of three probes. Improved student performance in each of the respective assessments examined the extent to which a sound natural history background facilitated meaningful learning relative to ESL proficiency. Student profiles and attitudes to biology were also examined. Results indicated that students did not perceive language to be a problem in biology. However, analysis of the student performance in the assessment probes indicated that, although the marine course provided the students with the background knowledge that they were initially lacking, they continued to perform better in the drawing and MCQ tools in the post-tests, suggesting that it is their inability to express themselves in the written form that hampers their development. These results have implications for curriculum development within the constructivist framework of the SFP.

  3. Analysis of English language learner performance on the biology Massachusetts comprehensive assessment system: The impact of english proficiency, first language characteristics, and late-entry ELL status

    Science.gov (United States)

    Mitchell, Mary A.

    This study analyzed English language learner (ELL) performance on the June 2012 Biology MCAS, namely on item attributes of domain, cognitive skill, and linguistic complexity. It examined the impact of English proficiency, Latinate first language, first language orthography, and late-entry ELL status. The results indicated that English proficiency was a strong predictor of performance and that ELLs at higher levels of English proficiency overwhelmingly passed. The results further indicated that English proficiency introduced a construct-irrelevant variance on the Biology MCAS and raised validity issues for using this assessment at lower levels of English proficiency. This study also found that ELLs with a Latinate first language consistently had statistically significant lower performance. Late-entry ELL status did not predict Biology MCAS performance.

  4. Increasing URM Undergraduate Student Success through Assessment-Driven Interventions: A Multiyear Study Using Freshman-Level General Biology as a Model System

    Science.gov (United States)

    Carmichael, Mary C.; St. Clair, Candace; Edwards, Andrea M.; Barrett, Peter; McFerrin, Harris; Davenport, Ian; Awad, Mohamed; Kundu, Anup; Ireland, Shubha Kale

    2016-01-01

    Xavier University of Louisiana leads the nation in awarding BS degrees in the biological sciences to African-American students. In this multiyear study with ∼5500 participants, data-driven interventions were adopted to improve student academic performance in a freshman-level general biology course. The three hour-long exams were common and administered concurrently to all students. New exam questions were developed using Bloom’s taxonomy, and exam results were analyzed statistically with validated assessment tools. All but the comprehensive final exam were returned to students for self-evaluation and remediation. Among other approaches, course rigor was monitored by using an identical set of 60 questions on the final exam across 10 semesters. Analysis of the identical sets of 60 final exam questions revealed that overall averages increased from 72.9% (2010) to 83.5% (2015). Regression analysis demonstrated a statistically significant correlation between high-risk students and their averages on the 60 questions. Additional analysis demonstrated statistically significant improvements for at least one letter grade from midterm to final and a 20% increase in the course pass rates over time, also for the high-risk population. These results support the hypothesis that our data-driven interventions and assessment techniques are successful in improving student retention, particularly for our academically at-risk students. PMID:27543637

  5. Role of serum eosinophil cationic protein as a biological marker to assess the severity of bronchial asthma

    International Nuclear Information System (INIS)

    Begum, A.; Sattar, H.; Miah, R.A.; Saleh, A.A.; Hassan, R.; Salam, A

    2012-01-01

    Objective: The study was carried out to evaluate the role of serum eosinophil cationic protein (ECP) as a biological marker for the diagnosis and to assess the severity of bronchial asthma. Methodology: This observational cross-sectional study was conducted among 70 bronchial asthma patients and 45 disease controls (tuberculosis-15, chronic obstructive pulmonary disease-15, interstitial lung disease-15) enrolled from patients attending the outpatient department of the National Institute of Disease of the Chest and Hospital (NIDCH), Dhaka, Bangladesh during July 2010 to June 2011. Global Initiative of Asthma Management and Prevention (GINA) criteria were followed for selection of both atopic and non-atopic patients with intermittent or persistent (mild, moderate and severe) asthma. Serum level of eosinophil cationic protein (ECP), IgE, forced expiratory volume in 1 second (FEV 1% predicted) and circulatory eosinophil (CE) count were estimated. Results: Mean serum ECP level (28.8 +- 42.9 vs. 6.82 +- 3.5 ng/mL; P<0.001), IgE level (383.59 - 225.3 vs. 135 +- 131.8 IU/mL; P<0.001) and percent circulatory eosinophil count (9.95 +- 3.7 vs. 5.95 +- 1.4; P<0.024) were all found significantly raised among asthma patients than disease controls but % FEV1 was equivocal. All grades of persistent asthma patients had significantly (P<0.025 and P<0.002) higher mean ECP level than intermittent cases but serum IgE level and CE count did not differ significantly. FEV1 % predicted correlated well among moderate and severe persistent asthma but was equivocal for intermittent and mild persistent cases. Conclusion: This study has reinforced that serum eosinophil cationic protein is a dependable biological marker with more discriminatory power over other indicators for bronchial asthma and to assess its severity. (author)

  6. Australian Biology Test Item Bank, Years 11 and 12. Volume II: Year 12.

    Science.gov (United States)

    Brown, David W., Ed.; Sewell, Jeffrey J., Ed.

    This document consists of test items which are applicable to biology courses throughout Australia (irrespective of course materials used); assess key concepts within course statement (for both core and optional studies); assess a wide range of cognitive processes; and are relevant to current biological concepts. These items are arranged under…

  7. Australian Biology Test Item Bank, Years 11 and 12. Volume I: Year 11.

    Science.gov (United States)

    Brown, David W., Ed.; Sewell, Jeffrey J., Ed.

    This document consists of test items which are applicable to biology courses throughout Australia (irrespective of course materials used); assess key concepts within course statement (for both core and optional studies); assess a wide range of cognitive processes; and are relevant to current biological concepts. These items are arranged under…

  8. Radon as a medicine. Therapeutic effectiveness, biological mechanism and comparative risk assessment

    International Nuclear Information System (INIS)

    Deetjen, Peter; Falkenbach, Albrecht; Harder, Dietrich; Joeckel, Hans; Kaul, Alexander; Philipsborn, Henning von

    2014-01-01

    Proofs of the therapeutic efficiency of balneological radon applications administered to patients suffering from rheumatic diseases, investigations into the biological action mechanism associated with the alpha particles emitted by radon and its radioactive daughter products, and the comparative risk assessment of radon treatment and medicinal pain therapy have been the research projects whose results are summarized in this book. Controlled clinical studies, if possible performed as prospective, randomized and placebo-controlled double blind studies, have given evidence that the therapeutic effects of balneological radon applications - long-lasting pain reduction and reduced consumption of medicines compared with controls - are significantly persisting over many post-treatment months. The molecular and cellular mechanism of action underlying these long-lasting therapeutic effects has been identified as the down-regulation of cellular immune responses, initiated by cellular apoptosis sequential to low alpha particle doses and by the subsequent release of anti-inflammatory cytokines. The unwanted side-effects of non-steroidal anti-rheumatic drug treatments have to be compared with the absence of side effects from the balneological radon applications which merely involve radiation doses well below the mean value and the fluctuation width of the annual doses attributable to everybody's natural radiation exposure.

  9. Assessment of Clarias gariepinus as a biological control agent against mosquito larvae.

    Science.gov (United States)

    Chala, Buze; Erko, Berhanu; Animut, Abebe; Degarege, Abraham; Petros, Beyene

    2016-05-31

    The emergence and spread of insecticide resistant mosquitoes renewed interest in investigating the use of larvivorous fish as a biological control agent. The potential of Clarias gariepinus fish in controlling Anopheles arabiensis and culicine larvae was assessed under laboratory and semi-field conditions. Small size (15-20 cm) C. gariepinus fish consumed greater number of mosquito larvae than the large size fish (25-40 cm) in the multivariate regression model (β = 13.36, 95 % CI = 4.57, 22.15). The Anopheles larvae consumed was greater in number than the culicines larvae consumed by the fish (β = 12.10, 95 % CI = 3.31, 20.89). The number of larvae consumed was greater during the night hours than during the light hours (β = 30.06, 95 % CI = 21.27, 38.85). Amount of supplementary fish food did not cause significant differences in the number of mosquito larvae consumed by the fish among different groups. C. gariepinus was observed to feed on mosquito larvae under laboratory and semi-field conditions. C. gariepinus fed on the larvae of An. arabiensis and culicines readily. Hence, it can be used as an alternative mosquito control agent in Ethiopia where the breeding habitats are small and localized.

  10. Radon as a medicine. Therapeutic effectiveness, biological mechanism and comparative risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Deetjen, Peter; Falkenbach, Albrecht; Harder, Dietrich; Joeckel, Hans; Kaul, Alexander; Philipsborn, Henning von

    2014-07-01

    Proofs of the therapeutic efficiency of balneological radon applications administered to patients suffering from rheumatic diseases, investigations into the biological action mechanism associated with the alpha particles emitted by radon and its radioactive daughter products, and the comparative risk assessment of radon treatment and medicinal pain therapy have been the research projects whose results are summarized in this book. Controlled clinical studies, if possible performed as prospective, randomized and placebo-controlled double blind studies, have given evidence that the therapeutic effects of balneological radon applications - long-lasting pain reduction and reduced consumption of medicines compared with controls - are significantly persisting over many post-treatment months. The molecular and cellular mechanism of action underlying these long-lasting therapeutic effects has been identified as the down-regulation of cellular immune responses, initiated by cellular apoptosis sequential to low alpha particle doses and by the subsequent release of anti-inflammatory cytokines. The unwanted side-effects of non-steroidal anti-rheumatic drug treatments have to be compared with the absence of side effects from the balneological radon applications which merely involve radiation doses well below the mean value and the fluctuation width of the annual doses attributable to everybody's natural radiation exposure.

  11. Bone Scan in Detection of Biological Activity in Nonhypertrophic Fracture Nonunion

    OpenAIRE

    Gandhi, Sunny J.; Rabadiya, Bhavdeep

    2017-01-01

    Biological activity of the fracture site is very important factor in treatment planning of fracture nonunion. If no biological activity is detected, then an autologous bone graft can be supplemented or osteogenic supplementations, such as bone morphogenetic protein is given. If biological activity is present, then secure fixation is sufficient to achieve bony union. Biological activity of nonunions is usually assessed by conventional radiographs. The presence of callus formation is usually as...

  12. Human exposure to radiation following the release of radioactivity from a reactor accident: a quantitative assessment of the biological consequences

    International Nuclear Information System (INIS)

    Smith, H.; Stather, J.W.

    1976-11-01

    The objective of this review is to provide a biological basis upon which to assess the consequences of the exposure of a population to radioactivity released after a reactor accident. Depending upon the radiation dose, both early and late somatic damage could occur in the exposed population and hereditary effects may occur in their descendants. The development of dose-effect relationships has been based upon the limited amount of information available on humans, supplemented by data obtained from experiments on animals. (author)

  13. Synthetic Biology and the Translational Imperative.

    Science.gov (United States)

    Heidari Feidt, Raheleh; Ienca, Marcello; Elger, Bernice Simone; Folcher, Marc

    2017-12-18

    Advances at the interface between the biological sciences and engineering are giving rise to emerging research fields such as synthetic biology. Harnessing the potential of synthetic biology requires timely and adequate translation into clinical practice. However, the translational research enterprise is currently facing fundamental obstacles that slow down the transition of scientific discoveries from the laboratory to the patient bedside. These obstacles including scarce financial resources and deficiency of organizational and logistic settings are widely discussed as primary impediments to translational research. In addition, a number of socio-ethical considerations inherent in translational research need to be addressed. As the translational capacity of synthetic biology is tightly linked to its social acceptance and ethical approval, ethical limitations may-together with financial and organizational problems-be co-determinants of suboptimal translation. Therefore, an early assessment of such limitations will contribute to proactively favor successful translation and prevent the promising potential of synthetic biology from remaining under-expressed. Through the discussion of two case-specific inventions in synthetic biology and their associated ethical implications, we illustrate the socio-ethical challenges ahead in the process of implementing synthetic biology into clinical practice. Since reducing the translational lag is essential for delivering the benefits of basic biomedical research to society at large and promoting global health, we advocate a moral obligation to accelerating translational research: the "translational imperative."

  14. Proof of concept for a banding scheme to support risk assessments related to multi-product biologics manufacturing.

    Science.gov (United States)

    Card, Jeffrey W; Fikree, Hana; Haighton, Lois A; Blackwell, James; Felice, Brian; Wright, Teresa L

    2015-11-01

    A banding scheme theory has been proposed to assess the potency/toxicity of biologics and assist with decisions regarding the introduction of new biologic products into existing manufacturing facilities. The current work was conducted to provide a practical example of how this scheme could be applied. Information was identified for representatives from the following four proposed bands: Band A (lethal toxins); Band B (toxins and apoptosis signals); Band C (cytokines and growth factors); and Band D (antibodies, antibody fragments, scaffold molecules, and insulins). The potency/toxicity of the representative substances was confirmed as follows: Band A, low nanogram quantities exert lethal effects; Band B, repeated administration of microgram quantities is tolerated in humans; Band C, endogenous substances and recombinant versions administered to patients in low (interferons), intermediate (growth factors), and high (interleukins) microgram doses, often on a chronic basis; and Band D, endogenous substances present or produced in the body in milligram quantities per day (insulin, collagen) or protein therapeutics administered in milligram quantities per dose (mAbs). This work confirms that substances in Bands A, B, C, and D represent very high, high, medium, and low concern with regard to risk of cross-contamination in manufacturing facilities, thus supporting the proposed banding scheme. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Mathematical Problems in Biology : Victoria Conference

    CERN Document Server

    1974-01-01

    A conference on "Some Mathematical Problems in Biology" was held at the University of Victoria, Victoria, B. C. , Canada, from May 7 - 10, 1973. The participants and invited speakers were mathematicians interested in problems of a biological nature, and scientists actively engaged in developing mathematical models in biological fields. One aim of the conference was to attempt to assess what the recent rapid growth of mathematical interaction with the biosciences has accomplished and may accomplish in the near future. The conference also aimed to expose the problems of communication bet~",een mathematicians and biological scientists, and in doing so to stimulate the interchange of ideas. It was recognised that the topic spans an enormous breadth, and little attempt was made to balance the very diverse areas. Widespread active interest was shown in the conference, and just over one hundred people registered. The varied departments and institutions across North America from which the participants came made it bo...

  16. Biological studies of the U.S. subseabed disposal program

    International Nuclear Information System (INIS)

    Gomez, L.S.; Marietta, M.G.; Hessler, R.R.; Smith, K.L. Jr.; Talbert, D.M.; Yayanos, A.A.; Jackson, D.W.

    1980-01-01

    The Subseabed Disposal Program (SDP) of the U.S. is assessing the feasibility of emplacing high level radioactive wastes (HLW) within deep-sea sediments and is developing the means for assessing the feasibility of the disposal practices of other nations. This paper discusses the role and status of biological research in the SDP. Studies of the disposal methods and of the conceived barriers (canister, waste form and sediment) suggest that biological knowledge will be principally needed to address the impact of accidental releases of radionuclides. Current experimental work is focusing on the deep-sea ecosystem to determine: (1) the structure of benthic communities, including their microbial component; (2) the faunal composition of deep midwater nekton; (3) the biology of deep-sea amphipods; (4) benthic community metabolism; (5) the rates of bacterial processes; (6) the metabolism of deep-sea animals, and (7) the radiation sensitivity of deep-sea organisms. A multi-compartment model is being developed to assess quantitatively, the impact (on the environment and on man) of releases of radionuclides into the sea

  17. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  18. Dynamic Biological Functioning Important for Simulating and Stabilizing Ocean Biogeochemistry

    Science.gov (United States)

    Buchanan, P. J.; Matear, R. J.; Chase, Z.; Phipps, S. J.; Bindoff, N. L.

    2018-04-01

    The biogeochemistry of the ocean exerts a strong influence on the climate by modulating atmospheric greenhouse gases. In turn, ocean biogeochemistry depends on numerous physical and biological processes that change over space and time. Accurately simulating these processes is fundamental for accurately simulating the ocean's role within the climate. However, our simulation of these processes is often simplistic, despite a growing understanding of underlying biological dynamics. Here we explore how new parameterizations of biological processes affect simulated biogeochemical properties in a global ocean model. We combine 6 different physical realizations with 6 different biogeochemical parameterizations (36 unique ocean states). The biogeochemical parameterizations, all previously published, aim to more accurately represent the response of ocean biology to changing physical conditions. We make three major findings. First, oxygen, carbon, alkalinity, and phosphate fields are more sensitive to changes in the ocean's physical state. Only nitrate is more sensitive to changes in biological processes, and we suggest that assessment protocols for ocean biogeochemical models formally include the marine nitrogen cycle to assess their performance. Second, we show that dynamic variations in the production, remineralization, and stoichiometry of organic matter in response to changing environmental conditions benefit the simulation of ocean biogeochemistry. Third, dynamic biological functioning reduces the sensitivity of biogeochemical properties to physical change. Carbon and nitrogen inventories were 50% and 20% less sensitive to physical changes, respectively, in simulations that incorporated dynamic biological functioning. These results highlight the importance of a dynamic biology for ocean properties and climate.

  19. Automated quantitative assessment of proteins' biological function in protein knowledge bases.

    Science.gov (United States)

    Mayr, Gabriele; Lepperdinger, Günter; Lackner, Peter

    2008-01-01

    Primary protein sequence data are archived in databases together with information regarding corresponding biological functions. In this respect, UniProt/Swiss-Prot is currently the most comprehensive collection and it is routinely cross-examined when trying to unravel the biological role of hypothetical proteins. Bioscientists frequently extract single entries and further evaluate those on a subjective basis. In lieu of a standardized procedure for scoring the existing knowledge regarding individual proteins, we here report about a computer-assisted method, which we applied to score the present knowledge about any given Swiss-Prot entry. Applying this quantitative score allows the comparison of proteins with respect to their sequence yet highlights the comprehension of functional data. pfs analysis may be also applied for quality control of individual entries or for database management in order to rank entry listings.

  20. Automated Quantitative Assessment of Proteins' Biological Function in Protein Knowledge Bases

    Directory of Open Access Journals (Sweden)

    Gabriele Mayr

    2008-01-01

    Full Text Available Primary protein sequence data are archived in databases together with information regarding corresponding biological functions. In this respect, UniProt/Swiss-Prot is currently the most comprehensive collection and it is routinely cross-examined when trying to unravel the biological role of hypothetical proteins. Bioscientists frequently extract single entries and further evaluate those on a subjective basis. In lieu of a standardized procedure for scoring the existing knowledge regarding individual proteins, we here report about a computer-assisted method, which we applied to score the present knowledge about any given Swiss-Prot entry. Applying this quantitative score allows the comparison of proteins with respect to their sequence yet highlights the comprehension of functional data. pfs analysis may be also applied for quality control of individual entries or for database management in order to rank entry listings.

  1. Assessing twenty-first century skills through a teacher created video game for high school biology students

    Science.gov (United States)

    Annetta, Leonard A.; Cheng, Meng-Tzu; Holmes, Shawn

    2010-07-01

    As twenty-first century skills become a greater focus in K-12 education, an infusion of technology that meets the needs of today's students is paramount. This study looks at the design and creation of a Multiplayer Educational Gaming Application (MEGA) for high school biology students. The quasi-experimental, qualitative design assessed the twenty-first century skills of digital age literacy, inventive thinking, high productivity, and effective communication techniques of the students exposed to a MEGA. Three factors, as they pertained to these skills, emerged from classroom observations. Interaction with the teacher, discussion with peers, and engagement/time-on-task while playing the MEGA suggested that students playing an educational video game exhibited all of the projected twenty-first century skills while being engrossed in the embedded science content.

  2. CASPIAN BIOLOGICAL RESOURCES

    Directory of Open Access Journals (Sweden)

    M. K. Guseynov

    2015-01-01

    Full Text Available Aim. We present the data on the biological resources of the Caspian Sea, based on the analysis of numerous scientific sources published between years of 1965 and 2011. Due to changes in various biotic and abiotic factors we find it important to discuss the state of the major groups of aquatic biocenosis including algae, crayfish, shrimp, pontogammarus, fish and Caspian seal. Methods. Long-term data has been analyzed on the biology and ecology of the main commercial fish stocks and their projected catches for qualitative and quantitative composition, abundance and biomass of aquatic organisms that make up the food base for fish. Results and discussion. It has been found that the widespread commercial invertebrates in the Caspian Sea are still poorly studied; their stocks are not identified and not used commercially. There is a great concern about the current state of the main commercial fish stocks of the Caspian Sea. A critical challenge is to preserve the pool of biological resources and the restoration of commercial stocks of Caspian fish. For more information about the state of the marine ecosystem in modern conditions, expedition on Caspian Sea should be carried out to study the hydrochemical regime and fish stocks, assessment of sturgeon stocks, as well as the need to conduct sonar survey for sprat stocks. Conclusions. The main condition for preserving the ecosystem of the Caspian Sea and its unique biological resources is to develop and apply environmentally-friendly methods of oil, issuing concerted common fisheries rules in various regions of theCaspian Sea, strengthening of control for sturgeon by all Caspian littoral states. The basic principle of the protection of biological resources is their rational use, based on the preservation of optimal conditions of their natural or artificial reproduction. 

  3. Step by Step: Biology Undergraduates' Problem-Solving Procedures during Multiple-Choice Assessment.

    Science.gov (United States)

    Prevost, Luanna B; Lemons, Paula P

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. © 2016 L. B. Prevost and P. P. Lemons. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Assessing therapeutic relevance of biologically interesting, ampholytic substances based on their physicochemical and spectral characteristics with chemometric tools

    Science.gov (United States)

    Judycka, U.; Jagiello, K.; Bober, L.; Błażejowski, J.; Puzyn, T.

    2018-06-01

    Chemometric tools were applied to investigate the biological behaviour of ampholytic substances in relation to their physicochemical and spectral properties. Results of the Principal Component Analysis suggest that size of molecules and their electronic and spectral characteristics are the key properties required to predict therapeutic relevance of the compounds examined. These properties were used for developing the structure-activity classification model. The classification model allows assessing the therapeutic behaviour of ampholytic substances on the basis of solely values of descriptors that can be obtained computationally. Thus, the prediction is possible without necessity of carrying out time-consuming and expensive laboratory tests, which is its main advantage.

  5. Horns Rev offshore wind farm. Environmental impact assessment of sea bottom and marine biology

    Energy Technology Data Exchange (ETDEWEB)

    Leonhard, S.B.

    2000-03-15

    An Environmental Impact Assessment (EIA) of a planned 150 MW offshore wind farm at Horns Rev has been carried out for the marine biology and sea bottom in the area, and includes vegetation and benthic fauna. The study forms part of a total EIA of the planned offshore wind farm. This EIA study has been drawn up in accordance with the guidelines laid down by the Ministry of Environment and Energy in the publication, 'Guidelines for preparation of EIAstudies for offshore wind farms. Horns Rev is situated off Blaevands Huk, which is Denmark's most westerly point. It is a shallow reef with water depths between 2 and 9 metres and is primarily composed of sand, gravel and pebbles. The area designated for the wind farm lies directly south of Horns Rev and is dominated by sand with a median particle size of 0.3 mm. Along the edges, towards areas of greater depth, the particle size increases. There are areas of fine sand in the deepest area, and in isolated pockets within the proposed wind farm site. The sediment is characterised by a very low (<1%) organic matter content. On the basis of the expected impact from the establishment of the wind farm, it is not deemed necessary to carry out special programmes during the construction phase for monitoring of the environmental-biological conditions. A monitoring and control programme is recommended during the production phase in order to follow the copper concentration in bivalves, or alternatively to initiate recovery or elimination of the copper-laden waste. A control programme is recommended during the production phase in order to follow the establishment and succession of the fouling community on the wind turbine foundations and scour-protecting revetments. (BA)

  6. Horns Rev offshore wind farm. Environmental impact assessment of sea bottom and marine biology

    Energy Technology Data Exchange (ETDEWEB)

    Leonhard, S B

    2000-03-15

    An Environmental Impact Assessment (EIA) of a planned 150 MW offshore wind farm at Horns Rev has been carried out for the marine biology and sea bottom in the area, and includes vegetation and benthic fauna. The study forms part of a total EIA of the planned offshore wind farm. This EIA study has been drawn up in accordance with the guidelines laid down by the Ministry of Environment and Energy in the publication, 'Guidelines for preparation of EIAstudies for offshore wind farms. Horns Rev is situated off Blaevands Huk, which is Denmark's most westerly point. It is a shallow reef with water depths between 2 and 9 metres and is primarily composed of sand, gravel and pebbles. The area designated for the wind farm lies directly south of Horns Rev and is dominated by sand with a median particle size of 0.3 mm. Along the edges, towards areas of greater depth, the particle size increases. There are areas of fine sand in the deepest area, and in isolated pockets within the proposed wind farm site. The sediment is characterised by a very low (<1%) organic matter content. On the basis of the expected impact from the establishment of the wind farm, it is not deemed necessary to carry out special programmes during the construction phase for monitoring of the environmental-biological conditions. A monitoring and control programme is recommended during the production phase in order to follow the copper concentration in bivalves, or alternatively to initiate recovery or elimination of the copper-laden waste. A control programme is recommended during the production phase in order to follow the establishment and succession of the fouling community on the wind turbine foundations and scour-protecting revetments. (BA)

  7. Impaired Perception of Biological Motion in Parkinson’s Disease

    Science.gov (United States)

    Jaywant, Abhishek; Shiffrar, Maggie; Roy, Serge; Cronin-Golomb, Alice

    2016-01-01

    Objective We examined biological motion perception in Parkinson’s disease (PD). Biological motion perception is related to one’s own motor function and depends on the integrity of brain areas affected in PD, including posterior superior temporal sulcus. If deficits in biological motion perception exist, they may be specific to perceiving natural/fast walking patterns that individuals with PD can no longer perform, and may correlate with disease-related motor dysfunction. Method 26 non-demented individuals with PD and 24 control participants viewed videos of point-light walkers and scrambled versions that served as foils, and indicated whether each video depicted a human walking. Point-light walkers varied by gait type (natural, parkinsonian) and speed (0.5, 1.0, 1.5 m/s). Participants also completed control tasks (object motion, coherent motion perception), a contrast sensitivity assessment, and a walking assessment. Results The PD group demonstrated significantly less sensitivity to biological motion than the control group (pperception (p=.02, Cohen’s d=.68). There was no group difference in coherent motion perception. Although individuals with PD had slower walking speed and shorter stride length than control participants, gait parameters did not correlate with biological motion perception. Contrast sensitivity and coherent motion perception also did not correlate with biological motion perception. Conclusion PD leads to a deficit in perceiving biological motion, which is independent of gait dysfunction and low-level vision changes, and may therefore arise from difficulty perceptually integrating form and motion cues in posterior superior temporal sulcus. PMID:26949927

  8. Standardization in biological staining. The influence of dye manufacturing

    DEFF Research Database (Denmark)

    Lyon, H

    2000-01-01

    not have been subjected to quality assessment either internally by the producer or vendor or externally by independent investigators or organizations such as the Biological Stain Commission. Concerted attempts at standardization in Europe are discussed. The latest results of this work, the European...... standard EN 12376, is presented. This standard is concerned with information supplied by the manufacturer with in vitro diagnostic reagents for biological staining. The standard has been prepared by a Working Group on Staining in Biology under Technical Committee 140, In Vitro Medical Devices...

  9. 75 FR 69396 - Availability of an Environmental Assessment for a Biological Control Agent for Arundo donax

    Science.gov (United States)

    2010-11-12

    ... Biological Control Agent for Arundo donax AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION... alternatives to, the release of Arundo scale into the continental United States for use as a biological control... a biological control agent to reduce the severity of Arundo donax infestations. A. donax is a highly...

  10. Comprehensive Biological Monitoring to Assess Isocyanates and Solvents Exposure in the NSW Australia Motor Vehicle Repair Industry.

    Science.gov (United States)

    Hu, Jimmy; Cantrell, Phillip; Nand, Aklesh

    2017-10-01

    of water-based paints in the industry, resulting in lower than expected isocyanate and solvent metabolite levels detected in this more recent study. Further, the completion of sample context form, along with spot urine collection in relation to the isocyanate exposure monitoring work details will provide crucial information to interpret the biological analysis results. The development of new biomarkers of isocyanate oligomer-derived triamines should be incorporated in the assessment of isocyanate exposure in the MVR industry to provide a more complete picture of isocyanate exposure. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  11. An Assessment of the Spatial and Temporal Variability of Biological Responses to Municipal Wastewater Effluent in Rainbow Darter (Etheostoma caeruleum) Collected along an Urban Gradient

    Science.gov (United States)

    Bragg, Leslie M.; Tetreault, Gerald R.; Bahamonde, Paulina A.; Tanna, Rajiv N.; Bennett, Charles J.; McMaster, Mark E.; Servos, Mark R.

    2016-01-01

    Municipal wastewater effluent (MWWE) and its constituents, such as chemicals of emerging concern, pose a potential threat to the sustainability of fish populations by disrupting key endocrine functions in aquatic organisms. While studies have demonstrated changes in biological markers of exposure of aquatic organisms to groups of chemicals of emerging concern, the variability of these markers over time has not been sufficiently described in wild fish species. The aim of this study was to assess the spatial and temporal variability of biological markers in response to MWWE exposure and to test the consistency of these responses between seasons and among years. Rainbow darter (Etheostoma caeruleum) were collected in spring and fall seasons over a 5-year period in the Grand River, Ontario, Canada. In addition to surface water chemistry (nutrients and selected pharmaceuticals), measures were taken across levels of biological organization in rainbow darter. The measurements of hormone production, gonad development, and intersex severity were temporally consistent and suggested impaired reproduction in male fish collected downstream of MWWE outfalls. In contrast, ovarian development and hormone production in females appeared to be influenced more by urbanization than MWWE. Measures of gene expression and somatic indices were highly variable between sites and years, respectively, and were inconclusive in terms of the impacts of MWWE overall. Robust biomonitoring programs must consider these factors in both the design and interpretation of results, especially when spatial and temporal sampling of biological endpoints is limited. Assessing the effects of contaminants and other stressors on fish in watersheds would be greatly enhanced by an approach that considers natural variability in the endpoints being measured. PMID:27776151

  12. An Assessment of the Spatial and Temporal Variability of Biological Responses to Municipal Wastewater Effluent in Rainbow Darter (Etheostoma caeruleum Collected along an Urban Gradient.

    Directory of Open Access Journals (Sweden)

    Meghan L M Fuzzen

    Full Text Available Municipal wastewater effluent (MWWE and its constituents, such as chemicals of emerging concern, pose a potential threat to the sustainability of fish populations by disrupting key endocrine functions in aquatic organisms. While studies have demonstrated changes in biological markers of exposure of aquatic organisms to groups of chemicals of emerging concern, the variability of these markers over time has not been sufficiently described in wild fish species. The aim of this study was to assess the spatial and temporal variability of biological markers in response to MWWE exposure and to test the consistency of these responses between seasons and among years. Rainbow darter (Etheostoma caeruleum were collected in spring and fall seasons over a 5-year period in the Grand River, Ontario, Canada. In addition to surface water chemistry (nutrients and selected pharmaceuticals, measures were taken across levels of biological organization in rainbow darter. The measurements of hormone production, gonad development, and intersex severity were temporally consistent and suggested impaired reproduction in male fish collected downstream of MWWE outfalls. In contrast, ovarian development and hormone production in females appeared to be influenced more by urbanization than MWWE. Measures of gene expression and somatic indices were highly variable between sites and years, respectively, and were inconclusive in terms of the impacts of MWWE overall. Robust biomonitoring programs must consider these factors in both the design and interpretation of results, especially when spatial and temporal sampling of biological endpoints is limited. Assessing the effects of contaminants and other stressors on fish in watersheds would be greatly enhanced by an approach that considers natural variability in the endpoints being measured.

  13. Biologic interventions for fatigue in rheumatoid arthritis.

    Science.gov (United States)

    Almeida, Celia; Choy, Ernest H S; Hewlett, Sarah; Kirwan, John R; Cramp, Fiona; Chalder, Trudie; Pollock, Jon; Christensen, Robin

    2016-06-06

    Fatigue is a common and potentially distressing symptom for patients with rheumatoid arthritis (RA), with no accepted evidence-based management guidelines. Evidence suggests that biologic interventions improve symptoms and signs in RA as well as reducing joint damage. To evaluate the effect of biologic interventions on fatigue in rheumatoid arthritis. We searched the following electronic databases up to 1 April 2014: Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, Current Controlled Trials Register, the National Research Register Archive, The UKCRN Portfolio Database, AMED, CINAHL, PsycINFO, Social Science Citation Index, Web of Science, and Dissertation Abstracts International. In addition, we checked the reference lists of articles identified for inclusion for additional studies and contacted key authors. We included randomised controlled trials if they evaluated a biologic intervention in people with rheumatoid arthritis and had self reported fatigue as an outcome measure. Two reviewers selected relevant trials, assessed methodological quality and extracted data. Where appropriate, we pooled data in meta-analyses using a random-effects model. We identified 32 studies for inclusion in this current review. Twenty studies evaluated five anti-tumour necrosis factor (anti-TNF) biologic agents (adalimumab, certolizumab, etanercept, golimumab and infliximab), and 12 studies focused on five non-anti-TNF biologic agents (abatacept, canakinumab, rituximab, tocilizumab and an anti-interferon gamma monoclonal antibody). All but two of the studies were double-blind randomised placebo-controlled trials. In some trials, patients could receive concomitant disease-modifying anti-rheumatic drugs (DMARDs). These studies added either biologics or placebo to DMARDs. Investigators did not change the dose of the latter from baseline. In total, these studies included 9946 participants in the intervention groups and

  14. Development of the Statistical Reasoning in Biology Concept Inventory (SRBCI).

    Science.gov (United States)

    Deane, Thomas; Nomme, Kathy; Jeffery, Erica; Pollock, Carol; Birol, Gülnur

    2016-01-01

    We followed established best practices in concept inventory design and developed a 12-item inventory to assess student ability in statistical reasoning in biology (Statistical Reasoning in Biology Concept Inventory [SRBCI]). It is important to assess student thinking in this conceptual area, because it is a fundamental requirement of being statistically literate and associated skills are needed in almost all walks of life. Despite this, previous work shows that non-expert-like thinking in statistical reasoning is common, even after instruction. As science educators, our goal should be to move students along a novice-to-expert spectrum, which could be achieved with growing experience in statistical reasoning. We used item response theory analyses (the one-parameter Rasch model and associated analyses) to assess responses gathered from biology students in two populations at a large research university in Canada in order to test SRBCI's robustness and sensitivity in capturing useful data relating to the students' conceptual ability in statistical reasoning. Our analyses indicated that SRBCI is a unidimensional construct, with items that vary widely in difficulty and provide useful information about such student ability. SRBCI should be useful as a diagnostic tool in a variety of biology settings and as a means of measuring the success of teaching interventions designed to improve statistical reasoning skills. © 2016 T. Deane et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Developmental biology, the stem cell of biological disciplines.

    Science.gov (United States)

    Gilbert, Scott F

    2017-12-01

    Developmental biology (including embryology) is proposed as "the stem cell of biological disciplines." Genetics, cell biology, oncology, immunology, evolutionary mechanisms, neurobiology, and systems biology each has its ancestry in developmental biology. Moreover, developmental biology continues to roll on, budding off more disciplines, while retaining its own identity. While its descendant disciplines differentiate into sciences with a restricted set of paradigms, examples, and techniques, developmental biology remains vigorous, pluripotent, and relatively undifferentiated. In many disciplines, especially in evolutionary biology and oncology, the developmental perspective is being reasserted as an important research program.

  16. Strategy on biological evaluation for biodegradable/absorbable materials and medical devices.

    Science.gov (United States)

    Liu, Chenghu; Luo, Hongyu; Wan, Min; Hou, Li; Wang, Xin; Shi, Yanping

    2018-01-01

    During the last two decades, biodegradable/absorbable materials which have many benefits over conventional implants are being sought in clinical practices. However, to date, it still remains obscure for us to perform full physic-chemical characterization and biological risk assessment for these materials and related devices due to their complex design and coherent processing. In this review, based on the art of knowledge for biodegradable/absorbable materials and biological risk assessment, we demonstrated some promising strategies to establish and improve the current biological evaluation systems for these biodegradable/absorbable materials and related medical devices.

  17. Relations between Intuitive Biological Thinking and Biological Misconceptions in Biology Majors and Nonmajors

    Science.gov (United States)

    Coley, John D.; Tanner, Kimberly

    2015-01-01

    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed misconceptions, among biology students across biological domains. In parallel, cognitive and developmental psychologists have described intuitive conceptual systems—teleological, essentialist, and anthropocentric thinking—that humans use to reason about biology. We hypothesize that seemingly unrelated biological misconceptions may have common origins in these intuitive ways of knowing, termed cognitive construals. We presented 137 undergraduate biology majors and nonmajors with six biological misconceptions. They indicated their agreement with each statement, and explained their rationale for their response. Results indicate frequent agreement with misconceptions, and frequent use of construal-based reasoning among both biology majors and nonmajors in their written explanations. Moreover, results also show associations between specific construals and the misconceptions hypothesized to arise from those construals. Strikingly, such associations were stronger among biology majors than nonmajors. These results demonstrate important linkages between intuitive ways of thinking and misconceptions in discipline-based reasoning, and raise questions about the origins, persistence, and generality of relations between intuitive reasoning and biological misconceptions. PMID:25713093

  18. The Colorado Learning Attitudes about Science Survey (CLASS) for Use in Biology

    Science.gov (United States)

    Semsar, Katharine; Knight, Jennifer K.; Birol, Gülnur; Smith, Michelle K.

    2011-01-01

    This paper describes a newly adapted instrument for measuring novice-to-expert-like perceptions about biology: the Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio). Consisting of 31 Likert-scale statements, CLASS-Bio probes a range of perceptions that vary between experts and novices, including enjoyment of the discipline, propensity to make connections to the real world, recognition of conceptual connections underlying knowledge, and problem-solving strategies. CLASS-Bio has been tested for response validity with both undergraduate students and experts (biology PhDs), allowing student responses to be directly compared with a consensus expert response. Use of CLASS-Bio to date suggests that introductory biology courses have the same challenges as introductory physics and chemistry courses: namely, students shift toward more novice-like perceptions following instruction. However, students in upper-division biology courses do not show the same novice-like shifts. CLASS-Bio can also be paired with other assessments to: 1) examine how student perceptions impact learning and conceptual understanding of biology, and 2) assess and evaluate how pedagogical techniques help students develop both expertise in problem solving and an expert-like appreciation of the nature of biology. PMID:21885823

  19. The Colorado Learning Attitudes about Science Survey (CLASS) for use in Biology.

    Science.gov (United States)

    Semsar, Katharine; Knight, Jennifer K; Birol, Gülnur; Smith, Michelle K

    2011-01-01

    This paper describes a newly adapted instrument for measuring novice-to-expert-like perceptions about biology: the Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio). Consisting of 31 Likert-scale statements, CLASS-Bio probes a range of perceptions that vary between experts and novices, including enjoyment of the discipline, propensity to make connections to the real world, recognition of conceptual connections underlying knowledge, and problem-solving strategies. CLASS-Bio has been tested for response validity with both undergraduate students and experts (biology PhDs), allowing student responses to be directly compared with a consensus expert response. Use of CLASS-Bio to date suggests that introductory biology courses have the same challenges as introductory physics and chemistry courses: namely, students shift toward more novice-like perceptions following instruction. However, students in upper-division biology courses do not show the same novice-like shifts. CLASS-Bio can also be paired with other assessments to: 1) examine how student perceptions impact learning and conceptual understanding of biology, and 2) assess and evaluate how pedagogical techniques help students develop both expertise in problem solving and an expert-like appreciation of the nature of biology.

  20. Probability of misclassifying biological elements in surface waters.

    Science.gov (United States)

    Loga, Małgorzata; Wierzchołowska-Dziedzic, Anna

    2017-11-24

    Measurement uncertainties are inherent to assessment of biological indices of water bodies. The effect of these uncertainties on the probability of misclassification of ecological status is the subject of this paper. Four Monte-Carlo (M-C) models were applied to simulate the occurrence of random errors in the measurements of metrics corresponding to four biological elements of surface waters: macrophytes, phytoplankton, phytobenthos, and benthic macroinvertebrates. Long series of error-prone measurement values of these metrics, generated by M-C models, were used to identify cases in which values of any of the four biological indices lay outside of the "true" water body class, i.e., outside the class assigned from the actual physical measurements. Fraction of such cases in the M-C generated series was used to estimate the probability of misclassification. The method is particularly useful for estimating the probability of misclassification of the ecological status of surface water bodies in the case of short sequences of measurements of biological indices. The results of the Monte-Carlo simulations show a relatively high sensitivity of this probability to measurement errors of the river macrophyte index (MIR) and high robustness to measurement errors of the benthic macroinvertebrate index (MMI). The proposed method of using Monte-Carlo models to estimate the probability of misclassification has significant potential for assessing the uncertainty of water body status reported to the EC by the EU member countries according to WFD. The method can be readily applied also in risk assessment of water management decisions before adopting the status dependent corrective actions.

  1. A Brief Introduction to Chinese Biological Biological

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Chinese Biological Abstracts sponsored by the Library, the Shanghai Institutes for Biological Sciences, the Biological Documentation and Information Network, all of the Chinese Academy of Sciences, commenced publication in 1987 and was initiated to provide access to the Chinese information in the field of biology.

  2. Biological ramifications of the subseabed disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Gomez, L.S.; Hessler, R.R.; Jackson, D.W.; Marietta, M.G.; Smith, K.L. Jr.; Talbert, D.M.; Yayanos, A.A.

    1980-01-01

    The primary goal of the US Subseabed Disposal Program (SDP) is to assess the technical and environmental feasibility of disposing of high-level nuclear waste in deep-sea sediments. The subseabed biology program is charged with assessing possible ecosystem effects of radionuclides as well as possible health effects to man from radionuclides which may be released in the deep sea and transported to the ocean surface. Current biological investigations are attempting to determine benthic community structure; benthic community metabolism; the biology of deep-sea mobile scavengers; the faunal composition of midwater nekton; rates of microbial processes, and the radiation sensitivity of deep-sea organisms. Existing models of the dispersal of radionuclides in the deep sea have not considered many of the possible biological mechanisms which may influence the movement of radionuclides. Therefore, a multi-compartment foodweb model is being developed which considers both biological and physical influences on radionuclide transport. This model will allow parametric studies to be made of the impact on the ocean environment and on man of potential releases of radionuclides

  3. Biological ramifications of the subseabed disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Gomez, L.S.; Hessler, R.R.; Jackson, D.W.; Marietta, M.G.; Smith, K.L. Jr.; Talbert, D.M.; Yayanos, A.A.

    1980-05-01

    The primary goal of the US Subseabed Disposal Program (SDP) is to assess the technical and environmental feasibility of disposing of high-level nuclear waste in deep-sea sediments. The subseabed biology program is charged with assessing possible ecosystem effects of radionuclides as well as possible health effects to man from radionuclides which may be released in the deep sea and transported to the ocean surface. Current biological investigations are attempting to determine benthic community structure; benthic community metabolism; the biology of deep-sea mobile scavengers; the faunal composition of midwater nekton; rates of microbial processes; and the radiation sensitivity of deep-sea organisms. Existing models of the dispersal of radionuclides in the deep sea have not considered many of the possible biological mechanisms which may influence the movement of radionuclides. Therefore, a multi-compartment foodweb model is being developed which considers both biological and physical influences on radionuclide transport. This model will allow parametric studies to be made of the impact on the ocean environment and on man of potential releases of radionuclides

  4. Biological effects of high-energy radiation

    International Nuclear Information System (INIS)

    Curtis, S.B.

    1976-01-01

    The biological effects of high-energy radiation are reviewed, with emphasis on the effects of the hadronic component. Proton and helium ion effects are similar to those of the more conventional and sparsely ionizing x- and γ-radiation. Heavy-ions are known to be more biologically effective, but the long term hazard from accumulated damage has yet to be assessed. Some evidence of widely varying but dramatically increased effectiveness of very high-energy (approximately 70 GeV) hadron beams is reviewed. Finally, the importance of the neutron component in many situations around high-energy accelerators is pointed out

  5. Relations between intuitive biological thinking and biological misconceptions in biology majors and nonmajors.

    Science.gov (United States)

    Coley, John D; Tanner, Kimberly

    2015-03-02

    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed misconceptions, among biology students across biological domains. In parallel, cognitive and developmental psychologists have described intuitive conceptual systems--teleological, essentialist, and anthropocentric thinking--that humans use to reason about biology. We hypothesize that seemingly unrelated biological misconceptions may have common origins in these intuitive ways of knowing, termed cognitive construals. We presented 137 undergraduate biology majors and nonmajors with six biological misconceptions. They indicated their agreement with each statement, and explained their rationale for their response. Results indicate frequent agreement with misconceptions, and frequent use of construal-based reasoning among both biology majors and nonmajors in their written explanations. Moreover, results also show associations between specific construals and the misconceptions hypothesized to arise from those construals. Strikingly, such associations were stronger among biology majors than nonmajors. These results demonstrate important linkages between intuitive ways of thinking and misconceptions in discipline-based reasoning, and raise questions about the origins, persistence, and generality of relations between intuitive reasoning and biological misconceptions. © 2015 J. D. Coley and K. Tanner. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Plant biology research and training for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, K. [ed.

    1992-12-31

    The committee was assembled in response to a request from the National Science Foundation (NSF), the US Department of Agriculture (USDA), and the US Department of Energy (DoE). The leadership of these agencies asked the National Academy of Sciences through the National Research Council (NRC) to assess the status of plant-science research in the United States in light of the opportunities arising from advances inother areas of biology. NRC was asked to suggest ways of accelerating the application of these new biologic concepts and tools to research in plant science with the aim of enhancing the acquisition of new knowledge about plants. The charge to the committee was to examine the following: Organizations, departments, and institutions conducting plant biology research; human resources involved in plant biology research; graduate training programs in plant biology; federal, state, and private sources of support for plant-biology research; the role of industry in conducting and supporting plant-biology research; the international status of US plant-biology research; and the relationship of plant biology to leading-edge research in biology.

  7. Plant biology research and training for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, K. (ed.)

    1992-01-01

    The committee was assembled in response to a request from the National Science Foundation (NSF), the US Department of Agriculture (USDA), and the US Department of Energy (DoE). The leadership of these agencies asked the National Academy of Sciences through the National Research Council (NRC) to assess the status of plant-science research in the United States in light of the opportunities arising from advances inother areas of biology. NRC was asked to suggest ways of accelerating the application of these new biologic concepts and tools to research in plant science with the aim of enhancing the acquisition of new knowledge about plants. The charge to the committee was to examine the following: Organizations, departments, and institutions conducting plant biology research; human resources involved in plant biology research; graduate training programs in plant biology; federal, state, and private sources of support for plant-biology research; the role of industry in conducting and supporting plant-biology research; the international status of US plant-biology research; and the relationship of plant biology to leading-edge research in biology.

  8. Developmental biology, the stem cell of biological disciplines

    OpenAIRE

    Gilbert, Scott F.

    2017-01-01

    Developmental biology (including embryology) is proposed as "the stem cell of biological disciplines.” Genetics, cell biology, oncology, immunology, evolutionary mechanisms, neurobiology, and systems biology each has its ancestry in developmental biology. Moreover, developmental biology continues to roll on, budding off more disciplines, while retaining its own identity. While its descendant disciplines differentiate into sciences with a restricted set of paradigms, examples, and techniques, ...

  9. Shaping Biological Knowledge: Applications in Proteomics

    Directory of Open Access Journals (Sweden)

    R. Appel

    2006-04-01

    Full Text Available The central dogma of molecular biology has provided a meaningful principle for data integration in the field of genomics. In this context, integration reflects the known transitions from a chromosome to a protein sequence: transcription, intron splicing, exon assembly and translation. There is no such clear principle for integrating proteomics data, since the laws governing protein folding and interactivity are not quite understood. In our effort to bring together independent pieces of information relative to proteins in a biologically meaningful way, we assess the bias of bioinformatics resources and consequent approximations in the framework of small-scale studies. We analyse proteomics data while following both a data-driven (focus on proteins smaller than 10 kDa and a hypothesis-driven (focus on whole bacterial proteomes approach. These applications are potentially the source of specialized complements to classical biological ontologies.

  10. Shaping biological knowledge: applications in proteomics.

    Science.gov (United States)

    Lisacek, F; Chichester, C; Gonnet, P; Jaillet, O; Kappus, S; Nikitin, F; Roland, P; Rossier, G; Truong, L; Appel, R

    2004-01-01

    The central dogma of molecular biology has provided a meaningful principle for data integration in the field of genomics. In this context, integration reflects the known transitions from a chromosome to a protein sequence: transcription, intron splicing, exon assembly and translation. There is no such clear principle for integrating proteomics data, since the laws governing protein folding and interactivity are not quite understood. In our effort to bring together independent pieces of information relative to proteins in a biologically meaningful way, we assess the bias of bioinformatics resources and consequent approximations in the framework of small-scale studies. We analyse proteomics data while following both a data-driven (focus on proteins smaller than 10 kDa) and a hypothesis-driven (focus on whole bacterial proteomes) approach. These applications are potentially the source of specialized complements to classical biological ontologies.

  11. Role of accelerator mass spectrometry in biological dosimetry

    International Nuclear Information System (INIS)

    Felton, J.S.; Turteltaub, K.W.; Frantz, C.; Vogel, J.S.; Gledhill, B.L.

    1992-01-01

    Understanding risks from exposures to carcinogens and other chemicals depends upon measurement of their dose to target tissues and their reactivity with critical macromolecules. The authors have used AMS detection of radio-isotopes to assess doses and reactivities at low, environmentally relevant doses. Several biomedical investigations show the effectiveness of quantification of biologically important events at extremely high sensitivity with AMS. Specifically, they have measured the addition of environmental carcinogens such as 2-amino-3,8-dimethylimidazo[4,5-f]-quinoaxaline (MelQx), a chemical found in cooked food, to DNA at concentrations relevant to human exposure. Other low level detection problems in biology, such as immunoassay assessment of small environmental chemicals, is being developed with attomole sensitivity. AMS also aids the assessment of genotoxic risks from chemicals by quantifying the binding of labeled chemicals to DNA. The very toxic and potent carcinogen, tetrachlorodibenzo-p-dioxin (TCDD) was assessed for DNA binding, but no detectable radiocarbon-labeled TCDD was found associated with mouse liver DNA at less than systematically toxic levels. The data indicate that a mutation mechanism does not mediate TCDD carcinogenesis

  12. Assessing risks and benefits of floral supplements in conservation biological control

    NARCIS (Netherlands)

    Winkler, K.; Wackers, F.L.; Termorshuizen, A.J.; Lenteren, van J.C.

    2010-01-01

    The use of flowering field margins is often proposed as a method to support biological control in agro-ecosystems. In addition to beneficial insects, many herbivores depend on floral food as well. The indiscriminate use of flowering species in field margins can therefore lead to higher pest numbers.

  13. Biological assessment for the remedial action at the chemical plant area of the Weldon Spring site

    Energy Technology Data Exchange (ETDEWEB)

    Hlohowskyj, I.; Dunn, C.P.

    1992-11-01

    The Weldon Spring site in St.Charles County, Missouri, became contaminated during the 1940s through the 1960s as a result of explosives production by the US Army and uranium and thorium processing by the predecessor agency of the US Department of Energy (DOE). The site is listed on the National Priorities List of the US Environmental Protection Agency, and DOE is responsible for its cleanup. Contaminants are present in soil, surface water, and aquatic sediments. Alternatives identified for site remediation are no action (included as baseline for comparison), treatment and disposal of the wastes at the Weldon Spring site, and on-site treatment followed by off-site disposal at either a commercial facility near Clive, Utah, or at DOE`s Hanford site near Richland, Washington. In accordance with the requirements of the Endangered Species Act, this biological assessment has been prepared to evaluate the potential effects of proposed remedial action alternatives on federal listed (endangered or threatened) and candidate species at the respective sites. The assessment includes consideration of the environmental setting at each site; the federal listed and candidate species that could occur at each site; the construction, excavation, and treatment activities under each alternative; and the amount of land area affected at each site.

  14. Biological assessment for the remedial action at the chemical plant area of the Weldon Spring site

    Energy Technology Data Exchange (ETDEWEB)

    Hlohowskyj, I.; Dunn, C.P.

    1992-11-01

    The Weldon Spring site in St.Charles County, Missouri, became contaminated during the 1940s through the 1960s as a result of explosives production by the US Army and uranium and thorium processing by the predecessor agency of the US Department of Energy (DOE). The site is listed on the National Priorities List of the US Environmental Protection Agency, and DOE is responsible for its cleanup. Contaminants are present in soil, surface water, and aquatic sediments. Alternatives identified for site remediation are no action (included as baseline for comparison), treatment and disposal of the wastes at the Weldon Spring site, and on-site treatment followed by off-site disposal at either a commercial facility near Clive, Utah, or at DOE's Hanford site near Richland, Washington. In accordance with the requirements of the Endangered Species Act, this biological assessment has been prepared to evaluate the potential effects of proposed remedial action alternatives on federal listed (endangered or threatened) and candidate species at the respective sites. The assessment includes consideration of the environmental setting at each site; the federal listed and candidate species that could occur at each site; the construction, excavation, and treatment activities under each alternative; and the amount of land area affected at each site.

  15. Conservation businesses and conservation planning in a biological diversity hotspot.

    Science.gov (United States)

    Di Minin, Enrico; Macmillan, Douglas Craig; Goodman, Peter Styan; Escott, Boyd; Slotow, Rob; Moilanen, Atte

    2013-08-01

    The allocation of land to biological diversity conservation competes with other land uses and the needs of society for development, food, and extraction of natural resources. Trade-offs between biological diversity conservation and alternative land uses are unavoidable, given the realities of limited conservation resources and the competing demands of society. We developed a conservation-planning assessment for the South African province of KwaZulu-Natal, which forms the central component of the Maputaland-Pondoland-Albany biological diversity hotspot. Our objective was to enhance biological diversity protection while promoting sustainable development and providing spatial guidance in the resolution of potential policy conflicts over priority areas for conservation at risk of transformation. The conservation-planning assessment combined spatial-distribution models for 646 conservation features, spatial economic-return models for 28 alternative land uses, and spatial maps for 4 threats. Nature-based tourism businesses were competitive with other land uses and could provide revenues of >US$60 million/year to local stakeholders and simultaneously help meeting conservation goals for almost half the conservation features in the planning region. Accounting for opportunity costs substantially decreased conflicts between biological diversity, agricultural use, commercial forestry, and mining. Accounting for economic benefits arising from conservation and reducing potential policy conflicts with alternative plans for development can provide opportunities for successful strategies that combine conservation and sustainable development and facilitate conservation action. © 2013 Society for Conservation Biology.

  16. Physical integrity: the missing link in biological monitoring and TMDLs.

    Science.gov (United States)

    Asmus, Brenda; Magner, Joseph A; Vondracek, Bruce; Perry, Jim

    2009-12-01

    The Clean Water Act mandates that the chemical, physical, and biological integrity of our nation's waters be maintained and restored. Physical integrity has often been defined as physical habitat integrity, and as such, data collected during biological monitoring programs focus primarily on habitat quality. However, we argue that channel stability is a more appropriate measure of physical integrity and that channel stability is a foundational element of physical habitat integrity in low-gradient alluvial streams. We highlight assessment tools that could supplement stream assessments and the Total Maximum Daily Load stressor identification process: field surveys of bankfull cross-sections; longitudinal thalweg profiles; particle size distribution; and regionally calibrated, visual, stream stability assessments. Benefits of measuring channel stability include a more informed selection of reference or best attainable stream condition for an Index of Biotic Integrity, establishment of a baseline for monitoring changes in present and future condition, and indication of channel stability for investigations of chemical and biological impairments associated with sediment discontinuity and loss of habitat quality.

  17. Biologic interventions for fatigue in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Almeida, Celia; Choy, Ernest H S; Hewlett, Sarah

    2016-01-01

    BACKGROUND: Fatigue is a common and potentially distressing symptom for patients with rheumatoid arthritis (RA), with no accepted evidence-based management guidelines. Evidence suggests that biologic interventions improve symptoms and signs in RA as well as reducing joint damage. OBJECTIVES......: To evaluate the effect of biologic interventions on fatigue in rheumatoid arthritis. SEARCH METHODS: We searched the following electronic databases up to 1 April 2014: Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, Current Controlled Trials...... and contacted key authors. SELECTION CRITERIA: We included randomised controlled trials if they evaluated a biologic intervention in people with rheumatoid arthritis and had self reported fatigue as an outcome measure. DATA COLLECTION AND ANALYSIS: Two reviewers selected relevant trials, assessed methodological...

  18. A review of biological processes within oceanic water columns relevant to the assessment of the safety of disposal of waste, notably radioactive isotopes on or within the sea bed

    International Nuclear Information System (INIS)

    Angel, M.V.

    1985-01-01

    Pelagic biological processes and their connotations in the assessment of possible dispersal mechanisms of contaminants released on the deep oceanic seabed are reviewed. Biological gradients tend to be from the surface down so the search is for processes which run counter to these general gradients. Observed profiles of standing crop of both plankton and micronekton show that below 2000 m biological activity would have to be exceptionally dynamic to have an influence that will even approach within an order of magnitude of the dispersive effect of physical mixing. Examination of all forms of known migration mechanisms fails to reveal such dynamic activity. Nor have any critical pathways been identified within the present or foreseeable pattern of exploitation of the oceans. However, a major gap in knowledge is whether the pattern of these biological processes changes substantially in the region of continental slopes. (author)

  19. Just the facts? Introductory undergraduate biology courses focus on low-level cognitive skills.

    Science.gov (United States)

    Momsen, Jennifer L; Long, Tammy M; Wyse, Sara A; Ebert-May, Diane

    2010-01-01

    Introductory biology courses are widely criticized for overemphasizing details and rote memorization of facts. Data to support such claims, however, are surprisingly scarce. We sought to determine whether this claim was evidence-based. To do so we quantified the cognitive level of learning targeted by faculty in introductory-level biology courses. We used Bloom's Taxonomy of Educational Objectives to assign cognitive learning levels to course goals as articulated on syllabi and individual items on high-stakes assessments (i.e., exams and quizzes). Our investigation revealed the following: 1) assessment items overwhelmingly targeted lower cognitive levels, 2) the cognitive level of articulated course goals was not predictive of the cognitive level of assessment items, and 3) there was no influence of course size or institution type on the cognitive levels of assessments. These results support the claim that introductory biology courses emphasize facts more than higher-order thinking.

  20. Biological screening, knowledge and management of diabetes ...

    African Journals Online (AJOL)

    Biological screening of diabetes mellitus was carried out to assess the ... believed that adherence to diet could help in the management of the disease while ... Also health education and public enlightenment of the populace about the disease ...

  1. A saprobic index for biological assessment of river water quality in Brazil (Minas Gerais and Rio de Janeiro states).

    Science.gov (United States)

    Junqueira, Marilia Vilela; Friedrich, Günther; Pereira de Araujo, Paulo Roberto

    2010-04-01

    Based upon several years of experience in investigations with macrozoobenthos in rivers in the states of Minas Gerais and Rio de Janeiro, a biological assessment system has been developed to indicate pollution levels caused by easily degradable organic substances from sewers. The biotic index presented here is aimed at determining water's saprobic levels and was, therefore, named the "Saprobic Index for Brazilian Rivers in Minas Gerais and Rio de Janeiro states" (ISMR). For this purpose, saprobic valences and weights have been established for 122 taxa of tropical macrozoobenthos. Investigations were carried out in little, medium sized and big rivers in mountains and plains. Through ISMR, a classification of water quality and the respective cartographic representation can be obtained. Data collection and treatment methods, as well as the limitations of the biotic index, are thoroughly described. ISMR can also be used as an element to establish complex multimetric indexes intended for an ecological integrity assessment, where it is essential to indicate organic pollution.

  2. A soul of truth in things erroneous: Popper's "amateurish" evolutionary philosophy in light of contemporary biology.

    Science.gov (United States)

    Vecchi, Davide; Baravalle, Lorenzo

    2015-01-01

    This paper will critically assess Popper's evolutionary philosophy. There exists a rich literature on the topic with which we have many reservations. We believe that Popper's evolutionary philosophy should be assessed in light of the intriguing theoretical insights offered, during the last 10 years or so, by the philosophy of biology, evolutionary biology and molecular biology. We will argue that, when analysed in this manner, Popper's ideas concerning the nature of selection, Lamarckism and the theoretical limits of neo-Darwinism can be appreciated in their full biological and philosophical value.

  3. Challenges in Risk Assessment: Quantitative Risk Assessment

    OpenAIRE

    Jacxsens, Liesbeth; Uyttendaele, Mieke; De Meulenaer, Bruno

    2016-01-01

    The process of risk analysis consists out of three components, risk assessment, risk management and risk communication. These components are internationally well spread by Codex Alimentarius Commission as being the basis for setting science based standards, criteria on food safety hazards, e.g. setting maximum limits of mycotoxins in foodstuffs. However, the technical component risk assessment is hard to elaborate and to understand. Key in a risk assessment is the translation of biological or...

  4. Three-dimensional image technology in forensic anthropology: Assessing the validity of biological profiles derived from CT-3D images of the skeleton

    Science.gov (United States)

    Garcia de Leon Valenzuela, Maria Julia

    This project explores the reliability of building a biological profile for an unknown individual based on three-dimensional (3D) images of the individual's skeleton. 3D imaging technology has been widely researched for medical and engineering applications, and it is increasingly being used as a tool for anthropological inquiry. While the question of whether a biological profile can be derived from 3D images of a skeleton with the same accuracy as achieved when using dry bones has been explored, bigger sample sizes, a standardized scanning protocol and more interobserver error data are needed before 3D methods can become widely and confidently used in forensic anthropology. 3D images of Computed Tomography (CT) scans were obtained from 130 innominate bones from Boston University's skeletal collection (School of Medicine). For each bone, both 3D images and original bones were assessed using the Phenice and Suchey-Brooks methods. Statistical analysis was used to determine the agreement between 3D image assessment versus traditional assessment. A pool of six individuals with varying experience in the field of forensic anthropology scored a subsample (n = 20) to explore interobserver error. While a high agreement was found for age and sex estimation for specimens scored by the author, the interobserver study shows that observers found it difficult to apply standard methods to 3D images. Higher levels of experience did not result in higher agreement between observers, as would be expected. Thus, a need for training in 3D visualization before applying anthropological methods to 3D bones is suggested. Future research should explore interobserver error using a larger sample size in order to test the hypothesis that training in 3D visualization will result in a higher agreement between scores. The need for the development of a standard scanning protocol focusing on the optimization of 3D image resolution is highlighted. Applications for this research include the possibility

  5. Biological Threats Detection Technologies

    International Nuclear Information System (INIS)

    Bartoszcze, M.

    2007-01-01

    Among many decisive factors, which can have the influence on the possibility of decreases the results of use biological agents should be mentioned obligatory: rapid detection and identification of biological factor used, the proper preventive treatment and the medical management. The aims of identification: to identify the factor used, to estimate the area of contamination, to evaluate the possible countermeasure efforts (antibiotics, disinfectants) and to assess the effectiveness of the decontamination efforts (decontamination of the persons, equipment, buildings, environment etc.). The objects of identification are: bacteria and bacteria's spores, viruses, toxins and genetically modified factors. The present technologies are divided into: based on PCR techniques (ABI PRISM, APSIS, BIOVERIS, RAPID), immuno (BADD, RAMP, SMART) PCR and immuno techniques (APDS, LUMINEX) and others (BDS2, LUNASCAN, MALDI). The selected technologies assigned to field conditions, mobile and stationary laboratories will be presented.(author)

  6. Development of the Statistical Reasoning in Biology Concept Inventory (SRBCI)

    Science.gov (United States)

    Deane, Thomas; Nomme, Kathy; Jeffery, Erica; Pollock, Carol; Birol, Gülnur

    2016-01-01

    We followed established best practices in concept inventory design and developed a 12-item inventory to assess student ability in statistical reasoning in biology (Statistical Reasoning in Biology Concept Inventory [SRBCI]). It is important to assess student thinking in this conceptual area, because it is a fundamental requirement of being statistically literate and associated skills are needed in almost all walks of life. Despite this, previous work shows that non–expert-like thinking in statistical reasoning is common, even after instruction. As science educators, our goal should be to move students along a novice-to-expert spectrum, which could be achieved with growing experience in statistical reasoning. We used item response theory analyses (the one-parameter Rasch model and associated analyses) to assess responses gathered from biology students in two populations at a large research university in Canada in order to test SRBCI’s robustness and sensitivity in capturing useful data relating to the students’ conceptual ability in statistical reasoning. Our analyses indicated that SRBCI is a unidimensional construct, with items that vary widely in difficulty and provide useful information about such student ability. SRBCI should be useful as a diagnostic tool in a variety of biology settings and as a means of measuring the success of teaching interventions designed to improve statistical reasoning skills. PMID:26903497

  7. Biological Activity of Curcuminoids Isolated from Curcuma longa

    Directory of Open Access Journals (Sweden)

    Simay Çıkrıkçı

    2008-04-01

    Full Text Available Curcumin is the most important fraction of turmeric which is responsible for its biological activity. In this study, isolation and biological assessment of turmeric and curcumin have been discussed against standard bacterial and mycobacterial strains such as E.coli , S.aureus, E.feacalis, P.aeuroginosa, M.smegmatis, M.simiae, M.kansasii, M. terrae, M.szulgai and the fungi Candida albicans. The antioxidant activity of curcumin and turmeric were also determined by the CUPRAC method.

  8. 76 FR 13597 - Availability of an Environmental Assessment and Finding of No Significant Impact for a Biological...

    Science.gov (United States)

    2011-03-14

    ... Significant Impact for a Biological Control Agent for Hawkweeds AGENCY: Animal and Plant Health Inspection... States as a biological control agent to reduce the severity of infestations of hawkweeds (Hieracium spp..., into the continental United States for the biological control of hawkweeds (Hieracium pilosella, H...

  9. Development of a Biological Science Quantitative Reasoning Exam (BioSQuaRE)

    Science.gov (United States)

    Stanhope, Liz; Ziegler, Laura; Haque, Tabassum; Le, Laura; Vinces, Marcelo; Davis, Gregory K.; Zieffler, Andrew; Brodfuehrer, Peter; Preest, Marion; Belitsky, Jason M.; Umbanhowar, Charles, Jr.; Overvoorde, Paul J.

    2017-01-01

    Multiple reports highlight the increasingly quantitative nature of biological research and the need to innovate means to ensure that students acquire quantitative skills. We present a tool to support such innovation. The Biological Science Quantitative Reasoning Exam (BioSQuaRE) is an assessment instrument designed to measure the quantitative…

  10. The biological effectiveness of antiproton irradiation

    International Nuclear Information System (INIS)

    Holzscheiter, Michael H.; Bassler, Niels; Agazaryan, Nzhde; Beyer, Gerd; Blackmore, Ewart; DeMarco, John J.; Doser, Michael; Durand, Ralph E.; Hartley, Oliver; Iwamoto, Keisuke S.; Knudsen, Helge V.; Landua, Rolf; Maggiore, Carl; McBride, William H.; Moller, Soren Pape; Petersen, Jorgen; Skarsgard, Lloyd D.; Smathers, James B.; Solberg, Timothy D.; Uggerhoj, Ulrik I.; Vranjes, Sanja; Withers, H. Rodney; Wong, Michelle; Wouters, Bradly G.

    2006-01-01

    Background and purpose: Antiprotons travel through tissue in a manner similar to that for protons until they reach the end of their range where they annihilate and deposit additional energy. This makes them potentially interesting for radiotherapy. The aim of this study was to conduct the first ever measurements of the biological effectiveness of antiprotons. Materials and methods: V79 cells were suspended in a semi-solid matrix and irradiated with 46.7 MeV antiprotons, 48 MeV protons, or 6 Co γ-rays. Clonogenic survival was determined as a function of depth along the particle beams. Dose and particle fluence response relationships were constructed from data in the plateau and Bragg peak regions of the beams and used to assess the biological effectiveness. Results: Due to uncertainties in antiproton dosimetry we defined a new term, called the biologically effective dose ratio (BEDR), which compares the response in a minimally spread out Bragg peak (SOBP) to that in the plateau as a function of particle fluence. This value was ∼3.75 times larger for antiprotons than for protons. This increase arises due to the increased dose deposited in the Bragg peak by annihilation and because this dose has a higher relative biological effectiveness (RBE). Conclusion: We have produced the first measurements of the biological consequences of antiproton irradiation. These data substantiate theoretical predictions of the biological effects of antiproton annihilation within the Bragg peak, and suggest antiprotons warrant further investigation

  11. Supporting read-across using biological data.

    Science.gov (United States)

    Zhu, Hao; Bouhifd, Mounir; Donley, Elizabeth; Egnash, Laura; Kleinstreuer, Nicole; Kroese, E Dinant; Liu, Zhichao; Luechtefeld, Thomas; Palmer, Jessica; Pamies, David; Shen, Jie; Strauss, Volker; Wu, Shengde; Hartung, Thomas

    2016-01-01

    Read-across, i.e. filling toxicological data gaps by relating to similar chemicals, for which test data are available, is usually done based on chemical similarity. Besides structure and physico-chemical properties, however, biological similarity based on biological data adds extra strength to this process. In the context of developing Good Read-Across Practice guidance, a number of case studies were evaluated to demonstrate the use of biological data to enrich read-across. In the simplest case, chemically similar substances also show similar test results in relevant in vitro assays. This is a well-established method for the read-across of e.g. genotoxicity assays. Larger datasets of biological and toxicological properties of hundreds and thousands of substances become increasingly available enabling big data approaches in read-across studies. Several case studies using various big data sources are described in this paper. An example is given for the US EPA's ToxCast dataset allowing read-across for high quality uterotrophic assays for estrogenic endocrine disruption. Similarly, an example for REACH registration data enhancing read-across for acute toxicity studies is given. A different approach is taken using omics data to establish biological similarity: Examples are given for stem cell models in vitro and short-term repeated dose studies in rats in vivo to support read-across and category formation. These preliminary biological data-driven read-across studies highlight the road to the new generation of read-across approaches that can be applied in chemical safety assessment.

  12. Green Jobs: Definition and Method of Appraisal of Chemical and Biological Risks.

    Science.gov (United States)

    Cheneval, Erwan; Busque, Marc-Antoine; Ostiguy, Claude; Lavoie, Jacques; Bourbonnais, Robert; Labrèche, France; Bakhiyi, Bouchra; Zayed, Joseph

    2016-04-01

    In the wake of sustainable development, green jobs are developing rapidly, changing the work environment. However a green job is not automatically a safe job. The aim of the study was to define green jobs, and to establish a preliminary risk assessment of chemical substances and biological agents for workers in Quebec. An operational definition was developed, along with criteria and sustainable development principles to discriminate green jobs from regular jobs. The potential toxicity or hazard associated with their chemical and biological exposures was assessed, and the workers' exposure appraised using an expert assessment method. A control banding approach was then used to assess risks for workers in selected green jobs. A double entry model allowed us to set priorities in terms of chemical or biological risk. Among jobs that present the highest risk potential, several are related to waste management. The developed method is flexible and could be adapted to better appraise the risks that workers are facing or to propose control measures. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  13. Water-Quality and Biological Assessment of the Iowa River and Tributaries Within and Contiguous to the Meskwaki Settlement of the Sac and Fox Tribe of the Mississippi in Iowa, 2006-07

    Science.gov (United States)

    Littin, Gregory R.; McVay, Jason C.

    2009-01-01

    In cooperation with the Sac and Fox Tribe of the Mississippi in Iowa (Meskwaki Nation), the U.S. Geological Survey conducted a 2-year baseline assessment of the chemical and biological quality of streams within the Meskwaki Settlement in central Iowa. The Meskwaki Nation is a federally recognized tribe that wishes to establish water-quality standards to safeguard the integrity of surface waters and aquatic biota within the settlement for the health and welfare of the tribal community. The settlement is drained by the Iowa River and four tributaries (Onion, Cattail, Raven, and Bennett Creeks). Water-quality samples were collected at three sites on the Iowa River, two sites on Onion Creek, and one site each on Cattail, Raven, and Bennett Creeks from April 2006 through July 2007. Biological and habitat assessments were conducted at all three sites on the Iowa River and the downstream-most site on Onion Creek from June through August 2007. Analysis of physical properties, major ions, nutrients, trace compounds, bacteria, and total suspended solids in water, and trace metals and organic compounds in streambed sediment provided information about the effects of anthropogenic (human related) activities on the water quality of settlement streams. Analysis of biological samples collected during the summer of 2007, including fish community, benthic macroinvertebrates, and periphyton samples, as well as physical habitat characteristics, provided information on the effects of water quality on the condition of the aquatic environment. The majority of surface water sampled within the settlement was predominately a calcium bicarbonate type. Nitrates (nitrate plus nitrite as nitrogen) exceeded the U.S. Environmental Protection Agency's (USEPA) primary drinking-water Maximum Contaminant Level of 10 ug/L in 19 of 36 samples from sites on the Iowa River and Raven and Bennett Creeks but not in samples from Onion and Cattail Creeks. None of the samples analyzed for pesticides, trace

  14. A Critical Assessment of the Microorganisms Proposed to be Important to Enhanced Biological Phosphorus Removal in Full-Scale Wastewater Treatment Systems.

    Science.gov (United States)

    Stokholm-Bjerregaard, Mikkel; McIlroy, Simon J; Nierychlo, Marta; Karst, Søren M; Albertsen, Mads; Nielsen, Per H

    2017-01-01

    Understanding the microbiology of phosphorus (P) removal is considered essential to knowledge-based optimization of enhanced biological P removal (EBPR) systems. Biological P removal is achieved in these systems by promoting the growth of organisms collectively known as the polyphosphate accumulating organisms (PAOs). Also considered important to EBPR are the glycogen accumulating organisms (GAOs), which are theorized to compete with the PAOs for resources at the expense of P removal efficiency. Numerous studies have sought to identify the PAOs and their GAOs competitors, with several candidates proposed for each over the last few decades. The current study collectively assessed the abundance and diversity of all proposed PAOs and GAOs in 18 Danish full-scale wastewater treatment plants with well-working biological nutrient removal over a period of 9 years using 16S rRNA gene amplicon sequencing. The microbial community structure in all plants was relatively stable over time. Evidence for the role of the proposed PAOs and GAOs in EBPR varies and is critically assessed, in light of their calculated amplicon abundances, to indicate which of these are important in full-scale systems. Bacteria from the genus Tetrasphaera were the most abundant of the PAOs. The " Candidatus Accumulibacter" PAOs were in much lower abundance and appear to be biased by the amplicon-based method applied. The genera Dechloromonas, Microlunatus , and Tessaracoccus were identified as abundant putative PAO that require further research attention. Interestingly, the actinobacterial Micropruina and sbr-gs28 phylotypes were among the most abundant of the putative GAOs. Members of the genera Defluviicoccus, Propionivibrio , the family Competibacteraceae, and the spb280 group were also relatively abundant in some plants. Despite observed high abundances of GAOs (periodically exceeding 20% of the amplicon reads), P removal performance was maintained, indicating that these organisms were not

  15. Biologically inspired technologies in NASA's morphing project

    Science.gov (United States)

    McGowan, Anna-Maria R.; Cox, David E.; Lazos, Barry S.; Waszak, Martin R.; Raney, David L.; Siochi, Emilie J.; Pao, S. Paul

    2003-07-01

    For centuries, biology has provided fertile ground for hypothesis, discovery, and inspiration. Time-tested methods used in nature are being used as a basis for several research studies conducted at the NASA Langley Research Center as a part of Morphing Project, which develops and assesses breakthrough vehicle technologies. These studies range from low drag airfoil design guided by marine and avian morphologies to soaring techniques inspired by birds and the study of small flexible wing vehicles. Biology often suggests unconventional yet effective approaches such as non-planar wings, dynamic soaring, exploiting aeroelastic effects, collaborative control, flapping, and fibrous active materials. These approaches and other novel technologies for future flight vehicles are being studied in NASA's Morphing Project. This paper will discuss recent findings in the aeronautics-based, biologically-inspired research in the project.

  16. Pembangunan Kebun Biologi Wamena*[establishment of Wamena Biological Gardens

    OpenAIRE

    Rahmansyah, M; Latupapua, HJD

    2003-01-01

    The richness of biological resources (biodiversity) in mountainous area of Papua is an asset that has to be preserved.Exploitation of natural resources often cause damage on those biological assets and as genetic resources.Care has to be taken to overcome the situation of biological degradation, and alternate steps had been shaped on ex-situ biological conservation. Wamena Biological Gardens, as an ex-situ biological conservation, has been established to keep the high mountain biological and ...

  17. Development trend of radiation biology research-systems radiation biology

    International Nuclear Information System (INIS)

    Min Rui

    2010-01-01

    Radiation biology research has past 80 years. We have known much more about fundamentals, processes and results of biology effects induced by radiation and various factors that influence biology effects wide and deep, however many old and new scientific problems occurring in the field of radiation biology research remain to be illustrated. To explore and figure these scientific problems need systemic concept, methods and multi dimension view on the base of considerations of complexity of biology system, diversity of biology response, temporal and spatial process of biological effects during occurrence, and complex feed back network of biological regulations. (authors)

  18. The biological basis for environmental quality assessments

    International Nuclear Information System (INIS)

    Karpov, V.I.; Kudritsky, Y.K.; Georgievsky, A.B.

    1991-01-01

    A systematic approach is required to environmental quality assessments with regard to the Baltic regions in order to address the problem of pollution abatement. The proposed systematization of adaptive states stems from the general theory of adaptation. The various types of adaption are described. (AB)

  19. EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards), 2013. Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2013 update)

    DEFF Research Database (Denmark)

    Licht, Tine Rask; Baggesen, Dorte Lau

    EFSA is requested to assess the safety of a broad range of biological agents in the context of notifications for market authorisation as sources of food and feed additives, enzymes and plant protection products. The qualified presumption of safety (QPS) assessment was developed to provide...... a harmonised generic pre-assessment to support safety risk assessments performed by EFSA’s scientific Panels. The safety of unambiguously defined biological agents (at the highest taxonomic unit appropriate for the purpose for which an application is intended), and the completeness of the body of knowledge...... is the one in the most recently published scientific opinion. The 2013 update reviews previously assessed microorganisms including bacteria, yeasts, filamentous fungi, oomycetes and viruses used for plant protection purposes. All taxonomic units previously recommended for the QPS list had their status...

  20. Physics must join with biology in better assessing risk from low-dose irradiation

    International Nuclear Information System (INIS)

    Feinendegen, L. E.; Neumann, R. D.

    2005-01-01

    This review summarises the complex response of mammalian cells and tissues to low doses of ionising radiation. This thesis encompasses induction of DNA damage, and adaptive protection against both renewed damage and against propagation of damage from the basic level of biological organisation to the clinical expression of detriment. The induction of DNA damage at low radiation doses apparently is proportional to absorbed dose at the physical/chemical level. However, any propagation of such damage to higher levels of biological organisation inherently follows a sigmoid function. Moreover, low-dose-induced inhibition of damage propagation is not linear, but instead follows a dose-effect function typical for adaptive protection, after an initial rapid rise it disappears at doses higher than ∼0.1-0.2 Gy to cells. The particular biological response duality at low radiation doses precludes the validity of the linear-no-threshold hypothesis in the attempt to relate absorbed dose to cancer. In fact, theory and observation support not only a lower cancer incidence than expected from the linear-no-threshold hypothesis, but also a reduction of spontaneously occurring cancer, a hormetic response, in the healthy individual. (authors)

  1. Assessment of biological chromium among stainless steel and mild steel welders in relation to welding processes.

    Science.gov (United States)

    Edmé, J L; Shirali, P; Mereau, M; Sobaszek, A; Boulenguez, C; Diebold, F; Haguenoer, J M

    1997-01-01

    Air and biological monitoring were used for assessing external and internal chromium exposure among 116 stainless steel welders (SS welders) using manual metal arc (MMA), metal inert gas (MIG) and tungsten inert gas (TIG) welding processes (MMA: n = 57; MIG: n = 37; TIG: n = 22) and 30 mild steel welders (MS welders) using MMA and MIG welding processes (MMA: n = 14; MIG: n = 16). The levels of atmospheric total chromium were evaluated after personal air monitoring. The mean values for the different groups of SS welders were 201 micrograms/m3 (MMA) and 185 micrograms/m3 (MIG), 52 micrograms/m3 (TIG) and for MS welders 8.1 micrograms/m3 (MMA) and 7.3 micrograms/m3 (MIG). The curve of cumulative frequency distribution from biological monitoring among SS welders showed chromium geometric mean concentrations in whole blood of 3.6 micrograms/l (95th percentile = 19.9), in plasma of 3.3 micrograms/l (95th percentile = 21.0) and in urine samples of 6.2 micrograms/l (95th percentile = 58.0). Among MS welders, mean values in whole blood and plasma were rather more scattered (1.8 micrograms/l, 95th percentile = 9.3 and 1.3 micrograms/l, 95th percentile = 8.4, respectively) and in urine the value was 2.4 micrograms/l (95th percentile = 13.3). The analysis of variance of chromium concentrations in plasma previously showed a metal effect (F = 29.7, P process effect (F = 22.2, P process interaction (F = 1.3, P = 0.25). Concerning urinary chromium concentration, the analysis of variance also showed a metal effect (F = 30, P process effect (F = 72, P process interaction (F = 13.2, P = 0.0004). Throughout the study we noted any significant differences between smokers and non-smokers among welders. Taking in account the relationships between chromium concentrations in whole, plasma or urine and the different welding process. MMA-SS is definitely different from other processes because the biological values are clearly higher. These higher levels are due to the very significant

  2. Relations between Intuitive Biological Thinking and Biological Misconceptions in Biology Majors and Nonmajors

    Science.gov (United States)

    Coley, John D.; Tanner, Kimberly

    2015-01-01

    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed "misconceptions," among biology students across biological domains. In parallel, cognitive and developmental psychologists…

  3. Context matters: volunteer bias, small sample size, and the value of comparison groups in the assessment of research-based undergraduate introductory biology lab courses.

    Science.gov (United States)

    Brownell, Sara E; Kloser, Matthew J; Fukami, Tadashi; Shavelson, Richard J

    2013-01-01

    The shift from cookbook to authentic research-based lab courses in undergraduate biology necessitates the need for evaluation and assessment of these novel courses. Although the biology education community has made progress in this area, it is important that we interpret the effectiveness of these courses with caution and remain mindful of inherent limitations to our study designs that may impact internal and external validity. The specific context of a research study can have a dramatic impact on the conclusions. We present a case study of our own three-year investigation of the impact of a research-based introductory lab course, highlighting how volunteer students, a lack of a comparison group, and small sample sizes can be limitations of a study design that can affect the interpretation of the effectiveness of a course.

  4. Synthetic Biology: Putting Synthesis into Biology

    Science.gov (United States)

    Liang, Jing; Luo, Yunzi; Zhao, Huimin

    2010-01-01

    The ability to manipulate living organisms is at the heart of a range of emerging technologies that serve to address important and current problems in environment, energy, and health. However, with all its complexity and interconnectivity, biology has for many years been recalcitrant to engineering manipulations. The recent advances in synthesis, analysis, and modeling methods have finally provided the tools necessary to manipulate living systems in meaningful ways, and have led to the coining of a field named synthetic biology. The scope of synthetic biology is as complicated as life itself – encompassing many branches of science, and across many scales of application. New DNA synthesis and assembly techniques have made routine the customization of very large DNA molecules. This in turn has allowed the incorporation of multiple genes and pathways. By coupling these with techniques that allow for the modeling and design of protein functions, scientists have now gained the tools to create completely novel biological machineries. Even the ultimate biological machinery – a self-replicating organism – is being pursued at this moment. It is the purpose of this review to dissect and organize these various components of synthetic biology into a coherent picture. PMID:21064036

  5. Concentrations, input prediction and probabilistic biological risk assessment of polycyclic aromatic hydrocarbons (PAHs) along Gujarat coastline.

    Science.gov (United States)

    Gosai, Haren B; Sachaniya, Bhumi K; Dudhagara, Dushyant R; Rajpara, Rahul K; Dave, Bharti P

    2018-04-01

    A comprehensive investigation was conducted in order to assess the levels of PAHs, their input prediction and potential risks to bacterial abundance and human health along Gujarat coastline. A total of 40 sediment samples were collected at quarterly intervals within a year from two contaminated sites-Alang-Sosiya Shipbreaking Yard (ASSBRY) and Navlakhi Port (NAV), situated at Gulf of Khambhat and Gulf of Kutch, respectively. The concentration of ΣPAHs ranged from 408.00 to 54240.45 ng g -1  dw, indicating heavy pollution of PAHs at both the contaminated sites. Furthermore, isomeric ratios and principal component analysis have revealed that inputs of PAHs at both contaminated sites were mixed-pyrogenic and petrogenic. Pearson co-relation test and regression analysis have disclosed Nap, Acel and Phe as major predictors for bacterial abundance at both contaminated sites. Significantly, cancer risk assessment of the PAHs has been exercised based on incremental lifetime cancer risks. Overall, index of cancer risk of PAHs for ASSBRY and NAV ranged from 4.11 × 10 -6 -2.11 × 10 -5 and 9.08 × 10 -6 -4.50 × 10 -3 indicating higher cancer risk at NAV compared to ASSBRY. The present findings provide baseline information that may help in developing advanced bioremediation and bioleaching strategies to minimize biological risk.

  6. Optoelectronic system and apparatus for connection to biological systems

    Science.gov (United States)

    Okandan, Murat; Nielson, Gregory N.

    2018-03-06

    The present invention relates to a biological probe structure, as well as apparatuses, systems, and methods employing this structure. In particular embodiments, the structure includes a hermetically sealed unit configured to receive and transmit one or more optical signals. Furthermore, the structure can be implanted subcutaneously and interrogated externally. In this manner, a minimally invasive method can be employed to detect, treat, and/or assess the biological target. Additional methods and systems are also provided.

  7. Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter?

    Science.gov (United States)

    Vazquez-Muñoz, Roberto; Borrego, Belen; Juárez-Moreno, Karla; García-García, Maritza; Mota Morales, Josué D; Bogdanchikova, Nina; Huerta-Saquero, Alejandro

    2017-07-05

    Currently, nanomaterials are more frequently in our daily life, specifically in biomedicine, electronics, food, textiles and catalysis just to name a few. Although nanomaterials provide many benefits, recently their toxicity profiles have begun to be explored. In this work, the toxic effects of silver nanoparticles (35nm-average diameter and Polyvinyl-Pyrrolidone-coated) on biological systems of different levels of complexity was assessed in a comprehensive and comparatively way, through a variety of viability and toxicological assays. The studied organisms included viruses, bacteria, microalgae, fungi, animal and human cells (including cancer cell lines). It was found that biological systems of different taxonomical groups are inhibited at concentrations of silver nanoparticles within the same order of magnitude. Thus, the toxicity of nanomaterials on biological/living systems, constrained by their complexity, e.g. taxonomic groups, resulted contrary to the expected. The fact that cells and virus are inhibited with a concentration of silver nanoparticles within the same order of magnitude could be explained considering that silver nanoparticles affects very primitive cellular mechanisms by interacting with fundamental structures for cells and virus alike. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Development of an Instrument for Measuring Self-Efficacy in Cell Biology

    Science.gov (United States)

    Reeve, Suzanne; Kitchen, Elizabeth; Sudweeks, Richard R.; Bell, John D.; Bradshaw, William S.

    2011-01-01

    This article describes the development of a ten-item scale to assess biology majors' self-efficacy towards the critical thinking and data analysis skills taught in an upper-division cell biology course. The original seven-item scale was expanded to include three additional items based on the results of item analysis. Evidence of reliability and…

  9. Representations of the Nature of Scientific Knowledge in Turkish Biology Textbooks

    Science.gov (United States)

    Irez, Serhat

    2016-01-01

    Considering the impact of textbooks on learning, this study set out to assess representations of the nature of scientific knowledge in Turkish 9th grade biology textbooks. To this end, the ten most commonly used 9th grade biology textbooks were analyzed. A qualitative research approach was utilized and the textbooks were analyzed using…

  10. Dissecting Redox Biology Using Fluorescent Protein Sensors.

    Science.gov (United States)

    Schwarzländer, Markus; Dick, Tobias P; Meyer, Andreas J; Morgan, Bruce

    2016-05-01

    Fluorescent protein sensors have revitalized the field of redox biology by revolutionizing the study of redox processes in living cells and organisms. Within one decade, a set of fundamental new insights has been gained, driven by the rapid technical development of in vivo redox sensing. Redox-sensitive yellow and green fluorescent protein variants (rxYFP and roGFPs) have been the central players. Although widely used as an established standard tool, important questions remain surrounding their meaningful use in vivo. We review the growing range of thiol redox sensor variants and their application in different cells, tissues, and organisms. We highlight five key findings where in vivo sensing has been instrumental in changing our understanding of redox biology, critically assess the interpretation of in vivo redox data, and discuss technical and biological limitations of current redox sensors and sensing approaches. We explore how novel sensor variants may further add to the current momentum toward a novel mechanistic and integrated understanding of redox biology in vivo. Antioxid. Redox Signal. 24, 680-712.

  11. Assessment of radiation damage - the need for a multi-parametric and integrative approach with the help of both clinical and biological dosimetry

    International Nuclear Information System (INIS)

    Meineke, Viktor

    2008-01-01

    Full text: Accidental exposure to ionising radiation leads to a damage on different levels of the biological organization of the organism. Depending on exposure conditions, such as nature of radiation, time and affected organs and organ systems, the clinical endpoint of radiation damage and the resulting acute and chronic radiation syndromes may vary to a great extent. Exposure situations range from pure localised radiation scenarios and partial body exposures up to whole body exposures. Therefore clinical pictures vary from localized radiation injuries up to the extreme situation of a radiation-induced multi-organ involvement and failure requiring immediate, intensive and interdisciplinary medical treatment. These total different and complex clinical situations not only show up most different clinical diagnostic and therapeutic aspects but necessarily due to different levels of the underlying biological damage, biological indicators of effects may vary to a wide extent. This fact means that an exact assessment of the extent of radiation damage within individual patients can only be performed when taking into consideration both clinical signs and symptoms as well as different biological indicators. Among the clinical indicators, routine laboratory parameters such as blood counts and the documentation of clinical signs and symptoms (such as the METREPOL system) are the key parameters, whereas the dicentric assay, the gold standard for biological dosimetry, but also methods under development such as the gamma-H2Ax focus assay or the estimation of variations of gene expression have to be taken into account. Each method provides best results in different situations, or in other words, there are methods that work better in a specific exposure condition or at a given time of examination (e.g. time after exposure) than others. Some methods show up results immediately, others require days to weeks until results are available for clinical decision making. Therefore to

  12. The use of aquatic macrophytes in monitoring and in assessment of biological integrity

    Science.gov (United States)

    Stewart, P.M.; Scribailo, R.W.; Simon, T.P.; Gerhardt, A.

    1999-01-01

    Aquatic plant species, populations, and communities should be used as indicators of the aquatic environment, allowing detection of ecosystem response to different stressors. Plant tissues bioaccumulate and concentrate toxin levels higher than what is present in the sediments; and this appears to be related to organic matter content, acidification, and buffering capacity. The majority of toxicity studies, most of these with heavy metals, have been done with several Lemna species and Vallisneria americana. Organic chemicals reviewed include pesticides and herbicides, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and other industrial contaminants. The use of aquatic plant communities as bioindicators of environmental quality was evaluated for specific characteristics and indices that may assess biological integrity. Indices such as the floristic quality index (FQI) and coefficient of conservatism (C) are pioneering efforts to describe the quality of natural areas and protect native biodiversity. Our case study in the Grand Calumet Lagoons found that 'least-impacted' sites had the greatest aquatic plant species richness, highest FQI and C values, and highest relative abundance. Lastly, we introduce the concepts necessary for the development of a plant index of biotic integrity. Development of reference conditions is essential to understanding aquatic plant community structure, function, individual health, condition, and abundance. Information on guild development and tolerance definition are also integral to the development of a multi-metric index.

  13. "McLean v. Arkansas" (1982) and Beyond: Implications for Biology Professors

    Science.gov (United States)

    Bland, Mark W.; Moore, Randy

    2011-01-01

    To assess current trends of evolution instruction in high schools of the mid-South, we invited Arkansas high school biology teachers from across the state to respond to a survey designed to address this issue. We also asked students enrolled in a freshman-level, nonmajors biology course at a midsize public Arkansas university to recall their…

  14. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  15. In-vitro Cell Exposure Studies for the Assessment of Nanoparticle Toxicity in the Lung - A Dialogue between Aerosol Science and Biology

    Energy Technology Data Exchange (ETDEWEB)

    Hanns-Rudolf, Paur; Cassee, Flemming R.; Teeguarden, Justin G.; Fissan, Heinz; Diabate, Silvia; Aufderheide, M.; Kreyling, Wolfgang G.; Hanninen, Otto; Kasper, G.; Riediker, Michael; Rothen-Rutishauser, Barbara; Schmid, Otmar

    2011-10-01

    The rapid introduction of engineered nanostructured materials into numerous industrial and consumer products will result in enhanced exposure to engineered nanoparticles. Workplace exposure has been identified as the most likely source of uncontrolled inhalation of engineered aerosolized nanoparticles, but release of engineered nanoparticles may occur at any stage of the lifecycle of consumer products. The dynamic development of new nanomaterials with possibly unknown toxicological effects poses a challenge for the assessment of nanoparticle induced toxicity and safety. In this consensus document from a workshop on in-vitro cell systems for nanotoxicity testing an overview is given of the main issues concerning inhalation exposure to nanoparticles, lung physiology, nanoparticle-related biological mechanisms, in-vitro cell exposure systems for nanoparticles and social aspects of nanotechnology. The workshop participants recognized the large potential of in-vitro cell exposure systems for reliable, high-throughput screening of nanotoxicity. For the investigation of pulmonary nanotoxicity, a strong preference was expressed for air-liquid interface (ALI) cell exposure systems (rather than submerged cell exposure systems) as they closely resemble in-vivo conditions in the lungs and they allow for unaltered and dosimetrically accurate delivery of aerosolized nanoparticles to the cells. The members of the workshop believe that further advances in in-vitro cell exposure studies would be greatly facilitated by a more active role of the aerosol scientists. The technical know-how for developing and running ALI in-vitro exposure systems is available in the aerosol community and at the same time biologists/toxicologists are required for proper assessment of the biological impact of nanoparticles.

  16. In-vitro Cell Exposure Studies for the Assessment of Nanoparticle Toxicity in the Lung - A Dialogue between Aerosol Science and Biology

    International Nuclear Information System (INIS)

    Hanns-Rudolf, Paur; Cassee, Flemming R.; Teeguarden, Justin G.; Fissan, Heinz; Diabate, Silvia; Aufderheide, M.; Kreyling, Wolfgang G.; Hanninen, Otto; Kasper, G.; Riediker, Michael; Rothen-Rutishauser, Barbara; Schmid, Otmar

    2011-01-01

    The rapid introduction of engineered nanostructured materials into numerous industrial and consumer products will result in enhanced exposure to engineered nanoparticles. Workplace exposure has been identified as the most likely source of uncontrolled inhalation of engineered aerosolized nanoparticles, but release of engineered nanoparticles may occur at any stage of the lifecycle of consumer products. The dynamic development of new nanomaterials with possibly unknown toxicological effects poses a challenge for the assessment of nanoparticle induced toxicity and safety. In this consensus document from a workshop on in-vitro cell systems for nanotoxicity testing an overview is given of the main issues concerning inhalation exposure to nanoparticles, lung physiology, nanoparticle-related biological mechanisms, in-vitro cell exposure systems for nanoparticles and social aspects of nanotechnology. The workshop participants recognized the large potential of in-vitro cell exposure systems for reliable, high-throughput screening of nanotoxicity. For the investigation of pulmonary nanotoxicity, a strong preference was expressed for air-liquid interface (ALI) cell exposure systems (rather than submerged cell exposure systems) as they closely resemble in-vivo conditions in the lungs and they allow for unaltered and dosimetrically accurate delivery of aerosolized nanoparticles to the cells. The members of the workshop believe that further advances in in-vitro cell exposure studies would be greatly facilitated by a more active role of the aerosol scientists. The technical know-how for developing and running ALI in-vitro exposure systems is available in the aerosol community and at the same time biologists/toxicologists are required for proper assessment of the biological impact of nanoparticles.

  17. The Promises of Biology and the Biology of Promises

    DEFF Research Database (Denmark)

    Lee, Jieun

    2015-01-01

    commitments with differently imagined futures. I argue that promises are constitutive of the stem cell biology, rather than being derivative of it. Since the biological concept of stem cells is predicated on the future that they promise, the biological life of stem cells is inextricably intertwined...... patients’ bodies in anticipation of materializing the promises of stem cell biology, they are produced as a new form of biovaluable. The promises of biology move beyond the closed circuit of scientific knowledge production, and proliferate in the speculative marketplaces of promises. Part II looks at how...... of technologized biology and biological time can appear promising with the backdrop of the imagined intransigence of social, political, and economic order in the Korean society....

  18. Context Matters: Volunteer Bias, Small Sample Size, and the Value of Comparison Groups in the Assessment of Research-Based Undergraduate Introductory Biology Lab Courses

    Directory of Open Access Journals (Sweden)

    Sara E. Brownell

    2013-08-01

    Full Text Available The shift from cookbook to authentic research-based lab courses in undergraduate biology necessitates the need for evaluation and assessment of these novel courses. Although the biology education community has made progress in this area, it is important that we interpret the effectiveness of these courses with caution and remain mindful of inherent limitations to our study designs that may impact internal and external validity. The specific context of a research study can have a dramatic impact on the conclusions. We present a case study of our own three-year investigation of the impact of a research-based introductory lab course, highlighting how volunteer students, a lack of a comparison group, and small sample sizes can be limitations of a study design that can affect the interpretation of the effectiveness of a course.

  19. Biology Needs a Modern Assessment System for Professional Productivity

    Science.gov (United States)

    McDade, Lucinda A.; Maddison, David R.; Guralnick, Robert; Piwowar, Heather A.; Jameson, Mary Liz; Helgen, Kristofer M.; Herendeen, Patrick S.; Hill, Andrew; Vis, Morgan L.

    2011-01-01

    Stimulated in large part by the advent of the Internet, research productivity in many academic disciplines has changed dramatically over the last two decades. However, the assessment system that governs professional success has not kept pace, creating a mismatch between modes of scholarly productivity and academic assessment criteria. In this…

  20. Building biological foundries for next-generation synthetic biology.

    Science.gov (United States)

    Chao, Ran; Yuan, YongBo; Zhao, HuiMin

    2015-07-01

    Synthetic biology is an interdisciplinary field that takes top-down approaches to understand and engineer biological systems through design-build-test cycles. A number of advances in this relatively young field have greatly accelerated such engineering cycles. Specifically, various innovative tools were developed for in silico biosystems design, DNA de novo synthesis and assembly, construct verification, as well as metabolite analysis, which have laid a solid foundation for building biological foundries for rapid prototyping of improved or novel biosystems. This review summarizes the state-of-the-art technologies for synthetic biology and discusses the challenges to establish such biological foundries.

  1. Assessment of biological effects of environmental pollution in Mersin Bay (Turkey, northeastern Mediterranean Sea) using Mullus barbatus and Liza ramada as target organisms

    International Nuclear Information System (INIS)

    Yılmaz, Doruk; Kalay, Mustafa; Dönmez, Erdem; Yılmaz, Nejat

    2016-01-01

    The increasing emphasis on the assessment and monitoring of marine ecosystems has revealed the need to use appropriate biological indicators for these areas. Enzyme activities and histopathology are increasingly being used as indicators of environmental stress since they provide a definite biological end-point of pollutant exposure. As part of an ecotoxicological assessment of Mersin Bay, EROD enzyme activity and histopathological response in selected organs and tissues of two species of fish, Mullus barbatus (red mullet) and Liza ramada (thinlip grey mullet), captured from area were examined. Pollutant (Organochlorines (OC), alkylphenols (APs) and BPA) levels and biomarker responses in tissue samples were evaluated together for their potential to alter the metabolism and cellular aspects in liver and gonad. Elevated induction of EROD activity and histopathological alterations in contaminated samples from Mersin Bay was observed compared to reference site indicating the exposure to potential pollutants. - Highlights: • PCBs, DDTs, APs and BPA were detected in liver tissues of red mullet (Mullus barbatus) and thinlip grey mullet (Liza ramada). • Highly induced EROD activity were measured in fish samples from Mersin Bay in comparison to reference fish. • Liver and gonad impairments were observed in samples from contaminated area of Mersin Bay. - Histopathological alterations and induced EROD activities were observed in parallel with elevated tissue concentrations of contaminants in red mullet and thinlip grey mullet.

  2. Biological Assessment of the Continued Operation of Los Alamos National Laboratory on Federally Listed Threatened and Endangered Species

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Leslie A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Ecology and Air Quality Group

    2006-09-19

    This biological assessment considers the effects of continuing to operate Los Alamos National Laboratory on Federally listed threatened or endangered species, based on current and future operations identified in the 2006 Site-wide Environmental Impact Statement for the Continued Operation of Los Alamos National Laboratory (SWEIS; DOE In Prep.). We reviewed 40 projects analyzed in the SWEIS as well as two aspects on ongoing operations to determine if these actions had the potential to affect Federally listed species. Eighteen projects that had not already received U.S. Fish and Wildlife Service (USFWS) consultation and concurrence, as well as the two aspects of ongoing operations, ecological risk from legacy contaminants and the Outfall Reduction Project, were determined to have the potential to affect threatened or endangered species. Cumulative impacts were also analyzed.

  3. Marine molecular biology: an emerging field of biological sciences.

    Science.gov (United States)

    Thakur, Narsinh L; Jain, Roopesh; Natalio, Filipe; Hamer, Bojan; Thakur, Archana N; Müller, Werner E G

    2008-01-01

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. However, the value of molecular techniques for addressing problems in marine biology has only recently begun to be cherished. It has been proven that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives to define and solve the problems regarding the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular techniques in the field of marine biology are guiding further research in this area. In this review different molecular techniques are discussed, which have application in marine microbiology, marine invertebrate biology, marine ecology, marine natural products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages and benefits of such partnership, an exciting new frontier of marine molecular biology will emerge in the future.

  4. Examining Portfolio-Based Assessment in an Upper-Level Biology Course

    Science.gov (United States)

    Ziegler, Brittany Ann

    2012-01-01

    Historically, students have been viewed as empty vessels and passive participants in the learning process but students actually are active forming their own conceptions. One way student learning is impacted is through assessment. Alternative assessment, which contrasts traditional assessment methods, takes into account how students learn by…

  5. Contributions to the National Status Report on Biological Invasions in South Africa

    Directory of Open Access Journals (Sweden)

    John R.U. Wilson

    2017-03-01

    Full Text Available South Africa has committed to producing a National Status Report on Biological Invasions by October 2017 and thereafter every three years. This will be the first status report at a national level specifically on biological invasions. As part of soliciting input, a workshop was held in May 2016 that led to this special issue of 19 papers in the journal Bothalia: African Biodiversity and Conservation. This editorial introduces the symposium, discusses the special issue and summarises how each contribution provides an estimate of ‘status’. Papers focus on key pathways, taxa, areas, and evaluations of interventions, specifically the movement of taxa between South Africa and neighbouring countries; the dispersal pathways of amphibians; a review of alien animals; a report on changes in the number and abundance of alien plants; in-depth reviews of the status of invasions for cacti, fishes, fungi and grasses; an assessment of the impact of widespread invasive plants on animals; reviews on invasions in municipalities, protected areas and subAntarctic Islands; assessments of the efficacy of biological control and other control programmes; and recommendations for how to deal with conflict species, to conduct scientific assessments and to improve risk assessments. The papers in this special issue confirm that South Africa is an excellent place to study invasions that can provide insights for understanding and managing invasions in other countries. Negative impacts seem to be largely precipitated by certain taxa (especially plants, whereas invasions by a number of other groups do not, yet, seem to have caused the widespread negative impacts felt in other countries. Although South Africa has effectively managed a few biological invasions (e.g. highly successful biological control of some invasive plants, the key challenge seems to be to establish and maintain a strong link between implementation, monitoring, reporting and planning.

  6. The Unicellular State as a Point Source in a Quantum Biological System

    Directory of Open Access Journals (Sweden)

    John S. Torday

    2016-05-01

    Full Text Available A point source is the central and most important point or place for any group of cohering phenomena. Evolutionary development presumes that biological processes are sequentially linked, but neither directed from, nor centralized within, any specific biologic structure or stage. However, such an epigenomic entity exists and its transforming effects can be understood through the obligatory recapitulation of all eukaryotic lifeforms through a zygotic unicellular phase. This requisite biological conjunction can now be properly assessed as the focal point of reconciliation between biology and quantum phenomena, illustrated by deconvoluting complex physiologic traits back to their unicellular origins.

  7. Interpretation of biological and mechanical variations between the Lowry versus Bradford method for protein quantification

    OpenAIRE

    Tzong-Shi Lu; Szu-Yu Yiao; Kenneth Lim; Roderick V. Jensen; Li-Li Hsiao

    2010-01-01

    Background: The identification of differences in protein expression resulting from methodical variations is an essential component to the interpretation of true, biologically significant results. Aims: We used the Lowry and Bradford methods- two most commonly used methods for protein quantification, to assess whether differential protein expressions are a result of true biological or methodical variations. Material & Methods: Differential protein expression patterns was assessed by western bl...

  8. Biological repair with time-dependent irradiation

    International Nuclear Information System (INIS)

    Broyles, A.A.; Shapiro, C.S.

    1985-01-01

    Recent experiments have provided new data that explore the effectiveness of biological repair in assessing damage due to exposures from ionizing radiation. These data are mainly from experiments conducted at constant dose rates, to study the effectiveness per unit dose of different dose rates. Here, we develop new formulae to estimate the effectiveness of an arbitrary time-dependent dose rate exposure

  9. Bone effects of biologic drugs in rheumatoid arthritis.

    Science.gov (United States)

    Corrado, Addolorata; Neve, Anna; Maruotti, Nicola; Cantatore, Francesco Paolo

    2013-01-01

    Biologic agents used in the treatment of rheumatoid arthritis (RA) are able to reduce both disease activity and radiographic progression of joint disease. These drugs are directed against several proinflammatory cytokines (TNF α , IL-6, and IL-1) which are involved both in the pathogenesis of chronic inflammation and progression of joint structural damage and in systemic and local bone loss typically observed in RA. However, the role of biologic drugs in preventing bone loss in clinical practice has not yet clearly assessed. Many clinical studies showed a trend to a positive effect of biologic agents in preventing systemic bone loss observed in RA. Although the suppression of inflammation is the main goal in the treatment of RA and the anti-inflammatory effects of biologic drugs exert a positive effect on bone metabolism, the exact relationship between the prevention of bone loss and control of inflammation has not been clearly established, and if the available biologic drugs against TNF α , IL-1, and IL-6 can exert their effect on systemic and local bone loss also through a direct mechanism on bone cell metabolism is still to be clearly defined.

  10. Academic Preparation in Biology and Advocacy for Teaching Evolution: Biology versus Non-Biology Teachers

    Science.gov (United States)

    Nehm, Ross H.; Kim, Sun Young; Sheppard, Keith

    2009-01-01

    Despite considerable focus on evolution knowledge-belief relationships, little research has targeted populations with strong content backgrounds, such as undergraduate degrees in biology. This study (1) measured precertified biology and non-biology teachers' (n = 167) knowledge of evolution and the nature of science; (2) quantified teacher…

  11. A biologic approach to environmental assessment and epidemiology

    National Research Council Canada - National Science Library

    Smith, Thomas J; Kriebel, David

    2010-01-01

    .... The two key fields of study on this issue, environmental epidemiology and exposure assessment, are still given separate names because of their separate historical roots and scientific traditions...

  12. A Critical Assessment of the Microorganisms Proposed to be Important to Enhanced Biological Phosphorus Removal in Full-Scale Wastewater Treatment Systems

    Directory of Open Access Journals (Sweden)

    Per H. Nielsen

    2017-04-01

    Full Text Available Understanding the microbiology of phosphorus (P removal is considered essential to knowledge-based optimization of enhanced biological P removal (EBPR systems. Biological P removal is achieved in these systems by promoting the growth of organisms collectively known as the polyphosphate accumulating organisms (PAOs. Also considered important to EBPR are the glycogen accumulating organisms (GAOs, which are theorized to compete with the PAOs for resources at the expense of P removal efficiency. Numerous studies have sought to identify the PAOs and their GAOs competitors, with several candidates proposed for each over the last few decades. The current study collectively assessed the abundance and diversity of all proposed PAOs and GAOs in 18 Danish full-scale wastewater treatment plants with well-working biological nutrient removal over a period of 9 years using 16S rRNA gene amplicon sequencing. The microbial community structure in all plants was relatively stable over time. Evidence for the role of the proposed PAOs and GAOs in EBPR varies and is critically assessed, in light of their calculated amplicon abundances, to indicate which of these are important in full-scale systems. Bacteria from the genus Tetrasphaera were the most abundant of the PAOs. The “Candidatus Accumulibacter” PAOs were in much lower abundance and appear to be biased by the amplicon-based method applied. The genera Dechloromonas, Microlunatus, and Tessaracoccus were identified as abundant putative PAO that require further research attention. Interestingly, the actinobacterial Micropruina and sbr-gs28 phylotypes were among the most abundant of the putative GAOs. Members of the genera Defluviicoccus, Propionivibrio, the family Competibacteraceae, and the spb280 group were also relatively abundant in some plants. Despite observed high abundances of GAOs (periodically exceeding 20% of the amplicon reads, P removal performance was maintained, indicating that these organisms

  13. Mathematical biology

    CERN Document Server

    Murray, James D

    1993-01-01

    The book is a textbook (with many exercises) giving an in-depth account of the practical use of mathematical modelling in the biomedical sciences. The mathematical level required is generally not high and the emphasis is on what is required to solve the real biological problem. The subject matter is drawn, e.g. from population biology, reaction kinetics, biological oscillators and switches, Belousov-Zhabotinskii reaction, reaction-diffusion theory, biological wave phenomena, central pattern generators, neural models, spread of epidemics, mechanochemical theory of biological pattern formation and importance in evolution. Most of the models are based on real biological problems and the predictions and explanations offered as a direct result of mathematical analysis of the models are important aspects of the book. The aim is to provide a thorough training in practical mathematical biology and to show how exciting and novel mathematical challenges arise from a genuine interdisciplinary involvement with the biosci...

  14. Radionuclide biological half-life values for terrestrial and aquatic wildlife

    International Nuclear Information System (INIS)

    Beresford, N.A.; Beaugelin-Seiller, K.; Burgos, J.; Cujic, M.; Fesenko, S.; Kryshev, A.; Pachal, N.; Real, A.; Su, B.S.; Tagami, K.; Vives i Batlle, J.; Vives-Lynch, S.; Wells, C.; Wood, M.D.

    2015-01-01

    The equilibrium concentration ratio is typically the parameter used to estimate organism activity concentrations within wildlife dose assessment tools. Whilst this is assumed to be fit for purpose, there are scenarios such as accidental or irregular, fluctuating, releases from licensed facilities when this might not be the case. In such circumstances, the concentration ratio approach may under- or over-estimate radiation exposure depending upon the time since the release. To carrying out assessments for such releases, a dynamic approach is needed. The simplest and most practical option is representing the uptake and turnover processes by first-order kinetics, for which organism- and element-specific biological half-life data are required. In this paper we describe the development of a freely available international database of radionuclide biological half-life values. The database includes 1907 entries for terrestrial, freshwater, riparian and marine organisms. Biological half-life values are reported for 52 elements across a range of wildlife groups (marine = 9, freshwater = 10, terrestrial = 7 and riparian = 3 groups). Potential applications and limitations of the database are discussed. - Highlights: • 1907 biological half-life values have been collated for wildlife species. • Data cover 52 elements. • 27 marine, freshwater, riparian and terrestrial organisms are included.

  15. Introducing Biological Microdosimetry for Ionising Radiation

    International Nuclear Information System (INIS)

    Scott, B.R.; Schoellnberger, H.

    2000-01-01

    Microdosimetry is important for radiation protection, for understanding mechanisms of radiation action, and for radiation risk assessment. This article introduces a generic, Monte Carlo based approach to biological microdosimetry for ionising radiation. Our Monte Carlo analyses are carried out with a widely used Crystal Ball software. The approach to biological microdosimetry presented relates to quantal biological effects data (e.g. cell survival, mutagenesis, neoplastic transformation) for which there is an initial linear segment to the dose-response curve. The macroscopic dose data considered were selected such that is could be presumed that the vast majority of cells at risk have radiation dose delivered to their critical target. For cell killing, neoplastic transformation, and mutagenesis, the critical biological target for radiation is presumed to be DNA. Our approach to biological microdosimetry does not require detailed information about the mass, volume, and shape of the critical biological target. Further, one does not have to know what formal distribution function applies to the microdose distribution. However, formal distributions are required for the biological data used to derive the non-parametric microdose distributions. Here, we use the binomial distribution to characterise the variability in the number of cells affected by a fixed macroscopic dose. Assuming this variability to arise from variability in the microscopic dose to the critical biological target, a non-parametric microdose distribution is generated by the standard Monte Carlo method. The non-parametric distribution is then fitted using a set of formal distributions (beta, exponential, extreme value, gamma, logistic, log-normal, normal, Pareto, triangular, uniform, and Weibull). The best fit is then evaluated based on statistical criteria (chi-square test). To demonstrate the application of biological microdosimetry, the standard Monte Carlo method is used with radiobiological data for

  16. Introducing Biological Microdosimetry for Ionising Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Scott, B.R.; Schoellnberger, H

    2000-07-01

    Microdosimetry is important for radiation protection, for understanding mechanisms of radiation action, and for radiation risk assessment. This article introduces a generic, Monte Carlo based approach to biological microdosimetry for ionising radiation. Our Monte Carlo analyses are carried out with a widely used Crystal Ball software. The approach to biological microdosimetry presented relates to quantal biological effects data (e.g. cell survival, mutagenesis, neoplastic transformation) for which there is an initial linear segment to the dose-response curve. The macroscopic dose data considered were selected such that is could be presumed that the vast majority of cells at risk have radiation dose delivered to their critical target. For cell killing, neoplastic transformation, and mutagenesis, the critical biological target for radiation is presumed to be DNA. Our approach to biological microdosimetry does not require detailed information about the mass, volume, and shape of the critical biological target. Further, one does not have to know what formal distribution function applies to the microdose distribution. However, formal distributions are required for the biological data used to derive the non-parametric microdose distributions. Here, we use the binomial distribution to characterise the variability in the number of cells affected by a fixed macroscopic dose. Assuming this variability to arise from variability in the microscopic dose to the critical biological target, a non-parametric microdose distribution is generated by the standard Monte Carlo method. The non-parametric distribution is then fitted using a set of formal distributions (beta, exponential, extreme value, gamma, logistic, log-normal, normal, Pareto, triangular, uniform, and Weibull). The best fit is then evaluated based on statistical criteria (chi-square test). To demonstrate the application of biological microdosimetry, the standard Monte Carlo method is used with radiobiological data for

  17. Clinical value of Pro-GRP and T lymphocyte subpopulation for the assessment of immune functions of lung cancer patients after DC-CIK biological therapy.

    Science.gov (United States)

    He, Lijie; Wang, Jing; Chang, Dandan; Lv, Dandan; Li, Haina; Zhang, Heping

    2018-02-01

    The present study investigated the aptness of assessing the levels of progastrin-releasing peptide (Pro-GRP) in addition to the T lymphocyte subpopulation in lung cancer patients prior to and after therapy for determining immune function. A total of 45 patients with lung cancer were recruited and stratified in to a non-small cell lung cancer (NSCLC) and an SCLC group. Prior to and after treatment by combined biological therapy comprising chemotherapy or chemoradiotherapy followed by three cycles of retransformation of autologous dendritic cells-cytokine-induced killer cells (DC-CIK), the peripheral blood was assessed for populations of CD3 + , CD4 + , CD8 + and regulatory T cells (Treg) by flow cytometry, and for the levels of pro-GRP, carcinoembryonic antigen, neuron-specific enolase and Cyfra 21-1. The results revealed that in NSCLC patients, CD8 + T lymphocytes and Treg populations were decreased, and that CD3 + and CD4 + T lymphocytes as well as the CD4 + /CD8 + ratio were increased after therapy; in SCLC patients, CD3 + , CD4 + and CD8 + T lymphocytes were increased, while Treg cells were decreased after treatment compared with those at baseline. In each group, Pro-GRP was decreased compared with that prior to treatment, and in the SCLC group only, an obvious negative correlation was identified between Pro-GRP and the T lymphocyte subpopulation. Furthermore, a significant correlation between Pro-GRP and Tregs was identified in each group. In conclusion, the present study revealed that the immune function of the patients was improved after biological therapy. The results suggested a significant correlation between Pro-GRP and the T lymphocyte subpopulation in SCLC patients. Detection of Pro-GRP may assist the early clinical diagnosis of SCLC and may also be used to assess the immune regulatory function of patients along with the T lymphocyte subpopulation. Biological therapy with retransformed autologous DC-CIK was indicated to enhance the specific elimination

  18. Biological Monitoring and Abatement Program for the Oak Ridge K-25 Site

    International Nuclear Information System (INIS)

    Kszos, L.A.; Adams, S.M.; Ashwood, T.L.; Blaylock, B.G.; Greeley, M.S.; Loar, J.M.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Shoemaker, B.A.; Hinzman, R.L.

    1993-02-01

    A proposed Biological Monitoring and Abatement Program (BMAP) for the Oak Ridge K-25 Site was prepared in December 1992 as required by the renewed National Pollutant Discharge Elimination System permit that was issued on October 1, 1992. The proposed BMAP consists of four tasks that reflect different but complementary approaches to evaluating the effects of K-25 Site effluents on the ecological integrity of Mitchell Branch, Poplar Creek, and the Poplar Creek embayment of the Clinch River. These tasks include (1) ambient toxicity monitoring, (2) bioaccumulation monitoring, (3) assessment of fish health, and (4) instream monitoring of biological communities. This overall BMAP plan combines established protocols with current biological monitoring techniques to assess environmental compliance and quantify ecological recovery. The BMAP will also determine whether the effluent limits established for the K-25 Site protect the designated use of the receiving streams (Mitchell Branch, Poplar Creek, and Clinch River) for growth and propagation of fish and other aquatic life. Results obtained from this biological monitoring program will also be used to document the ecological effects (and effectiveness) of remedial actions

  19. Biological Monitoring and Abatement Program for the Oak Ridge K-25 Site

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L. A.; Adams, S. M.; Ashwood, T. L.; Blaylock, B. G.; Greeley, M. S.; Loar, J. M.; Peterson, M. J.; Ryon, M. G.; Smith, J. G.; Southworth, G. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Div.; Shoemaker, B. A. [Oak Ridge K-25 Site, TN (United States); Hinzman, R. L. [Oak Ridge Research Inst., TN (United States)

    1993-02-01

    A proposed Biological Monitoring and Abatement Program (BMAP) for the Oak Ridge K-25 Site was prepared in December 1992 as required by the renewed National Pollutant Discharge Elimination System permit that was issued on October 1, 1992. The proposed BMAP consists of four tasks that reflect different but complementary approaches to evaluating the effects of K-25 Site effluents on the ecological integrity of Mitchell Branch, Poplar Creek, and the Poplar Creek embayment of the Clinch River. These tasks include (1) ambient toxicity monitoring, (2) bioaccumulation monitoring, (3) assessment of fish health, and (4) instream monitoring of biological communities. This overall BMAP plan combines established protocols with current biological monitoring techniques to assess environmental compliance and quantify ecological recovery. The BMAP will also determine whether the effluent limits established for the K-25 Site protect the designated use of the receiving streams (Mitchell Branch, Poplar Creek, and Clinch River) for growth and propagation of fish and other aquatic life. Results obtained from this biological monitoring program will also be used to document the ecological effects (and effectiveness) of remedial actions.

  20. Artificial intelligence in molecular biology: a review and assessment.

    Science.gov (United States)

    Rawlings, C J; Fox, J P

    1994-06-29

    Over the past ten years, molecular biologists and computer scientists have experimented with various computational methods developed in artificial intelligence (AI). AI research has yielded a number of novel technologies, which are typified by an emphasis on symbolic (non-numerical) programming methods aimed at problems which are not amenable to classical algorithmic solutions. Prominent examples include knowledge-based and expert systems, qualitative simulation and artificial neural networks and other automated learning techniques. These methods have been applied to problems in data analysis, construction of advanced databases and modelling of biological systems. Practical results are now being obtained, notably in the recognition of active genes in genomic sequences, the assembly of physical and genetic maps and protein structure prediction. This paper outlines the principal methods, surveys the findings to date, and identifies the promising trends and current limitations.

  1. Biological assessment of the advanced turbine design at Wanapum Dam, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Dauble, D. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Z. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, M. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moursund, R. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, T. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rakowski, C. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Duncan, J. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-08-01

    Three studies were conducted to evaluate the biological performance of an advanced design turbine installed at Unit 8 of Wanapum Dam on the Columbia River in 2005 versus a conventional Kaplan turbine, Unit 9. The studies included an evaluation of blade-strike using deterministic and probabilistic models, integrated analysis of the response of the Sensor Fish to sever hydraulic events within the turbine system, and a novel dye technique to measure injury to juvenile salmonids in the field.

  2. The assessment of the coke wastewater treatment efficacy in rotating biological contractor.

    Science.gov (United States)

    Cema, G; Żabczyński, S; Ziembińska-Buczyńska, A

    2016-01-01

    Coke wastewater is known to be relatively difficult for biological treatment. Nonetheless, biofilm-based systems seem to be promising tool for such treatment. That is why a rotating biological contactor (RBC) system focused on the Anammox process was used in this study. The experiment was divided into two parts with synthetic and then real wastewater. It was proven that it is possible to treat coke wastewater with RBC but such a procedure requires a very long start-up period for the nitritation (190 days), as well as for the Anammox process, where stable nitrogen removal over 70% was achieved after 400 days of experiment. Interestingly, it was possible at a relatively low (20.2 ± 2.2 °C) temperature. The polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) based monitoring of the bacterial community showed that its biodiversity decreased when the real wastewater was treated and it was composed mainly of GC-rich genotypes, probably because of the modeling influence of this wastewater and the genotypes specialization.

  3. Caenorhabditis elegans, a Biological Model for Research in Toxicology.

    Science.gov (United States)

    Tejeda-Benitez, Lesly; Olivero-Verbel, Jesus

    2016-01-01

    Caenorhabditis elegans is a nematode of microscopic size which, due to its biological characteristics, has been used since the 1970s as a model for research in molecular biology, medicine, pharmacology, and toxicology. It was the first animal whose genome was completely sequenced and has played a key role in the understanding of apoptosis and RNA interference. The transparency of its body, short lifespan, ability to self-fertilize and ease of culture are advantages that make it ideal as a model in toxicology. Due to the fact that some of its biochemical pathways are similar to those of humans, it has been employed in research in several fields. C. elegans' use as a biological model in environmental toxicological assessments allows the determination of multiple endpoints. Some of these utilize the effects on the biological functions of the nematode and others use molecular markers. Endpoints such as lethality, growth, reproduction, and locomotion are the most studied, and usually employ the wild type Bristol N2 strain. Other endpoints use reporter genes, such as green fluorescence protein, driven by regulatory sequences from other genes related to different mechanisms of toxicity, such as heat shock, oxidative stress, CYP system, and metallothioneins among others, allowing the study of gene expression in a manner both rapid and easy. These transgenic strains of C. elegans represent a powerful tool to assess toxicity pathways for mixtures and environmental samples, and their numbers are growing in diversity and selectivity. However, other molecular biology techniques, including DNA microarrays and MicroRNAs have been explored to assess the effects of different toxicants and samples. C. elegans has allowed the assessment of neurotoxic effects for heavy metals and pesticides, among those more frequently studied, as the nematode has a very well defined nervous system. More recently, nanoparticles are emergent pollutants whose toxicity can be explored using this nematode

  4. Growth and development and their environmental and biological determinants.

    Science.gov (United States)

    da Rocha Neves, Kelly; de Souza Morais, Rosane Luzia; Teixeira, Romero Alves; Pinto, Priscilla Avelino Ferreira

    2016-01-01

    To investigate child growth, cognitive/language development, and their environmental and biological determinants. This was a cross-sectional, predictive correlation study with all 92 children aged 24-36 months who attended the municipal early childhood education network in a town in the Vale do Jequitinhonha region, in 2011. The socioeconomic profile was determined using the questionnaire of the Associação Brasileira de Empresas de Pesquisa. The socio-demographicand maternal and child health profiles were created through a self-prepared questionnaire. The height-for-age indicator was selected to represent growth. Cognitive/language development was assessed through the Bayley Scale of Infant and Toddler Development. The quality of educational environments was assessed by Infant/Toddler Environment Scale; the home environment was assessed by the Home Observation for Measurement of the Environment. The neighborhood quality was determined by a self-prepared questionnaire. A multivariate linear regression analysis was performed. Families were predominantly from socioeconomic class D, with low parental education. The prevalence of stunted growth was 14.1%; cognitive and language development were below average at 28.6% and 28.3%, respectively. Educational institutions were classified as inadequate, and 69.6% of homes were classified as presenting a risk for development. Factors such as access to parks and pharmacies and perceived security received the worst score regarding neighborhood environment. Biological variables showed a greater association with growth and environmental variables with development. The results showed a high prevalence of stunting and below-average results for cognitive/language development among the participating children. Both environmental and biological factors were related to growth and development. However, biological variables showed a greater association with growth, whereas environmental variables were associated with development

  5. Growth and development and their environmental and biological determinants

    Directory of Open Access Journals (Sweden)

    Kelly da Rocha Neves

    2016-06-01

    Full Text Available Abstract Objective To investigate child growth, cognitive/language development, and their environmental and biological determinants. Methods This was a cross-sectional, predictive correlation study with all 92 children aged 24-36 months who attended the municipal early childhood education network in a town in the Vale do Jequitinhonha region, in 2011. The socioeconomic profile was determined using the questionnaire of the Associação Brasileira de Empresas de Pesquisa. The socio-demographicand maternal and child health profiles were created through a self-prepared questionnaire. The height-for-age indicator was selected to represent growth. Cognitive/language development was assessed through the Bayley Scale of Infant and Toddler Development. The quality of educational environments was assessed by Infant/Toddler Environment Scale; the home environment was assessed by the Home Observation for Measurement of the Environment. The neighborhood quality was determined by a self-prepared questionnaire. A multivariate linear regression analysis was performed. Results Families were predominantly from socioeconomic class D, with low parental education. The prevalence of stunted growth was 14.1%; cognitive and language development were below average at 28.6% and 28.3%, respectively. Educational institutions were classified as inadequate, and 69.6% of homes were classified as presenting a risk for development. Factors such as access to parks and pharmacies and perceived security received the worst score regarding neighborhood environment. Biological variables showed a greater association with growth and environmental variables with development. Conclusion The results showed a high prevalence of stunting and below-average results for cognitive/language development among the participating children. Both environmental and biological factors were related to growth and development. However, biological variables showed a greater association with growth, whereas

  6. Benefits and Costs of Biologically Contained Genetically Modified Tomatoes and Eggplants in Italy and Spain

    Directory of Open Access Journals (Sweden)

    Rolf A. Groeneveld

    2011-08-01

    Full Text Available In this paper we assess the benefits and costs of introducing biologically contained genetically modified (GM crops, with an application to the potential introduction of GM tomatoes and eggplants in Italy and Spain. Such crops possess both the standard beneficial GM traits, and they prevent introgression of transgenes from GM crops to their conventional or wild relatives, thereby adding to the safety of their cultivation. As a result, coexistence regulations for these crops are less stringent than for crops without biological containment. The potential adoption of biologically contained GM tomatoes and eggplants is assessed in a cost-benefit framework for Italy and Spain. We conclude that biological containment has considerable potential benefits if policy makers are willing to loosen the restrictions on the introduction of these varieties.

  7. Biological Agents

    Science.gov (United States)

    ... E-Tools Safety and Health Topics / Biological Agents Biological Agents This page requires that javascript be enabled ... 202) 693-2300 if additional assistance is required. Biological Agents Menu Overview In Focus: Ebola Frederick A. ...

  8. A study of the ionizing radiation effect on some chemical changes in irradiated soy-bean flour, and its biological value assessment

    International Nuclear Information System (INIS)

    Tencheva, S.; Katsareva, Ts.

    1985-01-01

    The results of the assessment of a number of chemical indicators are presented, namely: formation of free radicals in defatted soy-bean flour irradiated with 10 kGy using EPR-spectrometry, alteration in the residual lipid fraction, estimated by the UV spectrometry and TB test. Assessment of the biological value of protein is done on the basis of the protein efficiency coefficient (PEC). For the purpose two kinds of synthetic diets, including 10% soy-bean protein, are employed. Growing rats of the Wistar line (body weight 55 g) are used in the experiment. The amino acid profile of irradiated and non-irradiated soy-bean flour is also outlined. The obtained results indicate that the amount of free radicals, found in soy-bean flour irradiated with dose 10 kGy,is approximately 11 times larger than in flour irradiated with 5 kGy. Changes in the UV spectrum of the lipid fraction are likewise disclosed

  9. The use of biologically based cancer risk models in radiation epidemiology

    International Nuclear Information System (INIS)

    Krewski, D.; Zielinski, J.M.; Hazelton, W.D.; Garner, M.J.; Moolgavkar, S.H.

    2003-01-01

    Biologically based risk projection models for radiation carcinogenesis seek to describe the fundamental biological processes involved in neoplastic transformation of somatic cells into malignant cancer cells. A validated biologically based model, whose parameters have a direct biological interpretation, can also be used to extrapolate cancer risks to different exposure conditions with some confidence. In this article, biologically based models for radiation carcinogenesis, including the two-stage clonal expansion (TSCE) model and its extensions, are reviewed. The biological and mathematical bases for such models are described, and the implications of key model parameters for cancer risk assessment examined. Specific applications of versions of the TSCE model to important epidemiologic datasets are discussed, including the Colorado uranium miners' cohort; a cohort of Chinese tin miners; the lifespan cohort of atomic bomb survivors in Hiroshima and Nagasaki; and a cohort of over 200,000 workers included in the National Dose Registry (NDR) of Canada. (author)

  10. Biological signals classification and analysis

    CERN Document Server

    Kiasaleh, Kamran

    2015-01-01

    This authored monograph presents key aspects of signal processing analysis in the biomedical arena. Unlike wireless communication systems, biological entities produce signals with underlying nonlinear, chaotic nature that elude classification using the standard signal processing techniques, which have been developed over the past several decades for dealing primarily with standard communication systems. This book separates what is random from that which appears to be random, and yet is truly deterministic with random appearance. At its core, this work gives the reader a perspective on biomedical signals and the means to classify and process such signals. In particular, a review of random processes along with means to assess the behavior of random signals is also provided. The book also includes a general discussion of biological signals in order to demonstrate the inefficacy of the well-known techniques to correctly extract meaningful information from such signals. Finally, a thorough discussion of recently ...

  11. Assessing the status of biological control as a management tool for suppression of invasive alien plants in South Africa

    OpenAIRE

    Zachariades, Costas; Paterson, Iain D.; Strathie, Lorraine W.; Hill, Martin P.; van Wilgen, Brian W.

    2017-01-01

    Background: Biological control of invasive alien plants (IAPs) using introduced natural enemies contributes significantly to sustained, cost-effective management of natural resources in South Africa. The status of, and prospects for, biological control is therefore integral to National Status Reports (NSRs) on Biological Invasions, the first of which is due in 2017. Objectives: Our aim was to evaluate the status of, and prospects for, biological control of IAPs in South Africa. We discuss...

  12. Predictive modelling of complex agronomic and biological systems.

    Science.gov (United States)

    Keurentjes, Joost J B; Molenaar, Jaap; Zwaan, Bas J

    2013-09-01

    Biological systems are tremendously complex in their functioning and regulation. Studying the multifaceted behaviour and describing the performance of such complexity has challenged the scientific community for years. The reduction of real-world intricacy into simple descriptive models has therefore convinced many researchers of the usefulness of introducing mathematics into biological sciences. Predictive modelling takes such an approach another step further in that it takes advantage of existing knowledge to project the performance of a system in alternating scenarios. The ever growing amounts of available data generated by assessing biological systems at increasingly higher detail provide unique opportunities for future modelling and experiment design. Here we aim to provide an overview of the progress made in modelling over time and the currently prevalent approaches for iterative modelling cycles in modern biology. We will further argue for the importance of versatility in modelling approaches, including parameter estimation, model reduction and network reconstruction. Finally, we will discuss the difficulties in overcoming the mathematical interpretation of in vivo complexity and address some of the future challenges lying ahead. © 2013 John Wiley & Sons Ltd.

  13. Looking at biological community level to improve ecotoxicological assessment of freshwater sediments: report on a first French-Swiss workshop.

    Science.gov (United States)

    Pesce, Stéphane; Perceval, Olivier; Bonnineau, Chloé; Casado-Martinez, Carmen; Dabrin, Aymeric; Lyautey, Emilie; Naffrechoux, Emmanuel; Ferrari, Benoit J D

    2018-01-01

    The first French-Swiss workshop on ecotoxicology of freshwater sediment communities was co-organized by the French Research Institute of Science and Technology for Environment and Agriculture (Irstea) and the Swiss Centre for Applied Ecotoxicology (Ecotox Centre EAWAG-EPFL) in Villié-Morgon (Beaujolais Region, France) on April 27-28, 2017. The workshop brought together scientists working in different fields of expertise (ecotoxicologists, ecologists, environmental chemists…), environmental stakeholder groups and managers, as well as economic players (start-ups and consultancies) to better connect research needs of potential end-users with research outputs. The objectives of this workshop were (i) to establish the state of the art of research in the characterization of sediment contamination and in the evaluation of the effects on sediment-associated biological communities and ecosystem functioning and (ii) to give an overview of the French and Swiss regulations dealing with the assessment of contaminated sediments in freshwater ecosystems. The ultimate goal was to collectively identify research needs and knowledge gaps, as well as to highlight ways to improve the ecotoxicological assessment of sediments in freshwater environments by further considering the structure and functions of associated microbial and invertebrate communities.

  14. The Relationships Between Epistemic Beliefs in Biology and Approaches to Learning Biology Among Biology-Major University Students in Taiwan

    Science.gov (United States)

    Lin, Yi-Chun; Liang, Jyh-Chong; Tsai, Chin-Chung

    2012-12-01

    The aim of this study was to investigate the relationships between students' epistemic beliefs in biology and their approaches to learning biology. To this end, two instruments, the epistemic beliefs in biology and the approaches to learning biology surveys, were developed and administered to 520 university biology students, respectively. By and large, it was found that the students reflected "mixed" motives in biology learning, while those who had more sophisticated epistemic beliefs tended to employ deep strategies. In addition, the results of paired t tests revealed that the female students were more likely to possess beliefs about biological knowledge residing in external authorities, to believe in a right answer, and to utilize rote learning as a learning strategy. Moreover, compared to juniors and seniors, freshmen and sophomores tended to hold less mature views on all factors of epistemic beliefs regarding biology. Another comparison indicated that theoretical biology students (e.g. students majoring in the Department of Biology) tended to have more mature beliefs in learning biology and more advanced strategies for biology learning than those students studying applied biology (e.g. in the Department of Biotechnology). Stepwise regression analysis, in general, indicated that students who valued the role of experiments and justify epistemic assumptions and knowledge claims based on evidence were more oriented towards having mixed motives and utilizing deep strategies to learn biology. In contrast, students who believed in the certainty of biological knowledge were more likely to adopt rote learning strategies and to aim to qualify in biology.

  15. Modern Biology

    OpenAIRE

    ALEKSIC, Branko

    2014-01-01

    The purpose of this course is to learn the philosophy, principles, and techniques of modern biology. The course is particularly designed for those who have not learned biology previously or whose major is other than biology, and who may think that they do not need to know any biology at all. The topics are covered in a rather general, overview manner, but certain level of diligence in grasping concepts and memorizing the terminology is expected.

  16. Preliminary Chemical and Biological Assessment of Ogbe Creek ...

    African Journals Online (AJOL)

    USER

    The study was aimed at assessing the quality of water from the Ogbe Creek ... indicated the impact of the perturbational stress on the organisms inhabiting the creek. ... experiences seasonal flooding which introduces a lot of detritus and ...

  17. Guidelines to improve airport preparedness against chemical and biological terrorism.

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Donna M.; Price, Phillip N. (Lawrence Berkeley National Laboratory, Berkeley, CA); Gordon, Susanna P.; Gadgil, Ashok (Lawrence Berkeley National Laboratory, Berkeley, CA)

    2005-05-01

    Guidelines to Improve Airport Preparedness Against Chemical and Biological Terrorism is a 100-page document that makes concrete recommendations on improving security and assessing vulnerable areas and helps its readers understand the nature of chemical and biological attacks. The report has been turned over to Airports Council International (ACI) and the American Association of Airport Executives (AAAE), two organizations that together represent the interests of thousands of airport personnel and facilities in the U.S. and around the world.

  18. Synthetic biology: Novel approaches for microbiology.

    Science.gov (United States)

    Padilla-Vaca, Felipe; Anaya-Velázquez, Fernando; Franco, Bernardo

    2015-06-01

    In the past twenty years, molecular genetics has created powerful tools for genetic manipulation of living organisms. Whole genome sequencing has provided necessary information to assess knowledge on gene function and protein networks. In addition, new tools permit to modify organisms to perform desired tasks. Gene function analysis is speed up by novel approaches that couple both high throughput data generation and mining. Synthetic biology is an emerging field that uses tools for generating novel gene networks, whole genome synthesis and engineering. New applications in biotechnological, pharmaceutical and biomedical research are envisioned for synthetic biology. In recent years these new strategies have opened up the possibilities to study gene and genome editing, creation of novel tools for functional studies in virus, parasites and pathogenic bacteria. There is also the possibility to re-design organisms to generate vaccine subunits or produce new pharmaceuticals to combat multi-drug resistant pathogens. In this review we provide our opinion on the applicability of synthetic biology strategies for functional studies of pathogenic organisms and some applications such as genome editing and gene network studies to further comprehend virulence factors and determinants in pathogenic organisms. We also discuss what we consider important ethical issues for this field of molecular biology, especially for potential misuse of the new technologies. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  19. Adding biological realism to assessments of landscape connectivity

    Science.gov (United States)

    Researchers have long appreciated the practical value of connectivity and source-sink analyses. The importance of these assessments for conservation, planning, and reserve design has motivated many empirical and simulation studies. But there are few modeling tools available that ...

  20. Ethnographic Observational Study of the Biologic Initiation Conversation Between Rheumatologists and Biologic-Naive Rheumatoid Arthritis Patients.

    Science.gov (United States)

    Kottak, Nicholas; Tesser, John; Leibowitz, Evan; Rosenberg, Melissa; Parenti, Dennis; DeHoratius, Raphael

    2018-01-30

    This ethnographic market research study investigated the biologic initiation conversation between rheumatologists and biologic-naive patients with rheumatoid arthritis to assess how therapy options, particularly mode of administration, were discussed. Consenting rheumatologists (n = 16) and patients (n = 48) were videotaped during medical visits and interviewed by a trained ethnographer. The content, structure, and timing of conversations regarding biologic initiation were analyzed. The mean duration of physician-patient visits was approximately 15 minutes; biologic therapies were discussed for a mean of 5.6 minutes. Subcutaneous (SC) and intravenous (IV) therapy options were mentioned in 45 and 35 visits, respectively, out of a total of 48 visits. All patients had some familiarity with SC administration, but nearly half of patients (22 of 48) were unfamiliar with IV therapy going into the visit. IV administration was not defined or described by rheumatologists in 77% of visits (27 of 35) mentioning IV therapy. Thus, 19 of 22 patients who were initially unfamiliar with IV therapy remained unfamiliar after the visit. Disparities in physician-patient perceptions were revealed, as all rheumatologists (16 of 16) believed IV therapy would be less convenient than SC therapy for patients, while 46% of patients (22 of 48) felt this way. In post-visit interviews, some patients seemed confused and overwhelmed, particularly when presented with many treatment choices in a visit. Some patients stated they would benefit from visual aids or summary sheets of key points. This study revealed significant educational opportunities to improve the biologic initiation conversation and indicated a disparity between patients' and rheumatologists' perception of IV therapy. © 2018 The Authors. Arthritis Care & Research published by Wiley Periodicals, Inc. on behalf of American College of Rheumatology.

  1. Epidemiologic studies of occupational pesticide exposure and cancer: regulatory risk assessments and biologic plausibility.

    Science.gov (United States)

    Acquavella, John; Doe, John; Tomenson, John; Chester, Graham; Cowell, John; Bloemen, Louis

    2003-01-01

    Epidemiologic studies frequently show associations between self-reported use of specific pesticides and human cancers. These findings have engendered debate largely on methodologic grounds. However, biologic plausibility is a more fundamental issue that has received only superficial attention. The purpose of this commentary is to review briefly the toxicology and exposure data that are developed as part of the pesticide regulatory process and to discuss the applicability of this data to epidemiologic research. The authors also provide a generic example of how worker pesticide exposures might be estimated and compared to relevant toxicologic dose levels. This example provides guidance for better characterization of exposure and for consideration of biologic plausibility in epidemiologic studies of pesticides.

  2. Positioning genomics in biology education: content mapping of undergraduate biology textbooks.

    Science.gov (United States)

    Wernick, Naomi L B; Ndung'u, Eric; Haughton, Dominique; Ledley, Fred D

    2014-12-01

    Biological thought increasingly recognizes the centrality of the genome in constituting and regulating processes ranging from cellular systems to ecology and evolution. In this paper, we ask whether genomics is similarly positioned as a core concept in the instructional sequence for undergraduate biology. Using quantitative methods, we analyzed the order in which core biological concepts were introduced in textbooks for first-year general and human biology. Statistical analysis was performed using self-organizing map algorithms and conventional methods to identify clusters of terms and their relative position in the books. General biology textbooks for both majors and nonmajors introduced genome-related content after text related to cell biology and biological chemistry, but before content describing higher-order biological processes. However, human biology textbooks most often introduced genomic content near the end of the books. These results suggest that genomics is not yet positioned as a core concept in commonly used textbooks for first-year biology and raises questions about whether such textbooks, or courses based on the outline of these textbooks, provide an appropriate foundation for understanding contemporary biological science.

  3. Information fluency for undergraduate biology majors: applications of inquiry-based learning in a developmental biology course.

    Science.gov (United States)

    Gehring, Kathleen M; Eastman, Deborah A

    2008-01-01

    Many initiatives for the improvement of undergraduate science education call for inquiry-based learning that emphasizes investigative projects and reading of the primary literature. These approaches give students an understanding of science as a process and help them integrate content presented in courses. At the same time, general initiatives to promote information fluency are being promoted on many college and university campuses. Information fluency refers to discipline-specific processing of information, and it involves integration of gathered information with specific ideas to form logical conclusions. We have implemented the use of inquiry-based learning to enhance and study discipline-specific information fluency skills in an upper-level undergraduate Developmental Biology course. In this study, an information literacy tutorial and a set of linked assignments using primary literature analysis were integrated with two inquiry-based laboratory research projects. Quantitative analysis of student responses suggests that the abilities of students to identify and apply valid sources of information were enhanced. Qualitative assessment revealed a set of patterns by which students gather and apply information. Self-assessment responses indicated that students recognized the impact of the assignments on their abilities to gather and apply information and that they were more confident about these abilities for future biology courses and beyond.

  4. Translational environmental biology: cell biology informing conservation.

    Science.gov (United States)

    Traylor-Knowles, Nikki; Palumbi, Stephen R

    2014-05-01

    Typically, findings from cell biology have been beneficial for preventing human disease. However, translational applications from cell biology can also be applied to conservation efforts, such as protecting coral reefs. Recent efforts to understand the cell biological mechanisms maintaining coral health such as innate immunity and acclimatization have prompted new developments in conservation. Similar to biomedicine, we urge that future efforts should focus on better frameworks for biomarker development to protect coral reefs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Impacts of Insufficient Instructional Materials on Teaching Biology: Higher Education Systems in Focus

    Science.gov (United States)

    Edessa, Sutuma

    2017-01-01

    The purpose of this study was to assess and determine impacts of insufficient instructional materials and ineffective lesson delivery methods on teaching in biology higher education. The participants of this study were 60 trainees who graduated in Bachelor of Sciences from eight public universities in majoring biology. Data for the study was…

  6. Synthetic definition of biological significance

    International Nuclear Information System (INIS)

    Buffington, J.D.

    1975-01-01

    The central theme of the workshop is recounted and the views of the authors are summarized. Areas of broad agreement or disagreement, unifying principles, and research needs are identified. Authors' views are consolidated into concepts that have practical utility for the scientist making impact assessments. The need for decision-makers and managers to be cognizant of the recommendations made herein is discussed. Finally, bringing together the diverse views of the workshop participants, a conceptual definition of biological significance is synthesized

  7. The Relationships between Epistemic Beliefs in Biology and Approaches to Learning Biology among Biology-Major University Students in Taiwan

    Science.gov (United States)

    Lin, Yi-Chun; Liang, Jyh-Chong; Tsai, Chin-Chung

    2012-01-01

    The aim of this study was to investigate the relationships between students' epistemic beliefs in biology and their approaches to learning biology. To this end, two instruments, the epistemic beliefs in biology and the approaches to learning biology surveys, were developed and administered to 520 university biology students, respectively. By and…

  8. Informing biological design by integration of systems and synthetic biology.

    Science.gov (United States)

    Smolke, Christina D; Silver, Pamela A

    2011-03-18

    Synthetic biology aims to make the engineering of biology faster and more predictable. In contrast, systems biology focuses on the interaction of myriad components and how these give rise to the dynamic and complex behavior of biological systems. Here, we examine the synergies between these two fields. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. SYMBIOSIS: Development, Implementation, and Assessment of a Model Curriculum across Biology and Mathematics at the Introductory Level

    Science.gov (United States)

    Depelteau, Audrey M.; Joplin, Karl H.; Govett, Aimee; Miller, Hugh A., III; Seier, Edith

    2010-01-01

    With the support of the East Tennessee State University (ETSU) administration and a grant from Howard Hughes Medical Institute, the departments of Biological Sciences, Mathematics and Statistics, and Curriculum and Instruction have developed a biology-math integrated curriculum. An interdisciplinary faculty team, charged with teaching the 18…

  10. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  11. Carbon nanomaterials in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Pu Chun Ke [Laboratory of Single-Molecule Biophysics and Polymer Physics, Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Qiao Rui [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634 (United States)

    2007-09-19

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment. (topical review)

  12. The Tipping Point: Biological Terrorism

    Directory of Open Access Journals (Sweden)

    Scott Cary

    2009-01-01

    Full Text Available This article presents a strategic, operational, and tactical analysis of information currently available on the state of bio-weapons development by non-state actors, primarily Islamist jihadists. It discusses the evidence supporting a practical assessment that non-state actors have begun to acquire, and in the near-term intend to employ, bio-weapons. A pathogen and method of attack specifically designed to achieve the strategic goals of jihadists are presented as functional examples of the problem of the emerging global bio-weapons threat.Is a terrorist attack utilizing biological weapons a real threat? If so, is there a way to predict the circumstances under which it might happen or how it might be conducted? This article explores what is known and cannot be known about these questions, and will examine the threat of biological terrorism in the context of the strategic goals, operational methods, and tactical intentions of Islamist terrorists.

  13. Carbon nanomaterials in biological systems

    International Nuclear Information System (INIS)

    Pu Chun Ke; Qiao Rui

    2007-01-01

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment. (topical review)

  14. Physical-chemical characterization and biological assessment of simple and lithium-doped biological-derived hydroxyapatite thin films for a new generation of metallic implants

    Science.gov (United States)

    Popescu, A. C.; Florian, P. E.; Stan, G. E.; Popescu-Pelin, G.; Zgura, I.; Enculescu, M.; Oktar, F. N.; Trusca, R.; Sima, L. E.; Roseanu, A.; Duta, L.

    2018-05-01

    We report on the synthesis by PLD of simple and lithium-doped biological-origin hydroxyapatite (HA) films. The role of doping reagents (Li2CO3, Li3PO4) on the morphology, structure, chemical composition, bonding strength and cytocompatibility of the films was investigated. SEM investigations of the films evidenced a surface morphology consisting of particles with mean diameters of (5-7) μm. GIXRD analyses demonstrated that the synthesized structures consisted of HA phase only, with different degrees of crystallinity, mainly influenced by the doping reagent type. After only three days of immersion in simulated body fluid, FTIR spectra showed a remarkable growth of a biomimetic apatitic film, indicative of a high biomineralization capacity of the coatings. EDS analyses revealed a quasi-stoichiometric target-to-substrate transfer, the values inferred for the Ca/P ratio corresponding to a biological apatite. All synthesized structures displayed a hydrophilic behavior, suitable for attachment of osteoblast cells. In vitro cell viability tests showed that the presence of Li2CO3 and Li3PO4 as doping reagents promoted the hMSC growth on film surfaces. Taking into consideration these enhanced characteristics, corroborated with a low fabrication cost generated by sustainable resources, one should consider the lithium-doped biological-derived materials as promising prospective solutions for a next generation of coated implants with rapid osteointegration.

  15. Professional equity as reported by biology teachers

    Science.gov (United States)

    Douglas, Claudia B.; Lakes Matyas, Marsha; Butler Kahle, Jane

    In 1982, the National Association of Biology Teachers surveyed its membership in order to assess the role and status of women in biology education. Items describing roles, salaries, assignments, professional activities, and sexual bias were included in the survey. This paper compares the responses of male and female biology educators, draws conclusions from the data, and suggests implications for the science education profession. Inequality in several professional areas was revealed. More women than men were single and reported no dependent children. Women exceeded men in both the lower and upper ends of the distribution of years of experience. However, the percentage of men exceeded that of women in most salary brackets beyond $20,000 and more men reported paid consulting opportunities. Men tended to teach at larger institutions and, at all academic levels, more men taught advanced classes. More men than women were involved with research activities. However, neither sex felt that the other one received preferential treatment in regard to salary and promotion. The majority of education administrators as well as science and biology faculties were male. However, the recent influx of women into science education positions may produce important changes. It is recommended that a comparative study be conducted in five years.

  16. Systems Biology for Organotypic Cell Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Grego, Sonia [RTI International, Research Triangle Park, NC (United States); Dougherty, Edward R. [Texas A & M Univ., College Station, TX (United States); Alexander, Francis J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Auerbach, Scott S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Berridge, Brian R. [GlaxoSmithKline, Research Triangle Park, NC (United States); Bittner, Michael L. [Translational Genomics Research Inst., Phoenix, AZ (United States); Casey, Warren [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Cooley, Philip C. [RTI International, Research Triangle Park, NC (United States); Dash, Ajit [HemoShear Therapeutics, Charlottesville, VA (United States); Ferguson, Stephen S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Fennell, Timothy R. [RTI International, Research Triangle Park, NC (United States); Hawkins, Brian T. [RTI International, Research Triangle Park, NC (United States); Hickey, Anthony J. [RTI International, Research Triangle Park, NC (United States); Kleensang, Andre [Johns Hopkins Univ., Baltimore, MD (United States). Center for Alternatives to Animal Testing; Liebman, Michael N. [IPQ Analytics, Kennett Square, PA (United States); Martin, Florian [Phillip Morris International, Neuchatel (Switzerland); Maull, Elizabeth A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Paragas, Jason [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Qiao, Guilin [Defense Threat Reduction Agency, Ft. Belvoir, VA (United States); Ramaiahgari, Sreenivasa [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Sumner, Susan J. [RTI International, Research Triangle Park, NC (United States); Yoon, Miyoung [The Hamner Inst. for Health Sciences, Research Triangle Park, NC (United States); ScitoVation, Research Triangle Park, NC (United States)

    2016-08-04

    Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomic data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data. This consensus report summarizes the discussions held.

  17. Preparing Biology Graduate Teaching Assistants for Their Roles as Instructors: An Assessment of Institutional Approaches.

    Science.gov (United States)

    Schussler, Elisabeth E; Read, Quentin; Marbach-Ad, Gili; Miller, Kristen; Ferzli, Miriam

    2015-01-01

    The inconsistency of professional development (PD) in teaching for graduate teaching assistants (GTAs) is a widespread problem in higher education. Although GTAs serve an important role in retention of undergraduate science majors and in promotion of scientific literacy in nonmajors, they often lack preparation and ongoing support for teaching. Given the recent national focus on instructional quality in introductory courses, our goal was to use an online survey to identify current practices of teaching PD for biology GTAs and compare these results with the last national survey on this topic. In responses from 71 participant institutions, 96% reported some mandatory teaching preparation for biology GTAs; however, 52% of these programs required 10 or fewer hours per year. Respondents wanted to change their programs to include more pedagogical information and teaching observations with feedback to their GTAs. Programmatic self-ratings of satisfaction with GTA PD were positively correlated with the number of topics discussed during PD. Although more schools are requiring GTA PD for teaching compared with the last national survey, the lack of program breadth at many schools warrants a national conversation with regard to recent calls for improving undergraduate instruction. © 2015 E. E. Schussler et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Biología molecular y cáncer de tiroides Molecular biology and thyroid cancer

    Directory of Open Access Journals (Sweden)

    Juan Cassola Santana

    2010-12-01

    Full Text Available Se realiza una revisión actualizada sobre aspectos de biología molecular que servirán de base al cirujano actuante para un mejor conocimiento del cáncer tiroideo. El objetivo radica en alertar a los cirujanos sobre las nuevas evaluaciones a las que podrán someterse los tumores de la tiroides, que implicarán cambios en toda la gama de conductas actuales en estos casos. Se señalan aspectos que sin duda cambiarán los conceptos que se manejan hoy día.A updating review is carry out on the features of molecular biology as a basis for acting surgeon to a better knowledge of thyroid cancer. The objective is to alert surgeons on the new assessments for this type of cancer, implicating changes in all the range of current behaviors in these cases. The features that will change the nowadays concepts in this respect.

  19. Assessing sub-Saharan Erythrina for efficacy: traditional uses, biological activities and phytochemistry.

    OpenAIRE

    Kone , Witabouna Mamidou; Solange , Kakou-Ngazoa E; Dosso , Mireille

    2011-01-01

    International audience; The genus Erythrina comprises more than 100 species, widely distributed in tropical and subtropical areas. In Africa, 31 wild species and 14 cultivated species have been described. In sub-Saharan Africa, Erythrina species are used to treat frequent parasitic and microbial diseases, inflammation, cancer, wounds. The rationale of these traditional uses in African traditional medicine was established by screening several species for biological activities. Promising activi...

  20. Strategic Plan for the U.S. Geological Survey. Status and Trends of Biological Resources Program: 2004-2009

    National Research Council Canada - National Science Library

    Dresler, Paul V; James, Daniel L; Geissler, Paul H; Bartish, Timothy M; Coyle, James

    2004-01-01

    The mission of the USGS Status and Trends of Biological Resources Program is to measure, predict, assess, and report the status and trends of the Nation's biological resources to facilitate research...

  1. Removal of Antibiotics in Biological Wastewater Treatment Systems—A Critical Assessment Using the Activated Sludge Modeling Framework for Xenobiotics (ASM-X)

    DEFF Research Database (Denmark)

    Polesel, Fabio; Andersen, Henrik Rasmus; Trapp, Stefan

    2016-01-01

    Many scientific studies present removal efficiencies for pharmaceuticals in laboratory-, pilot-, and full-scale wastewater treatment plants, based on observations that may be impacted by theoretical and methodological approaches used. In this Critical Review, we evaluated factors influencing...... observed removal efficiencies of three antibiotics (sulfamethoxazole, ciprofloxacin, tetracycline) in pilot- and full-scale biological treatment systems. Factors assessed include (i) retransformation to parent pharmaceuticals from e.g., conjugated metabolites and analogues, (ii) solid retention time (SRT......), (iii) fractions sorbed onto solids, and (iv) dynamics in influent and effluent loading. A recently developed methodology was used, relying on the comparison of removal efficiency predictions (obtained with the Activated Sludge Model for Xenobiotics (ASM-X)) with representative measured data from...

  2. Monitoring biological diversity: strategies, tools, limitations, and challenges.

    Science.gov (United States)

    Erik A. Beever

    2006-01-01

    Monitoring is an assessment of the spatial and temporal variability in one or more ecosystem properties, and is an essential component of adaptive management. Monitoring can help determine whether mandated environmental standards are being met and can provide an early-warning system of ecological change. Development of a strategy for monitoring biological diversity...

  3. Occlusal Caries: Biological Approach for Its Diagnosis and Management

    DEFF Research Database (Denmark)

    Christina Carvalho, Joana; Dige, Irene; Machiulskiene, Vita

    2016-01-01

    The management of occlusal caries still remains a major challenge for researchers as well as for general practitioners. The present paper reviews and discusses the most up-to-date knowledge and evidence of the biological principles guiding diagnosis, risk assessment, and management of the caries...

  4. Step by Step: Biology Undergraduates’ Problem-Solving Procedures during Multiple-Choice Assessment

    Science.gov (United States)

    Prevost, Luanna B.; Lemons, Paula P.

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. PMID:27909021

  5. Teaching biology through statistics: application of statistical methods in genetics and zoology courses.

    Science.gov (United States)

    Colon-Berlingeri, Migdalisel; Burrowes, Patricia A

    2011-01-01

    Incorporation of mathematics into biology curricula is critical to underscore for undergraduate students the relevance of mathematics to most fields of biology and the usefulness of developing quantitative process skills demanded in modern biology. At our institution, we have made significant changes to better integrate mathematics into the undergraduate biology curriculum. The curricular revision included changes in the suggested course sequence, addition of statistics and precalculus as prerequisites to core science courses, and incorporating interdisciplinary (math-biology) learning activities in genetics and zoology courses. In this article, we describe the activities developed for these two courses and the assessment tools used to measure the learning that took place with respect to biology and statistics. We distinguished the effectiveness of these learning opportunities in helping students improve their understanding of the math and statistical concepts addressed and, more importantly, their ability to apply them to solve a biological problem. We also identified areas that need emphasis in both biology and mathematics courses. In light of our observations, we recommend best practices that biology and mathematics academic departments can implement to train undergraduates for the demands of modern biology.

  6. Biological durability of wood in relation to end-use - Part 1. Towards a European standard for laboratory testing of the biological durability of wood

    NARCIS (Netherlands)

    Acker, Van J.; Stevens, M.; Carey, J.; Sierra-Alvarez, R.; Militz, H.; Bayon, Le I.; Kleist, G.; Peek, R.D.

    2003-01-01

    The determination of biological durability of wood is an issue requiring sufficient reliability regarding end-use related prediction of performance. Five test institutes joined efforts to check standard test methods and to improve methodology and data interpretation for assessment of natural

  7. Allostatic load and biological anthropology.

    Science.gov (United States)

    Edes, Ashley N; Crews, Douglas E

    2017-01-01

    Multiple stressors affect developing and adult organisms, thereby partly structuring their phenotypes. Determining how stressors influence health, well-being, and longevity in human and nonhuman primate populations are major foci within biological anthropology. Although much effort has been devoted to examining responses to multiple environmental and sociocultural stressors, no holistic metric to measure stress-related physiological dysfunction has been widely applied within biological anthropology. Researchers from disciplines outside anthropology are using allostatic load indices (ALIs) to estimate such dysregulation and examine life-long outcomes of stressor exposures, including morbidity and mortality. Following allostasis theory, allostatic load represents accumulated physiological and somatic damage secondary to stressors and senescent processes experienced over the lifespan. ALIs estimate this wear-and-tear using a composite of biomarkers representing neuroendocrine, cardiovascular, metabolic, and immune systems. Across samples, ALIs are associated significantly with multiple individual characteristics (e.g., age, sex, education, DNA variation) of interest within biological anthropology. They also predict future outcomes, including aspects of life history variation (e.g., survival, lifespan), mental and physical health, morbidity and mortality, and likely health disparities between groups, by stressor exposures, ethnicity, occupations, and degree of departure from local indigenous life ways and integration into external and commodified ones. ALIs also may be applied to similar stress-related research areas among nonhuman primates. Given the reports from multiple research endeavors, here we propose ALIs may be useful for assessing stressors, stress responses, and stress-related dysfunction, current and long-term cognitive function, health and well-being, and risk of early mortality across many research programs within biological anthropology. © 2017 American

  8. Biological warfare, bioterrorism, and biocrime.

    Science.gov (United States)

    Jansen, H J; Breeveld, F J; Stijnis, C; Grobusch, M P

    2014-06-01

    Biological weapons achieve their intended target effects through the infectivity of disease-causing infectious agents. The ability to use biological agents in warfare is prohibited by the Biological and Toxin Weapon Convention. Bioterrorism is defined as the deliberate release of viruses, bacteria or other agents used to cause illness or death in people, but also in animals or plants. It is aimed at creating casualties, terror, societal disruption, or economic loss, inspired by ideological, religious or political beliefs. The success of bioterroristic attempts is defined by the measure of societal disruption and panic, and not necessarily by the sheer number of casualties. Thus, making only a few individuals ill by the use of crude methods may be sufficient, as long as it creates the impact that is aimed for. The assessment of bioterrorism threats and motives have been described before. Biocrime implies the use of a biological agent to kill or make ill a single individual or small group of individuals, motivated by revenge or the desire for monetary gain by extortion, rather than by political, ideological, religious or other beliefs. The likelihood of a successful bioterrorist attack is not very large, given the technical difficulties and constraints. However, even if the number of casualties is likely to be limited, the impact of a bioterrorist attack can still be high. Measures aimed at enhancing diagnostic and therapeutic capabilities and capacities alongside training and education will improve the ability of society to combat 'regular' infectious diseases outbreaks, as well as mitigating the effects of bioterrorist attacks. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  9. Correlation of biological aggressiveness assessed by 11C-methionine PET and hypoxic burden assessed by 18F-fluoromisonidazole PET in newly diagnosed glioblastoma

    International Nuclear Information System (INIS)

    Kawai, Nobuyuki; Miyake, Keisuke; Okada, Masaki; Tamiya, Takashi; Maeda, Yukito; Yamamoto, Yuka; Nishiyama, Yoshihiro; Kudomi, Nobuyuki

    2011-01-01

    Glioblastoma multiforme (GBM) is characterized by tissue hypoxia associated with resistance to radiotherapy and chemotherapy. To clarify the biological link between hypoxia and tumour-induced neovascularization and tumour aggressiveness, we analysed detailed volumetric and spatial information of viable hypoxic tissue assessed by 18 F-fluoromisonidazole (FMISO) PET relative to neovascularization in Gd-enhanced MRI and tumour aggressiveness by L-methyl- 11 C-methionine (MET) PET in newly diagnosed GBMs. Ten patients with newly diagnosed GBMs were investigated with FMISO PET, MET PET and Gd-enhanced MRI before surgery. Tumour volumes were calculated by performing a three-dimensional threshold-based volume of interest (VOI) analysis for metabolically active volume on MET PET (MET uptake indices of ≥1.3 and ≥1.5) and Gd-enhanced volume on MRI. FMISO PET was scaled to the blood FMISO activity to create tumour to blood (T/B) images. The hypoxic volume (HV) was defined as the region with T/B greater than 1.2. PET and MR images of each patient were coregistered to analyse the spatial location of viable hypoxic tissue relative to neovascularization and active tumour extension. Metabolically active tumour volumes defined using MET uptake indices of ≥1.3 and ≥1.5 and the volumes of Gd enhancement showed a strong correlation (r = 0.86, p < 0.01 for an index of ≥1.3 and r = 0.77, p < 0.05 for an index of ≥1.5). The HVs were also excellently correlated with the volumes of Gd enhancement (r = 0.94, p < 0.01). The metabolically active tumour volumes as defined by a MET uptake index of ≥1.3 and the HVs exhibited a strong correlation (r = 0.87, p < 0.01). On superimposed images, the metabolically active area on MET PET defined by a MET uptake index of ≥1.3 was usually larger than the area of the Gd enhancement and about 20-30% of the MET area extended outside the area of the enhancement. On the other hand, the surface area of viable hypoxic tissue with a T/B cutoff of

  10. A generic framework for individual-based modelling and physical-biological interaction

    DEFF Research Database (Denmark)

    Christensen, Asbjørn; Mariani, Patrizio; Payne, Mark R.

    2018-01-01

    The increased availability of high-resolution ocean data globally has enabled more detailed analyses of physical-biological interactions and their consequences to the ecosystem. We present IBMlib, which is a versatile, portable and computationally effective framework for conducting Lagrangian...... scales. The open-source framework features a minimal robust interface to facilitate the coupling between individual-level biological models and oceanographic models, and we provide application examples including forward/backward simulations, habitat connectivity calculations, assessing ocean conditions...

  11. Characterization of a multiculture in-vitro cell exposure chamber for assessing the biological impact of diesel engine exhaust

    International Nuclear Information System (INIS)

    Asimakopoulou, Akrivi; Daskalos, Manos; Chasapidis, Leonidas; Akritidis, Theofilaktos; Vlachos, Nickolaos D; Papaioannou, Eleni; Konstandopoulos, Athanasios G

    2011-01-01

    In order to study the various health influencing parameters related to particulate as well as to gas-phase pollutants emitted by Diesel engine exhaust, there is an urgent need for appropriate sampling devices and methods for cell exposure studies and associated biological and toxicological tests. In a previous paper [1], a specific concept for a cell culture exposure chamber was introduced to allow the uniform exposure of cell cultures to diesel aerosols. In the present work, this cell culture exposure chamber is evaluated and characterized with state-of-the-art nanoparticles measurement instrumentation to assess the local deposition of soot aggregates on the cell cultures and any losses due to particle deposition on the cell culture exposure chamber walls, and in addition an upgraded Multiculture Exposure Chamber (MEC) for in vitro continuous flow cell exposure tests is introduced with improved, compared to the previous version, features. Analysis and design of the MEC employs CFD and true to geometry representations of soot particle aggregates.

  12. Sensor Fusion and Autonomy as a Powerful Combination for Biological Assessment in the Marine Environment

    Directory of Open Access Journals (Sweden)

    Mark A. Moline

    2016-02-01

    Full Text Available The ocean environment and the physical and biological processes that govern dynamics are complex. Sampling the ocean to better understand these processes is difficult given the temporal and spatial domains and sampling tools available. Biological systems are especially difficult as organisms possess behavior, operate at horizontal scales smaller than traditional shipboard sampling allows, and are often disturbed by the sampling platforms themselves. Sensors that measure biological processes have also generally not kept pace with the development of physical counterparts as their requirements are as complex as the target organisms. Here, we attempt to address this challenge by advocating the need for sensor-platform combinations to integrate and process data in real-time and develop data products that are useful in increasing sampling efficiencies. Too often, the data of interest is only garnered after post-processing after a sampling effort and the opportunity to use that information to guide sampling is lost. Here we demonstrate a new autonomous platform, where data are collected, analyzed, and data products are output in real-time to inform autonomous decision-making. This integrated capability allows for enhanced and informed sampling towards improving our understanding of the marine environment.

  13. A Community-Building Framework for Collaborative Research Coordination across the Education and Biology Research Disciplines

    Science.gov (United States)

    Pelaez, Nancy; Anderson, Trevor R.; Gardner, Stephanie M.; Yin, Yue; Abraham, Joel K.; Barlett, Edward L.; Gormally, Cara; Hurney, Carol A.; Long, Tammy M.; Newman, Dina L.; Sirum, Karen; Stevens, Michael T.

    2018-01-01

    Since 2009, the U.S. National Science Foundation Directorate for Biological Sciences has funded Research Coordination Networks (RCN) aimed at collaborative efforts to improve participation, learning, and assessment in undergraduate biology education (UBE). RCN-UBE projects focus on coordination and communication among scientists and educators who…

  14. Women are underrepresented in computational biology: An analysis of the scholarly literature in biology, computer science and computational biology.

    Directory of Open Access Journals (Sweden)

    Kevin S Bonham

    2017-10-01

    Full Text Available While women are generally underrepresented in STEM fields, there are noticeable differences between fields. For instance, the gender ratio in biology is more balanced than in computer science. We were interested in how this difference is reflected in the interdisciplinary field of computational/quantitative biology. To this end, we examined the proportion of female authors in publications from the PubMed and arXiv databases. There are fewer female authors on research papers in computational biology, as compared to biology in general. This is true across authorship position, year, and journal impact factor. A comparison with arXiv shows that quantitative biology papers have a higher ratio of female authors than computer science papers, placing computational biology in between its two parent fields in terms of gender representation. Both in biology and in computational biology, a female last author increases the probability of other authors on the paper being female, pointing to a potential role of female PIs in influencing the gender balance.

  15. Women are underrepresented in computational biology: An analysis of the scholarly literature in biology, computer science and computational biology.

    Science.gov (United States)

    Bonham, Kevin S; Stefan, Melanie I

    2017-10-01

    While women are generally underrepresented in STEM fields, there are noticeable differences between fields. For instance, the gender ratio in biology is more balanced than in computer science. We were interested in how this difference is reflected in the interdisciplinary field of computational/quantitative biology. To this end, we examined the proportion of female authors in publications from the PubMed and arXiv databases. There are fewer female authors on research papers in computational biology, as compared to biology in general. This is true across authorship position, year, and journal impact factor. A comparison with arXiv shows that quantitative biology papers have a higher ratio of female authors than computer science papers, placing computational biology in between its two parent fields in terms of gender representation. Both in biology and in computational biology, a female last author increases the probability of other authors on the paper being female, pointing to a potential role of female PIs in influencing the gender balance.

  16. Partial differential equations for self-organization in cellular and developmental biology

    International Nuclear Information System (INIS)

    Baker, R E; Gaffney, E A; Maini, P K

    2008-01-01

    Understanding the mechanisms governing and regulating the emergence of structure and heterogeneity within cellular systems, such as the developing embryo, represents a multiscale challenge typifying current integrative biology research, namely, explaining the macroscale behaviour of a system from microscale dynamics. This review will focus upon modelling how cell-based dynamics orchestrate the emergence of higher level structure. After surveying representative biological examples and the models used to describe them, we will assess how developments at the scale of molecular biology have impacted on current theoretical frameworks, and the new modelling opportunities that are emerging as a result. We shall restrict our survey of mathematical approaches to partial differential equations and the tools required for their analysis. We will discuss the gap between the modelling abstraction and biological reality, the challenges this presents and highlight some open problems in the field. (invited article)

  17. Role of cytogenetic techniques in biological dosimetry of absorbed radiation

    International Nuclear Information System (INIS)

    Rao, B.S.

    2016-01-01

    In most of the radiation accidents, physical dosimetric information is rarely available. Further, most of the accidental exposures are non-uniform involving either partial body or localized exposure to significant doses. In such situations, physical dosimetry does not provide reliable dose estimate. It has now been realized that biological dosimetric techniques can play an important role in the assessment of absorbed dose. In recent years, a number of biological indicators of radiation have been identified. These include the kinetics of onset and persistence of prodromal syndromes (radiation sickness), cytogenetic changes in peripheral blood lymphocytes, hematological changes, biochemical indicators, ESR spectroscopy of biological samples, induction of gene mutations in red blood cells, cytogenetic and physiological changes in skin and neurophysiological changes. In general, dosimetric information is derived by a combination of several different methods, as they have potential to serve as prognostic indicators. The role of cytogenetic techniques in peripheral blood lymphocytes (PBL) as biological indicators of absorbed radiation is reviewed here

  18. Biological conversion system

    Science.gov (United States)

    Scott, C.D.

    A system for bioconversion of organic material comprises a primary bioreactor column wherein a biological active agent (zymomonas mobilis) converts the organic material (sugar) to a product (alcohol), a rejuvenator column wherein the biological activity of said biological active agent is enhanced, and means for circulating said biological active agent between said primary bioreactor column and said rejuvenator column.

  19. Structural Biology Fact Sheet

    Science.gov (United States)

    ... NIGMS NIGMS Home > Science Education > Structural Biology Structural Biology Tagline (Optional) Middle/Main Content Area PDF Version (688 KB) Other Fact Sheets What is structural biology? Structural biology is the study of how biological ...

  20. International Conference on Medical and Biological Engineering 2017

    CERN Document Server

    2017-01-01

    This volume presents the proceedings of the International Conference on Medical and Biological Engineering held from 16 to 18 March 2017 in Sarajevo, Bosnia and Herzegovina. Focusing on the theme of ‘Pursuing innovation. Shaping the future’, it highlights the latest advancements in Biomedical Engineering and also presents the latest findings, innovative solutions and emerging challenges in this field. Topics include: - Biomedical Signal Processing - Biomedical Imaging and Image Processing - Biosensors and Bioinstrumentation - Bio-Micro/Nano Technologies - Biomaterials - Biomechanics, Robotics and Minimally Invasive Surgery - Cardiovascular, Respiratory and Endocrine Systems Engineering - Neural and Rehabilitation Engineering - Molecular, Cellular and Tissue Engineering - Bioinformatics and Computational Biology - Clinical Engineering and Health Technology Assessment - Health Informatics, E-Health and Telemedicine - Biomedical Engineering Education - Pharmaceutical Engineering.

  1. Fostering synergy between cell biology and systems biology.

    Science.gov (United States)

    Eddy, James A; Funk, Cory C; Price, Nathan D

    2015-08-01

    In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules, predicting mechanisms and identifying generalizable themes, generating hypotheses and guiding experimental design, and highlighting knowledge gaps and refining understanding. In turn, incorporating domain expertise and experimental data is crucial for building towards whole cell models. An iterative cycle of interaction between cell and systems biologists advances the goals of both fields and establishes a framework for mechanistic understanding of the genome-to-phenome relationship. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  2. Biologic relativity: Who is the observer and what is observed?

    Science.gov (United States)

    Torday, John S; Miller, William B

    2016-05-01

    When quantum physics and biological phenomena are analogously explored, it emerges that biologic causation must also be understood independently of its overt appearance. This is similar to the manner in which Bohm characterized the explicate versus the implicate order as overlapping frames of ambiguity. Placed in this context, the variables affecting epigenetic inheritance can be properly assessed as a key mechanistic principle of evolution that significantly alters our understanding of homeostasis, pleiotropy, and heterochrony, and the purposes of sexual reproduction. Each of these become differing manifestations of a new biological relativity in which biologic space-time becomes its own frame. In such relativistic cellular contexts, it is proper to question exactly who has observer status, and who and what are being observed. Consideration within this frame reduces biology to cellular information sharing through cell-cell communication to resolve ambiguities at every scope and scale. In consequence, it becomes implicit that eukaryotic evolution derives from the unicellular state, remaining consistently adherent to it in a continuous evolutionary arc based upon elemental, non-stochastic physiologic first principles. Furthermore, the entire cell including its cytoskeletal apparatus and membranes that participate in the resolution of biological uncertainties must be considered as having equivalent primacy with genomes in evolutionary terms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Marko, A.M.

    1981-05-01

    In this review radiation produced by the nuclear industry is placed into context with other sources of radiation in our world. Human health effects of radiation, derivation of standards and risk estimates are reviewed in this document. The implications of exposing the worker and the general population to radiation generated by nuclear power are assessed. Effects of radiation are also reviewed. Finally, gaps in our knowledge concerning radiation are identified and current research on biological effects, on environmental aspects, and on dosimetry of radiation within AECL and Canada is documented in this report. (author)

  4. Role of biology in the air–sea carbon flux in the Bay of Bengal

    Indian Academy of Sciences (India)

    Abstract. A physical-biological-chemical model (PBCM)is used for investigating the seasonal cycle of air –sea carbon flux and for assessing the effect of the biological processes on seasonal time scale in the Arabian Sea (AS)and Bay of Bengal (BoB),where the surface waters are subjected to contrasting physical conditions.

  5. Biology on the outer planets. [life possibility in atmospheres and moons

    Science.gov (United States)

    Young, R. S.; Macelroy, R. D.

    1976-01-01

    A brief review is given of information on the structure and composition of the outer planets and the organic reactions that may be occurring on them. The possibility of life arising or surviving in the atmospheres of these planets is considered, and the problem of contamination during future unmanned missions is assessed. Atmospheric models or available atmospheric data are reviewed for Jupiter, Saturn, Uranus, Neptune, Pluto, the Galilean satellites, and Titan. The presence of biologically interesting gases on Jupiter and Saturn is discussed, requirements for life on Jupiter are summarized, and possible sources of biological energy are examined. Proposals are made for protecting these planets and satellites from biological contamination by spacecraftborne terrestrial organisms.

  6. Nonlinear dimensionality reduction methods for synthetic biology biobricks' visualization.

    Science.gov (United States)

    Yang, Jiaoyun; Wang, Haipeng; Ding, Huitong; An, Ning; Alterovitz, Gil

    2017-01-19

    Visualizing data by dimensionality reduction is an important strategy in Bioinformatics, which could help to discover hidden data properties and detect data quality issues, e.g. data noise, inappropriately labeled data, etc. As crowdsourcing-based synthetic biology databases face similar data quality issues, we propose to visualize biobricks to tackle them. However, existing dimensionality reduction methods could not be directly applied on biobricks datasets. Hereby, we use normalized edit distance to enhance dimensionality reduction methods, including Isomap and Laplacian Eigenmaps. By extracting biobricks from synthetic biology database Registry of Standard Biological Parts, six combinations of various types of biobricks are tested. The visualization graphs illustrate discriminated biobricks and inappropriately labeled biobricks. Clustering algorithm K-means is adopted to quantify the reduction results. The average clustering accuracy for Isomap and Laplacian Eigenmaps are 0.857 and 0.844, respectively. Besides, Laplacian Eigenmaps is 5 times faster than Isomap, and its visualization graph is more concentrated to discriminate biobricks. By combining normalized edit distance with Isomap and Laplacian Eigenmaps, synthetic biology biobircks are successfully visualized in two dimensional space. Various types of biobricks could be discriminated and inappropriately labeled biobricks could be determined, which could help to assess crowdsourcing-based synthetic biology databases' quality, and make biobricks selection.

  7. The Latin American Biological Dosimetry Network (LBDNet): Argentina, Brazil, Chile, Cuba, Mexico, Peru, Uruguay

    International Nuclear Information System (INIS)

    Guerrero C, C.; Arceo M, C.; Di Giorgio, M.; Vallerga, M.; Radl, A.; Taja, M.; Seoane, A.; De Luca, J.; Stuck O, M.; Valdivia, P.

    2010-10-01

    Biological dosimetry is a necessary support for national radiation protection programs and emergency response schemes. The Latin American Biological Dosimetry Network (LBDNet) was formally founded in 2007 for mutual assistance in case of radiation emergencies and for providing support to other Latin American countries that do not have bio dosimetry laboratories. In the frame of the IAEA Technical Cooperation Projects RLA/9/54 and RLA/9/61 the following activities have been performed: a) An international intercomparison exercise organized during 2007-2008 included six European countries and LBDNet laboratories. Relevant parameters related with dose assessment were evaluated through triage and conventional scoring criteria. A new approach for statistical data analysis was developed including assessment of inter-laboratory reproducibility and intra-laboratory repeatability. Overall, the laboratory performance was satisfactory for mutual cooperation purposes. b) In 2009, LBDNet and two European countries carried out a digital image intercomparison exercise involving dose assessment from metaphase images distributed electronically through internet. The main objectives were to evaluate scoring feasibility on metaphase images and time response. In addition a re-examination phase was considered in which the most controversial images were discussed jointly, this allowed for the development of a homogeneous scoring criteria within the network. c) A further exercise was performed during 2009 involving the shipment of biological samples for biological dosimetry assessment. The aim of this exercise was to test the timely and properly sending and receiving blood samples under national and international regulations. A total of 14 laboratories participated in this joint IAEA, PAHO and WHO. (Author)

  8. The Latin American Biological Dosimetry Network (LBDNet): Argentina, Brazil, Chile, Cuba, Mexico, Peru, Uruguay

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C.; Arceo M, C. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Di Giorgio, M.; Vallerga, M.; Radl, A. [Autoridad Regulatoria Nuclear, Av. del Libertador 8250, C1429 BNP CABA (Argentina); Taja, M.; Seoane, A.; De Luca, J. [Universidad Nacionald de La Plata, Av. 7 No. 1776, La Plata 1900, Buenos Aires (Argentina); Stuck O, M. [Instituto de Radioproteccion y Dosimetria, Av. Salvador Allende s/n, Recreio dos Bandeirantes, Rio de Janeiro (Brazil); Valdivia, P., E-mail: lbdnet@googlegroups.co [Comision Chilena de Energia, Amutanegui 95, Santiago Centro, Santiago (Chile)

    2010-10-15

    Biological dosimetry is a necessary support for national radiation protection programs and emergency response schemes. The Latin American Biological Dosimetry Network (LBDNet) was formally founded in 2007 for mutual assistance in case of radiation emergencies and for providing support to other Latin American countries that do not have bio dosimetry laboratories. In the frame of the IAEA Technical Cooperation Projects RLA/9/54 and RLA/9/61 the following activities have been performed: a) An international intercomparison exercise organized during 2007-2008 included six European countries and LBDNet laboratories. Relevant parameters related with dose assessment were evaluated through triage and conventional scoring criteria. A new approach for statistical data analysis was developed including assessment of inter-laboratory reproducibility and intra-laboratory repeatability. Overall, the laboratory performance was satisfactory for mutual cooperation purposes. b) In 2009, LBDNet and two European countries carried out a digital image intercomparison exercise involving dose assessment from metaphase images distributed electronically through internet. The main objectives were to evaluate scoring feasibility on metaphase images and time response. In addition a re-examination phase was considered in which the most controversial images were discussed jointly, this allowed for the development of a homogeneous scoring criteria within the network. c) A further exercise was performed during 2009 involving the shipment of biological samples for biological dosimetry assessment. The aim of this exercise was to test the timely and properly sending and receiving blood samples under national and international regulations. A total of 14 laboratories participated in this joint IAEA, PAHO and WHO. (Author)

  9. Biological Monitoring and Abatement Program for the Oak Ridge K-25 Site

    International Nuclear Information System (INIS)

    Kszos, L.A.; Adams, S.M.; Ashwood, T.L.; Blaylock, B.G.; Greeley, M.S.; Loar, J.M.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Hinzman, R.L.; Shoemaker, B.A.

    1993-04-01

    A proposed Biological Monitoring and Abatement Program (BMAP) for the Oak Ridge K-25 Site was prepared in December 1992 as required by the renewed National Pollutant Discharge Elimination System permit that was issued on October 1, 1992. The proposed BMAP is based on results of biological monitoring conducted from 1986 to 1992 and discussions held on November 12, 1992, between staff of Martin Marietta Energy Systems, Inc. (Oak Ridge National Laboratory and the K-25 Site), and the Tennessee Department of Environment and Conservation, Department of Energy Oversight Division. The proposed BMAP consists of four tasks that reflect different but complementary approaches to evaluating the effects of K-25 Site effluents on the ecological integrity of Mitchell Branch, Poplar Creek, and the Poplar Creek embayment of the Clinch River. These tasks include (1) ambient toxicity monitoring, (2) bioaccumulation monitoring, (3) assessment of fish health, and (4) instream monitoring of biological communities. This overall BMAP plan combines established protocols with current biological monitoring techniques to assess environmental compliance and quantify ecological recovery. The BMAP will also determine whether the effluent limits established for the K-25 Site protect the designated use of the receiving streams (Mitchell Branch, Poplar Creek, and Clinch River) for growth and propagation of fish and other aquatic life. Results obtained from this biological monitoring program will also be used to document the ecological effects (and effectiveness) of remedial actions

  10. Biological Monitoring and Abatement Program for the Oak Ridge K-25 Site

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Adams, S.M.; Ashwood, T.L.; Blaylock, B.G.; Greeley, M.S.; Loar, J.M.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R. (Oak Ridge National Lab., TN (United States)); Hinzman, R.L. (Oak Ridge Research Inst., TN (United States)); Shoemaker, B.A. (Oak Ridge K-25 Site, TN (United States))

    1993-04-01

    A proposed Biological Monitoring and Abatement Program (BMAP) for the Oak Ridge K-25 Site was prepared in December 1992 as required by the renewed National Pollutant Discharge Elimination System permit that was issued on October 1, 1992. The proposed BMAP is based on results of biological monitoring conducted from 1986 to 1992 and discussions held on November 12, 1992, between staff of Martin Marietta Energy Systems, Inc. (Oak Ridge National Laboratory and the K-25 Site), and the Tennessee Department of Environment and Conservation, Department of Energy Oversight Division. The proposed BMAP consists of four tasks that reflect different but complementary approaches to evaluating the effects of K-25 Site effluents on the ecological integrity of Mitchell Branch, Poplar Creek, and the Poplar Creek embayment of the Clinch River. These tasks include (1) ambient toxicity monitoring, (2) bioaccumulation monitoring, (3) assessment of fish health, and (4) instream monitoring of biological communities. This overall BMAP plan combines established protocols with current biological monitoring techniques to assess environmental compliance and quantify ecological recovery. The BMAP will also determine whether the effluent limits established for the K-25 Site protect the designated use of the receiving streams (Mitchell Branch, Poplar Creek, and Clinch River) for growth and propagation of fish and other aquatic life. Results obtained from this biological monitoring program will also be used to document the ecological effects (and effectiveness) of remedial actions.

  11. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Pedro M.; Fadeel, Bengt, E-mail: Bengt.Fadeel@ki.se

    2016-05-15

    Engineered nanomaterials are being developed for a variety of technological applications. However, the increasing use of nanomaterials in society has led to concerns about their potential adverse effects on human health and the environment. During the first decade of nanotoxicological research, the realization has emerged that effective risk assessment of the multitudes of new nanomaterials would benefit from a comprehensive understanding of their toxicological mechanisms, which is difficult to achieve with traditional, low-throughput, single end-point oriented approaches. Therefore, systems biology approaches are being progressively applied within the nano(eco)toxicological sciences. This novel paradigm implies that the study of biological systems should be integrative resulting in quantitative and predictive models of nanomaterial behaviour in a biological system. To this end, global ‘omics’ approaches with which to assess changes in genes, proteins, metabolites, etc. are deployed allowing for computational modelling of the biological effects of nanomaterials. Here, we highlight omics and systems biology studies in nanotoxicology, aiming towards the implementation of a systems nanotoxicology and mechanism-based risk assessment of nanomaterials. - Highlights: • Systems nanotoxicology is a multi-disciplinary approach to quantitative modelling. • Transcriptomics, proteomics and metabolomics remain the most common methods. • Global “omics” techniques should be coupled to computational modelling approaches. • The discovery of nano-specific toxicity pathways and biomarkers is a prioritized goal. • Overall, experimental nanosafety research must endeavour reproducibility and relevance.

  12. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk

    International Nuclear Information System (INIS)

    Costa, Pedro M.; Fadeel, Bengt

    2016-01-01

    Engineered nanomaterials are being developed for a variety of technological applications. However, the increasing use of nanomaterials in society has led to concerns about their potential adverse effects on human health and the environment. During the first decade of nanotoxicological research, the realization has emerged that effective risk assessment of the multitudes of new nanomaterials would benefit from a comprehensive understanding of their toxicological mechanisms, which is difficult to achieve with traditional, low-throughput, single end-point oriented approaches. Therefore, systems biology approaches are being progressively applied within the nano(eco)toxicological sciences. This novel paradigm implies that the study of biological systems should be integrative resulting in quantitative and predictive models of nanomaterial behaviour in a biological system. To this end, global ‘omics’ approaches with which to assess changes in genes, proteins, metabolites, etc. are deployed allowing for computational modelling of the biological effects of nanomaterials. Here, we highlight omics and systems biology studies in nanotoxicology, aiming towards the implementation of a systems nanotoxicology and mechanism-based risk assessment of nanomaterials. - Highlights: • Systems nanotoxicology is a multi-disciplinary approach to quantitative modelling. • Transcriptomics, proteomics and metabolomics remain the most common methods. • Global “omics” techniques should be coupled to computational modelling approaches. • The discovery of nano-specific toxicity pathways and biomarkers is a prioritized goal. • Overall, experimental nanosafety research must endeavour reproducibility and relevance.

  13. Plant synthetic biology.

    Science.gov (United States)

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Is 'class effect' relevant when assessing the benefit/risk profile of a biologic agent?

    NARCIS (Netherlands)

    Sterry, W.; Kerkhof, P.C.M. van de

    2012-01-01

    Psoriasis is a chronic, genetically predisposed skin disorder, characterised by thickened scaly plaques. Although no therapy is recognised as curative, therapies aimed at symptom control include biologic agents that are generally designed to block molecular activation of cellular pathways of a

  15. ‘Can Simple Biological Systems be Built from Standardized Interchangeable Parts?’:Negotiating Biology and Engineering in a Synthetic Biology Competition

    OpenAIRE

    Frow, Emma; Calvert, Jane

    2013-01-01

    Synthetic biology represents a recent attempt to bring engineering principles and practices to working with biology. In practice, the nature of the relationship between engineering and biology in synthetic biology is a subject of ongoing debate. The disciplines of biology and engineering are typically seen to involve differentways of knowing and doing, and to embody different assumptions and objectives. Tensions between these approaches are playing out as the field of synthetic biology is bei...

  16. Influence of sex and age on the biological half-life of cadmium in mice

    International Nuclear Information System (INIS)

    Taguchi, T.; Suzuki, S.

    1981-01-01

    The influence of age on the whole-body biological half-life of 109 Cd was studied in male mice following ip injection. The influence of sex on whole-body and organ retention was ascertained after sc injection. The whole-body biological half-life of 109 Cd of the older mice was more than twice that of the younger mice, and that of the female mice was longer than that of the males. These differences demonstrate a biological difference between males and females with respect to whole-body half-life of 109 Cd. The effects of age and sex on the biological half-life of Cd in mice are assessed quantitatively

  17. Risk of serious infection in biological treatment of patients with rheumatoid arthritis

    DEFF Research Database (Denmark)

    Singh, Jasvinder A; Cameron, Chris; Noorbaloochi, Shahrzad

    2015-01-01

    ). We did a systematic review and meta-analysis of serious infections in patients treated with biological drugs compared with those treated with traditional DMARDs. METHODS: We did a systematic literature search with Medline, Embase, Cochrane Central Register of Controlled Trials, and Clinical......Trials.gov from their inception to Feb 11, 2014. Search terms included "biologics", "rheumatoid arthritis" and their synonyms. Trials were eligible for inclusion if they included any of the approved biological drugs and reported serious infections. We assessed the risk of bias with the Cochrane Risk of Bias Tool......BACKGROUND: Serious infections are a major concern for patients considering treatments for rheumatoid arthritis. Evidence is inconsistent as to whether biological drugs are associated with an increased risk of serious infection compared with traditional disease-modifying antirheumatic drugs (DMARDs...

  18. Synthetic biological networks

    International Nuclear Information System (INIS)

    Archer, Eric; Süel, Gürol M

    2013-01-01

    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics. (review article)

  19. An Integrated Workflow To Assess Technical and Biological Variability of Cell Population Frequencies in Human Peripheral Blood by Flow Cytometry.

    Science.gov (United States)

    Burel, Julie G; Qian, Yu; Lindestam Arlehamn, Cecilia; Weiskopf, Daniela; Zapardiel-Gonzalo, Jose; Taplitz, Randy; Gilman, Robert H; Saito, Mayuko; de Silva, Aruna D; Vijayanand, Pandurangan; Scheuermann, Richard H; Sette, Alessandro; Peters, Bjoern

    2017-02-15

    In the context of large-scale human system immunology studies, controlling for technical and biological variability is crucial to ensure that experimental data support research conclusions. In this study, we report on a universal workflow to evaluate both technical and biological variation in multiparameter flow cytometry, applied to the development of a 10-color panel to identify all major cell populations and T cell subsets in cryopreserved PBMC. Replicate runs from a control donation and comparison of different gating strategies assessed the technical variability associated with each cell population and permitted the calculation of a quality control score. Applying our panel to a large collection of PBMC samples, we found that most cell populations showed low intraindividual variability over time. In contrast, certain subpopulations such as CD56 T cells and Temra CD4 T cells were associated with high interindividual variability. Age but not gender had a significant effect on the frequency of several populations, with a drastic decrease in naive T cells observed in older donors. Ethnicity also influenced a significant proportion of immune cell population frequencies, emphasizing the need to account for these covariates in immune profiling studies. We also exemplify the usefulness of our workflow by identifying a novel cell-subset signature of latent tuberculosis infection. Thus, our study provides a universal workflow to establish and evaluate any flow cytometry panel in systems immunology studies. Copyright © 2017 by The American Association of Immunologists, Inc.

  20. Biological effects of radiation

    International Nuclear Information System (INIS)

    2013-01-01

    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  1. Bio-indicators for radiation dose assessment

    International Nuclear Information System (INIS)

    Trivedi, A.

    1990-12-01

    In nuclear facilities, such as Chalk River Laboratories, dose to the atomic radiation workers (ARWs) is assessed routinely by using physical dosimeters and bioassay procedures in accordance with regulatory recommendations. However, these procedures may be insufficient in some circumstances, e.g., in cases where the reading of the physical dosimeters is questioned, in cases of radiation accidents where the person(s) in question was not wearing a dosimeter, or in the event of a radiation emergency when an exposure above the dose limits is possible. The desirability of being able to assess radiation dose on the basis of radio-biological effects has prompted the Dosimetric Research Branch to investigate the suitability of biological devices and techniques that could be used for this purpose. Current biological dosimetry concepts suggest that there does not appear to be any bio-indicator that could reliably measure the very low doses that are routinely measured by the physical devices presently in use. Nonetheless, bio-indicators may be useful in providing valuable supplementary information in cases of unusual radiation exposures, such as when the estimated body doses are doubtful because of lack of proper physical measurements, or in cases where available results need to be confirmed for medical treatment plannings. This report evaluates the present state of biological dosimetry and, in particular, assesses the efficiency and limits of individual indicators. This has led to the recommendation of a few promising research areas that may result in the development of appropriate biological dosimeters for operational and emergency needs at Chalk River

  2. Teaching Formal Reasoning in a College Biology Course for Preservice Teachers.

    Science.gov (United States)

    Lawson, Anton E.; Snitgen, Donald A.

    1982-01-01

    Assessed the effect of a one-semester college biology course on the development of students (N=72) ability to reason formally and interactions among intelligence, cognitive style, and cognitive level. Includes implications for science instruction. (SK)

  3. Interfacing a biosurveillance portal and an international network of institutional analysts to detect biological threats.

    Science.gov (United States)

    Riccardo, Flavia; Shigematsu, Mika; Chow, Catherine; McKnight, C Jason; Linge, Jens; Doherty, Brian; Dente, Maria Grazia; Declich, Silvia; Barker, Mike; Barboza, Philippe; Vaillant, Laetitia; Donachie, Alastair; Mawudeku, Abla; Blench, Michael; Arthur, Ray

    2014-01-01

    The Early Alerting and Reporting (EAR) project, launched in 2008, is aimed at improving global early alerting and risk assessment and evaluating the feasibility and opportunity of integrating the analysis of biological, chemical, radionuclear (CBRN), and pandemic influenza threats. At a time when no international collaborations existed in the field of event-based surveillance, EAR's innovative approach involved both epidemic intelligence experts and internet-based biosurveillance system providers in the framework of an international collaboration called the Global Health Security Initiative, which involved the ministries of health of the G7 countries and Mexico, the World Health Organization, and the European Commission. The EAR project pooled data from 7 major internet-based biosurveillance systems onto a common portal that was progressively optimized for biological threat detection under the guidance of epidemic intelligence experts from public health institutions in Canada, the European Centre for Disease Prevention and Control, France, Germany, Italy, Japan, the United Kingdom, and the United States. The group became the first end users of the EAR portal, constituting a network of analysts working with a common standard operating procedure and risk assessment tools on a rotation basis to constantly screen and assess public information on the web for events that could suggest an intentional release of biological agents. Following the first 2-year pilot phase, the EAR project was tested in its capacity to monitor biological threats, proving that its working model was feasible and demonstrating the high commitment of the countries and international institutions involved. During the testing period, analysts using the EAR platform did not miss intentional events of a biological nature and did not issue false alarms. Through the findings of this initial assessment, this article provides insights into how the field of epidemic intelligence can advance through an

  4. Quantum mechanical simulation methods for studying biological systems

    International Nuclear Information System (INIS)

    Bicout, D.; Field, M.

    1996-01-01

    Most known biological mechanisms can be explained using fundamental laws of physics and chemistry and a full understanding of biological processes requires a multidisciplinary approach in which all the tools of biology, chemistry and physics are employed. An area of research becoming increasingly important is the theoretical study of biological macromolecules where numerical experimentation plays a double role of establishing a link between theoretical models and predictions and allowing a quantitative comparison between experiments and models. This workshop brought researchers working on different aspects of the development and application of quantum mechanical simulation together, assessed the state-of-the-art in the field and highlighted directions for future research. Fourteen lectures (theoretical courses and specialized seminars) deal with following themes: 1) quantum mechanical calculations of large systems, 2) ab initio molecular dynamics where the calculation of the wavefunction and hence the energy and forces on the atoms for a system at a single nuclear configuration are combined with classical molecular dynamics algorithms in order to perform simulations which use a quantum mechanical potential energy surface, 3) quantum dynamical simulations, electron and proton transfer processes in proteins and in solutions and finally, 4) free seminars that helped to enlarge the scope of the workshop. (N.T.)

  5. Brain disorders and the biological role of music.

    Science.gov (United States)

    Clark, Camilla N; Downey, Laura E; Warren, Jason D

    2015-03-01

    Despite its evident universality and high social value, the ultimate biological role of music and its connection to brain disorders remain poorly understood. Recent findings from basic neuroscience have shed fresh light on these old problems. New insights provided by clinical neuroscience concerning the effects of brain disorders promise to be particularly valuable in uncovering the underlying cognitive and neural architecture of music and for assessing candidate accounts of the biological role of music. Here we advance a new model of the biological role of music in human evolution and the link to brain disorders, drawing on diverse lines of evidence derived from comparative ethology, cognitive neuropsychology and neuroimaging studies in the normal and the disordered brain. We propose that music evolved from the call signals of our hominid ancestors as a means mentally to rehearse and predict potentially costly, affectively laden social routines in surrogate, coded, low-cost form: essentially, a mechanism for transforming emotional mental states efficiently and adaptively into social signals. This biological role of music has its legacy today in the disordered processing of music and mental states that characterizes certain developmental and acquired clinical syndromes of brain network disintegration. © The Author (2014). Published by Oxford University Press.

  6. Physics and biology

    International Nuclear Information System (INIS)

    Frauenfelder, H.

    1988-01-01

    The author points out that the coupling between physics and biology is becoming closer as time goes on. He tries to show that physical studies on biological systems not only yield insight into biology but also provide results of interest to physics. Biological systems are extremly complex system. Ideally one would like to understand the behavior of such systems in terms of the behavior of its constituent atoms. Since in small organisms this may be 10 20 atoms, it is clear these are not simple many-body systems. He reviews the basic elements of cells and then considers the broader questions of structure, complexity, and function, which must be looked at on levels from the cell to the organism. Despite the vast amount of observational material already in existence, biophysics and biological physics are only at a beginning. We can expect that physics will continue to interact strongly with biology. Actually, the connection also includes chemistry and mathematics. New tools that become available in physics will continue to be applied to biological problems. We can expect that the flow of information will not be one way; biological systems will provide new information on many old and new parts of physics, from reaction theory and transport phenomena to complexity, cooperativity, and nonlinear processes

  7. Integrated Biological Control

    International Nuclear Information System (INIS)

    JOHNSON, A.R.

    2002-01-01

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response

  8. How accelerated biological aging can affect solar reflective polymeric based building materials

    Science.gov (United States)

    Ferrari, C.; Santunione, G.; Libbra, A.; Muscio, A.; Sgarbi, E.

    2017-11-01

    Among the main issues concerning building materials, in particular outdoor ones, one can identify the colonization by microorganisms referred to as biological aggression. This can affect not only the aesthetical aspect but also the thermal performance of solar reflective materials. In order to improve the reliability of tests aimed to assess the resistance to biological aggression and contextually reduce the test duration, an accelerated test method has been developed. It is based on a lab reproducible setup where specific and controlled environmental and boundary conditions are imposed to accelerate as much as possible biological growth on building materials. Due to their widespread use, polymeric materials have been selected for the present analysis, in the aim of reaching an advanced bio-aged level in a relatively short time (8 weeks or less) and at the same time comparatively evaluate different materials under a given set of ageing conditions. Surface properties before, during and after ageing have been investigated by surface, microstructural and chemical analyses, as well as by examination of time progressive images to assess bacterial and algal growth rate.

  9. Evaluating the administration costs of biologic drugs: development of a cost algorithm.

    Science.gov (United States)

    Tetteh, Ebenezer K; Morris, Stephen

    2014-12-01

    Biologic drugs, as with all other medical technologies, are subject to a number of regulatory, marketing, reimbursement (financing) and other demand-restricting hurdles applied by healthcare payers. One example is the routine use of cost-effectiveness analyses or health technology assessments to determine which medical technologies offer value-for-money. The manner in which these assessments are conducted suggests that, holding all else equal, the economic value of biologic drugs may be determined by how much is spent on administering these drugs or trade-offs between drug acquisition and administration costs. Yet, on the supply-side, it seems very little attention is given to how manufacturing and formulation choices affect healthcare delivery costs. This paper evaluates variations in the administration costs of biologic drugs, taking care to ensure consistent inclusion of all relevant cost resources. From this, it develops a regression-based algorithm with which manufacturers could possibly predict, during process development, how their manufacturing and formulation choices may impact on the healthcare delivery costs of their products.

  10. A national comparison of biochemistry and molecular biology capstone experiences.

    Science.gov (United States)

    Aguanno, Ann; Mertz, Pamela; Martin, Debra; Bell, Ellis

    2015-01-01

    Recognizing the increasingly integrative nature of the molecular life sciences, the American Society for Biochemistry and Molecular Biology (ASBMB) recommends that Biochemistry and Molecular Biology (BMB) programs develop curricula based on concepts, content, topics, and expected student outcomes, rather than courses. To that end, ASBMB conducted a series of regional workshops to build a BMB Concept Inventory containing validated assessment tools, based on foundational and discipline-specific knowledge and essential skills, for the community to use. A culminating activity, which integrates the educational experience, is often part of undergraduate molecular life science programs. These "capstone" experiences are commonly defined as an attempt to measure student ability to synthesize and integrate acquired knowledge. However, the format, implementation, and approach to outcome assessment of these experiences are quite varied across the nation. Here we report the results of a nation-wide survey on BMB capstone experiences and discuss this in the context of published reports about capstones and the findings of the workshops driving the development of the BMB Concept Inventory. Both the survey results and the published reports reveal that, although capstone practices do vary, certain formats for the experience are used more frequently and similarities in learning objectives were identified. The use of rubrics to measure student learning is also regularly reported, but details about these assessment instruments are sparse in the literature and were not a focus of our survey. Finally, we outline commonalities in the current practice of capstones and suggest the next steps needed to elucidate best practices. © 2015 The International Union of Biochemistry and Molecular Biology.

  11. Systems Biology and the Development of Vaccines and Drugs for ...

    African Journals Online (AJOL)

    transcriptome at an unprecedented resolution. The close correlation between gene transcription and function, allow the inference of biological processes from the assessed transcriptome profile. Among the sophisticated analytical problems in microarray technology at the front and back ends respectively, are the selection of ...

  12. Feedback dynamics and cell function: Why systems biology is called Systems Biology.

    Science.gov (United States)

    Wolkenhauer, Olaf; Mesarovic, Mihajlo

    2005-05-01

    A new paradigm, like Systems Biology, should challenge the way research has been conducted previously. This Opinion article aims to present Systems Biology, not as the application of engineering principles to biology but as a merger of systems- and control theory with molecular- and cell biology. In our view, the central dogma of Systems Biology is that it is system dynamics that gives rise to the functioning and function of cells. The concepts of feedback regulation and control of pathways and the coordination of cell function are emphasized as an important area of Systems Biology research. The hurdles and risks for this area are discussed from the perspective of dynamic pathway modelling. Most of all, the aim of this article is to promote mathematical modelling and simulation as a part of molecular- and cell biology. Systems Biology is a success if it is widely accepted that there is nothing more practical than a good theory.

  13. Synthetic Biology: Advancing Biological Frontiers by Building Synthetic Systems

    OpenAIRE

    Chen, Yvonne Yu-Hsuan; Galloway, Kate E; Smolke, Christina D

    2012-01-01

    Advances in synthetic biology are contributing to diverse research areas, from basic biology to biomanufacturing and disease therapy. We discuss the theoretical foundation, applications, and potential of this emerging field.

  14. Radiation physics, biophysics, and radiation biology

    International Nuclear Information System (INIS)

    Hall, E.J.

    1992-05-01

    The following research programs from the Center for Radiological Research of Columbia University are described: Design and development of a new wall-less ultra miniature proportional counter for nanodosimetry; some recent measurements of ionization distributions for heavy ions at nanometer site sizes with a wall-less proportional counter; a calculation of exciton energies in periodic systems with helical symmetry: application to a hydrogen fluoride chain; electron energy-loss function in polynucleotide and the question of plasmon excitation; a non-parametric, microdosimetric-based approach to the evaluation of the biological effects of low doses of ionizing radiation; high-LET radiation risk assessment at medium doses; high-LET radiobiological effects: increased lesion severity or increased lesion proximity; photoneutrons generated by high energy medical linacs; the biological effectiveness of neutrons; implications for radiation protection; molecular characterization of oncogenes induced by neutrons; and the inverse dose-rate effect for oncogenic transformation by charged particles is LET dependent

  15. European activities in space radiation biology and exobiology

    International Nuclear Information System (INIS)

    Horneck, G.

    1996-01-01

    In view of the space station era, the European Space Agency has initiated a review and planning document for space life sciences. Radiation biology includes dosimetry of the radiation field and its modification by mass shielding, studies on the biological responses to radiation in space, on the potential impact of space flight environment on radiation effects, and assessing the radiation risks and establishing radiation protection guidelines. To reach a better understanding of the processes leading to the origin, evolution and distribution of life, exobiological activities include the exploration of the solar system, the collection and analysis of extraterrestrial samples and the utilization of space as a tool for testing the impact of space environment on organics and resistant life forms. (author)

  16. Interpretation of biological and mechanical variations between the Lowry versus Bradford method for protein quantification.

    Science.gov (United States)

    Lu, Tzong-Shi; Yiao, Szu-Yu; Lim, Kenneth; Jensen, Roderick V; Hsiao, Li-Li

    2010-07-01

    The identification of differences in protein expression resulting from methodical variations is an essential component to the interpretation of true, biologically significant results. We used the Lowry and Bradford methods- two most commonly used methods for protein quantification, to assess whether differential protein expressions are a result of true biological or methodical variations. MATERIAL #ENTITYSTARTX00026; Differential protein expression patterns was assessed by western blot following protein quantification by the Lowry and Bradford methods. We have observed significant variations in protein concentrations following assessment with the Lowry versus Bradford methods, using identical samples. Greater variations in protein concentration readings were observed over time and in samples with higher concentrations, with the Bradford method. Identical samples quantified using both methods yielded significantly different expression patterns on Western blot. We show for the first time that methodical variations observed in these protein assay techniques, can potentially translate into differential protein expression patterns, that can be falsely taken to be biologically significant. Our study therefore highlights the pivotal need to carefully consider methodical approaches to protein quantification in techniques that report quantitative differences.

  17. Trait-Dependent Biogeography: (Re)Integrating Biology into Probabilistic Historical Biogeographical Models.

    Science.gov (United States)

    Sukumaran, Jeet; Knowles, L Lacey

    2018-04-20

    The development of process-based probabilistic models for historical biogeography has transformed the field by grounding it in modern statistical hypothesis testing. However, most of these models abstract away biological differences, reducing species to interchangeable lineages. We present here the case for reintegration of biology into probabilistic historical biogeographical models, allowing a broader range of questions about biogeographical processes beyond ancestral range estimation or simple correlation between a trait and a distribution pattern, as well as allowing us to assess how inferences about ancestral ranges themselves might be impacted by differential biological traits. We show how new approaches to inference might cope with the computational challenges resulting from the increased complexity of these trait-based historical biogeographical models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Introductory biology students' conceptual models and explanations of the origin of variation.

    Science.gov (United States)

    Speth, Elena Bray; Shaw, Neil; Momsen, Jennifer; Reinagel, Adam; Le, Paul; Taqieddin, Ranya; Long, Tammy

    2014-01-01

    Mutation is the key molecular mechanism generating phenotypic variation, which is the basis for evolution. In an introductory biology course, we used a model-based pedagogy that enabled students to integrate their understanding of genetics and evolution within multiple case studies. We used student-generated conceptual models to assess understanding of the origin of variation. By midterm, only a small percentage of students articulated complete and accurate representations of the origin of variation in their models. Targeted feedback was offered through activities requiring students to critically evaluate peers' models. At semester's end, a substantial proportion of students significantly improved their representation of how variation arises (though one-third still did not include mutation in their models). Students' written explanations of the origin of variation were mostly consistent with their models, although less effective than models in conveying mechanistic reasoning. This study contributes evidence that articulating the genetic origin of variation is particularly challenging for learners and may require multiple cycles of instruction, assessment, and feedback. To support meaningful learning of the origin of variation, we advocate instruction that explicitly integrates multiple scales of biological organization, assessment that promotes and reveals mechanistic and causal reasoning, and practice with explanatory models with formative feedback. © 2014 E. Bray Speth et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. [Progress in molecular biology of a semi-mangrove, Millettia pinnata].

    Science.gov (United States)

    Huang, Jianzi; Zhang, Wanke; Huang, Rongfeng; Zheng, Yizhi

    2015-04-01

    Millettia pinnata L. is a leguminous tree with great potential in biodiesel applications and also a typical semi-mangrove. In this review, we presented several aspects about the recent research progress in molecular biology of M. pinnata. We descrived several types of molecular markers used to assess the genetic diversity and phylogeny of this species, genome and transcriptome analyses based on high-throughput sequencing platform accomplished for this species, and several gene and genomic sequences of this species isolated for further research. Finally, based on the current research progress, we proposed some orientations for future molecular biology research on M. pinnata.

  20. Information resources and the correlation of response patterns between biological end points

    Energy Technology Data Exchange (ETDEWEB)

    Malling, H.V. [National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Wassom, J.S. [Oak Ridge National Laboratory, TN (United States)

    1990-12-31

    This paper focuses on the analysis of information for mutagenesis, a biological end point that is important in the overall process of assessing possible adverse health effects from chemical exposure. 17 refs.

  1. Models for synthetic biology.

    Science.gov (United States)

    Kaznessis, Yiannis N

    2007-11-06

    Synthetic biological engineering is emerging from biology as a distinct discipline based on quantification. The technologies propelling synthetic biology are not new, nor is the concept of designing novel biological molecules. What is new is the emphasis on system behavior. The objective is the design and construction of new biological devices and systems to deliver useful applications. Numerous synthetic gene circuits have been created in the past decade, including bistable switches, oscillators, and logic gates, and possible applications abound, including biofuels, detectors for biochemical and chemical weapons, disease diagnosis, and gene therapies. More than fifty years after the discovery of the molecular structure of DNA, molecular biology is mature enough for real quantification that is useful for biological engineering applications, similar to the revolution in modeling in chemistry in the 1950s. With the excitement that synthetic biology is generating, the engineering and biological science communities appear remarkably willing to cross disciplinary boundaries toward a common goal.

  2. Osmosis and Diffusion Conceptual Assessment

    Science.gov (United States)

    Fisher, Kathleen M.; Williams, Kathy S.; Lineback, Jennifer Evarts

    2011-01-01

    Biology student mastery regarding the mechanisms of diffusion and osmosis is difficult to achieve. To monitor comprehension of these processes among students at a large public university, we developed and validated an 18-item Osmosis and Diffusion Conceptual Assessment (ODCA). This assessment includes two-tiered items, some adopted or modified…

  3. Has Modern Biology Entered the Mouth? The Clinical Impact of Biological Research.

    Science.gov (United States)

    Baum, Bruce J.

    1991-01-01

    Three areas of biological research that are beginning to have an impact on clinical medicine are examined, including molecular biology, cell biology, and biotechnology. It is concluded that oral biologists and educators must work cooperatively to bring rapid biological and biomedical advances into dental training in a meaningful way. (MSE)

  4. National Lakes Assessment Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Lakes Assessment (NLA) is a first-ever statistically-valid survey of the biological condition of lakes and reservoirs throughout the U.S. The U.S....

  5. Adapting to Biology: Maintaining Container-Closure System Compatibility with the Therapeutic Biologic Revolution.

    Science.gov (United States)

    Degrazio, Dominick

    Many pharmaceutical companies are transitioning their research and development drug product pipeline from traditional small-molecule injectables to the dimension of evolving therapeutic biologics. Important concerns associated with this changeover are becoming forefront, as challenges develop of varying complexity uncommon with the synthesis and production of traditional drugs. Therefore, alternative measures must be established that aim to preserve the efficacy and functionality of a biologic that might not be implemented for small molecules. Conserving protein stability is relative to perpetuating a net equilibrium of both intrinsic and extrinsic factors. Key to sustaining this balance is the ability of container-closure systems to maintain their compatibility with the ever-changing dynamics of therapeutic biologics. Failure to recognize and adjust the material properties of packaging components to support compatibility with therapeutic biologics can compromise patient safety, drug productivity, and biological stability. This review will examine the differences between small-molecule drugs and therapeutic biologics, lay a basic foundation for understanding the stability of therapeutic biologics, and demonstrate potential sources of container-closure systems' incompatibilities with therapeutic biologics at a mechanistic level. Many pharmaceutical companies are transitioning their research and development drug product pipeline from traditional small-molecule injectables to recombinantly derived therapeutic biologics. Concerns associated with this transformation are becoming prominent, as therapeutic biologics are uncharacteristic to small-molecule drugs. Maintaining the stability of a therapeutic biologic is a combination of balancing intrinsic factors and external elements within the biologic's microenvironment. An important aspect of this balance is relegated to the overall compatibility of primary, parenteral container-closure systems with therapeutic biologics

  6. Monitoring biological diversity: strategies, tools, limitations, and challenges

    Science.gov (United States)

    Beever, E.A.

    2006-01-01

    Monitoring is an assessment of the spatial and temporal variability in one or more ecosystem properties, and is an essential component of adaptive management. Monitoring can help determine whether mandated environmental standards are being met and can provide an early-warning system of ecological change. Development of a strategy for monitoring biological diversity will likely be most successful when based upon clearly articulated goals and objectives and may be enhanced by including several key steps in the process. Ideally, monitoring of biological diversity will measure not only composition, but also structure and function at the spatial and temporal scales of interest. Although biodiversity monitoring has several key limitations as well as numerous theoretical and practical challenges, many tools and strategies are available to address or overcome such challenges; I summarize several of these. Due to the diversity of spatio-temporal scales and comprehensiveness encompassed by existing definitions of biological diversity, an effective monitoring design will reflect the desired sampling domain of interest and its key stressors, available funding, legal requirements, and organizational goals.

  7. OECD Policy Recommendations on Security for Biological Materials

    International Nuclear Information System (INIS)

    Radisch, J.

    2007-01-01

    Biomedical innovations derived from research on pathogenic micro-organisms promise astounding health and economic benefits. Some such biological resources employed in the RandD for diagnostic kits, vaccines and therapeutics, however, possess capacity for dual-use; they may be misused to develop biological weapons. Research facilities entrusted with possession of such dual-use materials have a responsibility to comply with biosecurity measures that are designed to prevent loss or theft and thereby reduce the probability of a bioterrorist attack. The OECD has provided a forum for its Member countries to engage in a dialogue of international co-operation with a view to produce policies that achieve a research environment fortified by biosecurity measures and capable of producing health innovations. In 2007, the OECD developed a risk assessment framework and risk management principles for Biological Resource Centres. Ongoing policy work at the OECD will look to design biosecurity guidelines appropriate to a broader range of facilities in possession of dual-use materials, such as university and industrial laboratories.(author)

  8. Marine molecular biology: An emerging field of biological sciences

    Digital Repository Service at National Institute of Oceanography (India)

    Thakur, N.L.; Jain, R.; Natalio, F.; Hamer, B.; Thakur, A.N.; Muller, W.E.G.

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies...

  9. Biomedical Research Experiences for Biology Majors at a Small College

    Science.gov (United States)

    Stover, Shawn K.; Mabry, Michelle L.

    2010-01-01

    A program-level assessment of the biology curriculum at a small liberal arts college validates a previous study demonstrating success in achieving learning outcomes related to content knowledge and communication skills. Furthermore, research opportunities have been provided to complement pedagogical strategies and give students a more complete…

  10. Standard biological parts knowledgebase.

    Directory of Open Access Journals (Sweden)

    Michal Galdzicki

    2011-02-01

    Full Text Available We have created the Knowledgebase of Standard Biological Parts (SBPkb as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org. The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org. SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL, a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.

  11. Standard Biological Parts Knowledgebase

    Science.gov (United States)

    Galdzicki, Michal; Rodriguez, Cesar; Chandran, Deepak; Sauro, Herbert M.; Gennari, John H.

    2011-01-01

    We have created the Knowledgebase of Standard Biological Parts (SBPkb) as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org). The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org). SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL), a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate “promoter” parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible. PMID:21390321

  12. Standard biological parts knowledgebase.

    Science.gov (United States)

    Galdzicki, Michal; Rodriguez, Cesar; Chandran, Deepak; Sauro, Herbert M; Gennari, John H

    2011-02-24

    We have created the Knowledgebase of Standard Biological Parts (SBPkb) as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org). The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org). SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL), a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.

  13. Model calculations of nuclear data for biologically-important elements

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Blann, M.; Reffo, G.; Young, P.G.

    1994-05-01

    We describe calculations of neutron-induced reactions on carbon and oxygen for incident energies up to 70 MeV, the relevant clinical energy in radiation neutron therapy. Our calculations using the FKK-GNASH, GNASH, and ALICE codes are compared with experimental measurements, and their usefulness for modeling reactions on biologically-important elements is assessed

  14. German National Proficiency Scales in Biology: Internal Structure, Relations to General Cognitive Abilities and Verbal Skills

    Science.gov (United States)

    KÖLLER, OLAF

    2016-01-01

    ABSTRACT National and international large‐scale assessments (LSA) have a major impact on educational systems, which raises fundamental questions about the validity of the measures regarding their internal structure and their relations to relevant covariates. Given its importance, research on the validity of instruments specifically developed for LSA is still sparse, especially in science and its subdomains biology, chemistry, and physics. However, policy decisions for the improvement of educational quality based on LSA can only be helpful if valid information on students’ achievement levels is provided. In the present study, the nature of the measurement instruments based on the German Educational Standards in Biology is examined. On the basis of data from 3,165 students in Grade 10, we present dimensional analyses and report the relationship between different subdimensions of biology literacy and cognitive covariates such as general cognitive abilities and verbal skills. A theory‐driven two‐dimensional model fitted the data best. Content knowledge and scientific inquiry, two subdimensions of biology literacy, are highly correlated and show differential correlational patterns to the covariates. We argue that the underlying structure of biology should be incorporated into curricula, teacher training and future assessments. PMID:27818532

  15. Biology Myth-Killers

    Science.gov (United States)

    Lampert, Evan

    2014-01-01

    "Biology Myth-Killers" is an activity designed to identify and correct common misconceptions for high school and college introductory biology courses. Students identify common myths, which double as biology misconceptions, and use appropriate sources to share the "truth" about the myths. This learner-centered activity is a fun…

  16. Chemistry and Biology

    Science.gov (United States)

    Wigston, David L.

    1970-01-01

    Discusses the relationship between chemisty and biology in the science curriculum. Points out the differences in perception of the disciplines, which the physical scientists favoring reductionism. Suggests that biology departments offer a special course for chemistry students, just as the chemistry departments have done for biology students.…

  17. Environmental and biological monitoring in the estimation of absorbed doses of pesticides.

    Science.gov (United States)

    Aprea, Maria Cristina

    2012-04-25

    Exposure to pesticides affects most of the population, not only persons occupationally exposed. In a context of high variability of exposure, biological monitoring is important because of the various routes by which exposure can occur and because it assesses both occupational and non-occupational exposure. The main aim of this paper was to critically compare estimates of absorbed dose measured by environmental and biological monitoring in situations in which they could both be applied. The combination of exposure measurements and biological monitoring was found to provide extremely important information on the behaviour of employees, and on the proper use and effectiveness of personal protection equipment. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Biological desulfurisation

    Energy Technology Data Exchange (ETDEWEB)

    Arena, B.J. [UOP LLC (United States); Benschop, A.; Janssen, A. [Paques Natural Solutions (Netherlands); Kijlstra, S. [Shell Global Solutions (Netherlands)

    2001-03-01

    This article focuses on the biological THIOPAQ process for removing hydrogen sulphide from refinery gases and recovering elemental sulphur. Details are given of the process which absorbs hydrogen sulphide-containing gas in alkaline solution prior to oxidation of the dissolved sulphur to elemental sulphur in a THIOPAQ aerobic biological reactor, with regeneration of the caustic solution. Sulphur handling options including sulphur wash, the drying of the sulphur cake, and sulphur smelting by pressure liquefaction are described. Agricultural applications of the biologically recovered sulphur, and application of the THIOPAQ process to sulphur recovery are discussed.

  19. General Biology Syllabus.

    Science.gov (United States)

    Hunter, Scott; Watthews, Thomas

    This syllabus has been developed as an alternative to Regents biology and is intended for the average student who could benefit from an introductory biology course. It is divided into seven major units dealing with, respectively: (1) similarities among living things; (2) human biology (focusing on nutrition, transport, respiration, excretion, and…

  20. Non-enzymatic lipid oxidation products in biological systems: assessment of the metabolites from polyunsaturated fatty acids.

    Science.gov (United States)

    Vigor, Claire; Bertrand-Michel, Justine; Pinot, Edith; Oger, Camille; Vercauteren, Joseph; Le Faouder, Pauline; Galano, Jean-Marie; Lee, Jetty Chung-Yung; Durand, Thierry

    2014-08-01

    Metabolites of non-enzymatic lipid peroxidation of polyunsaturated fatty acids notably omega-3 and omega-6 fatty acids have become important biomarkers of lipid products. Especially the arachidonic acid-derived F2-isoprostanes are the classic in vivo biomarker for oxidative stress in biological systems. In recent years other isoprostanes from eicosapentaenoic, docosahexaenoic, adrenic and α-linolenic acids have been evaluated, namely F3-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes and F1-phytoprostanes, respectively. These have been gaining interest as complementary specific biomarkers in human diseases. Refined extraction methods, robust analysis and elucidation of chemical structures have improved the sensitivity of detection in biological tissues and fluids. Previously the main reliable instrumentation for measurement was gas chromatography-mass spectrometry (GC-MS), but now the use of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunological techniques is gaining much attention. In this review, the types of prostanoids generated from non-enzymatic lipid peroxidation of some important omega-3 and omega-6 fatty acids and biological samples that have been determined by GC-MS and LC-MS/MS are discussed. Copyright © 2014. Published by Elsevier B.V.

  1. Arbuscular mycorrhiza in soil quality assessment

    DEFF Research Database (Denmark)

    Kling, M.; Jakobsen, I.

    1998-01-01

    aggregates and to the protection of plants against drought and root pathogens. Assessment of soil quality, defined as the capacity of a soil to function within ecosystem boundaries to sustain biological productivity, maintain environmental quality, and promote plant health, should therefore include both......Arbuscular mycorrhizal (AM) fungi constitute a living bridge for the transport of nutrients from soil to plant roots, and are considered as the group of soil microorganisms that is of most direct importance to nutrient uptake by herbaceous plants. AM fungi also contribute to the formation of soil...... quantitative and qualitative measurements of this important biological resource. Various methods for the assessment of the potential for mycorrhiza formation and function are presented. Examples are given of the application of these methods to assess the impact of pesticides on the mycorrhiza....

  2. A first attempt to bring computational biology into advanced high school biology classrooms.

    Science.gov (United States)

    Gallagher, Suzanne Renick; Coon, William; Donley, Kristin; Scott, Abby; Goldberg, Debra S

    2011-10-01

    Computer science has become ubiquitous in many areas of biological research, yet most high school and even college students are unaware of this. As a result, many college biology majors graduate without adequate computational skills for contemporary fields of biology. The absence of a computational element in secondary school biology classrooms is of growing concern to the computational biology community and biology teachers who would like to acquaint their students with updated approaches in the discipline. We present a first attempt to correct this absence by introducing a computational biology element to teach genetic evolution into advanced biology classes in two local high schools. Our primary goal was to show students how computation is used in biology and why a basic understanding of computation is necessary for research in many fields of biology. This curriculum is intended to be taught by a computational biologist who has worked with a high school advanced biology teacher to adapt the unit for his/her classroom, but a motivated high school teacher comfortable with mathematics and computing may be able to teach this alone. In this paper, we present our curriculum, which takes into consideration the constraints of the required curriculum, and discuss our experiences teaching it. We describe the successes and challenges we encountered while bringing this unit to high school students, discuss how we addressed these challenges, and make suggestions for future versions of this curriculum.We believe that our curriculum can be a valuable seed for further development of computational activities aimed at high school biology students. Further, our experiences may be of value to others teaching computational biology at this level. Our curriculum can be obtained at http://ecsite.cs.colorado.edu/?page_id=149#biology or by contacting the authors.

  3. TissueCypher™: A systems biology approach to anatomic pathology

    Directory of Open Access Journals (Sweden)

    Jeffrey W Prichard

    2015-01-01

    Full Text Available Background: Current histologic methods for diagnosis are limited by intra- and inter-observer variability. Immunohistochemistry (IHC methods are frequently used to assess biomarkers to aid diagnoses, however, IHC staining is variable and nonlinear and the manual interpretation is subjective. Furthermore, the biomarkers assessed clinically are typically biomarkers of epithelial cell processes. Tumors and premalignant tissues are not composed only of epithelial cells but are interacting systems of multiple cell types, including various stromal cell types that are involved in cancer development. The complex network of the tissue system highlights the need for a systems biology approach to anatomic pathology, in which quantification of system processes is combined with informatics tools to produce actionable scores to aid clinical decision-making. Aims: Here, we describe a quantitative, multiplexed biomarker imaging approach termed TissueCypher™ that applies systems biology to anatomic pathology. Applications of TissueCypher™ in understanding the tissue system of Barrett's esophagus (BE and the potential use as an adjunctive tool in the diagnosis of BE are described. Patients and Methods: The TissueCypher™ Image Analysis Platform was used to assess 14 epithelial and stromal biomarkers with known diagnostic significance in BE in a set of BE biopsies with nondysplastic BE with reactive atypia (RA, n = 22 and Barrett's with high-grade dysplasia (HGD, n = 17. Biomarker and morphology features were extracted and evaluated in the confirmed BE HGD cases versus the nondysplastic BE cases with RA. Results: Multiple image analysis features derived from epithelial and stromal biomarkers, including immune biomarkers and morphology, showed significant differences between HGD and RA. Conclusions: The assessment of epithelial cell abnormalities combined with an assessment of cellular changes in the lamina propria may serve as an adjunct to conventional

  4. Ecotoxicological and human toxicological risk assessment of PAH-contaminated soils before and after biological treatment; Oekotoxikologische und humantoxikologische Risikobewertung PAK-belasteter Boeden vor und nach biologischer Behandlung

    Energy Technology Data Exchange (ETDEWEB)

    Roos, P.H.; Hanstein, W.G. [Bochum Univ. (Germany). Inst. fuer Physiologische Chemie; Weissenfels, W.D. [RAG Umwelt Kommunal GmbH, Bottrop (Germany); Afferden, M. van [IMTA, Jiutepec, Mor. (Mexico); Pfeifer, F. [DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany)

    2000-07-01

    The goal of the present work is to assess the adverse effects of soil bound polycyclic aromatic hydrocarbons (PAH) which remain in soils after biological remediation. We focus on risk assessment for mammalian species with respect to the oral uptake of contaminated soil particles and compare the results of a biomarker test with those of an ecotoxicological assay, the bioluminescence inhibition test with Vibrio fischeri. As a biomarker effect in mammals, we determined the liver microsomal cytochrome P450 enzyme CYP1A1 which is induced by PAH in exposed rats. After biological soil treatment, different amounts of PAH remain in the soil depending on the soil properties and initial pollutant composition. Particularly, higher condensated PAH resists biological treatment due to its hydrophobicity. In addition, high amounts of organic carbon in the soils affect remediation efficiency. In the bioluminescence inhibition test, eluates of all biologically treated soils studied do not reveal any or only low inhibitory effects. In contrast, the oral uptake of biologically treated contaminated soils leads to induction levels for CYP1A1 similar to those in the untreated samples. A good correlation is obtained between CYP1A1 levels and the amount of 5 and 6-ring PAH in the soil samples. The main result is that the remediation efficiency determined by the luminescence test is not reflected by the biomarker test, a finding which indicates the high bioavailability of residual PAH in soils. Consequently, new criteria for human risk assessment can be delineated. (orig.) [German] Ziel dieser Arbeit ist es, moegliche toxische Wirkungen PAK-belasteter Boeden vor und nach biologischer Sanierung zu erfassen. Hierbei liegt der Schwerpunkt auf der Abschaetzung des Risikos fuer Saeugetiere nach oraler Aufnahme von Bodenpartikeln. Als Biomarker-Effekt fuer die PAK-Aufnahme haben wir in Ratten die Induktion des lebermikrosomalen P450-Enzyms CYP1A1 bestimmt, dessen Expression durch PAK moduliert

  5. Pre-operational monitoring and assessment of aquatic biota in environmental impact assessment studies

    International Nuclear Information System (INIS)

    Ghosh, T.K.

    2001-01-01

    Environmental Impact Assessment (EIA) is an ideal anticipatory mechanism which establishes quantitative values for parameters indicating the quality of the environment before, during and after the proposed developmental activity, thus allowing measures that ensure environmental compatibility in developmental process. EIA studies have been made mandatory in India by MoEF, GOI for expansion/modernization of any activity or development of new project. Biological assessment, under aquatic environment, is one of the major components of EIA and it requires systematic way of data collection. Generation of substantial baseline data can then be used for formulation of subsequent stages of EIA, viz. prediction, evaluation, impact statements and environmental management plan (EMP). However, a definite approach towards biological studies under EIA during pre-operational stage has not been outlined in available guidelines. (author)

  6. Pre-operational monitoring and assessment of aquatic biota in environmental impact assessment studies

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, T K [Ecotechnology Division, National Environmental Engineering Research Inst., Nagpur (India)

    2001-06-01

    Environmental Impact Assessment (EIA) is an ideal anticipatory mechanism which establishes quantitative values for parameters indicating the quality of the environment before, during and after the proposed developmental activity, thus allowing measures that ensure environmental compatibility in developmental process. EIA studies have been made mandatory in India by MoEF, GOI for expansion/modernization of any activity or development of new project. Biological assessment, under aquatic environment, is one of the major components of EIA and it requires systematic way of data collection. Generation of substantial baseline data can then be used for formulation of subsequent stages of EIA, viz. prediction, evaluation, impact statements and environmental management plan (EMP). However, a definite approach towards biological studies under EIA during pre-operational stage has not been outlined in available guidelines. (author)

  7. Biologically Hazardous Agents at Work and Efforts to Protect Workers' Health: A Review of Recent Reports

    Directory of Open Access Journals (Sweden)

    Kyung-Taek Rim

    2014-06-01

    Full Text Available Because information on biological agents in the workplace is lacking, biological hazard analyses at the workplace to securely recognize the harmful factors with biological basis are desperately needed. This review concentrates on literatures published after 2010 that attempted to detect biological hazards to humans, especially workers, and the efforts to protect them against these factors. It is important to improve the current understanding of the health hazards caused by biological factors at the workplace. In addition, this review briefly describes these factors and provides some examples of their adverse health effects. It also reviews risk assessments, protection with personal protective equipment, prevention with training of workers, regulations, as well as vaccinations.

  8. Toxicity assessment using different bioassays and microbial biosensors.

    Science.gov (United States)

    Hassan, Sedky H A; Van Ginkel, Steven W; Hussein, Mohamed A M; Abskharon, Romany; Oh, Sang-Eun

    2016-01-01

    Toxicity assessment of water streams, wastewater, and contaminated sediments, is a very important part of environmental pollution monitoring. Evaluation of biological effects using a rapid, sensitive and cost effective method can indicate specific information on ecotoxicity assessment. Recently, different biological assays for toxicity assessment based on higher and lower organisms such as fish, invertebrates, plants and algal cells, and microbial bioassays have been used. This review focuses on microbial biosensors as an analytical device for environmental, food, and biomedical applications. Different techniques which are commonly used in microbial biosensing include amperometry, potentiometry, conductometry, voltammetry, microbial fuel cells, fluorescence, bioluminescence, and colorimetry. Examples of the use of different microbial biosensors in assessing a variety of environments are summarized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Functional genomics to assess biological responses to marine pollution at physiological and evolutionary timescales: toward a vision of predictive ecotoxicology.

    Science.gov (United States)

    Reid, Noah M; Whitehead, Andrew

    2016-09-01

    Marine pollution is ubiquitous, and is one of the key factors influencing contemporary marine biodiversity worldwide. To protect marine biodiversity, how do we surveil, document and predict the short- and long-term impacts of pollutants on at-risk species? Modern genomics tools offer high-throughput, information-rich and increasingly cost-effective approaches for characterizing biological responses to environmental stress, and are important tools within an increasing sophisticated kit for surveiling and assessing impacts of pollutants on marine species. Through the lens of recent research in marine killifish, we illustrate how genomics tools may be useful for screening chemicals and pollutants for biological activity and to reveal specific mechanisms of action. The high dimensionality of transcriptomic responses enables their usage as highly specific fingerprints of exposure, and these fingerprints can be used to diagnose environmental problems. We also emphasize that molecular pathways recruited to respond at physiological timescales are the same pathways that may be targets for natural selection during chronic exposure to pollutants. Gene complement and sequence variation in those pathways can be related to variation in sensitivity to environmental pollutants within and among species. Furthermore, allelic variation associated with evolved tolerance in those pathways could be tracked to estimate the pace of environmental health decline and recovery. We finish by integrating these paradigms into a vision of how genomics approaches could anchor a modernized framework for advancing the predictive capacity of environmental and ecotoxicological science. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Chemical and biological characteristics of Albion reef in the South ...

    African Journals Online (AJOL)

    The role of heterotrophic bacteria, pico-cyanobacteria and benthic cyanobacterial mats was assessed in the cycling of organic carbon and nitrogen in the Albion lagoon, Mauritius. Surveys and sampling for biological and chemical parameters were undertaken at three locations along one northern (T1) and one southern ...

  11. Vegetation improvement and soil biological quality in the Sahel of ...

    African Journals Online (AJOL)

    The method of Tropical Soil Biology and Fertility (TSBF) was used to assess macro-fauna abundance and diversity in different land use types (cropland, shallow land, degraded land and forest). Four sites were selected, in the Sahelian zone of Burkina Faso, with contrasted Normalized Difference Vegetation Index (NDVI).

  12. The crucial contribution of veterinarians to conservation biology.

    Science.gov (United States)

    Reading, Richard P; Kenny, David E; Fitzgerald, Kevin T

    2013-11-01

    Conservation biology is a relatively new (began in the 1980s), value-based discipline predicated on the belief that biological diversity-from genes to populations to species to communities to ecosystems-is good and extinction is bad. Conservation biology grew from the recognition that the Earth has entered its sixth great extinction event, one that differs from previous great extinctions in that a single species-Homo sapiens-has caused this biodiversity crisis. A diverse, interacting set of variables drive current extinctions. As such, to succeed, conservation efforts usually require broad-based, interdisciplinary approaches. Conservationists increasingly recognize the importance of contributions by veterinary science, among many other disciplines, to collaborative efforts aimed at stemming the loss of biodiversity. We argue that, to improve success rates, many wildlife conservation programs must incorporate veterinarians as part of an interdisciplinary team to assess and address problems. Ideally, veterinarians who participate in conservation would receive specialized training and be willing to work as partners as part of a larger team of experts who effectively integrate their work rather than work independently (i.e., work as interdisciplinary, as opposed to multidisciplinary, teams, respectively). In our opinion, the most successful and productive projects involve interdisciplinary teams involving both biological and nonbiological specialists. Some researchers hold multiple degrees in biology and veterinary medicine or the biological and social sciences. These experts can often offer unique insight. We see at least 3 major areas in which veterinarians can immediately offer great assistance to conservation efforts: (1) participation in wildlife capture and immobilization, (2) leadership or assistance in addressing wildlife health issues, and (3) leadership or assistance in addressing wildlife disease issues, including using wildlife as sentinels to identify new

  13. Computational Systems Chemical Biology

    OpenAIRE

    Oprea, Tudor I.; May, Elebeoba E.; Leitão, Andrei; Tropsha, Alexander

    2011-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically-based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology, SCB (Oprea et al., 2007).

  14. e-Biologics: Fabrication of Sustainable Electronics with "Green" Biological Materials.

    Science.gov (United States)

    Lovley, Derek R

    2017-06-27

    The growing ubiquity of electronic devices is increasingly consuming substantial energy and rare resources for materials fabrication, as well as creating expansive volumes of toxic waste. This is not sustainable. Electronic biological materials (e-biologics) that are produced with microbes, or designed with microbial components as the guide for synthesis, are a potential green solution. Some e-biologics can be fabricated from renewable feedstocks with relatively low energy inputs, often while avoiding the harsh chemicals used for synthesizing more traditional electronic materials. Several are completely free of toxic components, can be readily recycled, and offer unique features not found in traditional electronic materials in terms of size, performance, and opportunities for diverse functionalization. An appropriate investment in the concerted multidisciplinary collaborative research required to identify and characterize e-biologics and to engineer materials and devices based on e-biologics could be rewarded with a new "green age" of sustainable electronic materials and devices. Copyright © 2017 Lovley.

  15. Current status of biological indicators to detect and quantify previous exposures to radiation. Biological Indicators Working Group

    International Nuclear Information System (INIS)

    Lushbaugh, C.; Eisele, G.; Burr, W. Jr.; Hubner, K.; Wachholz, B.

    1991-01-01

    Hematologic changes following whole-body exposure to gamma or x-ray radiation have been used to estimate dose. The usefulness of this biological indicator is limited because of the recovery of these cells with time, thus making it unsuitable for estimation of dose years after exposure. The same is true for spermatogenic indicators; recovery and restoration of sperm numbers and fertility makes this biological indicator impractical for assessing radiation dose decades after radiation exposure. As noted in the text of the report, immunological concepts are in a state of rapid development, and it is possible that improved methods for applying immunologic procedures as biological indicators of radiation may be developed in the future. However, at the time, immunological indicators are not useful, even in an early time period, for quantitating radiation dose after total-body irradiation. A semiquantitative effect is observable in the early phase after total-body irradiation over a period of days to weeks, but there is little data available to indicate whether any of the immunological parameters can be indicative of a dose when the test is applied several years after radiation exposure. More detailed information regarding immunological indicators for estimating irradiation dose has been summarized elsewhere (Wasserman 1986). There is good agreement that ionizing radiation causes biochemical changes in the body; however, attempts to apply these changes to provide a reliable biological dosimetry system have not been particularly successful. The status of this research has been summarized by Gerber (1986). One of the difficulties has been the problem of establishing clear dose-effect relationships in humans. The lack of specificity in the response for radiation is another problem

  16. Applications of biological tools or biomarkers in aquatic biota: A case study of the Tamar estuary, South West England.

    Science.gov (United States)

    Dallas, Lorna J; Jha, Awadhesh N

    2015-06-30

    Biological systems are the ultimate recipients of pollutant-induced damage. Consequently, our traditional reliance on analytical tools is not enough to assess ecosystem health. Biological responses or biomarkers are therefore also considered to be important tools for environmental hazard and risk assessments. Due to historical mining, other anthropogenic activities, and its conservational importance (e.g. NATURA sites, SACs), the Tamar estuary in South West England is an ideal environment in which to examine applications of such biological tools. This review presents a thorough and critical evaluation of the different biological tools used in the Tamar estuary thus far, while also discussing future perspectives for biomarker studies from a global perspective. In particular, we focus on the challenges which hinder applications of biological tools from being more readily incorporated into regulatory frameworks, with the aim of enabling both policymakers and primary stakeholders to maximise the environmental relevance and regulatory usefulness of such tools. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The metaphysical lessons of synthetic biology and neuroscience.

    Science.gov (United States)

    Baertschi, Bernard

    2015-01-01

    In this paper, I examine some important metaphysical lessons that are often presented as derived from two new scientific disciplines: synthetic biology and neuroscience. I analyse four of them: the nature of life, the existence of a soul (the mind-body problem), personhood, and free will. Many caveats are in order, and each 'advance' or each case should be assessed for itself. I conclude that a main lesson can nevertheless be learned: in conjunction with modern science, neuroscience and synthetic biology allow us to enrich old metaphysical debates, to deepen and even renew them. In particular, it becomes less and less plausible to consider life, mind, person, and agency as non-natural or non-physical entities. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  18. Assessing the Possibility of Biological Complexity on Other Worlds, with an Estimate of the Occurrence of Complex Life in the Milky Way Galaxy

    Directory of Open Access Journals (Sweden)

    Louis N. Irwin

    2014-05-01

    Full Text Available Rational speculation about biological evolution on other worlds is one of the outstanding challenges in astrobiology. With the growing confirmation that multiplanetary systems abound in the universe, the prospect that life occurs redundantly throughout the cosmos is gaining widespread support. Given the enormous number of possible abodes for life likely to be discovered on an ongoing basis, the prospect that life could have evolved into complex, macro-organismic communities in at least some cases merits consideration. Toward that end, we here propose a Biological Complexity Index (BCI, designed to provide a quantitative estimate of the relative probability that complex, macro-organismic life forms could have emerged on other worlds. The BCI ranks planets and moons by basic, first-order characteristics detectable with available technology. By our calculation only 11 (~1.7% of the extrasolar planets known to date have a BCI above that of Europa; but by extrapolation, the total of such planets could exceed 100 million in our galaxy alone. This is the first quantitative assessment of the plausibility of complex life throughout the universe based on empirical data. It supports the view that the evolution of complex life on other worlds is rare in frequency but large in absolute number.

  19. Objectives of research activities in Biology Branch, Chalk River Nuclear Laboratories, 1976

    International Nuclear Information System (INIS)

    1977-03-01

    The primary responsibility assigned to the Biology Branch within the framework of CRNL has been an active engagement in basic research related to the assessment of radiation hazards, particularly those to be expected after exposure to relatively low doses of radiation delivered at low dose-rates. The present group is characterized by a broad interest in the entire chain of events by which the initial radiation-induced changes in the living cell are translated into biological effects, with a special focus of attention on the mechanisms by which the initial damage can be largely repaired and by which the risks to man are modified under different circumstances. The basic concepts in radiation biology and risk estimates are reviewed in the light of recent literature on these topics. The current and proposed research activities of the Biology Branch are described. General and specific recommendations for future activities are given. (author)

  20. Systems Toxicology: The Future of Risk Assessment.

    Science.gov (United States)

    Sauer, John Michael; Hartung, Thomas; Leist, Marcel; Knudsen, Thomas B; Hoeng, Julia; Hayes, A Wallace

    2015-01-01

    Risk assessment, in the context of public health, is the process of quantifying the probability of a harmful effect to individuals or populations from human activities. With increasing public health concern regarding the potential risks associated with chemical exposure, there is a need for more predictive and accurate approaches to risk assessment. Developing such an approach requires a mechanistic understanding of the process by which xenobiotic substances perturb biological systems and lead to toxicity. Supplementing the shortfalls of traditional risk assessment with mechanistic biological data has been widely discussed but not routinely implemented in the evaluation of chemical exposure. These mechanistic approaches to risk assessment have been generally referred to as systems toxicology. This Symposium Overview article summarizes 4 talks presented at the 35th Annual Meeting of the American College of Toxicology. © The Author(s) 2015.

  1. Fair value versus historical cost-based valuation for biological assets: predictability of financial information

    Directory of Open Access Journals (Sweden)

    Josep M. Argilés

    2011-08-01

    This paper performs an empirical study with a sample of Spanish farms valuing biological assets at HC and a sample applying FV, finding no significant differences between both valuation methods to assess future cash flows. However, most tests reveal more predictive power of future earnings under fair valuation of biological assets, which is not explained by differences in volatility of earnings and profitability. The study also evidences the existence of flawed HC accounting practices for biological assets in agriculture, which suggests scarce information content of this valuation method in the predominant small business units existing in the agricultural sector in advanced Western countries.

  2. [Clinical treatment adherence of health care workers and students exposed to potentially infectious biological material].

    Science.gov (United States)

    Almeida, Maria Cristina Mendes de; Canini, Silvia Rita Marin da Silva; Reis, Renata Karina; Toffano, Silmara Elaine Malaguti; Pereira, Fernanda Maria Vieira; Gir, Elucir

    2015-04-01

    To assess adherence to clinical appointments by health care workers (HCW) and students who suffered accidents with potentially infectious biological material. A retrospective cross-sectional study that assessed clinical records of accidents involving biological material between 2005 and 2010 in a specialized unit. A total of 461 individuals exposed to biological material were treated, of which 389 (84.4%) were HCWs and 72 (15.6%) students. Of the 461 exposed individuals, 307 (66.6%) attended a follow-up appointment. Individuals who had suffered an accident with a known source patient were 29 times more likely to show up to their scheduled follow-up appointments (OR: 29.98; CI95%: 16.09-55.83). The predictor in both univariate and multivariate analyses for adherence to clinical follow-up appointment was having a known source patient with nonreactive serology for the human immunodeficiency virus and/or hepatitis B and C.

  3. Biological sample collector

    Science.gov (United States)

    Murphy, Gloria A [French Camp, CA

    2010-09-07

    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  4. An ecologically-based method for selecting ecological indicators for assessing risks to biological diversity from genetically-engineered plants

    DEFF Research Database (Denmark)

    Andow, D. A.; Lövei, Gabor L; Arpaia, Salvatore

    2013-01-01

    into ecological functional groups and selecting those that deliver the identified environmental values. (3) All of the species or ecosystem processes related to the selected functional groups are identified and (4) multi-criteria decision analysis (MCDA) is used to rank the indicator endpoint entities, which may...... adverse effects to biological diversity. The approach starts by (1) identifying the local environmental values so the ERA addresses specific concerns associated with local biological diversity. The model simplifies the indicator endpoint selection problem by (2) classifying biological diversity...... be species or ecological processes. MCDA focuses on those species and processes that are critical for the identified ecological functions and are likely to be highly exposed to the GE organism. The highest ranked indicator entities are selected for the next step. (5) Relevant risk hypotheses are identified...

  5. Biologics in Paediatric Crohn's Disease

    Directory of Open Access Journals (Sweden)

    Oliver Gouldthorpe

    2011-01-01

    Full Text Available Crohn's disease affects increasing numbers of children worldwide. Generally, childhood-onset disease runs a more severe course than in adults and has a greater impact on quality of life. Therapy in children must take account of a different set of risks for toxicity compared to adults, but also to their longevity. Biologic drugs present remarkable advantages in terms of disease control for children, especially in those whose disease cannot be controlled with conventional therapies, but their long-term risks are still being assessed. Data regarding biologic use in children is limited and mostly amounts to case series, but results have been promising, both in terms of controlling disease activity and improving growth parameters. Adverse reactions are infrequent in the short term, but loss of response is a long-term problem, particularly in children. More information is needed about very long term risks. Infliximab and adalimumab are the most studied agents in children, while there is relatively limited data on certolizumab and natalizumab. Further collection of data on these agents is still needed, but this should not restrict access to these agents for children in whom no other agent is effective.

  6. Quantum biological information theory

    CERN Document Server

    Djordjevic, Ivan B

    2016-01-01

    This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...

  7. Full scale experimental assessment of reliability of steady state design criteria of activated sludge process with biological nitrogen removal and chemical phosphorus removal; Verifica sperimentale a scala reale di criteri di dimensionamento dei sistemi a fanghi attivi per la rimozione dei nutrienti

    Energy Technology Data Exchange (ETDEWEB)

    Tatano, F. [Politecnico di Milano, Milan (Italy). Dip. di Ingegneria Idraulica, Ambientale e del Rilevamento, Sez. Ambientale

    1996-06-01

    The biological phase of a wastewater treatment plant situated in the Ruhr River Region (Germany), has been monitored for about one year. The collected experimental data have been elaborated in this paper with the objective of an assessment of the reliability of some recent steady-state design criteria of the activated sludge process with biological nitrogen removal and chemical phosphorus removal.

  8. Assessment of Student Learning Associated with Tree Thinking in an Undergraduate Introductory Organismal Biology Course

    Science.gov (United States)

    Smith, James J.; Cheruvelil, Kendra Spence; Auvenshine, Stacie

    2013-01-01

    Phylogenetic trees provide visual representations of ancestor-descendant relationships, a core concept of evolutionary theory. We introduced "tree thinking" into our introductory organismal biology course (freshman/sophomore majors) to help teach organismal diversity within an evolutionary framework. Our instructional strategy consisted…

  9. Ins and outs of systems biology vis-à-vis molecular biology: continuation or clear cut?

    Science.gov (United States)

    De Backer, Philippe; De Waele, Danny; Van Speybroeck, Linda

    2010-03-01

    The comprehension of living organisms in all their complexity poses a major challenge to the biological sciences. Recently, systems biology has been proposed as a new candidate in the development of such a comprehension. The main objective of this paper is to address what systems biology is and how it is practised. To this end, the basic tools of a systems biological approach are explored and illustrated. In addition, it is questioned whether systems biology 'revolutionizes' molecular biology and 'transcends' its assumed reductionism. The strength of this claim appears to depend on how molecular and systems biology are characterised and on how reductionism is interpreted. Doing credit to molecular biology and to methodological reductionism, it is argued that the distinction between molecular and systems biology is gradual rather than sharp. As such, the classical challenge in biology to manage, interpret and integrate biological data into functional wholes is further intensified by systems biology's use of modelling and bioinformatics, and by its scale enlargement.

  10. Biological research for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Kug Chan; Shim, Hae Won; Oh, Tae Jeong; Park, Seon Young; Lee, Kang Suk

    2000-04-01

    The work scope of Biological research for the radiation protection had contained the search of biological microanalytic methods for assessing the health effect by {gamma}-radiation and toxic agents, the standardization of human T-lymphocyte cell culture and polymerase chain reaction, T-cell clonal assay, and the quantification of mutation frequency in the hypoxanthine (guanine) phosphoribosyl transferase (HPRT) gene locus by single exposure or combined exposure. Especially, the polymerase chain reaction methods using reverse transcriptase has been developed to analyze the mutant gene induced by {gamma}-radiation and chemical (pentachlorophenol) agent exposure, and to investigate the point mutations in the HPRT gene locus of T-lymphocytes. The HPRT T-cell clonal assay revealed that it could not differentiate {gamma}-irradiation from pentachlorophenol, because the frequency of somatic mutations induced by both damaging agents increased in a dose-dependent manner. The analysis of DNA sequence alterations of HPRT mutant clones clearly showed that both damaging agents induced different mutational spectra in the HPRT locus of T-cells. The large deletions, which account for 75 percent of the analyzed mutants, are characteristic mutations induced by {gamma}-irradiation. By contrast, point mutations such as base substitutions and insertion, come up to 97 percent in the case of pentachlorophenol-treated cells. The point mutation frequencies at 190 base pair and 444 base pair positions are 3-6 folds as high as in those at other mutation positions. It may be that these mutation sites are hot spots induced by pentachlorophenol. These results suggest that the HPRT mutation spectrum can be used as a potential bio marker for assessing a specific environmental risk. (author)

  11. Biological research for radiation protection

    International Nuclear Information System (INIS)

    Kim, In Gyu; Kim, Kug Chan; Shim, Hae Won; Oh, Tae Jeong; Park, Seon Young; Lee, Kang Suk

    2000-04-01

    The work scope of Biological research for the radiation protection had contained the search of biological microanalytic methods for assessing the health effect by γ-radiation and toxic agents, the standardization of human T-lymphocyte cell culture and polymerase chain reaction, T-cell clonal assay, and the quantification of mutation frequency in the hypoxanthine (guanine) phosphoribosyl transferase (HPRT) gene locus by single exposure or combined exposure. Especially, the polymerase chain reaction methods using reverse transcriptase has been developed to analyze the mutant gene induced by γ-radiation and chemical (pentachlorophenol) agent exposure, and to investigate the point mutations in the HPRT gene locus of T-lymphocytes. The HPRT T-cell clonal assay revealed that it could not differentiate γ-irradiation from pentachlorophenol, because the frequency of somatic mutations induced by both damaging agents increased in a dose-dependent manner. The analysis of DNA sequence alterations of HPRT mutant clones clearly showed that both damaging agents induced different mutational spectra in the HPRT locus of T-cells. The large deletions, which account for 75 percent of the analyzed mutants, are characteristic mutations induced by γ-irradiation. By contrast, point mutations such as base substitutions and insertion, come up to 97 percent in the case of pentachlorophenol-treated cells. The point mutation frequencies at 190 base pair and 444 base pair positions are 3-6 folds as high as in those at other mutation positions. It may be that these mutation sites are hot spots induced by pentachlorophenol. These results suggest that the HPRT mutation spectrum can be used as a potential bio marker for assessing a specific environmental risk. (author)

  12. A Converter from the Systems Biology Markup Language to the Synthetic Biology Open Language.

    Science.gov (United States)

    Nguyen, Tramy; Roehner, Nicholas; Zundel, Zach; Myers, Chris J

    2016-06-17

    Standards are important to synthetic biology because they enable exchange and reproducibility of genetic designs. This paper describes a procedure for converting between two standards: the Systems Biology Markup Language (SBML) and the Synthetic Biology Open Language (SBOL). SBML is a standard for behavioral models of biological systems at the molecular level. SBOL describes structural and basic qualitative behavioral aspects of a biological design. Converting SBML to SBOL enables a consistent connection between behavioral and structural information for a biological design. The conversion process described in this paper leverages Systems Biology Ontology (SBO) annotations to enable inference of a designs qualitative function.

  13. Assessment of the Biological Treatability of Black Tea Processing ...

    African Journals Online (AJOL)

    The anaerobic degradability of tea beverage processing effluent was assessed using a stationary upflow anaerobic filter. The filter, with an active column of 1.2m height, inner diameter of 100 mm and filled with rock as the attachment medium was operated at room temperature ranging between 20-250C throughout the ...

  14. The nucleic acid revolution continues - will forensic biology become forensic molecular biology?

    Science.gov (United States)

    Gunn, Peter; Walsh, Simon; Roux, Claude

    2014-01-01

    Molecular biology has evolved far beyond that which could have been predicted at the time DNA identity testing was established. Indeed we should now perhaps be referring to "forensic molecular biology." Aside from DNA's established role in identifying the "who" in crime investigations, other developments in medical and developmental molecular biology are now ripe for application to forensic challenges. The impact of DNA methylation and other post-fertilization DNA modifications, plus the emerging role of small RNAs in the control of gene expression, is re-writing our understanding of human biology. It is apparent that these emerging technologies will expand forensic molecular biology to allow for inferences about "when" a crime took place and "what" took place. However, just as the introduction of DNA identity testing engendered many challenges, so the expansion of molecular biology into these domains will raise again the issues of scientific validity, interpretation, probative value, and infringement of personal liberties. This Commentary ponders some of these emerging issues, and presents some ideas on how they will affect the conduct of forensic molecular biology in the foreseeable future.

  15. Chelating impact assessment of biological ad chemical chelates on metal extraction from contaminated soils

    International Nuclear Information System (INIS)

    Manwar, S.; Iram, S.

    2014-01-01

    Soil contamination is the result of uncontrolled waste dumping and poor practices by humans. Of all the pollutants heavy metals are of particular concern due to their atmospheric deposition, leaching capacity and non-biodegradability. Heavy metal containing effluent is discharged into the agricultural fields and water bodies. This results in the accumulation of heavy metals in soil and the crops grown on that soil. Studies have revealed detrimental impacts on soil fertility and the poor health of animals and humans. Phytoextraction is widely researched for remediation of heavy metal contaminated soil. To enhance the effect of phytoextraction heavy metals have to be available to the plants in soluble form. In this study the potential of different chelating agents was assessed in solubilizing the heavy metals making easy for plants to uptake them. For this purpose efficient chemical and biological chelating agent had to be identified. Along with that an optimum dose and application time for chemical chelating agent was determined. Ethylenediamine tetraacetic acid (EDTA), Diethylene triamine pentaacetic acid (DTPA), Nitriloacetic acid (NTA) were applied to the soil, containing Pb, Cr, Cu and Cd, at different concentrations and application time. Aspergillus niger and Aspergillus flavus were incubated in soil for different time periods. In correspondence with findings of the study, Pb and Cr were best solubilized by 5mM EDTA. For Cd and Cu 5mM DTPA carried out efficient chelation. NTA showed relatively inadequate solubilisation, although for Cr it performed equal to EDTA. A. niger and A. flavus instead of solubilizing adsorbed the metals in their biomass. Adsorption was mainly carried out by A. niger. (author)

  16. Limitations of the scalp-hair biologic monitor in assessing selenium status in epidemiological investigations

    International Nuclear Information System (INIS)

    Morris, J.S.; Spate, V.L.; Crane, S.B.; Alejandra Gudino

    2012-01-01

    Scalp hair is routinely used to assess exposure to toxic trace elements and nutritional status of some required trace elements. The advantages and disadvantages of hair as a biologic monitor have been comprehensively discussed in the literature for many years. Among the concerns is distinguishing between exogenous and endogenous contributions. Nested in this issue is the longitudinal distribution of a trace element along the hair strand. The typical observation for many elements of interest is that the element concentration increases from the root end to the distal end; and this is attributed to continuing contamination from exogenous sources. In this study we used neutron activation analysis to measure 14 trace elements in 6 mm segments of full-length scalp hair from three healthy members of the same household having light-urban environmental exposure. To extend the data set for selenium, we included three adult female subjects with longer than average scalp hair. From these trace-element concentrations we calculated the root-to-distal end ratios as a profile diagnostic of trace-element distributions. Ratios fall into three diagnostic categories, >1, ∼1, and 1, Zn and S have R ∼ 1, and the remaining 11 elements all have R I > Hg ∼ Au ∼ Mg ∼ Mn ∼ Sb ∼ Ca > Cu > Al ∼ Ag. R Se is greater than 1 and increases with hair length (P 0.02) corresponding to a continuous longitudinal loss of Se in stark and puzzling contrast to the other elements measured. An analogous loss of Se in the nail monitor was not observed leading us to conclude that the nail is less prone to misclassification of selenium status in epidemiological studies. (author)

  17. Instream Biological Assessment of NPDES Point Source Discharges at the Savannah River Site, 2000

    International Nuclear Information System (INIS)

    Specht, W.L.

    2001-01-01

    The Savannah River Site (SRS) currently has 31 NPDES outfalls that have been permitted by the South Carolina Department of Health and Environmental Control (SCDHEC) to discharge to SRS streams and the Savannah River. In order to determine the cumulative impacts of these discharges to the receiving streams, a study plan was developed to perform in-stream assessments of the fish assemblages, macroinvertebrate assemblages, and habitats of the receiving streams. These studies were designed to detect biological impacts due to point source discharges. Sampling was initially conducted between November 1997 and July 1998 and was repeated in the summer and fall of 2000. A total of 18 locations were sampled (Table 1, Figure 1). Sampling locations for fish and macroinvertebrates were generally the same. However, different locations were sampled for fish (Road A-2) and macroinvertebrates (Road C) in the lower portion of Upper Three Runs, to avoid interference with ongoing fisheries studies at Road C. Also, fish were sampled in Fourmile Branch at Road 4 rather than at Road F because the stream at Road F was too narrow and shallow to support many fish. Sampling locations and parameters are detailed in Sections 2 and 3 of this report. In general, sampling locations were selected that would permit comparisons upstream and downstream of NPDES outfalls. In instances where this approach was not feasible because effluents discharge into the headwaters of a stream, appropriate unimpacted reference were used for comparison purposes. This report summarizes the results of the sampling that was conducted in 2000 and also compares these data to the data that were collected in 1997 and 1998

  18. BiologicalNetworks 2.0 - an integrative view of genome biology data

    Directory of Open Access Journals (Sweden)

    Ponomarenko Julia

    2010-12-01

    Full Text Available Abstract Background A significant problem in the study of mechanisms of an organism's development is the elucidation of interrelated factors which are making an impact on the different levels of the organism, such as genes, biological molecules, cells, and cell systems. Numerous sources of heterogeneous data which exist for these subsystems are still not integrated sufficiently enough to give researchers a straightforward opportunity to analyze them together in the same frame of study. Systematic application of data integration methods is also hampered by a multitude of such factors as the orthogonal nature of the integrated data and naming problems. Results Here we report on a new version of BiologicalNetworks, a research environment for the integral visualization and analysis of heterogeneous biological data. BiologicalNetworks can be queried for properties of thousands of different types of biological entities (genes/proteins, promoters, COGs, pathways, binding sites, and other and their relations (interactions, co-expression, co-citations, and other. The system includes the build-pathways infrastructure for molecular interactions/relations and module discovery in high-throughput experiments. Also implemented in BiologicalNetworks are the Integrated Genome Viewer and Comparative Genomics Browser applications, which allow for the search and analysis of gene regulatory regions and their conservation in multiple species in conjunction with molecular pathways/networks, experimental data and functional annotations. Conclusions The new release of BiologicalNetworks together with its back-end database introduces extensive functionality for a more efficient integrated multi-level analysis of microarray, sequence, regulatory, and other data. BiologicalNetworks is freely available at http://www.biologicalnetworks.org.

  19. Using Nonfiction Scientific Literature for Conservation Biology Education: The "Tigerland" Effect

    Science.gov (United States)

    Neff, Paula Kleintjes; Weiss, Nicole M.; Middlesworth, Laura; Wierich, Joseph; Beilke, Elizabeth; Lee, Jacqueline; Rohlinger, Spencer; Pletzer, Joshua

    2017-01-01

    Despite the volume of research published and pedagogy practiced in conservation biology, there is little assessment of the effectiveness of pedagogical techniques for improving undergraduate conservation literacy and student engagement. We evaluated student responses (2009-2011) to reading "Tigerland and Other Unintended Destinations" by…

  20. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change-A review.

    Science.gov (United States)

    Boyd, Philip W; Collins, Sinead; Dupont, Sam; Fabricius, Katharina; Gattuso, Jean-Pierre; Havenhand, Jonathan; Hutchins, David A; Riebesell, Ulf; Rintoul, Max S; Vichi, Marcello; Biswas, Haimanti; Ciotti, Aurea; Gao, Kunshan; Gehlen, Marion; Hurd, Catriona L; Kurihara, Haruko; McGraw, Christina M; Navarro, Jorge M; Nilsson, Göran E; Passow, Uta; Pörtner, Hans-Otto

    2018-06-01

    Marine life is controlled by multiple physical and chemical drivers and by diverse ecological processes. Many of these oceanic properties are being altered by climate change and other anthropogenic pressures. Hence, identifying the influences of multifaceted ocean change, from local to global scales, is a complex task. To guide policy-making and make projections of the future of the marine biosphere, it is essential to understand biological responses at physiological, evolutionary and ecological levels. Here, we contrast and compare different approaches to multiple driver experiments that aim to elucidate biological responses to a complex matrix of ocean global change. We present the benefits and the challenges of each approach with a focus on marine research, and guidelines to navigate through these different categories to help identify strategies that might best address research questions in fundamental physiology, experimental evolutionary biology and community ecology. Our review reveals that the field of multiple driver research is being pulled in complementary directions: the need for reductionist approaches to obtain process-oriented, mechanistic understanding and a requirement to quantify responses to projected future scenarios of ocean change. We conclude the review with recommendations on how best to align different experimental approaches to contribute fundamental information needed for science-based policy formulation. © 2018 John Wiley & Sons Ltd.