WorldWideScience

Sample records for biological antioxidant potential

  1. The potential medicinal value of plants from Asteraceae family with antioxidant defense enzymes as biological targets.

    Science.gov (United States)

    Koc, Suheda; Isgor, Belgin S; Isgor, Yasemin G; Shomali Moghaddam, Naznoosh; Yildirim, Ozlem

    2015-05-01

    Plants and most of the plant-derived compounds have long been known for their potential pharmaceutical effects. They are well known to play an important role in the treatment of several diseases from diabetes to various types of cancers. Today most of the clinically effective pharmaceuticals are developed from plant-derived ancestors in the history of medicine. The aim of this study was to evaluate the free radical scavenging activity and total phenolic and flavonoid contents of methanol, ethanol, and acetone extracts from flowers and leaves of Onopordum acanthium L., Carduus acanthoides L., Cirsium arvense (L.) Scop., and Centaurea solstitialis L., all from the Asteraceae family, for investigating their potential medicinal values of biological targets that are participating in the antioxidant defense system such as catalase (CAT), glutathione S-transferase (GST), and glutathione peroxidase (GPx). In this study, free radical scavenging activity and total phenolic and flavonoid contents of the plant samples were assayed by DPPH, Folin-Ciocalteu, and aluminum chloride colorimetric methods. Also, the effects of extracts on CAT, GST, and GPx enzyme activities were investigated. The highest phenolic and flavonoid contents were detected in the acetone extract of C. acanthoides flowers, with 90.305 mg GAE/L and 185.43 mg Q/L values, respectively. The highest DPPH radical scavenging was observed with the methanol leaf extracts of C. arvense with an IC50 value of 366 ng/mL. The maximum GPx and GST enzyme inhibition activities were observed with acetone extracts from the flower of C. solstitialis with IC50 values of 79 and 232 ng/mL, respectively.

  2. First Evaluation of the Biologically Active Substances and Antioxidant Potential of Regrowth Velvet Antler by means of Multiple Biochemical Assays

    Directory of Open Access Journals (Sweden)

    Yujiao Tang

    2015-01-01

    Full Text Available We investigated the biologically active substances contained in RVA (regrowth velvet antler by comparing the composition of biologically active substances and antioxidant potential of different antler segments. RVA was subjected to extraction using DW (distilled water. RVA was divided into 3 segments: T-RVA (top RVA, M-RVA (middle RVA, and B-RVA (base RVA. The T-RVA section possessed the greatest amounts of uronic acid (36.251 mg/g, sulfated GAGs (sulfated glycosaminoglycans (555.76 mg/g, sialic acid (111.276 mg/g, uridine (0.957 mg/g, uracil (1.084 mg/g, and hypoxanthine (1.2631 mg/g. In addition, the T-RVA section possessed the strongest antioxidant capacity as determined by DPPH, H2O2 (hydrogen peroxide, hydroxyl, and ABTS (2,2′-azinobis-3-ethylbenzthiazoline-6-sulphonate radical scavenging activity as well as FRAP (ferric reducing antioxidant power and ORAC (oxygen radical absorbance capacity. The values of those were 53.44, 23.09, 34.12, 60.31, and 35.81 TE/μM at 1 mg/mL and 113.57 TE/μM at 20 μg/mL. These results indicate that the T-RVA section possesses the greatest amount of biologically active substances and highest antioxidant potential. This is the first report on the biologically active substances and antioxidant potential of RVA.

  3. Reactions of copper macrocycles with antioxidants and HOCl: potential for biological redox sensing.

    Science.gov (United States)

    Sowden, Rebecca J; Trotter, Katherine D; Dunbar, Lynsey; Craig, Gemma; Erdemli, Omer; Spickett, Corinne M; Reglinski, John

    2013-02-01

    A series of simple copper N(2)S(2) macrocycles were examined for their potential as biological redox sensors, following previous characterization of their redox potentials and crystal structures. The divalent species were reduced by glutathione or ascorbate at a biologically relevant pH in aqueous buffer. A less efficient reduction was also achieved by vitamin E in DMSO. Oxidation of the corresponding univalent copper species by sodium hypochlorite resulted in only partial (~65 %) recovery of the divalent form. This was concluded to be due to competition between metal oxidation and ligand oxidation, which is believed to contribute to macrocycle demetallation. Electrospray mass spectrometry confirmed that ligand oxidation had occurred. Moreover, the macrocyclic complexes could be demetallated by incubation with EDTA and bovine serum albumin, demonstrating that they would be inappropriate for use in biological systems. The susceptibility to oxidation and demetallation was hypothesized to be due to oxidation of the secondary amines. Consequently these were modified to incorporate additional oxygen donor atoms. This modification led to greater resistance to demetallation and ligand oxidation, providing a better platform for further development of copper macrocycles as redox sensors for use in biological systems.

  4. Antioxidant potentialities and Antiradical Activities of Oxalis ...

    African Journals Online (AJOL)

    SARAH

    2017-08-31

    Aug 31, 2017 ... biologically active chemicals of medical importance. These findings ... medicinal plant to treat different human ailments. A recent work by ..... antioxidants and nutrition. Nutr Res. ... from additive and synergistic combinations of.

  5. Antioxidant, antimicrobial, cell viability and enzymatic inhibitory of antioxidant polymers as biological macromolecules.

    Science.gov (United States)

    Hashemi Gahruie, Hadi; Niakousari, Mehrdad

    2017-11-01

    Polymeric antioxidants such as Catechinaldehyde Polycondensates, Catechin-acelaldehydepolycondensates, Flavonoid-grafted chitosan fibers, Ferulate hydrogel, Dextran ferulate hydrogel, Starch-quercetin conjugate, Gallic acid- and Caffeic acid-functionalized chitosan, Gallic acid - chitosan conjugate, Poly(rutin), Gallic acid grafted chitosan, Dextran-Catechin Conjugate belong to biological macromolecules. These kinds of compounds have stronger antioxidant potential and pharmacokinetic activities, as compared to similar low molecular weight preservatives. Most of these compounds sources are either antioxidants with low molecules polymerization, or polymers conjugation such as synthetic or natural preservatives. Additives are well known as being an important ingredient of food products due to their strong preservative potential. Many researchers and industries attempt to find synthesize materials with the same antioxidant potential and higher stability than the similar compounds with low molecular weight. Recently, macromolecular antioxidants have received wide attention as food additives and dietary supplements in functional foods. It seems that the main usage of these compounds is in the food packaging industry. Most of these compounds have strong antioxidant, antimicrobial, cell viability and enzymatic inhibitory properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effect of startup circuit exercise on derivatives reactive oxygen metabolites, biological antioxidant potential levels and physical fitness of adolescents boys with intellectual disabilities.

    Science.gov (United States)

    Kim, Chang-Gyun; Lee, Jin-Seok

    2016-10-01

    The purpose of this study was to examine the effect of starup circuit exercise program on derivatives reactive oxygen metabolite (d-ROM) and biological antioxidant potential (BAP) levels and physical fitness of adolescents with intellectual disabilities, and to sugesst exercise programs to promote the health and physical development of such adolescents. Twelve students with intellectual disabilities were divided into two groups; circuit exercise group (CE group: n=6; age, 14.83±0.98 years; height, 163.83±5.78 cm; body mass, 67.08±3.32 kg; %Fat, 25.68±2.42), control group (CON group: n=6; age: 15.00±0.63 years; height, 162.33±4.41 cm; body mass, 67.50±3.62 kg; %Fat, 26.96±2.06). The CE group performed the CE program 4 times a week over a 12-week period. The CON group maintained their activities of daily living. The following were measured before and after intervention: physical fitness by before and after the completion of the training programm, and were measured and blood samples were assessed. The results of the study indicate that the 12-week CE program increased significantly physical fitness ( P <0.05). Furthermore, This study proved that the CE program improved physical fitness, and reduced the d-ROM levels, and increased the BAP levels of the adolescents with intellectual disabilities. Therefore, it may enhance the health and physical development of adolescents boys with intellectual disabilities.

  7. A study of antioxidant potential of Perilladehyde

    Science.gov (United States)

    Malu, T. J.; Banerjee, Nitesh; Singh, Avinash Kumar; Kannadasan, S.; Ethiraj, K. R.

    2017-11-01

    The use of plants as food, medicine is credited to a biological property of their secondary metabolites. These naturally occurring secondary metabolites are found to have great importance in controlling the formation of free radicles. These antioxidants are capable to catch the free radicles present in the body and maintain its balance. Antioxidant activity and potency of Perillaldehyde using various in vitro biochemical assays were studied. The assay involves various levels of antioxidant action such as free radical scavenging activity through DPPH, reducing power determination, nitric oxide scavenging ability, metal chelation power, scavenging of hydrogen peroxide, membrane stabilizing activity, and lipid peroxidation study.

  8. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine

    Directory of Open Access Journals (Sweden)

    Bryant C. Nelson

    2016-05-01

    Full Text Available Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where our experimental understanding of the antioxidant activity of CNPs can be translated into useful therapeutics in the clinic, it is necessary to evaluate the most current evidence that supports CNP antioxidant activity in biological systems. Accordingly, the aims of this review are three-fold: (1 To describe the putative reaction mechanisms and physicochemical surface properties that enable CNPs to both scavenge reactive oxygen species (ROS and to act as antioxidant enzyme-like mimetics in solution; (2 To provide an overview, with commentary, regarding the most robust design and synthesis pathways for preparing CNPs with catalytic antioxidant activity; (3 To provide the reader with the most up-to-date in vitro and in vivo experimental evidence supporting the ROS-scavenging potential of CNPs in biology and medicine.

  9. Antioxidant Potential of Selected Korean Edible Plant Extracts

    Directory of Open Access Journals (Sweden)

    Yaejin Woo

    2017-01-01

    Full Text Available This study aimed to evaluate the antioxidant activity of various plant extracts. A total of 94 kinds of edible plant extracts obtained from the Korea Plant Extract Bank were screened for cytotoxicity, following which the total phenolic content of 24 shortlisted extracts was determined. Of these, extracts from three plants, namely, Castanea crenata (CC leaf, Camellia japonica (CJ fruit, and Viburnum dilatatum (VD leaf, were examined for antioxidant capabilities by measuring radical scavenging activity, ferric reducing/antioxidant power, and lipid peroxidation inhibitory activity. In addition, cellular antioxidant activities of the three extracts were assessed by a cell-based dichlorofluorescein assay and antioxidant response element (ARE reporter activity assay. The results demonstrated that all three extracts concentration-dependently scavenged free radicals, inhibited lipid peroxidation, reduced the cellular level of reactive oxygen species, and increased ARE-luciferase activity, indicating antioxidant enzyme-inducing potential. In particular, CJ extract showed significantly greater antioxidative activity and antimigratory effect in a breast cancer cell line compared to CC and VD extracts. Hence, CJ extract deserves further study for its in vivo functionality or biologically active constituents.

  10. Biological activities (anti-inflammatory and anti-oxidant) of fractions ...

    African Journals Online (AJOL)

    Biological activities (anti-inflammatory and anti-oxidant) of fractions and methanolic extract of Philonotis hastate (Duby Wijk & MargaDant). ... The fractions and methanolic extract exhibited moderate antioxidant potentials with various models. The flavonoid contents of the methanol extract and fractions ranged between 1.70 ...

  11. Antioxidant potential of Viscum articulatum burm

    Directory of Open Access Journals (Sweden)

    Kannoth Mukundan Geetha

    2013-01-01

    Full Text Available Background: Free radical stress leads to tissue injury and progression of disease conditions such as arthritis, hemorrhagic shock, atherosclerosis, diabetes, hepatic injury, aging and ischemia, reperfusion injury of many tissues, gastritis, tumor promotion, neurodegenerative diseases, and carcinogenesis. Safer antioxidants suitable for long term use are needed to prevent or stop the progression of free radical mediated disorders. Viscum articulatum is traditionally used for various oxidative stress induced disorders including liver disorders. Aims: The present study investigated antioxidant activities of the methanolic extract of Viscum articulatum in in vivo and in vitro models to provide scientific basis for the traditional usage of this plant. Materials and Methods: The in vitro antioxidant activity was evaluated by determining the ability of the extract to scavenge 2, 2-diphenyl-2-picrylhydrazyl (DPPH, nitric oxide, 2, 2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid diammonium salt (ABTS, and hydrogen peroxide (H 2 O 2 which were assessed using spectroscopic methods. Results: The extract showed promising dose dependant free radical scavenging property in all the methods used. The extract effectively increased the superoxide dismutase and catalase activity and decreased lipid peroxidation in the treated groups indicating in vivo antioxidant activity. The extract also effectively decreased the serum levels of SGOT, SGPT, SALP, and total protein levels compared to toxicant control rats. Conclusion: The results obtained from this study indicate that Viscum articulatum is a potential source of antioxidant which would help in preventing many free radical mediated diseases.

  12. Potential Anticancer Properties of Grape Antioxidants

    Directory of Open Access Journals (Sweden)

    Kequan Zhou

    2012-01-01

    Full Text Available Dietary intake of foods rich in antioxidant properties is suggested to be cancer protective. Foods rich in antioxidant properties include grape (Vitis vinifera, one of the world’s largest fruit crops and most commonly consumed fruits in the world. The composition and cancer-protective effects of major phenolic antioxidants in grape skin and seed extracts are discussed in this review. Grape skin and seed extracts exert strong free radical scavenging and chelating activities and inhibit lipid oxidation in various food and cell models in vitro. The use of grape antioxidants are promising against a broad range of cancer cells by targeting epidermal growth factor receptor (EGFR and its downstream pathways, inhibiting over-expression of COX-2 and prostaglandin E2 receptors, or modifying estrogen receptor pathways, resulting in cell cycle arrest and apoptosis. Interestingly, some of these activities were also demonstrated in animal models. However, in vivo studies have demonstrated inconsistent antioxidant efficacy. Nonetheless, a growing body of evidence from human clinical trials has demonstrated that consumption of grape, wine and grape juice exerts many health-promoting and possible anti-cancer effects. Thus, grape skin and seed extracts have great potential in cancer prevention and further investigation into this exciting field is warranted.

  13. Lignicolous fungi as potential natural sources of antioxidants

    Directory of Open Access Journals (Sweden)

    Karaman Maja A.

    2005-01-01

    Full Text Available As a result of an interest in natural derived metabolites around the world higher fungi (Basidiomycotina have taken on great importance in biochemical investigations. A large number of structurally divergent compounds - both cellular components and secondary metabolites - have been extracted and found to possess significant biological activity, such as an immunomodulative effect on the human body. Effects of fungal biomolecules as potential natural antioxidants have not been examined so far. Biochemical analysis have included in vitro testing of the influence of different extracts (water methanol, chloroform of selected fungal sporocarps on Fe2+/ascorbate-induced lipid peroxidation (LP in a lecithin liposome system by TBA assay, as well as various other procedures. Qualitative analysis by TLC revealed a distinction both between different extracts of the same fungal species and between similar extracts of different species. The results obtained on antioxidative activities (LP inhibition and "scavenging" activity indicate that MeOH extracts manifested a degree of activity higher than that of CHCl3 extracts with respect to antioxidative activity, the extracts can be ranged in the following declining order: Ganoderma lucidum, Ganoderma applanatum Meripilus giganteus, and Flammulina velutipes. The obtained results suggest that the analyzed fungi are of potential interest as sources of strong natural antioxidants in the food and cosmetics industries, whereas synthetic ones have proved to be carcinogenic.

  14. Antioxidant potential of selected Spirulina platensis preparations.

    Science.gov (United States)

    Dartsch, Peter C

    2008-05-01

    Recent studies suggest that Spirulina, a unicellular blue-green alga, may have a variety of health benefits and therapeutic properties and is also capable of acting as an antioxidant and antiinflammatory agent. In this study, a cell-free and a cell-based test assay were used to examine the antioxidant and antiinflammatory properties of four selected Spirulina platensis preparations: (1) Biospirulina, (2) SpiruComplex, a preparation with naturally bound selenium, chromium and zinc, (3) SpiruZink, a preparation with naturally bound zinc, (4) Zinkspirulina + Acerola, a preparation with naturally bound zinc and acerola powder. The cell-free test assay used potassium superoxide as a donor for superoxide radicals, whereas the cell-based test assay used the formation of intracellular superoxide radicals of functional neutrophils upon stimulation by phorbol-12-myristate-13-acetate as a model to investigate the potential of Spirulina preparations to inactivate superoxide radicals. In accordance with the recommended daily dosage, test concentrations ranging from 50 to 1000 microg/mL were chosen. The results showed a dose-dependent inactivation of free superoxide radicals (antioxidant effect) as well as an antiinflammatory effect characterized by a dose-dependent reduction of the metabolic activity of functional neutrophils and a dose-dependent inactivation of superoxide radicals generated during an oxidative burst. The results demonstrate that the tested Spirulina preparations have a high antioxidant and antiinflammatory potential. Especially SpiruZink and Zinkspirulina + Acerola might be useful as a supportive therapeutic approach for reducing oxidative stress and/or the generation of oxygen radicals in the course of inflammatory processes.

  15. The role of antioxidant-protein interactions in biological membrane

    International Nuclear Information System (INIS)

    McGillivray, Duncan J; Singh, Rachna; Melton, Laurence D.; Worcester, David L.; Gilbert, Elliot P.

    2009-01-01

    Full text: Oxidative damage of cellular membranes has been linked to a variety of disease pathologies, including cardiac disease, Alzheimer's and complications due to diabetes. The oxidation of unsaturated and polyunsaturated fatty acid chains found in cellular membranes leads to significant alteration in membrane physical properties, including lipid orientation and membrane permeability, which ultimately affect biological function. Polyphenols are naturally occurring phytochemicals present in a number of fruit and vegetables that are of interest for their anti-oxidative powers. These polyphenols inhibit lipid oxidation in cellular membrane surfaces, although the mechanism of this inhibition is not entirely clear. Moreover, the polyphenols have significant binding affinity for proteins, which can lead to the formation of soluble and insoluble protein-polyphenol complexes Significantly, in the presence of casein proteins the oxidation inhibition the polyphenols in the membrane is significantly enhanced (as assessed by Lipid Peroxidation Inhibition Capacity assays). Thus the antioxidant pathway appears to involve these protein/polyphenol complexes, as well as direct antioxidant action by the polyphenol. Here we discuss neutron and x-ray scattering results from phospholipid membranes, looking at the positioning of two examples of polyphenolic antioxidants in phospholipid membranes, quercetin and phloretin, the antioxidants' impact on the membrane organisation, and the interaction between antioxidant and extra-membranous protein. This information sheds light on the mechanism of antioxidant protection in these systems, which may be used to understand biological responses to oxidative stress.

  16. Selected heterocyclic compounds as antioxidants. Synthesis and biological evaluation.

    Science.gov (United States)

    Tsolaki, E; Nobelos, P; Geronikaki, A; Rekka, E A

    2014-01-01

    Reactive oxygen species, oxidative stress, and oxidative damage are increasingly assigned important roles as harmful factors in pathological conditions and ageing. ROS are potentially reactive molecules derived from the reduction of molecular oxygen in the course of aerobic metabolism. ROS can also be produced through a variety of enzymes. Under normal circumstances, ROS concentrations are tightly controlled by physiological antioxidants. When excessively produced, or when antioxidants are depleted, ROS can impose oxidative damage to lipids, proteins, sugars and DNA. This reduction-oxidation imbalance, called oxidative stress, can subsequently contribute to the development and progression of tissue damage and play a role in the pathology of various diseases. An antioxidant is defined as "any substance that, when present at low concentrations compared with those of a substrate, significantly delays, prevents or removes oxidative damage to this target molecule". Despite evidence that oxidative damage contributes to a wide range of clinically important conditions, few antioxidants act as effective drugs in vivo. Inter alia, the difficulty of measuring antioxidant efficacy in vivo makes the interpretation of results from clinical trials difficult. A large number of synthetic compounds have been reported to possess antioxidant activity. Several of them derive from natural antioxidants, others have various structures. In this review, some of the most often reported classes of heterocyclic antioxidant compounds, as well as methods for evaluation of their antioxidant activity are discussed.

  17. Significance of antioxidant potential of plants and its relevance to therapeutic applications.

    Science.gov (United States)

    Kasote, Deepak M; Katyare, Surendra S; Hegde, Mahabaleshwar V; Bae, Hanhong

    2015-01-01

    Oxidative stress has been identified as the root cause of the development and progression of several diseases. Supplementation of exogenous antioxidants or boosting endogenous antioxidant defenses of the body is a promising way of combating the undesirable effects of reactive oxygen species (ROS) induced oxidative damage. Plants have an innate ability to biosynthesize a wide range of non-enzymatic antioxidants capable of attenuating ROS- induced oxidative damage. Several in vitro methods have been used to screen plants for their antioxidant potential, and in most of these assays they revealed potent antioxidant activity. However, prior to confirming their in vivo therapeutic efficacy, plant antioxidants have to pass through several physiopharmacological processes. Consequently, the findings of in vitro and in vivo antioxidant potential assessment studies are not always the same. Nevertheless, the results of in vitro assays have been irrelevantly extrapolated to the therapeutic application of plant antioxidants without undertaking sufficient in vivo studies. Therefore, we have briefly reviewed the physiology and redox biology of both plants and humans to improve our understanding of plant antioxidants as therapeutic entities. The applications and limitations of antioxidant activity measurement assays were also highlighted to identify the precise path to be followed for future research in the area of plant antioxidants.

  18. Biology of Ageing and Role of Dietary Antioxidants

    Directory of Open Access Journals (Sweden)

    Cheng Peng

    2014-01-01

    Full Text Available Interest in relationship between diet and ageing is growing. Research has shown that dietary calorie restriction and some antioxidants extend lifespan in various ageing models. On the one hand, oxygen is essential to aerobic organisms because it is a final electron acceptor in mitochondria. On the other hand, oxygen is harmful because it can continuously generate reactive oxygen species (ROS, which are believed to be the factors causing ageing of an organism. To remove these ROS in cells, aerobic organisms possess an antioxidant defense system which consists of a series of enzymes, namely, superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx, and glutathione reductase (GR. In addition, dietary antioxidants including ascorbic acid, vitamin A, vitamin C, α-tocopherol, and plant flavonoids are also able to scavenge ROS in cells and therefore theoretically can extend the lifespan of organisms. In this connection, various antioxidants including tea catechins, theaflavins, apple polyphenols, black rice anthocyanins, and blueberry polyphenols have been shown to be capable of extending the lifespan of fruit flies. The purpose of this review is to brief the literature on modern biological theories of ageing and role of dietary antioxidants in ageing as well as underlying mechanisms by which antioxidants can prolong the lifespan with focus on fruit flies as an model.

  19. Abrus precatorius Leaves: Antioxidant Activity in Food and Biological Systems, pH, and Temperature Stability

    Directory of Open Access Journals (Sweden)

    Vanitha Reddy Palvai

    2014-01-01

    Full Text Available Natural antioxidants present in foods and other biological materials have attracted considerable interest because of their presumed safety and potential nutritional and therapeutic effects. Antioxidant constituents of plant materials act as radical scavengers and convert the radicals to less reactive species. Abrus precatorius (AP was analyzed for its proximate and phytochemical composition. The leaves were extracted with methanol (ME and analyzed for antioxidant activity by radical scavenging method, reducing power, ferric reducing capacity, and in vitro inhibition of Fenton’s reagent-induced oxidation in oil emulsion and microsomes. In addition, the effect of temperature (100∘C, 15, and 30 min and pH (4.5, 7, and 9 C on the antioxidant activity of ME was investigated. The leaves were rich in total polyphenols, flavonoids, β-carotene, glutathione, α-tocopherol, and ascorbic acid. The ME exhibited varying degree of antioxidant activity in a dose-dependent manner. The AP exhibited more inhibition of oxidation in microsomes (73% than compared to oil emulsion (21%. Heat treatment resulted in an increase of radical scavenging activity of extract (28% to 43%. At pH 4.5 the extract exhibited more antioxidant activity and stability compared to pH 7 and 9. Data indicates that potential exists for the utilization of Abrus precatorius as a natural antioxidant.

  20. Antioxidants Potential of the Filamentous Fungi (Mucor circinelloides

    Directory of Open Access Journals (Sweden)

    Ahsan Hameed

    2017-10-01

    Full Text Available Three important strains of Mucor circinelloides grown in complete and minimal media for specified period (72 h, 120 h and 168 h under submerged fermentation conditions were investigated for their potential antioxidants/secondary metabolite production. All mycelial extracts demonstrated effective antioxidant activities in terms of β-carotene/linoleic acid bleaching, radical scavenging, reduction of metal ions and chelating abilities against ferrous ions. Different extraction methods and solvent systems affected the recovery yield and antioxidant activities of the extracts significantly (p ≤ 0.05. Ethanolic extracts were found to be rich source of antioxidant components and subsequently more effective in antioxidant properties. Fermentation period and media used also significantly affected (p ≤ 0.05 the antioxidant production and the resulting antioxidant properties. The (ethanolic extracts of all the strains from late exponential growth phase (120 h showed highest antioxidant production with topmost reducing, chelating and radical scavenging capabilities. Strain MC277.49 was found to be the highest producer of antioxidants followed by MC108.16 and WJ11. Phenolic compounds were detected significantly in higher (p ≤ 0.05 amount succeeded by the condensed tannins and flavonoids. Total phenol content of each extract was attributed to overall antioxidant capacity. Submerged fermentation with nutritional stress conditions were found to be excellent way of producing surplus amount of natural antioxidants/secondary metabolites with their vast potential commercial application in food and pharmaceutical industries.

  1. Antioxidants Potential of the Filamentous Fungi (Mucor circinelloides).

    Science.gov (United States)

    Hameed, Ahsan; Hussain, Syed Ammar; Yang, Junhuan; Ijaz, Muhammad Umair; Liu, Qing; Suleria, Hafiz Ansar Rasul; Song, Yuanda

    2017-10-07

    Three important strains of Mucor circinelloides grown in complete and minimal media for specified period (72 h, 120 h and 168 h) under submerged fermentation conditions were investigated for their potential antioxidants/secondary metabolite production. All mycelial extracts demonstrated effective antioxidant activities in terms of β-carotene/linoleic acid bleaching, radical scavenging, reduction of metal ions and chelating abilities against ferrous ions. Different extraction methods and solvent systems affected the recovery yield and antioxidant activities of the extracts significantly ( p ≤ 0.05). Ethanolic extracts were found to be rich source of antioxidant components and subsequently more effective in antioxidant properties. Fermentation period and media used also significantly affected ( p ≤ 0.05) the antioxidant production and the resulting antioxidant properties. The (ethanolic) extracts of all the strains from late exponential growth phase (120 h) showed highest antioxidant production with topmost reducing, chelating and radical scavenging capabilities. Strain MC277.49 was found to be the highest producer of antioxidants followed by MC108.16 and WJ11. Phenolic compounds were detected significantly in higher ( p ≤ 0.05) amount succeeded by the condensed tannins and flavonoids. Total phenol content of each extract was attributed to overall antioxidant capacity. Submerged fermentation with nutritional stress conditions were found to be excellent way of producing surplus amount of natural antioxidants/secondary metabolites with their vast potential commercial application in food and pharmaceutical industries.

  2. Antioxidant activity potential of gamma irradiated carrageenan

    International Nuclear Information System (INIS)

    Abad, Lucille V.; Relleve, Lorna S.; Racadio, Charles Darwin T.; Aranilla, Charito T.; De la Rosa, Alumanda M.

    2013-01-01

    The antioxidant capacity of irradiated κ-, ι-, λ-carrageenans were investigated using the hydroxyl radical scavenging assay, reducing power assay and DPPH radical scavenging capacity assay. The degree of oxidative inhibition increased with increasing concentration and dose. The type of carrageenan had also an influence on its antioxidant activity which followed the order of lambda< iota< kappa. Increase in oxidative property with radiation dose can be attributed mainly to the depolymerization of the carrageenans with corresponding increase in reducing sugar. The antioxidant properties of these carrageenan oligomers were lower than that of ascorbic acid and galactose sugar. - Highlights: • The antioxidant capacity of gamma irradiated κ-, ι-, λ-carrageenans increased with increasing concentration and dose. • The type of carrageenan had an influence on its antioxidant activity which followed the order of lambda< iota< kappa. • Increase in oxidative property with radiation dose can be attributed mainly to the depolymerization of the carrageenans with corresponding increase in reducing sugar

  3. Ex Vivo Antioxidant Activity of Selected Medicinal Plants against Fenton Reaction-Mediated Oxidation of Biological Lipid Substrates

    Directory of Open Access Journals (Sweden)

    Namratha Pai Kotebagilu

    2015-01-01

    Full Text Available Free radical-mediated oxidation is often linked to various degenerative diseases. Biological substrates with lipids as major components are susceptible to oxygen-derived lipid peroxidation due to their composition. Lipid peroxide products act as biomarkers in evaluating the antioxidant potential of various plants and functional foods. The study focused on evaluation of the antioxidant potential of two extracts (methanol and 80% methanol of four medicinal plants, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, against Fenton reaction-mediated oxidation of three biological lipid substrates; cholesterol, low-density lipoprotein, and brain homogenate. The antioxidant activity of the extracts was measured by thiobarbituric acid reactive substances method. Also, the correlation between the polyphenol, flavonoid content, and the antioxidant activity in biological substrates was analyzed. Results indicated highest antioxidant potential by 80% methanol extract of Canthium parviflorum (97.55%, methanol extract of Andrographis paniculata (72.15%, and methanol extract of Canthium parviflorum (49.55% in cholesterol, low-density lipoprotein, and brain, respectively. The polyphenol and flavonoid contents of methanol extract of Andrographis paniculata in cholesterol (r=0.816 and low-density lipoprotein (r=0.948 and Costus speciosus in brain (r=0.977, polyphenols, and r=0.949, flavonoids correlated well with the antioxidant activity. The findings prove the antioxidant potential of the selected medicinal plants against Fenton reaction in biological lipid substrates.

  4. Oxidative Stress and Antioxidant Potential of One Hundred Medicinal Plants.

    Science.gov (United States)

    Hassan, Waseem; Noreen, Hamsa; Rehman, Shakila; Gul, Shehnaz; Kamal, Mohammad Amjad; Kamdem, Jean Paul; Zaman, Bakht; da Rocha, Joao B T

    2017-01-01

    Reactive species are produced in biological system because of redox reactions. The imbalance in pro-oxidant and antioxidant homeostasis leads to the production of toxic reactive oxygen and nitrogen species like hydrogen peroxide, organic peroxides, hydroxyl radicals, superoxide anion and nitric oxide. Inactivation of metabolic enzymes, oxidation of biomolecules and cellular damage are some of the prominent characteristics of reactive species. Similarly, oxidative stress has been associated with more than one hundred (100) pathologies such as atherosclerosis, diabetes, cardiovascular diseases, pancreatic and liver diseases, joint disorders, cardiac fibrosis, acute respiratory distress syndrome, neurological diseases (amyotrophic lateral sclerosis, Huntington's disorder, Parkinson's disease and Alzheimer's disease), ageing and cancer etc. The toxicity of reactive species is balanced by the integrated antioxidant systems, which include enzymatic and non-enzymatic antioxidants. Antioxidant therapies or defenses protect the biological sites by removing or quenching the free radicals (prooxidants). Medicinal plants can not only protect the oxidative damage, but also play a vital role in health maintenance and prevention of chronic degenerative diseases. This review will provide a valuable discussion of one hundred (100) well known medicinal plants, which may add to the optimization of antioxidants rank. Besides, some of the antioxidant evaluation techniques or mechanisms via which medicinal plants act as antioxidants are also described. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Biological Potential in Serpentinizing Systems

    Science.gov (United States)

    Hoehler, Tori M.

    2016-01-01

    Generation of the microbial substrate hydrogen during serpentinization, the aqueous alteration of ultramafic rocks, has focused interest on the potential of serpentinizing systems to support biological communities or even the origin of life. However the process also generates considerable alkalinity, a challenge to life, and both pH and hydrogen concentrations vary widely across natural systems as a result of different host rock and fluid composition and differing physical and hydrogeologic conditions. Biological potential is expected to vary in concert. We examined the impact of such variability on the bioenergetics of an example metabolism, methanogenesis, using a cell-scale reactive transport model to compare rates of metabolic energy generation as a function of physicochemical environment. Potential rates vary over more than 5 orders of magnitude, including bioenergetically non-viable conditions, across the range of naturally occurring conditions. In parallel, we assayed rates of hydrogen metabolism in wells associated with the actively serpentinizing Coast Range Ophiolite, which includes conditions more alkaline and considerably less reducing than is typical of serpentinizing systems. Hydrogen metabolism is observed at pH approaching 12 but, consistent with the model predictions, biological methanogenesis is not observed.

  6. Potential of Lichen Compounds as Antidiabetic Agents with Antioxidative Properties: A Review

    Science.gov (United States)

    Karunaratne, Veranja

    2017-01-01

    The advancement in the knowledge of potent antioxidants has uncovered the way for greater insight in the treatment of diabetic complications. Lichens are a rich resource of novel bioactive compounds and their antioxidant potential is well documented. Herein we review the antidiabetic potential of lichens which have received considerable attention, in the recent past. We have correlated the antidiabetic and the antioxidant potential of lichen compounds. The study shows a good accordance between antioxidant and antidiabetic activity of lichens and points out the need to look into gathering the scarce and scattered data on biological activities for effective utilization. The review establishes that the lichen extracts, especially of Parmotrema sp. and Ramalina sp. have shown promising potential in both antidiabetic and antioxidant assays. Ubiquitous compounds, namely, zeorin, methylorsellinate, methyl-β-orcinol carboxylate, methyl haematommate, lecanoric acid, salazinic acid, sekikaic acid, usnic acid, gyrophoric acid, and lobaric acid have shown promising potential in both antidiabetic as well as antioxidant assays highlighting their potential for effective treatment of diabetic mellitus and its associated complications. The available compilation of this data provides the future perspectives and highlight the need for further studies of this potent herbal source to harvest more beneficial therapeutic antidiabetic drugs. PMID:28491237

  7. Dietary antioxidant synergy in chemical and biological systems.

    Science.gov (United States)

    Wang, Sunan; Zhu, Fan

    2017-07-24

    Antioxidant (AOX) synergies have been much reported in chemical ("test-tube" based assays focusing on pure chemicals), biological (tissue culture, animal and clinical models), and food systems during the past decade. Tentative synergies differ from each other due to the composition of AOX and the quantification methods. Regeneration mechanism responsible for synergy in chemical systems has been discussed. Solvent effects could contribute to the artifacts of synergy observed in the chemical models. Synergy in chemical models may hardly be relevant to biological systems that have been much less studied. Apparent discrepancies exist in understanding the molecular mechanisms in both chemical and biological systems. This review discusses diverse variables associated with AOX synergy and molecular scenarios for explanation. Future research to better utilize the synergy is suggested.

  8. Evaluation of antioxidant, antihemolytic and antibacterial potential of six

    Directory of Open Access Journals (Sweden)

    Eimad dine Tariq Bouhlali

    2016-04-01

    These results suggested that date fruit extract, especially Jihl and Bousrdon extract, is not only an important source of antioxidants, which possess a high protective effect of membrane against free radical, but also a potential source of antibacterial components.

  9. Antioxidant potential of six pine species.

    Science.gov (United States)

    Guri, Anilda; Kefalas, Panagiotis; Roussis, Vassilios

    2006-04-01

    The aim of the study was to evaluate the antioxidant efficacy of extracts obtained from six Pinus species (P. pinea, P. brutia, P. radiata, P. halepensis, P. attenuata, P. nigra) growing in natural forests in Southern Greece. Specimens of fresh, dry needles and pine bark were extracted and fractionated with a variety of organic solvents and the efficient concentration and their radical scavenging activity was evaluated by the Co(II)/EDTA induced luminol plateau chemiluminescence assay. Copyright 2006 John Wiley & Sons, Ltd.

  10. Antioxidant potential of ethanolic extract of aerial parts of Coleus ...

    African Journals Online (AJOL)

    Administrator

    2011-09-26

    Sep 26, 2011 ... The IC50 values of the ethanolic extract of C. spicatus and ascorbate were found to be 380 µg/ml and 410 ... cancer, Parkinson's disease, Alzheimer's disease, etc. (Mensor et al., 2001; Parejo et al., 2002; Hou ... biological properties and mechanisms of actions. Natural antioxidants tend to be safer and also ...

  11. Potential of mangrove Avicennia rumphiana extract as an antioxidant agent using multilevel extraction

    Science.gov (United States)

    Sulmartiwi, L.; Pujiastuti, D. Y.; Tjahjaningsih, W.; Jariyah

    2018-04-01

    Avicennia rumphiana is one of abundant mangrove found in Indonesia. Multilevel extraction methods were simultaneously conducted to screen the antioxidant activity from mangrove. The leaves, fruits and barks were consequently extracted using n-hexane, ethyl acetate and ethanol. The presence of phenolic, flavonoids and tannins compounds were characterized by quantitative and qualitative phytochemical assay as well as the antioxidant activity was examined using DPPH-free radical scavenging assay. The phytochemical test revealed that all of the extracts showed positive result. The fruits extract exhibited the highest phenolic, flavonoid and tannin (23.86 mg/g, 13.77 mg/g and 74.63 mg/g), respectively. The extracts were further confirmed for antioxidant using IC50 value and revealed that ethyl acetate extract has antioxidant activity better than n-hexane and ethyl acetate extract. Furthermore, this study indicated that mangrove Avicennia rumphiana could be subsequently explored for other biological activities due to their potential secondary metabolites.

  12. Antioxidant Capacity and Antimutagenic Potential of Murraya koenigii

    Directory of Open Access Journals (Sweden)

    Maryam Zahin

    2013-01-01

    Full Text Available It is well known that the intake of antioxidants with increased consumption of fruits and vegetables and medicinal herbs contributes towards reduced risk of certain diseases including cancers. This study aims to evaluate the broad-spectrum antioxidant and antimutagenic activities as well as to elucidate phytochemical profile of an Indian medicinal plant Murraya koenigii (curry leaves. Leaves of the plant were successively fractionated in various organic solvents. Benzene fraction demonstrated the highest phenolic content followed by petroleum ether. The benzene fraction showed maximum antioxidant activity in all tested assays, namely, phosphomolybdenum, 2,2-diphenyl-1-picrylhydrazyl (DPPH free radical, ferric reducing antioxidant power (FRAP and cupric reducing antioxidant capacity (CUPRAC assays. Based on the promising broad-spectrum antioxidant activity, benzene fraction was further evaluated for antimutagenic activity and showed a dose-dependent antimutagenic response in Ames Salmonella mutagenicity assay. It inhibited 72–86% mutagenicity induced by sodium azide, methyl methanesulfonate, benzo(apyrene, and 2-aminoflourene at the maximum tested concentration (100 μg/mL in Salmonella typhimurium tester strains. At least 21 compounds were detected by GC/MS. The findings clearly demonstrated that phenolic-rich benzene fraction has promising broad-spectrum antioxidant and antimutagenic property and needs further evaluation to exploit its therapeutic potential.

  13. Investigations into the antioxidant and anti-inflammatory potentials of ...

    African Journals Online (AJOL)

    This study was designed to investigate the antioxidant and anti-inflammatory potentials of the ethanolic extract and fractions of Citrus sinensis stem-bark, investigate and to evaluate the hepatoprotective potential of the most active fraction (EAF) of the ethanolic extract against acetaminophen-induced acute hepatic injury.

  14. Evaluation of nutritional quality and antioxidant potential of pigeonpea genotypes.

    Science.gov (United States)

    Sekhon, Japjot; Grewal, Satvir Kaur; Singh, Inderjit; Kaur, Jagmeet

    2017-10-01

    Three released cultivars, forty four advance breeding lines and three wild species of pigeonpea ( Cajanus cajan L. Millsp) were evaluated for nutritional, antinutritional traits and antioxidant potential so as to identify promising genotypes. The average content of total soluble sugars, starch and total soluble proteins was found to be 43.66, 360.51 and 204.54 mg/g, respectively. Antioxidant potential in terms of free radical scavenging activity (DPPH), ferric reducing antioxidant power (FRAP), reducing power, hydroxyl radical scavenging activity and superoxide anion radical scavenging activity was estimated. The diversity was observed in genotypes with all the traits. AL 1960, AL 2000, AL 2009 and AL 2046 had high total soluble proteins, medium antinutritional factors and good antioxidant potential. AL 201, AL 1931, AL 1932, AL 1960, AL 2046, AL 2049 and AL 2060 had good nutritional value as protein and starch content ranged from 20 to 23 and 42 to 52%, respectively. Wild species C. scarabaeoides 1CP15683/W15 had lower carbohydrates, proteins, and antinutritional traits while high antioxidant potential due to high total phenols, DPPH, FRAP and reducing power. The diversity observed in genotypes with all the traits could be further used to develop nutritionally important genotypes.

  15. Antioxidant Potential of Cyclopeptyide Alkaloids Isolated from Zizyphus Oxphylla

    International Nuclear Information System (INIS)

    Kaleem, W.A.; Muhammad, N.; Khan, H.; Rauf, A.; Haq, M.Z.U.; Qayum, M.; Khan, A.Z.; Nisar, M.; Obaidullah, M.

    2015-01-01

    The present study reports on the antioxidant potential of five cyclopeptide alkaloids isolated from Zizyphus oxyphylla including Oxyphylline-D 1, Nummularin-C 2, Nummularin-R 3, Oxyphylline-B 4, Oxyphylline C 5 using DPPH free radical assay, nitric oxide radical assay and reducing power assay. The isolated alkaloids demonstrated marked antioxidant potential in a concentration dependent manner. Among the tested molecules, the compounds, 2 was most potent with IC50 values of 27.23, 32.03 and 22.45 μg/ml in DPPH free radical assay, nitric oxide radical assay and reducing power assay respectively. (author)

  16. Profiling of antioxidant potential and phytoconstituents of Plantago coronopus

    Directory of Open Access Journals (Sweden)

    C. G. Pereira

    Full Text Available Abstract The halophyte species Plantago coronopus has several described ethnomedicinal uses, but few reported biological activities. This work carried out for the first time a comparative analysis of P. coronopus organs in terms of phenolic composition and antioxidant activity of organic and water extracts from roots, leaves and flowers. The leaves contents in selected nutrients, namely amino acids and minerals, are also described. Roots (ethyl acetate and methanol extracts had the highest radical scavenging activity (RSA towards 1,1-diphenyl-2-picrylhydrazyl (DPPH and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS radicals, while leaves (hexane extract had higher RSA on nitric oxide radical and iron chelating ability. High performance liquid chromatography (HPLC analysis identified eighteen phenolics from which salicylic acid and epicatechin are here firstly described in Plantago species. Leaves had mineral levels similar to those of most vegetables, proving to be a good source for elements like calcium, sodium, iron and magnesium, and also for several of the essential amino acids justifying it use as food. Our results, especially those regarding the phenolics composition, can explain the main traditional uses given to this plantain and, altogether, emphasize the potential of P. coronopus as a source of bioactive molecules particularly useful for the prevention of oxidative stress-related diseases.

  17. Biological potential of Stillingia oppositifolia

    Directory of Open Access Journals (Sweden)

    Betania Barros Cota

    2011-02-01

    Full Text Available Organic extracts from leaves and stems of Stillingia oppositifolia Baill. ex Müll. Arg., Euphorbiaceae, were screened for antifungal and cytotoxic properties. The extracts presented Minimum Inhibitory Concentration values around 250 µg.mL-1 against Candida krusei and Candida tropicalis, and around 63 µg.mL-1 for Paracoccidioides brasiliensis. They were tested on three human cell lines (UACC-62, MCF-7, and TK-10, disclosing GI50 values, (concentration able to inhibit 50% of the cell growth ranging from 50 to 100 µg.mL-1. Organic extract from stems furnished hexanic, dichloromethanic and aqueous phases after partition. Chromatographic fractionation of the hexanic soluble phase of the stems yielded aleuritolic acid 3-acetate, β-sitosterol, 3-epi-β-amyrin, β-amyrone and palmitic acid. These compounds showed antifungal and cytotoxic activities in the same range as the organic crude extract and low toxic effect against mononuclear cells obtained from human peripheral blood. This is the first report on chemical and biological potential of S. oppositifolia.

  18. Evaluation of In Vitro Antioxidant Potential of Cordia retusa.

    Science.gov (United States)

    Amudha, Murugesan; Rani, Shanmugam

    2016-01-01

    The present study was carried out to investigate the antioxidant potential, total flavonoid and phenolic content in extracts of aerial parts of Cordia retua (Vahl.) Masam. The samples such as ethyl acetate and ethanol extracts were tested using six in vitro models such as 2,2-diphenyl-1-picrylhydrazyl, nitric oxide radical, iron chelating, hydroxyl radical, superoxide radical scavenging activity and total antioxidant activity to evaluate the in vitro antioxidant potential of C. retusa by spectrophotometrically. Total flavonoid and phenolic content in samples were estimated using aluminum chloride colorimetric and Folin-Ciocalteu method. The results were analyzed statistically by the regression method. Half maximal inhibitory concentration (IC50) of the ethanol extract was found to be 596 μg/ml for DPPH, 597 μg/ml for nitric oxide radical, 554 μg/ml for iron chelating, 580 μg/ml for hydroxyl radical, 562 μg/ml for superoxide radical and 566 μg/ml for total antioxidant capacity. Furthermore, the total flavonoid content and total phenolic content of the ethanol extract were found to be 2.71 mg gallic acid equivalent per gram of extract and 1.86 mg quercetin equivalent per gram of extract, respectively. In all the testing, a significant correlation existed between concentrations of the extract and percentage inhibition of free radicals. The results of the present comprehensive analysis demonstrated that C. retusa possess potent antioxidant activity, high flavonoid and phenolic content. The antioxidant property may be related to the polyphenols and flavonoids present in the extract. These results clearly indicated that C. retusa is effective against free radical mediated diseases as a natural antioxidant.

  19. Evaluation of In Vitro Antioxidant Potential of Cordia retusa

    Science.gov (United States)

    Amudha, Murugesan; Rani, Shanmugam

    2016-01-01

    The present study was carried out to investigate the antioxidant potential, total flavonoid and phenolic content in extracts of aerial parts of Cordia retua (Vahl.) Masam. The samples such as ethyl acetate and ethanol extracts were tested using six in vitro models such as 2,2-diphenyl-1-picrylhydrazyl, nitric oxide radical, iron chelating, hydroxyl radical, superoxide radical scavenging activity and total antioxidant activity to evaluate the in vitro antioxidant potential of C. retusa by spectrophotometrically. Total flavonoid and phenolic content in samples were estimated using aluminum chloride colorimetric and Folin-Ciocalteu method. The results were analyzed statistically by the regression method. Half maximal inhibitory concentration (IC50) of the ethanol extract was found to be 596 μg/ml for DPPH, 597 μg/ml for nitric oxide radical, 554 μg/ml for iron chelating, 580 μg/ml for hydroxyl radical, 562 μg/ml for superoxide radical and 566 μg/ml for total antioxidant capacity. Furthermore, the total flavonoid content and total phenolic content of the ethanol extract were found to be 2.71 mg gallic acid equivalent per gram of extract and 1.86 mg quercetin equivalent per gram of extract, respectively. In all the testing, a significant correlation existed between concentrations of the extract and percentage inhibition of free radicals. The results of the present comprehensive analysis demonstrated that C. retusa possess potent antioxidant activity, high flavonoid and phenolic content. The antioxidant property may be related to the polyphenols and flavonoids present in the extract. These results clearly indicated that C. retusa is effective against free radical mediated diseases as a natural antioxidant. PMID:27168685

  20. Antioxidant potential of water hyacinth (Eichornia crassipes): In vitro antioxidant activity and phenolic composition

    DEFF Research Database (Denmark)

    Surendraraj, A.; Farvin, Sabeena; Anandan, R.

    2013-01-01

    The aims of the present study were (a) to extract and quantify the main phenolic acids and tocopherols from the petiole, leaves, and flowers of Eichornia crassipes; (b) to evaluate the antioxidant capacity of the extracts in four in vitro systems (1,1-diphenyl-2-pycryl-hydrazyl [DPPH] radical...... and in the antioxidant activities of extracts from the various parts of E. crassipes. Out of the 11 phenolic acids analyzed, ethanolic extracts contained high amounts of gallic, protocatechuic, gentisic, and p-hydroxybenzoic acid, whereas, water extracts contained less amounts of a varied number of phenolic acids...... oil. Our results demonstrate that E. crassipes, an underutilized aquatic weed, could be a potential natural antioxidant source for food, feed, and pharmaceutical applications. © 2013 Copyright Taylor & Francis Group, LLC....

  1. Evaluation of Antioxidant and Antimicrobial Potential of Two ...

    African Journals Online (AJOL)

    Background: Plants are the natural source of antioxidants as well as antimicrobial compounds that has great potentials in pharmaceutical industry. In the present study, two medicinal plants Atropa belladonna and Matricaria chamomilla were collected from Northern areas of. Pakistan. Materials and Methods: The extracts of ...

  2. Phytochemicals and in vitro antioxidant potentials of defatted ...

    African Journals Online (AJOL)

    acid and vitamin C were 195.57 and 519.28 g/mg of extract respectively and total phenol content equivalent of gallic acid was 1427.87 ìg/mg. The reductive potential increased with increasing concentration of extract. The results obtained from this study reveal that the extract is rich in antioxidant components with several ...

  3. Evaluation of antioxidant and antimutagenic potential of Justicia ...

    African Journals Online (AJOL)

    In this study, the ethanolic extract of Justicia adhatoda (Acanthaceae) leaves was prepared by successive extraction procedure in increasing polarity order. Moreover, there are no antimutagenic evaluation reports found. In the present study our aim was to determine the antioxidant and antimutagenic potential of different ...

  4. Synthesis and Biological Investigation of Antioxidant Pyrrolomorpholine Spiroketal Natural Products

    Science.gov (United States)

    Verano, Alyssa Leigh

    The pyrrolomorpholine spiroketal natural product family is comprised of epimeric furanose and pyranose isomers. These compounds were isolated from diverse plant species, all of which are used as traditional Chinese medicines for the treatment of a variety of diseases. Notably, the spiroketal natural products acortatarins A and B exhibit antioxidant activity in a diabetic renal cell model, significantly attenuating hyperglycemia-induced production of reactive oxygen species (ROS), a hallmark of diabetic nephropathy. The xylapyrrosides, additional members of the family, also inhibit t-butyl hydroperoxide-induced cytotoxicity in rat vascular smooth muscle cells. Accordingly, these natural products have therapeutic potential for the treatment of oxidative stress-related pathologies, and synthetic access would provide an exciting opportunity to investigate bioactivity and mechanism of action. Herein, we report the stereoselective synthesis of acortatarins A and B, furanose members of the pyrrolomorpholine spiroketal family. Our synthetic route was expanded to synthesize the pyranose congeners, thus completing entire D-enantiomeric family of natural products. Efficient access towards these scaffolds enabled systematic analogue synthesis, investigation of mechanism-of-action, and the discovery of novel antioxidants.

  5. Evaluation of antifungal and antioxidant potential of two medicinal plants: Aconitum heterophyllum and Polygonum bistorta

    Directory of Open Access Journals (Sweden)

    Neelma Munir

    2014-07-01

    Conclusions: It was observed that A. heterophyllum and P. bistorta have significant antioxidant activity. Higher antioxidant activity was recorded in methanolic extract of A. heterophyllum as compared to its ethanolic extract. However, in case of P. bistorta ethanolic extract of the plant exhibited higher antioxidant potential than methanolic extracts. Hence both of these plants have significant antimicrobial as well as antioxidant potential.

  6. Antioxidant and drug detoxification potentials of Hibiscus sabdariffa anthocyanin extract.

    Science.gov (United States)

    Ajiboye, Taofeek O; Salawu, Nasir A; Yakubu, Musa T; Oladiji, Adenike T; Akanji, Musbau A; Okogun, Joseph I

    2011-04-01

    The antioxidant and drug metabolizing potentials of Hibiscus anthocyanin extract in CCl(4)- induced oxidative damage of rat liver was investigated. Hibiscus anthocyanin extract effectively scavenge α-diphenyl-β-picrylhydrazyl (DPPH) radical, superoxide ion, and hydrogen peroxide. It produced a 92% scavenging effect of DPPH radical at a concentration of 2.0 mg/mL. Hibiscus anthocyanin extract produced a 69 and 90% scavenging effect on superoxide ion and hydrogen peroxide, respectively, at 1.0 mg/mL, which compared favorably with the synthetic antioxidant (butylated hydroanisole and α-tocopherol). A reducing power of this anthocyanin was examined using K(3)Fe(CN)(6). Hibiscus anthocyanin extract has reducing power that is approximately 2-fold that of the synthetic antioxidant, butylated hydroanisole. Hibiscus anthocyanin extract produced a significantly increase and completely attenuated the CCl(4)-mediated decrease in antioxidant enzymes (e.g., catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase). However, the level of nonenzymic antioxidant molecules (i.e., vitamins C and E) were significant preserved by Hibiscus anthocyanin extract. There was an induction of phase II drug-detoxifying enzymes: glutathione S-transferase, NAD(H):quinone oxidoreductase, and uridyl diphosphoglucuronosyl transferase by 65, 45, and 57%, respectively. In view of these properties, Hibiscus sabdariffa anthocyanin extract can act as a prophylactic by intervening as a free radical scavenger both in vitro and in vivo as well as inducing the phase II drug detoxification enzymes.

  7. Novel hydrazones – antioxidant potential and stabilization via polysaccharide particles

    International Nuclear Information System (INIS)

    Hristova-Avakumova, N; Hadjimitova, V; Nikolova-Mladenova, B; Yoncheva, K

    2017-01-01

    In this study, we aimed to: i) determine the impact of three new isonicotinoyl hydrazones derivatives in in vitro systems used to investigate free radical processes - radical scavenging approach (ABTS and DPPH) and iron induced peroxidation in lipid containing model systems and ii) evaluate the potential of polysaccharide-based particles to act as protective carriers preserving the antioxidant activity (AOA) of the tested compounds. The tested compounds revealed excellent antioxidant effectiveness in the ABTS system. In the DPPH radical scavenging assay the compounds exhibited very weak or absence of AOA. The data from the iron induced peroxidation methods disclosed better antioxidant properties of the derivatives in the system containing egg yolk homogenate which is more plausible compared to the lecithin containing one. The incorporation of a bromine atom on 5 th position in salicylaldehyde moiety is associated with diminishment of the radical scavenging activity in the systems containing stable free radicals but its AOA reduction after encapsulation during the storage was only 9.17%. The obtained data indicate that compounds have proven themselves as promising candidates for further evaluation as antioxidant agents. Their encapsulation in chitosan-alginate particles could be a useful approach for improving the stability of their antioxidant properties. (paper)

  8. Evaluation of antioxidant potential of citrus peel extracts

    International Nuclear Information System (INIS)

    Chatha, S.A.S.; Hussain, A.I.; Asi, M.R.

    2011-01-01

    The antioxidant potential of different solvent extracts of three different locally grown citrus varieties; grape fruit, lemon and mussambi, was assessed using some antioxidant assays like estimation of total phenolic contents (TPC), total flavonoids contents (TFC), percentage inhibition of linoleic acid oxidation and DPPH free radical scavenging capacity. The yield of extracts was found in the range of 17.92-30.8%. TPC, TFC, percent inhibition of linoleic acid oxidation and DPPH radical scavenging capacity of different citrus peel extracts were found in range of 2.72 - 3.77 g/100g as Gallic Acid Equivalent (GAE), 2.20-2.98 g/100g as Catechine Equivalent (CE), 68.20 - 91.78% and 19.53 - 41.88 mg/mL, respectively. Statistical analysis showed significant (p < 0.05) variations in the yield and antioxidant potentials of the extracts with respect to different species and solvent systems. From the results it is reasonable to say that methanolic extracts of citrus peels have exhibited varying degree of antioxidant potentials. (author)

  9. Bioactive compounds and antioxidant potential for polyphenol-rich cocoa extract obtained by agroindustrial residue.

    Science.gov (United States)

    Gabbay Alves, Taís Vanessa; Silva da Costa, Russany; Aliakbarian, Bahar; Casazza, Alessandro Alberto; Perego, Patrizia; Pinheiro Arruda, Mara Silvia; Carréra Silva Júnior, José Otávio; Converti, Attilio; Ribeiro Costa, Roseane Maria

    2017-11-10

    Processing of cocoa (Theobroma cacao L.) beans responsible for agricultural exports leads to large amounts of solid waste that were discarded, however, this one presents high contents of metabolites with biological activities. The major objective of this study was to valorise cocoa agroindustrial residue obtained by hydraulic pressing for extract rich in antioxidants. For it, the centesimal composition of residue was investigated, the green extraction was carried out from the residue after, the bioactive compounds, sugar contents and screaming by HPTLC were quantified for extract. The extract has a total polyphenol content of 229.64 mg/g and high antioxidant activity according to ABTS 225.0 μM/g. HTPLC analysis confirmed the presence in the extract, residue of terpenes, sesquiterpenes, flavonoids and antioxidant activity. These results, as a whole, suggest that the extract from the cocoa residue has interesting characteristics to alternative crops with potential industrial uses.

  10. Helichrysum monizii Lowe: phenolic composition and antioxidant potential.

    Science.gov (United States)

    Gouveia, Sandra; Castilho, Paula C

    2012-01-01

    In Madeira Archipelago there are four endemic Helichyrsum species and three of them are used in the traditional medicine. Helichrysum monizii is a rare endemism with very scarce information available concerning its uses in the local traditional medicine. The aim of this work was to study for the first time Helichrysum monizii in terms of its antioxidant capacity and the identification of the phenolic compounds to which that activity is due. Three different methods of extraction were performed and total phenolic and flavonoid contents of extracts were correlated to radical scavenging and antioxidant capacity by DPPH, ABTS, FRAP and β-carotene assays. An HPLC-DAD-ESI/MS(n) method was employed for the separation and identification of the phenolic and flavonoid components. The results revealed a high antioxidant potential mainly related to the phenolic profile of the plant. Polar components of methanol extracts of Helichrsyum monizii were detected by a high-performance liquid chromatography/electrospray ionisation tandem mass spectrometry (HPLC-DAD-ESI/MS(n) ) method. Thirty-three compounds were identified and 19 of them were identified as quinic acid derivatives. The high antioxidant potential Helichrysum monizii was for the first time established. Dicaffeoylquinic acids are the main responsible for that activity. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Antioxidant activity and potential photoprotective from amazon native flora extracts.

    Science.gov (United States)

    Martins, Francislene J; Caneschi, César A; Vieira, José L F; Barbosa, Wagner; Raposo, Nádia R B

    2016-08-01

    Plant species are sources of active compounds that can fight and/or prevent damage caused by reactive oxygen species, which enables the development of natural products that can help to prevent premature aging caused by exposure to solar radiation. This study assessed the antioxidant and photoprotective activities of six dried extracts of plants from the Brazilian Amazon biome. Plant extracts were prepared in 70% (v/v) ethanol by dynamic maceration for 72h in the dark, and then filtered, concentrated and lyophilized. The extracts were subjected to a phytochemical screening. The antioxidant activity was measured using a 2,2-diphenyl-1-picrylhydrazyl assay and the photoprotection assay was performed using the diffuse transmittance technique. The data obtained from the antioxidant activity assay was evaluated by Student's t-test for independent samples, with the aid of Statistical Package for Social Sciences v.14.0 for Windows software. The flavonoids represent a special metabolites class present in all analyzed extracts. The antioxidant activity (μgmL(-1)) decreased in the following order: Aniba canelilla (1.80±0.16), Brosimum acutifolium (2.84±0.38), Dalbergia monetaria (5.46±0.17) or Caesalpinia pyramidalis (6.45±1.18), Arrabidaea chica (15.35±0.86), and Aspidosperma nitidum (99.14±2.3). Only D. monetaria showed a considerable sun protection factor allowing for labeling (6.0±0.3). The D. monetaria extract was considered the most promising sample because it had optimal antioxidant and photoprotective activities against solar radiation, considering the limit established by regulatory agencies. These extracts with antioxidant potential can be used in photoprotective formulations, providing synergistic photoprotective effect or elevating the adeed value of the product. Additionally, these formulations are attractive to a population who searchs for products made with natural ingredients. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Antioxidant and antimutagenic potential of Psidium guajava leaf extracts.

    Science.gov (United States)

    Zahin, Maryam; Ahmad, Iqbal; Aqil, Farrukh

    2017-04-01

    Fruits, vegetables and medicinal herbs rich in phenolics antioxidants contribute toward reduced risk of age-related diseases and cancer. In this study, Psidium guajava leaf extract was fractionated in various organic solvents viz. petroleum ether, benzene, ethyl acetate, ethanl and methanol and tested for their antioxidant and antimutagenic properties. Methanolic fraction showed maximum antioxidant activity comparable to ascorbic acid and butylated hydroxyl toluene (BHT) as tested by DPPH free radical scavenging, phosphomolybdenum, FRAP (Fe3 + reducing power) and CUPRAC (cupric ions (Cu 2+ ) reducing ability) assays. The fraction was analyzed for antimutagenic activities against sodium azide (NaN 3 ), methylmethane sulfonate (MMS), 2-aminofluorene (2AF) and benzo(a)pyrene (BP) in Ames Salmonella tester strains. The methanol extracted fraction at 80 μg/ml concentration inhibited above 70% mutagenicity. Further, phytochemical analysis of methanol fraction that was found to be most active revealed the presence of nine major compounds by gas chromatography-mass spectrometry (GC-MS). This data suggests that guava contains high amount of phenolics responsible for broad-spectrum antimutagenic and antioxidant properties in vitro and could be potential candidates to be explored as modern phytomedicine.

  13. Guava: phytochemical composition of a potential source of antioxidants for cosmetic and/or dermatological applications

    Directory of Open Access Journals (Sweden)

    Bruna Galdorfini Chiari-Andréo

    2017-06-01

    Full Text Available ABSTRACT Guava (Psidium guajava L. is a native fruit of the American tropics with commercial applications for its taste, flavor and aroma. Numerous pharmacological uses have been described for it, such as the antiseptic effect of its leaves, the use of the fresh fruit and tea from its leaves for the treatment of diarrhea, dysentery, diabetes mellitus, and others. However, considering its rich composition, the guava also is a potential source of antioxidants to be used in the development of new formulations for cosmetic and/or dermatological applications, the main focus of this research. Herein, we describe the study of the phytochemical composition and the antioxidant activity of a guava extract prepared with non-toxic solvents aiming its use at biological applications. High performance liquid chromatography and mass spectrometry were employed to identify the major components, while thermoanalytical measurements and hot stage microscopy were used to assess the chemical stability of guava fruit extract. The antioxidant activity was also evaluated assessing the SOD-like activity and ABTS free radical scavenger. The results show that the extract is a rich source of phenolic compounds, such as quercetin, kaempferol, schottenol, among many others. All of the components found in guava extract exhibit biological effects according to the literature data, mainly antioxidant properties.

  14. Pulicaria undulata: A Potential Phytochemical, Antimicrobial and Antioxidant Source

    International Nuclear Information System (INIS)

    Ajaib, M.; Rehman, A.M.U.

    2015-01-01

    Phytochemical analysis, antimicrobial and antioxidant activities of petroleum ether, chloroform, methanol and aqueous extracts of the plant Pulicari aundulata (L.) C. A. Myer was carried out by using various techniques. The phytochemical analysis of the plant material showed the presence of alkaloids (15.53 percentage), flavonoids (15.81 percentage), phenols (18.91 percentage), saponins (12.13 percentage) and tannins (6.42 percentage). Antimicrobial activity indicated that methanolic extract showed maximum antibacterial potential 44 ± 3.05 mm against P. aureginosa, chloroform extract 39 ± 0.5 mm and petroleum ether extract 37 ± 2.6 mm against S. aureus. The petroleum ether extract showed maximum zone of inhibition of antifungal potential by A. niger which was 32 ± 1.1 mm. The MIC assay was carried out for further analysis which showed the MIC value of methanolic extract was 0.051 ± 0.1 at 1 mg/ml against P. aureginosa and the MIC value against A. niger was 0.52 ± 0.22 at 0.2 mg/ml. Antioxidant potential was determined by using four methods 1,1-diphenyl-2- picrylhydrazyl radical scavenging activity (DPPH), total antioxidant activity (TAA), total phenolic contents (TPC) and metal chelating activity (MC). The aqueous extract showed highest value of percentage DPPH 73.55 percentage at 250 μg/ml and the IC50 value of aqueous extract was 214.45 ± 0.67. The maximum values of total antioxidant activity (3.607 ± 0.33) was observed by aqueous extract, total phenolic content (11.76 ± 2.1) by chloroform and metal chelating activity (64.19 ± 1.5) by aqueous extract. (author)

  15. Colorimetric Analysis of Hibiscus Beverages and their Potential Antioxidant Properties.

    Science.gov (United States)

    Camelo-Méndez, G A; Vanegas-Espinoza, P E; Escudero-Gilete, M L; Heredia, F J; Paredes-López, O; Del Villar-Martínez, A A

    2018-05-25

    In food industry, roselle beverages and their subproducts could be functional ingredients since they are an excellent source of bioactive compounds with improved performance due to their important anthocyanins content. The aim of this study was to analyze anthocyanin content and antioxidant properties of aqueous infusions elaborated with color contrasting Hibiscus materials and design a mathematical model in order to predict color-composition relationship. Color measurements of beverages from roselle (Negra, Sudan and Rosa) were made by transmission spectrophotometry, anthocyanins quantification was determined by HPLC, and antioxidant potential was evaluated by in vitro methods (ABTS and FRAP assays). Beverages prepared with particle size minor of 250 μm presented until 4- and 2- times more anthocyanins content and antioxidant capacity respectively, in comparison to beverages prepared with powders with particle size major of 750 μm. Positive correlations among pigments composition and color parameters were found (p Hibiscus beverages with high anthocyanin content. The obtained models could be an important tool to be used in food industry for pigment characterization or functional compounds with potential health benefits.

  16. Antioxidant activity, acetylcholinesterase and tyrosinase inhibitory potential of Pulmonaria officinalis and Centarium umbellatum extracts

    Directory of Open Access Journals (Sweden)

    Elena Neagu

    2018-03-01

    Full Text Available In this study several investigations and tests were performed to determine the antioxidant activity and the acetylcholinesterase and tyrosinase inhibitory potential of Pulmonaria officinalis and Centarium umbellatum aqueous extracts (10% mass and ethanolic extracts (10% mass and 70% ethanol, respectively. Moreover, for each type of the prepared extracts of P. officinalis and of C. umbellatum the content in the biologically active compounds – polyphenols, flavones and proanthocyanidins was determined. The antioxidant activity was assessed using two methods, namely the 2,2-diphenyl-1-picrylhydrazyl (DPPH assay and reducing power assay. The analyzed plant extracts showed a high acetylcholinesterase and tyrosinase inhibitory activity in the range of 72.24–94.24% (at the highest used dose – 3 mg/mL, 66.96% and 94.03% (at 3 mg/mL, respectively correlated with a high DPPH radical inhibition – 70.29–84.9% (at 3 mg/mL. These medicinal plants could provide a potential natural source of bioactive compounds and could be beneficial to the human health, especially in the neurodegenerative disorders and as sources of natural antioxidants in food industry. Keywords: Acetylcholinesterase inhibitory activity, Tyrosinase inhibitory activity, Antioxidant activity, Pulmonaria officinalis and Centarium umbellatum

  17. A systems biology perspective on Nrf2-mediated antioxidant response

    International Nuclear Information System (INIS)

    Zhang Qiang; Pi Jingbo; Woods, Courtney G.; Andersen, Melvin E.

    2010-01-01

    Cells in vivo are constantly exposed to reactive oxygen species (ROS) generated endogenously and exogenously. To defend against the deleterious consequences of ROS, cells contain multiple antioxidant enzymes expressed in various cellular compartments to scavenge these toxic species. Under oxidative stresses, these antioxidant enzymes are upregulated to restore redox homeostasis. Such an adaptive response results from the activation of a redox-sensitive gene regulatory network mediated by nuclear factor E2-related factor 2. To more completely understand how the redox control system is designed by nature to meet homeostatic goals, we have examined the network from a systems perspective using engineering approaches. As with man-made control devices, the redox control system can be decomposed into distinct functional modules, including transducer, controller, actuator, and plant. Cells achieve specific performance objectives by utilizing nested feedback loops, feedforward control, and ultrasensitive signaling motifs, etc. Given that endogenously generated ROS are also used as signaling molecules, our analysis suggests a novel mode of action to explain oxidative stress-induced pathological conditions and diseases. Specifically, by adaptively upregulating antioxidant enzymes, oxidative stress may inadvertently attenuate ROS signals that mediate physiological processes, resulting in aberrations of cellular functions and adverse consequences. Lastly, by simultaneously considering the two competing cellular tasks-adaptive antioxidant defense and ROS signaling-we re-examine the premise that dietary antioxidant supplements is generally beneficial to human health. Our analysis highlights some possible adverse effects of these widely consumed antioxidants.

  18. Francisella tularensis - potential biological agent

    International Nuclear Information System (INIS)

    Taleski, V.

    2009-01-01

    epidemic of glandular/oropharyngeal tularemia occurs in East part of the country (26 cases confirmed by serology only, subspecies not confirmed). F. tularensis could be used as a biological weapon in a number of ways. Release in a dense populated area would be expected to result in an abrupt onset of large numbers of acute, nonspecific febrile illness beginning after 3-5 days (incubation 1-14 days). An aerosol release would likely have the greatest adverse medical and public health consequences. Airborne F. tularensis would be expected to principally cause pleuropneumonitis, might contaminate the eye (ocular tularaemia); penetrate broken skin (ulceroglandular or glandular disease); or cause oropharyngeal disease with cervical lymphadenitis. Stockpiling effective antibiotics to treat infected people, coordinating a nation-wide program, sharing of information, education for health professionals (prevention, diagnosis, treatment), the public and the media are essential needs for prevention and control of tularemia, occurred naturally or by possible bio attack by F.tularensis.(author)

  19. Piper betle extracts exhibit antitumor activity by augmenting antioxidant potential.

    Science.gov (United States)

    Alam, Badrul; Majumder, Rajib; Akter, Shahina; Lee, Sang-Han

    2015-02-01

    The present study was conducted to evaluate the methanolic extract of Piper betle leaves (MPBL) and its organic fractions with regard to antitumor activity against Ehrlich ascites carcinoma (EAC) in Swiss albino mice and to confirm their antioxidant activities. At 24 h post-intraperitoneal inoculation of tumor cells into mice, extracts were administered at 25, 50 and 100 mg/kg body weight for nine consecutive days. The antitumor effects of the extracts were then assessed according to tumor volume, packed cell count, viable and non-viable tumor cell count, median survival time and increase in life span of EAC-bearing mice. Next, hematological profiles and serum biochemical parameters were calculated, and antioxidant properties were assessed by estimating lipid peroxidation, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels. MPBL and the ethylacetate fraction (EPBL) at a dose of 100 mg/kg induced a significant decrease in tumor volume, packed cell volume and viable cell count and increased the life span of the EAC-bearing mice (PPiper betle extracts exhibit significant antitumor activity, which may be attributed to the augmentation of endogenous antioxidant potential.

  20. Antioxidant potential of impatiens bicolor royle and zizyphus oxyphylla edgew

    International Nuclear Information System (INIS)

    Qayum, M.; Kaleem, W.A.; Ahmad, S.

    2014-01-01

    The present investigation has been carried out to evaluate the antioxidant capacity and phenolic composition of Impatiens bicolor Royle and Zizyphus oxyphylla Edgew. The content of phenolic compounds ranged from 15.77 to 27.61 mg catechin equivalents/g of different parts of Zizyphus oxyphylla Edgew., extract and 17.74 mg catechin equivalents/g for Impatiens bicolor Royle extract. The HPLC-ESI-MS/MS analysis of phenolic compounds showed that ferulic acid-hexosides was the only compound detected in I. bicolor, while Z. oxyphylla fruit, stem and leaves exhibited several compounds. Total antioxidant capacity values measured by TEAC assay were 46.32 +- 0.89, 42.56 +- 1.65, 41.34 +- 0.20, and 48.58 +- 0.21 micro mol/g of extract, while those measured by FRAP assay were 102.40 +- 0.18, 207.54 +- 7.91, 254.89 +- 4.20, and 233.00 +- 9.07 micro mol Fe2+/g, for I. bicolor and Z. oxyphylla fruit, leaves and stem, respectively. TRAP values were 43.26 +- 1.27, 112.23 +- 0.00, 102.83 +- 1.66, and 117.37 +- 3.70 micro mol/g of extract for I. bicolor and Z. oxyphylla fruit, leaves and stem respectively. The results indicate that these two plants may be a potential source of antioxidants. (author)

  1. Review of Pasteuria penetrans: Biology, Ecology, and Biological Control Potential.

    Science.gov (United States)

    Chen, Z X; Dickson, D W

    1998-09-01

    Pasteuria penetrans is a mycelial, endospore-forming, bacterial parasite that has shown great potential as a biological control agent of root-knot nematodes. Considerable progress has been made during the last 10 years in understanding its biology and importance as an agent capable of effectively suppressing root-knot nematodes in field soil. The objective of this review is to summarize the current knowledge of the biology, ecology, and biological control potential of P. penetrans and other Pasteuria members. Pasteuria spp. are distributed worldwide and have been reported from 323 nematode species belonging to 116 genera of free-living, predatory, plant-parasitic, and entomopathogenic nematodes. Artificial cultivation of P. penetrans has met with limited success; large-scale production of endospores depends on in vivo cultivation. Temperature affects endospore attachment, germination, pathogenesis, and completion of the life cycle in the nematode pseudocoelom. The biological control potential of Pasteuria spp. have been demonstrated on 20 crops; host nematodes include Belonolaimus longicaudatus, Heterodera spp., Meloidogyne spp., and Xiphinema diversicaudatum. Pasteuria penetrans plays an important role in some suppressive soils. The efficacy of the bacterium as a biological control agent has been examined. Approximately 100,000 endospores/g of soil provided immediate control of the peanut root-knot nematode, whereas 1,000 and 5,000 endospores/g of soil each amplified in the host nematode and became suppressive after 3 years.

  2. Antioxidants as a Potential Preventive and Therapeutic Strategy for Cadmium.

    Science.gov (United States)

    Brzóska, Malgorzata M; Borowska, Sylwia; Tomczyk, Michal

    2016-01-01

    Epidemiological studies provide a growing number of evidences that chronic exposure to relatively low levels of cadmium (Cd), nowadays taking place in industrialized countries, may cause health hazard. Thus, growing interest has been focused on effective ways of protection from adverse effects of exposure to this heavy metal. Because numerous effects to Cd's toxic action result from its prooxidative properties, it seems reasonable that special attention should be directed to agents that can prevent or reduce this metal-induced oxidative stress and its consequences in tissues, organs and systems at risk of toxicity, including liver, kidneys, testes, ears, eyes, cardiovascular system and nervous system as well as bone tissue. This review discusses a wide range of natural (plant and animal origin) and synthetic antioxidants together with many plant extracts (e.g. black and green tea, Aronia melanocarpa, Allium sativum, Allium cepa, Ocimum sanctum, Phoenix dactylifera, Physalis peruviana, Zingiber officinale) that have been shown to prevent from Cd toxicity. Moreover, some attention has been focused on the fact that substances not possessing antioxidative potential may also prevent Cd-induced oxidative stress and its consequences. So far, most of the data on the protective effects of the natural and synthetic antioxidants and plant extracts come from studies in animals' models; however, numerous of them seem to be promising preventive/therapeutic strategies for Cd toxicity in humans. Further investigation of prophylactic and therapeutic use of antioxidants in populations exposed to Cd environmentally and occupationally is warranted, given that therapeutically effective chelation therapy for this toxic metal is currently lacking.

  3. Trifolium pratense L. as a Potential Natural Antioxidant

    Directory of Open Access Journals (Sweden)

    Sanja Vlaisavljevic

    2014-01-01

    Full Text Available The essential oils of three different growth stages of Trifolium pratense L. (TP1, TP2 and TP3 were investigated by gas chromatography-mass spectrometry and tested for their antioxidant and antimicrobial activities. The highest content of volatile compounds was found in the essential oil sample TP1, where terpenes such as β-myrcene (4.55%, p-cymene (3.59%, limonene (0.86%, tetrahydroionone (1.56% were highlighted due to their biological activity. The antioxidant activity was determined by following the scavenging capacity of the essential oils for the free radicals DPPH·, NO· and O2·-, as well as effects of the investigated oils on lipid peroxidation (LP. In all three cases, the sample TP1 showed the best radical-capturing capacity for DPPH· (27.61 ± 0.12 µg/mL, NO· (16.03 ± 0.11 µg/mL, O2·− (16.62 ± 0.29 µg/mL and also had the best lipid peroxidation effects in the Fe2+/ascorbate induction system (9.35 ± 0.11 µg/mL. Antimicrobial activity was evaluated against the following bacteria cultures: Escherichia coli (ATCC10526, Salmonella typhimurium (ATCC 14028, Staphylococcus aureus (ATCC 11632 and Bacillus cereus (ATCC 10876. None of the examined essential oil samples showed inhibitory effects on the tested bacterial strains.

  4. Assessment of Antioxidant and Cytoprotective Potential of Jatropha (Jatropha curcas) Grown in Southern Italy.

    Science.gov (United States)

    Papalia, Teresa; Barreca, Davide; Panuccio, Maria Rosaria

    2017-03-18

    Jatropha ( Jatropha curcas L.) is a plant native of Central and South America, but widely distributed in the wild or semi-cultivated areas in Africa, India, and South East Asia. Although studies are available in literature on the polyphenolic content and bioactivity of Jatropha curcas L., no information is currently available on plants grown in pedoclimatic and soil conditions different from the autochthon regions. The aim of the present work was to characterize the antioxidant system developed by the plant under a new growing condition and to evaluate the polyphenol amount in a methanolic extract of leaves. Along with these analyses we have also tested the antioxidant and cytoprotective activities on lymphocytes. RP-HPLC-DAD analysis of flavonoids revealed a chromatographic profile dominated by the presence of flavone C -glucosydes. Vitexin is the most abundant identified compound followed by vicenin-2, stellarin-2, rhoifolin, and traces of isovitexin and isorhoifolin. Methanolic extract had high scavenging activity in all antioxidant assays tested and cytoprotective activity on lymphocytes exposed to tertz-buthylhydroperoxide. The results highlighted a well-defined mechanism of adaptation of the plant and a significant content of secondary metabolites with antioxidant properties, which are of interest for their potential uses, especially as a rich source of biologically active products.

  5. Assessment of Antioxidant and Cytoprotective Potential of Jatropha (Jatropha curcas Grown in Southern Italy

    Directory of Open Access Journals (Sweden)

    Teresa Papalia

    2017-03-01

    Full Text Available Jatropha (Jatropha curcas L. is a plant native of Central and South America, but widely distributed in the wild or semi-cultivated areas in Africa, India, and South East Asia. Although studies are available in literature on the polyphenolic content and bioactivity of Jatropha curcas L., no information is currently available on plants grown in pedoclimatic and soil conditions different from the autochthon regions. The aim of the present work was to characterize the antioxidant system developed by the plant under a new growing condition and to evaluate the polyphenol amount in a methanolic extract of leaves. Along with these analyses we have also tested the antioxidant and cytoprotective activities on lymphocytes. RP-HPLC-DAD analysis of flavonoids revealed a chromatographic profile dominated by the presence of flavone C-glucosydes. Vitexin is the most abundant identified compound followed by vicenin-2, stellarin-2, rhoifolin, and traces of isovitexin and isorhoifolin. Methanolic extract had high scavenging activity in all antioxidant assays tested and cytoprotective activity on lymphocytes exposed to tertz-buthylhydroperoxide. The results highlighted a well-defined mechanism of adaptation of the plant and a significant content of secondary metabolites with antioxidant properties, which are of interest for their potential uses, especially as a rich source of biologically active products.

  6. Glutathione and the Antioxidant Potential of Binary Mixtures with Flavonoids: Synergisms and Antagonisms

    Directory of Open Access Journals (Sweden)

    Patrícia Valentão

    2013-07-01

    Full Text Available Polyphenols are able to trap free radicals, which contributes to their known antioxidant capacity. In plant extracts, these secondary metabolites may act in concert, in a way that their combined activities will be superior to their individual effects (synergistic interaction. Several polyphenols have demonstrated clear antioxidant properties in vitro, and many of their biological actions have been attributed to their intrinsic reducing capabilities. As so, the intake of these compounds at certain concentrations in the diet and/or supplementation may potentiate the activity of reduced form glutathione (GSH, thus better fighting oxidative stress. The aim of this work was to predict a structure-antioxidant activity relationship using different classes of flavonoids and to assess, for the first time, possible synergisms and antagonisms with GSH. For these purposes a screening microassay involving the scavenging of DPPH• was applied. In general, among the tested compounds, those lacking the catechol group in B ring showed antagonistic behaviour with GSH. Myricetin displayed additive effect, while quercetin, fisetin, luteolin, luteolin-7-O-glucoside, taxifolin and (+-catechin demonstrated synergistic actions. Furthermore, adducts formed at C2′ and C5′ of the B ring seem to be more important for the antioxidant capacity than adducts formed at C6 and C8 of the A ring.

  7. Wild Mushrooms in Nepal: Some Potential Candidates as Antioxidant and ACE-Inhibition Sources

    Directory of Open Access Journals (Sweden)

    Tran Hai Bang

    2014-01-01

    Full Text Available Twenty-nine mushrooms collected in the mountainous areas of Nepal were analyzed for antioxidant activity by different methods, including Folin-Ciocalteu, ORAC, ABTS, and DPPH assays. Intracellular H2O2-scavenging activity was also performed on HaCaT cells. The results showed that phenolic compounds are the main antioxidant of the mushrooms. Among studied samples, Inonotus andersonii, and Phellinus gilvus exhibited very high antioxidant activity with the phenolic contents up to 310.8 and 258.7 mg GAE/g extracts, respectively. The H2O2-scavenging assay on cells also revealed the potential of these mushrooms in the prevention of oxidative stress. In term of ACE-inhibition, results showed that Phlebia tremellosa would be a novel and promising candidate for antihypertensive studies. This mushroom exhibited even higher in vitro ACE-inhibition activity than Ganoderma lingzhi, with the IC50 values of the two mushrooms being 32 μg/mL and 2 μg/mL, respectively. This is the first time biological activities of mushrooms collected in Nepal were reported. Information from this study should be a valuable reference for future studies on antioxidant and ACE-inhibitory activities of mushrooms.

  8. Biological Potential of Sixteen Legumes in China

    Directory of Open Access Journals (Sweden)

    Guixing Ren

    2011-10-01

    Full Text Available Phenolic acids have been identified in a variety of legumes including lima bean, broad bean, common bean, pea, jack bean, goa bean, adzuki bean, hyacinth bean, chicking vetch, garbanzo bean, dral, cow bean, rice bean, mung bean and soybean. The present study was carried out with the following aims: (1 to identify and quantify the individual phenolic acid and determine the total phenolic content (TPC; (2 to assess their antioxidant activity, inhibition activities of α-glucosidase, tyrosinase, and formation of advanced glycation endproducts; and (3 to investigate correlations among the phytochemicals and biological activity. Common bean possesses the highest antioxidant activity and advanced glycation endproducts formation inhibition activity. Adzuki bean has the highest α-glucosidase inhibition activity, and mung bean has the highest tyrosinase inhibition activity. There are significant differences in phytochemical content and functional activities among the bean species investigated. Selecting beans can help treat diseases such as dermatological hyperpigmentation illness, type 2 diabetes and associated cardiovascular diseases.

  9. Antimicrobial, Cytotoxic, Phytotoxic and Antioxidant Potential of Heliotropium strigosum Willd.

    Science.gov (United States)

    Khurm, Muhammad; Chaudhry, Bashir A; Uzair, Muhammad; Janbaz, Khalid H

    2016-07-28

    Background: Heliotropium strigosum Willd. (Chitiphal) is a medicinally important herb that belongs to the Boraginaceae family. Traditionally, this plant was used in the medication therapy of various ailments in different populations of the world. The aim of the study is to probe the therapeutic aspects of H. strigosum described in the traditional folklore history of medicines. Methods: In the present study, the dichloromethane crude extract of this plant was screened to explore the antimicrobial, cytotoxic, phytotoxic and antioxidant potential of H. strigosum . For antibacterial, antifungal and antioxidant activities, microplate alamar blue assay (MABA), agar tube dilution method and diphenyl picryl hydrazine (DPPH) radical-scavenging assay were used, respectively. The cytotoxic and phytotoxic potential were demonstrated by using brine shrimp lethality bioassay and Lemna minor assay. Results: The crude extract displayed positive cytotoxic activity in the brine shrimp lethality assay, with 23 of 30 shrimps dying at the concentration of 1000 µg/mL. It also showed moderate phytotoxic potential with percent inhibition of 50% at the concentration of 1000 µg/mL. The crude extract exhibited no significant antibacterial activity against Staphylococcus aureus , Shigella flexneri , Escherichia coli and Pseudomonas aeruginosa . Non-significant antifungal and radical scavenging activity was also shown by the dichloromethane crude extract. Conclusion: It is recommended that scientists focus on the identification and isolation of beneficial bioactive constituents with the help of advanced scientific methodologies that seems to be helpful in the synthesis of new therapeutic agents of desired interest.

  10. An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires

    Science.gov (United States)

    Vernekar, Amit A.; Sinha, Devanjan; Srivastava, Shubhi; Paramasivam, Prasath U.; D'Silva, Patrick; Mugesh, Govindasamy

    2014-11-01

    Nanomaterials with enzyme-like properties has attracted significant interest, although limited information is available on their biological activities in cells. Here we show that V2O5 nanowires (Vn) functionally mimic the antioxidant enzyme glutathione peroxidase by using cellular glutathione. Although bulk V2O5 is known to be toxic to the cells, the property is altered when converted into a nanomaterial form. The Vn nanozymes readily internalize into mammalian cells of multiple origin (kidney, neuronal, prostate, cervical) and exhibit robust enzyme-like activity by scavenging the reactive oxygen species when challenged against intrinsic and extrinsic oxidative stress. The Vn nanozymes fully restore the redox balance without perturbing the cellular antioxidant defense, thus providing an important cytoprotection for biomolecules against harmful oxidative damage. Based on our findings, we envision that biocompatible Vn nanowires can provide future therapeutic potential to prevent ageing, cardiac disorders and several neurological conditions, including Parkinson’s and Alzheimer’s disease.

  11. Phytochemical constituents, antioxidant activity and toxicity potential of Phlomis olivieri Benth.

    Directory of Open Access Journals (Sweden)

    M.R. Delnavazi

    2016-04-01

    Full Text Available Background and objectives: Phlomis olivieri Benth. (Lamiaceae is a medicinal plant widely distributed in Iran. In the present study, we have investigated the phytochemical constituents, antioxidant activity and general toxicity potential of the aerial parts of this species. Methods: Silica gel (normal and reversed phases and Sephadex LH-20 column chromatographies were used for isolation of compounds from methanol-soluble portion (MSP of the total extract obtained from P. olivieri aerial parts. The structures of isolated compounds were elucidated using 1H-NMR, 13C-NMR and UV spectral analyses. Antioxidant activity and general toxicity potential of MSP were also evaluated in DPPH free radical-scavenging assay and brine shrimp lethality test (BSLT, respectively. Results: One caffeoylquinic acid derivative, chlorogenic acid (1, one iridoid glycoside, ipolamiide (2, two phenylethanoid glycosides, phlinoside C (3 and verbascoside (5, along with two flavonoids, isoquercetin (4 and naringenin (6 were isolated and identified from MSP. The MSP exhibited considerable antioxidant activity in DPPH method (IC50; 50.4 ± 4.6 µg/mL, compared to BHT (IC50; 18.7 ± 2.1 µg/mL, without any toxic effect in BSLT at the highest tested dose (1000 µg/mL. Conclusion: the results of the present study introduce P. olivieri as a medicinal plant with valuable biological and pharmacological potentials.

  12. Structural, Chemical and Biological Aspects of Antioxidants for Strategies Against Metal and Metalloid Exposure

    Directory of Open Access Journals (Sweden)

    Swaran J. S. Flora

    2009-01-01

    Full Text Available Oxidative stress contributes to the pathophysiology of exposure to heavy metals/metalloid. Beneficial renal effects of some medications, such as chelation therapy depend at least partially on the ability to alleviate oxidative stress. The administration of various natural or synthetic antioxidants has been shown to be of benefit in the prevention and attenuation of metal induced biochemical alterations. These include vitamins, N-acetylcysteine, α-lipoic acid, melatonin, dietary flavonoids and many others. Human studies are limited in this regard. Under certain conditions, surprisingly, the antioxidant supplements may exhibit pro-oxidant properties and even worsen metal induced toxic damage. To date, the evidence is insufficient to recommend antioxidant supplements in subject with exposure to metals. Prospective, controlled clinical trials on safety and effectiveness of different therapeutic antioxidant strategies either individually or in combination with chelating agent are indispensable. The present review focuses on structural, chemical and biological aspects of antioxidants particularly related to their chelating properties.

  13. Evaluation of antioxidant potential of pepper sauce (Capsicum frutescens L.

    Directory of Open Access Journals (Sweden)

    Pamela Freire de Moura Pereira

    2016-12-01

    Full Text Available Functional properties of substances present in in natura foods such as fruits and vegetables are well documented; however, the activity that remains after processing needs more research. The present study aimed to evaluate the antioxidant potential in fruit processed as sauce and quantify the compounds able to contribute to such activity. Three different treatments were developed varying only the concentration of pepper Capsicum frutescens L., with treatment ratios (fruit: water: vinegar: salt being: treatment 1 (0.5: 1: 0.5: 0.33, 2 (1: 1: 0.5: 0.33, and 3 (2: 1: 0.5: 0.33. By the DPPH method, the values found for EC50 (g g DPPH−1 from 3726.9 to 5425.9 for the alcoholic extract were the most significant. The content of total phenols did not vary between the three treatments. While the content of carotenoids found was significantly different in the treatment with lower content of the fruit in natura, when compared to the treatment with higher content (44.02 and 56.09 μg of β-carotene 100 g−1, respectively and the content of ascorbic acid varied between 10.95 and 21.59 mg 100−1 g. Therefore, the pepper sauce was presented as an alternative to the consumption of bioactive compounds that may have antioxidant potential.

  14. Evaluation of the antioxidant potential of royal jelly during storage

    Directory of Open Access Journals (Sweden)

    Renata Galhardo Borguini

    2012-09-01

    Full Text Available Royal jelly is a creamy substance produced by young nurse worker bees, which has a color that ranges from white to slightly yellow, and is secreted by the hypopharingeal and mandibular glands of the bees. The objective of this work was to assess the in vitro antioxidant potential of royal jelly while in storage. The physical-chemical parameters analyzed were moisture, ascorbic acid and total phenolic content. Alcohol extracts were made and used to evaluate the 1.1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging activity. The ascorbic acid (to 0.75 from 1.31mg.100g-1wet base and total phenolic content (to 14.26 from 28.30mg GAE.100g-1 wet base of the royal jelly were low. The percentages of DPPH discoloration of the samples were above 50%, except for the samples stored for 90 days. Considering the reduced ascorbic acid and total phenolic content, and the low alcohol DPPH scavenging activity of the samples, it can be concluded that royal jelly presents relatively low antioxidant potential. The storage time did not determine the changes found.

  15. In vitro evaluation of the antioxidant potential, phenolic and flavonoid contents of the stem bark ethanol extract of Anogeissus leiocarpus.

    Science.gov (United States)

    Olugbami, J O; Gbadegesin, M A; Odunola, O A

    2014-09-01

    Plant-derived antioxidants with free radical scavenging activities can be relevant as chemopreventive agents against the numerous diseases associated with free radicals and reactive oxygen species. Some phytoconstituents possess antioxidant activities in biological systems. On this basis, we evaluated the antioxidant potential, and determined the total phenolic and flavonoid contents of the e thanol e xtract of the s tem bark of A nogeissus l eiocarpus [ EESAL ]. Antioxidant assays carried out include: 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, phosphomolybdate, β-carotene bleaching, ferric reducing, and hydroxyl radical scavenging activities. Results of DPPH assay showed no significant difference ( p antioxidant capacity of 190.00 ± 70.53 µg butylated hydroxytoluene equivalents [BHTE]/mg dry extract, while β-carotene bleaching assay gave percent antioxidant activities of both EESAL and BHT as 81.46±1.62 and 80.90±1.39 respectively. Ferric reducing abilities of both EESAL and ascorbic acid increased in a concentration-dependent manner with EESAL displaying a significantly ( p concentration with no significant difference at the highest concentration. Total phenolic and flavonoid contents of EESAL were obtained as 608.10 ± 2.12 µg GAE/mg and 78.96 ± 3.37 µg QE/mg respectively. Taken together, the free radical scavenging and antioxidant activity of EESAL is likely due to its high phenolic content with complementary effects of the flavonoid components.

  16. [ANTIOXIDANT POTENTIAL OF MELIPONA BEECHEII HONEY AND ITS RELATIONSHIP TO HEALTH: A REVIEW].

    Science.gov (United States)

    Cauich Kumul, Roger; Ruiz Ruiz, Jorge Carlos; Ortíz Vázquez, Elizabeth; Segura Campos, Maira Rubi

    2015-10-01

    The present article provides a literature review about the biological potential of Melipona beecheii. The objective is to project some tendecies in research about nutraceutical aspects related to the bioactive compounds presents in the honey of this stingless bee species, known for its medicinal properties traditional, in the Yucatan Peninsula. Currently, there is strong evidence that M. beecheii honey has bioactive compounds such as proteins, flavonoids and polyphenols with high antioxidant activity. The scientific evidence allows to propose to the honey of stingless bee species as a potential alternative for the obtention of bioactive compounds with antioxidant activity in the Yucatan Peninsula and natural food being proposed to reduce some diseases associated with stress oxidative physiological human cells. However, there is still information that explains such antioxidant activity, therefore, according to the literature reviewed, sees the need to address nutraceuticals and functional aspects correlated with the bioactive compounds present in this honey bee. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  17. Antioxidants

    Science.gov (United States)

    Antioxidants are man-made or natural substances that may prevent or delay some types of cell damage. Antioxidants are found in many foods, including fruits and ... are also available as dietary supplements. Examples of antioxidants include Beta-carotene Lutein Lycopene Selenium Vitamin A ...

  18. A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity.

    Science.gov (United States)

    Fukuda, Sanae; Nojima, Junzo; Motoki, Yukari; Yamaguti, Kouzi; Nakatomi, Yasuhito; Okawa, Naoko; Fujiwara, Kazumi; Watanabe, Yasuyoshi; Kuratsune, Hirohiko

    2016-07-01

    We sought to determine whether oxidative stress and anti-oxidative activity could act as biomarkers that discriminate patients with chronic fatigue syndrome (CFS) from healthy volunteers at acute and sub-acute fatigue and resting conditions. We calculated the oxidative stress index (OSI) from reactive oxygen metabolites-derived compounds (d-ROMs) and the biological antioxidant potential (BAP). We determined changes in d-ROMs, BAP, and OSI in acute and sub-acute fatigue in two healthy groups, and compared their values at rest between patients with CFS (diagnosed by Fukuda 1994 criteria) and another group of healthy controls. Following acute fatigue in healthy controls, d-ROMs and OSI increased, and BAP decreased. Although d-ROMs and OSI were significantly higher after sub-acute fatigue, BAP did not decrease. Resting condition yielded higher d-ROMs, higher OSI, and lower BAP in patients with CFS than in healthy volunteers, but lower d-ROMs and OSI when compared with sub-acute controls. BAP values did not significantly differ between patients with CFS and controls in the sub-acute condition. However, values were significantly higher than in the resting condition for controls. Thus, measured of oxidative stress (d-ROMS) and anti-oxidative activity (BAP) might be useful for discriminating acute, sub-acute, and resting fatigue in healthy people from patients with CFS, or for evaluating fatigue levels in healthy people. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Potential antioxidant Bauhinia Leaves and Bark kalbreyeri Harms: Contribution of your Flavonoids in this activity

    International Nuclear Information System (INIS)

    Ortiz, Heidy F; Sanchez, Wilmer F; Mendez A John; Murillo P, Elizabeth

    2009-01-01

    In this study the antioxidant and antitrosative capacity of the extracts and isolated flavonoids from the leaves and bark of Bauhinia kalbreyeri Harms (Cow Hoof. Fabaceae) was examinated. The extracts showed high antioxidant and antinitrosative functionality, while the flavonoids ability to capture metals and inhibit the NO. Significative differences were found among the extracts, and into those and the flavonoids fractions (p < 0.05). The antioxidant activity of the plant seems to be based in the whole phenolic derivatives. The results obtained indicate that the antioxidant potential of B. kalbreyeri is comparable with the Butylated Hydroxytoluene and the ascorbic acid used as antioxidants by the food and pharmaceutical industry.

  20. Green Tea Antioxidative Potential in Irradiated Pregnant Rats

    International Nuclear Information System (INIS)

    Kafafy, Y.A.; Roushdy, H.ML.; Ashry, O.M.; Salama, S.F.; Abdel-Haliem, M.; Mossad, M.N.

    2005-01-01

    Green tea (Gt) derived from the leaves of Camellia sinensis contains polyphenolic compounds, also known as epicatechins, which are antioxidants in nature. This study aims to evaluate the possible anti oxidative potential of 2 concentrations of green tea extract in pregnant rats exposed to fractionated 3 Gy gamma irradiation of 1Gy installments at the 7 th, 11 th and 15 th days of gestation. Total and absolute white blood cells count, red blood cells count, hematocrit value, hemoglobin content and blood indices as well as glutathione were significantly decreased by irradiation at the end of the gestation period. Lipid peroxidation, serum lipid profile (total lipids, triglycerides and cholesterol cone.) were elevated. Serum Na+ decreased and K+ ions elevated. Results revealed significant protection by both green tea cone, to counts of RBCs, WBCs, Hg, Ht, as well as lymphocytes and monocytes. Glutathione decreased with both green tea cone, and dropped further with both treatments. Lipid peroxidation and lipid profile were depressed. Moreover, Na+ and K+ levels were significantly ameliorated by both green tea cone., which suggests its applicability as an effective radioprotector. The steadily increasing use of nuclear and radiation technology extended to different fields, which has been paralleled by increasing potential risk for radiation exposure (Kajioka et al, 2000). The low-level radioactivity by environmental, medical and occupational settings has been found to cause several kinds of health damage including premature births, congenital defects, infant mortality, mental retardation, heart ailments, allergies/asthma, cancer, genetic damage and chronic fatigue syndrome (Sternglass, 1986)

  1. Polysaccharies of higher fungi: Biological role, structure and antioxidative activity

    NARCIS (Netherlands)

    Kozarski, M.S.; Klaus, A.; Niksic, M.; Griensven, van L.J.L.D.; Vrvic, M.M.; Jakovljevic, D.M.

    2014-01-01

    The fungal polysaccharides attract a lot of attention due to their multiple challenging bio-logical properties, such as: anti-tumor, anti-viral, anticomplementary, anticoagulant, hypo-lipidemic, immunomodulatory and immune-stimulatory activities, which all together make them suitable for application

  2. Novel Spectroscopic and Electrochemical Sensors and Nanoprobes for the Characterization of Food and Biological Antioxidants.

    Science.gov (United States)

    Apak, Reşat; Demirci Çekiç, Sema; Üzer, Ayşem; Çelik, Saliha Esin; Bener, Mustafa; Bekdeşer, Burcu; Can, Ziya; Sağlam, Şener; Önem, Ayşe Nur; Erçağ, Erol

    2018-01-11

    Since an unbalanced excess of reactive oxygen/nitrogen species (ROS/RNS) causes various diseases, determination of antioxidants that can counter oxidative stress is important in food and biological analyses. Optical/electrochemical nanosensors have attracted attention in antioxidant activity (AOA) assessment because of their increased sensitivity and selectivity. Optical sensors offer advantages such as low cost, flexibility, remote control, speed, miniaturization and on-site/in situ analysis. Electrochemical sensors using noble metal nanoparticles on modified electrodes better catalyze bioelectrochemical reactions. We summarize the design principles of colorimetric sensors and nanoprobes for food antioxidants (including electron-transfer based and ROS/RNS scavenging assays) and important milestones contributed by our laboratory. We present novel sensors and nanoprobes together with their mechanisms and analytical performances. Our colorimetric sensors for AOA measurement made use of cupric-neocuproine and ferric-phenanthroline complexes immobilized on a Nafion membrane. We recently designed an optical oxidant/antioxidant sensor using N , N -dimethyl- p -phenylene diamine (DMPD) as probe, from which ROS produced colored DMPD-quinone cationic radicals electrostatically retained on a Nafion membrane. The attenuation of initial color by antioxidants enabled indirect AOA estimation. The surface plasmon resonance absorption of silver nanoparticles as a result of enlargement of citrate-reduced seed particles by antioxidant addition enabled a linear response of AOA. We determined biothiols with Ellman reagent-derivatized gold nanoparticles.

  3. New Chiral Ebselen Analogues with Antioxidant and Cytotoxic Potential

    Directory of Open Access Journals (Sweden)

    Agata J. Pacuła

    2017-03-01

    Full Text Available New chiral camphane-derived benzisoselenazol-3(2H-ones and corresponding diselenides have been synthetized using a convenient one-pot procedure. Se-N bond was efficiently converted to an Se-Se bond, which could also be easily re-oxidized to the initial benzisoselenazolone moiety. The antioxidant activity of camphor derivatives was evaluated and compared to the reactivity of a series of N-amino acid benzisoselenazol-3(2H-ones obtained by a modified procedure involving the improved synthesis and isolation of the diseleno bis(dibenzoic acid. The most efficient peroxide scavengers, N-bornyl and N-leucine methyl ester benzisoselenazol-3(2H-ones, were further evaluated as cytotoxic agents on four cancer cell lines (MCF-7, HEP G2, HL 6, and DU 145 and normal cell line PNT1A. The highest antiproliferative potential was evaluated for two compounds bearing a 3-methylbutyl carbon chain, N-leucine methyl ester and N-3-methylbutyl benzisoselenazol-3(2H-ones.

  4. An in vitro model to test relative antioxidant potential: Ultraviolet-induced lipid peroxidation in liposomes

    International Nuclear Information System (INIS)

    Pelle, E.; Maes, D.; Padulo, G.A.; Kim, E.K.; Smith, W.P.

    1990-01-01

    Since antioxidants have been shown to play a major role in preventing some of the effects of aging and photoaging in skin, it is important to study this phenomenon in a controlled manner. This was accomplished by developing a simple and reliable in vitro technique to assay antioxidant efficacy. Inhibition of peroxidation by antioxidants was used as a measure of relative antioxidant potential. Liposomes, high in polyunsaturated fatty acids (PUFA), were dispersed in buffer and irradiated with ultraviolet (UV) light. Irradiated liposomes exhibited a significantly higher amount of hydroperoxides than liposomes containing antioxidants in a dose- and concentration-dependent manner. Lipid peroxidation was determined spectrophotometrically by an increase in thiobarbituric acid reacting substances. To further substantiate the production of lipid peroxides, gas chromatography was used to measure a decrease in PUFA substrate. In order of decreasing antioxidant effectiveness, the following results were found among lipophilic antioxidants: BHA greater than catechin greater than BHT greater than alpha-tocopherol greater than chlorogenic acid. Among hydrophilic antioxidants, ascorbic acid and dithiothreitol were effective while glutathione was ineffective. In addition, ascorbic acid was observed to act synergistically with alpha-tocopherol, which is in agreement with other published reports on the interaction of these two antioxidants. Although peroxyl radical scavengers seem to be at a selective advantage in this liposomal/UV system, these results demonstrate the validity of this technique as an assay for measuring an antioxidant's potential to inhibit UV-induced peroxidation

  5. antioxidant potential of habiscus cannabinus methanolic leaf extract

    African Journals Online (AJOL)

    diphenyl-2-picryhydrazyl (DPPH) assay method, reducing ... this balance can be shifted towards the pro-oxidant when ... much work have been done in respect to antioxidant activity of .... +. +. +. Key: + = Present - = Absent. 9 .... Life Sciences.

  6. Synthesis and antioxidant potential of some biscoumarin derivatives

    African Journals Online (AJOL)

    ... group at position-4 of aryl moiety along with 2-hydroxycoumarin being critical for antioxidant activity. ... nervous system, antibacterial and anti- inflammatory agents [3,5]. ..... showed higher reducing power as compared to standard compound ...

  7. Evaluation of antioxidant and antimutagenic potential of Justicia ...

    African Journals Online (AJOL)

    sunny t

    total phenolic content of the extracts is measured in terms of gallic acid equivalents .... The reducing activity on superoxide anion (O2. −*. ) was measured by modified ..... conjugates: Synthesis, antioxidant and antimutagenic attributes. Food.

  8. Potential antioxidant of brazilian coffee from the region of Cerrado

    Directory of Open Access Journals (Sweden)

    Richtier Gonçalves da CRUZ

    2017-12-01

    Full Text Available Abstract Coffee is one of the most consumed beverages in the world. Its chemical composition may have varied according to the planting site, degree of roasting, and method of preparation. This work aimed to evaluate the antioxidant activity of coffee from the region of Cerrado in the State of Minas Gerais, Brazil. The evaluation was performed with samples roasted at two different levels (traditional and extra dark and using two different preparation methods (decoction and infusion that reflect the conditions of preparing coffee. In vitro antioxidant activity by ABTS and DPPH radical methods and the concentration of total phenolic compounds and caffeine were determined. Samples made by decoction showed a higher content of phenolic compounds and no significant difference was observed between the degrees of roasting. However, the antioxidant activity and caffeine concentration of the extra dark samples were higher than those of the traditional samples for both preparation methods. The decoction preparation method was better for extracting phenolic compounds and the extra dark roast showed a higher concentration of caffeine and antioxidant activity. The samples showed a high antioxidant activity, indicating the coffee from Cerrado is an important source of antioxidants.

  9. Structural Correlation of Some Heterocyclic Chalcone Analogues and Evaluation of Their Antioxidant Potential

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2013-09-01

    Full Text Available A series of six novel heterocyclic chalcone analogues 4(a–f has been synthesized by condensing 2-acetyl-5-chlorothiophene with benzaldehyde derivatives in methanol at room temperature using a catalytic amount of sodium hydroxide. The newly synthesized compounds are characterized by IR, mass spectra, elemental analysis and melting point. Subsequently; the structures of these compounds were determined using single crystal X-ray diffraction. All the synthesized compounds were screened for their antioxidant potential by employing various in vitro models such as DPPH free radical scavenging assay, ABTS radical scavenging assay, ferric reducing antioxidant power and cupric ion reducing antioxidant capacity. Results reflect the structural impact on the antioxidant ability of the compounds. The IC50 values illustrate the mild to good antioxidant activities of the reported compounds. Among them, 4f with a p-methoxy substituent was found to be more potent as antioxidant agent.

  10. Evaluation of antioxidant potential of Brazilian rice cultivars

    Directory of Open Access Journals (Sweden)

    Sylvio Vicentin Palombini

    2013-12-01

    Full Text Available This study quantified the fatty acids and evaluated the proximate composition, antioxidant activity (using the Quencher procedure, and total phenolic compound concentrations in Brazilian rice cultivars. The cultivars studied showed high amounts of unsaturated fatty acids, such as linoleic and oleic acid. The ratios of polyunsaturated and saturated fatty acids obtained were high. Regarding the antioxidant activity, the best results were found using the ABTS method and the worst in the DPPH assay. The results of the DPPH and FRAP assays showed the highest correlation. The antioxidant capacity results obtained were also much higher than those reported for other varieties worldwide. Therefore, the Quencher procedure is highly suitable for application in cereals such as rice, especially when combined with the ABTS radical capture method.

  11. Antioxidant and Antibacterial Potential of Silver Nanoparticles: Biogenic Synthesis Utilizing Apple Extract

    Directory of Open Access Journals (Sweden)

    Upendra Nagaich

    2016-01-01

    Full Text Available The advancement of the biological production of nanoparticles using herbal extracts performs a significant role in nanotechnology discipline as it is green and does not engage harsh chemicals. The objective of the present investigation was to extract flavonoids in the mode of apple extract and synthesize its silver nanoparticles and ultimately nanoparticles loading into hydrogels. The presence of flavonoids in apple extract was characterized by preliminary testing like dil. ammonia test and confirmatory test by magnesium ribbon test. The synthesized silver nanoparticles were characterized using UV spectroscopy, particle size and surface morphology, and zeta potential. Silver nanoparticles loaded hydrogels were evaluated for physical appearance, pH, viscosity, spreadability, porosity, in vitro release, ex vivo permeation, and antibacterial (E. coli and S. aureus and antioxidant studies (DPPH radical scavenging assay. Well dispersed silver nanoparticles below were observed in scanning electron microscope image. Hydrogels displayed in vitro release of 98.01%  ±  0.37% up to 24 h and ex vivo permeation of 98.81  ±  0.24% up to 24 h. Hydrogel effectively inhibited the growth of both microorganism indicating good antibacterial properties. The value of percent radical inhibition was 75.16%  ±  0.04 revealing its high antioxidant properties. As an outcome, it can be concluded that antioxidant and antiageing traits of flavonoids in apple extract plus biocidal feature of silver nanoparticles can be synergistically and successfully utilized in the form of hydrogel.

  12. Sugar cane stillage: a potential source of natural antioxidants.

    Science.gov (United States)

    Caderby, Emma; Baumberger, Stéphanie; Hoareau, William; Fargues, Claire; Decloux, Martine; Maillard, Marie-Noëlle

    2013-11-27

    Biorefinery of sugar cane is the first economic activity of Reunion Island. Some sugar cane manufactured products (juice, syrup, molasses) have antioxidant activities and are sources of both phenolic compounds and Maillard Reaction Products (MRP). The study aimed to highlight the global antioxidant activity of sugar cane stillage and understand its identity. Chromatographic fractionation on Sephadex LH-20 resin allowed the recovery of a MRP-rich fraction, responsible for 58 to 66% of the global antioxidant activity according to the nature of the sugar cane stillage (DPPH test), and a phenolic compounds-rich fraction for 37 to 59% of the activity. A good correlation was recorded between the antioxidant activity of the sugar cane stillage and its content in total reducing compounds amount (Folin-Ciocalteu assay), among them 2.8 to 3.9 g/L of phenolic compounds (in 5-caffeoylquinic acid equivalent). Preliminary experiments by HPLC-DAD-MS allowed to identify several free phenolic acids and gave clues to identify esters of quinic acids.

  13. Evaluation of antioxidant and antimutagenic potential of Justicia ...

    African Journals Online (AJOL)

    sunny t

    In this study, the ethanolic extract of Justicia adhatoda (Acanthaceae) leaves was prepared by successive ... In the present study our aim was to determine the antioxidant and antimutagenic ... the role of this plant in radical scavenging capacity for the .... of J. adhatoda was estimated using different in vitro assays viz. 2-2-.

  14. Synthesis and antioxidant potential of some biscoumarin derivatives ...

    African Journals Online (AJOL)

    Purpose: To synthesize and screen some 3-substituted-bis-2H-chromen-2t-ones in a search for possible new antioxidants for use in food and pharmaceuticals industries. Methods: 2-Hydroxycoumarin was allowed to react with various substituted aromatic aldehydes in the presence of base as a catalyst to obtain to obtain ...

  15. Antioxidative and proline potentials as a protective mechanism in ...

    African Journals Online (AJOL)

    Stress can define as all negative factors affecting plant growth. One of the most important problems among stress factors is salt stress. Antioxidant responses are tested in Soybean (Glycine max. L.) cv., “A3935” grown under 0, 50, 100 and 150 mM NaCl in order to investigate the plants protective mechanisms against salt ...

  16. Pineapple peel wastes as a potential source of antioxidant compounds

    Science.gov (United States)

    Saraswaty, V.; Risdian, C.; Primadona, I.; Andriyani, R.; Andayani, D. G. S.; Mozef, T.

    2017-03-01

    Indonesia is a large pineapple (Ananas comosus) producing country. Food industries in Indonesia processed this fruit for new products and further resulted wastes of which cause an environmental problems. Approximately, one pineapple fruit total weight is 400 gr of which 60 g is of peel wastes. In order to reduce such pineapple peel wastes (PPW), processing to a valuable product using an environmentally friendly technique is indispensable. PPW contained phenolic compound, ferulic acid, and vitamin A and C as antioxidant. This study aimed to PPW using ethanol and water as well as to analyze its chemical properties. Both dried and fresh PPW were extracted using mixtures of ethanol and water with various concentrations ranging from 15 to 95% (v/v) at room temperature for 24 h. The chemical properties, such as antioxidant activity, total phenolic content (Gallic acid equivalent/GAE), and total sugar content were determined. The results showed that the range of Inhibition Concentration (IC)50 value as antioxidant activity of extracts from dried and fresh PPW were in the range of 0.8±0.05 to 1.3±0.09 mg.mL-1 and 0.25±0.01 to 0.59±0.01 mg.mL-1, respectively, with the highest antioxidant activity was in water extract. The highest of total phenolic content of 0.9 mg.g-1 GAE, was also found in water extract.

  17. Antioxidative and proline potentials as a protective mechanism in ...

    African Journals Online (AJOL)

    Jane

    2011-07-04

    Jul 4, 2011 ... Antioxidant responses are tested in Soybean (Glycine max. L.) cv.,. “A3935” grown under 0, 50, 100 and 150 ..... dismutase activities by triadimefon in NaCl stressed Raphanus sativus L. Biol. Plantarum 43: 317-320. Nemoto Y ...

  18. Antioxidant response elements: Discovery, classes, regulation and potential applications

    Directory of Open Access Journals (Sweden)

    Azhwar Raghunath

    2018-07-01

    Full Text Available Exposure to antioxidants and xenobiotics triggers the expression of a myriad of genes encoding antioxidant proteins, detoxifying enzymes, and xenobiotic transporters to offer protection against oxidative stress. This articulated universal mechanism is regulated through the cis-acting elements in an array of Nrf2 target genes called antioxidant response elements (AREs, which play a critical role in redox homeostasis. Though the Keap1/Nrf2/ARE system involves many players, AREs hold the key in transcriptional regulation of cytoprotective genes. ARE-mediated reporter constructs have been widely used, including xenobiotics profiling and Nrf2 activator screening. The complexity of AREs is brought by the presence of other regulatory elements within the AREs. The diversity in the ARE sequences not only bring regulatory selectivity of diverse transcription factors, but also confer functional complexity in the Keap1/Nrf2/ARE pathway. The different transcription factors either homodimerize or heterodimerize to bind the AREs. Depending on the nature of partners, they may activate or suppress the transcription. Attention is required for deeper mechanistic understanding of ARE-mediated gene regulation. The computational methods of identification and analysis of AREs are still in their infancy. Investigations are required to know whether epigenetics mechanism plays a role in the regulation of genes mediated through AREs. The polymorphisms in the AREs leading to oxidative stress related diseases are warranted. A thorough understanding of AREs will pave the way for the development of therapeutic agents against cancer, neurodegenerative, cardiovascular, metabolic and other diseases with oxidative stress. Keywords: Antioxidant response elements, Antioxidant genes, ARE-reporter constructs, ARE SNPs, Keap1/Nrf2/ARE pathway, Oxidative stress

  19. Methodological considerations for characterizing potential antioxidant actions of bioactive components in plant foods.

    Science.gov (United States)

    Aruoma, Okezie I

    2003-01-01

    The study of free radicals and antioxidants in biology is producing medical revolution that promises a new age of health and disease management. From prevention of the oxidative reactions in foods, pharmaceuticals and cosmetics to the role of reactive oxygen species (ROS) in chronic degenerative diseases including cancer, autoimmune, inflammatory, cardiovascular and neurodegenerative (e.g. Alzheimer's disease, Parkinson's disease, multiple sclerosis, Downs syndrome) and aging challenges continue to emerge from difficulties associated with methods used in evaluating antioxidant actions in vivo. Our interest presently is focused on development of neurodegeneration models based on the integrity of neuronal cells in the central nervous system and how they are protected by antioxidants when challenged by neurotoxins as well as Fenton chemistry models based on the profile of polyunsaturated fatty acids (PUFAs) for the assessment of antioxidant actions in vivo. Use continues to be made of several in vitro analytical tools to characterise the antioxidant propensity of bioactive compounds in plant foods and supplements. For example, the oxygen radical absorbance capacity (ORAC), ferric reducing antioxidant power (FRAP), total oxidant scavenging capacity (TOSC), the deoxyribose assay, assays involving oxidative DNA damage, assays involving reactive nitrogen intermediates (e.g. ONOO(-)), Trolox equivalent antioxidant capacity (TEAC) and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. There is need to agree governance on in vitro antioxidant methods based on an understanding of the mechanisms involved. Because some of the assays are done in non-physiological pH values, it is impossible to extrapolate the results to physiological environment. The consensus of opinion is that a mix of these tools should be used in assessing the antioxidant activities in vitro. The proof of bio-efficacy must emanate from application of reliable in vivo models where markers of baseline oxidative

  20. Enhanced photosynthetic capacity and antioxidant potential mediate brassinosteriod-induced phenanthrene stress tolerance in tomato

    International Nuclear Information System (INIS)

    Ahammed, Golam Jalal; Li, Xin; Xia, Xiao-Jian; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan

    2015-01-01

    Photosynthesis, the basal manufacturing process in the earth is habitually restricted by airborne micropollutants such as phenanthrene (PHE). Here, we show that 24-epibrassinolide (EBR), a bioactive plant steroid is able to keep higher photosynthetic capacity consistently for a long period under a shoot-imposed PHE stress in tomato. EBR-promoted photosynthetic capacity and efficiency eventually resulted in a 37.5% increase of biomass under PHE stress. As primary response, transcripts of antioxidant genes were remarkably induced by EBR in PHE-treated plants. Activities of antioxidant and detoxification enzymes were also enhanced by EBR. Notably, EBR-induced higher antioxidant potential was associated with reduced levels of H 2 O 2 and O 2 · — , resulting in a 32.7% decrease of content of malondialdehyde in the end of experiment and relatively healthy chloroplast ultrastructure in EBR + PHE treatment compared with PHE alone. These results indicate that EBR alleviates shoot-imposed PHE phytotoxicity by maintaining a consistently higher photosynthetic capacity and antioxidant potential in tomato. - Highlights: • PHE mist spray gradually inhibits photosynthesis and eventually reduces biomass. • EBR maintains a consistently higher photosynthesis even under PHE stress. • EBR upregulates expression of antioxidant genes as initial response to PHE stress. • EBR reduces oxidative stress by constantly activating strong antioxidant potential. • EBR-induced efficient neutralization of ROS protects chloroplast ultrastructure. - 24-epibrassinolide protects tomato plants from airborne phenanthrene-induced damages by maintaining a consistently higher photosynthetic capacity and antioxidant potential

  1. Active films based on cocoa extract with antioxidant, antimicrobial and biological applications.

    Science.gov (United States)

    Calatayud, Marta; López-de-Dicastillo, Carolina; López-Carballo, Gracia; Vélez, Dinoraz; Hernández Muñoz, Pilar; Gavara, Rafael

    2013-08-15

    Novel films of ethylene-vinyl alcohol copolymer (EVOH) containing flavonoid-rich cocoa were developed. To understand their potential application as active packaging material, antioxidant and antimicrobial properties of the films were determined as well as the antioxidant activity of the release compounds in Caco-2 human epithelial colorectal adenocarcinoma cells. Exposure of the films to aqueous food simulant showed antioxidant capacity. The release of cocoa extract components was dependent on the antioxidant concentration incorporated in the film and on temperature. Cocoa extract and the fraction obtained after in vitro gastrointestinal digestion presented antioxidant activity against oxidative stress induced by hydrogen peroxide in Caco-2 cells. Films with 10%, 15%, and 20% cocoa extract produced bactericidal effect against Staphylococcus aureus, Listeria monocytogenes, Escherichia coli and Salmonella enterica. The application of films to an infant milk formula, previously inoculated with L. monocytogenes, inhibited the growth of bacteria 1.5 log units the first day and showed sustained release, inhibiting 0.52 and 0.76 log units, respectively, by the sixth day, while cocoa powder added directly did not produce any effect. Published by Elsevier Ltd.

  2. Antioxidant and Antimicrobial Potential of the Bifurcaria bifurcata Epiphytic Bacteria

    Directory of Open Access Journals (Sweden)

    André Horta

    2014-03-01

    Full Text Available Surface-associated marine bacteria are an interesting source of new secondary metabolites. The aim of this study was the isolation and identification of epiphytic bacteria from the marine brown alga, Bifurcaria bifurcata, and the evaluation of the antioxidant and antimicrobial activity of bacteria extracts. The identification of epiphytic bacteria was determined by 16S rRNA gene sequencing. Bacteria extracts were obtained with methanol and dichloromethane (1:1 extraction. The antioxidant activity of extracts was performed by quantification of total phenolic content (TPC, 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging activity and oxygen radical absorbance capacity (ORAC. Antimicrobial activities were evaluated against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Salmonella enteritidis, Staphylococcus aureus, Saccharomyces cerevisiae and Candida albicans. A total of 39 Bifurcaria bifurcata-associated bacteria were isolated and 33 were identified as Vibrio sp. (48.72%, Alteromonas sp. (12.82%, Shewanella sp. (12.26%, Serratia sp. (2.56%, Citricoccus sp. (2.56%, Cellulophaga sp. (2.56%, Ruegeria sp. (2.56% and Staphylococcus sp. (2.56%. Six (15.38% of the 39 bacteria Bifurcaria bifurcata-associated bacteria presented less than a 90% Basic Local Alignment Search Tool (BLAST match, and some of those could be new. The highest antioxidant activity and antimicrobial activity (against B. subtilis was exhibited by strain 16 (Shewanella sp.. Several strains also presented high antimicrobial activity against S. aureus, mainly belonging to Alteromonas sp. and Vibrio sp. There were no positive results against fungi and Gram-negative bacteria. Bifurcaria bifurcata epiphytic bacteria were revealed to be excellent sources of natural antioxidant and antimicrobial compounds.

  3. Antioxidant and antimicrobial potential of the Bifurcaria bifurcata epiphytic bacteria.

    Science.gov (United States)

    Horta, André; Pinteus, Susete; Alves, Celso; Fino, Nádia; Silva, Joana; Fernandez, Sara; Rodrigues, Américo; Pedrosa, Rui

    2014-03-24

    Surface-associated marine bacteria are an interesting source of new secondary metabolites. The aim of this study was the isolation and identification of epiphytic bacteria from the marine brown alga, Bifurcaria bifurcata, and the evaluation of the antioxidant and antimicrobial activity of bacteria extracts. The identification of epiphytic bacteria was determined by 16S rRNA gene sequencing. Bacteria extracts were obtained with methanol and dichloromethane (1:1) extraction. The antioxidant activity of extracts was performed by quantification of total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Antimicrobial activities were evaluated against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Salmonella enteritidis, Staphylococcus aureus, Saccharomyces cerevisiae and Candida albicans. A total of 39 Bifurcaria bifurcata-associated bacteria were isolated and 33 were identified as Vibrio sp. (48.72%), Alteromonas sp. (12.82%), Shewanella sp. (12.26%), Serratia sp. (2.56%), Citricoccus sp. (2.56%), Cellulophaga sp. (2.56%), Ruegeria sp. (2.56%) and Staphylococcus sp. (2.56%). Six (15.38%) of the 39 bacteria Bifurcaria bifurcata-associated bacteria presented less than a 90% Basic Local Alignment Search Tool (BLAST) match, and some of those could be new. The highest antioxidant activity and antimicrobial activity (against B. subtilis) was exhibited by strain 16 (Shewanella sp.). Several strains also presented high antimicrobial activity against S. aureus, mainly belonging to Alteromonas sp. and Vibrio sp. There were no positive results against fungi and Gram-negative bacteria. Bifurcaria bifurcata epiphytic bacteria were revealed to be excellent sources of natural antioxidant and antimicrobial compounds.

  4. Antioxidant and Antimicrobial Potential of the Bifurcaria bifurcata Epiphytic Bacteria

    OpenAIRE

    Horta, André; Pinteus, Susete; Alves, Celso; Fino, Nádia; Silva, Joana; Fernandez, Sara; Rodrigues, Américo; Pedrosa, Rui

    2014-01-01

    This article belongs to the Special Issue Selected Papers from the 14th International Symposium on Marine Natural Products Surface-associated marine bacteria are an interesting source of new secondary metabolites. The aim of this study was the isolation and identification of epiphytic bacteria from the marine brown alga, Bifurcaria bifurcata, and the evaluation of the antioxidant and antimicrobial activity of bacteria extracts. The identification of epiphytic bacteria was determined by 16S...

  5. Amazonian Buriti oil: chemical characterization and antioxidant potential

    Energy Technology Data Exchange (ETDEWEB)

    Speranza, P.; Oliveira Falcao, A. de; Alves Macedo, J.; Silva, L.H.M. da; Rodrigues, A.M. da C.; Alves Macedo, G.

    2016-07-01

    Buriti oil is an example of an Amazonian palm oil of economic importance. The local population uses this oil for the prevention and treatment of different diseases; however, there are few studies in the literature that evaluate its properties. In this study, detailed chemical and antioxidant properties of Buriti oil were determined. The predominant fatty acid was oleic acid (65.6%) and the main triacylglycerol classes were tri-unsaturated (50.0%) and di-unsaturated-mono-saturated(39.3%) triacylglycerols. The positional distribution of the classes of fatty acids on the triacylglycerol backbone indicated a saturated and unsaturated fatty acid relationship similar in the three-triacylglycerol positions. All tocopherol isomers were present, with a total content of 2364.1 mg·kg−1. α-tocopherol constitutes 48% of the total tocopherol content, followed by γ- tocopherol (45%). Total phenolic (107.0 mg gallic acid equivalent·g−1 oil) and β-carotene (781.6 mg·kg−1) were particularly high in this oil. The highest antioxidant activity against the free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) was obtained at an oil concentration of 50 mg·mL−1 (73.15%). The antioxidant activity evaluated by the Oxygen Radical Absorbance Capacity (ORAC) was 95.3 μmol Trolox equivalent·g−1 oil. These results serve to present Buriti oil as an Amazonian resource for cosmetic, food and pharmaceuticals purposes. (Author)

  6. Exploiting biological activities of brown seaweed Ecklonia cava for potential industrial applications: a review.

    Science.gov (United States)

    Wijesinghe, W A J P; Jeon, You-Jin

    2012-03-01

    Seaweeds are rich in vitamins, minerals, dietary fibres, proteins, polysaccharides and various functional polyphenols. Many researchers have focused on brown algae as a potential source of bioactive materials in the past few decades. Ecklonia cava is a brown seaweed that is abundant in the subtidal regions of Jeju Island in the Republic of Korea. This seaweed attracted extensive interest due to its multiple biological activities. E. cava has been identified as a potential producer of wide spectrum of natural substances such as carotenoids, fucoidans and phlorotannins showing different biological activities in vital industrial applications including pharmaceutical, nutraceutical, cosmeceutical and functional food. This review focuses on biological activities of the brown seaweed E. cava based on latest research results, including antioxidant, anticoagulative, antimicrobial, antihuman immunodeficiency virus, anti-inflammatory, immunomodulatory, antimutagenic, antitumour and anticancer effects. The facts summarized here may provide novel insights into the functions of E. cava and its derivatives and potentially enable their use as functional ingredients in potential industrial applications.

  7. Antioxidant potential of lichen species and their secondary metabolites. A systematic review.

    Science.gov (United States)

    Fernández-Moriano, Carlos; Gómez-Serranillos, María Pilar; Crespo, Ana

    2016-01-01

    Pharmacological interest of lichens lies in their capacity to produce bioactive secondary metabolites, being most of them phenolic compounds with reactive hydroxyl groups that confer antioxidant potential through various mechanisms. Increasing incidence and impact of oxidative stress-related diseases (i.e., neurodegenerative disorders) has encouraged the search of new pharmacological strategies to face them. Lichens appear to be a promising source of phenolic compounds in the discovery of natural products exerting antioxidant activity. The present review thoroughly discusses the available knowledge on antioxidant properties of lichens, including both in vitro and in vivo studies and the parameters assessed so far on lichen constituents. Literature survey was performed by using as main databases PubMed, Google Scholar, Scopus, Science Direct, and Recent Literature on Lichens. We reviewed 98 highlighted research articles without date restriction. Current report collects data related to antioxidant activities of more than 75 lichen species (from 18 botanical families) and 65 isolated metabolites. Much information comes from in vitro investigations, such as chemical assays evaluating radical scavenging properties, lipid peroxidation inhibition, and reducing power of lichen species and compounds; similarly, research on cellular substrates and animal models generally measures antioxidant enzymes levels and other antioxidant markers, such as glutathione levels or tissue peroxidation. Since consistent evidence demonstrated the contribution of oxidative stress on the development and progression of several human diseases, reviewed data suggest that some lichen compounds are worthy of further investigation and better understanding of their antioxidant and neuroprotective potentials.

  8. Antioxidant response elements: Discovery, classes, regulation and potential applications.

    Science.gov (United States)

    Raghunath, Azhwar; Sundarraj, Kiruthika; Nagarajan, Raju; Arfuso, Frank; Bian, Jinsong; Kumar, Alan P; Sethi, Gautam; Perumal, Ekambaram

    2018-07-01

    Exposure to antioxidants and xenobiotics triggers the expression of a myriad of genes encoding antioxidant proteins, detoxifying enzymes, and xenobiotic transporters to offer protection against oxidative stress. This articulated universal mechanism is regulated through the cis-acting elements in an array of Nrf2 target genes called antioxidant response elements (AREs), which play a critical role in redox homeostasis. Though the Keap1/Nrf2/ARE system involves many players, AREs hold the key in transcriptional regulation of cytoprotective genes. ARE-mediated reporter constructs have been widely used, including xenobiotics profiling and Nrf2 activator screening. The complexity of AREs is brought by the presence of other regulatory elements within the AREs. The diversity in the ARE sequences not only bring regulatory selectivity of diverse transcription factors, but also confer functional complexity in the Keap1/Nrf2/ARE pathway. The different transcription factors either homodimerize or heterodimerize to bind the AREs. Depending on the nature of partners, they may activate or suppress the transcription. Attention is required for deeper mechanistic understanding of ARE-mediated gene regulation. The computational methods of identification and analysis of AREs are still in their infancy. Investigations are required to know whether epigenetics mechanism plays a role in the regulation of genes mediated through AREs. The polymorphisms in the AREs leading to oxidative stress related diseases are warranted. A thorough understanding of AREs will pave the way for the development of therapeutic agents against cancer, neurodegenerative, cardiovascular, metabolic and other diseases with oxidative stress. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Phyto-nutrient composition and antioxidative potential of ethanolic ...

    African Journals Online (AJOL)

    The vitamin composition (mg/100 g) were 0.36 ± 0.01 thiamin, 0.19 ± 0.02 niacin, 24.27 ± 0.25 ascorbic acid, 1.85 ± 0.32 tocopherol, 0.12 ± 0.05 riboflavin while mineral composition (mg/100 mg) was 14428 ± 0.02, 122.11 ± 0.01, 325.12 ± 0.02 for calcium, magnesium and zinc, respectively. To determine the antioxidative ...

  10. Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports.

    Science.gov (United States)

    Pingitore, Alessandro; Lima, Giuseppina Pace Pereira; Mastorci, Francesca; Quinones, Alfredo; Iervasi, Giorgio; Vassalle, Cristina

    2015-01-01

    Free radicals are produced during aerobic cellular metabolism and have key roles as regulatory mediators in signaling processes. Oxidative stress reflects an imbalance between production of reactive oxygen species and an adequate antioxidant defense. This adverse condition may lead to cellular and tissue damage of components, and is involved in different physiopathological states, including aging, exercise, inflammatory, cardiovascular and neurodegenerative diseases, and cancer. In particular, the relationship between exercise and oxidative stress is extremely complex, depending on the mode, intensity, and duration of exercise. Regular moderate training appears beneficial for oxidative stress and health. Conversely, acute exercise leads to increased oxidative stress, although this same stimulus is necessary to allow an up-regulation in endogenous antioxidant defenses (hormesis). Supporting endogenous defenses with additional oral antioxidant supplementation may represent a suitable noninvasive tool for preventing or reducing oxidative stress during training. However, excess of exogenous antioxidants may have detrimental effects on health and performance. Whole foods, rather than capsules, contain antioxidants in natural ratios and proportions, which may act in synergy to optimize the antioxidant effect. Thus, an adequate intake of vitamins and minerals through a varied and balanced diet remains the best approach to maintain an optimal antioxidant status. Antioxidant supplementation may be warranted in particular conditions, when athletes are exposed to high oxidative stress or fail to meet dietary antioxidant requirements. Aim of this review is to discuss the evidence on the relationship between exercise and oxidative stress, and the potential effects of dietary strategies in athletes. The differences between diet and exogenous supplementation as well as available tools to estimate effectiveness of antioxidant intake are also reported. Finally, we advocate the need

  11. Phytochemical analysis of Andrographis paniculata and Orthosiphon stamineus leaf extracts for their antibacterial and antioxidant potential.

    Science.gov (United States)

    Malahubban, M; Alimon, A R; Sazili, A Q; Fakurazi, S; Zakry, F A

    2013-09-01

    Leaves of Andrographis paniculata and Orthosiphon stamineus were extracted with water, ethanol, methanol and chloroform to assess their potential as antibacterial and antioxidant agents. High performance liquid chromatography analysis showed that the methanolic extracts of A. paniculata and O. stamineus leaves gave the highest amounts of andrographolide and rosmarinic acid, respectively. These leaf extracts exhibited antimicrobial and antioxidant activities and, at the highest concentration tested (200 mg/mL), showed greater inhibitory effects against the Gram positive bacteria Bacillus cereus and Staphylococcus aureus than 10% acetic acid. Andrographis paniculata and O. stamineus methanolic and ethanolic leaf extracts also showed the strongest antioxidant activity as compared with the other extracts tested. The bioactive compounds present in these leaf extracts have the potential to be developed into natural antibacterial and antioxidant agents that may have applications in animal and human health.

  12. Antioxidant Potential of Fruit Juice with Added Chokeberry Powder (Aronia melanocarpa)

    OpenAIRE

    Jana Šic Žlabur; Nadica Dobričević; Stjepan Pliestić; Ante Galić; Daniela Patricia Bilić; Sandra Voća

    2017-01-01

    The purpose of this study was to determine the possibility of using chokeberry powder as a supplement in apple juice to increase the nutritional value of the final product with the aim of developing a new functional food product. Also, to determine the influence of ultrasound assisted extraction on the bioactive compounds content, nutritional composition and antioxidant potential of apple juice with added chokeberry powder. The juice samples with added chokeberry powder had higher antioxidant...

  13. Antioxidant potential of water hyacinth (Eichornia crassipes): In vitro antioxidant activity and phenolic composition

    DEFF Research Database (Denmark)

    Surendraraj, Alagarsamy; Farvin, Sabeena; Anandan, R.

    2011-01-01

    The aims of the present study were (a) to extract and quantify the main phenolic acids and tocopherols from the petiole, leaf and flowers of Eichornia crassipes, (b) to evaluate the antioxidant capacity of the extracts in four in vitro systems (DPPH radical scavenging ability, iron chelating...... the various parts of E. crassipes. Out of the 11 phenolic acids analysed, ethanolic extracts contained high amounts gallic, protocatechuic, gentisic and phydroxybenzoic acid, whereas, water extracts contained less amounts of varied number of phenolic acids. Ethanolic extracts of flower, which contained...... the highest total phenolic content, were found to have high DPPH radical scavenging activity and reducing power. Ethanolic extracts of leaf were found to have high Fe2+ chelating activity and inhibited lipid peroxidation in liposomes and fish oil. Our results demonstrate that E. crassipes, an underutilized...

  14. Evaluation of the In Vitro and In Vivo Antioxidant Potentials of Sudarshana Powder

    Directory of Open Access Journals (Sweden)

    Weerakoon Achchige Selvi Saroja Weerakoon

    2018-01-01

    Full Text Available Sudarshana powder (SP is one of the most effective Ayurveda powder preparations for paediatric febrile conditions. The objective of the present study was to evaluate the in vitro and in vivo antioxidant potentials of SP. The in vitro antioxidant effects were evaluated using ABTS radical cation decolourization assay where the TROLOX equivalent antioxidant capacity (TEAC was determined. The in vivo antioxidant activity of SP was determined in Wistar rats using the Lipid Peroxidation (LPO assay in serum. The in vitro assay was referred to as the TROLOX equivalent antioxidant capacity (TEAC assay. For the in vivo assay, animals were dosed for 21 consecutive days and blood was drawn to evaluate the MDA level. The in vitro antioxidant activity of 0.5 μg of SP was equivalent to 14.45 μg of standard TROLOX. The percentage inhibition against the radical formation was 50.93±0.53%. The SP showed a statistically significant (p<0.01 decrease in the serum level of thiobarbituric acid-reactive substance in the test rats when compared with the control group. These findings suggest that the SP possesses potent antioxidant activity which may be responsible for some of its reported bioactivities.

  15. Phytochemical Composition and Antioxidant Potential of Ruta graveolens L. In Vitro Culture Lines

    Directory of Open Access Journals (Sweden)

    Renuka Diwan

    2012-01-01

    Full Text Available Ruta graveolens L. is a medicinal plant used in traditional systems of medicine for treatment of psoriasis, vitiligo, leucoderma, and lymphomas with well-known anti-inflammatory and anticancer properties. Therefore antioxidant potential of R. graveolens (in planta and in vitro was investigated. As antioxidants present in plant extracts are multifunctional, their activity and mechanism depends on the composition and conditions of the test system. Therefore, the total antioxidant capacity was evaluated using assays that detect different antioxidants: free radical scavenging (DPPH and ABTS, transition metal ion reduction (phosphomolybdenum assay, reducing power, and nitric oxide reduction. Content of furanocoumarin-bergapten in the extracts showed good corelation with free radical scavenging, transition metal reduction and reducing power, while total phenolic content showed good corelation with nitric oxide reduction potential. Antioxidant activity of in vitro cultures was significantly higher compared to in vivo plant material. The present study is the first report on comprehensive study of antioxidant activity of R. graveolens and its in vitro cultures.

  16. Amazonian Buriti oil: chemical characterization and antioxidant potential

    Directory of Open Access Journals (Sweden)

    Speranza, P.

    2016-06-01

    Full Text Available Buriti oil is an example of an Amazonian palm oil of economic importance. The local population uses this oil for the prevention and treatment of different diseases; however, there are few studies in the literature that evaluate its properties. In this study, detailed chemical and antioxidant properties of Buriti oil were determined. The predominant fatty acid was oleic acid (65.6% and the main triacylglycerol classes were tri-unsaturated (50.0% and di-unsaturated-mono-saturated (39.3% triacylglycerols. The positional distribution of the classes of fatty acids on the triacylglycerol backbone indicated a saturated and unsaturated fatty acid relationship similar in the three-triacylglycerol positions. All tocopherol isomers were present, with a total content of 2364.1 mg·kg−1. α-tocopherol constitutes 48% of the total tocopherol content, followed by γ- tocopherol (45%. Total phenolic (107.0 mg gallic acid equivalent·g−1 oil and β-carotene (781.6 mg·kg−1 were particularly high in this oil. The highest antioxidant activity against the free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH was obtained at an oil concentration of 50 mg·mL−1 (73.15%. The antioxidant activity evaluated by the Oxygen Radical Absorbance Capacity (ORAC was 95.3 μmol Trolox equivalent·g−1 oil. These results serve to present Buriti oil as an Amazonian resource for cosmetic, food and pharmaceuticals purposes.El aceite de Buriti es un ejemplo de aceite de palma amazónica de gran importancia económica. La población local utiliza este aceite para la prevención y el tratamiento de diferentes enfermedades; sin embargo, hay pocos estudios científicos que evalúen sus propiedades. En este estudio, se determinaron las propiedades antioxidantes del aceite de Buriti. El ácido graso predominante fue el oleico (65,6 % y las principales clases de triglicéridos fueron tri-insaturadas (50,0 % y Di-insaturados-mono-saturada (39,3 %. La distribución posicional de las

  17. Upgrading the antioxidant potential of cereals by their fungal fermentation under solid-state cultivation conditions.

    Science.gov (United States)

    Bhanja Dey, T; Kuhad, R C

    2014-11-01

    Solid-state fermentation (SSF) at 30°C for 72 h with four generally recognized as safe (GRAS) filamentous fungi (Aspergillus oryzae NCIM 1212, Aspergillus awamori MTCC No. 548, Rhizopus oligosporus NCIM 1215 and Rhizopus oryzae RCK2012) showed high efficiency for the improvement of water-soluble total phenolic content (TPC) and antioxidant properties including ABTS(●+) [2,2'-azinobis (3-ethylbenzothiazoline-6-sulphonic acid)] and DPPH(●) (2,2'-diphenyl-1-picrylhydrazyl) scavenging capacities of four whole grain cereals, namely wheat, brown rice, maize and oat. A maximum 14-fold improvement in TPC (11·61 mg gallic acid equivalent g(-1) grain) was observed in A. oryzae fermented wheat, while extract of R. oryzae fermented wheat (ROFW) showed maximum of 6·6-fold and fivefold enhancement of DPPH(●) scavenging property (8·54 μmol Trolox equivalent g(-1) grain) and ABTS(●+) scavenging activity (19·5 μmol Trolox equivalent g(-1) grain), respectively. The study demonstrates that SSF is an efficient method for the improvement of antioxidant potentials of cereals and R. oryzae RCK2012 fermented wheat can be a powerful source of natural antioxidants. Antioxidant-rich food products are getting popularity day by day. In this study, potential of solid-state fermentation (SSF) has been studied for the improvement of antioxidant potential of different cereals by GRAS micro-organisms. The comparative evaluation of the antioxidant potential of various fungal fermented products derived from whole grain cereals, such as wheat, brown rice, oat and maize, has been carried out. Among these, Rhizopus oryzae RCK2012-fermented wheat was observed as a potent source of natural antioxidants. A diet containing fermented cereals would be useful for the prevention of free radical-mediated diseases. © 2014 The Society for Applied Microbiology.

  18. Effect of processing on antioxidant potential and total phenolics content in beet (Beta vulgaris L.

    Directory of Open Access Journals (Sweden)

    Dorivaldo da Silva Raupp

    2011-09-01

    Full Text Available The antioxidant capacity of beet is associated with non-nutritive constituents, such as phenolic compounds. The purpose of this research was to evaluate the effect of two different heat-processing techniques (drying and canned on the antioxidant potential (ABTS and phenolics content of beets. A forced air circulation dehydrator was used for the drying. Drying at high temperatures (100 + 90 °C/5.6 hours; 90 °C/6 hours increased the antioxidant potential of the processed products while mild drying conditions decreased it (80 °C/6 hours; 100 + 70 °C/6 hours or had no effect on it (70 °C/7 hours; 100 + 80 °C/6 hours. For the canned products, the antioxidant potential did not differ according to the pH (4.2 to 3.8 for any of the four acids tested. Some processing methods influenced the antioxidant potential of the processed products, and this was also dependent on changes in the total phenolics content.

  19. Electrochemical Determination of the Antioxidant Potential of Some Less Common Fruit Species

    Directory of Open Access Journals (Sweden)

    Boris Krska

    2008-11-01

    Full Text Available Various berries and fruit types of less common fruit species are known to contain antioxidants. Consumption of high amounts of antioxidant flavonoids, which display a variety of biological properties, including antiproliferative and anti-inflammatory activity, may have a positive impact on human health, particularly for the prevention of cancer and other inflammatory diseases. In these studies, based on the hypothesis that the fruit extract with the highest content would possess significantly higher health benefits, flavonoid-rich extracts were obtained from some less common fruit species – Blue Honeysuckles (Lonicera Kamtschatica and Lonicera edulis, Turcz. ex. Freyn, Saskatoon berry (Amelanchier alnifolia Nutt. and Chinese Hawthorn (Crataegus pinnatifida BUNGE – grown from germplasm held at the Mendel University of Agriculture and Forestry in Brno, Czech Republic and then characterized in terms of biological value based on the results from a relative antioxidant capacity assessment. The antioxidant content evaluation was based on the total flavonoid amount, determined by liquid chromatography with electrochemical detection (HPLC-ED. A DPPH• test was applied as a reference. The antioxidant content measured in Chinese Hawthorn fruit extract identified it as a potent source of flavonoid antioxidants, with a content 9-fold higher than that seen in Amelanchier fruit. The multifunctional HPLC-ED array method coupled with a DPPH• reference appears to be the optimal analytical progress, accurately reflecting the nutritivetherapeutic properties of a fruit.

  20. Phytochemical analysis, antimicrobial, antioxidant and urease inhibitory potential of Cyphostemma digitatum Lam.

    Science.gov (United States)

    Khan, Rasool; Saif, Abdullah Qasem; Quradha, Mohammad Mansour; Ali, Jawad; Rauf, Abdur

    2015-01-01

    In this paper we report the antimicrobial, antiradical and urease inhibitory potential along with photochemical investigation of the crude extracts of Cyphostemma digitatum Lam. Phytochemical screening of both the crude (hot/cold) alcoholic and aqueous extracts of C. digitatum showed the presence of alkaloids, flavonoids, saponins, coumarins, steroids, terpenoids and tannins. The crude methanolic extract (hot/cold) exhibited good antioxidant activity, while the aqueous extract was a weak antioxidant. The crude methanolic extract was found to be more active against Bacillus subtilis, while both the extracts showed moderate antifungal potential, the methanolic crude extract showed good urease inhibitory activity compared with the aqueous crude extract.

  1. Melatonin: Action as antioxidant and potential applications in human disease and aging

    International Nuclear Information System (INIS)

    Bonnefont-Rousselot, Dominique; Collin, Fabrice

    2010-01-01

    This review aims at describing the beneficial properties of melatonin related to its antioxidant effects. Oxidative stress, i.e., an imbalance between the production of reactive oxygen species and antioxidant defences, is involved in several pathological conditions such as cardiovascular or neurological disease, and in aging. Therefore, research for antioxidants has developed. However, classical antioxidants often failed to exhibit beneficial effects, especially in metabolic diseases. Melatonin has been shown as a specific antioxidant due to its amphiphilic feature that allows it to cross physiological barriers, thereby reducing oxidative damage in both lipid and aqueous cell environments. Studies on the antioxidant action of melatonin are reported, with a special mention to water gamma radiolysis as a method to produce oxygen-derived free radicals, and on structure-activity relationships of melatonin derivatives. Mass spectrometry-based techniques have been developed to identify melatonin oxidation products. Besides its ability to scavenge several radical species, melatonin regulates the activity of antioxidant enzymes (indirect antioxidant properties). Efficient detection methods confirmed the presence of melatonin in several plant products. Therapeutic potential of melatonin relies either on increasing melatonin dietary intake or on supplementation with supraphysiological dosages. Clinical trials showed that melatonin could be efficient in preventing cell damage, as well under acute (sepsis, asphyxia in newborns) as under chronic (metabolic and neurodegenerative diseases, cancer, inflammation, aging). Its global action on oxidative stress, together with its rhythmicity that plays a role in several metabolic functions, lead melatonin to be of great interest for future clinical research in order to improve public health.

  2. Evaluation of Potential Biological Threats in Ukraine

    International Nuclear Information System (INIS)

    Pozdnyakova, L.; Slavina, N.; Pozdnyakov, S.

    2007-01-01

    Dilating of biological threats spectrum, EDI diffusion opportunities and routes, unpredictability of outbreaks connected with connatural, technogenic, terrorist factors determines constant monitoring and readiness for operative BPA indication and identification. Scientific analytical approach of existing and probable regional bio-threats evaluation is necessary for adequate readiness system creation and maintenance of medical counteraction tactics to probable biological threats. Basing on the international experience, we carry out analysis of a situation present in Ukraine and routes for the decisions. The basic directions are: - Evaluation of a reality for EDI penetration from abroad and presence of conditions for their further diffusion inside the country. - Revealing of presence and definition of connatural EDI foci biocenoses features and BPAs. - Appropriate level of biological safety and physical protection of bio-laboratories and pathogens collections maintenance. - Gene/molecular and phenotypical definition of EDI circulating strains. - Creation of the circulating EDI gene/ phenotypic characteristics regional data bank. - Ranging of EDI actual for area. - Introduction of GPT, mathematical modeling and forecasting for tactics development in case of technogenic accidents and connatural outbreaks. - Methodical basis and equipment improvement for BPA system indication for well-timed identification of natural, or modified agent. - Education and training The international cooperation in maintenance of biosafety and bioprotection within the framework of scientific programs, grants, exchange of experience, introduction of international standards and rules are among basic factors in the decision for creating system national biosafety for countries not included in EU and the NATO. (author)

  3. Molecular Insights into the Potential Toxicological Interaction of 2-Mercaptothiazoline with the Antioxidant Enzyme—Catalase

    Science.gov (United States)

    Huang, Zhenxing; Huang, Ming; Mi, Chenyu; Wang, Tao; Chen, Dong; Teng, Yue

    2016-01-01

    2-mercaptothiazoline (2-MT) is widely used in many industrial fields, but its residue is potentially harmful to the environment. In this study, to evaluate the biological toxicity of 2-MT at protein level, the interaction between 2-MT and the pivotal antioxidant enzyme—catalase (CAT) was investigated using multiple spectroscopic techniques and molecular modeling. The results indicated that the CAT fluorescence quenching caused by 2-MT should be dominated by a static quenching mechanism through formation of a 2-MT/CAT complex. Furthermore, the identifications of the binding constant, binding forces, and the number of binding sites demonstrated that 2-MT could spontaneously interact with CAT at one binding site mainly via Van der Waals’ forces and hydrogen bonding. Based on the molecular docking simulation and conformation dynamic characterization, it was found that 2-MT could bind into the junctional region of CAT subdomains and that the binding site was close to enzyme active sites, which induced secondary structural and micro-environmental changes in CAT. The experiments on 2-MT toxicity verified that 2-MT significantly inhibited CAT activity via its molecular interaction, where 2-MT concentration and exposure time both affected the inhibitory action. Therefore, the present investigation provides useful information for understanding the toxicological mechanism of 2-MT at the molecular level. PMID:27537873

  4. Phenolic Extracts from Wild Olive Leaves and Their Potential as Edible Oils Antioxidants

    Directory of Open Access Journals (Sweden)

    Theodora-Ioanna Lafka

    2013-01-01

    Full Text Available The kinetics solid-liquid extraction of phenolics from wild olive leaves was elaborated using different mathematical models (Peleg, second order, Elovich, and power law model. As solvents, methanol, ethanol, ethanol:water 1:1, n-propanol, isopropanol and ethyl acetate were used. The second order model best described the solvent extraction process, followed by the Elovich model. The most effective solvent was ethanol with optimum phenol extraction conditions 180 min, solvent to sample ratio 5:1 v/w and pH 2. Ethanol extract exhibited the highest antiradical activity among solvent and supercritical fluid extraction (SFE extracts, which in addition showed the highest antioxidant capacity compared to synthetic and natural food antioxidants such as BHT, ascorbyl palmitate and vitamin E. Antioxidant potential of SFE extract was quite high, although its phenolic potential was not. Leaf extracts were proven to be good protectors for olive and sunflower oils at levels of 150 ppm.

  5. In vivo Raman spectroscopy detects increased epidermal antioxidative potential with topically applied carotenoids

    International Nuclear Information System (INIS)

    Lademann, J; Richter, H; Patzelt, A; Darvin, M; Sterry, W; Fluhr, J W; Caspers, P J; Van der Pol, A; Zastrow, L

    2009-01-01

    In the present study, the distribution of the carotenoids as a marker for the complete antioxidative potential in human skin was investigated before and after the topical application of carotenoids by in vivo Raman spectroscopy with an excitation wavelength of 785 nm. The carotenoid profile was assessed after a short term topical application in 4 healthy volunteers. In the untreated skin, the highest concentration of natural carotenoids was detected in different layers of the stratum corneum (SC) close to the skin surface. After topical application of carotenoids, an increase in the antioxidative potential in the skin could be observed. Topically applied carotenoids penetrate deep into the epidermis down to approximately 24 μm. This study supports the hypothesis that antioxidative substances are secreted via eccrine sweat glands and/or sebaceous glands to the skin surface. Subsequently they penetrate into the different layers of the SC

  6. Antioxidant Phytochemicals of Opuntia ficus-indica (L.) Mill. Cladodes with Potential Anti-spasmodic Activity

    OpenAIRE

    Lanuzza, Francesco; Occhiuto, Francesco; Monforte, Maria Teresa; Tripodo, Maria Marcella; D’Angelo, Valeria; Galati, Enza Maria

    2017-01-01

    Background: Opuntia ficus-indica (OFI) (L.) Mill. (Cactaceae), a plant widespread in dry regions of the world, shows interesting biological activities (cicatrizant, antiulcer, anti-inflammatory, and hypolipidemic) and is widely used in traditional medicine. Objectives: Phytochemical analysis and antispasmodic effect of wild OFI cladodes were carried out. Material and Methods: Polyphenols and Vitamin E occurrence, in antioxidant pool of OFI cladodes, were quantified by high-performance liquid ...

  7. Antioxidant Potential of a Polyherbal Antimalarial as an Indicator of Its Therapeutic Value

    Directory of Open Access Journals (Sweden)

    Protus Arrey Tarkang

    2013-01-01

    Full Text Available Nefang is a polyherbal product composed of Mangifera indica (bark and leaf, Psidium guajava, Carica papaya, Cymbopogon citratus, Citrus sinensis, and Ocimum gratissimum (leaves, used for the treatment of malaria. Compounds with antioxidant activity are believed to modulate plasmodial infection. Antioxidant activity of the constituent aqueous plants extracts, in vitro, was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH, total phenolic content (TPC, and ferric reducing antioxidant power (FRAP methods and, in vivo, Nefang (100 and 500 mg kg−1 activity was evaluated in carbon tetrachloride-induced oxidative stressed Wistar rats. Superoxide dismutase, catalase activities, and lipid peroxidation by the malondialdehyde and total proteins assays were carried out. P. guajava, M. indica leaf, and bark extracts had the highest antioxidant properties in all three assays, with no statistically significant difference. Rats treated with the carbon tetrachloride had a statistically significant decrease in levels of triglycerides, superoxide dismutase, and catalase (P<0.05 and increase in malondialdehyde activity, total protein levels, and liver and renal function markers, whereas rats treated with Nefang showed increased levels in the former and dose-dependent decrease towards normal levels in the later. These results reveal the constituent plants of Nefang that contribute to its in vivo antioxidant potential. This activity is a good indication of the therapeutic potential of Nefang.

  8. Evaluation of biological value and appraisal of polyphenols and glucosinolates from organic baby-leaf salads as antioxidants and antimicrobials against important human pathogenic bacteria.

    Science.gov (United States)

    Aires, Alfredo; Marques, Esperança; Carvalho, Rosa; Rosa, Eduardo A S; Saavedra, Maria J

    2013-04-19

    The present investigation has been carried out to investigate the biological role of four different types of baby-leaf salads and to study their potential as natural sources of antioxidants and antimicrobials against several isolates from important human pathogenic bacteria. Four single types of salads (green lettuce, red lettuce, rucola and watercress) and two mixtures [(1) red lettuce+green lettuce; (2) green lettuce + red lettuce + watercress + rucola] were assayed. The HPLC analysis revealed interesting levels of polyphenols and glucosinolates. The results showed a significant variation (p flavonoids); and cyanidin-3-glucoside (anthocyanins). Only three different glucosinolates were found: glucoraphanin; gluconasturtiin and 4-methoxy-glucobrassicin. A positive correlation was detected between polyphenol contents and antioxidant activity. Red lettuce and mixture 1 were the baby-leaf salads with the highest antioxidant potential. As for the antimicrobial activity, the results showed a selective effect of chemicals against Gram-positive and Gram-negative bacteria and Enterococcus faecalis and Staphylococcus aureus were the bacteria most affected by the phytochemicals. Based on the results achieved baby-leaf salads represent an important source of natural antioxidants and antimicrobial substances.

  9. Evaluation of Biological Value and Appraisal of Polyphenols and Glucosinolates from Organic Baby-Leaf Salads as Antioxidants and Antimicrobials against Important Human Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Maria J. Saavedra

    2013-04-01

    Full Text Available The present investigation has been carried out to investigate the biological role of four different types of baby-leaf salads and to study their potential as natural sources of antioxidants and antimicrobials against several isolates from important human pathogenic bacteria. Four single types of salads (green lettuce, red lettuce, rucola and watercress and two mixtures [(1 red lettuce+green lettuce; (2 green lettuce + red lettuce + watercress + rucola] were assayed. The HPLC analysis revealed interesting levels of polyphenols and glucosinolates. The results showed a significant variation (p < 0.05 of polyphenols and glucosinolates with plant material. Nine different types of polyphenols grouped in three major classes were found: gallic acid, chlorogenic acid, caffeic acid and dicaffeoyltartaric acid (phenolic acids; quercitin-3-O-rutinoside, quercitin-3-O-rhamnoside, luteolin-7-O-glucoside and isorhamnetin (flavonoids; and cyanidin-3-glucoside (anthocyanins. Only three different glucosinolates were found: glucoraphanin; gluconasturtiin and 4-methoxy-glucobrassicin. A positive correlation was detected between polyphenol contents and antioxidant activity. Red lettuce and mixture 1 were the baby-leaf salads with the highest antioxidant potential. As for the antimicrobial activity, the results showed a selective effect of chemicals against Gram-positive and Gram-negative bacteria and Enterococcus faecalis and Staphylococcus aureus were the bacteria most affected by the phytochemicals. Based on the results achieved baby-leaf salads represent an important source of natural antioxidants and antimicrobial substances.

  10. Biological activities and biomedical potential of sea cucumber (Stichopus japonicus: a review

    Directory of Open Access Journals (Sweden)

    Gun-Woo Oh

    2017-11-01

    Full Text Available Abstract Members of the phylum Echinodermata, commonly known as echinoderms, are exclusively marine invertebrates. Among the Echinodermata, sea cucumber belongs to the family Holothuroidea. The sea cucumber Stichopus (Apostichous japonicus (Selenka is an invertebrate animal inhabiting the coastal sea around Korean, Japan, China, and Russia. Sea cucumber has a significant commercial value, because it contains valuable nutrients such as vitamins and minerals. They possess a number of distinctive biologically and pharmacologically important compounds. In particular, the body wall of sea cucumber is a major edible part. It consists of peptide, collagen, gelatin, polysaccharide, and saponin, which possess several biological activities such as anti-cancer, anti-coagulation, anti-oxidation, and anti-osteoclastogenesis. Furthermore, the regenerative capacity of sea cucumber makes it a medically important organism. This review presents the various biological activities and biomedical potential of sea cucumber S. japonicus.

  11. Antioxidant potential of hydrolyzed polyphenolic extracts from tara (Caesalpinia spinosa) pods

    NARCIS (Netherlands)

    Chambi, F.; Chirinos, R.; Pedreschi Plasencia, R.P.; et al.,

    2013-01-01

    The antioxidant potential of tara pod extracts rich in gallotannins submitted to chemical hydrolysis was evaluated. The increase in the release of gallic acid from the tara pod extracts during the hydrolysis process reached a maximum ratio of free gallic acid/total phenolics of 94.1% at 20 h, at

  12. Antioxidant potentials of local fruits and foreign wines sold in Ile-Ife ...

    African Journals Online (AJOL)

    Some locally consumed fruits, sugarcane and wines sold in Ile-Ife, Nigeria, were investigated for their phenol content and antioxidant potential of the methanolic extracts with a view of exploring the healthpromoting effect of the fruits and wines. The total phenolic content in each fruit and wines was determined ...

  13. Amauroderma rugosum (Blume & T. Nees Torrend: Nutritional Composition and Antioxidant and Potential Anti-Inflammatory Properties

    Directory of Open Access Journals (Sweden)

    Pui-Mun Chan

    2013-01-01

    Full Text Available Amauroderma rugosum is a wild mushroom that is worn as a necklace by the indigenous communities in Malaysia to prevent fits and incessant crying by babies. The aim of this study was to investigate the nutritive composition and antioxidant potential and anti-inflammatory effects of A. rugosum extracts on LPS-stimulated RAW264.7 cells. Nutritional analysis of freeze-dried mycelia of A. rugosum (KUM 61131 from submerged culture indicated a predominant presence of carbohydrates, proteins, dietary fibre, phosphorus, potassium, and sodium. The ethanol crude extract (EE, its hexane (HF, ethyl acetate (EAF, and aqueous (AF fractions of mycelia of A. rugosum grown in submerged culture were evaluated for antioxidant potential and anti-inflammatory effects. EAF exhibited the highest total phenolic content and the strongest antioxidant activity based on 2,2-diphenyl-1-picrylhydrazyl (DPPH and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS assays. HF showed dose-dependent inhibition of NO production in LPS-stimulated RAW264.7 cells and NO radical scavenging activity. Gas chromatographic analysis of HF revealed the presence of ethyl linoleate and ergosterol, compounds with known anti-inflammatory properties. In conclusion, the nutritive compositions and significant antioxidant potential and anti-inflammatory effects of mycelia extracts of A. rugosum have the potential to serve as a therapeutic agent or adjuvant in the management of inflammatory disorders.

  14. Biological Potential of Chitinolytic Marine Bacteria

    DEFF Research Database (Denmark)

    Paulsen, Sara Skøtt; Andersen, Birgitte; Gram, Lone

    2016-01-01

    Chitinolytic microorganisms secrete a range of chitin modifying enzymes, which can be exploited for production of chitin derived products or as fungal or pest control agents. Here, we explored the potential of 11 marine bacteria (Pseudoalteromonadaceae, Vibrionaceae) for chitin degradation using...

  15. Novel self-emulsifying formulation of quercetin for improved in vivo antioxidant potential

    DEFF Research Database (Denmark)

    Jain, Sanyog; Jain, Amit K; Pohekar, Milind

    2013-01-01

    Quercetin (QT) was formulated into a novel self-emulsifying drug delivery system (SEDDS) to improve its oral bioavailability and antioxidant potential compared to free drug. Capmul MCM was selected as the oily phase on the basis of optimum solubility of QT in oil. Tween 20 and ethanol were selected.......8. The ratio of 40:40:20 w/w, Capmul MCM:QT (19:1)/Tween 20/ethanol was optimized based on its ability to form a spontaneous submicrometer emulsion in simulated gastrointestinal fluids. DPPH scavenging assay showed comparable antioxidant activity of QT-SEDDS to free QT. QT-SEDDS was robust in terms...

  16. Chemical, Bioactive, and Antioxidant Potential of Twenty Wild Culinary Mushroom Species

    Science.gov (United States)

    Sharma, S. K.; Gautam, N.

    2015-01-01

    The chemical, bioactive, and antioxidant potential of twenty wild culinary mushroom species being consumed by the people of northern Himalayan regions has been evaluated for the first time in the present study. Nutrients analyzed include protein, crude fat, fibres, carbohydrates, and monosaccharides. Besides, preliminary study on the detection of toxic compounds was done on these species. Bioactive compounds evaluated are fatty acids, amino acids, tocopherol content, carotenoids (β-carotene, lycopene), flavonoids, ascorbic acid, and anthocyanidins. Fruitbodies extract of all the species was tested for different types of antioxidant assays. Although differences were observed in the net values of individual species all the species were found to be rich in protein, and carbohydrates and low in fat. Glucose was found to be the major monosaccharide. Predominance of UFA (65–70%) over SFA (30–35%) was observed in all the species with considerable amounts of other bioactive compounds. All the species showed higher effectiveness for antioxidant capacities. PMID:26199938

  17. Chemical, Bioactive, and Antioxidant Potential of Twenty Wild Culinary Mushroom Species

    Directory of Open Access Journals (Sweden)

    S. K. Sharma

    2015-01-01

    Full Text Available The chemical, bioactive, and antioxidant potential of twenty wild culinary mushroom species being consumed by the people of northern Himalayan regions has been evaluated for the first time in the present study. Nutrients analyzed include protein, crude fat, fibres, carbohydrates, and monosaccharides. Besides, preliminary study on the detection of toxic compounds was done on these species. Bioactive compounds evaluated are fatty acids, amino acids, tocopherol content, carotenoids (β-carotene, lycopene, flavonoids, ascorbic acid, and anthocyanidins. Fruitbodies extract of all the species was tested for different types of antioxidant assays. Although differences were observed in the net values of individual species all the species were found to be rich in protein, and carbohydrates and low in fat. Glucose was found to be the major monosaccharide. Predominance of UFA (65–70% over SFA (30–35% was observed in all the species with considerable amounts of other bioactive compounds. All the species showed higher effectiveness for antioxidant capacities.

  18. Chemical, Bioactive, and Antioxidant Potential of Twenty Wild Culinary Mushroom Species.

    Science.gov (United States)

    Sharma, S K; Gautam, N

    2015-01-01

    The chemical, bioactive, and antioxidant potential of twenty wild culinary mushroom species being consumed by the people of northern Himalayan regions has been evaluated for the first time in the present study. Nutrients analyzed include protein, crude fat, fibres, carbohydrates, and monosaccharides. Besides, preliminary study on the detection of toxic compounds was done on these species. Bioactive compounds evaluated are fatty acids, amino acids, tocopherol content, carotenoids (β-carotene, lycopene), flavonoids, ascorbic acid, and anthocyanidins. Fruitbodies extract of all the species was tested for different types of antioxidant assays. Although differences were observed in the net values of individual species all the species were found to be rich in protein, and carbohydrates and low in fat. Glucose was found to be the major monosaccharide. Predominance of UFA (65-70%) over SFA (30-35%) was observed in all the species with considerable amounts of other bioactive compounds. All the species showed higher effectiveness for antioxidant capacities.

  19. Antioxidant Potential of Fruit Juice with Added Chokeberry Powder (Aronia melanocarpa

    Directory of Open Access Journals (Sweden)

    Jana Šic Žlabur

    2017-12-01

    Full Text Available The purpose of this study was to determine the possibility of using chokeberry powder as a supplement in apple juice to increase the nutritional value of the final product with the aim of developing a new functional food product. Also, to determine the influence of ultrasound assisted extraction on the bioactive compounds content, nutritional composition and antioxidant potential of apple juice with added chokeberry powder. The juice samples with added chokeberry powder had higher antioxidant capacity, irrespective of the extraction technique used. Apple juice samples with added chokeberry powder treated with high intensity ultrasound had significantly higher content of all analyzed bioactive compounds. The application of high intensity ultrasound significantly reduced the extraction time of the plant material. A positive correlation between vitamin C content, total phenols, flavonoids and anthocyanins content and antioxidant capacity was determined in juice samples with added chokeberry powder treated with high intensity ultrasound.

  20. Antioxidant Potential of Fruit Juice with Added Chokeberry Powder (Aronia melanocarpa).

    Science.gov (United States)

    Šic Žlabur, Jana; Dobričević, Nadica; Pliestić, Stjepan; Galić, Ante; Bilić, Daniela Patricia; Voća, Sandra

    2017-12-05

    The purpose of this study was to determine the possibility of using chokeberry powder as a supplement in apple juice to increase the nutritional value of the final product with the aim of developing a new functional food product. Also, to determine the influence of ultrasound assisted extraction on the bioactive compounds content, nutritional composition and antioxidant potential of apple juice with added chokeberry powder. The juice samples with added chokeberry powder had higher antioxidant capacity, irrespective of the extraction technique used. Apple juice samples with added chokeberry powder treated with high intensity ultrasound had significantly higher content of all analyzed bioactive compounds. The application of high intensity ultrasound significantly reduced the extraction time of the plant material. A positive correlation between vitamin C content, total phenols, flavonoids and anthocyanins content and antioxidant capacity was determined in juice samples with added chokeberry powder treated with high intensity ultrasound.

  1. Antioxidant Potential and Modulatory Effects of Restructured Lipids from the Amazonian Palms on Liver Cells

    Directory of Open Access Journals (Sweden)

    Andrea de Oliveira Falcão

    2017-01-01

    Full Text Available Enzymatic interesterification is used to manipulate oil and fat in order to obtain improved restructured lipids with desired technological properties. However, with raw materials containing significant amounts of bioactive compounds, the influence of this enzymatic process on the bioactivity of the final product is still not clear. Thus, the aim of this study is to evaluate the antioxidant potential and modulatory effects of two raw materials from the Amazonian area, buriti oil and murumuru fat, before and after lipase interesterification, on human hepatoma cells (HepG2. The results indicate that minor bioactive compounds naturally found in the raw materials and their antioxidant capacity are preserved after enzymatic interesterification, and that the restructured lipids modulate HepG2 endogenous antioxidant enzyme.

  2. Camel Milk as a Potential Therapy as an Antioxidant in Autism Spectrum Disorder (ASD

    Directory of Open Access Journals (Sweden)

    Laila Y. AL-Ayadhi

    2013-01-01

    Full Text Available Extensive studies have demonstrated that oxidative stress plays a vital role in the pathology of several neurological diseases, including autism spectrum disorder (ASD; those studies proposed that GSH and antioxidant enzymes have a pathophysiological role in autism. Furthermore, camel milk has emerged to have potential therapeutic effects in autism. The aim of the current study was to evaluate the effect of camel milk consumption on oxidative stress biomarkers in autistic children, by measuring the plasma levels of glutathione, superoxide dismutase, and myeloperoxidase before and 2 weeks after camel milk consumption, using the ELISA technique. All measured parameters exhibited significant increase after camel milk consumption (. These findings suggest that camel milk could play an important role in decreasing oxidative stress by alteration of antioxidant enzymes and nonenzymatic antioxidant molecules levels, as well as the improvement of autistic behaviour as demonstrated by the improved Childhood Autism Rating Scale (CARS.

  3. DNA Damage Protecting Activity and Antioxidant Potential of Launaea taraxacifolia Leaves Extract.

    Science.gov (United States)

    Adinortey, Michael Buenor; Ansah, Charles; Weremfo, Alexander; Adinortey, Cynthia Ayefoumi; Adukpo, Genevieve Etornam; Ameyaw, Elvis Ofori; Nyarko, Alexander Kwadwo

    2018-01-01

    The leaf extract of Launaea taraxacifolia commonly known as African Lettuce is used locally to treat dyslipidemia and liver diseases, which are associated with oxidative stress. Methanol extract from L. taraxacifolia leaves was tested for its antioxidant activity and its ability to protect DNA from oxidative damage. In vitro antioxidant potential of the leaf extract was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH), nitric oxide (NO), and hydroxyl (OH) radical scavenging assays. Ferric reducing power, total antioxidant capacity (TAC), metal chelating, and anti-lipid peroxidation ability of the extract were also examined using gallic acid, ascorbic acid, citric acid, and ethylenediaminetetraacetic acid as standards. L. taraxacifolia leaves extract showed antioxidant activity with IC 50 values of 16.18 μg/ml (DPPH), 123.3 μg/ml (NO), 128.2 μg/ml (OH radical), 97.94 μg/ml (metal chelating), 80.28 μg/ml (TAC), and 23 μg/ml (anti-lipid peroxidation activity). L. taraxacifolia leaves extract exhibited a strong capability for DNA damage protection at 20 mg/ml concentration. These findings suggest that the methanolic leaf extract of L. taraxacifolia could be used as a natural antioxidant and also as a preventive therapy against diseases such as arteriosclerosis associated with DNA damage.

  4. Antioxidants as potential medical countermeasures for chemical warfare agents and toxic industrial chemicals.

    Science.gov (United States)

    McElroy, Cameron S; Day, Brian J

    2016-01-15

    The continuing horrors of military conflicts and terrorism often involve the use of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs). Many CWA and TIC exposures are difficult to treat due to the danger they pose to first responders and their rapid onset that can produce death shortly after exposure. While the specific mechanism(s) of toxicity of these agents are diverse, many are associated either directly or indirectly with increased oxidative stress in affected tissues. This has led to the exploration of various antioxidants as potential medical countermeasures for CWA/TIC exposures. Studies have been performed across a wide array of agents, model organisms, exposure systems, and antioxidants, looking at an almost equally diverse set of endpoints. Attempts at treating CWAs/TICs with antioxidants have met with mixed results, ranging from no effect to nearly complete protection. The aim of this commentary is to summarize the literature in each category for evidence of oxidative stress and antioxidant efficacy against CWAs and TICs. While there is great disparity in the data concerning methods, models, and remedies, the outlook on antioxidants as medical countermeasures for CWA/TIC management appears promising. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. In vitro antioxidant potential and deoxyribonucleic acid protecting activity of CNB-001, a novel pyrazole derivative of curcumin

    Directory of Open Access Journals (Sweden)

    Richard L Jayaraj

    2014-01-01

    Full Text Available Background: Free radicals are underpinned to initiate cascade of toxic events leading to oxidative stress and resultant cell death in many neurodegenerative disorders. Now-a-days antioxidants have become mandatory in the treatment of various diseases apart from the drug′s modes of action. CNB-001, a novel hybrid molecule synthesized by combining curcumin and cyclohexyl bisphenol A is known to possess various biological activities, but the antioxidative property of the compound has not yet been elucidated. Aim: The present study is aimed to analyze various free radicals scavenging by employing in vitro antioxidant assays and to evaluate the deoxyribonucleic acid (DNA protecting the ability of CNB-001 against hydroxyl radicals. Materials and methods: The in vitro antioxidant potential of CNB-001 was evaluated by analyzing its ability to scavenge DPPH, ABTS, nitric oxide, superoxide, hydrogen peroxide, superoxide anion, hydroxyl, hydrogen peroxide radicals and reducing power using spectroscopic method. The DNA protecting activity of CNB-001 was also evaluated on pUC19 plasmid DNA subjected to hydroxyl radicals using standard agarose gel electrophoresis. Results: From the assays, it was observed that CNB-001 scavenged free radicals effectively in a dose dependent manner. CNB-001 scavenged 2,2-diphenyl-1-picrylhydrazyl (IC50 = 44.99 μg/ml, 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid (IC50 = 17.99 μg/ml, nitric oxide (IC50 = 1.36 μg/ml, superoxide radical (IC50 = 77.17 μg/ml, hydrogen peroxide (IC50 = 492.7 μg/ml, superoxide (IC50 = 36.92 μg/ml and hydroxyl (IC50 = 456.5 μg/ml radicals effectively and the reducing power was found to be 11.53 μg/ml. CNB-001 showed considerable protecting activity against plasmid DNA (pUC19 strand scission by ·OH at dose dependent manner. Conclusion: Results from these assays concluded that CNB-001 has a good antioxidant potential by reducing reactive oxygen and reactive nitrogen radicals and it

  6. Antioxidative potential of parsley on gamma irradiated Rats

    International Nuclear Information System (INIS)

    Kafafy, Y.A.; Ashry, M.O.

    2000-01-01

    Phenolic compounds synthesized by plants display significant free radical scavenging capability. This study aims to evaluate the possible anti oxidative potential of parsley on the liver tissue and glycogen as well as serum cholesterol, LDL, HDL, Alkaline. phosphatases, lactic dehydrogenase, glucose and insulin in rats exposed to 9 Gy fractionated gamma irradiation. Parsley oil was orally administered (100 mg/kg body wt) for 7 days before irradiation and throughout the experimental period. The results revealed noticeable limitation of radiation-induced damage in most tested parameters

  7. Zinc oxide nanoparticles mediated cytotoxicity, mitochondrial membrane potential and level of antioxidants in presence of melatonin.

    Science.gov (United States)

    Sruthi, S; Millot, N; Mohanan, P V

    2017-10-01

    Zinc oxide nanoparticles (ZnO NPs) are widely used in a variety of products and are currently being investigated for biomedical applications. However, they have the potential to interact with macromolecules like proteins, lipids and DNA within the cells which makes the safe biomedical application difficult. The toxicity of the ZnO NP is mainly attributed reactive oxygen species (ROS) generation. Different strategies like iron doping, polymer coating and external supply of antioxidants have been evaluated to minimize the toxic potential of ZnO NPs. Melatonin is a hormone secreted by the pineal gland with great antioxidant properties. The melatonin is known to protect cells from ROS inducing external agents like lipopolysaccharides. In the present study, the protective effect of melatonin on ZnO NPs mediated toxicity was evaluated using C6 glial cells. The Cytotoxicity, mitochondrial membrane potential and free radical formation were measured to study the effect of melatonin. Antioxidant assays were done on mice brain slices, incubated with melatonin and ZnO NPs. The results of the study reveal that, instead of imparting a protective effect, the melatonin pre-treatment enhanced the toxicity of ZnO NPs. Melatonin increased antioxidant enzymes in brain slices. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Phytochemicals in Human Milk and Their Potential Antioxidative Protection

    Directory of Open Access Journals (Sweden)

    Apollinaire Tsopmo

    2018-02-01

    Full Text Available Diets contain secondary plant metabolites commonly referred to as phytochemicals. Many of them are believed to impact human health through various mechanisms, including protection against oxidative stress and inflammation, and decreased risks of developing chronic diseases. For mothers and other people, phytochemical intake occurs through the consumption of foods such as fruits, vegetables, and grains. Research has shown that some these phytochemicals are present in the mother’s milk and can contribute to its oxidative stability. For infants, human milk (HM represents the primary and preferred source of nutrition because it is a complete food. Studies have reported that the benefit provided by HM goes beyond basic nutrition. It can, for example, reduce oxidative stress in infants, thereby reducing the risk of lung and intestinal diseases in infants. This paper summarizes the phytochemicals present in HM and their potential contribution to infant health.

  9. Preliminary nutritional and biological potential of Artocarpus heterophyllus L. shell powder.

    Science.gov (United States)

    Sharma, Anubhuti; Gupta, Priti; Verma, A K

    2015-03-01

    Artocarpus heterophyllus shell powder was investigated in terms of its nutritional and biological potential. A thorough examination of shell powder demonstrated its potential as a source of minerals, β carotene and dietary fiber, which were assessed gravimetrically & spectrophotometrically. This showed 3.05 ± 0.19 g 100 g(-1) DW of alkaloids followed by saponins and tannins. Three different extracts; acetone, methanol, & mix solvent were used to evaluate phenolic & flavonoid content, antioxidant & antimicrobial activity, GC/MS screening and quantitative analysis of polyphenols. Among all, the methanol extract showed highest antioxidant activity evaluated by DPPH, FRAP & ABTS assays and was significantly correlated with phenolic and flavonoid contents. Phenolic & flavonoid content was found to be 158 ± 0.34 mg (GAE) and 10.0 ± 0.64 mg (CE) respectively. The results of antimicrobial activity showed that L. monocytogenes was more susceptible to all extracts followed by other microorganisms. Catechin, ascorbic & chlorogenic acids were identified as major polyphenols analyzed by LC-MS/MS. GC/MS analysis showed that it contains a variety of compounds with different therapeutic activities. The study revealed that A. heterophyllus shell is a good source of natural antioxidants & other bioactive compounds and can be used in cosmetics, medicines and functional food application.

  10. Chronic ozone exposure alters the secondary metabolite profile, antioxidant potential, anti-inflammatory property, and quality of red pepper fruit from Capsicum baccatum.

    Science.gov (United States)

    Bortolin, Rafael Calixto; Caregnato, Fernanda Freitas; Divan Junior, Armando Molina; Zanotto-Filho, Alfeu; Moresco, Karla Suzana; Rios, Alessandro de Oliveira; Salvi, Aguisson de Oliveira; Ortmann, Caroline Flach; de Carvalho, Pâmela; Reginatto, Flávio Henrique; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca

    2016-07-01

    Tropospheric ozone (O3) background concentrations have increased since pre-industrial times, reaching phytotoxic concentrations in many regions globally. However, the effect of high O3 concentrations on quality of fruit and vegetables remains unknown. Here, we evaluated whether O3 pollution alters the quality of Capsicum baccatum peppers by changing the secondary compound profiles and biological activity of the fruit. C. baccatum pepper plants were exposed to ozone for 62 days in an open-top chamber at a mean O3 concentration of 171.6µg/m(3). Capsaicin levels decreased by 50% in the pericarp, but remained unchanged in the seeds. In contrast, the total carotenoid content increased by 52.8% in the pericarp. The content of total phenolic compounds increased by 17% in the pericarp. The total antioxidant potential decreased by 87% in seeds of O3-treated plants. The seeds contributed more than the pericarp to the total radical-trapping antioxidant potential and total antioxidant reactivity. O3 treatment impaired the ferric-reducing antioxidant power of the seeds and reduced NO(•)-scavenging activity in the pericarp. However, O3 treatment increased ferrous ion-chelating activity and hydroxyl radical-scavenging activity in the pericarp. Our results confirm that O3 alters the secondary metabolite profile of C. baccatum pepper fruits and, consequently, their biological activity profile. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Cytotoxic and antioxidative potentials of ethanolic extract of Eugenia uniflora L. (Myrtaceae) leaves on human blood cells.

    Science.gov (United States)

    da Cunha, Francisco Assis Bezerra; Waczuk, Emily Pansera; Duarte, Antonia Eliene; Barros, Luiz Marivando; Elekofehinti, Olusola Olalekan; Matias, Edinardo Fagner Ferreira; da Costa, José Galberto Martins; Sanmi, Adekunle Adeniran; Boligon, Aline Augusti; da Rocha, João Batista Teixeira; Souza, Diogo Onofre; Posser, Thaís; Coutinho, Henrique Douglas Melo; Franco, Jeferson Luis; Kamdem, Jean Paul

    2016-12-01

    Eugenia uniflora is used in the Brazilian folk medicine to treat intestinal disorders and hypertension. However, scanty information exist on its potential toxicity to human, and little is known on its antioxidant activity in biological system. Hence, we investigated for the first time the potential toxic effects of ethanolic extract (EtOH) of E. uniflora (EEEU) in human leukocytes and erythrocytes, as well as its influence on membrane erythrocytes osmotic fragility. In addition, EEEU was chemically characterized and its antioxidant capacity was evaluated. We found that EEEU (1-480μg/mL) caused neither cytotoxicity nor DNA damage evaluated by Trypan blue and Comet assay, respectively. EEEU (1-480μg/mL) did not have any effect on membrane erythrocytes fragility. In addition, EEEU inhibited Fe 2+ -induced lipid peroxidation in rat brain and liver homogenates, and scavenged the DPPH radical. EEEU presented some polyphenolic compounds with high content such as quercetin, quercitrin, isoquercitrin, luteolin and ellagic acid, which may be at least in part responsible for its beneficial effects. Our results suggest that consumption of EEEU at relatively higher concentrations may not result in toxicity. However, further in vitro and in vivo studies should be conducted to ascertain its safety. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Evaluation of Phenolic Content Variability along with Antioxidant, Antimicrobial, and Cytotoxic Potential of Selected Traditional Medicinal Plants from India.

    Science.gov (United States)

    Singh, Garima; Passsari, Ajit K; Leo, Vincent V; Mishra, Vineet K; Subbarayan, Sarathbabu; Singh, Bhim P; Kumar, Brijesh; Kumar, Sunil; Gupta, Vijai K; Lalhlenmawia, Hauzel; Nachimuthu, Senthil K

    2016-01-01

    Plants have been used since ancient times as an important source of biologically active substances. The aim of the present study was to investigate the phytochemical constituents (flavonoids and phenolics), antioxidant potential, cytotoxicity against HepG2 (human hepato carcinoma) cancer cell lines, and the antimicrobial activity of the methanol extract of selected traditional medicinal plants collected from Mizoram, India. A number of phenolic compounds were detected using HPLC-DAD-ESI-TOF-MS, mainly Luteolin, Kaempferol, Myricetin, Gallic Acid, Quercetin and Rutin, some of which have been described for the first time in the selected plants. The total phenolic and flavonoid contents showed high variation ranging from 4.44 to 181.91 μg of Gallic Acid equivalent per milligram DW (GAE/mg DW) and 3.17 to 102.2 μg of Quercetin/mg, respectively. The antioxidant capacity was determined by DPPH (IC50 values ranges from 34.22 to 131.4 μg/mL), ABTS (IC50 values ranges from 24.08 to 513.4 μg/mL), and reducing power assays. Antimicrobial activity was assayed against gram positive (Staphylococcus aureus), gram negative (Escherichia coli, Pseudomonas aeruginosa), and yeast (Candida albicans) demonstrating that the methanol extracts of some plants were efficacious antimicrobial agents. Additionally, cytotoxicity was assessed on human hepato carcinoma (HepG2) cancer cell lines and found that the extracts of Albizia lebbeck, Dillenia indica, and Bombax ceiba significantly decreased the cell viability at low concentrations with IC50 values of 24.03, 25.09, and 29.66 μg/mL, respectively. This is the first report of detection of phenolic compounds along with antimicrobial, antioxidant and cytotoxic potential of selected medicinal plants from India, which indicates that these plants might be valuable source for human and animal health.

  13. Evaluation of phenolic content variability, antioxidant, antimicrobial and cytotoxic potential of selected traditional medicinal plants from India

    Directory of Open Access Journals (Sweden)

    Garima eSingh

    2016-03-01

    Full Text Available Plants have been used since ancient times as an important source of biologically active substances. The aim of the present study was to investigate the phytochemical constituents (flavonoids and phenolics, antioxidant potential, cytotoxicity against HepG2 (human hepato carcinoma cancer cell lines and the antimicrobial activity of the methanol extract of selected traditional medicinal plants collected from Mizoram, India. A number of phenolic compounds were detected using HPLC-DAD-ESI-TOF-MS, mainly Luteolin, Kaempferol, Myricetin, Gallic Acid, Quercetin and Rutin, some of which have been described for the first time in the selected plants. The total phenolic and flavonoid contents showed high variation ranging from 4.44 to 181.91 µg of Gallic Acid equivalent per milligram DW (GAE/mg DW and 3.17 to 102.2 µg of Quercetin/mg, respectively. The antioxidant capacity was determined by DPPH (IC50 values ranges from 34.22 to 131.4 µg/mL, ABTS (IC50 values ranges from 24.08 to 513.4 µg/mL and reducing power assays. Antimicrobial activity was assayed against gram positive (Staphylococcus aureus, gram negative (Escherichia coli, Pseudomonas aeruginosa and yeast (Candida albicans demonstrating that the methanol extracts of some plants were efficacious antimicrobial agents. Additionally, cytotoxicity was assessed on human hepato carcinoma (HepG2 cancer cell lines and found that the extracts of Albizia lebbeck, Dillenia indica and Bombax ceiba significantly decreased the cell viability at low concentrations with IC50 values of 24.03, 25.09 and 29.66 µg/mL, respectively. This is the first report of detection of phenolic compounds along with antimicrobial, antioxidant and cytotoxic potential of selected medicinal plants from India, which indicates that these plants might be valuable source for human and animal health.

  14. Evaluation of in vitro antioxidant potential anti-inflammatory activity and melanogenesis inhibition of Artocarpus hirsutus Lam. extracts

    Directory of Open Access Journals (Sweden)

    Mahadeva Nayak

    2017-01-01

    Full Text Available Artocarpus hirsutus Lam. belongs to Moraceae family and is endemic to Western Ghats and Kerala in India. This species is found to be effective in traditional medicine for the treatment of ulcer diarrhea and pimples. However extensive biological evaluation on each component of this specific species rarely appears in the literature which restricts its applicability as medicinal herb. The leaf bark and wood of Artocarpus hirsutus Lam. were separately extracted with hot ethanol. The wood extract was further fractionated to isolate major active molecule whose structure was determined from its NMR spectra and LCMS analysis. All the extracts of A. hirsutus Lam. were then studied in vitro to evaluate their potential on tyrosinase inhibition free radical scavenging activity by 11-Diphenyl-2-picrylhydrazyl DPPH method and oxygen radical absorbance capacity ORAC. Furthermore their effects on melanogenesis inhibition were also evaluated by using murine melanoma cells. Activity guided fractionation of wood extract yielded a pure molecule that was characterized as oxyresveratrol. It was observed that antioxidant activity was higher in wood extract compared to the leaf and bark extracts. Isolated pure oxyresveratrol exhibited a significant antioxidant potential with ORAC value of 366532570 mol Trolox equivalentg and having an IC50 of 4.3 gmL for DPPH free radical scavenging activity. This molecule was found to be effective for the tyrosinase inhibition with an IC50 of 0.1 gmL and melanogenesis inhibition in cultured melanoma cells by 44.62 at 0.2 gmL. Oxyresveratrol also exhibited significant inhibition of lipopolysaccharide LPS induced tumour necrosis factor alpha TNF-amp945 secretion from J774A1 murine macrophage cell lines. This study provides substantial evidence for the presence of oxyresveratrol in the wood of A. hirsutus Lam. with promising anti-inflammatory antioxidant and skin lightening property.

  15. Production, Characterization and Antioxidant Potential of Protease from Streptomyces sp. MAB18 Using Poultry Wastes

    Directory of Open Access Journals (Sweden)

    Panchanathan Manivasagan

    2013-01-01

    Full Text Available Poultry waste is an abundant renewable source for the recovery of several value-added metabolites with potential industrial applications. This study describes the production of protease on poultry waste, with the subsequent use of the same poultry waste for the extraction of antioxidants. An extracellular protease-producing strain was isolated from Cuddalore coast, India, and identified as Streptomyces sp. MAB18. Its protease was purified 17.13-fold with 21.62% yield with a specific activity of 2398.36 U/mg and the molecular weight was estimated as 43 kDa. The enzyme was optimally active at pH 8–10 and temperature 50–60°C and it was most stable up to pH 12 and 6–12% of NaCl concentration. The enzyme activity was reduced when treated with Hg2+, Pb2+, and SDS and stimulated by Fe2+, Mg2+, Triton X-100, DMSO (dimethyl sulfoxide, sodium sulphite, and β-mercaptoethanol. Furthermore, the antioxidant activities of protease were evaluated using in vitro antioxidant assays, such as DPPH radical-scavenging activity, O2 scavenging activity, NO scavenging activity, Fe2+ chelating activity, and reducing power. The enzyme showed important antioxidant potential with an IC50 value of 78±0.28 mg/mL. Results of the present study indicate that the poultry waste-derived protease may be useful as supplementary protein and antioxidant in the animal feed formulations.

  16. Petals of Crocus sativus L. as a potential source of the antioxidants crocin and kaempferol.

    Science.gov (United States)

    Zeka, Keti; Ruparelia, Ketan C; Continenza, Maria A; Stagos, Dimitrios; Vegliò, Francesco; Arroo, Randolph R J

    2015-12-01

    Saffron from the province of L'Aquila, in the Abruzzo region of Italy, is highly prized and has been awarded a formal recognition by the European Union with EU Protected Designation of Origin (PDO) status. Despite this, the saffron regions are abandoned by the younger generations because the traditional cultivation of saffron (Crocus sativus L.) is labour intensive and yields only one crop of valuable saffron stamens per year. Petals of the saffron Crocus have had additional uses in traditional medicine and may add value to the crops for local farmers. This is especially important because the plant only flowers between October and November, and farmers will need to make the best use of the flowers harvested in this period. Recently, the petals of C. sativus L., which are considered a waste material in the production of saffron spice, were identified as a potential source of natural antioxidants. The antioxidants crocin and kaempferol were purified by flash column chromatography, and identified by thin layer chromatography (TLC), HPLC-DAD, infrared (IR), and nuclear magnetic resonance ((1)H &(13)C NMR) spectroscopy. The antioxidant activity was determined with the ABTS and DPPH tests. The antioxidant activities are mainly attributed to carotenoid and flavonoid compounds, notably glycosides of crocin and kaempferol. We found in dried petals 0.6% (w/w) and 12.6 (w/w) of crocin and kaempferol, respectively. Petals of C. sativus L. have commercial potential as a source for kaempferol and crocetin glycosides, natural compounds with antioxidant activity that are considered to be the active ingredients in saffron-based herbal medicine. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Antioxidant and antifungal potential of methanol extracts of Phellinus spp. from Sonora, Mexico.

    Science.gov (United States)

    Ayala-Zavala, Jesús Fernando; Silva-Espinoza, Brenda Adriana; Cruz-Valenzuela, Manuel Reynaldo; Villegas-Ochoa, Mónica Alejandra; Esqueda, Martín; González-Aguilar, Gustavo Adolfo; Calderón-López, Yazaric

    2012-01-01

    Among the potential natural sources of bioactive compounds, those of the macroscopic fungi Phellinus spp. have been identified by previous researches. Phenolic compounds are among the major antioxidant and antimicrobial contributors due to their bioactive properties. The goal of this study was to determine the total phenolic and flavonoid contents, and its relation with the antioxidant and antifungal activity of methanolic extracts of Phellinus gilvus, Phellinus rimosus and Phellinus badius, respectively. The collected and identified organisms of Phellinus spp. were treated with methanol and the generated aqueous extract was analyzed to quantified total phenolic compounds, total flavonoids, radical scavenging activity against DPPH, trolox equivalent antioxidant capacity, and oxygen absorbance capacity. The antifungal property of the extracts was evaluated against Alternaria alternata. The content of phenolic compounds was of 49.31, 46.51 and 44.7 mg of gallic acid equivalents/g, for P. gilvus, P. rimosus and P. badius, respectively. The total flavonoid content followed the same pattern with values of 30.58, 28, and 26.48 mg of quercetin equivalents/g for P. gilvus, P. rimosus and P. badius, respectively. The variation on the content of phenolic components was reflected on the antioxidant activity of every organism. The antioxidant activity ranked as follows: P. gilvus>P. rimosus>P. badius. The antifungal effect of the different extracts against A. alternata showed a significant effect, all of them, inhibiting the growth of this pathogen. P. gilvus showed the best potential to inactivate free radicals, being all the tested fungi effective to inhibit A. alternata growth. Copyright © 2011 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  18. Antioxidant potential of chestnut (Castanea sativa L.) and almond (Prunus dulcis L.) by-products.

    Science.gov (United States)

    Barreira, J C M; Ferreira, I C F R; Oliveira, M B P P; Pereira, J A

    2010-06-01

    The antioxidant properties of almond green husks (Cvs. Duro Italiano, Ferraduel, Ferranhês, Ferrastar and Orelha de Mula), chestnut skins and chestnut leaves (Cvs. Aveleira, Boa Ventura, Judia and Longal) were evaluated through several chemical and biochemical assays in order to provide a novel strategy to stimulate the application of waste products as new suppliers of useful bioactive compounds, namely antioxidants. All the assayed by-products revealed good antioxidant properties, with very low EC(50) values (lower than 380 μg/mL), particularly for lipid peroxidation inhibition (lower than 140 μg/mL). The total phenols and flavonoids contents were also determined. The correlation between these bioactive compounds and DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity, reducing power, inhibition of β-carotene bleaching and inhibition of lipid peroxidation in pig brain tissue through formation of thiobarbituric acid reactive substances, was also obtained. Although, all the assayed by-products proved to have a high potential of application in new antioxidants formulations, chestnut skins and leaves demonstrated better results.

  19. Enhancing Phenolic Contents and Antioxidant Potentials of Antidesma thwaitesianum by Supercritical Carbon Dioxide Extraction

    Directory of Open Access Journals (Sweden)

    Warut Poontawee

    2015-01-01

    Full Text Available Supercritical fluid extraction (SFE has increasingly gained attention as an alternative technique for extraction of natural products without leaving toxic residues in extracts. Antidesma thwaitesianum Muell. Arg. (Phyllanthaceae, or ma mao, has been reported to exhibit antioxidant health benefits due to its phenolic constituents. To determine whether SFE technique could impact on phenolic contents and associated antioxidant potentials, ripe fruits of Antidesma thwaitesianum (Phyllanthaceae were extracted using supercritical carbon dioxide (SC-CO2 and conventional solvents (ethanol, water. The results showed that the SC-CO2 extract contained significantly higher yield, total phenolic, flavonoid, and proanthocyanidin contents than those obtained from ethanol and water. It also demonstrated the greatest antioxidant activities as assessed by ABTS radical cation decolorization, DPPH radical scavenging, and ferric reducing antioxidant power (FRAP assays. Further analysis using high-performance liquid chromatography with diode array and mass spectrometry detectors (HPLC-DAD/MSD revealed the presence of catechin as a major phenolic compound of Antidesma thwaitesianum (Phyllanthaceae, with the maximum amount detected in the SC-CO2 extract. These data indicate that SFE technology improves both quantity and quality of Antidesma thwaitesianum fruit extract. The findings added more reliability of using this technique to produce high added value products from this medicinal plant.

  20. Response surface optimisation of extraction of antioxidants from strawberry fruit, and lipid peroxidation inhibitory potential of the fruit extract in cooked chicken patties.

    Science.gov (United States)

    Saha, Jayati; Debnath, Moumita; Saha, Arnab; Ghosh, Tanaya; Sarkar, Prabir K

    2011-08-15

    Strawberries contain high levels of antioxidants and have beneficial effects against oxidative stress-mediated diseases, such as cancer. They contain multiple phenolic compounds, which contribute to their biological properties. Hence, a study was carried out to optimise the extraction of antioxidants and evaluate the antioxidant potential of strawberry fruit extract (SE) in cooked chicken patties during refrigerated storage. The activity of SE was compared with that of butylhydroxytoluene (BHT). The effect of solvent type (MeOH and EtOH), concentration (0-70%) of EtOH in the system, temperature (30-60 °C), and time (30-150 min) on DPPH•-scavenging activity of SE was investigated. Response surface methodology was used to estimate the optimum extraction conditions for each parameter. The maximum predicted DPPH• scavenging under the optimised conditions (100% MeOH, 30 °C, 150 min) was 43% at 1 mg SE mL⁻¹. Freshly prepared chicken patties were treated with 5% and 10% SE and 2% BHT, and stored aerobically at 4 °C for 6 days. SE had no influence (P extraction of compounds from strawberry that had the scavenging activity. The study shows that the extraction of natural antioxidants from strawberry can be improved by optimising several key extraction parameters. SE also acted as an effective antioxidant and suppressed lipid peroxidation in cooked chicken patties. Copyright © 2011 Society of Chemical Industry.

  1. A comparative study on the in vitro antioxidant potentials of three edible fruits: cornelian cherry, Japanese persimmon and cherry laurel.

    Science.gov (United States)

    Celep, Engin; Aydın, Ahmet; Yesilada, Erdem

    2012-09-01

    This study was designed in order to investigate in vitro antioxidant potentials of 80% methanolic extracts prepared from three edible fruits, Cornus mas L., Diospyros kaki L., Laurocerasus officinalis Roem. For this purpose, 8 different tests were performed including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radical scavenging tests, ferric reducing antioxidant power (FRAP), cupric reducing antioxidant capacity (CUPRAC), metal-chelating capacity, determination of total antioxidant capacity, β-carotene bleaching test in a linoleic acid emulsion system and trolox equivalent antioxidant capacity. In addition, for evaluating the phenolic profile, total phenolic, flavonoid and proanthocyanidin contents were measured spectrophotometrically. Among the three fruits analyzed, Diospyros kaki L. showed the highest activity in all tests, except β-carotene bleaching test. Whereas, neither of three fruits showed metal-chelating activity. Also, a good correlation was found between the phenolic content and antioxidant parameters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Evaluation of Antifungal Potentials and Antioxidant Capacities of Some Foliose Lichen Species

    Directory of Open Access Journals (Sweden)

    Bahar BİLGİN SÖKMEN

    2018-03-01

    Full Text Available This work is aimed to assess of antioxidant and antifungal potential of the foliose lichen species: Flavoparmelia caperata, Xanthoparmelia stenophylla and Xanthoparmelia conspersa. The antifungal activity of lichens were studied against some pathogenic fungi by disc diffusion method. The acetonitrile extracts of these lichens were obtained with Soxhlet extraction. While F. caperata exhibited maximum antifungal activity (32 mm against the C. albicans, the minimum antifungal activity (10 mm was obtained from X. stenophylla lichen against S. cerevisiae. In CUPRAC assay, absorbance values was in order of BHT>X. conspersa>F. caperata>X. stenophylla. As a result of the study, it was concluded that these lichen species may be a potential source for the development of new antifungal and antioxidant compounds.

  3. Characterization of polyphenols and antioxidant potential of white grape pomace byproducts (Vitis vinifera L.).

    Science.gov (United States)

    González-Centeno, María Reyes; Jourdes, Michael; Femenia, Antoni; Simal, Susana; Rosselló, Carmen; Teissedre, Pierre-Louis

    2013-11-27

    A detailed assessment of the total phenolic and total tannin contents, the monomeric and oligomeric flavan-3-ol composition, the proanthocyanidin profile, and the antioxidant potential of the grape pomace byproducts (considered as a whole, both skins and seeds), derived from four white grape varieties (Vitis vinifera L.), was performed. Significant differences (p grape pomace byproducts were observed among the different grape varieties studied. For the first time in the literature, the particular flavan-3-ol composition of the four grape varieties investigated was described for the whole fraction of their grape pomace byproducts. The phenolic composition and antioxidant capacity of grape pomaces were compared to those of their corresponding stems. The global characterization of these white grape varieties provided a basis for an integrated exploitation of both winemaking byproducts as potential, inexpensive, and easily available sources of bioactive compounds for the pharmaceutical, cosmetic, and food industries.

  4. Screening and identification of antioxidants in biological samples using high-performance liquid chromatography-mass spectrometry and its application on Salacca edulis Reinw.

    Science.gov (United States)

    Shui, Guanghou; Leong, Lai Peng

    2005-02-23

    In this study, a new approach was developed for screening and identifying antioxidants in biological samples. The approach was based on significant decreases of the intensities of ion peaks obtained from high-performance liquid chromatography (HPLC) coupled with mass spectrometry (MS) upon reaction with 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radicals. HPLC-MS/MS was further applied to elucidate structures of antioxidant peaks characterized in a spiking test. The new approach could also be used to monitor the reactivity of antioxidants in biological sample with free radicals. The approach was successfully applied to the identification of antioxidants in salak (Salacca edulis Reinw), a tropical fruit that is reported to be a very good source of natural antioxidants, but it was still not clear which compounds were responsible for its antioxidant property. The antioxidants in salak were identified to be chlorogenic acid, (-)-epicatechin, and singly linked proanthocyanidins that mainly existed as dimers through hexamers of catechin or epicatechin. In salak, chlorogenic acid was identified to be an antioxidant of the slow reaction type as it reacted with free radicals much more slowly than either (-)-epicatechin or proanthocyanidins. The new approach was proved to be useful for the characterization and identification of antioxidants in biological samples as a mass detector combined with an HPLC separation system not only serves as an ideal tool to monitor free radical active components but also provides their possible chemical structures in a biological sample.

  5. CART peptide is a potential endogenous antioxidant and preferentially localized in mitochondria.

    Directory of Open Access Journals (Sweden)

    Peizhong Mao

    Full Text Available The multifunctional neuropeptide Cocaine and Amphetamine Regulated Transcript (CART is secreted from hypothalamus, pituitary, adrenal gland and pancreas. It also can be found in circulatory system. This feature suggests a general role for CART in different cells. In the present study, we demonstrate that CART protects mitochondrial DNA (mtDNA, cellular proteins and lipids against the oxidative action of hydrogen peroxide, a widely used oxidant. Using cis-parinaric acid as a sensitive reporting probe for peroxidation in membranes, and a lipid-soluble azo initiator of peroxyl radicals, 2,2'-azobis(2,4-dimethylvaleronitrile we found that CART is an antioxidant. Furthermore, we found that CART localized to mitochondria in cultured cells and mouse brain neuronal cells. More importantly, pretreatment with CART by systemic injection protects against a mouse oxidative stress model, which mimics the main features of Parkinson's disease. Given the unique molecular structure and biological features of CART, we conclude that CART is an antioxidant peptide (or antioxidant hormone. We further propose that it may have strong therapeutic properties for human diseases in which oxidative stress is strongly involved such as Parkinson's disease.

  6. Chemical, Bioactive, and Antioxidant Potential of Twenty Wild Culinary Mushroom Species

    OpenAIRE

    Sharma, S. K.; Gautam, N.

    2015-01-01

    The chemical, bioactive, and antioxidant potential of twenty wild culinary mushroom species being consumed by the people of northern Himalayan regions has been evaluated for the first time in the present study. Nutrients analyzed include protein, crude fat, fibres, carbohydrates, and monosaccharides. Besides, preliminary study on the detection of toxic compounds was done on these species. Bioactive compounds evaluated are fatty acids, amino acids, tocopherol content, carotenoids (β-carotene, ...

  7. Antioxidative potential of Duranta repens (linn.) fruits against H 2 O 2 ...

    African Journals Online (AJOL)

    The effects of Duranta repens fruits were investigated on H2O2 induced oxidative cell death to evaluate its antioxidative potential in vitro. HEK293T cells were treated with different concentrations [0-1000 ìg/ ml] of ethanol extract (E-Ex) and methanol extract (M-Ex) of D. repens for 24h, and then treated with 100 ìM H2O2 for ...

  8. Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential

    Science.gov (United States)

    Patra, Jayanta Kumar; Baek, Kwang-Hyun

    2015-01-01

    Biological synthesis of nanoparticles using nontoxic, eco-friendly approaches is gaining importance owing to their fascinating biocompatibility and environmentally benign nature. This study describes the green synthesis approach for synthesis of gold nanoparticles (ANPs) using aqueous extract of the rind of watermelon as a fruit waste and evaluate its biopotential in terms of proteasome inhibitory activity, antibacterial, and antioxidant potential. The synthesized ANPs were characterized using UV–vis spectroscopy, scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The surface plasmon resonance spectra of ANPs were obtained at 560 nm. Scanning electron microscopy image revealed that particles had a spherical shape and have a size distribution of 20–140 nm, followed by the elemental analysis by energy-dispersive X-ray spectroscopy. X-ray diffraction analysis confirmed the crystallite nature of the ANPs and Fourier-transform infrared spectroscopy revealed the involvement of bioactive compounds from watermelon rind in the synthesis, capping, and stabilization of ANPs. ANPs exhibited potential antibacterial activity against five different foodborne pathogenic bacteria with diameter of inhibition zones ranged between 9.23 and 11.58 mm. They also displayed strong synergistic antibacterial activity together with kanamycin (11.93–21.08 mm inhibition zones) and rifampicin (10.32–24.84 mm inhibition zones). ANPs displayed strong antioxidant activity in terms of DPPH radical scavenging (24.69%), nitric oxide scavenging (25.62%), ABTS scavenging (29.42%), and reducing power. Significantly high proteasome inhibitory potential of the ANPs (28.16%) could be highly useful for cancer treatment and targeted cancer drug delivery. Overall, results highlight a potential low-cost green method of synthesizing ANPs from food waste materials. Significant biopotentials of synthesized ANPs could make it a potential

  9. Biology of Leptoypha hospita (Hemiptera: Tingidae), a Potential Biological Control Agent of Chinese Privet

    Science.gov (United States)

    Yanzhuo Zhang; James L. Hanula; Scott Horn; Kristine Braman; Jianghua Sun

    2011-01-01

    The biology of Leptoypha hospita Drake et Poor (Hemiptera: Tingidae), a potential biological control agent from China for Chinese privet, Ligustrum sinense Lour., was studied in quarantine in the United States. Both nymphs and adults feed on Chinese privet mesophyll cells that lead to a bleached appearance of leaves and dieback of branch tips. L. hospita has five...

  10. New seminal variety of Stevia rebaudiana: Obtaining fractions with high antioxidant potential of leaves

    Directory of Open Access Journals (Sweden)

    PAULA G. MILANI

    2017-08-01

    Full Text Available ABSTRACT The aim of this study was to determine the composition and antioxidant potential of leaves of a new variety of Stevia rebaudiana (Stevia UEM-13. Stevia leaves of UEM-13 contain rebaudioside A as the main glycoside, while most wild Stevia plants contain stevioside. Furthermore can be multiplied by seed, which reduces the cost of plant culture techniques as other clonal varieties are multiplied by buds, requiring sophisticated and expensive seedling production systems. Ethanol and methanol were used in the extraction to determine the bioactive compounds. The methanolic extract was fractionated sequentially with hexane, chloroform, ethyl acetate and isobutanol, and the highest concentration of phenolic compounds and flavonoids was obtained in the ethyl acetate fraction (524.20 mg galic acid equivalent/g; 380.62 µg quercetin equivalent/g. The glycoside content varied greatly among the fractions (0.5% - 65.3%. Higher antioxidant potential was found in the methanol extract and the ethyl acetate fraction with 93.5% and 97.32%, respectively. In addition to being an excellent source for obtaining of extracts rich in glycoside, this new variety can also be used as raw material for the production of extracts or fractions with a significant amount of antioxidant activity and potential to be used as additives in food.

  11. New seminal variety of Stevia rebaudiana: Obtaining fractions with high antioxidant potential of leaves.

    Science.gov (United States)

    Milani, Paula G; Formigoni, Maysa; Dacome, Antonio S; Benossi, Livia; Costa, Cecília E M DA; Costa, Silvio C DA

    2017-01-01

    The aim of this study was to determine the composition and antioxidant potential of leaves of a new variety of Stevia rebaudiana (Stevia UEM-13). Stevia leaves of UEM-13 contain rebaudioside A as the main glycoside, while most wild Stevia plants contain stevioside. Furthermore can be multiplied by seed, which reduces the cost of plant culture techniques as other clonal varieties are multiplied by buds, requiring sophisticated and expensive seedling production systems. Ethanol and methanol were used in the extraction to determine the bioactive compounds. The methanolic extract was fractionated sequentially with hexane, chloroform, ethyl acetate and isobutanol, and the highest concentration of phenolic compounds and flavonoids was obtained in the ethyl acetate fraction (524.20 mg galic acid equivalent/g; 380.62 µg quercetin equivalent/g). The glycoside content varied greatly among the fractions (0.5% - 65.3%). Higher antioxidant potential was found in the methanol extract and the ethyl acetate fraction with 93.5% and 97.32%, respectively. In addition to being an excellent source for obtaining of extracts rich in glycoside, this new variety can also be used as raw material for the production of extracts or fractions with a significant amount of antioxidant activity and potential to be used as additives in food.

  12. Antioxidative Potential of a Streptomyces sp. MUM292 Isolated from Mangrove Soil

    Directory of Open Access Journals (Sweden)

    Loh Teng-Hern Tan

    2018-01-01

    Full Text Available Mangrove derived microorganisms constitute a rich bioresource for bioprospecting of bioactive natural products. This study explored the antioxidant potentials of Streptomyces bacteria derived from mangrove soil. Based on 16S rRNA phylogenetic analysis, strain MUM292 was identified as the genus Streptomyces. Strain MUM292 showed the highest 16S rRNA gene sequence similarity of 99.54% with S. griseoruber NBRC12873T. Furthermore, strain MUM292 was also characterized and showed phenotypic characteristics consistent with Streptomyces bacteria. Fermentation and extraction were performed to obtain the MUM292 extract containing the secondary metabolites of strain MUM292. The extract displayed promising antioxidant activities, including DPPH, ABTS, and superoxide radical scavenging and also metal-chelating activities. The process of lipid peroxidation in lipid-rich product was also retarded by MUM292 extract and resulted in reduced MDA production. The potential bioactive constituents of MUM292 extract were investigated using GC-MS and preliminary detection showed the presence of pyrazine, pyrrole, cyclic dipeptides, and phenolic compound in MUM292 extract. This work demonstrates that Streptomyces MUM292 can be a potential antioxidant resource for food and pharmaceutical industries.

  13. Antioxidant activity of an invasive plant, Melastoma malabathricum and its potential as herbal tea product

    Science.gov (United States)

    Sari, N. M.; Kuspradini, H.; Amirta, R.; Kusuma, I. W.

    2018-04-01

    East Kalimantan possesses abundant biodiversity of tropical medicinal plant. Melastoma malabathricum (known locally as karamunting, senduduk) is an invasive plant along with other species in the family of Melastomataceae with traditional medicinal purposes. This research explored the potential of Karamunting (M. malabathricum) plant for its antioxidant activity and the potential as a material for herbal tea product. The plant was macerated to yield ethanolic extract, and at the same time plant powder was packed into tea bags and extracted with hot water to obtain the infused water. Antioxidant activity was evaluated by DPPH radical scavenging assay. The results showed that the ethanol extracts of plant samples displayed ability to inhibit DPPH free radical formation by 82% at 50 ppm concentration. Evaluation of the tea water extract showed that the highest inhibition obtained by leaves powder by 90% and fruit 88% at 1 minutes immersion time. This finding suggest that leaves and fruit of M. malabathricum plants display potential as herbal tea material having antioxidant activity if the safety aspect can be assured.

  14. Antioxidant activity measurement and potential antioxidant peptides exploration from hydrolysates of novel continuous microwave-assisted enzymolysis of the Scomberomorus niphonius protein.

    Science.gov (United States)

    Huang, Yipeng; Ruan, Guihua; Qin, Zhijun; Li, Haiyun; Zheng, Yanjie

    2017-05-15

    A novel continuous microwave-assisted enzymatic digestion (cMAED) method is proposed for the digestion of protein from Scomberomorus niphonius to obtain potential antioxidant peptides. In this study, bromelain was found to have a high capacity for the digestion of the Scomberomorus niphonius protein. The following cMAED conditions were investigated: protease species, microwave power, temperature, bromelain content, acidity of the substrate solution, and incubation time. At 400W, 40°C, 1500U·g -1 bromelain, 20% substrate concentration, pH 6.0 and 5min incubation, the degree of hydrolysis and total antioxidant activity of the hydrolysates were 15.86% and 131.49μg·mL -1 , respectively. The peptide analyses showed that eight of the potential antioxidant peptide sequences, which ranged from 502.32 to 1080.55Da with 4-10 amino acid residues, had features typical of well-known antioxidant proteins. Thus, the new cMAED method can be useful to obtain potential antioxidant peptides from protein sources, such as Scomberomorus niphonius. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Assessment of phytochemicals, antioxidant, and anti-inflammatory potential of Boerhavia procumbens Banks ex Roxb.

    Science.gov (United States)

    Bokhari, Jasia; Khan, Muhammad Rashid; Haq, Ihsan Ul

    2016-08-01

    Boerhavia procumbens is traditionally used in the treatment of various disorders including jaundice and gonorrhea, is a refrigerant, and exhibits anti-inflammatory and antispasmodic activities. The purpose of this study was to determine the phytochemical classes, antioxidant and anti-inflammatory activities of methanol extract (BPME) and different fractions (n-hexane (BPHE), ethyl acetate (BPEE), n-butanol (BPBE), and residual aqueous fraction (BPAE)) of B. procumbens against carrageenan-induced paw edema in rats. To assess the anti-inflammatory effects of B. procumbens, 42 Sprague Dawley male rats (150-200 g) were randomly divided into seven groups. Group I received distilled water and group II was treated with diclofenac potassium (10 mg/kg) body weight (bw) orally. Groups III, IV, V, VI, and VII were administered BPME, BPHE, BPEE, BPBE, and BPAE (200 mg/kg bw) orally, 1 h before the treatment with carrageenan (10 mg/kg bw) in rats. Anti-inflammatory effects of B. procumbens were determined by estimating the inhibition of edema at 1st, 2nd, and 3rd hour after carrageenan injection. Qualitative analysis of methanol extract indicated the composition of diverse classes, namely, flavonoids, tannins, saponins, phlobatannins, cardiac glycosides, alkaloids, terpenoids, and anthraquinones. Quantitative determination illustrated that BPBE and BPEE possessed the highest concentration of total phenolic (60.45 ± 2.1 mg gallic acid equivalent per gram sample) and total flavonoid content (68.05 ± 2.3 mg rutin equivalent per gram sample), respectively. A dose-dependent response for antioxidant activity was exhibited by all the samples. The sample with the highest aptitude for antioxidant activity was the BPBE for 2,2-azobis,3-ethylbenzothiozoline-6-sulfonic acid radical scavenging and total antioxidant capacity. Carrageenan-induced paw edema was significantly (p antioxidant and anti-inflammatory potential and accredit the local use of B. procumbens in various disorders.

  16. Effect of hydrothermal processing on total polyphenolics and antioxidant potential of underutilized leafy vegetables, Boerhaavia diffusa and Portulaca oleracea

    Science.gov (United States)

    Nagarani, Gunasekaran; Abirami, Arumugam; Nikitha, Prasad; Siddhuraju, Perumal

    2014-01-01

    Objective To investigate the effect of different processing methods on antioxidant properties of acetone extract of aerial parts from Boerhaavia diffusa and Portulaca oleracea. Methods The total phenolic and flavonoid contents were determined by Folin-Ciocalteau and aluminum chloride method, respectively. FRAP, metal chelating activity, DPPH, ABTS, nitric oxide, hydroxyl and superoxide radical scavenging activities, carotene/linoleic acid bleaching activity were used for the determination of antioxidant capacity. Results The total phenolics in Boerhaavia diffusa (82.79-162.80 mg GAE/g extract) were found to be higher when compared to that of Portulaca oleracea (22.94-10.02 mg GAE/g extract). Hydrothermal processing enhanced the level of inhibition on synthetic radicals such as DPPH (3 439-309 549 mmol TE/g extract) and ABTS (17 808-53 818 mmol TE/g extract) as well as biologically relevant radicals such as superoxide anion (70%-90%) and nitric oxide (49%-57%). In addition, boiling of the vegetables were found to be maximum capacity of FRAP (6 404.95 mmol Fe (II)/g extract) and metal chelating activity (1.53 mg EDTA/g extract) than the respective raw samples. Conclusions The present investigation suggests that the processing enhance the functionality and improves the availability of bioactive substances of these vegetables. In addition, they also exhibited more potent antioxidant activity. Therefore these natural weeds from the crop land ecosystem could be suggested as cost effective indigenous green vegetables for human diet and potential feed resources for animals. Further extensive studies on role and importance of those weeds in sustaining the agro biodiversity are also needed. PMID:25183131

  17. Changes of antioxidant potential of pasta fortified with parsley (Petroselinum Crispum mill.) leaves in the light of protein-phenolics interactions.

    Science.gov (United States)

    Sęczyk, Łukasz; Świeca, Michał; Gawlik-Dziki, Urszula

    2015-01-01

    Pasta is considered as an effective carrier of prohealth ingredients in food fortification. The aim of this study was to examine the changes of antioxidant potential of wheat pasta affected by fortification with powdered parsley leaves. A special attention was paid to effectiveness of fortification in the light of proteinphenolic interactions. To improve antioxidant activity of pasta, part of wheat flour was replaced with powdered parsley leaves from 1% to 4% (w/w). The total phenolics content was determined with Folin-Ciocalteau reagent. Antioxidant capacity was evaluated using in vitro assays - abilities to scavenge free radicals (ABTS) and to reduce iron (III) (FRAP). Predicted phenolic contents and antioxidant activity were calculated. To determine the protein-phenolics interactions SE-HPLC and SDS-PAGE techniques were used. Fortification of pasta had a positive effect on its phenolic contents and antioxidant properties. The highest phenolics level and antioxidant activity of pasta were obtained by supplementation with 4% of parsley leaves. However, in most cases experimental values were significantly lower than those predicted. The protein profiles obtained after SDS-PAGE differed significantly among control and enriched pasta. Furthermore, the addition of parsley leaves to pasta resulted in increase of peaks areas obtained by SE-HPLC. Results indicate the occurrence of the protein-phenolics interactions in fortified pasta. Overall, the effectiveness of fortification and consequently biological effect is limited by many factors including interactions between phenolics and pasta proteins. In the light of this results the study of potential interaction of bioactive supplements with food matrix should be taken into account during designing new functional food products.

  18. Investigation of antioxidative and anticancer potentials of Streptomyces sp. MUM256 isolated from Malaysia mangrove soil

    Directory of Open Access Journals (Sweden)

    Tan Loh eTeng Hern

    2015-11-01

    Full Text Available A Streptomyces strain, MUM256 was isolated from Tanjung Lumpur mangrove soil in Malaysia. Characterization of the strain showed that it has properties consistent with those of the members of the genus Streptomyces. In order to explore the potential bioactivities, extract of the fermented broth culture of MUM256 was prepared with organic solvent extraction method. DPPH and SOD activity were utilized to examine the antioxidant capacity and the results have revealed the potency of MUM256 in superoxide anion scavenging activity in dose-dependent manner. The cytotoxicity of MUM256 extract was determined using cell viability assay against 8 different panels of human cancer cell lines. Among all the tested cancer cells, HCT116 was the most sensitive toward the extract treatment. At the highest concentration of tested extract, the result showed 2.3, 2.0 and 1.8 folds higher inhibitory effect against HCT116, HT29 and Caco-2 respectively when compared to normal cell line. This result has demonstrated that MUM256 extract was selectively cytotoxic towards colon cancer cell lines. In order to determine the constituents responsible for its bioactivities, the extract was then subjected to chemical analysis using GC-MS. The analysis resulted in the identification of chemical constituents including phenolic and pyrrolopyrazine compounds which may responsible for antioxidant and anticancer activities observed. Based on the findings of this study, the presence of bioactive constituents in MUM256 extract could be a potential source for the development of antioxidative and chemopreventive agents.

  19. Chemical composition, antimicrobial and antioxidant potential of the essential oil of Guarea kunthiana A. Juss

    Directory of Open Access Journals (Sweden)

    J. A. Pandini

    2017-07-01

    Full Text Available Abstract The essential oils are extracted from plant compounds and can present activities antimicrobial and antioxidant properties. The goals of the present study were: (a to determine the chemical composition of the essential oil of Guarea kunthiana A. Juss using the method of gas chromatography coupled to mass spectrometry (GC-MS; (b to evaluate the antimicrobial potential of this oil using the broth microdilution method against different microorganisms: five Gram-negative bacteria, four Gram-positive bacteria and a yeast and (c to determine the antioxidant activity of the oil using the DPPH (2,2-diphenyl-1-picrylhydrazyl free radical assay. The GC-MS analyses allowed identifying 13 constituents, representing 96.52% of the essencial oil composition. The main compounds identified were α-zingiberene (34.48%, β-sesquiphellandrene (22.90%, and α-curcumene (16.17%. With respect to the antimicrobial activity, the essential oil was effective against all the microorganisms tested, except for the bacteria E. coli and K. pneumoniae, which were resistant to the action of the oil. From a general point of view, Gram-positive bacteria were more susceptible to the action of the essential oil than Gram-negative bacteria. The essential oil exhibited antioxidant potential.

  20. Potential Antioxidant Anthraquinones Isolated from Rheum emodi Showing Nematicidal Activity against Meloidogyne incognita

    Directory of Open Access Journals (Sweden)

    Brijesh Tripathi

    2014-01-01

    Full Text Available Antioxidant and nematicidal properties were evaluated for R. emodi extractives which are extracted by standardizing and adopting accelerated solvent extraction (ASE method along with traditional Soxhlet extraction. The extracted material was separated using flash chromatography and the separation conditions and solvents were standardized for the extracted plant constituents. The purity was detected by using analytical reverse phase high pressure liquid chromatography (HPLC. LC-MS/MS detection in the direct infusion mode of the isolated, purified products afforded four anthraquinones, characterized by their infrared spectra (IR and 1H spectra as chrysophanol, physcion, emodin, and aloe-emodin. Five antraquinone glucoside derivatives and piceatannol-3-O-β-d-glucopyranoside have also been detected from the extracted product. During in vitro evaluation the antioxidant potential of methanolic crude extract (CE1 was the highest, followed by ethyl acetate crude extract (CE2 and chloroform extract (CE3 in DPPH radical scavenging activity. The CE1 also demonstrated outstanding nematicidal activity as compared with other extracts, pure anthraquinones, and even positive control azadirachtin. The study conclusively demonstrated the antioxidant potential of R. emodi extracts and also its ability in extenuating the Meloidogyne incognita (root-knot nematode. The bioassay results can be extrapolated to actual field condition and clinical studies.

  1. Chemical composition, antimicrobial and antioxidant potential of the essential oil of Guarea kunthiana A. Juss.

    Science.gov (United States)

    Pandini, J A; Pinto, F G S; Scur, M C; Santana, C B; Costa, W F; Temponi, L G

    2018-02-01

    The essential oils are extracted from plant compounds and can present activities antimicrobial and antioxidant properties. The goals of the present study were: (a) to determine the chemical composition of the essential oil of Guarea kunthiana A. Juss using the method of gas chromatography coupled to mass spectrometry (GC-MS); (b) to evaluate the antimicrobial potential of this oil using the broth microdilution method against different microorganisms: five Gram-negative bacteria, four Gram-positive bacteria and a yeast and (c) to determine the antioxidant activity of the oil using the DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical assay. The GC-MS analyses allowed identifying 13 constituents, representing 96.52% of the essencial oil composition. The main compounds identified were α-zingiberene (34.48%), β-sesquiphellandrene (22.90%), and α-curcumene (16.17%). With respect to the antimicrobial activity, the essential oil was effective against all the microorganisms tested, except for the bacteria E. coli and K. pneumoniae, which were resistant to the action of the oil. From a general point of view, Gram-positive bacteria were more susceptible to the action of the essential oil than Gram-negative bacteria. The essential oil exhibited antioxidant potential.

  2. Chemical Characterization and Antioxidant Potential of Wild Ganoderma Species from Ghana.

    Science.gov (United States)

    Obodai, Mary; Mensah, Deborah L Narh; Fernandes, Ângela; Kortei, Nii Korley; Dzomeku, Matilda; Teegarden, Matthew; Schwartz, Steven J; Barros, Lillian; Prempeh, Juanita; Takli, Richard K; Ferreira, Isabel C F R

    2017-01-25

    The chemical characterization and antioxidant potential of twelve wild strains of Ganoderma sp. from Ghana, nine (LS1-LS9) of which were found growing wild simultaneously on the same dying Delonix regia tree, were evaluated. Parameters evaluated included the nutritional value, composition in sugars, fatty acids, phenolic and other organic compounds and some vitamins and vitamin precursors. Antioxidant potential was evaluated by investigating reducing power, radical scavenging activity and lipid peroxidation inhibition using five in vitro assays. Protein, carbohydrate, fat, ash and energy contents ranged between 15.7-24.5 g/100 g·dw, 73.31-81.90 g/100 g, 0.48-1.40 g/100 g, 0.68-2.12 g/100 g ash and 396.1-402.02 kcal/100 g, respectively. Fatty acids such as linoleic, oleic and palmitic acids were relatively abundant. Free sugars included rhamnose, fructose, mannitol, sucrose and trehalose. Total tocopherols, organic acids and phenolic compounds' content ranged between 741-3191 µg/100 g, 77-1003 mg/100 g and 7.6-489 µg/100 g, respectively. There were variations in the β-glucans, ergosterol and vitamin D₂ contents. The three major minerals in decreasing order were K > P > S. Ganoderma sp. strain AM1 showed the highest antioxidant activity. This study reveals, for the first time, chemical characteristics of Ganoderma spp. which grew simultaneously on the same tree.

  3. Antioxidant Potential of Momordica Charantia in Ammonium Chloride-Induced Hyperammonemic Rats

    Directory of Open Access Journals (Sweden)

    A. Justin Thenmozhi

    2011-01-01

    Full Text Available The present study was aimed to investigate the antioxidant potential of Momordica charantia fruit extract (MCE in ammonium chloride-induced (AC hyperammonemic rats. Experimental hyperammonemia was induced in adult male Wistar rats (180–200 g by intraperitoneal injections of ammonium chloride (100 mg kg−1 body weight thrice a week. The effect of oral administration (thrice a week for 8 consecutive weeks of MCE (300 mg kg−1 body weight on blood ammonia, plasma urea, serum liver marker enzymes and oxidative stress biomarkers in normal and experimental animals was analyzed. Hyperammonemic rats showed a significant increase in the activities of thiobarbituric acid reactive substances, hydroperoxides and liver markers (alanine transaminase, aspartate transaminase and alkaline phosphatase, and the levels of glutathione peroxidase, superoxide dismutase, catalase and reduced glutathione were decreased in the liver and brain tissues. Treatment with MCE normalized the above-mentioned changes in hyperammonemic rats by reversing the oxidant-antioxidant imbalance during AC-induced hyperammonemia, and offered protection against hyperammonemia. Our results indicate that MCE exerting the antioxidant potentials and maintaining the cellular integrity of the liver tissue could offer protection against AC-induced hyperammonemia. However, the exact underlying mechanism is yet to be investigated, and examination of the efficacy of the active constituents of the M. charantia on hyperammonemia is desirable.

  4. The Potential Use of Secondary Metabolites in Moringa oleifera as an Antioxidant Source

    Directory of Open Access Journals (Sweden)

    A. Fitri

    2015-12-01

    Full Text Available This present study determined antioxidant activity, lipid peroxidation, total phenolic, total flavonoids and phytochemicals in moringa leaves and moringa stem. Analysis used in this study was 1, 1-diphenyl-2-picrylhydrazyl (DPPH method for antioxidant activity, thiobarbituric acid reactive substances (TBARS method for lipid peroxidation, Folin-Ciocalteu method for total phenolic, total flavonoid and UFLC (Ultrafast Liquid Chromatography for identification and quantification of phenolic compounds. The results showed that moringa leaves had higher ability to scavenge free radical, total phenolic, and total flavonoid than moringa stem (P<0.001. Malondialdehyde production, the end product of lipid peroxidation, in moringa leaves was lower than moringa stem (P<0.001. Ferulic acid was the major active compound in both moringa leaves and moringa stem. This present study indicated that moringa leaves and moringa stem could be used as feed additive which had a good potential to prevent oxidative stress in animals.

  5. In Vitro Antidiabetic Effects and Antioxidant Potential of Cassia nemophila Pods

    Directory of Open Access Journals (Sweden)

    Gauhar Rehman

    2018-01-01

    Full Text Available The antidiabetic and antioxidant potential of ethanolic extract of Cassia nemophila pod (EECNP was evaluated by three in vitro assays, including yeast glucose uptake assay, glucose adsorption assay, and DPPH radical scavenging activity. The result revealed that the extracts have enhanced the uptake of glucose through the plasma membrane of yeast cells. A linear increase in glucose uptake by yeast cells was noticed with gradual increase in the concentration of the test samples. Moreover, the adsorption capacity of the EECNP was directly proportional to the molar concentration of glucose. Also, the DPPH radical scavenging capacity of the extract was increased to a maximum value of 43.3% at 80 μg/ml, which was then decreased to 41.9% at 100 μg/ml. From the results, it was concluded that EECNP possess good antidiabetic and antioxidant properties as shown by in vitro assays.

  6. Extraction and evaluation of bioactive compounds with antioxidant potential from green arabica coffee extract

    Directory of Open Access Journals (Sweden)

    Simona PATRICHE

    2015-12-01

    Full Text Available During the last decade researches concerning the essential role of coffee in health and disease prevention showed an increased development. In the present study we obtained extracts from three green Arabica coffee varieties which demonstrated a significant antioxidant potential due to the presence in their composition of two bioactive compounds, caffeine and chlorogenic acids. The content and antioxidant activity of bioactive compounds were evaluated by qualitative and quantitative analyses using spectrophotometric and chromatography methods. The chlorogenic acid was found in high concentrations, being followed by gallic, p-coumaric and ferulic acids. The highest caffeine contents were found in the green coffee extracts of the Supremo–Columbia and Top Quality–Kenya products.

  7. Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential

    Directory of Open Access Journals (Sweden)

    Patra JK

    2015-12-01

    Full Text Available Jayanta Kumar Patra, Kwang-Hyun Baek School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea Abstract: Biological synthesis of nanoparticles using nontoxic, eco-friendly approaches is gaining importance owing to their fascinating biocompatibility and environmentally benign nature. This study describes the green synthesis approach for synthesis of gold nanoparticles (ANPs using aqueous extract of the rind of watermelon as a fruit waste and evaluate its biopotential in terms of proteasome inhibitory activity, antibacterial, and antioxidant potential. The synthesized ANPs were characterized using UV–vis spectroscopy, scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The surface plasmon resonance spectra of ANPs were obtained at 560 nm. Scanning electron microscopy image revealed that particles had a spherical shape and have a size distribution of 20–140 nm, followed by the elemental analysis by energy-dispersive X-ray spectroscopy. X-ray diffraction analysis confirmed the crystallite nature of the ANPs and Fourier-transform infrared spectroscopy revealed the involvement of bioactive compounds from watermelon rind in the synthesis, capping, and stabilization of ANPs. ANPs exhibited potential antibacterial activity against five different foodborne pathogenic bacteria with diameter of inhibition zones ranged between 9.23 and 11.58 mm. They also displayed strong synergistic antibacterial activity together with kanamycin (11.93–21.08 mm inhibition zones and rifampicin (10.32–24.84 mm inhibition zones. ANPs displayed strong antioxidant activity in terms of DPPH radical scavenging (24.69%, nitric oxide scavenging (25.62%, ABTS scavenging (29.42%, and reducing power. Significantly high proteasome inhibitory potential of the ANPs (28.16% could be highly useful for cancer treatment and targeted cancer drug delivery. Overall, results highlight a

  8. A comparative analysis of in vitro antioxidant potential of crude extracts of Tridax procumbens L. in different solvents and in vitro hypoglycemic potential of its hydro-alcoholic extract

    Directory of Open Access Journals (Sweden)

    Smita Nair

    2016-09-01

    Full Text Available The therapeutic potential of crude extracts of aerial parts (stem, leaves and flowers of Tridax procumbens was screened for in vitro antioxidant potential and alpha amylase inhibitory action. The crude hydro-methanolic, aqueous and petroleum ether extracts were obtained by percolation-maceration method using 50% methanol, double distilled water and petroleum ether as solvents. Phytochemical screening of these extracts revealed the presence of flavonoids, tannins, alkaloids, glycosides, saponins, phenols, steroids and carbohydrate. Antioxidant activities of the extracts were evaluated for free radical scavenging by hydrogen peroxide scavenging and superoxide scavenging potential. The in vitro alpha amylase inhibition action of hydro-methanolic extract of aerial parts of the plant (HMETP was evaluated for hypoglycemic properties using starch as substrate. Mode of inhibition of the enzyme was also determined. The results indicated that hydro-methanolic extract showed significant antioxidant potency at concentration of 25-80 μg as compared to aqueous and petroleum ether extracts and also possess alpha amylase inhibitory property. Hence it can be suggested that hydroalcoholic extract of aerial parts of Tridax procumbens has potential as an antioxidant and probably in biological systems as a nutraceutical for hypoglycemia.

  9. Antioxidant Potential of Vespa affinis L., a Traditional Edible Insect Species of North East India.

    Science.gov (United States)

    Dutta, Prachurjya; Dey, Tapan; Manna, Prasenjit; Kalita, Jatin

    2016-01-01

    Elevated oxidative stress plays an important role in the pathogenesis of health disorders, like arthritis. Traditionally, Vespa affinis L., a common edible insect among many tribes in North-East India, is believed to have a beneficial role in extenuating health disorders, such as arthritis. The present study investigated the molecular mechanism underlying medicinal benefit of the Aqueous Extract of Vespa affinis L. (AEVA) against oxidative stress pathophysiology. The free radical scavenging activities of AEVA were examined against DPPH, hydroxyl, and superoxide radicals and the effect on the activities of antioxidant enzyme (GST and CAT) was determined using both recombinant proteins and human plasma. The antioxidant potential of AEVA was again investigated using THP-1 monocytes. AEVA possesses a significant free radical scavenging activity as evident from the DPPH, superoxide, and hydroxyl radical scavenging assay. Incubation of AEVA (2.5, 5, 7.5, and 10 μg/μL) with the recombinant antioxidant enzymes, rGST and rCAT significantly increased the enzyme activities compared to those observed in corresponding enzyme alone or AEVA itself. AEVA supplementation (5, 7.5, and 10 μg/μL) also stimulates the activities of GST and CAT when incubated with human plasma. A cell culture study also confirmed the beneficial role of AEVA (0.8 and 1.2 μg/μL) which enhances the activities of GST and CAT, and also reduces the intercellular ROS production in monocytes treated with or without H2O2 and the effects are at par with what is observed in N-acetyl cysteine-treated cells. The antioxidant potential of the aqueous extract of Vespa affinis L. may mediate its therapeutic activities in oxidative stress-associated health disorders.

  10. Antioxidant Potential of Vespa affinis L., a Traditional Edible Insect Species of North East India.

    Directory of Open Access Journals (Sweden)

    Prachurjya Dutta

    Full Text Available Elevated oxidative stress plays an important role in the pathogenesis of health disorders, like arthritis. Traditionally, Vespa affinis L., a common edible insect among many tribes in North-East India, is believed to have a beneficial role in extenuating health disorders, such as arthritis. The present study investigated the molecular mechanism underlying medicinal benefit of the Aqueous Extract of Vespa affinis L. (AEVA against oxidative stress pathophysiology.The free radical scavenging activities of AEVA were examined against DPPH, hydroxyl, and superoxide radicals and the effect on the activities of antioxidant enzyme (GST and CAT was determined using both recombinant proteins and human plasma. The antioxidant potential of AEVA was again investigated using THP-1 monocytes.AEVA possesses a significant free radical scavenging activity as evident from the DPPH, superoxide, and hydroxyl radical scavenging assay. Incubation of AEVA (2.5, 5, 7.5, and 10 μg/μL with the recombinant antioxidant enzymes, rGST and rCAT significantly increased the enzyme activities compared to those observed in corresponding enzyme alone or AEVA itself. AEVA supplementation (5, 7.5, and 10 μg/μL also stimulates the activities of GST and CAT when incubated with human plasma. A cell culture study also confirmed the beneficial role of AEVA (0.8 and 1.2 μg/μL which enhances the activities of GST and CAT, and also reduces the intercellular ROS production in monocytes treated with or without H2O2 and the effects are at par with what is observed in N-acetyl cysteine-treated cells.The antioxidant potential of the aqueous extract of Vespa affinis L. may mediate its therapeutic activities in oxidative stress-associated health disorders.

  11. Chemistry and biology of reactive species with special reference to the antioxidative defence status in pancreatic β-cells.

    Science.gov (United States)

    Lenzen, Sigurd

    2017-08-01

    Diabetes mellitus is a serious metabolic disease. Dysfunction and subsequent loss of the β-cells in the islets of Langerhans through apoptosis ultimately cause a life-threatening insulin deficiency. The underlying reason for the particular vulnerability of the β-cells is an extraordinary sensitivity to the toxicity of reactive oxygen and nitrogen species (ROS and RNS) due to its low antioxidative defense status. This review considers the different aspects of the chemistry and biology of the biologically most important reactive species and their chemico-biological interactions in the β-cell toxicity of proinflammatory cytokines in type 1 diabetes and of lipotoxicity in type 2 diabetes development. The weak antioxidative defense equipment in the different subcellular organelles makes the β-cells particularly vulnerable and prone to mitochondrial, peroxisomal and ER stress. Looking upon the enzyme deficiencies which are responsible for the low antioxidative defense status of the pancreatic β-cells it is the lack of enzymatic capacity for H 2 O 2 inactivation at all major subcellular sites. Diabetes is the most prevalent metabolic disorder with a steadily increasing incidence of both type 1 and type 2 diabetes worldwide. The weak protection of the pancreatic β-cells against oxidative stress is a major reason for their particular vulnerability. Thus, careful protection of the β-cells is required for prevention of the disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The potential of mangrove Avicennia marina and A. Alba from Nguling district, Pasuruan, East Java as an antioxidant

    Science.gov (United States)

    Iranawati, F.; Muhammad, F.; Fajri, H.; Kasitowati, R. D.; Arifin, S.

    2018-04-01

    Free radicals are highly reactive molecules due to unpaired electron in their outer orbital. Excess of free radicals inside human body as consequences of environmental exposure such cigarette smoke may lead to degenerative diseases such as diabetic, cancer etc. This negative effect can be limited by the utilization of natural antioxidant substances, especially produced from plant. Avicennia alba dan A. marina are mangrove species that widely distributed in Indonesia and are expected potential as antioxidant. The objective of this study is to evaluated Avicennia alba dan A. marina potency as antioxidant performed with DPPD (1,1-diphenyl-β-picryl hydrazyl) method. Leaf and bark of Avicennia alba dan A. marina were collected from Nguling District, Pasuruan, East Java. Results shows that based on 50% inhibition Concentration (IC50), Avicennia alba leaf were categorized had a very high antioxidant potential (IC50 14,85 ppm) whereas the bark were categorized had a weak antioxidant potential IC50 167,17 ppm). For A. marina, the leaf were categorized had a moderate antioxidant (IC50 123,23 ppm) whereas the bark were categorized had a weak antioxidant potential (IC50 198,15 ppm).

  13. Biosurfactants production potential of native strains of Bacillus cereus and their antimicrobial, cytotoxic and antioxidant activities.

    Science.gov (United States)

    Basit, Madiha; Rasool, Muhammad Hidayat; Naqvi, Syed Ali Raza; Waseem, Muhammad; Aslam, Bilal

    2018-01-01

    Present study was designed to evaluate the biosurfactant production potential by native strains of Bacillus cereus as well as determine their antimicrobial and antioxidant activities. The strains isolated from garden soil were characterized as B. cereus MMIC 1, MMIC 2 and MMIC 3. Biosurfactants were extracted as grey white precipitates. Optimum conditions for biosurfactant production were 37°C, the 7th day of incubation, 0.5% NaCl, pH 7.0. Moreover, corn steep liquor was the best carbon source. Biuret test, Thin Layer Chromatography (TLC), agar double diffusion and Fourier Transform Infrared Spectroscopy (FTIR) characterized the biosurfactants as cationic lipopeptides. Biosurfactants exhibited significant antibacterial and antifungal activity against S. aureus, E. coli, P. aeruginosa, K. pneumoniae, A. niger and C. albicans at 30 mg/ml. Moreover, they also possessed antiviral activity against NDV at 10 mg/ml. Cytotoxicity assay in BHK-21 cell lines revealed 63% cell survival at 10 mg/ml of biosurfactants and thus considered as safe. They also showed very good antioxidant activity by ferric-reducing activity and DPPH scavenging activity at 2 mg/ml. Consequently, the study offers an insight for the exploration of new bioactive molecules from the soil. It was concluded that lipopeptide biosurfactants produced from native strains of B. cereus may be recommended as safe antimicrobial, emulsifier and antioxidant agent.

  14. IN VITRO AND IN VIVO EVALUATION OF ANTIMICROBIAL AND ANTIOXIDANT POTENTIAL OF STEVIA EXTRACT.

    Science.gov (United States)

    Moselhy, Said S; Ghoneim, Magdy A; Khan, Jehan A

    2016-01-01

    The current trend globally is the utilization of natural products as therapeutic agents given its minimum side effects. The leaves of Stevia contain several active ingredient compounds such as rebaudioside. Stevia extract have been used for many purposes. Active oxygen radicals can induce base modifications, DNA breakage, and intracellular protein crosslink's. This study was done to evaluate the potential of stevia extract as antibacterial and antioxidants actions. Antibacterial activity of different extracts of stevia was tested in vitro against different species of bacteria and hepato-protective efficacy was testes in rats injected with CCl 4 as hepatotoxic. Acetone extract exhibited antibacterial activity against selected five bacteria species. The acetone extract suppressed the elevation of serum ALT (p stevia extract showed prevention against deleterious effects of CCl 4 by lowering lipid peroxidation and enhancement of antioxidant activities as SOD and CAT. The protection trial is better than treatment trial. Total phenolic content of aqueous and acetone extracts were found 30 mg and 85 mg gallic /gm extract respectively. While the total flavonoids were 40 mg and 80 mg quercetin/g respectively. The GC-MS analysis showed that monoterpene and indole are the main components. Aqueous extract don't show any antibacterial activity against the tested strains. The antioxidant properties were attributable to its phenolic content to scavenge free radicals. Acetone extract possess a potent antimicrobial and activity against deleterious effect of CCl 4 -caused liver damage.

  15. Polyphenol, antioxidant and antimicrobial potential of six different white and red wine grape processing leftovers.

    Science.gov (United States)

    Trošt, Kajetan; Klančnik, Anja; Mozetič Vodopivec, Branka; Sternad Lemut, Melita; Jug Novšak, Katja; Raspor, Peter; Smole Možina, Sonja

    2016-11-01

    During winemaking, grape polyphenols are only partly extracted, and consequently unexploited. The main aim was to characterize the phenolic content of freeze-dried grape skin and seed (FDSS) extracts obtained from Slovenian and international grape varieties and to evaluate their antioxidant, antimicrobial and anti-adhesive activities. FDSS of six Vitis vinifera L. grapevine cultivars from Vipava Valley region (Slovenia) underwent extraction and sonification under different conditions. Flavonols were the predominant content of extracts from white 'Zelen' and 'Sauvignon Blanc' grape varieties, with strong antimicrobial activities against Gram-negative bacteria. 'Pinot Noir' FDSS extracted with 50% aqueous ethanol extraction produced a high phenolic content in the final extract, which was further associated with strong antioxidant and antimicrobial activities against all tested bacteria. Bacterial adhesion to stainless steel surfaces with minimal and maximal surface roughness was significantly inhibited (up to 60%) across a wide FDSS concentration range, with lower concentrations also effective with two types of stainless steel surfaces. FDSS extracts from winery by-products show interesting phenolic profiles that include flavonols, catechins, anthocyanins and hydroxycinnamic acids, with yields influenced by grapevine cultivar and extraction conditions. The antioxidant, antimicrobial and anti-adhesive activities of 50% aqueous ethanol 'Pinot Noir' FDSS extract reveals potential applications in food, pharmaceutical and cosmetic industries for these bioactive residues. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Characterization of substituted aryl meroterpenoids from red seaweed Hypnea musciformis as potential antioxidants.

    Science.gov (United States)

    Chakraborty, Kajal; Joseph, Deepu; Joy, Minju; Raola, Vamshi Krishna

    2016-12-01

    The ethyl acetate fraction of red seaweed Hypnea musciformis was purified to yield three substituted aryl meroterpenoids, namely, 2-(tetrahydro-5-(4-hydroxyphenyl)-4-pentylfuran-3-yl)-ethyl-4-hydroxybenzoate (1), 2-2-[(4-hydroxybenzoyl)-oxy]-ethyl-4-methoxy-4-2-[(4-methylpentyl)oxy]-3,4-dihydro-2H-6-pyranylbutanoic acid (2) and 3-((5-butyl-3-methyl-5,6-dihydro-2H-pyran-2-yl)-methyl)-4-methoxy-4-oxobutyl benzoate (3). The structures of these compounds, as well as their relative stereochemistries, were confirmed by exhaustive NMR spectroscopic data analyses. Compound 1 exhibited similar 2,2'-diphenylpicrylhydrazyl radical inhibiting and Fe(2+) ion chelating activities (IC50 25.05 and 350.7μM, respectively) as that of commercial antioxidant gallic acid (IC50 32.3 and 646.6μM, respectively), followed by 3 (IC50 231.2 and 667.9μM, respectively), and 2 (IC50 322.4 and 5115.3μM, respectively), in descending order of activities. Structure-activity relationship analysis revealed that the antioxidant activities of these compounds were directly proportional to the steric and hydrophobic parameters. The seaweed derived aryl meroterpenoids might serve as potential lead antioxidative molecules for use in pharmaceutical and food industries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Measurement of the total antioxidant potential in chronic obstructive pulmonary diseases with a novel automated method

    International Nuclear Information System (INIS)

    Ceylan, E.; Gencer, M.; Uzer, E.; Celik, H.

    2007-01-01

    To determine the oxidative and antioxidative status of plasma of patients with chronic obstructive pulmonary disease (COPD) and to compare these values with healthy smokers and healthy non-smokers control subjects using a more recently developed automated measurement method. This study involved 40 COPD patients, 25 healthy smokers, and 25 non-healthy smokers who attended the Chest Disease Outpatient Clinic in Harran University Research Hospital, Turkey between the period March 2006 and June 2006. We calculated the total antioxidant potential (TAOP) to determine the antioxidative status of plasma and we measured the total peroxide levels to determine the oxidative status of plasma. The TAOP of plasma was significantly lower in patients with COPD than in healthy smokers and healthy non-smokers (p< 0.001). In contrast, the mean total peroxide level of plasma was significantly higher in COPD patients than in healthy smokers and healthy non-smokers (p<0.001). We found a decreased in TAOP COPD patients using a simple, rapid and reliably automated colorimetric assay, which may suitable for use in routine clinical biochemistry laboratory and considerably facilitates the assessment of this useful clinical parameter. We suggest that this novel method may be used as a routine test to evaluate and follow-up the levels of oxidative stress in COPD. (author)

  18. Potential Role of Carotenoids as Antioxidants in Human Health and Disease

    Directory of Open Access Journals (Sweden)

    Joanna Fiedor

    2014-01-01

    Full Text Available Carotenoids constitute a ubiquitous group of isoprenoid pigments. They are very efficient physical quenchers of singlet oxygen and scavengers of other reactive oxygen species. Carotenoids can also act as chemical quenchers undergoing irreversible oxygenation. The molecular mechanisms underlying these reactions are still not fully understood, especially in the context of the anti- and pro-oxidant activity of carotenoids, which, although not synthesized by humans and animals, are also present in their blood and tissues, contributing to a number of biochemical processes. The antioxidant potential of carotenoids is of particular significance to human health, due to the fact that losing antioxidant-reactive oxygen species balance results in “oxidative stress”, a critical factor of the pathogenic processes of various chronic disorders. Data coming from epidemiological studies and clinical trials strongly support the observation that adequate carotenoid supplementation may significantly reduce the risk of several disorders mediated by reactive oxygen species. Here, we would like to highlight the beneficial (protective effects of dietary carotenoid intake in exemplary widespread modern civilization diseases, i.e., cancer, cardiovascular or photosensitivity disorders, in the context of carotenoids’ unique antioxidative properties.

  19. Microcystin accumulation and potential effects on antioxidant capacity of leaves and fruits of Capsicum annuum.

    Science.gov (United States)

    Drobac, Damjana; Tokodi, Nada; Kiprovski, Biljana; Malenčić, Djordje; Važić, Tamara; Nybom, Sonja; Meriluoto, Jussi; Svirčev, Zorica

    2017-01-01

    Surface water, often used for irrigation purposes, may sometimes be contaminated with blooming cyanobacteria and thereby may contain their potent and harmful toxins. Cyanotoxins adversely affect many terrestrial plants, and accumulate in plant tissues that are subsequently ingested by humans. Studies were undertaken to (1) examine the bioaccumulation of microcystins (MCs) in leaves and fruits of pepper Capsicum annuum and (2) examine the potential effects of MCs on antioxidant capacity of these organs. Plants were irrigated with water containing MCs for a period of 3 mo. Data showed that MCs did not accumulate in leaves; however, in fruits the presence of the MC-LR (0.118 ng/mg dry weight) and dmMC-LR (0.077 ng/mg dry weight) was detected. The concentrations of MC-LR in fruit approached the acceptable guideline values and tolerable daily intake for this toxin. Lipid peroxidation levels and flavonoids content were significantly enhanced in both organs of treated plants, while total phenolic concentrations were not markedly variable between control and treated plants. Significant decrease in 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging capacity was noted for both organs. The levels of superoxide anion in fruits and hydroxyl radical in leaves were markedly reduced. Data suggest that exposure to MCs significantly reduced antioxidant capacity of experimental plants, indicating that MCs affected antioxidant systems in C. annuum.

  20. Potential Role of Carotenoids as Antioxidants in Human Health and Disease

    Science.gov (United States)

    Fiedor, Joanna; Burda, Květoslava

    2014-01-01

    Carotenoids constitute a ubiquitous group of isoprenoid pigments. They are very efficient physical quenchers of singlet oxygen and scavengers of other reactive oxygen species. Carotenoids can also act as chemical quenchers undergoing irreversible oxygenation. The molecular mechanisms underlying these reactions are still not fully understood, especially in the context of the anti- and pro-oxidant activity of carotenoids, which, although not synthesized by humans and animals, are also present in their blood and tissues, contributing to a number of biochemical processes. The antioxidant potential of carotenoids is of particular significance to human health, due to the fact that losing antioxidant-reactive oxygen species balance results in “oxidative stress”, a critical factor of the pathogenic processes of various chronic disorders. Data coming from epidemiological studies and clinical trials strongly support the observation that adequate carotenoid supplementation may significantly reduce the risk of several disorders mediated by reactive oxygen species. Here, we would like to highlight the beneficial (protective) effects of dietary carotenoid intake in exemplary widespread modern civilization diseases, i.e., cancer, cardiovascular or photosensitivity disorders, in the context of carotenoids’ unique antioxidative properties. PMID:24473231

  1. Evaluation of antioxidant potential of Lavandula x intermedia Emeric ex Loisel. 'Budrovka': a comparative study with L. angustifolia Mill.

    Science.gov (United States)

    Blazeković, Biljana; Vladimir-Knezević, Sanda; Brantner, Adelheid; Stefan, Maja Bival

    2010-08-30

    A Croatian indigenous cultivar of lavandin, Lavandula x intermedia 'Budrovka' (Lamiaceae) was studied for the phenolic acids, flavonoids, anthocyanins, procyanidins and total tannins, as well as total polyphenols content, in the flower, inflorescence stalk and leaf ethanolic extracts. Antioxidant potentials on these plant part extracts were assessed by the DPPH free radical scavenging activity, iron chelating activity, reducing power, lipid peroxidation inhibition properties and total antioxidant capacity assays. All results were compared with those of Lavandula angustifolia, the only member of the Lavandula genus officially used in modern phytotherapy. Based on the results of our parallel study, we may suggest that Lavandula x intermedia 'Budrovka' is as potent an antioxidant as Lavandula angustifolia and the antioxidant activity of the Lavandula extracts is mainly due to the presence of rosmarinic acid. A good correlation was found between the polyphenol contents and antioxidant activities of the extracts.

  2. Evaluation of Antioxidant Potential of Lavandula x intermedia Emeric ex Loisel. 'Budrovka': A Comparative Study with L. angustifolia Mill.

    Directory of Open Access Journals (Sweden)

    Maja Bival Štefan

    2010-08-01

    Full Text Available A Croatian indigenous cultivar of lavandin, Lavandula x intermedia 'Budrovka' (Lamiaceae was studied for the phenolic acids, flavonoids, anthocyanins, procyanidins and total tannins, as well as total polyphenols content, in the flower, inflorescence stalk and leaf ethanolic extracts. Antioxidant potentials on these plant part extracts were assessed by the DPPH free radical scavenging activity, iron chelating activity, reducing power, lipid peroxidation inhibition properties and total antioxidant capacity assays. All results were compared with those of Lavandula angustifolia, the only member of the Lavandula genus officially used in modern phytotherapy. Based on the results of our parallel study, we may suggest that Lavandula x intermedia 'Budrovka' is as potent an antioxidant as Lavandula angustifolia and the antioxidant activity of the Lavandula extracts is mainly due to the presence of rosmarinic acid. A good correlation was found between the polyphenol contents and antioxidant activities of the extracts

  3. Seagrass as a potential source of natural antioxidant and anti-inflammatory agents.

    Science.gov (United States)

    Yuvaraj, N; Kanmani, P; Satishkumar, R; Paari, A; Pattukumar, V; Arul, V

    2012-04-01

    Halophila spp. is a strong medicine against malaria and skin diseases and is found to be very effective in early stages of leprosy. Seagrasses are nutraceutical in nature and therefore of importance as food supplements. The antibacterial, antioxidant, and anti-inflammatory activities of Halophila ovalis R. Br. Hooke (Hydrocharitaceae) methanol extract were investigated and the chemical constituents of purified fractions were analyzed. Plant materials were collected from Pondicherry coastal line, and antimicrobial screening of crude extract, and purified fractions was carried out by the disc diffusion method and the minimum inhibitory concentration (MICs) of the purified fractions and reference antibiotics were determined by microdilution method. Antioxidant and anti-inflammatory activities were investigated in vitro. Chemical constituents of purified fractions V and VI were analyzed by gas chromatography-mass spectrometry (GC-MS), and the phytochemicals were quantitatively determined. Methanol extract inhibited the growth of Bacillus cereus at a minimum inhibitory concentration of 50 µg/mL and other Gram-negative pathogens at 75 µg/ml, except Vibrio vulnificus. Reducing power and total antioxidant level increased with increasing extract concentration. H. ovalis exhibited strong scavenging activity on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radicals at IC(50) of 0.13 and 0.65 mg/mL, respectively. Methanol extract of H. ovalis showed noticeable anti-inflammatory activity at IC(50) of 78.72 µg/mL. The GC-MS analysis of H. ovalis revealed the presence of triacylglycerols as major components in purified fractions. Quantitative analysis of phytochemicals revealed that phenols are rich in seagrass H. ovalis. These findings demonstrated that the methanol extract of H. ovalis exhibited appreciable antibacterial, noticeable antioxidant, and anti-inflammatory activities, and thus could be use as a potential source for natural health products.

  4. The potential for biological structure determination with pulsed neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.C. [CLRC Rutherford Appleton Laboratory, Chilton Didcot Oxon (United Kingdom)

    1994-12-31

    The potential of pulsed neutron diffraction in structural determination of biological materials is discussed. The problems and potential solutions in this area are outlined, with reference to both current and future sources and instrumentation. The importance of developing instrumentation on pulsed sources in emphasized, with reference to the likelihood of future expansion in this area. The possibilities and limitations of single crystal, fiber and powder diffraction in this area are assessed.

  5. The potential for biological structure determination with pulsed neutrons

    International Nuclear Information System (INIS)

    Wilson, C.C.

    1994-01-01

    The potential of pulsed neutron diffraction in structural determination of biological materials is discussed. The problems and potential solutions in this area are outlined, with reference to both current and future sources and instrumentation. The importance of developing instrumentation on pulsed sources in emphasized, with reference to the likelihood of future expansion in this area. The possibilities and limitations of single crystal, fiber and powder diffraction in this area are assessed

  6. Macroscopic Quantum-Type Potentials in Theoretical Systems Biology

    Directory of Open Access Journals (Sweden)

    Laurent Nottale

    2013-12-01

    Full Text Available We review in this paper the use of the theory of scale relativity and fractal space-time as a tool particularly well adapted to the possible development of a future genuine systems theoretical biology. We emphasize in particular the concept of quantum-type potentials, since, in many situations, the effect of the fractality of space—or of the underlying medium—can be reduced to the addition of such a potential energy to the classical equations of motion. Various equivalent representations—geodesic, quantum-like, fluid mechanical, stochastic—of these equations are given, as well as several forms of generalized quantum potentials. Examples of their possible intervention in high critical temperature superconductivity and in turbulence are also described, since some biological processes may be similar in some aspects to these physical phenomena. These potential extra energy contributions could have emerged in biology from the very fractal nature of the medium, or from an evolutive advantage, since they involve spontaneous properties of self-organization, morphogenesis, structuration and multi-scale integration. Finally, some examples of applications of the theory to actual biological-like processes and functions are also provided.

  7. Up-regulation of mitochondrial antioxidation signals in ovarian cancer cells with aggressive biologic behavior.

    Science.gov (United States)

    Wang, Yue; Dong, Li; Cui, Heng; Shen, Dan-hua; Wang, Ying; Chang, Xiao-hong; Fu, Tian-yun; Ye, Xue; Yao, Yuan-yang

    2011-05-01

    Recently, a high frequency of mutations in mitochondrial DNA (mtDNA) has been detected in ovarian cancer. To explore the alterations of proteins in mitochondria in ovarian cancer, a pair of human ovarian carcinoma cell lines (SKOV3/SKOV3.ip1) with different metastatic potentials was examined. Cancer cells SKOV3.ip1 were derived from the ascitic tumor cells of nude mice bearing a tumor of ovarian cancer cells SKOV3. SKOV3.ip1 exhibited a higher degree of migration potential than its paired cell line SKOV3. The proteins in the mitochondria of these two cells were isolated and separated by 2-D gel electrophoresis. The differently expressed proteins were extracted and identified using matrix assisted laser desorption ionisation/time-of-flight/time-of-flight (MALDI-TOF/TOF), and finally a selected protein candidate was further investigated by immunohistochemistry (IHC) method in nude mice bearing tumor tissues of these two cells. A total of 35 spots with different expressions were identified between the two cells using 2D-polyacrylamide gel electrophoresis (PAGE) approach. Among them, 17 spots were detected only in either SKOV3 or SKOV3.ip1 cells. Eighteen spots expressed different levels, with as much as a three-fold difference between the two cells. Twenty spots were analyzed using MALDI-TOF/TOF, and 11 of them were identified successfully; four were known to be located in mitochondria, including superoxide dismutase 2 (SOD2), fumarate hydratase (FH), mitochondrial ribosomal protein L38 (MRPL38), and mRNA turnover 4 homolog (MRTO4). An increased staining of SOD2 was observed in SKOV3.ip1 over that of SKOV3 in IHC analysis. Our results indicate that the enhanced antioxidation and metabolic potentials of ovarian cancer cells might contribute to their aggressive and metastatic behaviors. The underlying mechanism warrants further study.

  8. Rosemary Aromatization of Extra Virgin Olive Oil and Process Optimization Including Antioxidant Potential and Yield

    Directory of Open Access Journals (Sweden)

    Erkan Karacabey

    2016-08-01

    Full Text Available Aromatization of olive oil especially by spices and herbs has been widely used technique throughout the ages in Mediterranean diets. The present study was focused on aromatization of olive oil by rosemary (Rosmarinus officinalis L.. Aromatization process was optimized by response surface methodology as a function of malaxation’s conditions (temperature and time. According to authors’ best knowledge it was first time for examination of oil yield performance with antioxidant potential and pigments under effect of aromatization parameters. For all oil samples, values of the free acidity, peroxide, K232 and K270 as quality parameters fell within the ranges established for the highest quality category “extra virgin oil”. Oil yield (mL oil/kg olive paste changed from 158 to 208 with respect to design parameters. Total phenolic content and free radical scavenging activity as antioxidant potential of olive oil samples were varied in the range of 182.44 – 348.65 mg gallic acid equivalent/kg oil and 28.91 – 88.75 % inhibition of 2,2-Diphenyl-1-picrylhydrazyl-(DPPH•, respectively. Total contents of carotenoid, chlorophyll and pheophytin a as pigments in oil samples were found to be in between 0.09 – 0.48 mg carotenoid/kg oil, 0.11 – 0.96 mg chlorophyll/kg oil, 0.15 – 4.44 mg pheo α/kg oil, respectively. The proposed models for yield, pigments and antioxidant potential responses were found to be good enough for successful prediction of experimental results. Total phenolics, carotenoids and free radical scavenging activity of aromatized olive oil and oil yield were maximized to gather and optimal conditions were determined as 25°C, 84 min, and 2 % (Rosemary/olive paste; w/w.

  9. Mast cells: potential positive and negative roles in tumor biology.

    Science.gov (United States)

    Marichal, Thomas; Tsai, Mindy; Galli, Stephen J

    2013-11-01

    Mast cells are immune cells that reside in virtually all vascularized tissues. Upon activation by diverse mechanisms, mast cells can secrete a broad array of biologically active products that either are stored in the cytoplasmic granules of the cells (e.g., histamine, heparin, various proteases) or are produced de novo upon cell stimulation (e.g., prostaglandins, leukotrienes, cytokines, chemokines, and growth factors). Mast cells are best known for their effector functions during anaphylaxis and acute IgE-associated allergic reactions, but they also have been implicated in a wide variety of processes that maintain health or contribute to disease. There has been particular interest in the possible roles of mast cells in tumor biology. In vitro studies have shown that mast cells have the potential to influence many aspects of tumor biology, including tumor development, tumor-induced angiogenesis, and tissue remodeling, and the shaping of adaptive immune responses to tumors. Yet, the actual contributions of mast cells to tumor biology in vivo remain controversial. Here, we review some basic features of mast cell biology with a special emphasis on those relevant to their potential roles in tumors. We discuss how using in vivo tumor models in combination with models in which mast cell function can be modulated has implicated mast cells in the regulation of host responses to tumors. Finally, we summarize data from studies of human tumors that suggest either beneficial or detrimental roles for mast cells in tumors. ©2013 AACR.

  10. Phenolic compounds, antioxidant potential and antiproliferative potential of 10 common edible flowers from China assessed using a simulated in vitro digestion-dialysis process combined with cellular assays.

    Science.gov (United States)

    Huang, Weisu; Mao, Shuqin; Zhang, Liuquan; Lu, Baiyi; Zheng, Lufei; Zhou, Fei; Zhao, Yajing; Li, Maiquan

    2017-11-01

    Phenolic compounds could be sensitive to digestive conditions, thus a simulated in vitro digestion-dialysis process and cellular assays was used to determine phenolic compounds and antioxidant and antiproliferative potentials of 10 common edible flowers from China and their functional components. Gallic acid, ferulic acid, and rutin were widely present in these flowers, which demonstrated various antioxidant capacities (DPPH, ABTS, FRAP and CAA values) and antiproliferative potentials measured by the MTT method. Rosa rugosa, Paeonia suffruticosa and Osmanthus fragrans exhibited the best antioxidant and antiproliferative potentials against HepG2, A549 and SGC-7901 cell lines, except that Osmanthus fragrans was not the best against SGC-7901 cells. The in vitro digestion-dialysis process decreased the antioxidant potential by 33.95-90.72% and the antiproliferative potential by 13.22-87.15%. Following the in vitro digestion-dialysis process, phenolics were probably responsible for antioxidant (R 2 = 0.794-0.924, P digestion and dialysis along with the reduction of phenolics. Nevertheless, they still had considerable antioxidant and antiproliferative potential, which merited further investigation in in vivo studies. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Antioxidant and protease-inhibitory potential of extracts from grains of oat

    Directory of Open Access Journals (Sweden)

    Krošlák Erik

    2016-01-01

    Full Text Available The most of important crops cultivated for production of foods and feeds could be considered as plants possessing nutraceutical or medically interesting compounds, especially if can be eaten without processing. Chemical and biological parameters that were evaluated in 100 oat (Avena sativa L. genotypes were others than those that are important in food and feed production. Contents of polyphenols and flavonoids, radical scavenging activity (DPPH, and inhibitory activities against five proteases (trypsin, thrombin, urokinase, elastase, cathepsin B were analyzed in extracts from mature grains. The antioxidant activity (DPPH correlated to the content of total polyphenols. Only a minority (15 from 100 of analyzed genotypes created separate subgroup with a high content of polyphenols, flavonoids, and high antioxidant activity. The best in these parameters were genotypes CDC-SOL-FI, Saul, and Avesta, respectively. Fifteen other genotypes assembled another minority subgroup (also 15 from 100 on the basis of their high inhibitory activities against tested proteases. The highest trypsin-, urokinase-, and elastase-inhibitory activities were in genotype Racoon, the best in thrombin-, and cathepsin B-inhibitory activities were genotypes Expression and SW Kerstin, respectively. Three oats genotypes – Rhea, AC Percy, and Detvan appeared in both subgroups.

  12. Magnetic nanoparticles as potential candidates for biomedical and biological applications.

    Science.gov (United States)

    Zeinali Sehrig, Fatemeh; Majidi, Sima; Nikzamir, Nasrin; Nikzamir, Nasim; Nikzamir, Mohammad; Akbarzadeh, Abolfazl

    2016-05-01

    Magnetic iron oxide nanoparticles have become the main candidates for biomedical and biological applications, and the application of small iron oxide nanoparticles in in vitro diagnostics has been practiced for about half a century. Magnetic nanoparticles (MNPs), in combination with an external magnetic field and/or magnetizable grafts, allow the delivery of particles to the chosen target area, fix them at the local site while the medication is released, and act locally. In this review, we focus mostly on the potential use of MNPs for biomedical and biotechnological applications, and the improvements made in using these nanoparticles (NPs) in biological applications.

  13. Effect of a novel aromatic cytokinin derivative on phytochemical levels and antioxidant potential in greenhouse grown Merwilla plumbea

    Czech Academy of Sciences Publication Activity Database

    Aremu, A.O.; Moyo, M.; Amoo, S.O.; Grúz, Jiří; Šubrtová, Michaela; Plíhalová, Lucie; Doležal, Karel; van Staden, J.

    2014-01-01

    Roč. 119, č. 3 (2014), s. 501-509 ISSN 0167-6857 R&D Projects: GA MŠk(CZ) LO1204 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional support: RVO:61389030 Keywords : Antioxidant * Conservation * Phenolics Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.125, year: 2014

  14. Evaluation of Antioxidant, Anticholinesterase, and Antidiabetic Potential of Dry Leaves and Stems in Tamarix aphylla Growing Wild in Tunisia.

    Science.gov (United States)

    Mahfoudhi, Adel; Grosso, Clara; Gonçalves, Rui F; Khelifi, Eltaief; Hammami, Saoussen; Achour, Sami; Trabelsi-Ayadi, Malika; Valentão, Patrícia; Andrade, Paula B; Mighri, Zine

    2016-12-01

    Tamarix aphylla (L.) Karst. has a wide geographic distribution and was employed in traditional medicine as astringent, anti-rheumatic and to treat fever. T. aphylla leaves and stems extracts were studied from both chemical and biological points of view to assess the antidiabetic, anticholinesterase and antioxidant potential of this species. The HPLC/Diode Array Detector (DAD) analysis showed the presence of 14 phenolic compounds (gallic, caffeic, p-coumaric, ferulic and ellagic acids, kaempferol, quercetin, quercetin 3-O-galactoside and six flavonol derivatives). This is the first study reporting a comparative study of the biological activities of different extracts from T. aphylla. High activities were obtained against DPPH radical, superoxide anion radical (O2∙-) and nitric oxide radical ( • NO) in a concentration-dependent manner, the most active extracts being the polar ones. T. aphylla also showed moderate protective effects against acetylcholinesterase, but no effects were observed against butyrylcholinesterase. Against α-glucosidase the MeOH extracts displayed IC 50 values from 8.41 to 24.81 μg/ml. © 2016 Wiley-VHCA AG, Zurich, Switzerland.

  15. Antioxidant Potential of the Giant Mushroom, Macrocybe gigantea (Agaricomycetes), from India in Different Drying Methods.

    Science.gov (United States)

    Gaur, Tanvi; Rao, P B

    2016-01-01

    Free radicals are responsible for several diseases like cancer, atherosclerosis, gastric ulcers, and several others. Studies have shown that mushrooms possess antioxidant activity and Macrocybe gigantea was recently added to the list of mushrooms under cultivation in India. The methanolic extracts were prepared from lyophilized and oven-dried samples of MA1 and MA2 strains of M. gigantea and their antioxidant properties were studied. MA2 showed comparatively higher total antioxidant activity (111.88 µg/mg) than MA1 (97.00 µg/mg). The scavenging activity on 2,2'-diphenyl picryl hydrazyl free radical (74.41%), ferrous chelating (83.74%), reducing power (0.371), and superoxide anion radical (72.05%) was significantly higher in freeze-dried MA2 than MA1 at 200 µg/mL. Correspondingly, the EC50 values were lower in freeze-dried states (96.03 µg/mL, 95.00 µg/mL, and 68.12 µg/mL in MA2 and 105.12 µg/mL, 109.8 µg/mL, and 74.60 µg/mL in MA1) than in oven-dried states (97.97 µg/mL, 120.2 µg/mL, and 125.33 µg/mL in MA2 and 108.3 µg/mL, 131.2 µg/mL, and 147.5 µg/mL in MA1, respectively). In addition, total phenolic, total flavonoid, and ortho-dihydroxy phenol content was examined and their values were comparatively higher in freeze-dried MA2 (18.00 mg/g of gallic acid equivalents, 1.67 mg/g of quercetin equivalents, and 1.10 mg/g of catechol equivalents, respectively) than in MA1 and oven-dried states in both strains. Further, MA2 showed lower EC50 values in freeze-dried samples than MA1 and oven-dried states in both strains. These results suggested that MA2 contains higher antioxidant potential than MA1 and freeze-drying by lyophilization retains higher antioxidants than heat drying by a hot air oven in both the strains; thus, they can be a good source of nutraceuticals.

  16. Synthesis and Biological Assessment of Racemic Benzochromenopyrimidinimines as Antioxidant, Cholinesterase, and Aβ1-42 Aggregation Inhibitors for Alzheimer's Disease Therapy.

    Science.gov (United States)

    Dgachi, Youssef; Ismaili, Lhassane; Knez, Damijan; Benchekroun, Mohamed; Martin, Hélène; Szałaj, Natalia; Wehle, Sarah; Bautista-Aguilera, Oscar M; Luzet, Vincent; Bonnet, Alexandre; Malawska, Barbara; Gobec, Stanislav; Chioua, Mourad; Decker, Michael; Chabchoub, Fakher; Marco-Contelles, José

    2016-06-20

    Given the complex nature of Alzheimer's disease (AD), compounds that are able to simultaneously address two or more AD-associated targets show greater promise for development into drugs for AD therapy. Herein we report an efficient two-step synthesis and biological evaluation of new racemic benzochromene derivatives as antioxidants, inhibitors of cholinesterase and β-amyloid (Aβ1-42 ) aggregation. Based on the results of the primary screening, we identified 15-(3-methoxyphenyl)-9,11,12,15-tetrahydro-10H,14H-benzo[5,6]chromeno[2,3-d]pyrido[1,2-a]pyrimidin-14-imine (3 e) and 16-(3-methoxyphenyl)-9,10,11,12,13,16-hexahydro-15H-benzo[5',6']chromeno[2',3':4,5]pyrimido[1,2-a]azepin-15-imine (3 f) as new potential multitarget-directed ligands for AD therapy. Further in-depth biological analysis showed that compound 3 f is a good human acetylcholinesterase inhibitor [IC50 =(0.36±0.02) μm], has strong antioxidant activity (3.61 μmol Trolox equivalents), and moderate Aβ1-42 antiaggregating power (40.3 %). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Microwave assisted extraction, antioxidant potential and chromatographic studies of some Rasayana drugs.

    Science.gov (United States)

    Mishra, Ashish; Mishra, Shilpi; Bhargav, Shilpi; Bhargava, Cs; Thakur, Mayank

    2015-07-01

    To study and compare the conventional extraction procedure with microwave assisted extraction (MAE) for some Ayurvedic Rasayana drugs and to evaluate their antioxidant potential and carry out the characterization of extracts by thin layer chromatography. Three Ayurvedic rasayana plants Allium sativum Linn., Bombax ceiba Linn. and Inula racemosa Hook. were evaluated for an improved MAE methodology by determining the effects of grinding degree, extraction solvent, effect of dielectric constant and duration of time on the extractive value. Antioxidant potential of all three drugs was evaluated with 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and reducing power was determined by using Gallic acid as standard. Further thin layer chromatographic (TLC) analysis was performed on pre-activated Silica Gel G plates and Rf value were compared with those reported for the important biomarkers. The total extractive value for Allium sativum Linn. was 36.95% (w/w) and 49.95% (w/w) for ethanol extraction respectively. In case of Bombax ceiba Linn. the yield of aqueous extract by MAE was 50% (w/w) compared to 42% (w/w) in ethanol (50% v/v). Percent yield of Inula racemosa Hook. in aqueous extract was found to be 27.55% (w/w) which was better than ethanol extract (50%) where the yield was 25.95% (w/w). Upon antioxidant activity evaluation. sativum extract showed an absorbance of 0.980±0.92 at concentration of 500 μg with maximum reducing capacity. This was followed by. ceiba Linn. 0.825±0.98 and. racemosa Hook. with 0.799±2.01 at a concentration of 500 μg. TLC based standardization of. sativum Linn. extract shows single spot with Rf value of 0.38, B. ceiba Linn. extract shows Rf values were 0.23, 0.58, 0.77, 0.92 and I. racemosa Hook. extract spot had a Rf value of 0.72. A significant improvement in extractive values was observed as a factor of time and other advantages by using MAE technology. All three drugs have high antioxidant potential and a TLC

  18. Preparation, characterization and in vitro antioxidative potential of synbiotic fermented dairy products.

    Science.gov (United States)

    Shah, C; Mokashe, N; Mishra, V

    2016-04-01

    The present study, evaluates the antioxidative potential of two synbiotic dairy products viz. synbiotic lassi with honey and whey based synbiotic drink with inulin and orange juice, along with their physicochemical and microbiological activity during storage period. Antioxidative potential of raw ingredients and probiotic cultures used to prepare synbiotic products was also evaluated. Synbiotic lassi with honey was prepared using Streptococcus thermophilus MTCC 5460 (MD2) and Lactobacillus helveticus MTCC 5463 (V3) as probiotics and honey as prebiotic. For preparation of whey based synbiotic drink, Lactobacillus helveticus MTCC 5463 and inulin were used as probiotic and prebiotic, respectively and orange juice was also incorporated. Titratable acidity and pH of both synbiotic products followed a similar pattern of increase or decrease during storage. Furthermore, no major changes were observed in viability of probiotic cultures under storage conditions adapted. The hydroxyl radical scavenging activity of synbiotic lassi with honey was found to significantly decrease from 107.76 to 79.41 % at the end of storage whereas, the activity of whey based synbiotic drink was 100.32 % which declined sharply to 79.21 % on 7th day but further increased to 102.59 % on 14th day. The DPPH (α, α-Diphenyl-β-Picrylhydrazyl) radical scavenging activity of freshly prepared synbiotic lassi with honey was 28.43 % which decreased to 23.03 % on 7th day while for whey based synbiotic drink decreased from 26.85 % (0 day) to 17.12 % (7th day) and continued to decline. Moreover, probiotic strains used for synbiotic preparation also demonstrated good antioxidative activity.

  19. Synthetic Biology and Human Health: Potential Applications for Spaceflight

    Science.gov (United States)

    Karouia, Fathi; Carr, Christopher; Cai, Yizhi; Chen, Y.; Grenon, Marlene; Larios-Sanz, Maia; Jones, Jeffrey A.; Santos, Orlando

    2011-01-01

    Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. Spaceflight-related changes have been reported in the musculo-skeletal, cardiovascular, neurovestibular, endocrine, and immune systems. The spacecraft environment further subjects the traveler to noise and gravitational forces, as well as airborne chemical, microbiological contaminants, and radiation exposure. As humans prepare for longer duration missions effective countermeasures must be developed, verified, and implemented to ensure mission success. Over the past ten years, synthetic biology has opened new avenues for research and development in areas such as biological control, biomaterials, sustainable energy production, bioremediation, and biomedical therapies. The latter in particular is of great interest to the implementation of long-duration human spaceflight capabilities. This article discusses the effects of spaceflight on humans, and reviews current capabilities and potential needs associated with the health of the astronauts where synthetic biology could play an important role in the pursuit of space exploration.

  20. Biologically controlled minerals as potential indicators of life

    Science.gov (United States)

    Schwartz, D. E.; Mancinelli, R. L.; Kaneshiro, E.

    1991-01-01

    Minerals can be produced and deposited either by abiotic or biologic means. Regardless of their origin, mineral crystals reflect the environment conditions (e.g., temperature, pressure, chemical composition, and redox potential) present during crystal formation. Biologically-produced mineral crystals are grown or reworked under the control of their host organism and reflect an environment different from the abiotic environment. In addition, minerals of either biologic or abiotic origin have great longevities. For these reasons, biologically produced minerals have been proposed as biomarkers. Biomarkers are key morphological, chemical, and isotopic signatures of living systems that can be used to determine if life processes have occurred. Studies of biologically controlled minerals produced by the protist, Paramecium tetraurelia, were initiated since techniques have already been developed to culture them and isolate their crystalline material, and methods are already in place to analyze this material. Two direct crystalline phases were identified. One phase, whose chemical composition is high in Mg, was identified as struvite. The second phase, whose chemical composition is high in Ca, has not been previously found occurring naturally and may be considered a newly discovered material. Analyses are underway to determine the characteristics of these minerals in order to compare them with characteristics of these minerals in order to compare them with characteristics of minerals formed abiotically, but with the same chemical composition.

  1. Exploring the antioxidant potential of lignin isolated from black liquor of oil palm waste.

    Science.gov (United States)

    Bhat, Rajeev; Khalil, H P S A; Karim, A A

    2009-09-01

    This study was conducted to evaluate the potential antioxidant activity of lignin obtained from black liquor, a hazardous waste product generated during the extraction of palm oil. Antioxidant potential of the extracted lignin was evaluated by dissolving the extracted samples in 2 different solvent systems, namely, 2-methoxy ethanol and DMSO. Results revealed high percent inhibition of the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical in the lignin sample dissolved in 2-methoxy ethanol over DMSO (concentration range of 1-100 microg/ml). Lignin extracted in 2-methoxy ethanol exhibited higher inhibition percentage (at 50 microg/ml, 84.2%), whereas a concentration of 100 microg/ml was found to be effective in the case of the DMSO solvent (69.8%). Fourier transform infrared (FTIR) spectrometry revealed that the functional groups from the extracted lignin and commercial lignin were highly similar, indicating the purity of the lignin extracted from black liquor. These results provide a strong basis for further applications of lignin in the food industry and also illustrate an eco-friendly approach to utilize oil palm black liquor.

  2. Antioxidant Potential of the Extracts, Fractions and Oils Derived from Oilseeds

    Directory of Open Access Journals (Sweden)

    Shagufta Ishtiaque

    2013-10-01

    Full Text Available The polyphenolic extracts and oils were obtained from ajwain, mustard, fenugreek and poppy seeds. The extracts were partitioned into acidic and neutral polyphenolic fractions and following estimation of total phenolics in the crude extract, acidic and neutral fractions and oil, all were analyzed for their DPPH (2,2-diphenyl-1-picrylhydrazyl scavenging potential, ferric reducing ability and chelating power. The highest amount of polyphenols was found in ajwain (8330 ± 107, then in mustard seeds (2844 ± 56.00 and in fenugreek (1130 ± 29.00, and least in poppy seeds (937 ± 18.52. The higher amounts of polyphenols were estimated in neutral fraction compared to acidic (p fenugreek and least by poppy seed extracts (p < 0.05. The reducing power and the chelating effect of the oilseeds followed the same order as DPPH, but higher % chelation was shown by neutral than acidic fraction (p < 0.05. Though low in polyphenols, the oil fractions were as strong antioxidants as the acidic one. Though oilseeds are used in very small quantity in food, they are potential sources of natural antioxidants and may replace synthetic ones.

  3. Genetic Transformation and Hairy Root Induction Enhance the Antioxidant Potential of Lactuca serriola L.

    Directory of Open Access Journals (Sweden)

    Mohamed A. El-Esawi

    2017-01-01

    Full Text Available Lactuca serriola L. is a herbaceous species, used for human nutrition and medicinal purposes. The high antioxidant capacity of L. serriola indicates the possibility of enhancing its edible and health potential by increasing the flavonoid and phenolic contents. The present study aimed at enhancing the production of phenolics and flavonoids by hairy root cultures in Lactuca serriola transformed with Agrobacterium rhizogenes strain AR15834 harbouring the rolB gene. The genetic transformation of rolB in transformed roots was validated, and rolB expression level was evaluated using real-time qPCR analysis. Expression levels of flavonoid biosynthesis genes (CHI, PAL, FLS, and CHS were assessed in the hairy and nontransformed roots. Results showed higher expression levels in the transgenic roots than in the nontransformed ones (p<0.01. Transgenic hairy roots exhibited a 54.8–96.7% increase in the total phenolic content, 38.1–76.2% increase in the total flavonoid content, and 56.7–96.7% increase in the total reducing power when compared with the nontransgenic roots (p<0.01. DPPH results also revealed that the transgenic hairy roots exhibited a 31.6–50% increase in antioxidant potential, when compared to normal roots. This study addressed the enhancement of secondary metabolite biosynthesis by hairy root induction in L. serriola.

  4. Protective potential of antioxidant enzymes as vaccines for schistosomiasis in a non-human primate model

    Directory of Open Access Journals (Sweden)

    Claudia eCarvalho-Queiroz

    2015-06-01

    Full Text Available Schistosomiasis remains a major cause of morbidity in the world. The challenge today is not so much in the clinical management of individual patients, but rather in population-based control of transmission in endemic areas. Recent large-scale efforts aimed at limiting schistosomiasis have produced limited success. There is an urgent need for complementary approaches, such as vaccines. We demonstrated previously that anti-oxidant enzymes such as Cu-Zn superoxide dismutase (SOD and glutathione S peroxidase (GPX, when administered as DNA-based vaccines induced significant levels of protection in inbred mice, greater than the target 40% reduction in worm burden compared to controls set as a minimum by the WHO. These results led us to investigate if immunization of non-human primates with antioxidants would stimulate an immune response that could confer protection, as a prelude for human trials. Issues of vaccine toxicity and safety that were difficult to address in mice were also investigated. All baboons in the study were examined clinically throughout the study and no adverse reactions occurred to the immunization. When our outbred baboons were vaccinated with two different formulations of SOD (SmCT-SOD and SmEC-SOD or one of GPX (SmGPX, they showed a reduction in worm number to varying degrees, when compared with the control group. More pronounced, vaccinated animals showed decreased bloody diarrhea, days of diarrhea and egg excretion (transmission, as well as reduction of eggs in the liver tissue and in the large intestine (pathology compared to controls. Specific IgG antibodies were present in sera after immunizations and 10 weeks after challenge infection compared to controls. PBMC, mesenteric and inguinal node cells from vaccinated animals proliferated and produced high levels of cytokines and chemokines in response to crude and recombinant antigens compared with controls. These data demonstrate the potential of antioxidants as vaccine

  5. Total phenolic compounds, antioxidant potential and α-glucosidase inhibition by Tunisian Euphorbia paralias L.

    Directory of Open Access Journals (Sweden)

    Malek Besbes Hlila

    2016-08-01

    Full Text Available Objective: To examine the potential antioxidant and anti-α-glucosidase inhibitory activities of Tunisian Euphorbia paralias L. leaves and stems extracts and their composition of total polyphenol and flavonoids. Methods: The different samples were tested for their antiradical activities by using 2, 2’- azinobis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS and 1,1-diphenyl-2-picrylhydrazyl (DPPH assays. In α-glucosidase activity, α-glucosidase (0.3 IU/mL and substrate, 2500 µmol/ L p-nitrophenyl α-D-glucopyranoside were used; absorbance was registered at 405 nm. Results: The leaves acetonic extract exhibited the strongest α-glucosidase inhibition [IC50 = (0.0035 ± 0.001 µg/mL], which was 20-fold more active than the standard product (acarbose [IC50 = (0.07 ± 0.01 µg/mL]. Acetonic extract of the leaves exhibited the highest quantity of total phenolic [(95.54 ± 0.04 µg gallic acid equivalent/mg] and flavonoid [(55.16 ± 0.25 µg quercetin equivalent/mg]. The obtained findings presented also that this extract was detected with best antioxidant capacity [IC50 = (0.015 ± 0.01 µg/mL] against DPPH and a value of IC50 equal to (0.02 ± 0.01 µg/mL against ABTS. Positive relationship between polyphenolic content of the tested Euphorbia paralias L. leaves and stems extracts and its antioxidant activity (DPPH and ABTS was detected. Elevated positive linear correlation was got between ABTS and total phenolic (R2 = 0.751. Conclusions: The findings clearly demonstrate that the use of a polar solvent enables extraction of significant quantities of phenol compounds and flavonoids.

  6. APOPTOTIC, HEPATOPROTECTIVE AND ANTIOXIDANT POTENTIAL OF A TRIHERBAL FORMULATION AGAINST D-GALACTOSAMINE HEPATOTOXICITY

    Directory of Open Access Journals (Sweden)

    Onyekachi Ogbonnaya IROANYA

    2016-12-01

    Full Text Available A triherbal formulation prepared from hydroethanolic mixture of Gongronema latifolia, Ocimum gratissimum and Vernonia amygdalina leaves (GOV was evaluated to ascertain its heamatologic, hepatoprotective potentials, antioxidant properties and the fold increase in caspase 2, 3 and 9 activities against D-galactosamine-induced toxicity using Wistar albino rats. Forty-nine Wistar albino rats were divided equally into seven groups. Two control experiments which included normal rats treated with D-galactosamine and normal rats that received only distilled water. Three groups were treated with different doses of GOV extract (2, 4 and 8 g kg-1 b. wt while two groups received standard hepatoprotective drugs (Liv 52 and Silymarin for 13 days prior to intoxication with D-galactosamine. The activities of serum liver enzymes, concentrations of some biochemical analytes, effect on heamatologic parameters, antioxidant status and fold increase in caspase 2, 3 and 9 activities were monitored. HPTLC of GOV showed the presence of ascorbic acid, rutin, eugenol and β-sitosterol. Administration of GOV significantly (p<0.05 increased the Packed Cell Volume, Red Cell Count, Haemoglobin, White Blood Cell, platelet count, Mean Cell Haemoglobin, granulocytes and lymphocytes while the Mean Cell Volume and monocytes were significantly (p<0.05 depreciated dose dependently compared to the toxin control group. GOV dose dependently exhibited significant (p<0.05 decrease in levels of Alkaline phosphatase, Alanine aminotransferase, aspartate aminotransferase, L-γ-glutamyltransferase, Lactate dehydrogenase, cholesterol, creatinine, triglycerides, urea and Malondialdehyde. Subsequently, it significantly (p<0.05 increased the albumin, total protein, catalase, Glutathione Peroxidase, Reduced Glutathione, Glutathione-S-Transferase and Superoxide Dismutase levels. GOV significantly (p≤0.05 attenuated the fold increase in caspase 2, 3 and 9 activities compared to the toxin control

  7. Elucidating the Potential Biological Impact of Cellulose Nanocrystals

    Directory of Open Access Journals (Sweden)

    Sandra Camarero-Espinosa

    2016-07-01

    Full Text Available Cellulose nanocrystals exhibit an interesting combination of mechanical properties and physical characteristics, which make them potentially useful for a wide range of consumer applications. However, as the usage of these bio-based nanofibers increases, a greater understanding of human exposure addressing their potential health issues should be gained. The aim of this perspective is to highlight how knowledge obtained from studying the biological impact of other nanomaterials can provide a basis for future research strategies to deduce the possible human health risks posed by cellulose nanocrystals.

  8. Structure-Based Design, Synthesis, Biological Evaluation, and Molecular Docking of Novel PDE10 Inhibitors with Antioxidant Activities

    Science.gov (United States)

    Li, Jinxuan; Chen, Jing-Yi; Deng, Ya-Lin; Zhou, Qian; Wu, Yinuo; Wu, Deyan; Luo, Hai-Bin

    2018-05-01

    Phosphodiesterase 10 is a promising target for the treatment of a series of central nervous system (CNS) diseases. Imbalance between oxidative stress and antioxidant defense systems as a universal condition in neurodegenerative disorders is widely studied as a potential therapy for CNS diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). To discover multifunctional pharmaceuticals as a treatment for neurodegenerative diseases, a series of quinazoline-based derivatives with PDE10 inhibitory activities and antioxidant activities were designed and synthesized. Nine out of thirteen designed compounds showed good PDE10 inhibition at the concentration of 1.0 μM. Among these compounds, eight exhibited moderate to excellent antioxidant activity with ORAC (oxygen radical absorbance capacity) value above 1.0. Molecular docking was performed for better understanding of the binding patterns of these compounds with PDE10. Compound 11e, which showed remarkable inhibitory activity against PDE10 and antioxidant activity may serve as a lead for the further modification.

  9. Antioxidant activity of mulberry stem extract: A potential used as supplement for oxidative stress-related diseases

    Directory of Open Access Journals (Sweden)

    Phi Phuong Pham

    2017-06-01

    Full Text Available Overproduction of reactive oxygen species is involved in many diseases, including cardiovascular, neurodegenerative diseases, diabetes, cancer, viral and bacterial infections as well as osteoarthritis. Although antioxidant activity of Morus alba L. has been investigated in various parts of this plant, a little attention has been paid to the stems of this plant. Therefore, the present study was designed to systematically investigate the antioxidant activity of M. alba stem extract using various in vitro antioxidant assay systems. The present data showed that the stem extract of M. alba exhibited a hydrogen-donating ability, an ability to quench hydroxyl radicals, having superoxide and nitric oxide scavenging activity as well as iron reducing capacity. This study highlights the potential of this plant for further development as a natural source of antioxidant or as an alternative treatment for oxidative stress-related diseases.

  10. Copper-zinc-superoxide dismutase (CuZnSOD), an antioxidant gene from seahorse (Hippocampus abdominalis); molecular cloning, sequence characterization, antioxidant activity and potential peroxidation function of its recombinant protein.

    Science.gov (United States)

    Perera, N C N; Godahewa, G I; Lee, Jehee

    2016-10-01

    Copper-zinc-superoxide dismutase (CuZnSOD) from Hippocampus abdominalis (HaCuZnSOD) is a metalloenzyme which belongs to the ubiquitous family of SODs. Here, we determined the characteristic structural features of HaCuZnSOD, analyzed its evolutionary relationships, and identified its potential immune responses and biological functions in relation to antioxidant defense mechanisms in the seahorse. The gene had a 5' untranslated region (UTR) of 67 bp, a coding sequence of 465 bp and a 3' UTR of 313 bp. The putative peptide consists of 154 amino acids. HaCuZnSOD had a predicted molecular mass of 15.94 kDa and a theoretical pI value of 5.73, which is favorable for copper binding activity. In silico analysis revealed that HaCuZnSOD had a prominent Cu-Zn_superoxide_dismutase domain, two Cu/Zn signature sequences, a putative N-glycosylation site, and several active sites including Cu(2+) and Zn(2+) binding sites. The three dimensional structure indicated a β-sheet barrel with 8 β-sheets and two short α-helical regions. Multiple alignment analyses revealed many conserved regions and active sites among its orthologs. The highest amino acid identity to HaCuZnSOD was found in Siniperca chuatsi (87.4%), while Maylandia zebra shared a close relationship in the phylogenetic analysis. Functional assays were performed to assess the antioxidant, biophysical and biochemical properties of overexpressed recombinant (r) HaCuZnSOD. A xanthine/XOD assay gave optimum results at pH 9 and 25 °C indicating these may be the best conditions for its antioxidant action in the seahorse. An MTT assay and flow cytometry confirmed that rHaCuZnSOD showed peroxidase activity in the presence of HCO3(-). In all the functional assays, the level of antioxidant activity of rHaCuZnSOD was concentration dependent; metal ion supplementation also increased its activity. The highest mRNA expressional level of HaCuZnSOD was found in blood. Temporal assessment under pathological stress showed a delay

  11. Indole-3-acetic acid/diol based pH-sensitive biological macromolecule for antibacterial, antifungal and antioxidant applications.

    Science.gov (United States)

    G, Chitra; D S, Franklin; S, Sudarsan; M, Sakthivel; S, Guhanathan

    2017-02-01

    Indole-3-acetic acid (IAA)/diol based pH-sensitive biopolymeric hydrogels with tunable biological properties (cytotoxicity, anti-oxidant and anti-fungal) have been synthesized via condensation polymerization. The present study focused on the synthesis of heterocyclic hydrogel using citric acid (CA), indole-3-acetic acid (IAA) and diethylene glycol (DEG) by condensation polymerization. The hydrogels revealed a pH-sensitive swelling behaviour, with increased swelling in acidic media, then turns to decreased the swelling in the basic media. The hydrogel samples were tested for antifungal activity against Aspergillus fumigates, Rhizopusoryzae and Candida albicans at different concentrations using ketoconazole as positive control and DMSO as negative control for antifungal activity. Antioxidant activity increasing nature in DPPH than NO radical compared with rutin and confirmed non toxic property using cytotoxicity analysis. The biopolymeric hydrogels were characterized by Fourier transform infrared (FT-IR) spectroscopy, 1 H NMR, 13 C NMR, TGA, DSC followed by scanning electron microscopy (SEM). Such hydrogels with antioxidant properties is recommended for medical applications such as bandages, catheters, drains and tubes to prevent infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Biocompatible Polyelectrolyte Complex Nanoparticles from Lactoferrin and Pectin as Potential Vehicles for Antioxidative Curcumin.

    Science.gov (United States)

    Yan, Jing-Kun; Qiu, Wen-Yi; Wang, Yao-Yao; Wu, Jian-Yong

    2017-07-19

    Polyelectrolyte complex nanoparticles (PEC NPs) were fabricated via electrostatic interactions between positively charged heat-denatured lactoferrin (LF) particles and negatively charged pectin. The obtained PEC NPs were then utilized as curcumin carriers. PEC NPs were prepared by mixing 1.0 mg/mL solutions of heat-denatured LF and pectin at a mass ratio of 1:1 (w/w) in the absence of NaCl at pH 4.50. PEC NPs that were prepared under optimized conditions were spherical in shape with a particle size of ∼208 nm and zeta potential of ∼-32 mV. Hydrophobic curcumin was successfully encapsulated into LF/pectin PEC NPs with high encapsulation efficiency (∼85.3%) and loading content (∼13.4%). The in vitro controlled release and prominent antioxidant activities of curcumin from LF/pectin PEC NPs were observed. The present work provides a facile and fast method to synthesize nanoscale food-grade delivery systems for the improved water solubility, controlled release, and antioxidant activity of hydrophobic curcumin.

  13. Antioxidant Potential of ulva rigida c. Agardh Extract: Protection from Oxidative Stress Hypothyroidism

    Directory of Open Access Journals (Sweden)

    S. TAŞ

    2014-06-01

    Full Text Available The purpose of this study was to evaluate the effects of Ulva rigida C. Agardh, one of the green algae, on and antioxidative system in the propylthiouracil (PTU-induced hypothyroid rats. Thirty-two rats randomly divided into four groups: control (C, control+U. rigida extract (C+UR, hypothyroid (H and hypothyroid+U. rigida extract (H+UR. U. rigida (2% was administered in drinking water for 5 weeks after the induction of hypothyroidism. Hypothyroid rats were under oxidative stress as reflected by icreased plasma and tissue malondialdehyde (MDA levels. U. rigida reduced serum total cholesterol and,- triglyceride levels and plasma and heart skeletal muscle, liver and,- kidney tissue MDA levels in the H+UR group. Serum total cholesterol and tissues MDA levels were reduced in the C+UR group. Whole blood glutathione peroxidase and erythrocyte superoxide dismutase activities were increased in the H+UR and C+UR groups compared with those of te respective control groups. Paraoxonase and arylesterase activities were lower in the H group and U. rigida increased paraoxonase and arylesterase activities in C+UR and H+UR groups. We conclude that hypothyroidism is associated with oxidative stress and, U. rigida extract might have a potential use as a protective antioxidant agent in hypothroidism.

  14. IN VITRO AND IN VIVO EVALUATION OF ANTIMICROBIAL AND ANTIOXIDANT POTENTIAL OF STEVIA EXTRACT.

    Science.gov (United States)

    Moselhy, Said S.; Ghoneim, Magdy A.; Khan, Jehan A.

    2016-01-01

    Background: The current trend globally is the utilization of natural products as therapeutic agents given its minimum side effects. The leaves of Stevia contain several active ingredient compounds such as rebaudioside. Stevia extract have been used for many purposes. Active oxygen radicals can induce base modifications, DNA breakage, and intracellular protein crosslink’s. This study was done to evaluate the potential of stevia extract as antibacterial and antioxidants actions. Materials and methods: Antibacterial activity of different extracts of stevia was tested in vitro against different species of bacteria and hepato-protective efficacy was testes in rats injected with CCl4 as hepatotoxic. Results: Acetone extract exhibited antibacterial activity against selected five bacteria species. The acetone extract suppressed the elevation of serum ALT (p flavonoids were 40 mg and 80 mg quercetin/g respectively. The GC-MS analysis showed that monoterpene and indole are the main components. Aqueous extract don’t show any antibacterial activity against the tested strains. The antioxidant properties were attributable to its phenolic content to scavenge free radicals. Conclusion: Acetone extract possess a potent antimicrobial and activity against deleterious effect of CCl4-caused liver damage. PMID:28480355

  15. Maize kernel antioxidants and their potential involvement in Fusarium ear rot resistance.

    Science.gov (United States)

    Picot, Adeline; Atanasova-Pénichon, Vessela; Pons, Sebastien; Marchegay, Gisèle; Barreau, Christian; Pinson-Gadais, Laëtitia; Roucolle, Joël; Daveau, Florie; Caron, Daniel; Richard-Forget, Florence

    2013-04-10

    The potential involvement of antioxidants (α-tocopherol, lutein, zeaxanthin, β-carotene, and ferulic acid) in the resistance of maize varieties to Fusarium ear rot was the focus of this study. These antioxidants were present in all maize kernel stages, indicating that the fumonisin-producing fungi (mainly Fusarium verticillioides and Fusarium proliferatum ) are likely to face them during ear colonization. The effect of these compounds on fumonisin biosynthesis was studied in F. verticillioides liquid cultures. In carotenoid-treated cultures, no inhibitory effect of fumonisin accumulation was observed while a potent inhibitory activity was obtained for sublethal doses of α-tocopherol (0.1 mM) and ferulic acid (1 mM). Using a set of genotypes with moderate to high susceptibility to Fusarium ear rot, ferulic acid was significantly lower in immature kernels of the very susceptible group. Such a relation was nonexistent for tocopherols and carotenoids. Also, ferulic acid in immature kernels ranged from 3 to 8.5 mg/g, i.e., at levels consistent with the in vitro inhibitory concentration. Overall, our data support the fact that ferulic acid may contribute to resistance to Fusarium ear rot and/or fumonisin accumulation.

  16. Phytochemical Screening, Alpha-Glucosidase Inhibition, Antibacterial and Antioxidant Potential of Ajuga bracteosa Extracts.

    Science.gov (United States)

    Hafeez, Kokab; Andleeb, Saiqa; Ghousa, Tahseen; Mustafa, Rozina G; Naseer, Anum; Shafique, Irsa; Akhter, Kalsoom

    2017-01-01

    Ajuga bracteosa, a medicinal herb, is used by local community to cure a number of diseases such as inflammation, jaundice bronchial asthma, cancer and diabetes. The aim of present work was to evaluate the antioxidant potential, in vitro antidiabetic and antimicrobial effects of A. bracteosa. n-hexane, ethyl acetate, chloroform, acetone, methanol and aqueous extracts of Ajuga bracteosa roots, were prepared via maceration. Antibacterial activity was carried out by agar well diffusion method. Quantitative and qualitative phytochemical screening was done. The antioxidant activity was determined by iron (II) chelating activity, iron reducing power, DPPH, and ABTS free radical scavenging methods, Antidiabetic activity was evaluated through inhibition of α-glucosidase assay. Phytochemical analysis showed the presence of phenols, flavonoids, tannins, saponins, quinines, terpenoids, xanthoproteins, glycosides, carbohydrates, steroids, phytosterols and amino acids. DPPH and ABTS potential values were recorded as 61.92% to 88.84% and 0.11% to 38.82%, respectively. Total phenolic and total flavonoid contents were expressed as gallic acid and rutin equivalents. Total iron content was expressed as FeSO4 equivalents. Chloroform and n-hexane extracts showed significant enzyme inhibition potential with IC50 values of 29.92 μg/ml and 131.7 μg/ml respectively. Aqueous extract showed maximum inhibition of E. coli, S. typhimurium, E. amnigenus, S. pyogenes, and S. aureus, (18.0±1.0 mm, 12.5±0.7 mm, 17.0±0.0 mm, 11.0±0.0 mm and 15.3±2.0 mm mm), respectively. Similarly, n-hexane extract showed maximum inhibition of E. coli, E. amnigenus, S. aureus (11.6±1.5 mm; 11.3±1.5 mm; 13.3±0.5 mm). This study also shows that n-hexane, chloroform, ethyl acetate and aqueous extracts of A. bracteosa root possess α-glucosidase inhibitory activities and therefore it may be used as hypoglycemic agents in the management of postprandial hyperglycemia. Ajuga bracteosa root extracts may provide a

  17. Antitumoral, antioxidant, and antimelanogenesis potencies of Hawthorn, a potential natural agent in the treatment of melanoma.

    Science.gov (United States)

    Mustapha, Nadia; Mokdad-Bzéouich, Imèn; Maatouk, Mouna; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2016-06-01

    The lack of an efficient agent that does not have the disadvantage of low activity (kojic acid), high cytotoxicity, and mutagenicity (hydroquinone), poor skin penetration (arbutin), or low stability in formulation (glabridin) led us to continue our research on new antipigmentation/skin-lightening agents. Therefore, research of natural products that can modulate the metabolism of pigmentation is of great interest. Otherwise, malignant melanoma is one of the most aggressive forms of skin cancer, with high metastatic potential, and currently, there is no effective chemotherapy against invasive melanoma. Therefore, it is necessary to develop new drugs with potent activity and weak side effects against melanoma. The in-vitro anticancer effect of hawthorn was analyzed against B16F10 melanoma cells using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The effect of isolated compounds from hawthorn on melanogenesis in B16F10 melanoma cells was investigated by measuring the amounts of melanin and tyrosinase spectrophotometrically at 475 nm. Balb/c mice models inoculated with B16F10 mouse tumor cells were used to evaluate the in-vivo antitumoral potential of hawthorn by assessing its effect on the growth of transplanted tumors. The antioxidant potential of tested samples was evaluated in B16F10 and primary human keratinocyte cells using a cellular antioxidant activity assay. Hawthorn tested samples inhibited effectively the growth of melanoma cells in vitro. Furthermore, it appears that tested samples from hawthorn reduced melanogenesis by inhibiting the tyrosinase activity of B16F10 cells in a dose-dependent manner. In-vivo studies showed that hawthorn total oligomer flavonoids extract treatment at a dose of 150 mg/kg body weight for 21 days in implanted tumor mice resulted in significant inhibition of the tumor growth volume and weight. In addition, tested samples showed significant cellular antioxidant capacity against the reactive oxygen species

  18. Biological activity of clovers - free radical scavenging ability and antioxidant action of six Trifolium species.

    Science.gov (United States)

    Kolodziejczyk-Czepas, Joanna; Nowak, Pawel; Kowalska, Iwona; Stochmal, Anna

    2014-10-01

    Clovers were chosen on the basis of traditional medicine recommendations, agricultural value, or available information on their promising chemical profiles. This study evaluates and compares free radical scavenging and antioxidant properties of six clover species: Trifolium alexandrinum L. (Leguminosae), Trifolium fragiferum L., Trifolium hybridum L., Trifolium incarnatum L., Trifolium resupinatum var. majus Boiss., and Trifolium resupinatum var. resupinatum L. Free radical scavenging activity of the extracts (1.5-50 µg/ml) was estimated by reduction of 1,1-diphenyl-2-picrylhydrazyl (DPPH(•)) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic) acid (ABTS(•)) radicals. The Trifolium extract effects on total antioxidant capacity of blood plasma were determined by the reduction of ABTS(•+) and DPPH(•) radicals, as well as with the use of the ferric reducing ability of plasma (FRAP) assay. The UPLC analysis of chemical profiles of the examined extracts showed the presence of three or four groups of phenolic substances, including phenolic acids, clovamides, isoflavones, and other flavonoids. The measurements of free radical scavenging and ferric reducing ability of the examined clover extracts revealed the strongest effect for T. alexandrinum. Furthermore, antioxidant activity assays in human plasma have shown protective effects of all extracts against peroxynitrite-induced reduction of total antioxidant capacity. Trifolium plants may be a rich source of bioactive substances with antioxidant properties. The examined extracts displayed free radical scavenging action and partly protected blood plasma against peroxynitrite-induced oxidative stress; however, the beneficial effects of T. alexandrinum and T. incarnatum seem to be slightly higher.

  19. Synthesis and Biological Evaluation of Benzochromenopyrimidinones as Cholinesterase Inhibitors and Potent Antioxidant, Non-Hepatotoxic Agents for Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Youssef Dgachi

    2016-05-01

    Full Text Available We report herein the straightforward two-step synthesis and biological assessment of novel racemic benzochromenopyrimidinones as non-hepatotoxic, acetylcholinesterase inhibitors with antioxidative properties. Among them, compound 3Bb displayed a mixed-type inhibition of human acetylcholinesterase (IC50 = 1.28 ± 0.03 μM, good antioxidant activity, and also proved to be non-hepatotoxic on human HepG2 cell line.

  20. Potential of the Dietary Antioxidants Resveratrol and Curcumin in Prevention and Treatment of Hematologic Malignancies

    Directory of Open Access Journals (Sweden)

    Marc Diederich

    2010-10-01

    Full Text Available Despite considerable improvements in the tolerance and efficacy of novel chemotherapeutic agents, the mortality of hematological malignancies is still high due to therapy relapse, which is associated with bad prognosis. Dietary polyphenolic compounds are of growing interest as an alternative approach, especially in cancer treatment, as they have been proven to be safe and display strong antioxidant properties. Here, we provide evidence that both resveratrol and curcumin possess huge potential for application as both chemopreventive agents and anticancer drugs and might represent promising candidates for future treatment of leukemia. Both polyphenols are currently being tested in clinical trials. We describe the underlying mechanisms, but also focus on possible limitations and how they might be overcome in future clinical use – either by chemically synthesized derivatives or special formulations that improve bioavailability and pharmacokinetics.

  1. Phenolic content, antioxidant potential and Aedes aegyptii ecological friend larvicidal activity of some selected Egyptian plants.

    Science.gov (United States)

    El-Hela, Atef A; Abdel-Hady, Nevein M; Dawoud, Gouda T M; Hamed, Abdo M; Morsy, Tosson A

    2013-04-01

    Polyphenols constitute a distinct group of natural compounds of medicinal importance exhibiting wide range of physiological activities as antioxidant, immunestimulant, antitumor and antiparasitic. Yellow fever and dengue fever are mosquito-borne infectious diseases transmitted by Aedes aegyptii, the presence of yellow fever in Sudan and dengue fever in Saudi Arabia are threats to Egypt with the reemerging of Ae. aegyptii in Southern Egypt, larvae control is feasible than flying adults. This work was conducted targeting estimation of the relative levels of total phenolic content, antioxidant potential and larvicidal activity of 110 selected Egyptian plants. The highest total phenolic contents were estimated in aqueous extracts of Coronilla scorpioides L., Forsskaolea tenacissima L., Crataegus sinaica Boiss., Pistacia khinjuk Boiss. and Loranthus acacia Benth.; they were 916.70 +/- 4.80, 813.70 +/- 4.16, 744.90 +/- 4.93, 549.00 +/- 3.93& 460.80 +/- 4.02 mg% while those of methanol extracts were estimated in Coronilla scorpioides, Forsskaolea tenacissima, Crataegus sinaica, Loranthus acacia and Pistacia khinjuk, they were 915.60-4.86, 664.60 +/- 4.16, 659.30 +/- 4.80, 590.80 +/- 4.49 & 588.00 +/- 3.85 mg% respectively. Investigation of the antioxidant potentials revealed that the most potent plants were Co-ronilla scorpioides, Forsskaolea tenacissima, Crataegus sinaica, Pistacia khinjuk and Loranthus acacia with calculated values of 454.80 +/- 4.83, 418.4 +/- 4.16, 399.10 +/- 4.90, 342.5 +/- 2.72 & 239.7 +/- 2.91% for aqueous extracts and 452.9 +/- 4.94, 389.6 +/- 4.6, 378.48 +/- 3.84, 352.3 +/- 3.06 & 346.5 +/- 2.98% for methanol extracts respectively while screening of larvicidal activity proved that Coronilla scorpioides, Forsskaolea tenacissima, Crataegus sinaica, Pistacia khinjuk and Loranthus acacia exhibited highest potency calculated as 22.53 +/- 2.01, 23.85 +/- 2.07, 28.17 +/- 2.06, 31.60 +/- 2.93 & 39.73 +/- 4.58 mg% aqueous extracts and 18.53 +/- 1.95, 18

  2. Antioxidant Potential of Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Higher Basidiomycetes) Cultivated on Artocarpus heterophyllus Sawdust Substrate in India.

    Science.gov (United States)

    Rani, P; Lal, Merlin Rajesh; Maheshwari, Uma; Krishnan, Sreeram

    2015-01-01

    The artificial cultivation of Ganoderma lucidum (MTCC1039) using Artocarpus heterophyllus as sawdust substrate was optimized and free radical scavenging activities of the generated fruiting bodies were investigated. The choice of A. heterophyllus as substrate was due to its easy availability in South India. Sawdust supplemented with dextrose medium yielded better spawn hyphae and early fruiting body initiation (15 days). The biological yield obtained was 42.06 ± 2.14 g/packet and the biological efficiency was 8.41 ± 0.48%. Both aqueous and methanolic extracts of fruiting body were analyzed for radical scavenging activity. Methanolic extract showed maximum scavenging activity for 1,1-diphenyl-2-picrylhydrazyl (IC50 = 290 μg/ml) and 2,2'-azino-bis(3-ethylbenzothiazoline- 6-sulphonic acid (IC50 = 580 μg/ml), whereas aqueous extract had better scavenging for ferric reducing antioxidant power (IC50 = 5 μg/ml). Total phenolic content and total antioxidant capacity were significantly higher in methanolic extract (p < 0.01). A positive correlation existed between the phenolic content and antioxidant activity. Our results indicated that fruiting bodies of G. lucidum cultivated in sawdust medium possess antioxidant property, which can be exploited for therapeutic application.

  3. Evaluation of in vitro antioxidant potential of different polarities stem crude extracts by different extraction methods of Adenium obesum

    Directory of Open Access Journals (Sweden)

    Mohammad Amzad Hossain

    2014-09-01

    Full Text Available Objective: To select best extraction method for the isolated antioxidant compounds from the stems of Adenium obesum. Methods: Two methods used for the extraction are Soxhlet and maceration methods. Methanol solvent was used for both extraction method. The methanol crude extract was defatted with water and extracted successively with hexane, chloroform, ethyl acetate and butanol solvents. The antioxidant potential for all crude extracts were determined by using 1, 1-diphenyl-2- picrylhydrazyl method. Results: The percentage of extraction yield by Soxhlet method is higher compared to maceration method. The antioxidant potential for methanol and its derived fractions by Soxhlet extractor method was highest in ethyl acetate and lowest in hexane crude extracts and found in the order of ethyl acetate>butanol>water>chloroform>methanol>hexane. However, the antioxidant potential for methanol and its derived fractions by maceration method was highest in butanol and lowest in hexane followed in the order of butanol>methanol>chloroform>water>ethyl acetate>hexane. Conclusions: The results showed that isolate antioxidant compounds effected on the extraction method and condition of extraction.

  4. The effect of biologically active feed additives of humilid substances on the antioxidant system in liver mitochondria of gerbils

    Directory of Open Access Journals (Sweden)

    O. O. Dyomshina

    2017-04-01

    Full Text Available Mitochondria are organelles that are most sensitive to the action of stressors on any cell of the entire organism and exposure to chemicals which can cause its dysfunction and cell death in general. Especially sensitive to adverse conditions are liver mitochondria, where the processes of biotransformation of endogenous and exogenous metabolites are formed, not only in the liver, but also in other organs and tissues. Mitochondrial dysfunction can cause instant hepatic cytolysis and steatosis. Therefore, early detection of mitochondrial toxicity is important during preclinical studies of new pharmacological agents, as this will help avoid remote negative effects. The biologically active feed additive Humilid, a complex of humic acids known for their antidiarrheal, analgesic, immune-stimulating, and antimicrobial properties; shows a corrective effect on the activity of the lysosomal cathepsin; enhances the positive effect of hematopoiesis on hemoglobin and its quality indicators consisting of red blood cells; and activates the synthesis and accumulation of fibronectin expression that takes part in the formation of immunological protection of animals. The objective of our experiment was to determine the effect of complex biologically active feed additives based on humic substances on the biochemical indicators of the liver mitochondrial antioxidant system of Mongolian gerbils (Meriones unguiculatus Milne-Edwards, 1867. The experiment was conducted on mature (6 months Mongolian gerbils. The data obtained showing the influence of the biologically active feed additives Humilid, alone or in combination with ascorbate and Eco-impulse Animal, on the antioxidant defense system of liver mitochondria of gerbils are presented in this article. The proven antioxidant effect of humic substances in the mitochondrial fraction of the liver which inhibits the accumulation of oxidized products in the cells is shown, confirmed by the decrease in the number of TBA

  5. Investigation of phytochemical contents, in vitro antioxidant and antibacterial behavior and in vivo anti-inflammatory potential of Ecballium elaterium methanol fruits extract

    Directory of Open Access Journals (Sweden)

    Samir FELHI

    Full Text Available Abstract Ecballium elaterium species are mostly used as therapeutic agents and food ingredient. The current work was designed to investigate phytochemical contents, antioxidant, antibacterial, and anti-inflammatory properties of methanol fruits extract of Ecballium elaterium. Good antioxidant activity was observed with IC50 values of 156 ± 4 and 377 ± 6 μg/mL for DPPH and ABTS, respectively, and EC50 of 126 ± 4 µg/mL for FRAP assays, which is related with their richness in total phenolic, flavonoid and condensed tannins contents. The results of antibacterial activity showed the effectiveness of methanol extract against Bacillus cereus with value of inhibition zone diameter of 15 ± 0 mm and a MIC and MBC values of 6 ± 0 and 12 ± 0 mg/mL, respectively. The in vivo anti-inflammatory effects have been also studied by carrageenan induced rat paw edema assay and the results revealed that a dose of 75 mg/kg induced a significant inhibition of 66.4% at 2 h. FT-IR spectral data justified the presence of biological functional groups such as ─OH, C─H, C─O, C─C and C=O. These results highlighted the potential using of Ecballium elaterium fruits extract as natural antimicrobial, antioxidant and anti-inflammatory agents for food applications and for the pharmaceutical industry.

  6. Potencial antioxidativo da lágrima de adultos jovens Tear antioxidant potential in young adults

    Directory of Open Access Journals (Sweden)

    Patrícia Ioschpe Gus

    2006-08-01

    smoking, alcohol ingestion, fruit, vegetable, cereal, and vitamin intake and/or intake of other drugs, and physical exercise habits. Chemoluminescensce of luminol was used to analyze the total reactive antioxidant potential (TRAP, inhibition of piragollol was used to measure superoxide dismutase (SOD and absorbance of H2O2 at 240 nm was used to identify catalase. RESULTS: Mean ± SD value for total reactive antioxidant potential was 33.8±11.5 µM and for superoxide dismutase 10.8±1.9 U/mL. Catalase was not identified. Regular exercise was associated with increased total reactive antioxidant potential values (p=0.021, with a difference of 18.6 µM between individuals who exercise at least once a week and sedentary individuals. Male gender and total reactive antioxidant potential values were statistically associated (p=0.013, with a difference of 16.3 µM between genders. There was an association between smoking and increased superoxide dismutase values (p=0.041, with a difference of 3.3 U/mL between smokers of more than five cigarettes/day and non-smokers. Also, vitamin C intake and superoxide dismutase values were associated (p=0.018; the difference for vitamin C takers was 3.3 U/mL. CONCLUSION: Reflex tearing antioxidants were measurable in healthy young adults, and different variables apparently influenced their values.

  7. Phenolic extracts of coconut oil cake: a potential alternative for synthetic antioxidants

    Directory of Open Access Journals (Sweden)

    Kapila Nalawatta SENEVIRATNE

    2016-01-01

    Full Text Available Abstract Limitations of natural antioxidants include relatively low antioxidant activity, narrow range of food systems where the antioxidants are effective and limited thermal stability compared to synthetic antioxidants. In the present study, the phenolic extract of coconut oil cake (COCE was tested for antioxidant activity-related food stabilization. Heat stabilities of COCE and synthetic antioxidants were determined by measuring the indubbction time of sunflower oil enriched with heat-treated antioxidants. In the β-carotene-linoleate emulsion used for testing antioxidant activity, COCE can retain 96 ± 2% of initial colour intensity while BHT can retain 89 ± 2% of initial colour intensity at 60 µg mL–1 concentration after two hours. TBARS contents (MDA equivalents / kg of meat in COCE-treated and control pork samples after 14 days was 2.80 ± 0.57 and 22.55 ± 2.30 respectively. Heat stability varies in the order butylated hydroxytoluene (BHT < (butylated hydroxyanisole (BHA < COCE < tertiary butylhydroxyquinone (TBHQ. The results of these experiments suggest that COCE is a versatile and thermally stable natural antioxidant mixture effective in stabilizing many food systems.

  8. Phytochemical constituents, antioxidant activity and toxicity potential of the essential oil from Ferula gummosa Boiss. roots

    Directory of Open Access Journals (Sweden)

    T. Saadattalab

    2017-11-01

    Full Text Available Background and objectives: Ferula gummosa Boiss. (Umbelliferae is a popular medicinal plant, which is known mostly for therapeutic uses of its oleo-gum-resin (Barijeh in Persian. In the present study, the essential oil of F. gummosa roots was investigated for its phytochemical constituents, antioxidant activity and toxicity potential. Methods: Phytochemical constituents of the essential oil (extracted by hydrodistillation method were analyzed using GC-MS. Antioxidant and toxicity properties of the oil were also evaluated in DPPH free radical-scavenging assay and brine shrimp lethality test, respectively. Results: Forty-two compounds, representing 87.7% of total oil, were identified by GC-MS analysis of the plant roots oil. The essential oil was characterized by a high concentration of monoterpene hydrocarbons (55.9%, mainly β-pinene (33.2%, β-phellandrene (8.0% and α-pinene (6.9%. In DPPH free radical-scavenging assay, the oil sample did not demonstrate any activity at the highest tested concentration (1.0 mg/mL. However, it was found very toxic in brine shrimp lethality test with LD50 value of 2.4 µg/mL. Conclusion: The results of this study introduced the F. gummosa roots oil as a source of monoterpene hydrocarbons, especially β-pinene. Considering the high yield of essential oil extraction (12.1% v/w, these compounds may be involved in anticonvulsant, antinociceptive and anti-inflammatory properties of F. gummosa root. Moreover, considerable toxicity of the root oil highlights it as an appropriate candidate for further mechanistic toxicological studies.

  9. Protective activities of Vaccinium antioxidants with potential relevance to mitochondrial dysfunction and neurotoxicity.

    Science.gov (United States)

    Yao, Yu; Vieira, Amandio

    2007-01-01

    Both the neurotransmitter dopamine (DA) and a neurotoxic metabolite, 6-hydroxy DA, can be oxidized to generate hydrogen peroxide and other reactive species (ROS). ROS promote oxidative stress and have been implicated in dopaminergic neurodegeneration, e.g., Parkinson's disease (PD). There is also evidence for a relation between catecholamine-mediated oxidative damage in dopaminergic neurons and the effects of these neurotransmitters on the redox state of cytochrome c (Cytc). In neurons and other cells, oxidative stress may be enhanced by abnormal release of Cytc and other mitochondrial proteins into the cytoplasm. Cytc release can result in apoptosis; but sub-apoptogenic-threshold release can also occur, and may be highly damaging in the presence of DA metabolites. Loss of mitochondrial membrane integrity, a pathological situation of relevance to several aging-related neurodegenerative disorders including PD, contributes to release of Cytc; and the level of such release is known to be indicative of the extent of mitochondrial dysfunction. In this context, we have used a Cytc-enhanced 6-hydroxy DA oxidation reaction to gauge dietary antioxidant activities. Anthocyanin-rich preparations of Vaccinium species (Vaccinium myrtillus, Vaccinium corymbosum, and Vaccinium oxycoccus) as well as a purified glycosylated anthocyanidin were compared. The most potent inhibition of oxidation was observed with V. myrtillus preparation: 50% inhibition with 7 microM of total anthocyanins. This activity was 1.5-4 times higher than that for the other preparations or for the purified anthocyanin. Ascorbate (Vitamin C), at up to 4-fold higher concentrations, did not result in significant inhibition in this assay. Antioxidant activity in the assay correlated strongly (r2>0.91, PVaccinium content of anthocyanins and total cyanidins, but not quercetin or myricetin. The results provide evidence for the high potency of anthocyanins towards a potentially neurotoxic reaction, and provide a basis

  10. Photoactive platinum(II) complexes of nonsteroidal anti-inflammatory drug naproxen: Interaction with biological targets, antioxidant activity and cytotoxicity.

    Science.gov (United States)

    Srivastava, Payal; Singh, Khushbu; Verma, Madhu; Sivakumar, Sri; Patra, Ashis K

    2018-01-20

    The effect on the therapeutic efficacy of Pt(II) complexes on combining non-steroidal anti-inflammatory drugs (NSAIDs) is an attractive strategy to circumvent chronic inflammation mediated by cancer and metastasis. Two square-planar platinum(II) complexes: [Pt(dach)(nap)Cl] (1) and [Pt(dach)(nap) 2 ] (2), where dach = (1R,2R)-dichloro(cyclohexane-1,2-diamine) and NSAID drug naproxen (nap), have been designed for studying their biological activity. The naproxen bound to the Pt(II) centre get released upon photoirradiation with low-power UV-A light as confirmed by the significant enhancement in emission intensities of the complexes. The compounds were evaluated for their photophysical properties, photostability, reactivity with 5'-guanosine monophophosphate (5'-GMP), interactions with CT-DNA and BSA, antioxidant activity and reactive oxygen species mediated photo-induced DNA damage properties. ESI-MS studies demonstrated the formation of bis-adduct with 5'-GMP and the formation of Pt II -DNA crosslinks by gel electrophoretic mobility shift assay and ITC studies. The interaction of the complexes 1 and 2 with the CT-DNA exhibits potential binding affinity (K b  ∼ 10 4  M -1 , K app ∼ 10 5  M -1 ), implying intercalation to CT-DNA through planar naphthyl ring of the complexes. Both the complexes also exhibit strong binding affinity towards BSA (K BSA ∼ 10 5  M -1 ). The complexes exhibit efficient DNA damage activity on irradiation at 365 nm via formation of singlet oxygen ( 1 O 2 ) and hydroxyl radical ( • OH) under physiological conditions. Both the complexes were cytotoxic in dark and exhibit significant enhancement of cytotoxicity upon photo-exposure against HeLa and HepG2 cancer cells giving IC 50 values ranging from 8 to 12 μM for 1 and 2. The cellular internalization data showed cytosolic and nuclear localization of the complexes in the HeLa cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. The potential of standards-based agriculture biology as an alternative to traditional biology in California

    Science.gov (United States)

    Sellu, George Sahr

    schools. Thoron & Meyer (2011) suggested that research into the contribution of integrated science courses toward higher test scores yielded mixed results. This finding may have been due in part to the fact that integrated science courses only incorporate select topics into agriculture education courses. In California, however, agriculture educators have developed standards-based courses such as Agriculture Biology (AgBio) that cover the same content standards as core traditional courses such as traditional biology. Students in both AgBio and traditional biology take the same standardized biology test. This is the first time there has been an opportunity for a fair comparison and a uniform metric for an agriscience course such as AgBio to be directly compared to traditional biology. This study will examine whether there are differences between AgBio and traditional biology with regard to standardized test scores in biology. Furthermore, the study examines differences in perception between teachers and students regarding teaching and learning activities associated with higher achievement in science. The findings of the study could provide a basis for presenting AgBio as a potential alternative to traditional biology. The findings of this study suggest that there are no differences between AgBio and traditional biology students with regard to standardized biology test scores. Additionally, the findings indicate that co-curricular activities in AgBio could contribute higher student achievement in biology. However, further research is required to identify specific activities in AgBio that contribute to higher achievement in science.

  12. Cholesterol oxidized products in foods: potential health hazards and the role of antioxidants in prevention

    Directory of Open Access Journals (Sweden)

    Nieto, Susana

    2004-09-01

    Full Text Available Cholesterol is a molecule with a double bond in its structure, and therefore it is susceptible to oxidation leading to the formation of oxysterols. These oxidation products are found in many commonly consumed foods and are formed during their manufacture and/or processing. Concern about the consumption of oxysterols arises from the potentially cytotoxic, mutagenic, atherogenic, and possibly carcinogenic effects of some of them. Eggs and egg-derived products are the main dietary sources of oxysterols. Thermally processed milk and milk-derived products are also another source of oxysterols in our diet. Fried meats, and other miscellaneous foods, such as French fried potatoes, when prepared using vegetable/animal frying oil, are another important source of oxysterols in the western diet. Efforts to prevent or to reduce cholesterol oxidation are directed to the application of antioxidants of either synthetic or natural origin. Antioxidants cannot only inhibit triglyceride oxidation, but some of them can also inhibit cholesterol oxidation. Among synthetic antioxidants, 2,6-di-ter tiarybutyl-4-methylphenol (BHT and ter tiary butylhydroquinone (TBHQ , can eff icient ly inhibit the thermal-induced oxidation of cholesterol. Among natural antioxidants, alpha- and gamma-tocopherol, rosemary extracts, and flavonoid quercetin, show the strongest inhibitory action against cholesterol oxidation.El colesterol es una molécula con un doble enlace en su estructura; por lo tanto es susceptible a la oxidación y su transformación en oxiesteroles. Estos productos de oxidación se encuentran en gran diversidad de alimentos y se forman durante la manufactura y procesamiento. Algunos de los oxiesteroles son potencialmente citotóxicos, mutagénicos, aterogénicos y carcinogénicos. Los huevos y productos derivados del huevo constituyen la principal fuente en la dieta de oxiesteroles. También se encuentran oxiesteroles en derivados lácteos y leche sometida a altas

  13. Phytochemistry, Antioxidant, and Hepatoprotective Potential of Acanthospermum hispidum DC Extracts against Diethylnitrosamine-Induced Hepatotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Jotham Yhi-pênê N’DO

    2018-05-01

    Full Text Available Background: Burkina Faso is classified among the countries with a high prevalence (˃12% of hepatitis. Hepatic diseases, such as cirrhosis—related to alcoholism—and hepatitis B and C, are the cause of the increase in cases of liver cancer. They promote the development of cancer by decreasing the natural cell death, causing problems with DNA repair, or by increasing the production of free radical toxins to the cell. According to the World Health Organization (WHO, there were nearly 639,000 deaths from liver cancer worldwide in 2014, hence the need to search for natural hepatoprotective molecules. Objective: To evaluate the hepatoprotective potential of Acanthospermum hispidum extracts on rats and the antioxidant capacity of extracts in vitro and in vivo, and to perform phytochemistry. Methods: The ethanolic and aqueous extracts of the whole Acanthospermum hispidum plant were used to evaluate hepatoprotection. The hepatotoxin used in our case was diethylenitrosamine. The animals were divided into groups of six. The sera of the treated animals were used for the determination of transaminases, and the liver homogenates were used for the determination of antioxidant. The total phenol and flavonoid contents, and the antioxidant properties of the extracts, were evaluated in vitro. Results: The results of the in vitro antioxidant tests showed good antioxidant activity of the ethanolic extract, using the 2,2-diphenyl-1-picrylhydrazyl (DPPH test (0.08 ± 0.0018 μg/mL and 2,2′-azinobis (3-ethylbenzolin-6-sulphonate (ABTS (246.05 ± 1.55 mmol TE/g. The in vivo tests showed, through the evaluation of the antioxidant in vivo and the biochemical parameters, that the ethanolic extract with the highest phenolic content had a good hepatoprotective capacity. Conclusions: The antioxidant activity of Acanthopermum hispidum extracts would justify the observed hepatoprotective activity. These results confirmed that the plant is used in the treatment of liver

  14. The edible mushroom Laetiporus sulphureus as potential source of natural antioxidants

    NARCIS (Netherlands)

    Klaus, A.; Kozarski, M.; Niksic, M.; Jakovljevic, D.; Todorovic, N.; Stefanoska, I.; Griensven, van L.J.L.D.

    2013-01-01

    Hot water extract (LN), partially purified polysaccharides (LP) and hot alkali extracted polysaccharides (LNa) obtained from fruiting bodies of the wild basidiomycete Laetiporus sulphureus were examined for their antioxidant activities. LNa was the most active antioxidant, as shown by the median

  15. Investigation into the antioxidant and antidiabetic potential of Moringa stenopetala: identification of the active principles.

    Science.gov (United States)

    Habtemariam, Solomon

    2015-03-01

    The fresh leaves of Moringa stenopetala (family, Moringaceae) are commonly eaten as cabbage while dried leaves are used as nutritional supplement and for treating a variety of disease conditions including diabetes. The present investigation into the therapeutic potential of the leaves and seeds of the plant revealed no inhibitory effect against α-glucosidase enzyme up to the concentration of 200 μg/mL but the leaves extract displayed potent DPPH (1,1-diphenyl-2- picrylhydrazyl) radical scavenging effect (IC50, 59.5 ± 4.1 μg/mL). An activity directed fractionation and isolation procedure resulted in the identification of the major antioxidant compound as rutin and minor active component, neochlorogenic acid. Both the crude extract (0.8-200 μg/mL) and rutin (0.8-200 μM) but not neochlorogenic acid displayed a concentration-dependent protection of human pancreatic β-cells (1.4E7 cells) from oxidant-induced cell death. The identification of these compounds along with their potential role in the nutritional and medicinal significance of the plant is discussed.

  16. Mannich-Benzimidazole Derivatives as Antioxidant and Anticholinesterase Inhibitors: Synthesis, Biological Evaluations, and Molecular Docking Study.

    Science.gov (United States)

    Alpan, Ayşe Selcen; Sarıkaya, Görkem; Çoban, Güneş; Parlar, Sülünay; Armagan, Güliz; Alptüzün, Vildan

    2017-07-01

    A series of Mannich bases of benzimidazole derivatives having a phenolic group were designed to assess their anticholinesterase and antioxidant activities. The acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities were evaluated in vitro by using Ellman's method. According to the activity results, all of the compounds exhibited moderate to good AChE inhibitory activity (except for 2a), with IC 50 values ranging from 0.93 to 10.85 μM, and generally displayed moderate BuChE inhibitory activity. Also, most of the compounds were selective against BuChE. Compound 4b was the most active molecule on the AChE enzyme and also selective. In addition, we investigated the antioxidant effects of the synthesized compounds against FeCl 2 /ascorbic acid-induced oxidative stress in the rat brain in vitro, and the activity results showed that most of the compounds are effective as radical scavengers. Molecular docking studies and molecular dynamics simulations were also carried out. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Chemical constituents and antioxidant and biological activities of the essential oil from leaves of Solanum spirale.

    Science.gov (United States)

    Keawsa-ard, Sukanya; Liawruangrath, Boonsom; Liawruangrath, Saisunee; Teerawutgulrag, Aphiwat; Pyne, Stephen G

    2012-07-01

    The essential oil of the leaves Solanium spirale Roxb. was isolated by hydrodistillation and analyzed for the first time using GC and GC-MS. Thirty-nine constituents were identified, constituting 73.36% of the total chromatographical oil components. (E)-Phytol (48.10%), n-hexadecanoic acid (7.34%), beta-selinene (3.67%), alpha-selinene (2.74%), octadecanoic acid (2.12%) and hexahydrofarnesyl acetone (2.00%) were the major components of this oil. The antioxidant activity of the essential oil was evaluated by using the DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging assay. The oil exhibited week antioxidant activity with an IC50 of 41.89 mg/mL. The essential oil showed significant antibacterial activity against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus with MIC values of 43.0 microg/mL and 21.5 microg/mL, respectively. It also showed significant cytotoxicity against KB (oral cancer), MCF-7 (breast cancer) and NCI-H187 (small cell lung cancer) with the IC50 values of 26.42, 19.69, and 24.02 microg/mL, respectively.

  18. Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization.

    Science.gov (United States)

    Cimmino, Alessio; Masi, Marco; Evidente, Marco; Superchi, Stefano; Evidente, Antonio

    2015-12-19

    Covering: 2007 to 2015 Fungal phytotoxins are secondary metabolites playing an important role in the induction of disease symptoms interfering with host plant physiological processes. Although fungal pathogens represent a heavy constraint for agrarian production and for forest and environmental heritage, they can also represent an ecofriendly alternative to manage weeds. Indeed, the phytotoxins produced by weed pathogenic fungi are an efficient tool to design natural, safe bioherbicides. Their use could avoid that of synthetic pesticides causing resistance in the host plants and the long term impact of residues in agricultural products with a risk to human and animal health. The isolation and structural and biological characterization of phytotoxins produced by pathogenic fungi for weeds, including parasitic plants, are described. Structure activity relationships and mode of action studies for some phytotoxins are also reported to elucidate the herbicide potential of these promising fungal metabolites.

  19. Environmental radiation: basic principles, biological facts, potential risks

    International Nuclear Information System (INIS)

    Rodemann, H.P.

    2000-01-01

    This book describes the complex processes that underlie the effects of different types of radiation at the cellular, organ and organismic level. Technical terms central to the subject matter are printed in italicize and explained in a glossary along with all physical quantities and dimensional units referred to. Through a systematic presentation of various aspects of the effects of environmental radiation on humans the author has endeavoured to make it clear that any discussion on potential health hazards must be conducted specific to the type of radiation in question. Furthermore, to study these issues meaningfully one must have a knowledge of the scientific basis of interactions between the various types of radiation and biological systems and be able to assess the relative impact of environmental radiation compared with other environmental health hazards

  20. The Use of Grape Seed Byproducts Rich in Flavonoids to Improve the Antioxidant Potential of Red Wines

    Directory of Open Access Journals (Sweden)

    María José Jara-Palacios

    2016-11-01

    Full Text Available The influence of adding seeds from grape pomace during Syrah wine fermentation in a warm climate has been studied. Seeds of Pedro Ximenez variety were rich in phenolic compounds, mainly flavonoids such as catechin and procyanidins. Changes in total phenolic content (TPC, total flavonoid content (TFC, and antioxidant activity of red wines were observed. These changes depended on the vinification stage and the amount of seeds (SW: 450 g or DW: 900 g seeds/150 kg grapes applied. In general, antioxidant activity was greater when a simple dose (SW was considered. Results indicate that seeds rich in flavonoids could be used as wine additives, which could improve the antioxidant potential of red wines in a warm climate.

  1. Total antioxidant potential of resinous exudates from Heliotropium species, and a comparison of the ABTS and DPPH methods.

    Science.gov (United States)

    Lissi, E A; Modak, B; Torres, R; Escobar, J; Urzua, A

    1999-06-01

    Total reactive antioxidant potential (TRAP) of resinous exudates from Heliotropium species was evaluated by measuring the bleaching of stable free radicals. The antioxidant capacity of the resinous exudates in Trolox equivalents, evaluated from the bleaching of ABTS derived radical cations, ranged from 2.0 M (H. huascoense) to 5.2 M (H. stenophyllum), indicating a very high concentration of phenolic compounds. Considerably smaller values were obtained by measuring the bleaching of DPPH radicals. The ratio between the values obtained employing ABTS derived radicals and DPPH, ranged from 37 (H. megalanthum) to 4.5 (H. chenopodiaceum variety typica). The magnitude of the difference can be considered as an indication of the relative reactivity of the antioxidants present in the exudates. Similar ratios were observed when stoichiometric coefficients were evaluated for representative purified flavonoids obtained from the resinous exudates.

  2. Potential application of SERS for arsenic speciation in biological matrices.

    Science.gov (United States)

    Yang, Mingwei; Matulis, Shannon; Boise, Lawrence H; McGoron, Anthony J; Cai, Yong

    2017-08-01

    Speciation of arsenic is usually carried out using chromatography-based methods coupled with spectroscopic determination; however, the inevitable procedures involving sample preparation and separation could potentially alter the integrity of the arsenic metabolites present in biological samples. Surface-enhanced Raman spectroscopy (SERS) could be a promising alternative for providing a reliable arsenic analysis under the influence of a cellular matrix. A method for arsenic speciation using SERS in cellular matrix was developed in this study and four arsenicals were selected, including arsenite (As III ), arsenate (As V ), monomethylarsonic acid (MMA V ) and dimethylarsinic acid (DMA V ). Silver nanoparticles in the form of colliodal suspension with different surface charges, i.e., coated with citrate (AgNPs-Citrate) and spermine (AgNPs-Spermine) were employed as SERS substrates. Adsorption of arsenicals on nanoparticles in colloidal suspensions and the cellular matrix and the pH, size, and zeta potential of the colloidal suspensions were investigated for a better understanding of the SERS signal response of arsenicals in the colloidal suspensions or under the influence of cellular matrix. Arsenicals showed substantially different SERS responses in the two colloidal suspensions, mainly because of the distinct difference in the interaction between the arsenicals and the nanoparticles. Arsenic speciation in cell lysate could be successfully carried out in AgNPs-Spermine suspension, while AgNPs-Citrate could not yield significant SERS signals under the experimental conditions. This study proved that AgNPs-Spermine colloidal suspension could be a promising SERS substrate for studying arsenic metabolism in a biological matrix, reducing the bias caused by traditional techniques that involve sample extraction and pretreatment.

  3. Enzyme inhibitory and antioxidant activities of traditional medicinal plants: Potential application in the management of hyperglycemia

    Directory of Open Access Journals (Sweden)

    Gulati Vandana

    2012-06-01

    Full Text Available Abstract Background Traditional Indian and Australian medicinal plant extracts were investigated to determine their therapeutic potential to inhibit key enzymes in carbohydrate metabolism, which has relevance to the management of hyperglycemia and type 2 diabetes. The antioxidant activities were also assessed. Methods The evaluation of enzyme inhibitory activity of seven Australian aboriginal medicinal plants and five Indian Ayurvedic plants was carried out against α-amylase and α-glucosidase. Antioxidant activity was determined by measuring (i the scavenging effect of plant extracts against 2, 2-diphenyl-1-picryl hydrazyl (DPPH and 2, 2′-azinobis-3-ethylbenzothiazoline-6-sulfonate (ABTS and (ii ferric reducing power. Total phenolic and total flavonoid contents were also determined. Results Of the twelve plant extracts evaluated, the highest inhibitory activity against both α-amylase and α-glucosidase enzymes was exerted by Santalum spicatum and Pterocarpus marsupium with IC50 values of 5.43 μg/ml and 0.9 μg/ml, respectively, and 5.16 μg/ml and 1.06 μg/ml, respectively. However, the extracts of Acacia ligulata (IC50 = 1.01 μg/ml, Beyeria leshnaultii (0.39 μg/ml, Mucuna pruriens (0.8 μg/ml and Boerhaavia diffusa (1.72 μg/ml exhibited considerable activity against α-glucosidase enzyme only. The free radical scavenging activity was found to be prominent in extracts of Acacia kempeana, Acacia ligulata followed by Euphorbia drummondii against both DPPH and ABTS. The reducing power was more pronounced in Euphorbia drummondii and Pterocarpus marsupium extracts. The phenolic and flavonoid contents ranged from 0.42 to 30.27 μg/mg equivalent of gallic acid and 0.51 to 32.94 μg/mg equivalent of quercetin, respectively, in all plant extracts. Pearson’s correlation coefficient between total flavonoids and total phenolics was 0.796. Conclusion The results obtained in this study showed that most of the plant extracts

  4. Bioprospecting the Curculigoside-Cinnamic Acid-Rich Fraction from Molineria latifolia Rhizome as a Potential Antioxidant Therapeutic Agent

    Directory of Open Access Journals (Sweden)

    Der Jiun Ooi

    2016-06-01

    Full Text Available Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF isolated from M. latifolia rhizome methanolic extract (RME contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders.

  5. Purple head broccoli (Brassica oleracea L. var. italica Plenck), a functional food crop for antioxidant and anticancer potential.

    Science.gov (United States)

    Chaudhary, Ashun; Choudhary, Sonika; Sharma, Upendra; Vig, Adarsh Pal; Singh, Bikram; Arora, Saroj

    2018-05-01

    Natural foods are used in many folks and household treatments and have immense potential to treat a serious complication and health benefits, in addition to the basic nutritional values. These food products improve health, delay the aging process, increase life expectancy, and possibly prevent chronic diseases. Purple head Brassica oleracea L. var. italica Plenck is one of such foods and in current studies was explored for chemical compounds at different development stages by gas chromatography-mass spectrometry. Antioxidant potential was explored employing different assays like molybdate ion reduction, DPPH, superoxide anion radical scavenging and plasmid nicking assay. Inspired by antioxidant activity results, we further explored these extracts for antiproliferative potential by morphological changes, cell cycle analysis, measurement of intracellular peroxides and mitochondrial membrane potential changes. Current study provides the scientific basis for the use of broccoli as easily affordable potent functional food.

  6. Synthesis and evaluation of the antioxidative potential of minoxidil-polyamine conjugates.

    Science.gov (United States)

    Hadjipavlou-Litina, Dimitra; Magoulas, George E; Bariamis, Stavros E; Tsimali, Zinovia; Avgoustakis, Konstantinos; Kontogiorgis, Christos A; Athanassopoulos, Constantinos M; Papaioannou, Dionissios

    2013-07-01

    A series of conjugates (MNX-CO-PA) of minoxidil (MNX) with the polyamines (PAs) putrescine (PUT), spermidine (SPD) and spermine (SPM) as well as dopamine were produced through activation of MNX with N,N'-carbonyldiimidazole, followed by reaction with dopamine or selectively protected PAs and acid-mediated deprotection. These conjugates together with conjugates of the general type MNX-PA or PA-MNX-PA, readily produced using literature protocols, were tested as antioxidants. The most potent inhibitors of lipid peroxidation were the conjugates MNX-SPM (2, 94%), SPM-MNX-SPM (4, 94%) and MNX-N(4)-SPD (7, 91%) and MNX (91%). The most powerful lipoxygenase (LOX) inhibitors were MNX (IC50 = 20 μM) and the conjugates MNX-N(8)-SPD (9, IC50 = 22.1 μM), MNX-CO-dopamine (11, IC50 = 28 μM) and MNX-N(1)-SPD (8, IC50 = 30 μM). The most interesting conjugates 2, MNX-CO-PUT (5), 8 and 11 as well as MNX were generally found to exhibit weaker (22-36.5%) or no (conjugate 8) anti-inflammatory activity than indomethacin (47%) with the exception of MNX which showed almost equal potency (49%) to indomethacin. The cytocompatibility of conjugates and MNX at the highest concentration of 100 μM showed a survival percentage of 87-107%, with the exception of conjugates with SPM (compound 2) and MNX-CO-SPM (6), which showed considerable cytotoxicity (survival percentage 8-14%). Molecular docking studies were carried on conjugate 9 and the parent compound MNX and were found to be in accordance with our experimental biological results. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  7. Comparison of the antioxidant potential of antiparkinsonian drugs in different in vitro models

    Directory of Open Access Journals (Sweden)

    Carine Coneglian de Farias

    2014-12-01

    Full Text Available Parkinson's disease (PD is characterized by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta. Furthermore, oxidative stress plays a role in PD, causing or contributing to the neurodegenerative process. Currently PD has only symptomatic treatment and still nothing can be done to stop the degenerative process of the disease. This study aimed to comparatively evaluate the antioxidant capacity of pramipexole, selegeline and amantadine in different in vitrostudies and to offer possible explanations on the molecular antioxidant mechanisms of these drugs. In vitro, the antioxidant capacity of the drugs was assessed by the ability of antiparkinsonian drugs to decrease or scavenge ROS in the neutrophil respiratory burst, ability of antiparkinsonian drugs to donate hydrogen and stabilize the free radical 2,2-diphenyl-1-picryl-hydrazyl (DPPH•, to scavenge 2,2'-azino-di-(3-ethylbenzthiazoline-6-sulphonic acid (ABTS+ and evaluation of the ferric reducing antioxidant power (FRAP. This study demonstrated that both pramipexole and selegiline, but not amantadine, have antioxidant effects in vitro by scavenging superoxide anion on the respiratory burst, donating electron in the ABTS+ assay and presenting ferric reduction antioxidant power. This chemical structure-related antioxidant capacity suggests a possible neuroprotective mechanism of these drugs beyond their already recognized mechanism of action.

  8. Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways.

    Science.gov (United States)

    Azad, Gajendra Kumar; Tomar, Raghuvir S

    2014-08-01

    Ebselen, an organoselenium compound, mimics glutathione peroxidase activity. It is a multifunctional compound, which catalyzes several essential reactions for the protection of cellular components from oxidative and free radical damage. Based on a number of in vitro and in vivo studies, various mechanisms are proposed to understand the biomedical actions of ebselen in health and diseases. It modulates metallo-proteins, enzymatic cofactors, gene expression, epigenetics, antioxidant defenses and immune systems. Owing to these properties, ebselen is currently under clinical trials for the prevention and treatment of various disorders such as cardiovascular diseases, arthritis, stroke, atherosclerosis, and cancer. A few ebselen-based pharmaceutical agents are under extensive investigation. As ebselen has been shown to have significant cellular toxicity, appropriate studies are needed to redesign the ebselen-based therapy for clinical trials. This review summarizes current understanding of the biochemical and molecular properties, and pharmacological applications of ebselen and future directions in this area of research.

  9. Antioxidant potential of Aesculus hippocastanum extract and escin against reactive oxygen and nitrogen species.

    Science.gov (United States)

    Vašková, J; Fejerčáková, A; Mojžišová, G; Vaško, L; Patlevič, P

    2015-01-01

    Antioxidant, anti-inflammatory and venoconstrictor properties have been attributed to extracts from Aesculus hippocastanum. These unusual and diverse properties may be possibly basically linked with ability to scavenge free radicals. The scavenging capacity of dry horse chestnut extract of and escin have been investigated in vitro against superoxide anion radicals, hydroxyl radicals, nitrites and peroxynitrite. In general, the activity of the whole extract against superoxide radicals did not exceed 15% at pH 7.4, but the highest inhibition (46.11%) was recorded against hydroxyl radicals at a concentration of 100 µg.ml-1; however, the activity against other radicals was lower. Escin demonstrated a better ability to counteract nitric oxide oxidation products, nitrites. However, the efficiency of the whole extract completely disappeared as the concentration increased. Both extracts showed very low activity towards peroxynitrite. Escin was even able to induce peroxynitrite formation at the lower concentrations used. Whole extract showed better antiradical properties compared to its main active ingredient, escin, probably due to potential synergistic interaction with a mixture of compounds present in the plant extract. These findings can be the basis of both the presentation of side-effects and the persistence of disease in spite of ongoing treatment.

  10. Comparison of antioxidant potential of volatile oils of syzygium aromaticum and Illicium verum relative to conventionally used standards

    International Nuclear Information System (INIS)

    Riaz, T.; Abbasi, M.A.; Umar, M.I.; Aziz-ur-Rehman; Shahzadi, T.; Khan, K.M.; Ahmad, V.U.

    2011-01-01

    The volatile oils of Syzygium aromaticum Linn. (cloves) and Illicium verum Hook. (star anise) were extracted by steam distillation. The antioxidant potential of these oils was evaluated by four methods: 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH) free radical scavenging activity, total antioxidant activity, Ferric Reducing Antioxidant Power (FRAP) assay and ferric thiocyanate assay and total phenolics were also determined. The results revealed that scavenging potential of clove volatile oil was more than star anise volatile oil. The IC/sub 50/ of the clove volatile oil was 4.56 +- 1.07 mu g/mL while that of star anise was found to be 120 +- 1.80 mu mL relative to butylated hydroxytoluene (BHT), having IC/sub 50/ of 12.1 +- 0.92 mu g/mL. Total antioxidant activity of clove volatile oil was also higher than star anise volatile oil. The FRAP values of clove and star anise volatile oils were 2830 +- 2.14 and 388 +- 1.32 mu g of trolox equivalents (TE) respectively. The total phenolic contents of clove and star anise volatile oils were 934.34 +- 1.6 and 85.36 +- 0.28 mg of gallic acid equivalents (GAE)/g of volatile oil respectively. The inhibition of lipid peroxidation by clove volatile oil was found to be 66.63% +- 0.41 while that of star anise was 43.24% +- 0.48. (author)

  11. Antioxidant potential of buffalo and cow milk Cheddar cheeses to tackle human colon adenocarcinoma (Caco-2 cells

    Directory of Open Access Journals (Sweden)

    Nuzhat Huma

    2018-02-01

    Full Text Available Objective The aim of present study was to assess the anti-oxidant potential of water-soluble peptides (WSPs extract derived from buffalo and cow milk Cheddar cheeses at different stages of ripening. Methods The antioxidant potential of WSPs extract was assessed through 2,2’-azinobis-3-ethylbenzothiazoline-6sulfonic acid (ABTS-radical scavenging activity. In addition, impact of WSPs extract on cell viability and production of reactive oxygen species (ROS in human colon adenocarcinoma Caco-2 (tert-butylhydroperoxide-induced cell lines was also evaluated. Results The ABTS-radical scavenging activity increased progressively with ripening period and dose-dependently in both cheeses. However, peptide extract from buffalo milk Cheddar cheese demonstrated relatively higher activity due to higher contents of water-soluble nitrogen. Intracellular ROS production in Caco-2 cells decreased significantly (p<0.05 till 150th day of cheese ripening and remained constant thereafter. Additionally, dose-dependent response of WSPs extract on antioxidant activity was noticed in the Caco-2 cell line. Conclusion On the basis of current in vitro study, the Cheddar cheese WSPs extract can protect intestinal epithelium against oxidative stress due to their antioxidant activity.

  12. Phenolic profiling and therapeutic potential of local flora of Azad Kashmir; In vitro enzyme inhibition and antioxidant

    Directory of Open Access Journals (Sweden)

    Raza Muhammad Asam

    2017-12-01

    Full Text Available The current study supports the phytochemical screening, evaluation of antioxidant and enzyme inhibition potential and correlations between antioxidant activities and phenolics of Rumex dentatus (Family: Polygonaceae, Mentha spicata (Family: Lamiaceae, Withania somnifera (Family: Solanaceae, Nerium indicum (Family: Apocynaceae and Artemisia scoparia (Family: Asteraceae. The herbal materials were extracted in ethanol (90% and partitioned between several solvents based on polarities. Total phenols were determined with FC method and ranged 21.33 ± 1.53 - 355.67 ± 6.03 mg GAE/ mg of the extract. Antioxidant activities (DPPH, total iron reducing capacity, phosphomolybdate assay & FRAP and enzyme inhibition potential (Protease, AChE & BChE were performed by the standard protocols. The results showed that all extracts exhibited significant DPPH activity ranging from 12.67 ± 2.08 - 92.67 ± 1.53%. The extracts that were active in DPPH activity also potrayed marvelous FRAP, total iron reducing and phosphomolybdate values. Correlation studies of antioxidant activities and the content of phenolic compounds in plant materials exhibited positive correlation between them. The outcome of enzyme inhibition activity exhibited that about 80% of the fractions under surveillance plants intimated more than 50% inhibition. Isolation of bioactive compounds from these plants is in progress.

  13. Bioactive extracts of red seaweeds Pterocladiella capillacea and Osmundaria obtusiloba (Floridophyceae: Rhodophyta) with antioxidant and bacterial agglutination potential.

    Science.gov (United States)

    de Alencar, Daniel Barroso; de Carvalho, Fátima Cristiane Teles; Rebouças, Rosa Helena; Dos Santos, Daniel Rodrigues; Dos Santos Pires-Cavalcante, Kelma Maria; de Lima, Rebeca Larangeira; Baracho, Bárbara Mendes; Bezerra, Rayssa Mendes; Viana, Francisco Arnaldo; Dos Fernandes Vieira, Regine Helena Silva; Sampaio, Alexandre Holanda; de Sousa, Oscarina Viana; Saker-Sampaio, Silvana

    2016-04-01

    To evaluate the antioxidant, antibacterial and bacterial cell agglutination activities of the hexane (Hex) and 70% ethanol (70% EtOH) extracts of two species of red seaweeds Pterocladiella capillacea (P. capillacea) and Osmundaria obtusiloba. In vitro antioxidant activity was determined by DPPH radical scavenging assay, ferric-reducing antioxidant power assay, ferrous ion chelating assay, β-carotene bleaching assay and total phenolic content quantification. Antimicrobial activity was tested using the method of disc diffusion on Mueller-Hinton medium. The ability of algal extracts to agglutinate bacterial cells was also tested. The 70% EtOH extract of the two algae showed the highest values of total phenolic content compared to the Hex extract. The results of DPPH for both extracts (Hex, 70% EtOH) of Osmundaria obtusiloba (43.46% and 99.47%) were higher than those of P. capillacea (33.04% and 40.81%) at a concentration of 1000 μg/mL. As for the ferrous ion chelating, there was an opposite behavior, extracts of P. capillacea had a higher activity. The extracts showed a low ferric-reducing antioxidant power, with optical density ranging from 0.054 to 0.180. Antioxidant activities of all extracts evaluated for β-carotene bleaching were above 40%. There was no antibacterial activity against bacterial strains tested. However, the extracts of both species were able to agglutinate bacterial Gram positive cells of Staphylococcus aureus and Gram negative cells of Escherichia coli, multidrug-resistant Salmonella and Vibrio harveyi. This is the first report of the interaction between these algal extracts, rich in natural compounds with antioxidant potential, and Gram positive and Gram negative bacterial cells. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  14. Hepatoprotective potential of antioxidant potent fraction from Urtica dioica Linn. (whole plant in CCl4 challenged rats

    Directory of Open Access Journals (Sweden)

    Bhuwan Chandra Joshi

    2015-01-01

    Full Text Available The aim of the present study was to isolate hepatoprotective component from Urtica dioica Linn. (whole plant against CCl4-induced hepatotoxicity in-vitro (HepG2 cells and in-vivo (rats model. Antioxidant activity of hydro alcoholic extract and its fractions petroleum ether fraction (PEF, ethyl acetate fraction (EAF, n-butanol fraction (NBF and aqueous fraction (AF were determined by DPPH and NO radicals scavenging assay. Fractions were subjected to in-vitro HepG2 cell line study. Further, the most potent fraction (EAF was subjected to in-vivo hepatoprotective potential against CCl4 challenged rats. The in-vivo hepatoprotective active fraction was chromatographed on silica column to isolate the bioactive constituent(s. Structure elucidation was done by using various spectrophotometric techniques like UV, IR, 1H NMR, 13C NMR and MS spectroscopy. Ethyl acetate fraction (EAF of hydro-alcoholic extract of U. dioica possessed the potent antioxidant activity viz. DPPH (IC50 78.99 ± 0.17 μg/ml and NO (IC50101.39 ± 0.30 μg/ml. The in-vitro HepG2 cell line study showed that the EAF prevented the cell damage. The EAF significantly attenuated the increased liver enzymes activities in serum and oxidative parameters in tissue of CCl4-induced rats, suggesting hepatoprotective and anti-oxidant action respectively. Column chromatography of most potent antioxidant fraction (EAF lead to the isolation of 4-hydroxy-3-methoxy cinnamic acid (ferulic acid which is responsible for its hepatoprotective potential. Hence, the present study suggests that EAF of hydro-alcoholic extract has significant antioxidant and hepatoprotective potential on CCl4 induced hepatotoxicity in-vitro and in-vivo.

  15. Hepatoprotective potential of antioxidant potent fraction from Urtica dioica Linn. (whole plant) in CCl4 challenged rats.

    Science.gov (United States)

    Joshi, Bhuwan Chandra; Prakash, Atish; Kalia, Ajudhia N

    2015-01-01

    The aim of the present study was to isolate hepatoprotective component from Urtica dioica Linn. (whole plant) against CCl 4 -induced hepatotoxicity in-vitro (HepG2 cells) and in-vivo (rats) model. Antioxidant activity of hydro alcoholic extract and its fractions petroleum ether fraction (PEF), ethyl acetate fraction (EAF), n -butanol fraction (NBF) and aqueous fraction (AF) were determined by DPPH and NO radicals scavenging assay. Fractions were subjected to in-vitro HepG2 cell line study. Further, the most potent fraction (EAF) was subjected to in-vivo hepatoprotective potential against CCl 4 challenged rats. The in-vivo hepatoprotective active fraction was chromatographed on silica column to isolate the bioactive constituent(s). Structure elucidation was done by using various spectrophotometric techniques like UV, IR, 1 H NMR, 13 C NMR and MS spectroscopy. Ethyl acetate fraction (EAF) of hydro-alcoholic extract of U. dioica possessed the potent antioxidant activity viz. DPPH (IC 50 78.99 ± 0.17 μg/ml) and NO (IC 50 101.39 ± 0.30 μg/ml). The in-vitro HepG2 cell line study showed that the EAF prevented the cell damage. The EAF significantly attenuated the increased liver enzymes activities in serum and oxidative parameters in tissue of CCl 4 -induced rats, suggesting hepatoprotective and anti-oxidant action respectively. Column chromatography of most potent antioxidant fraction (EAF) lead to the isolation of 4-hydroxy-3-methoxy cinnamic acid (ferulic acid) which is responsible for its hepatoprotective potential. Hence, the present study suggests that EAF of hydro-alcoholic extract has significant antioxidant and hepatoprotective potential on CCl 4 induced hepatotoxicity in-vitro and in-vivo .

  16. Local Fruit Wastes as a Potential Source of Natural Antioxidant: An Overview

    Science.gov (United States)

    Ibrahim, U. K.; Kamarrudin, N.; Suzihaque, M. U. H.; Hashib, S. Abd

    2017-06-01

    Food industry in Malaysia which used fruits as one of the raw material such as the production of fruit juices, concentrates, jams and dried fruits, the main wastes of the production are the peel and the seed of the fruit. Nowadays, people have shown the interests to study the antioxidant content in the fruit wastes. All kind of fruits are believed to contain high amount of natural antioxidant properties such as vitamins, phenol, flavonoid and carotenoid. Thus, this paper presented the work done by researcher on antioxidant activity in the peel especially on local fruit such as mango peel, watermelon rind, banana peel and mangosteen pericarp. The review shows that the peel of the fruit is a good source of antioxidant and other bioactive compounds which have many benefits especially towards human health.

  17. Phytochemical profiles and antioxidant potential of four Arctic vascular plants from Svalbard

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, P.; Singh, S.M.; DeSouza, L.; Wahidullah, S.

    the chemical composition and antioxidative activities of four Arctic flowering plant species (Dryas octopetala, Carex rupestris, Silene uralensis and Deschampsia alpina.) through in vitro measurements of the free radical scavenging activities (FRS), inhibition...

  18. Phenolic acid profiles and antioxidant potential of Pelargonium sidoides callus cultures

    Czech Academy of Sciences Publication Activity Database

    Kumar, V.; Moyo, M.; Grúz, Jiří; Šubrtová, Michaela; van Staden, J.

    2015-01-01

    Roč. 77, DEC 23 (2015), s. 402-408 ISSN 0926-6690 Institutional support: RVO:61389030 Keywords : Antioxidants * Hydroxybenzoic acids * Hydroxycinnamic acids Subject RIV: EF - Botanics Impact factor: 3.449, year: 2015

  19. The Potential Use of Secondary Metabolites in Moringa oleifera as an Antioxidant Source

    OpenAIRE

    A. Fitri; T. Toharmat; D. A. Astuti; H. Tamura

    2015-01-01

    This present study determined antioxidant activity, lipid peroxidation, total phenolic, total flavonoids and phytochemicals in moringa leaves and moringa stem. Analysis used in this study was 1, 1-diphenyl-2-picrylhydrazyl (DPPH) method for antioxidant activity, thiobarbituric acid reactive substances (TBARS) method for lipid peroxidation, Folin-Ciocalteu method for total phenolic, total flavonoid and UFLC (Ultrafast Liquid Chromatography) for identification and quantification of phenolic com...

  20. The potential of Manitoba chokecherry as a source of high natural antioxidants

    OpenAIRE

    Wende Li; Farah S. Hosseinian; Arnold W. Hydamaka; Lynda Lowry; Trust Beta

    2008-01-01

    Consumption of fruits and vegetables is shown to be beneficial for protecting health and preventing some chronic diseases such as cancer, cardiovascular disease, and stroke. The positive health effects have been mainly due to the contributions of their natural antioxidant capacity. Chokecherry (Prunus virginiana), a unique fruit, is a member of the Rose family and native to North America. Here we demonstrate that chokecherry fruit with strong antioxidant capacity is available in Manitoba, and...

  1. Processing black mulberry into jam: effects on antioxidant potential and in vitro bioaccessibility.

    Science.gov (United States)

    Tomas, Merve; Toydemir, Gamze; Boyacioglu, Dilek; Hall, Robert D; Beekwilder, Jules; Capanoglu, Esra

    2017-08-01

    Black mulberries (Morus nigra) were processed into jam on an industrialised scale, including the major steps of: selection of frozen black mulberries, adding glucose-fructose syrup and water, cooking, adding citric acid and apple pectin, removing seeds, and pasteurisation. Qualitative and quantitative determinations of antioxidants in black mulberry samples were performed using spectrophotometric methods, as well as HPLC- and LC-QTOF-MS-based measurements. These analyses included the determination of total polyphenolic content, % polymeric colour, total and individual anthocyanin contents, antioxidant capacity, and in vitro bioaccessibility in processing samples. Jam processing led to a significant reduction in total phenolics (88%), total flavonoids (89%), anthocyanins (97%), and antioxidant capacity (88-93%) (P < 0.05). Individual anthocyanin contents, determined using HPLC analysis, also showed a significant decrease (∼99% loss). In contrast, % recovery of bioaccessible total phenolics, anthocyanins, and antioxidant capacity (ABTS assay) increased after jam processing (16%, 12%, and 37%, respectively). Fruit processing resulted in losses of polyphenols, anthocyanins, and antioxidant capacity of black mulberry jam. Optimisation of food processing could help to protect the phenolic compounds in fruits which might be helpful for the food industry to minimise the antioxidant loss and improve the final product quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. The Effect of Convolvulus arvensis Dried Extract as a Potential Antioxidant in Food Models

    Directory of Open Access Journals (Sweden)

    Nurul Aini Mohd Azman

    2015-03-01

    Full Text Available In this study, the antioxidant activity of the Convolvulus arvensis Linn (CA ethanol extract has been evaluated by different ways. The antioxidant activity of the extract assessed by 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS radical cation, the oxygen radical absorbance capacity (ORAC and the ferric reducing antioxidant power (FRAP was 1.62 mmol Trolox equivalents (TE/g DW, 1.71 mmol TE/g DW and 2.11 mmol TE/g DW, respectively. CA ethanol extract exhibited scavenging activity against the methoxy radical initiated by the Fenton reaction and measured by Electron Paramagnetic Resonance (EPR. The antioxidant effects of lyophilised CA measured in beef patties containing 0.1% and 0.3% (w/w CA stored in modified atmosphere packaging (MAP (80% O2 and 20% CO2 was determined. A preliminary study of gelatine based film containing CA showed a strong antioxidant effect in preventing the degradation of lipid in muscle food. Thus, the present results indicate that CA extract can be used as a natural food antioxidant.

  3. Phyto chemical and biological studies of certain plants with potential radioprotective activity

    International Nuclear Information System (INIS)

    Sherif, N.H.M.I

    2008-01-01

    One of the promising directions of radiation protection development is the search for natural radioprotective agents.The present work includes: I- Screening of certain edible and medicinal plants growing in Egypt for their radioprotective activities. II- Detailed phyto chemical and biolo-activity studies of the dried leaves of brassaia actinophylla endl. comprising: A-Phyto chemical screening and proximate analysis. B-Investigation of lipoidal matter. C- Isolation, characterization and structure elucidation of phenolic constituents. D- Isolation, characterization and structure elucidation of saponin constituents. E- Evaluation of radioprotective and antitumor activities. I- Evaluation of potential radioprotective activities of certain herbs: In vivo biological screening designed to investigate the radioprotective role of 70% ethanol extract of 11 different herbals was carried out by measuring the lipid peroxide content, as well as the activities of two antioxidant enzymes; viz glutathione, and superoxide dismutase in blood and liver tissues 1 and 7 days after radiation exposure. II : Phyto chemical and biolo-activity studies of the dried leaves of brassaia actinophylla Endl A : preliminary phyto chemical screening, determination and TLC examination of successive extractives. B : Investigation of lipoidal matter. GLC of unsaponifiable matter (USM)

  4. Potential of Biological Agents in Decontamination of Agricultural Soil

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif Javaid

    2016-01-01

    Full Text Available Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation.

  5. Potential of Biological Agents in Decontamination of Agricultural Soil.

    Science.gov (United States)

    Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad

    2016-01-01

    Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation.

  6. Dermal Squamomelanocytic Tumor: Neoplasm of Uncertain Biological Potential

    Directory of Open Access Journals (Sweden)

    Mirsad Dorić

    2008-05-01

    Full Text Available We report a case of exceedingly rare cutaneous neoplasm with histological features of malignancy and uncertain biological potential. The nodular, darkly pigmented facial tumor with central exulceration, size 12x10x7 mm, of the skin 61-year-old man preauricular left was completely exised.Histologically tumor consists of atypical squamous cells, which express signs of moderate to significant pleomorphism, mitotically active, with foci forming of parakeratotic horn cysts (“pearls”. Characteristically tumor also consists of large number of atypical melanocytes with multifocal pattern, inserted between atypical squamous cells, and which contain large amount of dark brown pigment melanin. Immunohistochemically, squamous cells stain positively with keratin (CK116, melanocytes were stained with S -100 protein, HMB 45, and vimentin, but failed to stain with CK 116.To our knowledge this is the sixth reported case in world literature. The follow-up time of four years no evidence of recurrence or metastasis, similar all reported cases, but it is too short period in estimation to guarantee a benign course. However, it appears that this group of neoplasm may have different prognosis from pure squamous carcinoma or malignant melanoma.

  7. Antioxidant Potential of Extracts Obtained from Macro- (Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata and Micro-Algae (Chlorella vulgaris and Spirulina platensis Assisted by Ultrasound

    Directory of Open Access Journals (Sweden)

    Rubén Agregán

    2018-04-01

    Full Text Available Background: Natural antioxidants, which can replace synthetic ones due to their potential implications for health problems in children, have gained significant popularity. Therefore, the antioxidant potential of extracts obtained from three brown macroalgae (Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata and two microalgae (Chlorella vulgaris and Spirulina platensis using ultrasound-extraction as an innovative and green approach was evaluated. Methods: Algal extracts were obtained by ultrasound-assisted extraction using water/ethanol (50:50, v:v as the extraction solvent. The different extracts were compared based on their antioxidant potential, measuring the extraction yield, the total phenolic content (TPC and the antioxidant activity. Results: Extracts from Ascophyllum nodosum (AN and Bifurcaria bifurcata (BB showed the highest antioxidant potential compared to the rest of the samples. In particular, BB extract presented the highest extraction (35.85 g extract/100 g dry weight (DW and total phenolic compounds (TPC (5.74 g phloroglucinol equivalents (PGE/100 g DW yields. Regarding the antioxidant activity, macroalgae showed again higher values than microalgae. BB extract had the highest antioxidant activity in the ORAC, DPPH and FRAP assays, with 556.20, 144.65 and 66.50 µmol Trolox equivalents (TE/g DW, respectively. In addition, a correlation among the antioxidant activity and the TPC was noted. Conclusions: Within the obtained extracts, macroalgae, and in particular BB, are more suitable to be used as sources of phenolic antioxidants to be included in products for human consumption. The relatively low antioxidant potential, in terms of polyphenols, of the microalgae extracts studied in the present work makes them useless for possible industrial applications compared to macroalgae, although further in vivo studies evaluating the real impact of antioxidants from both macro- and micro-algae at the cellular level should be

  8. Phytochemical Compositions and In vitro Assessments of Antioxidant and Antidiabetic Potentials of Fractions from Ehretia cymosa Thonn.

    Science.gov (United States)

    Ogundajo, Akintayo; Ashafa, Anofi Tom

    2017-10-01

    Ehretia cymosa Thonn. is a popular medicinal plant used in different parts of West Africa for the treatment of various ailments including diabetes mellitus. The current study investigates bioactive constituents and in vitro antioxidant and antidiabetic potentials of fractions from extract of E. cymosa . Phytochemical investigation and antioxidant assays were carried out using standard procedures. Antidiabetic potential was assessed by evaluating the inhibitory effects of the fractions on the activities of α-amylase and α-glucosidase, while bioactive constituent's identification was carried out using gas chromatography-mass spectrometric (GC-MS) analysis. The phytochemistry tests of the fractions revealed the presence of tannins, phenols, flavonoids, steroids, terpene, alkaloid, and cardiac glycosides. Methanol fraction shows higher phenolic (27.44 mg gallic acid/g) and flavonoid (235.31 mg quercetin/g) contents, while ethyl acetate fraction revealed higher proanthocyanidins (28.31 mg catechin/g). Methanol fraction displayed higher ( P fractions displayed higher inhibition ( P fraction also inhibited α-amylase and α-glucosidase in competitive and noncompetitive modes, respectively. The GC-MS chromatogram of the methanol fraction revealed 24 compounds, which include phytol (1.78%), stearic acid (1.02%), and 2-hexadecyloxirane (34.18%), which are known antidiabetic and antioxidant agents. The results indicate E. cymosa leaves as source of active phytochemicals with therapeutic potentials in the management of diabetes. E. cymosa fractions possess antioxidant and antidiabetic activities. Hence, it is a source of active phytochemicals with therapeutic potentials in the management of diabetesThe high flavonoid, phenolic, and proanthocyanidin contents of fractions from E. cymosa also contribute to its antioxidant and antidiabetic propertiesMethanol fraction of E. cymosa displayed better antidiabetic activities compared to acarbose as revealed by their half maximal

  9. HPLC-DAD analysis, antioxidant potential and anti-urease activity of Asparagus gracilis collected from District Islamabad.

    Science.gov (United States)

    Shah, Naseer Ali; Khan, Muhammad Rashid; Sattar, Saadia; Ahmad, Bushra; Mirza, Bushra

    2014-09-23

    Asparagus gracilis subspecie of Asparagus capitatus Baker, is described as food and medicine for various ailments. In this study we investigated, its phenolic constituents, in vitro antioxidant potential against various free radicals and anti-urease potential. Asparagus gracilis aerial parts collected from District Islamabad, Pakistan were extracted with crude methanol which was further fractionated into n-hexane, ethyl acetate, n-butanol and aqueous fraction. Total phenolic and flavonoid contents were estimated for extract and all the derived fractions. Diverse in vitro antioxidants assays such as DPPH, H2O2, •OH, ABTS, β-carotene bleaching assay, superoxide radical, lipid peroxidation, reducing power, and total antioxidant capacity were studied to assess scavenging potential. Antiurease activity of methanol extract and its derived fractions was also investigated. HPLC-DAD analysis of crude methanol extract was performed by using different phenolic standards. Ethyl acetate fraction expressed maximum content of flavonoids (240.6 ± 6.1 mg RE/g dry sample), phenolics (615 ± 13 mg GAE/g dry sample) and best antioxidant potential among different fractions of crude methanol extract. Hydrogen peroxide assay and hydroxyl, supeoxide, nitric oxide free radicals antioxidant assays as well as beta carotene assay showed significant correlation with flavonoid content while hydrogen peroxide, ABTS and lipid peroxidation assay displayed significant correlation with phenolic content. HPLC analysis showed the presence of important phenolics i.e. catechin (4.04 ± 0.02 μg/mg sample), caffeic acid (0.89 ± 0.003 μg/mg sample), rutin (24.58 ± 0.1 μg/mg sample), myricetin (1.13 ± 0.07 μg/mg sample) and quercetin (14.91 ± 0.09 μg/mg sample). Ethyl acetate fraction expressed lowest IC50 in antiurease activity. Correlation analysis of antiurease activity expressed significant correlation with flavonoids (P < 0.004) and phenolics (P < 0.02) proposing multipotent activity of

  10. Antioxidant, anti-inflammatory and anti-septic potential of phenolic acids and flavonoid fractions isolated from Lolium multiflorum.

    Science.gov (United States)

    Choi, Ki-Choon; Son, Young-Ok; Hwang, Jung-Min; Kim, Beom-Tae; Chae, Minseon; Lee, Jeong-Chae

    2017-12-01

    Interest has recently renewed in using Lolium multiflorum Lam. (Poaceae) (called Italian ryegrass; IRG) silage as an antioxidant and anti-inflammatory diet. This study investigated the antioxidant, anti-inflammatory and anti-septic potential of IRG silage and identified the primary components in IRG active fractions. Total 16 fractions were separated from the chloroform-soluble extract of IRG aerial part using Sephadex LH-20 column before HPLC analysis. Antioxidant and anti-inflammatory activities of the fractions at doses of 0-100 μg/mL were investigated using various cell-free and cell-mediated assay systems. To explore anti-septic effect of IRG fractions, female ICR and BALB/c mice orally received 40 mg/kg of phenolic acid and flavonoid-rich active fractions F 7 and F 8 every other day for 10 days, respectively, followed by LPS challenge. The active fractions showed greater antioxidant and anti-inflammatory potential compared with other fractions. IC 50 values of F 7 and F 8 to reduce LPS-stimulated NO and TNF-α production were around 15 and 30 μg/mL, respectively. Comparison of retention times with authentic compounds through HPLC analysis revealed the presence of caffeic acid, ferulic acid, myricetin and kaempferol in the fractions as primary components. These fractions inhibited LPS-stimulated MAPK and NF-κB activation. Supplementation with F 7 or F 8 improved the survival rates of mice to 70 and 60%, respectively, in LPS-injected mice and reduced near completely serum TNF-α and IL-6 levels. This study highlights antioxidant, anti-inflammatory and anti-septic activities of IRG active fractions, eventually suggesting their usefulness in preventing oxidative damage and inflammatory disorders.

  11. Study On DPPH Free Radical - Scavenging Activity Of Antioxidant Compounds In Plants Composing BIN-5 Biological Active Preparation

    Directory of Open Access Journals (Sweden)

    Purevjav Urjintseren

    2015-08-01

    Full Text Available Recently there has been common trend among people to refuse from food and medications produced via synthetic method but try to consume natural products as much as possible instead. In this regard wild berries and medicinal plants are considered to be highly essential for human health as these kinds of plants serve as rich sources of biological active substances-phenol compounds. As a result of conducting research on source and spread of herbs which are commonly used as anti-diabetic medication we have developed a technological method to extract preparations from medicinal herbs such as Peony Paeonia lactiflora Pall Dandelion Taraxacum officinalis Wigg. Huckleberry Vaccinium myrtillus L Blueberry Vaccinium uliginosum L Cranberry Vaccinium vitisidaea L and Stinging nettles Urtica dioica accordingly studied chemical composition and antioxidant activity and conducted pharmacological study. With the use of Folin Denis amp Folin Ciocalteu reagent methodit was determined that the content of polyphenol compounds was 4.14-5.17 and 27.5 101.5mgml. The study was also aimed to investigate DPPH free radical-scavenging activity in connection with term temperature and concentration to identify the most rational technological procedure. As a result of study it was identified that free radical-scavenging activity of herbs selected for the study was generally estimated at 564.25-1750.00 mcgml whereas antioxidant activity of solvents with 2-10 mgml concentration was 417.20-1750.00 mcg ml respectively. This shows that such activity is dependent on concentration. However in temperature of 30 1000amp1057 degrees their activity has slowly been decreased by 1750 mcgml 476.7mcgml depending on temperature. Regarding the stinging nettles the activity was grown directly dependent from temperature. DPHH free radical-scavenging activity was gradually increased in 1-10 minutes but was relatively stable and active in 11-16 minutes.

  12. Antioxidant, Antibacterial, Cytotoxic, and Anti-Inflammatory Potential of the Leaves of Solanum lycocarpum A. St. Hil. (Solanaceae

    Directory of Open Access Journals (Sweden)

    Guilherme Augusto Ferreira da Costa

    2015-01-01

    Full Text Available Ethanol extract and fractions obtained from leaves of Solanum lycocarpum were examined in order to determine their phenolic composition, antioxidant, antibacterial, anti-inflammatory, and cytotoxic potential. High performance liquid chromatography coupled with DAD analysis indicated that the flavonoids apigenin and kaempferol were the main phenolic compounds present in dichloromethane and ethyl acetate fractions, respectively. The antioxidant activity was significantly more pronounced for dichloromethane, ethyl acetate, and hydroethanol fractions than that of the commercial antioxidant 2,6-di-tert-butyl-4-methylphenol. The hexane and dichloromethane fractions were more active against the tested bacteria. The hydroethanol fraction exhibited significant anti-inflammatory activity at the dose of 75 and 150 mg/kg in the later phase of inflammation. However, the antiedematogenic effect of the higher dose of the ethyl acetate fraction (150 mg/kg was more pronounced. The ethyl acetate fraction also presented a less cytotoxic effect than the ethanol extract and other fractions. These activities found in S. lycocarpum leaves can be attributed, at least in part, to the presence of phenolic constituents such as flavonoids. This work provided the knowledge of phenolic composition in the extract and fractions and the antioxidant, antibacterial, anti-inflammatory, and cytotoxic activities of leaves of S. lycocarpum.

  13. Chemical Composition, Antioxidant and Biological Activities of the Essential Oil and Extract of the Seeds of Glycine max (Soybean) from North Iran.

    Science.gov (United States)

    Ghahari, Somayeh; Alinezhad, Heshmatollah; Nematzadeh, Ghorban Ali; Tajbakhsh, Mahmood; Baharfar, Robabeh

    2017-04-01

    Glycine max (L.) Merrill (soybean) is a major leguminous crop, cultivated globally as well as in Iran. This study examines the chemical composition of soybean essential oil, and evaluates the antioxidant and antimicrobial activities of seeds on various plant pathogens that commonly cause irreparable damages to agricultural crops. The essential oil of soybean seeds was analyzed by gas chromatography coupled to mass spectrometry. Antimicrobial activity was tested against 14 microorganisms, including three gram-positive, five gram-negative bacteria, and six fungi, using disk diffusion method and the Minimum Inhibitory Concentration technique. The soybean seeds were also subjected to screening for possible antioxidant activity by using catalase, peroxidase, superoxide dismutase, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Forty components were identified, representing 96.68% of the total oil. The major constituents of the oil were carvacrol (13.44%), (E,E)-2,4-decadienal (9.15%), p-allylanisole (5.65%), p-cymene (4.87%), and limonene (4.75%). The oil showed significant activity against Pseudomonas syringae subsp. syringae, Rathayibacter toxicus with MIC = 25 µg/mL, and Pyricularia oryzae with MIC = 12.5 µg/mL. In addition, the free radical scavenging capacity of the essential oil was determined with an IC 50 value of 162.35 µg/mL. Our results suggest that this plant may be a potential source of biocide, for economical and environmentally friendly disease control strategies. It may also be a good candidate for further biological and pharmacological investigations.

  14. Antioxidant Phytochemicals of Opuntia ficus-indica (L.) Mill. Cladodes with Potential Anti-spasmodic Activity.

    Science.gov (United States)

    Lanuzza, Francesco; Occhiuto, Francesco; Monforte, Maria Teresa; Tripodo, Maria Marcella; D'Angelo, Valeria; Galati, Enza Maria

    2017-10-01

    Opuntia ficus-indica (OFI) (L.) Mill. (Cactaceae), a plant widespread in dry regions of the world, shows interesting biological activities (cicatrizant, antiulcer, anti-inflammatory, and hypolipidemic) and is widely used in traditional medicine. Phytochemical analysis and antispasmodic effect of wild OFI cladodes were carried out. Polyphenols and Vitamin E occurrence, in antioxidant pool of OFI cladodes, were quantified by high-performance liquid chromatography. The antispasmodic effect of OFI cladodes was assessed in isolated rabbit smooth muscle tissues. The experiments were carried out with preparations of rabbit jejunum and uterus with the spontaneous contractile activity, to evaluate the effect of cumulative concentrations of the extract on basal tone, amplitude, and frequency of contractions. Catechin, quercetin, kaempferol, isorhamnetin and chlorogenic, ferulic, and p-coumaric acid were identified. α-, β-, and γ-tocopherols have been highlighted and α-tocopherol is the major component. OFI cladodes contain significant amount of polyphenols and tocopherols that are effective radical scavengers and inhibited ethanol 1,1-diphenyl-2-picrylhydrazyl formation by 50%. OFI cladodes caused a light inhibition of amplitude and frequency of spontaneous contractions and a marked decrease in muscle basal tone of rabbit jejunum preparations. On spontaneously contracting uterus preparations, the addition of increasing concentrations of cladode extract caused uterine muscle relaxation. The contraction of smooth muscle preparations depends on an increase in cytoplasmic free calcium ion concentration, which activates the contractile elements. The flavonoids may suppress the contractility of smooth myocytes, by an inhibition of availability of Ca 2+ for muscle contraction. Opuntia ficus-indica (OFI) cladodes contain significant amount of polyphenols and tocopherols that are effective radical scavengers and inhibited ethanol 1,1-diphenyl-2-picrylhydrazyl formation by 50

  15. Antioxidant Phytochemicals of Opuntia ficus-indica (L.) Mill. Cladodes with Potential Anti-spasmodic Activity

    Science.gov (United States)

    Lanuzza, Francesco; Occhiuto, Francesco; Monforte, Maria Teresa; Tripodo, Maria Marcella; D’Angelo, Valeria; Galati, Enza Maria

    2017-01-01

    Background: Opuntia ficus-indica (OFI) (L.) Mill. (Cactaceae), a plant widespread in dry regions of the world, shows interesting biological activities (cicatrizant, antiulcer, anti-inflammatory, and hypolipidemic) and is widely used in traditional medicine. Objectives: Phytochemical analysis and antispasmodic effect of wild OFI cladodes were carried out. Material and Methods: Polyphenols and Vitamin E occurrence, in antioxidant pool of OFI cladodes, were quantified by high-performance liquid chromatography. The antispasmodic effect of OFI cladodes was assessed in isolated rabbit smooth muscle tissues. The experiments were carried out with preparations of rabbit jejunum and uterus with the spontaneous contractile activity, to evaluate the effect of cumulative concentrations of the extract on basal tone, amplitude, and frequency of contractions. Results: Catechin, quercetin, kaempferol, isorhamnetin and chlorogenic, ferulic, and p-coumaric acid were identified. α-, β-, and γ-tocopherols have been highlighted and α-tocopherol is the major component. OFI cladodes contain significant amount of polyphenols and tocopherols that are effective radical scavengers and inhibited ethanol 1,1-diphenyl-2-picrylhydrazyl formation by 50%. OFI cladodes caused a light inhibition of amplitude and frequency of spontaneous contractions and a marked decrease in muscle basal tone of rabbit jejunum preparations. On spontaneously contracting uterus preparations, the addition of increasing concentrations of cladode extract caused uterine muscle relaxation. Conclusion: The contraction of smooth muscle preparations depends on an increase in cytoplasmic free calcium ion concentration, which activates the contractile elements. The flavonoids may suppress the contractility of smooth myocytes, by an inhibition of availability of Ca2+ for muscle contraction. SUMMARY Opuntia ficus-indica (OFI) cladodes contain significant amount of polyphenols and tocopherols that are effective radical

  16. Synthesis of potentially bioactive compounds and tools for biological studies

    International Nuclear Information System (INIS)

    Cappa, F.

    2014-01-01

    synthesis on a preparative scale may potentially increase the specificity and biological activity of these carbohydrates and deepen the understanding of glycobiology in the research of new medicines. (author) [de

  17. Use of different spices as potential natural antioxidant additives on cooked beans (Phaseolus vulgaris). Increase of DPPH radical scavenging activity and total phenolic content.

    Science.gov (United States)

    Pereira, Marina Pelincer; Tavano, Olga Luisa

    2014-12-01

    Herbs and spices, excellent sources of phenolic compounds, can be considered potential antioxidant additives. The use of spices must strike a balance between their potential antioxidant capabilities during preparation and the flavor acceptance, in order to avoid rejection of the food. The aimed of this study is to evaluate the influence of different spices and their concentrations on cooked common beans, focusing its potential as antioxidant additives. Onion, parsley, spring onion, laurel and coriander increased the antioxidant activity of preparation when used at 7.96 g of onion, 1.06 g parsley, 3.43 g spring onion, 0.25 g laurel (dry leaves), and 0.43 g coriander/100 g of cooked beans. Besides, these spices concentrations enhance total phenolics and alter the mixture protein digestibility minimally. For garlic samples it was not possible to establish a concentration that increases the antioxidant activity of cooked beans.

  18. Biochemical Constituents and in Vitro Antioxidant and Anticholinesterase Potential of Seeds from Native Korean Persimmon Genotypes

    Directory of Open Access Journals (Sweden)

    Saqib Bilal

    2016-07-01

    Full Text Available In the current study, the functional and biochemical potential of the seeds of four persimmon cultivars (PC1, PC2, PC3 and PC4 and their role against oxidative stress and acetylcholinesterase (AChE inhibition were evaluated. In terms of biochemical compositions, free amino acids, fatty acids and organic acids analysis was performed. The free amino acids ranged from 2617.31 (PC2 to 3773.01 μg∙g−1 dry weight (PC4. Oleic acid and linoleic acid were the principal fatty acids, which were significantly higher in PC4 and PC1, respectively. PC4 presented the highest amount of organic acid content (4212 mg∙kg−1, whereas PC2 presented the lowest (2498 mg∙kg−1. PC2 contained higher total phenolic content and flavonoid content, whereas PC3 had the lowest amount as compared to other cultivars. The in vitro DPPH, ABTS and superoxide anion radicals scavenging activity increased in a dose-dependent manner, whereas PC2 showed significantly higher scavenging activities as compared to PC1, PC2 and PC4 types. In the case of AChE inhibition, PC4 showed a moderate activity (67.34% ± 1.8%. In conclusion, the current findings reveal that the studied persimmon seeds cultivars are a source of bioactive natural antioxidants and AChE inhibitors. Such natural products could be employed in pharmaceutical and food industries, whilst can also be considered for the treatment of neurodegenerative diseases such as Alzheimer’s.

  19. Evaluation of Antioxidant and Antibacterial Potentials of Nigella sativa L. Suspension Cultures under Elicitation

    Directory of Open Access Journals (Sweden)

    Hera Chaudhry

    2015-01-01

    Full Text Available Nigella sativa L. (family Ranunculaceae is an annual herb of immense medicinal properties because of its major active components (i.e., thymoquinone (TQ, thymohydroquinone (THQ, and thymol (THY. Plant tissue culture techniques like elicitation, Agrobacterium mediated transformation, hairy root culture, and so on, are applied for substantial metabolite production. This study enumerates the antibacterial and antioxidant potentials of N. sativa epicotyl suspension cultures under biotic and abiotic elicitation along with concentration optimization of the elicitors for enhanced TQ and THY production. Cultures under different concentrations of pectin and manganese chloride (MnCl2 elicitation (i.e., 5 mg/L, 10 mg/L, and 15 mg/L showed that the control, MnCl2 10 mg/L, and pectin 15 mg/L suspension extracts greatly inhibited the growth of E. coli, S. typhimurium, and S. aureus (MIC against E. coli, i.e., 2.35±0.8, 2.4±0.2, and 2.46±0.5, resp.. Elicitation decreased SOD enzyme activity whereas CAT enzyme activity increased remarkably under MnCl2 elicitation. MnCl2 10 mg/L and pectin 15 mg/L elicitation enhanced the DPPH radical inhibition ability, but ferric scavenging activity was comparable to the control. TQ and THY were quantified by LC-MS/MS in the cultures with high bioactive properties revealing maximum content under MnCl2 10 mg/L elicitation. Therefore, MnCl2 elicitation can be undertaken on large scale for sustainable metabolite production.

  20. Evaluation of Antioxidant and Antibacterial Potentials of Nigella sativa L. Suspension Cultures under Elicitation.

    Science.gov (United States)

    Chaudhry, Hera; Fatima, Nida; Ahmad, Iffat Zareen

    2015-01-01

    Nigella sativa L. (family Ranunculaceae) is an annual herb of immense medicinal properties because of its major active components (i.e., thymoquinone (TQ), thymohydroquinone (THQ), and thymol (THY)). Plant tissue culture techniques like elicitation, Agrobacterium mediated transformation, hairy root culture, and so on, are applied for substantial metabolite production. This study enumerates the antibacterial and antioxidant potentials of N. sativa epicotyl suspension cultures under biotic and abiotic elicitation along with concentration optimization of the elicitors for enhanced TQ and THY production. Cultures under different concentrations of pectin and manganese chloride (MnCl2) elicitation (i.e., 5 mg/L, 10 mg/L, and 15 mg/L) showed that the control, MnCl2 10 mg/L, and pectin 15 mg/L suspension extracts greatly inhibited the growth of E. coli, S. typhimurium, and S. aureus (MIC against E. coli, i.e., 2.35 ± 0.8, 2.4 ± 0.2, and 2.46 ± 0.5, resp.). Elicitation decreased SOD enzyme activity whereas CAT enzyme activity increased remarkably under MnCl2 elicitation. MnCl2 10 mg/L and pectin 15 mg/L elicitation enhanced the DPPH radical inhibition ability, but ferric scavenging activity was comparable to the control. TQ and THY were quantified by LC-MS/MS in the cultures with high bioactive properties revealing maximum content under MnCl2 10 mg/L elicitation. Therefore, MnCl2 elicitation can be undertaken on large scale for sustainable metabolite production.

  1. Antioxidant potential properties of mushroom extract (Agaricus bisporus) against aluminum-induced neurotoxicity in rat brain.

    Science.gov (United States)

    Waly, Mostafa I; Guizani, Nejib

    2014-09-01

    Aluminum (Al) is an environmental toxin that induces oxidative stress in neuronal cells. Mushroom cultivar extract (MCE) acted as a potent antioxidant agent and protects against cellular oxidative stress in human cultured neuronal cells. This study aimed to investigate the neuroprotective effect of MCE against Al-induced neurotoxicity in rat brain. Forty Sprague-Dawley rats were divided into 4 groups (10 rats per group), control group, MCE-fed group, Al-administered group and MCE/Al-treated group. Animals were continuously fed ad-libitum their specific diets for 4 weeks. At the end of the experiment, all rats were sacrificed and the brain tissues were homogenized and examined for biochemical measurements of neurocellular oxidative stress indices [glutathione (GSH), Total Antioxidant Capacity (TAC), antioxidant enzymes and oxidized dichlorofluorescein (DCF)]. Al-administration caused inhibition of antioxidant enzymes and a significant decrease in GSH and TAC levels, meanwhile it positively increased cellular oxidized DCF level, as well as Al concentration in brain tissues. Feeding animals with MCE had completely offset the Al-induced oxidative stress and significantly restrict the Al accumulation in brain tissues of Al-administered rats. The results obtained suggest that MCE acted as a potent dietary antioxidant and protects against Al-mediated neurotoxicity, by abrogating neuronal oxidative stress.

  2. Evaluation of the In Vitro and In Vivo Antioxidant Potentials of Aframomum melegueta Methanolic Seed Extract

    Directory of Open Access Journals (Sweden)

    Samuel Okwudili Onoja

    2014-01-01

    Full Text Available Aframomum melegueta Schum (Zingiberaceae is a perennial herb widely cultivated for its valuable seeds in the tropical region of Africa. The present study evaluated the antioxidant effects of methanolic seed extract of A. melegueta. The antioxidant effects were evaluated using in vitro, 2, 2-diphenylpicrylhydrazine photometric assay and in vivo serum catalase, superoxide dismutase and thiobarbituric acid reactive substance assay method. The extract (25–400 μg/mL concentration produced concentration dependent increase in antioxidant activity in 2, 2-diphenylpicrylhydrazine photometric assay. The extract (400 mg/kg showed a significant (P<0.05 increase in serum catalase and superoxide dismutase activity when compared with the control group. The extract (400 mg/kg showed a significant (P<0.05 decrease in the serum level of thiobarbituric acid reactive substance when compared with the control group. These findings suggest that the seed of A. melegueta has potent antioxidant activity which may be responsible for some of its reported pharmacological activities and can be used as antioxidant supplement.

  3. Reaction product of pyrogallol with methyl linoleate and its antioxidant potential for biodiesel

    Science.gov (United States)

    Sutanto, H.; Ainny, L.; Lukman; Susanto, B. H.; Nasikin, M.

    2018-03-01

    The demand of biodiesel as an alternative fuel is increasing due to fossil fuel depletion. Biodiesel is a renewable diesel fuel in the form of fatty acid methyl ester or FAME as a result of an esterification of plant oils in a presence of catalyst. Compared to the conventional diesel fuel, biodiesel is more biodegradable, has higher lubricity, and lower toxic emissions. However, the high content of unsaturated fatty acid leads to a problem that biodiesel is prone to oxidation during storage period. This oxidation instability causes degradation of fuel quality and will affect engine performance. Pyrogallol and other phenolic derivatives have been used as the antioxidant additives to prevent biodiesel oxidation. As reported in many researches, pyrogallol is one of the best phenolic antioxidant. However, its low solubility in biodiesel needs an attention. Several reports indicate the increasing solubility of pyrogallol using molecule modification with the addition of alkyl groups to its benzene ring via electrophilic substitution. This paper discusses the idea about modification of pyrogallol molecule and methyl linoleate using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical in order to increase its solubility in biodiesel while keeping its antioxidant property. Three responses were analyzed to examine the antioxidant activity: iodine value, viscosity, and color intensity. The result shown that the addition of 0.1% reaction product exhibit antioxidant activity in biodiesel.

  4. Antioxidant potential of bitter cumin (Centratherum anthelminticum (L. Kuntze seeds in in vitro models

    Directory of Open Access Journals (Sweden)

    Naidu Kamatham A

    2011-05-01

    Full Text Available Abstract Background Bitter cumin (Centratherum anthelminticum (L. Kuntze, is a medicinally important plant. Earlier, we have reported phenolic compounds, antioxidant, and anti-hyperglycemic, antimicrobial activity of bitter cumin. In this study we have further characterized the antioxidative activity of bitter cumin extracts in various in vitro models. Methods Bitter cumin seeds were extracted with a combination of acetone, methanol and water. The antioxidant activity of bitter cumin extracts were characterized in various in vitro model systems such as DPPH radical, ABTS radical scavenging, reducing power, oxidation of liposomes and oxidative damage to DNA. Results The phenolic extracts of bitter cumin at microgram concentration showed significant scavenging of DPPH and ABTS radicals, reduced phosphomolybdenum (Mo(VI to Mo(V, ferricyanide Fe(III to Fe(II, inhibited liposomes oxidation and hydroxyl radical induced damage to prokaryotic genomic DNA. The results showed a direct correlation between phenolic acid content and antioxidant activity. Conclusion Bitter cumin is a good source of natural antioxidants.

  5. Camel milk protein hydrolysates with improved technofunctional properties and enhanced antioxidant potential in in vitro and in food model systems.

    Science.gov (United States)

    Al-Shamsi, Kholoud Awad; Mudgil, Priti; Hassan, Hassan Mohamed; Maqsood, Sajid

    2018-01-01

    Camel milk protein hydrolysates (CMPH) were generated using proteolytic enzymes, such as alcalase, bromelain, and papain, to explore the effect on the technofunctional properties and antioxidant potential under in vitro and in real food model systems. Characterization of the CMPH via degree of hydrolysis, sodium dodecyl sulfate-PAGE, and HPLC revealed that different proteins in camel milk underwent degradation at different degrees after enzymatic hydrolysis using 3 different enzymes for 2, 4, and 6 h, with papain displaying the highest degradation. Technofunctional properties, such as emulsifying activity index, surface hydrophobicity, and protein solubility, were higher in CMPH than unhydrolyzed camel milk proteins. However, the water and fat absorption capacity were lower in CMPH compared with unhydrolyzed camel milk proteins. Antioxidant properties as assessed by 2,2-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activities and metal-chelating activity were enhanced after hydrolysis, in contrast to ferric-reducing antioxidant power which showed a decrease after hydrolysis. The CMPH were also tested in real food model systems for their potential to inhibit lipid peroxidation in fish mince and grape seed oil-in-water emulsion, and we found that papain-produced hydrolysate displayed higher inhibition than alcalase- and bromelain-produced hydrolysates. Therefore, the CMPH demonstrated effective antioxidant potential in vitro as well as in real food systems and showed enhanced functional properties, which guarantees their potential applications in functional foods. The present study is one of few reports available on CMPH being explored in vitro as well as in real food model systems. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Evaluation of Antioxidant Potential of Lavandula x intermedia Emeric ex Loisel. 'Budrovka': A Comparative Study with L. angustifolia Mill.

    OpenAIRE

    Blažeković, Biljana; Vladimir-Knežević, Sanda; Brantner, Adelheid; Štefan, Maja Bival

    2010-01-01

    A Croatian indigenous cultivar of lavandin, Lavandula x intermedia 'Budrovka' (Lamiaceae) was studied for the phenolic acids, flavonoids, anthocyanins, procyanidins and total tannins, as well as total polyphenols content, in the flower, inflorescence stalk and leaf ethanolic extracts. Antioxidant potentials on these plant part extracts were assessed by the DPPH free radical scavenging activity, iron chelating activity, reducing power, lipid peroxidation inhibition properties and total antioxi...

  7. A Review on the Effect of Drying on Antioxidant Potential of Fruits and Vegetables.

    Science.gov (United States)

    Kamiloglu, Senem; Toydemir, Gamze; Boyacioglu, Dilek; Beekwilder, Jules; Hall, Robert D; Capanoglu, Esra

    2016-07-29

    The role of antioxidants in human nutrition has gained increased interest, especially due to their associated health beneficial effects for a number of chronic diseases, including cardiovascular diseases and certain types of cancer. Fruits and vegetables are perishable and difficult to preserve as fresh products. Dried fruits and vegetables can be easily stored, transported at relatively low cost, have reduced packing costs, and their low water content delays microbial spoilage. Air-, freeze-, microwave- and sun-drying are among the most thoroughly studied drying methods. This review provides an overview of recent findings on the effects of different drying techniques on major antioxidants of fruits and vegetables. In particular, changes in ascorbic acid, carotenoids, flavonoids, phenolic acids, total phenolics, and antioxidant activity are discussed in detail.

  8. Factors Potentially Influencing Student Acceptance of Biological Evolution

    Science.gov (United States)

    Wiles, Jason R.

    This investigation explored scientific, religious, and otherwise nonscientific factors that may influence student acceptance of biological evolution and related concepts, how students perceived these factors to have influenced their levels of acceptance of evolution and changes therein, and what patterns arose among students' articulations of how their levels of acceptance of evolution may have changed. This exploration also measured the extent to which students' levels of acceptance changed following a treatment designed to address factors identified as potentially affecting student acceptance of evolution. Acceptance of evolution was measured using the MATE instrument (Rutledge and Warden, 1999; Rutledge and Sadler, 2007) among participants enrolled in a secondary-level academic program during the summer prior to their final year of high school and as they transitioned to the post-secondary level. Student acceptance of evolution was measured to be significantly higher than pre-treatment levels both immediately following and slightly over one year after treatment. Qualitative data from informal questionnaires, from formal course evaluations, and from semi-structured interviews of students engaged in secondary level education and former students at various stages of post-secondary education confirmed that the suspected factors were perceived by participants to have influenced their levels of acceptance of evolution. Furthermore, participant reports provided insight regarding the relative effects they perceived these factors to have had on their evolution acceptance levels. Additionally, many participants reported that their science teachers in public schools had avoided, omitted, or denigrated evolution during instruction, and several of these students expressed frustration regarding what they perceived to have been a lack of education of an important scientific principle. Finally, no students expressed feelings of being offended by having been taught about

  9. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources

    OpenAIRE

    Xu, Dong-Ping; Li, Ya; Meng, Xiao; Zhou, Tong; Zhou, Yue; Zheng, Jie; Zhang, Jiao-Jiao; Li, Hua-Bin

    2017-01-01

    Natural antioxidants are widely distributed in food and medicinal plants. These natural antioxidants, especially polyphenols and carotenoids, exhibit a wide range of biological effects, including anti-inflammatory, anti-aging, anti-atherosclerosis and anticancer. The effective extraction and proper assessment of antioxidants from food and medicinal plants are crucial to explore the potential antioxidant sources and promote the application in functional foods, pharmaceuticals and food additive...

  10. In vitro antioxidant potential of medicinal plant extracts and their activities against oral bacteria based on Brazilian folk medicine.

    Science.gov (United States)

    Alviano, Wagner S; Alviano, Daniela S; Diniz, Cláudio G; Antoniolli, Angelo R; Alviano, Celuta S; Farias, Luiz M; Carvalho, Maria Auxiliadora R; Souza, Margareth M G; Bolognese, Ana Maria

    2008-06-01

    This study aims to determine antibacterial activities of Cocos nucifera (husk fiber), Ziziphus joazeiro (inner bark), Caesalpinia pyramidalis (leaves), aqueous extracts and Aristolochia cymbifera (rhizomes) alcoholic extract against Prevotella intermedia, Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus mutans and Lactobacillus casei. The antioxidant activity and acute toxicity of these extracts were also evaluated. The plant extracts antibacterial activity was evaluated in vitro and the minimal inhibitory concentration (MIC) was determined by the broth micro-dilution assay. The bacterial killing kinetic was also evaluated for all extracts. In addition, the antibacterial effect of the extracts was tested in vitro on artificial oral biofilms. The acute toxicity of each extract was determined in according to Lorke [Lorke D. A new approach to practical acute toxicity testing. Arch Toxicol 1983;54:275-87] and the antioxidant activity was evaluated by DPPH photometric assay [Mensor LL, Menezes FS, Leitão GG, Reis AS, Santos TC, Coube CS, et al. Screening of Brazilian plants extract for antioxidant activity by the use of DPPH free radical method. Phytother Res 2001;15:127-30]. MIC and the bactericidal concentrations were identical, for each evaluated extract. However, microbes of artificial biofilms were less sensitive to the extracts than the planktonic strains. A. cymbifera extract induced the highest bactericidal effect against all tested bacteria, followed by C. nucifera, Z. joazeiro and C. pyramidalis extracts, respectively. All extracts showed good antioxidant potential, being C. nucifera and C. pyramidalis aqueous extracts the most active ones. In conclusion, all oral bacteria tested (planktonic or in artificial biofilms) were more susceptible to, and rapidly killed in presence of A. cymbifera, C. pyramidalis and C. nucifera than Z. joazeiro extracts, respectively. Thus, these extracts may be of great interest for future studies about treatment of

  11. Potentiation of antioxidant effect of dietary tender cluster beans (Cyamopsis tetragonoloba) by garlic (Allium sativum) in high-cholesterol-fed rats.

    Science.gov (United States)

    Pande, Shubhra; Srinivasan, Krishnapura

    2013-10-01

    The antioxidant role of tender cluster beans (Cyamopsis tetragonoloba, CB), a rich source of soluble fibre, was investigated in a hypercholesterolemia-induced oxidative stress situation in rats. In the context of dietary garlic (Allium sativa) potentiating the hypocholesterolemic influence of CB, we also examined if dietary garlic enhances the antioxidant potential of CB. Groups of Wistar rats were rendered hypercholesterolemic by feeding them a 0.5% cholesterol diet for 8 weeks. Dietary interventions were made by inclusion of 15% tender CB powder or 1% garlic powder or their combination in a high-cholesterol diet. Concentrations of antioxidant molecules and activities of antioxidant enzymes in blood and liver were examined. Dietary CB displayed an antioxidant influence in terms of elevating ascorbic acid and glutathione concentrations and stimulating the activities of antioxidant enzymes both in blood and liver. The antioxidant effect of dietary CB was generally potentiated by co-administration of garlic. Thus, consumption of tender CB and garlic together could form a strategy for improving the body's antioxidant status.

  12. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources.

    Science.gov (United States)

    Xu, Dong-Ping; Li, Ya; Meng, Xiao; Zhou, Tong; Zhou, Yue; Zheng, Jie; Zhang, Jiao-Jiao; Li, Hua-Bin

    2017-01-05

    Natural antioxidants are widely distributed in food and medicinal plants. These natural antioxidants, especially polyphenols and carotenoids, exhibit a wide range of biological effects, including anti-inflammatory, anti-aging, anti-atherosclerosis and anticancer. The effective extraction and proper assessment of antioxidants from food and medicinal plants are crucial to explore the potential antioxidant sources and promote the application in functional foods, pharmaceuticals and food additives. The present paper provides comprehensive information on the green extraction technologies of natural antioxidants, assessment of antioxidant activity at chemical and cellular based levels and their main resources from food and medicinal plants.

  13. Comprehensive Evaluation of Antioxidant Potential of 10 Salvia Species Using High Pressure Methods for the Isolation of Lipophilic and Hydrophilic Plant Fractions.

    Science.gov (United States)

    Šulniūtė, Vaida; Ragažinskienė, Ona; Venskutonis, Petras Rimantas

    2016-03-01

    Common sage (Salvia officinalis) is a well-known source of antioxidants and other bioactive compounds, while many other species within the Salvia genus have been poorly studied. The total content of phenolic compounds (TPC) and antioxidant capacity indicators were evaluated for the extracts of 10 Salvia spp. consecutively isolated by supercritical carbon dioxide (SFE-CO2) and pressurized liquid extraction with ethanol and water. Antioxidant properties of solid plant material were evaluated by the direct antioxidant capacity measurement by the so-called QUENCHER method. Total antioxidant capacity values were calculated by integrating the results obtained for all extracts and the whole plant material. TPC and antioxidant capacity of the extracts were greatly dependent on the plant species and extraction solvent. Ethanol extracts possessed significantly higher antioxidant capacity and TPC comparing to the extracts isolated with other solvents. In general, all studied Salvia species demonstrated strong antioxidant capacity; however, the antioxidant potential of such species as S. forsskaolii and S. verticillata was the highest and comparable with that of S. officinalis. The majority of studied Salvia species may be considered as promising sources of functional ingredients to be used in human nutrition for functional food and nutraceutical formulations.

  14. Evaluation of wound healing, anti-microbial and antioxidant potential of Pongamia pinnata in wistar rats

    Directory of Open Access Journals (Sweden)

    Deepak Dwivedi

    2017-01-01

    Conclusion: Increased wound contraction and tensile strength, augmented hydroxyproline and hexosamine content, antioxidative activity and moderate antimicrobial activity support the early wound healing exhibited by P. pinnata. Induction in cytokine production may be one of the mechanisms in accelerating the wound healing. Results suggest that P. pinnata may be useful in tropical management of wound healing.

  15. Molecular Characterization and Antioxidant Potential of Three Wild Culinary-Medicinal Mushrooms from Tripura, Northeast India.

    Science.gov (United States)

    Das, Aparajita Roy; Borthakur, Madhusmita; Saha, Ajay Krishna; Joshi, Santa Ram; Das, Panna

    2017-01-01

    The aim of this study was to characterize 3 wild culinary-medicinal mushrooms using molecular tools and to analyze their antioxidant activity. Antioxidant properties were studied by evaluating free radical scavenging, reducing power, and chelating effect. The mushrooms were identified as Lentinus squarrosulus, L. tuber-regium, and Macrocybe gigantean by amplifying internal transcribed spacer regions of ribosomal DNA. The results demonstrated that the methanolic extract of M. gigantean has the highest free radical scavenging effect and chelating effect, whereas the methanolic extract of L. squarrosulus has the highest reducing power. The highest total phenol content and the most ascorbic acid were found in the M. gigantean extracts. Among the 3 mushroom extracts, M. gigantean displayed the most potent antioxidant activity. Molecular characterization using the nuclear ribosomal internal transcribed spacer region as a universal DNA marker was an effective tool in the identification and phylogenetic analysis of the studied mushrooms. The study also indicated that these wild macrofungi are rich sources of natural antioxidants.

  16. A Review on the Effect of Drying on Antioxidant Potential of Fruits and Vegetables

    NARCIS (Netherlands)

    Kamiloglu, Senem; Toydemir, Gamze; Boyacioglu, Dilek; Beekwilder, Jules; Hall, Robert D.; Capanoglu, Esra

    2016-01-01

    The role of antioxidants in human nutrition has gained increased interest, especially due to their associated health beneficial effects for a number of chronic diseases, including cardiovascular diseases and certain types of cancer. Fruits and vegetables are perishable and difficult to preserve

  17. Dill (Anethum graveolens L. seeds essential oil as a potential natural antioxidant and antimicrobial agent

    Directory of Open Access Journals (Sweden)

    Stanojević, Lj.P.

    2016-09-01

    Full Text Available Synthetic antioxidants and antimicrobial agents can induce many undesired side effects, which attracts interest of food producers and consumers in finding ingredients of natural origin. The antioxidative and antimicrobial activity of essential oil from dill (Anethum graveolens L. seeds was investigated in terms of its possible application as natural antioxidant and antimicrobial agent. DPPH test and FRAP method have been used for the investigation of antioxidative activity of essential oil. Disc-diffusion method has been used for investigation of oil antimicrobial activity on following microorganisms: Staphylococcus aureus, Listeria monocytogenes, Bacillus subtilis, Escherichia coli, Salmonella enteritidis and Candida albicans. Essential oil, in concentration of 29 mg/mL, incubated for 60 minutes has shown the highest degree of DPPH radicals’ neutralization (79.62%. FRAP activity of oil was 40.63 μmol Fe2+/g of essential oil. Essential oil showed the best antimicrobial activity on Staphylococcus aureus. Furthermore, there was a significant antimicrobial activity on all investigated microorganisms.

  18. Red Chicory (Cichorium intybus L. cultivar as a Potential Source of Antioxidant Anthocyanins for Intestinal Health

    Directory of Open Access Journals (Sweden)

    Laura D'evoli

    2013-01-01

    Full Text Available Fruit- and vegetable-derived foods have become a very significant source of nutraceutical phytochemicals. Among vegetables, red chicory (Cichorium Intybus L. cultivar has gained attention for its content of phenolic compounds, such as the anthocyanins. In this study, we evaluated the nutraceutical effects, in terms of antioxidant, cytoprotective, and antiproliferative activities, of extracts of the whole leaf or only the red part of the leaf of Treviso red chicory (a typical Italian red leafy plant in various intestinal models, such as Caco-2 cells, differentiated in normal intestinal epithelia and undifferentiated Caco-2 cells. The results show that the whole leaf of red chicory can represent a good source of phytochemicals in terms of total phenolics and anthocyanins as well as the ability of these phytochemicals to exert antioxidant and cytoprotective effects in differentiated Caco-2 cells and antiproliferative effects in undifferentiated Caco-2 cells. Interestingly, compared to red chicory whole leaf extracts, the red part of leaf extracts had a significantly higher content of both total phenolics and anthocyanins. The same extracts effectively corresponded to an increase of antioxidant, cytoprotective, and antiproliferative activities. Taken together, these findings suggest that the red part of the leaf of Treviso red chicory with a high content of antioxidant anthocyanins could be interesting for development of new food supplements to improve intestinal health.

  19. Variation in phenolic compounds of Ugni molinae populations and their potential use as antioxidant supplement

    Directory of Open Access Journals (Sweden)

    Marcia A. Avello

    2012-10-01

    Full Text Available In the present work we carried out a comparative study of total phenolic contents and antioxidant capacity of aqueous leaf extracts of Ugni molinae Turcz., Myrtaceae (infusion and Soxhlet extracted prepared from continent and Juan Fernández Island samples. The results revealed that total phenol content (TPC, tannins (TTC and flavonoids (TFC for U. molinae extracts (infusion and Soxhlet extracts from island leaves were 38.5, 56.7 and 37.5% higher than those obtained with leaves from the continent, respectively. Also, HPLC profiles showed important differences between U. molinae populations. In vitro antioxidant capacity (scavenging of DPPH radical for 1% infusion and aqueous extract (Soxhlet method of U. molinae from island samples, was 15% greater than from continent samples. Further, in vivo impact of U. molinae intake (1% infusion was studied in plasma samples obtained from healthy volunteers. Participants that consumed tea prepared with leaves from island population showed higher TBARS reduction and plasma antioxidant capacity (TEAC-CUPRAC than those who consumed tea prepared with leaves from continental population. The conditions of the territory in which U. molinae populations growth could explain the differences in their composition and activity. According to results, island U. molinae populations could be an important source of study for the development of an antioxidant supplement, and thereby contribute to the use of this species that has becoming an ecological problem in the island.

  20. Antioxidant potential and quality characteristics of vegetable-enriched corn-based extruded snacks.

    Science.gov (United States)

    Bisharat, G I; Lazou, A E; Panagiotou, N M; Krokida, M K; Maroulis, Z B

    2015-07-01

    Phenolic content, antioxidant activity and sensory characteristics of vegetable-enriched extrudates were investigated as a result of extrusion conditions, including extrusion temperature (140-180 °C), screw rotation speed (150-250 rpm) and feed moisture content (14-19 % w.b.). Broccoli flour and olive paste was used in mixtures with corn flour at a ratio of 4 to 10 % (broccoli/corn) and 4 to 8 % (olive paste/corn). A simple power model was developed for the prediction of phenolic content and antioxidant activity of extrudates by extrusion conditions and feed composition. Phenolic content and antioxidant activity of broccoli enriched extrudates increased with extrusion temperature and broccoli addition and decreased with feed moisture content. The antioxidant activity of olive paste extrudates increased with material ratio and decreased with feed moisture content and screw rotation. Sensory porosity, homogenous structure, crispness, cohesiveness and melting decreased with feed moisture content, while the latter increased the mealy flavor and hardness of extrudates. Acceptable snacks containing broccoli flour or olive paste can be produced by selecting the appropriate process conditions.

  1. Consumption of Hibiscus sabdariffa L. aqueous extract and its impact on systemic antioxidant potential in healthy subjects.

    Science.gov (United States)

    Frank, Thomas; Netzel, Gabriele; Kammerer, Dietmar R; Carle, Reinhold; Kler, Adolf; Kriesl, Erwin; Bitsch, Irmgard; Bitsch, Roland; Netzel, Michael

    2012-08-15

    To evaluate health benefits attributed to Hibiscus sabdariffa L. a randomized, open-label, two-way crossover study was undertaken to compare the impact of an aqueous H. sabdariffa L. extract (HSE) on the systemic antioxidant potential (AOP; assayed by ferric reducing antioxidant power (FRAP)) with a reference treatment (water) in eight healthy volunteers. The biokinetic variables were the areas under the curve (AUC) of plasma FRAP, ascorbic acid and urate that are above the pre-dose concentration, and the amounts excreted into urine within 24 h (Ae(0-24) ) of antioxidants as assayed by FRAP, ascorbic acid, uric acid, malondialdehyde (biomarker for oxidative stress), and hippuric acid (metabolite and potential biomarker for total polyphenol intake). HSE caused significantly higher plasma AUC of FRAP, an increase in Ae(0-24) of FRAP, ascorbic acid and hippuric acid, whereas malondialdehyde excretion was reduced. Furthermore, the main hibiscus anthocyanins as well as one glucuronide conjugate could be quantified in the volunteers' urine (0.02% of the administered dose). The aqueous HSE investigated in this study enhanced the systemic AOP and reduced the oxidative stress in humans. Furthermore, the increased urinary hippuric acid excretion after HSE consumption indicates a high biotransformation of the ingested HSE polyphenols, most likely caused by the colonic microbiota. Copyright © 2012 Society of Chemical Industry.

  2. Rye and Wheat Bran Extracts Isolated with Pressurized Solvents Increase Oxidative Stability and Antioxidant Potential of Beef Meat Hamburgers.

    Science.gov (United States)

    Šulniūtė, Vaida; Jaime, Isabel; Rovira, Jordi; Venskutonis, Petras Rimantas

    2016-02-01

    Rye and wheat bran extracts containing phenolic compounds and demonstrating high DPPH• (2,2-diphenyl-1-picrylhydrazyl), ABTS(•+) (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) scavenging and oxygen radical absorbance capacities (ORAC) were tested in beef hamburgers as possible functional ingredients. Bran extracts significantly increased the indicators of antioxidant potential of meat products and their global antioxidant response (GAR) during physiological in vitro digestion. The extracts also inhibited the formation of oxidation products, hexanal and malondialdehyde, of hamburgers during their storage; however, they did not have significant effect on the growth of microorganisms. Hamburgers with 0.8% wheat bran extract demonstrated the highest antioxidant potential. Some effects of bran extracts on other quality characteristics such as pH, color, formation of metmyoglobin were also observed, however, these effects did not have negative influence on the overall sensory evaluation score of hamburgers. Consequently, the use of bran extracts in meat products may be considered as promising means of increasing oxidative product stability and enriching with functional ingredients which might possess health benefits. © 2016 Institute of Food Technologists®

  3. Antioxidant Potential and DNA Damage Protection by the Slate Grey Saddle Mushroom, Helvella lacunosa (Ascomycetes), from Kashmir Himalaya (India).

    Science.gov (United States)

    Shameem, Nowsheen; Kamili, Azra N; Ahmad, Mushtaq; Masoodi, F A; Parray, Javid A

    2016-01-01

    This study pertains to the radical scavenging potential of and DNA protection by Helvella lacunosa, an edible mushroom from Kashmir Himalaya (India). Different solvents, on the basis of their polarities, were used to extract all solvent-soluble bioactive compounds. Seven different antioxidant methods were also used to determine extensive radical scavenging activity. The mushroom ethanol extract and butanol extract showed effective scavenging activity of radicals at 95% and 89%, respectively. At 800 µg/mg, the ethanol extract was potent enough to protect DNA from degradation by hydroxyl radicals. It is evident from these findings that the presence of antioxidant substances signifies the use of H. lacunosa as food in the mountainous valleys of the Himalayan region.

  4. Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves

    Directory of Open Access Journals (Sweden)

    Patil Shriniwas P.

    2017-07-01

    Full Text Available Several attempts have been made for green synthesis of silver nanoparticles (AgNPs using different plant extracts. Present study revealed that, antioxidant, antibacterial and cytotoxic AgNPs were synthesized using terpenes-rich extract (TRE of environmentally notorious Lantana camara L. leaves. AgNPs were characterized by advanced techniques like UV–Visible and Infra red spectroscopy; XRD, SEM techniques as terpenes coated sphere shaped NPs with average diameter 425 nm. Further, on evaluation, AgNPs were found to exhibit dose – dependent antioxidant potential, good to moderate antibacterial activity against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa; and toxicity on Brine shrimp (A. salinanauplii with LD50 value 514.50 µg/ml.

  5. Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential

    Science.gov (United States)

    2014-01-01

    Background Natural antioxidant products are increasingly being used to treat various pathological liver conditions considering the role of oxidative stress in their pathogenesis. Rosemary essential oil has already being used as a preservative in food industry due to its antioxidant and antimicrobial activities, but it was shown to possess additional health benefits. The aim of our study was to evaluate the protective effect of rosemary essential oil on carbon tetrachloride - induced liver injury in rats and to explore whether its mechanism of action is associated with modulation of hepatic oxidative status. Methods Chemical composition of isolated rosemary essential oil was determined by gas chromatography and mass spectrometry. Antioxidant activity was determined in vitro using DPPH assay. Activities of enzyme markers of hepatocellular damage in serum and antioxidant enzymes in the liver homogenates were measured using the kinetic spectrophotometric methods. Results In this research, we identified 29 chemical compounds of the studied rosemary essential oil, and the main constituents were 1,8-cineole (43.77%), camphor (12.53%), and α-pinene (11.51%). Investigated essential oil was found to exert hepatoprotective effects in the doses of 5 mg/kg and 10 mg/kg by diminishing AST and ALT activities up to 2-fold in serum of rats with carbon tetrachloride - induced acute liver damage. Rosemary essential oil prevented carbon tetrachloride - induced increase of lipid peroxidation in liver homogenates. Furthermore, pre-treatment with studied essential oil during 7 days significantly reversed the activities of antioxidant enzymes catalase, peroxidase, glutathione peroxidase and glutathione reductase in liver homogenates, especially in the dose of 10 mg/kg. Conclusions Our results demonstrate that rosemary essential oil, beside exhibiting free radical scavenging activity determined by DPPH assay, mediates its hepatoprotective effects also through activation of

  6. Antioxidant potential of extracts from different agro wastes: Stabilization of corn oil

    Directory of Open Access Journals (Sweden)

    Ali Shahid Chatha, Shahzad

    2008-09-01

    Full Text Available The antioxidant potential of 80% methanolic extracts of some agro wastes (pomegranate peel, apple peel, banana peel, citrus peel, corncob, wheat husk, wheat bran, rice bran, and rice hull was assessed. The yields of the extracts varied over a wide range (8.83 to 29.9 g/100g of dry weight. TPC, TFC, total flavonols (kaempeferol, quercetin, myricetin; HPLC method, DPPH. radical scavenging and inhibition of linoleic acid peroxidation for the extracts varied significantly (P En este studio se determinó el potencial antioxidante de extractos de methanol al 80%, de distintos resíduos de granada, manzana, frutos cítricos, maíz, trigo y arroz. Los rendimientos de los extractos variaron en un amplio rango (8.89 a 29.9 g/100 g de materia seca. La cantidad total de compuestos fenólicos, de flavonoides y de flavonoles, así como la capacidad para secuestrar radicales y la inhibición de la oxidación del ácido linoleico varió significativamente (P < 0.05. El extracto de piel de granada contenía las cantidades más elevadas de compuestos fenólicos, de flavonoides y de flavonoles y exhibió la capacidad antioxidante más elevada, seguido del de piel de manzana, piel de cítricos, piel de plátano, mazorca de maíz, salvado de trigo, salvado de arroz, cáscara de trigo y cáscara de arroz. Igualmente, se estableció la actividad antioxidante de los extractos usando aceite de maíz como sustrato. Muestras de aceite estabilizadas con los distintos extractos (600 mg/kg fueron sometidas a oxidación acelerada (60 °C en horno durante 30 días con ciclos de calentamiento de 8 h/día y periódicamente se determinaron los siguientes índices: dienos y trienos conjugados, índice de panisidina e índice de peróxidos. Finalmente, se estudiaron las correlaciones entre los resultados de los distintos ensayos y los niveles de compuestos con acción antioxidante, destacando los extractos de pieles de fruta por su mayor contenido en compuestos fen

  7. Studies of the in vitro anticancer, antimicrobial and antioxidant potentials of selected Yemeni medicinal plants from the island Soqotra

    Science.gov (United States)

    2009-01-01

    Background Recent years have witnessed that there is a revival of interest in drug discovery from medicinal plants for the maintenance of health in all parts of the world. The aim of this work was to investigate 26 plants belonging to 17 families collected from a unique place in Yemen (Soqotra Island) for their in vitro anticancer, antimicrobial and antioxidant activities. Methods The 26 plants were extracted with methanol and hot water to yield 52 extracts. Evaluation for in vitro anticancer activity was done against three human cancer cell lines (A-427, 5637 and MCF-7) by using an established microtiter plate assay based on cellular staining with crystal violet. Antimicrobial activity was tested against three Gram-positive bacteria, two Gram-negative bacteria, one yeast species and three multiresistant Staphylococcus strains by using an agar diffusion method and the determination of MIC against three Gram-positive bacteria with the broth micro-dilution assay. Antioxidant activity was investigated by measuring the scavenging activity of the DPPH radical. Moreover, a phytochemical screening of the methanolic extracts was done. Results Notable cancer cell growth inhibition was observed for extracts from Ballochia atro-virgata, Eureiandra balfourii and Hypoestes pubescens, with IC50 values ranging between 0.8 and 8.2 μg/ml. The methanol extracts of Acanthospermum hispidum, Boswellia dioscorides, Boswellia socotrana, Commiphora ornifolia and Euphorbia socotrana also showed noticeable antiproliferative potency with IC50 values 15 mm and MIC values ≤ 250 μg/ml. In addition, the methanolic extracts of Acacia pennivenia, Boswellia dioscorides, Boswellia socotrana and Commiphora ornifolia showed good antioxidant potential at low concentrations (more than 80% at 50 μg/ml). Conclusion Our results show once again that medicinal plants can be promising sources of natural products with potential anticancer, antimicrobial and antioxidative activity. The results will guide

  8. Chemical analysis and biological potential of Valerian root as used ...

    African Journals Online (AJOL)

    The herb prepared from this plant was studied to determine the chemical composition of its essential oil, carried out phytochemical screening and biological activities on ... rat paw oedema model comparable to aspirin, indicating anti-inflammatory activity; but lacked analgesic activity on the acetic acid-induced writhing test.

  9. Single-step preparation of selected biological fluids for the high performance liquid chromatographic analysis of fat-soluble vitamins and antioxidants.

    Science.gov (United States)

    Lazzarino, Giacomo; Longo, Salvatore; Amorini, Angela Maria; Di Pietro, Valentina; D'Urso, Serafina; Lazzarino, Giuseppe; Belli, Antonio; Tavazzi, Barbara

    2017-12-08

    Fat-soluble vitamins and antioxidants are of relevance in health and disease. Current methods to extract these compounds from biological fluids mainly need use of multi-steps and multi organic solvents. They are time-consuming and difficult to apply to treat simultaneously large sample number. We here describe a single-step, one solvent extraction of fat-soluble vitamins and antioxidants from biological fluids, and the chromatographic separation of all-trans-retinoic acid, 25-hydroxycholecalciferol, all-trans-retinol, astaxanthin, lutein, zeaxanthin, trans-β-apo-8'-carotenal, γ-tocopherol, β-cryptoxanthin, α-tocopherol, phylloquinone, lycopene, α-carotene, β-carotene and coenzyme Q 10 . Extraction is obtained by adding one volume of biological fluid to two acetonitrile volumes, vortexing for 60s and incubating for 60min at 37°C under agitation. HPLC separation occurs in 30min using Hypersil C18, 100×4.6mm, 5μm particle size column, gradient from 70% methanol+30% H 2 O to 100% acetonitrile, flow rate of 1.0ml/min and 37°C column temperature. Compounds are revealed using highly sensitive UV-VIS diode array detector. The HPLC method suitability was assessed in terms of sensitivity, reproducibility and recovery. Using the present extraction and chromatographic conditions we obtained values of the fat-soluble vitamins and antioxidants in serum from 50 healthy controls similar to those found in literature. Additionally, the profile of these compounds was also measured in seminal plasma from 20 healthy fertile donors. Results indicate that this simple, rapid and low cost sample processing is suitable to extract fat-soluble vitamins and antioxidants from biological fluids and can be applied in clinical and nutritional studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Alteration in antioxidant potential of spinacia oleracea in response to selected plant growth regulators

    International Nuclear Information System (INIS)

    Aslam, M.; Sultana, B.; Ali, S.; Rehman, K.U.

    2013-01-01

    The spinach (Spinacia oleracea) plants treated with certain seed priming (bio-fertilizer and Humic acid) and foliar treatments (Humic acid, Moringa leaf extract, 6-Benzyl amino purine etc.) were tested for total phenolic content and the antioxidant activity. Methanolic extracts of all spinach samples were assessed performing three different protocols including Folin-Ciocalteu, reducing power and DPPH radical scavenging assays. TPC value ranged 4.678-13.236 mg GAE/g of dry matter. Reducing power assay showed values (absorbance at lambda max=700nm) in the range of 0.351-1.874 at 10 mg/mL extract concentration. The range of IC 50 values in DPPH radical scavenging assay was 0.499-1.063 mu g/mL extract concentration. The one way ANOVA under CRD showed significant differences among treatments. Among various plant growth regulators, fresh Moringa leaf extract proved as the potent enhancer of antioxidant activity of spinach leaves. (author)

  11. Microwave Assisted Synthesis of Some New Heterocyclic Spiro-Derivatives with Potential Antimicrobial and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Mohamed Mohamed Youssef

    2010-12-01

    Full Text Available Homophthalic anhydride reacts with different aromatic amines to produce N-substituted homophthalimides. Bromination of the latter produces 4,4-dibromo-homophthalimide derivatives that can be used as precursors for spiro-derivatives. The dibromo derivatives react with different binucleophilic reagents to produce several spiro-isoquinoline derivatives. Reaction of the dibromo derivatives with malononitrile produces dicyanomethylene derivatives which react with different binucleophiles to produce new spiro-derivatives. Structures of the newly synthesized compounds are proved using spectroscopic methods such as IR, 1H-NMR and 13C-NMR. The newly synthesized compounds were tested for their antimicrobial and antioxidant activities, showing weak or no antimicrobial activity. On the other hand select compounds showed promising antioxidant activities.

  12. Polyphenolic compounds with antioxidant potential and neuro-protective effect from Cimicifuga dahurica (Turcz.) Maxim.

    Science.gov (United States)

    Qin, Rulan; Zhao, Ying; Zhao, Yudan; Zhou, Wanrong; Lv, Chongning; Lu, Jincai

    2016-12-01

    Three new phenolic compounds (1-3), along with five known compounds (4-8) were isolated from the rhizome of Cimicifuga dahurica (Turcz.) Maxim. Their structures were elucidated by spectroscopic methods including 1D-NMR, 2D-NMR and HR-MS techniques. DPPH method and protective effect on PC12 cells against H 2 O 2 -induced oxidative damage model were carried to evaluate the antioxidant capability of these compounds. Compound 5 showed significant antioxidant activity with IC 50 values 9.33μM in DPPH assay and compound 2 displayed marked neuro-protective effect with 87.65% cell viability at the concentration of 10μM. Additionally, the possible structure-activity relationships of these phenolic compounds were tentatively discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. New amides from seeds of Silybum marianum with potential antioxidant and antidiabetic activities.

    Science.gov (United States)

    Qin, Ning-Bo; Jia, Cui-Cui; Xu, Jun; Li, Da-Hong; Xu, Fan-Xing; Bai, Jiao; Li, Zhan-Lin; Hua, Hui-Ming

    2017-06-01

    Two new amide compounds, mariamides A and B (1-2), were obtained together with fourteen known compounds from the seeds of milk thistle (Silybum marianum). Their structures were established on the basis of extensive 1D and 2D NMR analyses, as well as HR-ESI-MS data. Most of the compounds showed significant antioxidant activities than positive control in ABTS and FRAP assays. However, only amide compounds 1-4 showed moderate DPPH radical scavenging activity and compounds 7 and 16 showed the most potent activity against DPPH. Most of the compounds showed moderate to stronger α-glucosidase inhibitory activities. Nevertheless, only flavonoids showed strong PTP1B inhibitory activities. These results indicate a use of milk thistle seed extracts as promising antioxidant and antidiabetic agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Antioxidant and antimicrobial properties of wine byproducts and their potential uses in the food industry.

    Science.gov (United States)

    García-Lomillo, Javier; González-SanJosé, M Luisa; Del Pino-García, Raquel; Rivero-Pérez, M Dolores; Muñiz-Rodríguez, Pilar

    2014-12-31

    Wine pomace (WP) is one of the agricultural byproducts that has received most attention from food scientists due to the wide range of interesting compounds that remain after the winemaking process. Different powdered products rich in phenolic compounds, with interesting antioxidant and antimicrobial activities, were obtained from WP by applying processes that are both environmentally friendly and economically affordable for the food industry. The products obtained showed high global antioxidant activities (ABTS assay), successfully delayed the onset of lipid oxidation in the Rancimat test, and showed different antimicrobial properties. Products derived from seed-free WP showed bactericidal effects against total aerobic mesophilic bacteria (TAMB) and lactic acid bacteria (LAB) and inhibited Enterobacteriaceae growth completely. The product derived from whole WP presented bacteriostatic activity against the three microorganism groups tested, whereas the product obtained from grape seed promoted TAMB and LAB growth but delayed Enterobacteriaceae proliferation.

  15. The potential biological mechanisms of arsenic-induced diabetes mellitus

    International Nuclear Information System (INIS)

    Tseng, C.-H.

    2004-01-01

    Although epidemiologic studies carried out in Taiwan, Bangladesh, and Sweden have demonstrated a diabetogenic effect of arsenic, the mechanisms remain unclear and require further investigation. This paper reviewed the potential biological mechanisms of arsenic-induced diabetes mellitus based on the current knowledge of the biochemical properties of arsenic. Arsenate can substitute phosphate in the formation of adenosine triphosphate (ATP) and other phosphate intermediates involved in glucose metabolism, which could theoretically slow down the normal metabolism of glucose, interrupt the production of energy, and interfere with the ATP-dependent insulin secretion. However, the concentration of arsenate required for such reaction is high and not physiologically relevant, and these effects may only happen in acute intoxication and may not be effective in subjects chronically exposed to low-dose arsenic. On the other hand, arsenite has high affinity for sulfhydryl groups and thus can form covalent bonds with the disulfide bridges in the molecules of insulin, insulin receptors, glucose transporters (GLUTs), and enzymes involved in glucose metabolism (e.g., pyruvate dehydrogenase and α-ketoglutarate dehydrogenase). As a result, the normal functions of these molecules can be hampered. However, a direct effect on these molecules caused by arsenite at physiologically relevant concentrations seems unlikely. Recent evidence has shown that treatment of arsenite at lower and physiologically relevant concentrations can stimulate glucose transport, in contrary to an inhibitory effect exerted by phenylarsine oxide (PAO) or by higher doses of arsenite. Induction of oxidative stress and interferences in signal transduction or gene expression by arsenic or by its methylated metabolites are the most possible causes to arsenic-induced diabetes mellitus through mechanisms of induction of insulin resistance and β cell dysfunction. Recent studies have shown that, in subjects with chronic

  16. Red/Green Currant and Sea Buckthorn Berry Press Residues as Potential Sources of Antioxidants for Food Use.

    Science.gov (United States)

    Puganen, Anna; Kallio, Heikki P; Schaich, Karen M; Suomela, Jukka-Pekka; Yang, Baoru

    2018-04-04

    The potential for using extracts of press residues from black, green, red, and white currants and from sea buckthorn berries as sources of antioxidants for foods use was investigated. Press residues were extracted with ethanol in four consecutive extractions, and total Folin-Ciocalteu (F-C) reactive material and authentic phenolic compounds were determined. Radical quenching capability and mechanisms were determined from total peroxyl radical-trapping antioxidant capacity (TRAP) and oxygen radical absorbance capacity (ORAC) assays and from diphenylpicrylhydrazyl (DPPH) kinetics, respectively; specific activities were normalized to F-C reactive concentrations. Levels of total F-C reactive materials in press residue extracts were higher than in many fruits and showed significant radical quenching activity. Black currant had the highest authentic phenol content and ORAC, TRAP, and DPPH reactivity. Sea buckthorn grown in northern Finland showed extremely high total specific DPPH reactivity. These results suggest that berry press residues offer attractive value-added products that can provide antioxidants for use in stabilizing and fortifying foods.

  17. The Methodology Applied in DPPH, ABTS and Folin-Ciocalteau Assays Has a Large Influence on the Determined Antioxidant Potential.

    Science.gov (United States)

    Abramovič, Helena; Grobin, Blaž; Poklar, Nataša; Cigić, Blaž

    2017-06-01

    Antioxidant potential (AOP) is not only the property of the matrix analyzed but also depends greatly on the methodology used. The chromogenic radicals 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+), 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and Folin-Ciocalteu (FC) assay were applied to estimate how the method and the composition of the assay solvent influence the AOP determined for coffee, tea, beer, apple juice and dietary supplements. Large differences between the AOP values depending on the reaction medium were observed, with the highest AOP determined mostly in the FC assay. In reactions with chromogenic radicals several fold higher values of AOP were obtained in buffer pH 7.4 than in water or methanol. The type of assay and solvent composition have similar influences on the reactivity of a particular antioxidant, either pure or as part of a complex matrix. The reaction kinetics of radicals with antioxidants in samples reveals that AOP depends strongly on incubation time, yet differently for each sample analyzed and the assay applied.

  18. Effect of Chromium on Antioxidant Potential of Catharanthus roseus Varieties and Production of Their Anticancer Alkaloids: Vincristine and Vinblastine

    Science.gov (United States)

    Tandon, Pramod Kumar; Khatoon, Sayyada

    2014-01-01

    Catharanthus roseus (L.) G. Don, a medicinal plant, has a very important place in the traditional as well as modern pharmaceutical industry. Two common varieties of this plant rosea and alba are named so because of pink and white coloured flowers, respectively. This plant comprises of about 130 terpenoid indole alkaloids and two of them, vincristine and vinblastine, are common anticancer drugs. The effect of chromium (Cr) on enzymatic and non-enzymatic antioxidant components and on secondary metabolites vincristine and vinblastine was studied under pot culture conditions of both varieties of C. roseus. Antioxidant responses of these varieties were analyzed under 0, 10, 50, and 100 μM chromium (Cr) level in order to investigate the plant's protective mechanisms against Cr induced oxidative stress. The results indicated that Cr affects all the studied parameters and decreases growth performance. However, vincristine and vinblastine contents were increased under Cr stress. Results are quite encouraging, as this plant shows good antioxidant potential and increased the level of active constituents under Cr stress. PMID:24734252

  19. Proximate Composition and Antioxidant Potential of Leaves from Three Varieties of Mulberry (Morus sp.): A Comparative Study

    Science.gov (United States)

    Iqbal, Shahid; Younas, Umer; Sirajuddin; Chan, Kim Wei; Sarfraz, Raja Adil; Uddin, Kamal

    2012-01-01

    In this study, leaves of three indigenous varieties of Mulberry namely, Morus alba L., Morus nigra L. and Morus rubra L. were investigated for their antioxidant potential and their proximate composition was determined. The yields of 80% methanolic extracts ranged between 8.28–13.89%. The contents of total phenolics (TPC), total flavonoids (TFC) and ascorbic acid (AA) ranged between 16.21–24.37 mg gallic acid equivalent (GAE)/g, 26.41–31.28 mg rutin equivalent (RE)/g and 0.97–1.49 mg/g, respectively. The antioxidant activity of leaf extracts was evaluated by measuring 1,1-diphenyl-2-picrylhydrazyl (DPPH•) radical scavenging actity, 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid (ABTS•+) radical cation scavenging capacity and ferric ion reducing power and values ranged between 1.89–2.12, 6.12–9.89 and 0.56–0.97 mM Trolox equivalent/g of dried leaves, respectively. The investigated features reveal good nutritive and antioxidant attributes of all the varieties with mutually significant differences. PMID:22837655

  20. Kaempferol-Phospholipid Complex: Formulation, and Evaluation of Improved Solubility, In Vivo Bioavailability, and Antioxidant Potential of Kaempferol

    Directory of Open Access Journals (Sweden)

    Darshan R. Telange

    2016-12-01

    Full Text Available The current work describes the formulation and evaluation of a phospholipid complex of kaempferol to enhance the latter’s aqueous solubility, in vitro dissolution rate, in vivo antioxidant and hepatoprotective activities, and oral bioavailability. The kaempferol-phospholipid complex was synthesized using a freeze-drying method with the formulation being optimized using a full factorial design (32 approach. Our results include the validation of the mathematical model in order to ascertain the role of specific formulation and process variables that contribute favorably to the formulation’s development. The final product was characterized and confirmed by Differential Scanning Calorimetry (DSC, Fourier Transform Infrared Spectroscopy (FTIR, Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR, and Powder X-ray Diffraction (PXRD analysis. The aqueous solubility and the in vitro dissolution rate were enhanced compared to that of pure kaempferol. The in vivo antioxidant properties of the kaempferol-phospholipid complex were evaluated by measuring its impact on carbon tetrachloride (CCl4-intoxicated rats. The optimized phospholipid complex improved the liver function test parameters to a significant level by restoration of all elevated liver marker enzymes in CCl4-intoxicated rats. The complex also enhanced the in vivo antioxidant potential by increasing levels of GSH (reduced glutathione, SOD (superoxide dismutase, catalase and decreasing lipid peroxidation, compared to that of pure kaempferol. The final optimized phospholipid complex also demonstrated a significant improvement in oral bioavailability demonstrated by improvements to key pharmacokinetic parameters, compared to that of pure kaempferol.

  1. Chemical rules on the assessment of antioxidant potential in food and food additives aimed at reducing oxidative stress and neurodegeneration.

    Science.gov (United States)

    Franco, Rafael; Martínez-Pinilla, Eva

    2017-11-15

    Antioxidants (aOXs) enlarge the useful life of products consumed by humans. Life requires oxidation of glucose/fatty acids and, therefore, "antioxidant" becomes an oxymoron when trying to define benefits in organisms living in an oxygen-rich atmosphere. According to basic physico-chemical principles, the in vivo aOX potential of food supplements is negligible when compared with the main aOX molecules in the animal Kingdom: glucose and fatty acids. Thus, the aOX assumption to improve life-quality is misleading as oxidative stress and exacerbation occur when oxidant foods (e.g. fava beans) are consumed. Evolution produced potent detoxification mechanisms to handle these situations. When age/genetic/environmental factors negatively impact on detoxification mechanisms, nutrition helps on providing metabolites/precursors needed for boosting innate resources. Ambiguous techniques that attempt to measure in vivo aOX power, should give way to measuring the level of supplements and their metabolites in body fluids/tissues, and to measure the efficacy on antioxidant boosting REDOX pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Antioxidant and Antihypertensive Potential of Protein Fractions from Flour and Milk Substitutes from Canary Seeds (Phalaris canariensis L.).

    Science.gov (United States)

    Valverde, María Elena; Orona-Tamayo, Domancar; Nieto-Rendón, Blanca; Paredes-López, Octavio

    2017-03-01

    Canary seed (Phalaris canariensis) is used to feed birds but it has been recently considered a promising cereal with nutraceutical potential for humans. The aim of this work was to analyze the protein fractions from canary seed flour and from milk substitutes (prepared by soaking the seeds in water 12 and 24 h), and to evaluate antioxidant and antihypertensive capacity of peptides obtained after in vitro digestion. Prolamins were the major protein fraction, followed by glutelins. After digestion, albumins and prolamins fractions from milks presented higher levels of peptides than flour, globulins showed more peptides in flour and glutelins were found in similar concentrations in all samples; 24 h milk prolamins had the highest concentration of peptides. Purification by high performance liquid chromatography (HPLC), sequencing of peptides, in vitro antioxidant ABTS (2,2'-azino-bis, 3-ethylbenzothiazoline-6-sulphonic acid) and DPPH (2,2-diphenyl-1-picrylhydrazyl) assays, and antihypertensive capacity (angiotensin converting enzyme (ACE) assay), indicated that peptides from canary seed prolamins were the most efficient compounds with antioxidant and antihypertensive activity. Canary seeds may be considered an accessible and cheap source to prepare milk substitutes with high contents of bioactive peptides with remarkable functional properties to promote better human health and healthy ageing.

  3. Effect of Chromium on Antioxidant Potential of Catharanthus roseus Varieties and Production of Their Anticancer Alkaloids: Vincristine and Vinblastine

    Directory of Open Access Journals (Sweden)

    Vartika Rai

    2014-01-01

    Full Text Available Catharanthus roseus (L. G. Don, a medicinal plant, has a very important place in the traditional as well as modern pharmaceutical industry. Two common varieties of this plant rosea and alba are named so because of pink and white coloured flowers, respectively. This plant comprises of about 130 terpenoid indole alkaloids and two of them, vincristine and vinblastine, are common anticancer drugs. The effect of chromium (Cr on enzymatic and non-enzymatic antioxidant components and on secondary metabolites vincristine and vinblastine was studied under pot culture conditions of both varieties of C. roseus. Antioxidant responses of these varieties were analyzed under 0, 10, 50, and 100 μM chromium (Cr level in order to investigate the plant’s protective mechanisms against Cr induced oxidative stress. The results indicated that Cr affects all the studied parameters and decreases growth performance. However, vincristine and vinblastine contents were increased under Cr stress. Results are quite encouraging, as this plant shows good antioxidant potential and increased the level of active constituents under Cr stress.

  4. Agaricus bohusii from Serbia: chemical characterization, antioxidant potential and antifungal preserving properties in cream cheese

    OpenAIRE

    Reis, Filipa S.; Stojković, Dejan; Soković, Marina; Glamočlija, Jasmina; Ćirić, Ana; Barros, Lillian; Ferreira, Isabel C.F.R.

    2012-01-01

    Mushrooms are widely appreciated all over the world for their nutritional and bioactive properties. They have been considered valuable health foods being a source of many different nutraceuticals, including antioxidant and antimicrobial compounds [1,2]. Agaricus bohusii Bon is an edible and prized mushroom especially common in Serbia and southern Europe. As far as we know, there are no studies about this species. In the present work, a detailed chemical characterization of A. bohusii was ...

  5. Antioxidant and Anti-quorum Sensing Potential of Acer monspessulanum subsp. monspessulanum Extracts.

    Science.gov (United States)

    Ceylan, Ozgur; Sahin, Mehtap Donmez; Akdamar, Gultekin

    2016-10-01

    In this study, anti-quorum sensing, and antioxidant activities, and chemical composition of Acer monspessulanum subsp. monspessulanum extracts were evaluated. Determination of the antioxidant activity was revealed by DPPH radical scavenging activity, the total phenolic content assay, and the β -carotene/linoleic acid assay. The detection of phenolic compounds was determined using RP-HPLC. Anti-quorum sensing activity and violacein inhibition activity were determined using Chromobacterium violaceum CV026 and C. violaceum ATCC 112 472, respectively. The determination of anti-swarming activity was carried out with Pseudomonas aeruginosa PA01. In DPPH and total phenolic content assays, the water extract exhibited good antioxidant activity. In the β -carotene-linoleic acid assay, ethyl acetate and ethanol extracts exhibited good lipid peroxidation inhibition activity, demonstrating 96.95 ± 0.03 % and 95.35 ± 0.00 % at 2.5 mg/mL concentrations, respectively. The predominant phenolic compounds of the extracts were determined as rutin, naringin, catechin hydrate, quercetin, and protocatechuic acid. Ethyl acetate and ethanol extracts were found to contain a high level of violacein inhibition and anti-quorum sensing activity. The ethanol extract also showed weak anti-swarming activity. In this first study that used Acer monspessulanum subsp. monspessulanum extracts, it was revealed that the water extract has antioxidant activity and the ethanol and ethyl acetate extracts have anti-quorum sensing activity depending on the phenolic compounds that it contained. Georg Thieme Verlag KG Stuttgart · New York.

  6. Potent Antioxidative Activity of Lycopene: A Potential Role in Scavenging Hypochlorous Acid †

    OpenAIRE

    Pennathur, Subramaniam; Maitra, Dhiman; Byun, Jaeman; Sliskovic, Inga; Abdulhamid, Ibrahim; Saed, Ghassan M.; Diamond, Michael P.; Abu-Soud, Husam M.

    2010-01-01

    Lycopene, a carotenoid found in tomatoes, is a proven anti-oxidant that may lower the risk of certain disorders including heart disease and cancer. Hypochlorous acid (HOCl) is an oxidant linked to tissue oxidation in cardiovascular disease and other inflammatory disorders through its ability to modify proteins, deoxyribonucleic acid, ribonucleic acid and lipids. Here we show that lycopene can function as a potent scavenger of HOCl at a wide range of concentrations that span various pathophysi...

  7. Brown beer vinegar: A potentially functional product based on its phenolic profile and antioxidant activity

    Directory of Open Access Journals (Sweden)

    Mudura Elena

    2018-01-01

    Full Text Available The aim of the present study was to create a functional, enriched in polyphenols and free of alcohol product obtained by acetic fermentation of beer. Beer and vinegar were tested first for their phenolic content and antioxidant activity, by the Folin Ciocalteu and the free radical scavenging activity by the 1,1-diphenyl-2-picrylhydrazyl free-radical scavenging assay, respectively. Then, the separation and identification of the 30 phenolic compounds was realized by high-performance liquid chromatography coupled with positive electrospray ionisation and diode array detection (HPLC-DAD–ESI(+-MS analysis. Identification of the phenolic compounds data was realized based on the UV spectra of each compound. Based on a calibration curve (R2 = 0.9985, the amounts of the phenolic compounds, expressed as mg cathechin equivalents (CE/L, were calculated. The total phenolic content of the beer and vinegar samples determined using Folin–Ciocalteu reagent were of 428.9±1.58 and 661.5±7.69 mg GAE L-1, respectively, which contributed to the high antioxidant activity in the vinegar sample of 82.18 %. Statistically significant differences were observed after acetic fermentation between each parameter (p < 0.05. Brown beer vinegar represents a rich source of polyphenols and phenolic derivatives, compared to beer. By its increased phenolic content and antioxidant activity, brown beer vinegar could be considered another source of valuable compounds to beer, which could also be of interest in special diets.

  8. Screening for antibiofilm and antioxidant potential of turmeric (Curcuma longa) extracts.

    Science.gov (United States)

    Hayat, Sumreen; Sabri, Anjum Nasim

    2016-07-01

    The antibiofilm and antioxidant activities associated with turmeric were the main focus of the study. Antibacterial activity was explored against bacteria isolated from dental plaques and dental unit water lines exhibiting resistance against antibiotics and biocides respectively. This study provides a comparison of the natural plant extract against synthetic mouthwash, chemicals and commonly prescribed antibiotics. Methanol extract was more effective as compared to other extracts. Minimum inhibitory concentrations (MIC) ranged from 2.5-10mg/ml. Time based killing kinetic assay showed a significant reduction of bacterial load with increasing concentration of turmeric. Micro titer plate assay indicated significant inhibition of biofilm formation in cells treated with turmeric extract. Phytochemical screening of plant extracts showed the presence of vital secondary metabolites. Flavonoid content and total phenolic content varied among extracts, phenolic content for methanolic extract was 61.669 mg GAE/ gm dry extract and flavonoid content was 3.119mg quercitin/gm dry extract. The values of ferric reducing power were in the range of 5.55- 15.55 mmol of FeSO4 equivalent/ liter of the extract. Antioxidant activities and total phenolic content of the turmeric extracts had significant positive correlation. On the basis of these results turmeric may confidently be recommended as natural antibiofilm and antioxidant agent.

  9. Monoamine Oxidase-A Inhibition and Associated Antioxidant Activity in Plant Extracts with Potential Antidepressant Actions

    Directory of Open Access Journals (Sweden)

    Tomás Herraiz

    2018-01-01

    Full Text Available Monoamine oxidase (MAO catalyzes the oxidative deamination of amines and neurotransmitters and is involved in mood disorders, depression, oxidative stress, and adverse pharmacological reactions. This work studies the inhibition of human MAO-A by Hypericum perforatum, Peganum harmala, and Lepidium meyenii, which are reported to improve and affect mood and mental conditions. Subsequently, the antioxidant activity associated with the inhibition of MAO is determined in plant extracts for the first time. H. perforatum inhibited human MAO-A, and extracts from flowers gave the highest inhibition (IC50 of 63.6 μg/mL. Plant extracts were analyzed by HPLC-DAD-MS and contained pseudohypericin, hypericin, hyperforin, adhyperforin, hyperfirin, and flavonoids. Hyperforin did not inhibit human MAO-A and hypericin was a poor inhibitor of this isoenzyme. Quercetin and flavonoids significantly contributed to MAO-A inhibition. P. harmala seed extracts highly inhibited MAO-A (IC50 of 49.9 μg/L, being a thousand times more potent than H. perforatum extracts owing to its content of β-carboline alkaloids (harmaline and harmine. L. meyenii root (maca extracts did not inhibit MAO-A. These plants may exert protective actions related to antioxidant effects. Results in this work show that P. harmala and H. perforatum extracts exhibit antioxidant activity associated with the inhibition of MAO (i.e., lower production of H2O2.

  10. Antidiabetic and antioxidant potentials of spent turmeric oleoresin, a by-product from curcumin production industry

    Directory of Open Access Journals (Sweden)

    Suresh V Nampoothiri

    2012-05-01

    Full Text Available Objective: To investigate the antidiabetic and antioxidant activity of spent turmeric oleoresin (STO. Methods: Antidiabetic activity of STO evaluated by α - amylase and α - glucosidase enzyme inhibition assays. The antioxidant capacity studied by DPPH. , ABTS., superoxide radical scavenging and metal chelating activity methods. Results: The STO showed good antidiabetic activity by inhibiting key enzymes linked to type 2 diabetes, viz α -glucosidase and α -amylase with an IC50values of 0.71 and 0.16毺 g/mL respectively. The IC50 values for DPPH. and ABTS. assay were 58.1 and 33 毺 g/mL respectively. STO effectively scavenged the superoxide free radical with an IC50 value of 61.5毺 g/mL and showed a moderate iron chelation property. Conclusions: The above study reveals that the spent turmeric oleoresin being wasted at present can be used as antioxidant and antidiabetic agent in food and neutraceutical products.

  11. Phenolic composition and antioxidant potential of grain legume seeds: A review.

    Science.gov (United States)

    Singh, Balwinder; Singh, Jatinder Pal; Kaur, Amritpal; Singh, Narpinder

    2017-11-01

    Legumes are a good source of bioactive phenolic compounds which play significant roles in many physiological as well as metabolic processes. Phenolic acids, flavonoids and condensed tannins are the primary phenolic compounds that are present in legume seeds. Majority of the phenolic compounds are present in the legume seed coats. The seed coat of legume seeds primarily contains phenolic acids and flavonoids (mainly catechins and procyanidins). Gallic and protocatechuic acids are common in kidney bean and mung bean. Catechins and procyanidins represent almost 70% of total phenolic compounds in lentils and cranberry beans (seed coat). The antioxidant activity of phenolic compounds is in direct relation with their chemical structures such as number as well as position of the hydroxyl groups. Processing mostly leads to the reduction of phenolic compounds in legumes owing to chemical rearrangements. Phenolic content also decreases due to leaching of water-soluble phenolic compounds into the cooking water. The health benefits of phenolic compounds include acting as anticarcinogenic, anti-thrombotic, anti-ulcer, anti-artherogenic, anti-allergenic, anti-inflammatory, antioxidant, immunemodulating, anti-microbial, cardioprotective and analgesic agents. This review provides comprehensive information of phenolic compounds identified in grain legume seeds along with discussing their antioxidant and health promoting activities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Antioxidant and wound healing potential of saponins extracted from the leaves of Algerian Urtica dioica L.

    Science.gov (United States)

    Razika, Laoufi; Thanina, Affif Chaouche; Nadjiba, Chebouti-Meziou; Narimen, Benhabyles; Mahdi, Dahmani Mohamed; Karim, Arab

    2017-05-01

    The Nettle is a herbaceous and vivace plant of Asian origin. It is integrated in several areas especially alimentary, agricultural, industrial and medicinal. The aim of this work is to demonstrate through pharmacological tests a possible antioxidant and wound healing effect of crude saponins of the leaves of Urtica dioica L. The extraction method is based on the degree of solubility of saponins in organic solvents. The antioxidant activity of the leaves extracts was evaluated by the diphenyl-picryl-hydrazyl test (DPPH). The wound healing effect is interpreted on the basis of the healing time and the evaluation of the surface of wounds. It appears from this study that the Nettle is rich in saponins, either 4.08% to 30 g of plant powder. The results also showed significant antioxidant effect similar to that of ascorbic acid (p> 0.05) with an IC 50 of 0.159mg/ml. As regards the healing power, treatment of rats with the product based on crude saponins is achieved after 15 days, either 100% of wound reduction. This value is much higher than that obtained by the reference product (Madécassol®) on the same duration of treatment with 93.73% of wound reduction. The achievement of pharmacological tests has thus shown that crude saponins extracted from the leaves of Urtica dioica L. can be integrated into the pharmaceutical field or even in cosmetic.

  13. Dextran: Influence of Molecular Weight in Antioxidant Properties and Immunomodulatory Potential.

    Science.gov (United States)

    Soeiro, Vinicius C; Melo, Karoline R T; Alves, Monique G C F; Medeiros, Mayara J C; Grilo, Maria L P M; Almeida-Lima, Jailma; Pontes, Daniel L; Costa, Leandro S; Rocha, Hugo A O

    2016-08-19

    Dextrans (α-d-glucans) extracted from Leuconostoc mesenteroides, with molecular weights (MW) of 10 (D10), 40 (D40) and 147 (D147) kDa, were evaluated as antioxidant, anticoagulant and immunomodulatory drugs for the first time. None presented anticoagulant activity. As for the antioxidant and immunomodulatory tests, a specific test showed an increase in the dextran activity that was proportional to the increase in molecular weight. In a different assay, however, activity decreased or showed no correlation to the MW. As an example, the reducing power assay showed that D147 was twice as potent as other dextrans. On the other hand, all three samples showed similar activity (50%) when it came to scavenging the OH radical, whereas only the D10 sample showed sharp activity (50%) when it came to scavenging the superoxide ion. D40 was the single dextran that presented with immunomodulatory features since it stimulated the proliferation (~50%) of murine macrophages (RAW 264.7) and decreased the release of nitric oxide (~40%) by the cells, both in the absence and presence of lipopolysaccharides (LPS). In addition, D40 showed a greater scavenging activity (50%) for the hydrogen peroxide, which caused it to also be the more potent dextran when it came to inhibiting lipid peroxidation (70%). These points toward dextrans with a 40 kDa weight as being ideal for antioxidant and immunomodulatory use. However, future studies with the D40 and other similarly 40 kDa dextrans are underway to confirm this hypothesis.

  14. Study of antioxidant, anti-protease and anti-urease potential of schiff bases of acetophenone with different amines

    International Nuclear Information System (INIS)

    Ahmed, D.; Mir, H.

    2014-01-01

    Seven acetophenone-derived Schiff bases were synthesized with different amines including 2-aminobenzoic acid (HL1), 4-aminobenzoic acid (HL2), 2-naphthylamine (HL3), phenylhydrazine (HL4), 1,2-ethanediamine (HL5), 1,2-diaminobenzene (HL6) and 1,4-diaminobenzene (HL7), and were subjected to various assays including FRAP (ferric reducing antioxidant power), DPPH (1,1-diphenyl-2-picrylhydrazyl), phosphomolybdate, reducing power, and lipid peroxidation inhibition. They were also evaluated for protease and urease inhibitory activities. Based on the results, structure-activity relationship (SAR) was determined. Only two bases, HL1 and HL4, exhibited antioxidant or free radical scavenging activity in DPPH assay. HL4 was most potent (IC50 15 micro g/mL), while HL1 was only slightly active. As HL4 was the only base with hydrogen bonded to nitrogen, most probably it involves hydrogen transfer (HT) mechanism. All the bases exhibited a range of antioxidant activity in assays involving electron transfer (ET). In the reducing power assay, HL5, HL6 and HL7 showed considerable potential while in FRAP assay, HL7 was most active followed by HL3. In phosphomolybdate assay, HL6 had the highest potency followed by HL7, while HL4 and HL3 also displayed good activity. All the bases showed moderate to high lipid peroxidation inhibitory activity. HL7 exhibited highest protease inhibitory activity (EC50 43.9 mu g/mL) followed by HL6 (EC/sub 50/ 52 mu g/mL). HL4 and HL5 did not show protease inhibitory activity at all. HL2 was most potent in inhibiting urease activity (EC50 29.91 mu g/mL). HL5 and HL6 showed moderate activity. The study showed how variation in structures of Schiff bases alters their antioxidant and anti-enzymatic activities. (author)

  15. Comparing antioxidant capacity of purine alkaloids: a new, efficient trio for screening and discovering potential antioxidants in vitro and in vivo.

    Science.gov (United States)

    Tsoi, Bun; Yi, Ruo-Nan; Cao, Ling-Fang; Li, Shan-Bing; Tan, Rui-Rong; Chen, Min; Li, Xiao-Xiao; Wang, Chen; Li, Yi-Fang; Kurihara, Hiroshi; He, Rong-Rong

    2015-06-01

    The most commonly applied strategies for the evaluation of antioxidant capacity are the chemical- or cell-based approaches. However, the results obtained from these methods might not reflect the antioxidant ability of test samples within organisms. In this study, we propose a combination of experiments, including oxygen radical absorbance capacity (ORAC), cellular antioxidant activity assay (CAA), and the chick embryo model, as an efficient trio to evaluate antioxidant capacity of food components. Taking purine alkaloids as example, results demonstrate that chemical and cellular method might misinterpret their true ability on antioxidation. In chick embryo model, caffeine and theacrine can significantly improve vessel density on chorioallantoic membrane and myocardial apoptosis. The mechanism can be involving multiple targets within the organism. We believe that the trio proposed can be widely utilized in screening massive number of antioxidant in a cost-effective way. It will also help discovering new antioxidants that are easily being omitted due to their relatively poor in vitro activities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Preformulation study and influence of DMSO and propylene glycol on the antioxidant action of isocoumarin paepalantine isolated from Paepalanthus bromelioides

    Directory of Open Access Journals (Sweden)

    João Paulo Loureiro Damasceno

    Full Text Available AbstractCoumarins are phenolic compounds and have various biological properties, including antioxidant activity. The isocoumarin paepalantine, isolated from of Paepalanthus bromelioides Silveira, Eriocaulaceae, exhibits a wide range of biological activities, including antimicrobial, anti-inflammatory, antioxidant and cytotoxic properties. Studies on paepalantine often use dimethylsulfoxide as a solvent. However the dimethylsulfoxide interferes with antimicrobial, cytotoxic and antioxidant assays. Thus, this study aims to evaluate alternative solvents for paepalantine and evaluate their potential to interfere with antioxidant assays (ABTS•+, O2•-, HOCl. Of the selected solvents, propylene glycol had good solubility and remained stable throughout the study period. The results suggested that there is no interference from propylene glycol in antioxidant assays, while dimethylsulfoxide significantly interfered with the HOCl assay. The antioxidant assays showed that paepalantine demonstrated similar or even better antioxidant activity than Trolox. Thus, propylene glycol may be the solvent of choice for paepalantine, a compound that has significant biological potential.

  17. Investigations of anticholinestrase and antioxidant potentials of methanolic extract, subsequent fractions, crude saponins and flavonoids isolated from Isodon rugosus

    Directory of Open Access Journals (Sweden)

    Anwar Zeb

    2014-01-01

    Full Text Available BACKGROUND: Based on the ethnomedicinal uses and the effective outcomes of natural products in various diseases, this study was designed to evaluate Isodon rugosus as possible remedy in oxidative stress, alzheimer's and other neurodegenerative diseases. Acetylecholinestrase (AChE and butyrylcholinesterase (BChE inhibitory activities of crude methanolic extract (Ir.Cr, resultant fractions (n-hexane (Ir.Hex, chloroform (Ir.Cf, ethyl acetate (Ir.EtAc, aqueous (Ir.Aq, flavonoids (Ir.Flv and crude saponins (Ir.Sp of I. rugosus were investigated using Ellman's spectrophotometric method. Antioxidant potential of I. rugosus was determined using DPPH, H2O2 and ABTS free radicals scavenging assays. Total phenolic and flavonoids contents of plant extracts were determined and expressed in mg GAE/g dry weight and mg RTE/g of dry sample respectively. RESULTS: Among different fractions Ir.Flv and Ir.Cf exhibited highest inhibitory activity against AChE (87.44 ± 0.51, 83.73 ± 0.64% and BChE (82.53 ± 0.71, 88.55 ± 0.77% enzymes at 1 mg/ml with IC50 values of 45, 50 for AChE and 40, 70 μg/ml for BChE respectively. Activity of these fractions were comparable to galanthamine causing 96.00 ± 0.30 and 88.61 ± 0.43% inhibition of AChE and BChE at 1 mg/ml concentration with IC50 values of 20 and 47 μg/ml respectively. In antioxidant assays, Ir.Flv, Ir.Cf, and Ir.EtAc demonstrated highest radicals scavenging activities in DPPH and H2O2 assays which were comparable to ascorbic acid. Ir.Flv was found most potent with IC50 of 19 and 24 μg/ml against DPPH and H2O2 radicals respectively. Whereas antioxidant activates of plant samples against ABTS free radicals was moderate. Ir.Cf, Ir.EtAc and Ir.Cr showed high phenolic and flavonoid contents and concentrations of these compounds in different fractions correlated well to their antioxidant and anticholinestrase activities. CONCLUSION: It may be inferred from the current investigations that the

  18. Bio-screening of a few green seaweeds from India for their cytotoxic and antioxidant potential

    Digital Repository Service at National Institute of Oceanography (India)

    Vinayak, R.C.; Sabu, A.S.; Chatterji, A.

    , cataractogenesis, pulmonary dysfunction, muscular dystrophy, ischemia perfusion, tissue damage and neu- rological disorders, such as Alzheimer’s disease. 1 Additionally, ROS are known to be the predominant cause of food decay, leading to rancidity, toxicity... extract. J Agric Food Chem 48:1466–1472 (2000). 34 Zubia M, Robledo D and Freile-Pelegrin Y, Antioxidant activities in tropical marine macroalgae from the Yucatan Peninsula, Mexico. J Appl Phycol 19:449–458 (2007). 35 Meir S, Kanner J, Akiri B...

  19. Extraction, Structural Characterization, and Potential Antioxidant Activity of the Polysaccharides from Four Seaweeds

    Science.gov (United States)

    He, Jinzhe; Xu, Yaoyang; Chen, Hongbo; Sun, Peilong

    2016-01-01

    Four seaweed polysaccharides were extracted from Sarcodia ceylonensis, Ulva lactuca L., Gracilaria lemaneiformis, and Durvillaea antarctica, respectively, by microwave-assisted extraction. The effect of three significant variables (extraction time, extraction temperature, and the ratio of water to raw material) on the process for extracting polysaccharides was investigated, along with the optimization of the extraction using the response surface method (RSM) with a Box–Behnken design. The polysaccharide structure, monosaccharide composition, degree of sulfation, and molecular weight (MW) distribution were analyzed by infrared (IR) spectrometry, gas chromatography (GC), and high-performance gel permeation chromatography (HPGPC). IR spectrometry showed that Sarcodia ceylonensis polysaccharide (SCP), Ulva lactuca L. polysaccharide (ULLP), and Durvillaea antarctica polysaccharide (DAP) were all sulfated polysaccharides and, except Gracilaria lemaneiformis polysaccharide (GLP), all belong to β-pyranosidic polysaccharides. The average molecular weight (MW) of SCP, ULLP, GLP, and DAP was 466, 404, 591, and 482 kDa, respectively. The quantitative and comparative results with external standards indicated that the main monosaccharide in SCP and ULLP was mannose; and GLP and DAP were mainly composed of galactose and glucose, respectively. Then the in vitro antioxidant activity of all of the polysaccharides was evaluated using different assays—2,2–azino –bis (3-ethylbenzthiazoline-6- sulfonate) (ABTS), hydroxyl radical, nitrite scavenging capacity, and reducing power—and the relationship between their antioxidant activity and chemical characteristics were also examined. ULLP presented the highest ABTS radical scavenging activity; ULLP, SCP and DAP also showed a strong effect on the ABTS radical scavenging activity. SCP and ULLP exhibited excellent hydroxyl radical scavenging activities, about 83.33% ± 2.31% and 80.07% ± 2.17%, respectively, at 4 mg/mL. The

  20. Extraction, Structural Characterization, and Potential Antioxidant Activity of the Polysaccharides from Four Seaweeds

    Directory of Open Access Journals (Sweden)

    Jinzhe He

    2016-11-01

    Full Text Available Four seaweed polysaccharides were extracted from Sarcodia ceylonensis, Ulva lactuca L., Gracilaria lemaneiformis, and Durvillaea antarctica, respectively, by microwave-assisted extraction. The effect of three significant variables (extraction time, extraction temperature, and the ratio of water to raw material on the process for extracting polysaccharides was investigated, along with the optimization of the extraction using the response surface method (RSM with a Box–Behnken design. The polysaccharide structure, monosaccharide composition, degree of sulfation, and molecular weight (MW distribution were analyzed by infrared (IR spectrometry, gas chromatography (GC, and high-performance gel permeation chromatography (HPGPC. IR spectrometry showed that Sarcodia ceylonensis polysaccharide (SCP, Ulva lactuca L. polysaccharide (ULLP, and Durvillaea antarctica polysaccharide (DAP were all sulfated polysaccharides and, except Gracilaria lemaneiformis polysaccharide (GLP, all belong to β-pyranosidic polysaccharides. The average molecular weight (MW of SCP, ULLP, GLP, and DAP was 466, 404, 591, and 482 kDa, respectively. The quantitative and comparative results with external standards indicated that the main monosaccharide in SCP and ULLP was mannose; and GLP and DAP were mainly composed of galactose and glucose, respectively. Then the in vitro antioxidant activity of all of the polysaccharides was evaluated using different assays—2,2–azino –bis (3-ethylbenzthiazoline-6- sulfonate (ABTS, hydroxyl radical, nitrite scavenging capacity, and reducing power—and the relationship between their antioxidant activity and chemical characteristics were also examined. ULLP presented the highest ABTS radical scavenging activity; ULLP, SCP and DAP also showed a strong effect on the ABTS radical scavenging activity. SCP and ULLP exhibited excellent hydroxyl radical scavenging activities, about 83.33% ± 2.31% and 80.07% ± 2.17%, respectively, at 4 mg/mL. The

  1. Chelating, antioxidant and hypoglycaemic potential of Muscari comosum (L.) Mill. bulb extracts.

    Science.gov (United States)

    Loizzo, Monica R; Tundis, Rosa; Menichini, Federica; Pugliese, Alessandro; Bonesi, Marco; Solimene, Umberto; Menichini, Francesco

    2010-12-01

    The metal chelating activity, antioxidant properties and the effect on carbohydrate-hydrolysing enzyme inhibition of Muscari comosum extracts have been investigated. M. comosum bulbs contain a total amount of the phenols with a value of 56.6 mg chlorogenic acid equivalent per gram of extract and a flavonoid content of 23.4 mg quercetin equivalent per gram of extract. In order to evaluate the non-polar constituents, n-hexane extract was obtained. Gas chromatography-mass spectrometry analysis revealed the presence of fatty acids and ethyl esters as major constituents, with different aldehydes and alkanes as minor components. Ethanolic extract had the highest ferric-reducing ability power (66.7 μM Fe(II)/g) and DPPH scavenging activity with a concentration giving 50% inhibition (IC₅₀) value of 40.9 μg/ml. Moreover, this extract exhibited a good hypoglycaemic activity with IC₅₀ values of 81.3 and 112.8 μg/ml for α-amylase and α-glucosidase, respectively. In conclusion, M. comosum bulbs show promising antioxidant and hypoglycaemic activity via the inhibition of carbohydrate digestive enzymes. These activities may be of interest from a functional point of view and for the revalorization of this ancient non-cultivated vegetable of Mediterranean traditional gastronomy.

  2. Potential antioxidant peptides produced from whey hydrolysis with an immobilized aspartic protease from Salpichroa origanifolia fruits.

    Science.gov (United States)

    Rocha, Gabriela Fernanda; Kise, Francisco; Rosso, Adriana Mabel; Parisi, Mónica Graciela

    2017-12-15

    An aspartic protease from Salpichroa origanifolia fruits was successfully immobilized onto an activated support of glutaraldehyde agarose. The immobilized enzyme presented higher thermal stability than the free enzyme from 40°C to 50°C and high reusability, retaining 54% of the initial activity after ten cycles of the process. Whey protein concentrates (WPC) were hydrolyzed with both free and immobilized enzyme, reaching a similar degree of hydrolysis of approximately 6-8% after 20h. In addition, the immobilized derivate hydrolyzed α-lactalbumin protein with a higher affinity than β-lactoglobulin. The hydrolysate was ultra-filtrated, and the fractions were evaluated for antioxidant activities with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity method. The fraction containing peptides with a molecular mass below 3kDa demonstrated a strong radical quenching effect (IC 50: 0.48mg/ml). These results suggest that hydrolyzed WPC could be considered as a promising source of natural food antioxidants for the development of functional food. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Rind of the rambutan, Nephelium lappaceum, a potential source of natural antioxidants.

    Science.gov (United States)

    Palanisamy, Uma; Cheng, Hwee Ming; Masilamani, Theanmalar; Subramaniam, Thavamanithevi; Ling, Lai Teng; Radhakrishnan, Ammu K

    2008-07-01

    The rind of rambutan, which is normally discarded was found to contain extremely high antioxidant activity when assessed using several methods. Although having a yield of only 18%, the ethanolic rambutan rind extract had a total phenolic content of 762±10mg GAE/g extract, which is comparable to that of a commercial preparation of grape seed extract. Comparing the extract's pro-oxidant capabilities with vitamin C, α-tocopherol, grape seed and green tea, the rind had the lowest pro-oxidant capacity. In addition, the extract at 100μg/ml was seen to limit oxidant-induced cell death (DPPH at 50μM) by apoptosis to an extent similar to that of grape seed. The extracts were not cytotoxic to normal mouse fibroblast cells or splenocytes while the powderised rind was seen to have heavy metals contents far below the permissible levels for nutraceuticals. Our study for the first time reveals the high phenolic content, low pro-oxidant capacity and strong antioxidant activity of the extract from rind of Nephelium lappaceum. This extract, either alone or in combination with other active principles, can be used in cosmetic, nutraceutical and pharmaceutical applications. Copyright © 2007 Elsevier Ltd. All rights reserved.

  4. Carotenoids as potential antioxidant agents in stroke prevention: A systematic review

    Directory of Open Access Journals (Sweden)

    Ahmad Bahonar

    2017-01-01

    Full Text Available Stroke and other cerebrovascular diseases are among the most common causes of death worldwide. Prevention of modifiable risk factors is a cost-effective approach to decrease the risk of stroke. Oxidative stress is regarded as the major flexible operative agent in ischemic brain damage. This review presents recent scientific advances in understanding the role of carotenoids as antioxidants in lowering stroke risk based on observational studies. We searched Medline using the following terms: (Carotenoids [MeSH] OR Carotenes [tiab] OR Carotene [tiab] OR “lycopene [Supplementary Concept]” [MeSH] OR lycopene [tiab] OR beta-Carotene [tiab] AND (stroke [MeSH] OR stroke [tiab] OR “Cerebrovascular Accident” [tiab] OR “Cerebrovascular Apoplexy” [tiab] OR “Brain Vascular Accident” [tiab] OR “Cerebrovascular Stroke” [tiab] AND (“oxidative stress” [MeSH] OR “oxidative stress”[tiab]. This search considered papers that had been published between 2000 and 2017. Recent studies indicated that high dietary intake of six main carotenoids (i.e., lycopene, <- and ®-carotene, lutein, zeaxanthin, and astaxanthin was associated with reduced risk of stroke and other cardiovascular outcomes. However, the main mechanism of the action of these nutrients was not identified, and multiple mechanisms except antioxidant activity were suggested to be involved in the observed beneficial effects. The dietary intake of six major carotenoids should be promoted as this may have a substantial positive effect on stroke prevention and stroke mortality reduction.

  5. Potential toxic effect of trifloxystrobin on cellular microstructure, mRNA expression and antioxidant enzymes in Chlorella vulgaris.

    Science.gov (United States)

    Shen, Yu-Feng; Liu, Lei; Gong, Yu-Xin; Zhu, Bin; Liu, Guang-Lu; Wang, Gao-Xue

    2014-05-01

    This study investigated the effects of trifloxystrobin that one strobilurin used widely in the world as an effective fungicidal agent to control Asian soybean rust on aquatic unicellular algae Chlorella vulgaris. We determined the potential toxic effect of trifloxystrobin on C. vulgaris, and found median inhibition concentration (IC(50)) value 255.58 (95% confidence interval, 207.81-330.29)μgL(-1). In addition, the algal cells were obviously depressed or shrunk at different concentrations by electron microscopy. In the study, a real-time polymerase chain reaction (PCR) assay showed changes in transcript abundances of three photosynthetic genes, psaB, psbC, and rbcL, and one energy gene, ATPs. The results showed that trifloxystrobin reduced the transcript abundances of the three genes and enhanced expression of ATPs after 48 and 96 h. The lowest abundances of psaB, psbC and rbcL transcripts in response to trifloxystrobin exposure were 58%, 79% and 60% of those of the control, respectively. For the potential toxic influences, trifloxystrobin could decrease the soluble protein and total antioxidant contents (T-AOC), and increase superoxide dismutase (SOD) and peroxidase (POD) activity with a gradual concentration-response relationship. Overall, the present study demonstrated that trifloxystrobin could affect the activities of antioxidant enzymes, disrupts photosynthesis in C. vulgaris, and damage cellular structure. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Oxidative Stress Regulation on Endothelial Cells by Hydrophilic Astaxanthin Complex: Chemical, Biological, and Molecular Antioxidant Activity Evaluation

    Directory of Open Access Journals (Sweden)

    M. Zuluaga

    2017-01-01

    Full Text Available An imbalance in the reactive oxygen species (ROS homeostasis is involved in the pathogenesis of oxidative stress-related diseases. Astaxanthin, a xanthophyll carotenoid with high antioxidant capacities, has been shown to prevent the first stages of oxidative stress. Here, we evaluate the antioxidant capacities of astaxanthin included within hydroxypropyl-beta-cyclodextrin (CD-A to directly and indirectly reduce the induced ROS production. First, chemical methods were used to corroborate the preservation of astaxanthin antioxidant abilities after inclusion. Next, antioxidant scavenging properties of CD-A to inhibit the cellular and mitochondrial ROS by reducing the disturbance in the redox state of the cell and the infiltration of lipid peroxidation radicals were evaluated. Finally, the activation of endogenous antioxidant PTEN/AKT, Nrf2/HO-1, and NQOI gene and protein expression supported the protective effect of CD-A complex on human endothelial cells under stress conditions. Moreover, a nontoxic effect on HUVEC was registered after CD-A complex supplementation. The results reported here illustrate the need to continue exploring the interesting properties of this hydrophilic antioxidant complex to assist endogenous systems to counteract the ROS impact on the induction of cellular oxidative stress state.

  7. Studies of the in vitro anticancer, antimicrobial and antioxidant potentials of selected Yemeni medicinal plants from the island Soqotra

    Directory of Open Access Journals (Sweden)

    Bednarski Patrick J

    2009-03-01

    Full Text Available Abstract Background Recent years have witnessed that there is a revival of interest in drug discovery from medicinal plants for the maintenance of health in all parts of the world. The aim of this work was to investigate 26 plants belonging to 17 families collected from a unique place in Yemen (Soqotra Island for their in vitro anticancer, antimicrobial and antioxidant activities. Methods The 26 plants were extracted with methanol and hot water to yield 52 extracts. Evaluation for in vitro anticancer activity was done against three human cancer cell lines (A-427, 5637 and MCF-7 by using an established microtiter plate assay based on cellular staining with crystal violet. Antimicrobial activity was tested against three Gram-positive bacteria, two Gram-negative bacteria, one yeast species and three multiresistant Staphylococcus strains by using an agar diffusion method and the determination of MIC against three Gram-positive bacteria with the broth micro-dilution assay. Antioxidant activity was investigated by measuring the scavenging activity of the DPPH radical. Moreover, a phytochemical screening of the methanolic extracts was done. Results Notable cancer cell growth inhibition was observed for extracts from Ballochia atro-virgata, Eureiandra balfourii and Hypoestes pubescens, with IC50 values ranging between 0.8 and 8.2 μg/ml. The methanol extracts of Acanthospermum hispidum, Boswellia dioscorides, Boswellia socotrana, Commiphora ornifolia and Euphorbia socotrana also showed noticeable antiproliferative potency with IC50 values Acacia pennivenia, Boswellia dioscorides, Boswellia socotrana, Commiphora ornifolia, Euclea divinorum, Euphorbia socotrana, Leucas samhaensis, Leucas virgata, Rhus thyrsiflora, and Teucrium sokotranum with inhibition zones > 15 mm and MIC values ≤ 250 μg/ml. In addition, the methanolic extracts of Acacia pennivenia, Boswellia dioscorides, Boswellia socotrana and Commiphora ornifolia showed good antioxidant potential

  8. In vitro enzyme-mimic activity and in vivo therapeutic potential of HSJ-0017, a novel Mn porphyrin-based antioxidant enzyme mimic.

    Science.gov (United States)

    Li, Bao-qiu; Dong, Xin; Li, Na; Gao, Ji-you; Yuan, Qiang; Fang, Shi-hong; Gong, Xian-chang; Wang, Shu-juan; Wang, Feng-shan

    2014-10-01

    Manganese (III) 5, 10, 15, 20-tetrakis [3-(2-(2-methoxy)-ethoxy) ethoxy] phenyl porphyrin chloride, designated HSJ-0017, is a novel antioxidant enzyme mimic. The aim of the present study was to investigate the enzyme-mimic activity and the therapeutic potential of HSJ-0017 in free radical-related diseases. Superoxide dismutase (SOD) mimic activity was measured by the nitroblue tetrazolium chloride monohydrate reduction assay. Catalase (CAT) mimic activity was measured based on the decomposition of hydrogen peroxide. The antitumor, radioprotective and chemoprotective effects of HSJ-0017 were evaluated in H22 or S180 tumor-bearing Kunming mice. The anti-inflammatory and hepatoprotective effects were, respectively, evaluated in histamine-induced edema model and CCl4-induced hepatic damage model in Wistar rats. HSJ-0017 over a concentration range of 0.001-10 µmol/L significantly inhibited the generation of superoxide anion. Significant hydrogen peroxide scavenging activity was observed when the concentration of HSJ-0017 was higher than 0.01 µmol/L. HSJ-0017 at a dose of 3.0 mg/kg exhibited significant antitumor effect on S180 tumor xenografts, whereas no significant antitumor effect was observed in H22 tumor xenografts. HSJ-0017 at a dose of 3.0 mg/kg enhanced the antitumor effects of radiotherapy and chemotherapy, and reduced their toxicity. However, HSJ-0017 counteracted the antitumor effects of radiotherapy when administered simultaneously with radiotherapy. HSJ-0017 showed significant anti-inflammatory and hepatoprotective effects. Our results demonstrate that HSJ-0017 exhibits antioxidant, antitumor, anti-inflammatory, radioprotective, chemoprotective, and hepatoprotective effects. It is a potent dual SOD/CAT mimic. © 2014 by the Society for Experimental Biology and Medicine.

  9. Molecular biology of breast cancer stem cells: potential clinical applications.

    Science.gov (United States)

    Nguyen, Nam P; Almeida, Fabio S; Chi, Alex; Nguyen, Ly M; Cohen, Deirdre; Karlsson, Ulf; Vinh-Hung, Vincent

    2010-10-01

    Breast cancer stem cells (CSC) have been postulated recently as responsible for failure of breast cancer treatment. The purpose of this study is to review breast CSCs molecular biology with respect to their mechanism of resistance to conventional therapy, and to develop treatment strategies that may improve survival of breast cancer patients. A literature search has identified in vitro and in vivo studies of breast CSCs. Breast CSCs overexpress breast cancer resistance protein (BCRP) which allows cancer cells to transport actively chemotherapy agents out of the cells. Radioresistance is modulated through activation of Wnt signaling pathway and overexpression of genes coding for glutathione. Lapatinib can selectively target HER-2 positive breast CSCs and improves disease-free survival in these patients. Metformin may target basal type breast CSCs. Parthenolide and oncolytic viruses are promising targeting agents for breast CSCs. Future clinical trials for breast cancer should include anti-cancer stem cells targeting agents in addition to conventional chemotherapy. Hypofractionation radiotherapy may be indicated for residual disease post chemotherapy. 2010 Elsevier Ltd. All rights reserved.

  10. Bauhinia forficata prevents vacuous chewing movements induced by haloperidol in rats and has antioxidant potential in vitro.

    Science.gov (United States)

    Peroza, Luis Ricardo; Busanello, Alcindo; Leal, Caroline Queiroz; Röpke, Jivago; Boligon, Aline Augusti; Meinerz, Daiane; Libardoni, Milena; Athayde, Margareth Linde; Fachinetto, Roselei

    2013-04-01

    Classical antipsychotics can produce motor disturbances like tardive dyskinesia in humans and orofacial dyskinesia in rodents. These motor side effects have been associated with oxidative stress production in specific brain areas. Thus, some studies have proposed the use of natural compounds with antioxidant properties against involuntary movements induced by antipsychotics. Here, we examined the possible antioxidant activity of Bauhinia forficata (B. forficata), a plant used in folk medicine as a hypoglycemic, on brain lipid peroxidation induced by different pro-oxidants. B. forficata prevented the formation of lipid peroxidation induced by both pro-oxidants tested. However, it was effective against lipid peroxidation induced by sodium nitroprusside (IC50 = 12.08 μg/mL) and Fe(2+)/EDTA (IC50 = 41.19 μg/mL). Moreover, the effects of B. forficata were analyzed on an animal model of orofacial dyskinesia induced by long-term treatment with haloperidol, where rats received haloperidol each 28 days (38 mg/kg) and/or B. forficata decoction daily (2.5 g/L) for 16 weeks. Vacuous chewing movements (VCMs), locomotor and exploratory activities were evaluated. Haloperidol treatment induced VCMs, and co-treatment with B. forficata partially prevented this effect. Haloperidol reduced the locomotor and exploratory activities of animals in the open field test, which was not modified by B. forficata treatment. Our present data showed that B. forficata has antioxidant potential and partially protects against VCMs induced by haloperidol in rats. Taken together, our data suggest the protection by natural compounds against VCMs induced by haloperidol in rats.

  11. Chemical composition, antioxidant potential and phenolic profile of oil mill waste water from Tunisian olive varieties (Chetoui and Chemlali

    Directory of Open Access Journals (Sweden)

    Maissa Khemakhem Sellami

    2016-07-01

    Full Text Available Oil mill waste water (OMWW is of great interest due to the presence of valuable resources such as biophenols that can be recovered as food additives and pharmaceuticals. The aim of this study is to investigate the variation of physicochemical composition of OMWW from Chetoui and Chemlali varieties, to evaluate phenolic composition, antioxidant potential and phenolic profile of OMWW extracts under native and acidified conditions. Liquid-liquid extraction was performed for the extraction of polyphenols. Antioxidant activity was investigated by DPPH•, ABTS•+ and FRAP tests. Phenolic compounds content was determined by HPLC-DAD method. OMWW from Chetoui variety has been shown to contain an important amount of K, Ca and Na whereas Chemlali cultivar was rich in Mg. Phenolic extract from Chetoui fruit (COCt has been  shown to contain the highest amount of polyphenols (2.48 ± 0.21 g L-1 as well as an appreciable content of flavonoids (9.39 ± 0.32 g L-1. However, phenolic extract from Chemlali fruit (COCm has been shown to have the highest content of proanthocyanidins (0.39 ± 0.00 g L-1. Acidification treatment improved polyphenol recovery of extracts from both varieties. COCt was more active using DPPH (EC50 of 7.5 mg L-1 and FRAP tests. However, COCt and COCm exhibited the same activity using ABTS test. In general, acidification treatment decreased antioxidant activity of extracts. COCt has been shown to contain higher amount of hydroxytyrosol when compared to COCm (157.16 ± 0.820 and 23.440 ± 0.440 mg g-1 D.W. of extract, respectively as revealed by HPLC-DAD analysis. 

  12. Antioxidant activity and chemical components as potential anticancer agents in the olive leaf (Olea europaea L. cv Leccino.) decoction.

    Science.gov (United States)

    De Marino, Simona; Festa, Carmen; Zollo, Franco; Nini, Antonella; Antenucci, Lina; Raimo, Gennaro; Iorizzi, Maria

    2014-01-01

    Epidemiological studies have shown that a reduced risk of chronic diseases such as cancer and cardiovascular diseases is correlated with a regular consumption of fruits and vegetable, many of which are rich in polyphenols. The additive and synergistic effect of phytochemicals in fruits and vegetables may reduce chronic diseases related to oxidative stress in human body. Olea europaea L. leaf are rich in phenolic components, which have been proposed to play a role in cancer prevention. The purpose of this study was to identify the main components in the Olea europaea L. leaf (cv. Leccino) preserved during the decoction preparation, in order to delineate the antioxidant activities of the crude extracts and its isolated compounds by using different in vitro assays including DPPH radicalscavenging capacity, total antioxidant capacity (TAC), xanthine oxidase (XO) inhibitory effect and the ability to delay the linoleic acid peroxidation process (ALP). The aqueous decoction was partitioned obtaining four extracts and the n-butanol extract showed the highest antioxidant activity and the highest total phenolic content. Phytochemical investigation leads to the isolation of thirteen secondary metabolites including simple phenolics, flavonoids, secoiridoids whose structures were elucidated by spectroscopic data (1D and 2D NMR) and spectrometric techniques. A significant free radical scavenging effect against DPPH has been evidenced in fraxamoside (1) (EC50 62.6 µM) and taxifolin (5) (EC50 50.0 µM), isolated for the first time from the water decoction. The most active compound in the TAC evaluation, was the 3,4 dihydro-phenyl glycol (8) (0.90 caffeic acid equiv.) while taxifolin and fraxamoside resulted as the most efficient inhibitors of XO activity (IC50 2.7 and 5.2 µM, respectively). Secoxyloganin (4), oleuropein (2) and tyrosol (6) showed the highest ALP activity. This study adds to the growing body of data supporting the bioactivities of phytochemicals and their

  13. Focused Review: Cytotoxic and Antioxidant Potentials of Mangrove-Derived Streptomyces

    Directory of Open Access Journals (Sweden)

    Hooi-Leng Ser

    2017-11-01

    Full Text Available Human life expectancy is rapidly increasing with an associated increasing burden of chronic diseases, such as neurodegenerative diseases and cancer. However, there is limited progress in finding effective treatment for these conditions. For this reason, members of the genus Streptomyces have been explored extensively over the past decades as these filamentous bacteria are highly efficient in producing bioactive compounds with human health benefits. Being ubiquitous in nature, streptomycetes can be found in both terrestrial and marine environments. Previously, two Streptomyces strains (MUSC 137T and MUM 256 isolated from mangrove sediments in Peninsular Malaysia demonstrated potent antioxidant and cytotoxic activities against several human cancer cell lines on bioactivity screening. These results illustrate the importance of streptomycetes from underexplored regions aside from the terrestrial ecosystem. Here we provide the insights and significance of Streptomyces species in the search of anticancer and/or chemopreventive agents and highlight the impact of next generation sequencing on drug discovery from the Streptomyces arsenal.

  14. Focused Review: Cytotoxic and Antioxidant Potentials of Mangrove-Derived Streptomyces

    Science.gov (United States)

    Ser, Hooi-Leng; Tan, Loh Teng-Hern; Law, Jodi Woan-Fei; Chan, Kok-Gan; Duangjai, Acharaporn; Saokaew, Surasak; Pusparajah, Priyia; Ab Mutalib, Nurul-Syakima; Khan, Tahir Mehmood; Goh, Bey-Hing; Lee, Learn-Han

    2017-01-01

    Human life expectancy is rapidly increasing with an associated increasing burden of chronic diseases, such as neurodegenerative diseases and cancer. However, there is limited progress in finding effective treatment for these conditions. For this reason, members of the genus Streptomyces have been explored extensively over the past decades as these filamentous bacteria are highly efficient in producing bioactive compounds with human health benefits. Being ubiquitous in nature, streptomycetes can be found in both terrestrial and marine environments. Previously, two Streptomyces strains (MUSC 137T and MUM 256) isolated from mangrove sediments in Peninsular Malaysia demonstrated potent antioxidant and cytotoxic activities against several human cancer cell lines on bioactivity screening. These results illustrate the importance of streptomycetes from underexplored regions aside from the terrestrial ecosystem. Here we provide the insights and significance of Streptomyces species in the search of anticancer and/or chemopreventive agents and highlight the impact of next generation sequencing on drug discovery from the Streptomyces arsenal. PMID:29163380

  15. Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: a review.

    Science.gov (United States)

    Tang, Yao; Tsao, Rong

    2017-07-01

    Quinoa (Chenopodium quinoa Willd.) and amaranth (Amaranthus cruentus L.) are pseudocereal grains rich in both macronutrients and micronutrients including vitamins and minerals. The proteins are particularly of high nutritional quality due to the outstanding balance of essential amino acids. However, recent research strongly suggests that nonessential nutrients such as phytochemicals of quinoa and amaranth may also have potential health beneficial effects. This review focuses on the phytochemical composition of quinoa and amaranth seeds, the antioxidant and anti-inflammatory activities of hydrophilic (e.g. phenolics, betacyanins) and lipophilic (e.g. fatty acids, tocopherols, and carotenoids) nutrients, and how these contribute to the potential health benefits, especially in lowering the risk of the oxidative stress related diseases e.g. cancer, cardiovascular disease, diabetes, and obesity. The gap between current knowledge and future research needs have also been identified. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Thermophilic and alkaliphilic Actinobacteria: Biology and potential applications

    Directory of Open Access Journals (Sweden)

    L eShivlata

    2015-09-01

    Full Text Available Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally and biotechnologically relevant biomolecules/bioactive compounds, which find multifarious applications.

  17. Thermophilic and alkaliphilic Actinobacteria: biology and potential applications

    Science.gov (United States)

    Shivlata, L.; Satyanarayana, Tulasi

    2015-01-01

    Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally, and biotechnologically relevant biomolecules/bioactive compounds, which find multifarious applications. PMID:26441937

  18. Antioxidant and antiproliferative potential of biosurfactants isolated from Lactobacillus casei and their anti-biofilm effect in oral Staphylococcus aureus strains.

    Science.gov (United States)

    Merghni, Abderrahmen; Dallel, Ines; Noumi, Emira; Kadmi, Yassine; Hentati, Hajer; Tobji, Samir; Ben Amor, Adel; Mastouri, Maha

    2017-03-01

    Biosurfactants also called bioemulsifiers are amphipathic compounds produced by many microorganisms that allow them to exhibit a wide range of biological activities. The aim of this study was to determine the antioxidant and antiproliferative potential of biosurfactants isolated from Lactobacillus casei and to assess their anti-adhesive and anti-biofilm abilities against oral opportunistic Staphylococcus aureus strains. The antioxidant activity of biosurfactant was evaluated using the in vitro scavenging ability on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. The antiproliferative activity was determined on epithelial cell line (HEp-2) by the Methylthiazole tetrazolium (MTT) reduction assay. The anti-adhesive and antibiofilm activity against S. aureus strains were achieved using crystal violet staining. Our results revealed that the DPPH scavenging activity of biosurfactants at 5.0 mg/mL concentration is between 74.6 and 77.3%. Furthermore, biosurfactants showed antiproliferative potency against studied epithelial cells as judged by IC50 and its value ranged from 109.1 ± 0.84 mg/mL to 129.7 ± 0.52 mg/mL. The results of the growth inhibition indicate that biosurfactant BS-LBl was more effective against oral S. aureus strains 9P and 29P with an IC50 of 1.92 ± 0.26 mg/mL and 2.16 ± 0.12 mg/mL respectively. Moreover, both biosurfactants displayed important antibiofilm activity with eradication percentages ranging from 80.22 ± 1.33% to 86.21 ± 2.94% for the BS-LBl, and from 53.38 ± 1.77% to 64.42 ± 2.09% for the BS-LZ9. Our findings demonstrate that biosurfactants from L. casei strains exhibited considerable antioxidant and antiproliferative potencies and were able to inhibit oral S. aureus strains with important antibiofilm efficacy. They could have a promising role in the prevention of oral diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Antioxidant enzymes as potential targets in cardioprotection and treatment of cardiovascular diseases. Enzyme antioxidants: the next stage of pharmacological counterwork to the oxidative stress

    Directory of Open Access Journals (Sweden)

    Alexander V. Vavaev

    2012-02-01

    Full Text Available The focus in antioxidant research is on enzyme derivative investigations. Extracellular superoxide dismutase (EC-SOD is of particular interest, as it demonstrates in vivo the protective action against development of atherosclerosis, hypertension, heart failure, diabetes mellitus. The reliable association of coronary artery disease with decreased level of heparin-released EC-SOD was established in clinical research. To create a base for and to develop antioxidant therapy, various SOD isozymes, catalase (CAT, methods of gene therapy, and combined applications of enzymes are used. Covalent bienzyme SOD-CHS-CAT conjugate (CHS, chondroitin sulphate showed high efficacy and safety as the drug candidate. There is an evident trend to use the components of glycocalyx and extracellular matrix for target delivery of medical substances. Development of new enzyme antioxidants for therapeutic application is closely connected with progress in medical biotechnology, pharmaceutical industry, and bioeconomy.

  20. Anticlastogenic potential and antioxidant effects of an aqueous extract of pulp from the pequi tree (Caryocar brasiliense Camb

    Directory of Open Access Journals (Sweden)

    Juliana Khouri

    2007-03-01

    Full Text Available The effectiveness of an aqueous extract of Caryocar brasiliense (Caryocaraceae Camb pulp, popularly known in Brazil as pequi, against clastogenicity induced by cyclophosphamide and bleomycin was evaluated using an in vivo mouse bone marrow cell micronuclei test, an in vitro Chinese hamster ovary cell (CHO-K1 chromosome aberration test and an in vitro antioxidant assay based on the oxidative damage to 2-deoxy-D-ribose (2-DR induced by hydroxyl radicals (•OH generated by the reaction between ascorbic acid and (Fe III-EDTA. In mouse bone marrow cells the extract showed a protective effect against micronuclei induced by cyclophosphamide and bleomycin but did not interfere with polychromatic bone marrow erythrocyte proliferation, except when the mice had been treated with the highest dose of cyclophosphamide. When CHO-K1 cells were pretreated by adding 0.01, 0.05 or 0.1 mL of extract per mL of cell culture medium 24 or 48 h before bleomycin or cyclophosphamide there was a protective effect against chromosome breaks and a significant decrease in the mitotic index (a measure of cytotoxicity of the CHO-K1 cells. The extract also had a protective effect against oxidative hydroxyl radical damage to 2-DR. This study suggests that C. brasiliense pulp aqueous extract has anticlastogenic potential, possibly due to its antioxidative properties.

  1. The physicochemical properties and antioxidative potential of raw thigh meat from broilers fed a dietary medicinal herb extract mixture

    Directory of Open Access Journals (Sweden)

    K. Shirzadegan

    2014-07-01

    Full Text Available A 6-wk feeding study was conducted to evaluate the antioxidative potential, indices such as quality of the thigh meat and liver of broiler chickens fed with a dietary medicinal herb extract mixture (HEM, consisting: Iranian green tea, cinnamon, garlic and chicory at a ratio of 25:15:45:15. A total of 320, one-d-old Ross (male broiler chickens were used to investigate the effects of 0.0, 2.5, 5.0 and 7.5 g/kg HEM in the diet, on aforementioned factors. The HEM supplementation did not influence the composition of raw thigh meat except for the total phenols and crude ash (P<0.05. Furthermore, pH, water-holding capacity (WHC and acceptability of thigh meat were affecting by administration of HEM in diets (P<0.05. Meat flavor increased in the supplemented groups (P<0.05. According to our data, HEM supplementation decreased the amount of thiobarbituric acid reactive substance (TBARS in various times of storage and improved the liver lipid peroxides and superoxide dismutase (SOD activities at week 6 (P<0.05, but did not influence the catalase activity. Our results reveal that the addition of 7.5 g/kg or higher HEM in diet could be sufficient to increase the antioxidative activity and 2.5 g/kg for meat taste of broilers in maximum levels.

  2. Changes in antioxidants potential, secondary metabolites and plant hormones induced by different fungicides treatment in cotton plants.

    Science.gov (United States)

    Mohamed, Heba Ibrahim; Akladious, Samia Ageeb

    2017-10-01

    The use of fungicides for an effective control of plant diseases has become crucial in the last decades in the agriculture system. Seeds of cotton plants were treated with systemic and contact fungicides to study the efficiency of seed dressing fungicides in controlling damping off caused by Rhizoctonia solani under greenhouse conditions and its effect on plant growth and metabolism. The results showed that Mon-cut showed the highest efficiency (67.99%) while each of Tondro and Hemixet showed the lowest efficiency (31.99%) in controlling damping off. Rhizolex T, Mon-cut and Tondro fungicides caused significant decrease in plant height, dry weight of plant, phytohormones, photosynthetic pigments, soluble sugars, soluble proteins, total free amino acids but caused significant increases in total phenols, flavonoids, antioxidant enzymes, ascorbic acid, reduced glutathione, MDA and hydrogen peroxide as compared with untreated plants. On the other hand, the other fungicides (Maxim, Hemixet and Flosan) increased all the above recorded parameters as compared with untreated plants. Our results indicated that the fungicides application could be a potential tool to increase plant growth, the antioxidative defense mechanisms and decreased infection with plant diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. In vivo antidiabetic and antioxidant potential of Helichrysum plicatum ssp. plicatum capitulums in streptozotocin-induced-diabetic rats.

    Science.gov (United States)

    Aslan, Mustafa; Deliorman Orhan, Didem; Orhan, Nilüfer; Sezik, Ekrem; Yesilada, Erdem

    2007-01-03

    Helichrysum species (Asteraceae) are widely found in Anatolia. Decoction prepared from the capitulums of Helichrysum plicatum ssp. plicatum is used to alleviate the symptoms of diabetes mellitus in folk medicine. In the present study, the hypoglycaemic and antioxidant potential of Helichrysum plicatum ssp. plicatum was evaluated by using in vivo methods in normal and streptozotocin-induced-diabetic rats. After the oral administration of water and ethanolic extracts at doses of 500mg/kg body weight prepared from the capitulums of plant, blood glucose levels were monitored at specific intervals. Tolbutamide was used as a reference drug at a dose of 100mg/kg. The experimental data indicated that water and ethanol extracts of capitulums demonstrate significant antihyperglycaemic and antioxidant activity in streptozotocin-induced rats which confirmed the folkloric utilization. In order to assess the role of polyphenolic components in the relevant activity, phenolic and flavonoid contents of each extract were also determined in terms of total phenols: 113.5+/-8.6mg (gallic acid equivalent/1g extract) and total flavanoids 50.5+/-1.9mg (quercetin equivalent/1g extract) for ethanol extract, total phenols: 75.9+/-3.7, flavonoids: 31.5+/-2.3 for water extract using Folin-Ciocalteu reagent.

  4. Tolerability in the elderly population of high-dose alpha lipoic acid: a potential antioxidant therapy for the eye

    Directory of Open Access Journals (Sweden)

    Sarezky D

    2016-09-01

    Full Text Available Daniel Sarezky, Aaishah R Raquib, Joshua L Dunaief, Benjamin J Kim Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Purpose: Alpha lipoic acid (ALA is an antioxidant and iron-chelating supplement that has potential benefits for geographic atrophy in dry age-related macular degeneration as well as other eye diseases. The purpose of this study was to determine the tolerability of ALA in the elderly population. Patients and methods: Fifteen subjects, age ≥65 years, took sequential ALA doses of 600, 800, and 1,200 mg. Each dose was taken once daily with a meal for 5 days. After each dose was taken by the subjects for 5 days, the subjects were contacted by phone, a review of systems was performed, and they were asked if they thought they could tolerate taking that dose of ALA for an extended period of time. Results: The 600 mg dose was well tolerated. At the 800 mg dose, one subject had an intolerable flushing sensation. At the 1,200 mg dose, two subjects had intolerable upper gastrointestinal side effects and one subject had an intolerable flushing sensation. Subjects taking gastrointestinal prophylaxis medications had no upper gastrointestinal side effects. Conclusion: High-dose ALA is not completely tolerated by the elderly. These preliminary data suggest that gastrointestinal prophylaxis may improve tolerability. (ClinicalTrials.gov, NCT02613572. Keywords: age-related macular degeneration, geographic atrophy, antioxidant, gastrointestinal, dietary supplements, lipoic acid

  5. Prooxidant/Antioxidant Ratio (ProAntidex as a Better Index of Net Free Radical Scavenging Potential

    Directory of Open Access Journals (Sweden)

    Hwee Ming Cheng

    2010-11-01

    Full Text Available The antioxidant activity of several Malaysian plant extracts was analyzed simultaneously with their pro-oxidant capacity. This ratio represents an index (ProAntidex of the net free radical scavenging ability of whole plant extracts. We observed that ethanolic extracts of Nephelium lappaceum peel, Fragaria x ananassa leaf, Lawsonia inermis leaf, Syzygium aqueum leaf and grape seed had a lower Pro-Antidex than the commercially available Emblica™ extract which is an antioxidant agent with very low pro-oxidant activity. Among the aqueous extracts, Lawsonia inermis leaf, Nephelium mutobile leaf and grape seed had lower pro-oxidant activity compared to the Emblica™ extract. Among these extracts, aqueous extract of Nephelium mutobile leaf had a very low index of 0.05 compared to 0.69 for Emblica™. Most of the extracts had a far lower ProAntidex compared to the Vitamin C. The index enables us to identify extracts with high net free radical scavenging activity potential. The ProAntidex is beneficial as a screening parameter to the food industries and healthcare.

  6. Leccinum molle (Bon) Bon and Leccinum vulpinum Watling: The First Study of Their Nutritional and Antioxidant Potential.

    Science.gov (United States)

    Reis, Filipa S; Barros, Lillian; Martins, Anabela; Vasconcelos, M Helena; Morales, Patricia; Ferreira, Isabel C F R

    2016-02-20

    This work presents the chemical profile of two edible species of mushrooms from the genus Leccinum: Leccinum molle (Bon) Bon and Leccinum vulpinum Watling, both harvested on the outskirts of Bragança (Northeastern Portugal). Both species were prepared and characterized regarding their content in nutrients (i.e., free sugars, fatty acids and vitamins), non-nutrients (i.e., phenolic and other organic acids) and antioxidant activity. To the best of our knowledge, no previous studies on the chemical characterization and bioactivity of these species have been undertaken. Accordingly, this study intends to increase the available information concerning edible mushroom species, as well as to highlight another important factor regarding the conservation of the mycological resources--their potential as sources of nutraceutical/pharmaceutical compounds. Overall, both species revealed similar nutrient profiles, with low fat levels, fructose, mannitol and trehalose as the foremost free sugars, and high percentages of mono- and polyunsaturated fatty acids. They also revealed the presence of bioactive compounds, namely phenolic (e.g., gallic acid, protocatechuic acid and p-hydroxybenzoic acid) and organic acids (e.g., citric and fumaric acids) and presented antioxidant properties.

  7. Physicochemical composition and antioxidant properties of a ...

    African Journals Online (AJOL)

    Physicochemical composition and antioxidant properties of a sweetpotato variety ( Ipomoea batatas L) commercially sold in South Eastern Nigeria. ... Results show that this sweet potato variety has potentials of biological properties and could have wide utility in food, alcohol and sugar industries. In addition, it could serve as ...

  8. The Biological Potential of Mars, the Early Earth, and Europa

    Science.gov (United States)

    Jakosky, B. M.; Shock, E. L.

    1998-09-01

    The potential biomass that could have existed on Mars is constrained by the total amount of energy available to construct it. From an inventory of the available geochemical sources of energy, we estimate that, from the time of the onset of the visible geologic record 4 b.y. ago to the present, as much as 20 g/cm2 of biota could have been constructed. This is the same amount that could have been constructed from similar sources on the early Earth in only 100 m.y. This indicates that there likely was sufficient energy available to support an origin of life on Mars, but not sufficient energy to create a ubiquitous and lush biosphere. Similar calculations for Europa suggest that even less geochemical energy would have been available there.

  9. Mesenchymal stem cells: biological characteristics and potential clinical applications

    DEFF Research Database (Denmark)

    Kassem, Moustapha

    2004-01-01

    are among the first stem cell types to be introduced in the clinic. Several studies have demonstrated the possible use of MSC in systemic transplantation for systemic diseases, local implantation for local tissue defects, as a vehicle for genes in gene therapy protocols or to generate transplantable tissues...... and organs in tissue engineering protocols. Before their widespread use in therapy, methods allowing the generation of large number of cells without affecting their differentiation potential as well as technologies that overcome immunological rejection (in case allogenic transplantation) must be developed.......Mesenchymal stem cells (MSC) are clonogenic, non-hematpoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages, for example, osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages, for example, neuronal...

  10. Mesenchymal stem cells: cell biology and potential use in therapy

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Kristiansen, Malthe; Abdallah, Basem M

    2004-01-01

    Mesenchymal stem cells are clonogenic, non-haematopoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages e.g. osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages e.g. neuronal-like cells. Several methods...... are currently available for isolation of the mesenchymal stem cells based on their physical and immunological characteristics. Because of the ease of their isolation and their extensive differentiation potential, mesenchymal stem cells are among the first stem cell types to be introduced in the clinic. Recent...... studies have demonstrated that the life span of mesenchymal stem cells in vitro can be extended by increasing the levels of telomerase expression in the cells and thus allowing culture of large number of cells needed for therapy. In addition, it has been shown that it is possible to culture the cells...

  11. Expression Patterns and Potential Biological Roles of Dip2a.

    Directory of Open Access Journals (Sweden)

    Luqing Zhang

    Full Text Available Disconnected (disco-interacting protein 2 homolog A is a member of the DIP2 protein family encoded by Dip2a gene. Dip2a expression pattern has never been systematically studied. Functions of Dip2a in embryonic development and adult are not known. To investigate Dip2a gene expression and function in embryo and adult, a Dip2a-LacZ mouse model was generated by insertion of β-Gal cDNA after Dip2a promoter using CRISPR/Cas9 technology. Dip2a-LacZ mouse was designed to be a lacZ reporter mouse as well as a Dip2a knockout mouse. Heterozygous mice were used to study endogenous Dip2a expression and homozygotes to study DIP2A-associated structure and function. LacZ staining indicated that Dip2a is broadly expressed in neuronal, reproductive and vascular tissues, as well as in heart, kidney, liver and lung. Results demonstrate that Dip2a is expressed in ectoderm-derived tissues in developing embryos. Adult tissues showed rich staining in neurons, mesenchymal, endothelial, smooth muscle cells and cardiomyocytes by cell types. The expression pattern highly overlaps with FSTL1 and supports previous report that DIP2A to be potential receptor of FSTL1 and its protective roles of cardiomyocytes. Broad and intense embryonic and adult expression of Dip2a has implied their multiple structural and physiological roles.

  12. Event-related potentials, cognition, and behavior: a biological approach.

    Science.gov (United States)

    Kotchoubey, Boris

    2006-01-01

    The prevailing cognitive-psychological accounts of event-related brain potentials (ERPs) assume that ERP components manifest information processing operations leading from stimulus to response. Since this view encounters numerous difficulties already analyzed in previous studies, an alternative view is presented here that regards cortical control of behavior as a repetitive sensorimotor cycle consisting of two phases: (i) feedforward anticipation and (ii) feedback cortical performance. This view allows us to interpret in an integrative manner numerous data obtained from very different domains of ERP studies: from biophysics of ERP waves to their relationship to the processing of language, in which verbal behavior is viewed as likewise controlled by the same two basic control processes: feedforward (hypothesis building) and feedback (hypothesis checking). The proposed approach is intentionally simplified, explaining numerous effects on the basis of few assumptions and relating several levels of analysis: neurophysiology, macroelectrical processes (i.e. ERPs), cognition and behavior. It can, therefore, be regarded as a first approximation to a general theory of ERPs.

  13. Microgravity research in plant biological systems: Realizing the potential of molecular biology

    Science.gov (United States)

    Lewis, Norman G.; Ryan, Clarence A.

    1993-01-01

    The sole all-pervasive feature of the environment that has helped shape, through evolution, all life on Earth is gravity. The near weightlessness of the Space Station Freedom space environment allows gravitational effects to be essentially uncoupled, thus providing an unprecedented opportunity to manipulate, systematically dissect, study, and exploit the role of gravity in the growth and development of all life forms. New and exciting opportunities are now available to utilize molecular biological and biochemical approaches to study the effects of microgravity on living organisms. By careful experimentation, we can determine how gravity perception occurs, how the resulting signals are produced and transduced, and how or if tissue-specific differences in gene expression occur. Microgravity research can provide unique new approaches to further our basic understanding of development and metabolic processes of cells and organisms, and to further the application of this new knowledge for the betterment of humankind.

  14. Physicochemical composition and antioxidant potential of bee pollen from different botanical sources in Alagoas, Brazil

    Directory of Open Access Journals (Sweden)

    Maria Raphaella dos Santos Vasconcelos

    Full Text Available ABSTRACT Bee pollen results from the mixture of pollen and floral nectar with the salivary substances of bees and has increasingly been used as a food with therapeutic properties. In this study, 30 samples of bee pollen from Apis mellifera apiaries in three mesoregions of Alagoas (Brazil - Mata Atlântica, South Coast and Caatinga, were collected during the dry season of 2008/09 and analysed. Mata Atlântica and Caatinga had good production of bee pollen. In the same season, Mata Atlântica contained a higher diversity of pollen types for feeding bees with a predominance of herbaceous pollen (63%, whereas the Caatinga samples contained monofloral pollen. Physicochemical data were analysed with the nonparametric Kruskal-Wallis statistical test. The Caatinga samples were analysed to determine their contents of total phenolic compounds (25.85 ± 10.80 mg gallic acid eq/g and flavonoids (45.62 ± 32.19 mg quercetin eq/g and their antioxidant activity (for instance, 70.62 ± 4.50% in the DPPH test, which were possibly affected by the environmental conditions of this biome.

  15. Obesity and Subsequent Cardiovascular Events in Rats and The Potential Benefits of some Antioxidants Supplementation

    International Nuclear Information System (INIS)

    HEIBASHY, M.I.; El-Negmy, F.A.; Shahin, M.I.; Kelada, N.A.

    2011-01-01

    This study focuses on the relationship between the obesity and cardiovascular diseases (CVD) and the possible amelioration effects of curcumin or L-carnitine and their mixture on cardiac and lipid profiles tests. Obesity is associated with abnormal endothelial function and it is often inferred that the reduction in endothelial function is the result of a decrease in nitric oxide (NO). Moreover, asymmetric dimethyl arginine (ADMA) is an endogenous competitive inhibitor of nitric oxide synthase (NOs) activity. This modified amino acid is derived from proteins that have been post-translationally methylated and subsequently hydrolyzed. In the current study, obesity was induced in the rats by receiving orally 200 mg cholesterol/100 g by the aid of gastric tube together with injection i.m. 30 mg cholic acid/100 g for one month. After one month of induction of hyper-cholesterolemia in rats and in comparison to normal rats, the results showed that incorporation of extra cholesterol in diet led to a significant increase in serum cholesterol, triglycerides, LDL, HDL, VLDL-cholesterol and resistin levels. Moreover, significant elevations in the levels of AST, LDH, CK, ADMA and endotheline-1 were recorded in obese rats compared with normal rats. All previous parameters were corrected after the hypercholesterolemic rats were treated with curcumin or L-carnitine and their mixture depending on the time of treatment. These findings are consistent with the concept that curcumin and L-carnitine are hypolipidemic agents and powerful antioxidants

  16. Potential utility of melatonin as an antioxidant during pregnancy and in the perinatal period.

    Science.gov (United States)

    Aversa, Salvatore; Pellegrino, Salvatore; Barberi, Ignazio; Reiter, Russel J; Gitto, Eloisa

    2012-03-01

    Reactive oxygen species (ROS) play a critical role in the pathogenesis of various diseases during pregnancy and the perinatal period. Newborns are more prone to oxidative stress than individuals later in life. During pregnancy, increased oxygen demand augments the rate of production of ROS and women, even during normal pregnancies, experience elevated oxidative stress compared with non-pregnant women. ROS generation is also increased in the placenta during preeclampsia. Melatonin is a highly effective direct free-radical scavenger, indirect antioxidant, and cytoprotective agent in human pregnancy and it appears to be essential for successful pregnancy. This suggests a role for melatonin in human reproduction and in neonatal pathologies (asphyxia, respiratory distress syndrome, sepsis, etc.). This review summarizes current knowledge concerning the role for melatonin in human pregnancy and in the newborn. Numerous studies agree that short-term melatonin therapy is highly effective in reducing complications during pregnancy and in the neonatal period. No significant toxicity or treatment-related side effects with long-term melatonin therapy in children and adults have been reported. Treatment with melatonin might result in a wide range of health benefits, including improved quality of life and reduced healthcare costs.

  17. Nephroprotective potential of artichoke leaves extract against gentamicin in rats: Antioxidant mechanisms.

    Science.gov (United States)

    Khattab, Hala Ah; Wazzan, Maha Am; Al-Ahdab, Maha A

    2016-09-01

    Nephrotoxicity represents a major health problem. This study aims to determine nephroprotective of artichoke leaves extract (ALE) against gentamicin (GM) injection in male rats. Rats (n=30) were divided into; negative control, nephrotoxic (GM) injected intraperitoneally (i.p.) with GM (100 mg/kg b.wt/d for 10 days), and groups administered orally with ALE (200, 400 or 600 mg/kg b.wt/d) and injected with GM. The results revealed that, GM injection induced marked nephrotoxicity as evidenced by significant increase in kidney functions, albumin and potassium (K+), with significant decrease in serum levels of total protein and sodium (Na + ) as compared with negative control group. There was significant increase in malondialdehyde (MDA) level in GM group compared with negative control group. Renal examined tissues showed severe changes manifested by atrophy of glomerular tuft, necrosis of epithelial lining renal tubules with apoptosis of tubular epithelium and renal hemorrhage. Simultaneous administration of ALE during GM therapy protected kidney tissues as evidenced by normalization of kidney biochemical parameters and minimized the histopathological changes. Therefore, ALE has nephroprotective and antioxidant effects, thus could be beneficial for kidney patients.

  18. Influence of two different IR radiators on the antioxidative potential of the human skin

    International Nuclear Information System (INIS)

    Darvin, M E; Patzelt, A; Meinke, M; Sterry, W; Lademann, J

    2009-01-01

    Resonance Raman spectroscopy was used for the fast in vivo detection of the concentration of carotenoid antioxidant substances such as beta-carotene and lycopene in human skin and for the measurement of their degradation dynamics, subsequent to infrared (IR) irradiation emitted by two different IR radiators applied at the same power density. One of the radiators was equipped with a water filter in front of the radiation source (WIRA) and the other was a usual broadband system without a water filter (standard IR radiator – SIR). It was found that the SIR exerted a higher influence on the degradation of carotenoids in the skin than the WIRA. Furthermore, all twelve volunteers who participated in the study felt that the irradiation with the SIR was disagreeably warmer on the skin surface compared to the WIRA, in spite of the same power density values for both radiators on the skin surface. The average degradation magnitude of the carotenoids in the skin of all volunteers after an IR irradiation was determined at 23% for WIRA and 33% for the SIR. A correlation (R 2 ∼ 0.6) was found between the individual level of carotenoids in the skin of the volunteers and the magnitude of degradation of the carotenoids for both IR radiators. Taking the previous investigations into consideration, which clearly showed production of free radicals in the skin subsequent to IR irradiation, it can be concluded that during the application of WIRA irradiation on the skin, fewer radicals are produced in comparison to the SIR

  19. Antioxidant and anticholinesterase investigations of Rumex hastatus D. Don: potential effectiveness in oxidative stress and neurological disorders

    Directory of Open Access Journals (Sweden)

    Sajjad Ahmad

    2015-01-01

    Full Text Available BACKGROUND: Rumex species are traditionally used for the treatment of neurological disorders including headache, migraine, depression, paralysis etc. Several species have been scientifically validated for antioxidant and anticholinestrase potentials. This study aims to investigate Rumex hastatus D. Don crude methanolic extract, subsequent fractions, saponins and flavonoids for acetylcholinestrase, butyrylcholinestrase inhibition and diverse antioxidant activities to validate its folkloric uses in neurological disorders. Rumexhastatus crude methanolic extract (Rh. Cr, subsequent fractions; n-hexane (Rh. Hex, chloroform (Rh. Chf, ethyl acetate (Rh. EtAc, aqueous fraction (Rh. Aq, crude saponins (Rh. Sp and flavonoids (Rh. Fl were investigated against acetylcholinesterase (AChE and butyrylcholinesterase (BChE at various concentrations (125, 250, 500,1000 μg/mL using Ellman's spectrophotometric analysis. Antioxidant potentials of Rh. Sp and Rh. Fl were evaluated using DPPH, H2O2 and ABTS free radical scavenging assays at 62.5, 125, 250, 500, 1000 μg/mL. RESULTS: All the test samples showed concentration dependent cholinesterase inhibition and radicals scavenging activity. The AChE inhibition potential of Rh. Sp and Rh. Fl were most prominent i.e., 81.67 ± 0.88 and 91.62 ± 1.67 at highest concentration with IC50 135 and 20 μg/mL respectively. All the subsequent fractions exhibited moderate to high AChE inhibition i.e., Rh. Cr, Rh. Hex, Rh. Chf, Rh. EtAc and Rh. Aq showed IC50 218, 1420, 75, 115 and 1210 μg/mL respectively. Similarly, against BChE various plant extracts i.e., Rh. Sp, Rh. Fl, Rh. Cr, Rh. Hex, Rh. Chf, Rh. EtAc and Rh. Aq resulted IC50 165,175, 265, 890, 92, 115 and 220 μg/mL respectively. In DPPH free radical scavenging assay, Rh. Sp and Rh. Fl showed comparable results with the positive control i.e., 63.34 ± 0.98 and 76.93 ± 1.13% scavenging at 1 mg/mL concentration (IC50 312 and 104 μg/mL respectively. The percent ABTS

  20. Soy-yamgurt probiotic drink as a natural potential of antioxidant

    Science.gov (United States)

    Rusmarilin, H.; Nurhasanah; Andayani, RY

    2018-02-01

    Yogurt is a popular healthy food, consumed by many people. Probiotic are used for better growth and survival of probiotic bacteria as well as to improve organoleptic, rheological and technological properties of soy-yamgurt probiotic. The aims of this study were to determine physicochemical changes and survival of probiotic bacteria due to the effect of ratio of yam-bean with soy-bean extract on the quality of soy-yamgurt probiotic drink. The quality examined were total bacteria, antioxidant activity, lactic acid content, and acceptability including color, texture, flavor, and overall acceptance. This research had been performed using Completely Randomized Design two factorials, consist of five levels i.e.: ratio of yam-bean with soy-bean extract (100:0; 75:25; 50:50; 25:75; 0:100) and the fermentation time (4,6 and 8 hours), the process was repeated three times. The results showed that ratio of yam-bean with soy-bean extract of 50:50 and fermentation for 6 hours incubation produced the best quality. Acceptable probiotic drink containing 1.44 x 109 CFU/mL lactic acid bacteria, IC50 of soy-yamgurt in the attenuation of free radical DPPH ranged from 58.718-18.112 mg/L in 5 minutes incubation and 39.7204-11.9925 mg/L in 60 minutes, and 0.48% lactic acid. This appearance of soy-yamgurt had yellow greenish color, desired texture and flavor, and received the highest score of overall acceptance.

  1. Triphenylphosphonium Moiety Modulates Proteolytic Stability and Potentiates Neuroprotective Activity of Antioxidant Tetrapeptides in Vitro

    Directory of Open Access Journals (Sweden)

    Rezeda A. Akhmadishina

    2018-02-01

    Full Text Available Although delocalized lipophilic cations have been identified as effective cellular and mitochondrial carriers for a range of natural and synthetic drug molecules, little is known about their effects on pharmacological properties of peptides. The effect of triphenylphosphonium (TPP cation on bioactivity of antioxidant tetrapeptides based on the model opioid YRFK motif was studied. Two tetrapeptide variants with L-arginine (YRFK and D-arginine (YrFK were synthesized and coupled with carboxyethyl-TPP (TPP-3 and carboxypentyl-TPP (TPP-6 units. The TPP moiety noticeably promoted YRFK cleavage by trypsin, but effectively prevented digestion of more resistant YrFK attributed, respectively, to structure-organizing and shielding effects of the TPP cation on conformational variants of the tetrapeptide motif. The TPP moiety enhanced radical scavenging activity of the modified YRFK in a model Fenton-like reaction, whereas decreased reactivity was revealed for both YrFK and its TPP derivative. The starting motifs and modified oligopeptides, especially the TPP-6 derivatives, suppressed acute oxidative stress in neuronal PC-12 cells during a brief exposure similarly with glutathione. The effect of oligopeptides was compared upon culturing of PC-12 cells with CoCl2, L-glutamic acid, or menadione to mimic physiologically relevant oxidative states. The cytoprotective activity of oligopeptides significantly depended on the type of oxidative factor, order of treatment and peptide structure. Pronounced cell-protective effect was established for the TPP-modified oligopeptides, which surpassed that of the unmodified motifs. The protease-resistant TPP-modified YrFK showed the highest activity when administered 24 h prior to the cell damage. Our results suggest that the TPP cation can be used as a modifier for small therapeutic peptides to improve their pharmacokinetic and pharmacological properties.

  2. Plantain peel - a potential source of antioxidant dietary fibre for developing functional cookies.

    Science.gov (United States)

    Arun, K B; Persia, Florence; Aswathy, P S; Chandran, Janu; Sajeev, M S; Jayamurthy, P; Nisha, P

    2015-10-01

    Plantain cultivar Nendran is popular as a staple food in many parts of India and deep fried chips made from raw matured Nendran are one of the popular snack items in India. This study aims to utilize peel from Nendran variety- the main byproduct of banana chips industry- to develop high fibre cookies with enhanced bioactive content. Proximate analysis indicated that peels are rich in total dietary fibre (64.33 g/100 g), vitamins (Folic acid- 33.12 mg/100 g) and minerals (Potassium- 35.61 mg/100 g). Nendran Peel Flour (NPF) was extracted with hexane, ethyl acetate and methanol. Phenolic and flavonoid content was high for ethyl acetate extract (15.21 and 9.39 mg QE/g dry weight). Methanol extract was more potent in reducing Copper ion (2.36 μM TR/g dry weight) and scavenging NO (IC50-381.71 μg/mL). Ethyl acetate extract was capable of scavenging DPPH and hydroxyl radical. HPLC profiling showed presence of gallic acid, protocatechuic acid, rutin hydrate and quercetin in ethyl acetate extract and gallic acid, chlorogenic acid and vanillic acid in methanol extract. Cookies prepared with NPF possess higher total dietary fibre content. There was a decrease in spread ratio, breaking strength and browning index of cookies as the percentage of NPF increased. NPF incorporation gradually increased the phenolic content from 4.36 to 5.28 mg GAE, compared to control cookie (3.21 mg GAE). DPPH scavenging activity also increased with increase in NPF. Hence NPF is a very good source of antioxidant dietary fibre and acceptable cookies can be produced by replacing wheat flour with 10 % NPF.

  3. Antioxidant Secondary Metabolites in Cereals: Potential Involvement in Resistance to Fusarium and Mycotoxin Accumulation

    Directory of Open Access Journals (Sweden)

    Vessela eATANASOVA-PENICHON

    2016-04-01

    Full Text Available Gibberella and Fusarium Ear Rot and Fusarium Head Blight are major diseases affecting European cereals. These diseases are mainly caused by fungi of the Fusarium genus, primarily Fusarium graminearum and Fusarium verticillioides. These Fusarium species pose a serious threat to food safety because of their ability to produce a wide range of mycotoxins, including type B trichothecenes and fumonisins. Many factors such as environmental, agronomic or genetic ones may contribute to high levels of accumulation of mycotoxins in the grain and there is an urgent need to implement efficient and sustainable management strategies to reduce mycotoxin contamination. Actually, fungicides are not fully efficient to control the mycotoxin risk. In addition, because of harmful effects on human health and environment, their use should be seriously restricted in the near future. To durably solve the problem of mycotoxin accumulation, the breeding of tolerant genotypes is one of the most promising strategies for cereals. A deeper understanding of the molecular mechanisms of plant resistance to both Fusarium and mycotoxin contamination will shed light on plant-pathogen interactions and provide relevant information for improving breeding programs. Resistance to Fusarium depends on the plant ability in preventing initial infection and containing the development of the toxigenic fungi while resistance to mycotoxin contamination is also related to the capacity of plant tissues in reducing mycotoxin accumulation. This capacity can result from two mechanisms: metabolic transformation of the toxin into less toxic compounds and inhibition of toxin biosynthesis. This last mechanism involves host metabolites able to interfere with mycotoxin biosynthesis. This review aims at gathering the latest scientific advances that support the contribution of grain antioxidant secondary metabolites to the mechanisms of plant resistance to Fusarium and mycotoxin accumulation.

  4. Investigation of the Potential Health Benefits as Lipase Inhibitor and Antioxidant of Leopoldia comosa (L.) Parl.: Variability of Chemical Composition of Wild and Cultivated Bulbs.

    Science.gov (United States)

    Marrelli, Mariangela; La Grotteria, Stefania; Araniti, Fabrizio; Conforti, Filomena

    2017-09-01

    There is a great interest in the nutritional value of vegetables and fruits and how the habitat affects nutritive and biological properties. In vitro studies here reported were performed to evaluate the inhibitory activity of formulations from edible plant on pancreatic lipase. The aim of this study was also to evaluate the biovariability of L. comosa (L.) Parl. bulbs from Italy. The wild bulbs were compared with the same cultivated species that are commonly commercialized to identify samples with the best quality for a potential therapeutic application. Hydroalcoholic extract and polar fraction of wild bulbs showed a very important pancreatic lipase inhibitory activity, with IC 50 values of 0.166 ± 0.005 and 0.153 ± 0.005 mg/mL, respectively. In order to characterize the extracts, gas chromatography associated with mass spectrometry (GC/MS) analysis was performed, revealing the predominance of palmitic acid. Phenolic and flavonoid composition was also evaluated. L. comosa extract obtained from wild bulbs demonstrated both antioxidant and anti-obesity activities that might be attributed to a wide range of present phenolic compounds.

  5. The antioxidant EDU and Raphanus sativus L. - a new approach to biological indication of ozone?; Das Antioxidant EDU und Raphanus sativus L. - neue Moeglichkeiten der Bioindikation von Ozon?

    Energy Technology Data Exchange (ETDEWEB)

    Kostka-Rick, R; Manning, W J

    1993-12-31

    Studies on the effects of ozone on plants repeatedly suggested to use anti-oxidant agent-like ethylene diurea (EDU) as control treatment for exposure systems like open-top chambers. Radish (`Cherry Belle`) was exposed to ozone (135-225 {mu}g m{sup -3}, 7.5 h d{sup -1}, 7 d) in a controlled way in green-house tests run during three different developmental stages. Some plants received pretreatment with EDU (150 mg l{sup -1}). Up to 26% of the leaf surface was injured by ozone exposure in untreated plants; EDU-treated plants and control plants grown in filtered ais showed a maximum of 2% of leaf injury. The growth of the storage organ (hypocotyl) was significantly depressed by ozone exposure (without EDU) but compensatory processes largely redressed this loss after the exposure period. EDU caused some minor leaf injury and a nonsignificant stimulation of shoot growth. (orig.) [Deutsch] In O{sub 3}-Wirkungsuntersuchungen mit Pflanzen wurde wiederholt der Einsatz antioxidanter Wirkstoffe wie Ethylendiurea (EDU) als Kontrollbehandlung alternativ zu Expositionssystemen wie z.B. Open-Top-Kammern vorgeschlagen. Waehrend drei verschiedener Entwicklungsstadien wurden Radies (Sorte `Cherry Belle`) in einem Gewaechshausversuch kontrolliert mit O{sub 3} belastet (135-225 {mu}g m{sup -3}, 7.5 h d{sup -1}, 7 d), nachdem ein Teil der Pflanzen mit EDU behandelt worden war (150 mg l{sup -1}). Bei unbehandelten Pflanzen wurden bis zu 26% der Blattflaeche durch die O{sub 3}-Exposition geschaedigt; EDU-behandelte Pflanzen und Kontrollpflanzen in gefilterter Luft zeigten maximal 2% Blattschaedigung. Das Wachstum des Speicherorgans (Hypokotyl) war durch die O{sub 3}-Belastung (ohne EDU) signifikant vermindert, kompensatorische Prozesse glichen diesen Verlust nach der Belastungsphase jedoch weitgehend aus. EDU selbst loeste leichte Blattschaedigungen aus und bewirkte eine nicht-signifikante Stimulation des Sprosswachstums. (orig.)

  6. The antioxidant EDU and Raphanus sativus L. - a new approach to biological indication of ozone?; Das Antioxidant EDU und Raphanus sativus L. - neue Moeglichkeiten der Bioindikation von Ozon?

    Energy Technology Data Exchange (ETDEWEB)

    Kostka-Rick, R.; Manning, W.J.

    1992-12-31

    Studies on the effects of ozone on plants repeatedly suggested to use anti-oxidant agent-like ethylene diurea (EDU) as control treatment for exposure systems like open-top chambers. Radish (`Cherry Belle`) was exposed to ozone (135-225 {mu}g m{sup -3}, 7.5 h d{sup -1}, 7 d) in a controlled way in green-house tests run during three different developmental stages. Some plants received pretreatment with EDU (150 mg l{sup -1}). Up to 26% of the leaf surface was injured by ozone exposure in untreated plants; EDU-treated plants and control plants grown in filtered ais showed a maximum of 2% of leaf injury. The growth of the storage organ (hypocotyl) was significantly depressed by ozone exposure (without EDU) but compensatory processes largely redressed this loss after the exposure period. EDU caused some minor leaf injury and a nonsignificant stimulation of shoot growth. (orig.) [Deutsch] In O{sub 3}-Wirkungsuntersuchungen mit Pflanzen wurde wiederholt der Einsatz antioxidanter Wirkstoffe wie Ethylendiurea (EDU) als Kontrollbehandlung alternativ zu Expositionssystemen wie z.B. Open-Top-Kammern vorgeschlagen. Waehrend drei verschiedener Entwicklungsstadien wurden Radies (Sorte `Cherry Belle`) in einem Gewaechshausversuch kontrolliert mit O{sub 3} belastet (135-225 {mu}g m{sup -3}, 7.5 h d{sup -1}, 7 d), nachdem ein Teil der Pflanzen mit EDU behandelt worden war (150 mg l{sup -1}). Bei unbehandelten Pflanzen wurden bis zu 26% der Blattflaeche durch die O{sub 3}-Exposition geschaedigt; EDU-behandelte Pflanzen und Kontrollpflanzen in gefilterter Luft zeigten maximal 2% Blattschaedigung. Das Wachstum des Speicherorgans (Hypokotyl) war durch die O{sub 3}-Belastung (ohne EDU) signifikant vermindert, kompensatorische Prozesse glichen diesen Verlust nach der Belastungsphase jedoch weitgehend aus. EDU selbst loeste leichte Blattschaedigungen aus und bewirkte eine nicht-signifikante Stimulation des Sprosswachstums. (orig.)

  7. Comparison of total polyphenols content and antioxidant potential of wines from ‘Welschriesling’ and ‘Sauvignon Blanc’ varieties during ageing on fine lees

    Directory of Open Access Journals (Sweden)

    Jasna Lužar

    2016-10-01

    Full Text Available Phenolic compounds are key components of wine, since they contribute to wine characteristics such as colour, astringency and bitterness. They also act like antioxidants, with mechanisms involving free-radical scavenging that could prevent cardiovascular diseases and cancer. The aim of the present work was to compare the obtained results of total polyphenols content and antioxidant potential (AOP of several white wines (welschriesling and sauvignon blanc during ageing on fine lees. The total polyphenols content decreased in average for 16.1 % in welschriesling wines and for 18.7 % in sauvignon blanc wines in the period of three months of wine ageing on lees. In the same period AOP of wines decreased in average for 16.0 % in welschriesling wines and for 8.0 % in sauvignon blanc wines. Expectedly, the samples with added oak chips in grape must had higher antioxidant potential than others.

  8. Antioxidant and Antiplasmodial Activities of Bergenin and 11-O-Galloylbergenin Isolated from Mallotus philippensis

    OpenAIRE

    Khan, Hamayun; Amin, Hazrat; Ullah, Asad; Saba, Sumbal; Rafique, Jamal; Khan, Khalid; Ahmad, Nasir; Badshah, Syed Lal

    2016-01-01

    Two important biologically active compounds were isolated from Mallotus philippensis. The isolated compounds were characterized using spectroanalytical techniques and found to be bergenin (1) and 11-O-galloylbergenin (2). The in vitro antioxidant and antiplasmodial activities of the isolated compounds were determined. For the antioxidant potential, three standard analytical protocols, namely, DPPH radical scavenging activity (RSA), reducing power assay (RPA), and total antioxidant capacity (T...

  9. Aloe vera: Potential candidate in health management via modulation of biological activities

    Science.gov (United States)

    Rahmani, Arshad H.; Aldebasi, Yousef H.; Srikar, Sauda; Khan, Amjad A.; Aly, Salah M.

    2015-01-01

    Treatment based on natural products is rapidly increasing worldwide due to the affordability and fewer side effects of such treatment. Various plants and the products derived from them are commonly used in primary health treatment, and they play a pivotal role in the treatment of diseases via modulation of biochemical and molecular pathways. Aloe vera, a succulent species, produces gel and latex, plays a therapeutic role in health management through antioxidant, antitumor, and anti-inflammatory activities, and also offers a suitable alternative approach for the treatment of various types of diseases. In this review, we summarize the possible mechanism of action and the therapeutic implications of Aloe vera in health maintenance based on its modulation of various biological activities. PMID:26392709

  10. Comprehensive evaluation of the flavonol anti-oxidants, alpha-glycosyl isoquercitrin and isoquercitrin, for genotoxic potential.

    Science.gov (United States)

    Hobbs, Cheryl A; Koyanagi, Mihoko; Swartz, Carol; Davis, Jeffrey; Kasamoto, Sawako; Maronpot, Robert; Recio, Leslie; Hayashi, Shim-Mo

    2018-03-01

    Quercetin and its glycosides possess potential benefits to human health. Several flavonols are available to consumers as dietary supplements, promoted as anti-oxidants; however, incorporation of natural quercetin glycosides into food and beverage products has been limited by poor miscibility in water. Enzymatic conjugation of multiple glucose moieties to isoquercitrin to produce alpha-glycosyl isoquercitrin (AGIQ) enhances solubility and bioavailability. AGIQ is used in Japan as a food additive and has been granted generally recognized as safe (GRAS) status. However, although substantial genotoxicity data exist for quercetin, there is very little available data for AGIQ and isoquercitrin. To support expanded global marketing of food products containing AGIQ, comprehensive testing of genotoxic potential of AGIQ and isoquercitrin was conducted according to current regulatory test guidelines. Both chemicals tested positive in bacterial reverse mutation assays, and exposure to isoquercitrin resulted in chromosomal aberrations in CHO-WBL cells. All other in vitro mammalian micronucleus and chromosomal aberration assays, micronucleus and comet assays in male and female B6C3F1 mice and Sprague Dawley rats, and Muta™ Mouse mutation assays evaluating multiple potential target tissues, were negative for both chemicals. These results supplement existing toxicity data to further support the safe use of AGIQ in food and beverage products. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Bioactive compounds, antioxidant potential, and hepatoprotective activity of sea cucumber (Holothuria atra) against thioacetamide intoxication in rats.

    Science.gov (United States)

    Esmat, Amr Y; Said, Mahmoud M; Soliman, Amel A; El-Masry, Khaled S H; Badiea, Elham Abdel

    2013-01-01

    The identification of the active phenolic compounds in the mixed extract of sea cucumber (Holothuria atra) body wall by high-performance liquid chromatography and an assessment of its hepatoprotective activity against thioacetamide-induced liver fibrosis in rats. Female Swiss albino rats were divided into four groups: normal controls; oral administration of a sea cucumber mixed extract (14.4 mg/kg of body weight) on days 2, 4, and 6 weekly for 8 consecutive weeks; intoxication with thioacetamide (200 mg/kg of body weight, intraperitoneally) on days 2 and 6 weekly for 8 wk; and oral administration of a sea cucumber extract and then intoxication with thioacetamide 2 h later for 8 wk. High-performance liquid chromatographic analysis of the sea cucumber mixed extract revealed the presence of some phenolic components, such as chlorogenic acid, pyrogallol, rutin, coumaric acid, catechin, and ascorbic acid. In vitro studies have shown that the extract has a high scavenging activity for the nitric oxide radical, a moderate iron-chelating activity, and a weak inhibitory effect of lipid peroxidation. The subchronic oral administration of sea cucumber extract to the rats did not show any toxic side effects but increased hepatic superoxide dismutase and glutathione peroxidase activities. The coadministration of sea cucumber extract and thioacetamide (protection modality) normalized serum direct bilirubin, alanine and aspartate aminotransferases, hepatic malondialdehyde, and hydroxyproline concentrations and antioxidant enzyme activities. In addition, the histologic examination of liver sections from the protection group that were stained with hematoxylin and eosin showed substantial attenuation of the degenerative cellular changes and regressions in liver fibrosis and necrosis induced by the thioacetamide intoxication. Sea cucumber mixed extract contains physiologically active phenolic compounds with antioxidant activity, which afforded a potential hepatoprotective activity

  12. General unknown screening, antioxidant and anti-inflammatory potential of Dendrobium macrostachyum Lindl.

    Directory of Open Access Journals (Sweden)

    Nimisha Pulikkal Sukumaran

    2016-01-01

    Conclusions: The results showed a relatively high concentration of phenolics, high scavenger activity and high anti-inflammatory activity of the stem extract compared to the leaf extract. The results indicate that the plant can be a potential source of bioactive compounds.

  13. Chemical warfare agent and biological toxin-induced pulmonary toxicity: could stem cells provide potential therapies?

    Science.gov (United States)

    Angelini, Daniel J; Dorsey, Russell M; Willis, Kristen L; Hong, Charles; Moyer, Robert A; Oyler, Jonathan; Jensen, Neil S; Salem, Harry

    2013-01-01

    Chemical warfare agents (CWAs) as well as biological toxins present a significant inhalation injury risk to both deployed warfighters and civilian targets of terrorist attacks. Inhalation of many CWAs and biological toxins can induce severe pulmonary toxicity leading to the development of acute lung injury (ALI) as well as acute respiratory distress syndrome (ARDS). The therapeutic options currently used to treat these conditions are very limited and mortality rates remain high. Recent evidence suggests that human stem cells may provide significant therapeutic options for ALI and ARDS in the near future. The threat posed by CWAs and biological toxins for both civilian populations and military personnel is growing, thus understanding the mechanisms of toxicity and potential therapies is critical. This review will outline the pulmonary toxic effects of some of the most common CWAs and biological toxins as well as the potential role of stem cells in treating these types of toxic lung injuries.

  14. Potential of antioxidant and toxicity of some medical plants used by sub-ethnic communities of Bahau in East Kalimantan

    Science.gov (United States)

    Rohim, P.; Arung, E. T.; Kusuma, I. W.

    2018-04-01

    The purpose of this research is to assay the potential antioxidant and toxicity of several plants from Bahau, a sub-ethnic in East Kalimantan in regard to their utilization as traditional medicines. This research includes phytochemical analysis, DPPH radical and superoxide radical scavenging activity as well as toxicity assay using Artemiasalina shrimp larvae. The results of the extraction showed the highest yield was 2,91% obtained from avung tanaq (Ficus uncinata), while the lowest is 1.14% obtained from tevoqsalah (Saccharum sp.) species. The result of phytochemicals showed that all plants contain alkaloid and carbohydrate. While carotenoids, saponins, triterpenoids and steroids were absence in all plant extracts. The DPPH radical scavenging activity test showed that the lowest IC50 value of kayog kue (Dictamnus albus) by 23.96 μg/mL. The superoxide radical scavenging activity assay showed IC50 values of all extract samples were >100 μg/mL. The toxicity assay showed that LC50 values of all samples of extract tested were >1000 μg/mL. The present research suggested good potential activity of some plants from Bahau ethnic and further research oriented to wide uses of the plants as herbal products is needed.

  15. Experimental Assessment of Moringa oleifera Leaf and Fruit for Its Antistress, Antioxidant, and Scavenging Potential Using In Vitro and In Vivo Assays

    Science.gov (United States)

    Luqman, Suaib; Srivastava, Suchita; Kumar, Ritesh; Maurya, Anil Kumar; Chanda, Debabrata

    2012-01-01

    We have investigated effect of Moringa oleifera leaf and fruit extracts on markers of oxidative stress, its toxicity evaluation, and correlation with antioxidant properties using in vitro and in vitro assays. The aqueous extract of leaf was able to increase the GSH and reduce MDA level in a concentration-dependent manner. The ethanolic extract of fruit showed highest phenolic content, strong reducing power and free radical scavenging capacity. The antioxidant capacity of ethanolic extract of both fruit and leaf was higher in the in vitro assay compared to aqueous extract which showed higher potential in vivo. Safety evaluation studies showed no toxicity of the extracts up to a dose of 100 mg/kg body weight. Our results support the potent antioxidant activity of aqueous and ethanolic extract of Moringa oleifera which adds one more positive attribute to its known pharmacological importance. PMID:22216055

  16. Experimental Assessment of Moringa oleifera Leaf and Fruit for Its Antistress, Antioxidant, and Scavenging Potential Using In Vitro and In Vivo Assays

    Directory of Open Access Journals (Sweden)

    Suaib Luqman

    2012-01-01

    Full Text Available We have investigated effect of Moringa oleifera leaf and fruit extracts on markers of oxidative stress, its toxicity evaluation, and correlation with antioxidant properties using in vitro and in vitro assays. The aqueous extract of leaf was able to increase the GSH and reduce MDA level in a concentration-dependent manner. The ethanolic extract of fruit showed highest phenolic content, strong reducing power and free radical scavenging capacity. The antioxidant capacity of ethanolic extract of both fruit and leaf was higher in the in vitro assay compared to aqueous extract which showed higher potential in vivo. Safety evaluation studies showed no toxicity of the extracts up to a dose of 100 mg/kg body weight. Our results support the potent antioxidant activity of aqueous and ethanolic extract of Moringa oleifera which adds one more positive attribute to its known pharmacological importance.

  17. Antioxidative, anti-inflammatory potentials and phytochemical profile of Commiphora africana(A. Rich.) Engl.(Burseraceae) and Loeseneriella africana(Willd.)(Celastraceae) stem leaves extracts

    Institute of Scientific and Technical Information of China (English)

    Moussa Compaoré; Roland Ng-Tiéro Meda; Sahabi Bakasso; Laurian Vlase; Martin Kiendrebeogo

    2016-01-01

    Objective: To assess the antioxidant and anti-inflammatory activities as well as to determine the flavonoids and phenolic acids content of active fractions.Methods: Two medicinal plant samples were extracted successively in Soxhlet apparatus with n-hexane, dichloromethane, acetonitrile, ethyl acetate, methanol and n-butanol. Five methods were used to evaluate the antioxidant activity. Anti-inflammatory activity was done through the inhibition of the cyclooxygenase enzymes(COX-1 and COX-2).Polyphenolic compounds were analyzed by using a spectrophotometrical and high performance liquid chromatography-mass spectrometry(HPLC-MS) methods.Results: The data showed that the stem leaves extracts of Commiphora africana and Loeseneriella africana possessed significant in vitro antioxidant and anti-inflammatory activities. Polar extracts had radical scavenging effects and they reduced iron(III). The prostaglandin production was significantly stopped by acetonitrile and methanol extracts.These biological activities were supported by some bioactive compounds quantified by using the HPLC-MS. p-Coumaric acid, ferulic acid, isoquercitrin, quercitrin, quercetin,rutin, kaempferol and apigenin were the most metabolites quantified.Conclusions: The present study may explain the effectiveness of plants in traditional medicine of Burkina Faso, singularly Commiphora africana and Loeseneriella africana.The next investigation was to sub-fractionate the methanol fraction in order to isolate new antioxidant and/or anti-inflammatory compounds.

  18. Radiation chemistry of some novel antioxidants from turmeric and other natural products: physico-chemistry properties and antioxidant activities

    International Nuclear Information System (INIS)

    Indira Priyadarsini, K.; Guha, S.N.; Rao, M.N.A.

    1998-01-01

    Using pulse radiolysis the free radical reactions of the structurally related phenols were studied with biologically relevant oxidants both in aqueous-organic solutions and neutral surfactant solutions. The resulting phenoxyl radicals were characterised by their lifetimes, absorption spectra, one-electron reduction potential and reaction with other antioxidants. The physicochemical properties of the phenoxyl radicals were compared with the antioxidant activities of these compounds

  19. In vitro antioxidant, antimicrobial, cytotoxic potential of gold and silver nanoparticles prepared using Embelia ribes.

    Science.gov (United States)

    Dhayalan, Manikandan; Denison, Michael Immanuel Jesse; L, Anitha Jegadeeshwari; Krishnan, Kathiravan; N, Nagendra Gandhi

    2017-02-01

    In recent years, the green synthesis of gold (GNPs) and silver (SNPs) nanoparticles has gained great interest among chemists and researchers. The present study reports an eco-friendly, cost-effective, rapid and easy method for the synthesis of gold and silver nanoparticles using the seed extract of Embelia ribes (SEEr) as capping and reducing agent. The synthesised GNPs and SNPs were characterised using the following techniques: UV-vis spectroscopy, DLS, HR-TEM, FT-IR and XRD. The free radical scavenging potential of GNPs and SNPs was measured by DPPH assay and Phosphomolybdenum assay. Further, the antimicrobial activity against two micro-organisms were tested using disc diffusion method and cytotoxicity of GNPs and SNPs was determined against MCF-7 cell lines at different concentrations by MTT assay. Both the GNPs and SNPs prepared from E. ribes comparatively showed promising results thereby proving their clinical importance.

  20. Biogenic synthesis of Ag-Au-In decorated on rGO nanosheet and its antioxidant and biological activities

    Science.gov (United States)

    Hazarika, Moushumi; Sonowal, Shashanka; Saikia, Indranirekha; Boruah, Purna K.; Das, Manash R.; Tamuly, Chandan

    2017-09-01

    Au-Ag-In-rGO nanocomposite was synthesized using fruit extract of Zanthoxylum rhetsa which is an eco-friendly, simple and green method. It was characterized by UV-visible, FT-IR, XRD, XPS, EDX, TEM technique. The antioxidant capacity of the nanocomposite was evaluated in presence of AgNO3, HAuCl4 and InCl3 solution respectively at 25 °C. The results showed significant antioxidant activity in presence of 1  ×  10-5 mM AgNO3 solution. The antibacterial activity of Au-Ag-In-rGO nanoparticles was carried out against the gram  -ve bacteria Pseudomonas aeruginosa, Escherichia coli and gram  +ve bacteria Staphylococcus aureus and Bacillus cereus. The bacterial growth kinetics was studied. The bacterial strain E. coli and S. aureus showed complete inhibition at concentration 100 µg ml-1. The activity is more effective in case of Au-Ag-In-rGO compared to GO.

  1. Intervarietal variations in various oxidative stress markers and antioxidant potential of finger millet (Eleusine coracana) subjected to drought stress.

    Science.gov (United States)

    Bartwal, Arti; Pande, Anjali; Sharma, Priyadarshini; Arora, Sandeep

    2016-07-01

    Drought is a major form of abiotic stress leading to lower crop productivity. Experiment was carried out for selecting the most tolerant genotype among six different genotypes of finger millet under drought stress. Seeds of six finger millet genotypes were sown in pots and grown for 35 days. After this period, drought was induced by withholding watering for stressed plants while control plants were watered regularly for comparison. Among all six different varieties of finger millet screened (PR202, PES400, PRM6107, VL283, VL328 and VL149) under varying intensities of drought stress,PRM6107 and PR202 showed highest stress tolerance by limiting excessive accumulation of reactive oxygen species (ROS) through activation of ROS scavenging antioxidative enzymes. A 200% increase in ascorbate content was recorded in PRM6107 and PR202, while in other varieties limited increase in ascorbate content was observed. Maximum decrease in chlorophyll content was observed in VL328 (83%) while least drop was observed in VL149 (65%). Relative water content indicated that PR202 was able to retain maximum water content under stress, as it recorded least drop in relative water content (55%), contributing to its better survival under stress. In conclusion finger millet genotypes PRM6107 and PR202 possessed maximum drought tolerance potential and thus may be used for allele mining of drought tolerant genes, which can further be employed for the development of more drought stress tolerant staple crops using biotechnological approach.

  2. Human Anti-Oxidation Protein A1M—A Potential Kidney Protection Agent in Peptide Receptor Radionuclide Therapy

    Directory of Open Access Journals (Sweden)

    Jonas Ahlstedt

    2015-12-01

    Full Text Available Peptide receptor radionuclide therapy (PRRT has been in clinical use for 15 years to treat metastatic neuroendocrine tumors. PRRT is limited by reabsorption and retention of the administered radiolabeled somatostatin analogues in the proximal tubule. Consequently, it is essential to develop and employ methods to protect the kidneys during PRRT. Today, infusion of positively charged amino acids is the standard method of kidney protection. Other methods, such as administration of amifostine, are still under evaluation and show promising results. α1-microglobulin (A1M is a reductase and radical scavenging protein ubiquitously present in plasma and extravascular tissue. Human A1M has antioxidation properties and has been shown to prevent radiation-induced in vitro cell damage and protect non-irradiated surrounding cells. It has recently been shown in mice that exogenously infused A1M and the somatostatin analogue octreotide are co-localized in proximal tubules of the kidney after intravenous infusion. In this review we describe the current situation of kidney protection during PRRT, discuss the necessity and implications of more precise dosimetry and present A1M as a new, potential candidate for renal protection during PRRT and related targeted radionuclide therapies.

  3. Antioxidant Potential of Spirulina platensis Mitigates Oxidative Stress and Reprotoxicity Induced by Sodium Arsenite in Male Rats

    Science.gov (United States)

    Bashandy, Samir A. E.; El Awdan, Sally A.; Ebaid, Hossam; Alhazza, Ibrahim M.

    2016-01-01

    The present study aimed to examine the protective role of Spirulina platensis (S. platensis) against arsenic-induced testicular oxidative damage in rats. Arsenic (in the form of NaAsO2 at a dose of 6.3 mg/kg body weight for 8 weeks) caused a significant accumulation of arsenic in testicular tissues as well as a decrease in the levels of testicular superoxide dismutase (SOD), catalase (CAT), reduced glutathione, and zinc. Moreover, it significantly decreased plasma testosterone, luteinizing hormone (LH), triiodothyronine (T3), and thyroxine (T4) levels and reduced sperm motility and sperm count. Arsenic (AS) led to a significant increase in testicular malondialdehyde (MDA), tumour necrosis factor alpha (TNF-α), nitric oxide (NO), and sperm abnormalities. S. platensis at a dose of 300 mg/kg was found to attenuate As-induced oxidative stress, testicular damage, and sperm abnormalities by its potent antioxidant activity. S. platensis may represent a potential therapeutic option to protect the testicular tissue from arsenic intoxication. PMID:26881036

  4. Metabolome classification of Brassica napus L. organs via UPLC-QTOF-PDA-MS and their anti-oxidant potential.

    Science.gov (United States)

    Farag, Mohamed A; Sharaf Eldin, Mohamed G; Kassem, Hanaa; Abou el Fetouh, Mohamed

    2013-01-01

    Brassica napus L. is a crop widely grown for its oil production and other nutritional components in the seed. In addition to the seed, other organs contain a wide range of phenolic metabolites although they have not been investigated to the same extent as in seeds. To define and compare the phytochemical composition of B. napus L. organs, namely the root, stem, leaf, inflorescence and seeds. Non-targeted metabolomic analysis via UPLC-QTOF-MS was utilised in order to localise compounds belonging to various chemical classes (i.e. oxygenated fatty acids, flavonols, phenolic acids and sinapoyl choline derivatives). The vast majority of identified metabolites were flavonol glycosides that accumulated in most of the plant organs. Whereas other classes were detected predominantly in specific organs, i.e. sinapoyl cholines were present uniquely in seeds. Furthermore, variation in the accumulation pattern of metabolites from the same class was observed, particularly in the case of quercetin, kaempferol and isorhamnetin flavonols. Anti-oxidant activity, based on 2,2-diphenyl-1-picrylhdrazyl analysis was observed for all extracts, and correlated to some extent with total flavonoid content. This study provides the most complete map for polyphenol composition in B. napus L. organs. By describing the metabolites profile in B. napus L., this study provides the basis for future investigations of seeds for potential health and/or medicinal use. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Antioxidant Potential of Spirulina platensis Mitigates Oxidative Stress and Reprotoxicity Induced by Sodium Arsenite in Male Rats

    Directory of Open Access Journals (Sweden)

    Samir A. E. Bashandy

    2016-01-01

    Full Text Available The present study aimed to examine the protective role of Spirulina platensis (S. platensis against arsenic-induced testicular oxidative damage in rats. Arsenic (in the form of NaAsO2 at a dose of 6.3 mg/kg body weight for 8 weeks caused a significant accumulation of arsenic in testicular tissues as well as a decrease in the levels of testicular superoxide dismutase (SOD, catalase (CAT, reduced glutathione, and zinc. Moreover, it significantly decreased plasma testosterone, luteinizing hormone (LH, triiodothyronine (T3, and thyroxine (T4 levels and reduced sperm motility and sperm count. Arsenic (AS led to a significant increase in testicular malondialdehyde (MDA, tumour necrosis factor alpha (TNF-α, nitric oxide (NO, and sperm abnormalities. S. platensis at a dose of 300 mg/kg was found to attenuate As-induced oxidative stress, testicular damage, and sperm abnormalities by its potent antioxidant activity. S. platensis may represent a potential therapeutic option to protect the testicular tissue from arsenic intoxication.

  6. POTENTIAL ESTROGENIC EFFECTS OF BISPHENOL-A IN MALE RATS AND BENEFICIAL ADMINISTRATION OF SOME ANTIOXIDANTS

    International Nuclear Information System (INIS)

    MAZEN, G.M.A.

    2008-01-01

    Bisphenol-A is a chemical compound which is used primarily as a monomer in the manufacture of numerous chemical products. The objective of this study was to evaluate potential harmful effects of bisphenol-A on reproductive system of male rats and was designed to clarify the ability of zinc or selenium to improve this perturbation in the reproductive function of rats.As a result of bisphenol-A treatment, number of sperms, testis total protein, glutathione and glutathione peroxidase were decreased significantly. This effect was concomitant with a significant decrease in serum testosterone level. On the other hand, bisphenol-A caused a significant elevation in the abnormality of sperm (sperm malformed head or tail or head and tail) and testis total lipid. However, a significant increment was obtained in serum FSH, LH, PRL, E2 and progesterone levels when compared with their corresponding normal control rats.Moreover, the administration of zinc or selenium to treated rats with bisphenol-A rats led to a remarkable amelioration in all previous parameters

  7. Potential of Submergedly Cultivated Mycelia of Ganoderma spp. as Antioxidant and Antimicrobial Agents.

    Science.gov (United States)

    Ćilerdžić, Jasmina; Stajic, Mirjana; Vukojevic, Jelena

    2016-01-01

    The study aimed to evaluate the antiradical and antimicrobial (antibacterial and antifungal) potentials of ethanol mycelial extracts of selected Ganoderma species and strains and to define interand intraspecies diversity among Ganoderma species and strains. Ganoderma lucidum strains were good DPPH• scavengers (neutralizing up to 57.12% radicals), contrary to G. applanatum (20.35%) and G. carnosum (17.04%). High correlations between the activities and contents of total phenols in the extracts showed that these compounds were carriers of the activity. Results obtained by both discdiffusion and microdilution methods indicated that the extract of G. lucidum BEOFB 433 was the most potent antibacterial agent that inhibited growth of almost all bacterial species at a concentration of 1.0 mg/mL. Salmonella typhimurium was the most sensitive species to the mycelium extracts. Extracts of G. lucidum BEOFB 431 and BEOFB 434 showed the best antifungal activity since in concentration of 0.5 mg/mL inhibited the growth of Aspergillus glaucus (BEOFB 431) and the growth of A. glaucus and Trichoderma viride (BEOFB 434). Extracts of G. applanatum and G. lucidum BEOFB 431 had the strongest fungicidal effects, with lethal outcomes for A. glaucus and T. viride, respectively, being noted at a concentration of 1.17 mg/mL. Aspergillus niger was proved as the most resistant species.

  8. Antimicrobial and antioxidant potentials of biosynthesized colloidal zinc oxide nanoparticles for a fortified cold cream formulation: A potent nanocosmeceutical application.

    Science.gov (United States)

    S, Sonia; H, Linda Jeeva Kumari; K, Ruckmani; M, Sivakumar

    2017-10-01

    Nanocosmeceuticals are promising applications of nanotechnology in personal care industries. Zinc oxide is an inorganic material that is non-toxic and skin compatible with self-cleansing and microbicidal properties. Herein, exploitation of colloidal zinc oxide nanoparticles (ZnONps) as potent biomaterial for a topical formulation of cosmetic and dermatological significance is employed. ZnONps were green synthesized using environmentally benign Adhatoda vasica leaf extract and characterized by UV-Vis absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), high-resolution transmission electron microscopy (HR-TEM) and energy-dispersive X-ray spectroscopy (EDX). The results reveal that the biosynthesized ZnONps exhibit an absorption peak at 352nm. XRD and HR-TEM analyses confirm the hexagonal wurtzite structure of ZnONps with particle size of about 10nm to 12nm. Elemental analysis by EDX confirms the presence of zinc and oxygen. Zeta potential of -24.6mV affirms the stability of nanoparticles. The antibacterial and antifungal activities of biosynthesized ZnONps exhibit mean zone of inhibition from 08.667±0.282 to 21.666±0.447 (mm) and 09.000±0.177 to 19.000±0.307 (mm) respectively, in a dose-dependent manner. The IC 50 value exerted from the antioxidant activity of ZnONps is found to be 139.27μgmL -1 . ZnONps infused cold cream formulation of microbicidal and antioxidant properties was further tested against clinical skin pathogens. The nano-based cold cream exhibited significant inhibitory action against Candida sp., which showed resistance against a commercial antifungal cream (2%). Therefore, this study demonstrates the exploitation of ZnONps as promising colloidal drug carriers in cosmeceuticals that can significantly alleviate human skin infections and oxidative stress induced cellular damage. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Evaluation of antioxidant potential of Artocarpus heterophyllus L. J33 variety fruit waste from different extraction methods and identification of phenolic constituents by LCMS.

    Science.gov (United States)

    Daud, Mohd Nazrul Hisham; Fatanah, Dian Nashiela; Abdullah, Noriham; Ahmad, Rohaya

    2017-10-01

    Artocarpus heterophyllus J33 (AhJ33) fruit is a popular and valuable jackfruit variety in Malaysia. For export, the pulp has to be separated from the skin which is usually discarded. Hence, the conversion of the fruit waste to food products with economic value needs to be explored utilizing the waste to wealth concept. This paper reports the evaluation of antioxidant potential of AhJ33 fruit waste (rind and rachis) extracts from three different extraction methods (maceration, percolation and Soxhlet). The antioxidant potential was assessed by DPPH radical scavenging, FRAP and β-carotene bleaching assays. The total phenolic and total flavonoid contents were estimated by TPC and the TFC assays. For both rind and rachis, the maceration technique yielded extracts with the strongest antioxidant activities which correlated with the highest TPC and TFC values. TOF LCMS analyses identified two phenolic acids as the major constituents responsible for the antioxidant activity of the active extracts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Seaweed Polysaccharides (Laminarin and Fucoidan as Functional Ingredients in Pork Meat: An Evaluation of Anti-Oxidative Potential, Thermal Stability and Bioaccessibility

    Directory of Open Access Journals (Sweden)

    Natasha C. Moroney

    2015-04-01

    Full Text Available The anti-oxidative potential of laminarin (L, fucoidan (F and an L/F seaweed extract was measured using the DPPH free radical scavenging assay, in 25% pork (longissimus thoracis et lumborum (LTL homogenates (TBARS (3 and 6 mg/mL and in horse heart oxymyoglobin (OxyMb (0.1 and 1 mg/mL. The DPPH activity of fresh and cooked minced LTL containing L (100 mg/g; L100, F100 and L/F100,300, and bioaccessibility post in vitro digestion (L/F300, was assessed. Theoretical cellular uptake of antioxidant compounds was measured in a transwell Caco-2 cell model. Laminarin displayed no activity and fucoidan reduced lipid oxidation but catalysed OxyMb oxidation. Fucoidan activity was lowered by cooking while the L/F extract displayed moderate thermal stability. A decrease in DPPH antioxidant activity of 44.15% and 36.63%, after 4 and 20 h respectively, indicated theoretical uptake of L/F antioxidant compounds. Results highlight the potential use of seaweed extracts as functional ingredients in pork.

  11. Seaweed Polysaccharides (Laminarin and Fucoidan) as Functional Ingredients in Pork Meat: An Evaluation of Anti-Oxidative Potential, Thermal Stability and Bioaccessibility

    Science.gov (United States)

    Moroney, Natasha C.; O’Grady, Michael N.; Lordan, Sinéad; Stanton, Catherine; Kerry, Joseph P.

    2015-01-01

    The anti-oxidative potential of laminarin (L), fucoidan (F) and an L/F seaweed extract was measured using the DPPH free radical scavenging assay, in 25% pork (longissimus thoracis et lumborum (LTL)) homogenates (TBARS) (3 and 6 mg/mL) and in horse heart oxymyoglobin (OxyMb) (0.1 and 1 mg/mL). The DPPH activity of fresh and cooked minced LTL containing L (100 mg/g; L100), F100 and L/F100,300, and bioaccessibility post in vitro digestion (L/F300), was assessed. Theoretical cellular uptake of antioxidant compounds was measured in a transwell Caco-2 cell model. Laminarin displayed no activity and fucoidan reduced lipid oxidation but catalysed OxyMb oxidation. Fucoidan activity was lowered by cooking while the L/F extract displayed moderate thermal stability. A decrease in DPPH antioxidant activity of 44.15% and 36.63%, after 4 and 20 h respectively, indicated theoretical uptake of L/F antioxidant compounds. Results highlight the potential use of seaweed extracts as functional ingredients in pork. PMID:25903283

  12. GC-MS analysis and screening of antidiabetic, antioxidant and hypolipidemic potential of Cinnamomum tamala oil in streptozotocin induced diabetes mellitus in rats

    Directory of Open Access Journals (Sweden)

    Kumar Suresh

    2012-08-01

    Full Text Available Abstract Aim of the study This study was made to investigate the antidiabetic, antioxidant and hypolipidemic potential of Cinnamomum tamala, (Buch.-Ham. Nees & Eberm (Tejpat oil (CTO in streptozotocin (STZ induced diabetes in rats along with evaluation of chemical constituents. Materials and methods The GC-MS (Gas chromatography–mass spectrometry analysis of the oil showed 31 constituents of which cinnamaldehyde was found the major component (44.898%. CTO and cinnamaldehyde was orally administered to diabetic rats to study its effect in both acute and chronic antihyperglycemic models. The body weight, oral glucose tolerance test and biochemical parameters viz. glucose level, insulin level, liver glycogen content, glycosylated hemoglobin, total plasma cholesterol, triglyceride and antioxidant parameters were estimated for all treated groups and compared against diabetic control group. Results CTO (100 mg/kg and 200 mg/kg, cinnamaldehyde (20 mg/kg and glibenclamide (0.6 mg/kg in respective groups of diabetic animals administered for 28 days reduced the blood glucose level in streptozotocin induced diabetic rats. There was significant increase in body weight, liver glycogen content, plasma insulin level and decrease in the blood glucose, glycosylated hemoglobin and total plasma cholesterol in test groups as compared to control group. The results of CTO and cinnamaldehyde were found comparable with standard drug glibenclamide. In vitro antioxidant studies on CTO using various models showed significant antioxidant activity. In vivo antioxidant studies on STZ induced diabetic rats revealed decreased malondialdehyde (MDA and increased reduced glutathione (GSH. Conclusion Thus the investigation results that CTO has significant antidiabetic, antioxidant and hypolipidemic activity.

  13. Potential for widespread application of biological control of stored-product pests

    DEFF Research Database (Denmark)

    Hansen, Lise Stengaard

    2007-01-01

    Biological control of stored product pests has substantial potential in Europe". This is essentially the conclusion of the activities of a European working group funded by the COST system, an intergovernmental networking system. Working group 4 of COST action 842 (2000-2005) focussed on biologica...... for these situations will contribute to ensuring that stored food products are protected from insect and mite pests using techniques that are safe for consumers, workers and the environment.......Biological control of stored product pests has substantial potential in Europe". This is essentially the conclusion of the activities of a European working group funded by the COST system, an intergovernmental networking system. Working group 4 of COST action 842 (2000-2005) focussed on biological...

  14. Evaluation, prediction and optimization the ultrasound-assisted extraction method using response surface methodology: antioxidant and biological properties of Stachys parviflora L.

    Science.gov (United States)

    Bashi, Davoud Salar; Dowom, Samaneh Attaran; Bazzaz, Bibi Sedigheh Fazly; Khanzadeh, Farhad; Soheili, Vahid; Mohammadpour, Ali

    2016-05-01

    To optimize the extraction method using response surface methodology, extract the phenolic compounds, and identify the antioxidant and biological properties of Stachys parviflora L. extracts. Maceration and ultrasound-assisted extraction (UAE) (4, 7, 10 min treatment time, 40, 70, 100 % high-intensity and 60, 80, 100 % (v v-1) methanol purity) were applied to obtain the extracts. SEM was conducted to provide the microstructure of the extracted plant. MICs (colorimetric assay), MFCs (colony diameter), total phenolic content, total flavonoid content, radical scavenging capacity and extraction efficiency were determined. HPLC analysis was applied to measure the existent phenolic compounds. A quadratic model (4 min treatment time, 74.5 % high-intensity and 74.2 % solvent purity) was suggested as the best (TPC: 20.89 mg GAE g-1 d.m., TFC: 6.22 mg QEs g-1 d.m., DPPH IC50: 21.86 µg ml-1 and EE: 113.65 mg g-1 d.m.) UAE extraction model. The optimized UAE extract was generally more effective against Gram-positive microorganisms (MIC: 10-20; MBC: 10-40 (mg ml-1)) than Gram-negative ones (MIC: 40; MBC: >40 (mg ml-1)). Moreover, it (MGI: 2.32-100 %) revealed more anti-mold activity than maceration (MGI: <28.77 %). Explosive disruption of the cell walls, therefore, enhanced extraction yield by acoustic cavitation, was elucidated using SEM. Caffeic acid, tannic acid, quercetin, trans ferulic acid and rosmarinic acid were determined as the phenolic compounds in the optimized extract. RSM optimization was successfully applied for UAE from S. parviflora. The considerable antioxidant and biological properties were attributed to the phenolic compounds.

  15. Evaluation, prediction and optimization the ultrasound-assisted extraction method using response surface methodology: antioxidant and biological properties of Stachys parviflora L.

    Directory of Open Access Journals (Sweden)

    Davoud Salarbashi

    2016-05-01

    Full Text Available Objective(s:To optimize the extraction method using response surface methodology, extract the phenolic compounds, and identify the antioxidant and biological properties of Stachys parviflora L.  extracts. Materials and Methods: Maceration and ultrasound-assisted extraction (UAE (4, 7, 10 min treatment time, 40, 70, 100 % high-intensity and 60, 80, 100 % (v v-1 methanol purity were applied to obtain the extracts. SEM was conducted to provide the microstructure of the extracted plant. MICs (colorimetric assay, MFCs (colony diameter, total phenolic content, total flavonoid content, radical scavenging capacity and extraction efficiency were determined. HPLC analysis was applied to measure the existent phenolic compounds. Results: A quadratic model (4 min treatment time, 74.5 % high-intensity and 74.2 % solvent purity was suggested as the best (TPC: 20.89 mg GAE g-1 d.m., TFC: 6.22 mg QEs g-1 d.m., DPPH IC50: 21.86 µg ml-1 and EE: 113.65 mg g-1 d.m. UAE extraction model. The optimized UAE extract was generally more effective against Gram-positive microorganisms (MIC: 10-20; MBC: 10-40 (mg ml-1 than Gram-negative ones (MIC: 40; MBC: >40 (mg ml-1. Moreover, it (MGI: 2.32-100 % revealed more anti-mold activity than maceration (MGI: Conclusion: RSM optimization was successfully applied for UAE from S. parviflora. The considerable antioxidant and biological properties were attributed to the phenolic compounds.

  16. Effect of Chemical and Biological Phosphorus on Antioxidant Enzymes Activity and Some Biochemical Traits of Spring Safflower (Carthamus tinctorius L. under Water Deficit Stress Conditions

    Directory of Open Access Journals (Sweden)

    S. Heshmati

    2016-05-01

    Full Text Available To study the effects of biological and chemical phosphorus on antioxidant enzyme activity in safflower under water deficit conditions, an experiment was conducted in 2012 at the Research Field of the Faculty of Agriculture, Shahed University, Tehran, Iran. The experimental design was a split-factorial with three replicates. The main factor was the three levels of irrigation treatment: full irrigation (irrigation up to 50% soil moisture depletion relative to field capacity, water stress in the vegetative and flowering stages (irrigation up to 75% soil moisture depletion relative to field capacity. The sub-factor was the six treatments resulting from three levels of phosphate chemical fertilizer (0, 50, and 100 kg ha-1 Triple Super Phosphate, each at two levels of Barvar-2 bio-fertilizer (with and without inoculation with Barvar-2. According to the results of our experiment, antioxidant enzyme activity is affected by high levels of chemical phosphorus when there is no inoculation with biofertilizer (Barvar 2 under water stress in the vegetative and flowering stages. The results showed that inoculation with Barvar 2 in the absence of added chemical phosphorus increases the catalase activity and soluble protein concentration under drought stress in the vegetative and flowering stages. Also, using chemical phosphorus followed by Barvar 2 led to increase in the polyphenol oxidase activity and superoxide dismutase activity under these conditions. Inoculation with Barvar 2 in the absence of added chemical phosphorus significantly decreased the amount of malondialdehyde under stress condition at the flowering stage. It was demonstrated that inoculation with a biological fertilizer (Barvar 2 followed by application of a chemical phosphorus fertilizer under drought conditions could decrease the detrimental effects of drought stress on spring safflower.

  17. Fundamental host range of Leptoypha hospita (Hemiptera: Tingidae), a potential biological control agent of Chinese privet

    Science.gov (United States)

    Yanzhuo Zhang; James L. Hanula; Scott Horn; Cera Jones; S. Kristine Braman; Jianghua Sun

    2016-01-01

    Chinese privet, Ligustrum sinense Lour., is an invasive shrub within riparian areas of the southeastern United States. Biological control is considered the most suitable management option for Chinese privet. The potential host range of the lace bug, Leptoypha hospita Drake et...

  18. Biological productivity and potential resources of the exclusive economic zone (EEZ) of India

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.

    An assessment of the biological production and the potential fishery resources has been made based on the data collected over a period of 15 years (1976-1991). The entire Exclusive Economic Zone (EEZ), measuring 2.02 million km sup(2) was divided...

  19. Host range of Secusio extensa (Lepidoptera: Arctiidae), and potential for biological control of Senecio madagascariensis (Asteraceae)

    Science.gov (United States)

    M. M. Ramadan; K. T. Murai; T. Johnson

    2010-01-01

    Secusio extensa (Lepidoptera: Arctiidae) was evaluated as a potential biological control agent for Madagascar fireweed, Senecio madagascariensis (Asteraceae), which has invaded over 400 000 acres of rangeland in the Hawaiian Islands and is toxic to cattle and horses. The moth was introduced from southeastern Madagascar...

  20. Potential biological control agents for management of cogongrass (Cyperales: Poaceae) in the southeastern USA

    Science.gov (United States)

    Cogongrass, Imperata cylindrica (L.) Palisot de Beauvois (Cyperales: Poaceae), is a noxious invasive weed in the southeastern USA. Surveys for potential biological control agents of cogongrass were conducted in Asia and East Africa from 2013 to 2016. Several insect herbivores were found that may hav...

  1. Structure and Antioxidant Activity of Polyphenols Derived from Propolis

    Directory of Open Access Journals (Sweden)

    Anna Kurek-Górecka

    2013-12-01

    Full Text Available Propolis is a potential source of natural antioxidants such as phenolic acids and flavonoids. Its wide biological effects have been known and used since antiquity. In the modern world natural substances are sought which would be able to counteract the effects of antioxidative stress, which underlies many diseases, such as cancer, diabetes and atherosclerosis. This paper aims to present the antioxidative activity of phenolic acids and flavonoids present in Polish propolis and the relationship between their chemical structure and antioxidative activity influencing its medicinal properties. Data concerning the biological activity of propolis are summarized here, including its antibacterial, anti-inflammatory, anticarcinogenic, antiatherogenic, estrogenic effects, as well as AIDS- counteracting and reparative-regenerative function.

  2. Appraisal of Total Phenol, Flavonoid Contents, and Antioxidant Potential of Folkloric Lannea coromandelica Using In Vitro and In Vivo Assays

    Directory of Open Access Journals (Sweden)

    Tekeshwar Kumar

    2015-01-01

    Full Text Available The aim of this study was to determine the impending antioxidant properties of different extracts of crude methanolic extract (CME of leaves of Lannea coromandelica (L. coromandelica and its two ethyl acetate (EAF and aqueous (AqF subfractions by employing various established in vitro systems and estimation of total phenolic and flavonoid content. The results showed that extract and fractions possessed strong antioxidant activity in vitro and among them, EAF had the strongest antioxidant activity. EAF was confirmed for its highest phenolic content, total flavonoid contents, and total antioxidant capacity. The EAF was found to show remarkable scavenging activity on 2,2-diphenylpicrylhydrazyl (DPPH (EC50 63.9 ± 0.64 µg/mL, superoxide radical (EC50 8.2 ± 0.12 mg/mL, and Fe2+ chelating activity (EC50 6.2 ± 0.09 mg/mL. Based on our in vitro results, EAF was investigated for in vivo antioxidant assay. Intragastric administration of the EAF can significantly increase levels of superoxide dismutase (SOD, catalase (CAT, glutathione (GSH, and glutathione peroxidase (GSH-Px levels, and decrease malondialdehyde (MDA content in the liver and kidney of CCl4-intoxicated rats. These new evidences show that L. coromandelica bared antioxidant activity.

  3. Investigation of antioxidant potential of peptide fractions from the Tra Catfish by-product-derived hydrolysate using Alcalase® 2.4 L FG

    Science.gov (United States)

    Vo, Tam D. L.; Chung, Duy T. M.; Doan, Kien T.; Le, Duy T.; Trinh, Hung V.

    2017-09-01

    In this study, the antioxidant capacity of peptide fractions isolated from the Tra Catfish (Pangasius hypophthalmus) by-product-derived proteolysate using ultrafiltration centrifugal devices with 5 distinct molecular-weight cutoffs (MWCOs) of 1 kDa, 3 kDa, 5 kDa, 10 kDa, and 30 kDa was investigated. Firstly, the chemical composition of the Tra Catfish by-products was analyzed. The result showed that the Tra Catfish by-products contained 58.5% moisture, 33.9% crude protein, 50.1% crude lipid and 15.8% ash (on dry weight basis). Secondly, the effects of hydrolysis time, enzyme content on the antioxidant potential of the proteolysate were studied using DPPH• (2,2-diphenyl-1-picrylhydrazyl) radical scavenging method (DPPH• SM) and FRAP (Ferric Reducing Antioxidant Potential) method. Alcalase® 2.4 L FG was used for hydrolysis. The result of antioxidant activity of the hydrolysate showed that the 50% DPPH• inhibition concentration (IC50) of the hydrolysate reached about 6775 µg/mL which was 1645-fold higher than that of vitamin C and 17-fold higher than that of BHT (ButylatedHydroxytoluene) with the degree of hydrolysis (DH) of the hydrolysate of 14.6% when hydrolysis time was 5 hours, enzyme/substrate (E/S) ratio was 30 U/g protein, hydrolysis temperature was 55°C, and pH was 7.5. The antioxidant potential of hydrolysate using FRAP method reached about 52.12 µM Trolox equivalent which was 53-fold and 18-fold lower than those of vitamin C and BHT, respectively, when the hydrolysis time was 5 h, enzyme/substrate ratio was 30 U/g protein, temperature was 500C, and pH level was 8. Next, the proteolysate was further fractionated using MWCOs of 1 kDa, 3 kDa, 5 kDa, 10 kDa, and 30 kDa and the peptide fractions were investigated for their antioxidant activity. The result showed that the <1 kDa fraction showed strongest antioxidant activity with the IC50 of 1313.31 ± 50.65 µg/mL and FRAP value of 906.90 ± 44.32 µM Trolox equivalent. The second strongest fraction

  4. Visual event-related potentials to biological motion stimuli in autism spectrum disorders

    Science.gov (United States)

    Bletsch, Anke; Krick, Christoph; Siniatchkin, Michael; Jarczok, Tomasz A.; Freitag, Christine M.; Bender, Stephan

    2014-01-01

    Atypical visual processing of biological motion contributes to social impairments in autism spectrum disorders (ASD). However, the exact temporal sequence of deficits of cortical biological motion processing in ASD has not been studied to date. We used 64-channel electroencephalography to study event-related potentials associated with human motion perception in 17 children and adolescents with ASD and 21 typical controls. A spatio-temporal source analysis was performed to assess the brain structures involved in these processes. We expected altered activity already during early stimulus processing and reduced activity during subsequent biological motion specific processes in ASD. In response to both, random and biological motion, the P100 amplitude was decreased suggesting unspecific deficits in visual processing, and the occipito-temporal N200 showed atypical lateralization in ASD suggesting altered hemispheric specialization. A slow positive deflection after 400 ms, reflecting top-down processes, and human motion-specific dipole activation differed slightly between groups, with reduced and more diffuse activation in the ASD-group. The latter could be an indicator of a disrupted neuronal network for biological motion processing in ADS. Furthermore, early visual processing (P100) seems to be correlated to biological motion-specific activation. This emphasizes the relevance of early sensory processing for higher order processing deficits in ASD. PMID:23887808

  5. Effects of ozonated autohemotherapy on the antioxidant capacity of Thoroughbred horses.

    Science.gov (United States)

    Tsuzuki, Nao; Endo, Yoshiro; Kikkawa, Lisa; Korosue, Kenji; Kaneko, Yasuyuki; Kitauchi, Akira; Katamoto, Hiromu; Hidaka, Yuichi; Hagio, Mitsuyoshi; Torisu, Shidow

    2016-01-01

    The performance of horses undergoing regular intense exercise is adversely affected by oxidative stress. Thus, it is important to increase antioxidant production in horses in order to reduce oxidative stress. Ozonated autohemotherapy (OAHT) reportedly promotes antioxidant production. This study aimed to evaluate the effects of OAHT on antioxidant capacity. Ten Thoroughbred horses were used in this study. After the OAHT, we collected serum samples and measured biological antioxidant potential (BAP). We found that BAP began to increase after the OAHT and was significantly higher in the OAHT group than at 3 (Phorses.

  6. Antioxidant potential of brans of twenty-nine red and white rice (Oryza sativa L. varieties of Sri Lanka

    Directory of Open Access Journals (Sweden)

    Walimuni Kanchana Subhashini Mendis Abeysekera

    2017-11-01

    Full Text Available Objective: To evaluate antioxidant properties of brans of twenty-nine red and white rice varieties of Sri Lanka. Methods: Brans of 21 new improved (NI, 2 old improved (OI and 6 traditional red and white rice varieties of Sri Lanka were studied for range of antioxidant properties. The studied antioxidant properties included total polyphenolic content (TPC, ferric reducing antioxidant power (FRAP, oxygen radical absorbance capacity (ORAC, 2,2’-azino-bis(3- ethylbenzothiazoline-6-sulfonic acid (ABTS radical scavenging activity and 1,1-diphenyl- 2-picrylhydrazine (DPPH radical scavenging activity in vitro. Bran of black rice variety from Korea was also studied for the same antioxidant properties for comparison. Results: Results exhibited significantly high ABTS and DPPH radical scavenging activities and 10, 7 and 2.5 fold greater TPC, FRAP and ORAC activities in brans of red rices (BRRs compared to brans of white rices irrespective of NI, OI and traditional rice types. Among BRRs traditional varieties had greater ABTS and DPPH radical scavenging activities and 1.7, 1.3 and 1.2 fold respectively greater TPC, FRAP and ORAC in contrast to NI red rices. Traditional red rice varieties, Kalu Heeneti (TPC and ORAC, Pachchaperumal (TPC and DPPH and Kurulu Thuda (DPPH and OI red rice variety H4 (FRAP exhibited the highest activities for the antioxidant properties studied. Further, these varieties had significantly high activities compared to black rice. Conclusions: In conclusion, BRRs especially traditional red rices had greater antioxidant properties and consumption may be useful in managing various chronic diseases.

  7. Avaliação do potencial antioxidante de extratos ativos de plantas obtidos por extração com fluido supercrítico Evaluation of the antioxidant potential of plant extracts obtained by supercritical fluid extraction

    Directory of Open Access Journals (Sweden)

    Oselys Rodriguez Justo

    2008-01-01

    Full Text Available The aim of this work was to evaluate the antioxidant properties of ginger and rosemary extracts, obtained by supercritical extraction. The extracts were characterized by HPLC, GC-MS, phenolic compounds content and antioxidant activity. The main active compounds were identified and high content of phenolic compounds was observed. The extracts presented high antioxidant activity against the free radicals ABTS•+ (350 and 200 mM Trolox/g, for ginger and rosemary, respectively and DPPH•+ (145 and 80 mM Trolox/g, for ginger and rosemary, respectively. These results suggested that the attained extracts are potential substitutes of synthetic antioxidants used in chemical, food and pharmaceutical industries.

  8. Extraction of total polyphenols from hibiscus (Hibiscus sabdariffa L. and waxweed / ‘sete-sangrias’ (Cuphea carthagenensis and evaluation of their antioxidant potential

    Directory of Open Access Journals (Sweden)

    Daniele Begmeier

    2014-02-01

    Full Text Available Current research investigates the extraction process of total polyphenols from hibiscus (Hibiscus sabdariffa L. and waxweed (Brazilian name: ‘sete-sangrias’ (Cuphea carthagenensis and evaluates the antioxidant potential of their extracts. The extraction stage comprised investigation on the following parameters: i solvents (acetone and ethanol pure and fractioned with water; ii variables (temperature, stirring, solvent ratio, time and pH. Total polyphenols were quantified by Folin-Ciocalteau reagent and antioxidant activity was determined by ABTS•+ (2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid and DPPH (2,2-diphenyl-1-picrylhydrazyl radical scavenging assay. Results showed that, depending on experimental conditions, total phenolic contents for hibiscus and waxweed ranged between 460.86 mg GAE 100 g-1 and 5012.54 mg GAE 100 g-1 and between 462.86 mg GAE 100 g-1 and 4215.99 mg GAE 100 g-1, respectively. Waxweed had a higher antioxidant activity when compared to that of hibiscus by both ABTS•+ and DPPH. Data showed that hibiscus and waxweed have a significant amount of polyphenols which may be extracted in mild processing conditions and then employed as natural antioxidant sources in industrial processes.

  9. Accumulation of phenolic compounds in in vitro cultures and wild plants of Lavandula viridis L'Hér and their antioxidant and anti-cholinesterase potential.

    Science.gov (United States)

    Costa, Patrícia; Gonçalves, Sandra; Valentão, Patrícia; Andrade, Paula B; Romano, Anabela

    2013-07-01

    In this study, we evaluated the phenolic profile, antioxidant and anti-cholinesterase potential of different extracts from wild plants and in vitro cultures of Lavandula viridis L'Hér. The HPLC-DAD analysis allowed the identification and quantification of 3-O-caffeoylquinic, 4-O-caffeoylquinic, 5-O-caffeoylquinic and rosmarinic acids, and luteolin and pinocembrin. Water/ethanol extract from in vitro cultures contained the highest amount of the identified phenolic compounds (51652.92 mg/kg). To investigate the antioxidant activity we used Trolox equivalent antioxidant capacity, oxygen radical absorbance capacity, Fe(2+) chelation activity and the inhibition of Fe(2+)-induced lipid peroxidation in mouse brain homogenates (in vitro). Overall, all the extracts from both wild plants and in vitro cultures exhibited ability to scavenge free radicals, to chelate Fe(2+) and to protect against lipid peroxidation. In addition, the extracts from L. viridis were active in inhibiting both acetylcholinesterase and butyrylcholinesterase (Ellman's method). Our findings suggest that L. viridis in vitro cultures represent a promising alternative for the production of active metabolites with antioxidant and anti-cholinesterase activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Exploring the antioxidant potentiality of two food by-products into a topical cream: stability, in vitro and in vivo evaluation.

    Science.gov (United States)

    Rodrigues, F; Sarmento, B; Amaral, M Helena; Oliveira, M Beatriz P P

    2016-01-01

    Coffee silverskin (CS), a food by-product of the coffee roasting industry, has been studied as an active ingredient for skin care products due to its high potential of antioxidant activity and low cytotoxicity. Another food waste used as ingredient with promising characteristics is obtained from Medicago sativa (MS), which antioxidants and isoflavones content is high. The aim of this study is to evaluate and characterize a new body formulation containing two food by-products extracts. Different parameters (such as pH, rheological behavior, color, antioxidant content and microbiological analysis) of a body cream formulation containing by-products (CSMS) and a formulation without extracts (F) were evaluated under a stability study during 180 days at different temperatures. Moreover, the in vitro cell toxicity and the in vivo skin safety and protective effects were also assessed. Formulation showed stable physical properties and antioxidant activity during 180 days of storage. In vitro toxicity was screened in two skin cell lines (fibroblasts and keratinocytes) and any toxicity was reported. The in vivo test carried out showed that, with respect to irritant effects, CSMS formulation can be regarded as safe for topical application and the skin hydratation improved after 30 days of its use. Also, considering the consumer acceptance, more than 90% of volunteers classified it as very pleasant. CSMS formulation is stable and safe for topical use as no adverse and/or side effects were observed during the application period of testing, improving skin protective properties.

  11. Antioxidant and Anti-Inflammatory Activities of Kenyan Leafy Green Vegetables, Wild Fruits, and Medicinal Plants with Potential Relevance for Kwashiorkor

    Directory of Open Access Journals (Sweden)

    H. R. Tufts

    2015-01-01

    Full Text Available Background. Inflammation, together with related oxidative stress, is linked with the etiology of kwashiorkor, a form of severe acute malnutrition in children. A diet rich in anti-inflammatory and antioxidant phytochemicals may offer potential for the prevention and treatment of kwashiorkor. We selected and assayed five leafy green vegetables, two wild fruits, and six medicinal plants from Kenya for their antioxidant and anti-inflammatory properties. Consensus regarding medicinal plant use was established from ethnobotanical data. Methods. Antioxidant activity and phenolic content were determined using the oxygen radical absorbance capacity (ORAC assay and Folin-Ciocalteu procedure, respectively. Anti-inflammatory activity was assessed in vitro targeting the inflammatory mediator tumour necrosis factor-alpha (TNF-α. Results. Mangifera indica (leaves used medicinally showed the greatest antioxidant activity (5940 ± 632 µM TE/µg and total phenolic content (337 ± 3 mg GAE/g but Amaranthus dubius (leafy vegetable showed the greatest inhibition of TNF-α (IC50 = 9 ± 1 μg/mL, followed by Ocimum americanum (medicinal plant (IC50 = 16 ± 1 μg/mL. Informant consensus was significantly correlated with anti-inflammatory effects among active medicinal plants (r2=0.7639, P=0.0228. Conclusions. Several plant species commonly consumed by Kenyan children possess activity profiles relevant to the prevention and treatment of kwashiorkor and warrant further investigation.

  12. Evaluation of antioxidant potentials of different solvent-fractions of Dialium indium (African Black velvet tamarind fruit pulp – in vitro

    Directory of Open Access Journals (Sweden)

    Olakunle Bamikole Afolabi

    2018-02-01

    Full Text Available Plant phytonutrients have been harnessed for their various curative properties both in vitro and in vivo. In this study African black velvet tamarind (ABVT fruit pulp was evaluated for it antioxidant potentials using chloroform and hexane fractions through different antioxidant parameters. In the results; total phenolic contents quantified in mg GAE/dried sample in chloroform and hexane extracts were; 14.57 ±5.85 and 9.78 ±4.61, total flavonoid contents in chloroform and hexane extracts as; 48.58 ±0.00 and 27.35 ±0.00 while the FRAP (µg AAE.g-1 dried sample was lower in chloroform (298.10 ±0.00 than hexane extracts (1029.81 ±0.00. More also, ability of varied concentrations of the extracts (with their IC50 to cause inhibition against Fe2+-induced MDA that was determined by TBARS in rat's brain and liver tissue homogenates, Fe2+-chelating ability and other antioxidant assays, showed an appreciable significant (p <0.05 difference. The various antioxidant properties showed by ABVT has indicated that, if the pulp is incorporated in diet, it could serve as an alternative in managing various ROS-induced degenerative ailments as it has been clearly demonstrated in the protection of brain and liver homogenates from Fe2+-induced oxidative stress. 

  13. Do field-free electromagnetic potentials play a role in biology?

    Science.gov (United States)

    Szasz, A; Vincze, G; Andocs, G; Szasz, O

    2009-01-01

    All bio-systems are imperfect dielectrics. Their general properties however cannot be described by conventional simple electrodynamics; the system is more complex. A central question in our present paper is centered on a controversial debate of the possible effect of the zero fields (only potentials exist). We show that the identical use of the "field-free," "curl-free," and "force-free" terminologies is incorrect, there have definitely different meanings. It is shown that the effective electro-dynamical parameters that describe and modify living systems are the potentials and not the fields. We discuss how the potentials have a role in biological processes even in field-free cases.

  14. Impact of bioaccessibility and bioavailability of phenolic compounds in biological systems upon the antioxidant activity of the ethanolic extract of Triplaris gardneriana seeds.

    Science.gov (United States)

    Neto, José Joaquim Lopes; de Almeida, Thiago Silva; de Medeiros, Jackeline Lima; Vieira, Leonardo Rogério; Moreira, Thaís Borges; Maia, Ana Isabel Vitorino; Ribeiro, Paulo Riceli Vasconcelos; de Brito, Edy Sousa; Farias, Davi Felipe; Carvalho, Ana Fontenele Urano

    2017-04-01

    The most studied bioactive potential of phenolic compounds corresponds to antioxidant activity, which in turn, is associated with a reduction in the incidence of various human diseases. However, the total quantity of these bioactive substances in foods and medicinal preparations does not reflect the amount absorbed and metabolized by the body. The present study aimed to investigate the bioaccessibility of Triplaris gardneriana seeds ethanolic extract (EETg) by determination of phenolic composition and antioxidant activities before and after in vitro digestion as well as to estimate its bioavailability by chemical analysis of plasma and urine in animal models after oral administration. The bioaccessibility indexes of phenolic compounds in EETg were 48.65 and 69.28% in the presence and absence of enzymes, respectively. Among the identified phenolics classes, flavonoids, represented by galloylated procyanidins type B, proved to be more bioaccessible, 81.48 and 96.29% in the post-intestinal phase with and without enzymes, respectively. The oral administration in Wistar rats resulted in a significant decrease in plasma of the total antioxidant capacity, TAC, by FRAP assay 4h after beginning the experiment. For urine samples, an increase in TAC by DPPH and FRAP was observed from 1 and 4h after administration, respectively. UPLC-QTOF analysis of urine detected 2 metabolites originated from the degradation of phenolic compounds, i.e. hippuric acid and phenylacetil glycine. These results suggest that phenolic compounds in T. gardneriana are unstable under gastrointestinal conditions, being flavonoids the components with higher bioaccessibility; besides that, they showed limited bioavailability due to their rapid biotransformation and urinary elimination. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Evaluation of the genotoxic potential of Mangifera indica L. extract (Vimang), a new natural product with antioxidant activity.

    Science.gov (United States)

    Rodeiro, I; Cancino, L; González, J E; Morffi, J; Garrido, G; González, R M; Nuñez, A; Delgado, R

    2006-10-01

    Mangifera indica L. extract (Vimang) consists of a defined mixture of components (polyphenols, terpenoids, steroids, fatty acids and microelements). It contains a variety of polyphenols, phenolic esters, flavan-3-ols and a xanthone (mangiferin), as main component. This extract has antioxidant action, antitumor and immunemodulatory effects proved in experimental models in both in vitro and in vivo assays. The present study was performed to investigate the genotoxicity potential activity of Vimang assessed through different tests: Ames, Comet and micronucleus assays. Positive and negative controls were included in each experimental series. Histidine requiring mutants of Salmonella typhimurium TA1535, TA1537, TA1538, TA98, TA100 and TA102 strains for point-mutation tests and in vitro micronucleus assay in primary human lymphocytes with and without metabolic activation were performed. In addition, genotoxic effects were evaluated on blood peripheral lymphocytes of NMRI mice of both sexes, which were treated during 2 days with intraperitoneal doses of M. indica L. extract (50-150 mg/kg). The observed results permitted to affirm that Vimang (200-5,000 microg/plate) did not increase the frequency of reverse mutations in the Ames test in presence or not of metabolic activation. Results of Comet assay showed that the extract did not induce single strand breaks or alkali-labile sites on blood peripheral lymphocytes of treated animals compared with controls. On the other hand, the results of the micronucleus studies (in vitro and in vivo) showed Vimang induces cytotoxic activity, determined as cell viability or PCE/NCE ratio, but neither increased the frequency of micronucleated binucleate cells in culture of human lymphocytes nor in mice bone marrow cells under our experimental conditions. The positive control chemicals included in each experiment induced the expected changes. The present results indicate that M. indica L. extract showed evidences of light cytotoxic activity

  16. Bioactive composition and antioxidant potential of different commonly consumed coffee brews affected by their preparation technique and milk addition.

    Science.gov (United States)

    Niseteo, Tena; Komes, Draženka; Belščak-Cvitanović, Ana; Horžić, Dunja; Budeč, Maja

    2012-10-15

    Coffee is one of the most popular beverages in the world, prepared and consumed in many different ways. Taste, aroma and composition of the coffee brew vary depending on the preparation method. Therefore, this study investigates the effect of different brewing methods on the polyphenol and methylxanthine composition and antioxidant capacity of thirteen different coffee brews. The content of total phenols and flavonoids was determined spectrophotometrically and the content of chlorogenic acid derivates (3-CQA, 4-CQA and 5-CQA) and caffeine using the high performance liquid chromatography (HPLC-PDA). Antioxidant capacity of coffee brews was evaluated by using the ABTS (2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)) and FRAP (ferric-reducing antioxidant power) assays. Instant coffee brews showed the highest values in content of total phenols, chlorogenic acid derivates, caffeine and antioxidant capacity, which significantly decreased by milk addition. The antioxidant capacity of coffee brews was in compliance with the total phenol content and content of chlorogenic acid derivates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. [Clinical treatment adherence of health care workers and students exposed to potentially infectious biological material].

    Science.gov (United States)

    Almeida, Maria Cristina Mendes de; Canini, Silvia Rita Marin da Silva; Reis, Renata Karina; Toffano, Silmara Elaine Malaguti; Pereira, Fernanda Maria Vieira; Gir, Elucir

    2015-04-01

    To assess adherence to clinical appointments by health care workers (HCW) and students who suffered accidents with potentially infectious biological material. A retrospective cross-sectional study that assessed clinical records of accidents involving biological material between 2005 and 2010 in a specialized unit. A total of 461 individuals exposed to biological material were treated, of which 389 (84.4%) were HCWs and 72 (15.6%) students. Of the 461 exposed individuals, 307 (66.6%) attended a follow-up appointment. Individuals who had suffered an accident with a known source patient were 29 times more likely to show up to their scheduled follow-up appointments (OR: 29.98; CI95%: 16.09-55.83). The predictor in both univariate and multivariate analyses for adherence to clinical follow-up appointment was having a known source patient with nonreactive serology for the human immunodeficiency virus and/or hepatitis B and C.

  18. 3D-printed biological organs: medical potential and patenting opportunity.

    Science.gov (United States)

    Yoo, Seung-Schik

    2015-05-01

    Three-dimensional (3D) bioprinting has emerged as a new disruptive technology that may address the ever-increasing demand for organ transplants. 3D bioprinting offers many technical features that allow for building functional biological tissue constructs by dispensing the individual or group of cells into specific locations along with various types of bio-scaffold materials and extracellular matrices, and thus, may provide flexibility needed for on-demand individualized construction of biological organs. Several key classes of 3D bioprinting techniques are reviewed, including potential medical and industrial applications. Several unanswered engineering components for the ultimate creation of printed biological organs are also discussed. The complicated nature of the human organs, in addition to the legal and ethical requirements for safe implantation into the human body, would require significant research and development to produce marketable bioprinted organs. This also suggests the possibility for further patenting and licensing opportunities from different sectors of the economy.

  19. Potential of development of the mechanical-biological waste treatment; Entwicklungspotenzial der Mechanisch-Biologischen Abfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Grundmann, Thomas; Balhar, Michael [ASA e.V., Ennigerloh (Germany); Abfallwirtschaftsgesellschaft des Kreises Warendorf mbH, Ennigerloh (Germany)

    2013-03-01

    The Consortium Material-Specific Waste Treatment eV (Ennigerloh, Federal Republic of Germany) is an association of plant operators having the opinion that an economic and ecologic waste treatment only can be guaranteed by material-specific processes permanently. Due to the specific treatment processes in plants with mechanical-biological waste treatment (MBA) material flows are resulting being available for the recycling or exploitation. Under this aspect, the authors of the contribution under consideration report on the development potential of the mechanical-biological waste treatment. The state of the art of the technology of mechanical-biological waste treatment in Germany as well as the contribution of this technology to the resource protection and climate protection are described. Further aspects of this contribution are the increase of the energy efficiency and reduction of emissions; further development of the efficient sorting technology; development of integrated total conceptions - MBA-sites as centres for the production of renewable energies.

  20. Antioxidants of Edible Mushrooms

    Directory of Open Access Journals (Sweden)

    Maja Kozarski

    2015-10-01

    Full Text Available Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic antioxidants can effectively improve defense mechanisms, but because of their adverse toxic effects under certain conditions, preference is given to natural compounds. Consequently, the requirements for natural, alternative sources of antioxidant foods identified in edible mushrooms, as well as the mechanistic action involved in their antioxidant properties, have increased rapidly. Chemical composition and antioxidant potential of mushrooms have been intensively studied. Edible mushrooms might be used directly in enhancement of antioxidant defenses through dietary supplementation to reduce the level of oxidative stress. Wild or cultivated, they have been related to significant antioxidant properties due to their bioactive compounds, such as polyphenols, polysaccharides, vitamins, carotenoids and minerals. Antioxidant and health benefits, observed in edible mushrooms, seem an additional reason for their traditional use as a popular delicacy food. This review discusses the consumption of edible mushrooms as a powerful instrument in maintaining health, longevity and life quality.

  1. Antioxidants of edible mushrooms

    NARCIS (Netherlands)

    Kozarski, Maja; Klaus, Anita; Jakovljevic, Dragica; Todorovic, Nina; Vunduk, Jovana; Petrović, Predrag; Niksic, Miomir; Vrvic, Miroslav M.; Griensven, Van Leo

    2015-01-01

    Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS) lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic

  2. Dietary L-cysteine improves the antioxidative potential and lipid metabolism in rats fed a normal diet.

    Science.gov (United States)

    Lee, Seulki; Han, Kyu-Ho; Nakamura, Yumi; Kawakami, Sakura; Shimada, Ken-ichiro; Hayakawa, Touru; Onoue, Hirotake; Fukushima, Michihiro

    2013-01-01

    L-cysteine works as a precursor of the antioxidant, glutathione. We investigated the effects of L-cysteine (1% and 2%) on lipid metabolism and the antioxidative system in rats fed a normal diet. Administering L-cysteine dependently decreased the food intake, fat mass weight and body weight dose. Dietary L-cysteine also decreased the triglyceride levels in the serum and liver. However, there were no significant differences in the hepatic TBARS and glutathione (GSH) levels among the groups. The activities of catalase and glutathione reductase in the rats receiving 2% L-cysteine were significantly higher (pL-cysteine dose-dependently affected the antioxidative enzyme activities, and the lipid levels in the serum and liver which might be related to the reduced food intake.

  3. Potential applications of plant based derivatives as fat replacers, antioxidants and antimicrobials in fresh and processed meat products.

    Science.gov (United States)

    Hygreeva, Desugari; Pandey, M C; Radhakrishna, K

    2014-09-01

    Growing concern about diet and health has led to development of healthier food products. In general consumer perception towards the intake of meat and meat products is unhealthy because it may increase the risk of diseases like cardiovascular diseases, obesity and cancer, because of its high fat content (especially saturated fat) and added synthetic antioxidants and antimicrobials. Addition of plant derivatives having antioxidant components including vitamins A, C and E, minerals, polyphenols, flavanoids and terpenoids in meat products may decrease the risk of several degenerative diseases. To change consumer attitudes towards meat consumption, the meat industry is undergoing major transformations by addition of nonmeat ingredients as animal fat replacers, natural antioxidants and antimicrobials, preferably derived from plant sources. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. In vitro Evaluation of Antioxidant Potential of Isolated Compounds and Various Extracts of Peel of Punica granatum L.

    Science.gov (United States)

    Jacob, Janani; Lakshmanapermalsamy, P; Illuri, Ramanaiah; Bhosle, Damaji; Sangli, Gopala Krishna; Mundkinajeddu, Deepak

    2018-01-01

    Punica granatum L. ( Lythraceae ) peel has been proven to exhibit widespread pharmacological application against multitude of diseases due to the presence of bioactive principles. The objective is to isolate the bioactive compounds from the pericarp of P. granatum and to evaluate the antioxidant activity of various extracts. Dried peel of P. granatum was extracted with aqueous acetone and chromatographed on Diaion HP-20. Enriched fractions were rechromatographed on Sephadex LH-20 and purified on preparative high-performance liquid chromatography to identify individual compounds. The dried peel was extracted with different solvents to evaluate the antioxidant activity of the extracts. On the chemical investigation, three compounds were isolated and characterized as punicalagin, 2,3-(S)-hexahydroxydiphenoyl-D-glucose, and punicalin, using various spectroscopic techniques. Results indicate that the isolated compounds have possessed antioxidant activity, and aqueous, methanol, and aqueous acetone extract showed significant scavenging of 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) radicals. In vitro antioxidant activity of Punica granatum extracts was evaluated by 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) assayDried peel of P. granatum was extracted with different solvents to evaluate the antioxidant activity of the extractsAqueous acetone extract was found to be most active and chromatographed further to afford punicalagin, 2,3-(S)-hexahydroxydiphenoyl-D-glucose, and punicalinThe presence of antioxidant properties of three compounds in the peel of P. granatum has been demonstrated. Abbreviations Used: HPLC: High-performance liquid chromatography; HHDP: Hexahydroxydiphenoyl; DPPH: 2,2-diphenyl-1-picrylhydrazyl; ABTS: 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid); UV: Ultraviolet; PDA: Photodiode array; LC: Liquid chromatography; NMR: Nuclear magnetic resonance; MHz

  5. Determination of the phenolic content and antioxidant potential of crude extracts and isolated compounds from leaves of Cordia multispicata and Tournefortia bicolor.

    Science.gov (United States)

    Correia Da Silva, Thiago B; Souza, Vivian Karoline T; Da Silva, Ana Paula F; Lyra Lemos, Rosangela P; Conserva, Lucia M

    2010-01-01

    In this work, the total phenolic content and antioxidant activity of extracts and four flavonoids isolated from leaves of two Boraginaceae species (Cordia multispicata Cham. and Tournefortia bicolor Sw.) were evaluated using Folin-Ciocalteu reagent, DPPH free radical scavenging and inhibition of peroxidation of linoleic acid by FTC method. For comparison, ascorbic acid, alpha-tocopherol and BHT were used. In general, extracts from T. bicolor (68.8 +/- 0.001 to > 1000 mg/g) showed higher phenolic content than C. multispicata (66.1 +/- 0.009 to 231 +/- 0.07 mg/g), and also scavenged radicals (IC(50) 12.8 +/- 2.5 to 437 +/- 3.5 mg/L) and inhibited lipid peroxide formation (IC(50) 51.2 +/- 2.29 to 89 +/- 0.59 mg/L). For these extracts a good correlation between the phenolic content and antioxidant activity was observed, suggesting that T. bicolor is richer in phenolic compounds and that it could serve as a new source of natural antioxidants or nutraceuticals with potential applications. Chromatographic procedures monitored by antioxidant assays afforded seven compounds, which were identified by spectral analyses (IR, MS and 1D and 2D NMR) and comparison with reported data as being trans-phytol (1), taraxerol (2), 3,7,4'-trimethoxyflavone (3), 5,3'-dihydroxy-3,7,4'-trimethoxyflavone (4), quercetin (5), tiliroside (6), and rutin (7). Compounds (4-7) were also evaluated and were effective as DPPH quenching (IC(50) 7.7 +/- 3.6 to 79.3 +/- 3.4 mg/L) and as inhibition of lipid peroxidation (IC(50) 80.1 +/- 0.98 to 88.7 +/- 3.62 mg/L). This is the first report on the total phenolic content, radical-scavenging and antioxidant activities of these species.

  6. Using consumption rate to assess potential predators for biological control of white perch

    Directory of Open Access Journals (Sweden)

    Gosch N.J.C.

    2011-08-01

    Full Text Available Control of undesirable fishes is important in aquatic systems, and using predation as a tool for biological control is an attractive option to fishery biologists. However, determining the appropriate predators for biological control is critical for success. The objective of this study was to evaluate the utility of consumption rate as an index to determine the most effective predators for biological control of an invasive fish. Consumption rate values were calculated for nine potential predators that prey on white perch Morone americana in Branched Oak and Pawnee reservoirs, Nebraska. The consumption rate index provided a unique and insightful means of determining the potential effectiveness of each predator species in controlling white perch. Cumulative frequency distributions facilitated interpretation by providing a graphical presentation of consumption rates by all individuals within each predator species. Largemouth bass Micropterus salmoides, walleye Sander vitreus and sauger S. canadensis were the most efficient white perch predators in both reservoirs; however, previous attempts to increase biomass of these predators have failed suggesting that successful biological control is unlikely using existing predator species in these Nebraska reservoirs.

  7. Probing nanomechanical interaction at the interface between biological membrane and potentially toxic chemical.

    Science.gov (United States)

    Lim, Chanoong; Park, Sohee; Park, Jinwoo; Ko, Jina; Lee, Dong Woog; Hwang, Dong Soo

    2018-04-12

    Various xenobiotics interact with biological membranes, and precise evaluations of the molecular interactions between them are essential to foresee the toxicity and bioavailability of existing or newly synthesized molecules. In this study, surface forces apparatus (SFA) measurement and Langmuir trough based tensiometry are performed to reveal nanomechanical interaction mechanisms between potential toxicants and biological membranes for ex vivo toxicity evaluation. As a toxicant, polyhexamethylene guanidine (PHMG) was selected because PHMG containing humidifier disinfectant and Vodka caused lots of victims in both S. Korea and Russia, respectively, due to the lack of holistic toxicity evaluation of PHMG. Here, we measured strong attraction (Wad ∼4.2 mJ/m 2 ) between PHMG and head group of biological membranes while no detectable adhesion force between the head group and control molecules was measured. Moreover, significant changes in π-A isotherm of 1,2-Dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) monolayers were measured upon PHMG adsorption. These results indicate PHMG strongly binds to hydrophilic group of lipid membranes and alters the structural and phase behavior of them. More importantly, complementary utilization of SFA and Langmuir trough techniques are found to be useful to predict the potential toxicity of a chemical by evaluating the molecular interaction with biological membranes, the primary protective barrier for living organisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Effective protection of biological membranes against photo-oxidative damage: Polymeric antioxidant forming a protecting shield over the membrane.

    Science.gov (United States)

    Mertins, Omar; Mathews, Patrick D; Gomide, Andreza B; Baptista, Mauricio S; Itri, Rosangela

    2015-10-01

    We have prepared a chitosan polymer modified with gallic acid in order to develop an efficient protection strategy biological membranes against photodamage. Lipid bilayers were challenged with photoinduced damage by photosensitization with methylene blue, which usually causes formation of hydroperoxides, increasing area per lipid, and afterwards allowing leakage of internal materials. The damage was delayed by a solution of gallic acid in a concentration dependent manner, but further suppressed by the polymer at very low concentrations. The membrane of giant unilamellar vesicles was covered with this modified macromolecule leading to a powerful shield against singlet oxygen and thus effectively protecting the lipid membrane from oxidative stress. The results have proven the discovery of a promising strategy for photo protection of biological membranes. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Systems biology-guided identification of synthetic lethal gene pairs and its potential use to discover antibiotic combinations

    DEFF Research Database (Denmark)

    Aziz, Ramy K.; Monk, Jonathan M.; Lewis, R. M.

    2015-01-01

    Mathematical models of metabolism from bacterial systems biology have proven their utility across multiple fields, for example metabolic engineering, growth phenotype simulation, and biological discovery. The usefulness of the models stems from their ability to compute a link between genotype...... of metabolic models, and highlight one potential application of systems biology to drug discovery and translational medicine....

  10. Design, Synthesis and Biological Evaluation of Benzohydrazide Derivatives Containing Dihydropyrazoles as Potential EGFR Kinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Hai-Chao Wang

    2016-08-01

    Full Text Available A series of novel benzohydrazide derivatives containing dihydropyrazoles have been synthesized as potential epidermal growth factor receptor (EGFR kinase inhibitors and their biological activities as potential antiproliferative agents have been evaluated. Among these compounds, compound H20 exhibited the most potent antiproliferative activity against four cancer cell line variants (A549, MCF-7, HeLa, HepG2 with IC50 values of 0.46, 0.29, 0.15 and 0.21 μM respectively, which showed the most potent EGFR inhibition activities (IC50 = 0.08 μM for EGFR. Molecular modeling simulation studies were performed in order to predict the biological activity and activity relationship (SAR of these benzohydrazide derivatives. These results suggested that compound H20 may be a promising anticancer agent.

  11. Effects of coal combustion residues on survival, antioxidant potential, and genotoxicity resulting from full-lifecycle exposure of grass shrimp (Palaemonetes pugio Holthius)

    International Nuclear Information System (INIS)

    Kuzmick, Danika M.; Mitchelmore, Carys L.; Hopkins, William A.; Rowe, Christopher L.

    2007-01-01

    Coal combustion residues (CCRs), largely derived from coal-fired electrical generation, are rich in numerous trace elements that have the potential to induce sublethal effects including oxidative stress, alterations in antioxidant status and DNA single strand breaks (SSB). CCRs are frequently discharged into natural and man-made aquatic systems. As the effects of CCRs have received relatively little attention in estuarine systems, the estuarine grass shrimp, Palaemonetes pugio, was chosen for this study. Grass shrimp were exposed in the laboratory to CCR-enriched sediments and food over a full life cycle. Survival to metamorphosis was significantly reduced in CCR-exposed larvae (17 ± 4 versus 70 ± 13% in the controls) but not in the juveniles or adults. The COMET assay, a general but sensitive assay for genotoxicity, was used to quantify DNA SSB in the adults. Total antioxidant potential was examined to assess the overall antioxidant scavenging capacity of CCR-exposed and non-exposed adult grass shrimp. Grass shrimp exposed to CCR significantly accumulated selenium and cadmium compared to unexposed shrimp, although an inverse relationship was seen for mercury accumulation. Chronic CCR exposure caused DNA SSB in hepatopancreas cells, as evidenced by the significantly increased percent tail DNA, tail moment, and tail length as compared to reference shrimp. However, no significant difference was observed in total antioxidant potential. Our findings suggest that genotoxicity may be an important mode of toxicity of CCR, and that DNA SSB may serve as a useful biomarker of exposure and effect of this very common, complex waste stream

  12. Effects of coal combustion residues on survival, antioxidant potential, and genotoxicity resulting from full-lifecycle exposure of grass shrimp (Palaemonetes pugio Holthius)

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmick, Danika M.; Mitchelmore, Carys L.; Rowe, Christopher L. [University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, 1, Williams Street, PO Box 38, Solomons, MD, 20688 (United States); Hopkins, William A. [Department of Fisheries and Wildlife Sciences, Virginia Polytechnic Institute and State University, 100 Cheatham Hall, Blacksburg, VA (United States)

    2007-02-01

    Coal combustion residues (CCRs), largely derived from coal-fired electrical generation, are rich in numerous trace elements that have the potential to induce sublethal effects including oxidative stress, alterations in antioxidant status and DNA single strand breaks (SSB). CCRs are frequently discharged into natural and man-made aquatic systems. As the effects of CCRs have received relatively little attention in estuarine systems, the estuarine grass shrimp, Palaemonetes pugio, was chosen for this study. Grass shrimp were exposed in the laboratory to CCR-enriched sediments and food over a full life cycle. Survival to metamorphosis was significantly reduced in CCR-exposed larvae (17 {+-} 4 versus 70 {+-} 13% in the controls) but not in the juveniles or adults. The COMET assay, a general but sensitive assay for genotoxicity, was used to quantify DNA SSB in the adults. Total antioxidant potential was examined to assess the overall antioxidant scavenging capacity of CCR-exposed and non-exposed adult grass shrimp. Grass shrimp exposed to CCR significantly accumulated selenium and cadmium compared to unexposed shrimp, although an inverse relationship was seen for mercury accumulation. Chronic CCR exposure caused DNA SSB in hepatopancreas cells, as evidenced by the significantly increased percent tail DNA, tail moment, and tail length as compared to reference shrimp. However, no significant difference was observed in total antioxidant potential. Our findings suggest that genotoxicity may be an important mode of toxicity of CCR, and that DNA SSB may serve as a useful biomarker of exposure and effect of this very common, complex waste stream. (author)

  13. Biological agents with potential for misuse: a historical perspective and defensive measures

    International Nuclear Information System (INIS)

    Bhalla, Deepak K.; Warheit, David B.

    2004-01-01

    Biological and chemical agents capable of producing serious illness or mortality have been used in biowarfare from ancient times. Use of these agents has progressed from crude forms in early and middle ages, when snakes and infected cadavers were used as weapons in battles, to sophisticated preparations for use during and after the second World War. Cults and terrorist organizations have attempted the use of biological agents with an aim to immobilize populations or cause serious harm. The reasons for interest in these agents by individuals and organizations include relative ease of acquisition, potential for causing mass casualty or panic, modest financing requirement, availability of technology, and relative ease of delivery. The Centers for Disease Control and Prevention has classified Critical Biological Agents into three major categories. This classification was based on several criteria, which include severity of impact on human health, potential for delivery in a weapon, capacity to cause panic and special needs for development, and stockpiling of medication. Agents that could cause the greatest harm following deliberate use were placed in category A. Category B included agents capable of producing serious harm and significant mortality but of lower magnitude than category A agents. Category C included emerging pathogens that could be developed for mass dispersion in future and their potential as a major health threat. A brief description of the category A bioagents is included and the pathophysiology of two particularly prominent agents, namely anthrax and smallpox, is discussed in detail. The potential danger from biological agents and their ever increasing threat to human populations have created a need for developing technologies for their early detection, for developing treatment strategies, and for refinement of procedures to ensure survival of affected individuals so as to attain the ultimate goal of eliminating the threat from intentional use of

  14. Biological agents with potential for misuse: a historical perspective and defensive measures.

    Science.gov (United States)

    Bhalla, Deepak K; Warheit, David B

    2004-08-15

    Biological and chemical agents capable of producing serious illness or mortality have been used in biowarfare from ancient times. Use of these agents has progressed from crude forms in early and middle ages, when snakes and infected cadavers were used as weapons in battles, to sophisticated preparations for use during and after the second World War. Cults and terrorist organizations have attempted the use of biological agents with an aim to immobilize populations or cause serious harm. The reasons for interest in these agents by individuals and organizations include relative ease of acquisition, potential for causing mass casualty or panic, modest financing requirement, availability of technology, and relative ease of delivery. The Centers for Disease Control and Prevention has classified Critical Biological Agents into three major categories. This classification was based on several criteria, which include severity of impact on human health, potential for delivery in a weapon, capacity to cause panic and special needs for development, and stockpiling of medication. Agents that could cause the greatest harm following deliberate use were placed in category A. Category B included agents capable of producing serious harm and significant mortality but of lower magnitude than category A agents. Category C included emerging pathogens that could be developed for mass dispersion in future and their potential as a major health threat. A brief description of the category A bioagents is included and the pathophysiology of two particularly prominent agents, namely anthrax and smallpox, is discussed in detail. The potential danger from biological agents and their ever increasing threat to human populations have created a need for developing technologies for their early detection, for developing treatment strategies, and for refinement of procedures to ensure survival of affected individuals so as to attain the ultimate goal of eliminating the threat from intentional use of

  15. The antioxidant effect of derivatives pyroglutamic lactam

    Energy Technology Data Exchange (ETDEWEB)

    Rohadi, Atisya; Lazim, Azwani Mat; Hasbullah, Siti Aishah [School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    Diphenylpicrylhydrazyl (DPPH) is widely used for quickly accessing the ability of polyphenols to transfer labile H atoms to radicals. The antioxidant activity of all the synthesized compounds was screened by DPPH method. Compound (4) showed 54% antioxidant potential while all other compounds were found to have moderate to have moderate to mild antioxidant activity ranging from 47–52%. Pyroglutamic lactams have been synthesized stereoselectively in racemic form from levulinic acid as bifunctional adduct using convertible isocyanide in one-pot Ugi 4-center-3-component condensation reaction (U-4C-3CR). The product formed provides biologically interesting products in excellent yields in a short reaction time. The structures of the synthesized compounds were elucidated using spectroscopic data and elemental analysis.

  16. Potential Therapeutic Applications of Mucuna pruriens Peptide Fractions Purified by High-Performance Liquid Chromatography as Angiotensin-Converting Enzyme Inhibitors, Antioxidants, Antithrombotic and Hypocholesterolemic Agents.

    Science.gov (United States)

    Herrera-Chalé, Francisco; Ruiz-Ruiz, Jorge Carlos; Betancur-Ancona, David; Segura-Campos, Maira Rubi

    2016-02-01

    A Mucuna pruriens protein concentrate was hydrolyzed with a digestive (pepsin-pancreatin) enzymatic system. The soluble portion of the hydrolysate was fractionated by ultrafiltration and the ultrafiltered peptide fraction (PF) with lower molecular weight was purified by reversed-phase high-performance liquid chromatography. The PF obtained were evaluated by testing the biological activity in vitro. Fractions showed that the ability to inhibit the angiotensin-converting enzyme had IC50 values that ranged from 2.7 to 6.2 μg/mL. Trolox equivalent antioxidant capacity values ranged from 132.20 to 507.43 mM/mg. The inhibition of human platelet aggregation ranged from 1.59% to 11.11%, and the inhibition of cholesterol micellar solubility ranged from 0.24% to 0.47%. Hydrophobicity, size, and amino acid sequence could be factors in determining the biological activity of peptides contained in fractions. This is the first report that M. pruriens peptides act as antihypertensives, antioxidants, and inhibitors for human platelet aggregation and cholesterol micellar solubility in vitro.

  17. Water reuse potential in truck wash using a Rotating Biological Contactor

    OpenAIRE

    Eduardo Lucas Subtil; José Carlos Mierzwa; Ivanildo Hespanhol; Raphael Rodrigues

    2016-01-01

    This study evaluated the water reuse potential for truck washing using the effluent treated by a Rotating Biological Contactor (RBC) operated in full scale. In order to evaluate the reuse potential, a mass balance was performed for the reuse system taking into account the concentration of Total Dissolved Solids as the critical contaminant. The treatment system produced an effluent with average concentration of color, turbidity, TDS and BOD5 of 45 ± 14 uC, 15 ± 6.0 NTU, 244 ± 99 mg TDS / L and...

  18. Applying the Nernst equation to simulate redox potential variations for biological nitrification and denitrification processes.

    Science.gov (United States)

    Chang, Cheng-Nan; Cheng, Hong-Bang; Chao, Allen C

    2004-03-15

    In this paper, various forms of Nernst equations have been developed based on the real stoichiometric relationship of biological nitrification and denitrification reactions. Instead of using the Nernst equation based on a one-to-one stoichiometric relation for the oxidizing and the reducing species, the basic Nernst equation is modified into slightly different forms. Each is suitable fo