WorldWideScience

Sample records for biological allometry chemical

  1. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  2. Computational Systems Chemical Biology

    OpenAIRE

    Oprea, Tudor I.; Elebeoba E. May; Leitão, Andrei; Tropsha, Alexander

    2011-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically-based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology, SCB (Oprea et al., 2007).

  3. Chemical Biology is.....

    OpenAIRE

    2007-01-01

    Chemical Biology is a relatively new field, and as such is not yet simply or succinctly defined. It includes such a wide range of fundamental problems that this commentary could only include just a few snapshots of potential areas of interest. Overarching themes and selected recent successes and ideas in chemical biology are described to illustrate broadly the scope of the field, but should not be taken as exhaustive. The Chemical Biology Section of Chemistry Central Journal is pleased to rec...

  4. Use of simple body measurements and allometry to predict the chemical growth and feed intake in pigs

    Directory of Open Access Journals (Sweden)

    Andrea Piva

    2010-01-01

    Full Text Available The paper provides a practical procedure to estimate the chemical composition of pigs, their compositional growth and the expected feed intake from measurements of body weight (BW and backfat thickness (P2 serially performed in vivo. A farm data set provided information on 920 individuals including BW, measured at 71 ± 4 (t1, 126 ± 5 (t2 and 184 ± 5 (t3 days of age, of P2 at t2 and t3, and of voluntary daily feed intake (FI, recorded over the period from t2 to t3 by automated IVOG feeders. Body lipid mass was estimated as L= (9.17 + 0.70*P2 *BW/100 and the other chemical constituents were predicted from fat free empty body mass using Gompertz growth functions and allometry. Using individual changes of body composition from age t2 to t3, energy requirements for maintenance and growth and the corresponding predicted feed intakes (PFI were estimated. Measured FI were analysed for the effects of month, batch (within month, BWt2, P2t2, average metabolic weight, average daily gain and variation of P2 from t2 to t3. The same model was run again replacing the direct simple body measurements (BW and P2 with the estimated values of PFI as source of variation. Results. The Gompertz estimates of mature protein mass (Pm, relative growth rate parameter (B and lipid to protein ratio at maturity were 43.5 ± 5.8 kg, 0.0116 ± 0.0011 d-1 and 1.81 ± 0.30, respectively. The current protein mass averaged 18.5 + 1.6 kg and the daily retentions of protein and lipid were 177 ± 21 and 239 ± 62 g/d, respectively. FI and PFI averaged 2.824 ± 0.448 and 2.814 ± 0.393 kg/d, respectively. In the ANOVA of the FI data, the replacement of direct body measurements by PFI did not change the proportion of variance explained (83% and the RSD (0.199 g/d. The two sets of residual feed intake values obtained from the two ANOVA were highly correlated (RSD = 0.043 kg/d; R2= 0.961. Agreement between predicted and determined feed intakes provided a reasonable guarantee to the

  5. Computational systems chemical biology.

    Science.gov (United States)

    Oprea, Tudor I; May, Elebeoba E; Leitão, Andrei; Tropsha, Alexander

    2011-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology (SCB) (Nat Chem Biol 3: 447-450, 2007).The overarching goal of computational SCB is to develop tools for integrated chemical-biological data acquisition, filtering and processing, by taking into account relevant information related to interactions between proteins and small molecules, possible metabolic transformations of small molecules, as well as associated information related to genes, networks, small molecules, and, where applicable, mutants and variants of those proteins. There is yet an unmet need to develop an integrated in silico pharmacology/systems biology continuum that embeds drug-target-clinical outcome (DTCO) triplets, a capability that is vital to the future of chemical biology, pharmacology, and systems biology. Through the development of the SCB approach, scientists will be able to start addressing, in an integrated simulation environment, questions that make the best use of our ever-growing chemical and biological data repositories at the system-wide level. This chapter reviews some of the major research concepts and describes key components that constitute the emerging area of computational systems chemical biology.

  6. Chemical space and biology.

    Science.gov (United States)

    Dobson, Christopher M

    2004-12-16

    Chemical space--which encompasses all possible small organic molecules, including those present in biological systems--is vast. So vast, in fact, that so far only a tiny fraction of it has been explored. Nevertheless, these explorations have greatly enhanced our understanding of biology, and have led to the development of many of today's drugs. The discovery of new bioactive molecules, facilitated by a deeper understanding of the nature of the regions of chemical space that are relevant to biology, will advance our knowledge of biological processes and lead to new strategies to treat disease.

  7. Biological and Chemical Security

    Energy Technology Data Exchange (ETDEWEB)

    Fitch, P J

    2002-12-19

    The LLNL Chemical & Biological National Security Program (CBNP) provides science, technology and integrated systems for chemical and biological security. Our approach is to develop and field advanced strategies that dramatically improve the nation's capabilities to prevent, prepare for, detect, and respond to terrorist use of chemical or biological weapons. Recent events show the importance of civilian defense against terrorism. The 1995 nerve gas attack in Tokyo's subway served to catalyze and focus the early LLNL program on civilian counter terrorism. In the same year, LLNL began CBNP using Laboratory-Directed R&D investments and a focus on biodetection. The Nunn-Lugar-Domenici Defense Against Weapons of Mass Destruction Act, passed in 1996, initiated a number of U.S. nonproliferation and counter-terrorism programs including the DOE (now NNSA) Chemical and Biological Nonproliferation Program (also known as CBNP). In 2002, the Department of Homeland Security was formed. The NNSA CBNP and many of the LLNL CBNP activities are being transferred as the new Department becomes operational. LLNL has a long history in national security including nonproliferation of weapons of mass destruction. In biology, LLNL had a key role in starting and implementing the Human Genome Project and, more recently, the Microbial Genome Program. LLNL has over 1,000 scientists and engineers with relevant expertise in biology, chemistry, decontamination, instrumentation, microtechnologies, atmospheric modeling, and field experimentation. Over 150 LLNL scientists and engineers work full time on chemical and biological national security projects.

  8. Synthetic Biology for Specialty Chemicals.

    Science.gov (United States)

    Markham, Kelly A; Alper, Hal S

    2015-01-01

    In this review, we address recent advances in the field of synthetic biology and describe how those tools have been applied to produce a wide variety of chemicals in microorganisms. Here we classify the expansion of the synthetic biology toolbox into three different categories based on their primary function in strain engineering-for design, for construction, and for optimization. Next, focusing on recent years, we look at how chemicals have been produced using these new synthetic biology tools. Advances in producing fuels are briefly described, followed by a more thorough treatment of commodity chemicals, specialty chemicals, pharmaceuticals, and nutraceuticals. Throughout this review, an emphasis is placed on how synthetic biology tools are applied to strain engineering. Finally, we discuss organism and host strain diversity and provide a future outlook in the field.

  9. The aesthetics of chemical biology.

    Science.gov (United States)

    Parsons, Glenn

    2012-12-01

    Scientists and philosophers have long reflected on the place of aesthetics in science. In this essay, I review these discussions, identifying work of relevance to chemistry and, in particular, to the field of chemical biology. Topics discussed include the role of aesthetics in scientific theory choice, the aesthetics of molecular images, the beauty-making features of molecules, and the relation between the aesthetics of chemical biology and the aesthetics of industrial design.

  10. Growth and Allometry in Modern Morphometrics: Review

    Directory of Open Access Journals (Sweden)

    Deniz SIĞIRLI

    2013-01-01

    Full Text Available In traditional shape analysis, linear distance, angles and ratios of measurements are used in multivariate statistical analyses. The challenge in any analysis of growth is to extend quantitative description and to explore aspects of the biology of a given organism, such as the genetic basis of morphogenesis, the phylogenetic underpinnings of developmental patterns, or the role of hormones, teratogens, dietary elements, and other environmental variables on the growth process. It is important to define the growth process with mathematical equations that include biologically meaningful parameters. Size has several different meanings such as length, area, volume, and even the linear combinations of different measured quantities. However, in statistical shape analysis, size is obtained by a specific approach, which provides the geometrical information of an object. Allometry theory was developed as a result of shape variations that occur with the growth of an organism’s different parts or organs at different rates. As the idea of size and shape has been one of the most controversial subjects in traditional morphometrics, allometry (relationship between size and shape plays an important role in the development of statistical shape analysis. The quantities used in traditional morphometrics for size are highly correlated with shape. Thus, many different methods have been proposed for size correction. However, because of disagreement regarding relevant methods of size correction, researchers have investigated different methods for the analysis of shape data. Today, new geometrical morphometric approaches are being used extensively to explore and model growth and allometry.

  11. Biological and Chemical Information Technologies

    DEFF Research Database (Denmark)

    Amos, Martyn; Dittrich, Peter; McCaskill, John;

    2011-01-01

    Biological and chemical information technologies (bio/chem IT) have the potential to reshape the scientific and technological landscape. In this paper we briefly review the main challenges and opportunities in the field, before presenting several case studies based on ongoing FP7 research projects....

  12. Olefin Metathesis for Chemical Biology

    Science.gov (United States)

    Binder, Joseph B; Raines, Ronald T

    2009-01-01

    Summary Chemical biology relies on effective synthetic chemistry for building molecules to probe and modulate biological function. Olefin metathesis in organic solvents is a valuable addition to this armamentarium, and developments during the previous decade are enabling metathesis in aqueous solvents for the manipulation of biomolecules. Functional group-tolerant ruthenium metathesis catalysts modified with charged moieties or hydrophilic polymers are soluble and active in water, enabling ring-opening metathesis polymerization, cross metathesis, and ring-closing metathesis. Alternatively, conventional hydrophobic ruthenium complexes catalyze a similar array of metathesis reactions in mixtures of water and organic solvents. This strategy has enabled cross metathesis on the surface of a protein. Continuing developments in catalyst design and methodology will popularize the bioorthogonal reactivity of metathesis. PMID:18935975

  13. Biology Today. Thinking Chemically about Biology.

    Science.gov (United States)

    Flannery, Maura C.

    1990-01-01

    Discussed are applications of biochemistry. Included are designed drugs, clever drugs, carcinogenic structures, sugary wine, caged chemicals, biomaterials, marine chemistry, biopolymers, prospecting bacteria, and plant chemistry. (CW)

  14. Electrostatic thin film chemical and biological sensor

    Science.gov (United States)

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.; Viswanath, Dabir; Loyalka, Sudarshan K.

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  15. Chemical and Biological Resistant Clothing

    Science.gov (United States)

    2013-04-01

    Dehydration was confirmed by CuSO4 (dry CuSO4 turns light blue upon contacting water). The influence of DMMP adsorption on the zeolite external surface...temperature. Table 16. Saturated Vapor Pressure (PSaturated) at Room Temperature Chemical PSaturated (mm Hg ) Water 4.54 DMMP 0.34 TBP 0.004 MS...to enter the pores of zeolite-A and its adsorption on the zeolite external surface is apparently negligible in the IPA liquid environment. The GC

  16. Perspective: Reaches of chemical physics in biology.

    Science.gov (United States)

    Gruebele, Martin; Thirumalai, D

    2013-09-28

    Chemical physics as a discipline contributes many experimental tools, algorithms, and fundamental theoretical models that can be applied to biological problems. This is especially true now as the molecular level and the systems level descriptions begin to connect, and multi-scale approaches are being developed to solve cutting edge problems in biology. In some cases, the concepts and tools got their start in non-biological fields, and migrated over, such as the idea of glassy landscapes, fluorescence spectroscopy, or master equation approaches. In other cases, the tools were specifically developed with biological physics applications in mind, such as modeling of single molecule trajectories or super-resolution laser techniques. In this introduction to the special topic section on chemical physics of biological systems, we consider a wide range of contributions, all the way from the molecular level, to molecular assemblies, chemical physics of the cell, and finally systems-level approaches, based on the contributions to this special issue. Chemical physicists can look forward to an exciting future where computational tools, analytical models, and new instrumentation will push the boundaries of biological inquiry.

  17. Spreading chromatin into chemical biology.

    Science.gov (United States)

    Allis, C David; Muir, Tom W

    2011-01-24

    Epigenetics, broadly defined as the inheritance of non-Mendelian phenotypic traits, can be more narrowly defined as heritable alterations in states of gene expression ("on" versus "off") that are not linked to changes in DNA sequence. Moreover, these alterations can persist in the absence of the signals that initiate them, thus suggesting some kind of "memory" to epigenetic forms of regulation. How, for example, during early female mammalian development, is one X chromosome selected to be kept in an active state, while the genetically identical sister X chromosome is "marked" to be inactive, even though they reside in the same nucleus, exposed to the same collection of shared trans-factors? Once X inactivation occurs, how are these contrasting chromatin states maintained and inherited faithfully through subsequent cell divisions? Chromatin states, whether active (euchromatic) or silent (heterochromatic) are established, maintained, and propagated with remarkable precision during normal development and differentiation. However, mistakes made in establishing and maintaining these chromatin states, often executed by a variety of chromatin-remodeling activities, can lead to mis-expression or mis-silencing of critical downstream gene targets with far-reaching implications for human biology and disease, notably cancer. Though chromatin biologists have identified many of the "inputs" that are important for controlling chromatin states, the detailed mechanisms by which these processes work remain largely opaque, in part due to the staggering complexity of the chromatin polymer, the physiologically relevant form of our genome. The primary objective of this article is to serve as a "call to arms" for chemists to contribute to the development of the precision tools needed to answer pressing molecular problems in this rapidly moving field.

  18. Chemical synthetic biology: a mini-review

    Directory of Open Access Journals (Sweden)

    Cristiano eChiarabelli

    2013-09-01

    Full Text Available Chemical synthetic biology (CSB is a branch of synthetic biology (SB oriented towards the synthesis of chemical structures alternative to those present in nature. Whereas SB combines biology and engineering with the aim of synthesizing biological structures or life forms that do not exist in nature – often based on genome manipulation, CSB uses and assembles biological parts, synthetic or not, to create new and alternative structures. A short epistemological note will introduce the theoretical concepts related to these fields, whereas the text will be largely devoted to introduce and comment two main projects of CSB, carried out in our laboratory in the recent years.The Never Born Biopolymers (NBB project deals with the construction and the screening of RNA and peptide sequences that are not present in nature, whereas the Minimal Cell project focuses on the construction of semi-synthetic compartments (usually liposomes containing the minimal and sufficient number of components to perform the basic function of a biological cell.These two topics are extremely important for both the general understanding of biology in terms of function, organization and development, and for applied biotechnology.

  19. Chemical Force Microscopy of Chemical and Biological Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Noy, A

    2006-01-02

    Interactions between chemical functionalities define outcomes of the vast majority of important events in chemistry, biology and materials science. Chemical Force Microscopy (CFM)--a technique that uses direct chemical functionalization of AFM probes with specific functionalities--allows researchers to investigate these important interactions directly. We review the basic principles of CFM, some examples of its application, and theoretical models that provide the basis for understanding the experimental results. We also emphasize application of modern kinetic theory of non-covalent interactions strength to the analysis of CFM data.

  20. Protection against radiation (biological, pharmacological, chemical, physical)

    Science.gov (United States)

    Saksonov, P. P.

    1975-01-01

    Physical, chemical, and biological protection for astronauts from penetrating radiation on long-term space flights is discussed. The status of pharmacochemical protection, development of protective substances, medical use of protective substances, protection for spacecraft ecologic systems, adaptogens and physical conditioning, bone marrow transplants and local protection are discussed. Combined use of local protection and pharmacochemical substances is also briefly considered.

  1. The allometry of prey preferences.

    Directory of Open Access Journals (Sweden)

    Gregor Kalinkat

    Full Text Available The distribution of weak and strong non-linear feeding interactions (i.e., functional responses across the links of complex food webs is critically important for their stability. While empirical advances have unravelled constraints on single-prey functional responses, their validity in the context of complex food webs where most predators have multiple prey remain uncertain. In this study, we present conceptual evidence for the invalidity of strictly density-dependent consumption as the null model in multi-prey experiments. Instead, we employ two-prey functional responses parameterised with allometric scaling relationships of the functional response parameters that were derived from a previous single-prey functional response study as novel null models. Our experiments included predators of different sizes from two taxonomical groups (wolf spiders and ground beetles simultaneously preying on one small and one large prey species. We define compliance with the null model predictions (based on two independent single-prey functional responses as passive preferences or passive switching, and deviations from the null model as active preferences or active switching. Our results indicate active and passive preferences for the larger prey by predators that are at least twice the size of the larger prey. Moreover, our approach revealed that active preferences increased significantly with the predator-prey body-mass ratio. Together with prior allometric scaling relationships of functional response parameters, this preference allometry may allow estimating the distribution of functional response parameters across the myriads of interactions in natural ecosystems.

  2. Polyketide stereocontrol: a study in chemical biology

    Science.gov (United States)

    2017-01-01

    The biosynthesis of reduced polyketides in bacteria by modular polyketide synthases (PKSs) proceeds with exquisite stereocontrol. As the stereochemistry is intimately linked to the strong bioactivity of these molecules, the origins of stereochemical control are of significant interest in attempts to create derivatives of these compounds by genetic engineering. In this review, we discuss the current state of knowledge regarding this key aspect of the biosynthetic pathways. Given that much of this information has been obtained using chemical biology tools, work in this area serves as a showcase for the power of this approach to provide answers to fundamental biological questions.

  3. Chemical approaches to studying stem cell biology

    Institute of Scientific and Technical Information of China (English)

    Wenlin Li; Kai Jiang; Wanguo Wei; Yan Shi; Sheng Ding

    2013-01-01

    Stem cells,including both pluripotent stem cells and multipotent somatic stem cells,hold great potential for interrogating the mechanisms of tissue development,homeostasis and pathology,and for treating numerous devastating diseases.Establishment of in vitro platforms to faithfully maintain and precisely manipulate stem cell fates is essential to understand the basic mechanisms of stem cell biology,and to translate stem cells into regenerative medicine.Chemical approaches have recently provided a number of small molecules that can be used to control cell selfrenewal,lineage differentiation,reprogramming and regeneration.These chemical modulators have been proven to be versatile tools for probing stem cell biology and manipulating cell fates toward desired outcomes.Ultimately,this strategy is promising to be a new frontier for drug development aimed at endogenous stem cell modulation.

  4. [Decontamination of chemical and biological warfare agents].

    Science.gov (United States)

    Seto, Yasuo

    2009-01-01

    Chemical and biological warfare agents (CBWA's) are diverse in nature; volatile acute low-molecular-weight toxic compounds, chemical warfare agents (CWA's, gaseous choking and blood agents, volatile nerve gases and blister agents, nonvolatile vomit agents and lacrymators), biological toxins (nonvolatile low-molecular-weight toxins, proteinous toxins) and microbes (bacteria, viruses, rickettsiae). In the consequence management against chemical and biological terrorism, speedy decontamination of victims, facilities and equipment is required for the minimization of the damage. In the present situation, washing victims and contaminated materials with large volumes of water is the basic way, and additionally hypochlorite salt solution is used for decomposition of CWA's. However, it still remains unsolved how to dispose large volumes of waste water, and the decontamination reagents have serious limitation of high toxicity, despoiling nature against the environments, long finishing time and non-durability in effective decontamination. Namely, the existing decontamination system is not effective, nonspecifically affecting the surrounding non-target materials. Therefore, it is the urgent matter to build up the usable decontamination system surpassing the present technologies. The symposiast presents the on-going joint project of research and development of the novel decontamination system against CBWA's, in the purpose of realizing nontoxic, fast, specific, effective and economical terrorism on-site decontamination. The projects consists of (1) establishment of the decontamination evaluation methods and verification of the existing technologies and adaptation of bacterial organophosphorus hydrolase, (2) development of adsorptive elimination technologies using molecular recognition tools, and (4) development of deactivation technologies using photocatalysis.

  5. Arbutus unedo L.: Chemical and Biological Properties

    Directory of Open Access Journals (Sweden)

    Maria G. Miguel

    2014-09-01

    Full Text Available Arbutus unedo L. (strawberry tree has a circum-Mediterranean distribution, being found in western, central and southern Europe, north-eastern Africa (excluding Egypt and Libya and the Canary Islands and western Asia. Fruits of the strawberry tree are generally used for preparing alcoholic drinks (wines, liqueurs and brandies, jams, jellies and marmalades, and less frequently eaten as fresh fruit, despite their pleasing appearance. An overview of the chemical composition of different parts of the plant, strawberry tree honey and strawberry tree brandy will be presented. The biological properties of the different parts of A. unedo and strawberry tree honey will be also overviewed.

  6. Chemical Biology Strategies for Biofilm Control.

    Science.gov (United States)

    Yang, Liang; Givskov, Michael

    2015-08-01

    Microbes live as densely populated multicellular surface-attached biofilm communities embedded in self-generated, extracellular polymeric substances (EPSs). EPSs serve as a scaffold for cross-linking biofilm cells and support development of biofilm architecture and functions. Biofilms can have a clear negative impact on humans, where biofilms are a common denominator in many chronic diseases in which they prime development of destructive inflammatory conditions and the failure of our immune system to efficiently cope with them. Our current assortment of antimicrobial agents cannot efficiently eradicate biofilms. For industrial applications, the removal of biofilms within production machinery in the paper and hygienic food packaging industry, cooling water circuits, and drinking water manufacturing systems can be critical for the safety and efficacy of those processes. Biofilm formation is a dynamic process that involves microbial cell migration, cell-to-cell signaling and interactions, EPS synthesis, and cell-EPS interactions. Recent progress of fundamental biofilm research has shed light on novel chemical biology strategies for biofilm control. In this article, chemical biology strategies targeting the bacterial intercellular and intracellular signaling pathways will be discussed.

  7. Nanotechnologies and chemical tools for cell biology

    Science.gov (United States)

    Chen, Xing

    This dissertation describes several nanotechnologies and chemical tools that I have developed to probe living cells. Chapter one gives a brief overview on the current status of biomedical and biotechnological applications of carbon nanotubes (CNTs). In this chapter, strategies for functionalization of CNTs with emphasis on biological applications are reviewed. Representative developments in biosensing, bioimaging, intracellular delivery, and tissue engineering are presented. Recent studies on toxicity of CNTs are also discussed. Chapter two describes the development of a nanoscale cell injector for delivery of cargo to the interior of living cells without physiological harm. A CNT attached to an atomic force microscope tip was functionalized with cargo via a disulfide linker. Penetration of cell membranes with this "nanoneedle", followed by reductive cleavage of the disulfide bonds within the cell's interior, resulted in the release of cargo inside the cells. Chapter three presents a biomimetic functionalization strategy for interfacing CNTs with biological systems. The potential biological applications of CNTs have been limited by their insolubility in aqueous environment and their intrinsic toxicity. We developed a biomimetic surface modification of CNTs using glycosylated polymers designed to mimic natural cell surface mucin glycoproteins interactions. Chapter four further extends the biomimetic strategy for functionalization of CNTs to glycosylated dendrimers. We developed a new class of amphiphilic bifunctional glycodendrimers that comprised carbohydrate units displayed in the periphery and a pyrene tail that bound to SWNT surface via pi-pi interactions. The glycodendrimer-coated CNTs were soluble in water, and noncytotoxic. We also demonstrated that the coated CNTs could interface with biological systems including proteins and cells. Chapter five presents a biosensing application of glycodenderimer-coated CNTs. SWNTN-FETs coated with glycodendrimers were

  8. Recovery from chemical, biological, and radiological incidents :

    Energy Technology Data Exchange (ETDEWEB)

    Franco, David Oliver; Yang, Lynn I.; Hammer, Ann E.

    2012-06-01

    To restore regional lifeline services and economic activity as quickly as possible after a chemical, biological or radiological incident, emergency planners and managers will need to prioritize critical infrastructure across many sectors for restoration. In parallel, state and local governments will need to identify and implement measures to promote reoccupation and economy recovery in the region. This document provides guidance on predisaster planning for two of the National Disaster Recovery Framework Recovery Support Functions: Infrastructure Systems and Economic Recovery. It identifies key considerations for infrastructure restoration, outlines a process for prioritizing critical infrastructure for restoration, and identifies critical considerations for promoting regional economic recovery following a widearea disaster. Its goal is to equip members of the emergency preparedness community to systematically prioritize critical infrastructure for restoration, and to develop effective economic recovery plans in preparation for a widearea CBR disaster.

  9. ChemProt: a disease chemical biology database

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Nielsen, Sonny Kim; Audouze, Karine Marie Laure

    2011-01-01

    Systems pharmacology is an emergent area that studies drug action across multiple scales of complexity, from molecular and cellular to tissue and organism levels. There is a critical need to develop network-based approaches to integrate the growing body of chemical biology knowledge with network...... biology. Here, we report ChemProt, a disease chemical biology database, which is based on a compilation of multiple chemical-protein annotation resources, as well as disease-associated protein-protein interactions (PPIs). We assembled more than 700 000 unique chemicals with biological annotation for 30...... evaluation of environmental chemicals, natural products and approved drugs, as well as the selection of new compounds based on their activity profile against most known biological targets, including those related to adverse drug events. Results from the disease chemical biology database associate citalopram...

  10. ChemProt: A disease chemical biology database

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Oprea, Tudor I.

    2013-01-01

    The integration of chemistry, biology, and informatics to study drug actions across multiple biological targets, pathways, and biological systems is an emerging paradigm in drug discovery. Rather than reducing a complex system to simplistic models, fields such as chemogenomics and translational...... chemical biology, drug repurposing, and off-target effects prediction....

  11. How liana loads alter tree allometry in tropical forests

    NARCIS (Netherlands)

    Souza Dias, de Arildo; Santos, Dos Karin; Santos, Dos Flavio Antonio Maës; Martins, Fernando R.

    2017-01-01

    Intense competition with lianas (wood climbers) can limit tree growth, reproduction, and survival. However, the negative effects of liana loads on tree allometry have not yet been addressed. We investigated the hypothesis that liana loading on tree crown alters tree’s allometry, expressed through sl

  12. Chemical and Biological Terrorism: Current Updates for Nurse Educators.

    Science.gov (United States)

    Veenema, Tener Goodwin

    2002-01-01

    Describes eight topics related to chemical/biological terrorism for a standalone nursing course or integration into other courses: surveillance systems; identification, communication, and response; chemical agents; biological agents; recognition of covert exposure; patient decontamination and mass triage; availability and safety of therapies; and…

  13. Examining the Efficiency of Models Using Tangent Coordinates or Principal Component Scores in Allometry Studies.

    Science.gov (United States)

    Sigirli, Deniz; Ercan, Ilker

    2015-09-01

    Most of the studies in medical and biological sciences are related to the examination of geometrical properties of an organ or organism. Growth and allometry studies are important in the way of investigating the effects of diseases and the environmental factors effects on the structure of the organ or organism. Thus, statistical shape analysis has recently become more important in the medical and biological sciences. Shape is all geometrical information that remains when location, scale and rotational effects are removed from an object. Allometry, which is a relationship between size and shape, plays an important role in the development of statistical shape analysis. The aim of the present study was to compare two different models for allometry which includes tangent coordinates and principal component scores of tangent coordinates as dependent variables in multivariate regression analysis. The results of the simulation study showed that the model constructed by taking tangent coordinates as dependent variables is more appropriate than the model constructed by taking principal component scores of tangent coordinates as dependent variables, for all sample sizes.

  14. News: Synthetic biology leading to specialty chemicals

    Science.gov (United States)

    Synthetic biology can combine the disciplines of biology, engineering, and chemistry productively to form molecules of great scientific and commercial value. Recent advances in the new field are explored for their connection to new tools that have been used to elucidate productio...

  15. System chemical biology studies of endocrine disruptors

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Oprea, Tudor I.

    Endocrine disrupting chemicals (EDCs) alter hormonal balance and other physiological systems through inappropriate developmental or adult exposure, perturbing the reproductive function of further generations. While disruption of key receptors (e.g., estrogen, androgen, and thyroid) at the ligand...

  16. Construction of a Linux based chemical and biological information system.

    Science.gov (United States)

    Molnár, László; Vágó, István; Fehér, András

    2003-01-01

    A chemical and biological information system with a Web-based easy-to-use interface and corresponding databases has been developed. The constructed system incorporates all chemical, numerical and textual data related to the chemical compounds, including numerical biological screen results. Users can search the database by traditional textual/numerical and/or substructure or similarity queries through the web interface. To build our chemical database management system, we utilized existing IT components such as ORACLE or Tripos SYBYL for database management and Zope application server for the web interface. We chose Linux as the main platform, however, almost every component can be used under various operating systems.

  17. Cutaneous reactions in nuclear, biological and chemical warfare

    Directory of Open Access Journals (Sweden)

    Arora Sandeep

    2005-03-01

    Full Text Available Nuclear, biological and chemical warfare have in recent times been responsible for an increasing number of otherwise rare dermatoses. Many nations are now maintaining overt and clandestine stockpiles of such arsenal. With increasing terrorist threats, these agents of mass destruction pose a risk to the civilian population. Nuclear and chemical attacks manifest immediately while biological attacks manifest later. Chemical and biological attacks pose a significant risk to the attending medical personnel. The large scale of anticipated casualties in the event of such an occurrence would need the expertise of all physicians, including dermatologists, both military and civilian. Dermatologists are uniquely qualified in this respect. This article aims at presenting a review of the cutaneous manifestations in nuclear, chemical and biological warfare and their management.

  18. Chemical and biological sensing using tuning forks

    Science.gov (United States)

    Tao, Nongjian; Boussaad, Salah

    2012-07-10

    A device for sensing a chemical analyte is disclosed. The device is comprised of a vibrating structure having first and second surfaces and having an associated resonant frequency and a wire coupled between the first and second surfaces of the vibrating structure, wherein the analyte interacts with the wire and causes a change in the resonant frequency of the vibrating structure. The vibrating structure can include a tuning fork. The vibrating structure can be comprised of quartz. The wire can be comprised of polymer. A plurality of vibrating structures are arranged in an array to increase confidence by promoting a redundancy of measurement or to detect a plurality of chemical analytes. A method of making a device for sensing a chemical analyte is also disclosed.

  19. Guidelines to improve airport preparedness against chemical and biological terrorism.

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Donna M.; Price, Phillip N. (Lawrence Berkeley National Laboratory, Berkeley, CA); Gordon, Susanna P.; Gadgil, Ashok (Lawrence Berkeley National Laboratory, Berkeley, CA)

    2005-05-01

    Guidelines to Improve Airport Preparedness Against Chemical and Biological Terrorism is a 100-page document that makes concrete recommendations on improving security and assessing vulnerable areas and helps its readers understand the nature of chemical and biological attacks. The report has been turned over to Airports Council International (ACI) and the American Association of Airport Executives (AAAE), two organizations that together represent the interests of thousands of airport personnel and facilities in the U.S. and around the world.

  20. Multiplicative by nature: Logarithmic transformation in allometry.

    Science.gov (United States)

    Packard, Gary C

    2014-06-01

    The traditional allometric method, which is at the heart of research paradigms used by comparative biologists around the world, entails fitting a straight line to logarithmic transformations of the original bivariate data and then back-transforming the resulting equation to form a two-parameter power function in the arithmetic scale. The method has the dual advantages of enabling investigators to fit statistical models that describe multiplicative growth while simultaneously addressing the multiplicative nature of residual variation in response variables (heteroscedasticity). However, important assumptions of the traditional method seldom are assessed in contemporary practice. When the assumptions are not met, mean functions may fail to capture the dominant pattern in the original data and incorrect form for error may be imposed upon the fitted model. A worked example from metabolic allometry in doves and pigeons illustrates both the power of newer statistical procedures and limitations of the traditional allometric method.

  1. Extracting Chemical Reactions from Biological Literature

    Science.gov (United States)

    2014-05-16

    positive example is due to incorrect chemical  recognition. In the sentence, “ lactic   acid ” is a chemical used as an adjective describing the  bacteria  and...d-gluconate False Positive A study of the effects of histamine histidine and growth phase on histamine production by lactic acid bacteria isolated...from wine is reported here. lactic acid => histamine n/a False Negative Human 17 beta-hydroxysteroid dehydrogenase 17-HSD type 1 catalyzes

  2. 76 FR 68809 - Bureau of International Security and Nonproliferation; Termination of Chemical and Biological...

    Science.gov (United States)

    2011-11-07

    ... Nonproliferation; Termination of Chemical and Biological Weapons (CBW) Proliferation Sanctions Against a Foreign... CONTACT: Pamela K. Durham, Office of Missile, Biological, and Chemical Nonproliferation, Bureau of... government, project, or entity in its efforts to acquire chemical or biological weapons capability:...

  3. Carbon Nanotubes: Detection of Chemical and Biological Warfare Agents

    Directory of Open Access Journals (Sweden)

    Om Kumar

    2008-09-01

    Full Text Available Discovery of carbon nanotubes has great impact on the development of newer methodologies and devicesuseful for the analysis of various types of chemicals. The functionalisation of CNTs with biomolecules relatedto chemical and biological warfare agents makes these useful for the detection of these agents. The detectionsensitivity can be increased manyfold. Various types of chemical and biological sensors were developed usingvarious type of carbon nanotubes as well as nano particles of different metals.Defence Science Journal, 2008, 58(5, pp.617-625, DOI:http://dx.doi.org/10.14429/dsj.58.1684

  4. Waves and Patterns in Chemical and Biological Media

    Science.gov (United States)

    Swinney, Harry L.; Krinsky, Valentin I.

    1991-12-01

    These 28 contributions by leading researchers - from such diverse disciplines as chemistry, biology, physics, mathematics, and physiology - describe recent experiments, numerical simulations, and theoretical analyses of the formation of spatial patterns in chemical and biological systems. Chemical patterns have been systematically studied since the field was established by Alan Turing's landmark 1952 paper, "The chemical basis for morphogenesis," yet only recently have new experimental techniques and numerical analyses of reaction-diffusion equations opened the way to understanding stationary and traveling wave patterns. This collection summarizes the exciting developments in this rapidly growing field. It shows that some biological patterns have been found to be strikingly similar to patterns found in simple, well-controlled laboratory chemical systems, that new chemical reactor designs make it possible to sustain chemical patterns and to study transitions between different kinds of patterns, and that nearly 40 years after Turing's paper, the patterns predicted by Turing have finally been observed in laboratory experiments. Harry L. Swinney is Sid Richardson Foundation Regents Chair, Department of Physics, and Director of the Center for Nonlinear Dynamics at the University of Texas at Austin. Valentin I. Krinsky is Head of the Autowave Laboratory, Institute of Biological Physics, Academy of Sciences, Pushchino, USSR. Chapters cover: Spiral, Ring, and Scroll Patterns: Experiments. Spiral, Ring, and Scroll Patterns: Theory and Simulations. Fronts and Turing Patterns. Waves and Patterns in Biological Systems.

  5. Introduction: Applying Chemical Biology to Ion Channels.

    Science.gov (United States)

    Pless, Stephan A; Ahern, Christopher A

    2015-01-01

    Ion channels are membrane-spanning proteins that control the flow of ions across biological membranes through an aqueous pathway. The opening or closing of this pore can be controlled by a myriad of physiological inputs (voltage, ligands, temperature, metabolites, pH), which in turn allow for the controlled flux of ions across membranes, resulting in the generation of minute electrical signals. The functional implications of ion channel function on physiological processes are vast. Electrical impulses, in the form of action potentials or diverse chemo-electrical signals, coordinate the syncytium of the heart beat, support a myriad of neuronal communication pathways, insulin secretion, and are central to the immune response, with more roles being discovered virtually everyday. Thus, ion channel function is a biophysical process that is central to biological life at many levels. And with over 500 channel-forming subunits known today in humans, this large class of proteins is also increasingly recognised as important drug targets, as inherited or acquired ion channel dysfunction are known causes of disease.

  6. Enhanced formulations for neutralization of chemical, biological and industrial toxants

    Science.gov (United States)

    Tucker, Mark D [Albuqueque, NM

    2008-06-24

    An enhanced formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The enhanced formulation according to the present invention is non-toxic and non-corrosive and can be delivered by a variety of means and in different phases. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator and water.

  7. 78 FR 55326 - Determinations Regarding Use of Chemical Weapons in Syria Under the Chemical and Biological...

    Science.gov (United States)

    2013-09-10

    ... Determinations Regarding Use of Chemical Weapons in Syria Under the Chemical and Biological Weapons Control and..., 22 U.S.C. 5604(a), that the Government of Syria has used chemical weapons in violation of... Under Secretary of State for Political Affairs: (1) Determined that the Government of Syria has...

  8. Arrays in biological and chemical analysis

    DEFF Research Database (Denmark)

    Christensen, Claus Bo Vöge

    2002-01-01

    Recently a dramatic change has happened for biological and biochemical analysis. Originally developed as an academic massive parallel screening tool, industry has caught the idea as well of performing all kinds of assays in the new format of microarrays. From food manufacturers over water supply...... plants to the omnipresent pharmaceutical industry, the buzz-word is bioarrays, attracting scientific funding and investor capital. Although only few commercial products are currently out in the research laboratorium, hospital clinic or at the local doctor, there are high expectations for arrays screening...... predispositions and following therapy, monitoring the amount of bacteria in food stuff, measuring the small signs from cardiac arrest before it happens, analysing the toxin level in a water sample (preferentially on-line) or deciphering the identity of an infecting bug. (C) 2002 Elsevier Science B.V. All rights...

  9. Chemical industrial wastewater treated by combined biological and chemical oxidation process.

    Science.gov (United States)

    Guomin, Cao; Guoping, Yang; Mei, Sheng; Yongjian, Wang

    2009-01-01

    Wastewaters from phenol and rubber synthesis were treated by the activated sludge process in a large-scale chemical factory in Shanghai, but the final effluent quality cannot conform with the local discharge limit without using river water for dilution. Therefore, this chemical factory had to upgrade its wastewater treatment plant. To fully use the present buildings and equipment during upgrading of the chemical factory's wastewater treatment plant and to save operation costs, a sequential biological pre-treatement, chemical oxidation, and biological post-treatment (or BCB for short) process had been proposed and investigated in a pilot trial. The pilot trial results showed that about 80% COD in the chemical wastewater could be removed through anoxic and aerobic degradation in the biological pre-treatement section, and the residual COD in the effluent of the biological pre-treatment section belongs to refractory chemicals which cannot be removed by the normal biological process. The refractory chemicals were partial oxidized using Fenton's reagent in the chemical oxidation section to improve their biodegradability; subsequently the wastewater was treated by the SBR process in the biological post-treatment section. The final effluent COD reached the first grade discharge limit (process, the operation cost of the BCB process increased by about 0.5 yuan (RMB) per cubic metre wastewater, but about 1,240,000 m(3) a(-1) dilution water could be saved and the COD emission could be cut down by 112 tonne each year.

  10. Chemical and biological nonproliferation program. FY99 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This document is the first of what will become an annual report documenting the progress made by the Chemical and Biological Nonproliferation Program (CBNP). It is intended to be a summary of the program's activities that will be of interest to both policy and technical audiences. This report and the annual CBNP Summer Review Meeting are important vehicles for communication with the broader chemical and biological defense and nonproliferation communities. The Chemical and Biological Nonproliferation Program Strategic Plan is also available and provides additional detail on the program's context and goals. The body of the report consists of an overview of the program's philosophy, goals and recent progress in the major program areas. In addition, an appendix is provided with more detailed project summaries that will be of interest to the technical community.

  11. Chemical Biology Probes from Advanced DNA-encoded Libraries.

    Science.gov (United States)

    Salamon, Hazem; Klika Škopić, Mateja; Jung, Kathrin; Bugain, Olivia; Brunschweiger, Andreas

    2016-02-19

    The identification of bioactive compounds is a crucial step toward development of probes for chemical biology studies. Screening of DNA-encoded small molecule libraries (DELs) has emerged as a validated technology to interrogate vast chemical space. DELs consist of chimeric molecules composed of a low-molecular weight compound that is conjugated to a DNA identifier tag. They are screened as pooled libraries using selection to identify "hits." Screening of DELs has identified numerous bioactive compounds. Some of these molecules were instrumental in gaining a deeper understanding of biological systems. One of the main challenges in the field is the development of synthesis methodology for DELs.

  12. Correlated evolution of allometry and sexual dimorphism across higher taxa.

    Science.gov (United States)

    De Lisle, Stephen P; Rowe, Locke

    2013-11-01

    Empirical evidence suggests that Rensch's rule of allometric scaling of male and female body size, which states that body size divergence is greater across males than across females of a clade, is not universal. In fact, quantitative genetic theory indicates that the sex under historically stronger directional selection will exhibit greater interspecific variance in size. Thus, the pattern of covariance between allometry of male and female body size and sexual size dimorphism (SSD) across related clades allows a test of this causal hypothesis for macroevolutionary trends in SSD. We compiled a data set of published body size estimates from the amphibians, a class with predominantly female-biased SSD, to examine variation in allometry and SSD among clades. Our results indicate that females become the more size-variant sex across species in a family as the magnitude of SSD in that family increases. This rejects Rensch's rule and implicates selection on females as a driver of both amphibian allometry and SSD. Further, when we combine our data into a single analysis of allometry for the class, we find a significant nonlinear allometric relationship between female body size and male body size. These data suggest that allometry changes significantly as a function of size. Our results illustrate that the relationship between female size and male size varies with both the degree of sexual dimorphism and the body size of a clade.

  13. Chemical master equation closure for computer-aided synthetic biology.

    Science.gov (United States)

    Smadbeck, Patrick; Kaznessis, Yiannis N

    2015-01-01

    With inexpensive DNA synthesis technologies, we can now construct biological systems by quickly piecing together DNA sequences. Synthetic biology is the promising discipline that focuses on the construction of these new biological systems. Synthetic biology is an engineering discipline, and as such, it can benefit from mathematical modeling. This chapter focuses on mathematical models of biological systems. These models take the form of chemical reaction networks. The importance of stochasticity is discussed and methods to simulate stochastic reaction networks are reviewed. A closure scheme solution is also presented for the master equation of chemical reaction networks. The master equation is a complete model of randomly evolving molecular populations. Because of its ambitious character, the master equation remained unsolved for all but the simplest of molecular interaction networks for over 70 years. With the first complete solution of chemical master equations, a wide range of experimental observations of biomolecular interactions may be mathematically conceptualized. We anticipate that models based on the closure scheme described herein may assist in rationally designing synthetic biological systems.

  14. Collaborative Core Research Program for Chemical-Biological Warfare Defense

    Science.gov (United States)

    2015-01-04

    Research Center (UC-DDRC, part of UC-MDI). Using an EvoTec robot , single point (10 μM final solution test chemical concentration) 2 measurements...assay on neuroblastoma cell lines. We performed this method, as well as incorporated a novel method developed at US Army Medical Research Institute of...formulations chemists to determine the optimal dose methods. These new CWA countermeasures will be transitioned to the Chemical Biological Medical Systems for

  15. Modelling biological and chemically induced precipitation of calcium phosphate in enhanced biological phosphorus removal systems.

    Science.gov (United States)

    Barat, R; Montoya, T; Seco, A; Ferrer, J

    2011-06-01

    The biologically induced precipitation processes can be important in wastewater treatment, in particular treating raw wastewater with high calcium concentration combined with Enhanced Biological Phosphorus Removal. Currently, there is little information and experience in modelling jointly biological and chemical processes. This paper presents a calcium phosphate precipitation model and its inclusion in the Activated Sludge Model No 2d (ASM2d). The proposed precipitation model considers that aqueous phase reactions quickly achieve the chemical equilibrium and that aqueous-solid change is kinetically governed. The model was calibrated using data from four experiments in a Sequencing Batch Reactor (SBR) operated for EBPR and finally validated with two experiments. The precipitation model proposed was able to reproduce the dynamics of amorphous calcium phosphate (ACP) formation and later crystallization to hydroxyapatite (HAP) under different scenarios. The model successfully characterised the EBPR performance of the SBR, including the biological, physical and chemical processes.

  16. Methylene Diphosphonate Chemical and Biological control of MDP complex

    CERN Document Server

    Aungurarat, A

    2000-01-01

    Technetium-9 sup 9 sup m MDP easy prepared from MDP kits which different sources such as OAP (In house), SIGMA. The resulting Tc 9 sup 9 sup m -MDP preparations were controlled in chemical and biological tests to compare the different results in these cases: radiochemical purity, the quantity of starting material and biodistribution result.

  17. Chemical and biological weapons in the 'new wars'.

    Science.gov (United States)

    Ilchmann, Kai; Revill, James

    2014-09-01

    The strategic use of disease and poison in warfare has been subject to a longstanding and cross-cultural taboo that condemns the hostile exploitation of poisons and disease as the act of a pariah. In short, biological and chemical weapons are simply not fair game. The normative opprobrium is, however, not fixed, but context dependent and, as a social phenomenon, remains subject to erosion by social (or more specifically, antisocial) actors. The cross cultural understanding that fighting with poisons and disease is reprehensible, that they are taboo, is codified through a web of interconnected measures, principal amongst these are the 1925 Geneva Protocol; the Biological Weapons Convention; and the Chemical Weapons Convention. Whilst these treaties have weathered the storm of international events reasonably well, their continued health is premised on their being 'tended to' in the face of contextual changes, particularly facing changes in science and technology, as well as the changed nature and character of conflict. This article looks at the potential for normative erosion of the norm against chemical and biological weapons in the face of these contextual changes and the creeping legitimization of chemical and biological weapons.

  18. Role of natural product diversity in chemical biology.

    Science.gov (United States)

    Hong, Jiyong

    2011-06-01

    Through the natural selection process, natural products possess a unique and vast chemical diversity and have been evolved for optimal interactions with biological macromolecules. Owing to their diversity, target affinity, and specificity, natural products have demonstrated enormous potential as modulators of biomolecular function, been an essential source for drug discovery, and provided design principles for combinatorial library development.

  19. Chemical and biological rhizosphere interactions in low zinc soils

    NARCIS (Netherlands)

    Duffner, A.

    2014-01-01

    Abstract of the PhD thesis entitled “Chemical and biological rhizosphere interactions in low zinc soils” by Andreas Duffner Soil provides ecosystem services critical for life. The availability of micronutrients, such as zinc (Zn), in soils is an essenti

  20. Opportunities for synthetic biology in antibiotics: expanding glycopeptide chemical diversity.

    Science.gov (United States)

    Thaker, Maulik N; Wright, Gerard D

    2015-03-20

    Synthetic biology offers a new path for the exploitation and improvement of natural products to address the growing crisis in antibiotic resistance. All antibiotics in clinical use are facing eventual obsolesce as a result of the evolution and dissemination of resistance mechanisms, yet there are few new drug leads forthcoming from the pharmaceutical sector. Natural products of microbial origin have proven over the past 70 years to be the wellspring of antimicrobial drugs. Harnessing synthetic biology thinking and strategies can provide new molecules and expand chemical diversity of known antibiotic scaffolds to provide much needed new drug leads. The glycopeptide antibiotics offer paradigmatic scaffolds suitable for such an approach. We review these strategies here using the glycopeptides as an example and demonstrate how synthetic biology can expand antibiotic chemical diversity to help address the growing resistance crisis.

  1. Looming Threat of Chemical and Biological Warfare Agents

    Directory of Open Access Journals (Sweden)

    A.K. Goel

    2016-09-01

    Full Text Available In the recent past, a dramatic shift has been observed in the strategies of warfare from conventional to non-conventional. Now-a-days, traditional power is of less importance than it used to be earlier. Weapons of mass destruction, which comprise of nuclear weapons, and chemical and biological warfare agents, are posing a great peril to the world due to their devastating potential. Though, there are several bilateral as well as multilateral treaties to control the use and proliferation of these weapons, yet the risk of use of such agents by non-state actors cannot be overlooked. Chances of use of chemical and biological agents are more likely than the nuclear weapons. A comparison of nuclear, chemical and biological weapons in terms of technology, cost, signature, effectiveness on protected and un-protected troops shows that chemical and biological weapon programmes require much lower level of technology and cost than the nuclear weapon programme. Further, there is no or least distinctive and readily observable signature in biological weapon programme in comparison to nuclear and chemical weapon facilities. There can be two possibilities of use of these agents in terrorist attacks. First, there is a risk of transfer of material or know-how of these weapons to terrorists for using against the adversaries and second, the risk of these agents being pilfered due to poor security, thereby sabotaging the national security. The International Committee of Red Cross in February 1918 reckoned these agents as ‘barbarous inventions’ that can ‘only be called criminal’.

  2. Prenatal Brain-Body Allometry in Mammals.

    Science.gov (United States)

    Halley, Andrew C

    2016-01-01

    Variation in relative brain size among adult mammals is produced by different patterns of brain and body growth across ontogeny. Fetal development plays a central role in generating this diversity, and aspects of prenatal physiology such as maternal relative metabolic rate, altriciality, and placental morphology have been proposed to explain allometric differences in neonates and adults. Primates are also uniquely encephalized across fetal development, but it remains unclear when this pattern emerges during development and whether it is common to all primate radiations. To reexamine these questions across a wider range of mammalian radiations, data on the primarily fetal rapid growth phase (RGP) of ontogenetic brain-body allometry was compiled for diverse primate (np = 12) and nonprimate (nnp = 16) mammalian species, and was complemented by later ontogenetic data in 16 additional species (np = 9; nnp = 7) as well as neonatal proportions in a much larger sample (np = 38; nnp = 83). Relative BMR, litter size, altriciality, and placental morphology fail to predict RGP slopes as would be expected if physiological and life history variables constrained fetal brain growth, but are associated with differences in birth timing along allometric trajectories. Prenatal encephalization is shared by all primate radiations, is unique to the primate Order, and is characterized by: (1) a robust change in early embryonic brain/body proportions, and (2) higher average RGP allometric slopes due to slower fetal body growth. While high slopes are observed in several nonprimate species, primates alone exhibit an intercept shift at 1 g body size. This suggests that primate prenatal encephalization is a consequence of early changes to embryonic neural and somatic tissue growth in primates that remain poorly understood.

  3. Postnatal long bone growth in terrestrial placental mammals: allometry, life history, and organismal traits.

    Science.gov (United States)

    Kilbourne, Brandon M; Makovicky, Peter J

    2012-10-01

    The ontogenetic allometry of long bone proportions is poorly understood in Mammalia. It has previously been suggested that during mammalian ontogeny long bone proportions grow more slender (positive allometry; length ∝ circumference(>1.0) ), although this conclusion was based upon data from a few small-bodied taxa. It remains unknown how ontogenetic long bone allometry varies across Mammalia in terms of both taxonomy and body size. We collected long bone length and circumference data for ontogenetic samples of 22 species of mammals spanning six major clades and three orders of magnitude in body mass. Using reduced major axis bivariate regressions to compare bone length to circumference, we found that isometry and positive allometry are the most widespread patterns of growth across mammals. Negative allometry (i.e., bones growing more robust during ontogeny) occurs in mammals but is largely restricted to cetartiodactyls. Using regression slope as a proxy for long bone allometry, we compared long bone allometry to life history and organismal traits. Neonatal body mass, adult body mass, and growth rate have a negative relationship with long bone allometry. At an adult mass of roughly 15-20 kg, long bone growth shifts from positive allometry to mainly isometry and negative allometry. There were no significant relationships between ontogenetic long bone allometry and either cursoriality or basal metabolic rate.

  4. Organic Chemistry and Biology: Chemical Biology Through the Eyes of Collaboration

    Science.gov (United States)

    Hruby, Victor J.

    2011-01-01

    From a scientific perspective, efforts to understand biology including what constitutes health and disease has become a chemical problem. However, chemists and biologists “see” the problems of understanding biology from different perspectives, and this has retarded progress in solving the problems especially as they relate to health and disease. This suggests that close collaboration between chemists and biologists is not only necessary but essential for progress in both the biology and chemistry that will provide solutions to the global questions of biology. This perspective has directed my scientific efforts for the past 45 years, and in this overview I provide my perspective of how the applications of synthetic chemistry, structural design, and numerous other chemical principles have intersected in my collaborations with biologists to provide new tools, new science, and new insights that were only made possible and fruitful by these collaborations. PMID:20000552

  5. Organic chemistry and biology: chemical biology through the eyes of collaboration.

    Science.gov (United States)

    Hruby, Victor J

    2009-12-18

    From a scientific perspective, efforts to understand biology including what constitutes health and disease has become a chemical problem. However, chemists and biologists "see" the problems of understanding biology from different perspectives, and this has retarded progress in solving the problems especially as they relate to health and disease. This suggests that close collaboration between chemists and biologists is not only necessary but essential for progress in both the biology and chemistry that will provide solutions to the global questions of biology. This perspective has directed my scientific efforts for the past 45 years, and in this overview I provide my perspective of how the applications of synthetic chemistry, structural design, and numerous other chemical principles have intersected in my collaborations with biologists to provide new tools, new science, and new insights that were only made possible and fruitful by these collaborations.

  6. Biological effects of low level exposures to chemicals and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, E.J. (ed.)

    1992-01-01

    In May 1990 a group of scientists representing several federal agencies, the International Society of Regulatory Toxicology and Pharmacology, the private sector, and academia met to develop a strategy to encourage the study of the biological effects of low level exposures (BELLE) to chemical agents and radioactivity. A workshop was held in 1991 with seven invited speakers focusing on the toxicological implications of biological adaptations. The selection of topics and speakers was designed to consider critically the concept of hormesis, not only in a broad, conceptual manner, but also at the molecular and biochemical levels. These presentations offered a complementary perspective on the diverse range of molecular mechanisms that can become activated at low levels of toxicant exposure. In addition to chemical toxicology research, an overview of current research on Effects of low-dose radiation on the immune response' was presented as well as Cellular adaptation as an important response during chemical carcinogenesis'. The final presentation was devoted to biostatistical considerations when designing studies that address issues associated with the biological responses to low doses of chemicals and radiation, as well as issues in interpretation of the findings from such studies.

  7. Preparedness for terrorism: managing nuclear, biological and chemical threats.

    Science.gov (United States)

    Koenig, Kristi L

    2009-12-01

    The management of nuclear, biological and chemical (NBC) terrorism events is critical to reducing morbidity and mortality in the next decade; however, initial patient care considerations and protective actions for staff are unfamiliar to most front-line clinicians. High explosive events (bomb and blast) remain the most common type of terrorism and are easy to detect. Conversely, some types of terrorist attacks are more likely to be unsuspected or covert. This paper explains the current threat of terrorism and describes clues for detection that an event has occurred. Specific criteria that should lead to a high suspicion for terrorism are illustrated. The manuscript outlines initial actions and clinical priorities for management and treatment of patients exposed to nuclear/radiological, biological, chemical and combined agents (for example an explosion involving a chemical agent). Examples of terrorist events include: a nuclear explosion, an aerosolised release of anthrax (biological), dissemination of sarin in a subway (chemical), and the detonation of a radiologic dispersion device or "dirty bomb" (combined explosive and radiological). Basic principles of decontamination include potential risks to healthcare providers from secondary exposure and contamination. Unique issues may hinder clinical actions. These include coordination with law enforcement for a crime scene, public health entities for surveillance and monitoring, hazardous materials teams for decontamination, and the media for risk communications. Finally, the importance of personal preparedness is discussed.

  8. LIDAR for Detection of Chemical and Biological Warfare Agents

    Directory of Open Access Journals (Sweden)

    S Veerabuthiran

    2011-04-01

    Full Text Available Remote detection of chemical and biological warfare agents and toxic gases in the atmosphere is of current interest to both the military and civilian agencies. Out of all currently available techniques, no single technique provides efficient detection against such threats at significant standoff distances. Light detection and ranging (LIDAR technologies, based on the transmission of laser pulses and analysis of the return signals, have demonstrated impressive capabilities in remote detection of such toxic chemicals. LIDAR is a highly sensitive tool to detect the extremely low concentrations of various toxic agents present in the form of thin clouds at distances of few kilometer. The detection of these toxic clouds is based on the approach of first detecting and measuring the range of the clouds using the scattering phenomena and subsequently identifying the composition of toxic clouds using absorption and fluorescence phenomena. Laser Science and Technology Centre (LASTEC, Delhi has been working on the design and development of LIDAR systems for detection of chemical and biological warfare (CBW agents. In this paper, theoretical analysis of differential absorption LIDAR (DIAL for detection of chemical agents and fluorescence LIDAR for detection of biological agents has been discussed. For some typical parametric conditions, the received power levels from different ranges to detect specific concentrations of chemical or biological clouds have been computed and discussed. The technical details of the indigenously developed backscattering LIDAR, which detects and measures the distance of cloud layers up to 5 km is also presented.Defence Science Journal, 2011, 61(3, pp.241-250, DOI:http://dx.doi.org/10.14429/dsj.61.556

  9. Microbiology and atmospheric processes: chemical interactions of Primary Biological Aerosols

    Science.gov (United States)

    Deguillaume, L.; Leriche, M.; Amato, P.; Ariya, P. A.; Delort, A.-M.; Pöschl, U.; Chaumerliac, N.; Bauer, H.; Flossmann, A. I.; Morris, C. E.

    2008-02-01

    This paper discusses the influence of bioaerosols on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that biological matter represents a significant fraction of air particulate matter and hence affects the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of primary biological particles in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  10. One species, many terpenes: matching chemical and biological diversity.

    Science.gov (United States)

    Loreto, Francesco; Bagnoli, Francesca; Fineschi, Silvia

    2009-08-01

    Volatile terpenes have been proposed as chemotaxonomic markers, despite the strong environmental control on their synthesis. To clarify whether chemical profiles match biological diversity, cork oak, a monoterpene-emitting species that has been bred by humans and frequently hybridizes with other oaks, is a useful case-study. Analysis of the available genetic information in cork oak provenances suggests that volatile terpenes might indeed suitably track geographical diversity even at the intraspecific level. Phylogeographical diversity does not reflect chemical diversity in other evergreen oaks that have not been intensively bred. Breeding for productive traits might therefore drive selection for terpene diversity, in turn modulating important adaptive mechanisms against biotic and abiotic stressors.

  11. Ecological allometries and niche use dynamics across Komodo dragon ontogeny

    Science.gov (United States)

    Purwandana, Deni; Ariefiandy, Achmad; Imansyah, M. Jeri; Seno, Aganto; Ciofi, Claudio; Letnic, Mike; Jessop, Tim S.

    2016-04-01

    Ontogenetic allometries in ecological habits and niche use are key responses by which individuals maximize lifetime fitness. Moreover, such allometries have significant implications for how individuals influence population and community dynamics. Here, we examined how body size variation in Komodo dragons ( Varanus komodoensis) influenced ecological allometries in their: (1) prey size preference, (2) daily movement rates, (3) home range area, and (4) subsequent niche use across ontogeny. With increased body mass, Komodo dragons increased prey size with a dramatic switch from small (≤10 kg) to large prey (≥50 kg) in lizards heavier than 20 kg. Rates of foraging movement were described by a non-linear concave down response with lizard increasing hourly movement rates up until ˜20 kg body mass before decreasing daily movement suggesting reduced foraging effort in larger lizards. In contrast, home range area exhibited a sigmoid response with increased body mass. Intrapopulation ecological niche use and overlap were also strongly structured by body size. Thus, ontogenetic allometries suggest Komodo dragon's transition from a highly active foraging mode exploiting small prey through to a less active sit and wait feeding strategy focused on killing large ungulates. Further, our results suggest that as body size increases across ontogeny, the Komodo dragon exhibited marked ontogenetic niche shifts that enabled it to function as an entire vertebrate predator guild by exploiting prey across multiple trophic levels.

  12. Optimal foraging, not biogenetic law, predicts spider orb web allometry

    Science.gov (United States)

    Gregorič, Matjaž; Kiesbüy, Heine C.; Quiñones Lebrón, Shakira G.; Rozman, Alenka; Agnarsson, Ingi; Kuntner, Matjaž

    2013-03-01

    The biogenetic law posits that the ontogeny of an organism recapitulates the pattern of evolutionary changes. Morphological evidence has offered some support for, but also considerable evidence against, the hypothesis. However, biogenetic law in behavior remains underexplored. As physical manifestation of behavior, spider webs offer an interesting model for the study of ontogenetic behavioral changes. In orb-weaving spiders, web symmetry often gets distorted through ontogeny, and these changes have been interpreted to reflect the biogenetic law. Here, we test the biogenetic law hypothesis against the alternative, the optimal foraging hypothesis, by studying the allometry in Leucauge venusta orb webs. These webs range in inclination from vertical through tilted to horizontal; biogenetic law predicts that allometry relates to ontogenetic stage, whereas optimal foraging predicts that allometry relates to gravity. Specifically, pronounced asymmetry should only be seen in vertical webs under optimal foraging theory. We show that, through ontogeny, vertical webs in L. venusta become more asymmetrical in contrast to tilted and horizontal webs. Biogenetic law thus cannot explain L. venusta web allometry, but our results instead support optimization of foraging area in response to spider size.

  13. Relating urban scaling, fundamental allometry, and density scaling

    CERN Document Server

    Rybski, Diego

    2016-01-01

    We study the connection between urban scaling, fundamental allometry (between city population and city area), and per capita vs.\\ population density scaling. From simple analytical derivations we obtain the relation between the 3 involved exponents. We discuss particular cases and ranges of the exponents which we illustrate in a "phase diagram". As we show, the results are consistent with previous work.

  14. Aruscular mycorhizal fungi alter plant allometry and biomass - density relationships

    DEFF Research Database (Denmark)

    Zhang, Qian; Zhang, Lu; Weiner, Jacob;

    2011-01-01

    fungi (AMF) can promote plant growth and affect plant form. Here experiments were carried out to test whether AMF affect plant allometry and the self-thinning trajectory. Methods Two experiments were conducted on Medicago sativa L., a leguminous species known to be highly dependent on mycorrhiza. Two...

  15. Geographical variation in allometry in the guppy (Poecilia reticulata).

    Science.gov (United States)

    Egset, C K; Bolstad, G H; Rosenqvist, G; Endler, J A; Pélabon, C

    2011-12-01

    Variation in static allometry, the power relationship between character size and body size among individuals at similar developmental stages, remains poorly understood. We tested whether predation or other ecological factors could affect static allometry by comparing the allometry between the caudal fin length and the body length in adult male guppies (Poecilia reticulata) among populations from different geographical areas, exposed to different predation pressures. Neither the allometric slopes nor the allometric elevations (intercept at constant slope) changed with predation pressure. However, populations from the Northern Range in Trinidad showed allometry with similar slopes but lower intercepts than populations from the Caroni and the Oropouche drainages. Because most of these populations are exposed to predation by the prawn Macrobrachium crenulatum, we speculated that the specific selection pressures exerted by this predator generated this change in relative caudal fin size, although effects of other environmental factors could not be ruled out. This study further suggests that the allometric elevation is more variable than the allometric slope.

  16. Solution-gated graphene transistors for chemical and biological sensors.

    Science.gov (United States)

    Yan, Feng; Zhang, Meng; Li, Jinhua

    2014-03-01

    Graphene has attracted much attention in biomedical applications for its fascinating properties. Because of the well-known 2D structure, every atom of graphene is exposed to the environment, so the electronic properties of graphene are very sensitive to charged analytes (ions, DNA, cells, etc.) or an electric field around it, which renders graphene an ideal material for high-performance sensors. Solution-gated graphene transistors (SGGTs) can operate in electrolytes and are thus excellent candidates for chemical and biological sensors, which have been extensively studied in the recent 5 years. Here, the device physics, the sensing mechanisms, and the performance of the recently developed SGGT-based chemical and biological sensors, including pH, ion, cell, bacterial, DNA, protein, glucose sensors, etc., are introduced. Their advantages and shortcomings, in comparison with some conventional techniques, are discussed. Conclusions and challenges for the future development of the field are addressed in the end.

  17. Chemical composition and biological activity of the plum seed extract

    OpenAIRE

    Savić, Ivan M.; Nikolić, Vesna D.; Savić-Gajić, Ivana M.; Kundaković, Tatjana D.; Stanojković, Tatjana P.; Najman, Stevo J.; id_orcid 0000-0002-2411-9802

    2016-01-01

    The aim of this paper was to estimate the biological activity of the plum seed extract and to define the chemical composition by using the ESI-MS method. During the investigation of the antioxidant activity, the extract showed a better ability to inhibit DPPH radicals compared with amygdalin standard. The results of the antimicrobial study indicate that the extract has a greater effect on Gram-negative bacteria compared with amygdalin. Gram-positive bacteria and fungi remained resistant in bo...

  18. Biologically produced succinic acid: A new route to chemical intermediates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The national laboratory consortium has undertaken an R&D project with the Michigan Biotechnology Institute (MBI) to demonstrate the feasibility of producing a chemical intermediate, succinic acid, and various derivatives, from renewable agricultural resources. The projects near-term goal is to demonstrate an economically competetive process for producing 1,4-butanediol and other derivatives from biologically produced succinic acid without generating a major salt waste. The competitiveness to the petrochemical process must be demonstrated.

  19. Methodology and biological monitoring of exposure to chemical warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Shih, M.L.; Smith, J.R.; McMonagle, J.D. [Army Medical Research Inst. of Chemical Defense, Aberdeen Proving Ground, MD (United States)

    1995-06-01

    In the past few years, our institute has developed several GC/MS methods for the detection of the breakdown products of toxic organophosphonates (soman, sarin, GF) and vesicant sulfur mustard in biological samples. Recently we developed a modified GC/MS method for VX and are continually working on the methodology for lewisite and tabun. The purpose is to have an analytical tool to verify the exposure of chemical warfare agents in humans. Analytical procedures for quantitating the hydrolyzed phosphonic acids from nerve agents in environmental samples have been reported by many analysts. For more complex matrices such as biological samples, there is not yet a method reported. To make these polar acids amenable to gas chromatographic analysis a prior derivatization is needed. We found the pentafluorobenzyl ester derivatives of the phosphonates are suitable for verification and pharmacokinetic studies in biological samples. This method may also serve as an alternative method for confirmation purposes in environmental samples.

  20. Autonomous chemical and biological miniature wireless-sensor

    Science.gov (United States)

    Goldberg, Bar-Giora

    2005-05-01

    The presentation discusses a new concept and a paradigm shift in biological, chemical and explosive sensor system design and deployment. From large, heavy, centralized and expensive systems to distributed wireless sensor networks utilizing miniature platforms (nodes) that are lightweight, low cost and wirelessly connected. These new systems are possible due to the emergence and convergence of new innovative radio, imaging, networking and sensor technologies. Miniature integrated radio-sensor networks, is a technology whose time has come. These network systems are based on large numbers of distributed low cost and short-range wireless platforms that sense and process their environment and communicate data thru a network to a command center. The recent emergence of chemical and explosive sensor technology based on silicon nanostructures, coupled with the fast evolution of low-cost CMOS imagers, low power DSP engines and integrated radio chips, has created an opportunity to realize the vision of autonomous wireless networks. These threat detection networks will perform sophisticated analysis at the sensor node and convey alarm information up the command chain. Sensor networks of this type are expected to revolutionize the ability to detect and locate biological, chemical, or explosive threats. The ability to distribute large numbers of low-cost sensors over large areas enables these devices to be close to the targeted threats and therefore improve detection efficiencies and enable rapid counter responses. These sensor networks will be used for homeland security, shipping container monitoring, and other applications such as laboratory medical analysis, drug discovery, automotive, environmental and/or in-vivo monitoring. Avaak"s system concept is to image a chromatic biological, chemical and/or explosive sensor utilizing a digital imager, analyze the images and distribute alarm or image data wirelessly through the network. All the imaging, processing and communications

  1. Modeling drug- and chemical- induced hepatotoxicity with systems biology approaches

    Directory of Open Access Journals (Sweden)

    Sudin eBhattacharya

    2012-12-01

    Full Text Available We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of ‘toxicity pathways’ is described in the context of the 2007 US National Academies of Science report, Toxicity testing in the 21st Century: A Vision and A Strategy. Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically-based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity – a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular virtual tissue model of the liver lobule that combines molecular circuits in individual hepatocytes with cell-cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the AhR toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsymTM to understand drug-induced liver injury (DILI, the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological scales.

  2. Application of the Raven UAV for chemical and biological detection

    Science.gov (United States)

    Altenbaugh, Ryan; Barton, Jeff; Chiu, Christopher; Fidler, Ken; Hiatt, Dan; Hawthorne, Chad; Marshall, Steven; Mohos, Joe; McHugh, Vince; Nicoloff, Bill

    2010-04-01

    This paper presents the plume tracking algorithms developed for a series of outdoor chemical-stimulant testing conducted at Dugway Proving Ground in 2008 and 2009 employing a Raven UAV equipped with a real-time chemical sensor. The flights were conducted as part of the a program under the sponsorship of the Army JPM NBC Contamination Avoidance and in conjunction with the Army PM-Unmanned Aircraft Systems, the Defense Threat Reduction Agency, and Edgewood Chemical Biological Center. This test demonstrated the Raven's ability to autonomously detect and track a chemical plume during a variety of atmospheric conditions. During the testing, the Raven conducted over a dozen flights, tracking outdoor releases of simulated chemical weapons over significant distances. The Raven was cued to the releases with standoff detection systems through Cursor on Target messages. Upon reaching the plume, the Raven used on-board sensors and on-board meteorological data to track the plume autonomously and determine the extent of the plume. Results were provided in real-time to the UAV operator.

  3. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Directory of Open Access Journals (Sweden)

    L. Deguillaume

    2008-07-01

    Full Text Available This paper discusses the influence of primary biological aerosols (PBA on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  4. Chemical and biological flocculation process to treat municipal sewage and analysis of biological function

    Institute of Scientific and Technical Information of China (English)

    XIA Si-qing; YANG Dian-hai; XU Bin; ZHAO Jian-fu

    2005-01-01

    The pilot-scale experimental apparatus and the procedure of the chemical and biological flocculation process to verify the feasibility in treating Shanghai municipal sewage were introduced in this paper. In addition, the biological function of the process was discussed. The results of optimal running showed that in the reaction tank, the concentration of mixed liquor suspended solid(MLSS) was2 g/L, hydraulic retention time(HRT) was 35 min, dosage of liquid polyaluminium chloride(PAC) was 60 mg/L, and the concentration of polyacrylamide(PAM) was 0.5 mg/L. The effluent average concentrations of CODcr, TP, SS and BOD5 were 50 mg/L, 0.62 mg/L, 18mg/L, and 17 mg/L, respectively. These were better than the designed demand. In addition, the existence of biological degradation in this system was proven by several methods. The removal efficiencies of the chemical and biological flocculation process were 20% higher than that of the chemical flocculation process above at the same coagulant dosage. The treatment process under different situations was evaluated on a pilot-scale experiment, and the results provided magnificent parameters and optimal condition for future operation of the plant.

  5. Biological and chemical technologies research. FY 1995 annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-03-01

    The annual summary report presents the fiscal year (FY) 1995 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1995 (ASR 95) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1995; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents; and awards arising from work supported by the BCTR.

  6. Smart phones: platform enabling modular, chemical, biological, and explosives sensing

    Science.gov (United States)

    Finch, Amethist S.; Coppock, Matthew; Bickford, Justin R.; Conn, Marvin A.; Proctor, Thomas J.; Stratis-Cullum, Dimitra N.

    2013-05-01

    Reliable, robust, and portable technologies are needed for the rapid identification and detection of chemical, biological, and explosive (CBE) materials. A key to addressing the persistent threat to U.S. troops in the current war on terror is the rapid detection and identification of the precursor materials used in development of improvised explosive devices, homemade explosives, and bio-warfare agents. However, a universal methodology for detection and prevention of CBE materials in the use of these devices has proven difficult. Herein, we discuss our efforts towards the development of a modular, robust, inexpensive, pervasive, archival, and compact platform (android based smart phone) enabling the rapid detection of these materials.

  7. Chemical Constituents and Biological Activities of Artemisia herba-alba

    Directory of Open Access Journals (Sweden)

    Abou El-Hamd H. Mohamed

    2010-01-01

    Full Text Available Artemisia, one of the larger genera in the family Asteraceae and the largest genus in the tribe Anthemideae, comprises from 200 to more than 500 taxa at the specific or subspecific level. Many Artemisia species have a high economic value in several fields, as food plants and as antihelminthic and antimalaria in medicine. Artemisia herba-alba was known for its therapeutic and medicinal properties, it was used in both traditional and modern medicine. Several papers have been published on the chemical composition of specimens of A. herba-alba. The aim of this work is to review all available scientific literature published on A. herba-alba. The focus will be on the chemical constitutions which have been identified from this species, in addition to all of the reported biological activites of this species have been included as well as the pharmacology and toxicology

  8. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review.

    Science.gov (United States)

    Lofrano, Giusy; Meriç, Sureyya; Zengin, Gülsüm Emel; Orhon, Derin

    2013-09-01

    Although the leather tanning industry is known to be one of the leading economic sectors in many countries, there has been an increasing environmental concern regarding the release of various recalcitrant pollutants in tannery wastewater. It has been shown that biological processes are presently known as the most environmental friendly but inefficient for removal of recalcitrant organics and micro-pollutants in tannery wastewater. Hence emerging technologies such as advanced oxidation processes and membrane processes have been attempted as integrative to biological treatment for this sense. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater. It can be elucidated that according to less extent advances in wastewater minimization as well as in leather production technology and chemicals substitution, biological and chemical treatment processes have been progressively studied. However, there has not been a full scale application yet of those emerging technologies using advanced oxidation although some of them proved good achievements to remove xenobiotics present in tannery wastewater. It can be noted that advanced oxidation technologies integrated with biological processes will remain in the agenda of the decision makers and water sector to apply the best prevention solution for the future tanneries.

  9. Molecular codes in biological and chemical reaction networks.

    Science.gov (United States)

    Görlich, Dennis; Dittrich, Peter

    2013-01-01

    Shannon's theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio-) chemical systems able to process "meaningful" information from those that do not. Here, we present a formal method to assess a system's semantic capacity by analyzing a reaction network's capability to implement molecular codes. We analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries), biochemical systems (gene expression, gene translation, and phosphorylation signaling cascades), an artificial chemistry, and random reaction networks. Our study suggests that different chemical systems possess different semantic capacities. No semantic capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity was found in the studied biochemical systems and in random reaction networks where the number of second order reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of meaningful information, e.g. in the context of the origin of life.

  10. Methods of information geometry in computational system biology (consistency between chemical and biological evolution).

    Science.gov (United States)

    Astakhov, Vadim

    2009-01-01

    Interest in simulation of large-scale metabolic networks, species development, and genesis of various diseases requires new simulation techniques to accommodate the high complexity of realistic biological networks. Information geometry and topological formalisms are proposed to analyze information processes. We analyze the complexity of large-scale biological networks as well as transition of the system functionality due to modification in the system architecture, system environment, and system components. The dynamic core model is developed. The term dynamic core is used to define a set of causally related network functions. Delocalization of dynamic core model provides a mathematical formalism to analyze migration of specific functions in biosystems which undergo structure transition induced by the environment. The term delocalization is used to describe these processes of migration. We constructed a holographic model with self-poetic dynamic cores which preserves functional properties under those transitions. Topological constraints such as Ricci flow and Pfaff dimension were found for statistical manifolds which represent biological networks. These constraints can provide insight on processes of degeneration and recovery which take place in large-scale networks. We would like to suggest that therapies which are able to effectively implement estimated constraints, will successfully adjust biological systems and recover altered functionality. Also, we mathematically formulate the hypothesis that there is a direct consistency between biological and chemical evolution. Any set of causal relations within a biological network has its dual reimplementation in the chemistry of the system environment.

  11. ROOT ALLOMETRY OF TWO SUBTROPICAL PLANT COMMUNITIES OF NORTHEASTERN MEXICO

    OpenAIRE

    Eduardo de los Ríos-Carrasco; José de Jesús Návar-Cháidez

    2010-01-01

    This research work aimed at the study of the root allometry in sub-tropical Tamaulipan thornscrub and pine forest communities of Nuevo Leon, Mexico. By excavating each individual root of each of 20 trees per plant community, we developed root allometric equations for biomass, volume, total length and diameter. Covariance analysis, ancova, was employed to determine the statistical difference of these variables between plant communities. Results indicate that pine plant trees have larger root v...

  12. Chemical and Biological Features of Soils of Urban Territories

    Directory of Open Access Journals (Sweden)

    Elena Vasil'evna Smirnova

    2016-04-01

    Full Text Available There have been observed chemical and biological qualities of urbanized soils and soil-like bodies of the city of Kazan. There has been given an assessment of their enzymological (urease activity of the speed of degrading of urea, of reaction of soil solution, of contents of organic carbon. It is shown that chemical and biological qualities of studied soils have been seriously transformed and significantly differ from the complex of qualities of original natural analogs. There has been discovered the increase of pH of soil solution up to 7,0-8,2, high variation in contained organic substance, available forms of elements of nutrients of plants (nitrogen, phosphorus, potassium, flexible compounds of heavy metals and variety of activity of enzyme of urease. There has been discovered the absence of dependence of enzymological activity of city soil-like compounds from their acid-alcaline conditions and contained organic body. The necessity to work out new approaches and methods of studying urban soils and with the aim to assess their ecological state and forecasting of their impact on the city environment.

  13. The allometry of number of feathers in birds changes seasonally

    Institute of Scientific and Technical Information of China (English)

    Anders Pape Møller

    2015-01-01

    Background:Feathers are a defining feature of birds with multiple functions such as flight, insulation, protection against predation and signaling. Feathers are lost during the annual molt while the rate of such loss at other times of the year and its fitness consequences remain poorly known. Methods:I used information on the number and the mass of feathers for 160 individuals belonging to 85 species of birds in general linear mixed models to analyze allometry of feathers and to investigate possible factors explaining variation in the number of feathers. A phylogenetic effect was assessed by quantifying the random effect of genus. Results:The total mass of feathers increased isometrically with body mass, while the total number of feathers and the mean mass of feathers showed negative allometry. Negative allometry implied that small-sized species had relatively many small feathers. There was a negative association between the number of feathers and migration distance. The total number of feathers initially increased during fall and winter, consistent with individuals growing more feathers later during the year or with individuals with fewer feathers selectively disappearing from the population. In contrast, the number of feathers decreased from winter through spring and summer. Conclusions:These findings suggest that thermoregulation has affected the evolution of the number and the size of feathers, there is selection against feather loss, and that the number of feathers varies across seasons.

  14. The allometry of number of feathers in birds changes seasonally

    Institute of Scientific and Technical Information of China (English)

    Anders; Pape; Mller

    2015-01-01

    Background: Feathers are a defining feature of birds with multiple functions such as flight, insulation, protection against predation and signaling. Feathers are lost during the annual molt while the rate of such loss at other times of the year and its fitness consequences remain poorly known.Methods: I used information on the number and the mass of feathers for 160 individuals belonging to 85 species of birds in general linear mixed models to analyze allometry of feathers and to investigate possible factors explaining variation in the number of feathers. A phylogenetic effect was assessed by quantifying the random effect of genus.Results: The total mass of feathers increased isometrically with body mass, while the total number of feathers and the mean mass of feathers showed negative allometry. Negative allometry implied that small-sized species had relatively many small feathers. There was a negative association between the number of feathers and migration distance. The total number of feathers initially increased during fall and winter, consistent with individuals growing more feathers later during the year or with individuals with fewer feathers selectively disappearing from the population. In contrast, the number of feathers decreased from winter through spring and summer.Conclusions: These findings suggest that thermoregulation has affected the evolution of the number and the size of feathers, there is selection against feather loss, and that the number of feathers varies across seasons.

  15. [Chemical, physical and biological risks in law enforcement].

    Science.gov (United States)

    Magrini, Andrea; Grana, Mario; Vicentini, Laura

    2014-01-01

    Chemical, physical and biological risks among public safety and security forces. Law enforcement personnel, involved in routine tasks and in emergency situations, are exposed to numerous and several occupational hazards (chemical, physical and biological) whith likely health and security consequences. These risks are particularly high when the organization and preparation are inadequate, there is a lacking or insufficient coordination, information, education and communication and safety and personal protective equipment are inadequate or insufficient. Despite the objective difficulties, caused by the actual special needs related to the service performed or the organizational peculiarities, the risk identification and assessment is essential for worker health and safety of personnel, as provided for by Legislative Decree no. 81/2008. Chemical risks include airborne pollutants due to vehicular traffic (carbon monoxide, ultrafine particles, benzene, polycyclic aromatic hydrocarbons, aldehydes, nitrogen and sulfur oxides, lead), toxic gases generated by combustion process following fires (aromatic hydrocarbons, PAHs, dioxins and furans, biphenyls, formaldehyde, metals and cyanides), substances emitted in case of chemical accidents (solvents, pesticides, toxic gases, caustics), drugs (methylamphetamine), riot control agents and self-defence spray, lead at firing ranges, and several materials and reagents used in forensic laboratory. The physical hazards are often caused by activities that induce biomechanical overload aid the onset of musculoskeletal disorders, the use of visual display terminals and work environments that may expose to heat stress and discomfort, high and low pressure, noise, vibrations, ionizing and non-ionizing radiation. The main biological risks are blood-borne diseases (viral hepatitis, AIDS), airborne diseases (eg, tuberculosis, meningitis, SARS, anthrax), MRSA, and vector-borne diseases. Many of these risk factors are unavoidable or are not

  16. Electrochemical approaches for chemical and biological analysis on Mars

    Science.gov (United States)

    Kounaves, Samuel P.

    2003-01-01

    Obtaining in situ chemical data from planetary bodies such as Mars or Europa can present significant challenges. The one analytical technique that has many of the requisite characteristics to meet such a challenge is electroanalysis. Described here are three electroanalytical devices designed for in situ geochemical and biological analysis on Mars. The Mars Environmental Compatibility Assessment (MECA) was built and flight qualified for the now cancelled NASA Mars 2001 Lander. Part of MECA consisted of four "cells" containing arrays of electrochemical based sensors for measuring the ionic species in soil samples. A next-generation MECA, the Robotic Chemical Analysis Laboratory (RCAL), uses a carousel-type system to allow for greater customization of analytical procedures. A second instrument, proposed as part of the 2007 CryoScout mission, consists of a flow-through inorganic chemical analyzer (MICA). CryoScout is a torpedo-like device designed for subsurface investigation of the stratigraphic climate record embedded in Mars' north polar cap. As the CryoScout melts its way through the ice cap, MICA will collect and analyze the meltwater for a variety of inorganics and chemical parameters. By analyzing the chemistry locked in the layers of dust, salt, and ice, geologists will be able to determine the recent history of climate, water, and atmosphere on Mars and link it to the past. Finally, electroanalysis shows its abilities in the detection of possible microorganism on Mars or elsewhere in the solar system. To identify an unknown microorganism, one that may not even use Earth-type biochemistry, requires a detection scheme which makes minimal assumptions and looks for the most general features. Recent work has demonstrated that the use of an array of electrochemical sensors which monitors the changes in a solution via electrical conductivity, pH, and ion selective electrodes, can be used to detect minute chemical perturbations caused by the growth of bacteria and

  17. How chemistry supports cell biology: the chemical toolbox at your service.

    Science.gov (United States)

    Wijdeven, Ruud H; Neefjes, Jacques; Ovaa, Huib

    2014-12-01

    Chemical biology is a young and rapidly developing scientific field. In this field, chemistry is inspired by biology to create various tools to monitor and modulate biochemical and cell biological processes. Chemical contributions such as small-molecule inhibitors and activity-based probes (ABPs) can provide new and unique insights into previously unexplored cellular processes. This review provides an overview of recent breakthroughs in chemical biology that are likely to have a significant impact on cell biology. We also discuss the application of several chemical tools in cell biology research.

  18. Biological conversion of gaseous alkenes to liquid chemicals.

    Science.gov (United States)

    Desai, Shuchi H; Koryakina, Irina; Case, Anna E; Toney, Michael D; Atsumi, Shota

    2016-11-01

    Industrial gas-to-liquid (GTL) technologies are well developed. They generally employ syngas, require complex infrastructure, and need high capital investment to be economically viable. Alternatively, biological conversion has the potential to be more efficient, and easily deployed to remote areas on relatively small scales for the utilization of otherwise stranded resources. The present study demonstrates a novel biological GTL process in which engineered Escherichia coli converts C2-C4 gaseous alkenes into liquid diols. Diols are versatile industrially important chemicals, used routinely as antifreeze agents, polymer precursors amongst many other applications. Heterologous co-expression of a monooxygenase and an epoxide hydrolase in E. coli allows whole cell conversion of C2-C4 alkenes for the formation of ethylene glycol, 1,2-propanediol, 1,2-butanediol, and 2,3-butanediol at ambient temperature and pressure in one pot. Increasing intracellular NADH supply via addition of formate and a formate dehydrogenase increases ethylene glycol production titers, resulting in an improved productivity of 9mg/L/h and a final titer of 250mg/L. This represents a novel biological method for GTL conversion of alkenes to industrially valuable diols.

  19. Long-Bone Allometry of Terrestrial Mammals and the Geometric-Shape and Elastic-Force Constraints of Bone Evolution

    CERN Document Server

    Kokshenev, V B; García, G J M

    2003-01-01

    A natural similarity in body dimensions of terrestrial animals noticed by ancient philosophers remains the main key to the problem of mammalian skeletal evolution with body mass explored in theoretical and experimental biology and tested by comparative zoologists. We discuss the long-standing problem of mammalian bone allometry commonly studied in terms of the so-called ''geometric'', ''elastic'', and ''static stress'' similarities by McMahon (1973, 1975a, 1975b). We revise the fundamental assumptions underlying these similarities and give new physical insights into geometric-shape and elastic-force constraints imposed on spatial evolution of mammalian long bones.

  20. Chemical and biological stability of solvent refined coal liquids

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Weimer, W.C.

    1984-01-01

    Stability studies performed on seventeen SRC samples in boiling point from ambient to 850/sup 0/F showed that the major chemical composition of the materials as monitored by high resolution gas chromatography did not change under the storage conditions of the repository, which were 4/sup 0/C, in inert containers, under a nitrogen atmosphere, in the dark. Samples were monitored after two years of storage. It was also found from microbial mutagenicity studies that after four years in the repository there was no significant change in the biological activity of any of the SRC materials. Samples stored under various parameters of air versus nitrogen atmosphere and ambient light versus darkness at room temperature and -20/sup 0/C for one year showed there was no significant differences in the chemical composition of any of the samples. There was evidence, however, that trace components such as amino-PAH degraded at room temperature, in the light, under an air atmosphere since the microbial mutagenicity of samples stored under these conditions for one year decreased significantly. Both the chemical composition and mutagenicity of FOB samples changed when stored diluted in methylene chloride, in the light, under an air atmosphere at room temperature. After one year of storage under these conditions, the microbial mutagenicity was eliminated. Storage of SRC-II FOB at increased temperatures of 60/sup 0/C and 100/sup 0/C showed significant changes in chemical composition due to volatility effects. The microbial mutagenicity of the FOB samples was completely eliminated after storage at 60/sup 0/C for 32 weeks and 100/sup 0/C for 26 weeks. It appears that the amino-PAH and phenolic materials are the most susceptible components to degradation in the complex SRC materials. 23 references, 29 figures, 50 tables.

  1. Biological efficiency of interaction between various radiation and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Yu, Dong Han; Lee, Byoung Hun [KAERI, Taejon (Korea, Republic of); Petin, Vladislav G. [Medical Radiology Science Center, Obninsk (Russian Federation); Geras' kin, Stanislav A. [Russian Institute of Agricultural Radiology and Ecology, Obninsk (Russian Federation); Cebulska-Wasilewska, Antonina; Panek, Agnieszka; Wiechec, Anna [Institute of Nuclear Physics, Cracow (Poland)

    2004-06-01

    This research project has been carried out jointly with INP (Poland) to develop technologies to assess the biological efficiency of interaction between radiation and chemicals. Through the cooperative project, KAERI and INP have established wide variety of bioassay techniques applicable to radiation bioscience, human monitoring, molecular epidemiology and environmental science. The joint experiment, in special, made it possible to utilize the merits of both institutes and to upgrade and verify KAERI's current technology level. All results of the cooperative research will be jointly published in high standard scientific journals listed in the Science Citation Index (SCI), which can make the role of fundamental basis for improving relationship between Korea and Poland. Research skills such as Trad-MCN assay, SCGE assay, immunohistochemical assay and molecular assay developed through joint research will be further elaborated and will be continuously used for the collaboration between two institutes.

  2. BCTR: Biological and Chemical Technologies Research 1994 annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G.

    1995-02-01

    The annual summary report presents the fiscal year (FY) 1994 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). Although the OIT was reorganized in 1991 and AICD no longer exists, this document reports on efforts conducted under the former structure. The annual summary report for 1994 (ASR 94) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1994; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents, and awards arising from work supported by BCTR.

  3. Respiratory Protection Against Chemical and Biological Warfare Agents

    Directory of Open Access Journals (Sweden)

    G.K. Prasad

    2008-09-01

    Full Text Available Chemical and biological warfare (CBW agents pose unavoidable threat, both to soldiers and civilians.Exposure to such deadly agents amidst the CBW agents contaminated environment can be avoided bytaking proper protective measures. Respiratory protection is indispensable when the soldiers or civiliansare surrounded by such deadly environment as contamination-free air is needed for respiration purposes.In this context, an attempt has been made to review the literature for the past five decades on developmentof various protective devices for respiratory protection against aerosols, gases, and vapours of CBWagents. This review covers structural, textural, and adsorption properties of materials used in gas filtersand mechanical filters for the removal of CBW agents.Defence Science Journal, 2008, 58(5, pp.686-697, DOI:http://dx.doi.org/10.14429/dsj.58.1692

  4. Surface treatments for biological, chemical and physical applications

    CERN Document Server

    Karaman, Mustafa

    2017-01-01

    A step-by-step guide to the topic with a mix of theory and practice in the fields of biology, chemistry and physics. Straightforward and well-structured, the first chapter introduces fundamental aspects of surface treatments, after which examples from nature are given. Subsequent chapters discuss various methods to surface modification, including chemical and physical approaches, followed by the characterization of the functionalized surfaces. Applications discussed include the lotus effect, diffusion barriers, enzyme immobilization and catalysis. Finally, the book concludes with a look at future technology advances. Throughout the text, tutorials and case studies are used for training purposes to grant a deeper understanding of the topic, resulting in an essential reference for students as well as for experienced engineers in R&D.

  5. Chemical Constituents of Descurainia sophia L. and its Biological Activity

    Directory of Open Access Journals (Sweden)

    Nawal H. Mohamed

    2009-01-01

    Full Text Available Seven coumarin compounds were isolated for the first time from the aerial parts of DescurainiaSophia L. identified as scopoletine, scopoline, isoscopoline, xanthtoxol, xanthtoxin, psoralene and bergaptane.Three flavonoids namely kaempferol, quercetine and isorhamnetine and three terpenoid compounds -sitosterol-amyrine and cholesterol were also isolated and identified by physical and chemical methods; melting point, Rfvalues, UV and 1H NMR spectroscopy. Qualitative and quantitative analyses of free and protein amino acidsusing amino acid analyzer were performed. The plant contains 15 amino acids as free and protein amino acidswith different range of concentrations. Fatty acid analysis using GLC, revealed the presence of 10 fatty acids,the highest percentage was palmitic acid (27.45 % and the lowest was lauric acid (0.13%. Biological screeningof alcoholic extract showed that the plant is highly safe and has analgesic, antipyretic and anti-inflammatoryeffects.

  6. Advances in the Chemical Analysis and Biological Activities of Chuanxiong

    Directory of Open Access Journals (Sweden)

    Jin-Ao Duan

    2012-09-01

    Full Text Available Chuanxiong Rhizoma (Chuan-Xiong, CX, the dried rhizome of Ligusticum chuanxiong Hort. (Umbelliferae, is one of the most popular plant medicines in the World. Modern research indicates that organic acids, phthalides, alkaloids, polysaccharides, ceramides and cerebrosides are main components responsible for the bioactivities and properties of CX. Because of its complex constituents, multidisciplinary techniques are needed to validate the analytical methods that support CX’s use worldwide. In the past two decades, rapid development of technology has advanced many aspects of CX research. The aim of this review is to illustrate the recent advances in the chemical analysis and biological activities of CX, and to highlight new applications and challenges. Emphasis is placed on recent trends and emerging techniques.

  7. Entropy and its relationship to allometry

    CERN Document Server

    Shour, Robert

    2008-01-01

    The entropy of an organism's capacity to supply energy through its circulatory system is 4/3 the entropy of the organism's energy requirements. Organisms appear to maximize entropy. The concept of entropy enables shorter derivations of some allometric equations, further evidence of the concept's utility. Entropy helps explain emergence in social, lexical, and biological networks.

  8. Chemical and biological warfare: Biology, chemistry, and toxicology. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The bibliography contains citations concerning the physiological effects, physicochemical effects, and toxicology of chemical and biological warfare agents. Citations discuss toxic chemicals, chemical agent simulants, detoxification and decontamination, environmental toxicity, and land pollution. Detection techniques and warning systems are examined in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Chemical and biological warfare: Biology, chemistry, and toxicology. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The bibliography contains citations concerning the physiological effects, physicochemical effects, and toxicology of chemical and biological warfare agents. Citations discuss toxic chemicals, chemical agent simulants, detoxification and decontamination, environmental toxicity, and land pollution. Detection techniques and warning systems are examined in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  10. Biologically Analogous Calcium Phosphate Tubes from a Chemical Garden.

    Science.gov (United States)

    Hughes, Erik A B; Williams, Richard L; Cox, Sophie C; Grover, Liam M

    2017-02-28

    Calcium phosphate (CaPO4) tubes with features comparable to mineralized biological microstructures, such as Haversian canals, were grown from a calcium gel/phosphate solution chemical garden system. A significant difference in gel mass in response to high and low solute phosphate equivalent environments existed within 30 min of solution layering upon gel (p = 0.0067), suggesting that the nature of advective movement between gel and solution is dependent on the solution concentration. The transport of calcium cations (Ca(2+)) and phosphate anions (PO4(3-)) was quantified and changes in pH were monitored to explain the preferential formation of tubes within a PO4(3-) concentration range of 0.5-1.25 M. Ingress from the anionic solution phase into the gel followed by the liberation of Ca(2+) ions from the gel was found to be essential for acquiring self-assembled tubular CaPO4 structures. Tube analysis by scanning electron microscopy (SEM), X-ray diffraction (XRD), and micro X-ray florescence (μ-XRF) revealed hydroxyapatite (HA, Ca10(PO4)6(OH)2) and dicalcium phosphate dihydrate (DCPD, CaHPO4·2H2O) phases organized in a hierarchical manner. Notably, the tubule diameters ranged from 100 to 150 μm, an ideal size for the permeation of vasculature in biological hard tissue.

  11. The chemical information ontology: provenance and disambiguation for chemical data on the biological semantic web.

    Directory of Open Access Journals (Sweden)

    Janna Hastings

    Full Text Available Cheminformatics is the application of informatics techniques to solve chemical problems in silico. There are many areas in biology where cheminformatics plays an important role in computational research, including metabolism, proteomics, and systems biology. One critical aspect in the application of cheminformatics in these fields is the accurate exchange of data, which is increasingly accomplished through the use of ontologies. Ontologies are formal representations of objects and their properties using a logic-based ontology language. Many such ontologies are currently being developed to represent objects across all the domains of science. Ontologies enable the definition, classification, and support for querying objects in a particular domain, enabling intelligent computer applications to be built which support the work of scientists both within the domain of interest and across interrelated neighbouring domains. Modern chemical research relies on computational techniques to filter and organise data to maximise research productivity. The objects which are manipulated in these algorithms and procedures, as well as the algorithms and procedures themselves, enjoy a kind of virtual life within computers. We will call these information entities. Here, we describe our work in developing an ontology of chemical information entities, with a primary focus on data-driven research and the integration of calculated properties (descriptors of chemical entities within a semantic web context. Our ontology distinguishes algorithmic, or procedural information from declarative, or factual information, and renders of particular importance the annotation of provenance to calculated data. The Chemical Information Ontology is being developed as an open collaborative project. More details, together with a downloadable OWL file, are available at http://code.google.com/p/semanticchemistry/ (license: CC-BY-SA.

  12. 40 CFR 230.61 - Chemical, biological, and physical evaluation and testing.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Chemical, biological, and physical... FILL MATERIAL Evaluation and Testing § 230.61 Chemical, biological, and physical evaluation and testing... appropriate physical and chemical environmental characteristics. (d) Physical tests and evaluation. The...

  13. Future of Chemical Engineering: Integrating Biology into the Undergraduate ChE Curriculum

    Science.gov (United States)

    Mosto, Patricia; Savelski, Mariano; Farrell, Stephanie H.; Hecht, Gregory B.

    2007-01-01

    Integrating biology in the chemical engineering curriculum seems to be the future for chemical engineering programs nation and worldwide. Rowan University's efforts to address this need include a unique chemical engineering curriculum with an intensive biology component integrated throughout from freshman to senior years. Freshman and Sophomore…

  14. 15 CFR Supplement No. 1 to Part 742 - Nonproliferation of Chemical and Biological Weapons

    Science.gov (United States)

    2010-01-01

    ... Biological Weapons No. Supplement No. 1 to Part 742 Commerce and Foreign Trade Regulations Relating to...—Nonproliferation of Chemical and Biological Weapons Note: Exports and reexports of items in performance of...: (i) Equipment (for producing chemical weapon precursors and chemical warfare agents) described...

  15. Molecular scaffolds using multiple orthogonal conjugations: applications in chemical biology and drug discovery.

    Science.gov (United States)

    Beal, David M; Jones, Lyn H

    2012-06-25

    Heteromultifunctional scaffolds that harness sequential "click" reactions will find significant utility in the areas of chemical biology and chemically enabled/enhanced biotherapeutics ("chemologics"). Here we review the existing synthetic technologies that illustrate the considerable potential of the field.

  16. Terahertz spectroscopy for chemicals and biological sensing applications

    Science.gov (United States)

    Liu, Hai-Bo

    probe their functional 3D conformation states. Owing to the high sensitivity of differential THz-TDS, it was successfully used to sense the minute change of biological cell monolayers. The results point to a new way for biosensing applications via differential THz-TDS. As a powerful sensing technique, THz spectroscopy will continue to make profound contribution to the understanding of basic physics, chemistry and biology problems, as well as to the technological applications in chemical and biomedicine sensing areas.

  17. Recycling of dyehouse effluents by biological and chemical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Krull, R.; Doepkens, E. [Inst. of Biochemical Engineering, Technical Univ. of Braunschweig, Braunschweig (Germany)

    2003-07-01

    The introduction of the production integrated environmental protection by closing raw material cycles is shown exemplary for the textile finishing industry. Colored process water with a high content of dissolved organic dyes has always been a non-trivial problem for the sewage engineering sector. The recycling of process water of textile mills is often hindered by remaining color of water-soluable azo dyes after conventional wastewater treatment. Rising costs of emitted wastewater, lawful limits and restricted availability of water makes it of great interest to introduce sophisticated techniques helping to purify dye effluents and to recycle process water. A combined biological and chemical process of purification and recycling of residual dyehouse split flows into the production was developed, investigated and installed by a textile finishing company which produces 330,000 m{sup 3} colored wastewater effluents per year. The process contains anaerobic dye-cleavage, aerobic mineralization of cleavage-products and the decolorization and partial oxidation of traces of dyeresiduals by advanced oxidation. (orig.)

  18. High-valent iron in chemical and biological oxidations.

    Science.gov (United States)

    Groves, John T

    2006-04-01

    Various aspects of the reactivity of iron(IV) in chemical and biological systems are reviewed. Accumulated evidence shows that the ferryl species [Fe(IV)O](2+) can be formed under a variety of conditions including those related to the ferrous ion-hydrogen peroxide system known as Fenton's reagent. Early evidence that such a species could hydroxylate typical aliphatic C-H bonds included regioselectivities and stereospecificities for cyclohexanol hydroxylation that could not be accounted for by a freely diffusing hydroxyl radical. Iron(IV) porphyrin complexes are also found in the catalytic cycles of cytochrome P450 and chloroperoxidase. Model oxo-iron(IV) porphyrin complexes have shown reactivity similar to the proposed enzymatic intermediates. Mechanistic studies using mechanistically diagnostic substrates have implicated a radical rebound scenario for aliphatic hydroxylation by cytochrome P450. Likewise, several non-heme diiron hydroxylases, AlkB (Omega-hydroxylase), sMMO (soluble methane monooxygenase), XylM (xylene monooxygenase) and T4moH (toluene monooxygenase) all show clear indications of radical rearranged products indicating that the oxygen rebound pathway is a ubiquitous mechanism for hydrocarbon oxygenation by both heme and non-heme iron enzymes.

  19. Chemical and Biological Characterization of Oleanane Triterpenoids from Soy

    Directory of Open Access Journals (Sweden)

    David G. Popovich

    2009-08-01

    Full Text Available Soyasaponins are a group of complex and structural diverse oleanane triterpenoids found in soy (Glycine max and other legumes. They are primarily classified into two main groups − group A and B − based on the attachment of sugar moieties at positions C-3 and C-22 of the ring structures. Group A soyasaponins are bidesmosidic, while group B soyasaponins are monodesmosidic. Group B soyasaponins are further classified into two subcategories known as 2,3-dihydro-2,5-dihydroxy-6 -methyl-4H-pyran-4-one (DDMP and non-DDMP conjugated molecules. The preparation and purification of soyasaponin molecules is complicated by the presence of bioactive soy isoflavones, which often overlap with soyasaponin in polarity and must removed from extracts before biological assessment. Soyasaponin extracts, aglycones of group A and B and individual group B soyasaponins such as soyasaponin I have been reported to posses specific bioactive properties, such as in vitro anti-cancer properties by modulating the cell cycle and inducing apoptosis. The isolation, chemical characterization and detection strategies by HPLC and HPLC-MS are reviewed, along with the reported bioactive effects of soyasaponin extracts and individual molecules in cultured cancer cell experiments.

  20. Essential oils from neotropical Myrtaceae: chemical diversity and biological properties.

    Science.gov (United States)

    Stefanello, Maria Élida Alves; Pascoal, Aislan C R F; Salvador, Marcos J

    2011-01-01

    Myrtaceae family (121 genera, 3800-5800 spp.) is one of the most important families in tropical forests. They are aromatic trees or shrubs, which frequently produce edible fruits. In the neotropics, ca. 1000 species were found. Several members of this family are used in folk medicine, mainly as an antidiarrheal, antimicrobial, antioxidant, cleanser, antirheumatic, and anti-inflammatory agent and to decrease the blood cholesterol. In addition, some fruits are eaten fresh or used to make juices, liqueurs, and sweets very much appreciated by people. The flavor composition of some fruits belonging to the Myrtaceae family has been extensively studied due to their pleasant and intense aromas. Most of the essential oils of neotropical Myrtaceae analyzed so far are characterized by predominance of sesquiterpenes, some with important biological properties. In the present work, chemical and pharmacological studies carried out on neotropical Myrtaceae species are reviewed, based on original articles published since 1980. The uses in folk medicine and chemotaxonomic importance of secondary metabolites are also briefly discussed.

  1. Pereskia aculeata Muller (Cactaceae Leaves: Chemical Composition and Biological Activities

    Directory of Open Access Journals (Sweden)

    Lucèia Fàtima Souza

    2016-09-01

    Full Text Available The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE/g. The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression.

  2. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities.

    Science.gov (United States)

    Souza, Lucèia Fàtima; Caputo, Lucia; Inchausti De Barros, Ingrid Bergman; Fratianni, Florinda; Nazzaro, Filomena; De Feo, Vincenzo

    2016-09-03

    The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression.

  3. Stability and its manifestation in the chemical and biological worlds.

    Science.gov (United States)

    Pascal, Robert; Pross, Addy

    2015-11-21

    Bridging between the phenomenologically distinct biological and physical worlds has been a major scientific challenge since Boltzmann's probabilistic formulation of the second law of thermodynamics. In this review we summarize our recent theoretical attempts to bridge that divide through analysis of the thermodynamic-kinetic interplay in chemical processes and the manner in which that interplay impacts on material stability. Key findings are that the term 'stability' manifests two facets - time and energy - and that stability's time facet, expressed as persistence, is more general than its energy facet. That idea, together with the proposed existence of a logical law of nature, the persistence principle, leads to the mathematically-based insight that stability can come about through either Boltzmann's probabilistic considerations or Malthusian kinetics. Two mathematically-based forms of material persistence then lead directly to the physical likelihood of two material forms, animate and inanimate. Significantly, the incorporation of kinetic considerations into the stability concept appears to bring us closer to enabling two of the central theories in science - the second law of thermodynamics and Darwin's theory of evolution - to be reconciled within a single conceptual framework.

  4. Very Large Chemical Sensor Array for Mimicking Biological Olfaction

    Science.gov (United States)

    Beccherelli, R.; Zampetti, E.; Pantalei, S.; Bernabei, M.; Persaud, K. C.

    2009-05-01

    Olfactory receptor neurons (ORN) in the mammalian olfactory system, transduce molecular properties of the odorants into electrical signals and project these into the olfactory bulb (OB). In the biological system several millions of receptor neurons of a few hundred types create redundancy and the massive convergence of the ORNs to the OB, is thought to enhance the sensitivity and selectivity of the system. To explore this concept, the NEUROCHEM project will build a polymeric chemical sensor array consisting of 216 (65536) sensors with tens of different types. To interface such a large sensor array, a topological array configuration with n rows and m columns, has been adopted, to reduce the total wiring connections to n+m. A method of addressing a single element in the array in isolation of the rest of the network has been developed. Over the array ten different conductive polymers with different sensing characteristics will be deposited by means of electrodeposition and inkjet printing. A smaller prototype of 64 elements has been investigated and the results are here reported and discussed.

  5. Exploration of the central dogma at the interface of chemistry and biology: 2010 Yale Chemical Biology Symposium.

    Science.gov (United States)

    Zhou, Alice Qinhua

    2010-09-01

    Ever since the term "central dogma" was coined in 1958, researchers have sought to control information flow from nucleic acids to proteins. Talks delivered by Drs. Anna Pyle and Hiroaki Suga at this year's Chemical Biology Symposium at Yale in May 2010 applauded recent advances in this area, at the interface between chemistry and biology.

  6. Chemical and Biological Defense Program Annual Report to Congress

    Science.gov (United States)

    2006-03-01

    state public health systems, to expand existing biosurveillance efforts, and to fund research on medical countermeasures against potential bioterror...Detection System (JBSDS) • Joint Portal Shield • Biological Identification System (BIDS) • Dry Filter Units (DFUs) Table 2-3 Biological Defense...Detection System (BIDS) • Joint Portal Shield Network Sensor System • Automated biological remote detection and early warning capabilities

  7. Chemical and biological oxidative effects of carbon black nanoparticles.

    Science.gov (United States)

    Koike, Eiko; Kobayashi, Takahiro

    2006-11-01

    Several studies show that ultrafine particles have a larger surface area than coarse particles, thus causing a greater inflammatory response. In this study, we investigated chemical and biological oxidative effects of nanoparticles in vitro. Carbon black (CB) nanoparticles with mean aerodynamic diameters of 14, 56, and 95nm were examined. The innate oxidative capacity of the CB nanoparticles was measured by consumption of dithiothreitol (DTT) in cell-free system. The expression of heme oxygenase-1 (HO-1) in rat alveolar type II epithelial cell line (SV40T2) and alveolar macrophages (AM) exposed to CB nanoparticles was measured by ELISA. DTT consumption of 14nm CB was higher than that of other CB nanoparticles having the same particle weight. However, DTT consumption was directly proportional to the particle surface area. HO-1 protein in SV40T2 cells was significantly increased by the 14nm and 56nm CB, however, 95nm CB did not affect. HO-1 protein in AM was significantly increased by the 14, 56, and 95nm CB. The increase in HO-1 expression was diminished by N-acetyl-l-cysteine (NAC) treatment of each CB nanoparticles before exposure although the difference between the effects of NAC-treated and untreated 14nm CB did not achieve significant. In conclusion, CB nanoparticles have innate oxidative capacity that may be dependent on the surface area. CB nanoparticles can induce oxidative stress in alveolar epithelial cells and AM that is more prominent with smaller particles. The oxidative stress may, at least partially, be mediated by surface function of particles.

  8. Novel Method of Estimating Metabolic Rates of Soldiers Engaged in Chemical Biological Defense Training

    Science.gov (United States)

    2016-12-01

    SOLDIERS ENGAGED IN CHEMICAL BIOLOGICAL DEFENSE TRAINING DISCLAIMER The opinions or assertions contained herein are the private views of the...USARIEM TECHNICAL REPORT TR17-02 NOVEL METHOD OF ESTIMATING METABOLIC RATES OF SOLDIERS ENGAGED IN CHEMICAL BIOLOGICAL DEFENSE TRAINING ...Volunteers ............................................................................................................ 2 Training Activities

  9. Programmable Adaptive Spectral Imagers for Mission-Specific Application in Chemical/Biological Sensing

    Science.gov (United States)

    2006-01-01

    detection of chemical/biological agents. Extensive research into both passive remote chemical/biological sensors and active laser- based ( LIDAR ... photodetector (Fig. 1). Fig. 1. Adaptive spectrograph concept: light from a standoff spectral scene is dispersed, dynamically encoded with...the purpose. Data acquisition and processing software was developed for the control of the DMA, capturing data from the photodetectors , and for

  10. Numerical Techniques for Chemical and Biological Engineers Using MATLAB A Simple Bifurcation Approach

    CERN Document Server

    Elnashaie, Said SEH; Affane, Chadia

    2007-01-01

    All reactive chemical and biological processes are highly nonlinear allowing for multiple steady states. This book addresses the bifurcation characteristics of chemical and biological processes as the general case and treats systems with a unique steady state as special cases. It includes a CD-ROM which contains nearly 100 MATLAB programs.

  11. Carbon Nanostructure-Based Field-Effect Transistors for Label-Free Chemical/Biological Sensors

    Directory of Open Access Journals (Sweden)

    PingAn Hu

    2010-05-01

    Full Text Available Over the past decade, electrical detection of chemical and biological species using novel nanostructure-based devices has attracted significant attention for chemical, genomics, biomedical diagnostics, and drug discovery applications. The use of nanostructured devices in chemical/biological sensors in place of conventional sensing technologies has advantages of high sensitivity, low decreased energy consumption and potentially highly miniaturized integration. Owing to their particular structure, excellent electrical properties and high chemical stability, carbon nanotube and graphene based electrical devices have been widely developed for high performance label-free chemical/biological sensors. Here, we review the latest developments of carbon nanostructure-based transistor sensors in ultrasensitive detection of chemical/biological entities, such as poisonous gases, nucleic acids, proteins and cells.

  12. Allometry data and equations for coastal marsh plants.

    Science.gov (United States)

    Lu, Meng; Caplan, Joshua S; Bakker, Jonathan D; Adam Langley, J; Mozdzer, Thomas J; Drake, Bert G; Patrick Megonigal, J

    2016-12-01

    Coastal marshes are highly valued for ecosystem services such as protecting inland habitats from storms, sequestering carbon, removing nutrients and other pollutants from surface water, and providing habitat for fish, shellfish, and birds. Because plants largely determine the structure and function of coastal marshes, quantifying plant biomass is essential for evaluating these ecosystem services, understanding the biogeochemical processes that regulate ecosystem function, and forecasting tidal wetland responses to accelerated sea level rise. Allometry is a convenient and efficient technique for nondestructive estimation of plant biomass, and it is commonly used in studies of carbon and nitrogen cycles, energy flows, and marsh surface elevation change. We present plant allometry data and models developed for three long-term experiments at the Smithsonian Global Change Research Wetland, a brackish marsh in the Rhode River subestuary of the Chesapeake Bay. The dataset contains 9,771 measurements of stem height, dry mass, and (in 9638 cases) stem width across 11 plant species. The vast majority of observations are for Schoenoplectus americanus (8430) and Phragmites australis (311), with fewer observations for other common species: Amaranthus cannabinus, Atriplex patula, Iva frutescens, Kosteletzkya virginica, Polygonum hydropiper, Solidago sempervirens, Spartina alterniflora, Spartina cynosuroides, and Typha angustifolia. Allometric relationships take the form of linear regressions of biomass (transformed using the Box-Cox procedure) on either stem height and width, or on stem height alone. Allometric relationships for Schoenoplectus americanus were not meaningfully altered by elevated CO2 , N enrichment, the community context, interannual variation in climate, or year, showing that a single equation can be used across a broad range of conditions for this species. Archived files include: (1) raw data used to derive allometric equations for each species, (2) reports and

  13. Chemical and biological warfare: General studies. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The bibliography contains citations concerning federally sponsored and conducted studies into chemical and biological warfare operations and planning. These studies cover areas not addressed in other parts of this series. The topics include production and storage of agents, delivery techniques, training, military and civil defense, general planning studies, psychological reactions to chemical warfare, evaluations of materials exposed to chemical agents, and studies on banning or limiting chemical warfare. Other published searches in this series on chemical warfare cover detection and warning, defoliants, protection, and biological studies, including chemistry and toxicology. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. Chemical and biological warfare: General studies. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The bibliography contains citations concerning federally sponsored and conducted studies into chemical and biological warfare operations and planning. These studies cover areas not addressed in other parts of this series. The topics include production and storage of agents, delivery techniques, training, military and civil defense, general planning studies, psychological reactions to chemical warfare, evaluations of materials exposed to chemical agents, and studies on banning or limiting chemical warfare. Other published searches in this series on chemical warfare cover detection and warning, defoliants, protection, and biological studies, including chemistry and toxicology.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  15. Suitability of Gray Water for Hydroponic Crop Production Following Biological and Physical Chemical and Biological Subsystems

    Science.gov (United States)

    Bubenheim, David L.; Harper, Lynn D.; Wignarajah, Kanapathipillai; Greene, Catherine

    1994-01-01

    The water present in waste streams from a human habitat must be recycled in Controlled Ecological Life Support Systems (CELSS) to limit resupply needs and attain self-sufficiency. Plants play an important role in providing food, regenerating air, and producing purified water via transpiration. However, we have shown that the surfactants present in hygiene waste water have acute toxic effects on plant growth (Bubenheim et al. 1994; Greene et al., 1994). These phytotoxic affects can be mitigated by allowing the microbial population on the root surface to degrade the surfactant, however, a significant suppression (several days) in crop performance is experienced prior to reaching sub-toxic surfactant levels and plant recovery. An effective alternative is to stabilize the microbial population responsible for degradation of the surfactant on an aerobic bioreactor and process the waste water prior to utilization in the hydroponic solution (Wisniewski and Bubenheim, 1993). A sensitive bioassay indicates that the surfactant phytotoxicity is suppressed by more than 90% within 5 hours of introduction of the gray water to the bioreactor; processing for more than 12 hours degrades more than 99% of the phytotoxin. Vapor Compression Distillation (VCD) is a physical / chemical method for water purification which employees sequential distillation steps to separate water from solids and to volatilize contaminants. The solids from the waste water are concentrated in a brine and the pure product water (70 - 90% of the total waste water volume depending on operating conditions) retains non of the phytotoxic effects. Results of the bioassay were used to guide evaluations of the suitability of recovered gray water following biological and VCD processing for hydroponic lettuce production in controlled environments. Lettuce crops were grown for 28 days with 100% of the input water supplied with recovered water from the biological processor or VCD. When compared with the growth of plants

  16. Which chemicals drive biological effects in wastewater and recycled water?

    Science.gov (United States)

    Tang, Janet Y M; Busetti, Francesco; Charrois, Jeffrey W A; Escher, Beate I

    2014-09-01

    Removal of organic micropollutants from wastewater during secondary treatment followed by reverse osmosis and UV disinfection was evaluated by a combination of four in-vitro cell-based bioassays and chemical analysis of 299 organic compounds. Concentrations detected in recycled water were below the Australian Guidelines for Water Recycling. Thus the detected chemicals were considered not to pose any health risk. The detected pesticides in the wastewater treatment plant effluent and partially advanced treated water explained all observed effects on photosynthesis inhibition. In contrast, mixture toxicity experiments with designed mixtures containing all detected chemicals at their measured concentrations demonstrated that the known chemicals explained less than 3% of the observed cytotoxicity and less than 1% of the oxidative stress response. Pesticides followed by pharmaceuticals and personal care products dominated the observed mixture effects. The detected chemicals were not related to the observed genotoxicity. The large proportion of unknown toxicity calls for effect monitoring complementary to chemical monitoring.

  17. Comparative allometry growth of some marine fish digenetic trematodes

    Directory of Open Access Journals (Sweden)

    A. Saad-Fares

    1992-01-01

    Full Text Available Allometric growth variation was compared for Plagioporus idoneus, Lepocreadium pegorchis, Opecoeloides furcatus, Bacciger israelensis, Aphanurus stossichi and Parahurleytrema trachinoti collected from East Mediterranean fishes. The pharynx, the oral and the ventral sucker diameters always showed a negative allometry. The other parameters tested were variable with the species. We study the effects of some environmental factors: the influence of the host species is analysed in Plagioporus idoneous, wich parasitizes Oblada melanura, Diplodus sargus and D. vulgaris and in Lepocreadium pegorchis, wich parasitizes Pagellus erythrinus, Lithognathus mormyrus and Spicara smaris; the influence of the microhabitat and the intensity of infection is analysed in Bacciger israelensis and Aphanurus stossichi, both parasites of Boops boops. We report significant differences with the host species, for the allometric growth of the testes; the effect of the microhabitat was revealed by the hindbody allometric value; no significant difference was detected in relation with the intensity of infection.

  18. Counter-Chemical, Biological, Radiological, and Nuclear Operations

    Science.gov (United States)

    2007-01-26

    Present. [Order from DTIC-E, 8725 John J. Kingman Road, Suite 0944, Ft Belvoir, VA 22060-6218.] Douglas, Joseph, and Livingstone, Neil , America the...Harris, Sheldon H ., Factories of Death: Japanese Biological Warfare, 1932-45, and the American Cover-up (Routledge). 1994. Hayes, Peter L...Biological Warfare (Office of Surgeon General, Borden Institute). 1997. Sloan, Steven, Beating International Terrorism (Air University Press). 1986

  19. Essential Oils from Thyme (Thymus vulgaris): Chemical Composition and Biological Effects in Mouse Model.

    Science.gov (United States)

    Vetvicka, Vaclav; Vetvickova, Jana

    2016-12-01

    Thymus species are popular spices and contain volatile oils as main chemical constituents. Recently, plant-derived essential oils are gaining significant attention due to their significant biological activities. Seven different thymus-derived essential oils were compared in our study. First, we focused on their chemical composition, which was followed up by testing their effects on phagocytosis, cytokine production, chemotaxis, edema inhibition, and liver protection. We found limited biological activities among tested oils, with no correlation between composition and biological effects. Similarly, no oils were effective in every reaction. Based on our data, the tested biological use of these essential oils is questionable.

  20. Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology.

    Science.gov (United States)

    Galdeano, Carles; Ciulli, Alessio

    2016-09-01

    Targeting epigenetic proteins is a rapidly growing area for medicinal chemistry and drug discovery. Recent years have seen an explosion of interest in developing small molecules binding to bromodomains, the readers of acetyl-lysine modifications. A plethora of co-crystal structures has motivated focused fragment-based design and optimization programs within both industry and academia. These efforts have yielded several compounds entering the clinic, and many more are increasingly being used as chemical probes to interrogate bromodomain biology. High selectivity of chemical probes is necessary to ensure biological activity is due to an on-target effect. Here, we review the state-of-the-art of bromodomain-targeting compounds, focusing on the structural basis for their on-target selectivity or lack thereof. We also highlight chemical biology approaches to enhance on-target selectivity.

  1. Biologically produced succinic acid: A new route to chemical intermediates

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    The US Department of Energy (DOE) Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R & D) that uses `green` feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. New alternatives for American industry may lie in the nation`s forests and fields. The national laboratory consortium has undertaken a joint R&D project with the Michigan Biotechnology Institute to demonstrate the feasibility of producing a chemical intermediate, succinic acid, and various derivatives, from renewable agricultural resources.

  2. When size makes a difference: allometry, life-history and morphological evolution of capuchins (Cebus and squirrels (Saimiri monkeys (Cebinae, Platyrrhini

    Directory of Open Access Journals (Sweden)

    Marroig Gabriel

    2007-02-01

    Full Text Available Abstract Background How are morphological evolution and developmental changes related? This rather old and intriguing question had a substantial boost after the 70s within the framework of heterochrony (changes in rates or timing of development and nowadays has the potential to make another major leap forward through the combination of approaches: molecular biology, developmental experimentation, comparative systematic studies, geometric morphometrics and quantitative genetics. Here I take an integrated approach combining life-history comparative analyses, classical and geometric morphometrics applied to ontogenetic series to understand changes in size and shape which happen during the evolution of two New World Monkeys (NWM sister genera. Results Cebus and Saimiri share the same basic allometric patterns in skull traits, a result robust to sexual and ontogenetic variation. If adults of both genera are compared in the same scale (discounting size differences most differences are small and not statistically significant. These results are consistent using both approaches, classical and geometric Morphometrics. Cebus is a genus characterized by a number of peramorphic traits (adult-like while Saimiri is a genus with paedomorphic (child like traits. Yet, the whole clade Cebinae is characterized by a unique combination of very high pre-natal growth rates and relatively slow post-natal growth rates when compared to the rest of the NWM. Morphologically Cebinae can be considered paedomorphic in relation to the other NWM. Geometric morphometrics allows the precise separation of absolute size, shape variation associated with size (allometry, and shape variation non-associated with size. Interestingly, and despite the fact that they were extracted as independent factors (principal components, evolutionary allometry (those differences in allometric shape associated with intergeneric differences and ontogenetic allometry (differences in allometric shape

  3. Prospects for improved detection of chemical, biological, radiological, and nuclear threats

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, Craig R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hart, Brad [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Slezak, Thomas R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-07-31

    Acquisition and use of Chemical, Biological, Radiological, and Nuclear (CBRN) weapons continue to be a major focus of concern form the security apparatus of nation states because of their potential for mass casualties when used by a determined adversary.

  4. Biological treatments affect the chemical composition of coffee pulp

    NARCIS (Netherlands)

    Ulloa Rojas, J.B.; Verreth, J.A.J.; Amato, S.; Huisman, E.A.

    2003-01-01

    Biological treatments were applied to fresh coffee pulp (CoP) to improve its nutritive value for monogastric animals by reducing its content of cellulose and antinutritional factors (ANFs) such as total phenols, tannins and caffeine. Treatments were: (1) ensiling with 0, 50 and 100 g kg¿1 molasses f

  5. Caenorhabditis elegans chemical biology: lessons from small molecules

    Science.gov (United States)

    How can we complement Caenorhabditis elegans genomics and proteomics with a comprehensive structural and functional annotation of its metabolome? Several lines of evidence indicate that small molecules of largely undetermined structure play important roles in C. elegans biology, including key pathw...

  6. Environmental parameters of the Tennessee River in Alabama. 2: Physical, chemical, and biological parameters. [biological and chemical effects of thermal pollution from nuclear power plants on water quality

    Science.gov (United States)

    Rosing, L. M.

    1976-01-01

    Physical, chemical and biological water quality data from five sites in the Tennessee River, two in Guntersville Reservoir and three in Wheeler Reservoir were correlated with climatological data for three annual cycles. Two of the annual cycles are for the years prior to the Browns Ferry Nuclear Power Plant operations and one is for the first 14 months of Plant operations. A comparison of the results of the annual cycles indicates that two distinct physical conditions in the reservoirs occur, one during the warm months when the reservoirs are at capacity and one during the colder winter months when the reservoirs have been drawn-down for water storage during the rainy months and for weed control. The wide variations of physical and chemical parameters to which the biological organisms are subjected on an annual basis control the biological organisms and their population levels. A comparison of the parameters of the site below the Power plant indicates that the heated effluent from the plant operating with two of the three reactors has not had any effect on the organisms at this site. Recommendations given include the development of prediction mathematical models (statistical analysis) for the physical and chemical parameters under specific climatological conditions which affect biological organisms. Tabulated data of chemical analysis of water and organism populations studied is given.

  7. Chemical and Biological Warfare: Should Rapid Detection Techniques Be Researched To Dissuade Usage? A Review

    OpenAIRE

    Mark R. Hurst; Ebtisam Wilkins

    2005-01-01

    Chemistry, microbiology and genetic engineering have opened new doorways for the human race to propel itself to a better future. However, there is a darker side to Bioengineering. One element of this is the manufacture and proliferation of biological and chemical weapons. It is clearly in the interest of humankind to prevent the future use of such weapons of mass destruction. Though many agents have been proposed as potential biological and chemical weapons, the feasibility of these weapons i...

  8. Control of Dermatomycoses by Physical, Chemical and Biological Agents.

    Science.gov (United States)

    1978-10-31

    were purchased from Sigma Chemical Co. (St. Louis , Mo.). Lycopene was Isolated from tomato according to the method described by Weedor (22...Bacteriol . To E~e pub1Ished in December 1978. 4. Emyanitoff, R. G. and 1. ~1ashimoto . The effect of temperature ,Incubation atmosphere and medium

  9. Structure and biological activity of chemically modified nisin A species

    NARCIS (Netherlands)

    Rollema, Harry S.; Metzger, Jörg W.; Both, Paula; Kuipers, Oscar P.; Siezen, Roland J.

    1996-01-01

    Nisin, a 34-residue peptide bacteriocin, contains the less common amino acids lanthionine, β-methyllanthionine, dehydroalanine (Dha), and dehydrobutyrine (Dhb). Several chemically modified nisin A species were purified by reverse-phase HPLC and characterized by two-dimensional NMR and electrospray m

  10. Polymeric Materials for Protection Against Chemical and Biological Contaminants

    Science.gov (United States)

    2002-09-30

    the demand for a safe antimicrobial and deodorizing treatment, chemical methods have been proposed using as an antimicrobial component, halamines...in an organic solvent such as carbon disulfide, and a Friedei-Crafts acylation was performed utilizing acetyl chloride and the catalyst aluminum

  11. Integrated assessment of oil pollution using biological monitoring and chemical fingerprinting.

    Science.gov (United States)

    Lewis, Ceri; Guitart, Carlos; Pook, Chris; Scarlett, Alan; Readman, James W; Galloway, Tamara S

    2010-06-01

    A full assessment of the impact of oil and chemical spills at sea requires the identification of both the polluting chemicals and the biological effects they cause. Here, a combination of chemical fingerprinting of surface oils, tissue residue analysis, and biological effects measures was used to explore the relationship between spilled oil and biological impact following the grounding of the MSC Napoli container ship in Lyme Bay, England in January 2007. Initially, oil contamination remained restricted to a surface slick in the vicinity of the wreck, and there was no chemical evidence to link biological impairment of animals (the common limpet, Patella vulgata) on the shore adjacent to the oil spill. Secondary oil contamination associated with salvage activities in July 2007 was also assessed. Chemical analyses of aliphatic hydrocarbons and terpanes in shell swabs taken from limpet shells provided an unequivocal match with the fuel oil carried by the ship. Corresponding chemical analysis of limpet tissues revealed increased concentrations of polycyclic aromatic hydrocarbons (PAHs) dominated by phenanthrene and C1 to C3 phenanthrenes with smaller contributions from heavier molecular weight PAHs. Concurrent ecotoxicological tests indicated impairment of cellular viability (p oiled animals. These results illustrate the value of combining biological monitoring with chemical fingerprinting for the rapid identification of spilled oils and their sublethal impacts on biota in situ.

  12. [Advances in studies on chemical constituents and biological activities of Desmodium species].

    Science.gov (United States)

    Liu, Chao; Wu, Ying; Zhang, Qian-Jun; Kang, Wen-Yi; Zhang, Long; Zhou, Qing-Di

    2013-12-01

    The chemical constituents isolated from Desmodium species (Leguminosae) included terpenoids, flavonoids, steroids, alkaloids compounds. Modem pharmacological studies have showed that the Desmodium species have antioxidant, antibacterial, anti-inflammatory, hepatoprotective, diuretic, antipyretic, analgesic and choleretic activity. This article mainly has reviewed the research advances of chemical constituents and biological activities of Desmodium species since 2003.

  13. Compatible biological and chemical control systems for Rhizoctonia solani in potato

    NARCIS (Netherlands)

    Boogert, van den P.H.J.F.; Luttikholt, A.J.G.

    2004-01-01

    A series of chemical and biological control agents were tested for compatibility with the Rhizoctonia-specific biocontrol fungus Verticillium biguttatum aimed at designing novel control strategies for black scurf (Rhizoctonia solani) and other tuber diseases in potato. The efficacy of chemicals, alo

  14. Sino-Dutch joint center for systematic chemical biology opens in Dalian

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The inaugural ceremony for the Sino-Dutch Joint Research Center for Systematic Chemical Biology was held during the "Chinese-Dutch Workshop on Personalized Medicine and Preventive Diagnostics" convened on 10 July at the CAS Dalian Institute of Chemical Physics (DICP).

  15. Towards Complex Abiotic Systems for Chemical and Biological Sensing

    Science.gov (United States)

    2009-11-01

    responses, but most of the work has attempted to couple living cells, their receptors, and even scaffolded tissues to optical or electronic sensors...disparate advances: an Xcell must be an encapsulated compartment in which chemical or light energy is captured and used for biopolymer synthesis. The... biopolymers must be capable of processing and sending signals and performing programmed tasks based on communication with their environment

  16. Studying chemical reactions in biological systems with MBN Explorer

    DEFF Research Database (Denmark)

    Sushko, Gennady B.; Solov'yov, Ilia A.; Verkhovtsev, Alexey V.

    2016-01-01

    The concept of molecular mechanics force field has been widely accepted nowadays for studying various processes in biomolecular systems. In this paper, we suggest a modification for the standard CHARMM force field that permits simulations of systems with dynamically changing molecular topologies....... for studying processes where rupture of chemical bonds plays an essential role, e.g., in irradiation- or collision-induced damage, and also in transformation and fragmentation processes involving biomolecular systems....

  17. Chemical biology--identification of small molecule modulators of cellular activity by natural product inspired synthesis.

    Science.gov (United States)

    Hübel, Katja; Lessmann, Torben; Waldmann, Herbert

    2008-07-01

    The aim of this tutorial review is to introduce the reader to the concept, synthesis and application of natural product-inspired compound collections as an important field in chemical biology. This review will discuss how potentially interesting scaffolds can be identified (structural classification of natural products), synthesized in an appropriate manner (including stereoselective transformations for solid phase-bound compounds) and tested in biological assays (cell-based screening as well as biochemical in vitro assays). These approaches will provide the opportunity to identify new and interesting compounds as well as new targets for chemical biology and medicinal chemistry research.

  18. Free Radicals in Chemical Biology: from Chemical Behavior to Biomarker Development

    OpenAIRE

    2013-01-01

    The involvement of free radicals in life sciences has constantly increased with time and has been connected to several physiological and pathological processes. This subject embraces diverse scientific areas, spanning from physical, biological and bioorganic chemistry to biology and medicine, with applications to the amelioration of quality of life, health and aging. Multidisciplinary skills are required for the full investigation of the many facets of radical processes in the biological envi...

  19. HExpoChem: a systems biology resource to explore human exposure to chemicals

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Jacobsen, Ulrik Plesner; Kalhauge, Christian Gram

    2013-01-01

    Summary: Humans are exposed to diverse hazardous chemicals daily. Although an exposure to these chemicals is suspected to have adverse effects on human health, mechanistic insights into how they interact with the human body are still limited. Therefore, acquisition of curated data and development...... of computational biology approaches are needed to assess the health risks of chemical exposure. Here we present HExpoChem, a tool based on environmental chemicals and their bioactivities on human proteins with the objective of aiding the qualitative exploration of human exposure to chemicals. The chemical......–protein interactions have been enriched with a quality-scored human protein–protein interaction network, a protein–protein association network and a chemical–chemical interaction network, thus allowing the study of environmental chemicals through formation of protein complexes and phenotypic outcomes enrichment...

  20. Intraspecific variation in body size and the rate of reproduction in female insects - adaptive allometry or biophysical constraint?

    Science.gov (United States)

    Berger, David; Olofsson, Martin; Friberg, Magne; Karlsson, Bengt; Wiklund, Christer; Gotthard, Karl; Gilburn, Andre

    2012-11-01

    1. A high rate of reproduction may be costly if ecological factors limit immediate reproductive output as a fast metabolism compromises own future survival. Individuals with more reserves need more time and opportunity to realize their reproductive potential. Theory therefore predicts that the reproductive rate, defined as the investment in early reproduction in proportion to total potential, should decrease with body size within species. 2. However, metabolic constraints on body size- and temperature-dependent biological rates may impede biophysical adaptation. Furthermore, the sequential manner resources that are allocated to somatic vs. reproductive tissue during ontogeny may, when juveniles develop in unpredictable environments, further contribute to non-adaptive variation in adult reproductive rates. 3. With a model on female egg laying in insects, we demonstrate how variation in body reserves is predicted to affect reproductive rate under different ecological scenarios. Small females always have higher reproductive rates but shorter lifespans. However, incorporation of female host selectivity leads to more similar reproductive rates among female size classes, and oviposition behaviour is predicted to co-evolve with reproductive rate, resulting in small females being more selective in their choice and gaining relatively more from it. 4. We fed simulations with data on the butterfly Pararge aegeria to compare model predictions with reproductive rates of wild butterflies. However, simulated reproductive allometry was a poor predictor of that observed. Instead, reproductive rates were better explained as a product of metabolic constraints on rates of egg maturation, and an empirically derived positive allometry between reproductive potential and size. However, fitness is insensitive to moderate deviations in reproductive rate when oviposition behaviour is allowed to co-evolve in the simulations, suggesting that behavioural compensation may mitigate putative

  1. Effect of Biological and Chemical Pre-treatment on the Hydrolysis of Corn Leaf

    Directory of Open Access Journals (Sweden)

    Kenia Ángeles Ramírez

    2014-09-01

    Full Text Available Hydrolysis of corn leaf utilizing two treatment sequences was carried out in this study. The first treatment was chemical and involved subjecting the corn leaf to an alkaline pre-treatment and then to a smooth acid hydrolysis. The second consisted of biological delignification using the strain Trametes sp. 44 H88, followed by enzymatic hydrolysis using the enzymatic extract produced by Trichoderma sp. H88. The ligninolytic extract produced by Trametes sp. 44 H88 was used to detoxify the hydrolyzate. The results indicate that biological pre-treatment with delignification is more favorable and improves the subsequent hydrolysis, regardless of whether the hydrolysis is chemical or biological. The chemical treatment sequence obtained 80% conversion of monosaccharides, while the biological treatment sequence resulted in a 87% conversion rate. Finally, the use of the ligninolytic extract for the dephenolization of the hydrolyzate reduced the presence of compounds of phenolic origin by 23%.

  2. Clustering and rule-based classifications of chemical structures evaluated in the biological activity space.

    Science.gov (United States)

    Schuffenhauer, Ansgar; Brown, Nathan; Ertl, Peter; Jenkins, Jeremy L; Selzer, Paul; Hamon, Jacques

    2007-01-01

    Classification methods for data sets of molecules according to their chemical structure were evaluated for their biological relevance, including rule-based, scaffold-oriented classification methods and clustering based on molecular descriptors. Three data sets resulting from uniformly determined in vitro biological profiling experiments were classified according to their chemical structures, and the results were compared in a Pareto analysis with the number of classes and their average spread in the profile space as two concurrent objectives which were to be minimized. It has been found that no classification method is overall superior to all other studied methods, but there is a general trend that rule-based, scaffold-oriented methods are the better choice if classes with homogeneous biological activity are required, but a large number of clusters can be tolerated. On the other hand, clustering based on chemical fingerprints is superior if fewer and larger classes are required, and some loss of homogeneity in biological activity can be accepted.

  3. Biological and chemical removal of Cr(VI) from waste water: cost and benefit analysis.

    Science.gov (United States)

    Demir, Aynur; Arisoy, Münevver

    2007-08-17

    The objective of the present study is cost and benefit analysis of biological and chemical removal of hexavalent chromium [Cr(VI)] ions. Cost and benefit analysis were done with refer to two separate studies on removal of Cr(VI), one of heavy metals with a crucial role concerning increase in environmental pollution and disturbance of ecological balance, through biological adsorption and chemical ion-exchange. Methods of biological and chemical removal were compared with regard to their cost and percentage in chrome removal. According to the result of the comparison, cost per unit in chemical removal was calculated 0.24 euros and the ratio of chrome removal was 99.68%, whereas those of biological removal were 0.14 and 59.3% euros. Therefore, it was seen that cost per unit in chemical removal and chrome removal ratio were higher than those of biological removal method. In the current study where chrome removal is seen as immeasurable benefit in terms of human health and the environment, percentages of chrome removal were taken as measurable benefit and cost per unit of the chemicals as measurable cost.

  4. Brain evolution and development: adaptation, allometry and constraint

    Science.gov (United States)

    Barton, Robert A.

    2016-01-01

    Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns. PMID:27629025

  5. Allometry of sexual size dimorphism in domestic dog.

    Directory of Open Access Journals (Sweden)

    Daniel Frynta

    Full Text Available BACKGROUND: The tendency for male-larger sexual size dimorphism (SSD to scale with body size - a pattern termed Rensch's rule - has been empirically supported in many animal lineages. Nevertheless, its theoretical elucidation is a subject of debate. Here, we exploited the extreme morphological variability of domestic dog (Canis familiaris to gain insights into evolutionary causes of this rule. METHODOLOGY/PRINCIPAL FINDINGS: We studied SSD and its allometry among 74 breeds ranging in height from less than 19 cm in Chihuahua to about 84 cm in Irish wolfhound. In total, the dataset included 6,221 individuals. We demonstrate that most dog breeds are male-larger, and SSD in large breeds is comparable to SSD of their wolf ancestor. Among breeds, SSD becomes smaller with decreasing body size. The smallest breeds are nearly monomorphic. CONCLUSIONS/SIGNIFICANCE: SSD among dog breeds follows the pattern consistent with Rensch's rule. The variability of body size and corresponding changes in SSD among breeds of a domestic animal shaped by artificial selection can help to better understand processes leading to emergence of Rensch's rule.

  6. The bioartificial pancreas (BAP): Biological, chemical and engineering challenges.

    Science.gov (United States)

    Iacovacci, Veronica; Ricotti, Leonardo; Menciassi, Arianna; Dario, Paolo

    2016-01-15

    The bioartificial pancreas (BAP) represents a viable solution for the treatment of type 1 diabetes (T1D). By encapsulating pancreatic cells in a semipermeable membrane to allow nutrient, insulin and glucose exchange, the side effects produced by islets and whole organ transplantation-related immunosuppressive therapy can be circumvented. Several factors, mainly related to materials properties, capsule morphology and biological environment, play a key role in optimizing BAP systems. The BAP is an extremely complex delivery system for insulin. Despite considerable efforts, in some instances meeting with limited degree of success, a BAP capable of restoring physiological pancreas functions without the need for immunosuppressive drugs and of controlling blood glucose levels especially in large animal models and a few clinical trials, does not exist. The state of the art in terms of materials, fabrication techniques and cell sources, as well as the current status of commercial devices and clinical trials, are described in this overview from an interdisciplinary viewpoint. In addition, challenges to the creation of effective BAP systems are highlighted including future perspectives in terms of component integration from both a biological and an engineering viewpoint.

  7. Piezoelectric microelectromechanical resonant sensors for chemical and biological detection.

    Science.gov (United States)

    Pang, Wei; Zhao, Hongyuan; Kim, Eun Sok; Zhang, Hao; Yu, Hongyu; Hu, Xiaotang

    2012-01-07

    Piezoelectric microelectromechanical systems (MEMS) resonant sensors, known for their excellent mass resolution, have been studied for many applications, including DNA hybridization, protein-ligand interactions, and immunosensor development. They have also been explored for detecting antigens, organic gas, toxic ions, and explosives. Most piezoelectric MEMS resonant sensors are acoustic sensors (with specific coating layers) that enable selective and label-free detection of biological events in real time. These label-free technologies have recently garnered significant attention for their sensitive and quantitative multi-parameter analysis of biological systems. Since piezoelectric MEMS resonant sensors do more than transform analyte mass or thickness into an electrical signal (e.g., frequency and impedance), special attention must be paid to their potential beyond microweighing, such as measuring elastic and viscous properties, and several types of sensors currently under development operate at different resonant modes (i.e., thickness extensional mode, thickness shear mode, lateral extensional mode, flexural mode, etc.). In this review, we provide an overview of recent developments in micromachined resonant sensors and activities relating to biochemical interfaces for acoustic sensors.

  8. Chemical Biology Studies on Molecular Diversity of Annonaceous Acetogenins

    Institute of Scientific and Technical Information of China (English)

    Yao Zhu-Jun

    2004-01-01

    Annonaceous acetogenins, isolated from the Annonaceae plants, have been attracting worldwide attention in recent years due to their biological activities, especially as growth inhibitors of certain tumor ceils [ 1 ]. They have been shown to function by blocking complex I in mitochondria [2] as well as ubiquinone-linked NADPH oxidase in the cells of specific tumor cell lines, including some multidrug-resistant ones [3]. These features make these acetogenins excellent leads for the new antitumor agents. In our previous work, the compounds 1a to 1d (Figure 1), which relies on structure simplification while maintaining all essential functionalities of the acetogenins, was in vitro tested against several human solid tumor cell lines and showed interesting cell selectivity [4]. All four analogues show remarkable activity against the HCT-8 and HT-29 cell lines, while compound 1c was found the best [4bi. In order to further investigate the effects of key structural features, a convergent parallel fragments assembly strategy was developed [4e]. In addition, the biological relevancies of typical annonaceous acetogenin mimetics were also studied [4f].

  9. Group behaviour in physical, chemical and biological systems

    Indian Academy of Sciences (India)

    Cihan Saçlioğlu; Önder Pekcan; Vidyanand Nanjundiah

    2014-04-01

    Groups exhibit properties that either are not perceived to exist, or perhaps cannot exist, at the individual level. Such `emergent’ properties depend on how individuals interact, both among themselves and with their surroundings. The world of everyday objects consists of material entities. These are, ultimately, groups of elementary particles that organize themselves into atoms and molecules, occupy space, and so on. It turns out that an explanation of even the most commonplace features of this world requires relativistic quantum field theory and the fact that Planck’s constant is discrete, not zero. Groups of molecules in solution, in particular polymers (`sols’), can form viscous clusters that behave like elastic solids (`gels’). Sol-gel transitions are examples of cooperative phenomena. Their occurrence is explained by modelling the statistics of inter-unit interactions: the likelihood of either state varies sharply as a critical parameter crosses a threshold value. Group behaviour among cells or organisms is often heritable and therefore can evolve. This permits an additional, typically biological, explanation for it in terms of reproductive advantage, whether of the individual or of the group. There is no general agreement on the appropriate explanatory framework for understanding group-level phenomena in biology.

  10. Recent Developments in the Application of Biologically Inspired Computation to Chemical Sensing

    Science.gov (United States)

    Marco, S.; Gutierrez-Gálvez, A.

    2009-05-01

    Biological olfaction outperforms chemical instrumentation in specificity, response time, detection limit, coding capacity, time stability, robustness, size, power consumption, and portability. This biological function provides outstanding performance due, to a large extent, to the unique architecture of the olfactory pathway, which combines a high degree of redundancy, an efficient combinatorial coding along with unmatched chemical information processing mechanisms. The last decade has witnessed important advances in the understanding of the computational primitives underlying the functioning of the olfactory system. In this work, the state of the art concerning biologically inspired computation for chemical sensing will be reviewed. Instead of reviewing the whole body of computational neuroscience of olfaction, we restrict this review to the application of models to the processing of real chemical sensor data.

  11. Male mate choice scales female ornament allometry in a cichlid fish

    Directory of Open Access Journals (Sweden)

    Kullmann Harald

    2010-10-01

    Full Text Available Abstract Background Studies addressing the adaptive significance of female ornamentation have gained ground recently. However, the expression of female ornaments in relation to body size, known as trait allometry, still remains unexplored. Here, we investigated the allometry of a conspicuous female ornament in Pelvicachromis taeniatus, a biparental cichlid that shows mutual mate choice and ornamentation. Females feature an eye-catching pelvic fin greatly differing from that of males. Results We show that allometry of the female pelvic fin is scaled more positively in comparison to other fins. The pelvic fin exhibits isometry, whereas the other fins (except the caudal fin show negative allometry. The size of the pelvic fin might be exaggerated by male choice because males prefer female stimuli that show a larger extension of the trait. Female pelvic fin size is correlated with individual condition, suggesting that males can assess direct and indirect benefits. Conclusions The absence of positive ornament allometry might be a result of sexual selection constricted by natural selection: fins are related to locomotion and thus may be subject to viability selection. Our study provides evidence that male mate choice might scale the expression of a female sexual ornament, and therefore has implications for the understanding of the relationship of female sexual traits with body size in species with conventional sex-roles.

  12. Biological Kraft Chemical Recycle for Augmentation of Recovery Furnace Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Stuart E. Strand

    2001-12-06

    The chemicals used in pulping of wood by the kraft process are recycled in the mill in the recovery furnace, which oxidizes organics while simultaneously reducing sulfate to sulfide. The recovery furnace is central to the economical operation of kraft pulp mills, but it also causes problems. The total pulp production of many mills is limited by the recovery furnace capacity, which cannot easily be increased. The furnace is one of the largest sources of air pollution (as reduced sulfur compounds) in the kraft pulp mill.

  13. Chemical and biological insecticides select distinct gene expression patterns in Aedes aegypti mosquito.

    Science.gov (United States)

    Després, Laurence; Stalinski, Renaud; Faucon, Frédéric; Navratil, Vincent; Viari, Alain; Paris, Margot; Tetreau, Guillaume; Poupardin, Rodolphe; Riaz, Muhammad Asam; Bonin, Aurélie; Reynaud, Stéphane; David, Jean-Philippe

    2014-12-01

    Worldwide evolution of mosquito resistance to chemical insecticides represents a major challenge for public health, and the future of vector control largely relies on the development of biological insecticides that can be used in combination with chemicals (integrated management), with the expectation that populations already resistant to chemicals will not become readily resistant to biological insecticides. However, little is known about the metabolic pathways affected by selection with chemical or biological insecticides. Here we show that Aedes aegypti, a laboratory mosquito strain selected with a biological insecticide (Bacillus thuringiensis israelensis, Bti) evolved increased transcription of many genes coding for endopeptidases while most genes coding for detoxification enzymes were under-expressed. By contrast, in strains selected with chemicals, genes encoding detoxification enzymes were mostly over-expressed. In all the resistant strains, genes involved in immune response were under-transcribed, suggesting that basal immunity might be a general adjustment variable to compensate metabolic costs caused by insecticide selection. Bioassays generally showed no evidence for an increased susceptibility of selected strains towards the other insecticide type, and all chemical-resistant strains were as susceptible to Bti as the unselected parent strain, which is a good premise for sustainable integrated management of mosquito populations resistant to chemicals.

  14. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis.

    Science.gov (United States)

    Crane, Erika A; Gademann, Karl

    2016-03-14

    Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody-drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products.

  15. Chemical Composition and Biological Properties of Rhododendron anthopogon Essential Oil

    Directory of Open Access Journals (Sweden)

    Gabbriella Innocenti

    2010-03-01

    Full Text Available The essential oil of Rhododendron anthopogon was investigated by GC-MS, and seventeen compounds (representing approximately 98% of the oil were identified. The major components of the aerial parts of the oil were the monoterpenes α-pinene, β-pinene, limonene and the sesquiterpene δ-cadinene. Biological studies revealed a weak topical anti-inflammatory activity; a significant killing effect against some Gram-positive reference strains: Staphylococcus aureus, Enterococcusfecalis, Bacillus subtilis was measured; Mycobacterium tuberculosis reference strain and a clinical isolate of Candida, C. pseudotropicalis were killed by as low as 0.04% (v/v essential oil. Moreover, the oil was able to reduce cancer cell growth independently of the cell line and the treatment protocols used.

  16. Chemical Analysis and Biological Activity of Jordanian Chamomile Extracts

    Directory of Open Access Journals (Sweden)

    Nawal Hassan Al Bahtiti

    2012-02-01

    Full Text Available The Jordanian chamomile (Matricaria chamomilla has been researched more thoroughly to evaluate its useful properties. It is investigated and found that Jordanian chamomile is rich in phenolic compounds, with beneficial biological activities. By applying the most promising HPLC method, the content of total phenolics in methanolic extract was determined according to the Folin-Clocalteu procedure, and was found (GAE>20 mg/g. The flavonoid types were found as flavones and flavonolos.The minimum inhibitory concentration values for methanolic extracts of Jordanian chamomile were determined for different kinds of bacteria. The extracts have activity against Staphylococcus aurous, candida albicans, Esherichia Coli, Betula pubescens and Pinus sylvestris. The activity has been observed to be due to the tannins and a pigenin present in the extract. To utilize these significant sources of natural compounds, further characterization of phenolic composition is needed.

  17. Deciduous and evergreen trees differ in juvenile biomass allometries because of differences in allocation to root storage

    NARCIS (Netherlands)

    Tomlinson, K.W.; Langevelde, van F.; Ward, D.; Bongers, F.J.J.M.; Alves da Silva, D.; Prins, H.H.T.; Bie, de S.; Sterck, F.J.

    2013-01-01

    Background and Aims - Biomass partitioning for resource conservation might affect plant allometry, accounting for a substantial amount of unexplained variation in existing plant allometry models. One means of resource conservation is through direct allocation to storage in particular organs. In this

  18. Non-Chemical Distant Cellular Interactions as a potential confounder of Cell Biology Experiments

    Directory of Open Access Journals (Sweden)

    Ashkan eFarhadi

    2014-10-01

    Full Text Available Distant cells can communicate with each other through a variety of methods. Two such methods involve electrical and/or chemical mechanisms. Non-chemical, distant cellular interactions may be another method of communication that cells can use to modify the behavior of other cells that are mechanically separated. Moreover, non-chemical, distant cellular interactions may explain some cases of confounding effects in Cell Biology experiments. In this article, we review non-chemical, distant cellular interactions studies to try to shed light on the mechanisms in this highly unconventional field of cell biology. Despite the existence of several theories that try to explain the mechanism of non-chemical, distant cellular interactions, this phenomenon is still speculative. Among candidate mechanisms, electromagnetic waves appear to have the most experimental support. In this brief article, we try to answer a few key questions that may further clarify this mechanism.

  19. Chemical constituents from Cornus officinalis and their biological activity 1

    Directory of Open Access Journals (Sweden)

    Zhan-Ying Ma

    2012-01-01

    Full Text Available Objective: To study the chemical constituents from Cornus officinalis Sieb., Et Zucc, and their peroxisome proliferator-activated receptors (PPARs agonist activity. Materials and Methods: The leaves of C. officinalis were extracted three times with 90% EtOH at room temperature. The ethanol extracts were combined and concentrated under reduced pressure to yield residue, which was isolated and purified by silica gel and reverse-phase C 18 column chromatography. The structures were elucidated on the basis of spectroscopic evidence and their physiochemical characteristics. Cell-based luciferase reporter gene assays were used to evaluate PPARα/γ agonistic activities. Results: Five compounds were isolated and elucidated as 10-hydroxyhastatoside (1, β-dihydrocornin (2, isoquercitrin (3, loganin (4 and oleanolic acid (5. Conclusion: Compounds 1 and 2 were obtained from C. officinalis for the first time. Compound 3 exhibited moderate agonistic activities for PPARα, with EC 50 values of 29.5 μM.

  20. Psychological casualties resulting from chemical and biological weapons.

    Science.gov (United States)

    Romano, J A; King, J M

    2001-12-01

    This symposium addresses the complications encountered by medical planners when confronted by the use or threat of the use of weapons of mass destruction. The types of chemical warfare agents (CWA), their principal target organs, and physiological effects are discussed. We have reviewed the use of CWA in 20th century warfare and otherwise with emphasis on five cases: (1) use of sulfur mustard during World War I; (2) use by Italy against Ethiopia; (3) use in the Sino-Japanese War; (4) relatively well-studied use in the Iran-Iraq conflict; and (5) the use of sarin in the Tokyo subway terrorist incident. We reviewed the additional physiological and psychological consequences of their use and threat of use. Results from training and simulation are discussed. Finally, we present our conclusions derived from the analysis of these historical situations.

  1. Silicon chip integrated photonic sensors for biological and chemical sensing

    Science.gov (United States)

    Chakravarty, Swapnajit; Zou, Yi; Yan, Hai; Tang, Naimei; Chen, Ray T.

    2016-03-01

    We experimentally demonstrate applications of photonic crystal waveguide based devices for on-chip optical absorption spectroscopy for the detection of chemical warfare simulant, triethylphosphate as well as applications with photonic crystal microcavity devices in the detection of biomarkers for pancreatic cancer in patient serum and cadmium metal ions in heavy metal pollution sensing. At mid-infrared wavelengths, we experimentally demonstrate the higher sensitivity of photonic crystal based structures compared to other nanophotonic devices such as strip and slot waveguides with detection down to 10ppm triethylphosphate. We also detected 5ppb (parts per billion) of cadmium metal ions in water at near-infrared wavelengths using established techniques for the detection of specific probe-target biomarker conjugation chemistries.

  2. Functional Nanostructured Platforms for Chemical and Biological Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Letant, S E

    2006-03-20

    The central goal of our work is to combine semiconductor nanotechnology and surface functionalization in order to build platforms for the selective detection of bio-organisms ranging in size from bacteria (micron range) down to viruses, as well as for the detection of chemical agents (nanometer range). We will show on three porous silicon platforms how pore geometry and pore wall chemistry can be combined and optimized to capture and detect specific targets. We developed a synthetic route allowing to directly anchor proteins on silicon surfaces and illustrated the relevance of this technique by immobilizing live enzymes onto electrochemically etched luminescent nano-porous silicon. The powerful association of the specific enzymes with the transducing matrix led to a selective hybrid platform for chemical sensing. We also used light-assisted electrochemistry to produce periodic arrays of through pores on pre-patterned silicon membranes with controlled diameters ranging from many microns down to tens of nanometers. We demonstrated the first covalently functionalized silicon membranes and illustrated their selective capture abilities with antibody-coated micro-beads. These engineered membranes are extremely versatile and could be adapted to specifically recognize the external fingerprints (size and coat composition) of target bio-organisms. Finally, we fabricated locally functionalized single nanopores using a combination of focused ion beam drilling and ion beam assisted oxide deposition. We showed how a silicon oxide ring can be grown around a single nanopore and how it can be functionalized with DNA probes to detect single viral-sized beads. The next step for this platform is the detection of whole viruses and bacteria.

  3. TOPICAL REVIEW: Biological and chemical sensors for cancer diagnosis

    Science.gov (United States)

    Simon, Elfriede

    2010-11-01

    The great challenge for sensor systems to be accepted as a relevant diagnostic and therapeutic tool for cancer detection is the ability to determine the presence of relevant biomarkers or biomarker patterns comparably to or even better than the traditional analytical systems. Biosensor and chemical sensor technologies are already used for several clinical applications such as blood glucose or blood gas measurements. However, up to now not many sensors have been developed for cancer-related tests because only a few of the biomarkers have shown clinical relevance and the performance of the sensor systems is not always satisfactory. New genomic and proteomic tools are used to detect new molecular signatures and identify which combinations of biomarkers may detect best the presence or risk of cancer or monitor cancer therapies. These molecular signatures include genetic and epigenetic signatures, changes in gene expressions, protein biomarker profiles and other metabolite profile changes. They provide new changes in using different sensor technologies for cancer detection especially when complex biomarker patterns have to be analyzed. To address requirements for this complex analysis, there have been recent efforts to develop sensor arrays and new solutions (e.g. lab on a chip) in which sampling, preparation, high-throughput analysis and reporting are integrated. The ability of parallelization, miniaturization and the degree of automation are the focus of new developments and will be supported by nanotechnology approaches. This review recaps some scientific considerations about cancer diagnosis and cancer-related biomarkers, relevant biosensor and chemical sensor technologies, their application as cancer sensors and consideration about future challenges.

  4. EU-OPENSCREEN-chemical tools for the study of plant biology and resistance mechanisms.

    Science.gov (United States)

    Meiners, Torsten; Stechmann, Bahne; Frank, Ronald

    2014-10-01

    EU-OPENSCREEN is an academic research infrastructure initiative in Europe for enabling researchers in all life sciences to take advantage of chemical biology approaches to their projects. In a collaborative effort of national networks in 16 European countries, EU-OPENSCREEN will develop novel chemical compounds with external users to address questions in, among other fields, systems and network biology (directed and selective perturbation of signalling pathways), structural biology (compound-target interactions at atomic resolution), pharmacology (early drug discovery and toxicology) and plant biology (response of wild or crop plants to environmental and agricultural substances). EU-OPENSCREEN supports all stages of a tool development project, including assay adaptation, high-throughput screening and chemical optimisation of the 'hit' compounds. All tool compounds and data will be made available to the scientific community. EU-OPENSCREEN integrates high-capacity screening platforms throughout Europe, which share a rationally selected compound collection comprising up to 300,000 (commercial and proprietary compounds collected from European chemists). By testing systematically this chemical collection in hundreds of assays originating from very different biological themes, the screening process generates enormous amounts of information about the biological activities of the substances and thereby steadily enriches our understanding of how and where they act.

  5. A chemical-biological similarity-based grouping of complex substances as a prototype approach for evaluating chemical alternatives.

    Science.gov (United States)

    Grimm, Fabian A; Iwata, Yasuhiro; Sirenko, Oksana; Chappell, Grace A; Wright, Fred A; Reif, David M; Braisted, John; Gerhold, David L; Yeakley, Joanne M; Shepard, Peter; Seligmann, Bruce; Roy, Tim; Boogaard, Peter J; Ketelslegers, Hans B; Rohde, Arlean M; Rusyn, Ivan

    2016-08-21

    Comparative assessment of potential human health impacts is a critical step in evaluating both chemical alternatives and existing products on the market. Most alternatives assessments are conducted on a chemical-by-chemical basis and it is seldom acknowledged that humans are exposed to complex products, not individual substances. Indeed, substances of Unknown or Variable composition, Complex reaction products, and Biological materials (UVCBs) are ubiquitous in commerce yet they present a major challenge for registration and health assessments. Here, we present a comprehensive experimental and computational approach to categorize UVCBs according to global similarities in their bioactivity using a suite of in vitro models. We used petroleum substances, an important group of UVCBs which are grouped for regulatory approval and read-across primarily on physico-chemical properties and the manufacturing process, and only partially based on toxicity data, as a case study. We exposed induced pluripotent stem cell-derived cardiomyocytes and hepatocytes to DMSO-soluble extracts of 21 petroleum substances from five product groups. Concentration-response data from high-content imaging in cardiomyocytes and hepatocytes, as well as targeted high-throughput transcriptomic analysis of the hepatocytes, revealed distinct groups of petroleum substances. Data integration showed that bioactivity profiling affords clustering of petroleum substances in a manner similar to the manufacturing process-based categories. Moreover, we observed a high degree of correlation between bioactivity profiles and physico-chemical properties, as well as improved groupings when chemical and biological data were combined. Altogether, we demonstrate how novel in vitro screening approaches can be effectively utilized in combination with physico-chemical characteristics to group complex substances and enable read-across. This approach allows for rapid and scientifically-informed evaluation of health impacts of

  6. Chemical composition and biological screening of Capsella bursa-pastoris

    Directory of Open Access Journals (Sweden)

    Clara Grosso

    2011-08-01

    Full Text Available Capsella bursa-pastoris (L. Medik. (Brassicaceae is a wild herb with high nutritional value that can be eaten raw or cooked. A metabolomic study was performed with different extracts of its aerial parts that were tested concerning their antiradical, acetylcholinesterase inhibitory and antibacterial activities. Phenolic compounds were identified and quantified by HPLC-DAD, organic acids and amino acids were determined by HPLC-UV, while free fatty acids and sterols were analysed by GC-ITMS. The vegetal material was rich in kaempferol-3-O-rutinoside (mean value 2247.09 mg/kg of dry plant, quinic acid (95628.00 mg/kg of dry plant, arginine (mean value of 1.18 mg/kg of dry plant, palmitic acid (284.48 mg/kg and β-sitosterol (28%. The extracts presented a concentration-dependent antiradical activity (against DPPH•, O2•- and LOO•, being most effective against •NO (EC25 0.20 µg/mL. In addition, the extracts were also acetylcholinesterase inhibitors and antibacterial active, revealing that, besides the plant's good nutritional value, it presents important biological properties as well.

  7. Chemical and biological characterization of sclerosin, an antifungal lipopeptide.

    Science.gov (United States)

    Berry, Chrystal L; Brassinga, Ann Karen C; Donald, Lynda J; Fernando, W G Dilantha; Loewen, Peter C; de Kievit, Teresa R

    2012-08-01

    Pseudomonas sp. strain DF41 produces a lipopeptide, called sclerosin that inhibits the fungal pathogen Sclerotinia sclerotiorum . The aim of the current study was to deduce the chemical structure of this lipopeptide and further characterize its bioactivity. Mass spectrometry analysis determined the structure of sclerosin to be CH(3)-(CH(2))(6)-CH(OH)-CH(2)-CO-Dhb-Pro-Ala-Leu/Ile-Ala-Val-Val-Dhb-Thr-Val-Leu/Ile-Dhp-Ala-Ala-Ala-Val-Dhb-Dhb-Ala-Dab-Ser-Val-OH, similar to corpeptins A and B of the tolaasin group, differing by only 3 amino acids in the peptide chain. Subjecting sclerosin to various ring opening procedures revealed no new ions, suggesting that this molecule is linear. As such, sclerosin represents a new member of the tolaasin lipopeptide group. Incubation of S. sclerotinia ascospores and sclerotia in the presence of sclerosin inhibited the germination of both cell types. Sclerosin also exhibited antimicrobial activity against Bacillus species. Conversely, this lipopeptide demonstrated no zoosporicidal activity against the oomycete pathogen Phytophthora infestans . Next, we assessed the effect of DF41 and a lipopeptide-deficient mutant on the growth and development of Caenorhabditis elegans larvae. We discovered that sclerosin did not protect DF41 from ingestion by and degradation in the C. elegans digestive tract. However, another metabolite produced by this bacterium appeared to shorten the life-span of the nematode compared to C. elegans growing on Escherichia coli OP50.

  8. Biological treatments affect the chemical composition of coffee pulp.

    Science.gov (United States)

    Ulloa Rojas, J B; Verreth, J A J; Amato, S; Huisman, E A

    2003-09-01

    Biological treatments were applied to fresh coffee pulp (CoP) to improve its nutritive value for monogastric animals by reducing its content of cellulose and antinutritional factors (ANFs) such as total phenols, tannins and caffeine. Treatments were: (1) ensiling with 0, 50 and 100 gkg(-1) molasses for 2 and 3 months, (2) aerobic decomposition for 0, 7, 14, 21, 28, 35 and 42 days, (3) aerobic bacterial inoculation (Bacillus sp.) for 0, 7, 14, 21 and 28 days. Ensiled CoP (E-CoP) showed higher fat and ash contents than oven-dried-CoP (OD-CoP; P<0.05). Similarly, true protein values tended to increase. The cellulose and total phenols levels of E-CoP were lower than OD-CoP (P<0.05). The E-CoP tannins levels tended to be lower than OD-CoP whereas caffeine levels remained unaffected. Improvement in the nutritional quality of E-CoP was associated with higher fat and protein contents and reduction of cellulose, total phenols and tannins. The aerobic decomposition treatment improved the nutritional quality of CoP by increasing true protein and fat contents. In addition, total phenols, tannins, caffeine and cellulose contents were reduced by an increase in treatment time (P<0.05). Bacterial treatment increased the protein content of CoP after 21 days (from 137 to 392 gkg(-1)) and decreased it after 28 days. Cellulose, total phenols, tannins and caffeine contents reduced with an increase in time of bacterial degradation. Bacterial treatment improved the CoP quality by increasing protein content and reducing cellulose and ANFs, especially after 21 days of treatment. Both the aerobic decomposition (after 21-28 days) and the aerobic bacterial degradation of CoP (after 21 days) appeared more suitable to improve the nutritional quality of CoP than the ensiling.

  9. Water quality index calculated from biological, physical and chemical attributes.

    Science.gov (United States)

    Rocha, Francisco Cleiton; Andrade, Eunice Maia; Lopes, Fernando Bezerra

    2015-01-01

    To ensure a safe drinking water supply, it is necessary to protect water quality. To classify the suitability of the Orós Reservoir (Northeast of Brazil) water for human consumption, a Water Quality Index (WQI) was enhanced and refined through a Principal Component Analysis (PCA). Samples were collected bi-monthly at seven points (P1 - P7) from July 2009 to July 2011. Samples were analysed for 29 physico-chemical attributes and 4 macroinvertebrate metrics associated with the macrophytes Pistia stratiotes and Eichhornia crassipes. PCA allowed us to reduce the number of attributes from 33 to 12, and 85.32% of the variance was explained in five dimensions (C1 - C5). Components C1 and C3 were related to water-soluble salts and reflect the weathering process, while C2 was related to surface runoff. C4 was associated with macroinvertebrate diversity, represented by ten pollution-resistant families. C5 was related to the nutrient phosphorus, an indicator of the degree of eutrophication. The mean values for the WQIs ranged from 49 to 65 (rated as fair), indicating that water can be used for human consumption after treatment. The lowest values for the WQI were recorded at the entry points to the reservoir (P3, P1, P5, and P4), while the best WQIs were recorded at the exit points (P6 and P7), highlighting the reservoir's purification ability. The proposed WQI adequately expressed water quality, and can be used for monitoring surface water quality.

  10. Grasping the nature of the cell interior: from Physiological Chemistry to Chemical Biology.

    Science.gov (United States)

    Kyne, Ciara; Crowley, Peter B

    2016-08-01

    Current models of the cell interior emphasise its crowded, chemically complex and dynamically organised structure. Although the chemical composition of cells is known, the cooperative intermolecular interactions that govern cell ultrastructure are poorly understood. A major goal of biochemistry is to capture these myriad interactions in vivo. We consider the landmark discoveries that have shaped this objective, starting from the vitalist framework established by early natural philosophers. Through this historical revisionism, we extract important lessons for the bioinspired chemists of today. Scientific specialisation tends to insulate seminal ideas and hamper the unification of paradigms across biology. Therefore, we call for interdisciplinary collaboration in grappling with the complex cell interior. Recent successes in integrative structural biology and chemical biology demonstrate the power of hybrid approaches. The future roles of the (bio)chemist and model systems are also discussed as starting points for in vivo explorations.

  11. Emergency response to nuclear, biological and chemical incidents:challenges and countermeasures

    Institute of Scientific and Technical Information of China (English)

    Hai-Long Li; Wen-Jun Tang; Ya-Kun Ma; Ji-Min Jia; Rong-Li Dang; Er-Chen Qiu

    2015-01-01

    Given the multiple terrorist attacks that have occurred in recent years in China, medical rescue teams and specialized incident assessment teams have been established by the government; however, medical rescue after nuclear, biological, and chemical incidents remains challenging and is often inefficient. In the present article, problems were analyzed regarding the assessment of responder countermeasures, training of professionals and the management of emergency medical incidents related to nuclear, biological and chemical attacks. Countermeasures, the establishment of response coordination, public education, practical training and exercise, and a professional consultant team or system should be the focus of emergency medical response facilities. Moreover, the government was offered professionals who are involved in managing nuclear, biological and chemical incidents.

  12. Height-diameter allometry of tropical forest trees

    Directory of Open Access Journals (Sweden)

    T. R. Feldpausch

    2010-10-01

    Full Text Available Tropical tree height-diameter (H:D relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were:

      1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap.

      2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A.

      3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass.

    Annual precipitation coefficient of variation (PV, dry season length (SD, and mean annual air temperature (TA emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere.

    The region-environment-structure model with the lowest Akaike's information criterion and lowest deviation estimated stand-level H across all plots to within a median –2.7 to 0.9% of the true value. Some of the plot

  13. Height-diameter allometry of tropical forest trees

    Directory of Open Access Journals (Sweden)

    T. R. Feldpausch

    2011-05-01

    Full Text Available Tropical tree height-diameter (H:D relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were:

    1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap.

    2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A.

    3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass.

    Annual precipitation coefficient of variation (PV, dry season length (SD, and mean annual air temperature (TA emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere. The region-environment-structure model with the lowest Akaike's information criterion and lowest deviation estimated stand-level H across all plots to within amedian −2.7 to 0.9% of the true value. Some of the plot-to-plot variability in

  14. BAAD: a Biomass And Allometry Database for woody plants

    Energy Technology Data Exchange (ETDEWEB)

    Falster, Daniel; Duursma, Remko; Ishihara, Masae; Barneche, Diego; Fitzjohn, Richard; Varhammar, Angelica; Aiba, Masahiro; Ando, M.; Anten, Niels; Aspinwall, Michael J.; Baltzer, Jennifer; Baraloto, Christopher; Battaglia, Michael; Battles, John; Bond-Lamberty, Benjamin; van Breugel, Michiel; Camac, James; Claveau, Yves; Coll Mir, Llus; Dannoura, Dannoura; Delagrange, Sylvain; Domec, Jean-Cristophe; Fatemi, Farrah; Feng, Wang; Gargaglione, Veronica; Goto, Yoshiaki; Hagihara, Akio; Hall, Jefferson S.; Hamilton, Steve; Harja, Degi; Hiura, Tsutom; Holdaway, Robert; Hutley, L. B.; Ichie, Tomoaki; Jokela, Eric; Kantola, Anu; Kelly, Jeffery W.; Kenzo, Tanaka; King, David A.; Kloeppel, Brian; Kohyama, Takashi; Komiyama, Akira; Laclau, Jean-Paul; Lusk, Christopher; Maguire, Doug; le Maire, Guerric; Makela, Annikki; Markesteijn, Lars; Marshall, John; McCulloh, Kate; Miyata, Itsuo; Mokany, Karen; Mori, Shigeta; Myster, Randall; Nagano, Masahiro; Naidu, Shawna; Nouvellon, Yann; O' Grady, Anthony; O' Hara, Kevin; Ohtsuka, Toshiyuki; Osada, Noriyuki; Osunkoya, Olusegun O.; Luis Peri, Pablo; Petritan, Mary; Poorter, Lourens; Portsmuth, Angelika; Potvin, Catherine; Ransijn, Johannes; Reid, Douglas; Ribeiro, Sabina C.; Roberts, Scott; Rodriguez, Rolando; Saldana-Acosta, Angela; Santa-Regina, Ignacio; Sasa, Kaichiro; Gailia Selaya, Nadezhda; Sillett, Stephen; Sterck, Frank; Takagi, Kentaro; Tange, Takeshi; Tanouchi, Hiroyuki; Tissue, David; Umehara, Tohru; Utsugi, Hajime; Vadeboncoeur, Matthew; Valladares, Fernando; Vanninen, Petteri; Wang, Jian; Wenk, Elizabeth; Williams, Dick; Ximenes, Fabiano de Aquino; Yamaba, Atsushi; Yamada, Toshihiro; Yamakura, Takuo; Yanai, Ruth; York, Robert

    2015-05-07

    Quantifying the amount of mass or energy invested in plant tissues is of fundamental interest across a range of disciplines, including ecology, forestry, ecosystem science, and climate change science (Niklas, 1994; Chave et al. 2005; Falster et al. 2011). The allocation of net primary production into different plant components is an important process affecting the lifetime of carbon in ecosystems, and resource use and productivity by plants (Cannell & Dewar, 1994; Litton et al. 2007; Poorter et al. 2012). While many studies in have destructively harvested woody plants in the name of science, most of these data have only been made available in the form of summary tables or figures included in publications. Until now, the raw data has resided piecemeal on the hard drives of individual scientists spread around the world. Several studies have gathered together the fitted (allometric) equations for separate datasets (Ter-Mikaelian & Korzukhin, 1997; Jenkins et al. 2003; Zianis et al. 2005; Henry et al. 2013), but none have previously attempted to organize and share the raw individual plant data underpinning these equations on a large scale. Gathered together, such data would represent an important resource for the community, meeting a widely recognised need for rich, open data resources to solve ecological problems (Costello et al. 2013; Fady et al. 2014; Harfoot & Roberts, 2014; Costello et al. 2013). We (D.S. Falster and R.A. Duursma, with the help of D.R. Barneche, R.G. FitzJohn and A. Vårhammar) set out to create such a resource, by asking authors directly whether they would be willing to make their raw data files freely available. The response was overwhelming: nearly everyone we contacted was interested to contribute their raw data. Moreover, we were invited to incorporate another compilation led by M. Ishihara and focussing on Japanese literature. As a result, we present BAAD: a Biomass And Allometry Database for woody plants, comprising data collected in 174

  15. Seeking the chemical roots of darwinism: bridging between chemistry and biology.

    Science.gov (United States)

    Pross, Addy

    2009-08-24

    Chemistry and biology are intimately connected sciences yet the chemistry-biology interface remains problematic and central issues regarding the very essence of living systems remain unresolved. In this essay we build on a kinetic theory of replicating systems that encompasses the idea that there are two distinct kinds of stability in nature-thermodynamic stability, associated with "regular" chemical systems, and dynamic kinetic stability, associated with replicating systems. That fundamental distinction is utilized to bridge between chemistry and biology by demonstrating that within the parallel world of replicating systems there is a second law analogue to the second law of thermodynamics, and that Darwinian theory may, through scientific reductionism, be related to that second law analogue. Possible implications of these ideas to the origin of life problem and the relationship between chemical emergence and biological evolution are discussed.

  16. The effect of biological and chemical additives on the chemical composition and fermentation process of Dactylis glomerata silage

    Energy Technology Data Exchange (ETDEWEB)

    Alba-Mejía, J.E.; Skladanka, J.; Hilger-Delgado, A.; Klíma, M.; Knot, P.; Doležal, P.; Horky, P.

    2016-11-01

    This study was carried out to determine the chemical composition, silage quality and ensilability of ten cocksfoot cultivars using biological and chemical silage additives. The plant material was harvested from the first and second cut, cultivated at the Research Station of Fodder Crops in Vatín, Czech Republic. Wilted forage was chopped and ensiled in mini-silos with 3 replicates per treatment. The treatments were: 1) without additives, used as a control; 2) with bacterial inoculants; and 3) with chemical preservatives. The results indicated that the year factor (2012-2013) influenced significantly the chemical composition of the silage in both cuts. The use of biological inoculants reduced the content of crude fibre and acid detergent fibre; but it did not influence the content of neutral detergent fibre, in comparison with the control silage in both cuts. Furthermore, the application of biological inoculants reduced the concentration of lactic acid (LA) and acetic acid (AA) in contrast to the control silage in the first cut. Moreover, in the second cut the same values tended to be the opposite. Interestingly, ‘Amera’ was the unique variety that presented a high concentration of butyric acid (0.2%) in comparison with other varieties in the first cut. In conclusion, the biological inoculants had a favourable effect on silage fermentation. Notably, only ‘Greenly’ and ‘Starly’ varieties from the first cut; and ‘Greenly’, ‘Sw-Luxor’, and ‘Otello’ varieties from the second cut were appropriate for ensiling because their pH-values; LA and AA concentrations were ideal according to the parameters of the fermentation process. (Author)

  17. The effect of biological and chemical additives on the chemical composition and fermentation process of Dactylis glomerata silage

    Directory of Open Access Journals (Sweden)

    Jhonny E. Alba-Mejía

    2016-06-01

    Full Text Available This study was carried out to determine the chemical composition, silage quality and ensilability of ten cocksfoot cultivars using biological and chemical silage additives. The plant material was harvested from the first and second cut, cultivated at the Research Station of Fodder Crops in Vatín, Czech Republic. Wilted forage was chopped and ensiled in mini-silos with 3 replicates per treatment. The treatments were: 1 without additives, used as a control; 2 with bacterial inoculants; and 3 with chemical preservatives. The results indicated that the year factor (2012-2013 influenced significantly the chemical composition of the silage in both cuts. The use of biological inoculants reduced the content of crude fibre and acid detergent fibre; but it did not influence the content of neutral detergent fibre, in comparison with the control silage in both cuts. Furthermore, the application of biological inoculants reduced the concentration of lactic acid (LA and acetic acid (AA in contrast to the control silage in the first cut. Moreover, in the second cut the same values tended to be the opposite. Interestingly, ‘Amera’ was the unique variety that presented a high concentration of butyric acid (0.2% in comparison with other varieties in the first cut. In conclusion, the biological inoculants had a favourable effect on silage fermentation. Notably, only ‘Greenly’ and ‘Starly’ varieties from the first cut; and ‘Greenly’, ‘Sw-Luxor’, and ‘Otello’ varieties from the second cut were appropriate for ensiling because their pH-values; LA and AA concentrations were ideal according to the parameters of the fermentation process.

  18. Chemical and biological evaluation of rejects from the wood industry

    Directory of Open Access Journals (Sweden)

    Daniel Granato

    2005-06-01

    Full Text Available This study aimed chemical characterization and microbiological evaluation of extracts obtained from the waste of woods marketed in Paraná State: Peroba-Rosa (Aspidosperma sp., Roxinho (Peltogyne sp., Jatobá(Hymenaea sp., Curupixá (Micropholis sp., Itaúba (Mezilaurus sp., Cedrilho (Erisma sp. and Imbúia (Licaria sp., whose botanical identifications were based on anatomical studies. The extracts were prepared with different solvents, analyzed by TLC and UV/VIS techniques, and tested against: Proteus mirabilis ATCC15290, Staphylococcus aureus ATCC25923, Escherichia coli ATCC25922, Enterobacter aerogenes ATCC13048, Micrococcus luteus ATCC9341, Klebsiella pneumoniae ATCC13883, Pseudomonas aeroginosa ATCC27853, Staphylococcus aureus, Streptococcus mutans and Bacillus cereus isolated from the clinic. The ethanol extract from Peroba-rosa containing alkaloids showed activity against P. mirabilis. Itaúba, Jatobá and Imbúia methanol extracts containing phenolics, and the Roxinho ethyl acetate extract containing terpenoids and phenolics were active against K. pneumoniae, M. luteus, E. coli, S. aureus and P. mirabilis. P. aeroginosa, S. mutans and E. aerogenes were resistant to the extracts.Este estudo visa a caracterização química e a avaliação da atividade antimicrobiana de extratos obtidos a partir de rejeitos resultantes do beneficiamento de madeiras nobres comercializadas no Paraná: Peroba-Rosa (Aspidosperma sp., Roxinho (Peltogyne sp., Jatobá (Hymenaea sp., Curupixá (Micropholis sp., Itaúba (Mezilaurus sp., Cedrilho (Erisma sp. e Imbúia-do-Norte (Licaria sp., cujas identificações botânicas basearam-se em estudos anatômicos. Os extratos foram preparados com diversos solventes, analisados por CCD e espectrometria UV/VIS, testando-se contra: Proteus mirabilis ATCC15290, Escherichia coli ATCC25922, Enterobacter aerogenes ATCC13048, Staphylococcus aureus ATCC25923, Micrococcus luteus ATCC9341, Klebsiella pneumoniae ATCC13883

  19. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Laura R. Jarboe

    2010-01-01

    Full Text Available Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.

  20. Chemical and Biological Warfare: Should Rapid Detection Techniques Be Researched To Dissuade Usage? A Review

    Directory of Open Access Journals (Sweden)

    Mark R. Hurst

    2005-01-01

    Full Text Available Chemistry, microbiology and genetic engineering have opened new doorways for the human race to propel itself to a better future. However, there is a darker side to Bioengineering. One element of this is the manufacture and proliferation of biological and chemical weapons. It is clearly in the interest of humankind to prevent the future use of such weapons of mass destruction. Though many agents have been proposed as potential biological and chemical weapons, the feasibility of these weapons is a matter of conjecture. The unpredictable and indiscriminate devastation caused by natural epidemics and hazardous chemicals during wartime without medical treatment should warn humans of the dangers of employing them as weapons. This study argues rapid detection techniques may dissuade future use. Many agents are far less toxic to treatment. A quick response time to most attacks will decrease the chances of serious health issues. The agent will be less effective and discourage the attacker from using the weapon. Fortunately, the Chemical and Biological Weapons Convention (CWCIBWC allows defensive work in the area of biological and chemical weapons. Consequently, the review will discuss history, delivery/dispersal systems and specific agents of the warfare. The study presents current developments in biosensors for toxic materials of defense interest. It concludes with future directions for biosensor development.

  1. Biologically inspired large scale chemical sensor arrays and embedded data processing

    Science.gov (United States)

    Marco, S.; Gutiérrez-Gálvez, A.; Lansner, A.; Martinez, D.; Rospars, J. P.; Beccherelli, R.; Perera, A.; Pearce, T.; Vershure, P.; Persaud, K.

    2013-05-01

    Biological olfaction outperforms chemical instrumentation in specificity, response time, detection limit, coding capacity, time stability, robustness, size, power consumption, and portability. This biological function provides outstanding performance due, to a large extent, to the unique architecture of the olfactory pathway, which combines a high degree of redundancy, an efficient combinatorial coding along with unmatched chemical information processing mechanisms. The last decade has witnessed important advances in the understanding of the computational primitives underlying the functioning of the olfactory system. EU Funded Project NEUROCHEM (Bio-ICT-FET- 216916) has developed novel computing paradigms and biologically motivated artefacts for chemical sensing taking inspiration from the biological olfactory pathway. To demonstrate this approach, a biomimetic demonstrator has been built featuring a large scale sensor array (65K elements) in conducting polymer technology mimicking the olfactory receptor neuron layer, and abstracted biomimetic algorithms have been implemented in an embedded system that interfaces the chemical sensors. The embedded system integrates computational models of the main anatomic building blocks in the olfactory pathway: the olfactory bulb, and olfactory cortex in vertebrates (alternatively, antennal lobe and mushroom bodies in the insect). For implementation in the embedded processor an abstraction phase has been carried out in which their processing capabilities are captured by algorithmic solutions. Finally, the algorithmic models are tested with an odour robot with navigation capabilities in mixed chemical plumes

  2. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    CERN Document Server

    Demirel, Yasar

    2014-01-01

    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  3. [Biological, chemical, and radiation factors in the classification of medical waste].

    Science.gov (United States)

    Rusakov, N V; Korotkova, G I; Orlov, A Iu; Kadyrov, D E

    2011-01-01

    The current classification of medical waste does not consider the sanitary-and-chemical hazard of epidemiologically dangerous and extremely dangerous medical waste (classes B and C). According to the results of the studies performed, the authors propose the improved classification of medical waste, which makes it possible to take into account not only infectious, radiation, and toxicological, but also sanitary-and-chemical hazards (toxicity, carcinogenicity, mutagenicity, and biological activity) of medical waste.

  4. Molecular building blocks and their architecture in biologically/environmentally compatible soft matter chemical machinery.

    Science.gov (United States)

    Toyota, Taro; Banno, Taisuke; Nitta, Sachiko; Takinoue, Masahiro; Nomoto, Tomonori; Natsume, Yuno; Matsumura, Shuichi; Fujinami, Masanori

    2014-01-01

    This review briefly summarizes recent developments in the construction of biologically/environmentally compatible chemical machinery composed of soft matter. Since environmental and living systems are open systems, chemical machinery must continuously fulfill its functions not only through the influx and generation of molecules but also via the degradation and dissipation of molecules. If the degradation or dissipation of soft matter molecular building blocks and biomaterial molecules/polymers can be achieved, soft matter particles composed of them can be used to realize chemical machinery such as selfpropelled droplets, drug delivery carriers, tissue regeneration scaffolds, protocell models, cell-/tissuemarkers, and molecular computing systems.

  5. The search for life's origins: Progress and future directions in planetary biology and chemical evolution

    Science.gov (United States)

    1990-01-01

    The current state is reviewed of the study of chemical evolution and planetary biology and the probable future is discussed of the field, at least for the near term. To this end, the report lists the goals and objectives of future research and makes detailed, comprehensive recommendations for accomplishing them, emphasizing those issues that were inadequately discussed in earlier Space Studies Board reports.

  6. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals

    DEFF Research Database (Denmark)

    Jullesson, David; David, Florian; Pfleger, Brian

    2015-01-01

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played...

  7. Improving integrative searching of systems chemical biology data using semantic annotation

    Directory of Open Access Journals (Sweden)

    Chen Bin

    2012-03-01

    Full Text Available Abstract Background Systems chemical biology and chemogenomics are considered critical, integrative disciplines in modern biomedical research, but require data mining of large, integrated, heterogeneous datasets from chemistry and biology. We previously developed an RDF-based resource called Chem2Bio2RDF that enabled querying of such data using the SPARQL query language. Whilst this work has proved useful in its own right as one of the first major resources in these disciplines, its utility could be greatly improved by the application of an ontology for annotation of the nodes and edges in the RDF graph, enabling a much richer range of semantic queries to be issued. Results We developed a generalized chemogenomics and systems chemical biology OWL ontology called Chem2Bio2OWL that describes the semantics of chemical compounds, drugs, protein targets, pathways, genes, diseases and side-effects, and the relationships between them. The ontology also includes data provenance. We used it to annotate our Chem2Bio2RDF dataset, making it a rich semantic resource. Through a series of scientific case studies we demonstrate how this (i simplifies the process of building SPARQL queries, (ii enables useful new kinds of queries on the data and (iii makes possible intelligent reasoning and semantic graph mining in chemogenomics and systems chemical biology. Availability Chem2Bio2OWL is available at http://chem2bio2rdf.org/owl. The document is available at http://chem2bio2owl.wikispaces.com.

  8. PERFORMANCE OF NORTH AMERICAN BIOREACTOR LANDFILLS: II. CHEMICAL AND BIOLOGICAL CHARACTERISTICS

    Science.gov (United States)

    The objective of this research was to examine the performance of five North American bioreactor landfills. This paper represents the second of a two part series and addresses biological and chemical aspects of bioreactor performance including gas production and management, and l...

  9. 78 FR 38782 - Lifting of Chemical and Biological Weapons (CBW) Proliferation Sanctions Against Chinese Entities

    Science.gov (United States)

    2013-06-27

    ... These restrictions were imposed on July 9, 2002 (see Volume 67 FR Public Notice 4071). Dated: June 21... of Chemical and Biological Weapons (CBW) Proliferation Sanctions Against Chinese Entities AGENCY... lift nonproliferation measures on Chinese entities. DATES: Effective Date: Upon publication in...

  10. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils

    NARCIS (Netherlands)

    Diepeningen, van A.D.; Vos, de O.J.; Korthals, G.W.; Bruggen, van A.H.C.

    2006-01-01

    A comparative study of organic and conventional arable farming systems was conducted in The Netherlands to determine the effect of management practices on chemical and biological soil properties and soil health. Soils from thirteen accredited organic farms and conventionally managed neighboring farm

  11. Microwave-ultrasound combined reactor suitable for atmospheric sample preparation procedure of biological and chemical products

    NARCIS (Netherlands)

    Lagha, A.; Chemat, S.; Bartels, P.V.; Chemat, F.

    1999-01-01

    A compact apparatus in which a specific position can be irradiated by microwaves (MW) and ultrasound (US) simultaneously has been developed. The MW-US reactor has been designed for atmospheric pressure digestion and dissolution of biological and chemical products. The reactor can treat a range of th

  12. Chemical, Biological, and Radiological (CBR) Contamination Survivability, Small Items of Equipment

    Science.gov (United States)

    2012-06-22

    packing closed cell foam planks Expected to absorb and desorb chemical agents and trap nuclear and biological agents. May disintegrate when exposed...property-effects of liquids X 34 Peel/lap shear strength change X X X X 35 Adhesion (loss of), blistering , spalling X X X X X

  13. Weapons of mass destruction: Overview of the CBRNEs (Chemical, Biological, Radiological, Nuclear, and Explosives).

    Science.gov (United States)

    Prockop, Leon D

    2006-11-01

    The events of September 11, 2001, made citizens of the world acutely aware of disasters consequent to present-day terrorism. This is a war being waged for reasons obscure to many of its potential victims. The term "NBCs" was coined in reference to terrorist weapons of mass destruction, i.e., nuclear, biological and chemical. The currently accepted acronym is "CBRNE" which includes Chemical, Biological, Radiological, Nuclear, and Explosive weapons. Non-nuclear explosives are the most common terrorist weapon now in use. Nuclear and radiological weapons are beyond the scope of this publication, which focuses on the "CBEs", i.e. chemical, biological and explosive weapons. Although neurologists will not be the first responders to CBEs, they must know about the neurological effects in order to provide diagnosis and treatment to survivors. Neurological complications of chemical, biological and explosive weapons which have or may be used by terrorists are reviewed by international experts in this publication. Management and treatment profiles are outlined.

  14. Total, chemical, and biological oxygen consumption of the sediments in the Ziya River watershed, China.

    Science.gov (United States)

    Rong, Nan; Shan, Baoqing

    2016-07-01

    Sediment oxygen demand (SOD) is a critical dissolved oxygen (DO) sink in many rivers. Understanding the relative contributions of the biological and chemical components of SOD would improve our knowledge of the potential environmental harm SOD could cause and allow appropriate management systems to be developed. A various inhibitors addition technique was conducted to measure the total, chemical, and biological SOD of sediment samples from 13 sites in the Ziya River watershed, a severely polluted and anoxic river system in the north of China. The results showed that the major component of SOD was chemical SOD due to iron predominate. The ferrous SOD accounted for 21.6-78.9 % of the total SOD and 33.26-96.79 % of the chemical SOD. Biological SOD represented 41.13 % of the overall SOD averagely. Sulfide SOD accounted for 1.78-45.71 % of the total SOD and it was the secondary predominate of the chemical SOD. Manganous SOD accounted for 1.2-16.6 % of the total SOD and it was insignificant at many sites. Only four kinds of benthos were collected in the Ziya River watershed, resulting from the low DO concentration in the sediment surface due to SOD. This study would be helpful for understanding and preventing the potential sediment oxygen depletion during river restoration.

  15. Physical, chemical, and biological data for selected streams in Chester County, Pennsylvania, 1981-94

    Science.gov (United States)

    Reif, Andrew G.

    1999-01-01

    Physical, chemical, and biological data were collected at 51 sampling sites in Chester County, Pa., from 1970 through 1994 as part of the Stream Conditions of Chester County Program. This report presents data collected from 1981 through 1994. Physical data include water temperature, instantaneous stream discharge, pH, alkalinity, specific conductance, and dissolved oxygen. Chemical data include laboratory determinations of nutrients, major ions, and selected metals in whole water samples and selected metals, pesticides, gross polychlorinated biphenyls (PCB?s), gross polychlorinated napthalenes (PCN?s), and total carbon in stream-bottom sediment samples. The biological data consists of benthic macroinvertebrate population analyses and diversity indices. Chester County is undergoing rapid urbanization as agricultural lands are converted to residential, commercial, and industrial areas. The purpose of the Stream Conditions of Chester County Program is to further the understanding of stream habitat and chemical changes in response to this urbanization.

  16. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Borodina, Irina; Li, Mingji

    2015-01-01

    Synthetic biology and metabolic engineering enable generation of novel cell factories that efficiently convert renewable feedstocks into biofuels, bulk, and fine chemicals, thus creating the basis for biosustainable economy independent on fossil resources. While over a hundred proof...... computational tools for the prediction of biochemical pathways, molecular biology methods for assembly of DNA parts into pathways, and for introducing the pathways into the host, and finally approaches for optimizing performance of the introduced pathways.......-of-concept chemicals have been made in yeast, only a very small fraction of those has reached commercial-scale production so far. The limiting factor is the high research cost associated with the development of a robust cell factory that can produce the desired chemical at high titer, rate, and yield. Synthetic...

  17. Functional Components of Carob Fruit: Linking the Chemical and Biological Space.

    Science.gov (United States)

    Goulas, Vlasios; Stylos, Evgenios; Chatziathanasiadou, Maria V; Mavromoustakos, Thomas; Tzakos, Andreas G

    2016-11-10

    The contribution of natural products to the drug-discovery pipeline has been remarkable since they have served as a rich source for drug development and discovery. Natural products have adapted, during the course of evolution, optimum chemical scaffolds against a wide variety of diseases, including cancer and diabetes. Advances in high-throughput screening assays, assisted by the continuous development on the instrumentation's capabilities and omics, have resulted in charting a large chemical and biological space of drug-like compounds, originating from natural sources. Herein, we attempt to integrate the information on the chemical composition and the associated biological impact of carob fruit in regards to human health. The beneficial and health-promoting effects of carob along with the clinical trials and the drug formulations derived from carob's natural components are presented in this review.

  18. Functional Components of Carob Fruit: Linking the Chemical and Biological Space

    Directory of Open Access Journals (Sweden)

    Vlasios Goulas

    2016-11-01

    Full Text Available The contribution of natural products to the drug-discovery pipeline has been remarkable since they have served as a rich source for drug development and discovery. Natural products have adapted, during the course of evolution, optimum chemical scaffolds against a wide variety of diseases, including cancer and diabetes. Advances in high-throughput screening assays, assisted by the continuous development on the instrumentation’s capabilities and omics, have resulted in charting a large chemical and biological space of drug-like compounds, originating from natural sources. Herein, we attempt to integrate the information on the chemical composition and the associated biological impact of carob fruit in regards to human health. The beneficial and health-promoting effects of carob along with the clinical trials and the drug formulations derived from carob’s natural components are presented in this review.

  19. Chemical or Biological Terrorist Attacks: An Analysis of the Preparedness of Hospitals for Managing Victims Affected by Chemical or Biological Weapons of Mass Destruction

    Directory of Open Access Journals (Sweden)

    Russell L. Bennett

    2006-03-01

    Full Text Available The possibility of a terrorist attack employing the use of chemical or biological weapons of mass destruction (WMD on American soil is no longer an empty threat, it has become a reality. A WMD is defined as any weapon with the capacity to inflict death and destruction on such a massive scale that its very presence in the hands of hostile forces is a grievous threat. Events of the past few years including the bombing of the World Trade Center in 1993, the Murrah Federal Building in Oklahoma City in 1995 and the use of planes as guided missiles directed into the Pentagon and New York’s Twin Towers in 2001 (9/11 and the tragic incidents involving twentythree people who were infected and five who died as a result of contact with anthrax-laced mail in the Fall of 2001, have well established that the United States can be attacked by both domestic and international terrorists without warning or provocation. In light of these actions, hospitals have been working vigorously to ensure that they would be “ready” in the event of another terrorist attack to provide appropriate medical care to victims. However, according to a recent United States General Accounting Office (GAO nationwide survey, our nation’s hospitals still are not prepared to manage mass causalities resulting from chemical or biological WMD. Therefore, there is a clear need for information about current hospital preparedness in order to provide a foundation for systematic planning and broader discussions about relative cost, probable effectiveness, environmental impact and overall societal priorities. Hence, the aim of this research was to examine the current preparedness of hospitals in the State of Mississippi to manage victims of terrorist attacks involving chemical or biological WMD. All acute care hospitals in the State were selected for inclusion in this study. Both quantitative and qualitative methods were utilized for data collection

  20. Chemical analysis and biological testing of materials from the EDS coal liquefaction process: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.; Pelroy, R.A.; Wilson, B.W.

    1984-05-01

    Representative process materials were obtained from the EDS pilot plant for chemical and biological analyses. These materials were characterized for biological activity and chemical composition using a microbial mutagenicity assay and chromatographic and mass spectrometric analytical techniques. The two highest boiling distillation cuts, as well as process solvent (PS) obtained from the bottoms recycle mode operation, were tested for initiation of mouse skin tumorigenicity. All three materials were active; the crude 800/sup 0 +/F cut was substantially more potent than the crude bottoms recycle PS or 750 to 800/sup 0/F distillate cut. Results from chemical analyses showed the EDS materials, in general, to be more highly alkylated and have higher hydroaromatic content than analogous SRC II process materials (no in-line process hydrogenation) used for comparison. In the microbial mutagenicity assays the N-PAC fractions showed greater activity than did the aliphatic hydrocarbon, hydroxy-PAH, or PAH fractions, although mutagenicity was detected in certain PAH fractions by a modified version of the standard microbial mutagenicity assay. Mutagenic activities for the EDS materials were lower, overall, than those for the corresponding materials from the SRC II process. The EDS materials produced under different operational modes had distinguishable differences in both their chemical constituency and biological activity. The primary differences between the EDS materials studied here and their SRC II counterparts used for comparison are most likely attributable to the incorporation of catalytic hydrogenation in the EDS process. 27 references, 28 figures, 27 tables.

  1. A coupled physical-biological-chemical model for the Indian Ocean

    Indian Academy of Sciences (India)

    P S Swathi; M K Sharada; K S Yajnik

    2000-12-01

    A coupled physical-biological-chemical model has been developed at C-MMACS. for studying the time- variation of primary productivity and air-sea carbon-dioxide exchange in the Indian Ocean. The physical model is based on the Modular Ocean Model, Version 2 (MOM2) and the biological model describes the nonlinear dynamics of a 7-component marine ecosystem. The chemical model includes dynamical equation for the evolution of dissolved inorganic carbon and total alkalinity. The interaction between the biological and chemical model is through the Redfield ratio. The partial pressure of carbon dioxide pCO2 of the surface layer is obtained from the chemical equilibrium equations of Peng et al 1987. Transfer coefficients for air-sea exchange of CO2 are computed dynamically based on the wind speeds. The coupled model reproduces the high productivity observed in the Arabian Sea off the Somali and Omani coasts during the Southwest (SW) monsoon. The entire Arabian Sea is an outgassing region for CO2 in spite of high productivity with transfer rates as high as 80 m-mol C/m2/day during SW monsoon near the Somali Coast on account of strong winds.

  2. Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles

    Science.gov (United States)

    Georgakopoulos, D. G.; Després, V.; Fröhlich-Nowoisky, J.; Psenner, R.; Ariya, P. A.; Pósfai, M.; Ahern, H. E.; Moffett, B. F.; Hill, T. C. J.

    2009-04-01

    The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e.g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques) required prior to comprehensive understanding of chemical and physical characterization of bioaerosols.

  3. Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles

    Directory of Open Access Journals (Sweden)

    D. G. Georgakopoulos

    2008-04-01

    Full Text Available The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e.g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques required prior to comprehensive understanding of chemical and physical characterization of bioaerosols.

  4. Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles

    Directory of Open Access Journals (Sweden)

    D. G. Georgakopoulos

    2009-04-01

    Full Text Available The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e.g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques required prior to comprehensive understanding of chemical and physical characterization of bioaerosols.

  5. "Toward High School Biology": Helping Middle School Students Understand Chemical Reactions and Conservation of Mass in Nonliving and Living Systems

    Science.gov (United States)

    Herrmann-Abell, Cari F.; Koppal, Mary; Roseman, Jo Ellen

    2016-01-01

    Modern biology has become increasingly molecular in nature, requiring students to understand basic chemical concepts. Studies show, however, that many students fail to grasp ideas about atom rearrangement and conservation during chemical reactions or the application of these ideas to biological systems. To help provide students with a better…

  6. The nuclear terrorist, radiological, biological, chemical threat. Medical approach; Menace terroriste nucleaire, radiologique, biologique, chimique. Approche medicale

    Energy Technology Data Exchange (ETDEWEB)

    Gourmelon, P.; Vidal, D.; Renaudeau, C

    2005-07-01

    This book illustrates the cooperation of the civil and the military experts in the domain of the NBRC (nuclear, biological, radiological and chemical threat). The different aspects bond to the use of nuclear, biological and chemical weapons, are discussed. Al topics of each domains (NRBC) are presented: historical and fundamental aspects, diagnostic, therapeutic and prevention. (A.L.B.)

  7. Intersexual allometry differences and ontogenetic shifts of coloration patterns in two aquatic turtles, Graptemys oculifera and Graptemys flavimaculata

    Science.gov (United States)

    Ennen, Joshua R.; Lindeman, Peter V.; Lovich, Jeffrey E.

    2015-01-01

    Coloration can play critical roles in a species' biology. The allometry of color patterns may be useful for elucidating the evolutionary mechanisms responsible for shaping the traits. We measured characteristics relating to eight aspects of color patterns from Graptemys oculifera and G. flavimaculata to investigate the allometric differences among male, female, and unsexed juvenile specimens. Additionally, we investigated ontogenetic shifts by incorporating the unsexed juveniles into the male and female datasets. In general, male color traits were isometric (i.e., color scaled with body size), while females and juvenile color traits were hypoallometric, growing in size more slowly than the increase in body size. When we included unsexed juveniles in our male and female datasets, our linear regression analyses found all relationships to be hypoallometric and our model selection analysis found support for nonlinear models describing the relationship between body size and color patterns, suggestive of an ontogenetic shift in coloration traits for both sexes at maturity. Although color is critical for many species' biology and therefore under strong selective pressure in many other species, our results are likely explained by an epiphenomenon related to the different selection pressures on body size and growth rates between juveniles and adults and less attributable to the evolution of color patterns themselves.

  8. The biological activities and chemical composition of Pereskia species (Cactaceae)--a review.

    Science.gov (United States)

    Pinto, Nícolas de Castro Campos; Scio, Elita

    2014-09-01

    The exploration of nature as a source of sustainable, novel bioactive substances continues to grow as natural products play a significant role in the search for new therapeutic and agricultural agents. In this context, plants of the genus Pereskia (Cactaceae) have been studied for their biological activities, and are evolving as an interesting subject in the search for new, bioactive compounds. These species are commonly used as human foodstuffs and in traditional medicine to treat a variety of diseases. This review focuses on the bioactivity and chemical composition of the genus Pereskia, and aims to stimulate further studies on the chemistry and biological potential of the genus.

  9. Chemical and biological attributes of a lowland soil affected by land leveling

    Directory of Open Access Journals (Sweden)

    José Maria Barbat Parfitt

    2013-11-01

    Full Text Available The objective of this work was to evaluate the relationship between soil chemical and biological attributes and the magnitude of cuts and fills after the land leveling process of a lowland soil. Soil samples were collected from the 0 - 0.20 m layer, before and after leveling, on a 100 point grid established in the experimental area, to evaluate chemical attributes and soil microbial biomass carbon (MBC. Leveling operations altered the magnitude of soil chemical and biological attributes. Values of Ca, Mg, S, cation exchange capacity, Mn, P, Zn, and soil organic matter (SOM decreased in the soil profile, whereas Al, K, and MBC increased after leveling. Land leveling decreased in 20% SOM average content in the 0 - 0.20 m layer. The great majority of the chemical attributes did not show relations between their values and the magnitude of cuts and fills. The relation was quadratic for SOM, P, and total N, and was linear for K, showing a positive slope and indicating increase in the magnitude of these attributes in cut areas and stability in fill areas. The relationships between these chemical attributes and the magnitude of cuts and fills indicate that the land leveling map may be a useful tool for degraded soil recuperation through amendments and organic fertilizers.

  10. Aboveground dendromass allometry of hybrid black poplars for energy crops

    Directory of Open Access Journals (Sweden)

    Tatiana Stankova

    2016-06-01

    Full Text Available Cultivation of energy crops is concerned with estimation of the total lignified biomass (dendromass production, which is based on the plantation density and individual plant dendromass. The main objective of this study was to investigate the allometry of aboveground leafless biomass of juvenile black poplar hybrids (Populus deltoides x P. nigra , traditionally used for timber and cellulose production, and to derive generic allometric models for dendromass prediction, relevant to energy crop cultivation in Bulgaria. The study material comprised a variety of growth sites, tree ages and clones, specific to poplar plantings in Bulgaria. We used three principal quantitative predictors: diameter at breast height, total tree height and mean stand (stock height. The models were not differentiated by clone, because the black poplar hybrids tested were not equally represented in the data, and the inclusion of tree age as a predictor variable seemed unreliable, because of the significant, up to 3 years, variation, which was possible within the narrow age range investigated. We defined the mean stand (stock height as a composite quantitative variable, which reflected the interaction between the time since planting (age, site quality and the intrinsic growth potential. Stepwise and backward multiple regression analyses were applied to these quantitative variables and their products and sets of adequacy and goodnessof-fit criteria were used to derive individual biomass models for stem and branches. Then we developed compatible additive systems of models for stem, branch and total lignified biomass in log-transformed form. Finally, the prediction data were back-transformed, applying correction for bias, and were cross-validated. Three systems of generic equations were derived to enable flexible model implementation. Equation system M1 proposes a stem biomass model based on tree and stand heights and stem diameter, and a model for

  11. The chemical composition and biological properties of coconut (Cocos nucifera L.) water.

    Science.gov (United States)

    Yong, Jean W H; Ge, Liya; Ng, Yan Fei; Tan, Swee Ngin

    2009-12-09

    Coconut water (coconut liquid endosperm), with its many applications, is one of the world's most versatile natural product. This refreshing beverage is consumed worldwide as it is nutritious and beneficial for health. There is increasing scientific evidence that supports the role of coconut water in health and medicinal applications. Coconut water is traditionally used as a growth supplement in plant tissue culture/micropropagation. The wide applications of coconut water can be justified by its unique chemical composition of sugars, vitamins, minerals, amino acids and phytohormones. This review attempts to summarise and evaluate the chemical composition and biological properties of coconut water.

  12. Physical, chemical, and biological data for selected streams in Chester County, Pennsylvania, 1995-97

    Science.gov (United States)

    Reif, Andrew G.

    2000-01-01

    Physical, chemical, and biological data were collected at 51 sampling sites in Chester County, Pa., from 1970 through 1997 as part of the Stream Conditions of Chester County Program. This report presents data collected from 43 sites from 1995 through 1997 that constitute a continuation of the program. Physical data include water temperature, instantaneous stream discharge, pH, alkalinity, specific conductance, and dissolved oxygen. Chemical data collected include laboratory determinations of nutrients and major ions in whole water samples and selected metals, pesticides, gross polychlorinated biphenyls (PCB's), gross polychlorinated napthalenes (PCN's), and total carbon in stream-sediment samples. The biological data include benthic-macroinvertebrate populations. The data are presented without interpretation. Chester County is undergoing urbanization as agricultural land is converted to residential developments, commercial areas, and industrial and corporate parks. The major goal of the Stream Conditions of Chester County Program is to further the understanding of stream changes in response to urbanization.

  13. ANALYSIS OF BIOLOGICAL GEOCHEMISTRY OF CHEMICAL ELEMENTS IN Betula ermanii FOREST IN CHANGBAI MOUNTAINS, CHINA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on catalogue of biology and geochemistry of chemical elements, content characteristics and variation law of the large nutrient elements, the needful trace elements, the uncertain needful elements, the non-needful elements and the toxic elements in Betula ermanii trees are analyzed. The result shows that the content of the large nutrient elements in Betula ermanii trees is higher than that of other kinds of element; the contents of all kinds of elements in foliage with vigorous metabolism are higher than those in other parts; the content variations of the large nutrient elements and the needful trace elements with similar chemical property, geochemical property and biological function in different parts of Betula ermanii trees show the similar laws; but the other three kinds of elements variations are without laws. It is indicated that the variation of the needful elements in the plant follows a certain law, they are in relative equilibrium under undisturbed condition.

  14. HRI catalytic two-stage liquefaction (CTSL) process materials: chemical analysis and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Later, D.W.

    1985-12-01

    This report presents data from the chemical analysis and biological testing of coal liquefaction materials obtained from the Hydrocarbon Research, Incorporated (HRI) catalytic two-stage liquefaction (CTSL) process. Materials from both an experimental run and a 25-day demonstration run were analyzed. Chemical methods of analysis included adsorption column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, low-voltage probe-inlet mass spectrometry, and proton nuclear magnetic resonance spectroscopy. The biological activity was evaluated using the standard microbial mutagenicity assay and an initiation/promotion assay for mouse-skin tumorigenicity. Where applicable, the results obtained from the analyses of the CTSL materials have been compared to those obtained from the integrated and nonintegrated two-stage coal liquefaction processes. 18 refs., 26 figs., 22 tabs.

  15. Particle size distribution and removal in the chemical-biological flocculation process

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-bin; ZHAO Jian-fu; XIA Si-qing; LIU Chang-qing; KANG Xing-sheng

    2007-01-01

    The particle characterization from the influent and effluent of a chemical-biological flocculation (CBF) process was studied with a laser diffraction device. Water samples from a chemically enhanced primary treatment (CEPT) process and a primary sediment tank process were also analyzed for comparison. The results showed that CBF process was not only effective for both the big size particles and small size particles removal, but also the best particle removal process in the three processes. The results also indicated that CBF process was superior to CEPT process in the heavy metals removal. The high and non-selective removal for heavy metals might be closely related to its strong ability to eliminate small particles. Samples from different locations in CBF reactors showed that small particles were easier to aggregate into big ones and those disrupted flocs could properly flocculate again along CBF reactor because of the biological flocculation.

  16. Nuclear, biological, and chemical combined injuries and countermeasures on the battlefield.

    Science.gov (United States)

    Knudson, Gregory B; Elliott, Thomas B; Brook, Itzhak; Shoemaker, Michael O; Pastel, Ross H; Lowy, Robert J; King, Gregory L; Herzig, Thomas C; Landauer, Michael R; Wilson, Scott A; Peacock, Susan J; Bouhaouala, S Samy; Jackson, William E; Ledney, G David

    2002-02-01

    The Armed Forces Radiobiological Research Institute (AFRRI) has developed a research program to determine the major health risks from exposure to ionizing radiation in combination with biological and chemical warfare agents and to assess the extent to which exposure to ionizing radiation compromises the effectiveness of protective drugs, vaccines, and other biological and chemical warfare prophylactic and treatment strategies. AFRRI's Defense Technology Objective MD22 supports the development of treatment modalities and studies to assess the mortality rates for combined injuries from exposure to ionizing radiation and Bacillus anthracis, and research to provide data for casualty prediction models that assess the health consequences of combined exposures. In conjunction with the Defense Threat Reduction Agency, our research data are contributing to the development of casualty prediction models that estimate mortality and incapacitation in an environment of radiation exposure plus other weapons of mass destruction. Specifically, the AFFRI research program assesses the effects of ionizing radiation exposure in combination with B. anthracis, Venezuelan equine encephalomyelitis virus, Shigella sonnei, nerve agents, and mustard as well as their associated treatments and vaccines. In addition, the long-term psychological effects of radiation combined with nuclear, biological, and chemical (NBC) injuries are being evaluated. We are also assessing the effectiveness of gamma photons and high-speed neutrons and electrons for neutralizing biological and chemical warfare agents. New protocols based on our NBC bioeffects experiments will enable U.S. armed forces to accomplish military operations in NBC environments while optimizing both survival and military performance. Preserving combatants' health in an NBC environment will improve warfighting operations and mission capabilities.

  17. The Role of Molecular Biology in the Biomonitoring of Human Exposure to Chemicals

    OpenAIRE

    Balam Muñoz; Arnulfo Albores

    2010-01-01

    Exposure to different substances in an occupational environment is of utmost concern to global agencies such as the World Health Organization and the International Labour Organization. Interest in improving work health conditions, particularly of those employees exposed to noxious chemicals, has increased considerably and has stimulated the search for new, more specific and selective tests. Recently, the field of molecular biology has been indicated as an alternative technique for monitoring ...

  18. Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.).

    Science.gov (United States)

    Gigliarelli, Giulia; Becerra, Judith X; Curini, Massimo; Marcotullio, Maria Carla

    2015-12-12

    Copal is the Spanish word used to describe aromatic resins from several genera of plants. Mexican copal derives from several Bursera spp., Protium copal, some Pinus spp. (e.g., P. pseudostrobus) and a few Fabaceae spp. It has been used for centuries as incense for religious ceremonies, as a food preservative, and as a treatment for several illnesses. The aim of this review is to analyze the chemical composition and biological activity of commercial Mexican Bursera copal.

  19. Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.

    Directory of Open Access Journals (Sweden)

    Giulia Gigliarelli

    2015-12-01

    Full Text Available Copal is the Spanish word used to describe aromatic resins from several genera of plants. Mexican copal derives from several Bursera spp., Protium copal, some Pinus spp. (e.g., P. pseudostrobus and a few Fabaceae spp. It has been used for centuries as incense for religious ceremonies, as a food preservative, and as a treatment for several illnesses. The aim of this review is to analyze the chemical composition and biological activity of commercial Mexican Bursera copal.

  20. Gold nanoparticle wire and integrated wire array for electronic detection of chemical and biological molecules

    Directory of Open Access Journals (Sweden)

    J. J. Diao

    2011-03-01

    Full Text Available Nanoparticle wire and integrated nanoparticle wire array have been prepared through a green technique: discontinuous vertical evaporation-driven colloidal deposition. The conducting gold nanoparticle wire made by this technique shows ability for the sensitive electronic detection of chemical and biological molecules due to its high surface to volume ratio. Furthermore, we also demonstrate a potential usage of integrated gold nanoparticle wire array for the localized detection.

  1. Chemical and biological metal nanoparticles as antimycobacterial agents: A comparative study.

    Science.gov (United States)

    Singh, Richa; Nawale, Laxman U; Arkile, Manisha; Shedbalkar, Utkarsha U; Wadhwani, Sweety A; Sarkar, Dhiman; Chopade, Balu A

    2015-08-01

    Resistance among mycobacteria leading to multidrug-resistant and extensively drug-resistant tuberculosis is a major threat. However, nanotechnology has provided new insights in drug delivery and medicine development. This is the first comparative report to determine the activity of chemically and biologically synthesised silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) against mycobacteria. Screening data revealed the high mycobactericidal efficiency of AgNPs, with minimum inhibitory concentrations (MICs) of therapeutics for tuberculosis.

  2. Safe management of mass fatalities following chemical, biological, and radiological incidents.

    Science.gov (United States)

    Baker, David J; Jones, Kelly A; Mobbs, Shelly F; Sepai, Ovnair; Morgan, Dilys; Murray, Virginia S G

    2009-01-01

    Contaminated mass fatalities following the release of chemical, biological, or radiological agents pose a potential major health hazard. A United Kingdom government investigation has identified a number of areas of risk. This paper presents an outline of the findings of the study and describes specific pathways for the management of contaminated and non-contaminated fatalities. Factors determining the choice between cremation and burial are discussed. Effective decontamination remains a neglected area of study for both fatalities and casualties.

  3. Physico-Chemical and Biological Parameters of the Three Rural Ponds of Sasaram of Bihar

    Directory of Open Access Journals (Sweden)

    Jyoti Choudhary

    2014-06-01

    Full Text Available Physico chemical and biological parameters of the three rural pond of Sasaram,Bihar has been studied to see the present condition for its better utilization. The study revealed that parameters are within permissible limit for fish culture and the stocking should be done as per the productivity of the water. As per the BOD estimation the ponds falls under moderately polluted category.

  4. Zebrafish whole-adult-organism chemogenomics for large-scale predictive and discovery chemical biology.

    Directory of Open Access Journals (Sweden)

    Siew Hong Lam

    2008-07-01

    Full Text Available The ability to perform large-scale, expression-based chemogenomics on whole adult organisms, as in invertebrate models (worm and fly, is highly desirable for a vertebrate model but its feasibility and potential has not been demonstrated. We performed expression-based chemogenomics on the whole adult organism of a vertebrate model, the zebrafish, and demonstrated its potential for large-scale predictive and discovery chemical biology. Focusing on two classes of compounds with wide implications to human health, polycyclic (halogenated aromatic hydrocarbons [P(HAHs] and estrogenic compounds (ECs, we generated robust prediction models that can discriminate compounds of the same class from those of different classes in two large independent experiments. The robust expression signatures led to the identification of biomarkers for potent aryl hydrocarbon receptor (AHR and estrogen receptor (ER agonists, respectively, and were validated in multiple targeted tissues. Knowledge-based data mining of human homologs of zebrafish genes revealed highly conserved chemical-induced biological responses/effects, health risks, and novel biological insights associated with AHR and ER that could be inferred to humans. Thus, our study presents an effective, high-throughput strategy of capturing molecular snapshots of chemical-induced biological states of a whole adult vertebrate that provides information on biomarkers of effects, deregulated signaling pathways, and possible affected biological functions, perturbed physiological systems, and increased health risks. These findings place zebrafish in a strategic position to bridge the wide gap between cell-based and rodent models in chemogenomics research and applications, especially in preclinical drug discovery and toxicology.

  5. Effects of biophysical constraints, climate and phylogeny on forest shrub allometries along an altitudinal gradient in Northeast China

    Science.gov (United States)

    Sun, Han; Wang, Xiangping; Fan, Yanwen; Liu, Chao; Wu, Peng; Li, Qiaoyan; Yin, Weilun

    2017-01-01

    Whether there is a general allometry law across plant species with different sizes and under different environment has long been controversial and shrubs are particularly useful to examine these questions. Here we sampled 939 individuals from 50 forest shrub species along a large altitudinal gradient. We tested several allometry models with four relationships simultaneously (between stem diameter, height, leaf, stem and aboveground biomass), including geometric, elastic and stress similarity, and metabolic scaling theory’s predictions on small plants (MSTs) and trees (MSTt). We also tested if allometric exponents change markedly with climate and phylogeny. The predicted exponents of MSTt, elastic similarity and stress similarity (models for trees) were not supported by our data, while MSTs and geometric similarity gained more support, suggesting the finite size effect is more important for shrub allometries than being a woody plant. The influence of climate and phylogeny on allometric exponents were not significant or very weak, again suggesting strong biophysical constraints on shrub allometries. Our results reveal clear differences of shrub allometries from previous findings on trees (e.g. much weaker climatic and phylogenic control). Comparisons of herbs, shrubs and trees along a same climatic gradient are needed for better understanding of plant allometries. PMID:28266604

  6. Leukemia, an effective model for chemical biology and target therapy1

    Institute of Scientific and Technical Information of China (English)

    Guo-qiang CHEN; Li-shun WANG; Ying-li WU; Yun YU

    2007-01-01

    The rapid rise of chemical biology aimed at studying signaling networks for basic cellular activities using specific, active small molecules as probes has greatly accelerated research on pathological mechanisms and target therapy of diseases.This research is especially important for malignant tumors such as leukemia, a heterogeneous group of hematopoietic malignancies that occurs worldwide. With the use of a chemical approach combined with genetic manipulation, great progresshas been achieved over the past few decades on the biological, molecular and cytogenetic aspects of leukemia, and in its diagnosis and therapy. In particular,discoveries of the clinical effectiveness of all-trans rctinoic acid and arsenic trioxide in the treatment of acute promyelocytic leukemia and the kinase inhibitorsImatinib and Dasatinib in the treatment of chronic myelogenous leukemia not only make target therapy of leukemia a reality, but also push mechanisms of leukemo-genesis and leukemic cell activities forward. This review will outline advances in chemical biology that help our understanding of the molecular mechanisms of cell differentiation and apoptosis induction and target therapy of leukemia.

  7. Enhanced Removal of Lead by Chemically and Biologically Treated Carbonaceous Materials

    Directory of Open Access Journals (Sweden)

    Mohamed E. Mahmoud

    2012-01-01

    Full Text Available Hybrid sorbents and biosorbents were synthesized via chemical and biological treatment of active carbon by simple and direct redox reaction followed by surface loading of baker’s yeast. Surface functionality and morphology of chemically and biologically modified sorbents and biosorbents were studied by Fourier Transform Infrared analysis and scanning electron microscope imaging. Hybrid carbonaceous sorbents and biosorbents were characterized by excellent efficiency and superiority toward lead(II sorption compared to blank active carbon providing a maximum sorption capacity of lead(II ion as 500 μmol g−1. Sorption processes of lead(II by these hybrid materials were investigated under the influence of several controlling parameters such as pH, contact time, mass of sorbent and biosorbent, lead(II concentration, and foreign ions. Lead(II sorption mechanisms were found to obey the Langmuir and BET isotherm models. The potential applications of chemically and biologically modified-active carbonaceous materials for removal and extraction of lead from real water matrices were also studied via a double-stage microcolumn technique. The results of this study were found to denote to superior recovery values of lead (95.0–99.0±3.0–5.0% by various carbonaceous-modified-bakers yeast biosorbents.

  8. Chemical composition and biological activity of ripe pumpkin fruits (Cucurbita pepo L.) cultivated in Egyptian habitats.

    Science.gov (United States)

    Badr, Sherif E A; Shaaban, Mohamed; Elkholy, Yehya M; Helal, Maher H; Hamza, Akila S; Masoud, Mohamed S; El Safty, Mounir M

    2011-09-01

    The chemical composition and biological activity of three parts (rind, flesh and seeds) of pumpkin fruits (Cucurbita pepo L.) cultivated in Egypt were studied. Chemical analysis of fibre, protein, β-carotene, carbohydrates, minerals and fatty acids present in the rind, flesh, seeds and defatted seeds meal was conducted. Chemical, GC-MS and biological assays of organic extracts of the main fruit parts, rind and flesh established their unique constituents. Chromatographic purification of the extracts afforded triglyceride fatty acid mixture (1), tetrahydro-thiophene (2), linoleic acid (3), calotropoleanly ester (4), cholesterol (5) and 13(18)-oleanen-3-ol (6). GC-MS analysis of the extract's unpolar fraction revealed the existence of dodecane and tetradecane. Structures of the isolated compounds (1-6) were confirmed by NMR and EI-MS spectrometry. Antimicrobial, antiviral and antitumour activities of the fruit parts were discussed. The promising combined extract of rind and flesh was biologically studied for microbial and cytotoxic activities in comparison with the whole isolated components.

  9. Green Jobs: Definition and Method of Appraisal of Chemical and Biological Risks.

    Science.gov (United States)

    Cheneval, Erwan; Busque, Marc-Antoine; Ostiguy, Claude; Lavoie, Jacques; Bourbonnais, Robert; Labrèche, France; Bakhiyi, Bouchra; Zayed, Joseph

    2016-04-01

    In the wake of sustainable development, green jobs are developing rapidly, changing the work environment. However a green job is not automatically a safe job. The aim of the study was to define green jobs, and to establish a preliminary risk assessment of chemical substances and biological agents for workers in Quebec. An operational definition was developed, along with criteria and sustainable development principles to discriminate green jobs from regular jobs. The potential toxicity or hazard associated with their chemical and biological exposures was assessed, and the workers' exposure appraised using an expert assessment method. A control banding approach was then used to assess risks for workers in selected green jobs. A double entry model allowed us to set priorities in terms of chemical or biological risk. Among jobs that present the highest risk potential, several are related to waste management. The developed method is flexible and could be adapted to better appraise the risks that workers are facing or to propose control measures.

  10. Microcantilever technology for law enforcement and anti-terrorism applications: chemical, biological, and explosive material detection

    Science.gov (United States)

    Adams, J. D.; Rogers, B.; Whitten, R.

    2005-05-01

    The remarkable sensitivity, compactness, low cost, low power-consumption, scalability, and versatility of microcantilever sensors make this technology among the most promising solutions for detection of chemical and biological agents, as well as explosives. The University of Nevada, Reno, and Nevada Nanotech Systems, Inc (NNTS) are currently developing a microcantilever-based detection system that will measure trace concentrations of explosives, toxic chemicals, and biological agents in air. A baseline sensor unit design that includes the sensor array, electronics, power supply and air handling has been created and preliminary demonstrations of the microcantilever platform have been conducted. The envisioned device would measure about two cubic inches, run on a small watch battery and cost a few hundred dollars. The device could be operated by untrained law enforcement personnel. Microcantilever-based devices could be used to "sniff out" illegal and/or hazardous chemical and biological agents in high traffic public areas, or be packaged as a compact, low-power system used to monitor cargo in shipping containers. Among the best detectors for such applications at present is the dog, an animal which is expensive, requires significant training and can only be made to work for limited time periods. The public is already accustomed to explosives and metal detection systems in airports and other public venues, making the integration of the proposed device into such security protocols straightforward.

  11. Characteristics, chemical compositions and biological activities of propolis from Al-Bahah, Saudi Arabia

    Science.gov (United States)

    Elnakady, Yasser A.; Rushdi, Ahmed I.; Franke, Raimo; Abutaha, Nael; Ebaid, Hossam; Baabbad, Mohannad; Omar, Mohamed O. M.; Al Ghamdi, Ahmad A.

    2017-02-01

    Propolis has been used to treat several diseases since ancient times, and is an important source of bioactive natural compounds and drug derivatives. These properties have kept the interest of investigators around the world, leading to the investigation of the chemical and biological properties and application of propolis. In this report, the chemical constituents that are responsible for the anticancer activities of propolis were analyzed. The propolis was sourced from Al-Baha in the southern part of the Kingdom of Saudi Arabia. Standard protocols for chemical fractionation and bioactivity-guided chemical analysis were used to identify the bio-active ethyl acetate fraction. The extraction was performed in methanol and then analyzed by gas chromatography-mass spectrometry (GC-MS). The major compounds are triterpenoids, with a relative concentration of 74.0%; steroids, with a relative concentration of 9.8%; and diterpenoids, with a relative concentration of 7.9%. The biological activity was characterized using different approaches and cell-based assays. Propolis was found to inhibit the proliferation of cancer cells in a concentration-dependent manner through apoptosis. Immunofluorescence staining with anti-α-tubulin antibodies and cell cycle analysis indicated that tubulin and/or microtubules are the cellular targets of the L-acetate fraction. This study demonstrates the importance of Saudi propolis as anti-cancer drug candidates.

  12. Chemical and biological indicators of water quality in three agricultural watersheds of the Po valley, Italy

    Directory of Open Access Journals (Sweden)

    Linda Pieri

    2011-12-01

    Full Text Available Agriculture has both direct and indirect effects on quality of surface water and is one of the key activities causing water quality degradation. Its environmental impact can be evaluated by the determination of indicators of the quality of water bodies that collect drainage and runoff waters from agricultural watersheds. For this research, the water quality draining from three watersheds, totally or partially cultivated, all within the Po river valley (Italy, was determined, using chemical indicators (N-NO3 and N-NH4 concentration, N balance, trophic status (chlorophyll-a concentration and benthic population indexes. Together, they should provide an overview of the water status, which is supposed to be strictly related to the land use and the management. Results show that the chemical parameters are well related to land use and farming management: intensive agricultural activity leads to high N-NO3 concentration in water and N surplus and vice versa. The chlorophyll-a concentration follows the same trend, being linked to nitrogen loads and land use. Not always there is accordance between chemical and biological indicators: no direct correspondence is evident between the N-NO3 concentration in waters and benthic community. Its presence and abundance seems to be mostly correlated with the geomorphology, hydrology, riparian strips, etc. of the habitat than to the land use. Only the integration of chemical and biological parameters allows a correct understanding of the state of health of water body and benthic communities.

  13. Chemical probes of quorum sensing: from compound development to biological discovery.

    Science.gov (United States)

    Welsh, Michael A; Blackwell, Helen E

    2016-09-01

    Bacteria can utilize chemical signals to coordinate the expression of group-beneficial behaviors in a method of cell-cell communication called quorum sensing (QS). The discovery that QS controls the production of virulence factors and biofilm formation in many common pathogens has driven an explosion of research aimed at both deepening our fundamental understanding of these regulatory networks and developing chemical agents that can attenuate QS signaling. The inherently chemical nature of QS makes studying these pathways with small molecule tools a complementary approach to traditional microbiology techniques. Indeed, chemical tools are beginning to yield new insights into QS regulation and provide novel strategies to inhibit QS. Here, we review the most recent advances in the development of chemical probes of QS systems in Gram-negative bacteria, with an emphasis on the opportunistic pathogen Pseudomonas aeruginosa We first describe reports of novel small molecule modulators of QS receptors and QS signal synthases. Next, in several case studies, we showcase how chemical tools have been deployed to reveal new knowledge of QS biology and outline lessons for how researchers might best target QS to combat bacterial virulence. To close, we detail the outstanding challenges in the field and suggest strategies to overcome these issues.

  14. Chemical, biological, radiological, and nuclear decontamination: Recent trends and future perspective

    Directory of Open Access Journals (Sweden)

    Vinod Kumar

    2010-01-01

    Full Text Available Chemical, biological, radiological, and nuclear (CBRN decontamination is the removal of CBRN material from equipment or humans. The objective of the decontamination is to reduce radiation burden, salvage equipment, and materials, remove loose CBRN contaminants, and fix the remaining in place in preparation for protective storage or permanent disposal work activities. Decontamination may be carried out using chemical, electrochemical, and mechanical means. Like materials, humans may also be contaminated with CBRN contamination. Changes in cellular function can occur at lower radiation doses and exposure to chemicals. At high dose, cell death may take place. Therefore, decontamination of humans at the time of emergency while generating bare minimum waste is an enormous task requiring dedication of large number of personnel and large amount of time. General principles of CBRN decontamination are discussed in this review with emphasis on radiodecontamination.

  15. Construction of a microbial natural product library for chemical biology studies.

    Science.gov (United States)

    Kato, Naoki; Takahashi, Shunji; Nogawa, Toshihiko; Saito, Tamio; Osada, Hiroyuki

    2012-04-01

    The RIKEN Natural Products Depository (NPDepo) is a public depository of small molecules. Currently, the NPDepo chemical library contains 39,200 pure compounds, half of which are natural products and their derivatives. In order to reinforce the uniqueness of our chemical library, we have improved our strategies for the collection of microbial natural products. Firstly, a microbial metabolite fraction library coupled with an MP (microbial products) plot database provides a powerful resource for the efficient isolation of microbial metabolites. Secondly, biosynthetic studies of microbial metabolites have enabled us to not only access ingenious biosynthetic machineries, but also obtain a variety of biosynthetic intermediates. Our chemical library contributes to the discovery of molecular probes for increasing our understanding of complex biological processes and for eventually developing new drug leads.

  16. Biological and chemical investigation of Allium cepa L. response to selenium inorganic compounds.

    Science.gov (United States)

    Michalska-Kacymirow, M; Kurek, E; Smolis, A; Wierzbicka, M; Bulska, E

    2014-06-01

    The aim of this study was to evaluate the biological and chemical response of Allium cepa L. exposed to inorganic selenium compounds. Besides the investigation of the total content of selenium as well as its chemical speciation, the Allium test was used to evaluate the growth of onion roots and mitotic activity in the roots' meristem. The total content of selenium was determined by inductively coupled plasma mass spectrometry (ICP MS). High-performance liquid chromatography (HPLC), coupled to ICP MS, was used for the selenium chemical speciation. Results indicated that A. cepa plants are able to biotransform inorganic selenium compounds into their organic derivatives, e.g., Se-methylselenocysteine from the Se(IV) inorganic precursor. Although the differences in the biotransformation of selenium are due mainly to the oxidation state of selenium, the experiment has also shown a fine effect of counter ions (H(+), Na(+), NH4 (+)) on the response of plants and on the specific metabolism of selenium.

  17. Cell reprogramming: a new chemical approach to stem cell biology and tissue regeneration.

    Science.gov (United States)

    Anastasia, L; Piccoli, M; Garatti, A; Conforti, E; Scaringi, R; Bergante, S; Castelvecchio, S; Venerando, B; Menicanti, L; Tettamanti, G

    2011-02-01

    Generation of pluripotent stem cells (iPSCs) from adult fibroblasts starts a "new era" in stem cell biology, as it overcomes several key issues associated with previous approaches, including the ethical concerns associated with human embryonic stem cells. However, as the genetic approach for cell reprogramming has already shown potential safety issues, a chemical approach may be a safer and easier alternative. Moreover, a chemical approach could be advantageous not only for the de-differentiation phase, but also for inducing reprogrammed cells into the desired cell type with higher efficiency than current methodologies. Finally, a chemical approach may be envisioned to activate resident adult stem cells to proliferate and regenerate damaged tissues in situ, without the need for exogenous cell injections.

  18. Interactions of physical, chemical, and biological weather calling for an integrated approach to assessment, forecasting, and communication of air quality.

    Science.gov (United States)

    Klein, Thomas; Kukkonen, Jaakko; Dahl, Aslög; Bossioli, Elissavet; Baklanov, Alexander; Vik, Aasmund Fahre; Agnew, Paul; Karatzas, Kostas D; Sofiev, Mikhail

    2012-12-01

    This article reviews interactions and health impacts of physical, chemical, and biological weather. Interactions and synergistic effects between the three types of weather call for integrated assessment, forecasting, and communication of air quality. Today's air quality legislation falls short of addressing air quality degradation by biological weather, despite increasing evidence for the feasibility of both mitigation and adaptation policy options. In comparison with the existing capabilities for physical and chemical weather, the monitoring of biological weather is lacking stable operational agreements and resources. Furthermore, integrated effects of physical, chemical, and biological weather suggest a critical review of air quality management practices. Additional research is required to improve the coupled modeling of physical, chemical, and biological weather as well as the assessment and communication of integrated air quality. Findings from several recent COST Actions underline the importance of an increased dialog between scientists from the fields of meteorology, air quality, aerobiology, health, and policy makers.

  19. Empirical analysis on the connection between power-law distributions and allometries for urban indicators

    CERN Document Server

    Alves, Luiz G A; Lenzi, Ervin K; Mendes, Renio S

    2014-01-01

    We report on the existing connection between power-law distributions and allometries. As it was first reported in [PLoS ONE 7, e40393 (2012)] for the relationship between homicides and population, when these urban indicators present asymptotic power-law distributions, they can also display specific allometries among themselves. Here, we present an extensive characterization of this connection when considering all possible pairs of relationships from twelve urban indicators of Brazilian cities (such as child labour, illiteracy, income, sanitation and unemployment). Our analysis reveal that all our urban indicators are asymptotically distributed as power laws and that the proposed connection also holds for our data when the allometric relationship displays enough correlations. We have also found that not all allometric relationships are independent and that they can be understood as a consequence of the allometric relationship between the urban indicator and the population size. We further show that the residua...

  20. Empirical analysis on the connection between power-law distributions and allometries for urban indicators

    Science.gov (United States)

    Alves, L. G. A.; Ribeiro, H. V.; Lenzi, E. K.; Mendes, R. S.

    2014-09-01

    We report on the existing connection between power-law distributions and allometries. As it was first reported in Gomez-Lievano et al. (2012) for the relationship between homicides and population, when these urban indicators present asymptotic power-law distributions, they can also display specific allometries among themselves. Here, we present an extensive characterization of this connection when considering all possible pairs of relationships from twelve urban indicators of Brazilian cities (such as child labor, illiteracy, income, sanitation and unemployment). Our analysis reveals that all our urban indicators are asymptotically distributed as power laws and that the proposed connection also holds for our data when the allometric relationship displays enough correlations. We have also found that not all allometric relationships are independent and that they can be understood as a consequence of the allometric relationship between the urban indicator and the population size. We further show that the residuals fluctuations surrounding the allometries are characterized by an almost constant variance and log-normal distributions.

  1. Unusual allometry for sexual size dimorphism in a cichlid where males are extremely larger than females

    Indian Academy of Sciences (India)

    Kazutaka Ota; Masanori Kohda; Tetsu Sato

    2010-06-01

    When males are the larger sex, a positive allometric relationship between male and female sizes is often found across populations of a single species (i.e. Rensch’s rule). This pattern is typically explained by a sexual selection pressure on males. Here, we report that the allometric relationship was negative across populations of a shell-brooding cichlid fish Lamprologus callipterus, although males are extremely larger than females. Male L. callipterus collect and defend empty snail shells in each of which a female breeds. We found that, across six populations, male and female sizes are positively correlated with not only sexual and fecundity selection indices, but also with shell sizes. Given their different reproductive behaviours, these correlations mean that males are required to be more powerful, and thus larger, to transport larger shells, while female bodies are reduced to the shell size to enable them to enter the shells. Among the three size selections (sexual selection, fecundity selection and shell size), shell size explained the allometry, suggesting that females are more strongly subject to size selection associated with shell size availability than males. However, the allometry was violated when considering an additional population where size-selection regimes of males differed from that of other populations. Therefore, sexual size allometry will be violated by body size divergence induced by multiple selection regimes.

  2. The Influence of Age, Location and Soil Conditions on the Allometry of Young Norway Spruce (Picea abies L. Karst. Trees

    Directory of Open Access Journals (Sweden)

    Ioan DUTCA

    2014-12-01

    Full Text Available In this study the influence of tree’s age, location (i.e. latitude and altitude and soil conditions (i.e. pH, humus content, carbon to nitrogen ratio, cation exchange capacity and percent base saturation on tree allometry was investigated. The data was collected from 22 Norway spruce (Picea abies L. Karst plantations located in Eastern Carpathians of Romania, aged between 4 and 15. From each plantation a soil sample and 10 trees were collected for soil chemical properties and biomass measurements, respectively. Root collar diameter (RCD and height (H based allometric equations were developed for total tree and vegetative organs of the tree (i.e. stem, branches, needles and roots. Furthermore, the interaction between the standardised residuals of these models and the tested factors was analysed. In order to account for the random effect of the clustered data, the mixed-effect modelling procedure was used. The results have shown no influence of these factors (age, location and soil conditions on RCD based models, except for branches biomass model which was linked to soil carbon/nitrogen ratio. The H based models, however, were significantly influenced by latitude and soil cation exchange capacity as a consequence of H/RCD ratio change with these factors. The trees were more likely to allocate more to height growth when growing in higher latitudes or on soils with higher values of cation exchange capacity.

  3. The role of molecular biology in the biomonitoring of human exposure to chemicals.

    Science.gov (United States)

    Muñoz, Balam; Albores, Arnulfo

    2010-11-12

    Exposure to different substances in an occupational environment is of utmost concern to global agencies such as the World Health Organization and the International Labour Organization. Interest in improving work health conditions, particularly of those employees exposed to noxious chemicals, has increased considerably and has stimulated the search for new, more specific and selective tests. Recently, the field of molecular biology has been indicated as an alternative technique for monitoring personnel while evaluating work-related pathologies. Originally, occupational exposure to environmental toxicants was assessed using biochemical techniques to determine the presence of higher concentrations of toxic compounds in blood, urine, or other fluids or tissues; results were used to evaluate potential health risk. However, this approach only estimates the presence of a noxious chemical and its effects, but does not prevent or diminish the risk. Molecular biology methods have become very useful in occupational medicine to provide more accurate and opportune diagnostics. In this review, we discuss the role of the following common techniques: (1) Use of cell cultures; (2) evaluation of gene expression; (3) the "omic" sciences (genomics, transcriptomics, proteomics and metabolomics) and (4) bioinformatics. We suggest that molecular biology has many applications in occupational health where the data can be applied to general environmental conditions.

  4. Treatment of textile effluent by chemical (Fenton's Reagent) and biological (sequencing batch reactor) oxidation.

    Science.gov (United States)

    Rodrigues, Carmen S D; Madeira, Luis M; Boaventura, Rui A R

    2009-12-30

    The removal of organic compounds and colour from a synthetic effluent simulating a cotton dyeing wastewater was evaluated by using a combined process of Fenton's Reagent oxidation and biological degradation in a sequencing batch reactor (SBR). The experimental design methodology was first applied to the chemical oxidation process in order to determine the values of temperature, ferrous ion concentration and hydrogen peroxide concentration that maximize dissolved organic carbon (DOC) and colour removals and increase the effluent's biodegradability. Additional studies on the biological oxidation (SBR) of the raw and previously submitted to Fenton's oxidation effluent had been performed during 15 cycles (i.e., up to steady-state conditions), each one with the duration of 11.5h; Fenton's oxidation was performed either in conditions that maximize the colour removal or the increase in the biodegradability. The obtained results allowed concluding that the combination of the two treatment processes provides much better removals of DOC, BOD(5) and colour than the biological or chemical treatment alone. Moreover, the removal of organic matter in the integrated process is particularly effective when Fenton's pre-oxidation is carried out under conditions that promote the maximum increase in wastewater biodegradability.

  5. The Role of Molecular Biology in the Biomonitoring of Human Exposure to Chemicals

    Science.gov (United States)

    Muñoz, Balam; Albores, Arnulfo

    2010-01-01

    Exposure to different substances in an occupational environment is of utmost concern to global agencies such as the World Health Organization and the International Labour Organization. Interest in improving work health conditions, particularly of those employees exposed to noxious chemicals, has increased considerably and has stimulated the search for new, more specific and selective tests. Recently, the field of molecular biology has been indicated as an alternative technique for monitoring personnel while evaluating work-related pathologies. Originally, occupational exposure to environmental toxicants was assessed using biochemical techniques to determine the presence of higher concentrations of toxic compounds in blood, urine, or other fluids or tissues; results were used to evaluate potential health risk. However, this approach only estimates the presence of a noxious chemical and its effects, but does not prevent or diminish the risk. Molecular biology methods have become very useful in occupational medicine to provide more accurate and opportune diagnostics. In this review, we discuss the role of the following common techniques: (1) Use of cell cultures; (2) evaluation of gene expression; (3) the “omic” sciences (genomics, transcriptomics, proteomics and metabolomics) and (4) bioinformatics. We suggest that molecular biology has many applications in occupational health where the data can be applied to general environmental conditions. PMID:21151453

  6. Automated Structure-Activity Relationship Mining: Connecting Chemical Structure to Biological Profiles.

    Science.gov (United States)

    Wawer, Mathias J; Jaramillo, David E; Dančík, Vlado; Fass, Daniel M; Haggarty, Stephen J; Shamji, Alykhan F; Wagner, Bridget K; Schreiber, Stuart L; Clemons, Paul A

    2014-06-01

    Understanding the structure-activity relationships (SARs) of small molecules is important for developing probes and novel therapeutic agents in chemical biology and drug discovery. Increasingly, multiplexed small-molecule profiling assays allow simultaneous measurement of many biological response parameters for the same compound (e.g., expression levels for many genes or binding constants against many proteins). Although such methods promise to capture SARs with high granularity, few computational methods are available to support SAR analyses of high-dimensional compound activity profiles. Many of these methods are not generally applicable or reduce the activity space to scalar summary statistics before establishing SARs. In this article, we present a versatile computational method that automatically extracts interpretable SAR rules from high-dimensional profiling data. The rules connect chemical structural features of compounds to patterns in their biological activity profiles. We applied our method to data from novel cell-based gene-expression and imaging assays collected on more than 30,000 small molecules. Based on the rules identified for this data set, we prioritized groups of compounds for further study, including a novel set of putative histone deacetylase inhibitors.

  7. The Role of Molecular Biology in the Biomonitoring of Human Exposure to Chemicals

    Directory of Open Access Journals (Sweden)

    Balam Muñoz

    2010-11-01

    Full Text Available Exposure to different substances in an occupational environment is of utmost concern to global agencies such as the World Health Organization and the International Labour Organization. Interest in improving work health conditions, particularly of those employees exposed to noxious chemicals, has increased considerably and has stimulated the search for new, more specific and selective tests. Recently, the field of molecular biology has been indicated as an alternative technique for monitoring personnel while evaluating work-related pathologies. Originally, occupational exposure to environmental toxicants was assessed using biochemical techniques to determine the presence of higher concentrations of toxic compounds in blood, urine, or other fluids or tissues; results were used to evaluate potential health risk. However, this approach only estimates the presence of a noxious chemical and its effects, but does not prevent or diminish the risk. Molecular biology methods have become very useful in occupational medicine to provide more accurate and opportune diagnostics. In this review, we discuss the role of the following common techniques: (1 Use of cell cultures; (2 evaluation of gene expression; (3 the “omic” sciences (genomics, transcriptomics, proteomics and metabolomics and (4 bioinformatics. We suggest that molecular biology has many applications in occupational health where the data can be applied to general environmental conditions.

  8. Prevention of Preharvest Sprouting through Hormone Engineering and Germination Recovery by Chemical Biology.

    Science.gov (United States)

    Nonogaki, Mariko; Nonogaki, Hiroyuki

    2017-01-01

    Vivipary, germination of seeds on the maternal plant, is observed in nature and provides ecological advantages in certain wild species, such as mangroves. However, precocious seed germination in agricultural species, such as preharvest sprouting (PHS) in cereals, is a serious issue for food security. PHS reduces grain quality and causes economical losses to farmers. PHS can be prevented by translating the basic knowledge of hormone biology in seeds into technologies. Biosynthesis of abscisic acid (ABA), which is an essential hormone for seed dormancy, can be engineered to enhance dormancy and prevent PHS. Enhancing nine-cis-epoxycarotenoid dioxygenase (NCED), a rate-limiting enzyme of ABA biosynthesis, through a chemically induced gene expression system, has successfully been used to suppress germination of Arabidopsis seeds. The more advanced system NCED positive-feedback system, which amplifies ABA biosynthesis in a seed-specific manner without chemical induction, has also been developed. The proofs of concept established in the model species are now ready to be applied to crops. A potential problem is recovery of germination from hyperdormant crop grains. Hyperdormancy induced by the NCED systems can be reversed by inducing counteracting genes, such as NCED RNA interference or gibberellin (GA) biosynthesis genes. Alternatively, seed sensitivity to ABA can be modified to rescue germination using the knowledge of chemical biology. ABA antagonists, which were developed recently, have great potential to recover germination from the hyperdormant seeds. Combination of the dormancy-imposing and -releasing approaches will establish a comprehensive technology for PHS prevention and germination recovery.

  9. Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2016-07-01

    Full Text Available Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding and quantitative (for predicting mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD as the revived precursor for comparative molecular field analyses (CoMFA and comparative molecular similarity indices analysis (CoMSIA; all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy-methyl]-6-(phenylthiothymine congeners’ (HEPT ligands antiviral activity against Human Immunodeficiency Virus of first type (HIV-1 and new pharmacophores in treating severe genetic disorders (like depression and psychosis, respectively, all involving 3D pharmacophore interactions.

  10. Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions

    Science.gov (United States)

    Putz, Mihai V.; Duda-Seiman, Corina; Duda-Seiman, Daniel; Putz, Ana-Maria; Alexandrescu, Iulia; Mernea, Maria; Avram, Speranta

    2016-01-01

    Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners’ (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type (HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis), respectively, all involving 3D pharmacophore interactions. PMID:27399692

  11. Quality fluctuation detection of an herbal injection based on biological fingerprint combined with chemical fingerprint.

    Science.gov (United States)

    Zhang, Lele; Ma, Lina; Feng, Wuwen; Zhang, Congen; Sheng, Feiya; Zhang, Yi; Xu, Chen; Dong, Gang; Dong, Xiaoping; Xiao, Xiaohe; Yan, Dan

    2014-08-01

    Herbal injection is one of the most important preparations of traditional Chinese medicine. More than 130 types of herbal injections are used clinically for 400 million patients annually with total sales of over four billion US dollars per year. However, the current quality control (QC) methods relying mainly on chemical fingerprints (CF) can hardly ensure quality and safety of the herbal injections with complex chemical composition and have resulted in an increase in serious adverse drug reactions. In this study, a comprehensive approach for the QC of a controversial herbal injection Shuang-Huang-Lian lyophilized powder (SHL) was established based on the quality fluctuation detection by a combination of CF and biological fingerprint (BF). High-performance liquid chromatography and the impedance-based xCELLigence system were applied to establish the CF and BF, respectively. In addition, multivariate analysis was performed to evaluate the discriminant ability of the two methods. The results showed that being subjected to environmental influence like oxygen/air, high temperature, and extreme illumination could lead to quality fluctuation of SHL. The combination of chemical and biological fingerprint method is a more powerful tool for the QC of SHL because it can clearly discriminate different groups of abnormal samples. This method can be used for the detection of quality fluctuation of SHL and can provide reference for the quality control of other herbal injections.

  12. Tracking SERS-active nanoprobe intracellular uptake for chemical and biological sensing

    Science.gov (United States)

    Gregas, Molly K.; Yan, Fei; Scaffidi, Jonathan; Wang, Hsin-Neng; Khoury, Christopher; Zhang, Yan; Vo-Dinh, Tuan

    2007-09-01

    A critical aspect of the use of nanoprobes for intracellular studies in chemical and biological sensing involves a fundamental understanding of their uptake and trajectory in cells. In this study, we describe experiments using surface-enhanced Raman scattering (SERS) spectroscopy and mapping to track cellular uptake of plasmonics-active labeled nanoparticles. Three different Raman-active labels with positive, negative, and neutral charges were conjugated to silver colloidal nanoparticles with the aim of spatially and temporally profiling intracellular delivery and tracking of nanoprobes during uptake in single mammalian cells. 1-D Raman spectra and 2-D Raman mapping are used to identify and locate the probes via their SERS signal intensities. Because Raman spectroscopy is very specific for identification of chemical and molecular signatures, the development of functionalized plasmonics-active nanoprobes capable of exploring intracellular spaces and processes has the ability to provide specific information on the effects of biological and chemical pollutants in the intracellular environment. The results indicate that this technique will allow study of when, where, and how these substances affect cells and living organisms.

  13. Chemical Biology Approaches to Genome Editing: Understanding, Controlling, and Delivering Programmable Nucleases.

    Science.gov (United States)

    Hu, Johnny H; Davis, Kevin M; Liu, David R

    2016-01-21

    Programmable DNA nucleases have provided scientists with the unprecedented ability to probe, regulate, and manipulate the human genome. Zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeat-Cas9 system (CRISPR-Cas9) represent a powerful array of tools that can bind to and cleave a specified DNA sequence. In their canonical forms, these nucleases induce double-strand breaks at a DNA locus of interest that can trigger cellular DNA repair processes that disrupt or replace genes. The fusion of these programmable nucleases with a variety of other protein domains has led to a rapidly growing suite of tools for activating, repressing, visualizing, and modifying loci of interest. Maximizing the usefulness and therapeutic relevance of these tools, however, requires precisely controlling their activity and specificity to minimize potentially toxic side effects arising from off-target activities. This need has motivated the application of chemical biology principles and methods to genome-editing proteins, including the engineering of variants of these proteins with improved or altered specificities, and the development of genetic, chemical, optical, and protein delivery methods that control the activity of these agents in cells. Advancing the capabilities, safety, effectiveness, and therapeutic relevance of genome-engineering proteins will continue to rely on chemical biology strategies that manipulate their activity, specificity, and localization.

  14. Prevention of Preharvest Sprouting through Hormone Engineering and Germination Recovery by Chemical Biology

    Science.gov (United States)

    Nonogaki, Mariko; Nonogaki, Hiroyuki

    2017-01-01

    Vivipary, germination of seeds on the maternal plant, is observed in nature and provides ecological advantages in certain wild species, such as mangroves. However, precocious seed germination in agricultural species, such as preharvest sprouting (PHS) in cereals, is a serious issue for food security. PHS reduces grain quality and causes economical losses to farmers. PHS can be prevented by translating the basic knowledge of hormone biology in seeds into technologies. Biosynthesis of abscisic acid (ABA), which is an essential hormone for seed dormancy, can be engineered to enhance dormancy and prevent PHS. Enhancing nine-cis-epoxycarotenoid dioxygenase (NCED), a rate-limiting enzyme of ABA biosynthesis, through a chemically induced gene expression system, has successfully been used to suppress germination of Arabidopsis seeds. The more advanced system NCED positive-feedback system, which amplifies ABA biosynthesis in a seed-specific manner without chemical induction, has also been developed. The proofs of concept established in the model species are now ready to be applied to crops. A potential problem is recovery of germination from hyperdormant crop grains. Hyperdormancy induced by the NCED systems can be reversed by inducing counteracting genes, such as NCED RNA interference or gibberellin (GA) biosynthesis genes. Alternatively, seed sensitivity to ABA can be modified to rescue germination using the knowledge of chemical biology. ABA antagonists, which were developed recently, have great potential to recover germination from the hyperdormant seeds. Combination of the dormancy-imposing and -releasing approaches will establish a comprehensive technology for PHS prevention and germination recovery.

  15. Contrasting patterns of tolerance between chemical and biological insecticides in mosquitoes exposed to UV-A.

    Science.gov (United States)

    Tetreau, Guillaume; Chandor-Proust, Alexia; Faucon, Frédéric; Stalinski, Renaud; Akhouayri, Idir; Prud'homme, Sophie M; Raveton, Muriel; Reynaud, Stéphane

    2013-09-15

    Mosquitoes are vectors of major human diseases, such as malaria, dengue or yellow fever. Because no efficient treatments or vaccines are available for most of these diseases, control measures rely mainly on reducing mosquito populations by the use of insecticides. Numerous biotic and abiotic factors are known to modulate the efficacy of insecticides used in mosquito control. Mosquito breeding sites vary from opened to high vegetation covered areas leading to a large ultraviolet gradient exposure. This ecological feature may affect the general physiology of the insect, including the resistance status against insecticides. In the context of their contrasted breeding sites, we assessed the impact of low-energetic ultraviolet exposure on mosquito sensitivity to biological and chemical insecticides. We show that several mosquito detoxification enzyme activities (cytochrome P450, glutathione S-transferases, esterases) were increased upon low-energy UV-A exposure. Additionally, five specific genes encoding detoxification enzymes (CYP6BB2, CYP6Z7, CYP6Z8, GSTD4, and GSTE2) previously shown to be involved in resistance to chemical insecticides were found over-transcribed in UV-A exposed mosquitoes, revealed by RT-qPCR experiments. More importantly, toxicological bioassays revealed that UV-exposed mosquitoes were more tolerant to four main chemical insecticide classes (DDT, imidacloprid, permethrin, temephos), whereas the bioinsecticide Bacillus thuringiensis subsp. israelensis (Bti) appeared more toxic. The present article provides the first experimental evidence of the capacity of low-energy UV-A to increase mosquito tolerance to major chemical insecticides. This is also the first time that a metabolic resistance to chemical insecticides is linked to a higher susceptibility to a bioinsecticide. These results support the use of Bti as an efficient alternative to chemical insecticides when a metabolic resistance to chemicals has been developed by mosquitoes.

  16. Physical, chemical, and biological data collected in Weeks Bay, Alabama (June 1990 - May 2000) (NODC Accession 0116469)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Abstract: This dataset contains ten years of physical, chemical, and biological data collected during shipboard surveys in Weeks Bay, Alabama, between June 1990 and...

  17. Biological and chemical reactivity and phosphorus forms of buffalo manure compost, vermicompost and their mixture with biochar.

    Science.gov (United States)

    Ngo, Phuong-Thi; Rumpel, Cornelia; Ngo, Quoc-Anh; Alexis, Marie; Velásquez Vargas, Gabriela; Mora Gil, Maria de la Luz; Dang, Dinh-Kim; Jouquet, Pascal

    2013-11-01

    This study characterized the carbon and phosphorus composition of buffalo manure, its compost and vermicompost and investigated if presence of bamboo biochar has an effect on their chemical and biological reactivity. The four substrates were characterized for chemical and biochemical composition and P forms. The biological stability of the four substrates and their mixtures were determined during an incubation experiment. Their chemical reactivity was analyzed after acid dichromate oxidation. Biological reactivity of these substrates was related to their soluble organic matter content, which decreased in the order buffalo manure>compost>vermicompost. Phosphorus was labile in all organic substrates and composting transformed organic P into plant available P. The presence of biochar led to a protection of organic matter against chemical oxidation and changed their susceptibility to biological degradation, suggesting that biochar could increase the carbon sequestration potential of compost, vermicompost and manure, when applied in mixture.

  18. Physical, chemical, and biological data collected in Mobile Bay, Alabama in May 1989-December 1999 (NODC Accession 0116496)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains physical, chemical, and biological data collected during ten years of near-monthly shipboard surveys carried out in Mobile Bay between May 1989...

  19. Monitoring Chemical and Biological Electron Transfer Reactions with a Fluorogenic Vitamin K Analogue Probe.

    Science.gov (United States)

    Belzile, Mei-Ni; Godin, Robert; Durantini, Andrés M; Cosa, Gonzalo

    2016-12-21

    We report herein the design, synthesis, and characterization of a two-segment fluorogenic analogue of vitamin K, B-VKQ, prepared by coupling vitamin K3, also known as menadione (a quinone redox center), to a boron-dipyrromethene (BODIPY) fluorophore (a lipophilic reporter segment). Oxidation-reduction reactions, spectroelectrochemical studies, and enzymatic assays conducted in the presence of DT-diaphorase illustrate that the new probe shows reversible redox behavior on par with that of vitamin K, provides a high-sensitivity fluorescence signal, and is compatible with biological conditions, opening the door to monitor remotely (i.e., via imaging) redox processes in real time. In its oxidized form, B-VKQ is non-emissive, while upon reduction to the hydroquinone form, B-VKQH2, BODIPY fluorescence is restored, with emission quantum yield values of ca. 0.54 in toluene. Density functional theory studies validate a photoinduced electron transfer intramolecular switching mechanism, active in the non-emissive quinone form and deactivated upon reduction to the emissive dihydroquinone form. Our results highlight the potential of B-VKQ as a fluorogenic probe to study electron transfer and transport in model systems and biological structures with optimal sensitivity and desirable chemical specificity. Use of such a probe may enable a better understanding of the role that vitamin K plays in biological redox reactions ubiquitous in key cellular processes, and help elucidate the mechanism and pathological significance of these reactions in biological systems.

  20. Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Paladini, F., E-mail: federica.paladini@unisalento.it [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); Picca, R.A.; Sportelli, M.C.; Cioffi, N. [Department of Chemistry, University of Bari “Aldo Moro”, Via Orabona 4, 70126 Bari (Italy); Sannino, A.; Pollini, M. [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy)

    2015-07-01

    Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications and wound healing. This work aims to investigate the surface chemical composition and biological properties of silver nanoparticle-modified flax substrates. Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution, by means of a large-scale apparatus. The silver-coated materials were characterized through X-ray Photoelectron Spectroscopy (XPS), to assess the surface elemental composition of the coatings, and the chemical speciation of both the substrate and the antibacterial nanophases. A detailed investigation of XPS high resolution regions outlined that silver is mainly present on nanophases' surface as Ag{sub 2}O. Scanning electron microscopy and energy dispersive X-ray spectroscopy were also carried out, in order to visualize the distribution of silver particles on the fibers. The materials were also characterized from a biological point of view in terms of antibacterial capability and cytotoxicity. Agar diffusion tests and bacterial enumeration tests were performed on Gram positive and Gram negative bacteria, namely Staphylococcus aureus and Escherichia coli. In vitro cytotoxicity tests were performed through the extract method on murine fibroblasts in order to verify if the presence of the silver coating affected the cellular viability and proliferation. Durability of the coating was also assessed, thus confirming the successful scaling up of the process, which will be therefore available for large-scale production. - Highlights: • Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications. • Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution. • Flax fabrics were characterized from a biological and surface chemical point of view. • Scaling up of the process was confirmed.

  1. Restoration projects for decontamination of facilities from chemical, biological and radiological contamination after terrorist actions

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, M.; Volchek, K.; Lumley, T.; Thouin, G.; Harrison, S.; Kuang, W. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Division, Environmental Technology Centre, Science and Technology Branch; Payette, P.; Laframboise, D.; Best, M. [Public Health Agency of Canada, Ottawa, ON (Canada); Krishnan, J.; Wagener, S.; Bernard, K.; Majcher, M. [Public Health Agency of Canada, Winnipeg, MB (Canada); Cousins, T.; Jones, T. [Defence Research and Development Canada, Ottawa, ON (Canada); Velicogna, D.; Hornof, M.; Punt, M. [SAIC Canada, Ottawa, ON (Canada)

    2006-07-01

    This paper reviewed studies that identified better decontamination methods for chemical, biological and radiological/nuclear (CBRN) attacks. In particular, it reviewed aspects of 3 projects in which procedures were tested and validated for site restoration. Cleanup targets or standards for decontaminating buildings and materials after a CBRN attack were also developed. The projects were based on physicochemical and toxicological knowledge of potential terrorist agents and selected surface matrices. The projects also involved modeling and assessing environmental and health risks. The first multi-agent project involved gathering information on known procedures for restoration of areas including interiors and exteriors of buildings, contents, parking lots, lawn, and vehicles. Air inside the building was included. The efficacy of some of the proposed concepts was tested. Results included the determination of appropriate surrogates for anthrax and tests of liquid and gaseous biocides on the surrogates. The development of new contamination procedures using peroxyacetic acid were also discussed. The second project involved decontamination tests on CBRN using specially-constructed buildings at the Counter-terrorism Technology Centre at Defence Research and Development Canada in Suffield. The buildings will be contaminated with chemical and biological agents and with short-lived radionuclides. They will be decontaminated using the best-performing technologies known. Information collected will include fate of the contaminant and decontamination products, effectiveness of the restoration methods, cost and duration of cleanup and logistical problems. The third project is aimed at developing cleanup standards for decontaminating buildings and construction materials after a chemical or biological attack. It will create as many as 12 algorithms for the development of 50 standards which will help cleanup personnel and first-responders to gauge whether proposed methods can achieve

  2. Physical-chemical determinant properties of biological communities in continental semi-arid waters.

    Science.gov (United States)

    da Rocha, Francisco Cleiton; de Andrade, Eunice Maia; Lopes, Fernando Bezerra; de Paula Filho, Francisco José; Filho, José Hamilton Costa; da Silva, Merivalda Doroteu

    2016-08-01

    Throughout human history, water has undergone changes in quality. This problem is more serious in dry areas, where there is a natural water deficit due to climatic factors. The aims of this study, therefore, were (i) to verify correlations between physical attributes, chemical attributes and biological metrics and (ii) from the biological attributes, to verify the similarity between different points of a body of water in a tropical semi-arid region. Samples were collected every 2 months, from July 2009 to July 2011, at seven points. Four physical attributes, five chemical attributes and four biological metrics were investigated. To identify the correlations between the physicochemical properties and the biological metrics, hierarchical cluster analysis (HCA) and canonical correlation analysis (CCA) were applied. Nine classes of phytoplankton were identified, with the predominance of species of cyanobacteria, and ten families of macroinvertebrates. The use of HCA resulted in the formation of three similar groups, showing that it was possible to reduce the number of sampling points when monitoring water quality with a consequent reduction in cost. Group I was formed from the waters at the high end of the reservoir (points P1, P2 and P3), group II by the waters from the middle third (points P4 and P5), and group III by the waters from the lower part of the reservoir (points P6 and P7). Richness of the phytoplanktons Cyanophyceae, Chorophyceae and Bacillariophyceae was the attribute which determined dissimilarity in water quality. Using CCA, it was possible to identify the spatial variability of the physicochemical attributes (TSS, TKN, nitrate and total phosphorus) that most influence the metrics of the macroinvertebrates and phytoplankton present in the water. Low macroinvertebrate diversity, with a predominance of indicator families for deterioration in water quality, and the composition of phytoplankton showing a predominance of cyanobacteria, suggests greater

  3. Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    Abid; Ali; Khan; Nafees; Bacha; Bashir; Ahmad; Ghosia; Lutfullah; Umar; Farooq; Russell; John; Cox

    2014-01-01

    Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites.Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions.The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques,for example,homologous and heterologous expressions.This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites:also the biosynthetic pathways of the bio-organic-molecules were reported.

  4. Recent developments and applications of clickable photoprobes in medicinal chemistry and chemical biology.

    Science.gov (United States)

    Lapinsky, David J; Johnson, Douglas S

    2015-01-01

    Photoaffinity labeling is a well-known biochemical technique that has grown significantly since the turn of the century, principally due to its combination with bioorthogonal/click chemistry reactions. This review highlights new developments and applications of clickable photoprobes in medicinal chemistry and chemical biology. In particular, recent examples of clickable photoprobes for target identification, activity- or affinity-based protein profiling (ABPP or AfBPP), characterization of sterol- or lipid-protein interactions and characterization of ligand-binding sites are presented.

  5. Estimating Escherichia coli loads in streams based on various physical, chemical, and biological factors.

    Science.gov (United States)

    Dwivedi, Dipankar; Mohanty, Binayak P; Lesikar, Bruce J

    2013-05-01

    Microbes have been identified as a major contaminant of water resources. Escherichia coli (E. coli) is a commonly used indicator organism. It is well recognized that the fate of E. coli in surface water systems is governed by multiple physical, chemical, and biological factors. The aim of this work is to provide insight into the physical, chemical, and biological factors along with their interactions that are critical in the estimation of E. coli loads in surface streams. There are various models to predict E. coli loads in streams, but they tend to be system or site specific or overly complex without enhancing our understanding of these factors. Hence, based on available data, a Bayesian Neural Network (BNN) is presented for estimating E. coli loads based on physical, chemical, and biological factors in streams. The BNN has the dual advantage of overcoming the absence of quality data (with regards to consistency in data) and determination of mechanistic model parameters by employing a probabilistic framework. This study evaluates whether the BNN model can be an effective alternative tool to mechanistic models for E. coli loads estimation in streams. For this purpose, a comparison with a traditional model (LOADEST, USGS) is conducted. The models are compared for estimated E. coli loads based on available water quality data in Plum Creek, Texas. All the model efficiency measures suggest that overall E. coli loads estimations by the BNN model are better than the E. coli loads estimations by the LOADEST model on all the three occasions (three-fold cross validation). Thirteen factors were used for estimating E. coli loads with the exhaustive feature selection technique, which indicated that six of thirteen factors are important for estimating E. coli loads. Physical factors included temperature and dissolved oxygen; chemical factors include phosphate and ammonia; biological factors include suspended solids and chlorophyll. The results highlight that the LOADEST model

  6. Chem2Bio2RDF: A Linked Open Data Portal for Chemical Biology

    CERN Document Server

    Chen, Bin; Zhu, Qian; Ding, Ying; Dong, Xiao; Sankaranarayanan, Madhuvanthi; Wang, Huijun; Sun, Yuyin

    2010-01-01

    The Chem2Bio2RDF portal is a Linked Open Data (LOD) portal for systems chemical biology aiming for facilitating drug discovery. It converts around 25 different datasets on genes, compounds, drugs, pathways, side effects, diseases, and MEDLINE/PubMed documents into RDF triples and links them to other LOD bubbles, such as Bio2RDF, LODD and DBPedia. The portal is based on D2R server and provides a SPARQL endpoint, but adds on few unique features like RDF faceted browser, user-friendly SPARQL query generator, MEDLINE/PubMed cross validation service, and Cytoscape visualization plugin. Three use cases demonstrate the functionality and usability of this portal.

  7. Terrorist threat, chemical, biological, radiological, nuclear medical approach; Menace terroriste, approche medicale nucleaire, radiologique, biologique, chimique

    Energy Technology Data Exchange (ETDEWEB)

    Revel, Th. de [Hopital d' Instruction des Armees Percy, 92 - Clamart (France); Gourmelon, P. [Institut de Radioprotection et de Surete Nucleaire (IRSN), 92 - Clamart (France); Vidal, D. [Centre de Recherche du Service de Sante des Armees, 38 - La Tronche (France); Renaudeau, C. [Ecole du Val de Grace, 92 - Clamart (France)

    2005-07-01

    The different aspects linked to the use of nuclear, radiological, biological and or chemical weapons are gathered in this work. They concern history, fundamental aspect, diagnosis, therapy and prevention. The part devoted to the nuclear aspect concern the accidents in relation with ionizing radiations, the radiation syndrome, the contribution and limits of dosimetry, the treatment of medullary aplasia, the evaluation and treatment of an internal contamination, new perspectives on the use of cytokine for the treatment of accidental irradiated persons, alternative to the blood transfusion. (N.C.)

  8. Medical preparedness for chemical, biological, radiological, nuclear, and explosives (CBRNE) events: gaps and recommendations.

    Science.gov (United States)

    Wilkinson, Diana; Waruszynski, Barbara; Mazurik, Laurie; Szymczak, Ann-Marie; Redmond, Erin; Lichacz, Fred

    2010-11-01

    The Workshop on Medical Preparedness for Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) events: national scan was held on 20 and 21 May 2010 at the Diefenbunker Museum in Ottawa, Canada. The purpose of the workshop was to provide the CBRNE Research and Technology Initiative with a Canadian national profile of existing capabilities and anticipated gaps in casualty management consistent with the community emergency response requirements. The workshop was organised to enable extensive round-table discussions and provide a summary of key gaps and recommendations for emergency response planners.

  9. Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    Abid Ali Khan; Nafees Bacha; Bashir Ahmad; Ghosia Lutfullah; Umar Farooq; Russell John Cox

    2014-01-01

    Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites. Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions. The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques, for example, homologous and heterologous expressions. This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites;also the biosynthetic pathways of the bio-organic-molecules were reported.

  10. Evaluation of physical-chemical and biological treatment of shale oil retort water

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, B.W.; Mason, M.J.; Spencer, R.R.; Wong, A.L.; Wakamiya, W.

    1982-09-01

    Bench scale studies were conducted to evaluate conventional physical-chemical and biological treatment processes for removal of pollutants from retort water produced by in situ shale oil recovery methods. Prior to undertaking these studies, very little information had been reported on treatment of retort water. A treatment process train patterned after that generally used throughout the petroleum refining industry was envisioned for application to retort water. The treatment train would consist of processes for removing suspended matter, ammonia, biodegradable organics, and nonbiodegradable or refractory organics. The treatment processes evaluated include anaerobic digestion and activated sludge for removal of biodegradable organics and other oxidizable substances; activated carbon adsorption for removal of nonbiodegradable organics; steam stripping for ammonia removal; and chemical coagulation, sedimentation and filtration for removal of suspended matter. Preliminary cost estimates are provided.

  11. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    Science.gov (United States)

    Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens

    2015-11-15

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes.

  12. [Chemical and biological characterization of meal and protein isolates from pumpkin seed (Cucurbita moschata)].

    Science.gov (United States)

    Salgado, J M; Takashima, M K

    1992-12-01

    The present study was carried out in order to check through chemical and biological analyses the nutritional characteristics of pumpkin seed, its delipidized meal and its proteic concentrate, considering its availability, nutritional potential, facility for production in poor soils and the need for new food resources. Another objective was to complement the amino acid pattern of pumpkin with others protein sources for human consumption. The results obtained indicate that: Raw pumpkin seed meal has a proteic values of 37.6% and the delipidized meal 68.8%; The PER values for raw seed meal and delipidized meal were 2.26 and 1.65, respectively; The chemical composition revealed that the delipized pumpkin seed meal was limited in threonine (66.8%); The isolate and seed meal proteins were both complemented with lysine and with cowpea bean meal; Whole pumpkin seed meal obtained from variety Caravelle is a good caloric material (approximately 568 cal/100 g).

  13. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli.

    Science.gov (United States)

    Whitaker, W Brian; Jones, J Andrew; Bennett, R Kyle; Gonzalez, Jacqueline E; Vernacchio, Victoria R; Collins, Shannon M; Palmer, Michael A; Schmidt, Samuel; Antoniewicz, Maciek R; Koffas, Mattheos A; Papoutsakis, Eleftherios T

    2017-01-01

    Methanol is an attractive substrate for biological production of chemicals and fuels. Engineering methylotrophic Escherichia coli as a platform organism for converting methanol to metabolites is desirable. Prior efforts to engineer methylotrophic E. coli were limited by methanol dehydrogenases (Mdhs) with unfavorable enzyme kinetics. We engineered E. coli to utilize methanol using a superior NAD-dependent Mdh from Bacillus stearothermophilus and ribulose monophosphate (RuMP) pathway enzymes from B. methanolicus. Using (13)C-labeling, we demonstrate this E. coli strain converts methanol into biomass components. For example, the key TCA cycle intermediates, succinate and malate, exhibit labeling up to 39%, while the lower glycolytic intermediate, 3-phosphoglycerate, up to 53%. Multiple carbons are labeled for each compound, demonstrating a cycling RuMP pathway for methanol assimilation to support growth. By incorporating the pathway to synthesize the flavanone naringenin, we demonstrate the first example of in vivo conversion of methanol into a specialty chemical in E. coli.

  14. Chem2Bio2RDF: a semantic framework for linking and data mining chemogenomic and systems chemical biology data

    OpenAIRE

    Wang Huijun; Jiao Dazhi; Dong Xiao; Chen Bin; Zhu Qian; Ding Ying; Wild David J

    2010-01-01

    Abstract Background Recently there has been an explosion of new data sources about genes, proteins, genetic variations, chemical compounds, diseases and drugs. Integration of these data sources and the identification of patterns that go across them is of critical interest. Initiatives such as Bio2RDF and LODD have tackled the problem of linking biological data and drug data respectively using RDF. Thus far, the inclusion of chemogenomic and systems chemical biology information that crosses th...

  15. Chemical reactivity and biological activity of chalcones and other α,β-unsaturated carbonyl compounds.

    Science.gov (United States)

    Maydt, Daniela; De Spirt, Silke; Muschelknautz, Christian; Stahl, Wilhelm; Müller, Thomas J J

    2013-08-01

    Abstract 1. Chalcones are structural analogues of benzalacetophenone (BAP). Several derivatives have been identified in plants and anticarcinogenic and anti-inflammatory properties were attributed to the compounds, probably related to their direct antioxidant activity or stimulatory effects on the expression of endogenous defence enzymes like hemeoxygenase-1 (HO-1). HO-1 expression is triggered by the Nrf2-Keap1 signalling pathway, initiated by the addition of chalcones to thiol groups of Keap1 via Michael-type reaction. 2. The present study used a model system estimating the reactivity of different synthetic chalcones and other α,β-unsaturated carbonyl compounds with thiols and compared the chemical reactivity with the biological activity, measured by HO-1 expression in human dermal fibroblasts. 3. Chemical reactivity with the thiol group of N-acetylcysteine was determined with 5,5'-dithiobis-(2-nitrobenzoic acid) and followed chemical principles of structure-reactivity relationship. Most reactive were sulforaphane, dimethylfumarate, chalcone 3 ((2E)-1-phenyl-3-pyrimidin-2-ylprop-2-en-1-one) and chalcone 7 (1,3-diphenylprop-2-yn-1-one). This result demonstrates that α,β-unsaturated carbonyl derivatives react with thiols differently. All compounds were also biologically active; however, expression of HO-1 was not only related to the chemical reactivity but also to the lipophilicity of the molecules which likely affected transmembrane uptake. Most efficient inducers of HO-1 expression were BAP, 4-hydroxynonenal and chalcone 1 (4-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzonitrile), chalcone 5 ((2E)-1-phenyl-3-[4-(trifluoromethyl)-phenyl]prop-2-en-1-one) and chalcone 7.

  16. [Asbestos substitutes and their biological effects. 2. Synthetic amphiboles--their physico-chemical characteristics].

    Science.gov (United States)

    Wiecek, E; Szczepaniak, M; Bielichowska-Cybula, G; Woźniak, H

    1992-01-01

    Metal content in the chemical structure of asbestos and man-made mineral fibres can affect their carcinogenic properties. As the chemical composition (metal content) of man-made silicate substitutes for asbestos can be varied almost at will in the process of their manufacture, the search for potentially least carcinogenic silicates appears to be of utmost importance. This paper presents diffractometric characteristics, dimensional analysis and morphology data for 4 synthetic amphibole fibres with chemical compositions differing from that of natural crocidolite amphibole. Those included the following synthetic amphiboles: Na2Mg6Ge8O22(OH)2; Na2Ni6Si8O22(OH)2; Na2Mg6Si8O22(OH)2; Na2Co6Si8O22(OH)2. The studied amphiboles differed in fibre length and diameter. The magnesium amphibole contained the longest (6.03 microns) fibres, and the nickel amphibole contained the shortest (2.7 microns) fibres, resembling those of crocidolite. The highest content (54.7%) of respirable fibres was found in the magnesium amphibole, and the lowest (15.9%) in the natural crocidolite. The authors suggest that the detected differences in the physical and chemical characteristics of the synthetic amphiboles may affect their biological properties.

  17. Laser-micromachined and laminated microfluidic components for miniaturized thermal, chemical, and biological systems

    Science.gov (United States)

    Martin, Peter M.; Matson, Dean W.; Bennett, Wendy D.; Stewart, Donald C.; Lin, Yuehe

    1999-03-01

    Microchannel microfluidic components are being developed for heat transfer, chemical reactor, chemical analysis, and biological analytical applications. Specific applications include chemical sensing, DNA replication, blood analysis, capillary electrophoresis, fuel cell reactors, high temperature chemical reactors, heat pumps, combustors, and fuel processors. Two general types of component architectures have been developed and the fabrication processes defined. All involve a lamination scheme using plastic, ceramic, or metal laminates, as opposed to planar components. The first type is a stacked architecture that utilizes functionality built in each layer, with fluid flow interconnects between layers. Each layer of the laminate has specific microchannel geometry, and performs a specific function. Polymeric materials are used primarily. Fabrication processes used are laser micromachining, wet and dry etching, and coating deposition. the laminates can also be micromolded plastics. The second architecture employs laminates to form internal microchannels and interconnects. Materials include ceramic tapes and high temperature metals. Catalysts can be placed in the microchannels. Fabrication processes used are diffusion bonding, ceramic bonding and firing, photochemical etching, and electrochemical micromachining. Bonding, thus sealing, the laminates is an important issue. Process conditions have been develop to reduce distortion of the laminates and to hermetically seal the components.

  18. Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach

    Science.gov (United States)

    Wright, Megan H.; Clough, Barbara; Rackham, Mark D.; Rangachari, Kaveri; Brannigan, James A.; Grainger, Munira; Moss, David K.; Bottrill, Andrew R.; Heal, William P.; Broncel, Malgorzata; Serwa, Remigiusz A.; Brady, Declan; Mann, David J.; Leatherbarrow, Robin J.; Tewari, Rita; Wilkinson, Anthony J.; Holder, Anthony A.; Tate, Edward W.

    2014-02-01

    Malaria is an infectious disease caused by parasites of the genus Plasmodium, which leads to approximately one million deaths per annum worldwide. Chemical validation of new antimalarial targets is urgently required in view of rising resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase, which catalyses the attachment of the fatty acid myristate to protein substrates (N-myristoylation). Here, we report an integrated chemical biology approach to explore protein myristoylation in the major human parasite P. falciparum, combining chemical proteomic tools for identification of the myristoylated and glycosylphosphatidylinositol-anchored proteome with selective small-molecule N-myristoyltransferase inhibitors. We demonstrate that N-myristoyltransferase is an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and show that selective inhibition of N-myristoylation leads to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle. Our studies provide the basis for the development of new antimalarials targeting N-myristoyltransferase.

  19. Scientific Basis for a Coupled Thermal-Hydrological-Mechanical-Chemical-Biological Experimental Facility at DUSEL Homestake

    Science.gov (United States)

    Sonnenthal, E. L.; Elsworth, D.; Lowell, R. P.; Maher, K.; Mailloux, B. J.; Uzunlar, N.; Freifeld, B. M.; Keimowitz, A. R.; Wang, J. S.

    2009-12-01

    Most natural and engineered earth system processes involve strong coupling of thermal, mechanical, chemical, and sometimes biological processes in rocks that are heterogeneous at a wide range of spatial scales. One of the most pervasive processes in the Earth’s crust is that of fluids (primarily water, but also CO2, hydrocarbons, volcanic gases, etc.) flowing through fractured heated rock under stress. A preliminary design is being formulated for a large-scale subsurface experimental facility to investigate coupled Thermal-Hydrological-Mechanical-Chemical-Biological (THMCB) processes in fractured rock at depth. The experiment would be part of the proposed Deep Underground Science and Engineering Laboratory (DUSEL) in the Homestake Mine, South Dakota. Fundamental geochemical, isotopic, microbiological, laboratory THMC experiments, and numerical modeling will be used to guide the experimental design and evaluation of the time and spatial scales of the coupled THMCB processes. Although we sometimes analyze rocks and fluids for physical and chemical properties, it is difficult to create quantitative numerical models based on fundamental physics and chemistry that can capture the dynamic changes that have occurred or may yet take place. Initial conditions and history are only known roughly at best, and the boundary conditions have likely varied over time as well. Processes such as multicomponent chemical and thermal diffusion, multiphase flow, advection, and thermal expansion/contraction, are taking place simultaneously in rocks that are structurally and chemically complex—heterogeneous assemblages of mineral grains, pores, and fractures—and visually opaque. The only way to fully understand such processes is to carry out well-controlled experiments at a range of scales (grain/pore-scale to decimeter-scale) that can be interrogated and modeled. The THMCB experimental facility is also intended to be a unique laboratory for testing hypotheses regarding effects of

  20. Response of the bacterial community in oil-contaminated marine water to the addition of chemical and biological dispersants

    NARCIS (Netherlands)

    de Almeida Couto, Camila Rattes; Jurelevicius, Diogo de Azevedo; Alvarez, Vanessa Marques; van Elsas, Jan Dirk; Seldin, Lucy

    2016-01-01

    The use of dispersants in different stages of the oil production chain and for the remediation of water and soil is a well established practice. However, the choice for a chemical or biological dispersant is still a controversial subject. Chemical surfactants that persist long in the environment may

  1. Chemical and biological warfare: Detection and warning systems. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The bibliography contains citations concerning the detection, identification, verification, and warning systems of chemical and biological warfare agents. Citations discuss agents sampling, monitoring, and assessment. Techniques include chromotography, biosensing, chemical analysis, and DNA probes. Land pollution, soil tests, and skin protection are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  2. Use of chemicals and biological products in Asian aquacultire and their potential environmental risks: a critical review

    NARCIS (Netherlands)

    Rico, A.; Satapornvanit, K.; Haque, M.M.; Min, J.; Nguyen, P.T.; Telfer, T.; Brink, van den P.J.

    2012-01-01

    Over the past few decades, Asian aquaculture production has intensified rapidly through the adoption of technological advances, and the use of a wide array of chemical and biological products to control sediment and water quality and to treat and prevent disease outbreaks. The use of chemicals in aq

  3. Delivering The Benefits of Chemical-Biological Integration in Computational Toxicology at the EPA (ACS Fall meeting)

    Science.gov (United States)

    Abstract: Researchers at the EPA’s National Center for Computational Toxicology integrate advances in biology, chemistry, and computer science to examine the toxicity of chemicals and help prioritize chemicals for further research based on potential human health risks. The intent...

  4. Biological activities and chemical constituents of some mangrove species from Sundarban estuary: An overview

    Directory of Open Access Journals (Sweden)

    Aritra Simlai

    2013-01-01

    Full Text Available This review represents the studies performed on some beneficial mangrove plants such as Ceriops decandra, Xylocarpus granatum, Xylocarpus moluccensis, Excoecaria agallocha, Sarcolobus globosus, Sonneratia caseolaris and Acanthus ilicifolius from the Sundarban estuary spanning India and Bangladesh with regard to their biological activities and chemical investigations till date. Sundarban is the largest single chunk of mangrove forest in the world. The forest is a source of livelihood to numerous people of the region. Several of its plant species have very large applications in the traditional folk medicine; various parts of these plants are used by the local people as cure for various ailments. Despite such enormous potential, remarkably few reports are available on these species regarding their biological activities and the active principles responsible for such activities. Though some chemical studies have been made on the mangrove plants of this estuary, reports pertaining to their activity-structure relationship are few in number. An attempt has been made in this review to increase the awareness for the medicinal significance as well as conservation and utilization of these mangrove species as natural rich sources of novel bioactive agents.

  5. Expanding the chemical palate of cells by combining systems biology and metabolic engineering.

    Science.gov (United States)

    Curran, Kathleen A; Alper, Hal S

    2012-07-01

    The field of Metabolic Engineering has recently undergone a transformation that has led to a rapid expansion of the chemical palate of cells. Now, it is conceivable to produce nearly any organic molecule of interest using a cellular host. Significant advances have been made in the production of biofuels, biopolymers and precursors, pharmaceuticals and nutraceuticals, and commodity and specialty chemicals. Much of this rapid expansion in the field has been, in part, due to synergies and advances in the area of systems biology. Specifically, the availability of functional genomics, metabolomics and transcriptomics data has resulted in the potential to produce a wealth of new products, both natural and non-natural, in cellular factories. The sheer amount and diversity of this data however, means that uncovering and unlocking novel chemistries and insights is a non-obvious exercise. To address this issue, a number of computational tools and experimental approaches have been developed to help expedite the design process to create new cellular factories. This review will highlight many of the systems biology enabling technologies that have reduced the design cycle for engineered hosts, highlight major advances in the expanded diversity of products that can be synthesized, and conclude with future prospects in the field of metabolic engineering.

  6. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review.

    Science.gov (United States)

    Tallawi, Marwa; Rosellini, Elisabetta; Barbani, Niccoletta; Cascone, Maria Grazia; Rai, Ranjana; Saint-Pierre, Guillaume; Boccaccini, Aldo R

    2015-07-06

    The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed.

  7. Recent advances in medical device triage technologies for chemical, biological, radiological, and nuclear events.

    Science.gov (United States)

    Lansdowne, Krystal; Scully, Christopher G; Galeotti, Loriano; Schwartz, Suzanne; Marcozzi, David; Strauss, David G

    2015-06-01

    In 2010, the US Food and Drug Administration (Silver Spring, Maryland USA) created the Medical Countermeasures Initiative with the mission of development and promoting medical countermeasures that would be needed to protect the nation from identified, high-priority chemical, biological, radiological, or nuclear (CBRN) threats and emerging infectious diseases. The aim of this review was to promote regulatory science research of medical devices and to analyze how the devices can be employed in different CBRN scenarios. Triage in CBRN scenarios presents unique challenges for first responders because the effects of CBRN agents and the clinical presentations of casualties at each triage stage can vary. The uniqueness of a CBRN event can render standard patient monitoring medical device and conventional triage algorithms ineffective. Despite the challenges, there have been recent advances in CBRN triage technology that include: novel technologies; mobile medical applications ("medical apps") for CBRN disasters; electronic triage tags, such as eTriage; diagnostic field devices, such as the Joint Biological Agent Identification System; and decision support systems, such as the Chemical Hazards Emergency Medical Management Intelligent Syndromes Tool (CHEMM-IST). Further research and medical device validation can help to advance prehospital triage technology for CBRN events.

  8. Molecular Origin of Color Variation in Firefly (Beetle) Bioluminescence: A Chemical Basis for Biological Imaging.

    Science.gov (United States)

    Hirano, Takashi

    2016-01-01

    Firefly shows bioluminescence by "luciferin-luciferase" (L-L) reaction using luciferin, luciferase, ATP and O2. The chemical photon generation by an enzymatic reaction is widely utilized for analytical methods including biological imaging in the life science fields. To expand photondetecting analyses with firefly bioluminescence, it is important for users to understand the chemical basis of the L-L reaction. In particular, the emission color variation of the L-L reaction is one of the distinguishing characteristics for multicolor luciferase assay and in vivo imaging. From the viewpoint of fundamental chemistry, this review explains the recent progress in the studies on the molecular mechanism of emission color variation after showing the outline of the reaction mechanism of the whole L-L reaction. On the basis of the mechanism, the progresses in organic synthesis of luciferin analogs modulating their emission colors are also presented to support further developments of red/near infrared in vivo biological imaging utility of firefly bioluminescence.

  9. Handheld hyperspectral imager for standoff detection of chemical and biological aerosols

    Science.gov (United States)

    Hinnrichs, Michele; Jensen, James O.; McAnally, Gerard

    2004-08-01

    Pacific Advanced Technology has developed a small hand held imaging spectrometer, Sherlock, for gas leak and aerosol detection and imaging. The system is based on a patented technique, (IMSS Image Multi-spectral Sensing), that uses diffractive optics and image processing algorithms to detect spectral information about objects in the scene of the camera. This cameras technology has been tested at Dugway Proving Ground and Dstl Porton Down facilities looking at Chemical and Biological agent simulants. In addition to Chemical and Biological detection, the camera has been used for environmental monitoring of green house gases and is currently undergoing extensive laboratory and field testing by the Gas Technology Institute, British Petroleum and Shell Oil for applications for gas leak detection and repair. In this paper we will present some of the results from the data collection at the TRE test at Dugway Proving Ground during the summer of 2002 and laboratory testing at the Dstl facility at Porton Down in the UK in the fall of 2002.

  10. Physico-chemical properties and biological effects of diesel and biomass particles.

    Science.gov (United States)

    Longhin, Eleonora; Gualtieri, Maurizio; Capasso, Laura; Bengalli, Rossella; Mollerup, Steen; Holme, Jørn A; Øvrevik, Johan; Casadei, Simone; Di Benedetto, Cristiano; Parenti, Paolo; Camatini, Marina

    2016-08-01

    Diesel combustion and solid biomass burning are the major sources of ultrafine particles (UFP) in urbanized areas. Cardiovascular and pulmonary diseases, including lung cancer, are possible outcomes of combustion particles exposure, but differences in particles properties seem to influence their biological effects. Here the physico-chemical properties and biological effects of diesel and biomass particles, produced under controlled laboratory conditions, have been characterized. Diesel UFP were sampled from a Euro 4 light duty vehicle without DPF fuelled by commercial diesel and run over a chassis dyno. Biomass UFP were collected from a modern automatic 25 kW boiler propelled by prime quality spruce pellet. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of both diesel and biomass samples showed aggregates of soot particles, but in biomass samples ash particles were also present. Chemical characterization showed that metals and PAHs total content was higher in diesel samples compared to biomass ones. Human bronchial epithelial (HBEC3) cells were exposed to particles for up to 2 weeks. Changes in the expression of genes involved in xenobiotic metabolism were observed after exposure to both UFP already after 24 h. However, only diesel particles modulated the expression of genes involved in inflammation, oxidative stress and epithelial-to-mesenchymal transition (EMT), increased the release of inflammatory mediators and caused phenotypical alterations, mostly after two weeks of exposure. These results show that diesel UFP affected cellular processes involved in lung and cardiovascular diseases and cancer. Biomass particles exerted low biological activity compared to diesel UFP. This evidence emphasizes that the study of different emission sources contribution to ambient PM toxicity may have a fundamental role in the development of more effective strategies for air quality improvement.

  11. Physico-chemical properties and biological effects of diesel and biomass particles

    KAUST Repository

    Longhin, Eleonora

    2016-05-15

    © 2016 Elsevier Ltd. Diesel combustion and solid biomass burning are the major sources of ultrafine particles (UFP) in urbanized areas. Cardiovascular and pulmonary diseases, including lung cancer, are possible outcomes of combustion particles exposure, but differences in particles properties seem to influence their biological effects.Here the physico-chemical properties and biological effects of diesel and biomass particles, produced under controlled laboratory conditions, have been characterized. Diesel UFP were sampled from a Euro 4 light duty vehicle without DPF fuelled by commercial diesel and run over a chassis dyno. Biomass UFP were collected from a modern automatic 25 kW boiler propelled by prime quality spruce pellet. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of both diesel and biomass samples showed aggregates of soot particles, but in biomass samples ash particles were also present. Chemical characterization showed that metals and PAHs total content was higher in diesel samples compared to biomass ones.Human bronchial epithelial (HBEC3) cells were exposed to particles for up to 2 weeks. Changes in the expression of genes involved in xenobiotic metabolism were observed after exposure to both UFP already after 24 h. However, only diesel particles modulated the expression of genes involved in inflammation, oxidative stress and epithelial-to-mesenchymal transition (EMT), increased the release of inflammatory mediators and caused phenotypical alterations, mostly after two weeks of exposure.These results show that diesel UFP affected cellular processes involved in lung and cardiovascular diseases and cancer. Biomass particles exerted low biological activity compared to diesel UFP. This evidence emphasizes that the study of different emission sources contribution to ambient PM toxicity may have a fundamental role in the development of more effective strategies for air quality improvement.

  12. Analytical Applications of Nanomaterials in Monitoring Biological and Chemical Contaminants in Food.

    Science.gov (United States)

    Lim, Min-Cheol; Kim, Young-Rok

    2016-09-28

    The detection of food pathogens is an important aspect of food safety. A range of detection systems and new analytical materials have been developed to achieve fast, sensitive, and accurate monitoring of target pathogens. In this review, we summarize the characteristics of selected nanomaterials and their applications in food, and place focus on the monitoring of biological and chemical contaminants in food. The unique optical and electrical properties of nanomaterials, such as gold nanoparticles, nanorods, quantum dots, carbon nanotubes, graphenes, nanopores, and polydiacetylene nanovesicles, are closely associated with their dimensions, which are comparable in scale to those of targeted biomolecules. Furthermore, their optical and electrical properties are highly dependent on local environments, which make them promising materials for sensor development. The specificity and selectivity of analytical nanomaterials for target contaminants can be achieved by combining them with various biological entities, such as antibodies, oligonucleotides, aptamers, membrane proteins, and biological ligands. Examples of nanomaterial-based analytical systems are presented together with their limitations and associated developmental issues.

  13. Introducing chemical biology applications to introductory organic chemistry students using series of weekly assignments.

    Science.gov (United States)

    Kanin, Maralee R; Pontrello, Jason K

    2016-01-01

    Calls to bring interdisciplinary content and examples into introductory science courses have increased, yet strategies that involve course restructuring often suffer from the need for a significant faculty commitment to motivate change. Minimizing the need for dramatic course reorganization, the structure, reactivity, and chemical biology applications of classes of biological monomers and polymers have been integrated into introductory organic chemistry courses through three series of semester-long weekly assignments that explored (a) Carbohydrates and Oligosaccharides, (b) Amino Acids, Peptides, and Proteins, and (c) Nucleosides, Nucleotides, and Nucleic Acids. Comparisons of unannounced pre- and post tests revealed improved understanding of a reaction introduced in the assignments, and course examinations evaluated cumulative assignment topics. Course surveys revealed that demonstrating biologically relevant applications consistently throughout the semesters enhanced student interest in the connection between basic organic chemistry content and its application to new and unfamiliar bio-related examples. Covering basic material related to these classes of molecules outside of the classroom opened lecture time to allow the instructor to further build on information developed through the weekly assignments, teaching advanced topics and applications typically not covered in an introductory organic chemistry lecture course. Assignments were implemented as homework, either with or without accompanying discussion, in both laboratory and lecture organic courses within the context of the existing course structures.

  14. Chemical properties of soils treated with biological sludge from gelatin industry

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Melo Guimarães

    2012-04-01

    Full Text Available The impact of agro-industrial organic wastes in the environment can be reduced when used in agriculture. From the standpoint of soil fertility, residue applications can increase the organic matter content and provide nutrients for plants. This study evaluated the effect of biological sludge from gelatin industry on the chemical properties of two Ultisols (loamy sand and sandy clay and an Oxisol (clay. The experiment lasted 120 days and was carried out in laboratory in a completely randomized design with factorial arrangement, combining the three soils and six biological sludge rates (0, 100, 200, 300, 400, and 500 m³ ha-1, with three replications. Biological sludge rates of up to 500 m³ ha-1 decreased soil acidity and increased the effective cation exchange capacity (CEC and N, Ca, Mg, and P availability, without exceeding the tolerance limit for Na. The increase in exchangeable base content, greater than the effective CEC, indicates that the major part of cations added by the sludge remains in solution and can be lost by leaching.

  15. Predicting Salmonella populations from biological, chemical, and physical indicators in Florida surface waters.

    Science.gov (United States)

    McEgan, Rachel; Mootian, Gabriel; Goodridge, Lawrence D; Schaffner, Donald W; Danyluk, Michelle D

    2013-07-01

    Coliforms, Escherichia coli, and various physicochemical water characteristics have been suggested as indicators of microbial water quality or index organisms for pathogen populations. The relationship between the presence and/or concentration of Salmonella and biological, physical, or chemical indicators in Central Florida surface water samples over 12 consecutive months was explored. Samples were taken monthly for 12 months from 18 locations throughout Central Florida (n = 202). Air and water temperature, pH, oxidation-reduction potential (ORP), turbidity, and conductivity were measured. Weather data were obtained from nearby weather stations. Aerobic plate counts and most probable numbers (MPN) for Salmonella, E. coli, and coliforms were performed. Weak linear relationships existed between biological indicators (E. coli/coliforms) and Salmonella levels (R(2) Salmonella levels (R(2) Salmonella levels. The lack of good correlations between biological indicators and Salmonella levels and between physicochemical indicators and Salmonella levels shows that the relationship between pathogens and indicators is complex. However, Escherichia coli provides a reasonable way to predict Salmonella levels in Central Florida surface water through logistic regression.

  16. Using chemical biology to assess and modulate mitochondria: progress and challenges

    Science.gov (United States)

    Murphy, Michael P.

    2017-01-01

    Our understanding of the role of mitochondria in biomedical sciences has expanded considerably over the past decade. In addition to their well-known metabolic roles, mitochondrial are also central to signalling for various processes through the generation of signals such as ROS and metabolites that affect cellular homeostasis, as well as other processes such as cell death and inflammation. Thus, mitochondrial function and dysfunction are central to the health and fate of the cell. Consequently, there is considerable interest in better understanding and assessing the many roles of mitochondria. Furthermore, there is also a growing realization that mitochondrial are a promising drug target in a wide range of pathologies. The application of interdisciplinary approaches at the interface between chemistry and biology are opening up new opportunities to understand mitochondrial function and in assessing the role of the organelle in biology. This work and the experience thus gained are leading to the development of new classes of therapies. Here, we overview the progress that has been made to date on exploring the chemical biology of the organelle and then focus on future challenges and opportunities that face this rapidly developing field. PMID:28382206

  17. Temporal changes in physical, chemical and biological sediment parameters in a tropical estuary after mangrove deforestation

    Science.gov (United States)

    Ellegaard, Marianne; Nguyen, Ngoc Tuong Giang; Andersen, Thorbjørn Joest; Michelsen, Anders; Nguyen, Ngoc Lam; Doan, Nhu Hai; Kristensen, Erik; Weckström, Kaarina; Son, Tong Phuoc Hoang; Lund-Hansen, Lars Chresten

    2014-04-01

    Dated sediment cores taken near the head and mouth of a tropical estuary, Nha-Phu/Binh Cang, in south central Viet Nam were analyzed for changes over time in physical, chemical and biological proxies potentially influenced by removal of the mangrove forest lining the estuary. A time-series of satellite images was obtained, which showed that the depletion of the mangrove forest at the head of the estuary was relatively recent. Most of the area was converted into aquaculture ponds, mainly in the late 1990's. The sediment record showed a clear increase in sedimentation rate at the head of the estuary at the time of mangrove deforestation and a change in diatom assemblages in the core from the mouth of the estuary indicating an increase in the water column turbidity of the entire estuary at the time of the mangrove deforestation. The proportion of fine-grained sediment and the δ13C signal both increased with distance from the head of the estuary while the carbon content decreased. The nitrogen content and the δ15N signal were more or less constant throughout the estuary. The proportion of fine-grained material and the chemical proxies were more or less stable over time in the core from the mouth while they varied synchronously over time in the core from the head of the estuary. The sediment proxies combined show that mangrove deforestation had large effects on the estuary with regard to both the physical and chemical environment with implications for the biological functioning.

  18. Bioluminescent bioreporter assays for targeted detection of chemical and biological agents

    Science.gov (United States)

    Ripp, Steven; Jegier, Pat; Johnson, Courtney; Moser, Scott; Islam, Syed; Sayler, Gary

    2008-04-01

    Bioluminescent bioreporters carrying the bacterial lux gene cassette have been well established for the sensing and monitoring of select chemical agents. Their ability to generate target specific visible light signals with no requirement for extraneous additions of substrate or other hands-on manipulations affords a real-time, repetitive assaying technique that is remarkable in its simplicity and accuracy. Although the predominant application of lux-based bioluminescent bioreporters has been towards chemical compound detection, novel genetic engineering schemes are yielding a variety of new bioreporter systems that extend the lux sensing mechanism beyond mere analyte discrimination. For example, the unique specificity of bacteriophage (bacterial viruses) has been exploited in lux bioluminescent assays for specific identification of foodborne bacterial pathogens such as Escherichia coli O157:H7. With the concurrent ability to interface bioluminescent bioreporter assays onto integrated circuit microluminometers (BBICs; bioluminescent bioreporter integrated circuits), the potential exists for the development of sentinel microchips that can function as environmental monitors for multiplexed recognition of chemical and biological agents in air, food, and water. The size and portability of BBIC biosensors may ultimately provide a deployable, interactive network sensing technology adaptable towards chem/bio defense.

  19. Biochar and hydrochar reactivity assessed by chemical, physical and biological methods

    Science.gov (United States)

    Naisse, Christophe; Alexis, Marie; Wiedner, Katja; Glaser, Bruno; pozzi, Alessandro; Carcaillet, Christopher; Criscuoli, Irene; Miglietta, Franco; Rumpel, Cornelia

    2014-05-01

    Field application of biochar is intended to increase soil carbon (C) storage. The assessment of C storage potential of biochars lacks methods and standard materials. In this study, we compared the chemical reactivity of biochars and hydrochars and their potential mineralisation before and after physical weathering as one possibility to evaluate their environmental stability. We used biochars produced by gasification (GSs) and hydrochars produced by hydrothermal carbonisation (HTCs) produced from three different feedstocks as well as Holocene charcoals (150 and 2000 yr old). Their chemical reactivity was analysed after acid dichromate oxidation and their mineralisation potential after laboratory incubations before and after physical weathering. Our results showed that use of acid dichromate oxidation may allow for differentiation of the reactivity of modern biochars but that chemical reactivity of biochars is poorly suited to assess their environmental residence time because it may change with exposure time in soil. Physical weathering induced a carbon loss and increased biological stability of biochar, while reducing its positive priming effect on native soil organic matter. Model extrapolations based on our data showed that decadal C sequestration potential of GS and HTC is globally equivalent when all losses including those due to priming and physical weathering were taken into account. However, at century scale only GS may have the potential to increase soil C storage.

  20. The allometry of parrot BMR: seasonal data for the Greater Vasa Parrot, Coracopsis vasa, from Madagascar.

    Science.gov (United States)

    Lovegrove, Barry G; Perrin, Mike R; Brown, Mark

    2011-12-01

    In this study we examined the allometry of basal metabolic rate (BMR) of 31 parrot species. Unlike previous reports, we show that parrots per se do not display BMRs that are any different to other captive-raised birds of their body size. An ordinary least squares regression fitted the data best and body mass explained 95% of the variation in BMR. There was no phylogenetic signal in the BMR data. We also provide new data for the Greater Vasa Parrot (Coracopsis vasa) of Madagascar. We tested the hypotheses that C. vasa may, because of its insular existence, display conservative energetic traits (low BMR, use of adaptive heterothermy) similar to those observed in several Malagasy mammals. However, this was not the case. C. vasa had a higher BMR than other parrots, especially during summer, when BMR was up-regulated by 50.5% and was 95.7% higher than predicted from an ordinary least squares (OLS) allometry of parrots (BMR = 0.042M (b) (0.649) , BMR in Watts, M (b) in grammes). Compared with BMR data for 94 captive-raised bird species, the winter and summer BMRs were, respectively, 45.5 and 117.8% higher than predicted by a phylogenetic generalised least squares (PGLS) allometry (BMR = 0.030M (b) (0.687) , BMR in Watts, M (b) in grammes). The summer up-regulation of BMR is the highest recorded for a bird of any size to date. We suggest that the costs of a high summer BMR may be met by the unusual cooperative breeding system of C. vasa in which groups of males feed the female and share paternity. The potential breeding benefits of a high summer BMR are unknown.

  1. Molecular, chemical and biological screening of soil actinomycete isolates in seeking bioactive peptide metabolites

    Directory of Open Access Journals (Sweden)

    Javad Hamedi

    2015-10-01

    Full Text Available Background and Objective: Due to the evolution of multidrug-resistant strains, screening of natural resources, especially actinomycetes, for new therapeutic agents discovery has become the interests of researchers. In this study, molecular, chemical and biological screening of soil actinomycetes was carried out in order to search for peptide-producing actinomycetes.Materials and Methods: 60 actinomycetes were isolated from soils of Iran. The isolates were subjected to molecular screening for detection NRPS (non-ribosomal peptide synthetases gene. Phylogenic identification of NRPS containing isolates was performed. Chemical screening of the crude extracts was performed using chlorine o-dianisidine as peptide detector reagent and bioactivity of peptide producing strains was determined by antimicrobial bioassay. High pressure liquid chromatography- mass spectrometry (HPLC-MS with UV-visible spectroscopy was performed for detection of the metabolite diversity in selected strain.Results: Amplified NRPS adenylation gene (700 bp was detected among 30 strains. Phylogenic identification of these isolates showed presence of rare actinomycetes genera among the isolates and 10 out of 30 strains were subjected to chemical screening. Nocardia sp. UTMC 751 showed antimicrobial activity against bacterial and fungal test pathogens. HPLC-MSand UV-visible spectroscopy results from the crude extract showed that this strain has probably the ability to produce new metabolites.Conclusion: By application of a combined approach, including molecular, chemical and bioactivity analysis, a promising strain of Nocardia sp. UTMC 751 was obtained. This strain had significant activity against Staphylococcus aureus and Pseudomonas aeruginosa. Strain Nocardia sp. UTMC 751 produce five unknown and most probably new metabolites with molecular weights of 274.2, 390.3, 415.3, 598.4 and 772.5. This strain had showed 99% similarity to Nocardia ignorata DSM 44496 T.

  2. Industrialization of Biology. A Roadmap to Accelerate the Advanced Manufacturing of Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Douglas C. [National Academy of Sciences, Washington, DC (United States)

    2015-09-01

    The report stresses the need for efforts to inform the public of the nature of industrial biotechnology and of its societal benefits, and to make sure that concerns are communicated effectively between the public and other stakeholders. In addition to scientific advances, a number of governance and societal factors will influence the industrialization of biology. Industry norms and standards need to be established in areas such as read/write accuracy for DNA, data and machine technology specifications, and organism performance in terms of production rates and yields. An updated regulatory regime is also needed to accelerate the safe commercialization of new host organisms, metabolic pathways, and chemical products, and regulations should be coordinated across nations to enable rapid, safe, and global access to new technologies and products.

  3. Heterocyclyl linked anilines and benzaldehydes as precursors for biologically significant new chemical entities

    Indian Academy of Sciences (India)

    Raman K Verma; Vijay Kumar; Prithwish Ghosh; Lalit K Wadhwa

    2012-09-01

    Benzylidene and benzyl thiazolidinediones, oxazolidinediones, isoxazolidinediones and their acyclic analogs like alpha alkylthio/alkoxy phenylpropanoic acids, beta-keto esters and tyrosine-based compounds possess broad therapeutic potential in general and as Peroxisome Proliferator Activated Receptors (PPARs) agonists in particular in the management of hyperglycemia and hyperlipidaemia for the treatment of Type 2 Diabetes (T2D). We have synthesised and characterized some novel and suitably substituted heterocyclyl linked benzaldehydes and anilines, which can be easily and very readily derivatized to all the above mentioned classes to generate new chemical entities of broader biological significance. Synthesis of their benzylidene thiazolidinedione and diethyl malonate and also benzyl diethyl malonate and alpha-bromoesters derivatives is reported in some of the cases in the present work.

  4. Recovery from chemical, biological, and radiological incidents. Critical infrastructure and economic impact considerations

    Energy Technology Data Exchange (ETDEWEB)

    Franco, David Oliver [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Yang, Lynn I. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hammer, Ann E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2012-06-01

    To restore regional lifeline services and economic activity as quickly as possible after a chemical, biological or radiological incident, emergency planners and managers will need to prioritize critical infrastructure across many sectors for restoration. In parallel, state and local governments will need to identify and implement measures to promote reoccupation and economy recovery in the region. This document provides guidance on predisaster planning for two of the National Disaster Recovery Framework Recovery Support Functions: Infrastructure Systems and Economic Recovery. It identifies key considerations for infrastructure restoration, outlines a process for prioritizing critical infrastructure for restoration, and identifies critical considerations for promoting regional economic recovery following a widearea disaster. Its goal is to equip members of the emergency preparedness community to systematically prioritize critical infrastructure for restoration, and to develop effective economic recovery plans in preparation for a widearea CBR disaster.

  5. Chemical constituents and biological activities of species of Justicia: a review

    Directory of Open Access Journals (Sweden)

    Geone M. Corrêa

    2012-02-01

    Full Text Available The Acanthaceae family is an important source of therapeutic drugs, and the ethnopharmacological knowledge of this family requires urgent documentation as several of its species are near extinction. Justicia is the largest genus of Acanthaceae, with approximately 600 species. The present work provides a review addressing the chemistry and pharmacology of the genus Justicia. In addition, the biological activities of compounds isolated from the genus are also covered. The chemical and pharmacological information in the present work may inspire new biomedical applications for the species of Justicia, considering atom economy, the synthesis of environmentally benign products without producing toxic by-products, the use of renewable sources of raw materials, and the search for processes with maximal efficiency of energy.

  6. Biological and Chemical Technologies Research at OIT: Annual Summary Report, FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, G.

    1998-03-01

    The annual summary report presents the fiscal year (FY) 1 997 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1997 (ASR 97) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization; selected technical and programmatic highlights for 1 997; detailed descriptions of individual projects; and a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by the program.

  7. Chemical biology tools for regulating RAS signaling complexity in space and time.

    Science.gov (United States)

    van Hattum, Hilde; Waldmann, Herbert

    2014-09-18

    Rat sarcoma (RAS) family members are small GTPases that control a number of signaling pathways important for normal cellular proliferation. Therefore, it is no surprise that a significant portion of human tumors express constitutively active mutated RAS proteins, which leads to deregulation of RAS signaling pathways, resulting in pathological perturbations of cell growth and death. Although the molecular details of RAS signaling cascades are well understood, there is still a largely unmet need for small molecule probes to control RAS signaling in space and time. More broadly, given the prevalence of mutated RAS in cancer, the need to translate the insights obtained from using small molecule probes into clinically useful drugs is also significant. In this review, we introduce RAS proteins and the signaling pathways they are involved in, and discuss some of the innovative chemical biology approaches to regulate RAS signaling, which include the exploitation of newly identified binding pockets, covalent inhibitors for mutated RAS, and RAS localization impairment.

  8. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G.; Bair, K.; Ross, J. [eds.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  9. The Metal And Sulphate Removal From Mine Drainage Waters By Biological-Chemical Ways

    Directory of Open Access Journals (Sweden)

    Jenčárová Jana

    2015-06-01

    Full Text Available Mine drainage waters are often characterized by high concentrations of sulphates and metals as a consequence of the mining industry of sulphide minerals. The aims of this work are to prove some biological-chemical processes utilization for the mine drainage water treatment. The studied principles of contamination elimination from these waters include sulphate reduction and metal bioprecipitation by the application of sulphate-reducing bacteria (SRB. Other studied process was metal sorption by prepared biogenic sorbent. Mine drainage waters from Slovak localities Banská Štiavnica and Smolník were used to the pollution removal examination. In Banská Štiavnica water, sulphates decreased below the legislative limit. The elimination of zinc by sorption experiments achieved 84 % and 65 %, respectively.

  10. Structural, Chemical and Biological Aspects of Antioxidants for Strategies Against Metal and Metalloid Exposure

    Directory of Open Access Journals (Sweden)

    Swaran J. S. Flora

    2009-01-01

    Full Text Available Oxidative stress contributes to the pathophysiology of exposure to heavy metals/metalloid. Beneficial renal effects of some medications, such as chelation therapy depend at least partially on the ability to alleviate oxidative stress. The administration of various natural or synthetic antioxidants has been shown to be of benefit in the prevention and attenuation of metal induced biochemical alterations. These include vitamins, N-acetylcysteine, α-lipoic acid, melatonin, dietary flavonoids and many others. Human studies are limited in this regard. Under certain conditions, surprisingly, the antioxidant supplements may exhibit pro-oxidant properties and even worsen metal induced toxic damage. To date, the evidence is insufficient to recommend antioxidant supplements in subject with exposure to metals. Prospective, controlled clinical trials on safety and effectiveness of different therapeutic antioxidant strategies either individually or in combination with chelating agent are indispensable. The present review focuses on structural, chemical and biological aspects of antioxidants particularly related to their chelating properties.

  11. Chemical cross-linking and native mass spectrometry: A fruitful combination for structural biology.

    Science.gov (United States)

    Sinz, Andrea; Arlt, Christian; Chorev, Dror; Sharon, Michal

    2015-08-01

    Mass spectrometry (MS) is becoming increasingly popular in the field of structural biology for analyzing protein three-dimensional-structures and for mapping protein-protein interactions. In this review, the specific contributions of chemical crosslinking and native MS are outlined to reveal the structural features of proteins and protein assemblies. Both strategies are illustrated based on the examples of the tetrameric tumor suppressor protein p53 and multisubunit vinculin-Arp2/3 hybrid complexes. We describe the distinct advantages and limitations of each technique and highlight synergistic effects when both techniques are combined. Integrating both methods is especially useful for characterizing large protein assemblies and for capturing transient interactions. We also point out the future directions we foresee for a combination of in vivo crosslinking and native MS for structural investigation of intact protein assemblies.

  12. [Mechanism of intermolecular energy transfer and reception of ultralow action by chemical and biological systems].

    Science.gov (United States)

    Gall', L N; Gall', N R

    2009-01-01

    A novel concept of intermolecular energy transfer and reception of the ultralow action in living systems is proposed. The concept is based on the methods of nonlinear mathematical physics used in description of energy movement along molecular chains and on quantum mechanical ideas concerning signal formation in anisotropic media. A concept of a molecular cell as an indivisible structural unit and a constituent of a biological (chemical) system has been put forward and substantiated, which manifests collective features of the unity of molecules, physical fields, and energetically strained bound water media in processes of energy transfer and reception. Both intermolecular energy transfer and amplification of the ultralow action has been shown to be the components of a unified energy process in a living system, and the physical basis of both processes is the unity of molecules and water-field media in a molecular cell.

  13. Chemical and biological activity in open flows: A dynamical system approach

    Energy Technology Data Exchange (ETDEWEB)

    Tel, Tamas [Institute for Theoretical Physics, Eoetvoes University, P.O. Box 32, H-1518, Budapest (Hungary); Moura, Alessandro de [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970, Sao Paulo, SP (Brazil); Grebogi, Celso [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970, Sao Paulo, SP (Brazil) and Max-Plank-Institute for the Physics of Complex Systems, Noethnitzer Str. 38, D-01187 Dresden (Germany)]. E-mail: grebogi@if.usp.br; Karolyi, Gyoergy [Center for Applied Mathematics and Computational Physics, and Department of Structural Mechanics, Budapest University of Technology and Economics, Mueegyetem rkp. 3, H-1521, Budapest (Hungary)

    2005-07-01

    Chemical and biological processes often take place in fluid flows. Many of them, like environmental or microfluidical ones, generate filamentary patterns which have a fractal structure, due to the presence of chaos in the underlying advection dynamics. In such cases, hydrodynamical stirring strongly couples to the reactivity of the advected species: the outcome of the reaction is then typically different from that of the same reaction taking place in a well-mixed environment. Here we review recent progress in this field, which became possible due to the application of methods taken from dynamical system theory. We place special emphasis on the derivation of effective rate equations which contain singular terms expressing the fact that the reaction takes place on a moving fractal catalyst, on the unstable foliation of the reaction free advection dynamics.

  14. Development of standards for chemical and biological decontamination of buildings and structures affected by terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Lumley, T.C.; Volchek, K.; Fingas, M. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Division, Environmental Technology Centre, Science and Technology Branch; Hay, A.W.M. [Leeds Univ., Leeds (United Kingdom)

    2006-07-01

    Currently, there are no suitable standards for determining levels of safety when reoccupying a building that has been recommissioned following a biological or chemical attack. For that reason, this study focused on developing clean-up standards for decontaminating buildings and construction materials after acts of terrorism. Several parameters must be assessed when determining the course of action to decontaminate toxic agents and to rehabilitate facilities. First, the hazardous substance must be positively identified along with the degree of contamination and information on likely receptors. Potential exposure route is also a key consideration in the risk assessment process. A key objective of the study was to develop specific guidelines for ascertaining and defining clean. In particular, standards for chemical and biological agents that pose a real or potential risk for use as agents of terrorism will be developed. The selected agents for standards development were ammonia, fentanyl, malathion, mustard gas, potassium cyanide, ricin, sarin, hepatitis A virus, and bacillus anthracis. The standards will be developed by establishing the relationship between the amount of exposure and expected health effects; assessing real and potential risks by identifying individuals at risk and consideration of all exposure routes; and, characterizing the risk to determine the potential for toxicity or infectivity. For non-carcinogens, this was done through the analysis of other known guidelines. Cancer-slope factors will be considered for carcinogens. The standards will be assessed in the laboratory using animal models. The guidelines and standards are intended for first-responders and are scheduled for development by the end of 2006. 15 refs., 3 tabs.

  15. The restoration project : decontamination of facilities from chemical, biological and radiological contamination after terrorist action

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, M.; Volchek, K.; Thouin, G.; Harrison, S.; Kuang, W. [Environment Canada, Ottawa, ON (Canada). Emergencies Science Div; Velicogna, D.; Hornof, M.; Punt, M. [SAIC Canada, Ottawa, ON (Canada); Payette, P.; Duncan, L.; Best, M.; Krishnan; Wagener, S.; Bernard, K.; Majcher, M. [Public Health Agency of Canada, Ottawa, ON (Canada); Cousins, T.; Jones, T. [Defence Research and Development Canada, Ottawa, ON (Canada)

    2005-07-01

    Bioterrorism poses a real threat to the public health and national security, and the restoration of affected facilities after a chemical, biological or radiological attack is a major concern. This paper reviewed aspects of a project conducted to collect information, test and validate procedures for site restoration after a terrorist attack. The project began with a review of existing technology and then examined new technologies. Restoration included pickup, neutralization, decontamination, removal and final destruction and deposition of contaminants as well as cleaning and neutralization of material and contaminated waste from decontamination. The project was also intended to test existing concepts and develop new ideas. Laboratory scale experiments consisted of testing, using standard laboratory techniques. Radiation decontamination consisted of removal and concentration of the radioisotopes from removal fluid. General restoration guidelines were provided, as well as details of factors considered important in specific applications, including growth conditions and phases of microorganisms in biological decontamination, or the presence of inhibitors or scavengers in chemical decontamination. Various agents were proposed that were considered to have broad spectrum capability. Test surrogates for anthrax were discussed. The feasibility of enhanced oxidation processes was examined in relation to the destruction of organophosphorus, organochlorine and carbamate pesticides. The goal was to identify a process for the treatment of surfaces contaminated with pesticides. Tests included removal from carpet, porous ceiling tile, steel plates, and floor tiles. General radiation contamination procedures and techniques were reviewed, as well as radiological decontamination waste treatment. It was concluded that there is no single decontamination technique applicable for all contaminants, and decontamination methods depend on economic, social and health factors. The amount of

  16. Chemical biology drug sensitivity screen identifies sunitinib as synergistic agent with disulfiram in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Kirsi Ketola

    Full Text Available BACKGROUND: Current treatment options for castration- and treatment-resistant prostate cancer are limited and novel approaches are desperately needed. Our recent results from a systematic chemical biology sensitivity screen covering most known drugs and drug-like molecules indicated that aldehyde dehydrogenase inhibitor disulfiram is one of the most potent cancer-specific inhibitors of prostate cancer cell growth, including TMPRSS2-ERG fusion positive cancers. However, the results revealed that disulfiram alone does not block tumor growth in vivo nor induce apoptosis in vitro, indicating that combinatorial approaches may be required to enhance the anti-neoplastic effects. METHODS AND FINDINGS: In this study, we utilized a chemical biology drug sensitivity screen to explore disulfiram mechanistic details and to identify compounds potentiating the effect of disulfiram in TMPRSS2-ERG fusion positive prostate cancer cells. In total, 3357 compounds including current chemotherapeutic agents as well as drug-like small molecular compounds were screened alone and in combination with disulfiram. Interestingly, the results indicated that androgenic and antioxidative compounds antagonized disulfiram effect whereas inhibitors of receptor tyrosine kinase, proteasome, topoisomerase II, glucosylceramide synthase or cell cycle were among compounds sensitizing prostate cancer cells to disulfiram. The combination of disulfiram and an antiangiogenic agent sunitinib was studied in more detail, since both are already in clinical use in humans. Disulfiram-sunitinib combination induced apoptosis and reduced androgen receptor protein expression more than either of the compounds alone. Moreover, combinatorial exposure reduced metastatic characteristics such as cell migration and 3D cell invasion as well as induced epithelial differentiation shown as elevated E-cadherin expression. CONCLUSIONS: Taken together, our results propose novel combinatorial approaches to inhibit

  17. Chemical Biology Drug Sensitivity Screen Identifies Sunitinib as Synergistic Agent with Disulfiram in Prostate Cancer Cells

    Science.gov (United States)

    Ketola, Kirsi; Kallioniemi, Olli; Iljin, Kristiina

    2012-01-01

    Background Current treatment options for castration- and treatment-resistant prostate cancer are limited and novel approaches are desperately needed. Our recent results from a systematic chemical biology sensitivity screen covering most known drugs and drug-like molecules indicated that aldehyde dehydrogenase inhibitor disulfiram is one of the most potent cancer-specific inhibitors of prostate cancer cell growth, including TMPRSS2-ERG fusion positive cancers. However, the results revealed that disulfiram alone does not block tumor growth in vivo nor induce apoptosis in vitro, indicating that combinatorial approaches may be required to enhance the anti-neoplastic effects. Methods and Findings In this study, we utilized a chemical biology drug sensitivity screen to explore disulfiram mechanistic details and to identify compounds potentiating the effect of disulfiram in TMPRSS2-ERG fusion positive prostate cancer cells. In total, 3357 compounds including current chemotherapeutic agents as well as drug-like small molecular compounds were screened alone and in combination with disulfiram. Interestingly, the results indicated that androgenic and antioxidative compounds antagonized disulfiram effect whereas inhibitors of receptor tyrosine kinase, proteasome, topoisomerase II, glucosylceramide synthase or cell cycle were among compounds sensitizing prostate cancer cells to disulfiram. The combination of disulfiram and an antiangiogenic agent sunitinib was studied in more detail, since both are already in clinical use in humans. Disulfiram-sunitinib combination induced apoptosis and reduced androgen receptor protein expression more than either of the compounds alone. Moreover, combinatorial exposure reduced metastatic characteristics such as cell migration and 3D cell invasion as well as induced epithelial differentiation shown as elevated E-cadherin expression. Conclusions Taken together, our results propose novel combinatorial approaches to inhibit prostate cancer cell

  18. Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, Robert D.; Hadley, Donald L.; Armstrong, Peter R.; Buck, John W.; Hoopes, Bonnie L.; Janus, Michael C.

    2001-03-01

    Indoor air quality effects on human health are of increasing concern to public health agencies and building owners. The prevention and treatment of 'sick building' syndrome and the spread of air-borne diseases in hospitals, for example, are well known priorities. However, increasing attention is being directed to the vulnerability of our public buildings/places, public security and national defense facilities to terrorist attack or the accidental release of air-borne biological pathogens, harmful chemicals, or radioactive contaminants. The Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System (IA-NBC-HMAS) was developed to serve as a health impact analysis tool for use in addressing these concerns. The overall goal was to develop a user-friendly fully functional prototype Health Modeling and Assessment system, which will operate under the PNNL FRAMES system for ease of use and to maximize its integration with other modeling and assessment capabilities accessible within the FRAMES system (e.g., ambient air fate and transport models, water borne fate and transport models, Physiologically Based Pharmacokinetic models, etc.). The prototype IA-NBC-HMAS is designed to serve as a functional Health Modeling and Assessment system that can be easily tailored to meet specific building analysis needs of a customer. The prototype system was developed and tested using an actual building (i.e., the Churchville Building located at the Aberdeen Proving Ground) and release scenario (i.e., the release and measurement of tracer materials within the building) to ensure realism and practicality in the design and development of the prototype system. A user-friendly "demo" accompanies this report to allow the reader the opportunity for a "hands on" review of the prototype system's capability.

  19. Late effects from whole body irradiation and protection by chemical and biological agents. A review

    Energy Technology Data Exchange (ETDEWEB)

    Maisin, J.R. [Catholic Univ. of Louvain, Brussels (Belgium); Gerber, G.B.

    2000-07-01

    This review described studies attempting to reduce damage of exposure to ionizing radiation with an application of chemical or biological agents by illustrating authors' data to point out which possibilities such protectors might hold in future. Authors described their studies on mice exposed to a single or fractionated dose of X-rays at the Belgian Atomic Center at Mol. Mice were irradiated with 250 kV of X-rays at a dose rate of 1 Gy/min or underwent the fractionated irradiation of 1-week intervals with total dose of 2-25 Gy. Before irradiation, some animals were given glutathione, mercaptoethylamine, cystein, serotonine-creatine, 2{beta}-aminoethylisothiuronium, and other agents, alone or as a mixture. Results indicated that radioprotectors reduced many specific late diseases to different degrees together with protection against tumor induction which other investigators had shown. Future prospects were considered for ideal radioprotectors and searches for new radioprotectors and for combination of biological agents (e.g., cytokines with polysaccharides or prostaglandins) were described. (K.H.)

  20. Biological and chemical treatment of Cedrela fissilis seeds for controlling Rhizoctonia sp.

    Directory of Open Access Journals (Sweden)

    Marília Lazarotto

    2013-03-01

    Full Text Available This research evaluated the effect of a fungicide and a biological product, singly and combined, for the control of pathogens, especially Rhizoctonia sp., in seeds of Cedrela fissilis. Before the seeds treatment, the inoculation of Rhizoctonia sp., isolated from C. fissilis seeds in blotter-test and considered pathogenic for the specie, was done on half of the seeds used. After, the seeds were subjected to treatments with powder organic product based on Trichoderma spp. (singly, powder fungicide Captan (also singly, combination of two products in a maximum dose considered (100% and combination of half dose of both products, besides the control. After the seeds treatments the following tests were done: germination, emergence in vermiculite, with evaluations of seedlings and sanitary by blotter-test. No treatment could eradicate Rhizoctonia sp. inoculated seed, but the treatment with 100% of the dose of both products reduced its incidence. The combination of chemical and biological products can be a viable alternative for the treatment of C. fissililis seeds, especially in the control of Rhizoctonia sp.

  1. Chemical Diversity and Biological Properties of Secondary Metabolites from Sea Hares of Aplysia Genus

    Directory of Open Access Journals (Sweden)

    Renato B. Pereira

    2016-02-01

    Full Text Available The marine environment is an important source of structurally-diverse and biologically-active secondary metabolites. During the last two decades, thousands of compounds were discovered in marine organisms, several of them having inspired the development of new classes of therapeutic agents. Marine mollusks constitute a successful phyla in the discovery of new marine natural products (MNPs. Over a 50-year period from 1963, 116 genera of mollusks contributed innumerous compounds, Aplysia being the most studied genus by MNP chemists. This genus includes 36 valid species and should be distinguished from all mollusks as it yielded numerous new natural products. Aplysia sea hares are herbivorous mollusks, which have been proven to be a rich source of secondary metabolites, mostly of dietary origin. The majority of secondary metabolites isolated from sea hares of the genus Aplysia are halogenated terpenes; however, these animals are also a source of compounds from other chemical classes, such as macrolides, sterols and alkaloids, often exhibiting cytotoxic, antibacterial, antifungal, antiviral and/or antifeedant activities. This review focuses on the diverse structural classes of secondary metabolites found in Aplysia spp., including several compounds with pronounced biological properties.

  2. Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates.

    Science.gov (United States)

    Lonkar, Pallavi; Dedon, Peter C

    2011-05-01

    Chronic inflammation has long been recognized as a risk factor for many human cancers. One mechanistic link between inflammation and cancer involves the generation of nitric oxide, superoxide and other reactive oxygen and nitrogen species by macrophages and neutrophils that infiltrate sites of inflammation. Although pathologically high levels of these reactive species cause damage to biological molecules, including DNA, nitric oxide at lower levels plays important physiological roles in cell signaling and apoptosis. This raises the question of inflammation-induced imbalances in physiological and pathological pathways mediated by chemical mediators of inflammation. At pathological levels, the damage sustained by nucleic acids represents the full spectrum of chemistries and likely plays an important role in carcinogenesis. This suggests that DNA damage products could serve as biomarkers of inflammation and oxidative stress in clinically accessible compartments such as blood and urine. However, recent studies of the biotransformation of DNA damage products before excretion point to a weakness in our understanding of the biological fates of the DNA lesions and thus to a limitation in the use of DNA lesions as biomarkers. This review will address these and other issues surrounding inflammation-mediated DNA damage on the road to cancer.

  3. A biological/chemical process for reduced waste and energy consumption: caprolactam production. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    A biological/chemical process for converting cyclohexane into caprolactam was investigated: microorganisms in a bioreactor would be used to convert cyclohexane into caprolactone followed by chemical synthesis of caprolactam using ammonia. Four microorganisms were isolated from natural soil and water, that can utilize cyclohexane as a sole source of C and energy for growth. They were shown to have the correct metabolic intermediates and enzymes to convert cyclohexane into cyclohexanol, cyclohexanone, and caprolactone. Genetic techniques to create and select for caprolactone hydrolase negative-mutants were developed; those are used to convert cyclohexane into caprolactone but, because of the block, are unable to metabolize the caprolactone further. Because of a new nylon carpet reycle process and the long time frame for a totally new bioprocess, a limited study was done to evaluate whether a simplified bioprocess to convert cyclohexanol into cyclohexanone or caprolactone was feasible; growth rates and key enzyme levels were measured in a collection of microorganisms that metabolize cyclohexanol to determine if the bioactivity is high enough to support an economical cyclohexanol bioprocess. Although these microorganisms had sufficient bioactivity, they could tolerate only low levels (<1%) of cyclohexanol and thus are not suitable for developing a cost effective bioprocess because of the high cost of dilute product recovery.

  4. Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sudarjanto, Gatut [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia); Keller-Lehmann, Beatrice [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia); Keller, Jurg [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia)]. E-mail: j.keller@awmc.uq.edu.au

    2006-11-02

    The integrated chemical-biological degradation combining advanced oxidation by UV/H{sub 2}O{sub 2} followed by aerobic biodegradation was used to degrade C.I. Reactive Azo Red 195A, commonly used in the textile industry in Australia. An experimental design based on the response surface method was applied to evaluate the interactive effects of influencing factors (UV irradiation time, initial hydrogen peroxide dosage and recirculation ratio of the system) on decolourisation efficiency and optimizing the operating conditions of the treatment process. The effects were determined by the measurement of dye concentration and soluble chemical oxygen demand (S-COD). The results showed that the dye and S-COD removal were affected by all factors individually and interactively. Maximal colour degradation performance was predicted, and experimentally validated, with no recirculation, 30 min UV irradiation and 500 mg H{sub 2}O{sub 2}/L. The model predictions for colour removal, based on a three-factor/five-level Box-Wilson central composite design and the response surface method analysis, were found to be very close to additional experimental results obtained under near optimal conditions. This demonstrates the benefits of this approach in achieving good predictions while minimising the number of experiments required.

  5. Biological effects of activation products and other chemicals released from fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Strand, J.A.; Poston, T.M.

    1976-09-01

    Literature reviews indicate that existing information is incomplete, often contradictory, and of questionable value for the prediction and assessment of ultimate impact from fusion-associated activation products and other chemical releases. It is still uncertain which structural materials will be used in the blanket and first wall of fusion power plants. However, niobium, vanadium, vanadium-chromium alloy, vanadium-titanium alloy, sintered aluminum product, and stainless steel have been suggested. The activation products of principal concern will be the longer-lived isotopes of /sup 26/Al, /sup 49/V, /sup 51/Cr, /sup 54/Mn, /sup 55/Fe, /sup 58/Co, /sup 60/Co, /sup 93/Nb, and /sup 94/Nb. Lithium released to the environment either during the mining cycle, from power plant operation or accident, may be in the form of a number of compound types varying in solubility and affinity for biological organisms. The effects of a severe liquid metal fire or explosion involving Na or K will vary according to inherent abiotic and biotic features of the affected site. Saline, saline-alkaline, and sodic soils of arid lands would be particularly susceptible to alkaline stress. Beryllium released to the environment during the mining cycle or reactor accident situation could be in the form of a number of compound types. Adverse effects to aquatic species from routine chemical releases (biocides, corrosion inhibitors, dissolution products) may occur in the discharge of both fission and fusion power plant designs.

  6. Beyond terrestrial biology: charting the chemical universe of α-amino acid structures.

    Science.gov (United States)

    Meringer, Markus; Cleaves, H James; Freeland, Stephen J

    2013-11-25

    α-Amino acids are fundamental to biochemistry as the monomeric building blocks with which cells construct proteins according to genetic instructions. However, the 20 amino acids of the standard genetic code represent a tiny fraction of the number of α-amino acid chemical structures that could plausibly play such a role, both from the perspective of natural processes by which life emerged and evolved, and from the perspective of human-engineered genetically coded proteins. Until now, efforts to describe the structures comprising this broader set, or even estimate their number, have been hampered by the complex combinatorial properties of organic molecules. Here, we use computer software based on graph theory and constructive combinatorics in order to conduct an efficient and exhaustive search of the chemical structures implied by two careful and precise definitions of the α-amino acids relevant to coded biological proteins. Our results include two virtual libraries of α-amino acid structures corresponding to these different approaches, comprising 121 044 and 3 846 structures, respectively, and suggest a simple approach to exploring much larger, as yet uncomputed, libraries of interest.

  7. Comparative Study of Chemical Composition and Biological Activity of Yellow, Green, Brown, and Red Brazilian Propolis

    Science.gov (United States)

    Machado, Christiane Schineider; Mokochinski, João Benhur; de Lira, Tatiana Onofre; de Oliveira, Fátima de Cassia Evangelista; Cardoso, Magda Vieira; Ferreira, Roseane Guimarães; Sawaya, Alexandra Christine Helena Frankland; Ferreira, Antonio Gilberto; Pessoa, Cláudia; Cuesta-Rubio, Osmany; Monteiro, Marta Chagas; de Campos, Mônica Soares

    2016-01-01

    The chemical composition and biological activity of a sample of yellow propolis from Mato Grosso do Sul, Brazil (EEP-Y MS), were investigated for the first time and compared with green, brown, and red types of Brazilian propolis and with a sample of yellow propolis from Cuba. Overall, EEP-Y MS had different qualitative chemical profiles, as well as different cytotoxic and antimicrobial activities when compared to the other types of propolis assessed in this study and it is a different chemotype of Brazilian propolis. Absence of phenolic compounds and the presence of mixtures of aliphatic compounds in yellow propolis were determined by analysing 1H-NMR spectra and fifteen terpenes were identified by GC-MS. EEP-Y MS showed cytotoxic activity against human tumour strain OVCAR-8 but was not active against Gram-negative or Gram-positive bacteria. Our results confirm the difficulty of establishing a uniform quality standard for propolis from diverse geographical origins. The most appropriate pharmacological applications of yellow types of propolis must be further investigated. PMID:27525023

  8. Analytical applications of oscillatory chemical reactions: determination of some pharmaceuticaly and biologically important compounds

    Directory of Open Access Journals (Sweden)

    Pejić Nataša D.

    2012-01-01

    Full Text Available Novel analytical methods for quantitive determination of analytes based on perturbations of oscillatory chemical reactions realized under open reactor conditions (continuosly fed well stirred tank reactor, CSTR, have been developed in the past twenty years. The proposed kinetic methods are generally based on the ability of the analyzed substances to change the kinetics of the chemical reactions matrix. The unambiguous correlation of quantitative characteristics of perturbations, and the amount (concentration of analyte expressed as a regression equation, or its graphics (calibration curve, enable the determination of the unknown analyte concentration. Attention is given to the development of these methods because of their simple experimental procedures, broad range of linear regression ( 10-7 10-4 mol L-1 and low limits of detection of analytes ( 10-6 10-8 mol L1, in some cases even lower than 10-12 mol L-1. Therefore, their application is very convenient for routine analysis of various inorganic and organic compounds as well as gases. This review summarizes progress made in the past 5 years on quantitative determination of pharmaceutically and biologically important compounds.

  9. Traditional uses, chemical composition and biological activities of Sideritis raeseri Boiss. & Heldr.

    Science.gov (United States)

    Romanucci, Valeria; Di Fabio, Giovanni; D'Alonzo, Daniele; Guaragna, Annalisa; Scapagnini, Giovanni; Zarrelli, Armando

    2017-01-01

    Sideritis species have been used in folk medicine for their antimicrobial, antiulcerogenic, digestive and anti-inflammatory properties. Over the years, the phytochemistry of the genus Sideritis has been studied, and various terpenoids, sterols, coumarins and especially flavonoid aglycones and glycosides have been identified. In particular, species from the Balkan Peninsula have been studied and were found to be rich in flavonoids, with valuable antioxidant activity. In the folk medicine of the Balkan countries, Sideritis raeseri is used as a herbal tea in the treatment of inflammation, gastrointestinal disorders and coughs, and also as a tonic, whereas extracts are used as a component of dietary supplements for anaemia. Its dried inflorescences are used to prepare a beverage called 'mountain tea'. In light of the considerable interest generated in the chemistry, pharmacological properties and commercial value of S. raeseri Boiss. & Heldr., we review and summarise the available literature on these plants. The review details the chemical composition of the essential oil, its mineral and polyphenol contents, the naming of these plants and their physicochemical characterisation, and the nuclear magnetic resonance spectral data and biological properties associated with the plant extracts, with a focus on their potential chemotherapeutic applications. © 2016 Society of Chemical Industry.

  10. Interaction of chemical species with biological regulation of the metabolism of essential trace elements

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, W. [Center of Life and Food Sciences, Technische Univ. Muenchen, Freising (Germany)

    2002-02-01

    Variations in the chemical speciation of dietary trace elements can result in the provision of different amounts of these micronutrients to the organism and might thus induce interactions with trace-element metabolism. The chemical species of Zn, Fe, Cu, and Mn can interact with other components of the diet even before reaching the site of absorption, e.g. by formation of poorly soluble complexes with phytic acid. This might considerably modify the amount of metabolically available trace elements; differences between absorptive capacity per se toward dietary species seems to be less important. Homeostasis usually limits the quantities of Zn, Fe, Cu, and Mn transported from the gut into the organism, and differences between dietary species are largely eliminated at this step. There is no homeostatic control of absorption of Se and I, and organisms seem to be passively exposed to influx of these micronutrients irrespective of dietary speciation. Inside the organism the trace elements are usually converted into a metabolically recognizable form, channeled into their biological functions, or submitted to homeostatically controlled excretion. Some dietary species can, however, be absorbed as intact compounds. As long as the respective quantities of trace elements are not released from their carriers, they are not recognized properly by trace element metabolism and might induce tissue accumulation, irrespective of homeostatic control. (orig.)

  11. Modified clay minerals efficiency against chemical and biological warfare agents for civil human protection.

    Science.gov (United States)

    Plachá, Daniela; Rosenbergová, Kateřina; Slabotínský, Jiří; Kutláková, Kateřina Mamulová; Studentová, Soňa; Martynková, Gražyna Simha

    2014-04-30

    Sorption efficiencies of modified montmorillonite and vermiculite of their mono ionic Na and organic HDTMA and HDP forms were studied against chemical and biological warfare agents such as yperite and selected bacterial strains. Yperite interactions with modified clay minerals were observed through its capture in low-density polyethylene foil-modified clay composites by measuring yperite gas permeation with using chemical indication and gas chromatography methods. The antibacterial activities of synthetized organoclays were tested against selected Gram-positive and Gram-negative bacterial species in minimum inhibitory concentration tests. The obtained results showed a positive influence of modified clay minerals on the significant yperite breakthrough-time increase. The most effective material was the polyethylene-Na form montmorillonite, while the polyethylene-Na form vermiculite showed the lowest efficiency. With increasing organic cations loading in the interlayer space the montmorillonite efficiency decreased, and in the case of vermiculite an opposite effect was observed. Generally the modified montmorillonites were more effective than modified vermiculites. The HDP cations seem to be more effective compare to the HDTMA. The antibacterial activity tests confirmed efficiency of all organically modified clay minerals against Gram-positive bacteria. The confirmation of antibacterial activity against Y. pestis, plague bacteria, is the most interesting result of this part of the study.

  12. Chemically and biologically modified activated carbon sorbents for the removal of lead ions from aqueous media.

    Science.gov (United States)

    Mahmoud, Mohamed E; Abdel-Fattah, Tarek M; Osman, Maher M; Ahmed, Somia B

    2012-01-01

    A method is described for hybridization of the adsorption and biosorption characteristics of chemically treated commercial activated carbon and baker's yeast, respectively, for the formation of environmental friendly multifunctional sorbents. Activated carbon was loaded with baker's yeast after acid-base treatment. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) Spectroscopy were used to characterize these sorbents. Moreover, the sorption capabilities for lead (II) ions were evaluated. A value of 90 μmol g(-1) was identified as the maximum sorption capacity of activated carbon. Acid-base treatment of activated carbon was found to double the sorption capacity (140-180 μmol g(-1)). Immobilization of baker's yeast on the surface of activated carbon sorbents was found to further improve the sorption capacity efficiency of lead to 360, 510 and 560 μmol g(-1), respectively. Several important factors such as pH, contact time, sorbent dose, lead concentration and interfering ions were examined. Lead sorption process was studied and evaluated by several adsorption isotherms and found to follow the Langmuir and BET models. The potential applications of various chemically and biologically modified sorbents and biosorbents for removal of lead from real water matrices were also investigated via multistage micro-column technique and the results referred to excellent recovery values of lead (95.0-99.0 ± 3.0-5.0 %).

  13. Chemical Variability and Biological Activities of Essential Oils of Micromeria inodora (Desf.) Benth. from Algeria.

    Science.gov (United States)

    Benomari, Fatima Zahra; Djabou, Nassim; Medbouhi, Ali; Khadir, Abdelmounaim; Bendahou, Mourad; Selles, Chaouki; Desjobert, Jean-Marie; Costa, Jean; Muselli, Alain

    2016-11-01

    The chemical composition of the essential oils isolated from the aerial parts of Micromeria inodora (Desf.) Benth. collected in 24 Algerian localities was investigated from the first time using GC-FID, GC/MS and (13) C-NMR. Altogether, 83 components which accounted for 94.7% of the total oil composition were identified. The main compounds were trans-sesquisabinene hydrate (1; 20.9%), α-terpinyl acetate (2; 19.8%), globulol (3; 4.9%), caryophyllene oxide (4; 4.3%), β-bisabolol (5; 2.9%) and trans-7-epi-sesquisabinene hydrate (6; 2.6%). Comparison with the literature highlighted the originality of the Algerian M. inodora oil and indicated that 1 might be used as taxonomical marker. The study of the chemical variability allowed the discrimination of two main clusters confirming that there is a relation between the essential-oil compositions and the soil nature of the harvest locations. Biological activity of M. inodora essential oil was assessed against fourteen species of microorganisms involved in nosocomial infections using paper disc diffusion and dilution agar assays. The in vitro study demonstrated a good activity against Gram-positive strains such as Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, and Enterococcus faecalis, and moderate activity against Candida albicans. These results might be useful for the future commercial valorization of M. inodora essential oil as a promising source of natural products with potential against various nosocomial community and toxinic infections.

  14. Chemical Composition and Biological Activities of Allium roseum L. var. grandiflorum Briq. Essential Oil.

    Science.gov (United States)

    Touihri, Imen; Boukhris, Maher; Marrakchi, Naziha; Luis, José; Hanchi, Belgacem; Kallech-Ziri, Olfa

    2015-01-01

    Allium roseum L. (Alliaceae) endemic mediterranean specie was represented in the North Africa by 12 different taxa. In the present study, chemical composition, antiproliferative, antioxidant and antimicrobial activities of the essential oil extracted from A. roseum var. grandiflorum Briq. bulbs collected in the North of Tunisia were investigated. Chemical characterization has shown methyl methanethiosulfinate as major sulphurous compounds. A. roseum bulbs essential oil provides interesting antiproliferative activity against two human colonic adenocarcinoma HT29 and CACO2 cell lines in dose-dependent manner with a half-maximal inhibition (IC50) of 4.64 µg/mL and 8.22 µg/mL respectively. The antioxidant activity, as determined by FRAP assay, was 285 µmol equivalent Trolox/g of essential oil. The scavenging effect on DPPH radicals of essential oil was estimated as IC50 values at 156 µg/mL. The inhibition of superoxide anion production in a model of cancer cell lines was significant for both lines HT29 and CACO2 with IC50 of 20.25 µg/mL and 29.12 µg/mL respectively. Allium roseum essential oil exhibited antibacterial and antifungal activities with a high effectiveness against Candida albicans given by an MIC value of 0.019 mg/mL. This biological effect appears to be related mainly to the presence of organosulfur compounds.

  15. Comparative Study of Chemical Composition and Biological Activity of Yellow, Green, Brown, and Red Brazilian Propolis

    Directory of Open Access Journals (Sweden)

    Christiane Schineider Machado

    2016-01-01

    Full Text Available The chemical composition and biological activity of a sample of yellow propolis from Mato Grosso do Sul, Brazil (EEP-Y MS, were investigated for the first time and compared with green, brown, and red types of Brazilian propolis and with a sample of yellow propolis from Cuba. Overall, EEP-Y MS had different qualitative chemical profiles, as well as different cytotoxic and antimicrobial activities when compared to the other types of propolis assessed in this study and it is a different chemotype of Brazilian propolis. Absence of phenolic compounds and the presence of mixtures of aliphatic compounds in yellow propolis were determined by analysing 1H-NMR spectra and fifteen terpenes were identified by GC-MS. EEP-Y MS showed cytotoxic activity against human tumour strain OVCAR-8 but was not active against Gram-negative or Gram-positive bacteria. Our results confirm the difficulty of establishing a uniform quality standard for propolis from diverse geographical origins. The most appropriate pharmacological applications of yellow types of propolis must be further investigated.

  16. "New drug" designations for new therapeutic entities: new active substance, new chemical entity, new biological entity, new molecular entity.

    Science.gov (United States)

    Branch, Sarah K; Agranat, Israel

    2014-11-13

    This Perspective addresses ambiguities in designations of "new drugs" intended as new therapeutic entities (NTEs). Designation of an NTE as a new drug is significant, as it may confer regulatory exclusivity, an important incentive for development of novel compounds. Such designations differ between jurisdictions according to their drug laws and drug regulations. Chemical, biological, and innovative drugs are addressed in turn. The terms new chemical entity (NCE), new molecular entity (NME), new active substance (NAS), and new biological entity (NBE) as applied in worldwide jurisdictions are clarified. Differences between them are explored through case studies showing why new drugs have different periods of exclusivity in different jurisdictions or none at all. Finally, this Perspective recommends that in future, for the purpose of new drug compilations, NME is used for a new chemical drug, NBE for a new biological drug, and the combined designation NTE should refer to either an NME or an NBE.

  17. The terrorist threat nuclear, radiological, biological, chemical - a medical approach; Menace terroriste nucleaire, radiologique, biologique, chimique - approche medicale

    Energy Technology Data Exchange (ETDEWEB)

    Revel, M.C. de; Gourmelon, M.C.S.; Vidal, P.C.; Renaudeau, P.C.S

    2005-07-01

    Since September 11, 2001, the fear of a large scale nuclear, biological and/or chemical terrorism is taken again into consideration at the highest level of national policies of risk prevention. The advent of international terrorism implies a cooperation between the military defense and the civil defense. The nuclear, radiological, biological and chemical (NRBC) experts of the health service of army and of civil defense will have to work together in case of major terror attack. This book presents this cooperation between civil and military experts in the NRBC domain: risk analysis, national defense plans, crisis management, syndromes and treatments. The different aspects linked with the use of nuclear, biological and chemical weapons are analyzed by the best experts from French medical and research institutes. All topics of each NRBC domain are approached: historical, basic, diagnostic, therapeutic and preventive. (J.S.)

  18. Short-term effects of different organic amendments on soil chemical, biochemical and biological indicators

    Science.gov (United States)

    Mondelli, Donato; Aly, Adel; Yirga Dagnachew, Ababu; Piscitelli, Lea; Dumontet, Stefano; Miano, Teodoro

    2014-05-01

    The limited availability of animal manure and the high cost of good quality compost lead to difficult soil quality management under organic agriculture. Therefore, it is important to find out alternative organic soil amendments and more flexible strategies that are able to sustain crop productivity and maintain and enhance soil quality. A three years study was carried out in the experimental fields of the Mediterranean Agronomic Institute of Bari located in Valenzano, Italy. The main objective of this research is to investigate the effects of different fertility management strategies on soil quality in order to estimate the role of innovative matrices for their use in organic farming. The experiment consists of seven treatments applied to a common crop rotation. The treatments include alternative organic amendments (1- olive mill wastewater OMW, 2- residues of mushroom cultivation MUS, 3- coffee chaff COF), common soil amendments (4- compost COM, 5- faba bean intercropping LEG, 6- cow manure - MAN) and as a reference treatment (7- mineral fertilizer COV). The soil quality was assessed before and after the application of the treatments, through biological (microbial biomass carbon and nitrogen, soil respiration and metabolic quotient), biochemical (soil enzymatic activities: β-glucosidase, alkaline phospatase, urease, fluorescein diacetate (FDA) hydrolysis), and chemical (pH, soil organic carbon, soil organic matter, total nitrogen, available phosphorous, exchangeable potassium, dissolved organic carbon and total dissolved nitrogen) indicators. Based on the results obtained after the second year, all treatments were able to improve various soil chemical parameters as compared to mineral fertilizer. The incorporation of COF and OMW seemed to be more effective in improving soil total N and exchangeable K, while MAN significantly increased available P. All the amendments enhance dissolved organic C, soil respiration, microbial biomass and metabolic quotient as

  19. The nature of allometry in an exaggerated trait: The postocular flange in Platyneuromus Weele (Insecta: Megaloptera)

    Science.gov (United States)

    Ramírez-Ponce, Andrés; Garfias-Lozano, Gabriela; Contreras-Ramos, Atilano

    2017-01-01

    The origin and function of exaggerated traits exhibited by a great number of species with sexual dimorphism remain largely unexplored. The usual model considered as the evolutionary mechanism for the development of these structures is sexual selection. The nature of growth of the postocular flange (POF) in three species of the dobsonfly genus Platyneuromus (Megaloptera, Corydalidae, Corydalinae) is analyzed to explore sexual size dimorphism and allometric scaling. Results involve positive allometry of POF in males of two species, and negative allometry in males of one species, in general with a female-biased sexual dimorphism. We suggest an ancestral condition of dual incipient ornamentation in Platyneuromus, with a subsequent departure of size and shape of POF in males, triggered by sexual selection. Different sexual selection intensities may explain the parallel or divergent growth of POF within the scheme of dual ornamentation. Empirical behavioral data as well as a phylogenetic framework are necessary to clarify possible causes of phenotypic development, time of origin, and evolution of the POF. PMID:28212437

  20. Chem2Bio2RDF: a semantic framework for linking and data mining chemogenomic and systems chemical biology data

    Directory of Open Access Journals (Sweden)

    Wang Huijun

    2010-05-01

    Full Text Available Abstract Background Recently there has been an explosion of new data sources about genes, proteins, genetic variations, chemical compounds, diseases and drugs. Integration of these data sources and the identification of patterns that go across them is of critical interest. Initiatives such as Bio2RDF and LODD have tackled the problem of linking biological data and drug data respectively using RDF. Thus far, the inclusion of chemogenomic and systems chemical biology information that crosses the domains of chemistry and biology has been very limited Results We have created a single repository called Chem2Bio2RDF by aggregating data from multiple chemogenomics repositories that is cross-linked into Bio2RDF and LODD. We have also created a linked-path generation tool to facilitate SPARQL query generation, and have created extended SPARQL functions to address specific chemical/biological search needs. We demonstrate the utility of Chem2Bio2RDF in investigating polypharmacology, identification of potential multiple pathway inhibitors, and the association of pathways with adverse drug reactions. Conclusions We have created a new semantic systems chemical biology resource, and have demonstrated its potential usefulness in specific examples of polypharmacology, multiple pathway inhibition and adverse drug reaction - pathway mapping. We have also demonstrated the usefulness of extending SPARQL with cheminformatics and bioinformatics functionality.

  1. Chemical biology based on target-selective degradation of proteins and carbohydrates using light-activatable organic molecules.

    Science.gov (United States)

    Toshima, Kazunobu

    2013-05-01

    Proteins and carbohydrates play crucial roles in a wide range of biological processes, including serious diseases. The development of novel and innovative methods for selective control of specific proteins and carbohydrates functions has attracted much attention in the field of chemical biology. In this account article, the development of novel chemical tools, which can degrade target proteins and carbohydrates by irradiation with a specific wavelength of light under mild conditions without any additives, is introduced. This novel class of photochemical agents promise bright prospects for finding not only molecular-targeted bioprobes for understanding of the structure-activity relationships of proteins and carbohydrates but also novel therapeutic drugs targeting proteins and carbohydrates.

  2. Chemical and biological warfare: Protection, decontamination, and disposal. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The bibliography contains citations concerning the means to defend against chemical and biological agents used in military operations, and to eliminate the effects of such agents on personnel, equipment, and grounds. Protection is accomplished through protective clothing and masks, and in buildings and shelters through filtration. Elimination of effects includes decontamination and removal of the agents from clothing, equipment, buildings, grounds, and water, using chemical deactivation, incineration, and controlled disposal of material in injection wells and ocean dumping. Other Published Searches in this series cover chemical warfare detection; defoliants; general studies; biochemistry and therapy; and biology, chemistry, and toxicology associated with chemical warfare agents.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. Chemical and biological warfare: Protection, decontamination, and disposal. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The bibliography contains citations concerning the means to defend against chemical and biological agents used in military operations, and to eliminate the effects of such agents on personnel, equipment, and grounds. Protection is accomplished through protective clothing and masks, and in buildings and shelters through filtration. Elimination of effects includes decontamination and removal of the agents from clothing, equipment, buildings, grounds, and water, using chemical deactivation, incineration, and controlled disposal of material in injection wells and ocean dumping. Other Published Searches in this series cover chemical warfare detection; defoliants; general studies; biochemistry and therapy; and biology, chemistry, and toxicology associated with chemical warfare agents. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  4. Comparative antibacterial activity of silver nanoparticles synthesised by biological and chemical routes with pluronic F68 as a stabilising agent.

    Science.gov (United States)

    Santos, Carolina Alves Dos; Seckler, Marcelo Martins; Ingle, Avinash P; Rai, Mahendra

    2016-08-01

    The authors report the comparative antibacterial activity of silver nanoparticles synthesised by biological (using Fusarium oxysporum) and chemical routes in the presence and absence of pluronic F68 as a stabilising agent. The production of silver nanoparticles was evidenced by UV-visible spectra, with absorbance at about 420 nm in the case of both biological and chemical synthesis. X-ray diffraction pattern confirmed the presence of face-centred cubic structure (FCC plane). The nanoparticles characterised by transmission and scanning electron microscopy showed spherical silver nanoparticles with size range of 5-40 and 10-70 nm in the case of biologically and chemically synthesised nanoparticles, respectively. Addition of pluronic F68 showed the stabilisation of silver nanoparticles. Antibacterial efficacy of silver nanoparticles demonstrated different inhibitory activity against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Overall, biologically synthesised silver nanoparticles showed higher activity as compared with chemically synthesised nanoparticles. Silver nanoparticles synthesised in the presence of pluronic F68 by the chemical route exhibited synergism in antibacterial activity as compared with those synthesised without pluronic F68. On the contrary, biogenic silver nanoparticles without pluronic F68 showed higher antibacterial potential.

  5. Mimicking/extracting structure and functions of natural products: synthetic approaches that address unexplored needs in chemical biology.

    Science.gov (United States)

    Hirai, Go

    2015-04-01

    Natural products are often attractive and challenging targets for synthetic chemists, and many have interesting biological activities. However, synthetic chemists need to be more than simply suppliers of compounds to biologists. Therefore, we have been seeking ways to actively apply organic synthetic methods to chemical biology studies of natural products and their activities. In this personal review, I would like to introduce our work on the development of new biologically active compounds inspired by, or extracted from, the structures of natural products, focusing on enhancement of functional activity and specificity and overcoming various drawbacks of the parent natural products.

  6. Chemical and biological study of Manilkara zapota (L. Van Royen leaves (Sapotaceae cultivated in Egypt

    Directory of Open Access Journals (Sweden)

    Nesrin M Fayek

    2012-01-01

    Full Text Available Background: Manilkara zapota (L. Van Royen is an evergreen tree, native to the tropical Americas and introduced to Egypt as a fruiting tree in 2002. No previous study was reported on the plant cultivated in Egypt. Materials and Methods: In this study, the leaves of the plant cultivated in Egypt were subjected to phytochemical and biological investigations. The lipoidal matter was analyzed by GLC. Five compounds were isolated from the petroleum ether and ethyl acetate fractions of the alcoholic extract of the leaves by chromatographic fractionation on silica gel and sephadex, the structures of these compounds were identified using IR, UV, MS, 1 H-NMR and 13 C-NMR. The LD 50 of the alcoholic and aqueous extracts of the leaves was determined and their antihyperglycemic, hypocholesterolemic and antioxidant activities were tested by enzymatic colorimetric methods using specific kits. Results: Unsaturated fatty acids represent 32.32 % of the total fatty acids, oleic acid (13.95%, linoleidic acid (10.18 % and linoleic acid (5.96 % were the major ones. The isolated compounds were identified as lupeol acetate, oleanolic acid, apigenin-7-O-α-L-rhamnoside, myricetin-3-O-α-L-rhamnoside and caffeic acid. This is the first report about isolation of these compounds from Manilkara zapota except myricetin-3-O-α-L-rhamnoside, which was previously isolated from the plant growing abroad. The LD 50 recorded 80 g/Kg b. wt. for both the tested extracts, so they could be considered to be safe. They exhibited antihyperglycemic, hypocholesterolemic and antioxidant activities. Conclusion: The observed biological activities were attributed to the different chemical constituents present in the plant mainly its phenolic constituents.

  7. Physical, chemical and biological characteristics of space flown tomato (Lycopersicum esculentum) seeds

    Science.gov (United States)

    Esyanti, Rizkita R.; Dwivany, Fenny M.; Almeida, Maria; Swandjaja, Leonita

    2016-11-01

    Several research showed that space flown treated seeds had a different characteristic with that of ground treated seed, which eventually produced a different characteristic of growth and productivity. Research was conducted to study the physical, chemical and biological properties, such as the rate of germination and the growth of tomato (Lycopersicum esculentum) space flown seeds compared with that of control one. Observations of physical properties using a SEM showed that there were pores on the surface of some tomato space flown seeds. Observations using a stereo and inverted microscope showed that the coat layer of space flown seeds was thinner than control seeds. The total mineral content in the control seeds (22.88%) was averagely higher than space flown seeds (18.66%), but the average carbohydrate content in control seed was lower (15.2 ± 2.79%) than the space flown seeds (9.02 ± 1.87%). The level of auxin (IAA) of control seeds (142 ± 6.88 ppm) was averagely lower than the space flown seeds (414 ± 78.84 ppm), whereas the level of cytokinins (zeatin) for the control seeds (381 ± 68.86 ppm) was higher than the space flown seeds (68 ± 9.53 ppm), and the level of gibberellin (GA3) for the control seeds (335 ± 10.7 ppm) was higher than the space flown seeds (184 ± 7.4 ppm). The results of this study showed that the physical and chemical properties of tomato space flown seeds were generally different compare with that to control seeds, so that it might also be resulted in different germination and growth characteristic. The germination test showed that space flown seeds had lower germination rate compare to control. The growth pattern indicated that planted space flown seeds generally grew better than control. However, those data were more homogenous in control seeds compare to that in space flown tomato seeds.

  8. Disease control by chemical and biological fungicides in cultivated mushrooms: button mushroom, oyster mushroom and shiitake

    Directory of Open Access Journals (Sweden)

    Ivana Potočnik

    2015-12-01

    Full Text Available The most commonly cultivated basidiomycetes worldwide and in Serbia are button mushroom (Agaricus bisporus, oyster mushroom (Pleurotus sp. and shiitake (Lentinus edodes. Production of their fruiting bodies is severely afflicted by fungal, bacterial, and viral pathogens that are able to cause diseases which affect yield and quality. Major A. bisporus fungal pathogens include Mycogone perniciosa, Lecanicillium fungicola, and Cladobotryum spp., the causal agents of dry bubble, wet bubble, and cobweb disease, respectively. Various Trichoderma species, the causal agents of green mould, also affect all three kinds of edible mushrooms. Over the past two decades, green mould caused by T. aggressivum has been the most serious disease of button mushroom. Oyster mushroom is susceptible to T. pleurotum and shiitake to T. harzianum. The bacterial brawn blotch disease, caused by Pseudomonas tolaasii, is distributed globally. Disease control on mushroom farms worldwide is commonly based on the use of fungicides. However, evolution of pathogen resistance to fungicides after frequent application, and host sensitivity to fungicides are serious problems. Only a few fungicides are officially recommended in mushroom production: chlorothalonil and thiabendazol in North America and prochloraz in the EU and some other countries. Even though decreased sensitivity levels of L. fungicola and Cladobotryum mycophilum to prochloraz have been detected, disease control is still mainly provided by that chemical fungicide. Considering such resistance evolution, harmful impact to the environment and human health, special attention should be focused on biofungicides, both microbiological products based on Bacillus species and various natural substances of biological origin, together with good programs of hygiene. Introduction of biofungicides has created new possibilities for crop protection with reduced application of chemicals.

  9. Chemical composition and biological activities of essential oils of Azadirachta indica A. Juss.

    Directory of Open Access Journals (Sweden)

    S S El-Hawary

    2013-09-01

    Full Text Available Summary. Essential oils of Neem, Azadirachta indica A. Juss. (family Meliaceae leaves and flowers were prepared by hydrodistillation method. The chemical composition of the oil samples was investigated by GC/MS. Hydrocarbon constituted 85.36% of the leaves oil .The major compounds were β-Elemene (33.39%, γ- Elemene (9.89%, Germacrene D (9.72%, Caryophyllene (6.8% and Bicyclogermacrene (5.23% while the percent of the oxygenated compounds were (5.04% mainly attributed to sesquiterpene oxide. On the other hand, flowers oil hydrocarbons constituted 63.22% composed mainly of pentacosane (18.58%, tetracosane (10.65%, β-germacrene (9.73%, β- caryophyllene (5.84% and dodecene (4.54% while the percent of the oxygenated compounds were 28.3% mainly attributed to octadecanol (16.7%, verdiflorol (5.32%, farnesol (1.63% and α– terpineol (1.51%. The antioxidant properties determined by 2, 2-diphenyl-1-picrylhydrazyl assays, antibacterial activity against Gram-positive and Gram-negative, antifungal and larvicidal activities were promising and in relation with the chemical composition of the essential oils. The results indicated that essential oil of flowers could be especially promising as an inexpensive source of effective antioxidant /antimicrobial /larvicidal agents tantamount to fixed oil of the neem seeds.Industrial relevance. The use of medicinal plants is a universal phenomenon. Natural products from plants are rich source to identify, select and process new drugs for medicinal use. Most of research focused on fixed oil of neem seeds but very little was concerned about volatile oils of leaves and flowers. The diverse biological activities of Neem essential oils can be applied on a large scale as antioxidant, antimicrobial and larvicidal agents comprising many important benefits including their volatility, lower level of risk to the environment than with synthetic ones.Keywords. Azadirachta indica; Neem; essential oil; GC/MS; antioxidant

  10. Zanthoxylum caribaeum (Rutaceae) essential oil: chemical investigation and biological effects on Rhodnius prolixus nymph.

    Science.gov (United States)

    Nogueira, J; Mourão, S C; Dolabela, I B; Santos, M G; Mello, C B; Kelecom, A; Mexas, R; Feder, D; Fernandes, C P; Gonzalez, M S; Rocha, L

    2014-11-01

    A chemical investigation and bioassays against fifth-instar nymphae of the hematophagous insect Rhodnius prolixus, vector of Chagas disease, were conducted with the essential oil from Zanthoxylum caribaeum. The main results may be summarized as follows: (i) 54 components were identified, corresponding to 90.4% of the relative composition; sesquiterpenes (47.3%) and monoterpenes (41.2%) are the major constituents; (ii) muurola-4,5-trans-diene and isodaucene are described for the first time as chemical constituents of the essential oil from leaves of this species; (iii) topical treatment with the crude essential oil induced high levels of paralysis (from 18.88 to 33.33%) and mortality (from 80 to 98.9%) depending on the dose applied (0.5 to 5.0 μl per insect); (iv) feeding treatment with the crude essential oil also induced high levels of mortality (from 48.8 to 100%) but low levels of paralysis (from 2.22 to 7.77%) depending on the dose applied (0.5 to 5.0 μl/ml of blood); (v) in the continuous treatment, only the dose of 5.0 μl/cm(2) was able to promote statistical significant levels of mortality (63.3%) but no paralysis were detected. However in this group, occasionally, only few insects displayed malformations of legs and wings after treatment; and (vi) any treatment was able to disrupt the metamorphosis process since the low adult stage emergence observed to all groups was due the high insect mortality. These observations suggest the interference of Z. caribaeum compounds on the triatomine neuroendocrine system. The significance of these results in relation to the relevant biological events in R. prolixus as well as the possible use of insect growth regulators present in Z. caribaeum oil in integrated vector control programs against hematophagous triatomine species is herein discussed.

  11. [Stability testing of amphotericin B nasal spray solutions with chemical and biological analysis].

    Science.gov (United States)

    Fittler, András; Mayer, Anna; Kocsis, Béla; Gerlinger, Imre; Fónay, Fruzsina; Botz, Lajos

    2007-01-01

    Recent studies have shown that the presence of fungal cells in the nasal mucosa may play an important role in the development of chronic rhinosinusitis with nasal polyps. In 2006 a pilot clinical trial was organized by the Department of Otorhinolaryngology, Head and Neck Surgery and the Pharmaceutical Institute of the Medical University of Pécs for the treatment of patients with chronic rhinosinusitis with nasal polyps. In our study we investigated the stability of the 5 mg/ml amphotericin B solutions (Fungizone) with chemical (spectrophotometry) and biological (bioassay) detection. The effect of storage temperature and the addition of 5% glucose was evaluated on the stability of the solutions for three months. The two detection methods showed different results. According to the chemical analysis the samples are considered relatively stable under all observed conditions (loss of concentration is: 14.2% at 20 degrees C and 4.5% at 4 degrees C). The bioassay shows complete loss of antifungal activity after 35 days of storage at room temperature and notable decrease can be observed at 4 degrees C (glucose containing solution 17.6%; glucose free solution 37.2%). Storage temperature had significant effect (p 0.05) on the stability of the examined solutions. Bioassay is considered to be the official quantitative analytical method for the analysis of amphotericin B recommended by the European Pharmacopoeia 4. Thus we estimated the shelf life of the glucose-free solutions, being stored at 4 degrees C, to be 30 days in accordance with our bioassay results.

  12. Chemical and biological tracers to determine groundwater flow in karstic aquifer, Yucatan Peninsula

    Science.gov (United States)

    Lenczewski, M.; Leal-Bautista, R. M.; McLain, J. E.

    2013-05-01

    Little is known about the extent of pollution in groundwater in the Yucatan Peninsula; however current population growth, both from international tourism and Mexican nationals increases the potential for wastewater release of a vast array of contaminants including personal care products, pharmaceuticals (Rx), and pathogenic microorganisms. Pathogens and Rx in groundwater can persist and can be particularly acute in this region where high permeability of the karst bedrock and the lack of top soil permit the rapid transport of contaminants into groundwater aquifers. The objective of this research is to develop and utilize novel biological and chemical source tracking methods to distinguish between different sources of anthropogenic pollution in degraded groundwater. Although several methods have been used successfully to track fecal contamination sources in small scale studies, little is known about their spatial limitations, as source tracking studies rarely include sample collection over a wide geographical area and with different sources of water. In addition, although source tracking methods to distinguish human from animal fecal contamination are widely available, this work has developed source tracking distinguish between separate human populations is highly unique. To achieve this objective, we collected water samples from a series of drinking wells, cenotes (sinkholes), wastewater treatment plants, and injection wells across the Yucatan Peninsula and examine potential source tracers within the collected water samples. The result suggests that groundwater sources impacted by tourist vs. local populations contain different chemical stressors. This work has developed a more detailed understanding of the presence and persistence of personal care products, pharmaceuticals, and fecal indicators in a karstic system; such understanding will be a vital component for the protection Mexican groundwater and human health. Quantification of different pollution sources

  13. 78 FR 74218 - Imposition of Additional Sanctions on Syria Under the Chemical and Biological Weapons Control and...

    Science.gov (United States)

    2013-12-10

    ... Imposition of Additional Sanctions on Syria Under the Chemical and Biological Weapons Control and Warfare.... ACTION: Notice. SUMMARY: On August 2, 2013, a determination was made that the Government of Syria used... Notice 8460. That determination resulted in sanctions against the Government of Syria. Section 307(b)...

  14. Methods and systems for carrying out a pH-influenced chemical and/or biological reaction

    Science.gov (United States)

    Stern, Michael C.; Simeon, Fritz; Hatton, Trevor Alan

    2016-04-05

    The present invention generally relates to methods and systems for carrying out a pH-influenced chemical and/or biological reaction. In some embodiments, the pH-influenced reaction involves the conversion of CO.sub.2 to a dissolved species.

  15. Biochemical ripening of dredged sediments. Part 1. Kinetics of biological organic matter mineralization and chemical sulfur oxidation

    NARCIS (Netherlands)

    Vermeulen, J.; Gool, M.P.M. van; Dorleijn, A.S.; Joziasse, J.; Bruning, H.; Rulkens, W.H.; Grotenhuis, J.T.C.

    2007-01-01

    After dredged sediments have settled in a temporary upland disposal site, ripening starts, which turns waterlogged sediment into aerated soil. Aerobic biological mineralization of organic matter (OM) and chemical oxidation of reduced sulfur compounds are the major biochemical ripening processes. Qua

  16. Methods and systems for carrying out a pH-influenced chemical and/or biological reaction

    Energy Technology Data Exchange (ETDEWEB)

    Eltayeb, Aly Eldeen O.; Stern, Michael C.; Hatton, Trevor Alan

    2017-02-14

    The present invention generally relates to methods and systems for carrying out a pH-influenced chemical and/or biological reaction. In some embodiments, the pH-influenced reaction involves the conversion of CO.sub.2 to a dissolved species.

  17. Methods used to characterize the chemical composition and biological activity of environmental waters throughout the United States, 2012-14

    Science.gov (United States)

    Romanok, Kristin M.; Reilly, Timothy J.; Barber, Larry B.; Boone, J. Scott; Buxton, Herbert T.; Foreman, William T.; Furlong, Edward T.; Hladik, Michelle; Iwanowicz, Luke R.; Journey, Celeste; Kolpin, Dana W.; Kuivila, Kathryn; Loftin, Keith A.; Mills, Marc A.; Meyer, Michael T.; Orlando, James L.; Smalling, Kelly L.; Villeneuve, Daniel L.; Bradley, Paul M.

    2017-03-22

    A vast array of chemical compounds are in wide commercial use in the United States, and the potential ecological and human-health effect of exposure to chemical mixtures has been identified as a high priority in environment health science. Awareness of the potential effects of low-level chemical exposures is rising. The U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, conducted a study in which samples were collected from 38 streams in 25 States to provide an overview of contaminants found in stream water across the Nation. Additionally, biological screening assays were used to help determine any potential ecological and human-health effects of these chemical mixtures and to prioritize target chemicals for future toxicological studies. This report describes the site locations and the sampling and analytical methods and quality-assurance procedures used in the study.

  18. Chemical compositional, biological, and safety studies of a novel maple syrup derived extract for nutraceutical applications.

    Science.gov (United States)

    Zhang, Yan; Yuan, Tao; Li, Liya; Nahar, Pragati; Slitt, Angela; Seeram, Navindra P

    2014-07-16

    Maple syrup has nutraceutical potential given the macronutrients (carbohydrates, primarily sucrose), micronutrients (minerals and vitamins), and phytochemicals (primarily phenolics) found in this natural sweetener. We conducted compositional (ash, fiber, carbohydrates, minerals, amino acids, organic acids, vitamins, phytochemicals), in vitro biological, and in vivo safety (animal toxicity) studies on maple syrup extracts (MSX-1 and MSX-2) derived from two declassified maple syrup samples. Along with macronutrient and micronutrient quantification, thirty-three phytochemicals were identified (by HPLC-DAD), and nine phytochemicals, including two new compounds, were isolated and identified (by NMR) from MSX. At doses of up to 1000 mg/kg/day, MSX was well tolerated with no signs of overt toxicity in rats. MSX showed antioxidant (2,2-diphenyl-1-picrylhydrazyl (DPPH) assay) and anti-inflammatory (in RAW 264.7 macrophages) effects and inhibited glucose consumption (by HepG2 cells) in vitro. Thus, MSX should be further investigated for potential nutraceutical applications given its similarity in chemical composition to pure maple syrup.

  19. Fusion of chemical, biological, and meteorological observations for agent source term estimation and hazard refinement

    Science.gov (United States)

    Bieringer, Paul E.; Rodriguez, Luna M.; Sykes, Ian; Hurst, Jonathan; Vandenberghe, Francois; Weil, Jeffrey; Bieberbach, George, Jr.; Parker, Steve; Cabell, Ryan

    2011-05-01

    Chemical and biological (CB) agent detection and effective use of these observations in hazard assessment models are key elements of our nation's CB defense program that seeks to ensure that Department of Defense (DoD) operations are minimally affected by a CB attack. Accurate hazard assessments rely heavily on the source term parameters necessary to characterize the release in the transport and dispersion (T&D) simulation. Unfortunately, these source parameters are often not known and based on rudimentary assumptions. In this presentation we describe an algorithm that utilizes variational data assimilation techniques to fuse CB and meteorological observations to characterize agent release source parameters and provide a refined hazard assessment. The underlying algorithm consists of a combination of modeling systems, including the Second order Closure Integrated PUFF model (SCIPUFF), its corresponding Source Term Estimation (STE) model, a hybrid Lagrangian-Eulerian Plume Model (LEPM), its formal adjoint, and the software infrastructure necessary to link them. SCIPUFF and its STE model are used to calculate a "first guess" source estimate. The LEPM and corresponding adjoint are then used to iteratively refine this release source estimate using variational data assimilation techniques. This algorithm has undergone preliminary testing using virtual "single realization" plume release data sets from the Virtual THreat Response Emulation and Analysis Testbed (VTHREAT) and data from the FUSION Field Trials 2007 (FFT07). The end-to-end prototype of this system that has been developed to illustrate its use within the United States (US) Joint Effects Model (JEM) will be demonstrated.

  20. Chemical composition and biological evaluation of Physalis peruviana root as hepato-renal protective agent.

    Science.gov (United States)

    El-Gengaihi, Souad E; Hassan, Emad E; Hamed, Manal A; Zahran, Hanan G; Mohammed, Mona A

    2013-03-01

    This study was designed to investigate the potential of Physalis peruviana root as a functional food with hepato-renal protective effects against fibrosis. The chemical composition of the plant root suggested the presence of alkaloids, withanolides and flavonoids. Five compounds were isolated and their structures elucidated by different spectral analysis techniques. One compound was isolated from the roots: cuscohygrine. The biological evaluation was conducted on different animal groups; control rats, control treated with ethanolic root extract, CCl(4) group, CCl(4) treated with root extract, and CCl(4) treated with silymarin as a standard herbal drug. The evaluation used the oxidative stress markers malondialdehyde (MDA), superoxide dismutase (SOD), and nitric oxide (NO). The liver function indices; aspartate and alanine aminotransferases (AST & ALT), alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), bilirubin, and total hepatic protein were also estimated. Kidney disorder biomarkers; creatinine, urea, and serum protein were also evaluated. The results suggested safe administration, and improvement of all the investigated parameters. The liver and kidney histopathological analysis confirmed the results. In conclusion, P. peruviana succeeded in protecting the liver and kidney against fibrosis. Further studies are needed to discern their pharmacological applications and clinical uses.

  1. Chemical and biological assessment of two offshore drilling sites in the Alaskan Arctic.

    Science.gov (United States)

    Trefry, John H; Dunton, Kenneth H; Trocine, Robert P; Schonberg, Susan V; McTigue, Nathan D; Hersh, Eric S; McDonald, Thomas J

    2013-05-01

    A retrospective chemical and biological study was carried out in Camden Bay, Alaskan Beaufort Sea, where single exploratory oil wells were drilled at two sites more than two decades ago. Barium from discharged drilling mud was present in sediments at concentrations as high as 14%, ~200 times above background, with significantly higher concentrations of Ba, but not other metals, within 250 m of the drilling site versus reference stations. Elevated concentrations of Cr, Cu, Hg and Pb were found only at two stations within 25 m of one drilling site. Concentrations of total polycyclic aromatic hydrocarbons (TPAH) were not significantly different at reference versus drilling-site stations; however, TPAH were elevated in Ba-rich layers from naturally occurring perylene in ancient formation cuttings. Infaunal biomass and species abundance were not significantly different at reference versus drilling-site stations; infauna were less diverse at drilling-site stations. Our assessment showed that discharges from single wells within large areas caused minimal long-term, adverse impacts to the benthic ecosystem.

  2. Gymnema sylvestre R. Br., an Indian medicinal herb: traditional uses, chemical composition, and biological activity.

    Science.gov (United States)

    Di Fabio, Giovanni; Romanucci, Valeria; Di Marino, Cinzia; Pisanti, Antonio; Zarrelli, Armando

    2015-01-01

    Gymnema sylvestre R. Br. is one of the most important medicinal plants that grows in tropical forests in India and South East Asia. Its active ingredients and extracts of leaves and roots are used in traditional medicine to treat various ailments and they are present in the market for pharmaceutical and parapharmaceutical products. Commercial products based on substances of plant origin that are generally connoted as natural have to be subjected to monitoring and evaluation by health authorities for their potential impacts on public health. The monitoring and evaluation of these products are critical because the boundary between a therapeutic action and a functional or healthy activity has not yet been defined in a clear and unambiguous way. Therefore, these products are considered borderline products, and they require careful and rigorous studies, in order to use them as complement and/or even replacement of synthetic drugs that are characterized by side effects and high economic costs. This review explores the traditional uses, chemical composition and biological activity of G. sylvestre extracts, providing a general framework on the most interesting extracts and what are the necessary studies for a complete definition of the range of activities.

  3. Bridging gaps in discovery and development: chemical and biological sciences for affordable health, wellness and sustainability.

    Science.gov (United States)

    Chauhan, Prem Man Singh

    2011-05-01

    To commemorate 2011 as the International Year of Chemistry, the Indian Society of Chemists and Biologists organized its 15th International Conference on 'Bridging Gaps in Discovery and Development: Chemical and Biological Sciences for Affordable Health, Wellness and Sustainability' at Hotel Grand Bhagwati, in association with Saurashtra University, Rajkot, India. Anamik Shah, President of the Indian Society of Chemists and Biologists, was organizing secretary of the conference. Nicole Moreau, President of the International Union of Pure and Applied Chemistry and Secretary General of the Comité National de la Chimie, National Centre for Scientific Research France, was chief guest of the function. The four-day scientific program included 52 plenary lectures, 24 invited lectures by eminent scientists in the field and 12 oral presentations. A total of 317 posters were presented by young scientists and PhD students in three different poster sessions. Approximately 750 delegates from India, the USA, UK, France, Switzerland, Germany, Austria, Belgium, Sweden, Japan and other countries attended the conference. The majority of the speakers gave presentations related to their current projects and areas of interest and many of the talks covered synthesis, structure-activity relationships, current trends in medicinal chemistry and drug research.

  4. Enzymatic degradation of endocrine-disrupting chemicals in aquatic plants and relations to biological Fenton reaction.

    Science.gov (United States)

    Reis, A R; Sakakibara, Y

    2012-01-01

    In order to evaluate the removal performance of trace phenolic endocrine-disrupting chemicals (EDCs) by aquatic plants, batch and continuous experiments were conducted using floating and submerged plants. The EDCs used in this study were bisphenol A, 2,4-dichlorophenol, 4-tert-octylphenol, pentachlorophenol, and nonylphenol. The feed concentration of each EDC was set at 100 μg/L. Continuous experiments showed that every EDC except pentachlorophenol was efficiently removed by different aquatic plants through the following reaction, catalyzed by peroxidases: EDCs+H(2)O(2)→Products+H(2)O(2). Peroxidases were able to remove phenolic EDCs in the presence of H(2)O(2) over a wide pH range (from 3 to 9). Histochemical localization of peroxidases showed that they were located in every part of the root cells, while highly concentrated zones were observed in the epidermis and in the vascular tissues. Although pentachlorophenol was not removed in the continuous treatment, it was rapidly removed by different aquatic plants when Fe(2+) was added, and this removal occurred simultaneously with the consumption of endogenous H(2)O(2). These results demonstrated the occurrence of a biological Fenton reaction and the importance of H(2)O(2) as a key endogenous substance in the treatment of EDCs and refractory toxic pollutants.

  5. Chemical and Biological Evaluation of Maturity of Pig Manure Compost at Different C/N Ratios

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Aerobic static pile composting (mechanical turning every 3 days) of pig manure was prepared at 8 m3 windrow heaps. Sawdust was used as the bulking agent to provide additional carbon and to increase the porosity of the substrate. Two treatments at initial C/N ratios of 30 and 15, respectively, were designed in the study. Dissolved organic carbon (DOC), soluble NH4+-N, C/N ratios in solid and aqueous phases, E4/E6 ratios, and seed germination index (GI) were determined to evaluate the maturity of the co-composts. Seed germination index, a biological parameter, was suggested as one of the most reliable maturity indicators for organic compost. The results showed that the treatment at the initial C/N ratio of 30 reached maturity after 49 days of composting; however, the treatment at the initial C/N ratio of 15 should require composting time of longer than 63 days to obtain maturation. Chemical multi-indicator evaluation was necessary, and the GI measurement was the recommended approach for maturity evaluation in the study.

  6. Chemical and biological Evaluation of Maturity of Pig Manure Compost at Different C/N Ratios

    Institute of Scientific and Technical Information of China (English)

    HUANGGUOFENG; J.W.C.WONG; 等

    2001-01-01

    Aerobic static pile composting(Mechanical turning every 3 days) of pig manure was prepared at 8 m3 windrow heaps .Sawdust was used as the bulking aagent to provide additional carbon and to increase the porosity of the substrate Two treatments at initial C/N ratios of 30 and 15,respectively,were designed in the study,Dissolved organic carbon(DOC),soluble NH4+-N,C/N ratios in solid and aqueous phases,E4/E6 ratios,and seed germination index(GI) were determined to evaluate the maturity of the co-composts.Seed germination index,a biological parameter,was suggested as one of the most reliable maturity indicators for organic compost.The results showed that the treatment at the initial C/N ratio of 30 reached maturity after 49 days of composting ;however,the treatment at the initial C/N ration of 15 should require composting time of longer than 63 days to obtain maturation.Chemical multi-indicator evaluation was necessary,and the GI measurement was the recommended approach for maturity evaluation in the study.

  7. Chemical and Biological Sensing using Diatom Photonic Crystal Biosilica with In-Situ Growth Plasmonic Nanoparticles.

    Science.gov (United States)

    Kong, Xianming; Squire, Kenny; Li, Erwen; LeDuff, Paul; Rorrer, Gregory; Tang, Suning; Chen, Bin; McKay, Christopher; Navarro-Gonzalez, Rafael; Wang, Alan

    2016-12-07

    In this paper, we described a new type of bioenabled nano-plasmonic sensors based on diatom photonic crystal biosilica with in-situ growth silver nanoparticles and demonstrated label-free chemical and biological sensing based on surface-enhanced Raman scattering (SERs) from complex samples. Diatoms are photosynthetic marine micro-organisms that create their own skeletal shells of hydrated amorphous silica, called frustules, which possess photonic crystal-like hierarchical micro- & nano-scale periodic pores. Our research shows that such hybrid plasmonic-biosilica nanostructures formed by cost-effective and eco-friendly bottom-up processes can achieve ultra-high limit of detection for medical applications, food sensing, water/air quality monitoring and geological/space research. The enhanced sensitivity comes from the optical coupling of the guided-mode resonance of the diatom frustules and the localized surface plasmons of the silver nanoparticles. Additionally, the nanoporous, ultra-hydrophilic diatom biosilica with large surface-to-volume ratio can concentrate more analyte molecules to the surface of the SERS substrates, which can help to detect biomolecules that cannot be easily adsorbed by metallic nanoparticles.

  8. A Biophysicochemical Model for NO Removal by the Chemical Absorption-Biological Reduction Integrated Process.

    Science.gov (United States)

    Zhao, Jingkai; Xia, Yinfeng; Li, Meifang; Li, Sujing; Li, Wei; Zhang, Shihan

    2016-08-16

    The chemical absorption-biological reduction (CABR) integrated process is regarded as a promising technology for NOx removal from flue gas. To advance the scale-up of the CABR process, a mathematic model based on mass transfer with reaction in the gas, liquid, and biofilm was developed to simulate and predict the NOx removal by the CABR system in a biotrickling filter. The developed model was validated by the experimental results and subsequently was used to predict the system performance under different operating conditions, such as NO and O2 concentration and gas and liquid flow rate. NO distribution in the gas phase along the biotrickling filter was also modeled and predicted. On the basis of the modeling results, the liquid flow rate and total iron concentration were optimized to achieve >90% NO removal efficiency. Furthermore, sensitivity analysis of the model revealed that the performance of the CABR process was controlled by the bioreduction activity of Fe(III)EDTA. This work will provide the guideline for the design and operation of the CABR process in the industrial application.

  9. The challenge of preparation for a chemical, biological, radiological or nuclear terrorist attack

    Directory of Open Access Journals (Sweden)

    Alexander David

    2006-01-01

    Full Text Available Terrorism is not a new phenomenon, but, in the contemporary scene, it has established itself in a manner which commands the most serious attention of the authorities. Until relatively recently, the major threat has been through the medium of conventional weaponry and explosives. Their obvious convenience of use and accessibility guarantees that such methods will continue to represent a serious threat. However, over the last few years, terrorists have displayed an enthusiasm for higher levels of carnage, destruction and publicity. This trend leads inexorably to the conclusion that chemical, biological, radiological and nuclear (CBRN methods will be pursued by terrorist organisations, particularly those which are well organised, are based on immutable ideological principles, and have significant financial backing. Whilst it is important that the authorities and the general public do not risk over-reacting to such a threat (otherwise, they will do the work of the terrorists for them, it would be equally ill-advised to seek comfort in denial. The reality of a CBRN event has to be accepted and, as a consequence, the authorities need to consider (and take seriously how individuals and the community are likely to react thereto and to identify (and rehearse in a realistic climate what steps would need to be taken to ameliorate the effects of such an event.

  10. AB Blanket for Cities (for continual pleasant weather and protection from chemical, biological and radioactive weapons)

    CERN Document Server

    Bolonkin, Alexander

    2009-01-01

    In a series of previous articles (see references) the author offered to cover a city or other important large installations or subregions by a transparent thin film supported by a small additional air overpressure under the form of an AB Dome. The building of a gigantic inflatable AB Dome over an empty flat surface is not difficult. However, if we want to cover a city, garden, forest or other obstacle course we cannot easily deploy the thin film over building or trees. In this article is suggested a new method which solves this problem. The idea is to design a double film blanket filled by light gas (for example, methane, hydrogen, or helium). Sections of this AB Blanket are lighter then air and fly in atmosphere. They can be made on a flat area (serving as an assembly area) and delivered by dirigible or helicopter to station at altitude over the city. Here they connect to the already assembled AB Blanket subassemblies, cover the city in an AB Dome and protect it from bad weather, chemical, biological and rad...

  11. Protecting buildings from a biological or chemical attack: Actions to take before or during a release

    Energy Technology Data Exchange (ETDEWEB)

    Price, Phillip N.; Sohn, Michael D.; Gadgil, Ashok J.; Delp, William W.; Lorenzetti, David M.; Finlayson, Elizabeth U.; Thatcher, Tracy L.; Sextro, Richard G.; Derby, Elisabeth A.; Jarvis, Sondra A.

    2003-01-29

    This report presents advice on how to operate a building to reduce casualties from a biological or chemical attack, as well as potential changes to the building (e.g. the design of the ventilation system) that could make it more secure. It also documents the assumptions and reasoning behind the advice. The particular circumstances of any attack, such as the ventilation system design, building occupancy, agent type, source strength and location, and so on, may differ from the assumptions made here, in which case actions other than our recommendations may be required; we hope that by understanding the rationale behind the advice, building operators can modify it as required for their circumstances. The advice was prepared by members of the Airflow and Pollutant Transport Group, which is part of the Indoor Environment Department at the Lawrence Berkeley National Laboratory. The group's expertise in this area includes: tracer-gas measurements of airflows in buildings (Sextro, Thatcher); design and operation of commercial building ventilation systems (Delp); modeling and analysis of airflow and tracer gas transport in large indoor spaces (Finlayson, Gadgil, Price); modeling of gas releases in multi-zone buildings (Sohn, Lorenzetti, Finlayson, Sextro); and occupational health and safety experience related to building design and operation (Sextro, Delp). This report is concerned only with building design and operation; it is not a how-to manual for emergency response. Many important emergency response topics are not covered here, including crowd control, medical treatment, evidence gathering, decontamination methods, and rescue gear.

  12. Biological and chemical control of the Asiatic garden beetle, Maladera castanea (Coleoptera: Scarabaeidae).

    Science.gov (United States)

    Koppenhöfer, Albrecht M; Fuzy, Eugene M

    2003-08-01

    The efficacy of chemical and biological control agents against larvae of the Asiatic garden beetle, Maladera castanea (Arrow), in turfgrass under laboratory, greenhouse, and field conditions were determined. In field trials where insecticides were applied preventively against eggs and young larvae, the molt-accelerating compound halofenozide and the neonicotinoids imidacloprid and thiamethoxam were ineffective, whereas another neonicotinoid, clothianidin, provided 62-93% control. In greenhouse experiments against third instars in pots, the carbamate insecticide carbaryl was ineffective, whereas the organophosphate trichlorfon provided 71-83% control. In laboratory, greenhouse, and field experiments, the entomopathogenic nematode Heterorhabditis bacteriophora Poinar and Steinernema glaseri Steiner (not tested in the field) were ineffective against third instars, whereas S. scarabaei Stock & Koppenhöfer provided excellent control. In microplot field experiments at a rate of 2.5 x 10(9) infective juveniles per ha, H. bacteriophora provided 12-33% control and S. scarabaei 71-86% control. Combinations of S. scarabaei and imidacloprid did not provide more control of third instars compared with S. scarabaei alone.

  13. Handheld hyperspectral imager system for chemical/biological and environmental applications

    Science.gov (United States)

    Hinnrichs, Michele; Piatek, Bob

    2004-08-01

    A small, hand held, battery operated imaging infrared spectrometer, Sherlock, has been developed by Pacific Advanced Technology and was field tested in early 2003. The Sherlock spectral imaging camera has been designed for remote gas leak detection, however, the architecture of the camera is versatile enough that it can be applied to numerous other applications such as homeland security, chemical/biological agent detection, medical and pharmaceutical applications as well as standard research and development. This paper describes the Sherlock camera, theory of operations, shows current applications and touches on potential future applications for the camera. The Sherlock has an embedded Power PC and performs real-time-image processing function in an embedded FPGA. The camera has a built in LCD display as well as output to a standard monitor, or NTSC display. It has several I/O ports, ethernet, firewire, RS232 and thus can be easily controlled from a remote location. In addition, software upgrades can be performed over the ethernet eliminating the need to send the camera back to the factory for a retrofit. Using the USB port a mouse and key board can be connected and the camera can be used in a laboratory environment as a stand alone imaging spectrometer.

  14. Ensuring safe water in post-chemical, biological, radiological and nuclear emergencies

    Directory of Open Access Journals (Sweden)

    Praveen Kumar Amar

    2010-01-01

    Full Text Available Disaster scenarios are dismal and often result in mass displacement and migration of people. In eventuality of emergency situations, people need to be rehabilitated and provided with an adequate supply of drinking water, the most essential natural resource needed for survival, which is often not easily available even during non-disaster periods. In the aftermath of a natural or human-made disaster affecting mankind and livestock, the prime aim is to ensure supply of safe water to reduce the occurrence and spread of water borne disease due to interrupted, poor and polluted water supply. Chemical, biological, radiological and nuclear (CBRN emergencies augment the dilemma as an additional risk of "contamination" is added. The associated risks posed to health and life should be reduced to as low as reasonably achievable. Maintaining a high level of preparedness is the crux of quick relief and efficient response to ensure continuous supply of safe water, enabling survival and sustenance. The underlying objective would be to educate and train the persons concerned to lay down the procedures for the detection, cleaning, and treatment, purification including desalination, disinfection, and decontamination of water. The basic information to influence the organization of preparedness and execution of relief measures at all levels while maintaining minimum standards in water management at the place of disaster, are discussed in this article.

  15. Effects of barriers on chemical and biological properties of two dual resin cements.

    Science.gov (United States)

    Nocca, Giuseppina; Iori, Andrea; Rossini, Carlo; Martorana, Giuseppe E; Ciasca, Gabriele; Arcovito, Alessandro; Cordaro, Massimo; Lupi, Alessandro; Marigo, Luca

    2015-06-01

    The aim of this study was to investigate the degree of conversion, monomer release, and cytotoxicity of two dual-cure resin cements (Cement-One and SmartCem2), light-cured across two indirect restorative materials in an attempt to simulate in vitro the clinical conditions. The results obtained show that the degree of conversion was influenced by both barriers, but the effect of the composite material was greater than that of the ceramic one. The amount of monomers released from the polymerized materials in the absence of barriers was significantly lower than that released in the presence of either the ceramic or the composite barrier. However, a higher amount of monomers was released in the presence of the ceramic barrier. All materials, in all the experimental conditions employed, induced slight cytotoxicity (5-10%) on human pulp cells. Our examinations showed that the two resin cements had similar chemical and biological properties. The decreased degree of conversion of the dual-curing self-adhesive composite showed that the light-curing component of these materials has an important role in the polymerization process. In clinical practice, it is therefore important to pay attention to the thickness of the material used for the reconstruction.

  16. Application of superconducting technologies as chemical/biological agent electronic eyes

    Science.gov (United States)

    Savoy, Steven M.; Eames, Sara J.; Jurbergs, David C.; Zhao, Jianai; McDevitt, John T.; Sobel, Annette L.

    1997-01-01

    High temperature superconductors provide enhanced sensitivity capabilities as chemical/biological agent detectors. State-of-the-art advances in ruggedizing superconducting platforms make them much more robust for field applications. In addition, microminiaturization and advances in refrigeration have enabled the systems engineering of portable, durable, survivable, low power requirement devices. This presentation describes a prototype system employing YBCO (yttrium barium copper oxide) superconducting quantum interference devices (SQUIDS) with specific biolayer detection dye coatings. These devices may be deployed as specific stand-off detectors, or potentially reconfigured as point sensors. A library of pattern recognition algorithms provides the reference template for the system. The human-system interface will provide a 'yes/no' agent confirmation for the environment being queried, and associated confidence value. This prototype detection system has great potential for deployment in support of hostage rescue/rapid response teams, DMAT, and urban search and rescue. The preparation and characterization of a new generation of optical sensors fabricated from high-temperature superconductor (HTSC) thin films is reported herein. These new hybrid devices are fashioned using HTSC thin films which are coated with organic dye overlayers. These systems are shown to respond selectively to those wavelengths which are absorbed strongly by the molecular dye. Methods for fabricating the superconductor element and depositing the dye layer are discussed. Moreover, resistivity versus temperature measurements before and after dye deposition are utilized to characterize these hybrid structures. The unique optical response properties of these hybrid sensors are also detailed.

  17. A comparative study on biologically and chemically synthesized silver nanoparticles induced Heat Shock Proteins on fresh water fish Oreochromis niloticus.

    Science.gov (United States)

    Girilal, M; Krishnakumar, V; Poornima, Paramasivan; Mohammed Fayaz, A; Kalaichelvan, P T

    2015-11-01

    The wide applicability of silver nanoparticles in medicine and pharmaceutical industries leads to its over exploitation and thus contaminating our environment. Majority of these nanoscale dimension particles finally accumulates in fresh water and marine ecosystem. As the nanoparticles behave entirely different from its corresponding bulk material, a better understanding of their environmental impacts in aquatic ecosystems is inevitable. The study was focused on a comparative stress physiology analysis of chemically synthesized silver nanoparticles and biogenic silver nanoparticles. Half maximal inhibitory concentration of biologically synthesized and chemically synthesized nanoparticles was found out (30μg/mL and 20μg/mL respectively). The Heat Shock Protein (HSP70) secretion was analysed in the fresh water fish Oreochromis niloticus after exposing to different concentrations of biologically and chemically synthesized silver nanoparticles along with the silver in its ionic form. The intense immune-histochemical staining of fish tissues (muscle, kidney and liver) analyzed proportionately reflected the stress created. The colour intensity was directly proportional to the stress created or the stress protein released. High level of HSP70 expression was observed in all of the fish tissues exposed to silver ions and chemically synthesized silver nanoparticles, when compared to that of biologically synthesized. The results revealed the significance of comparatively safe and less toxic biogenic nanoparticles compared to the chemically synthesized.

  18. A comparative study on characterization of textile wastewaters (untreated and treated) toxicity by chemical and biological tests.

    Science.gov (United States)

    Sharma, K P; Sharma, S; Sharma, Subhasini; Singh, P K; Kumar, S; Grover, R; Sharma, P K

    2007-08-01

    Toxicity of textile wastewaters (untreated and treated) and their ingredient chemicals was quantified in terms of their chemical characteristics, fish (Gambusia affinis) mortality and end point growth responses of duckweed (Lemna aequinoctialis) in short-term bioassays. Other parameters of fish bioassay were erythrocyte morphology and its counts. Despite of a definite correlation between data of biological tests (LC/EC(50) values) with that of chemical tests, biological tests were found to be relatively more sensitive to both wastewaters and ingredient chemicals. Amongst all the examined parameters of test organisms, fish RBCs (morphology and counts) sensitivity to pollutants in the wastewaters was usually maximum and therefore, their study should be included in the routine fish bioassay. Other advantage of biological test such as on Lemna is even detection of eutrophic potential of wastewaters, as noted at their higher dilutions. The ingredient chemicals (major) contributing maximum toxicity to textile dye wastewater were, acids (HCl and H(2)SO(4)), alkali (Na(2)O SiO(2)), salt (NaNO(2)) and heavy metal (Cu), whereas dyes (4) were relatively less toxic.

  19. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation.

    Science.gov (United States)

    Liao, Yingping; Min, Xiaobo; Yang, Zhihui; Chai, Liyuan; Zhang, Shujuan; Wang, Yangyang

    2014-01-01

    Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg(-1)) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg(-1). Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils.

  20. Activation of chemical biological defense mechanisms and remission of vital oxidative injury by low dose radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoka, K. [Okayama University Medical School, Okayama (Japan); Nomura, T. [Central Research Institute of Electric Power Industry, Tokyo (Japan); Kojima, S. [Science University of Tokyo, Chiba (Japan)

    2000-05-01

    Excessive active oxygen produced in vivo by various causes is toxic. Accumulation of oxidation injuries due to excessive active causes cell and tissue injuries, inducing various pathologic conditions such as aging and carcinogenesis. On the other hand, there are chemical defense mechanisms in the body that eliminate active oxygen or repair damaged molecules, defending against resultant injury. It is interesting reports that appropriate oxidation stress activate the chemical biological defense mechanisms. In this study, to elucidate these phenomena and its mechanism by low dose radiation, we studied on the below subjects. Activation of chemical biological defense mechanisms by low dose radiation: (1) The effects radiation on lipid peroxide (LPO) levels in the organs, membrane fluidity and the superoxide dismutase (SOD) activity were examined in rats and rabbits. Rats were irradiated with low dose X-ray over their entire bodies, and rabbits inhaled vaporized radon spring water, which primarily emitted {alpha}-ray. The following results were obtained. Unlike high dose X-ray, low dose X-ray and radon inhalation both reduced LPO levels and made the state of the SH-group on membrane-bound proteins closer to that of juvenile animals, although the sensitivity to radioactivity varied depending on the age of the animals and among different organs and tissues. The SOD activity was elevated, suggesting that low dose X-ray and radon both activate the host defensive function. Those changes were particularly marked in the organs related to immune functions of the animals which received low dose X-ray, while they were particularly marked in the brain after radon inhalation. It was also found that those changes continued for longer periods after low dose X-irradiation. (2) Since SOD is an enzyme that mediates the dismutation of O{sub 2}- to H{sub 2}O{sub 2}, the question as to whether the resultant H{sub 2}O{sub 2} is further detoxicated into H{sub 2}O and O{sub 2} or not must

  1. The allometry of CNS size and consequences of miniaturization in orb-weaving and cleptoparasitic spiders.

    Science.gov (United States)

    Quesada, Rosannette; Triana, Emilia; Vargas, Gloria; Douglass, John K; Seid, Marc A; Niven, Jeremy E; Eberhard, William G; Wcislo, William T

    2011-11-01

    Allometric studies of the gross neuroanatomy of adults from nine species of spiders from six web-weaving families (Orbicularia), and nymphs from six of these species, show that very small spiders resemble other small animals in having disproportionately larger central nervous systems (CNSs) relative to body mass when compared with large-bodied forms. Small spiderlings and minute adult spiders have similar relative CNS volumes. The relatively large CNS of a very small spider occupies up to 78% of the cephalothorax volume. The CNSs of very small spiders extend into their coxae, occupying as much as 26% of the profile area of the coxae of an Anapisona simoni spiderling (body mass weave prey capture webs, as do the spiderlings, beginning with second instar nymphs. Comparable allometric relations occur in adults of both orb-weaving and cleptoparasitic species, indicating that this behavioral difference is not reflected in differences in gross CNS allometry.

  2. Development of a strategy for biological monitoring in a chemical plant producing 3,3'-dichlorobenzidine dihydrochloride.

    Science.gov (United States)

    Knoell, Kristian F; Will, Norbert; Leng, Gabriele; Selinski, Silvia; Hengstler, Jan G; Golka, Klaus; Bolt, Hermann M

    2012-01-01

    In a chemical plant in Germany producing 3,3'-dichlorobenzidine dihydrochloride for the manufacture of colorants, blood and urine samples were taken for biological monitoring. 3,3'-Dichlorobenzidine (DBZ) was analyzed in urine by thin-layer chromatography and subsequently further combined with analysis of adducts of 3,3'-DBZ in hemoglobin. Data highlight current ranges of industrial exposure to 3,3'-DBZ in Germany and demonstrate the applicability of biological monitoring to minimize this exposure. Effective biological monitoring was achieved by a combination of monitoring hemoglobin adducts with spot samplings of urinary 3,3'-DBZ excretion in cases of reported exposure periods. Data presented might help to identify biological guidance values (BGV/BAR) for 3,3'-DBZ-exposed individuals.

  3. Allometry of sexual size dimorphism in turtles: a comparison of mass and length data

    Science.gov (United States)

    Regis, Koy W.

    2017-01-01

    Background The macroevolutionary pattern of Rensch’s Rule (positive allometry of sexual size dimorphism) has had mixed support in turtles. Using the largest carapace length dataset and only large-scale body mass dataset assembled for this group, we determine (a) whether turtles conform to Rensch’s Rule at the order, suborder, and family levels, and (b) whether inferences regarding allometry of sexual size dimorphism differ based on choice of body size metric used for analyses. Methods We compiled databases of mean body mass and carapace length for males and females for as many populations and species of turtles as possible. We then determined scaling relationships between males and females for average body mass and straight carapace length using traditional and phylogenetic comparative methods. We also used regression analyses to evalutate sex-specific differences in the variance explained by carapace length on body mass. Results Using traditional (non-phylogenetic) analyses, body mass supports Rensch’s Rule, whereas straight carapace length supports isometry. Using phylogenetic independent contrasts, both body mass and straight carapace length support Rensch’s Rule with strong congruence between metrics. At the family level, support for Rensch’s Rule is more frequent when mass is used and in phylogenetic comparative analyses. Turtles do not differ in slopes of sex-specific mass-to-length regressions and more variance in body size within each sex is explained by mass than by carapace length. Discussion Turtles display Rensch’s Rule overall and within families of Cryptodires, but not within Pleurodire families. Mass and length are strongly congruent with respect to Rensch’s Rule across turtles, and discrepancies are observed mostly at the family level (the level where Rensch’s Rule is most often evaluated). At macroevolutionary scales, the purported advantages of length measurements over weight are not supported in turtles. PMID:28149687

  4. Integration of an innovative biological treatment with physical or chemical disinfection for wastewater reuse

    Energy Technology Data Exchange (ETDEWEB)

    De Sanctis, Marco, E-mail: marco.desanctis@ba.irsa.cnr.it [Water Research Institute, CNR, Via F. De Blasio 5, 70123 Bari (Italy); Del Moro, Guido [Water Research Institute, CNR, Via F. De Blasio 5, 70123 Bari (Italy); Levantesi, Caterina; Luprano, Maria Laura [Water Research Institute, CNR, Via Salaria Km 29.600, 00015 Monterotondo, RM (Italy); Di Iaconi, Claudio [Water Research Institute, CNR, Via F. De Blasio 5, 70123 Bari (Italy)

    2016-02-01

    In the present paper, the effectiveness of a Sequencing Batch Biofilter Granular Reactor (SBBGR) and its integration with different disinfection strategies (UV irradiation, peracetic acid) for producing an effluent suitable for agricultural use was evaluated. The plant treated raw domestic sewage, and its performances were evaluated in terms of the removal efficiency of a wide group of physical, chemical and microbiological parameters. The SBBGR resulted really efficient in removing suspended solids, COD and nitrogen with an average effluent concentration of 5, 32 and 10 mg/L, respectively. Lower removal efficiency was observed for phosphorus with an average concentration in the effluent of 3 mg/L. Plant effluent was also characterized by an average electrical conductivity and sodium adsorption ratio of 680 μS/cm and 2.9, respectively. Therefore, according to these gross parameters, the SBBGR effluent was conformed to the national standards required in Italy for agricultural reuse. Moreover, disinfection performances of the SBBGR was higher than that of conventional municipal wastewater treatment plants and met the quality criteria suggested by WHO (Escherichia coli < 1000 CFU/100 mL) for agricultural reuse. In particular, the biological treatment by SBBGR removed 3.8 ± 0.4 log units of Giardia lamblia, 2.8 ± 0.8 log units of E. coli, 2.5 ± 0.7 log units of total coliforms, 2.0 ± 0.3 log units of Clostridium perfringens, 2.0 ± 0.4 log units of Cryptosporidium parvum and 1.7 ± 0.7 log units of Somatic coliphages. The investigated disinfection processes (UV and peracetic acid) resulted very effective for total coliforms, E. coli and somatic coliphages. In particular, a UV radiation and peracetic acid doses of 40 mJ/cm{sup 2} and 1 mg/L respectively reduced E. coli content in the effluent below the limit for agricultural reuse in Italy (10 CFU/100 mL). Conversely, they were both ineffective on C.perfringens spores. - Highlights: • SBBGR system showed high

  5. 15 CFR 744.4 - Restrictions on certain chemical and biological weapons end-uses.

    Science.gov (United States)

    2010-01-01

    ... biological weapons end-uses. 744.4 Section 744.4 Commerce and Foreign Trade Regulations Relating to Commerce... and biological weapons end-uses. (a) General prohibition. In addition to the license requirements for... biological weapons in or by any country or destination, worldwide. (b) Additional prohibition on...

  6. Characterization and Modeling of a Coupled Thermal-Hydrological-Mechanical-Chemical-Biological Experimental Facility at DUSEL

    Science.gov (United States)

    Sonnenthal, E. L.; Elsworth, D.; Lowell, R. P.; Maher, K.; Mailloux, B. J.; Uzunlar, N.; Conrad, M. E.; Jones, T. L.; Olsen, N. J.

    2010-12-01

    A design is being formulated for a large-scale subsurface experimental facility at the 4850 foot level of the Homestake Mine in South Dakota. The purpose of the experiment is to investigate coupled Thermal-Hydrological-Mechanical-Chemical-Biological (THMCB) processes in fractured rock under stress and would be part of the proposed Deep Underground Science and Engineering Laboratory (DUSEL). Key questions we propose to answer are: 1) What are the effective reaction rates for mineral-fluid interaction in fractured rock under stress?; 2) How does mineral and fluid chemistry affect fracture mechanical behavior and permeability changes under stress at elevated temperatures?; and 3) How do microbial communities evolve in fractured rock under a thermal gradient and under changing stress conditions? In addition to the experiment as an in-situ laboratory for studying crustal processes, it has significant benefits for evaluating stimulation and production in Enhanced Geothermal Systems. Design and planning of the experiment included characterization of the geological, chemical, and isotopic characteristics of the rock and seeping fluids, thermal-hydrological and reactive transport modeling. During a reconnaissance study, strong heterogeneity in fracture fluxes and permeability were observed at the block site with some open boreholes continuously flowing at up to 1 liter/minute, and locally elevated fluid temperatures. A two-dimensional thermal-hydrological model was developed to evaluate fluid fluxes and temperatures as a function of heat input and borehole heater configuration. The dual permeability model considers fluid flow and heat transfer between an array of fractures and rock matrix, both having permeability anisotropy. A horizontal rock matrix permeability of 10-18 m2 was based on recent lab measurements, with a vertical matrix permeability estimated to be one order-of-magnitude higher to account for the strong nearly vertical foliation in the Homestake and Poorman

  7. Determining the Chemical and Biological Availability of Zinc in Urban Stormwater Retention Ponds

    Science.gov (United States)

    Camponelli, K.; Casey, R.; Lev, S. M.; Landa, E. R.; Snodgrass, J.

    2005-12-01

    Highway runoff has the potential to negatively impact receiving systems due to transport of contaminants that accumulate on road surfaces. Metals such as copper and zinc are major components of automobile brake pads and tires, respectively. As these automobile parts are degraded, these metal containing particulates are deposited on the roadway and are washed into storm water retention ponds and surface water bodies during precipitation events. It has been estimated that 15 to 60% of the Zn in urban stormwater runoff comes from tire wear and that tire wear is a significant source of Zn to the environment with release inventories comparable to waste incineration sources. In urban and sub-urban systems, this large source of Zn can accumulate in stormwater retention ponds which serve as habitat for a variety of species. Understanding the chemical and biological availability of Zn to biota is integral to assessing the habitat quality of retention ponds. This study is a first effort to relate the amount and speciation of Zn in a retention pond to Zn inputs through highway-derived runoff events. In addition, results suggest that the chemical speciation and availability of particulate Zn can be related to the bioavailability and toxicity of Zn to pond organisms (i.e. larval amphibians). The study site in Owings Mills, MD is located next to a four-lane highway from which it receives runoff through a single culvert. Five species of anurans are known to utilize the pond as a breeding site and Zn in amphibian tissues and retention pond sediments were highly elevated at this site in 2001 and 2002. A recent analysis of pond sediments, soils, roadway dust and storm water collected at this site suggests that roadway particulate matter transported during runoff events is the dominant source of Zn in this system. Overall, Zn and other trace metals were found to be most abundant in the clay sized faction of pond sediments and soils. The pond cores were found to have higher Zn and Cu

  8. Tree species traits influence soil physical, chemical, and biological properties in high elevation forests.

    Directory of Open Access Journals (Sweden)

    Edward Ayres

    Full Text Available BACKGROUND: Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. METHODOLOGY/PRINCIPAL FINDINGS: We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N concentration and lowest lignin:N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin:N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid

  9. Nanomaterial based detection and degradation of biological and chemical contaminants in a microfluidic system

    Science.gov (United States)

    Jayamohan, Harikrishnan

    Monitoring and remediation of environmental contaminants (biological and chemical) form the crux of global water resource management. There is an extant need to develop point-of-use, low-power, low-cost tools that can address this problem effectively with minimal environmental impact. Nanotechnology and microfluidics have made enormous advances during the past decade in the area of biosensing and environmental remediation. The "marriage" of these two technologies can effectively address some of the above-mentioned needs. In this dissertation, nanomaterials were used in conjunction with microfluidic techniques to detect and degrade biological and chemical pollutants. In the first project, a point-of-use sensor was developed for detection of trichloroethylene (TCE) from water. A self-organizing nanotubular titanium dioxide (TNA) synthesized by electrochemical anodization and functionalized with photocatalytically deposited platinum (Pt/TNA) was applied to the detection. The morphology and crystallinity of the Pt/TNA sensor was characterized using field emission scanning electron microscope, energy dis- persive x-ray spectroscopy, and X-ray diffraction. The sensor could detect TCE in the concentrations ranging from 10 to 1000 ppm. The room-temperature operation capability of the sensor makes it less power intensive and can potentially be incorporated into a field-based sensor. In the second part, TNA synthesized on a foil was incorporated into a flow-based microfluidic format and applied to degradation of a model pollutant, methylene blue. The system was demonstrated to have enhanced photocatalytic performance at higher flow rates (50-200 muL/min) over the same microfluidic format with TiO2 nanoparticulate (commercial P25) catalyst. The microfluidic format with TNA catalyst was able to achieve 82% fractional conversion of 18 mM methylene blue in comparison to 55% in the case of the TiO2 nanoparticulate layer at a flow rate of 200 L/min. The microfluidic device was

  10. A review on chemical and biological properties of Cayratia trifolia Linn. (Vitaceae

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar

    2011-01-01

    Full Text Available Cayratia trifolia Linn. Domin Syn. Vitis trifolia (Family: Vitaceae is commonly known as Fox grape in English; Amlabel, Ramchana in Hindi and Amlavetash in Sanskrit. It is native to India, Asia and Australia. It is a perennial climber having trifoliated leaves with 2-3 cm long petioles and ovate to oblong-ovate leaflets. Flowers are small greenish white and brown in color. Fruits are fleshy, juicy, dark purple or black, nearly spherical, about 1 cm in diameter. It is found throughout the hills in India. This perennial climber is also found in the hotter part of India from Jammu and Rajasthan to Assam extending into the peninusular India upto 600 m height. Whole plant of Cayratia trifolia has been reported to contain yellow waxy oil, steroids/terpenoids, flavonoids, tannins upon preliminary phytochemical screening. Leaves contain stilbenes (piceid, reveratrol, viniferin, ampelopsin. Stem, leaves, roots are reported to possess hydrocyanic acid, delphinidin and several flavonoids such as cyanidin is reported in the leaves. This plant also contains kaempferol, myricetin, quercetin, triterpenes and epifriedelanol. Infusion of seeds along with extract of tubers is traditionally given orally to diabetic patients to check sugar level of blood. Paste of tuberous is applied on the affected part in the treatment of snake bite. Whole plant is used as diuretic, in tumors, neuralgia and splenopathy. Its climbers wrapped around the neck of frantic bullock and poultice of leaves are used to yoke sores of bullock. The bark extract shows the antiviral, antibacterial, antiprotozoal, hypoglycemic, anticancer and diuretic activity. This article focuses on the upgraded review on chemical and biological properties of Cayratia trifolia Linn. and triggers further investigation on this plant.

  11. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA

    Science.gov (United States)

    Besser, J.M.; Brumbaugh, W.G.; Ivey, C.D.; Ingersoll, C.G.; Moran, P.W.

    2008-01-01

    We studied the bioavailability and toxicity of copper, zinc, arsenic, cadmium, and lead in sediments from Lake Roosevelt (LR), a reservoir on the Columbia River in Washington, USA that receives inputs of metals from an upstream smelter facility. We characterized chronic sediment toxicity, metal bioaccumulation, and metal concentrations in sediment and pore water from eight study sites: one site upstream in the Columbia River, six sites in the reservoir, and a reference site in an uncontaminated tributary. Total recoverable metal concentrations in LR sediments generally decreased from upstream to downstream in the study area, but sediments from two sites in the reservoir had metal concentrations much lower than adjacent reservoir sites and similar to the reference site, apparently due to erosion of uncontaminated bank soils. Concentrations of acid-volatile sulfide in LR sediments were too low to provide strong controls on metal bioavailability, and selective sediment extractions indicated that metals in most LR sediments were primarily associated with iron and manganese oxides. Oligochaetes (Lumbriculus variegatus) accumulated greatest concentrations of copper from the river sediment, and greatest concentrations of arsenic, cadmium, and lead from reservoir sediments. Chronic toxic effects on amphipods (Hyalella azteca; reduced survival) and midge larvae (Chironomus dilutus; reduced growth) in whole-sediment exposures were generally consistent with predictions of metal toxicity based on empirical and equilibrium partitioning-based sediment quality guidelines. Elevated metal concentrations in pore waters of some LR sediments suggested that metals released from iron and manganese oxides under anoxic conditions contributed to metal bioaccumulation and toxicity. Results of both chemical and biological assays indicate that metals in sediments from both riverine and reservoir habitats of Lake Roosevelt are available to benthic invertebrates. These findings will be used as

  12. Chemical, biological, radiological and nuclear training issues in India: A fresh perspective

    Directory of Open Access Journals (Sweden)

    Mudit Sharma

    2010-01-01

    Full Text Available Appropriate training is the key to the right level of preparedness against any disaster, and Chemical, Biological, Radiological and Nuclear (CBRN disasters are no different. The presence of contamination precludes rescue operations to commence soon after the event and it takes a systematic approach to detect and decontaminate the CBRN hazard. Achieving such interventions poses a critical challenge because humans do not possess any inborn, natural sensors with which to recognize these dangers early enough. This requires special training besides the right tools to achieve the objective. CBRN training in India has evolved over the years as a pure military-related concept to a disaster-level response training involving the first responders. The complex nature of CBRN agents requires a methodical and systematic approach to counter the response successfully, and the training for this necessitates adoption of proven modern principles of education management, like training needs analysis, operational research, etc. Simulation as a training and planning offers repeatability, controllability and the possibility for evaluation and is being successfully used in some advanced countries for training responders in the relatively unknown and mysterious domain of CBRN disaster management training. There is also a perceived need to integrate and standardize the curricula to suit the respective first responder. It is strongly felt that with the able support of apex agencies like National Disaster Management Authority and guidance of the Defence Research and Development Organisation, the training effort in CBRN disaster management will get the right impetus to achieve a stature of a modern, progressive and mature endeavour. This will enable India to develop a strong CBRN defence posture very much in line with the country′s emerging status globally as a technological power.

  13. Chemical modifiers in arsenic determination in biological materials by tungsten coil electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, C.G.; Huerta, V.N.; Neira, J.Y. [Departamento de Analisis Instrumental, Facultad de Farmacia, Universidad de Concepcion, P.O. Box 237, Concepcion (Chile)

    2004-01-01

    Palladium, iridium, and rhodium are evaluated as possible chemical modifiers in the determination of As in digest solutions of biological materials (human hair and clam) by tungsten coil electrothermal atomic absorption spectrophotometry (TCA-AAS). The modifier in solution was applied onto the coil and thermally pre-reduced; the pre-reduction conditions, the amount of modifier, and the thermal program were optimized. Palladium was not satisfactory, whereas Ir and Rh were effective modifiers and rendered better relative sensitivity for As by a factor of 1.4 and 1.9, respectively compared to the case without modifier. Upon optimization of thermal conditions for As in pre-reduced Ir (2.0 {mu}g) and Rh (2.0 {mu}g) modifiers and in the digest solutions of the study matrices, Rh (2.0 {mu}g) was more effective modifier and was selected as such. The mean within-day repeatability was 2.8% in consecutive measurements (25-100 {mu}g L{sup -1}) (3 cycles, each of n=6) and confirmed good short-term stability of the absorbance measurements. The mean reproducibility was 4.4% (n=20 in a 3-day period) and the detection limit (3{sigma}{sub blank}/slope) was 29 pg (n=15). The useful coil lifetime in Rh modifier was extended to 300-400 firings. Validation was by determination of As in the certified reference material (CRM) of ''Oyster tissue'' solution with a percentage relative error (E{sub rel}%) of 2% and percentage relative standard deviation (RSD%) of 3% (n=4), and by analytical recovery of As spiked in CRM of human hair [94{+-}8% (n=4)]. The methodology is simple, fast (sample readout frequency 21 h{sup -1}), reliable, of low cost, and was applied to the determination of As in hair samples of exposed and unexposed workers. (orig.)

  14. Relationship between chemical composition and biological function of Pseudomonas aeruginosa lipopolysaccharide: effect on human neutrophil chemotaxis and oxidative burst

    DEFF Research Database (Denmark)

    Kharazmi, A; Fomsgaard, A; Conrad, R S;

    1991-01-01

    There are conflicting data on the effect of bacterial lipopolysaccharides (LPS) on the function of human neutrophils. The present study was designed to examine the relationship between chemical composition and the modulatory effect of LPS on human neutrophil function. LPS was extracted from five ...... composition of the LPS molecule may play an important role in biological activity of LPS.......There are conflicting data on the effect of bacterial lipopolysaccharides (LPS) on the function of human neutrophils. The present study was designed to examine the relationship between chemical composition and the modulatory effect of LPS on human neutrophil function. LPS was extracted from five...... no effect on neutrophil chemotaxis and a slight effect on chemiluminescence. The major differences in chemical composition of the LPS from these two strains are in the rhamnose and heptose content of the O side chain and in the alanine content of the core region. These data indicate that chemical...

  15. Chemical and biological warfare: Biochemistry, therapy, and treatment. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The bibliography contains citations concerning biochemistry, therapy, and treatment of the effects of military chemical and biological warfare agents. References include surveys and studies of immunizing agents and drugs, the efficacy of these drugs, and the effect of the drugs on the patient. Also included are biochemical studies, assay techniques, and antidote development, some of which is supported by animal studies. Citations concerning detection and warning, defoliants, protection, biology and toxicology, and general studies are covered in separate bibliographies.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  16. Chemical and biological warfare: Biochemistry, therapy, and treatment. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The bibliography contains citations concerning biochemistry, therapy, and treatment of the effects of military chemical and biological warfare agents. References include surveys and studies of immunizing agents and drugs, the efficacy of these drugs, and the effect of the drugs on the patient. Also included are biochemical studies, assay techniques, and antidote development, some of which is supported by animal studies. Citations concerning detection and warning, defoliants, protection, biology and toxicology, and general studies are covered in separate bibliographies.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  17. Determining Chemical Reactivity Driving Biological Activity from SMILES Transformations: The Bonding Mechanism of Anti-HIV Pyrimidines

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2013-07-01

    Full Text Available Assessing the molecular mechanism of a chemical-biological interaction and bonding stands as the ultimate goal of any modern quantitative structure-activity relationship (QSAR study. To this end the present work employs the main chemical reactivity structural descriptors (electronegativity, chemical hardness, chemical power, electrophilicity to unfold the variational QSAR though their min-max correspondence principles as applied to the Simplified Molecular Input Line Entry System (SMILES transformation of selected uracil derivatives with anti-HIV potential with the aim of establishing the main stages whereby the given compounds may inhibit HIV infection. The bonding can be completely described by explicitly considering by means of basic indices and chemical reactivity principles two forms of SMILES structures of the pyrimidines, the Longest SMILES Molecular Chain (LoSMoC and the Branching SMILES (BraS, respectively, as the effective forms involved in the anti-HIV activity mechanism and according to the present work, also necessary intermediates in molecular pathways targeting/docking biological sites of interest.

  18. Advancements in mass spectrometry for biological samples: Protein chemical cross-linking and metabolite analysis of plant tissues

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Adam [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This thesis presents work on advancements and applications of methodology for the analysis of biological samples using mass spectrometry. Included in this work are improvements to chemical cross-linking mass spectrometry (CXMS) for the study of protein structures and mass spectrometry imaging and quantitative analysis to study plant metabolites. Applications include using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to further explore metabolic heterogeneity in plant tissues and chemical interactions at the interface between plants and pests. Additional work was focused on developing liquid chromatography-mass spectrometry (LC-MS) methods to investigate metabolites associated with plant-pest interactions.

  19. [Hygienic, chemical and ecotoxicological aspects of the disinfection of biologically treated waste water by ozone and UV light].

    Science.gov (United States)

    Iske, U; Nelle, T; Oberg, C; Rudolph, K U; Zander-Hauck, S

    1996-02-01

    Biologically treated waste water from two different municipal treatment plants with mainly domestic waste water on the one hand and industrial influenced waste water on the other hand was disinfected by UV-irradiation and ozonation. Hygienic, chemical and eco-toxic effects of the disinfection step were examined. It was found that by ozonation as well as by UV-irradiation the required guide and imperative values for fecal and total coliform bacteria were fulfilled. The UV-irradiation induces no changes concerning chemical waste water quality and toxic effects. In contrast to these results ozonation can lead to alterations in chemistry and toxicity depending on the waste water composition.

  20. A versatile system for biological and soil chemical tests on a planetary landing craft. I - Scientific objectives

    Science.gov (United States)

    Radmer, R. J.; Kok, B.; Martin, J. P.

    1976-01-01

    We describe an approach for the remote detection and characterization of life in planetary soil samples. A mass spectrometer is used as the central sensor to monitor changes in the gas phase in eleven test cells filled with soil. Many biological assays, ranging from general 'in situ' assays to specific metabolic processes (such as photosynthesis, respiration, denitrification, etc.) can be performed by appropriate additions to the test cell via attached preloaded injector capsules. The system is also compatible with a number of chemical assays such as the analysis of atmospheric composition (both chemical and isotopic), the status of soil water, and the determination of compounds of carbon, nitrogen and sulfur in the soil.

  1. Selected Physical, Chemical, and Biological Data for 30 Urbanizing Streams in the North Carolina Piedmont Ecoregion, 2002-2003

    Science.gov (United States)

    Giddings, E.M.; Moorman, Michelle; Cuffney, Thomas F.; McMahon, Gerard; Harned, Douglas A.

    2007-01-01

    This report provides summarized physical, chemical, and biological data collected during a study of the effects of urbanization on stream ecosystems as part of the U.S. Geological Survey's National Water-Quality Assessment study. The purpose of this study was to examine differences in biological, chemical, and physical characteristics of streams across a gradient of urban intensity. Thirty sites were selected along an urbanization gradient that represents conditions in the North Carolina Piedmont ecoregion, including the cities of Raleigh, Durham, Cary, Greensboro, Winston-Salem, High Point, Asheboro, and Oxford. Data collected included streamflow variability, stream temperature, instream chemistry, instream aquatic habitat, and collections of the algal, macroinvertebrate, and fish communities. In addition, ancillary data describing land use, socioeconomic conditions, and urban infrastructure were compiled for each basin using a geographic information system analysis. All data were processed and summarized for analytical use and are presented in downloadable data tables, along with the methods of data collection and processing.

  2. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  3. Chemical and biological properties of phosphorus-fertilized soil under legume and grass cover (Cerrado region, Brazil

    Directory of Open Access Journals (Sweden)

    Marcelo Fernando Pereira Souza

    2013-12-01

    Full Text Available The use of cover crops has been suggested as an effective method to maintain and/or increase the organic matter content, while maintaining and/or enhancing the soil physical, chemical and biological properties. The fertility of Cerrado soils is low and, consequently, phosphorus levels as well. Phosphorus is required at every metabolic stage of the plant, as it plays a role in the processes of protein and energy synthesis and influences the photosynthetic process. This study evaluated the influence of cover crops and phosphorus rates on soil chemical and biological properties after two consecutive years of common bean. The study analyzed an Oxisol in Selvíria (Mato Grosso do Sul, Brazil, in a randomized block, split plot design, in a total of 24 treatments with three replications. The plot treatments consisted of cover crops (millet, pigeon pea, crotalaria, velvet bean, millet + pigeon pea, millet + crotalaria, and millet + velvet bean and one plot was left fallow. The subplots were represented by phosphorus rates applied as monoammonium phosphate (0, 60 and 90 kg ha-1 P2O5. In August 2011, the soil chemical properties were evaluated (pH, organic matter, phosphorus, potential acidity, cation exchange capacity, and base saturation as well as biological variables (carbon of released CO2, microbial carbon, metabolic quotient and microbial quotient. After two years of cover crops in rotation with common bean, the cover crop biomass had not altered the soil chemical properties and barely influenced the microbial activity. The biomass production of millet and crotalaria (monoculture or intercropped was highest. The biological variables were sensitive and responded to increasing phosphorus rates with increases in microbial carbon and reduction of the metabolic quotient.

  4. AOX removal from industrial wastewaters using advanced oxidation processes: assessment of a combined chemical-biological oxidation.

    Science.gov (United States)

    Luyten, J; Sniegowski, K; Van Eyck, K; Maertens, D; Timmermans, S; Liers, Sven; Braeken, L

    2013-01-01

    In this paper, the abatement of adsorbable halogenated organic compounds (AOX) from an industrial wastewater containing relatively high chloride concentrations by a combined chemical and biological oxidation is assessed. For chemical oxidation, the O(3)/UV, H(2)O(2)/UV and photo-Fenton processes are evaluated on pilot scale. Biological oxidation is simulated in a 4 h respirometry experiment with periodic aeration. The results show that a selective degradation of AOX with respect to the matrix compounds (expressed as chemical oxygen demand) could be achieved. For O(3)/UV, lowering the ratio of O(3) dosage to UV intensity leads to a better selectivity for AOX. During O(3)-based experiments, the AOX removal is generally less than during the H(2)O(2)-based experiments. However, after biological oxidation, the AOX levels are comparable. For H(2)O(2)/UV, optimal operating parameters for UV and H(2)O(2) dosage are next determined in a second run with another wastewater sample.

  5. How Clean is Safe? Improving the Effectiveness of Decontamination of Structures and People Following Chemical and Biological Incidents

    Energy Technology Data Exchange (ETDEWEB)

    Vogt (Sorensen), B.M.

    2003-04-03

    This report describes a U.S. Department of Energy, (DOE) Chemical and Biological National Security Program project that sought to establish what is known about decontamination of structures, objects, and people following an exposure to chemical or biological materials. Specifically we sought to identify the procedures and protocols used to determine when and how people or buildings are considered ''clean'' following decontamination. To fulfill this objective, the study systematically examined reported decontamination experiences to determine what procedures and protocols are currently employed for decontamination, the timeframe involved to initiate and complete the decontamination process, how the contaminants were identified, the factors determining when people were (or were not) decontaminated, the problems encountered during the decontamination process, how response efforts of agencies were coordinated, and the perceived social psychological effects on people who were decontaminated or who participated in the decontamination process. Findings and recommendations from the study are intended to aid decision-making and to improve the basis for determining appropriate decontamination protocols for recovery planners and policy makers for responding to chemical and biological events.

  6. Sequential chemical-biological processes for the treatment of industrial wastewaters: review of recent progresses and critical assessment.

    Science.gov (United States)

    Guieysse, Benoit; Norvill, Zane N

    2014-02-28

    When direct wastewater biological treatment is unfeasible, a cost- and resource-efficient alternative to direct chemical treatment consists of combining biological treatment with a chemical pre-treatment aiming to convert the hazardous pollutants into more biodegradable compounds. Whereas the principles and advantages of sequential treatment have been demonstrated for a broad range of pollutants and process configurations, recent progresses (2011-present) in the field provide the basis for refining assessment of feasibility, costs, and environmental impacts. This paper thus reviews recent real wastewater demonstrations at pilot and full scale as well as new process configurations. It also discusses new insights on the potential impacts of microbial community dynamics on process feasibility, design and operation. Finally, it sheds light on a critical issue that has not yet been properly addressed in the field: integration requires complex and tailored optimization and, of paramount importance to full-scale application, is sensitive to uncertainty and variability in the inputs used for process design and operation. Future research is therefore critically needed to improve process control and better assess the real potential of sequential chemical-biological processes for industrial wastewater treatment.

  7. Lab-on-fiber technology: a new vision for chemical and biological sensing.

    Science.gov (United States)

    Ricciardi, Armando; Crescitelli, Alessio; Vaiano, Patrizio; Quero, Giuseppe; Consales, Marco; Pisco, Marco; Esposito, Emanuela; Cusano, Andrea

    2015-12-21

    The integration of microfluidics and photonic biosensors has allowed achievement of several laboratory functions in a single chip, leading to the development of photonic lab-on-a-chip technology. Although a lot of progress has been made to implement such sensors in small and easy-to-use systems, many applications such as point-of-care diagnostics and in vivo biosensing still require a sensor probe able to perform measurements at precise locations that are often hard to reach. The intrinsic property of optical fibers to conduct light to a remote location makes them an ideal platform to meet this demand. The motivation to combine the good performance of photonic biosensors on chips with the unique advantages of optical fibers has thus led to the development of the so-called lab-on-fiber technology. This emerging technology envisages the integration of functionalized materials on micro- and nano-scales (i.e. the labs) with optical fibers to realize miniaturized and advanced all-in-fiber probes, especially useful for (but not limited to) label-free chemical and biological applications. This review presents a broad overview of lab-on-fiber biosensors, with particular reference to lab-on-tip platforms, where the labs are integrated on the optical fiber facet. Light-matter interaction on the fiber tip is achieved through the integration of thin layers of nanoparticles or nanostructures supporting resonant modes, both plasmonic and photonic, highly sensitive to local modifications of the surrounding environment. According to the physical principle that is exploited, different configurations - such as localized plasmon resonance probes, surface enhanced Raman scattering probes and photonic probes - are classified, while various applications are presented in context throughout. For each device, the surface chemistry and the related functionalization protocols are reviewed. Moreover, the implementation strategies and fabrication processes, either based on bottom-up or top

  8. Polymers as directing agents for motions of chemical and biological species

    Science.gov (United States)

    Tanyeri, Nihan Yonet

    This thesis involves descriptions of solid surface modifications with various polymeric materials which were used as a guiding agent for motion of chemical and biological species. Quasi-two dimensional poly(oligoethylene glycol) acrylate polymer brush based molecular conduits have been designed with the goal of regulating and controlling the diffusive transport of molecular, e.g. organic dyes, and ionic species, e.g. AuCl4-, and Cu2+ ions, along predefined 2-D pathways. The transport of these chemical species has been examined by both fluorescence and dark field microscopy. The polymer brushes were formed through microcontact printing of an initiator, followed by surface-initiated Atom Transfer Radical Polymerization (SI-ATRP). SI-ATRP enables both 2-D patterning with a resolution of about 1 micrometer, and control over the resultant polymer brush thickness (which was varied from 10-100 nm). A hydrophilic poly(oligoethylene glycol) acrylate brushe was selected because of its potential to dissolve a wide range of hydrophilic species. The transport of fluorescent species can be directly followed. A non-lithographic fabrication method was developed for mufluidic devices used in the diffusion studies. Singular channel mufluidic device was utilized to study the directed organic dye diffusion. The AuCl4-, and Cu 2+ ion transport was studied by designing molecular devices with two mufluidic channels. We have demonstrated that the various species of interest diffuse much more rapidly along the predefined pathway than along the bare (polymer brush free) regions of the substrate, demonstrating that diffusive conduits for molecular transport can indeed be formed. The protein resistance of poly(N-isopropylacrylamide) (PNIPAM) brushes grafted from silicon wafers was investigated as a function of the chain molecular weight, grafting density, and temperature. Above the lower critical solution temperature (LCST) of 32°C, the collapse of the water swollen chains, determined by

  9. The implications of non-linear biological oscillations on human electrophysiology for electrohypersensitivity (EHS) and multiple chemical sensitivity (MCS).

    Science.gov (United States)

    Sage, Cindy

    2015-01-01

    The 'informational content' of Earth's electromagnetic signaling is like a set of operating instructions for human life. These environmental cues are dynamic and involve exquisitely low inputs (intensities) of critical frequencies with which all life on Earth evolved. Circadian and other temporal biological rhythms depend on these fluctuating electromagnetic inputs to direct gene expression, cell communication and metabolism, neural development, brainwave activity, neural synchrony, a diversity of immune functions, sleep and wake cycles, behavior and cognition. Oscillation is also a universal phenomenon, and biological systems of the heart, brain and gut are dependent on the cooperative actions of cells that function according to principles of non-linear, coupled biological oscillations for their synchrony. They are dependent on exquisitely timed cues from the environment at vanishingly small levels. Altered 'informational content' of environmental cues can swamp natural electromagnetic cues and result in dysregulation of normal biological rhythms that direct growth, development, metabolism and repair mechanisms. Pulsed electromagnetic fields (PEMF) and radiofrequency radiation (RFR) can have the devastating biological effects of disrupting homeostasis and desynchronizing normal biological rhythms that maintain health. Non-linear, weak field biological oscillations govern body electrophysiology, organize cell and tissue functions and maintain organ systems. Artificial bioelectrical interference can give false information (disruptive signaling) sufficient to affect critical pacemaker cells (of the heart, gut and brain) and desynchronize functions of these important cells that orchestrate function and maintain health. Chronic physiological stress undermines homeostasis whether it is chemically induced or electromagnetically induced (or both exposures are simultaneous contributors). This can eventually break down adaptive biological responses critical to health

  10. Comparison of some chemical and physico-chemical properties of natural and model sodium humates and of the biological activity of both substances in tomato water cultures

    Directory of Open Access Journals (Sweden)

    S. Gumiński

    2015-05-01

    Full Text Available Natural humate from compost and the model sunstance obtained from p-benzoquinone were dissolved in an acetone-water mixture and subjected to chromatography on a column of aluminium oxide. Similar fractions were obtained which were chemically and spectrophotometrically investigated for the content of functional groups. The particle size of these substances was determined by filtration on Sephadex molecular sieves. Experiments were performed with tomato in water cultures on stagnant nutrient solution. The biological activity of the corresponding fractions of natural and model humates was found to be analogous. The results are discussed and confronted with functional groups content and particle size of the respective substances.

  11. Treatment of textile effluent by chemical (Fenton's Reagent) and biological (sequencing batch reactor) oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Carmen S.D. [LSRE - Laboratory of Separation and Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal); Madeira, Luis M. [LEPAE - Laboratory for Process, Environmental and Energy Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal); Boaventura, Rui A.R., E-mail: bventura@fe.up.pt [LSRE - Laboratory of Separation and Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal)

    2009-12-30

    The removal of organic compounds and colour from a synthetic effluent simulating a cotton dyeing wastewater was evaluated by using a combined process of Fenton's Reagent oxidation and biological degradation in a sequencing batch reactor (SBR). The experimental design methodology was first applied to the chemical oxidation process in order to determine the values of temperature, ferrous ion concentration and hydrogen peroxide concentration that maximize dissolved organic carbon (DOC) and colour removals and increase the effluent's biodegradability. Additional studies on the biological oxidation (SBR) of the raw and previously submitted to Fenton's oxidation effluent had been performed during 15 cycles (i.e., up to steady-state conditions), each one with the duration of 11.5 h; Fenton's oxidation was performed either in conditions that maximize the colour removal or the increase in the biodegradability. The obtained results allowed concluding that the combination of the two treatment processes provides much better removals of DOC, BOD{sub 5} and colour than the biological or chemical treatment alone. Moreover, the removal of organic matter in the integrated process is particularly effective when Fenton's pre-oxidation is carried out under conditions that promote the maximum increase in wastewater biodegradability.

  12. Reduced biological control and enhanced chemical pest management in the evolution of fungus farming in ants

    DEFF Research Database (Denmark)

    Fernández-Marín, Hermógenes; Zimmerman, Jess K; Nash, David R

    2009-01-01

    To combat disease, most fungus-growing ants (Attini) use antibiotics from mutualistic bacteria (Pseudonocardia) that are cultured on the ants' exoskeletons and chemical cocktails from exocrine glands, especially the metapleural glands (MG). Previous work has hypothesized that (i) Pseudonocardia...

  13. Chemoselective Attachment of Biologically Active Proteins to Surfaces by Native Chemical Ligation

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, C L; de Yoreo, J J; Coleman, M; Camarero, J A

    2003-11-22

    The present work describes our ongoing efforts towards the creation of micro and nanoscaled ordered arrays of protein covalently attached to site-specific chemical linkers patterned by different microlithographic techniques. We present a new and efficient solid-phase approach for the synthesis of chemically modified long alkyl-thiols. These compounds can be used to introduce chemoselective reacting groups onto silicon-based surfaces. We show that these modified thiols can be used for creating nano- and micrometric chemical patterns by using different lithographic techniques. We show that these patterns can react chemoselectively with proteins which have been recombinantly modified to contain complementary chemical groups at specific positions thus resulting in the oriented attachment of the protein to the surface.

  14. Small-Scale Terrorist Attacks Using Chemical and Biological Agents: An Assessment Framework and Preliminary Comparisons

    Science.gov (United States)

    2004-05-20

    ameliorate or prevent symptoms is a primary concern in treating chemical casualties. This factor is essential to defusing the impact of a chemical...Research Aflatoxins O — + + O Weapon Clostridium botulinum toxins + + O — O Weapon Saxitoxin — + + O O Research Tetrodotoxin — + O — O Unknown...a very toxic compound found in castor beans. During the production of castor oil , bean mash with a 5 percent ricin content is produced. Recipes for

  15. Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation.

    Science.gov (United States)

    Shinde, Vaibhav; Klima, Stefanie; Sureshkumar, Perumal Srinivasan; Meganathan, Kesavan; Jagtap, Smita; Rempel, Eugen; Rahnenführer, Jörg; Hengstler, Jan Georg; Waldmann, Tanja; Hescheler, Jürgen; Leist, Marcel; Sachinidis, Agapios

    2015-06-17

    Efficient protocols to differentiate human pluripotent stem cells to various tissues in combination with -omics technologies opened up new horizons for in vitro toxicity testing of potential drugs. To provide a solid scientific basis for such assays, it will be important to gain quantitative information on the time course of development and on the underlying regulatory mechanisms by systems biology approaches. Two assays have therefore been tuned here for these requirements. In the UKK test system, human embryonic stem cells (hESC) (or other pluripotent cells) are left to spontaneously differentiate for 14 days in embryoid bodies, to allow generation of cells of all three germ layers. This system recapitulates key steps of early human embryonic development, and it can predict human-specific early embryonic toxicity/teratogenicity, if cells are exposed to chemicals during differentiation. The UKN1 test system is based on hESC differentiating to a population of neuroectodermal progenitor (NEP) cells for 6 days. This system recapitulates early neural development and predicts early developmental neurotoxicity and epigenetic changes triggered by chemicals. Both systems, in combination with transcriptome microarray studies, are suitable for identifying toxicity biomarkers. Moreover, they may be used in combination to generate input data for systems biology analysis. These test systems have advantages over the traditional toxicological studies requiring large amounts of animals. The test systems may contribute to a reduction of the costs for drug development and chemical safety evaluation. Their combination sheds light especially on compounds that may influence neurodevelopment specifically.

  16. Effects of chemical and biological pesticides on plant growth parameters and rhizospheric bacterial community structure in Vigna radiata

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sunil; Gupta, Rashi; Sharma, Shilpi, E-mail: shilpi@dbeb.iitd.ac.in

    2015-06-30

    Highlights: • Non-target effects of pesticides employing qualitative and quantitative approaches. • Qualitative shifts in resident and active bacterial community structure. • Abundance of 16S rRNA gene and transcripts were reduced significantly. • Effects of biological pesticide similar to chemical pesticides on rhizospheric bacteria. - Abstract: With increasing application of pesticides in agriculture, their non-target effects on soil microbial communities are critical to soil health maintenance. The present study aimed to evaluate the effects of chemical pesticides (chlorpyrifos and cypermethrin) and a biological pesticide (azadirachtin) on growth parameters and the rhizospheric bacterial community of Vigna radiata. Qualitative and quantitative analysis by PCR-denaturing gradient gel electrophoresis (DGGE) and q-PCR, respectively, of the 16S rRNA gene and transcript were performed to study the impact of these pesticides on the resident and active rhizospheric bacterial community. While plant parameters were not affected significantly by the pesticides, a shift in the bacterial community structure was observed with an adverse effect on the abundance of 16S rRNA gene and transcripts. Chlorpyrifos showed almost complete degradation toward the end of the experiment. These non-target impacts on soil ecosystems and the fact that the effects of the biopesticide mimic those of chemical pesticides raise serious concerns regarding their application in agriculture.

  17. Field Trial Assessment of Biological, Chemical, and Physical Responses of Soil to Tillage Intensity, Fertilization, and Grazing

    Science.gov (United States)

    Vargas Gil, Silvina; Becker, Analia; Oddino, Claudio; Zuza, Mónica; Marinelli, Adriana; March, Guillermo

    2009-08-01

    Soil microbial populations can fluctuate in response to environmental changes and, therefore, are often used as biological indicators of soil quality. Soil chemical and physical parameters can also be used as indicators because they can vary in response to different management strategies. A long-term field trial was conducted to study the effects of different tillage systems (NT: no tillage, DH: disc harrow, and MP: moldboard plough), P fertilization (diammonium phosphate), and cattle grazing (in terms of crop residue consumption) in maize ( Zea mays L.), sunflower ( Heliantus annuus L.), and soybean ( Glycine max L.) on soil biological, chemical, and physical parameters. The field trial was conducted for four crop years (2000/2001, 2001/2002, 2002/2003, and 2003/2004). Soil populations of Actinomycetes, Trichoderma spp., and Gliocladium spp. were 49% higher under conservation tillage systems, in soil amended with diammonium phosphate (DAP) and not previously grazed. Management practices also influenced soil chemical parameters, especially organic matter content and total N, which were 10% and 55% higher under NT than under MP. Aggregate stability was 61% higher in NT than in MP, 15% higher in P-fertilized soil, and also 9% higher in not grazed strips, bulk density being 12% lower in NT systems compared with MP. DAP application and the absence of grazing also reduced bulk density (3%). Using conservation tillage systems, fertilizing crops with DAP, and avoiding grazing contribute to soil health preservation and enhanced crop production.

  18. The allometry of coarse root biomass: log-transformed linear regression or nonlinear regression?

    Directory of Open Access Journals (Sweden)

    Jiangshan Lai

    Full Text Available Precise estimation of root biomass is important for understanding carbon stocks and dynamics in forests. Traditionally, biomass estimates are based on allometric scaling relationships between stem diameter and coarse root biomass calculated using linear regression (LR on log-transformed data. Recently, it has been suggested that nonlinear regression (NLR is a preferable fitting method for scaling relationships. But while this claim has been contested on both theoretical and empirical grounds, and statistical methods have been developed to aid in choosing between the two methods in particular cases, few studies have examined the ramifications of erroneously applying NLR. Here, we use direct measurements of 159 trees belonging to three locally dominant species in east China to compare the LR and NLR models of diameter-root biomass allometry. We then contrast model predictions by estimating stand coarse root biomass based on census data from the nearby 24-ha Gutianshan forest plot and by testing the ability of the models to predict known root biomass values measured on multiple tropical species at the Pasoh Forest Reserve in Malaysia. Based on likelihood estimates for model error distributions, as well as the accuracy of extrapolative predictions, we find that LR on log-transformed data is superior to NLR for fitting diameter-root biomass scaling models. More importantly, inappropriately using NLR leads to grossly inaccurate stand biomass estimates, especially for stands dominated by smaller trees.

  19. Inter-site variation in allometry and wood density of Goupia glabra Aubl. in Amazonia.

    Science.gov (United States)

    Siliprandi, N C; Nogueira, E M; Toledo, J J; Fearnside, P M; Nascimento, H E M

    2016-02-01

    The present study aims to compare the allometry and wood density of Goupia glabra Aubl. (Goupiaceae) in two different terra-firme sites in Amazonian forest. A total of 65 trees ≥ 10 cm DBH was sampled in both sites, with 39 trees in Nova Olinda do Norte (NOlinda, near the Amazon River) and 29 trees in Apuí (near the southern edge of the Amazon forest). Except for the relationship between DBH (diameter at breast height) and Ht (total height), allometric relationships for G.glabra differed significantly between sites. Apuí had lower intercept and greater slope for log10 (DBH) versus log10 (Hs - stem height), and, conversely, greater intercept and lower slope for log10 (DBH) versus log10 (Ch - crown height). The slope differed significantly between the sites for DBH versus Cd (crown diameter), with greater slope found for NOlinda. Mean basic wood density in Apuí was 8.8% lower than in NOlinda. Our findings highlight the variation in adaptive strategy of G. glabra due to environmental differences between sites. This is probably because of different canopy-understory light gradients, which result in differentiation of resource allocation between vertical and horizontal growth, which, in turn, affects mechanical support related to wood density. We also hypothesize that differences in soil fertility and disturbance regimes between sites may act concomitantly with light.

  20. Allometry of facial mobility in anthropoid primates: implications for the evolution of facial expression.

    Science.gov (United States)

    Dobson, Seth D

    2009-01-01

    Body size may be an important factor influencing the evolution of facial expression in anthropoid primates due to allometric constraints on the perception of facial movements. Given this hypothesis, I tested the prediction that observed facial mobility is positively correlated with body size in a comparative sample of nonhuman anthropoids. Facial mobility, or the variety of facial movements a species can produce, was estimated using a novel application of the Facial Action Coding System (FACS). I used FACS to estimate facial mobility in 12 nonhuman anthropoid species, based on video recordings of facial activity in zoo animals. Body mass data were taken from the literature. I used phylogenetic generalized least squares (PGLS) to perform a multiple regression analysis with facial mobility as the dependent variable and two independent variables: log body mass and dummy-coded infraorder. Together, body mass and infraorder explain 92% of the variance in facial mobility. However, the partial effect of body mass is much stronger than for infraorder. The results of my study suggest that allometry is an important constraint on the evolution of facial mobility, which may limit the complexity of facial expression in smaller species. More work is needed to clarify the perceptual bases of this allometric pattern.

  1. Inter-site variation in allometry and wood density of Goupia glabra Aubl. in Amazonia.

    Science.gov (United States)

    Siliprandi, N C; Nogueira, E M; Toledo, J J; Fearnside, P M; Nascimento, H E M

    2016-01-22

    The present study aims to compare the allometry and wood density of Goupia glabra Aubl. (Goupiaceae) in two different terra-firme sites in Amazonian forest. A total of 65 trees ≥ 10 cm DBH was sampled in both sites, with 39 trees in Nova Olinda do Norte (NOlinda, near the Amazon River) and 29 trees in Apuí (near the southern edge of the Amazon forest). Except for the relationship between DBH (diameter at breast height) and Ht (total height), allometric relationships for G.glabra differed significantly between sites. Apuí had lower intercept and greater slope for log10 (DBH) versus log10 (Hs - stem height), and, conversely, greater intercept and lower slope for log10 (DBH) versus log10 (Ch - crown height). The slope differed significantly between the sites for DBH versus Cd (crown diameter), with greater slope found for NOlinda. Mean basic wood density in Apuí was 8.8% lower than in NOlinda. Our findings highlight the variation in adaptive strategy of G. glabra due to environmental differences between sites. This is probably because of different canopy-understory light gradients, which result in differentiation of resource allocation between vertical and horizontal growth, which, in turn, affects mechanical support related to wood density. We also hypothesize that differences in soil fertility and disturbance regimes between sites may act concomitantly with light.

  2. Catalogue of methods of calculation, interpolation, smoothing, and reduction for the physical, chemical, and biological parameters of deep hydrology (CATMETH) (NODC Accession 7700442)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The document presents the methods, formulas and citations used by the BNDO to process physical, chemical, and biological data for deep hydrology including...

  3. Measurement of 100 B. anthracis Ames spores within 15 minutes by SERS at the US Army Edgewood Chemical Biological Ctr.

    Science.gov (United States)

    Farquharson, Stuart; Shende, Chetan; Smith, Wayne; Huang, Hermes; Sperry, Jay; Sickler, Todd; Prugh, Amber; Guicheteau, Jason

    2014-05-01

    Since the distribution of Bacillus anthracis-Ames spores through the US Postal System, there has been a persistent fear that biological warfare agents will be used by terrorists against our military abroad and our civilians at home. While there has been substantial effort since the anthrax attack of 2001 to develop analyzers to detect this and other biological warfare agents, the analyzers remain either too slow, lack sensitivity, produce high false-positive rates, or cannot be fielded. In an effort to overcome these limitations we have been developing a surface-enhanced Raman spectroscopy system. Here we describe the use of silver nanoparticles functionalized with a short peptide to selectively capture Bacillus anthracis spores and produce SER scattering. Specifically, measurements of 100 B. anthracis-Ames spores/mL in ~25 minutes performed at the US Army's Edgewood Chemical Biological Center are presented. The measurements provide a basis for the development of systems that can detect spores collected from the air or water supplies with the potential of saving lives during a biological warfare attack.

  4. Field application of the Numobag as a portable disposable isolation unit and for treating chemical, radiological or biologically induced wounds.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Keith A.; Felton, Robert; Vaughan, Courtenay Thomas

    2005-04-01

    Numotech Inc. has developed the Numobag{trademark}, a disposable, lightweight, wound healing device which produces Topical Hyperbaric Oxygen Therapy (THOT). The Numobag{trademark} is cost effective and has been clinically validated to heal large skin lesions rapidly and has proven to arrest wound advancement from several insidious forms of biological attack including dermal anthrax, small pox, necrotizing fasciitis etc. The Numobag{trademark} can treat mass casualties wounded by chemical/radiological burns or damaging biological exposures. The Numobag{trademark} can be a frontline tool as an isolation unit, reducing cross-contamination and infection of medical personnel. The heightened oxygen content kills organisms on the skin and in the wound, avoids expensive hospital trash disposal procedures, and helps the flesh heal. The Numobag{trademark} requires high purity oxygen. Numotech Inc. is teaming with Sandia National Laboratories and Spektr Conversion in Russia to develop a cost effective, portable, low power oxygen generator.

  5. Using ANN to predict E. coli accumulation in coves based on interaction amongst various physical, chemical and biological factors

    Science.gov (United States)

    Dwivedi, D.; Mohanty, B. P.; Lesikar, B. J.

    2008-12-01

    The accumulation of Escherichia Coli (E. coli) in canals, coves and streams is the result of a number of interacting processes operating at multiple spatial and temporal scales. Fate and transport of E. coli in surface water systems is governed by different physical, chemical, and biological processes. Various models developed to quantify each of these processes occurring at different scales are not so far pooled into a single predictive model. At present, very little is known about the fate and transport of E. coli in the environment. We hypothesize that E. coli population heterogeneity in canals and coves is affected by physical factors (average stream width and/ depth, secchi depth, flow and flow severity, day since precipitation, aquatic vegetation, solar radiation, dissolved and total suspended solids etc.); chemical factors (basic water quality, nutrients, organic compounds, pH, and toxicity etc.); and biological factors (type of bacterial strain, predation, and antagonism etc.). The specific objectives of this study are to: (1) examine the interactions between E. coli and various coupled physical, chemical and biological factors; (2) examine the interactions between E. coli and toxic organic pollutants and other pathogens (viruses); and (3) evaluate qualitatively the removal efficiency of E. coli. We suggest that artificial neural networks (ANN) may be used to provide a possible solution to this problem. To demonstrate the application of the approach, we develop an ANN representing E. coli accumulation in two polluted sites at Lake Granbury in the upper part of the Brazos River in North Central Texas. The graphical structure of ANN explicitly represents cause- and-effect relationship between system variables. Each of these relationships can then be quantified independently using an approach suitable for the type and scale of information available. Preliminary results revealed that E. coli concentrations in canals show seasonal variations regardless of change

  6. Assessing the effectiveness of regulatory controls on farm pollution using chemical and biological indices of water quality and pollution statistics.

    Science.gov (United States)

    Foy, R H; Lennox, S D; Smith, R V

    2001-08-01

    Water quality was measured in 42 streams in the Colebrooke and Upper Bann catchments in Northern Ireland over the period 1990-1998. Despite ongoing pollution control measures, biological water quality, as determined by the invertebrate average score per taxon (ASPT) index, did not improve and there was no appreciable decline in recorded farm pollution incidents. However, the lack of decline in pollution incidents could reflect changes in detection policy, as a greater proportion of incidents were recorded from less polluting discharges such as farm-yard runoff. In contrast, there was an improvement during 1997 and 1998 in annual chemical water quality classification based on exceedence values (90th percentiles) for dissolved oxygen, ammonium and BOD concentrations. In 1998, 11.9% of streams were severely polluted compared to 26.2% in 1990, while the proportion classed as of salmonid water quality, increased from 40.5% in 1990 to 59.6% in 1998. Although water quality in 1996 did not improve relative to 1990 values, there was a notable increasing trend from 1990 in the numbers of samples taken during the summer which had good water quality with low ammonium ( 70% sat). The trend for samples with low BOD (<4 mgl(-1)) was more erratic, but an improvement was apparent from 1994. These improvements in chemical water quality suggest that point-source farm pollution declined after 1990. The fact that this was not reflected in stream biology may reflect the limited time scale for biological recovery. An important factor preventing biological recovery may be the high pollution capacity of manures and silage effluent, so that even reduced numbers of farm pollution incidents can severely perturb stream ecosystems. The intractable nature of farm pollution suggests that there is a need to consider an interactive approach to problem resolution involving both farmers and regulators.

  7. The future of discovery chemistry: quo vadis? Academic to industrial--the maturation of medicinal chemistry to chemical biology.

    Science.gov (United States)

    Hoffmann, Torsten; Bishop, Cheryl

    2010-04-01

    At Roche, we set out to think about the future role of medicinal chemistry in drug discovery in a project involving both Roche internal stakeholders and external experts in drug discovery chemistry. To derive a coherent strategy, selected scientists were asked to take extreme positions and to derive two orthogonal strategic options: chemistry as the traditional mainstream science and chemistry as the central entrepreneurial science. We believe today's role of medicinal chemistry in industry has remained too narrow. To provide the innovation that industry requires, medicinal chemistry must play its part and diversify at pace with our increasing understanding of chemical biology and network pharmacology.

  8. Joint Program Executive Office for Chemical and Biological Defense Strategic Plan FY13-18

    Science.gov (United States)

    2012-06-01

    strategy calls for a global Biosurveillance network for timely disease surveillance of biological pathogens whether intentionally made or naturally... Biosurveillance . The President and Secretary of Defense provided renewed emphasis on rapidly and efficiently developing and manufacturing effective medical... Biosurveillance . Our ability to obtain early warning about the deliberate use or natural emergence of dangerous pathogens hinges upon the

  9. Chemical Compositional, Biological, and Safety Studies of a Novel Maple Syrup Derived Extract for Nutraceutical Applications

    OpenAIRE

    Zhang, Yan; Yuan, Tao; Li, Liya; Nahar, Pragati; Slitt, Angela; Seeram, Navindra P.

    2014-01-01

    Maple syrup has nutraceutical potential given the macronutrients (carbohydrates, primarily sucrose), micronutrients (minerals and vitamins), and phytochemicals (primarily phenolics) found in this natural sweetener. We conducted compositional (ash, fiber, carbohydrates, minerals, amino acids, organic acids, vitamins, phytochemicals), in vitro biological, and in vivo safety (animal toxicity) studies on maple syrup extracts (MSX-1 and MSX-2) derived from two declassified maple syrup samples. Alo...

  10. Chemical and biological properties of supramolecular polymer systems based on oligocaprolactones

    NARCIS (Netherlands)

    Dankers, Patricia Y. W.; van Leeuwen, Ellen N. M.; van Gemert, Gaby M. L.; Spiering, A. J. H.; Harmsen, Martin C.; Brouwer, Linda A.; Janssen, Henk M.; Bosman, Anton W.; van Luyn, Maria J. A.; Meijer, E. W.

    2006-01-01

    We show that materials with a diverse range of mechanical and biological properties can be obtained using a modular approach by simply mixing different ratios of oligocaprolactones that are either end-functionalized or chain-extended with quadruple hydrogen bonding ureido-pyrimidinone (UPy) moieties

  11. Periodic Table Target: A Game that Introduces the Biological Significance of Chemical Element Periodicity

    Science.gov (United States)

    Sevcik, Richard S.; McGinty, Ragan L.; Schultz, Linda D.; Alexander, Susan V.

    2008-01-01

    Periodic Table Target, a game for middle school or high school students, familiarizes students with the form of the periodic table and the biological significance of different elements. The Periodic Table Target game board is constructed as a class project, and the game is played to reinforce the content. Students are assigned several elements…

  12. Double-Edged Innovations: Preventing the Misuse of Emerging Biological/Chemical Technologies

    Science.gov (United States)

    2010-07-01

    WHO/CDS/EPR/2006.6, 2006, <www.who.int/ csr /resources/publications/biosafety/WHO_CDS_EPR_2006_6.pdf>. 33 European Committee for Standardization (CEN... Brand ...measles immunization: a review,” Biologicals, vol. 25 (1997), pp. 323-338. 26 G. Scheuch, Martin J. Kohlhaeufl, Peter Brand , et al., “Clinical

  13. Chemical Composition and Biological Activity of Essential Oils of Origanum vulgare L. subsp. vulgare L. under Different Growth Conditions

    Directory of Open Access Journals (Sweden)

    Enrica De Falco

    2013-12-01

    Full Text Available This research was aimed at investigating the essential oil production, chemical composition and biological activity of a crop of pink flowered oregano (Origanum vulgare L. subsp. vulgare L. under different spatial distribution of the plants (single and binate rows. This plant factor was shown to affect its growth, soil covering, fresh biomass, essential oil amount and composition. In particular, the essential oil percentage was higher for the binate row treatment at the full bloom. The chemical composition of the oils obtained by hydrodistillation was fully characterized by GC and GC-MS. The oil from plants grown in single rows was rich in sabinene, while plants grown in double rows were richer in ocimenes. The essential oils showed antimicrobial action, mainly against Gram-positive pathogens and particularly Bacillus cereus and B. subtilis.

  14. Chemical composition and biological activity of essential oils of Origanum vulgare L. subsp. vulgare L. under different growth conditions.

    Science.gov (United States)

    De Falco, Enrica; Mancini, Emilia; Roscigno, Graziana; Mignola, Enrico; Taglialatela-Scafati, Orazio; Senatore, Felice

    2013-12-04

    This research was aimed at investigating the essential oil production, chemical composition and biological activity of a crop of pink flowered oregano (Origanum vulgare L. subsp. vulgare L.) under different spatial distribution of the plants (single and binate rows). This plant factor was shown to affect its growth, soil covering, fresh biomass, essential oil amount and composition. In particular, the essential oil percentage was higher for the binate row treatment at the full bloom. The chemical composition of the oils obtained by hydrodistillation was fully characterized by GC and GC-MS. The oil from plants grown in single rows was rich in sabinene, while plants grown in double rows were richer in ocimenes. The essential oils showed antimicrobial action, mainly against Gram-positive pathogens and particularly Bacillus cereus and B. subtilis.

  15. Chemicals identified in human biological media: a data base. Third annual report, October 1981

    Energy Technology Data Exchange (ETDEWEB)

    Cone, M.V.; Baldauf, M.F.; Martin, F.M. (comps.)

    1981-12-01

    Data from almost 1600 of the 3800 body-burden documents collected to date have been entered in the data base as of October 1981. The emphasis on including recent literature and significant research documents has resulted in a chronological mix of articles from 1974 to the present. When body-burden articles are identified, data are extracted and entered in the data base by chemical and tissue/body fluid. Each data entry comprises a single record (or line entry) and is assigned a record number. If a particular document deals with more than one chemical and/or tissue, there will be multiple records for that document. For example, a study of 5 chemicals in each of 3 tissues has 15 different records (or 15 line entries) in the data base with 15 record numbers. Record numbers are assigned consecutively throughout the entire data base and appear in the upper left corner of the first column for each record.

  16. Long-range standoff detection of chemical, biological, and explosive hazards on surfaces

    Science.gov (United States)

    Fountain, Augustus Way, III; Guicheteau, Jason A.; Pearman, William F.; Chyba, Thomas H.; Christesen, Steven D.

    2010-04-01

    Fielded surface detection systems rely on contact with either the liquid contamination itself or the associated chemical vapor above the contaminated surface and do not provide a standoff or remote detection capability. Conversely, standoff chemical vapor sensing techniques have not shown efficacy in detecting those contaminants as liquids or solids on surfaces. There are a number of optical or spectroscopic techniques that could be applied to this problem of standoff chemical detection on surfaces. The three techniques that have received the most interest and development are laser induced breakdown spectroscopy (LIBS), fluorescence, and Raman spectroscopy. Details will be presented on the development of these techniques and their applicability to detecting CBRNE contamination on surfaces.

  17. CBRN Decontamination: Multiservice Tactics, Techniques, and Procedures for Chemical, Biological, Radiological, and Nuclear Decontamination

    Science.gov (United States)

    2006-04-01

    artillery attacks. a. CW Agents and Delivery Means. Typically classified by their effects on the body, CW agents consist of choking, nerve , blood...chemical agents, especially nerve agents, kill within minutes. a. Chemical. (1) Use the SDK within 1 minute of contamination of the exposed skin...shoulder, and reattaches them to the hook-and-pile fasteners. He loosens the draw cord on Buddy 2’s hood. The M40 voice amplifier (M7) and the M42A2

  18. Welcome to Processes—A New Open Access Journal on Chemical and Biological Process Technology

    Directory of Open Access Journals (Sweden)

    Michael A. Henson

    2012-11-01

    Full Text Available As the result of remarkable technological progress, this past decade has witnessed considerable advances in our ability to manipulate natural and engineered systems, particularly at the molecular level. These advancements offer the potential to revolutionize our world through the development of novel soft and hard materials and the construction of new cellular platforms for chemical and pharmaceutical synthesis. For these technologies to truly impact society, the development of process technology that will enable effective large-scale production is essential. Improved processes are also needed for more established technologies in chemical and biochemical manufacturing, as these industries face ever increasing competitive pressure that mandates continuous improvement. [...

  19. Estimation of biological kinetic parameters from an analysis of the BOD curve of waste waters - effects of a chemical preoxidation

    Energy Technology Data Exchange (ETDEWEB)

    Berlan, F.J.; Garcia-Araya, J.F.; Alvarez, P. [Universidad de Extremadura, Badajoz (Spain). Dept. de Ingenieria Quimica y Energetica

    1997-12-31

    Urban waste waters were treated with pure ozone or combinations of ozone, hydrogen peroxide and/or UV radiation to study the course of resulting BOD (biological oxygen demand)-time profiles and to propose a kinetic model. BOD-time profiles of chemically treated waste waters show an initial lag period that first order kinetic models cannot describe. A second order kinetic model is then proposed that satisfactorily fits experimental BOD-time profiles, except when hydrogen peroxide has been used. In these cases, BOD-time profiles present the highest lag periods observed. By applying this model, three parameters are determined: the biokinetic constant (k) which is an index of the biological removal rate; the potential amount of biodegradable matter (BOD{sub T}), and the measure of the size of inocula and microbial activities of microorganisms ({lambda}). The model was checked with experimental results of BOD-time profiles corresponding to both untreated and chemically ozonated urban waste waters. Ozonated waste waters showed the highest values of k and BOD{sub T}, which implies an improvement of waste water biodegradability after ozonation. However, values of {lambda} corrsponding to ozonated waste waters presented lower values than those of untreated waste waters. This was due to the lag period observed in the BOD-time profile, which was a consequence of a lack of micro-organism acclimation to ozonated waste waters. The effect of the ozone dose, pH and carbonates during oxonation on COD (chemical oxygen demand) and the above indicated parameters was also studies. The results suggest that ozonolysis, the direct molecular ozone way of reaction, due to its selective character, increases the biodegradability of waste water more than other chemically advancec oxidation processes based on hydroxyl radical reactions. (orig./SR)

  20. Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass

    NARCIS (Netherlands)

    Steinbusch, K.J.J.; Hamelers, H.V.M.; Plugge, C.M.; Buisman, C.J.N.

    2011-01-01

    This research introduces an alternative mixed culture fermentation technology for anaerobic digestion to recover valuable products from low grade biomass. In this mixed culture fermentation, organic waste streams are converted to caproate and caprylate as precursors for biodiesel or chemicals. It wa

  1. Broomrape (Orobanche cernua) control before attachment to host through chemically or biologically manipulating seed germination.

    NARCIS (Netherlands)

    Dhanapal, G.N.; Struik, P.C.

    1996-01-01

    Seven series of laboratory and glasshouse experiments were conducted to investigate different methods of testing and studying the effect of several chemicals, root exudates of germinating crop seeds, and their interactions on Orobanche cernua. Compared to experiments in an incubator, better results

  2. ChemProt-3.0: a global chemical biology diseases mapping

    DEFF Research Database (Denmark)

    Kringelum, Jens Vindahl; Kjærulff, Sonny Kim; Brunak, Søren

    2016-01-01

    ChemProt is a publicly available compilation of chemical-protein-disease annotation resources that enables the study of systems pharmacology for a small molecule across multiple layers of complexity from molecular to clinical levels. In this third version, ChemProt has been updated to more than 1...

  3. Deciphering Diseases and Biological Targets for Environmental Chemicals using Toxicogenomics Networks

    DEFF Research Database (Denmark)

    Audouze, Karine Marie Laure; Juncker, Agnieszka; Roque, Francisco José Sousa Simões Almeida

    2010-01-01

    Exposure to environmental chemicals and drugs may have a negative effect on human health. A better understanding of the molecular mechanism of such compounds is needed to determine the risk. We present a high confidence human protein-protein association network built upon the integration of chemi...

  4. Joint Doctrine for Operations in Nuclear, Biological, and Chemical (NBC) Environments

    Science.gov (United States)

    2007-11-02

    Arabian Ministry of Defense and Aviation to form a Saudi joint-level NBC staff. He and Captain Paul Schiele conducted a three-day refresher training...officers by mid- September to form the USCENTCOM NBC Center (NBCC). On 23 August, Captain Paul Schiele and three chemical officers from CRDEC joined

  5. Introducing Chemical Biology Applications to Introductory Organic Chemistry Students Using Series of Weekly Assignments

    Science.gov (United States)

    Kanin, Maralee R.; Pontrello, Jason K.

    2016-01-01

    Calls to bring interdisciplinary content and examples into introductory science courses have increased, yet strategies that involve course restructuring often suffer from the need for a significant faculty commitment to motivate change. Minimizing the need for dramatic course reorganization, the structure, reactivity, and chemical biology…

  6. Systems Biology Approach for Understanding MOA, Dose-Response and Susceptibility to Environmental Chemicals

    Science.gov (United States)

    There is an increasing need for assays for the rapid and efficient assessment of toxicities of large numbers of environmental chemicals. To meet this need, we have developed a battery of cell-based reporter assays that measure the activation of key cellular stress pathways. These...

  7. Chemical and biological interactions in the Rose Garden hydrothermal vent field, Galapagos spreading center

    Science.gov (United States)

    Johnson, Kenneth S.; Childress, James J.; Hessler, Robert R.; Sakamoto-Arnold, Carole M.; Beehler, Carl L.

    1988-10-01

    The concentrations of a suite of redox reactive chemicals were measured in the Rose Garden hydrothermal vent field of the Galapagos spreading center. Sulfide, silicate, oxygen and temperature distributions were measured in situ with a submersible chemical analyser. In addition, 15 chemical species were measured in discrete samples. Variability in the slope of the temperature-silicate plots indicates that heat is lost from these relatively low temperatures (<15°C) solutions by conduction to the solid phase. Consumption of oxygen, sulfide and nitrate from the hydrothermal solution as it flows past the vent animals is apparent from the distributions measured in situ and in the discrete samples. The fraction of sulfide and nitrate removed from the solution by consumption appears to have increased between 1979-1985. Sulfide and oxygen appear to be consumed under different conditions: sulfide is removed primarily from the warmest solutions, and oxygen is consumed only from the cold seawater. This separation may be driven primarily by the increased gradients of each chemical under these conditions. There is no evidence for the consumption of significant amounts of manganese(II) by the vent organisms. The analysis of other data sets from this vent field indicate no significant consumption of methane by the vent organisms, as well.

  8. Chemical Variability and Biological Activities of Volatile Oils from Hyptis suaveolens (L. Poit.

    Directory of Open Access Journals (Sweden)

    Luiz Claudio Barbosa

    2013-03-01

    Full Text Available Hyptis suaveolens (L. Poit. belongs to the Lamiaceae family and is widely used in folk medicine in various countries. Th e essential oils from H. suaveolens have been extensively investigated and are mainly composed of monoterpenes and sesquiterpenes, although significant diterpene content has been reported in recent studies. The survey of the literature concerning H. suaveolens essential oils revealed a high level of chemical variability in terms of quantity and composition that is commonly observed for volatile oils from other plant species. However, few researchers have dealt with the reasons for such chemical variability. Our research group has been investigating the relationships between growing conditions of the plants and the H. suaveolens (L. Poit. essential oil composition. The results of these investigations have led to some advances in the characterization and knowledge of H. suaveolens chemotypes from Brazil. Nevertheless, since this species presents high level of genetic polymorphism and allows it to adapt to the alterations in environmental features resulting in interpopulational and intrapopulational variability in the volatile oil chemical compositions. Consequently, biochemical assays on the biosynthetic pathway are required in order to detect the molecular mechanisms involved in inducing differential terpenoid biosynthesis within H. suaveolens. These are some of the challenges which require resolution leading to an understanding of the complex secondary metabolism of this species, thereby making possible the volatile oil chemical standardization seeking productivity and phytotherapy.

  9. ChemProt-3.0: a global chemical biology diseases mapping

    DEFF Research Database (Denmark)

    Kringelum, Jens Vindahl; Kjærulff, Sonny Kim; Brunak, Søren;

    2016-01-01

    .7 million compounds with 7.8 million bioactivity measurements for 19 504 proteins. Here, we report the implementation of global pharmacological heatmap, supporting a user-friendly navigation of chemogenomics space. This facilitates the visualization and selection of chemicals that share similar structural...

  10. 2011 Joint Program Executive Office for Chemical and Biological Defense Advance Planning Briefing for Industry (APBI) Held in Baltimore, Maryland on September 7-9, 2011

    Science.gov (United States)

    2011-09-09

    Biological Medical Systems ( Biosurveillance Trail Boss) Joint Project Manager Transformational Medical Technology Joint Project Manager Contamination...Systems ( Biosurveillance Trail Boss) Joint Project Manager Transformational Medical Technology Joint Project Manager Contamination Avoidance (Non...lifesaving medical countermeasure drug capabilities against chemical, biological, radiological and nuclear threats – Biosurveillance (CBMS-BSV) • Develop

  11. The traditional uses, chemical constituents and biological activities of Plantago major L. A review.

    Science.gov (United States)

    Samuelsen, A B

    2000-07-01

    Plantago major L. leaves have been used as a wound healing remedy for centuries in almost all parts of the world and in the treatment of a number of diseases apart from wound healing. These include diseases related to the skin, respiratory organs, digestive organs, reproduction, the circulation, against cancer, for pain relief and against infections. P. major contains biologically active compounds such as polysaccharides, lipids, caffeic acid derivatives, flavonoids, iridoid glycosides and terpenoids. Alkaloids and some organic acids have also been detected. A range of biological activities has been found from plant extracts including wound healing activity, anti-inflammatory, analgesic, antioxidant, weak antibiotic, immuno modulating and antiulcerogenic activity. Some of these effects may attribute to the use of this plant in folk medicine.

  12. Enzyme and metabolic engineering for the production of novel biopolymers: crossover of biological and chemical processes.

    Science.gov (United States)

    Matsumoto, Ken'ichiro; Taguchi, Seiichi

    2013-12-01

    The development of synthetic biology has transformed microbes into useful factories for producing valuable polymers and/or their precursors from renewable biomass. Recent progress at the interface of chemistry and biology has enabled the production of a variety of new biopolymers with properties that substantially differ from their petroleum-derived counterparts. This review touches on recent trials and achievements in the field of biopolymer synthesis, including chemo-enzymatically synthesized aliphatic polyesters, wholly biosynthesized lactate-based polyesters, polyhydroxyalkanoates and other unusual bacterially synthesized polyesters. The expanding diversities in structure and the material properties of biopolymers are key for exploring practical applications. The enzyme and metabolic engineering approaches toward this goal are discussed by shedding light on the successful case studies.

  13. Department of Defense Chemical, Biological, Radiological, and Nuclear Defense Program, Annual Report to Congress, 2004

    Science.gov (United States)

    2004-05-01

    Strain Rsa493 Bacillus cereus Completed (4/2003) Strain Atcc 14579 Franciscella tularensis Completed (10/2003) Unpublished Burkholderia mallei...was demonstrated to protect CBRN Defense Requirements and Programs 63 higher animal models from fever and bacteremia following a conjunctival dose... Bacillus anthracis), description of the vaccine, explanation of U.S. DoD policies regarding biological defense vaccines, U.S. DoD policies regarding

  14. Department of Defense Chemical, Biological, Radiological, and Nuclear Defense Program. FY2003-2005 Performance Plan

    Science.gov (United States)

    2004-05-01

    Pathogenic Orthopox Viruses (DTO CB54) Determined the optimum dose of cidofovir in the appropriate non- human primate model using both the lethal...efficacy studies) required for a supplemental New Drug Application for cidofovir and provide technical data and support to the drug license holder...efficacy rule. Initiate development of an oral prodrug of cidofovir . Diagnostic Technologies, Methodology to Facilitate Development of Biological

  15. Chemical Constituents and Biological Properties of Species of the Genus Serjania

    OpenAIRE

    2015-01-01

    Serjania genus is native of Neotropics, from Mexico to Northern Argentina, and includes more than 230 species, most of them found in Mexico and Brazil. Although the genus is scarcely studied, the scientific literature and ethnobotanic information suggest that the extracts or fractions of these extracts have components with different biological properties. A bibliographic search in SciFinder and Scopus data carried out in April 2014 and using the keyword Serjania showed eighteen compounds belo...

  16. Super-resolution and super-localization microscopy: A novel tool for imaging chemical and biological processes

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Bin [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    Optical microscopy imaging of single molecules and single particles is an essential method for studying fundamental biological and chemical processes at the molecular and nanometer scale. The best spatial resolution (~ λ/2) achievable in traditional optical microscopy is governed by the diffraction of light. However, single molecule-based super-localization and super-resolution microscopy imaging techniques have emerged in the past decade. Individual molecules can be localized with nanometer scale accuracy and precision for studying of biological and chemical processes.This work uncovered the heterogeneous properties of the pore structures. In this dissertation, the coupling of molecular transport and catalytic reaction at the single molecule and single particle level in multilayer mesoporous nanocatalysts was elucidated. Most previous studies dealt with these two important phenomena separately. A fluorogenic oxidation reaction of non-fluorescent amplex red to highly fluorescent resorufin was tested. The diffusion behavior of single resorufin molecules in aligned nanopores was studied using total internal reflection fluorescence microscopy (TIRFM).

  17. Using gas flux to estimate biological and chemical sediment oxygen demand in oil sands-affected wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Gardner Costa, J.; Slama, C.; Ciborowski, J. [Windsor Univ., ON (Canada)

    2010-07-01

    The constituents of oil sands process-affected (OSPM) wetlands include high salinity, conductivity and naphthenic acid concentrations. These constituents are expected to strain microbial communities and change methane and carbon dioxide flux rates as well as sediment oxygen consumption compared to fresher, reference wetland sites. Four OSPM and 4 reference wetlands were examined during the summers of 2009 and 2010 to determine if carbon loss in the form of sediment-associated microbial respiration differs between OSPM and reference wetlands. The study showed that OSPM wetlands release about 10 times less methane than reference wetlands. Sediment oxygen demand (SOD) was measured in 2009 and gas flux estimates of carbon dioxide were used to estimate biological sediment oxygen consumption (BSOC). Chemical sediment oxygen demand (CSOD) was estimated by subtracting BSOC from total SOD. SOD rates were found to be two times higher in OSPM wetlands than reference. CSOD was higher than biologically consumed oxygen for both wetland classes. Although microbial activity in OSPM wetlands may be lower, more oxygen is consumed in OSPM than in reference wetlands. The reclamation of boreal wetlands in the Alberta Athabasca region requires carbon accrual. Less microbial activity may promote carbon accumulation within OSPM wetlands. However, the wetland's sediment layer may have less organic input as a result of high chemical oxygen consumption because it limits benthos respiration.

  18. Energy Effectiveness of Direct UV and UV/H2O2 Treatment of Estrogenic Chemicals in Biologically Treated Sewage

    Directory of Open Access Journals (Sweden)

    Kamilla M. S. Hansen

    2012-01-01

    Full Text Available Continuous exposure of aquatic life to estrogenic chemicals via wastewater treatment plant effluents has in recent years received considerable attention due to the high sensitivity of oviparous animals to disturbances of estrogen-controlled physiology. The removal efficiency by direct UV and the UV/H2O2 treatment was investigated in biologically treated sewage for most of the estrogenic compounds reported in wastewater. The investigated compounds included parabens, industrial phenols, sunscreen chemicals, and steroid estrogens. Treatment experiments were performed in a flow through setup. The effect of different concentrations of H2O2 and different UV doses was investigated for all compounds in an effluent from a biological wastewater treatment plant. Removal effectiveness increased with H2O2 concentration until 60 mg/L. The treatment effectiveness was reported as the electrical energy consumed per unit volume of water treated required for 90% removal of the investigated compound. It was found that the removal of all the compounds was dependent on the UV dose for both treatment methods. The required energy for 90% removal of the compounds was between 28 kWh/m3 (butylparaben and 1.2 kWh/m3 (estrone for the UV treatment. In comparison, the UV/H2O2 treatment required between 8.7 kWh/m3 for bisphenol A and benzophenone-7 and 1.8 kWh/m3 for ethinylestradiol.

  19. Toward High School Biology: Helping Middle School Students Understand Chemical Reactions and Conservation of Mass in Nonliving and Living Systems.

    Science.gov (United States)

    Herrmann-Abell, Cari F; Koppal, Mary; Roseman, Jo Ellen

    2016-01-01

    Modern biology has become increasingly molecular in nature, requiring students to understand basic chemical concepts. Studies show, however, that many students fail to grasp ideas about atom rearrangement and conservation during chemical reactions or the application of these ideas to biological systems. To help provide students with a better foundation, we used research-based design principles and collaborated in the development of a curricular intervention that applies chemistry ideas to living and nonliving contexts. Six eighth grade teachers and their students participated in a test of the unit during the Spring of 2013. Two of the teachers had used an earlier version of the unit the previous spring. The other four teachers were randomly assigned either to implement the unit or to continue teaching the same content using existing materials. Pre- and posttests were administered, and the data were analyzed using Rasch modeling and hierarchical linear modeling. The results showed that, when controlling for pretest score, gender, language, and ethnicity, students who used the curricular intervention performed better on the posttest than the students using existing materials. Additionally, students who participated in the intervention held fewer misconceptions. These results demonstrate the unit's promise in improving students' understanding of the targeted ideas.

  20. Reducing Mortality from Terrorist Releases of Chemical and Biological Agents: I. Filtration for Ventilation Systems in Commercial Building

    Energy Technology Data Exchange (ETDEWEB)

    Thatcher, Tracy L.; Daisey, Joan M.

    1999-09-01

    There is growing concern about potential terrorist attacks involving releases of chemical and/or biological (CB) agents, such as sarin or anthrax, in and around buildings. For an external release, the CB agent can enter the building through the air intakes of a building's mechanical ventilation system and by infiltration through the building envelope. For an interior release in a single room, the mechanical ventilation system, which often recirculates some fraction of the air within a building, may distribute the released CB agent throughout the building. For both cases, installing building systems that remove chemical and biological agents may be the most effective way to protect building occupants. Filtration systems installed in the heating, ventilating and air-conditioning (HVAC) systems of buildings can significantly reduce exposures of building occupants in the event of a release, whether the release is outdoors or indoors. Reduced exposures can reduce the number of deaths from a terrorist attack. The purpose of this report is to provide information and examples of the design of filtration systems to help building engineers retrofit HVAC systems. The report also provides background information on the physical nature of CB agents and brief overviews of the basic principles of particle and vapor filtration.

  1. The testing of several biological and chemical coupled treatments for Cibacron Red FN-R azo dye removal.

    Science.gov (United States)

    García-Montaño, Julia; Domènech, Xavier; García-Hortal, José A; Torrades, Francesc; Peral, José

    2008-06-15

    Several biological and chemical coupled treatments for Cibacron Red FN-R reactive azo dye degradation have been evaluated. Initially, a two-stage anaerobic-aerobic biotreatment has been assessed for different dye concentrations (250, 1250 and 3135 mg l(-1)). 92-97% decolourisation was attained during the anaerobic digestion operating in batch mode. However, no dissolved organic carbon (DOC) removal neither biogas production was observed during the process, indicating that no methanogenesis occurred. Additionally, according to Biotox and Zahn-Wellens assays, the anaerobically generated colourless solutions (presumably containing the resulting aromatic amines from azo bond cleavage) were found to be more toxic than the initial dye as well as aerobically non-biodegradable, thus impeding the anaerobic-aerobic biological treatment. In a second part, the use of an advanced oxidation process (AOP) like photo-Fenton or ozonation as a chemical post-treatments of the anaerobic process has been considered for the complete dye by-products mineralisation. The best results were obtained by means of ozonation at pH 10.5, achieving a global 83% mineralisation and giving place to a final harmless effluent. On the contrary, the tested photo-Fenton conditions were not efficient enough to complete oxidation.

  2. Wilting and biological additive effect on in situ degradability and chemical composition of Arachis pintoi cv Belomonte silage

    Directory of Open Access Journals (Sweden)

    Rosana Aparecida Possenti

    2010-01-01

    Full Text Available The purpose of this work was to evaluate the effect of wilting and biological additive amendment on chemical composition, fermentation and ruminal degradability of Arachis pintoi cv Belmonte silage. The following treatments were analysed: T1- Arachis pintoi cv Belmonte fresh forage; T2 - Arachis pintoi cv Belmonte fresh forage plus bacterial additive added to the forage prior to the ensilage; T3- Arachis pintoi cv Belmonte wilted by the sun for 4 hours; T4- Arachis pintoi cv Belmonte wilted by the sun plus bacterial additive. The degradability assay was carried out using three rumen-fistuled steers. The biological additive did not affect the chemical composition of silages, in situ degradability of nutrients DM, NDF and CP and of silage fermentation. However, the wilting treatments of the silages increased DM, CP, hemicelulose and decreased N-NH3 concentration, pH value, degradability of soluble fraction “a” from DM NDF and CP. The analysed characteristics suggest that Arachis pintoi cv Belmonte could satisfactorily preserve the forage quality if wilted by the sun during 4 hours, after harvested.

  3. Morphological characterization, chemical profile, biological activity, and in situ conservation of the Lychnophora Mart. (Asteraceae: Vernonieae: Lychnophorinae genus, Brazil

    Directory of Open Access Journals (Sweden)

    Márcia Ortiz Mayo Marques

    2013-06-01

    Full Text Available Many people who live in the cerrado regions use plant species for therapeutic purposes. However, due to intensive extraction of some species, native botanical populations are at risk of disappearing or suffering a dramatic decrease, such as, for instance, individuals of the Lychnophora genus. This has 24 species distributed into the categories vulnerable, endangered, critically endangered, and possibly extinct. These individuals are known in folk medicine as “arnica” and their leaves and flowers are commonly used as anti-inflammatory, analgesic, and healing agents. The chemical profile of the genus is characterized by the presence of sesquiterpene lactones, sesquiterpenes, diterpenes, triterpenes, flavonoids, steroids, polyacetylenes, and caryophyllene derivatives which also have lignans with analgesic activity. Studies with Lychnophora species show significant results with regard to their biological activities against Leishmania amazonensis, Staphylococcus aureus, and Tripanosoma cruzi. Therefore, this study aimed to perform a survey of the morphology, chemical composition, and biological activity, as well as the use and current conservation status of the Lychnophora genus in Brazil.

  4. Chemical Variability and Biological Activities of Volatile Oils from Hyptis suaveolens (L.) Poit.

    OpenAIRE

    Marcelo Polo; Ricardo Marques Montanari; Róbson Ricardo Teixeira; Felipe Terra Martins; Luiz Claudio de Almeida Barbosa

    2013-01-01

    Hyptis suaveolens (L.) Poit. belongs to the Lamiaceae family and is widely used in folk medicine in various countries. Th e essential oils from H. suaveolens have been extensively investigated and are mainly composed of monoterpenes and sesquiterpenes, although significant diterpene content has been reported in recent studies. The survey of the literature concerning H. suaveolens essential oils revealed a high level of chemical variability in terms of quantity and composition that is c...

  5. Vaporous Decontamination Methods: Potential Uses and Research Priorities for Chemical and Biological Contamination Control

    Science.gov (United States)

    2006-06-01

    resistant to commonly used disinfectants and require the use of chemical sterilants† to effectively decontaminate exposed areas. Since anthrax...all micro-organisms present, including B agents. † Sterilants and disinfectants differ only in their potency; disinfectants have relatively low...of H2O2 [10]. Currently there is no reported data on the use of O3-VHP against B or C agents. DSTO-GD-0465 6 The U.K. based BIOQUELL

  6. Chemical and biological diversity of Bergamot (Citrus bergamia) in relation to environmental factors.

    Science.gov (United States)

    Statti, Giancarlo A; Conforti, Filomena; Sacchetti, Gianni; Muzzoli, Mariavittoria; Agrimonti, Caterina; Menichini, Francesco

    2004-03-01

    Oil of bergamot is receiving renewed popularity in aromatherapy. The biovariability of Citrus bergamia grown wild in Calabria (Italy) was investigated as far as chemical markers (linalool, linalyl acetate and bergapten) content and antioxidant and antifungal activities of the methanolic extracts. The average content in the markers presents slight variations with the altitude and more evident changes with the latitude of the areas of plant collection.

  7. Chemical characterization and evaluation of biological activity of Cynara cardunculus extractable compounds

    OpenAIRE

    Ramos, Patrícia Alexandra Bogango

    2015-01-01

    The Mediterranean species Cynara cardunculus L. is recognized in the traditional medicine, for their hepatoprotective and choleretic effects. Biomass of C. cardunculus L. var. altilis (DC), or cultivated cardoon, may be explored not only for the production of energy and pulp fibers, but also for the extraction of bioactive compounds. The chemical characterization of extractable components, namely terpenic and phenolic compounds, may valorize the cultivated cardoon plantation, due to their ant...

  8. Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs

    OpenAIRE

    Liu, Mei; Wu, Yonghui; Chen, Yukun; Sun, Jingchun; Zhao, Zhongming; Chen, Xue-wen; Matheny, Michael Edwin; Xu, Hua

    2012-01-01

    Objective Adverse drug reaction (ADR) is one of the major causes of failure in drug development. Severe ADRs that go undetected until the post-marketing phase of a drug often lead to patient morbidity. Accurate prediction of potential ADRs is required in the entire life cycle of a drug, including early stages of drug design, different phases of clinical trials, and post-marketing surveillance. Methods Many studies have utilized either chemical structures or molecular pathways of the drugs to ...

  9. The Influence of Nanoadditives on the Biological Properties and Chemical Composition of Process Fluids

    Directory of Open Access Journals (Sweden)

    Borůvková K.

    2015-12-01

    Full Text Available In this study process fluids were tested after the addition of nanoparticles. Cooling and lubricating process fluids are used in machining to reduce wear on tools, to increase machine performance and to improve product quality. The use of process fluids leads to their pollution and contamination. Nanoparticles were added to the process fluids in order to increase their antibacterial activity. The selected nanoparticles were nanoparticles of metallic silver. The process fluids were modified by the addition of silver nitrate and ascorbic acid. Reduction of silver nanoparticles in the volume of the fluid was achieved using UV. The modified fluids were tested for their cytotoxicity and changes in chemical composition. The cytotoxicity of process fluids was tested for the purpose of verifying whether the process fluids, which are in direct contact with the skin of the operator, affect the health of the operator. The cytotoxicity of the process fluids was tested on human fibroblast cells. Fibroblasts are the basic cells of fibrous tissue. The cytotoxicity was tested by measuring the cell viability and using XTT. Analysis of chemical composition was performed for the purpose of determining the individual substances in the process fluids and their chemical stability. Qualitative analysis of the process fluids was performed using gas chromatography mass spectrometry (GC - MS.

  10. Biological effects of mechanically and chemically dispersed oil on the Icelandic scallop (Chlamys islandica).

    Science.gov (United States)

    Frantzen, Marianne; Regoli, Francesco; Ambrose, William G; Nahrgang, Jasmine; Geraudie, Perrine; Benedetti, Maura; Locke, William L; Camus, Lionel

    2016-05-01

    This study aimed to simulate conditions in which dispersant (Dasic NS) might be used to combat an oil spill in coastal sub-Arctic water of limited depth and water exchange in order to produce input data for Net Environmental Benefit Analysis (NEBA) of Arctic and sub-Arctic coastal areas. Concentration dependent differences in acute responses and long-term effects of a 48h acute exposure to dispersed oil, with and without the application of a chemical dispersant, were assessed on the Arctic filter feeding bivalve Chlamys islandica. Icelandic scallops were exposed for 48h to a range of spiked concentrations of mechanically and chemically dispersed oil. Short-term effects were assessed in terms of lysosomal membrane stability, superoxide dismutase, catalase, gluthatione S-transferases, glutathione peroxidases, glutathione reductase, glutathione, total oxyradical scavenging capacity, lipid peroxidation and peroxisomal proliferation. Post-exposure survival, growth and reproductive investment were followed for 2 months to evaluate any long-term consequence. Generally, similar effects were observed in scallops exposed to mechanically and chemically dispersed oil. Limited short-term effects were observed after 48h, suggesting that a different timing would be required for measuring the possible onset of such effects. There was a concentration dependent increase in cumulative post-exposure mortality, but long-term effects on gonadosomatic index, somatic growth/condition factor did not differ among treatments.

  11. A tiered, integrated biological and chemical monitoring framework for contaminants of emerging concern in aquatic ecosystems.

    Science.gov (United States)

    Maruya, Keith A; Dodder, Nathan G; Mehinto, Alvine C; Denslow, Nancy D; Schlenk, Daniel; Snyder, Shane A; Weisberg, Stephen B

    2016-07-01

    The chemical-specific risk-based paradigm that informs monitoring and assessment of environmental contaminants does not apply well to the many thousands of new chemicals that are being introduced into ambient receiving waters. We propose a tiered framework that incorporates bioanalytical screening tools and diagnostic nontargeted chemical analysis to more effectively monitor for contaminants of emerging concern (CECs). The framework is based on a comprehensive battery of in vitro bioassays to first screen for a broad spectrum of CECs and nontargeted analytical methods to identify bioactive contaminants missed by the currently favored targeted analyses. Water quality managers in California have embraced this strategy with plans to further develop and test this framework in regional and statewide pilot studies on waterbodies that receive discharge from municipal wastewater treatment plants and stormwater runoff. In addition to directly informing decisions, the data obtained using this framework can be used to construct and validate models that better predict CEC occurrence and toxicity. The adaptive interplay among screening results, diagnostic assessment and predictive modeling will allow managers to make decisions based on the most current and relevant information, instead of extrapolating from parameters with questionable linkage to CEC impacts. Integr Environ Assess Manag 2016;12:540-547. © 2015 SETAC.

  12. The Lyophilization Process Maintains the Chemical and Biological Characteristics of Royal Jelly

    Directory of Open Access Journals (Sweden)

    Andresa Piacezzi Nascimento

    2015-01-01

    Full Text Available The alternative use of natural products, like royal jelly (RJ, may be an important tool for the treatment of infections caused by antibiotic-resistant bacteria. RJ presents a large number of bioactive substances, including antimicrobial compounds. In this study, we carried out the chemical characterization of fresh and lyophilized RJ and investigated their antibacterial effects with the purpose of evaluating if the lyophilization process maintains the chemical and antibacterial properties of RJ. Furthermore, we evaluated the antibacterial efficacy of the main fatty acid found in RJ, the 10-hydroxy-2-decenoic acid (10H2DA. Chromatographic profile of the RJ samples showed similar fingerprints and the presence of 10H2DA in both samples. Furthermore, fresh and lyophilized RJ were effective against all bacteria evaluated; that is, the lyophilization process maintains the antibacterial activity of RJ and the chemical field of 10H2DA. The fatty acid 10H2DA exhibited a good antibacterial activity against Streptococcus pneumoniae. Therefore, it may be used as an alternative and complementary treatment for infections caused by antibiotic-resistant S. pneumoniae.

  13. Allometry of a neotropical palm, Euterpe edulis Mart. Alometria de uma palmeira Neotropical, Euterpe edulis Mart

    Directory of Open Access Journals (Sweden)

    Luciana F. Alves

    2004-06-01

    Full Text Available The stem allometry (stem diameter vs. tree height of a Neotropical palm (Euterpe edulis found in rain and seasonal forest of Southeastern Brazil was examined. Observed height-diameter relationships along the stem (diameter at ground level, (dgl, and diameter at breast height (dbh were compared to three theoretical stability mechanical models: elastic similarity, stress similarity and geometric similarity. Slopes of log-transformed height-diameter relationships did not lie near those predicted by any stability mechanical models. Significant differences in stem allometry were found when comparing dgl to dbh, suggesting greater increase in dbh with height. The relationship between stability safety factor (SSF and palm height showed that both dgl and dbh were found to be above McMahon's theoretical buckling limit for dicotyledonous trees, but some individuals approached this limit in relation to dbh. Despite displaying a similar decreasing pattern of SSF with height, differences found in SSF along the stem - greater SSF for dgl when compared to dbh - indicate that the risk of mechanism failure in palms depends upon the size and varies along the stem. Distinct allometric relationships along the stem obtained for Euterpe edulis may be reflecting possible differences in stem design and growth strategies.Neste trabalho foram analisadas as relações entre o diâmetro e a altura de uma palmeira Neotropical (Euterpe edulis comum na Floresta Atlântica do SE do Brasil. As relações observadas entre a altura e o diâmetro ao longo do estipe (diâmetro ao nível do solo (DAS, e diâmetro ao nível do peito (DAP foram comparadas a três modelos teóricos de estabilidade mecânica: similaridade elástica, similaridade de estresse e similaridade geométrica. As inclinações das regressões altura-diâmetro não se ajustaram a nenhum dos modelos de estabilidade mecânica. Diferenças significativas na alometria do estipe foram encontradas comparando-se as rela

  14. Evaluation of biological, physical and chemical properties of mineral trioxide aggregate mixed with 4-META/MMA-TBB

    Directory of Open Access Journals (Sweden)

    Rudra Kaul

    2013-01-01

    Full Text Available Aim: To evaluate the change in physical, chemical and biological properties when mineral trioxide aggregate (MTA is mixed with a resin 4-methacryloxyethyl trimellitate anhydride (4-META/methyl methacrylate-tri-n-butyl-borane (MMA-TBB. Materials and Methods: For biological evaluation MTA was inoculated in Wistar rat′s subcutaneous tissue and peripheral tissue response was checked after 72 h, 7 days, 15 days and 30 days. Setting time was evaluated using Gillmore needle. The Ca++ release at the end of 24 h was checked using ethylenediaminetetraacetic acid titration method. For all the trials MTA mixed with water was kept as a control and the ratio of MTA with resin was 1:1 by weight. Results: The biological reaction was verified by two observers and their readings were matched using kappa test and there was an excellent relevance. There was no significant difference in the tissue reaction at the end of 30 days where both the groups seemed to show healing. Setting time of MTA with 4-META/MMA-TBB was coming to a mean of 26 min (approx., which is almost 6 times lesser than that of MTA with water. After applying t test, the difference in Ca++ release was found significant (P = 0.00, with mean of 0.044 and 0.031 mol/L of MTA with water and MTA with 4-META/MMA-TBB respectively. Conclusion: Under the parameters of this study, this new experimental cement has better handling, physical and chemical properties. Even its subcutaneous tissue reaction is comparable to MTA mixed with water.

  15. Vision in semi-aquatic snakes: Intraocular morphology, accommodation, and eye: Body allometry

    Science.gov (United States)

    Plylar, Helen Bond

    Vision in vertebrates generally relies on the refractive power of the cornea and crystalline lens to facilitate vision. Light from the environment enters the eye and is refracted by the cornea and lens onto the retina for production of an image. When an animal with a system designed for air submerges underwater, the refractive power of the cornea is lost. Semi-aquatic animals (e.g., water snakes, turtles, aquatic mammals) must overcome this loss of corneal refractive power through visual accommodation. Accommodation relies on change of the position or shape of the lens to change the focal length of the optical system. Intraocular muscles and fibers facilitate lenticular displacement and deformation. Snakes, in general, are largely unstudied in terms of visual acuity and intraocular morphology. I used light microscopy and scanning electron microscopy to examine differences in eye anatomy between five sympatric colubrid snake species (Nerodia cyclopion, N. fasciata, N. rhombifer, Pantherophis obsoletus, and Thamnophis proximus) from Southeast Louisiana. I discovered previously undescribed structures associated with the lens in semi-aquatic species. Photorefractive methods were used to assess refractive error. While all species overcame the expected hyperopia imposed by submergence, there was interspecific variation in refractive error. To assess scaling of eye size with body size, I measure of eye size, head size, and body size in Nerodia cyclopion and N. fasciata from the SLU Vertebrate Museum. In both species, body size increases at a significantly faster rate than head size and eye size (negative allometry). Small snakes have large eyes relative to body size, and large snakes have relatively small eyes. There were interspecific differences in scaling of eye size with body size, where N. fasciata had larger eye diameter, but N. cyclopion had longer eyes (axial length).

  16. Diversity in olfactory bulb size in birds reflects allometry, ecology and phylogeny

    Directory of Open Access Journals (Sweden)

    Jeremy Richard Corfield

    2015-07-01

    Full Text Available The relative size of olfactory bulbs is correlated with olfactory capabilities across vertebrates and is widely used to assess the relative importance of olfaction to a species’ ecology. In birds, variations in the relative size of olfactory bulbs are correlated with some behaviors, however, the factors that have led to the high level of diversity seen in olfactory bulb sizes across birds are still not well understood. In this study, we use the relative size of olfactory bulbs as a neuroanatomical proxy for olfactory capabilities in 135 species of birds, representing 21 orders. We examine the scaling of olfactory bulbs with brain size across avian orders, determined likely ancestral states and test for correlations between OB sizes and habitat, ecology and behavior. The size of avian OBs varied with the size of the brain and this allometric relationship was for the most part isometric, although species did deviate from this trend. Large olfactory bulbs were characteristic of more basal species and in more recently derived species the OBs were small. Living and foraging in a semi aquatic environment was the strongest variable driving the evolution of large olfactory bulbs in birds; olfaction may provide cues for navigation and foraging in this otherwise featureless environment. Some of the diversity in OB sizes was also undoubtedly due to differences in migratory behavior, foraging strategies and social structure. In summary, relative OB size in birds reflect allometry, phylogeny and behavior in ways that parallel that of other vertebrate classes. This provides comparative evidence that supports recent experimental studies into avian olfaction and suggests that olfaction is a critically important sensory modality for all avian species.

  17. Influence of shade tolerance and development stage on the allometry of ten temperate tree species.

    Science.gov (United States)

    Franceschini, Tony; Schneider, Robert

    2014-11-01

    Allometry studies the change in scale between two dimensions of an organism. The metabolic theory of ecology predicts invariant allometric scaling exponents, while empirical studies evidenced inter- and intra-specific variations. This work aimed at identifying the sources of variations of the allometric exponents at both inter- and intra-specific levels using stem analysis from 9,363 trees for ten Eastern Canada species with a large shade-tolerance gradient. Specifically, the yearly allometric exponents, α(v,DBH) [volume (v) and diameter at breast height (DBH)], β(v,h) [v and height (h)], and γ(h,DBH) (h and DBH) were modelled as a function of tree age for each species. α(v,DBH), and γ(h,DBH) increased with tree age and then reached a plateau ranging from 2.45 to 3.12 for α(v,DBH), and 0.874-1.48 for γ(h,DBH). Pine species presented a local maximum. No effect of tree age on β(v,h) was found for conifers, while it increased until a plateau ranging from 3.71 to 5.16 for broadleaves. The influence of shade tolerance on the growth trajectories was then explored. In the juvenile stage, α(v,DBH), and γ(h,DBH) increased with shade tolerance while β(v,h) was shade-tolerance independent. In the mature stage, β(v,h) increased with shade tolerance, whereas γ(h,DBH) decreased and α(v,DBH) was shade-tolerance independent. The interaction between development stage and shade tolerance for allometric exponents demonstrates the importance of the changing functional requirements of trees for resource allocation at both the inter- and intra-specific level. These results indicate the need to also integrate specific functional traits, growth strategies and allocation, in allometric theoretical frameworks.

  18. Hierarchical reproductive allocation and allometry within a perennial bunchgrass after 11 years of nutrient addition.

    Science.gov (United States)

    Tian, Dashuan; Pan, Qingmin; Simmons, Matthew; Chaolu, Hada; Du, Baohong; Bai, Yongfei; Wang, Hong; Han, Xingguo

    2012-01-01

    Bunchgrasses are one of the most important plant functional groups in grassland ecosystems. Reproductive allocation (RA) for a bunchgrass is a hierarchical process; however, how bunchgrasses adjust their RAs along hierarchical levels in response to nutrient addition has never been addressed. Here, utilizing an 11-year nutrient addition experiment, we examined the patterns and variations in RA of Agropyron cristatum at the individual, tiller and spike levels. We evaluated the reproductive allometric relationship at each level by type II regression analysis to determine size-dependent and size-independent effects on plant RA variations. Our results indicate that the proportion of reproductive individuals in A. cristatum increased significantly after 11 years of nutrient addition. Adjustments in RA in A. cristatum were mainly occurred at the individual and tiller levels but not at the spike level. A size-dependent effect was a dominant mechanism underlying the changes in plant RA at both individual and tiller levels. Likewise, the distribution of plant size was markedly changed with large individuals increasing after nutrient addition. Tiller-level RA may be a limiting factor for the adjustment of RA in A. cristatum. To the best of our knowledge, this study is the first to examine plant responses in terms of reproductive allocation and allometry to nutrient enrichment within a bunchgrass population from a hierarchical view. Our findings have important implications for understanding the mechanisms underlying bunchgrass responses in RA to future eutrophication due to human activities. In addition, we developed a hierarchical analysis method for disentangling the mechanisms that lead to variation in RA for perennial bunchgrasses.

  19. Hierarchical reproductive allocation and allometry within a perennial bunchgrass after 11 years of nutrient addition.

    Directory of Open Access Journals (Sweden)

    Dashuan Tian

    Full Text Available Bunchgrasses are one of the most important plant functional groups in grassland ecosystems. Reproductive allocation (RA for a bunchgrass is a hierarchical process; however, how bunchgrasses adjust their RAs along hierarchical levels in response to nutrient addition has never been addressed. Here, utilizing an 11-year nutrient addition experiment, we examined the patterns and variations in RA of Agropyron cristatum at the individual, tiller and spike levels. We evaluated the reproductive allometric relationship at each level by type II regression analysis to determine size-dependent and size-independent effects on plant RA variations. Our results indicate that the proportion of reproductive individuals in A. cristatum increased significantly after 11 years of nutrient addition. Adjustments in RA in A. cristatum were mainly occurred at the individual and tiller levels but not at the spike level. A size-dependent effect was a dominant mechanism underlying the changes in plant RA at both individual and tiller levels. Likewise, the distribution of plant size was markedly changed with large individuals increasing after nutrient addition. Tiller-level RA may be a limiting factor for the adjustment of RA in A. cristatum. To the best of our knowledge, this study is the first to examine plant responses in terms of reproductive allocation and allometry to nutrient enrichment within a bunchgrass population from a hierarchical view. Our findings have important implications for understanding the mechanisms underlying bunchgrass responses in RA to future eutrophication due to human activities. In addition, we developed a hierarchical analysis method for disentangling the mechanisms that lead to variation in RA for perennial bunchgrasses.

  20. Using the pea aphid Acrythociphon pisum as a tool for screening biological responses to chemicals and drugs

    Directory of Open Access Journals (Sweden)

    Ledger Terence

    2009-09-01

    Full Text Available Abstract Background Though the biological process of aphid feeding is well documented, no one to date has sought to apply it as a tool to screen the biological responses to chemicals and drugs, in ecotoxicology, genotoxicology and/or for interactions in the cascade of sequential molecular events of embryogenesis. Parthenogenetic insect species present the advantage of an anatomical system composed of multiple germarium/ovarioles in the same mother with all the intermediate maturation stages of embryos from oocyte to first instar larva birth. This could be used as an interesting model to visualize at which step drugs interact with the cell signalling pathway during the ordered developmental process. Findings We designed a simple test for screening drugs by investigating simultaneously zygote mitotic division, the progression of embryo development, cell differentiation at early developmental stages and finally organogenesis and population growth rate. We aimed to analyze the toxicology effects of compounds and/or their interference on cellular signalling by examining at which step of the cascade, from zygote to mature embryo, the developmental process is perturbed. We reasoned that a parthenogenetic founder insect, in which the ovarioles shelter numerous embryos at different developmental stages, would allow us to precisely pinpoint the step of embryogenesis in which chemicals act through specific molecular targets as the known ordered homeobox genes. Conclusion Using this method we report the results of a genotoxicological and demographic analysis of three compound models bearing in common a bromo group: one is integrated as a base analog in DNA synthesis, two others activate permanently kinases. We report that one compound (Br-du altered drastically embryogenesis, which argues in favor of this simple technique as a cheap first screening of chemicals or drugs to be used in a number of genotoxicology applications.