WorldWideScience

Sample records for biological aerated filter

  1. Characteristics of integrated biological aerated filter in municipal wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    HE Qiang; ZHANG Yu-ping; XU Jian-bin

    2005-01-01

    In this paper, the characteristics of integrated biological aerated filter (IBAF) applied to municipal wastewater treatment were studied in a pilot scale experiment. The experimental results showed that IBAF has high efficiencies in removing organic pollutants, such as CODCr and SS, in municipal wastewater. The removal rates of CODCr and SS can reach over 90% and 80%, respectively, when COD and SS in the influent are 234 mg L-1 and 112 mg L-1, hydraulic retention time (HRT) is 8 h, and the aerated intensity is in the range of (0.5 to 0.6) L m-2 s-1.

  2. Hydrodynamic behaviour of the lateral flow biological aerated filter

    Institute of Scientific and Technical Information of China (English)

    HE Qiang; WANG Yin; FANG Jun-hua; ZHANG Hong-jing; XU Jing

    2006-01-01

    Pulsed signal experiment was carried out to determine the hydrodynamic behaviours of lateral flow biological aerated filter(LBAF). With the analysis of experimental results, LBAF is viewed as an approximate plug flow reactor, and hydraulic retention time distribution function was derived based on LBAF. The results show that flow rate and aeration strength are two critical factors which influence flow patterns in LBAF reactor. The hydrodynamic behaviour analysis of LBAF is the theoretical basis of future research on improving capacity factor and developing kinetic model for the reactor.

  3. Atrazine Removal from Aqueous Solutions using Submerged Biological Aerated Filter

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Baghapour

    2013-06-01

    Full Text Available Atrazine is widely used in the agriculture as an herbicide. Due to its high mobility, Atrazine leaks into the groundwaters, surface waters, and drinking water wells. Many physical and chemical methods have been suggested for removing Atrazine from aquatic environments. However, these methods are very costly, have many performance problems, produce a lot of toxic intermediates which are very harmful and dangerous, and cannot completely mineralize Atrazine. In this study, biodegradation of Atrazine by microbial consortium was evaluated in the aquatic environment. In order to assess the Atrazine removal from the aquatic environment, submerged biological aerated filter (SBAF was fed with synthetic wastewater based on sucrose and Atrazine at different hydraulic retention times (HRTs. The maximum efficiencies for Atrazine and Soluble Chemical Oxygen Demand (SCOD removal were 97.9% and 98.9%, respectively. The study findings showed that Stover-Kincannon model had very good fitness (R2 > 99% in loading Atrazine in the biofilter and by increasing the initial concentration of Atrazine, the removal efficiency increased. Aerobic mixed biofilm culture was observed to be suitable for the treatment of Atrazine from aquatic environment. There was no significant inhibition effect on mixed aerobic microbial consortia. Atrazine degradation depended on the strength of wastewater and the amount of Atrazine in the influent

  4. Atrazine removal from aqueous solutions using submerged biological aerated filter.

    Science.gov (United States)

    Baghapour, Mohammad Ali; Nasseri, Simin; Derakhshan, Zahra

    2013-01-01

    Atrazine is widely used in the agriculture as an herbicide. Due to its high mobility, Atrazine leaks into the groundwaters, surface waters, and drinking water wells. Many physical and chemical methods have been suggested for removing Atrazine from aquatic environments. However, these methods are very costly, have many performance problems, produce a lot of toxic intermediates which are very harmful and dangerous, and cannot completely mineralize Atrazine. In this study, biodegradation of Atrazine by microbial consortium was evaluated in the aquatic environment. In order to assess the Atrazine removal from the aquatic environment, submerged biological aerated filter (SBAF) was fed with synthetic wastewater based on sucrose and Atrazine at different hydraulic retention times (HRTs). The maximum efficiencies for Atrazine and Soluble Chemical Oxygen Demand (SCOD) removal were 97.9% and 98.9%, respectively. The study findings showed that Stover-Kincannon model had very good fitness (R2 > 99%) in loading Atrazine in the biofilter and by increasing the initial concentration of Atrazine, the removal efficiency increased. Aerobic mixed biofilm culture was observed to be suitable for the treatment of Atrazine from aquatic environment. There was no significant inhibition effect on mixed aerobic microbial consortia. Atrazine degradation depended on the strength of wastewater and the amount of Atrazine in the influent. PMID:24499572

  5. Electrochemical Oxidation Using BDD Anodes Combined with Biological Aerated Filter for Biotreated Coking Wastewater Treatment

    OpenAIRE

    Wang, C.R.; Hou, Z. F.; M. R. Zhang; J. Qi; Wang, J.

    2015-01-01

    Coking wastewater is characterized by poor biodegradability and high microorganism toxicity. Thus, it is difficult to meet Grade I of Integrated Wastewater Discharge Standard of China by biological treatment technology; specifically, COD cannot meet above standard due to containing refractory organics. A novel coupling reactor, electrochemical oxidation using BDD anodes and biological aerated filter (BAF), has been developed for carbon and nitrogen removal from biotreated coking wastewater, f...

  6. Performances of lateral flow biological aerated filter in treating domestic wastewater

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-jing; LONG Teng-rui; CAO Yan-xiao

    2006-01-01

    A new biological aerated filter--lateral flow biological aerated filter(LBAF) is developed.The effects of air/water ratio,hydraulic loading and the length of LBAF on pollutants removal efficiency are tested.The results show that under optimal technological conditions when hydraulic loading is 0.43 m3 m(2 h(1 and air/water ratio is 10:1,the average removal efficiencies of COD,SS,NH3-N,and TN reach 88.01%,95.18%,78.97% and 52.58%,respectively.An LBAF has a large pollutants handling capacity; is less liable to be blocked,and has a longer operation cycle in comparison with a traditional BAF.

  7. Enhanced Nutrient Removal with Upflow Biological Aerated Filter for Reclaimed Water

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-dong; PENG Yong-zhen; WANG Shu-ying; ZHANG Yan-ping

    2007-01-01

    A two-stage upflow biological aerated filter was designed as an advanced treatment process to optimize the operating parameters and study the correlative factors influencing the efficiency of nitrification, denitrification and phosphorus removal. The experimental results showed that the final effluent of the two-stage upflow biofilter process operated in series could meet the stringent limits of the reclaimed water for the total nitrogen of 2mg/L, and total phosphorus of 0.3mg/L. The high treatment efficiency allowed the reactor operating at very high hydraulic loadings and reaching nearly complete nitrification and denitrification.

  8. Performance of simultaneous nitrification and denitrification in lateral flow biological aerated filter

    Institute of Scientific and Technical Information of China (English)

    LONG Teng-rui; CAO Yan-xiao; ZHANG Hong-jing; GAO Xiao-tao

    2006-01-01

    A new wastewater treatment facility-lateral flow biological aerated filter (LBAF) was developed aiming at solving energy consumption and operational problems in wastewater treatment facilities in small towns. It has the function of nitrification and removing organic substrate. In this study, we focused on the denitrification performance of LBAF and its possible mechanism under thorough aeration. We identified the existence of simultaneous nitrification and denitrification (SND)by analyzing nitrogenous compounds along the flow path of LBAF and supportive microbial microscopy, and studied the effects of air/water ratio and hydraulic loading on the performance of nitrogen removal and on SND in LBAF to find out the optimal operation condition. It is found that for saving operation cost, aeration can be reduced to some degree that allows desirable removal efficiency of pollutants, and the optimal air/water ratio is 10:1. Hydraulic loading less than 0.43 m h-1 hardly affects the nitrification and denitrification performance; whereas higher hydraulic loading is unfavorable to both nitrification and denitrification, far more unfavorable to denitrification than to nitrification.

  9. Removal of diclofenac from surface water by electron beam irradiation combined with a biological aerated filter

    Science.gov (United States)

    He, Shijun; Wang, Jianlong; Ye, Longfei; Zhang, Youxue; Yu, Jiang

    2014-12-01

    The degradation of DCF was investigated in aqueous solution by using electron beam (EB) technology. When the initial concentration was between 10 and 40 mg/L, almost 100% of the DCF was degraded at a dose of 0.5 kGy. However, only about 6.5% of DCF was mineralized even at 2 kGy according to total organic carbon (TOC) measurements. A combined process of EB and biological aerated filter (BAF) was therefore developed to enhance the treatment of DCF contaminated surface water. The effluent quality of combined process was substantially improved by EB pretreatment due to the degradation of DCF and related intermediates. Both irradiation and biological treatment reduced the toxicity of the treated water. The experimental results showed that EB is effective for removing DCF from artificial aqueous solution and real surface water.

  10. Treatment of petrochemical secondary effluent by an up-flow biological aerated filter (BAF).

    Science.gov (United States)

    Fu, L Y; Wu, C Y; Zhou, Y X; Zuo, J E; Ding, Y

    2016-01-01

    In this study, petrochemical secondary effluent was treated by a 55 cm diameter pilot-scale biological aerated filter (BAF) with a media depth of 220 cm. Volcanic rock grains were filled as the BAF media. Median removal efficiency of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) was 29.35 and 57.98%, respectively. Moreover, the removal profile of the COD, NH3-N, total nitrogen and total organic carbon demonstrated that the filter height of 140 cm made up to 90% of the total removal efficiency of the final effluent. By gas chromatography-mass spectrometry, removal efficiencies of 2-chloromethyl-1,3-dioxolane, and benzonitrile, indene and naphthalene were obtained, ranging from 30.12 to 63.01%. The biomass and microbial activity of the microorganisms on the filter media were in general reduced with increasing filter height, which is consistent with the removal profile of the contaminants. The detected genera Defluviicoccus, Betaproteobacteria_unclassified and the Blastocatella constituted 1.86-6.75% of the identified gene, enhancing the COD and nitrogen removal in BAF for treating petrochemical secondary effluent. PMID:27120658

  11. Treatment of Slightly Polluted Wastewater in an Oil Refinery Using a Biological Aerated Filter Process

    Institute of Scientific and Technical Information of China (English)

    XIE Wenyu; ZHONG Li; CHEN Jianjun

    2007-01-01

    The slightly polluted wastewater from oil refinery contains some COD, oil pollutants and suspended solids (SS). A small-scale fixed film biological aerated filter (BAF) process was used to treat the wastewater. The influences of hydraulic retention time (HRT), air/water volume flow ratio and backwashing cycle on treatment efficiencies were investigated. The wastewater was treated by the BAF process under optimal conditions: the HRT of backwashing cycle of every 4-7 days. The results showed that the average removal efficiency of COD, oil pollutants and SS was 84.5%, 94.0% and 83.4%, respectively. And the average effluent concentration of COD, oil pollutants and SS was 12.5, 0.27, 14.5the BAF process is a suitable and highly efficient method to treat the wastewater.

  12. Effect of media heights on the performance of biological aerated filter

    Institute of Scientific and Technical Information of China (English)

    HU Yong-you; WANG Li-li

    2005-01-01

    The optimum media height of carbon oxidation and nitrification in a down-flow biological aerated filter was determined, and the distribution of the heterotrophic and nitrifying populations through studying the changes of organic carbon contents and ammonia concentration at different media height was got. The results showed that as a down flow BAF with granular media, the active layer of nitrifiers was deeper than heterotrophs in BAF. And the optimum media height for the removal of SS, CODCr and NH4+ -N was 40 cm,60 cm and 80 cm respectively. The removal efficiency of SS, CODCr and NH4+-N was 79.1%, 63.9% and 96.4% respectively under the influent CODCr and NH4+ -N of 122.1 mgCODCr/L and 14.84 mgNH4+ -N/L, the influent flux of 15.8 L/h, air to liquid ratio of 3: 1.

  13. In situ activity recovery of aging biofilm in biological aerated filter: Surfactants treatment and mechanisms study.

    Science.gov (United States)

    Yu, Qisheng; Huang, Hui; Ren, Hongqiang; Ding, Lili; Geng, Jinju

    2016-11-01

    In situ activity recovery of aging biofilm in the biological aerated filter (BAF) is an important but underappreciated problem. Lab-scaled BAFs were established in this study and three kinds of surfactants containing sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS) and rhamnolipid were employed. Multiple indicators including effluent qualities, dissolved organic matters, biofilm physiology and morphology characteristics were investigated to explore the mechanisms. Results showed that removal rates of effluent COD in test groups significantly recovered to the level before aging. Compared with the control, effluent in SDBS and rhamnolipid-treated groups obtained more protein-like and humic-like substances, respectively. Furthermore, great live cell ratio, smooth surface and low adhesion force of biofilm were observed after rhamnolipid treatment, which was in consistent with good effluent qualities in the same group. This is the first report of applying rhamnolipid for in situ activity recovery of aging biofilm in bioreactors. PMID:27513646

  14. BIOLOGICAL AERATED FILTERS (BAFs FOR CARBON AND NITROGEN REMOVAL: A REVIEW

    Directory of Open Access Journals (Sweden)

    ELSHAFIE AHMED

    2012-08-01

    Full Text Available Biological aerated filters (BAFs are an emerging wastewater treatment technology designed for a wide range of municipal and industrial applications. This review paper presents and discusses of the influence C/N ratio, nitrification and denitrification principle, effect of pH, DO and alkalinity on the nitrification and denitrification systems, organic and hydraulic loading of BAF reactor, etc. Results from upflow and downflow biofilter pilot at different condition, with nitrification and denitrification are reviewed. Under the optimal conditions, significant amount of COD, ammonia-nitrogen and total nitrogen were removed. Removal rates based on reactor volume for different carbon-aceous COD and ammonia loading rate are reported. The BAF system for the nitrification and denitrification processes for carbon and nitrogen removal from the wastewater need to be evaluated and applied properly to protect of our environment and resources.

  15. Process of inorganic nitrogen transformation and design of kinetics model in the biological aerated filter reactor.

    Science.gov (United States)

    Yan, Gang; Xu, Xia; Yao, Lirong; Lu, Liqiao; Zhao, Tingting; Zhang, Wenyi

    2011-04-01

    As one of the plug-flow reactors, biological aerated filter (BAF) reactor was divided into four sampling sectors to understand the characteristics of elemental nitrogen transformation during the reaction process, and then the different characteristics of elemental nitrogen transformation caused by different NH(3)-N loadings, biological quantities and activities in each section were obtained. The results showed that the total transformation ratio in the nitrifying reactor was more than 90% in the absence of any organic carbon resource, at the same time, more than 65% NH(3)-N in the influent were nitrified at the filter height of 70 cm below under the conditions of the influent runoff 9-19 L/h, the gas-water ratio 4-5:1, the dissolved oxygen 3.0-5.8 mg/L and the NH(3)-N load 0.28-0.48 kg NH(3)-N/m(3) d. On the base of the Eckenfelder mode, the kinetics equation of the NH(3)-N transformation along the reactor was S(e)=S(0) exp(-0.0134D/L(1.2612)).

  16. Characterization of soluble microbial products in a drinking water biological aerated filter.

    Science.gov (United States)

    Kang, Jia; Ma, Teng-Fei; Zhang, Peng; Gao, Xu; Chen, You-Peng

    2016-05-01

    Utilization-associated products (UAPs) and biomass-associated products (BAPs) were quantified separately in this study to characterize soluble microbial products (SMPs) in a drinking water lab-scale biological aerated filter (BAF), and their basic characteristics were explored using gel filtration chromatography and three-dimensional excitation-emission matrix (3D-EEM) spectrophotometry with fluorescence regional integration analysis and parallel factor model. UAPs were observed increased with the increase of filter media depth and accumulated after BAF treatment, whereas BAPs were basically constant. 3D-EEM spectroscopy analysis result showed that tryptophan and protein-like compounds were the main components of UAPs and BAPs, and fulvic-acid-like substance was a major component of BAPs, rather than UAPs. In terms of molecular weight (MW) distribution, UAP MW presented a bimodal distribution in the range of 1-5 and >10 kDa, while BAP MW exhibited unimodal distribution with MW >20 kDa fraction accounting for more than 90 %. The macromolecules of UAPs accumulated after BAF treatment. This study provides theoretical support for in-depth study of SMP characteristics. PMID:26801929

  17. [Model of regularity of ammonia transformation along marine biological aerated filter].

    Science.gov (United States)

    Luo, Rong-Qiang; Hou, Sha-Sha; Shen, Jia-Zheng; Chen, Zhu; Liu, Ying

    2012-09-01

    This study investigates the biological aerated filter (BAF) of a marine recirculating aquaculture system, which is important to remove harmful ammonia and organics. A model, characterizing the ammonia transformation along the BAF, was established on the basis of the principle of adsorption and the first order reaction bio-film. Experiments were performed and verified the effectiveness of the proposed model. The target BAF was packed with bamboo ring for 70 cm high. Study under the conditions [pH 7.1-7.6, DO 5-7 mg x L(-1), gas water ratio about 20 : 1, organic load about 4 g x (m3 x h)(-1)] shows that ammonia is removed significantly under the 10 cm height of medium, while less ammonia is removed between 10-70 cm. Experimental results confirm that the model predicts the ammonia concentration along the BAF accurately with a low influent ammonia concentration, but the predicted value is slightly lower than the true value with a high influent ammonia concentration. Study on ammonia concentration along the BAF reveals that the effluent ammonia concentration increases along with either the increment of the influent ammonia concentration or the reduction of the hydraulic retention time. PMID:23243879

  18. Application of integrated ozone biological aerated filters and membrane filtration in water reuse of textile effluents.

    Science.gov (United States)

    He, Yaozhong; Wang, Xiaojun; Xu, Jinling; Yan, Jinli; Ge, Qilong; Gu, Xiaoyang; Jian, Lei

    2013-04-01

    A combined process including integrated ozone-BAFs (ozone biological aerated filters) and membrane filtration was first applied for recycling textile effluents in a cotton textile mill with capacity of 5000 m(3)/d. Influent COD (chemical oxygen demand) in the range of 82-120 mg/L, BOD5 (5-day biochemical oxygen demand) of 12.6-23.1 mg/L, suspended solids (SSs) of 38-52 mg/L and color of 32-64° were observed during operation. Outflows with COD≤45 mg/L, BOD5≤7.6 mg/L, SS≤15 mg/L, color≤8° were obtained after being decontaminated by ozone-BAF with ozone dosage of 20-25 mg/L. Besides, the average removal rates of PVA (polyvinyl alcohol) and UV254 were 100% and 73.4% respectively. Permeate water produced by RO (reverse osmosis) could be reused in dyeing and finishing processes, while the RO concentrates could be discharged directly under local regulations with COD≤100 mg/L, BOD5≤21 mg/L, SS≤52 mg/L, color≤32°. Results showed that the combined process could guarantee water reuse with high quality, and solve the problem of RO concentrate disposal.

  19. Combined Application of UV Photolysis and Ozonation with Biological Aerating Filter in Tertiary Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Zhaoqian Jing

    2012-01-01

    Full Text Available To enhance the biodegradability of residual organic pollutants in secondary effluent of wastewater treatment plants, UV photolysis and ozonation were used in combination as pretreatment before a biological aerating filter (BAF. The results indicated that UV photolysis could not remove much COD (chemical oxygen demand, and the performance of ozonation was better than the former. With UV photolysis combined with ozonation (UV/O3, COD removal was much higher than the sum of that with UV photolysis and ozonation alone, which indicated that UV photolysis could efficiently promote COD removal during ozonation. This pretreatment also improved molecular weight distribution (MWD and biodegradability greatly. Proportion of organic compounds with molecular weight (MW <3 kDalton was increased from 51.9% to 85.9%. COD removal rates with BAF and O3/BAF were only about 25% and 38%, respectively. When UV/O3 oxidation was combined with BAF, the average COD removal rate reached above 61%, which was about 2.5 times of that with BAF alone. With influent COD ranging from 65 to 84 mg/L, the effluent COD was stably in the scope of 23–31 mg/L. The combination of UV/O3 oxidation with BAF was quite efficient in organic pollutants removal for tertiary wastewater treatment.

  20. Advanced treatment of biologically pretreated coking wastewater by intensified zero-valent iron process (IZVI) combined with anaerobic filter and biological aerated filter (AF/BAF)

    Institute of Scientific and Technical Information of China (English)

    潘碌亭; 韩悦; 吴锦峰

    2015-01-01

    Experiments were conducted to investigate the behavior of the sequential system of intensified zero-valent iron process (IZVI) and anaerobic filter and biological aerated filter (AF/BAF) reactors for advanced treatment of biologically pretreated coking wastewater. Particular attention was paid to the performance of the integrated system for the removal of chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and total nitrogen (TN). The average removal efficiencies of COD, NH3-N and TN were 76.28%, 96.76% and 59.97%, with the average effluent mass concentrations of 56, 0.53 and 18.83 mg/L, respectively, reaching the first grade of the national discharge standard. Moreover, the results of gas chromatography/mass spectrum (GC/MS) and gel permeation chromatography (GPC) analysis demonstrated that the refractory organic compounds with high relative molecular mass were partly removed in IZVI process by the function of oxidation-reduction, flocculation and adsorption which could also enhance the biodegradability of the system effluent. The removal efficiencies of NH3-N and TN were achieved mainly in the subsequent AF/BAF reactors by nitrification and denitrification. Overall, the results obtained show that the application of IZVI in combination with AF/BAF is a promising technology for advanced treatment of biologically pretreated coking wastewater.

  1. Performance of water quenched slag particles (WQSP) for municipal wastewater treatment in a biological aerated filter (BAF)

    International Nuclear Information System (INIS)

    Water quenched slag particles (WQSP) and haydite were applied to treat municipal wastewater in two lab-scale up-flow biological aerated filters (BAF) to compare their abilities to act as biofilm supports. The results showed that WQSP reactor brought a relative superiority to haydite reactor in terms of chemical oxygen demand (CODcr) and ammonia nitrogen (NH3-N) removal when hydraulic retention time (HRT) ranged from 1 h to 5 h.Compared with haydite, WQSP had higher total porosity, larger total surface area and lower bulk and apparent density. Tests of heavy metal elements in lixivium proved that WQSP were safe for wastewater treatment. In addition, the detection of the amount of hetero bacteria and nitrobacteria of two biological aerated filters in three HRTs also showed that WQSP medium was more suitable to the attached growth of nitrobacteria, which is helpful to the improvement of nitrification performance in WQSP BAF. Therefore, WQSP is a potential material for use as the filter media of BAF for wastewater treatment. WQSP application, as a novel process of treating wastes with waste, provides a promising way to use water quenched slag (WQS). -- Highlights: ► Novel filter media-water quenched slag particles (WQSP) were prepared. ► Two upflow BAFs were applied to treat municipal wastewater. ► WQSP reactor brought a relative superiority to haydite reactor. ► WQSP medium was more suitable to the attached growth of nitrobacteria. ► The application provided a promising way in water quenched slag waste material utilization.

  2. Using a biological aerated filter to treat mixed water-borne volatile organic compounds and assessing its emissions

    Institute of Scientific and Technical Information of China (English)

    CHENG Wen-Hsi

    2009-01-01

    A biological aerated filter (BAF) was evaluated as a fixed-biofilm processes to remove water-borne volatile organic compounds (VOCs) from a multiple layer ceramic capacitor (MLCC) manufacturing plant in southern Taiwan.The components of VOC were identified to be toluene,1,2,4-trimethylbenzene,1,3,5-trimethylbenzene,bromodichloromethane and isopropanol (IPA).The full-scale BAF was constructed of two separate reactors in series,respectively using 10-cm and 15-cm diameter polypropylene balls as the packing materials and a successful preliminary bench-scale experiment was performed to feasibility.Performance results show that the BAF removed over 90% chemical oxygen demand (COD) from the influent with (1188 ± 605) mg/L of COD.A total organic loading of 2.76 kg biochemical oxygen demand (BOD)/(m~3 packing·d) was determined for the packed bed,in which the flow pattern approached that of a mixed flow.A limited VOC concentration of (0.97 ± 0.29) ppmv (as methane) was emitted from the BAF system.Moreover,the emission rate of VOC was calculated using the proposed formula,based on an air-water mass equilibrium relationship,and compared to the simulated results obtained using the Water 9 model.Both estimation approaches of calculation and model simulation using Water 9 evaluating VOC emissions reveal that 0.1% IPA (0.0031-0.0037 kg/d) was aerated into a gaseous phase,and 30% to 40% (0.006-0.008 kg/d) of the toluene was aerated.

  3. Synergism of Novel Sequence Bio-ecological Process and Biological Aerated Filter for Sewage Treatment in Cold Climate

    Institute of Scientific and Technical Information of China (English)

    张鹏; 海热提; 周东凯; 何一群; 白志远

    2011-01-01

    A lab-scale integrated treatment system including the novel sequence bio-ecological process (SBEP) and biological aerated filter (BAF) for a sewage mixture (chemistry laboratory wastewater and domestic sewage) was presented in this paper. The main objective of the study was to test the contribution of artificial aeration, recir-culation ratio and mass concentration of steel slag on pollutant removal in winter when the plants are dormant. It had been shown that SBEP and BAF play different roles in removing contaminants from wastewater. During the airflow experiment, the removal efficiency of COD and TP in SBEP was higher than that in BAF, whereas BAF can compensate for the deficiency of SBEP where no significant improvement on ammonium nitrogen removal is ob-served. Yet, the removal etticiencies of COD,TP and NH4^+ -N in SBEP could be improved apparently when ditterent recireulation ratio or various mass concentration of steel were applied. Especially, when the airflow of 0.06 L·h^-1, the recirculation ratio rate of 80% and the mass concentration of steel of 2.2-2.4 g·L^-1 were applied, thehighest efficiency of 94.6%, 77.9% and 80.7% for COD, TP and NH4^+ -N were achieved,-respectively,The integrated treatment system of SBEP and BAF was proved to be an effective wastewater treatment technique and a better alternative to treat domestic sewage.

  4. Combination of ozonation, activated carbon, and biological aerated filter for advanced treatment of dyeing wastewater for reuse.

    Science.gov (United States)

    Zou, Xiao-Ling

    2015-06-01

    Laboratorial scale experiments were performed to investigate and evaluate the performance and removal characteristics of organics, color, and genotoxicity by an integrated process including ozonation, activated carbon (AC), and biological aerated filter (BAF) for recycling biotreated dyeing wastewater (BTDW) collected from a cotton textile factory. Influent chemical oxygen demand (COD) in the range of 156 - 252 mg/L, 5-day biochemical oxygen demand (BOD5) of 13.5 - 21.7 mg/L, and color of 58 - 76° were observed during the 20-day continuous operation. Outflows with average COD of 43 mg/L, BOD5 of 6.6 mg/L, and color of 5.6° were obtained after being decontaminated by the hybrid system with ozone dosage of 0.25 mg O3applied/mg COD0, 40 min ozonation contact time, 30 min hydraulic retention time (HRT) for AC treatment, and 2.5 h HRT for BAF treatment. More than 82 % of the genotoxicity of BTDW was eliminated in the ozonation unit. The genotoxicity of the BAF effluent was less than 1.33 μg 4-nitroquinoline-N-oxide/L. Ozonation could change the organics molecular structures, destroy chromophores, increase the biodegradability, and obviously reduce the genotoxicity of BTDW. Results showed that the combined process could guarantee water reuse with high quality.

  5. Production of lightweight ceramisite from iron ore tailings and its performance investigation in a biological aerated filter (BAF) reactor

    International Nuclear Information System (INIS)

    The few reuse and large stockpile of iron ore tailings (IOT) led to a series of social and environmental problems. This study investigated the possibility of using the IOT as one of starting materials to prepare lightweight ceramisite (LWC) by a high temperature sintering process. Coal fly ash (CFA) and municipal sewage sludge (SS) were introduced as additives. The LWC was used to serve as a biomedium in a biological aerated filter (BAF) reactor for municipal wastewater treatment, and its purification performance was examined. The effects of sintering parameters on physical properties of the LWC, and leaching concentrations of heavy metals from the LWC were also determined. The microstructure and the phase composition of the LWC were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Results revealed that: (1) IOT could be used to produce the LWC under the optimal sintering parameters; (2) the leaching concentrations of heavy metals from the LWC were well below their respective regulatory levels in the China Environmental Quality Standards for Surface Water (CEQS); and (3) the BAF reactor with the LWC serving as the biomedium achieved high removal efficiencies for CODCr (>92%), NH4+-N (>62%) and total phosphate (T-P) (>63%). Therefore, the LWC produced from the IOT was suitable to serve as the biomedium in the municipal wastewater treatment.

  6. [Effect of Low-concentration Ciprofloxacin on the Nitrification and Nitrifying Microorganisms of Biofilms in Biological Aerated Filter].

    Science.gov (United States)

    He, Shi; Gu, Chao-chao; Wei, Xin; Huang, Sheng-lin; Liu, Zhen-hong; Xue, Gang; Gao, Pin

    2016-04-15

    Effect of low-concentration ciprofloxacin (CIP) on nitrification and nitrifying microorganisms of biofilms was studied in biological aerated filters (BAF). Quantitative PCR (qPCR) was used to determine the abundance variance of four ciprofloxacin resistance genes (CIP-ARGs) during nitrification in biofilms. The correlations between the abundances of CIP-ARGs and nitrifying microorganisms were also discussed. The results showed that CIP had little influence on the ammonium oxidation process of biofilm microorganisms, whereas inhibition of the nitrite oxidation process was found. The quantitative results of ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) including Nitrobacter and Nitrospira indicated that the inhibition on the transformation of nitrite was resulted from the inhibition on Nitrobacter and Nitrospira. In addition, little influence of CIP on the relative abundance of aac and qepA in biofilms was found, but the influence on parC and oqxB was great. The abundance of Nitrotacter exhibited significant positive correlation with the abundance of parC. Similar significant correlation was also found between the abundances of Nitrospira and oqxB. It could be speculated that the genetic elements of different nitrifying microorganisms in biofilms possibly carried CIP-ARGs. PMID:27548973

  7. Production of sorption functional media (SFM) from clinoptilolite tailings and its performance investigation in a biological aerated filter (BAF) reactor

    International Nuclear Information System (INIS)

    Highlights: ► Sorption functional media (SFM) were prepared using zeolite tailings. ► Two upflow BAFs were applied to treat municipal wastewater. ► SFM BAF brought a relative superiority to haydite reactor. ► SFM BAF has a stronger adaptability to low temperature (6–11°C) for NH3-N removal. ► The application provided a promising way in zeolite tailings utilization. -- Abstract: The few reuse and large stockpile of zeolite tailings led to a series of social and environmental problems. This study investigated the possibility of using the zeolite tailings as one of principal raw materials to prepare sorption functional media (SFM) by a high temperature sintering process. The SFM was used to serve as a biomedium in a biological aerated filter (BAF) reactor for domestic wastewater treatment, and its purification performance was examined. The physical, chemical and sorption properties of SFM were also determined. The microstructure of the SFM was analyzed by scanning electron microscopy (SEM). Results revealed that: (1) zeolite tailings could be used to produce the SFM under the optimal sintering parameters; (2) the sorption and desorption isotherm of ammonia nitrogen on SFM could be well described by the Langmuir formula; (3) in terms of removing organic matter, ammonia nitrogen, turbidity and colourity, the performance of the biofilter with SFM was superior to that with haydite; and (4) SFM BAF has a stronger adaptability to low temperature (6–11 °C) for NH3-N removal compared to haydite BAF. Therefore, the SFM produced from the zeolite tailings was suitable to serve as the biomedium in the domestic wastewater treatment

  8. Production of sorption functional media (SFM) from clinoptilolite tailings and its performance investigation in a biological aerated filter (BAF) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yan [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); School of Civil Engineering and Architecture, University of Jinan, Jinan 250022 (China); Qi, Jingyao, E-mail: qjy_hit@yahoo.cn [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Chi, Liying [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Wang, Dong [School of Civil Engineering and Architecture, University of Jinan, Jinan 250022 (China); Wang, Zhaoyang; Li, Ke; Li, Xin [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China)

    2013-02-15

    Highlights: ► Sorption functional media (SFM) were prepared using zeolite tailings. ► Two upflow BAFs were applied to treat municipal wastewater. ► SFM BAF brought a relative superiority to haydite reactor. ► SFM BAF has a stronger adaptability to low temperature (6–11°C) for NH{sub 3}-N removal. ► The application provided a promising way in zeolite tailings utilization. -- Abstract: The few reuse and large stockpile of zeolite tailings led to a series of social and environmental problems. This study investigated the possibility of using the zeolite tailings as one of principal raw materials to prepare sorption functional media (SFM) by a high temperature sintering process. The SFM was used to serve as a biomedium in a biological aerated filter (BAF) reactor for domestic wastewater treatment, and its purification performance was examined. The physical, chemical and sorption properties of SFM were also determined. The microstructure of the SFM was analyzed by scanning electron microscopy (SEM). Results revealed that: (1) zeolite tailings could be used to produce the SFM under the optimal sintering parameters; (2) the sorption and desorption isotherm of ammonia nitrogen on SFM could be well described by the Langmuir formula; (3) in terms of removing organic matter, ammonia nitrogen, turbidity and colourity, the performance of the biofilter with SFM was superior to that with haydite; and (4) SFM BAF has a stronger adaptability to low temperature (6–11 °C) for NH{sub 3}-N removal compared to haydite BAF. Therefore, the SFM produced from the zeolite tailings was suitable to serve as the biomedium in the domestic wastewater treatment.

  9. Advanced treatment of biologically pretreated coal gasification wastewater using a novel anoxic moving bed biofilm reactor (ANMBBR)-biological aerated filter (BAF) system.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Jia, Shengyong; Zhao, Qian; Hou, Baolin

    2014-04-01

    A novel system integrating anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) with short-cut biological nitrogen removal (SBNR) process was investigated as advanced treatment of real biologically pretreated coal gasification wastewater (CGW). The results showed the system had efficient capacity of degradation of pollutants especially nitrogen removal. The best performance was obtained at hydraulic residence times of 12h and nitrite recycling ratios of 200%. The removal efficiencies of COD, total organic carbon, NH4(+)-N, total phenols and total nitrogen (TN) were 74.6%, 70.0%, 85.0%, 92.7% and 72.3%, the corresponding effluent concentrations were 35.1, 18.0, 4.8, 2.2 and 13.6mg/L, respectively. Compared with traditional A(2)/O process, the system had high performance of NH4(+)-N and TN removal, especially under the high toxic loading. Moreover, ANMBBR played a key role in eliminating toxicity and degrading refractory compounds, which was beneficial to improve biodegradability of raw wastewater for SBNR process.

  10. Comparing cost and process performance of activated sludge (AS) and biological aerated filters (BAF) over ten years of full sale operation.

    Science.gov (United States)

    Hansen, R; Thogersen, T; Rogalla, F

    2007-01-01

    In the early 1990s, the Wastewater Treatment Plant (WWTP) of Frederikshavn, Denmark, was extended to meet new requirements for nutrient removal (8 mg/L TN, 1.5 mg TP/L) as well as to increase its average daily flow to 16,500 m(3)/d (4.5 MGD). As the most economical upgrade of the existing activated sludge (AS) plant, a parallel biological aerated filter (BAF) was selected, and started up in 1995. Running two full scale processes in parallel for over ten years on the same wastewater and treatment objectives enabled a direct comparison in relation to operating performance, costs and experience. Common pretreatment consists of screening, an aerated grit and grease removal and three primary settlers with chemical addition. The effluent is then pumped to the two parallel biological treatment stages, AS with recirculation and an upflow BAF with floating media. The wastewater is a mixture of industrial and domestic wastewater, with a dominant discharge of fish processing effluent which can amount to 50% of the flow. The maximum hydraulic load on the pretreatment section as a whole is 1,530 m(3)/h. Approximately 60% of the sewer system is combined with a total of 32 overflow structures. To avoid the direct discharge of combined sewer overflows into the receiving waters, the total hydraulic wet weather capacity of the plant is increased to 4,330 m(3)/h, or 6 times average flow. During rain, some of the raw sewage can be directed through a stormwater bypass to the BAF, which can be modified in its operation to accommodate various treatment needs: either using simultaneous nitrification/denitrification in all filters with recirculation introducing bottom aeration with full nitrification in some filters for storm treatment and/or post-denitrification in one filter. After treatment, the wastewater is discharged to the Baltic Sea through a 500 m outfall. The BAF backwash sludge, approximately 1,900 m(3) per 24 h in dry weather, is redirected to the AS plant. Primary settler

  11. A field pilot-scale study of biological treatment of heavy oil-produced water by biological filter with airlift aeration and hydrolytic acidification system.

    Science.gov (United States)

    Zhang, Min; Wang, Junming; Zhang, Zhongzhi; Song, Zhaozheng; Zhang, Zhenjia; Zhang, Beiyu; Zhang, Guangqing; Wu, Wei-Min

    2016-03-01

    Heavy oil-produced water (HOPW) is a by-product during heavy oil exploitation and can cause serious environmental pollution if discharged without adequate treatment. Commercial biochemical treatment units are important parts of HOPW treatment processes, but many are not in stable operation because of the toxic and refractory substances, salt, present. Therefore, pilot-scale experiments were conducted to evaluate the performance of hydrolytic acidification-biological filter with airlift aeration (HA-BFAA), a novel HOPW treatment system. Four strains isolated from oily sludge were used for bioaugmentation to enhance the biodegradation of organic pollutants. The isolated bacteria were evaluated using 3-day biochemical oxygen demand, oil, dodecyl benzene sulfonic acid, and chemical oxygen demand (COD) removals as evaluation indices. Bioaugmentation enhanced the COD removal by 43.5 mg/L under a volume load of 0.249 kg COD/m(3) day and hydraulic retention time of 33.6 h. The effluent COD was 70.9 mg/L and the corresponding COD removal was 75.0 %. The optimum volumetric air-to-water ratio was below 10. The removal ratios of the total extractable organic pollutants, alkanes, and poly-aromatic hydrocarbons were 71.1, 94.4, and 94.0 %, respectively. Results demonstrated that HA-BFAA was an excellent HOPW treatment system.

  12. The Up-Flow Biological Aerated Filter (UFBAF) process in treating mixed (urban and industrial) sewage. Its performance in a pilot plant; Proceso de biofiltracion Up-Flow Biological Aerated Filter-UFBAF para el tratamiento de aguas residuales mixtas (urbanas e industriales). Rendimientos en planta piloto

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The Up-Flow Biological Aerated Filter (UFBAF) process is a variant on the conventional activated sludge process. It is based on a greater sludge density, as the sludge sticks to expanded clay balls of between 3 and 6 mm in diameter. A trial of this process was conducted using a pilot plant whose main components were a bio filter for eliminating organic matter and a single layer filter for eliminating the solids left over from the bio filter. the effluent employed in the trial was waste water that had been pretreated by sieving and primary decanting. The main object of these trials was to determine the capacity and limits of the treatment in eliminating organic matter under overload conditions in order to determine the recovery time required to return to normal operation. (Author) 3 refs.

  13. Process of nitrogen transformation and microbial community structure in the Fe(0)-carbon-based bio-carrier filled in biological aerated filter.

    Science.gov (United States)

    Deng, Shihai; Li, Desheng; Yang, Xue; Zhu, Shanbin; Li, Jinlong

    2016-04-01

    Nitrogen pollutants in low-organic carbon wastewater are difficult to biodegrade. Therefore, the Fe(0)-carbon-based bio-carrier (FCBC) was firstly used as hydrogen producer in a biological-aerated filter (BAF) to make up for the lack of organic carbon in biological nitrogen removal. Physical and chemical properties of FCBC were detected and compared in this study. The nitrogen removal rate for low COD/TN ratio wastewater, nitrogen transformation process, and microbial communities in the FCBC filled in BAF were investigated. Results showed that the nitrogen removal rates was 0.38-0.41 kg N m(-3) day(-1) in the FCBC filled BAF and reached 0.62 kg N m(-3) day(-1) within the filter depth of 60-80 cm, under the conditions of the dissolved oxygen 3.5 ± 0.2 mg L(-1) and the inlet pH 7.2 ± 0.1. Hydrogenophaga (using hydrogen as electron donor), Sphaerotilus (absorbing [Fe(3+)]), Nitrospira (nitrificaion), and Nitrosomonas (ammonia oxidation) were found to be the predominant genera in the reactor. The reaction schemes in the FCBC filled in BAF was calculated: hydrogen and [Fe(3+)] were produced by Fe(0)-C galvanic cells in the FCBC, ammonia was oxidized into nitrate by Nitrosomonas and Nitrospira genera, hydrogen was used as electron donors by Hydrogenophaga genus to reduce nitrate into N2, and [Fe(3+)] was partly absorbed by Sphaerotilus and diverted via sludge discharging.

  14. Intermittent Aeration in Biological Treatment of Wastewater

    Directory of Open Access Journals (Sweden)

    H. Doan

    2009-01-01

    Full Text Available Problem statement: E-coating process is widely used to provide a protective coating layer on metal parts in the automotive and metal finishing industry. The wastewater from the coating process contains organic compounds that are used in the cleaning, pretreatment and coating steps. Organic pollutants can be removed biologically. In the aerobic biological treatment, water aeration accounts for a significant portion of the total operating cost of the treatment process. Intermittent aeration is thus of benefit since it would reduce the energy consumption in the wastewater treatment. In the present study, wastewater from an electro-coating process was treated biologically using a packed column as an aerator where the wastewater was aerated by a countercurrent air flow. The objective was to obtain an optimum aeration cycle. Approach: Intermittent aeration time was varied at different preset cycles. An operational optimum of the aeration time (or air-water contacting time in the column was determined from the BOD5 removal after a certain treatment period. For continuous aeration of the wastewater, the air-liquid contacting time in the column was 52 min for 24 h of treatment. A unit energy consumption for pumping liquid and air, which was defined as the energy consumption per percent BOD5 removed, was used as a criterion to determine the optimum contacting time. Results: Optimum air-liquid contacting times were found to be about 38, 26 and 22 min for the treatment times of 24, 48 and 72 h, consecutively. This indicates that 27-58% saving on the unit energy consumption can be achieved using intermittent aeration of the wastewater. On the basis of the overall BOD5 removal, 17% and 23% savings in energy were observed with the intermittent aeration as compared to the continuous aeration of the wastewater for 48 and 72 h. Conclusion: The results obtained indicate that an appropriate intermittent aeration cycle can bring about a substantial energy saving

  15. Biological Phosphorus Removal in Intermittent Aerated Biological Filter%间歇曝气生物滤池生物除磷性能研究

    Institute of Scientific and Technical Information of China (English)

    曾龙云; 杨春平; 郭俊元; 罗胜联

    2012-01-01

    Under intermittent aerated and continuous fed operation where the biofilm system was subjected to alternated anaerobic/aerobic condition, the effect of influent volatile fatty acids (VFAs) concentrations, operation cycle and backwash on the biological phosphorus removal performance of the biofilter was studied. In the experiment, synthetic domestic wastewater was used, and the influent velocity was 5 L·h-1with gas versus liquid ratio of 8∶1 and hydraulic retention time (HRT) of 1.3 h, resulting in average COD, ammonium and phosphorus load of 4.7, 0.41 and 0.095 g·(L·d)-1 respectively. Results show that, 1 effective release and uptake of phosphorus was achieved in a operation cycle; 2 when influent VFAs was 100 mg·L-1(calculated by COD value) and operation cycle was 6 h the filter performed best in phosphorus removal, the phosphorus loading removal rate can be as much as 0.059 g·(L·d)-1 at the aerated phase with those of COD and ammonium being 3.8 g·(L·d)-1 and 0.28 g·(L·d)-1 respectively, and with average effluent phosphorus, COD and ammonium concentrations being 1.8, 43.6 and 8.7 mg·L-1, which shows nitrogen loss also happened; 3 the pause of backwash decreased the phosphorus removal performance rapidly with the removal efficiency lower than 40% in two days, but the consequent daily backwash operation gave a short improvement on the phosphorus removal, which disappeared in another two days. Thus, it is shown that biological phosphorus removal achieved with better phosphorus loading removal performance in the biofilter under intermittent aerated and continuous fed operation, and that sufficient and stable influent VFAs concentration, proper operation cycle, and more frequent backwash favored the performance.%通过间歇曝气、连续进水的运行方式使生物膜系统交替处于厌氧/好氧状态,据此研究了不同进水挥发性脂肪酸(volatile fatty acids, VFAs)质量浓度、运行周期以及反冲洗

  16. 运行方式对曝气生物滤池实现短程硝化的影响%Effect of Operational Modes on Shortcut Nitrification in Biological Aerated Filter

    Institute of Scientific and Technical Information of China (English)

    梅翔; 占晶; 谢玥; 蒋飞; 马耀进

    2011-01-01

    In order to investigate the effect of operational modes on shortcut nitrification in a biological aerated filter for treatment of ammonia nitrogen wastewater, three operational modes including continuous influent with alternating aeration, influent with aeration and no influent without aeration, and influent without aeration and no influent with aeration were carried out. Moreover, in the case of continuous influent with alternating aeration, the performances of the biological aerated filter were investigated at three time phase ratios of aeration to no aeration, which were 4:4,5:3 and 2 : 2 : 2 : 2. The experimental results show that the nitrite accumulation rate of more than 90% and the ammonia nitrogen removal rate of more than 70% can be achieved and maintained under the condition of continuous influent with alternating aeration, with influent ammonia nitrogen of 53 to 101 mg/L, temperature of 33 ℃ , HRT of 8 h, air to water ratio of 22.7 and aeration to no aeration ratio of 5 : 3. This research indicates that the biological aerated filter can realize shortcut nitrification with a higher ammonia nitrogen removal rate and a higher nitrite accumulation rate via controlling the operational modes.%为研究曝气生物滤池处理氨氮废水时运行方式对实现短程硝化的影响,进行了连续进水交替曝气、进水曝气停水停气和进水停气停水曝气3种运行方式试验,并考察了连续进水交替曝气条件下3种不同交替曝气时段分配比例,即曝气:停气分别为(4∶4)、(5∶3)、(2∶2∶2∶2)对系统运行效果的影响.结果表明,在连续进水交替曝气条件下,当进水氨氮为53 ~ 101 mg/L、温度为33℃、水力停留时间为8h、气水比为22.7、交替曝气时段分配比例为5:3时可实现并维持90%以上的亚硝酸盐氮积累率,此时对氨氮的去除率也在70%以上.研究表明,通过调控运行方式可较好地实现曝气生物滤池的短程硝化,并获得较高的氨

  17. The performance of a biological aerated filter loaded with a novel non-sintered fly-ash ceramsite as pretreatment for dual membrane processes.

    Science.gov (United States)

    Li, Lihua; Hu, Chaowu; Dai, Xiulan; Jin, Wenjie; Hu, Cheng; Ma, Fang

    2015-01-01

    This work focused on wastewater reclamation of secondary treated ethylene chemical plant effluent, which contained high conductivity and high organic concentration. To reduce the cost and improve operation stability, a biological aerated filter-ultrafiltration-reverse osmosis (BAF-UF-RO) process was proposed. The feasibility and effectiveness of BAF loaded with a novel non-sintered fly-ash ceramsite (NSFC) as a pretreatment method of a dual membrane system were investigated in detail. The results showed that the CODCr, turbidity, NH3-N and the silt density index (SDI) in the effluent from the BAF were reduced to 24.2 mg/L, 12.17 NTU, 0.42 mg/L and 7.52, respectively, and most of the organic compounds were biodegraded. The BAF-UF-RO process was stable with a recovery rate of 75%, and the desalination rate was up to about 97.5%. Compared with the UF-RO process, the operating pressure and backwash frequency decreased from 1.12-1.26 Mpa and 3 times/d to 0.94-0.98 Mpa and 2 times/d, respectively. After continuous operation for four months, there appeared to be no need for chemical cleaning of the RO membrane. Moreover, the analysis results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy proved that there was only slight membrane fouling, which was mainly colloidal blocking caused by refractory organic compound. PMID:25686627

  18. The feasibility of an up-flow partially aerated biological filter (U-PABF) for nitrogen and COD removal from domestic wastewater.

    Science.gov (United States)

    Tao, Chen; Peng, Tong; Feng, Chuanping; Chen, Nan; Hu, Qili; Hao, Chunbo

    2016-10-01

    An up-flow partially aerated biological filter (U-PABF) was developed to study the removal of nitrogen and chemical oxygen demand (COD) from synthetic domestic wastewater. The removal of NH4(+)-N was primarily attributed to adsorption in the zeolite U-PABF and to bioprocesses in the ceramic U-PABF. When the hydraulic retention time (HRT) was 5.2h, the ceramic U-PABF achieved a good performance and the NH4(+)-N, total nitrogen (TN), and COD removal efficiency reached 99.08±8.79%, 72.83±0.68%, and 89.38±1.04%, respectively. The analysis of NH4(+)-N, NO3(-)-N, NO2(-)-N, and TN at different depths revealed the simultaneous existence of nitrification-denitrification, and anaerobic ammonium oxidation (anammox) in ceramic U-PABF. Illumina pyrosequencing confirmed the existence of Planctomycetes, which are responsible for anammox. The results indicated that the nitrification-denitrification and anammox all contributed to the high removal of NH4(+)-N, TN, and COD in the U-PABF. PMID:27372011

  19. Biodegradation behavior of natural organic matter (NOM) in a biological aerated filter (BAF) as a pretreatment for ultrafiltration (UF) of river water

    KAUST Repository

    Huang, Guocheng

    2011-04-15

    In this study, biodegradation of natural organic matter (NOM) in a biological aerated filter (BAF) as pretreatment of UF treating river water was investigated. Photometric measurement, three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy and liquid chromatography with online organic carbon detector (LC-OCD) were used to investigate the fate of NOM fractions in the BAF+UF process. Results showed that the BAF process could effectively remove particles and parts of dissolved organic matter, which led to a lower NOM loading in the UF system, but different NOM fractions showed different biodegradation potentials. Further biodegradation batch experiments confirmed this observation and identified that polysaccharides and proteins (quantified using photometric methods) contained a large proportion of readily biodegradable matter while humic substances were mainly composed of inert organic substances. According to EEM measurements, it is evident that protein-like substances were more readily eliminated by microorganisms than humic-like substances. LC-OCD data also supported the phenomena that the polysaccharides and large-size proteins were more degradable than humic substances. © 2011 Springer-Verlag.

  20. PHOSPHORUS REMOVAL BY BIOLOGICAL AERATED FILTER THROUGH THREE CHEMICAL METHODS%三种投加方式化学强化BAF除磷的试验研究

    Institute of Scientific and Technical Information of China (English)

    李欣; 马营营; 董文艺

    2011-01-01

    Two-stage biological aerated filter process had a better removal of organic matter and nitrogen, but phosphorus removal is not effective,chemically enhanced phosphorus removal method is often adopted to achieve the standards. For this, the paper studied the pre-dosing, synchronization,post-dosing (FeCl3) chemically enhanced the effect of BAF for phosphorus removal. The results showed that: the best was pre-dosing, synchronizationwas better than post-dosing, but pre-dosing and post-dosing needed sedimentation tank, so synchronization was also a good way to meet TP effluentstandards.%两级曝气生物滤池串联工艺对有机物和氮的去除效果较好,但除磷效果不理想,常采取化学强化除磷的方法来达到排放标准.分别研究了前置、同步、后置铁盐( FeCl3)化学强化BAF进行化学除磷的效果.结果表明,前置除磷效果最好,同步好于后置,但考虑到前置和后置都得增加沉淀池,所以同步强化也是一种较好的方法,能够使出水TP达标.

  1. 曝气生物滤池处理石油采出水的动力学特性研究%Kinetic Performance of Oil-field Produced Water Treatment by Biological Aerated Filter

    Institute of Scientific and Technical Information of China (English)

    苏德林; 王建龙; 刘凯文; 周定

    2007-01-01

    The biological aerated filter (BAF) was used to treat the oil-field produced water. The removal efficiency for oil, COD, BOD and suspended solids (SS) was 76.3%-80.3%, 31.6%-57.9%, 86.3%-96.3% and 76.4%-82.7%, respectively when the hydraulic loading rates varied from 0.6m·h-1 to 1.4m·h-1. The greatest part of removal, for example more than 80% of COD removal, occurred on the top 100cm of the media in BAF. The kinetic performance of BAF indicated that the relationship of BOD removal efficiency with the hydraulic loading rates in biological aerated filters could be described by cr/ci=1-exp(-2.44/L0.59). This equation could be used to predict the BOD removal efficiency at different hydraulic loading rates.

  2. Advanced treatment of port cabin washing wastewater by integrated process ozonization-biological aerated filter-biological aerated filter%一体化O3-BAF—BAF组合工艺深度处理港口洗舱废水

    Institute of Scientific and Technical Information of China (English)

    葛启龙; 汪晓军

    2013-01-01

    采用一体化臭氧曝气生物滤池(O3-BAF)—曝气生物滤池(BAF)组合工艺对二级生化处理后的港口码头洗舱化学品废水进行深度处理,进水COD约为200~240 mg/L,色度为16~32倍时,经该工艺处理后出水COD<30mg/L,去除率>91%,色度降到4倍以下,出水水质达到《生活杂用水水质标准》(CJ/T48-1999)要求.工程运行实践表明,该深度处理系统运行稳定,处理效率高,具有良好的经济效益与环境效益.%The integrated ozonization-biological aerated filter-biological aerated filter combined process has been applied to the advanced treatment of port cabin washing wastewater after secondary biochemical treatment.When the COD of the influent is 200-240 mg/L,and chroma is 16-32 times,COD of effluent is reduced to less than 30 mg/L after treatment,the removing rate is more than 91%,and chroma is reduced to less than 4 times,reaching the specified Miscellaneous Domestic Water Quality Standard(CJ/T 48-1999).The result shows that the advanced treatment system runs stably,and has high treatment efficiency.It has great economic and environmental benefits.

  3. Study on Effect of Phosphorus Removal by Biological Aerated Filter Process%曝气生物滤池工艺除磷效果研究

    Institute of Scientific and Technical Information of China (English)

    王平; 张彩庆

    2011-01-01

    针对某电厂中水回用过程中的再生水深度处理工艺的选择,通过试验研究,分析了曝气生物处理工艺对废水的除磷效果,可为电厂设计和其它工程的实施提供参考和借鉴。%Aiming at the selection of advanced treatment in reclaimed water reuse for a power plant,to analyze the effect of aeration biological process on phosphorus removal from wastewater through experimental study,so as to provide re-ference for power plant design and other projects.

  4. Modification treatment of printing and dyeing wastewater from woolen mill with biological aerated filter process%曝气生物滤池工艺在毛纺印染废水升级提标改造中的应用

    Institute of Scientific and Technical Information of China (English)

    纪逸之

    2011-01-01

    The modification treatment of printing and dying wastewater from woolen mill with biological aerated filter (BAF) process is described. The design treatment capacity is 3 000 m3 per day. The results show that the wastewater can reach the Discharge Standard of Main Water Pollutants for Municipal Wastewater Treatment Plant & Key Industries of Taihu Area (DB32/T1072-2007)after the treatment.%介绍了曝气生物滤池(BAF)工艺在太湖地区毛纺印染废水升级提标改造中的应用,设计处理规模为3 000 m3/d.实践证明,通过该工艺改造后,毛纺印染废水出水水质达到(DB32/T1072-2007)的要求.

  5. 曝气生物滤池处理腈纶废水的启动性能研究%Research on the Start-up Performance of the Biological Aerated Filter for Treating Acrylic Water

    Institute of Scientific and Technical Information of China (English)

    卞吉良; 张洪林; 李长波; 马会强

    2011-01-01

    A bench scale experimental BAF was established, with which acrylic waste water was treated. The start-up law of BAF in treating the waste water containing acrylic was studied. Ceramsite was used as the filter in BAF. Under the conditions of the flow of 2SL/h, aeration rate of 40L/h, the removal rate of COD and ammonia was tested every day. The results demonstrated that the removal rate of COD was about 65% after 15 days; and the removal rate of ammonia was about 60% after 18 days. The result of the optical bio-microscope observation showed that the ecosystem with many kinds of different microbes and distinct biological phase distribution was formed in the BAF. Therefore, the course of biofilm formation and the degree of biological nitrification could be estimated by the change of removal rate of ammonia and COD during the course of the natural start-up of the BAF.%以曝气生物滤池(Biological Aerated Filter,BAF)净化腈纶废水为研究对象,研究了BAF处理腈纶废水的启动规律.试验以陶粒为滤料,在流量为25Lh,曝气量为40L/h的试验条件下,每天测试COD和氨氮的去除率变化情况.BAF对COD,氨氮有一定的去除效果.启动15d后,COD去除率达到65%;18d后,氨氮去除率达到60%以上.镜检表明,填料表面生物膜中均存在着多种微生物和明显的生物相分布.BAF挂膜过程中可以通过氨氮和COD去除率变化,来判断填料挂膜的进程和生物硝化作用进行的程度.

  6. 水力负荷对木炭填料生物滤池处理污水的影响%Effect of Hydraulic Loading on Charcoal Biological Aerated Filter for Treatment of Sewage

    Institute of Scientific and Technical Information of China (English)

    周爱姣; 陶涛; 边朝辉; 呼永锋

    2009-01-01

    Charcoal was adopted as filler in biological aerated filter and compared with ceramsite.The treatment efficiency of sewage under different hydraulic loading was investigated. The results show that change in hydraulic loading has little influence on removal of COD but has significant influence on nitrogen and phosphorus removal in both filters. The removal efficiency of ammonia nitrogen and TN in the charcoal filter is superior to that in ceramsite filter. When the hydraulic loading is 4 m~3/(m~3·d),the nitrogen removal efficiency is the best. Under this hydraulic loading, the ammonia nitrogen concentration in the effluent of charcoal filter and ceramsite filter is 4.7 mg/L and 7.7 mg/L with the removal rate of 80% and 65% respectively. By the comprehensive comparison of removal rates of COD, NH_4~+-N,TN and TP in the charcoal filter, the optimum hydraulic loading is 4 m~3/(m~3·d).%以木炭作为曝气生物滤池的填料,并与陶粒填料作对比,考察了其在不同水力负荷下对污水的处理效能.结果表明,改变水力负荷对两个反应器的出水COD影响不大,但对其脱氮除磷效果的影响较显著.木炭滤池对氨氮和TN的去除效果要好于陶粒滤池的,当水力负荷为4m~3/(m~3·d)时,两反应器的脱氮效果最佳,此时木炭和陶粒滤池的出水氨氮浓度分别为4.7、7.7mg/L(去除率分别为80%和65%).综合考虑木炭滤池对COD、NH_4~+-N、TN和TP的去除效果,确定其最佳水力负荷为4 m~3/(m~3·d).

  7. Application of Biological Aerated Filter in Municipal Wastewater Treatment Plant%曝气生物滤池在城镇污水处理厂中的应用

    Institute of Scientific and Technical Information of China (English)

    冯亚兵; 季叶飞

    2013-01-01

    苏南某城镇污水处理厂采用曝气生物滤池工艺,出水执行GB 18918-2002《城镇污水厂污染物排放标准》中一级A标准.介绍了工艺流程以及各处理单元设计参数,并对设计过程中着重考虑的问题以及调试运行情况进行了说明.%Biological aerated filter process is used in a municipal wastewater treatment plant in the south of Jiangsu Province. The effluent quality implements the first-grade A standard of "Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB18918—2002)". The process of the plant and the design parameters for every disposal unit were introduced, the problems emphatically considered in the design procedure and the commissioning operation were also explained.

  8. Research on denitrification performance of two-stage up-flow biological aerated filter%两段上向流曝气生物滤池脱氮性能的研究

    Institute of Scientific and Technical Information of China (English)

    杨长生

    2012-01-01

    The denitrification performance of two-stage up-flow biological aerated filter (UBAF) for treating municipal sewage has been studied. The effects of water temperature, hydraulic loading, organic volumetric loading, NH4+-N volumetric loading and air/water ratio of raw water on denitrification performance of UBAF are discussed. The results show that the influencing factor which has main effect on the denitrification effectiveness by UBAF is water temperature. With the increase of hydraulic loading,the UBAF denitrification effectiveness goes on a declining curve. When the air/water ratio is 2:1, the average removing effect of UBAF on NH4+-N and TN is the best.%对两段上向流曝气生物滤池(UBAF)处理城市污水的脱氮性能进行了研究,探讨了水温、水力负荷、有机容积负荷、NH4+-N容积负荷和气水比对UBAF脱氮性能的影响.试验结果表明:水温是影响UBAF去除脱氮效果的主要因素,随着水力负荷的升高,UBAF脱氮效果呈下降趋势,当气水比为2∶1时,UBAF对NH4+-N、TN的平均去除效果最好.

  9. 改性粉煤灰与厌氧-曝气生物滤池联合处理印染废水%The Treatment of Dyeing Wastewater With Fly Ash Modified Biological Aerated Filter Coupling

    Institute of Scientific and Technical Information of China (English)

    贾艳萍; 宗庆; 姜修平; 张羽汐; 袁志峰

    2014-01-01

    印染废水具有成分复杂、色度大、有机物含量高、水质变化大等特点,属于难生物降解工业废水。采用盐酸改性粉煤灰预处理与厌氧-曝气生物滤池( AF-BAF)联合工艺处理模拟印染废水,考察温度、pH、曝气量和HRT等因素对脱色率以及COD、NH+4-N、NO-3-N和NO-2-N去除率的影响。研究结果表明:在温度10℃,pH为10,曝气量为50 L/h,HRT为4 h,改性粉煤灰粒度为100~120目的条件下, COD、NH+4-N、NO-3-N和NO-2-N去除率分别为72%、58%、78%和52%,脱色率为90%,达到了国家工业废水排放标准。改性粉煤灰提高了AF-BAF对印染废水的脱色效果,同时对COD、NH+4-N、NO-3-N、NO-2-N的去除具有促进作用。%Dyeing wastewater,difficult to be biodegraded,is characterized by complicated component,dark col-ority,high concentration,water quality fluctuation,etc. Modified filter pretreatment of fly ash and anaerobic fil-ter-biological aerated filter(AF-BAF) is adopted to treat the dyeing wastewater to study the impacts of the facts such as temperature,pH,aeration,and HRT,etc on discoloration rate and the removal efficiency of COD、NH+4-N、NO-3-N and NO-2-N. The results showed that the removal efficiency of COD,NH+4-N,NO-3-N,and NO-2-N were 72%, 58%, 78%, and 52%, respectively under the condition of temperature 10 ℃, pH10 , aeration rate 50L/h,HRT 4h and the modified fly ash particle size was 100-120 mesh condition,the decolori-zation rate was 90%,reaching the national drainage standard for industrial waste water. The modified fly ash improved the decolorization of dyeing wastewater by AF-BAF,and promoted the removal of NH+4-N,NO-3-N, NO-2-N.

  10. 曝气生物滤池对邻苯二甲酸二己酯的生物降解试验%Experiment on biodegradation of dihexyl phthalate by biological aerated filter

    Institute of Scientific and Technical Information of China (English)

    赵晶; 余健; 李伟; 宋又群

    2012-01-01

    The present paper is aimed at introducing our study on the biodegradation features and relevant influencing factors of the biological aerated filter (BAF) for dihexyl phthalate (DHP) removal so as to find a new approach to pollution control of phthalic acid esters (PAEs). As is known, PAEs are a kind of environmental hormones which become widespread in our water environment and they have been in turn paid more and more attention to due to their teratogenici-ty, mutagenicity and carcinogenicity. DHP is one of the PAEs used widely for manufacturing plastics but contributes to the environmental pollution. Therefore, it is necessary for DHP to get biodegradated so as to remove and reduce its toxicity. It is for this purpose, ceramsite medium biological aerated filter (BAF) has been used to treat the sewage containing DHP. It is also for this purpose of the treatment efficiency that we have done investigations of the optimal temperatures in different empty bed contact time and analyzed the major intermediate products of biodegradation of DHP via GC - MS. The results of our investigation indicate that we have succeeded in increasing the removal rate of DHP to 95.5% under the conditions of 25 t and 8 hours of the empty bed contact time. We have also found that it is E-BCT that plays the main role between the two influential factors of the removal effect. At the lower-middle layer of the filter bed, DHP is more efficient in doing the biodegradation because there exists higher concentration of organic compounds and active microbes. However, things are just going on the contrary with the upper-middle layer in the filter bed. The major intermediate products of bio-degradation of DHP are made up of dibutyl phthalate ( DBP), monobutyl phthalate (MBP), dimethyl phthalate (DMP) and phthalic acid (PA). It is for this need, we have first of all cleavaged the long chain of the alcoholic ending of DHP into shorter and more straight ones by cleavaging one of the two ester bonds, and

  11. UASB-A/O-曝气生物滤池工艺处理聚丙烯酰胺废水%UASB-A/O-Biological Aerated Filter Process Treat Acryl Amide Production Wastewater

    Institute of Scientific and Technical Information of China (English)

    李本勇

    2013-01-01

    The asylums wastewater was treated with UASB-A/O-Biological aerated filter ,the quan-tity of wastewater is 120 m3/d .When the quality concentrations of COD ,BOD5 ,SS ,NH3-N in influent are 4140 ,1420 ,238 ,78 mg/l ,the quality concentrations of COD ,BOD5 ,SS ,N H3-N in effluent are 112 , 17 ,13 ,11 mg/l ,respectively ,which reach the second-class standard of the compensative sewage dis-charge standard .It has been proved by practice that the combined technique has strongpoint such as low investment ,little area ,steady operation effect ,low operation cost and recycled resources .%  UASB-A/O -曝气生物滤池组合工艺处理聚丙烯酰胺高浓度有机废水,设计规模为120m3/d。在进水COD、BOD、SS、NH3-N的质量浓度分别为4140、1420、238、78mg/l时,处理后出水COD、BOD、SS、NH3-N的质量浓度分别为112、17、13、11mg/l ,达到污水综合排放标准(GB 8978–1996)二级标准。工程实践表明,该组合工艺具有投资少,占地面积小、运行效果稳定、运行费用低等优点。

  12. 曝气生物滤池不同水质挂膜的实验研究%The experimental study on biofilm growing of Biological Aerated Filter with different raw water

    Institute of Scientific and Technical Information of China (English)

    宁艳春; 段巧丽; 蒲文晶; 钟大辉; 庄立波; 杜再江

    2011-01-01

    Appropriate biofilm growing method has the important meaning to fast start-up and the steady operation of the Biological Aerated Filter(BAF). The tests were compared by the different raw water conditions and different start-up methods. Mainly through COD removal rate,as well as contras-test analysis of the biofacies microscopic exam of the biofilm on the media of BAFs,found the appro-priate start-up method for the secondary clarifier effluent of sewage factory. The test results indicated that the start-up by the mixed sewage and the sanitary sewage is quicker than by the secondary clarifi-er effluent. But the biofilm formed by the secondary clarifier effluent is more stable with effective op-eration. This is more appropriate in the actual movement.%合适的挂膜方法对曝气生物滤池的快速启动和稳定运行具有重要意义.开展了不同原水条件下的挂膜启动和不同挂膜方法的对比实验.主要通过滤柱对COD指标的去除情况,以及滤料上生物膜的生物相镜检对比分析,找到适合处理污水厂二级出水的挂膜启动方法.实验结果表明,使用污水厂混合进水和生活污水启动挂膜速度要明显优于采用二沉池出水启动挂膜,但采用二沉池出水启动挂膜后滤料表面生物膜更稳定,在实际运行中更加合适.

  13. Towards integrated operation of membrane bioreactors: effects of aeration on biological and filtration performance.

    Science.gov (United States)

    Dalmau, M; Monclús, H; Gabarrón, S; Rodriguez-Roda, I; Comas, J

    2014-11-01

    Two experimental studies evaluated the effect of aerobic and membrane aeration changes on sludge properties, biological nutrient removal and filtration processes in a pilot plant membrane bioreactor. The optimal operating conditions were found at an aerobic dissolved oxygen set-point (DO) of 0.5 mg O2 L(-1) and a membrane specific aeration demand (SADm) of 1 m h(-1), where membrane aeration can be used for nitrification. Under these conditions, a total flow reduction of 42% was achieved (75% energy reduction) without compromising nutrient removal efficiencies, maintaining sludge characteristics and controlled filtration. Below these optimal operating conditions, the nutrient removal efficiency was reduced, increasing 20% for soluble microbial products, 14% for capillarity suction time and reducing a 15% for filterability. Below this DO set-point, fouling increased with a transmembrane pressure 75% higher. SADm below 1 m h(-1) doubled the values of transmembrane pressure, without recovery after achieving the initial conditions.

  14. 折流式曝气生物滤池设备的开发及应用研究%Development and application of baffled biological aerated filter equipment

    Institute of Scientific and Technical Information of China (English)

    何强; 陈雁玲; 梁建军; 王振涛; 王志宏; 谢光健

    2012-01-01

    A type of baffled biological aerated filter (BBAF) equipment was developed to treat small town sewage of Three Gorges Reservoir region. The good mechanical and hydraulic properties of the filter were achieved by integrating multi-stage series modular BAF in a concentric circle reactor. Under the operation with the design parameters, the average removal of the process of SS, COD, NH3-N,TN and TP were 76% , 83% , 97% , 26% and 45%, respectively. Higher gas-water ratio would improve COD and NH3-N removal while reduce TN and SS removal, and the proper gas-water ratio for the BBAF was 9. The removal of SS, COD, and NH3-N kept the same with the variation of treatment loading between 1. 5 m3/h and 3. 0 m3/h. The stable effluent water quality showed the anti-shock loading capability and strong applicability of the BBAF possesses to the small town sewage with large coefficient variation.%针对三峡库区小城镇生活污水处理特点,研发折流式曝气生物滤池(BBAF)设备,通过将多级串联组合式BAF集成在同心圆式反应器内,形成了良好的力学性能和水力条件.在设计参数下运行时,对SS、COD、NH3-N、TN和TP的平均去除率分别为76%、83%、97%、26%和45%.高气水比有利于COD和NH3-N的去除,但会削弱TN、SS的去除效能,BBAF适宜的气水比为9.当处理负荷在1.5~3.0 m3/h范围内变化时,SS、COD和NH3-N的平均去除率无明显波动,出水水质稳定,表明设备具有较强的抗冲击负荷能力,对小城镇污水量变化系数大的特点具有很好的适用性.

  15. 新型曝气生物滤池处理生活污水试验研究%Experimental Study on New-type Biological Aerated Filter for Domestic Sewage Treatment

    Institute of Scientific and Technical Information of China (English)

    司马卫平; 何强; 张玉平

    2012-01-01

    采用半柔性填料和酶促好氧填料的两段上向流曝气生物滤池(TUBAF)处理生活污水,考察了氨氮容积负荷和溶解氧对其处理效能的影响,并分析了BAF C段有机物的去除对BAFN段处理效果的影响.结果表明,在氨氮容积负荷为0.05 ~0.25 kg/( m3·d)的条件下,对氨氮的去除率为83.2% ~94.1%;BAF C段和BAF N段的最佳DO浓度分别为(2.0 ~3.0)和(3.0 ~5.0)mg/L,能够有效实现有机物和氨氮的去除;BAF C段对有机物的去除为BAF N段对氨氮的去除提供了较好的外部环境,成功地实现了BAF N段的硝化分区.%A two-stage up-flow biological aerated filter (TUBAF) with semi-soft media and enzyme-catalyzed aerobic media ( denoted by BAF-C and BAF-N respectively) was used to treat domestic sewage. The influence of ammonia nitrogen volumetric loading and dissolved oxygen concentration on the pollutant removal efficiency was investigated, and the contribution of the removal of organic matter in BAF-C to the treatment efficiency in BAF-N was analyzed. The experimental results showed that when the ammonia nitrogen volumetric loading was 0. 05 to 0. 25 kg/( m · d) , the removal rate of ammonia nitrogen was 83. 2% to 94. 1% . The organic matter and ammonia nitrogen could be effectively removed when dissolved oxygen concentrations in BAF-C and BAF-N were 2. 0 to 3.0 mg/L and 3.0 to 5. 0 mg/L respectively. The removal of organic matter in BAF-C provided a better external environment for the removal of ammonia nitrogen in BAF-N, and the nitrification in BAF-N was realized successfully.

  16. Advanced Treatment of Electroplating Wastewater by Biological Aerated Filter%曝气生物滤池用于电镀废水深度处理的研究

    Institute of Scientific and Technical Information of China (English)

    左鸣; 汪晓军; 李达宁

    2011-01-01

    Quality of electroplating wastewater from industrial park in Qingyuan City, Guangdong Province is complex, and wastewater quantity increases continuously, which is more than the original design value, resulting in the effluent quality can not meet the discharge standards. The biological aerated filter ( B AF) process was applied in advanced treatment of electroplating wastewater. The results show that when the ratio of air to water is 5 : 1 and the working volume of the reactor is 3 L, the optimum influent flow rate is 2 L/h namely the hydraulic retention time (HRT) of BAF is 1. 5 h. Under the conditions of that HRT, the removal rates of CN " and COD are more than 80% and about 60% respectively. When the influent concentrations of CN ~ and COD are equal to or less than 1.5 mg/L and 200 mg/L respectively , the effluent quality can reach the Emission Standard of Pollutants for Electroplating ( GB 21900 -2008). Based on the small-scale test, two sets of BAF are added after the existing process. Since the BAF system is put into operation for 2 months, it has stable treatment effect of the electroplating wastewater. The average removal rates of COD and CN" are 50% and 75% respectively. The cost of wastewater treatment is about 0. 3 yuan/m3. The BAF system has very wide application prospect in thetreatment of the electroplating wastewater.%广东省清远市某电镀工业园排放的废水水质复杂,且水量不断增加,较原设计值超出很多,导致处理后的出水水质达不到相关标准的要求.为此,采用曝气生物滤池(BAF)工艺对现有设施出水进行深度处理.试验结果表明,当气水比为5:1,BAF的有效容积为3L时,最佳的进水流量为2 L/h,即水力停留时间为1.5 h.在此条件下,对CN一的去除率达到80%左右,对COD的去除率稳定在60%左右,当进水CN-浓度≦1.5 mg/L、COD≦200 mg/L时,均可保证出水水质达到(GB 21900-2008).在小试的基础上于现有工艺后增加了2组BAF,工程正常运行2

  17. 曝气生物滤池处理高氨氮含铍废水研究%Treatment of Beryllium Containing Wastewater with High Ammonia Concentration by Biological Aerated Filters

    Institute of Scientific and Technical Information of China (English)

    孙芳; 孙卫玲

    2012-01-01

    含铍废水具有较高的毒性,目前关于其处理方法的研究较少.文章针对铍冶炼废水中铍超标以及高氨氮浓度的问题,选取接种有微生物的曝气生物滤池(BAF)工艺同时去除氨氮和铍,并分析其去除铍的机理.反应器系统的长期运行结果表明,BAF对高氨氮含铍废水具有较好的处理效果.在进水氨氮浓度200 mg/L,铍浓度50~100μg/L,停留时间24h条件下,处理出水氨氮浓度稳定在1.8~10.0 mg/L,铍浓度小于5μg/L.BAF主要通过系统中的微生物去除铍,载体对铍的吸附量较小,用Langmuir模型对吸附数据进行拟合,得到微生物对铍的吸附容量为684.9 μg/g.形态提取实验表明,被微生物去除的铍主要以有机结合态存在,且微生物细胞表面对铍的吸附量有限,大量的铍富集于微生物细胞内,为此,BAF对铍有长期稳定的处理效果.%Beryllium-containing waste water is of high toxicity, but there are limited researches concerning its treatment. Beryllium smelting wastewater contains high concentrations of beryllium and ammonia. Biological aerated filters (BAF), which was inoculated with microorganisms, was used to treat beryllium smelting wastewater, and the mechanisms involved were investigated. Results show that BAF could remove beryllium and ammonia simultaneously. When influent concentrations of ammonia nitrogen and beryllium were 200 mg/L and 50-100 μg/L respectively, HRT was 24 h, the concentration ammonia was in the range of 1.8~10.0 mg/L, and beryllium concentration was less than 5 μg/L in the effluent. The removal of beryllium was mainly attributed to the microorganisms in BAF, and the maximum uptake of beryllium by microorganisms calculated by Langmuir equation was 684.9 μg/g. The beryllium removed by BAF was mainly combined to organic fraction. Moreover, large amount of beryllium accumulated inside the cell with limited biosorption by the external surface of microorganisms. Therefore, high removal

  18. Combined process of biological aerated filter for the advanced treatment of recycled water reuse in thermal power plants%曝气生物滤池组合工艺深度处理中水回用于火电厂

    Institute of Scientific and Technical Information of China (English)

    张文耀

    2014-01-01

    介绍了内蒙古市政污水处理厂二级生物处理后的中水的深度处理工艺(机械搅拌澄清池和曝气生物滤池的组合工艺)流程和进出水水质情况,分析了机械搅拌澄清池和曝气生物滤池的工艺特点。经深度处理后,出水COD、氨氮、总磷等水质指标均显著降低,完全符合回用要求,能够满足火电厂生产需要。实践表明,该处理工艺可缓解水资源紧张的现状,有着广泛的应用前景。%The advanced treatment process flow (combined mechanical stirring clarification pool+biological aerated filter process) of the recycled water after being treated by secondary biological treatment in Inner Mongolia Munici-pal Sewage Treatment Plant and the situation of its influent and effluent water quality are introduced. The technolog-ical characteristics of the stirring clarification pool and biological aerated filter are analyzed. After the advanced treatment,the water quality indexes,such as the effluent COD,ammonia nitrogen,total phosphorus,etc.,are all de-creased obviously,meeting completely the reuse requirements and satisfying the production needs of thermal power plants. Practice results show that the treatment process can ease the water resource shortage situation ,having wide application prospect.

  19. 水渣滤料-曝气生物滤池去除生活污水中污染物的效能研究%Research on Removal Efficiency of Contamination in Domestic Sewage by Water Quenched Slag Filter Medium Biological Aerated Filter

    Institute of Scientific and Technical Information of China (English)

    于衍真; 韩雯雯; 毕于顺; 冯岩

    2011-01-01

    为解决水渣对环境的污染及综合利用的问题,以水渣为主要原料,添加黏结剂和成孔剂,经混合、成球、养护制成免烧型水渣滤料.在直径为150mm,滤料层高为1500mm的水渣滤料曝气生物滤池(WBAF)中处理生活污水.结果表明,在温度为20~27℃,pH为7.0~8.0,气水比为5:1,进水ρCONDcr=167.58mg/L、浊度=34.60NTU、ρ(NH4^+-N)=36.45mg/L时,相应的出水指标为PCODcr=37.73mg/L、浊度=7.57NTU、ρ(NH4^+-N):5.39mg/L,符合国家污水综合排放标准(GB8978-1996)一级标准.氨氮去除效果明显是因为水渣滤料能溶出碱性物质,为硝化反应提供了碱度.%In order to dipose of the enviromental pollution caused by blast furnace water quenched slag and its comprehensive utilization, water quenched slag was adopted as dominating material mixed with bond and poreforming agent by commingle, conglobate and conseve to make avoiding-burning water quenchde slag filter medium. A pilot scale Water quenched slag filter medium Biological Aerated Filter (WBAF) of 150 mm in diameter and 1 500 mm in media height was tested to treat domestic Sewage. The results showed that PCODcr, = 37.73 mg/L,turbidity = 7.57 NTU,ρ(NH4^+-N) 5.39 mg/L when the corresponding influent concentration was 167.58 mg/L,34.60 NTU ,36.45 mg/L, respectively, under the conditions of T = 20 - 27 ℃ , pH = 7.0 - 8.0 and gas/ liquid = 5: 1. The quality indexes of the domestic sewage after treatment conform with the national discharge standards. The water quenched slag filter medium has higher ammonia nitrogen removal efficiency that because it can sufficiently supply alkalinity by dissolving alkaline substances.

  20. THE RESEARCH ON THE START-UP OF CAMPUS SEWAGE TREATMENT WITH TWO-STAGE BAMBOO CHARCOAL BIOLOGICAL AERATED FILTER%2级竹炭曝气生物滤池处理校园污水的启动性能研究

    Institute of Scientific and Technical Information of China (English)

    朱雷; 季芳芳; 江小林

    2012-01-01

    The study focused on the start rule of the two-stage bamboo charcoal biological up-flow aerated filters in the treatment of campus domestic wastewater. Using the two levels of biological aerated filters connected in series, The compound inoculation is used to start the BAF. The design time is 31 d to accomplished the forming bio-film and discuss the removal performance of COD, BOD, and NH3-N. Because the bamboo charcoal has certain adsorption, so do the blank test to verify the adsorption efficiency of COD. The results show that: after 15 d, the COD and BOD, removal efficiency can reach stability above 80%.The change in the content of NHrN with further research, the removal rate is above 70%. The result of the experiment shows that the biological film starting is successfully.%研究了上流式2级竹炭曝气生物滤池(UBAF)处理校园生活污水的启动规律.利用2级曝气生物滤池串联的方式,采用复合式接种挂膜的方法对曝气生物滤池进行挂膜启动.设计挂膜时间为31d,探讨了挂膜过程中COD、BOD5以及NH3-N随时间的变化规律.由于竹炭本身具有一定吸附性,因此以空白试验验证其对COD的吸附效率.结果表明,在挂膜开始的第15天,COD与BOD5的去除率均达到80%以上,进一步以NH3-N含量变化研究,其去除率达到70%以上.表明此时曝气生物滤池挂膜启动成功.

  1. 填料对新型曝气生物滤池污水处理效能试验研究%Experimental Study on the Filling to the Performance of New-Type Biological Aerated Filter for Domestic Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    司马卫平; 龙剑波

    2011-01-01

    采用新型酶促厌氧填料、半软性填料、酶促好氧填料和PYC挂膜陶粒填料对两段错向流曝气生物滤池反应器进行污水处理试验研究,分析了4种填料对反应器污水处理效能的贡献并为反应器填料的选择提供科学依据.结果表明,以半软性填料和酶促好氧填料为组合填料的两段错向流曝气生物滤池反应器污水处理效能均优于其它填料.%A two-sect up and down flow biological aerated filter (TUDBAF), with enzyme-enhanced anaerobic bio-filling, semi-soft filling, enzyme-enhanced aerobic bio-filling and PYC filling, was used to treat domestic wastewater. It studied the effectiveness of the four types filling on the wastewater treatment reactor to provide scientific basis for the choice of filling. The results show that performance of TUDBAF with semi-soft filling and enzyme-enhanced aerobic bio-filling are superior to other fillings.

  2. Removing Iron and Manganese Simultaneously from Ground Water Using One-stage Biological Filter

    Institute of Scientific and Technical Information of China (English)

    XUE Gang; GAO Pin; GONG Qing-jie

    2009-01-01

    A novel process for removing iron and manganese simultaneously in ground water, which consisted of simple aeration and one-stage filtration, was developed in this research. It was found that the biological process had much higher manganese removal efficiency than chemical contact oxidation process. At the same time, the optimal operation parameters of aeration and biological filtration such as DO concentration and pH after aeration, filtration rate before and after startup, filtration operation cycle and backwashing rate, etc., were also obtained by experiments. By analyzing water quafity in different positions of filter bed, it was found that the oxidation of Fe2+ in biological filter bed adapted to first-order reaction, whereas the oxidation of Mn2+ conformed to zero-order reaction, which could be explained by Michaelis-Menten enzyme reaction equation when substrate concentration was far more than bacteria amount.

  3. [Numerical simulation and operation optimization of biological filter].

    Science.gov (United States)

    Zou, Zong-Sen; Shi, Han-Chang; Chen, Xiang-Qiang; Xie, Xiao-Qing

    2014-12-01

    BioWin software and two sensitivity analysis methods were used to simulate the Denitrification Biological Filter (DNBF) + Biological Aerated Filter (BAF) process in Yuandang Wastewater Treatment Plant. Based on the BioWin model of DNBF + BAF process, the operation data of September 2013 were used for sensitivity analysis and model calibration, and the operation data of October 2013 were used for model validation. The results indicated that the calibrated model could accurately simulate practical DNBF + BAF processes, and the most sensitive parameters were the parameters related to biofilm, OHOs and aeration. After the validation and calibration of model, it was used for process optimization with simulating operation results under different conditions. The results showed that, the best operation condition for discharge standard B was: reflux ratio = 50%, ceasing methanol addition, influent C/N = 4.43; while the best operation condition for discharge standard A was: reflux ratio = 50%, influent COD = 155 mg x L(-1) after methanol addition, influent C/N = 5.10. PMID:25826934

  4. Submerged aerated bio-filter (SAB)--a post treatment option for UASB effluent treating sewage.

    Science.gov (United States)

    Sudhir, Padigala; Gaur, Rubia Zahid; Khan, Abid Ali; Kazmi, A A; Mehrotra, Indu

    2013-07-01

    This paper presents exploratory results of the performance of submerged aerated bio-filter (SAB-1.5 L) for the post treatment of UASB effluent treating sewage in order to bring the effluent quality in compliance with discharge standards. The study was carried out in three stages with varied dissolved oxygen (DO) levels of 0 to 2.0, 2.0 to 4.0, 4.0 to 6.0 and > 6.0 mg/L. The hydraulic retention time (HRT) and hydraulic loading rate (HLR) were maintained 0.67 h & 0.1 m3/ m2 x h respectively in all stage of study. The performance in terms of BOD removal efficiency was increased with increase in DO levels. Results revealed that the average BOD and SS removal efficiencies in phases 3 and 4 were 51.3 and 59.5% and 58.8 and 67.5% respectively. Significant ammonical nitrogen (NH4-N) removal of 60% was observed in phase 4. The BOD and SS in phases 3 and 4 were reduced to well below the effluent disposal standards. The SAB at DO ≥ 4 mg/L can be considered a viable alternative for the post treatment of effluent from UASB treating domestic wastewater.

  5. EXPERIMENTAL STUDY ON THE CHARACTERISTICS OF TWO-STAGE BAMBOO CHARCOAL MEDIA BIOLOGICAL AERATED FILTER IN THE TREATMENT OF DOMESTIC SEWAGE%2级竹炭曝气生物滤池处理生活污水试验研究

    Institute of Scientific and Technical Information of China (English)

    朱雷; 裴玉娇

    2011-01-01

    Two-Stage bamboo charcoal media biological aerated filter could be used in the treatment of domestic wastewater by studying the characteristics of it.When the first stage air/water ratio was 4:1, the second stage air/water ratio was 1:1, the hydraulic loading was 0.5 m3·m-2·h-1, and the water temperature was 25.8 to 33.4 ℃ ,the treatment efficiency of the system was high, Removal efficiencies of COD, turbidity, NH3-N, TN, TP reached 88.24%, 92.80%, 81.69%, 40.30%, respectively.The effluent of COD less than 50 mg·L-1, the turbidity less than 10 NTU,ρ (NH3-N)< 15 mg·L-l, the treated effluent met the water reusing standard.%研究了以竹炭为填料的2级上向流曝气生物滤池工艺处理生活污水的性能及污染物沿滤池高度的降解规律,确定了该工艺以竹炭为填料的可行性和运行参数.结果表明,当一级、二级气水体积比分别为4:1、1:1,水力负荷为0.5m3·m-2·h-1,温度为25.8~33.4℃,COD、浊度、氨氮、TN去除率分别为88.24%、92.80%、81.69%、40.30%.出水COD<50mg·L-1,浊度均<10NTU,氨氮的质量浓度<15mg·L-1,满足中水回用标准.

  6. Effect of aeration modes on the characteristics of composting emissions and the NH3 removal efficiency by using biotrickling filter.

    Science.gov (United States)

    Wu, Chuanfu; Wang, Qunhui; Sun, Xiaohong; Xue, Niantao; Liu, Shu; Xie, Weimin

    2011-08-01

    A pilot biotrickling filter (BTF) packed with ZX02 fibrous balls as packing material was tested for the treatment of ammonia (NH(3)) released from a composting plant of dairy manure. In order to investigate the effects of three compost aeration modes (mode Co-I, Co-II and In-II) on the NH(3) removal efficiency, a field experiment was continuously carried out for more than eight months. The results demonstrated that under the intermittent aeration mode (In-II), the NH(3) removal efficiency reached 99.2±0.1% when the inlet NH(3) concentration was 7.5-32.3mg m(-3) (9.8-42.5ppmv). The maximum and critical elimination capacity of the biotrickling filter was 22.6 and 4.9g NH(3)m(-3)h(-1), respectively. The effluent concentration of NH(3) was lower than 1.0mg m(-3), which meets the first class discharge standards of GB14554-93. When the concentration of free ammonia in the trickling liquid was varied from 0.1 to 0.4mg L(-1), the nitrification yield was between 47.9% and 103.8%. In addition, the optimum liquid tricking velocity (LTV) of the biotrickling filter was 0.5m(3)m(-2)h(-1) for low inlet concentrations and 2.2m(3)m(-2)h(-1) for high inlet concentrations. Therefore, the use of the biotrickling filter for the compost under the third aeration mode (In-II) yielded an effective optimum NH(3) removal and reduced the nitrogen loss in the compost.

  7. Modeling the Performance of Biological Rapid Sand Filters Used to Remove Ammonium, Iron, and Manganese From Drinking Water

    DEFF Research Database (Denmark)

    Lee, Carson; Albrechtsen, Hans-Jørgen; Smets, Barth F.;

    Although biological rapid sand filters are a well established technology for treating drinking water, there is still a lack of scientific understanding of the processes controlling their performance. For example, the distribution and role of microorganisms in contaminant removal in the filter has...... filter management to performance . Biological rapid sand filters are used for the dual purpose of particle removal (including microorganisms) and contaminant removal through biological activity on the filter media. For drinking water treatment in the United States, biological filters use granular...... for chlorine addition following treatment. Under the normal conditions found in many water treatment plants, reduced iron can be oxidized through aeration and the precipitates can be captured by the filter media. Ammonium and manganese can be removed biologically. This research uses both pilot and full scale...

  8. [Biocenotic dynamics of liquid sewage in the process of its biological purification at aeration stations].

    Science.gov (United States)

    Kalina, G P; Vinogradova, L A; Gipp, E K

    1975-08-01

    A study was made of biological purification of sewage at the aeration stations on the quantitative composition of the main indicator microbes--of bacteria of the coliform group and of the fecal coliform bacilli, enterococci, Proteus, and also pathogenic enterobacteria. There was found a difference in the behaviour of different species of Proteus, i.e. reduction in the process of purification in the numbers of Pr. mirabilis, and a sharp elevation of Pr. morganii content. There was noted an insignificant amount of Pr. vulgaris both before and after the biological purification. It was found that dynamics of biocenosis was influenced by air temperature at the time of collection of the samples. A possibility of reproduction of coliform bacilli serving as one of the factors of autopurification of sewage during the biological purification was confirmed.

  9. A biological oil adsorption filter

    Energy Technology Data Exchange (ETDEWEB)

    Pasila, A. [University of Helsinki (Finland). Dept. of Agricultural Engineering and Household Technology

    2005-12-01

    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore. (author)

  10. STUDY ON APPLICATION OF AERATION BIOLOGICAL FLUID TANK TECHNOLGY IN NH4+—N WASTE WATER TREATMENT

    Institute of Scientific and Technical Information of China (English)

    CHENYi; LUJian-guo

    2003-01-01

    This paper introduces an application of "Aeration biological fluid tank"technology (ABFT) for the treatment of waste water containing NH4+-N and high concentrated chemicals.Highlights were focused on the effects of dissolved oxygen,pH,temperature and retention time on waste water bilogical treatment in order to find out a new approach in treatment of waste time on containing high concentrated NH4+-N.

  11. Photosynthetic aeration in biological wastewater treatment using immobilized microalgae-bacteria symbiosis.

    Science.gov (United States)

    Praveen, Prashant; Loh, Kai-Chee

    2015-12-01

    Chlorella vulgaris encapsulated in alginate beads were added into a bioreactor treating synthetic wastewater using Pseudomonas putida. A symbiotic CO2/O2 gas exchange was established between the two microorganisms for photosynthetic aeration of wastewater. During batch operation, glucose removal efficiency in the bioreactor improved from 50% in 12 h without aeration to 100% in 6 h, when the bioreactor was aerated photosynthetically. During continuous operation, the bioreactor was operated at a low hydraulic retention time of 3.3 h at feed concentrations of 250 and 500 mg/L glucose. The removal efficiency at 500 mg/L increased from 73% without aeration to 100% in the presence of immobilized microalgae. The initial microalgae concentration was critical to achieve adequate aeration, and the removal rate increased with increasing microalgae concentration. The highest removal rate of 142 mg/L-h glucose was achieved at an initial microalgae concentration of 190 mg/L. Quantification of microalgae growth in the alginate beads indicated an exponential growth during symbiosis, indicating that the bioreactor performance was limited by oxygen production rates. Under symbiotic conditions, the chlorophyll content of the immobilized microalgae increased by more than 30%. These results indicate that immobilized microalgae in symbiosis with heterotrophic bacteria are promising in wastewater aeration.

  12. 去除致嗅物质的不同填料曝气生物滤池的启动特性与去除效果比较%Comparison of Start-up Characteristics and Odorant Removal Efficiencies of Biological Aerated Filters Different in Filling

    Institute of Scientific and Technical Information of China (English)

    吴媛媛; 杨宁宁; 邓超; 文湘华; 闫海; 孙体昌

    2013-01-01

    搭建了填料分别为生物陶粒(CPs)和颗粒活性炭(GAC)的2个曝气生物滤池(BAF)反应器,通过考察土嗅素和2-甲基异崁醇(2-MIB)这2种致嗅物质的去除效果和稳定周期,研究不同填料BAF的启动与挂膜特性.结果表明,在相同进水条件下,2种填料BAF去除溶解性总有机碳(DOC)的效率无明显差异,均在24d时达到稳定,且DOC去除率均基本稳定在70%以上.2种填料BAF去除土嗅素和2-MIB所需的启动时间有较大差异,CPs-BAF启动时间分别为30和26 d,而GAC-BAF启动时间分别为62和43 d.GAC-BAF和CPs-BAF对土嗅素的去除率分别稳定在约95%和69%,前者的去除率和稳定性明显高于后者;GAC-BAF和CPs-BAF对2-MIB的去除率分别稳定在约75%和73%,两者相差不大,但前者的稳定性强于后者.%Two biological aerated fiher (BAF) reactors using different fillings,separately,i.e.ceramic pellets (CPs)and granular active carbon (GAC),were built and used to remove geosmin and 2-MIB from water.Further,their startup characteristics were investigated by comparing odorant removal efficiencies and start-up time.At the same influent water,the two BAFs were quite similar in dissolved organic carbon (DOC) removal efficiency and both removal rates stabilized over 70% in 24 days.However,the two BAFs differed significantly in start-up time for removing geosmin and 2-MIB,separately,i.e.30 and 26 days respectively in CPs-BAF and 62 and 43 days respectively in GAC-BAF.Moreover,the geosmin removal rates in GAC-BAF and CPs-BAF were stable at about 95% and 69%,respectively,and the rate and stability for geosmin removal of the former was obviously higher than of the latter.And the removal rates of 2-MIB in GAC-BAF and CPs-BAF were similar to each other and stable at about 75% and 73%,respectively,but the stability of the former was higher than of the latter.

  13. Biological removal of iron and manganese in rapid sand filters - Process understanding of iron and manganese removal

    DEFF Research Database (Denmark)

    Lin, Katie

    to precipitation and corrosion. Manganese and iron can either be removed physico-chemically or biologically or combined. The physico-chemical oxidation and precipitation of manganese can theoretically be achieved by aeration, but this process is slow unless pH is raised far above neutral, making the removal...... of manganese by simple aeration and precipitation under normal drinking water treatment conditions insignificant. Manganese may also be oxidized autocatalytically. Iron is usually easier to remove. First, iron is rapidly chemically oxidized by oxygen at neutral pH followed by precipitation and filtration......-filter, where iron is removed. Step 2: Filtration in an after-filter where e.g. ammonium and manganese is removed. The treatment relies on microbial processes and may present an alternative, greener and more sustainable approach for drinking water production spending less chemicals and energy than chemical (e...

  14. Evaluating Biological Treatment Systems: (i) Moving Bed Biofilm Reactor versus Biological Aerated Filtration, and (ii) Sulfide-Induced corrosion in Anaerobic Digester Gas Piping

    OpenAIRE

    Asiedu, Kofi

    2001-01-01

    The research presented in this report is in two sections. Section I involved the performance of a moving bed biofilm reactor (MBBR) versus a biological aerated filtration (BAF) and Section II involved study on causes of deposition in anaerobic digester gas piping. The first section evaluated and compared the performance of a laboratory-scale MBBR and BAF for organic carbon and suspended solids removal. A kinetic study was also performed on the MBBR to evaluate the system performance. T...

  15. EFFECT OF PARTICLE SIZE AND AERATION ON THE BIOLOGICAL DELIGNIFICATION OF CORN STRAW USING Trametes sp 44

    Directory of Open Access Journals (Sweden)

    Samuel Quintanar Gómez,

    2011-11-01

    Full Text Available Straw is an agricultural byproduct that can be utilized to obtain bioethanol without affecting animal or human sustinence. This process involves recovering the sugars and reducing the lignin content present through the use of ligninolytic fungi such as the basidiomycete Trametes sp. 44. Fermentation was carried out using particle sizes 4 (4.76 mm, No. 4 sieve and 8 (2.30 mm, No. 8 sieve, and two velocities of airflow (100 and 200 mL/min. Study results showed that particle size affected the production of hydrolytic enzymes, as particle size 8 favored the expression of cellulases and hemicellulases. In addition, both aeration and particle size affected the expression of ligninolytic enzymes, as it was observed that with particle size 8 and airflow of 200 mL/min, the study detected 63 AU/mL of LiP and 11 AU/mL of MnP. In the case of laccase, the enzymatic activity detected reached 220 AU/mL using particle size 8 and an airflow velocity of 200 mL/min. Statistical analysis indicated that the treatment that produced the highest biological delignification occurred when Trametes sp. 44 was grown on corn straw at particle size 4 and airflow of 100 mL/min, conditions that yielded 34% delignification at day 12 of fermentation.

  16. Noise Filtering and Prediction in Biological Signaling Networks

    CERN Document Server

    Hathcock, David; Weisenberger, Casey; Ilker, Efe; Hinczewski, Michael

    2016-01-01

    Information transmission in biological signaling circuits has often been described using the metaphor of a noise filter. Cellular systems need accurate, real-time data about their environmental conditions, but the biochemical reaction networks that propagate, amplify, and process signals work with noisy representations of that data. Biology must implement strategies that not only filter the noise, but also predict the current state of the environment based on information delayed due to the finite speed of chemical signaling. The idea of a biochemical noise filter is actually more than just a metaphor: we describe recent work that has made an explicit mathematical connection between signaling fidelity in cellular circuits and the classic theories of optimal noise filtering and prediction that began with Wiener, Kolmogorov, Shannon, and Bode. This theoretical framework provides a versatile tool, allowing us to derive analytical bounds on the maximum mutual information between the environmental signal and the re...

  17. Biological manganese oxidation by Pseudomonas putida in trickling filters.

    Science.gov (United States)

    McKee, Kyle P; Vance, Cherish C; Karthikeyan, Raghupathy

    2016-06-01

    Biological oxidation has been researched as a viable alternative for treating waters with high manganese (Mn) concentrations, typically found in mine drainage or in some geological formations. In this study, laboratory-scale trickling filters were constructed to compare the Mn removal efficiency between filters inoculated with the Mn oxidizing bacteria, Pseudomonas putida, and filters without inoculation. Manganese oxidation and removal was found to be significantly greater in trickling filters with Pseudomonas putida after startup times of only 48 h. Mn oxidation in Pseudomonas putida inoculated trickling filters was up to 75% greater than non-inoculated filters. One-dimensional advective-dispersive models were formulated to describe the transport of Mn in trickling filter porous media. Based on the experimental transport parameters obtained, the model predicted that a filter depth of only 16 cm is needed to reduce influent concentration of 10 mg L(-1) to 0.05 mg L(-1). PMID:26943637

  18. 间歇曝气和连续曝气对生物脱氮除磷效果的比较%Biological Nitrogen and Phosphorus Removal Efficiency by Intermittent Aeration and Continues Aeration Compared

    Institute of Scientific and Technical Information of China (English)

    潘敏; 黄晓鸣

    2015-01-01

    采用序批式生物反应器SBR系统,考察反应阶段的间歇曝气和连续曝气对模拟生活废水中氮和磷的去除效果。研究表明: IASBR和SBR对NH4+-N的去除率分别为99�30%和98�73%;对PO3-4-P的去除率分别为97�02%和67�47%。间歇曝气SBR对氨氮和磷酸根的去除率比连续曝气SBR高,有利于实现强化生物脱磷过程。间歇曝气SBR出水中氮、磷和COD浓度均达到了我国城镇污水处理厂污染物排放标准(GB 18918—2002)一级标准。%Biological nitrogen and phosphorus removal was investigated by an intermittently aerated sequencing batch reactor IASBR and a sequencing batch reactor SBR . The removal efficiencies of ammonium⁃nitrogen NH4+⁃N were 99�30% and 98�73% respectively in IASBR and SBR in steady operation while phosphorus PO3-4 ⁃P removal efficiencies were 97�02% and 67�47% in IASBR and SBR respectively. The intermittent aeration pattern has better effect for biological phosphorus removal. Effluent NH4+⁃N PO3-4 ⁃P and COD concentrations in the IASBR meets ChinaⅠEmission Standards.

  19. 间歇曝气和连续曝气对生物脱氮除磷效果的比较%Biological Nitrogen and Phosphorus Removal Efficiency by Intermittent Aeration and Continues Aeration Compared

    Institute of Scientific and Technical Information of China (English)

    潘敏; 黄晓鸣

    2015-01-01

    Biological nitrogen and phosphorus removal was investigated by an intermittently aerated sequencing batch reactor IASBR and a sequencing batch reactor SBR . The removal efficiencies of ammonium⁃nitrogen NH4+⁃N were 99�30% and 98�73% respectively in IASBR and SBR in steady operation while phosphorus PO3-4 ⁃P removal efficiencies were 97�02% and 67�47% in IASBR and SBR respectively. The intermittent aeration pattern has better effect for biological phosphorus removal. Effluent NH4+⁃N PO3-4 ⁃P and COD concentrations in the IASBR meets ChinaⅠEmission Standards.%采用序批式生物反应器SBR系统,考察反应阶段的间歇曝气和连续曝气对模拟生活废水中氮和磷的去除效果。研究表明: IASBR和SBR对NH4+-N的去除率分别为99�30%和98�73%;对PO3-4-P的去除率分别为97�02%和67�47%。间歇曝气SBR对氨氮和磷酸根的去除率比连续曝气SBR高,有利于实现强化生物脱磷过程。间歇曝气SBR出水中氮、磷和COD浓度均达到了我国城镇污水处理厂污染物排放标准(GB 18918—2002)一级标准。

  20. Effect of a biological activated carbon filter on particle counts

    Institute of Scientific and Technical Information of China (English)

    Su-hua WU; Bing-zhi DONG; Tie-jun QIAO; Jin-song ZHANG

    2008-01-01

    Due to the importance of biological safety in drinking water quality and the disadvantages which exist in traditional methods of detecting typical microorganisms such as Cryptosporidium and Giardia,it is necessary to develop an alternative.Particle counts is a qualitative measurement of the amount of dissolved solids in water.The removal rate of particle counts was previously used as an indicator of the effectiveness of a biological activated carbon(BAC)filter in removing Cryptosporidium and Giardia.The particle counts in a BAC filter effluent over one operational period and the effects of BAC filter construction and operational parameters were investigated with a 10 m3/h pilot plant.The results indicated that the maximum particle count in backwash remnant water was as high as 1296 count/ml and it needed about 1.5 h to reduce from the maximum to less than 50 count/ml.During the standard filtration period,particle counts stay constant at less than 50 count/ml for 5 d except when influ-enced by sand filter backwash remnant water.The removal rates of particle counts in the BAC filter are related to characteristics of the carbon.For example,a columned carbon and a sand bed removed 33.3% and 8.5% of particles,respectively,while the particle counts in effluent from a cracked BAC filter was higher than that of the influent.There is no significant difference among particle removal rates with different filtration rates.High post-ozone dosage(>2 mg/L)plays an important role in particle count removal;when the dosage was 3 mg/L,the removal rates by carbon layers and sand beds decreased by 17.5% and increased by 9.5%,respectively,compared with a 2 mg/L dosage.

  1. The Application of Serf-made Microporous Aeration Device in the Coking Biological Dephenol System%自制微孔曝气装置在焦化生物脱酚系统上的应用

    Institute of Scientific and Technical Information of China (English)

    徐庆阳; 韩冰

    2011-01-01

    The self-made microporous aeration device was adopted as a substitution for the original stand pipe aeration device in the coking biological dephenol system in order to obtain a uniform aeration quantity and meet the requirements. After several years of operation, the aeration quantity achieved the technological requirements completely. The sludge settlement ratio increased as well. Comparing with the mature nylon nets microporous aeration device, the self-made pore aeration device saved cost and was easy to maintain.%针对焦化废水生物脱酚系统溶解氧过低的问题,通过淘汰原有竖管曝气装置,采用自制微孔曝气装置,使曝气量完全达到工艺要求,同时污泥沉降比得到提高,相比成熟的尼龙网微孔曝气装置,节约成本,便于维护.

  2. Biological drinking water treatment of anaerobic groundwater in trickling filters

    NARCIS (Netherlands)

    De Vet, W.W.J.M.

    2011-01-01

    Drinking water production from anaerobic groundwater is usually achieved by so called conventional techniques such as aeration and sand filtration. The notion conventional implies a long history and general acceptation of the application, but doesn’t necessarily mean a thorough understanding of the

  3. Biological Aerated Filter(BAF) in the Treatment of Waste–water from Blueberry Wine%曝气生物滤池(BAF)在处理蓝莓果酒废水中的应用

    Institute of Scientific and Technical Information of China (English)

    李凤林; 赵春娟; 刘磊

    2011-01-01

    Blueberry wine production waste–water of water quality,water quantity seasonal differences are large,higher concentrations of pollutants,in the case of concentrated organic wastewater,emissions will directly cause serious pollution to the environment.By using Biological Aerated Filter technology,CODcr,BOD5 and SS in waste–water removal rate up to 95%,97% and 89% respectively.System is stable,better handling.%蓝莓果酒生产废水的水质、水量季节性差异很大,污染物浓度较高,属中浓度有机废水,直接排放将对环境造成严重污染。采用曝气生物滤池工艺废水中CODcr、BOD5、SS去除率分别可达95%、97%、89%,系统运行稳定,处理效果较好。

  4. 水解酸化-接触氧化-BAF深度处理学生公寓污水%HYDROLYTIC ACIDIFICATION BIO-CONTACT OXIDATION AND BIOLGICAL AERATED FILTERS PROCESS FOR REUSING TREATMENT OF STUDENT HOSTEL SEWAGE

    Institute of Scientific and Technical Information of China (English)

    杨署军; 黄瑞敏; 付少彬; 刘珍

    2012-01-01

    Student hostel sewage of an middle school in Guangzhou was analyzed, and it was disposed by hydrolytic acidification-biocontact oxidation and biological aerated filters process. Chemical oxygen demand(COD), biological oxygen demand(BOD), linear alklybezerje sulfonates (LAS), mixed liquor suspended solids(SS) and ammonia nitrogen in the effluent were about 16.3 mg/L, 5.03 mg/L, 0.35 mg/L, 8.59 mg/L and 0.38 mg/L, respectively. Reuse water can be used for landscape lake, irrigating greenbelt and flushing toilets, and the water quality can achieve the requirement of The reuse of urban recycling water-water quality standard for scenic environment use (GB/T 18921 -2002). This process has many advantages, such as good processing effect, low operating cost, small space occupation and simple operation, etc.%采用水解酸化—接触氧化—BAF组合工艺对广州市某中学学生公寓污水深度处理,处理后的水回用作景观湖水、绿化用水及冲厕水等.系统出水COD为16.3 mg/L,BOD5为5.03 mg/L,LAS质量浓度为0.35 mg/L,SS质量浓度为8.59 mg/L,氨氮质量浓度为0.38 mg/L,水质优于城市污水再生利用景观环境用水水质(GB/T18921-2002)要求,且吨水处理成本为0.494元.该工艺具有处理效果好、运行费用低、占地面积少且操作简单等特点.

  5. Microbial Survey of a Full-Scale, Biologically Active Filter for Treatment of Drinking Water

    OpenAIRE

    White, Colin P.; DeBry, Ronald W.; Lytle, Darren A.

    2012-01-01

    The microbial community of a full-scale, biologically active drinking water filter was surveyed using molecular techniques. Nitrosomonas, Nitrospira, Sphingomonadales, and Rhizobiales dominated the clone libraries. The results elucidate the microbial ecology of biological filters and demonstrate that biological treatment of drinking water should be considered a viable alternative to physicochemical methods.

  6. Electroporation of Biological Cells Embedded in a Polycarbonate Filter

    CERN Document Server

    Hercules, W A; Lindesay, J; Schmukler, R; Hercules, William A.; Lindesay, James; Coble, Anna; Schmukler, Robert

    2003-01-01

    The electropermeabilization of biological cell membranes by the application of an external field occurs whenever an applied field exceeds a threshold value. For fields above this threshold value but less than another critical value, the pores formed in the membrane are transient or reversible. Several mechanisms have been proposed for the formation of these transient pores. Here we examine the local electric fields generated for the configuration of cells embedded in a polycarbonate filter, both in the region in and around the pore. We consider the shear forces created in the membrane due to the gradient of the field along the surface of the membrane, and the interaction of the charged molecules in the membrane with this field. A relationship between the electric field strength and the size of the pore formed is derived.

  7. Biological drinking water treatment of anaerobic groundwater in trickling filters

    OpenAIRE

    W. W. J. M. de Vet

    2011-01-01

    Drinking water production from anaerobic groundwater is usually achieved by so called conventional techniques such as aeration and sand filtration. The notion conventional implies a long history and general acceptation of the application, but doesn’t necessarily mean a thorough understanding of the processes involved. This is certainly the case for groundwater filtration, with groundwater being the major source for drinking water production in the world. During infiltration and soil passage g...

  8. STUDY ON APPLICATION OF AERATION BIOLOGICAL FLUID TANK TECHNOLGY IN NH+4-N WASTE WATER TREATMENT%曝气生物流化池(ABFT)技术在含氨氮污水治理的应用研究

    Institute of Scientific and Technical Information of China (English)

    陈怡; 卢建国

    2003-01-01

    This paper introduces an application of "Aeration biological fluid tank" technology (ABFT) for the treatment of waste water containing NH+4-N and high concentrated organic chemicals. Highlights were focused on the effects of dissolved oxygen, pH, temperature and retention time on waste water biological treatment in order to find out a new approach in treatment of waste water containing high concentrated NH+4-N.

  9. The Potential of Extended Aeration System for Sago Effluent Treatment

    Directory of Open Access Journals (Sweden)

    Wahi A. Rashid

    2010-01-01

    Full Text Available Problem statement: Sago effluent contains large amount of organic material which has a potential to cause water pollution. In order to reduce this problem, an experiment was conducted to remove organic material from sago effluent using lab scale of Extended Aeration (EA system. Approach: The EA system consisted of the combination of physical and biological treatment unit. For Physical Treatment Unit (PTU, the sago effluent was filtered using 710 µm mesh size filter. For Biological Treatment Unit (BTU, the effluent were mixed and aerated with activated sago sludge for 48 h. The treatment efficiency with respect to Biological Oxygen Demand (BOD, Chemical Oxygen Demand (COD and Total Suspended Solid (TSS removal were evaluated and compared with regulatory requirement by Department of Environment, Malaysia. Results: The result showed, the EA system could reduce BOD, COD and TSS up to 84, 87.8 and 73% respectively, however it did not comply with the regulatory requirement. Conclusion: This study suggested the EA system have potential to be apply on sago effluent, however it should be integrated with additional treatment unit to achieve the effluent quality standard.

  10. Diagnostics in biological rapid sand filters treating groundwater – governing factors for nitrification

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Gülay, Arda; Smets, Barth F.;

    To improve the insight in the processes in biological rapid sand filters a range of methods were developed to diagnose the microbial mediated processes – particularly nitrification.......To improve the insight in the processes in biological rapid sand filters a range of methods were developed to diagnose the microbial mediated processes – particularly nitrification....

  11. Microbial Characterization of Biological Filters Used for Drinking Water Treatment

    OpenAIRE

    Moll, Deborah M.; Summers, R. Scott; Breen, Alec

    1998-01-01

    The impact of preozonation and filter contact time (depth) on microbial communities was examined in drinking water biofilters treating Ohio River water which had undergone conventional treatment (coagulation, flocculation, sedimentation) or solutions of natural organic matter isolated from groundwater (both ozonated and nonozonated). With respect to filter depth, compared to filters treating nonozonated waters, preozonation of treated water led to greater differences in community phospholipid...

  12. Application of biological filters in water treatment systems

    Science.gov (United States)

    Hurley, T. L.; Bambenek, R. A.

    1973-01-01

    Silver chloride placed on or close to barrier kills bacteria as they arrive. Dead bacteria accumulate linearly, whereas previously, live bacteria accumulated exponentially. During continuous 30-day tests, no bacteriological contamination was found downstream of filters with silver chloride added.

  13. Aerator Placement Strategies

    Science.gov (United States)

    The purpose of this study was to determine the effects on fish production, water quality and economics of concentrating paddlewheel aeration in large commercial ponds, compared to the current method of aerator placement. Ten 17-acre ponds (approximately 600 X 1300 ft) were brought into the study in ...

  14. REDUCING OF EXCESS SLUDGE PRODUCTION IN WASTEWATER TREATMENT USING COMBINED ANAEROBIC/AEROBIC SUBMERGED BIOLOGICAL FILTERS

    Directory of Open Access Journals (Sweden)

    M. A. Baghapour

    2011-09-01

    Full Text Available In this research, possibility of reducing excess sludge production in wastewater treatment was investigated using a combined anaerobic and aerobic submerged biological filter in a pilot scale. The physical model designed, erected and operated consisted of two pipes of PVC type with 147mm and 237mm diameter used as aerobic and anaerobic filters, respectively. The effective height of porous media in these filters was 70cm. Two filters were connected to eachother in a series form and the resulted system was loaded using synthetic wastewater based on sucrose in the range of 1.91 to 30.61 kg/m3 for anaerobic filter and 1.133 to 53.017 kg/m3 for aerobic filter. For similar loadings, the aerobic filter showed efficiency of 1.8 times that of anaerobic filter in removal of soluble COD. Return of 100% flow from the aerobic filter to the anaerobic filter for 30kg/m3.d of organic loading increased the efficiencies of the anaerobic filter, the aerobic filter and the combined system as 17%, 14% and 15%, respectively and the effect of the return of the flow was more pronounced in smaller hydraulic retention times and larger loadings. 100% return of the flow reduced the yield coefficient for the whole system to 0.037 for 53 kg/m3 loading which is a suitable value with regard to the scheme and no use of chemical materials such as chlorine and ozone. This coefficient reached a value as small as 0.007 in common loadings (7.5kg/m3 for 100% return of the flow which is very close to zero. So, this method could be considered as a complete biological treatment with low excess sludge and could be assessed in full scale.

  15. The biological treatment of petroleum tank draw waters

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Jose L. [Envirosystems Supply, Inc., Hollywood, FL (United States); Stephens, Greg [Plantation Pipeline, Atlanta, GA (United States)

    1993-12-31

    This work reviews and summarizes the performance of a biological process (followed by the state-of-the-art) for the removal of organic compounds in petroleum tank draw waters. Trickling filter and the extended aeration modification of activated sludge were selected as the biological processes tested in pilot units. 4 refs., 2 figs., 3 tabs.

  16. Copper deficiency can limit nitrification in biological rapid sand filters for drinking water production.

    Science.gov (United States)

    Wagner, Florian B; Nielsen, Peter Borch; Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen

    2016-05-15

    Incomplete nitrification in biological filters during drinking water treatment is problematic, as it compromises drinking water quality. Nitrification problems can be caused by a lack of nutrients for the nitrifying microorganisms. Since copper is an important element in one of the essential enzymes in nitrification, we investigated the effect of copper dosing on nitrification in different biological rapid sand filters treating groundwater. A lab-scale column assay with filter material from a water works demonstrated that addition of a trace metal mixture, including copper, increased ammonium removal compared to a control without addition. Subsequently, another water works was investigated in full-scale, where copper influent concentrations were below 0.05 μg Cu L(-1) and nitrification was incomplete. Copper dosing of less than 5 μg Cu L(-1) to a full-scale filter stimulated ammonium removal within one day, and doubled the filter's removal from 0.22 to 0.46 g NH4-N m(-3) filter material h(-1) within 20 days. The location of ammonium and nitrite oxidation shifted upwards in the filter, with an almost 14-fold increase in ammonium removal rate in the filter's top 10 cm, within 57 days of dosing. To study the persistence of the stimulation, copper was dosed to another filter at the water works for 42 days. After dosing was stopped, nitrification remained complete for at least 238 days. Filter effluent concentrations of up to 1.3 μg Cu L(-1) confirmed that copper fully penetrated the filters, and determination of copper content on filter media revealed a buildup of copper during dosing. The amount of copper stored on filter material gradually decreased after dosing stopped; however at a slower rate than it accumulated. Continuous detection of copper in the filter effluent confirmed a release of copper to the bulk phase. Overall, copper dosing to poorly performing biological rapid sand filters increased ammonium removal rates significantly, achieving effluent

  17. Winery Wastewater Treatment Applying Aerated Submerged

    Directory of Open Access Journals (Sweden)

    Alessandra Pellizzaro Bento

    2010-06-01

    Full Text Available The winery wastewater usually shows conditions of low pH, high organic loads and concentrations of carbon, nitrogen and phosphorus that are inappropriate for biologic treatment. The purpose of this research was to apply the technology of aerated submerged biofilter (ASB for the winery effluent treatment during the harvest (ASB 1 and non harvest (ASB 2 at lab scale. Therefore, two up flow biofilter built on glass (5 liters volume were installed. The nutrient balance of the winery wastewater was adjusted and the correction of the pH was done by oyster shell used as filter material. The efficiency removal (COD for the harvest reactor was 90% while for the non harvest was 82%. The oyster shells contributed to an increase on average of 180 mg/L of alkalinity to the BAS 1 and 318 mg/L for the BAS 2. As regards the metals, the average values in the treated effluent to meet iron and zinc is permitted by the environmental standards of Santa Catarina. Under the experimental conditions applied in this research, this kind of reactor has presented potential for the treatment of winery wastewater. However, operational improvements would be required in the reactors to adequate them to the specific management into the wineries.

  18. A kinetic study of biological Cr(VI) reduction in trickling filters with different filter media types

    International Nuclear Information System (INIS)

    Two pilot-scale trickling filters were used in order to estimate Cr(VI) reduction through biological mechanisms in biofilm reactors operated in SBR mode with recirculation using different filter media types, i.e. plastic media and calcitic gravel. The feed concentrations of Cr(VI) examined were about 5, 10, 20, 30, 50 and 100 mg/l, while the concentration of the organic carbon was constant at 400 mg/l, in order to avoid carbon limitations in the bulk liquid. Maximum reduction rates of 4.8 and 4.7 g Cr(VI)/d were observed for feed Cr(VI) concentration of about 5 mg Cr(VI)/l, for the filters with the plastic support material and the gravel media, respectively. The reduction rates were significantly affected by the feed Cr(VI) concentration in both bioreactors. A dual-enzyme kinetic model was used in order to describe Cr(VI) reduction by aerobically grown mixed cultures. Model predictions were found to correspond very closely to experimental quantitative observations of Cr(VI) reduction at both pilot-scale trickling filters used

  19. Microbial diversity of biological filters in recirculating aquaculture systems.

    Science.gov (United States)

    Schreier, Harold J; Mirzoyan, Natella; Saito, Keiko

    2010-06-01

    Development of environmentally sustainable farming of marine and freshwater species using recirculating aquaculture systems (RASs) requires a complete understanding of the biological component involved in wastewater treatment. This component integrates biofilters composed of microbial communities whose structure, dynamics, and activities are responsible for system success. Engineering highly efficient, environmentally sound, disease-free, and economically viable systems necessitates a thorough knowledge of microbial processes involved in all facets of RAS biofilters and has only recently been the focus of comprehensive studies. These studies have included the application of molecular tools to characterize community diversity and have identified key processes useful for improving system performance. In this paper we summarize the current understanding of the microbial diversity and physiology of RAS biofilters and discuss directions for future studies. PMID:20371171

  20. Catfish production using intensive aeration

    Science.gov (United States)

    For the last 3 years, researchers at UAPB and NWAC have been monitoring and verifying production yields in intensively aerated catfish ponds with aeration rates greater than 6 hp/acre. We now have three years of data on commercial catfish production in intensively aerated ponds. With stocking densi...

  1. [Ecological stability on biological removal of iron and manganese filter under poor nutritional conditions].

    Science.gov (United States)

    Yang, Hong; Xiong, Xiao-Li; Duan, Xiao-Dong; Song, Li-Xin; Yu, Ping-Bo; Li, Wei; Zhang, Jie

    2010-01-01

    To supply necessary bacteria and available nutrients, a method of returning backwashing wastewater to the bio-filter for removal of iron and manganese was used. The ecological stability of bio-filter was investigated from 3 aspects: iron and manganese removal efficiency, micro-ecological characteristics and the quantity distribution of dominant bacteria. The results indicated that, the bio-filter held strong antishock loading capability, when the system was operated at high filtration rate (10-13.9 m/h) and high manganese concentration (3.5-4.5 mg/L), a removal rate more than 98.9% of iron and manganese was achieved. Iron and manganese oxidizing bacteria are the dominant microflora in biological filtering layer, they not only adhere on filter sand materials (4.3 x 10(6) MPN/mL) to form compact biofilm, but also exist among filter materials void (6.5 x 10(6) MPN/mL) to form suspended flocs, which is very important to complete removal of iron and manganese. In the past 5 years, the bio-filter realized a continuous and stable operation and kept a high removal efficiency of iron and manganese without adding any nutrients.

  2. Combined biological and physico-chemical treatment of filtered pig manure wastewater : pilot investigations

    NARCIS (Netherlands)

    Kalyuzhnyi, S.; Sklyar, V.; Epov, A.; Archipchenko, I.; Barboulina, I.; Orlova, O.; Klapwijk, A.

    2002-01-01

    Combined biological and physico-chemical treatment of filtered pig manure wastewater has been investigated on the pilot installation operated under ambient temperatures (15-20°C) and included: i) UASB-reactor for elimination of major part of COD from the filtrate; (ii) stripper of CO2 fluidised bed

  3. Copper deficiency can limit nitrification in biological rapid sand filters for drinking water production

    DEFF Research Database (Denmark)

    Wagner, Florian Benedikt; Nielsen, Peter Borch; Boe-Hansen, Rasmus;

    2016-01-01

    Incomplete nitrification in biological filters during drinking water treatment is problematic, as it compromises drinking water quality. Nitrification problems can be caused by a lack of nutrients for the nitrifying microorganisms. Since copper is an important element in one of the essential enzy...

  4. Effects of dynamic operating conditions on nitrification in biological rapid sand filters for drinking water treatment

    DEFF Research Database (Denmark)

    Lee, Carson Odell; Boe-Hansen, Rasmus; Musovic, Sanin;

    2014-01-01

    Biological rapid sand filters are often used to remove ammonium from groundwater for drinking water supply. They often operate under dynamic substrate and hydraulic loading conditions, which can lead to increased levels of ammonium and nitrite in the effluent. To determine the maximum nitrification...

  5. Biological treatment of wastewaters from a dye manufacturing company using a trickling filter

    Energy Technology Data Exchange (ETDEWEB)

    Kornaros, M. [Department of Chemical Engineering, University of Patras, 1 Karatheodori St., 26500 Patras (Greece)]. E-mail: kornaros@chemeng.upatras.gr; Lyberatos, G. [Department of Chemical Engineering, University of Patras, 1 Karatheodori St., 26500 Patras (Greece)

    2006-08-10

    The aim of this work was to assess the effectiveness of a biological trickling filter for the treatment of wastewaters produced by a company manufacturing organic dyes and varnishes. The combined wastewater effluent was fed to a pilot-scale trickling filter in two feeding modes, continuously and as a sequencing batch reactor (SBR). The biodegradability of the diluted wastewaters that were subjected to physicochemical treatment, using Ca(OH){sub 2} and FeSO{sub 4}, was initially studied using a continuously operated trickling filter. The system efficiency ranged up to 60-70% for a hydraulic loading of 1.1 m{sup 3}/m{sup 2} day and up to 80-85% for a hydraulic loading 0.6 m{sup 3}/m{sup 2} day. A stable chemical oxygen demand (COD) removal efficiency of 60-70% was achieved even in the case of undiluted wastewater at a hydraulic loading of 1.1 m{sup 3}/m{sup 2} day. The effectiveness of biological treatment of a mixture of the company's main wastewater streams was also examined. The microorganisms developed in the trickling filter were able to efficiently remove COD levels up to 36,000 mg/L, under aerobic conditions at pH values between 5.5 and 8.0. Depending on the operating conditions of the system, about 30-60% of the total COD removal was attributed to air stripping caused by the air supply at the bottom of the filter, whereas the rest of the COD was clearly removed through biological action. The proposed biological treatment process based on a trickling filter, which was operated either continuously or even better in an SBR mode, appears as a promising pretreatment step for coping with dye manufacturing wastewaters in terms of removing a significant portion of the organic content.

  6. Biological treatment of wastewaters from a dye manufacturing company using a trickling filter

    International Nuclear Information System (INIS)

    The aim of this work was to assess the effectiveness of a biological trickling filter for the treatment of wastewaters produced by a company manufacturing organic dyes and varnishes. The combined wastewater effluent was fed to a pilot-scale trickling filter in two feeding modes, continuously and as a sequencing batch reactor (SBR). The biodegradability of the diluted wastewaters that were subjected to physicochemical treatment, using Ca(OH)2 and FeSO4, was initially studied using a continuously operated trickling filter. The system efficiency ranged up to 60-70% for a hydraulic loading of 1.1 m3/m2 day and up to 80-85% for a hydraulic loading 0.6 m3/m2 day. A stable chemical oxygen demand (COD) removal efficiency of 60-70% was achieved even in the case of undiluted wastewater at a hydraulic loading of 1.1 m3/m2 day. The effectiveness of biological treatment of a mixture of the company's main wastewater streams was also examined. The microorganisms developed in the trickling filter were able to efficiently remove COD levels up to 36,000 mg/L, under aerobic conditions at pH values between 5.5 and 8.0. Depending on the operating conditions of the system, about 30-60% of the total COD removal was attributed to air stripping caused by the air supply at the bottom of the filter, whereas the rest of the COD was clearly removed through biological action. The proposed biological treatment process based on a trickling filter, which was operated either continuously or even better in an SBR mode, appears as a promising pretreatment step for coping with dye manufacturing wastewaters in terms of removing a significant portion of the organic content

  7. Analysis pipeline for the epistasis search – statistical versus biological filtering

    Directory of Open Access Journals (Sweden)

    Xiangqing eSun

    2014-04-01

    Full Text Available Gene-gene interactions may contribute to the genetic variation underlying complex traits but have not always been taken fully into account. Statistical analyses that consider gene-gene interaction may increase the power of detecting associations, especially for low-marginal-effect markers, and may explain in part the missing heritability. Detecting pair-wise and higher-order interactions genome-wide requires enormous computational power. Filtering pipelines increase the computational speed by limiting the number of tests performed. We summarize existing filtering approaches to detect epistasis, after distinguishing the purposes that lead us to search for epistasis. Statistical filtering includes quality control on the basis of single marker statistics to avoid the analysis of bad and least informative data, and limits the search space for finding interactions. Biological filtering includes targeting specific pathways, integrating various databases based on known biological and metabolic pathways, gene function ontology and protein-protein interactions. It is increasingly possible to target single-nucleotide polymorphisms that have defined functions on gene expression, though not belonging to protein-coding genes. Filtering can improve the power of an interaction association study, but also increases the chance of missing important findings.

  8. Biological filter capable of simultaneous nitrification and denitrification for Aquatic Habitat in International Space Station

    Science.gov (United States)

    Uemoto, H.; Shoji, T.; Uchida, S.

    2014-04-01

    The biological filter capable of simultaneous nitrification and denitrification was constructed for aquatic animal experiments in the International Space Station (ISS). The biological filter will be used to remove harmful ammonia excreted from aquatic animals in a closed water circulation system (Aquatic Habitat). The biological filter is a cylindrical tank packed with porous glass beads for nitrification and dual plastic bags for denitrification. The porous beads are supporting media for Nitrosomonas europaea and Nitrobacter winogradskyi. The N. europaea cells and N. winogradskyi cells on the porous beads, oxidize the excreted ammonia to nitrate via nitrite. On the other hand, the dual bag is composed of an outer non-woven fabric bag and an inner non-porous polyethylene film bag. The outer bag is supporting media for Paracoccus pantotrophus. The inner bag, in which 99.5% ethanol is packed, releases the ethanol slowly, since ethanol can permeate through the non-porous polyethylene film. The P. pantotrophus cells on the outer bag reduce the produced nitrate to nitrogen gas by using the released ethanol as an electron donor for denitrification. The biological filter constructed in this study consequently removed the ammonia without accumulating nitrate. Most of the excess ethanol was consumed and did not affect the nitrification activity of the N. europaea cells and N. winogradskyi cells severely. In accordance with the aquatic animal experiments in the ISS, small freshwater fish had been bred in the closed water circulation system equipped with the biological filter for 90 days. Ammonia concentration daily excreted from fish is assumed to be 1.7 mg-N/L in the recirculation water. Under such conditions, the harmful ammonia and nitrite concentrations were kept below 0.1 mg-N/L in the recirculation water. Nitrate and total organic carbon concentrations in the recirculation water were kept below 5 mg-N/L and 3 mg-C/L, respectively. All breeding fish were alive and ate

  9. Biological filter capable of simultaneous nitrification and denitrification for Aquatic Habitat in International Space Station.

    Science.gov (United States)

    Uemoto, H; Shoji, T; Uchida, S

    2014-04-01

    The biological filter capable of simultaneous nitrification and denitrification was constructed for aquatic animal experiments in the International Space Station (ISS). The biological filter will be used to remove harmful ammonia excreted from aquatic animals in a closed water circulation system (Aquatic Habitat). The biological filter is a cylindrical tank packed with porous glass beads for nitrification and dual plastic bags for denitrification. The porous beads are supporting media for Nitrosomonas europaea and Nitrobacter winogradskyi. The N. europaea cells and N. winogradskyi cells on the porous beads, oxidize the excreted ammonia to nitrate via nitrite. On the other hand, the dual bag is composed of an outer non-woven fabric bag and an inner non-porous polyethylene film bag. The outer bag is supporting media for Paracoccus pantotrophus. The inner bag, in which 99.5% ethanol is packed, releases the ethanol slowly, since ethanol can permeate through the non-porous polyethylene film. The P. pantotrophus cells on the outer bag reduce the produced nitrate to nitrogen gas by using the released ethanol as an electron donor for denitrification. The biological filter constructed in this study consequently removed the ammonia without accumulating nitrate. Most of the excess ethanol was consumed and did not affect the nitrification activity of the N. europaea cells and N. winogradskyi cells severely. In accordance with the aquatic animal experiments in the ISS, small freshwater fish had been bred in the closed water circulation system equipped with the biological filter for 90 days. Ammonia concentration daily excreted from fish is assumed to be 1.7 mg-N/L in the recirculation water. Under such conditions, the harmful ammonia and nitrite concentrations were kept below 0.1 mg-N/L in the recirculation water. Nitrate and total organic carbon concentrations in the recirculation water were kept below 5 mg-N/L and 3 mg-C/L, respectively. All breeding fish were alive and ate

  10. Study of 2-D photon crystal Fano slab filters for biological sensing

    Institute of Scientific and Technical Information of China (English)

    QIANG Ze-xuan; QIU Yi-shen; LI Hui; BAI Ji-bo; CHEN Xi-yao

    2009-01-01

    A new compact optical Fano filter suitable for biological sensing is proposed, which patterns photon crystal in single crystalline silicon nanomembranes (SiNMs) and transferring onto transparent glass substrates. The effects of air hole size and silicon thickness on the transmission characteristics of new filter are numerically investigated by using three-dimen-sional finite-difference time-domain (FDTD) technique, the spectral response is also studied by baek-filling bio-liquid. The results show that the dip wavelength will shift toward longer wavelength by either reducing air hole radius or filling bio-liquid. The number of dips will increase with the increase of silicon thickness. The size of proposed filter can be less than 1 mm2.

  11. Kinetic Characterization by Respirometry of Volatile OrganicCompound-Degrading Biofilms from Gas-Phase Biological Filters

    OpenAIRE

    Gonzalez Sanchez, A.; Arellano Garcia, L.; Bonilla Blancas, W.; Baquerizo, G.; Hernandez, S.; Gabriel, D.; Revah, S.

    2014-01-01

    A novel heterogeneous respirometer for in situ assessment of the biological activity and mass transport phenomena of biofilm developed on packing materials of gas-phase biological filters is presented. The flexible respirometer configuration allows reproducing the operational features of biofilters and biotrickling filters to obtain reliable diagnoses of the bioreactor performance. A batch-operating mode was chosen for the biological assessment in which dynamic concentrations of oxygen, pollu...

  12. Cribrihabitans marinus gen. nov., sp. nov., isolated from a biological filter in a marine recirculating aquaculture system.

    Science.gov (United States)

    Chen, Zhu; Liu, Ying; Liu, Liang-Zi; Zhong, Zhi-Ping; Liu, Zhi-Pei; Liu, Ying

    2014-04-01

    A Gram-negative bacterium, strain CZ-AM5(T), was isolated from an aerated biological filter in a marine recirculating aquaculture system in Tianjin, China. Its taxonomic position was investigated by using a polyphasic approach. Cells of strain CZ-AM5(T) were non-spore-forming rods, 0.5-0.8 µm wide and 1.2-2.0 µm long, and motile by means of one or two polar or lateral flagella. Strain CZ-AM5(T) was strictly aerobic, heterotrophic, oxidase-negative and catalase-positive. Growth occurred at 15-40 °C (optimum, 30-35 °C), at pH 6.5-10.5 (optimum, pH 7.0-7.5) and in the presence of 0-12.0 % (w/v) NaCl (optimum, 4.0 %). The predominant fatty acid was C18 : 1ω7c (80.3 %). Ubiquinone 10 (Q-10) was the sole respiratory quinone. The polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, an unknown aminolipid, an unknown phospholipid and three unknown lipids. The DNA G+C content was 60.4 mol%. Strain CZ-AM5(T) showed the highest 16S rRNA gene sequence similarity (96.5 %) to Phaeobacter caeruleus LMG 24369(T); it exhibited 16S rRNA gene sequence similarity of 95.0-96.5, 95.2-96.3, 96.2, 94.6-95.7 and 94.8-95.8 % to members of the genera Phaeobacter, Ruegeria, Citreimonas, Leisingera and Donghicola, respectively. However, phylogenetic trees based on 16S rRNA gene sequences showed that strain CZ-AM5(T) did not join any of the above genera, but formed a distinct lineage in the trees. On the basis of phenotypic, chemotaxonomic and phylogenetic analyses, strain CZ-AM5(T) is considered to represent a novel genus and species of the family Rhodobacteraceae, for which the name Cribrihabitans marinus gen. nov., sp. nov. is proposed. The type strain of Cribrihabitans marinus is CZ-AM5(T) ( = CGMCC 1.13219(T) = JCM 19401(T)). PMID:24425741

  13. Modeling the Performance of Biological Rapid Sand Filters Used to Remove Ammonium, Iron, and Manganese From Drinking Water

    OpenAIRE

    Lee, Carson; Albrechtsen, Hans-Jørgen; Smets, Barth F.; Binning, Philip John

    2012-01-01

    Although biological rapid sand filters are a well established technology for treating drinking water, there is still a lack of scientific understanding of the processes controlling their performance. For example, the distribution and role of microorganisms in contaminant removal in the filter has not been described. As a result, the design and operation of these filters is based on rules of thumb rather than firm scientific understanding. The goal of this research is to characterize the under...

  14. Biological effects in lung cells In vitro of exhaust aerosols from a gasoline passenger car with and without particle filter

    OpenAIRE

    Bisig, Christoph; Steiner, Sandro; Comte, Pierre; Czerwinski, Jan; Mayer, Andreas; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2016-01-01

    Exhaust aerosol from gasoline passenger cars is a complex mixture of a particulate fraction as well as volatile compounds. In contrary to the observed adverse effects of diesel exhaust particles the gasoline exhaust has, however, received little attention so far. The aim of this study was to perform a comparison of exhaust composition and biological responses from freshly produced non-filtered exhaust as well as from exhaust filtered with a noncoated gasoline particle filter (GPF). A 3D model...

  15. Effects of ozonation and temperature on the biodegradation of natural organic matter in biological granular activated carbon filters

    NARCIS (Netherlands)

    Van der Aa, L.T.J.; Rietveld, L.C.; Van Dijk, J.C.

    2011-01-01

    Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. The removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and oxy

  16. Effects of ozonation and temperature on biodegradation of natural organic matter in biological granular activated carbon filters

    NARCIS (Netherlands)

    Van der Aa, L.T.J.; Rietveld, L.C.; Van Dijk, J.C.

    2010-01-01

    Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. Removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and oxygen

  17. A novel bench-scale column assay to investigate site-specific nitrification biokinetics in biological rapid sand filters

    DEFF Research Database (Denmark)

    Tatari, Karolina; Smets, Barth F.; Albrechtsen, Hans-Jørgen

    2013-01-01

    A bench-scale assay was developed to obtain site-specific nitrification biokinetic information from biological rapid sand filters employed in groundwater treatment. The experimental set-up uses granular material subsampled from a full-scale filter, packed in a column, and operated with controlled...

  18. Removal of dichloromethane from waste gases in a biological trickling filter. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Diks, R.M.M.

    1992-04-03

    Biological waste gas purification systems, especially biofilters, are increasingly applied in different branches of industry, not only for the elimination of odorous, easily biodegradable compounds, but also for the removal of toxic xenobiotics from waste gases. Although successful in most cases, a biofilter cannot be applied if large amounts of acidifying or inhibiting compounds accumulate in the filter material during the microbial degradation of the contaminants present in the waste gas. The thesis describes the development of a biological trickling filter, in which the above-mentioned problems can be easily dealt with. In this reactor the waste gas is forced to rise through a bed of inert packing material, on which a suitable microbial flora is immobilized. By the recirculation of a water phase through this system, acids produced are continuously removed from the filter bed and hence microbial activity is maintained. The flowing liquid phase also allows for the continuous neutralization and control of the optimal physiological conditions, i.e. temperature, pH and concentration of inhibiting compounds.

  19. Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes

    CERN Document Server

    Rhinow, Daniel; Weber, Nils-Eike; Beyer, André; Gölzhäuser, Armin; Kühlbrandt, Werner; Hampp, Norbert; Turchanin, Andrey; 10.1016/j.ultramic.2011.01.028

    2011-01-01

    Ultrathin carbon nanomembranes (CNM) comprising crosslinked biphenyl precursors have been tested as support films for energy-filtered transmission electron microscopy (EFTEM) of biological specimens. Due to their high transparency CNM are ideal substrates for electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) of stained and unstained biological samples. Virtually background-free elemental maps of tobacco mosaic virus (TMV) and ferritin have been obtained from samples supported by ~ 1 nm thin CNM. Furthermore, we have tested conductive carbon nanomembranes (cCNM) comprising nanocrystalline graphene, obtained by thermal treatment of CNM, as supports for cryoEM of ice-embedded biological samples. We imaged ice-embedded TMV on cCNM and compared the results with images of ice-embedded TMV on conventional carbon film (CC), thus analyzing the gain in contrast for TMV on cCNM in a quantitative manner. In addition we have developed a method for the preparation of vitrified specimens, sus...

  20. Biological sand filters: low-cost bioremediation technique for production of clean drinking water.

    Science.gov (United States)

    Lea, Michael

    2014-05-01

    Approximately 1.1 billion people in rural and peri-urban communities of developing countries do not have access to safe drinking water. The mortality from diarrheal-related diseases amounts to ∼2.2 million people each year from the consumption of unsafe water. Most of them are children under 5 years of age--250 deaths an hour from microbiologically contaminated water. There is conclusive evidence that one low-cost household bioremediation intervention, use of biological sand filters, is capable of dramatically improving the microbiological quality of drinking water. This unit will describe this relatively new and proven bioremediation technology's ability to empower at-risk populations to use naturally occurring biological principles and readily available materials as a sustainable way to achieve the health benefits of safe drinking water.

  1. Methanethiol Removal from Biogas by Biological Conversion in an Anaerobic Biotrickling Filter

    Institute of Scientific and Technical Information of China (English)

    王佳佳; 张卫江; 徐姣

    2015-01-01

    In this study, methanethiol(MT)-degradation bacteria were cultivated by using MT, methanol and trimethylamine as carbon sources under anaerobic conditions. It was found that the batch bacteria used MT and metha-nol as carbon sources grew faster than those used trimethylamine. The enriched bacteria used MT and methanol as the carbon sources were respectively inoculated in different biotrickling filters. The biological conversion performance of MT under anaerobic conditions was investigated in biotrickling filters. The results showed that the performance of the biotrickling filter inoculated with the bacteria enriched using MT was better than that inoculated with the bacteria en-riched using methanol. When the inlet concentration of MT was 0.005vol%(50,ppm), the empty bed residence time was 50 s, pH value was 8.0, and the flow rate of the nutrient solution was 10 L/h, the removal efficiency of MT reached 95.3%. Adding methanol stimulated the growth of the biomass and the degradation of MT, but caused that some bacteria only degrading methanol outcompeted the bacteria only degrading MT. The concentration of sodium bicarbonate in the nutrient solution needed to be controlled lower than 30 g/L, otherwise, it would be harmful to the degradation of MT.

  2. Nitrification and denitrification in biological activated carbon filter for treating high ammonia source water

    Institute of Scientific and Technical Information of China (English)

    Jianguang LIU; Xiaojian ZHANG; Zhansheng WANG

    2008-01-01

    Since the ammonia in the effluent of the tradi-tional water purification process could not meet the supply demand, the advanced treatment of a high concentration of NH4+-N micro-polluted source water by biological activated carbon filter (BACF) was tested. The filter was operated in the downflow manner and the results showed that the remov-ing rate of NH4+-N was related to the influent concentration of NH4+-N. Its removing rate could be higher than 95% when influent concentration was under 1.0 mg/L. It could also decrease with the increasing influent concentration when the NH4+-N concentration was in the range from 1.5-to 4.9 mg/L and the dissolved oxygen (DO) in the infuent was under 10 mg/L, and the minimum removing rate could be 30%. The key factor of restricting nitrifcation in BACF was the influent DO. When the influent NH4+-N concentration was high, the DO in water was almost depleted entirely by the nitrifying and hetetrophic bacteria in the depth of 0.4 m filter and the filter layer was divided into aerobic and anoxic zones. The nitrification and degradation of organic matters existed in the aerobic zone, while the denitrification occurred in the anoxic zone. Due to the limited carbon source, the denitrification could not be carried out properly, which led to the accu-mulation of the denitrification intermediates such as NO2-. In addition to the denitrification bacteria, the nitrification and the heterotrophic bacteria existed in the anoxic zone.

  3. Landfill aeration in the framework of a reclamation project in Northern Italy.

    Science.gov (United States)

    Raga, Roberto; Cossu, Raffaello

    2014-03-01

    In situ aeration by means of the Airflow technology was proposed for landfill conditioning before landfill mining in the framework of a reclamation project in Northern Italy. A 1-year aeration project was carried out on part of the landfill with the objective of evaluating the effectiveness of the Airflow technology for landfill aerobization, the evolution of waste biological stability during aeration and the effects on leachate and biogas quality and emissions. The main outcomes of the 1-year aeration project are presented in the paper. The beneficial effect of the aeration on waste biological stability was clear (63% reduction of the respiration index); however, the effectiveness of aeration on the lower part of the landfill is questionable, due to the limited potential for air migration into the leachate saturated layers. During the 1-year in situ aeration project approx. 275 MgC were discharged from the landfill body with the extracted gas, corresponding to 4.6 gC/kgDM. However, due to the presence of anaerobic niches in the aerated landfill, approx. 46% of this amount was extracted as CH4, which is higher than reported in other aeration projects. The O2 conversion quota was lower than reported in other similar projects, mainly due to the higher air flow rates applied. The results obtained enabled valuable recommendations to be made for the subsequent application of the Airflow technology to the whole landfill.

  4. Aeration equipment for small depths

    Science.gov (United States)

    Sluše, Jan; Pochylý, František

    2015-05-01

    Deficit of air in water causes complications with cyanobacteria mainly in the summer months. Cyanobacteria is a bacteria that produces poison called cyanotoxin. When the concentration of cyanobacteria increases, the phenomena "algal bloom" appears, which is very toxic and may kill all the organisms. This article describes new equipment for aeration of water in dams, ponds and reservoirs with small depth. This equipment is mobile and it is able to work without any human factor because its control is provided by a GPS module. The main part of this equipment consists of a floating pump which pumps water from the surface. Another important part of this equipment is an aerator where water and air are blended. Final aeration process runs in the nozzles which provide movement of all this equipment and aeration of the water. Simulations of the flow are solved by multiphase flow with diffusion in open source program called OpenFOAM. Results will be verified by an experiment.

  5. 曝气生物滤池(BAF)的发展与现状%Present Situation and Development of Biological Aerated Filter (BAF)

    Institute of Scientific and Technical Information of China (English)

    张薇; 史开武; 孔惠

    2005-01-01

    自20世纪80年代末法国OTV公司发明BIOCARBONE工艺以来,曝气生物滤池(BAF)工艺有了很大发展,在世界范围内的应用也日益广泛.笔者对常规曝气生物滤池的三种典型工艺BIOCARBONE、BIOSTYR、BIOFOR进行了结构、工艺上的对比分析,并在此基础上对新出现B2A、BIOPUR、BIOSMEDI及一体化反应器进行了介绍,经论证分析表明:曝气生物滤池是符合我国水处理的污水处理方法,有很大的发展潜力.

  6. 曝气生物过滤反应器的新型挂膜方法%NEW HANGING BIO-MEMBRANE METHOD OF BIOLOGICAL AERATED FILTER

    Institute of Scientific and Technical Information of China (English)

    员军锋; 李善评

    2003-01-01

    介绍了一种新型快速的生物过滤反应器的挂膜方法.实验证明,该方法符合生物膜形成的微生物学原理.采用此种挂膜方法具有挂膜时间短、耐冲击负荷的优点,比目前应用广泛的循环挂膜法优越.

  7. The NYC native air sampling pilot project: using HVAC filter data for urban biological incident characterization.

    Science.gov (United States)

    Ackelsberg, Joel; Leykam, Frederic M; Hazi, Yair; Madsen, Larry C; West, Todd H; Faltesek, Anthony; Henderson, Gavin D; Henderson, Christopher L; Leighton, Terrance

    2011-09-01

    Native air sampling (NAS) is distinguished from dedicated air sampling (DAS) devices (eg, BioWatch) that are deployed to detect aerosol disseminations of biological threat agents. NAS uses filter samples from heating, ventilation, and air conditioning (HVAC) systems in commercial properties for environmental sampling after DAS detection of biological threat agent incidents. It represents an untapped, scientifically sound, efficient, widely distributed, and comparably inexpensive resource for postevent environmental sampling. Calculations predict that postevent NAS would be more efficient than environmental surface sampling by orders of magnitude. HVAC filter samples could be collected from pre-identified surrounding NAS facilities to corroborate the DAS alarm and delineate the path taken by the bioaerosol plume. The New York City (NYC) Native Air Sampling Pilot Project explored whether native air sampling would be acceptable to private sector stakeholders and could be implemented successfully in NYC. Building trade associations facilitated outreach to and discussions with property owners and managers, who expedited contact with building managers of candidate NAS properties that they managed or owned. Nominal NAS building requirements were determined; procedures to identify and evaluate candidate NAS facilities were developed; data collection tools and other resources were designed and used to expedite candidate NAS building selection and evaluation in Manhattan; and exemplar environmental sampling playbooks for emergency responders were completed. In this sample, modern buildings with single or few corporate tenants were the best NAS candidate facilities. The Pilot Project successfully demonstrated that in one urban setting a native air sampling strategy could be implemented with effective public-private collaboration.

  8. Ammonium removal of drinking water at low temperature by activated carbon filter biologically enhanced with heterotrophic nitrifying bacteria.

    Science.gov (United States)

    Qin, Wen; Li, Wei-Guang; Zhang, Duo-Ying; Huang, Xiao-Fei; Song, Yang

    2016-03-01

    We sought to confirm whether use of Acinetobacter strains Y7 and Y16, both strains of heterotrophic nitrifying bacteria, was practical for removing ammonium (NH4 (+)-N) from drinking water at low temperatures. To test this, ammonium-containing drinking water was treated with strains Y7 and Y16 at 8 and 2 °C. Continuous ammonium treatment was conducted in order to evaluate the performance of three biologically enhanced activated carbon (BEAC) filters in removing ammonium. The three BEAC filters were inoculated with strain Y7, strain Y16, and a mixture of strains Y7 and Y16, respectively. A granular activated carbon (GAC) filter, without inoculation by any strains, was tested in parallel with the BEAC filters as control. The results indicated that NH4 (+)-N removal was significant when a BEAC filter was inoculated with the mixture of strains Y7 and Y16 (BEAC-III filter). Amounts of 0.44 ± 0.05 and 0.25 ± 0.05 mg L(-1) NH4 (+)-N were removed using the BEAC-III filter at 8 and 2 °C, respectively. These values were 2.8-4.0-fold higher than the values of ammonium removal acquired using the GAC filter. The synergistic effect of using strains Y7 and Y16 in concert was the cause of the high-ammonium removal efficiency achieved by using the BEAC-III filter at low temperatures. In addition, a high C/N ratio may promote NH4 (+)-N removal efficiency by improving biomass and microbial activity. This study provides new insight into the use of biofilters to achieve biological removal of ammonium at low temperature. PMID:26527340

  9. Cavity length below chute aerators

    Institute of Scientific and Technical Information of China (English)

    WU JianHua; RUAN ShiPing

    2008-01-01

    It is proved that air entrainment is one of the efficient measures dealing with cavitation control for the release works of hydropower projects. There are many factors to be considered in designing a chute aerator. One of the most important factors concerns the cavity length below the aerator, which has outstanding effects on air entrainment against cavitation damage. It is crucial to determine reasonable emergence angle for the calculation of the cavity length. In the present paper the overall effects of structural and hydraulic parameters on the emergence angle of the flow from the aerator were analyzed. Four improved expressions of the emergence angle with weight coefficient were investigated through experimental data of 68 points observed from 12 aerators of 6 hydropower projects, of both model and prototype, on the basis of error theory. A method to calculate the cavity length below aerators was suggested, which considers overall effects of the above mentioned parameters. Comparison between the method in this paper and the other five methods of calculating the cavity length showed that the present method is much more reliable than the existing methods while the mean error of the method is less than others.

  10. Cavity length below chute aerators

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It is proved that air entrainment is one of the efficient measures dealing with cavi-tation control for the release works of hydropower projects. There are many factors to be considered in designing a chute aerator. One of the most important factors concerns the cavity length below the aerator,which has outstanding effects on air entrainment against cavitation damage. It is crucial to determine reasonable emergence angle for the calculation of the cavity length. In the present paper the overall effects of structural and hydraulic parameters on the emergence angle of the flow from the aerator were analyzed. Four improved expressions of the emer-gence angle with weight coefficient were investigated through experimental data of 68 points observed from 12 aerators of 6 hydropower projects,of both model and prototype,on the basis of error theory. A method to calculate the cavity length be-low aerators was suggested,which considers overall effects of the above men-tioned parameters. Comparison between the method in this paper and the other five methods of calculating the cavity length showed that the present method is much more reliable than the existing methods while the mean error of the method is less than others.

  11. Dosimetric and Biologic Differences in Flattened and Flattening-Filter-Free Beam Treatment Plans

    CERN Document Server

    Yan, Yue; Bassetti, Michael; Du, Kaifang; Saenz, Daniel; Harari, Paul; Paliwal, Bhudatt R

    2015-01-01

    Purpose: To quantitatively compare the dosimetric and biologic differences in treatment plans from flattened and flattening-filter-free (FFF) beam for three anatomic cancer sites. Methods and Materials: Treatment plans with static intensity-modulated radiotherapy beams and volumetric modulated arc therapy beams were generated for 13 patients for both the flattened beam and the FFF beam of the TrueBeam system. Beam energies of 6 MV and 10 MV were chosen for planning. A total of 104 treatment plans were generated in 13 patients. In order to analyze the biological effectiveness of treatment plans, dose volume histograms (DVH) were utilized. Flattened and FFF beam plans are quantitatively compared. Results: In head and neck cases, for VMAT plans, dose reduction in the FFF beam plans compared to the flattened beam in left cochlea, right submandibular gland and right parotid gland reached up to 2.36 Gy, 1.21 Gy and 1.45 Gy, respectively. Similarly, for static IMRT plans, the dose reduction of the FFF beam plans com...

  12. Nano-textured fluidic biochip as biological filter for selective survival of neuronal cells.

    Science.gov (United States)

    Han, Hsieh-Cheng; Lo, Hung-Chun; Wu, Chia-Yu; Chen, Kuei-Hsien; Chen, Li-Chyong; Ou, Keng-Liang; Hosseinkhani, Hossein

    2015-06-01

    This is an innovative study to engineer biological filter to evaluate the effect of template surface structure and physiochemical properties that can be used for wide variety of applications in biological, health care as well as environmental protection. Specifically, planar silicon (Si) wafer and arrayed Si nano-tips (SiNT) templates were fabricated and coated with gold for various lengths of time to study the effect of surface charge, surface roughness, and hydrophilicity on biological activity of rat pheochromocytoma cell lines PC12. The initial growth and proliferation of PC12 cells on Si and SiNT templates showed an antipathy for the ultra-sharp SiNTs templates. In contrast, the same cells demonstrated a preferable adherence to and proliferation on planar Si templates, resulting in higher cell densities by three orders of magnitude than those on SiNT templates. It is hypothesized that SiNTs array does generate nano-fluidic effect such that the effective contact region for aqueous solution on SiNTs is lower than that on planar Si templates, thus decreasing adsorbable area for cell viability and survival. Moreover, the effect of the gold coating on cell number density was analyzed in terms of the surface roughness, zeta potential and wetting properties of the templates. It was determined that surface charge, as measured by the zeta potential, strongly correlated with the trend observed in the surface cell density, whereas no such correlation was observed for surface roughness or wetting properties in the ranges of our experiment conditions. PMID:25256631

  13. Aeration equipment for small depths

    Directory of Open Access Journals (Sweden)

    Sluše Jan

    2015-01-01

    Full Text Available Deficit of air in water causes complications with cyanobacteria mainly in the summer months. Cyanobacteria is a bacteria that produces poison called cyanotoxin. When the concentration of cyanobacteria increases, the phenomena „algal bloom“ appears, which is very toxic and may kill all the organisms. This article describes new equipment for aeration of water in dams, ponds and reservoirs with small depth. This equipment is mobile and it is able to work without any human factor because its control is provided by a GPS module. The main part of this equipment consists of a floating pump which pumps water from the surface. Another important part of this equipment is an aerator where water and air are blended. Final aeration process runs in the nozzles which provide movement of all this equipment and aeration of the water. Simulations of the flow are solved by multiphase flow with diffusion in open source program called OpenFOAM. Results will be verified by an experiment.

  14. Reducing and verifying haloacetic acids in treated drinking water using a biological filter system.

    Science.gov (United States)

    Lou, Jie C; Chan, Hung Y; Yang, Chih Y; Tseng, Wei B; Han, Jia Y

    2014-01-01

    This study focused on reducing the haloacetic acid (HAA) concentrations in treated drinking water. HAA has been thought to be one possible nutrient supporting heterotrophic bacteria regrowth in drinking water. In this study, experiments were conducted using a pilot-scale system to evaluate the efficiency of biological filters (BF) for reducing excess HAA concentrations in water. The BF system reduced the total HAA concentration and the concentrations of five HAA species in the water. Dichloroacetic acid (DCAA), monobromoacetic acid (MBAA) and dibromoacetic acid (DBAA) were the three main HAA5 species that were present in the treated drinking water in this investigation. Combined, these three species represent approximately 77% of the HAA5 in the finished water after BF. The verification of the empirical HAA equation for the outlet in the BF system indicated linear relationships with high correlation coefficients. The empirical equation for the HAA5 concentrations in the finished water was established by examining other nutrients (e.g., dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm wavelength (UV254), and ammonia nitrogen) that can reduce pathogenic contamination. These findings may be useful for designing advanced processes for conventional water treatment plants or for managing water treatment and distribution systems for providing high-quality drinking water.

  15. Degradation of atrazine by microbial consortium in an anaerobic submerged biological filter.

    Science.gov (United States)

    Nasseri, Simin; Baghapour, Mohammad Ali; Derakhshan, Zahra; Faramarzian, Mohammad

    2014-09-01

    Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) (ATZ) is one of the components of S-triazine. Due to its certain characteristics, ATZ causes pollution in various ecosystems and has been of concern for its probable carcinogenic effects on humans. Researchers have used chemical and physical methods for removing ATZ from the environment. Although these methods are quick, they have not been capable of complete mineralization. Therefore, researchers are looking for methods with lower energy consumption and cost and higher efficiency. In this study, biodegradation of ATZ by microbial consortium was evaluated in the aquatic environment. The present study aimed to evaluate the efficiency of ATZ removal from aqueous environments by using an anaerobic submerged biological filter in four concentration levels of atrazine and three hydraulic retention times. The maximum efficiencies of ATZ and soluble chemical oxygen demand (SCOD) were 51.1 and 45.6%, respectively. There was no accumulation of ATZ in the biofilm and the loss of ATZ in the control reactor was negligible. This shows that ATZ removal in this system was due to biodegradation. Furthermore, the results of modeling showed that the Stover-Kincannon model had desirable fitness (R² > 99%) in loading ATZ in this biofilter.

  16. Controlling of crustacean zooplankton reproduction in biological activated carbon (BAC) filters by strengthen operation and management of conventional process

    Institute of Scientific and Technical Information of China (English)

    LIU Li-jun; ZHANG Jin-song; LI Xiao-wei; HE Jun-guo

    2010-01-01

    To counter the mass reproduction and penetration of crustacean zooplankton in Biological Activated Carbon (BAC) filters which may result in the presence of organisms in potable water and water pollution,this paper analyzed the factors affecting organisms' reproduction in BAC filters.A comparative study was performed on the density and composition of crustacean zooplankton of the concerned water treatment units of two advanced water plants (Plant A and B) which with the same raw water and the same treatment technique in southern China.The results obtained show that the crustaceans' density and composition was very different between the sand filtered water of Plant A and Plant B.which Harpacticoida bred sharply in the sediment tanks and penetrated sand filter into BAC falters was the primary reason of crustaceans reproduce in BAC filters of Plant A.For prevention of the organisms reproduction in BAC,some strengthen measures was taken including pre-chlorination,cleaning coagulation tanks and sediment tanks completely,increasing sludge disposal frequency to stop organisms enter BAC filters,and the finished water quality was improved and enhanced.

  17. An overview of the analytical methods for the determination of organic ultraviolet filters in biological fluids and tissues

    International Nuclear Information System (INIS)

    Highlights: ► Papers describing the determination of UV filters in fluids and tissues are reviewed. ► Matrix complexity and low amounts of analytes require effective sample treatments. ► The published papers do not cover the study of all the substances allowed as UV filters. ► New analytical methods for UV filters determination in these matrices are encouraged. - Abstract: Organic UV filters are chemical compounds added to cosmetic sunscreen products in order to protect users from UV solar radiation. The need of broad-spectrum protection to avoid the deleterious effects of solar radiation has triggered a trend in the cosmetic market of including these compounds not only in those exclusively designed for sun protection but also in all types of cosmetic products. Different studies have shown that organic UV filters can be absorbed through the skin after topical application, further metabolized in the body and eventually excreted or bioaccumulated. These percutaneous absorption processes may result in various adverse health effects, such as genotoxicity caused by the generation of free radicals, which can even lead to mutagenic or carcinogenic effects, and estrogenicity, which is associated with the endocrine disruption activity caused by some of these compounds. Due to the absence of official monitoring protocols, there is a demand for analytical methods that enable the determination of UV filters in biological fluids and tissues in order to retrieve more information regarding their behavior in the human body and thus encourage the development of safer cosmetic formulations. In view of this demand, there has recently been a noticeable increase in the development of sensitive and selective analytical methods for the determination of UV filters and their metabolites in biological fluids (i.e., urine, plasma, breast milk and semen) and tissues. The complexity of the biological matrix and the low concentration levels of these compounds inevitably impose sample

  18. An overview of the analytical methods for the determination of organic ultraviolet filters in biological fluids and tissues

    Energy Technology Data Exchange (ETDEWEB)

    Chisvert, Alberto, E-mail: alberto.chisvert@uv.es [Departamento de Quimica Analitica, Facultad de Quimica, Universitat de Valencia, Doctor Moliner St. 50, 46100 Burjassot, Valencia (Spain); Leon-Gonzalez, Zacarias [Unidad Analitica, Instituto de Investigacion Sanitaria Fundacion Hospital La Fe, 46009 Valencia (Spain); Tarazona, Isuha; Salvador, Amparo [Departamento de Quimica Analitica, Facultad de Quimica, Universitat de Valencia, Doctor Moliner St. 50, 46100 Burjassot, Valencia (Spain); Giokas, Dimosthenis [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece)

    2012-11-08

    Highlights: Black-Right-Pointing-Pointer Papers describing the determination of UV filters in fluids and tissues are reviewed. Black-Right-Pointing-Pointer Matrix complexity and low amounts of analytes require effective sample treatments. Black-Right-Pointing-Pointer The published papers do not cover the study of all the substances allowed as UV filters. Black-Right-Pointing-Pointer New analytical methods for UV filters determination in these matrices are encouraged. - Abstract: Organic UV filters are chemical compounds added to cosmetic sunscreen products in order to protect users from UV solar radiation. The need of broad-spectrum protection to avoid the deleterious effects of solar radiation has triggered a trend in the cosmetic market of including these compounds not only in those exclusively designed for sun protection but also in all types of cosmetic products. Different studies have shown that organic UV filters can be absorbed through the skin after topical application, further metabolized in the body and eventually excreted or bioaccumulated. These percutaneous absorption processes may result in various adverse health effects, such as genotoxicity caused by the generation of free radicals, which can even lead to mutagenic or carcinogenic effects, and estrogenicity, which is associated with the endocrine disruption activity caused by some of these compounds. Due to the absence of official monitoring protocols, there is a demand for analytical methods that enable the determination of UV filters in biological fluids and tissues in order to retrieve more information regarding their behavior in the human body and thus encourage the development of safer cosmetic formulations. In view of this demand, there has recently been a noticeable increase in the development of sensitive and selective analytical methods for the determination of UV filters and their metabolites in biological fluids (i.e., urine, plasma, breast milk and semen) and tissues. The complexity of

  19. A novel process of dye wastewater treatment by linking advanced chemical oxidation with biological oxidation

    OpenAIRE

    Zou Haiming; Ma Wanzheng; Wang Yan

    2015-01-01

    Dye wastewater is one of typically non-biodegradable industrial effluents. A new process linking Fenton’s oxidation with biological oxidation proposed in this study was investigated to degrade the organic substances from real dye wastewater. During the combination process, the Fenton’s oxidation process can reduce the organic load and enhance biodegradability of dye wastewater, which is followed by biological aerated filter (BAF) system to further remove organic substances in terms of dischar...

  20. Retention of titanium dioxide nanoparticles in biological activated carbon filters for drinking water and the impact on ammonia reduction.

    Science.gov (United States)

    Liu, Zhiyuan; Yu, Shuili; Park, Heedeung; Liu, Guicai; Yuan, Qingbin

    2016-06-01

    Given the increasing discoveries related to the eco-toxicity of titanium dioxide (TiO2) nanoparticles (NPs) in different ecosystems and with respect to public health, it is important to understand their potential effects in drinking water treatment (DWT). The effects of TiO2 NPs on ammonia reduction, ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in biological activated carbon (BAC) filters for drinking water were investigated in static and dynamic states. In the static state, both the nitrification potential and AOB were significantly inhibited by 100 μg L(-1) TiO2 NPs after 12 h (p  0.05). In the dynamic state, different amounts of TiO2 NP pulses were injected into three pilot-scale BAC filters. The decay of TiO2 NPs in the BAC filters was very slow. Both titanium quantification and scanning electron microscope analysis confirmed the retention of TiO2 NPs in the BAC filters after 134 days of operation. Furthermore, the TiO2 NP pulses considerably reduced the performance of ammonia reduction. This study identified the retention of TiO2 NPs in BAC filters and the negative effect on the ammonia reduction, suggesting a potential threat to DWT by TiO2 NPs.

  1. Retention of titanium dioxide nanoparticles in biological activated carbon filters for drinking water and the impact on ammonia reduction.

    Science.gov (United States)

    Liu, Zhiyuan; Yu, Shuili; Park, Heedeung; Liu, Guicai; Yuan, Qingbin

    2016-06-01

    Given the increasing discoveries related to the eco-toxicity of titanium dioxide (TiO2) nanoparticles (NPs) in different ecosystems and with respect to public health, it is important to understand their potential effects in drinking water treatment (DWT). The effects of TiO2 NPs on ammonia reduction, ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in biological activated carbon (BAC) filters for drinking water were investigated in static and dynamic states. In the static state, both the nitrification potential and AOB were significantly inhibited by 100 μg L(-1) TiO2 NPs after 12 h (p  0.05). In the dynamic state, different amounts of TiO2 NP pulses were injected into three pilot-scale BAC filters. The decay of TiO2 NPs in the BAC filters was very slow. Both titanium quantification and scanning electron microscope analysis confirmed the retention of TiO2 NPs in the BAC filters after 134 days of operation. Furthermore, the TiO2 NP pulses considerably reduced the performance of ammonia reduction. This study identified the retention of TiO2 NPs in BAC filters and the negative effect on the ammonia reduction, suggesting a potential threat to DWT by TiO2 NPs. PMID:26931341

  2. Landfill aeration for emission control before and during landfill mining.

    Science.gov (United States)

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco

    2015-12-01

    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area.

  3. A novel 3D wavelet based filter for visualizing features in noisy biological data

    Energy Technology Data Exchange (ETDEWEB)

    Moss, W C; Haase, S; Lyle, J M; Agard, D A; Sedat, J W

    2005-01-05

    We have developed a 3D wavelet-based filter for visualizing structural features in volumetric data. The only variable parameter is a characteristic linear size of the feature of interest. The filtered output contains only those regions that are correlated with the characteristic size, thus denoising the image. We demonstrate the use of the filter by applying it to 3D data from a variety of electron microscopy samples including low contrast vitreous ice cryogenic preparations, as well as 3D optical microscopy specimens.

  4. Reduction of COD and Turbidity of Effluent in the Swine Productions Unit Employing Anaerobic Baffled Reactor (ABR Followed by Biological Filters and Sand Filter

    Directory of Open Access Journals (Sweden)

    Euzebio Beli

    2010-04-01

    Full Text Available The growing swine production is constantly in conflict with the environment due to the lack of environmental management directed to the cycle of animal production and the industrial sector, mainly due to the mishandling of slurry produced. In association with large concentrations of confined animals appear huge dumps of organic matter, inorganic nutrients and gaseous emissions, which require special care for its disposal to the environment. The aim of this study was to evaluate the use of an anaerobic baffled reactor (ABR in series with two downflow biological filters, followed by a sand filter as a polishing treatment. It were analyzed the reduction of COD and turbidity, and the behavior of pH in all phases of treatment. The removal of COD in the conjugated system, which occurred during treatment ranged from 74.55% to 94.41% with an average removal of 84.24%. In turn, the removal of turbidity from the period ranged from 53.07% to 96.11% with an average removal of 85.49%. In the studied period the pH changed from 5,6 to 8,4. This system was efficient in the removal of COD and turbidity of swine wastewater.

  5. Ammonia-based feedforward and feedback aeration control in activated sludge processes.

    Science.gov (United States)

    Rieger, Leiv; Jones, Richard M; Dold, Peter L; Bott, Charles B

    2014-01-01

    Aeration control at wastewater treatment plants based on ammonia as the controlled variable is applied for one of two reasons: (1) to reduce aeration costs, or (2) to reduce peaks in effluent ammonia. Aeration limitation has proven to result in significant energy savings, may reduce external carbon addition, and can improve denitrification and biological phosphorus (bio-P) performance. Ammonia control for limiting aeration has been based mainly on feedback control to constrain complete nitrification by maintaining approximately one to two milligrams of nitrogen per liter of ammonia in the effluent. Increased attention has been given to feedforward ammonia control, where aeration control is based on monitoring influent ammonia load. Typically, the intent is to anticipate the impact of sudden load changes, and thereby reduce effluent ammonia peaks. This paper evaluates the fundamentals of ammonia control with a primary focus on feedforward control concepts. A case study discussion is presented that reviews different ammonia-based control approaches. In most instances, feedback control meets the objectives for both aeration limitation and containment of effluent ammonia peaks. Feedforward control, applied specifically for switching aeration on or off in swing zones, can be beneficial when the plant encounters particularly unusual influent disturbances.

  6. Effective pine bark composting with the Dome Aeration Technology

    International Nuclear Information System (INIS)

    In South Africa garden refuse is primarily disposed of in domestic landfills. Due to the large quantities generated, any form of treatment would be beneficial for volume reduction, waste stabilization and resource recovery. Dome Aeration Technology (DAT) is an advanced process for aerobic biological degradation of garden refuse and general waste [Paar, S., Brummack, J., Gemende, B., 1999a. Advantages of dome aeration in mechanical-biological waste treatment. In: Proceedings of the 7th International Waste Management and Landfill Symposium, Cagliari, 4-8 October 1999; Paar, S., Brummack, J., Gemende, B., 1999b. Mechanical-biological waste stabilization by the dome aeration method. Environment Protection Engineering 25 (3/99). Mollekopf, N., Brummack, J., Paar, S., Vorster, K., 2002. Use of the Dome Aeration Technology for biochemical stabilization of waste prior to landfilling. In: Proceedings of the Wastecon 2002, Waste Congress and Exhibition, Durban, South Africa.]. It is a non-reactor open windrow composting process, with the main advantage being that the input material needs no periodic turning. A rotting time of only 3-4 months indicates the high efficiency. Additionally, the low capital/operational costs, low energy inputs and limited plant requirements provide potential for use in aerobic refuse stabilization. The innovation in the DAT process is the passive aeration achieved by thermally driven advection through open windrows caused by temperature differences between the degrading material and the outside environment. This paper investigates the application of Dome Aeration Technology to pine bark composting as part of an integrated waste management strategy. A full-scale field experiment was performed at the Bisasar Road Landfill Site in Durban to assess the influence of climate, waste composition and operational conditions on the process. A test windrow was constructed and measurements of temperature and airflow through the material were taken. The process

  7. Relating dynamic conditions to the performance of biological rapid sand filters used to remove ammonium, iron, and manganese from drinking water

    DEFF Research Database (Denmark)

    Lee, Carson; Albrechtsen, Hans-Jørgen; Smets, Barth F.;

    and media samples were collected throughout the depth of the column and over the operational cycle of the columns. Substrate analysis included ammonium, nitrite, nitrate, iron, and manganese. Qpcr analysis were also performed to quantify ammonium oxidizing bacteria (AOBs), ammonium oxidizing archea ( AOAs...... on the roles of both Ammonium oxidizing bacteria (AOBs) and Ammonium oxidizing archea (AOAs) in the biological removal of ammonium in rapid sand filters and how varying substrate loadings and operating conditions can affect the biological performance of these filters....

  8. Relating dynamic conditions to the performance of biological rapid sand filters used to remove ammonium, iron, and manganese from drinking water

    OpenAIRE

    Lee, Carson; Albrechtsen, Hans-Jørgen; Smets, Barth F.; Binning, Philip John

    2012-01-01

    Biological rapid sand filters are used throughout the world to remove both particulates and dissolved compounds from drinking water and is a proven and effective treatment technique for providing safe and secure drinking water. However, experience has shown that some filters have problems consistently meetingregulatory guidelines for compounds like ammonium and reduced forms of iron and manganese. These compounds can cause biological instability in the distribution system and can lead to many...

  9. Research on Purification of Domestic Sewage by Artificially Strengthened Ecological Filter Bed in North China

    OpenAIRE

    SHEN Yue

    2013-01-01

    Artificially strengthened filter bed is an innovative wastewater treatment technology based on the coupling of eco-contact oxidation filters and artificial wetlands purification mechanism. By small scale laboratory equipment, the effects of cascade aeration, filter type, filter clogging and other ecological factors on the operation effect of artificial filter bed were studied. As indicated by the results, the pretreatment of cascade aeration had obvious effect and could satisfy the oxygen req...

  10. Aeration of the teuftal landfill: Field scale concept and lab scale simulation.

    Science.gov (United States)

    Ritzkowski, Marco; Walker, Beat; Kuchta, Kerstin; Raga, Roberto; Stegmann, Rainer

    2016-09-01

    Long lasting post-closure care (PCC) is often the major financial burden for operators of municipal solid waste (MSW) landfills. Beside costs for the installation and maintenance of technical equipment and barriers, in particular long term treatment of leachate and landfill gas has to be paid from capital surplus. Estimations based on laboratory experiments project time periods of many decades until leachate quality allows for direct discharge (i.e. no need for further purification). Projections based on leachate samples derived from the last 37years for 35 German landfills confirm these assumption. Moreover, the data illustrate that in particular ammonium nitrogen concentrations are likely to fall below limit values only after a period of 300years. In order to avoid long lasting PCC the operator of Teuftal landfill, located in the Swiss canton Bern, decided to biologically stabilize the landfill by means of a combined in situ aeration and moisturization approach. In December 2014 the aeration started at a landfill section containing approximately 30% of the total landfill volume. From summer 2016 onwards the remaining part of the landfill will be aerated. Landfill aeration through horizontal gas and leachate drains is carried out for the first time in field scale in Europe. The technical concept is described in the paper. Parallel to field scale aeration, investigations for the carbon and nitrogen turnover are carried out by means of both simulated aerated landfills and simulated anaerobic landfills. The results presented in this paper demonstrate that aeration is capable to enhance, both carbon mobilization and discharge via the gas phase. This effect comes along with a significant increase in bio-stabilization of the waste organic fraction, which positively affects the landfill emission behavior in the long run. In terms of leachate pollution reduction it could be demonstrated that the organic load decrease fast and widely independent of the adjusted aeration

  11. Aeration of the teuftal landfill: Field scale concept and lab scale simulation.

    Science.gov (United States)

    Ritzkowski, Marco; Walker, Beat; Kuchta, Kerstin; Raga, Roberto; Stegmann, Rainer

    2016-09-01

    Long lasting post-closure care (PCC) is often the major financial burden for operators of municipal solid waste (MSW) landfills. Beside costs for the installation and maintenance of technical equipment and barriers, in particular long term treatment of leachate and landfill gas has to be paid from capital surplus. Estimations based on laboratory experiments project time periods of many decades until leachate quality allows for direct discharge (i.e. no need for further purification). Projections based on leachate samples derived from the last 37years for 35 German landfills confirm these assumption. Moreover, the data illustrate that in particular ammonium nitrogen concentrations are likely to fall below limit values only after a period of 300years. In order to avoid long lasting PCC the operator of Teuftal landfill, located in the Swiss canton Bern, decided to biologically stabilize the landfill by means of a combined in situ aeration and moisturization approach. In December 2014 the aeration started at a landfill section containing approximately 30% of the total landfill volume. From summer 2016 onwards the remaining part of the landfill will be aerated. Landfill aeration through horizontal gas and leachate drains is carried out for the first time in field scale in Europe. The technical concept is described in the paper. Parallel to field scale aeration, investigations for the carbon and nitrogen turnover are carried out by means of both simulated aerated landfills and simulated anaerobic landfills. The results presented in this paper demonstrate that aeration is capable to enhance, both carbon mobilization and discharge via the gas phase. This effect comes along with a significant increase in bio-stabilization of the waste organic fraction, which positively affects the landfill emission behavior in the long run. In terms of leachate pollution reduction it could be demonstrated that the organic load decrease fast and widely independent of the adjusted aeration

  12. Biologically induced deposition of fine suspended particles by filter-feeding bivalves in land-based industrial marine aquaculture wastewater.

    Directory of Open Access Journals (Sweden)

    Yi Zhou

    Full Text Available Industrial aquaculture wastewater contains large quantities of suspended particles that can be easily broken down physically. Introduction of macro-bio-filters, such as bivalve filter feeders, may offer the potential for treatment of fine suspended matter in industrial aquaculture wastewater. In this study, we employed two kinds of bivalve filter feeders, the Pacific oyster Crassostrea gigas and the blue mussel Mytilus galloprovincialis, to deposit suspended solids from marine fish aquaculture wastewater in flow-through systems. Results showed that the biodeposition rate of suspended particles by C. gigas (shell height: 8.67 ± 0.99 cm and M. galloprovincialis (shell height: 4.43 ± 0.98 cm was 77.84 ± 7.77 and 6.37 ± 0.67 mg ind(-1 • d(-1, respectively. The total solid suspension (TSS deposition rates of oyster and mussel treatments were 3.73 ± 0.27 and 2.76 ± 0.20 times higher than that of the control treatment without bivalves, respectively. The TSS deposition rates of bivalve treatments were significantly higher than the natural sedimentation rate of the control treatment (P < 0.001. Furthermore, organic matter and C, N in the sediments of bivalve treatments were significantly lower than those in the sediments of the control (P < 0.05. It was suggested that the filter feeders C. gigas and M. galloprovincialis had considerable potential to filter and accelerate the deposition of suspended particles from industrial aquaculture wastewater, and simultaneously yield value-added biological products.

  13. Penetration height correlations for non-aerated and aerated transverse liquid jets in supersonic cross flow

    Energy Technology Data Exchange (ETDEWEB)

    Ghenai, Chaouki [Florida Atlantic University, Department of Mechanical Engineering, College of Engineering and Computer Science, Boca Raton, FL (United States); Sapmaz, Hayri [Boston Scientific, Miami, FL (United States); Lin, Cheng-Xian [University of Tennessee, Department of Mechanical, Aerospace, and Biomedical Engineering, Knoxville, TN (United States)

    2009-01-15

    Experimental results on the mixing of non-aerated and aerated transverse liquid jet in supersonic cross flow (M=1.5) are presented in this paper. The goal of this study is to investigate the effect of the gas/liquid mass ratio on the penetration and atomization of an aerated liquid jet in high speed cross flow and to develop correlations for the penetration heights. High speed imaging system was used in this study for the visualization of the injection of aerated liquid jet. The results show the effect of jet/cross flow momentum flux ratio, the gas/liquid mass ratio and the Ohnesorge number on the penetration of aerated liquid jet in supersonic cross-flow. New correlations of the spray penetration height for the non-aerated liquid jet (GLR=0) and the net gain in spray penetration height for the aerated liquid jet (GLR>0) are presented. (orig.)

  14. 硝酸处理对竹炭曝气生物滤池性能的影响%The Influence of Nitric Acid Modification on Aerated Bio-filter with Bamboo Charcoal as Carriers

    Institute of Scientific and Technical Information of China (English)

    罗舒君

    2015-01-01

    以硝酸处理竹炭作为曝气生物滤池填料,通过研究硝酸处理对竹炭吸附性能、表面官能团等的影响,考查硝酸处理竹炭对反应器性能的影响.结果表明,硝酸处理后竹炭表面含氧官能团增加,有利于微生物的附着,仅4d就完成挂膜, 反应器对有机负荷具有良好的去除能力, 在COD负荷为1.8和4.8 kg/(m3·d) 时, 平均去除率分别为83.3%和79.4%.%In this study, the influence of nitric acid modification on the adsorption performance and the surface functional groups of the bamboo charcoal was investigated. After that, the modified bamboo charcoal was employed as the bio-filter for wastewater treatment to study its performance on dealing with organic matter. The results indicated that the nitric acid modification increased surface oxygen functional groups of bamboo charcoal. The modification also promoted the growing of the microorganism, and shortened the mature period of bio-film to 4 days. The reactor was good at COD treatment. On condition that COD volume loaded of system was 1.8 and 4.8 kg/(m3·d), the removal efficiency can reached to 83.3%and 79.4%, respectively.

  15. Effects of ozonation and temperature on biodegradation of natural organic matter in biological granular activated carbon filters

    Directory of Open Access Journals (Sweden)

    L. T. J. van der Aa

    2010-02-01

    Full Text Available Four pilot (biological granular activated carbon ((BGAC filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM in (BGAC filters. Removal of dissolved organic carbon (DOC, assimilable organic carbon (AOC and oxygen and the production of carbon dioxide were taken as indicators for NOM biodegradation. Ozonation stimulated DOC and AOC removal in the BGAC filters, but had no significant effect on oxygen removal and carbon dioxide production. The temperature had no significant effect on DOC and AOC removal, while oxygen removal and carbon dioxide production increased with increasing temperature. Multivariate linear regression was used to quantify these relations. In summer the ratio between oxygen consumption and DOC removal exceeded the theoretical maximum of 2.5 g O2·g C−1 and the ratio between carbon dioxide production and DOC removal exceeded the theoretical maximum of 3.7 g CO2·g C−1. Bioregeneration of large NOM molecules could explain this excesses and the non-correlation between DOC and AOC removal and oxygen removal and carbon dioxide production. However bioregeneration of large NOM molecules was considered not likely to happen, due to sequestration.

  16. Biologically induced deposition of fine suspended particles by filter-feeding bivalves in land-based industrial marine aquaculture wastewater.

    Science.gov (United States)

    Zhou, Yi; Zhang, Shaojun; Liu, Ying; Yang, Hongsheng

    2014-01-01

    Industrial aquaculture wastewater contains large quantities of suspended particles that can be easily broken down physically. Introduction of macro-bio-filters, such as bivalve filter feeders, may offer the potential for treatment of fine suspended matter in industrial aquaculture wastewater. In this study, we employed two kinds of bivalve filter feeders, the Pacific oyster Crassostrea gigas and the blue mussel Mytilus galloprovincialis, to deposit suspended solids from marine fish aquaculture wastewater in flow-through systems. Results showed that the biodeposition rate of suspended particles by C. gigas (shell height: 8.67 ± 0.99 cm) and M. galloprovincialis (shell height: 4.43 ± 0.98 cm) was 77.84 ± 7.77 and 6.37 ± 0.67 mg ind(-1) • d(-1), respectively. The total solid suspension (TSS) deposition rates of oyster and mussel treatments were 3.73 ± 0.27 and 2.76 ± 0.20 times higher than that of the control treatment without bivalves, respectively. The TSS deposition rates of bivalve treatments were significantly higher than the natural sedimentation rate of the control treatment (P aquaculture wastewater, and simultaneously yield value-added biological products.

  17. Methane biofiltration using autoclaved aerated concrete as the carrier material.

    Science.gov (United States)

    Ganendra, Giovanni; Mercado-Garcia, Daniel; Hernandez-Sanabria, Emma; Boeckx, Pascal; Ho, Adrian; Boon, Nico

    2015-09-01

    The methane removal capacity of mixed methane-oxidizing bacteria (MOB) culture in a biofilter setup using autoclaved aerated concrete (AAC) as a highly porous carrier material was tested. Batch experiment was performed to optimize MOB immobilization on AAC specimens where optimum methane removal was obtained when calcium chloride was not added during bacterial inoculation step and 10-mm-thick AAC specimens were used. The immobilized MOB could remove methane at low concentration (~1000 ppmv) in a biofilter setup for 127 days at average removal efficiency (RE) of 28.7 %. Unlike a plug flow reactor, increasing the total volume of the filter by adding a biofilter in series did not result in higher total RE. MOB also exhibited a higher abundance at the bottom of the filter, in proximity with the methane gas inlet where a high methane concentration was found. Overall, an efficient methane biofilter performance could be obtained using AAC as the carrier material. PMID:25967655

  18. Relative solubiolity in simulated biological fluids of PuO2 on air sampler filters

    International Nuclear Information System (INIS)

    An ultrafiltration method was developed to estimate the solubility of PuO2 on an air filter in simulated lung fluid (SLF), simulated gastric juice (SGJ), and in 1% DTPA. After a very rapid early appearance in the filtrate, both 238Pu and 239Pu showed similar rates of low ultrafilterability. The amount of 239Pu appearing during the first day of ultrafiltration was 10 times less in SLF than in SGJ or DTPA, although the amount of 238Pu was similar for the three solvents. The method used to estimate solubility requires only about 1000 dpm of plutonium alpha radiation per sample

  19. Controls of nitrite oxidation in ammonia-removing biological air filters

    DEFF Research Database (Denmark)

    Juhler, Susanne; Ottosen, Lars Ditlev Mørck; Nielsen, Lars Peter;

    2008-01-01

    analysis. Furthermore, the effect of varying air load and water exchange was investigated. Absence of NOB in many filters was explained by the inhibitory effect of Free Ammonia (FA). When first established, NOB induced a self-perpetuating effect through oxidation of nitrite which allowed increased AOB...... activity resulting in a lowered pH and thus a decreased FA concentration, promoting further growth of NOB. Yet, in some cases a situation with a nitrate-to-nitrite ratio of 1 and moderate pH remained stable even under varying air load and water supply, suggesting that additional mechanisms were involved...

  20. HYDRAULIC RESEARCH OF AERATORS ON TUNNEL SPILLWAYS

    Institute of Scientific and Technical Information of China (English)

    RUAN Shi-ping; WU Jian-hua; WU Wei-wei; XI Ru-ze

    2007-01-01

    The selection of the configuration and size of an aerator was of importance for a tunnel spillway under the conditions of high speed flows. Experimental investigations were conducted on the effects of entrained air on the tunnel spillway in the Goupitan Project, based on the criterion of gravity similarity and the condition of aerated flow velocity of over 6 m/s, with physical models. The configurations of the aerators were presented of a larger bottom air concentration, to protect the tunnel spillway from cavitation as well as to see no water fills in the grooves.

  1. Modelisation of the contribution of sediments in the treatment process case of aerated lagoons.

    Science.gov (United States)

    Jupsin, H; Vasel, J L

    2007-01-01

    In aerated lagoons and even more in stabilization ponds the specific power (W/m3) is not high enough to maintain all the suspended solids in suspension. Some part of the suspended solids (including biomass) settles directly into the reactor and not in the final settling pond. The gradual accumulation of those sediments on the pond bottom affects performance by reducing the pond volume and shortening the Hydraulic Residence Time. However, the role played by these deposits is not restricted to such a physical effect. Far from being inert sediments they are also an important oxygen sink that must be taken into account when designing aerator power and oxygen supply, for example. On the other hand, under aerobic conditions, the upper layer of sediments may contribute to the treatment as a biofilm compartment in the reactor. In aerated lagoon systems another process contributes to the interaction of deposits and the liquid phase: the operating (often sequencing) of aerators may induce a drastic resuspension of deposits. In a 3,000 m3 aerated lagoon we evaluated that 3 tons of deposits were resuspended when aerators were started. Due to those processes we consider that a mathematical model of an aerated lagoon or of a stabilization pond has to take into account the contribution (positive and negative aspects) of deposits in the process. In this paper we propose a model for sediments including production but also biological processes. Simulations of the aerated lagoon with or without the "sediment compartment" demonstrate the effect and the importance of this compartment on the process. Of course a similar approach could be used for facultative or even maturation ponds. The next step would be to include anaerobic activities in the bottom layer. PMID:17591192

  2. Landfill aeration for emission control before and during landfill mining.

    Science.gov (United States)

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco

    2015-12-01

    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area. PMID:26445364

  3. Phosphate limitation in biological rapid sand filters used to remove ammonium from drinking water

    DEFF Research Database (Denmark)

    Lee, Carson Odell; Albrechtsen, Hans-Jørgen; Smets, Barth F.;

    2013-01-01

    Removing ammonium from drinking water is important for maintaining biological stability in distribution systems. This is especially important in regions that do not use disinfectants in the treatment process or keep a disinfectant residual in the distribution system. Problems with nitrification c...... the total number of ammonium oxidizing bacteria in the column. © 2013 American Water Works Association AWWA WQTC Conference Proceedings All Rights Reserved.......Removing ammonium from drinking water is important for maintaining biological stability in distribution systems. This is especially important in regions that do not use disinfectants in the treatment process or keep a disinfectant residual in the distribution system. Problems with nitrification can...

  4. Autotrophic Nitrogen Removal in a Membrane-Aerated Biofilm Reactor Under Continuous Aeration: A Demonstration

    DEFF Research Database (Denmark)

    Gilmore, Kevin R.; Terada, Akihiko; Smets, Barth F.;

    2013-01-01

    This work describes the successful coupling of partial nitrification (nitritation) and anaerobic ammonium oxidation in a membrane-aerated biofilm reactor (MABR) with continuous aeration. Controlling the relative surface loadings of oxygen versus ammonium prevented complete nitrite oxidation...... nearest to and AnaerAOB furthest from the membrane. Despite the presence of nitrite-oxidizing bacteria, this work demonstrated that these autotrophic processes can be successfully coupled in an MABR with continuous aeration, achieving the benefits of competitive specific N removal rates...

  5. DESIGN MANUAL: FINE PORE AERATION SYSTEMS

    Science.gov (United States)

    This manual presents the best current practices for selecting, designing, operating, maintaining, and controlling fine pore aeration systems used in the treatment of municipal wastewater. It was prepared by the American Society of Civil Engineers Committee on Oxygen Transfer unde...

  6. DESIGN INFORMATION ON FINE PORE AERATION SYSTEMS

    Science.gov (United States)

    Field studies were conducted over several years at municipal wastewater treatment plants employing line pore diffused aeration systems. These studies were designed to produce reliable information on the performance and operational requirements of fine pore devices under process ...

  7. T.A. BROWN MECHANICAL AERATOR

    Science.gov (United States)

    Students in the Environmental Engineering and Waster Resources capstone design class in the Department of Civil and Environmental Engineering will undertake a project in conjunction with Serasih Indonesia to develop a prototype mechanical aerator to be used in aquaculture live...

  8. EMERGENCE ANGLE OF FLOW OVER AN AERATOR

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Aerator is an important device for release works of hydraulic structures with high-speed flow in order to protect them from cavitation damage. This kind of protecting effect is related closely to cavity length below the aerator, while the cavity length is dominated by the emergence angle over the aerator. Therefore it is crucial to determine this angle accurately. In the present paper the affecting intensities of flow depth and the fluctuating velocity on this angle were analyzed through two introduced parameters. Furthermore, the improved expressions of emergence angle estimation, for both ramp-type and step-type aerators, were presented by means of 68 sets of experimental data from 6 projects based on error theory. The results showed that the present method has higher accuracy than the previously reported methods.

  9. Impact of titanium dioxide nanoparticles on the bacterial communities of biological activated carbon filter intended for drinking water treatment.

    Science.gov (United States)

    Zhiyuan, Liu; Shuili, Yu; Heedeung, Park; Qingbin, Yuan; Guicai, Liu; Qi, Li

    2016-08-01

    Titanium dioxide nanoparticles (TiO2 NPs) are inevitably present in the aquatic environment owing to their increasing production and use. However, knowledge of the potential effects of TiO2 NPs on the treatment of drinking water is scarce. Herein, the effects of two types of anatase TiO2 NPs (TP1, 25 nm; TP2, 100 nm) on the bacterial community in a biological activated carbon (BAC) filter were investigated via quantitative polymerase chain reaction (Q-PCR) analysis, ATP quantification, and 454 pyrosequencing analysis. Both TP1 and TP2 significantly inhibited the bacterial ATP level (p < 0.01) and induced a decrease in the abundance of bacterial 16S rDNA gene copies at doses of 0.1 and 100 mg L(-1). Simultaneously, the diversity and evenness of the bacterial communities were considerably reduced. The relative abundances of bacteria annotated to OTUs from Nitrospira class and Betaproteobacteria class decreased upon TiO2 NP treatment, whereas those of Bacilli class and Gammaproteobacteria class increased. TiO2 NP size showed a greater effect on the bacterial composition than did the dose based on Bray-Curtis distances. These findings identified negative effects of TiO2 NPs on the bacterial community in the BAC filter. Given the fact that BAC filters are used widely in drinking water treatment plants, these results suggested a potential threat by TiO2 NP to drinking water treatment system.

  10. Impact of titanium dioxide nanoparticles on the bacterial communities of biological activated carbon filter intended for drinking water treatment.

    Science.gov (United States)

    Zhiyuan, Liu; Shuili, Yu; Heedeung, Park; Qingbin, Yuan; Guicai, Liu; Qi, Li

    2016-08-01

    Titanium dioxide nanoparticles (TiO2 NPs) are inevitably present in the aquatic environment owing to their increasing production and use. However, knowledge of the potential effects of TiO2 NPs on the treatment of drinking water is scarce. Herein, the effects of two types of anatase TiO2 NPs (TP1, 25 nm; TP2, 100 nm) on the bacterial community in a biological activated carbon (BAC) filter were investigated via quantitative polymerase chain reaction (Q-PCR) analysis, ATP quantification, and 454 pyrosequencing analysis. Both TP1 and TP2 significantly inhibited the bacterial ATP level (p < 0.01) and induced a decrease in the abundance of bacterial 16S rDNA gene copies at doses of 0.1 and 100 mg L(-1). Simultaneously, the diversity and evenness of the bacterial communities were considerably reduced. The relative abundances of bacteria annotated to OTUs from Nitrospira class and Betaproteobacteria class decreased upon TiO2 NP treatment, whereas those of Bacilli class and Gammaproteobacteria class increased. TiO2 NP size showed a greater effect on the bacterial composition than did the dose based on Bray-Curtis distances. These findings identified negative effects of TiO2 NPs on the bacterial community in the BAC filter. Given the fact that BAC filters are used widely in drinking water treatment plants, these results suggested a potential threat by TiO2 NP to drinking water treatment system. PMID:27126871

  11. Influence of air flow rate and backwashing on the hydraulic behaviour of a submerged filter.

    Science.gov (United States)

    Cobos-Becerra, Yazmin Lucero; González-Martínez, Simón

    2013-01-01

    The aim of this study was to evaluate backwashing effects on the apparent porosity of the filter media and on the hydraulic behaviour of a pilot scale submerged filter, prior to biofilm colonization, under different hydraulic retention times, and different air flow rates. Tracer curves were analysed with two mathematical models for ideal and non-ideal flow (axial dispersion and Wolf and Resnick models). The filter media was lava stones sieved to 4.5 mm. Backwashing causes attrition of media particles, decreasing the void volume of the filter media and, consequently, the tracer flow is more uniform. The eroded media presented lower dead volumes (79% for the filter with aeration and 8% for the filter without aeration) compared with the new media (83% for the filter with aeration and 22% for the filter without aeration). The flow patterns of eroded and new media were different because the more regular shape of the particles decreases the void volume of the filter media. The dead volume is attributed, in the case of the filter with aeration, to the turbulence caused by the air bubbles that generate preferential channelling of the bulk liquid along the filter media, creating large zones of stagnant liquid and, for the filter without aeration, to the channels formed due to the irregular shaped media.

  12. Oxygen transfer in circular surface aeration tanks.

    Science.gov (United States)

    Rao, Achanta Ramakrishna; Patel, Ajey Kumar; Kumar, Bimlesh

    2009-06-01

    Surface aeration systems employed in activated sludge plants are the most energy-intensive units of the plants and typically account for a higher percentage of the treatment facility's total energy use. The geometry of the aeration tank imparts a major effect on the system efficiency. It is said that at optimal geometric conditions, systems exhibits the maximum efficiency. Thus the quantification of the optimal geometric conditions in surface aeration tanks is needed. Optimal geometric conditions are also needed to scale up the laboratory result to the field installation. In the present work, experimental studies have been carried out on baffled and unbaffled circular surface aeration tanks to ascertain the optimal geometric conditions. It is found that no optimal geometric conditions exist for the liquid/water depth in circular surface aeration tanks; however, for design purposes, a standard value has been assumed. Based on the optimal geometric conditions, a scale-up equation has been developed for the baffled circular surface aeration tanks.

  13. Landfill aeration within the scope of post-closure care and its completion.

    Science.gov (United States)

    Ritzkowski, Marco; Stegmann, Rainer

    2013-10-01

    The time frame required for post-closure care of Municipal Solid Waste (MSW) landfills is often assessed over several decades or centuries. One possibility to significantly shorten this period and, at the same time, improve the emission behavior exists with in situ aeration. Positive effects in connection with this method for biological stabilization have been investigated and published elsewhere. However, until today neither generally accepted monitoring guidelines nor completion criteria have been defined. With the paper on hand the authors propose a methodology for the assessment of both, total and remaining stabilization periods for aerated landfills. The central component of this methodology is a carbon balance. The latter is based on a detailed waste characterization in combination with online monitoring of the emissions (gas and leachate). The methodology is exemplarily demonstrated by means of data derived from a full scale project in Northern Germany. Here it could be shown that the predicted aeration period of approximately 6.4years was sufficient to bio-stabilize the landfill. Furthermore, proposals for the completion of landfill aeration are presented. In this connection, carbon balance is of particular importance since the amount of biodegradable organic carbon mainly determines the emission potential. Additional parameters, aiming at a validation of the state of biological stabilization achieved during aeration are proposed and described.

  14. Evaluation of aerated biofilter systems for microbial methane oxidation of poor landfill gas.

    Science.gov (United States)

    Haubrichs, R; Widmann, R

    2006-01-01

    In the long-term, landfills are producing landfill gas (LFG) with low calorific values. Therefore, the utilization of LFG in combined heat and power plants (CHP) is limited to a certain period of time. A feasible method for LFG treatment is microbial CH(4) oxidation. Different materials were tested in actively aerated lab-scale bio-filter systems with a volume of 0.167 m(3). The required oxygen for the microbial CH(4) oxidation was provided through perforated probes, which distributed ambient air into the filter material. Three air input levels were installed along the height of the filter, each of them adjusted to a particular flow rate. During the tests, stable degradation rates of around 28 g/(m(3) h) in a fine-grained compost material were observed at a CH(4) inlet concentration of 30% over a period of 148 days. Compared with passive (not aerated) tests, the CH(4) oxidation rate increased by a factor of 5.5. Therefore, the enhancement of active aeration on the microbial CH(4) oxidation was confirmed. At a O(2)/CH(4) ratio of 2.5, nearly 100% of the CH(4) load was decomposed. By lowering the ratio from 2.5 to 2, the efficiency fell to values from 88% to 92%. By varying the distribution to the three air input levels, the CH(4) oxidation process was spread more evenly over the filter volume.

  15. AERATION OF THE ICE-COVERED WATER POOLS USING THE WAVE FLOW AERATOR

    Directory of Open Access Journals (Sweden)

    Solomin E.E

    2013-12-01

    Full Text Available This article describes the technical advantages and economic benefits of the ice-covered pool aeration plants consuming power from renewable energy sources. We made a comparative evaluation of the wave flow-aeration method and other methods of pool aeration. We showed the indexes and the characteristics of the wave flow-maker for aeration of ice-covered pools on the territory of Russia. We also made calculations of the economic benefits of aeration plants using the devices converting renewable energy. The project can be scaled and extended to the territory of the CIS, Europe, USA and Canada in the changing climate conditions and the variety of feed reservoirs around the world.

  16. Effect of biostimulation on biodegradation of dissolved organic carbon in biological filters

    Directory of Open Access Journals (Sweden)

    K. Tihomirova

    2012-07-01

    Full Text Available The addition of labile organic carbon (LOC to enhance the biodegradation rate of dissolved organic carbon (DOC in biological columns was studied. Acetate standard solution (NaAc and Luria Bertrani (LB medium were used as LOC as biostimulants in glass column system used for measurements of biodegradable dissolved organic carbon (BDOC. The addition of LOC related with the increase of total DOC in sample. The concentration of BDOC increased up to 7 and 5 times and was utilized after 24 min. contact time. The biodegradation rate constant was increased at least 26 times during adaptation-biostimulation period. There was a strong positive correlation between the biodegradation rate constant and the concentration of BDOC. Biostimulation period ranged from 24 to 53 h for NaAc biostimulant and from 20 to 168 h for LB. The study has shown that LOC could be used as stimulator to enhance the biodegradation rate of DOC during biofiltration.

  17. Effect of biostimulation on biodegradation of dissolved organic carbon in biological granular activated carbon filters

    Directory of Open Access Journals (Sweden)

    K. Tihomirova

    2012-03-01

    Full Text Available The addition of labile organic carbon (LOC to enhance the biodegradation rate of dissolved organic carbon (DOC in biological columns was studied. Acetate standard solution (NaAc and LB (Luria Bertrani medium were used as LOC as biostimulants in glass column system used for measurements of biodegradable dissolved organic carbon (BDOC. The addition of LOC related with the increase of total DOC in sample. The concentration of BDOC increased up to 7 and 5 times and was utilized after 24 min. contact time. The biodegradation rate constant was increased at least 8 times during adaptation-biostimulation period. There was a strong positive correlation between the biodegradation rate constant and the concentration of BDOC. Biostimulation period ranged from 24 to 53 h for NaAc biostimulant and from 20 to 168 h for LB. The study has shown that LOC could be used as stimulator to enhance the biodegradation rate of DOC during biofiltration.

  18. Effects of aeration on gamma irradiation of sewage sludge

    Science.gov (United States)

    Chu, Libing; Wang, Jianlong; Wang, Bo

    2010-08-01

    In this paper the effect of aeration on gamma irradiation of sewage sludge was investigated to examine the potential solubilization of solids in sewage sludge to ultimately reduce the solids volume for disposal. Results showed that aeration increased the effectiveness of gamma radiation. The efficiency of sludge solubilization with aeration was increased by around 25% compared to that without aeration at an irradiation dose of 2.5-9 kGy. The soluble protein, polysaccharide and humic (like) substance concentrations were higher under aerated conditions. With aeration the overall reaction appears to be oxidative as evidenced by the higher nitrate and nitrite ion concentrations in solution.

  19. FLOW REGIMES BELOW AERATORS FOR DISCHARGE TUNNELS

    Institute of Scientific and Technical Information of China (English)

    MA Fei; WU Jian-hua

    2012-01-01

    The flow regimes below an aerator influence directly the air entrainment and the cavitation damage control.Based on the theoretical considerations,the experiments of the aerator for a discharge tunnel were conducted,and the relationships between the flow regime and hydraulic and geometric parameters were investigated.The results showed that,there are two kinds of threshold values for the flow regime conversions.One is Fr1-2 standing for the conversion from the fully filled cavity to the partially filled cavity,and the other is Fr2-3 which shows the change from the partially filled cavity to the net air cavity.Two empirical expressions were obtained for the conversions of the flow regimes,which can be used in the designs of the aerators.

  20. Sawdust discharge rate from aerated hoppers

    Institute of Scientific and Technical Information of China (English)

    Pan Chen; Zhulin Yuan; Chien-Song Chyang; Fu-Xiong Zhuan

    2011-01-01

    This paper presents a numerical and experimental study of the discharge rate of sawdust from an aerated hopper as an important parameter in many industrial processes involving the handling of other granular materials. Numerical experiments are conducted by means of an Eulerian-Eulerian approach coupled with the kinetic theory of granular flow (KTGF). Emphasis is given to the effects of particle size, hopper outlet width, hopper half angle, aeration height and air flow rate. The results show that the discharge rate is significantly affected by hopper outlet width, particle size and air flow rate, but is not sensitive to the hopper half angle and aeration height: increasing hopper outlet width or air flow rate increases discharge rate, while increasing particle size decreases discharge rate. Close agreement between numerical predictions and experimental results is obtained.

  1. Acid mine water aeration and treatment system

    Science.gov (United States)

    Ackman, Terry E.; Place, John M.

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  2. Shear reinforced beams in autoclaved aerated concrete

    DEFF Research Database (Denmark)

    Cornelius, Thomas

    2010-01-01

    Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different combinat......Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different...

  3. PRESSURE CHARACTERISTICS OF CAVITATION CONTROL BY AERATION

    Institute of Scientific and Technical Information of China (English)

    DONG Zhi-yong; LU Yang-quan; JU Wen-jie; CAI Xin-ming; DING Chun-sheng

    2005-01-01

    This experimental investigation was systematically conducted with the aid of a non-circulating water tunnel in the Hydraulics Laboratory at Zhejiang University of Technology in China.The test velocity is between 20m/s and 40m/s.The least air concentration to prevent cavitation erosion lies between 1.7% and 4.5%.Pressure waveforms with and without aeration in cavitation and cavitation erosion regions were measured.Time-averaged pressure profiles with and without aeration were compared.Pressure characteristics corresponding to least air concentration to prevent cavitation erosion in cavitation and cavitation erosion regions were analyzed.

  4. Soil Aeration Variability as Affected by Reoxidation

    Institute of Scientific and Technical Information of China (English)

    A.WOLI(N)SKA; Z.ST(E)PNIEWSKA

    2013-01-01

    The interplay between soil physical parameters during the recovery from anoxic stresses (reoxidation) is largely unrecognized.This study was conducted to characterise the soil aeration status and derive correlations between variable aeration factors during reoxidation.Surface layers (0-30 cm) of three soil types,Haplic Phaeozem,Mollic Gleysol,and Eutric Cambisol (FAO soil group),were selected for analysis.The moisture content was determined for a range of pF values (0,1.5,2.2,2.7,and 3.2),corresponding to the available water for microorganisms and plant roots.The variability of a number of soil aeration parameters,such as water potential (pF),air-filled porosity (Eg),oxygen diffusion rate (ODR),and redox potential (Eh),were investigated.These parameters were found to be interrelated in most cases.There were significant (P < 0.001) negative correlations of pF,Eg,and ODR with Eh.A decrease in water content as a consequence of soil reoxidation was manifested by an increase in the values of aeration factors in the soil environment.These results contributed to understanding of soil redox processes during recovery from flooding and might be useful for development of agricultural techniques aiming at soil reoxidation and soil fertility optimisation.

  5. Aerated bunker discharge of fine dilating powders

    NARCIS (Netherlands)

    Ouwerkerk, C.E.D.; Molenaar, H.J.; Frank, M.J.W.

    1992-01-01

    The discharge rate of coarse powders (mean particle size 500 ¿m) from bunkers without aeration can be described by both empirical relations and theoretical models. In the case of small particles the discharge rate is largely overestimated. As the powder dilates during flow a negative pressure gradie

  6. Evaluation of oxygen transfer parameters of fine-bubble aeration system in plug flow aeration tank of wastewater treatment plant.

    Science.gov (United States)

    Zhou, Xiaohong; Wu, Yuanyuan; Shi, Hanchang; Song, Yanqing

    2013-02-01

    Knowledge of the oxygen mass transfer of aerators under operational conditions in a full-scale wastewater treatment plant (WWTP) is meaningful for the optimization of WWTP, however, scarce to best of our knowledge. Through analyzing a plug flow aeration tank in the Lucun WWTP, in Wuxi, China, the oxygenation capacity of fine-bubble aerators under process conditions have been measured in-situ using the off-gas method and the non-steady-state method. The off-gas method demonstrated that the aerators in different corridors in the aeration tank of WWTP ha d significantly different oxygen transferperformance; furthermore, the aerators in the samecorridor shared almost equal oxygen transfer performance over the course of a day. Results measured by the two methods showed that the oxygen transfer performance of fine-bubble aerators in the aeration tank decreased dramatically compared with that in the clean water. The loss of oxygen transfer coefficient was over 50% under low-aeration conditions (aeration amount aeration amount reached 0.96 Nm3/hr, the discrepancy of oxygen transfer between the process condition and clean water was negligible. The analysis also indicated that the non-steady-state and off-gas methods resulted in comparable estimates of oxygen transfer parameters for the aerators under process conditions.

  7. Evaluation of oxygen transfer parameters of fine-bubble aeration system in plug flow aeration tank of wastewater treatment plant

    Institute of Scientific and Technical Information of China (English)

    Xiaohong Zhou; Yuanyuan Wu; Hanchang Shi; Yanqing Song

    2013-01-01

    Knowledge of the oxygen mass transfer of aerators under operational conditions in a full-scale wastewater treatment plant (WWTP) is meaningful for the optimization of WWTP,however,scarce to best of our knowledge.Through analyzing a plug flow aeration tank in the Lucun WWTP,in Wuxi,China,the oxygenation capacity of fine-bubble aerators under process conditions have been measured insitu using the off-gas method and the non-steady-state method.The off-gas method demonstrated that the aerators in different corridors in the aeration tank of WWTP had significantly different oxygen transfer performance; furthermore,the aerators in the same corridor shared almost equal oxygen transfer performance over the course of a day.Results measured by the two methods showed that the oxygen transfer performance of fine-bubble aerators in the aeration tank decreased dramatically compared with that in the clean water.The loss of oxygen transfer coefficient was over 50% under low-aeration conditions (aeration amount < 0.67 Nm3/hr).However,as the aeration amount reached 0.96 Nm3/hr,the discrepancy of oxygen transfer between the process condition and clean water was negligible.The analysis also indicated that the non-steady-state and off-gas methods resulted in comparable estimates of oxygen transfer parameters for the aerators under process conditions.

  8. Factors Affecting the Oxygenation Capacity of Disc Aerators in an Oxidation Ditch System

    Directory of Open Access Journals (Sweden)

    Abdel E. Ghaly

    2011-01-01

    Full Text Available Problem statement: The use of aerobic biological methods for the treatment of livestock wastes has resulted in a proliferation of mechanical aeration devices to accomplish the desired treatment. The oxidation ditch system with disc aerators is among the aerobic systems that have been used to treat livestock waste. The main objectives of this study were to investigate the effects of various disc design parameters and system operational parameters on the oxygen transfer coefficient and to study the physical phenomenon of oxygen transfer using high speed movie techniques. Approach: A bench-scale oxidation ditch with a disc aerator was used to conduct a series of experiments to determine the effects of immersion depth (2.5-7.5 cm, disc speed (50-250 rpm, disc thickness (0.32-2.55 cm, hole diameter (0.00-1.92 cm and number of rotating discs (1-2 on the oxygen transfer coefficient. The unsteady state method with sodium sulfite oxidation was used to deoxygenate the water and the dissolved oxygen concentration was measured with time. Results: The disc speed had the most significant effect on KLa with the immersion depth and hole diameter both showing strong effects and the disc thickness showing less effect. The effect of adding a second disc was comparable to using a single disc of double the thickness at lower speeds while at speeds higher than 200 rpm doubling the thickness of a single disc had less effect than a second disc. Conclusion: The highest oxygen transfer (1.526 min-1 was achieved using two coaxial discs with a disc speed of 250 rpm, a disc thickness of 0.64 cm, a hole diameter of 1.92 cm and an immersion depth of 7.5 cm. Bubble aeration and eddy aeration were the most prevalent mechanisms of oxygen transfer in the oxidation ditch while surface aeration played a relatively small role in oxygen transfer.

  9. The Bacterial Communities of Full-Scale Biologically Active, Granular Activated Carbon Filters Are Stable and Diverse and Potentially Contain Novel Ammonia-Oxidizing Microorganisms

    OpenAIRE

    LaPara, Timothy M.; Hope Wilkinson, Katheryn; Strait, Jacqueline M.; Hozalski, Raymond M.; Sadowksy, Michael J.; Hamilton, Matthew J

    2015-01-01

    The bacterial community composition of the full-scale biologically active, granular activated carbon (BAC) filters operated at the St. Paul Regional Water Services (SPRWS) was investigated using Illumina MiSeq analysis of PCR-amplified 16S rRNA gene fragments. These bacterial communities were consistently diverse (Shannon index, >4.4; richness estimates, >1,500 unique operational taxonomic units [OTUs]) throughout the duration of the 12-month study period. In addition, only modest shifts in t...

  10. The effect of aeration and recirculation on a sand-based hybrid constructed wetland treating low-strength domestic wastewater.

    Science.gov (United States)

    Zapater-Pereyra, M; Kyomukama, E; Namakula, V; van Bruggen, J J A; Lens, P N L

    2016-08-01

    The Duplex-constructed wetland (CW) is a hybrid system composed of a vertical flow (VF) CW on top of a horizontal flow filter (HFF). Each compartment is designed to play a different role: aerobic treatment in the VF CW due to intermittent feeding and anoxic treatment in the HFF due to saturated conditions. Three Duplex-CWs were used in this study: Control, Aerated and Recirculating. The role of each compartment was tested for pollutant removal and micro-invertebrate abundance. In all systems, the VF CW removed mainly organic matter, solids and NH4(+)-N. Pathogens were removed in both compartments. Likewise, total nitrogen removal occurred in both compartments, only the Recirculating HFF was not able to denitrify the nitrogen due to the slightly more oxic conditions as compared to the other systems. All systems met discharge guidelines for organic matter, but only the Control and Aerated systems met those for total nitrogen. At the applied loading rates, the pollutant removal was not significantly enhanced by the use of aeration and recirculation. Therefore, operation as in the Control system, without aeration or recirculation, is recommended for the tested Duplex-CWs. If artificial aeration will be used in CWs, the support material should be carefully selected to allow a proper air distribution. PMID:26732367

  11. The effect of aeration and recirculation on a sand-based hybrid constructed wetland treating low-strength domestic wastewater.

    Science.gov (United States)

    Zapater-Pereyra, M; Kyomukama, E; Namakula, V; van Bruggen, J J A; Lens, P N L

    2016-08-01

    The Duplex-constructed wetland (CW) is a hybrid system composed of a vertical flow (VF) CW on top of a horizontal flow filter (HFF). Each compartment is designed to play a different role: aerobic treatment in the VF CW due to intermittent feeding and anoxic treatment in the HFF due to saturated conditions. Three Duplex-CWs were used in this study: Control, Aerated and Recirculating. The role of each compartment was tested for pollutant removal and micro-invertebrate abundance. In all systems, the VF CW removed mainly organic matter, solids and NH4(+)-N. Pathogens were removed in both compartments. Likewise, total nitrogen removal occurred in both compartments, only the Recirculating HFF was not able to denitrify the nitrogen due to the slightly more oxic conditions as compared to the other systems. All systems met discharge guidelines for organic matter, but only the Control and Aerated systems met those for total nitrogen. At the applied loading rates, the pollutant removal was not significantly enhanced by the use of aeration and recirculation. Therefore, operation as in the Control system, without aeration or recirculation, is recommended for the tested Duplex-CWs. If artificial aeration will be used in CWs, the support material should be carefully selected to allow a proper air distribution.

  12. CFD model of an aerating hydrofoil

    International Nuclear Information System (INIS)

    Improving water quality in the tailrace below hydroelectric dams has become a priority in many river systems. In warm climates, water drawn by the turbine from deep in a reservoir can be deficient in dissolved oxygen (DO), a critical element in maintaining a healthy aquatic ecosystem. Many different solutions have been proposed in order to increase the DO levels in turbine discharge, including: turbine aeration systems (adding air to the water through either the turbine hub, the periphery or through distributed aeration in the runner blades); bubble diffusers in the reservoir or in the tailrace; aerating weirs downstream of the dams; and surface water pumps in the reservoir near the dam. There is a significant potential to increase the effectiveness of these solutions by improving the way that oxygen is introduced into the water; better distributions of bubbles will result in better oxygen transfer. In the present study, a two-phase Computational Fluid Dynamics model has been formulated using a commercial code to study the distribution of air downstream of a simple aerating hydrofoil. The two-phase model uses the Eulerian-Eulerian approach. Appropriate relations are used to model the interphase forces, including the Grace drag force model, the Favre averaged drag force and the Sato enhanced eddy viscosity. The model is validated using experimental results obtained in the water tunnel at the University of Minnesota's Saint Anthony Falls Laboratory. Results are obtained for water velocities between 5 and 10 m/s, air flow rates between 0.5 and 1.5 sL/min and for angles of attack between 0° and -8°. The results of this study show that the CFD model provides a good qualitative comparison to the experimental results by well predicting the wake location at the different flow rates and angles of attack used

  13. CFD model of an aerating hydrofoil

    Science.gov (United States)

    Scott, D.; Sabourin, M.; Beaulieu, S.; Papillon, B.; Ellis, C.

    2014-03-01

    Improving water quality in the tailrace below hydroelectric dams has become a priority in many river systems. In warm climates, water drawn by the turbine from deep in a reservoir can be deficient in dissolved oxygen (DO), a critical element in maintaining a healthy aquatic ecosystem. Many different solutions have been proposed in order to increase the DO levels in turbine discharge, including: turbine aeration systems (adding air to the water through either the turbine hub, the periphery or through distributed aeration in the runner blades); bubble diffusers in the reservoir or in the tailrace; aerating weirs downstream of the dams; and surface water pumps in the reservoir near the dam. There is a significant potential to increase the effectiveness of these solutions by improving the way that oxygen is introduced into the water; better distributions of bubbles will result in better oxygen transfer. In the present study, a two-phase Computational Fluid Dynamics model has been formulated using a commercial code to study the distribution of air downstream of a simple aerating hydrofoil. The two-phase model uses the Eulerian-Eulerian approach. Appropriate relations are used to model the interphase forces, including the Grace drag force model, the Favre averaged drag force and the Sato enhanced eddy viscosity. The model is validated using experimental results obtained in the water tunnel at the University of Minnesota's Saint Anthony Falls Laboratory. Results are obtained for water velocities between 5 and 10 m/s, air flow rates between 0.5 and 1.5 sL/min and for angles of attack between 0° and -8°. The results of this study show that the CFD model provides a good qualitative comparison to the experimental results by well predicting the wake location at the different flow rates and angles of attack used.

  14. Cavity filling water control below aerator devices

    Institute of Scientific and Technical Information of China (English)

    钱尚拓; 吴建华; 马飞; 徐建荣; 彭育; 汪振

    2014-01-01

    With the rapid development of high dam projects within China, the dragon-drop-tail spillway tunnel is introduced and widely used. In view of the high water head and the large flow velocity on the dragon-drop-tail section, aerator devices are usually placed for the cavitation damage control. For the device placed in its initial position, it is a serious concern to design a suitable flow regime of the cavity and to control the cavity filling water due to the large flow depth and the low Froude number through this aera-tor. In this study, the relationships between the geometries of the aerator device and the jet impact angle of the lower trajectory of the flow are theoretically analyzed with/without a local slope. Nine test cases with different geometries are designed, the effectiveness of the filling water control is experimentally investigated under different operation conditions, and two criteria of the local slope design are proposed. It is concluded that the cavity flow regime and the filling water can be improved if a small impact angle and some sui-table geometries of the local slope are designed.

  15. 曝气生物滤池用于处理小城镇生活污水的试验研究%Study on Domestic Sewage Treatment by Biological Aerated Filter

    Institute of Scientific and Technical Information of China (English)

    卜发平

    2012-01-01

    Sea cucumbers belong to Echinodemata, Holothuroidea. As marine benthic organisms, they must have their own immune mecha nisms to survive in the environment with high concentrations of microbial pathogens. As an echinoderm species, sea cucumbers lack an adap tive immune system. Their key defenses against foreign (non-self) entities are cellular and humoral immune responses. Sea cucumber coelo mocytes eliminate invaded microorganisms or foreign particles through phagocytosis, encapsulation and release of humoral factors. In this pa per, the studies on sea cucumber immune mechanism were reviewed.%[目的]研究曝气滤池对小城镇生活污水的处理效果.[方法]采集小城镇污水水样,以生物曝气滤池法进行处理,监测NH3-N、TN、TP和COD的含量变化.[结果]生物滤池对小城镇生活污水的处理效果良好,特别是良好的COD去除效果,在进水NH3-N、TN、TP和COD分别为9.7~68.9 mg/L,18.1~73.2 mg/L,1.79~8.78 mg/L,170~336 mg/L时,生物滤池对NH3 -N、TN、TP、COD的平均去除率可分别达到85.9%、61.4%、76.7%和89.2%,其中出水COD达到一级A类标准(GB 18918-2002),出水NH3 -N、TN、TP总体达到一级B类标准.同时研究显示,日处理量的提高有利于提高出水水质,特别是对出水TN、TP有明显的改善效果;但进水浓度过高不利于提高出水水质.[结论]生物曝气滤池可用于小城镇生活污水的处理,能够达到或优于排放标准,且经济高效.

  16. Experiment on screening of suitable filler for detergent wastewater treated by biological aerated filter%BAF处理洗涤剂废水适宜填料的筛选试验研究

    Institute of Scientific and Technical Information of China (English)

    许行翔; 纪桂霞; 杨继柏; 周步轩; 司大伟

    2013-01-01

    通过生物陶粒、稀土瓷砂、普通陶粒对洗涤剂废水中难达标的LAS、TP的吸附与生物挂膜实验,结果表明,3种填料对LAS、TP的吸附等温式符合Langmuir模型.生物陶粒对LAS、Tp的吸附去除率分别达到23.2%、27.2%,比稀土瓷砂、普通陶粒有更好的吸附性能,且对污水中污染物LAS、TP的浓度变化有很好的适应性,耐污染冲击负荷性能高于稀土瓷砂、普通陶粒,生物陶粒挂膜速度快,挂膜后处理水的COD达54 mg/L< 60 mg/L,对COD处理效果好.因此,生物陶粒适于呈碱性洗涤剂废水的处理,是BAF处理洗涤剂废水的适宜填料.生物陶粒用作BAF填料处理洗涤剂废水,能有效提高COD、LAS和TP的去除率,使洗涤剂废水能处理达排放标准,这对于保护水环境具有重要意义.%Through the experiments of bio-ceramic,rare earth porcelain sand,normal-ceramic adsorption of LAS,TP in detergent wastewater and handing bio-film,the results show that the three kinds of fillers adsorption isotherm on LAS,TP conform to Langmuir model.The adsorption removal rate of bio-ceramic on LAS,TP reaches 23.2%,27.2% respectively,bio-ceramic has better adsorption properties than rare earth porcelain sand and normal-ceramic,and has very good adaptability on the changes of LAS and TP concentration,bio-ceramic has stronger pollution impact load resistant performance and quick speed of bio-film forming,The COD dilution is 54mg/L witch is less then 60 mg/L after bio-membrane hanging.Bio-ceramic has good treatment effect on COD.Therefore,bio-ceramic is a suitable filler to BAF treatment for the alkaline detergent wastewater.Bio-ceramic used as BAF to treat detergent wastewater can efficiently improve the removal rate of COD、LAS and TP and make the treatment of detergent wastewater meet the blowoff standard,witch is important to the protection of water environment.

  17. Research on the effect of organic matter on ammonia removal rate in biological aerated filter treating wastwater%BAF系统中有机物对氨氮去除的影响研究

    Institute of Scientific and Technical Information of China (English)

    李文捷; 卢少勇; 程丽

    2006-01-01

    曝气生物滤池(BAF)处理生活污水和二级处理出水的中试研究表明,COD对氨氮去除效果有重要影响,在进水量为2 m3/h,停留时间为1.12 h,曝气量为8 m3/h的条件下,当COD>50 mg/L时,氨氮的去除率随COD的增加而下降;当COD<50 mg/L时,氨氮的去除率随COD的增加而升高;这对解决中水回用中的氨氮去除有重要意义.微生物相分析表明,陶粒上的生物膜中细菌多为有荚膜的异养菌.

  18. The Bacterial Communities of Full-Scale Biologically Active, Granular Activated Carbon Filters Are Stable and Diverse and Potentially Contain Novel Ammonia-Oxidizing Microorganisms.

    Science.gov (United States)

    LaPara, Timothy M; Hope Wilkinson, Katheryn; Strait, Jacqueline M; Hozalski, Raymond M; Sadowksy, Michael J; Hamilton, Matthew J

    2015-10-01

    The bacterial community composition of the full-scale biologically active, granular activated carbon (BAC) filters operated at the St. Paul Regional Water Services (SPRWS) was investigated using Illumina MiSeq analysis of PCR-amplified 16S rRNA gene fragments. These bacterial communities were consistently diverse (Shannon index, >4.4; richness estimates, >1,500 unique operational taxonomic units [OTUs]) throughout the duration of the 12-month study period. In addition, only modest shifts in the quantities of individual bacterial populations were observed; of the 15 most prominent OTUs, the most highly variable population (a Variovorax sp.) modulated less than 13-fold over time and less than 8-fold from filter to filter. The most prominent population in the profiles was a Nitrospira sp., representing 13 to 21% of the community. Interestingly, very few of the known ammonia-oxidizing bacteria (AOB; amoA genes, however, suggested that AOB were prominent in the bacterial communities (amoA/16S rRNA gene ratio, 1 to 10%). We conclude, therefore, that the BAC filters at the SPRWS potentially contained significant numbers of unidentified and novel ammonia-oxidizing microorganisms that possess amoA genes similar to those of previously described AOB. PMID:26209671

  19. Inner filter effect of gold nanoparticles on the fluorescence of rare-earth phosphate nanocrystals and its application for determination of biological aminothiols

    International Nuclear Information System (INIS)

    A simple, sensitive fluorescent method for detecting biological aminothiols has been developed based on the inner filter effect principle that utilizes CePO4:Tb3+ luminescent nanoparticles as the donor and gold nanoparticles (AuNPs) as the energy receptor. Stable, water-soluble and well-dispersible CePO4:Tb3+ nanoparticles with low photobleaching features were synthesized conveniently by a facile solvothermal method. At the same time, AuNPs with a high extinction coefficient are expected to be capable of functioning as powerful receptor. Based on the complementary overlap between the emission spectrum of CePO4:Tb3+ nanoparticles and the absorption spectrum of Au NPs, an inner filter effect system was constructed. In the presence of aminothiols (such as cysteine), AuNPs interacted with the aminothiols, thereby inducing the aggregation of AuNPs, which induced the fluorescence recovery. In the present work, we developed a turn-on fluorescent assay for the determination of biological aminothiols. Under the optimum conditions, the linear concentration ranges were 1.0×10−7–2.0×10−6 M for cysteine, 5.0×10−8–5.0×10−7 M for glutathione and 8.0×10−8–1.0×10−6 M for homocysteine, respectively. The method is successfully applied to the quantification of biological aminothiols in synthetic samples. -- Highlights: • An inner filter effect method for detecting biological aminothiols has been developed. • CePO4:Tb3+ nanoparticles were synthesized and used as the donor. • Gold nanoparticles (AuNPs) were synthesized and used as the energy receptor

  20. Inner filter effect of gold nanoparticles on the fluorescence of rare-earth phosphate nanocrystals and its application for determination of biological aminothiols

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hong-Qi; Wu, Yong; Yuan, Fei; Xu, Juan; Zhang, Yi-Yan; Wang, Lun, E-mail: wanglun@mail.ahnu.edu.cn

    2013-09-15

    A simple, sensitive fluorescent method for detecting biological aminothiols has been developed based on the inner filter effect principle that utilizes CePO{sub 4}:Tb{sup 3+} luminescent nanoparticles as the donor and gold nanoparticles (AuNPs) as the energy receptor. Stable, water-soluble and well-dispersible CePO{sub 4}:Tb{sup 3+} nanoparticles with low photobleaching features were synthesized conveniently by a facile solvothermal method. At the same time, AuNPs with a high extinction coefficient are expected to be capable of functioning as powerful receptor. Based on the complementary overlap between the emission spectrum of CePO{sub 4}:Tb{sup 3+} nanoparticles and the absorption spectrum of Au NPs, an inner filter effect system was constructed. In the presence of aminothiols (such as cysteine), AuNPs interacted with the aminothiols, thereby inducing the aggregation of AuNPs, which induced the fluorescence recovery. In the present work, we developed a turn-on fluorescent assay for the determination of biological aminothiols. Under the optimum conditions, the linear concentration ranges were 1.0×10{sup −7}–2.0×10{sup −6} M for cysteine, 5.0×10{sup −8}–5.0×10{sup −7} M for glutathione and 8.0×10{sup −8}–1.0×10{sup −6} M for homocysteine, respectively. The method is successfully applied to the quantification of biological aminothiols in synthetic samples. -- Highlights: • An inner filter effect method for detecting biological aminothiols has been developed. • CePO{sub 4}:Tb{sup 3+} nanoparticles were synthesized and used as the donor. • Gold nanoparticles (AuNPs) were synthesized and used as the energy receptor.

  1. Effects of aeration method and aeration rate on greenhouse gas emissions during composting of pig feces in pilot scale.

    Science.gov (United States)

    Jiang, Tao; Li, Guoxue; Tang, Qiong; Ma, Xuguang; Wang, Gang; Schuchardt, Frank

    2015-05-01

    The aim of this study was to uncover ways to mitigate greenhouse gas (GHG) emissions and reduce energy consumption during the composting process. We assessed the effects of different aeration rates (0, 0.18, 0.36, and 0.54 L/(kg dry matter (dm)·min)) and methods (continuous and intermittent) on GHG emissions. Pig feces and corn stalks were mixed at a ratio of 7:1. The composting process lasted for 10 weeks, and the compost was turned approximately every 2 weeks. Results showed that both aeration rate and method significantly affected GHG emissions. Higher aeration rates increased NH3 and N2O losses, but reduced CH4 emissions. The exception is that the CH4 emission of the passive aeration treatment was lower than that of the low aeration rate treatment. Without forced aeration, the CH4 diffusion rates in the center of the piles were very low and part of the CH4 was oxidized in the surface layer. Intermittent aeration reduced NH3 and CH4 losses, but significantly increased N2O production during the maturing periods. Intermittent aeration increased the nitrification/denitrification alternation and thus enhanced the N2O production. Forced aeration treatments had higher GHG emission rates than the passive aeration treatment. Forced aeration accelerated the maturing process, but could not improve the quality of the end product. Compared with continuous aeration, intermittent aeration could increase the O2 supply efficiency and reduced the total GHG emission by 17.8%, and this reduction increased to 47.4% when composting was ended after 36 days.

  2. Intensification of ammonia removal from waste water in biologically active zeolitic ion exchange columns.

    Science.gov (United States)

    Almutairi, Azel; Weatherley, Laurence R

    2015-09-01

    The use of nitrification filters for the removal of ammonium ion from waste-water is an established technology deployed extensively in municipal water treatment, in industrial water treatment and in applications such as fish farming. The process involves the development of immobilized bacterial films on a solid packing support, which is designed to provide a suitable host for the film, and allow supply of oxygen to promote aerobic action. Removal of ammonia and nitrite is increasingly necessary to meet drinking water and discharge standards being applied in the US, Europe and other places. Ion-exchange techniques are also effective for removal of ammonia (as the ammonium ion) from waste water and have the advantage of fast start-up times compared to biological filtration which in some cases may take several weeks to be fully operational. Here we explore the performance of ion exchange columns in which nitrifying bacteria are cultivated, with the goal of a "combined" process involving simultaneous ion-exchange and nitrification, intensified by in-situ aeration with a novel membrane module. There were three experimental goals. Firstly, ion exchange zeolites were characterized and prepared for comparative column breakthrough studies for ammonia removal. Secondly effective in-situ aeration for promotion of nitrifying bacterial growth was studied using a number of different membranes including polyethersulfone (PES), polypropylene (PP), nylon, and polytetra-fluoroethylene (PTFE). Thirdly the breakthrough performance of ion exchange columns filled with zeolite in the presence of aeration and in the presence of nitrifying bacteria was determined to establish the influence of biomass, and aeration upon breakthrough during ammonium ion uptake. The methodology adopted included screening of two types of the naturally occuring zeolite clinoptilolite for effective ammonia removal in continuous ion-exchange columns. Next, the performance of fixed beds of clinoptilolite in the

  3. Intensification of ammonia removal from waste water in biologically active zeolitic ion exchange columns.

    Science.gov (United States)

    Almutairi, Azel; Weatherley, Laurence R

    2015-09-01

    The use of nitrification filters for the removal of ammonium ion from waste-water is an established technology deployed extensively in municipal water treatment, in industrial water treatment and in applications such as fish farming. The process involves the development of immobilized bacterial films on a solid packing support, which is designed to provide a suitable host for the film, and allow supply of oxygen to promote aerobic action. Removal of ammonia and nitrite is increasingly necessary to meet drinking water and discharge standards being applied in the US, Europe and other places. Ion-exchange techniques are also effective for removal of ammonia (as the ammonium ion) from waste water and have the advantage of fast start-up times compared to biological filtration which in some cases may take several weeks to be fully operational. Here we explore the performance of ion exchange columns in which nitrifying bacteria are cultivated, with the goal of a "combined" process involving simultaneous ion-exchange and nitrification, intensified by in-situ aeration with a novel membrane module. There were three experimental goals. Firstly, ion exchange zeolites were characterized and prepared for comparative column breakthrough studies for ammonia removal. Secondly effective in-situ aeration for promotion of nitrifying bacterial growth was studied using a number of different membranes including polyethersulfone (PES), polypropylene (PP), nylon, and polytetra-fluoroethylene (PTFE). Thirdly the breakthrough performance of ion exchange columns filled with zeolite in the presence of aeration and in the presence of nitrifying bacteria was determined to establish the influence of biomass, and aeration upon breakthrough during ammonium ion uptake. The methodology adopted included screening of two types of the naturally occuring zeolite clinoptilolite for effective ammonia removal in continuous ion-exchange columns. Next, the performance of fixed beds of clinoptilolite in the

  4. Inverse problem of bottom slope design for aerator devices

    Institute of Scientific and Technical Information of China (English)

    吴建华; 樊博; 许唯临

    2013-01-01

    Air entrainment is an effective approach to protect release works from cavitation damage. The traditional method of aera-tor device designs is that, for given flow conditions, the geometries of the aerator device are designed and then the effects are experi-mentally tested for cavitation damage control. The present paper proposes an inverse problem method of determining the bottom slopes in front of and behind an aerator if the requirements of air entrainment, flow conditions and some of aerator geometric para-meters are given. An RBF neural network model is developed and the relevant bottom slopes are calculated in different conditions of flow and geometry on the basis of the data of 19 aerator devices from different discharge tunnels with safe operation. The case study shows that the methodology provides an effective way to design aerator devices under given target conditions.

  5. Research on Purification of Domestic Sewage by Artificially Strengthened Ecological Filter Bed in North China

    Institute of Scientific and Technical Information of China (English)

    Yue; SHEN

    2013-01-01

    Artificially strengthened filter bed is an innovative wastewater treatment technology based on the coupling of eco-contact oxidation filters and artificial wetlands purification mechanism.By small scale laboratory equipment,the effects of cascade aeration,filter type,filter clogging and other ecological factors on the operation effect of artificial filter bed were studied.As indicated by the results,the pretreatment of cascade aeration had obvious effect and could satisfy the oxygen requirements of artificially strengthened ecological filter bed.Through the analysis on the purification results of volcanic and gravel filter,the effluent quality of volcanic filter was better than that of gravel filter.With the advantages of low operations costs and good effluent quality,the artificially strengthened ecological filter bed has great value to be popularized in North China.

  6. Tracer studies on an aerated lagoon.

    Science.gov (United States)

    Broughton, Alistair; Shilton, Andy

    2012-01-01

    The city of Palmerston North, New Zealand, has two aerated lagoons as its secondary treatment facility. Interest about treatment efficiency led to an investigation into the hydraulics in the second lagoon to determine if further optimisation was viable. A tracer study using rhodamine WT was undertaken to ascertain the stimulus response output. Samples were also taken at 24 points within the lagoon to determine the tracer concentration profile throughout the lagoon. The mean residence time was determined to be 39.9 h compared with a theoretical residence time of 55.4 h. Peak concentration of the tracer at the outlet occurred at 0.44 of the mean residence time. The results of the tracer study pointed to 28% of volume being dead space. A subsequent sludge survey indicated that 26% of the design volume of the lagoon was filled with sludge. While the curved geometry of the lagoon did not appear to impact the hydraulics the fact that the first aerator is confined in a relatively smaller area will have locally boosted the mixing energy input in this inlet zone. From interpretation of the tracer response and the tracer distribution profiles it appears that the aerators are mixing the influent into the bulk flow effectively in the front end of the lagoon and that there was no evidence of any substantive short-circuiting path of concentrated tracer around to the outlet. The tracer distribution profiles gave direct insight as to how the tracer was being transported within the pond and should be used more often when conducting tracer studies. Comparison with the literature indicated that the lagoon's hydraulic efficiency was on par with a baffled pond system and it would be expected that addition of several baffles to the lagoon would provide minimal further improvement. PMID:22277219

  7. 新型组合式分层生物滴滤池启动性能研究%Performance of novel multi-layered biological filter in early operation

    Institute of Scientific and Technical Information of China (English)

    张文坤; 欧阳矜盈; 潘劫皓; 李旭东; 邱江平; 唐利

    2013-01-01

    The performance in treating sewage and the characteristics of biofilm were both studied in multi-layered biological filter and bio-trickling filter.The results showed that the effluent water quality could be achieved stability faster in multi-layered biological filter.Moreover,the removal efficiency and activity of biofilm in multi-layered biological filter were higher than that in bio-trickling filter.Compared with bio-trickling filter,the multi-layered biological filter was illustrated more advantages on pollutants removal.%考察了组合式分层生物滴滤池与普通生物滴滤池在相同条件运行初期污水处理效果及生物膜特性.结果表明分层生物滴滤池出水水质能够更快的达到稳定,出水水质波动范围较小,去除率更高,且生物膜活性也较高.说明组合式分层生物滴滤池较普通生物滴滤池有一定的优越性.

  8. Oxygen Mass Transfer in an Aerated Stirred Tank with Double Impellers: A Generalized Correlation Including Spacing Impact

    Directory of Open Access Journals (Sweden)

    Hayder Mohammed Issa

    2016-01-01

    Full Text Available Stirred aerated tanks by double impellers are used in fermentation and various biological processes for water treatment, food industry, and pharmaceutical production. In this study, a generalized correlation model was developed for the dependent parameter (kla/N. The oxygen mass transfer from air to liquid takes place by rotating the double impellers (IBRC and PBPU in the aerated tank. This model considers Reynolds number, Froude number, power number, the liquid height, and the spacing between impellers as the most significant specifications that are related to aerated tank performance. The spacing between the impellers is considered to be a design factor of such industrial equipment due to its remarkable impact on the oxygen mass transfer.

  9. Oxidation of magnetite in aerated aqueous media

    International Nuclear Information System (INIS)

    Metastable equilibria involving phases less stable than hematite can be significantly more oxidizing than the calculated equilibrium between well-crystallized hematite and magnetite. In this report, generalized solubility and stability relationships between magnetite and Fe2O3.xH2O phases are derived to describe the metastable equilibria. Experiments with synthetic magnetite powders in aerated aqueous solutions show that crystalline hematite is formed within days at temperatures above 100 C in pure water or solutions containing anions (e.g., Cl-, SO42-, HCO3-) that do not form very strong surface complexes with iron oxides. In the presence of dissolved phosphate or silica, however, the dissolution-precipitation route to hematite is strongly inhibited, and maghemite is a persistent metastable product. Thus, phosphate or silica are expected to delay the approach to magnetite-hematite equilibrium in aerated groundwaters conditioned by magnetite. These findings are presented in the context of nuclear fuel waste disposal. (author). 63 refs., 1 tab., 11 figs

  10. Treatment of sewage sludge in a thermophilic membrane reactor (TMR) with alternate aeration cycles.

    Science.gov (United States)

    Collivignarelli, Maria Cristina; Castagnola, Federico; Sordi, Marco; Bertanza, Giorgio

    2015-10-01

    The management of sewage sludge is becoming a more and more important issue, both at national and international level, in particular due to the uncertain recovery/disposal future options. Therefore, it is clear that the development of new technologies that can mitigate the problem at the source by reducing sludge production is necessary, such as the European Directive 2008/98/EC prescribes. This work shows the results obtained with a thermophilic membrane reactor, for processing a biological sludge derived from a wastewater treatment plant (WWTP) that treats urban and industrial wastewater. Sewage sludge was treated in a thermophilic membrane reactor (TMR), at pilot-scale (1 m(3) volume), with alternate aeration cycles. The experimentation was divided into two phases: a "startup phase" during which, starting with a psychrophilic/mesophilic biomass, thermophilic conditions were progressively reached, while feeding a highly biodegradable substrate; the obtained thermophilic biomass was then used, in the "regime phase", to digest biological sludge which was fed to the plant. Good removal yields were observed: 64% and 57% for volatile solids (VS) and total COD (CODtot), respectively, with an average hydraulic retention time (HRT) equal to 20 d, an organic loading rate (OLR) of about 1.4-1.8 kg COD m(-3) d(-1) and aeration/non aeration cycles alternated every 4 h.

  11. Elimination of micropollutants and transformation products from a wastewater treatment plant effluent through pilot scale ozonation followed by various activated carbon and biological filters.

    Science.gov (United States)

    Knopp, Gregor; Prasse, Carsten; Ternes, Thomas A; Cornel, Peter

    2016-09-01

    Conventional wastewater treatment plants are ineffective in removing a broad range of micropollutants, resulting in the release of these compounds into the aquatic environment, including natural drinking water resources. Ozonation is a suitable treatment process for micropollutant removal, although, currently, little is known about the formation, behavior, and removal of transformation products (TP) formed during ozonation. We investigated the elimination of 30 selected micropollutants (pharmaceuticals, X-ray contrast media, industrial chemicals, and TP) by biological treatment coupled with ozonation and, subsequently, in parallel with two biological filters (BF) or granular activated carbon (GAC) filters. The selected micropollutants were removed to very different extents during the conventional biological wastewater treatment process. Ozonation (specific ozone consumption: 0.87 ± 0.29 gO3 gDOC(-1), hydraulic retention time: 17 ± 3 min) eliminated a large number of the investigated micropollutants. Although 11 micropollutants could still be detected after ozonation, most of these were eliminated in subsequent GAC filtration at bed volumes (BV) of approximately 25,000 m(3) m(-3). In contrast, no additional removal of micropollutants was achieved in the BF. Ozonation of the analgesic tramadol led to the formation of tramadol-N-oxide that is effectively eliminated by GAC filters, but not by BF. For the antiviral drug acyclovir, the formation of carboxy-acyclovir was observed during activated sludge treatment, with an average concentration of 3.4 ± 1.4 μg L(-1) detected in effluent samples. Subsequent ozonation resulted in the complete elimination of carboxy-acyclovir and led to the formation of N-(4-carbamoyl-2-imino-5-oxo imidazolidin)-formamido-N-methoxyacetetic acid (COFA; average concentration: 2.6 ± 1.0 μg L(-1)). Neither the BF nor the GAC filters were able to remove COFA. These results highlight the importance of considering TP in the

  12. Elimination of micropollutants and transformation products from a wastewater treatment plant effluent through pilot scale ozonation followed by various activated carbon and biological filters.

    Science.gov (United States)

    Knopp, Gregor; Prasse, Carsten; Ternes, Thomas A; Cornel, Peter

    2016-09-01

    Conventional wastewater treatment plants are ineffective in removing a broad range of micropollutants, resulting in the release of these compounds into the aquatic environment, including natural drinking water resources. Ozonation is a suitable treatment process for micropollutant removal, although, currently, little is known about the formation, behavior, and removal of transformation products (TP) formed during ozonation. We investigated the elimination of 30 selected micropollutants (pharmaceuticals, X-ray contrast media, industrial chemicals, and TP) by biological treatment coupled with ozonation and, subsequently, in parallel with two biological filters (BF) or granular activated carbon (GAC) filters. The selected micropollutants were removed to very different extents during the conventional biological wastewater treatment process. Ozonation (specific ozone consumption: 0.87 ± 0.29 gO3 gDOC(-1), hydraulic retention time: 17 ± 3 min) eliminated a large number of the investigated micropollutants. Although 11 micropollutants could still be detected after ozonation, most of these were eliminated in subsequent GAC filtration at bed volumes (BV) of approximately 25,000 m(3) m(-3). In contrast, no additional removal of micropollutants was achieved in the BF. Ozonation of the analgesic tramadol led to the formation of tramadol-N-oxide that is effectively eliminated by GAC filters, but not by BF. For the antiviral drug acyclovir, the formation of carboxy-acyclovir was observed during activated sludge treatment, with an average concentration of 3.4 ± 1.4 μg L(-1) detected in effluent samples. Subsequent ozonation resulted in the complete elimination of carboxy-acyclovir and led to the formation of N-(4-carbamoyl-2-imino-5-oxo imidazolidin)-formamido-N-methoxyacetetic acid (COFA; average concentration: 2.6 ± 1.0 μg L(-1)). Neither the BF nor the GAC filters were able to remove COFA. These results highlight the importance of considering TP in the

  13. OXIDATION OF AS(III) BY AERATION AND STORAGE

    Science.gov (United States)

    A study of the effects of aeration and storage on the oxidation of arsenic(III) was undertaken at three utilities in the US to establish the engineering significance of aeration as a potential pre-treatment method for arsenic removal. The results of this study clearly establish t...

  14. Enhancement of ultrasonic disintegration of sewage sludge by aeration.

    Science.gov (United States)

    Zhao, He; Zhang, Panyue; Zhang, Guangming; Cheng, Rong

    2016-04-01

    Sonication is an effective way for sludge disintegration, which can significantly improve the efficiency of anaerobic digestion to reduce and recycle use of sludge. But high energy consumption limits the wide application of sonication. In order to improve ultrasonic sludge disintegration efficiency and reduce energy consumption, aeration was introduced. Results showed that sludge disintegration efficiency was improved significantly by combining aeration with ultrasound. The aeration flow rate, gas bubble size, ultrasonic density and aeration timing had impacts on sludge disintegration efficiency. Aeration that used in later stage of ultrasonic irradiation with low aeration flow rate, small gas bubbles significantly improved ultrasonic disintegration sludge efficiency. At the optimal conditions of 0.4 W/mL ultrasonic irradiation density, 30 mL/min of aeration flow rate, 5 min of aeration in later stage and small gas bubbles, ultrasonic sludge disintegration efficiency was increased by 45% and one third of ultrasonic energy was saved. This approach will greatly benefit the application of ultrasonic sludge disintegration and strongly promote the treatment and recycle of wastewater sludge.

  15. Performance of digester decant system with biological filter followed by constructed wetland and solar reactor in the treatment of domestic sewage

    Directory of Open Access Journals (Sweden)

    Delfran Batista dos Santos

    2012-08-01

    Full Text Available This study aimed to analyze the performance of digester decant system with biological filter followed by constructed wetland and solar reactor in the treatment of domestic sewage from Milagres rural community in Apodi-RN. The treatment system was monitored for the period of October and November 2010, 48 days after planting Pennisetum purpureum Schumach. Samples of domestic sewage were collected at different stages of treatment, in four replications on time, to determine physicochemical and microbiological characteristics about the system performance. The results indicated significant removal of turbidity, biochemical oxygen demand, chemical oxygen demand, total solids, suspended solids, phosphorus and oil and grease using the set digester decant with biological filter, followed by constructed wetland and solar reactor; the association of average solar radiation of 28.73 MJ m-2 d-1, effluent depth of 0.10 m on reactor and time of sun exposure of 12 hours provided removal of fecal coliform up to 99.99% of domestic sewage in Apodi, RN, the treated effluent met microbiological standard of the Brazilian guidelines for agricultural use with restrictions.

  16. EFFECT OF AERATOR ON HYDRAULIC DRAG ACTING ON A CHUTE

    Institute of Scientific and Technical Information of China (English)

    NI Han-gen; LI Xin; ZHOU Jing; JIN Qiao

    2005-01-01

    The formulae used to calculate the friction in the non-uniform flow chute were examined with the experimental data, and the results show that the accuracy of the formula is enough for engineering applications. A comparison between the results of friction respectively from the uniform flow assumption and the non-uniform flow approximation indicates that the former is an order of magnitude larger than the latter in the case of steep chute. The hydraulic drag on a steep chute with aerators was measured on the hydraulic model directly and the coefficient of the aerator effect on the drag was obtained. The variation patterns of the wall shear just downstream of the aerators were investigated and the mechanism of the increase in the drag by aerator were analyzed qualitatively with the measured water-depths just downstream the aerators.

  17. Two-phase flow simulation of aeration on stepped spillway

    Institute of Scientific and Technical Information of China (English)

    CHENG Xiangju; LUO Lin; ZHAO Wenqian; LI Ran

    2004-01-01

    Stepped spillways have existed as escape works for a very long time. It is found that water can trap a lot of air when passing through steps and then increasing oxygen content in water body, so stepped spillways can be used as a measure of re-aeration and to improve water quality of water body. However, there is no reliable theoretical method on quantitative calculation of re-aeration ability for the stepped spillways. By introducing an air-water two-phase flow model, this paper used k-ε turbulence model to calculate the characteristic variables of free-surface aeration on stepped spillway. The calculated results fit with the experimental results well. It supports that the numerical modeling method is reasonable and offers firm foundation on calculating re-aeration ability of stepped spillways. The simulation approach can provide a possible optimization tool for designing stepped spillways of more efficient aeration capability.

  18. Biogas purification using membrane micro-aeration: A mass transfer analysis

    Directory of Open Access Journals (Sweden)

    Wathsala Perera, Deshai Botheju, Rune Bakke

    2014-01-01

    Full Text Available When sulfur containing organic feedstocks undergo anaerobic digestion, sulfides are formed due to the biological activities of sulfur reducing bacteria. Presence of hydrogen sulfide (H2S negatively affects the usage of biogas and needs to be reduced to levels that depend on the intended biogas application. Conversion of sulfide to its oxidized forms can be carried out by aerobic chemolithotrophic bacteria consuming oxygen as the electron acceptor. Membrane micro-aeration is a recently developed reliable method of safely supplying oxygen into anaerobic digesters. In this study, mass transfer models are developed to represent diffusion and back diffusion of gases through tubular polydimethylsiloxane (PDMS membranes. The models are utilized to determine the required membrane area and length in order to supply the stoichiometric amount of oxygen for biologically oxidizing a given amount of sulfide feed into elemental sulfur. Penetration of oxygen and nitrogen into the digester and transfer of methane, carbon dioxide and hydrogen sulfide back into the membrane tube are analyzed using these mass transfer models. Circulating air or aerated water inside the membrane tube is considered as two alternatives for supplying micro-aeration to the digester. Literature digester performance and sulfide data are used for example calculations. The required membrane length depends on circulating water flow rates and dissolved oxygen concentrations when water is used inside the membrane. A considerable fraction of CO2 can also be removed from the biogas in this case. Circulating air inside the membrane is, however, more promising solution as it requires much less membrane area and thereby also causes insignificant methane loss. The proposed membrane micro-aeration technique cuts N2 biogas dilution in half compared to direct air purging for in-situ sulfide oxidation.

  19. Optical high-resolution analysis of rotational movement: testing circular spatial filter velocimetry (CSFV) with rotating biological cells

    Science.gov (United States)

    Schaeper, M.; Schmidt, R.; Kostbade, R.; Damaschke, N.; Gimsa, J.

    2016-07-01

    Circular spatial filtering velocimetry (CSFV) was tested during the microscopic registration of the individual rotations of baker’s yeast cells. Their frequency-dependent rotation (electrorotation; ER) was induced in rotating electric fields, which were generated in a glass chip chamber with four electrodes (600 μm tip-to-tip distance). The electrodes were driven with sinusoidal quadrature signals of 5 or 8 V PP with frequencies up to 3 MHz. The observed cell rotation was of the order of 1-100 s per revolution. At each measuring frequency, the independent rotations of up to 20 cells were simultaneously recorded with a high-speed camera. CSFV was software-implemented using circular spatial filters with harmonic gratings. ER was proportional to the phase shift between the values of the spatial filtering signal of consecutive frames. ER spectra obtained by CSFV from the rotation velocities at different ER-field frequencies agreed well with manual measurements and theoretical spectra. Oscillations in the rotation velocity of a single cell in the elliptically polarized field near an electrode, which were resolved by CSFV, could not be visually discerned. ER step responses after field-on were recorded at 2500 frames per second. Analysis proved the high temporal resolution of CSFV and revealed a largely linear torque-friction relation during the acceleration phase of ER. Future applications of CSFV will allow for the simple and cheap automated high-resolution analysis of rotational movements where mechanical detection has too low a resolution or is not possible, e.g. in polluted environments or for gas and fluid vortices, microscopic objects, etc.

  20. Optimized aeration strategies for nitrogen and phosphorus removal with aerobic granular sludge.

    Science.gov (United States)

    Lochmatter, Samuel; Gonzalez-Gil, Graciela; Holliger, Christof

    2013-10-15

    Biological wastewater treatment by aerobic granular sludge biofilms offers the possibility to combine carbon (COD), nitrogen (N) and phosphorus (P) removal in a single reactor. Since denitrification can be affected by suboptimal dissolved oxygen concentrations (DO) and limited availability of COD, different aeration strategies and COD loads were tested to improve N- and P-removal in granular sludge systems. Aeration strategies promoting alternating nitrification and denitrification (AND) were studied to improve reactor efficiencies in comparison with more classical simultaneous nitrification-denitrification (SND) strategies. With nutrient loading rates of 1.6 gCOD L(-1) d(-1), 0.2 gN L(-1) d(-1), and 0.08 gP L(-1) d(-1), and SND aeration strategies, N-removal was limited to 62.3 ± 3.4%. Higher COD loads markedly improved N-removal showing that denitrification was limited by COD. AND strategies were more efficient than SND strategies. Alternating high and low DO phases during the aeration phase increased N-removal to 71.2 ± 5.6% with a COD loading rate of 1.6 gCOD L(-1) d(-1). Periods of low DO were presumably favorable to denitrifying P-removal saving COD necessary for heterotrophic N-removal. Intermittent aeration with anoxic periods without mixing between the aeration pulses was even more favorable to N-removal, resulting in 78.3 ± 2.9% N-removal with the lowest COD loading rate tested. P-removal was under all tested conditions between 88 and 98%, and was negatively correlated with the concentration of nitrite and nitrate in the effluent (r = -0.74, p < 0.01). With low COD loading rates, important emissions of undesired N2O gas were observed and a total of 7-9% of N left the reactor as N2O. However, N2O emissions significantly decreased with higher COD loads under AND conditions.

  1. Interaction between afternoon aeration and tilapia stocking density

    Directory of Open Access Journals (Sweden)

    Francisco Roberto dos Santos Lima

    2016-01-01

    Full Text Available The present study aimed at determining the effects of the interaction between afternoon aeration and stocking density of Nile tilapia on variables of water and soil quality, growth performance and effluent quality. The experiment was a 3 x 2 factorial randomized block design, with three stocking densities (8, 12 and 16 fish per tank or 43.5, 65.3, and 87.0 g m-3 under two mechanical aeration regimes, absence (control; three replicates and afternoon aeration (four replicates. The afternoon aeration was carried out from 12.00 a.m. up to 18.00 p.m. from the 3rd week until the end of the experiment. Except for the 16-fish tanks, the lowest concentrations of total ammonia nitrogen were found in the tanks with higher density of fish provided with afternoon aeration. Nitrite concentrations were lower in the 8-fish aerated tanks. In intensive system, the afternoon aeration of the fish culture water is an efficient management of water quality to remove gaseous ammonia and nitrite from water, but it is not appropriate to remove hydrogen sulfide from water.

  2. Effect of aeration rate on composting of penicillin mycelial dreg.

    Science.gov (United States)

    Chen, Zhiqiang; Zhang, Shihua; Wen, Qinxue; Zheng, Jun

    2015-11-01

    Pilot scale experiments with forced aeration were conducted to estimate effects of aeration rates on the performance of composting penicillin mycelial dreg using sewage sludge as inoculation. Three aeration rates of 0.15, 0.50 and 0.90L/(min·kg) organic matter (OM) were examined. The principal physicochemical parameters were monitored during the 32day composting period. Results showed that the higher aeration rate of 0.90L/(min·kg) did not corresponded to a longer thermophilic duration and higher rates of OM degradation; but the lower aeration rate of 0.15L/(min·kg) did induce an accumulation of NH4(+)-N contents due to the inhibition of nitrification. On the other hand, aeration rate has little effect on degradation of penicillin. The results show that the longest phase of thermophilic temperatures≥55°C, the maximum NO3(-)-N content and seed germination, and the minimum C/N ratio were obtained with 0.50L/(min·kg) OM. Therefore, aeration rates of 0.50L/(min·kg) OM can be recommended for composting penicillin mycelial dreg.

  3. The performance of BAF using natural zeolite as filter media under conditions of low temperature and ammonium shock load

    International Nuclear Information System (INIS)

    Natural zeolite and expanded clay were used as filter media for biological aerated filter (BAF) to treat municipal wastewater in parallel in whole three test stages. The stage one test results revealed that zeolite BAF and expanded clay BAF have COD and NH3-N removals in the range of 84.63-93.11%, 85.74-96.26%, 82.34-93.71%, and 85.06-93.2%, respectively, under the conditions of water temperature of 20-25 deg. C and hydraulic load of 2-3 m3/(m2 h). At the following stage two, the influent NH3-N concentration was increased to about double value of the stage one, and it was investigated that the effluent NH3-N of expanded clay BAF increased significantly and then gradually restored to normal condition in 2 weeks, while the effluent NH3-N of zeolite BAF kept stable. At stage three, the low reactor temperature has also different effects on these two BAFs, under conditions of water temperature of 7-10 deg. C, hydraulic load of 2-3 m3/(m2 h), zeolite BAF and expanded clay BAF have COD and NH3-N removals in the range of 74.5-88.47% (average of 81.57%), 71.73-88.49% (average of 81.06%), 71.91-87.76% (average of 80.49%), and 38.41-77.17% (average of 65.42%), respectively. Three stages test results indicated that the zeolite BAF has a stronger adaptability to NH3-N shock load and low temperature compared to expanded clay BAF. In addition, the detection of the amounts of heterobacteria and nitrobacteria of two biological aerated filters in three stages also showed the zeolite filter media was more suitable to the attached growth of nitrobacteria, which is helpful to the improvement of nitrification performance in zeolite BAF

  4. Soil biological filter deodorization device for livestock and poultry breeding houses%畜禽养殖舍生物土壤滤体除臭装置

    Institute of Scientific and Technical Information of China (English)

    陈敏; 杨有泉; 邓素芳; 林营志; 詹杰

    2012-01-01

    In order to find out an efficient way for removing odour gas form livestock and poultry farms, a soil biological filter deodorization device was studied. This article described an overview of soil biological filter deodorization device performance index, structure and working principle. The structure parameters and operating parameters of main components were determined. The gas distribution pipes were used in the matrix layer to improve the removal effect. The active soil filtering bed ingredients were grassmould 75%, perlite 20% and black carbon 5%. The height of filter bed was 1 000 mm, surface load of filter material was 15.5-22.0 m3/(m2-h), and the range of filter humidity was controlled at 52%±3%. Prototype application results showed that removal rate of main odour material NH3, CH4 and CO2 were above 95%; CO and nitrogen oxides (expressed in NO2) were above 85%. The removal rates for volatile organic matter and diffusion odour of livestock and poultry, IP-Inhalable particle (PMi0) and total suspended solids (TSP) were all above 95%. The odour concentration of vented gas from the system was 7.5-8, which can meet the discharge standards requirements.%为研究土壤生物滤体除臭装置对于畜禽养殖场散发出的恶臭气体的去除效果,该文概述了生物土壤滤体除臭装置性能指标、结构和工作原理.确定了关键部件结构参数和运行参数,并通过在气体分布基质层中增加布气网管方式提高臭气滤除效果.采用的活性土壤滤层配方为:草腐土75%,珍珠岩20%,黑炭5%,滤层高度1000 mm,滤料表面负荷15.5~22.0 m3/(m2·h),滤料湿度控制范围(52±3)%.试验结果表明,主要恶臭物质NH3、CH4和CO2去除率大于95%;CO和氮氧化物(以NO2计)去除率大于85%,与畜禽臭气共同扩散的总挥发性有机物(TVOC)、可吸入颗粒物(PM10)和总悬浮物(TSP)去除率大于95%,系统排出气体的臭气浓度分别为7.5~8.0,符合达标排放要求.

  5. SAW synthesis with IDTs array and the inverse filter: toward a versatile SAW toolbox for microfluidics and biological applications

    CERN Document Server

    Riaud, Antoine; Thomas, Jean-Louis; Matar, Olivier Bou

    2016-01-01

    Surface acoustic waves (SAWs) are versatile tools to manipulate fluids at small scales for microfluidics and bio- logical applications. A non-exhaustive list of operations that can be performed with SAW includes sessile droplet displacement, atomization, division and merging but also the actuation of fluids embedded in microchannels or the manipulation of suspended particles. However, each of these operations requires a specific design of the wave generation system, the so-called interdigitated transducers (IDTs). Depending on the application, it might indeed be necessary to generate focused or plane, propagating or standing, aligned or shifted waves. Furthermore, the possibilities offered by more complex wave-fields such as acoustical vortices for particle tweezing and liquid twisting cannot be explored with classical IDTs. In this paper, we show that the inverse filter technique coupled with an interdigitated transducers array (IDTA) enables to synthesize all classical wave-fields used in microfluidics and ...

  6. Microdosimetric studies using a Filtered Fast Neutron Irradiation System of research reactor to application in radiation biology

    International Nuclear Information System (INIS)

    In this work, microdosimetric measurements were performed using a Wall-less Tissue Equivalent Proportional Counter - TEPC with spherical cavity with an inner diameter of 1.27 cm. The TEPC was tilled with pure propane gas, C3H8 at 5.6 kPa (42 Torr) pressure, which is equivalent to 1.3 μm in diameter of unit density tissue. The microdosimetric measurement device was irradiated with fast neutron radiation from Texas A and M University Nuclear Science Center research reactor, in College Station, Texas. The fast neutron beams were emitted with three different power values, 0.5, 1.0 and 2.0 kW. during 1h for both high gain and low gain, totalizing two hours for each power with 0.0083 Gy/min of dose rate. The neutron was filtered using the heavily filtered fast neutron irradiation system (FNIS). from Nuclear Science Center, to obtain a decrease of neutron radiation contamination by gamma ray and so, to gain the neutron microdosimetric spectra as. frequency distribution of lineal energy, dose distribution of lineal energy with good precision, and another quantities as frequency-mean of lineal energy, dose- mean of lineal energy, absorbed dose, equivalent dose and average quality factor of fast neutron. The obtained results were satisfactory, with the neutron microdosimetric spectra showing a gamma ray contamination under 5 %, especially to dose distribution of lineal energy. The results obtained in this work were in agreement when compared with another results from scientific literature, which used another procedure to reduce the neutron contamination by gamma ray. (author)

  7. Removal of nitrogen from MBT residues by leachate recirculation in combination with intermittent aeration.

    Science.gov (United States)

    Tran, Hoai Nam; Münnich, Kai; Fricke, Klaus; Harborth, Peter

    2014-01-01

    Mechanical-biological treatment (MBT) techniques have been used to reduce the emission potential of waste before placement in landfills for a couple of years, especially in Europe. The main focus of MBT is on the reduction of native organic substances and not on nitrogen compounds. As a result, the concentrations of organic substances in leachate from MBT landfills are considerably reduced in comparison to leachates from municipal solid waste landfills, while the ammonia nitrogen concentrations remain at a high level. From the stabilization of old landfills it is well known that recirculation of leachate and supplementary aeration can reduce emissions to an acceptable level in a comparatively short time. In a series of laboratory-scale tests the efficiency of this technique for MBT residues was investigated under different boundary conditions. While the effect of leachate recirculation is also well known for MBT residues, the additional aeration has so far not been investigated. The results show that this technique has only a limited influence on the reduction of organic carbon compounds. In view of nitrogen compounds, only the additional aeration during recirculation shows a strong effect on the quality of leachate, in which the concentrations of ammonium and total nitrogen are reduced by more than 90%. The results indicate that by using simple techniques the long-term emission behavior of MBT residues can be quickly reduced to an acceptable level. PMID:24293068

  8. Research on Aeration Systems Efficiency in Small Wastewater Treatment Plants

    OpenAIRE

    Ala Sokolova

    2011-01-01

    Large amount of small wastewater treatment plants does not work properly. One of the reasons could be wrong design of the aeration system. Therefore, the aim of this research is to analyse the performance of two aeration systems used in Lithuanian small wastewater treatment plants. Both aeration systems are designed for the following parameters: 4 PE and 0,8 m3/d wastewater flow. These data correspond to the oxygen requirement of 40,9 g O2/h. Summarizing the results of the research, it was fo...

  9. Fine-pore aeration diffusers: accelerated membrane ageing studies.

    Science.gov (United States)

    Kaliman, An; Rosso, Diego; Leu, Shao-Yuan; Stenstrom, Michael K

    2008-01-01

    Polymeric membranes are widely used in aeration systems for biological treatment. These membranes may degrade over time and are sensitive to fouling and scaling. Membrane degradation is reflected in a decline in operating performance and higher headloss, resulting in increased energy costs. Mechanical property parameters, such as membrane hardness, Young's modulus, and orifice creep, were used to characterize the performance of membranes over time in operation and to predict their failure. Used diffusers from municipal wastewater treatment plants were collected and tested for efficiency and headloss, and then dissected to facilitate measurements of Young's modulus, hardness, and orifice creep. Higher degree of membrane fouling corresponded consistently with larger orifice creep. A lab-scale membrane ageing simulation was performed with polyurethane and four different ethylene-propylene-diene (EPDM) membrane diffusers by subjecting them to chemical ageing cycles and periodic testing. The results confirmed full-scale plant results and showed the superiority of orifice creep over Young's modulus and hardness in predicting diffuser deterioration. PMID:17706264

  10. Feasibility of automatic aeration for insect pest management for rice stored in East Texas

    Science.gov (United States)

    Aeration using automatic controllers was compared with manually-activated aeration (manual aeration) in bins of farm-stored rice in Nome, TX, from 17 September 2002 through the end of the year. Manual aeration was defined as the farm owner activating the fans manually in mid-October, while automati...

  11. Competitive Study of Common Aeration System Application in Urban Water Supply Project%常用曝气系统在城市给水工程中的应用对比

    Institute of Scientific and Technical Information of China (English)

    何树龙

    2011-01-01

    生物接触氧化法作为城市给水工程生物预处理工艺,近年来得到了日益广泛的实际应用。本文对给水生物接触氧化法预处理工艺中常用的两种曝气系统(微孔曝气器曝气和穿孔管曝气)作了简单介绍,并结合中试试验和工程实践对这两种不同曝气系统作了充氧性能、系统造价、运行成本及运行管理等方面的比较分析。研究表明,在实际污水处理厂生物池曝气系统应用中,采用微孔曝气器的曝气系统优于采用穿孔管的曝气系统。%As biological pretreatment process of urban water supply project,biological contact oxidation has been applied widely in practical application.This paper briefly introduces two kinds of aeration systems(Microporous Aerator Aeration System and Perforated Pipe Aeration System) usually adopted in pretreatment process of water supply biological contact oxidation.The comparative analysis of oxygenation capacity,system cost,operation cost and operation management of these two kinds of aeration systems were conducted in connection with pilot test and project practice.Researches show that Microporous Aerator Aeration System outperforms Perforated Pipe Aeration System in sewage treatment plant aeration system application.

  12. Micro-aeration for hydrogen sulfide removal from biogas

    Science.gov (United States)

    Duangmanee, Thanapong

    The presence of sulfur compounds (e.g. protein, sulfate, thiosulfate, sulfite, etc.) in the feed stream generates highly corrosive and odorous hydrogen sulfide during anaerobic digestion. The high sulfide level in the biogas stream is not only poisonous to many novel metal catalysts employed in thermo-catalytic processes but also reduces the quality of methane to produce renewable energy. This study used an innovative, low-maintenance, low-cost biological sulfide removal technology to remove sulfides simultaneously from both gas and liquid phase. ORP (Oxidation-Reduction-Potential) was used as the controlling parameter to precisely regulate air injection to the sulfide oxidizing unit (SOU). The microaeration technique provided just enough oxygen to partially oxidize sulfides to elemental sulfur without inhibiting methanogenesis. The SOU was equipped with a diffuser at the bottom for the dispersion of sulfide-laden biogas and injected air throughout the column. The SOU can be operated as a standalone unit or coupled with an anaerobic digester to simultaneously remove sulfide from the biogas and effluent. The integrated system was capable of reducing hydrogen sulfide in biogas from 2,450 to less than 2 ppmV with minimal sulfate production at the highest available sulfide loading rate of 0.24 kg/m3-day. More than 98% of sulfide removed was recovered as elemental sulfur. However, the standalone SOU was able to operate at high hydrogen sulfide loading of 1.46 kg/m 3-day at inlet sulfide concentration of 3000 ppmV and reduce the off-gas hydrogen sulfide concentrations to less than 10 ppmV. The experiment also revealed that the ORP controlled aeration was sensitive enough to prevent oxygen overdosing (dampening effect) during unexpected surges of aeration. Using generalized linear regression, a model predicting output H2S concentration based on input H2S concentrations, SOU medium heights, and biogas flow rates, was derived. With 95% confidence, output H2S concentration

  13. Comparison of Energy Dissipation with and without Aerators

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Experimental results showed that aerators increase the energy dissipation of the flow in the channel by reducing the velocity coefficient φ in the deflector bucket and the jet-trajectory length, by increasing energy dissipation of the jet flow in the air and the diffusion length of the jet falling into the pool and by reducing the energy intensity of the jet falling into the pool. The energy dissipation prevents wash out downstream.When air is not entrained in the water flow, the aerators act as artificial irregularities in the channel. The energy dissipation due to the aerators in the channel without entrained air is greater than when air is entrained in the water flow.Correlations of the experimental data can be used to estimate the energy dissipation effect of the aerators on the outlet structure for the three test cases.

  14. INVESTIGATIONS INTO BIOFOULING PHENOMENA IN FINE PORE AERATION DEVICES

    Science.gov (United States)

    Microbiologically-based procedures were used to describe biofouling phenomena on fine pore aeration devices and to determine whether biofilm characteristics could be related to diffuser process performance parameters. Fine pore diffusers were obtained from five municipal wastewa...

  15. Effect of aeration on fast gas pressure tests

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu-jia; JIANG Cheng-lin; LI Xiao-wei; TANG Jun; WANG Chen; YANG Fei-long; WANG Fa-kai; ZHANG Chao-jie; DENG Shu-hua

    2009-01-01

    Given the problem of the long time required for testing gas pressure, we propose a fast-test method in which we used a technique of fast borehole sealing and air replenishing. Based on the characteristics of gas emission from boreholes to be tested, we built a theoretical model for calculating parameters during the process of increasing natural pressure and aeration. Using this model, we investigated the effect of different aeration conditions on velocity of pressure tests. The result shows that: 1) aerating air into boreholes can speed up gas pressure tests and 2) the more similar the pressure of the aerated air to the original gas pressure, the smaller the gas volume absorbed by coal and the shorter the time needed in pressure test. A case study in the Lu'an mining area shows that the time needed for gas pressure test is only 4 h using our method of aeration and 29 h under conditions of increasing natural pressure, saving time by 86.2%. This case study also indicates that, by using the aeration method, only one hour is needed for gas pressure to reach a stable state, which breaks the record of the shortest time needed for gas pressure tests in China.

  16. CAVITATION CONTROL BY AERATION AND ITS COMPRESSIBLE CHARACTERISTICS

    Institute of Scientific and Technical Information of China (English)

    DONG Zhi-yong; SU Pei-lan

    2006-01-01

    This paper presents an experimental investigation and a theoretical analysis of cavitation control by aeration and its compressible characteristics at the flow velocity V=20m/s-50m/s. Pressure waveforms with and without aeration in cavitation region were measured. The variation of compression ratio with air concentration was described, and the relation between the least air concentration to prevent cavitation erosion and flow velocity proposed based on our experimental study. The experimental results show that aeration remarkably increases the pressure in cavitation region, and the corresponding pressure wave exhibits a compression wave/shock wave. The pressure increase in cavitation region of high-velocity flow with aeration is due to the fact that the compression waves/shock wave after the flow is aerated. The compression ratio increases with air concentration rising. The relation between flow velocity and least air concentration to prevent cavitation erosion follows a semi-cubical parabola. Also, the speed of sound and Mach number of high-velocity aerated flow were analyzed.

  17. Sequential Aeration of Membrane-Aerated Biofilm Reactors for High-Rate Autotrophic Nitrogen Removal: Experimental Demonstration

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Sun, Sheng-Peng; Lackner, Susanne;

    2010-01-01

    One-stage autotrophic nitrogen (N) removal, requiring the simultaneous activity of aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB), can be obtained in spatially redox-stratified biofilms. However, previous experience with Membrane-Aerated Biofilm Reactors (MABRs) has revealed...... a difficulty in reducing the abundance and activity of nitrite oxidizing bacteria (NOB), which drastically lowers process efficiency. Here we show how sequential aeration is an effective strategy to attain autotrophic N removal in MABRs: Two separate MABRs, which displayed limited or no N removal under...... continuous aeration, could remove more than 5.5 g N/m2/day (at loads up to 8 g N/m2/day) by controlled variation of sequential aeration regimes. Daily averaged ratios of the surficial loads of O2 (oxygen) to NH4+ (ammonium) (LO2/LNH4) were close to 1.73 at this optimum. Real-time quantitative PCR based on 16...

  18. A new step aeration approach towards the improvement of nitrogen removal in a full scale Carrousel oxidation ditch.

    Science.gov (United States)

    Jin, Pengkang; Wang, Xianbao; Wang, Xiaochang; Ngo, Huu Hao; Jin, Xin

    2015-12-01

    Two aeration modes, step aeration and point aeration, were used in a full-scale Carrousel oxidation ditch with microporous aeration. The nitrogen removal performance and mechanism were analyzed. With the same total aeration input, both aeration modes demonstrated good nitrification outcomes with the average efficiency in removing NH4(+)-N of more than 98%. However, the average removal efficiencies for total nitrogen were 89.3% and 77.6% under step aeration and point aeration, respectively. The results indicated that an extended aerobic zone followed the aeration zones could affect the proportion of anoxic and oxic zones. The step aeration with larger anoxic zones indicated better TN removal efficiency. More importantly, step aeration provided the suitable environment for both nitrifiers and denitrifiers. The diversity and relative abundance of denitrifying bacteria under the step aeration (1.55%) was higher than that under the point aeration (1.12%), which resulted in an overall higher TN removal efficiency.

  19. Comments on the paper 'A novel 3D wavelet-based filter forvisualizing features in noisy biological data', by Moss et al.

    Energy Technology Data Exchange (ETDEWEB)

    Luengo Hendriks, Cris L.; Knowles, David W.

    2006-02-04

    Moss et al.(2005) describe, in a recent paper, a filter thatthey use to detect lines. We noticed that the wavelet on which thisfilter is based is a difference of uniform filters. This filter is anapproximation to the second derivative operator, which is commonlyimplemented as the Laplace of Gaussian (or Marr-Hildreth) operator (Marr&Hildreth, 1980; Jahne, 2002), Figure 1. We have compared Moss'filter with 1) the Laplace of Gaussian operator, 2) an approximation ofthe Laplace of Gaussian using uniform filters, and 3) a few common noisereduction filters. The Laplace-like operators detect lines by suppressingimage features both larger and smaller than the filter size. The noisereduction filters only suppress image features smaller than the filtersize. By estimating the signal to noise ratio (SNR) and mean squaredifference (MSD) of the filtered results, we found that the filterproposed by Moss et al. does not outperform the Laplace of Gaussianoperator. We also found that for images with extreme noise content, linedetection filters perform better than the noise reduction filters whentrying to enhance line structures. In less extreme cases of noise, thestandard noise reduction filters perform significantly better than boththe Laplace of Gaussian and Moss' filter.

  20. Characterization of Odorant Compounds from Mechanical Aerated Pile Composting and Static Aerated Pile Composting.

    Science.gov (United States)

    Kumari, Priyanka; Lee, Joonhee; Choi, Hong-Lim

    2016-04-01

    We studied airborne contaminants (airborne particulates and odorous compounds) emitted from compost facilities in South Korea. There are primarily two different types of composting systems operating in Korean farms, namely mechanical aerated pile composting (MAPC) and aerated static pile composting (SAPC). In this study, we analyzed various particulate matters (PM10, PM7, PM2.5, PM1, and total suspended particles), volatile organic compounds and ammonia, and correlated these airborne contaminants with microclimatic parameters, i.e., temperature and relative humidity. Most of the analyzed airborne particulates (PM7, PM2.5, and PM1) were detected in high concentration at SAPC facilities compered to MAPC; however these differences were statistically non-significant. Similarly, most of the odorants did not vary significantly between MAPC and SAPC facilities, except for dimethyl sulfide (DMS) and skatole. DMS concentrations were significantly higher in MAPC facilities, whereas skatole concentrations were significantly higher in SAPC facilities. The microclimate variables also did not vary significantly between MAPC and SAPC facilities, and did not correlate significantly with most of the airborne particles and odorous compounds, suggesting that microclimate variables did not influence their emission from compost facilities. These findings provide insight into the airborne contaminants that are emitted from compost facilities and the two different types of composting agitation systems. PMID:26949962

  1. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  2. [Research of controlling condition for aeration stabilization pond dealing with sanitary waste of countryside].

    Science.gov (United States)

    Li, Huai-Zheng; Yao, Shu-Jun; Xu, Zu-Xin; Chen, Wei-Bing

    2012-10-01

    According to research of some problems, such as the hydraulic detention time that aeration stabilization pond deals with sanitary waste of countryside, dissolved oxygen in pond during the process of aeration, the concentration distribution of sludge and different aeration periods affecting on the treatment efficiency, we can acquire good treatment efficiency and energy consumption of economy. The results indicate that under the aeration stabilization pond of this experiment, 4 d is the best hydraulic detention time with this aeration stabilization pond. Time of the discontinuous running aeration should be greater than 15 min. The concentration distribution of sludge can reach equilibrium at each point of aeration stabilization pond between 2 min and 10 min. The best aeration period of dislodging the pollutant is 0.5 h aeration/1.0 h cut-off.

  3. Seasonal variations and aeration effects on water quality improvements and physiological responses of Nymphaea tetragona Georgi.

    Science.gov (United States)

    Lu, Xiao-Ming; Lu, Peng-Zhen; Huang, Min-Sheng; Dai, Ling-Peng

    2013-01-01

    Seasonal variations and aeration effects on water quality improvements and the physiological responses of Nymphaea tetragona Georgi were investigated with mesocosm experiments. Plants were hydroponically cultivated in six purifying tanks (aerated, non-aerated) and the characteristics of the plants were measured. Water quality improvements in purifying tanks were evaluated by comparing to the control tanks. The results showed that continuous aeration affected the plant morphology and physiology. The lengths of the roots, petioles and leaf limbs in aeration conditions were shorter than in non-aeration conditions. Chlorophyll and soluble protein contents of the leaf limbs in aerated tanks decreased, while peroxidase and catalase activities of roots tissues increased. In spring and summer, effects of aeration on the plants were less than in autumn. Total nitrogen (TN) and ammonia nitrogen (NH4(+)-N) in aerated tanks were lower than in non-aerated tanks, while total phosphorus (TP) and dissolved phosphorus (DP) increased in spring and summer. In autumn, effects of aeration on the plants became more significant. TN, NH4(+)-N, TP and DP became higher in aerated tanks than in non-aerated tanks in autumn. This work provided evidences for regulating aeration techniques based on seasonal variations of the plant physiology in restoring polluted stagnant water.

  4. A Guide for Developing Standard Operating Job Procedures for the Activated Sludge - Aeration & Sedimentation Process Wastewater Treatment Facility. SOJP No. 5.

    Science.gov (United States)

    Mason, George J.

    This guide for developing standard operating job procedures for wastewater treatment facilities is devoted to the activated sludge aeration and sedimentation process. This process is for conversion of nonsettleable and nonfloatable materials in wastewater to settleable, floculated biological groups and separation of the settleable solids from the…

  5. Comments on the paper "A novel 3D wavelet-based filter for visualizing features in noisy biological data", by Moss et al.

    OpenAIRE

    Luengo Hendriks, Cris L.; Knowles, David W.

    2006-01-01

    Moss et al.(2005) describe, in a recent paper, a filter that they use to detect lines. We noticed that the wavelet on which this filter is based is a difference of uniform filters. This filter is an approximation to the second derivative operator, which is commonly implemented as the Laplace of Gaussian (or Marr-Hildreth) operator (Marr & Hildreth, 1980; Jahne, 2002), Figure 1. We have compared Moss' filter with 1) the Laplace of Gaussian operator, 2) an approximation of the Laplace of G...

  6. Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion.

    Science.gov (United States)

    Hrad, Marlies; Gamperling, Oliver; Huber-Humer, Marion

    2013-10-01

    Sustainable landfilling has become a fundamental objective in many modern waste management concepts. In this context, the in situ aeration of landfills has been recognised for its potential to convert conventional anaerobic landfills into biological stabilised state, whereby both current and potential (long-term) emissions of the landfilled waste are mitigated. In recent years, different in situ aeration concepts have been successfully applied in Europe, North America and Asia, all pursuing different objectives and strategies. In Austria, the first full-scale application of in situ landfill aeration by means of low pressure air injection and simultaneous off-gas collection and treatment was implemented on an old, small municipal solid waste (MSW) landfill (2.6ha) in autumn 2007. Complementary laboratory investigations were conducted with waste samples taken from the landfill site in order to provide more information on the transferability of the results from lab- to full-scale aeration measures. In addition, long-term emission development of the stabilised waste after aeration completion was assessed in an ongoing laboratory experiment. Although the initial waste material was described as mostly stable in terms of the biological parameters gas generation potential over 21days (GP21) and respiration activity over 4days (RA4), the lab-scale experiments indicated that aeration, which led to a significant improvement of leachate quality, was accompanied by further measurable changes in the solid waste material under optimised conditions. Even 75weeks after aeration completion the leachate, as well as gaseous emissions from the stabilised waste material, remained low and stayed below the authorised Austrian discharge limits. However, the application of in situ aeration at the investigated landfill is a factor 10 behind the lab-based predictions after 3years of operation, mainly due to technical limitations in the full-scale operation (e.g. high air flow resistivity due

  7. Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion.

    Science.gov (United States)

    Hrad, Marlies; Gamperling, Oliver; Huber-Humer, Marion

    2013-10-01

    Sustainable landfilling has become a fundamental objective in many modern waste management concepts. In this context, the in situ aeration of landfills has been recognised for its potential to convert conventional anaerobic landfills into biological stabilised state, whereby both current and potential (long-term) emissions of the landfilled waste are mitigated. In recent years, different in situ aeration concepts have been successfully applied in Europe, North America and Asia, all pursuing different objectives and strategies. In Austria, the first full-scale application of in situ landfill aeration by means of low pressure air injection and simultaneous off-gas collection and treatment was implemented on an old, small municipal solid waste (MSW) landfill (2.6ha) in autumn 2007. Complementary laboratory investigations were conducted with waste samples taken from the landfill site in order to provide more information on the transferability of the results from lab- to full-scale aeration measures. In addition, long-term emission development of the stabilised waste after aeration completion was assessed in an ongoing laboratory experiment. Although the initial waste material was described as mostly stable in terms of the biological parameters gas generation potential over 21days (GP21) and respiration activity over 4days (RA4), the lab-scale experiments indicated that aeration, which led to a significant improvement of leachate quality, was accompanied by further measurable changes in the solid waste material under optimised conditions. Even 75weeks after aeration completion the leachate, as well as gaseous emissions from the stabilised waste material, remained low and stayed below the authorised Austrian discharge limits. However, the application of in situ aeration at the investigated landfill is a factor 10 behind the lab-based predictions after 3years of operation, mainly due to technical limitations in the full-scale operation (e.g. high air flow resistivity due

  8. Methanogenesis acceleration of fresh landfilled waste by micro-aeration

    Institute of Scientific and Technical Information of China (English)

    SHAO Li-ming; HE Pin-jing; ZHANG Hua; YU Xiao-hua; LI Guo-jian

    2005-01-01

    When municipal solid waste(MSW) with high content of food waste is landfilled, the rapid hydrolysis of food waste results in the imbalance of anaerobic metabolism in the landfill layer, indicated by accumulation of volatile fatty acids(VFA) and decrease of pH value.This occurrence could lead to long lag time before the initiation of methanogenesis and to the production of strong leachate. Simulated landfill columns with forced aeration, with natural ventilation, and with no aeration, were monitored regarding their organics degradation rate with leachate recirculation. Hydrolysis reactions produced strong leachate in the column with no aeration. With forced aeration, the produced VFA could be effectively degraded, leading to the reduction in COD of the leachate effluent since the week 3. The CH4 in the frequency of twice/d, could amount to 40% (v/v) after only 20 weeks. This amount had increased up to 50% afterward even with no aeration. Most of COD in the recirculated leachate was removed. Using natural ventilation, CH4 could also be produced and the COD of the leachate effluent be reduced after 10 weeks of operation. However, the persistent existence of oxygen in the landfill layer yielded instability in methanogenesis process.

  9. Numerical simulation of landfill aeration using computational fluid dynamics.

    Science.gov (United States)

    Fytanidis, Dimitrios K; Voudrias, Evangelos A

    2014-04-01

    The present study is an application of Computational Fluid Dynamics (CFD) to the numerical simulation of landfill aeration systems. Specifically, the CFD algorithms provided by the commercial solver ANSYS Fluent 14.0, combined with an in-house source code developed to modify the main solver, were used. The unsaturated multiphase flow of air and liquid phases and the biochemical processes for aerobic biodegradation of the organic fraction of municipal solid waste were simulated taking into consideration their temporal and spatial evolution, as well as complex effects, such as oxygen mass transfer across phases, unsaturated flow effects (capillary suction and unsaturated hydraulic conductivity), temperature variations due to biochemical processes and environmental correction factors for the applied kinetics (Monod and 1st order kinetics). The developed model results were compared with literature experimental data. Also, pilot scale simulations and sensitivity analysis were implemented. Moreover, simulation results of a hypothetical single aeration well were shown, while its zone of influence was estimated using both the pressure and oxygen distribution. Finally, a case study was simulated for a hypothetical landfill aeration system. Both a static (steadily positive or negative relative pressure with time) and a hybrid (following a square wave pattern of positive and negative values of relative pressure with time) scenarios for the aeration wells were examined. The results showed that the present model is capable of simulating landfill aeration and the obtained results were in good agreement with corresponding previous experimental and numerical investigations.

  10. Pure and aerated water entry of a flat plate

    Science.gov (United States)

    Ma, Z. H.; Causon, D. M.; Qian, L.; Mingham, C. G.; Mai, T.; Greaves, D.; Raby, A.

    2016-01-01

    This paper presents an experimental and numerical investigation of the entry of a rigid square flat plate into pure and aerated water. Attention is focused on the measurement and calculation of the slamming loads on the plate. The experimental study was carried out in the ocean basin at Plymouth University's COAST laboratory. The present numerical approach extends a two-dimensional hydro-code to compute three-dimensional hydrodynamic impact problems. The impact loads on the structure computed by the numerical model compare well with laboratory measurements. It is revealed that the impact loading consists of distinctive features including (1) shock loading with a high pressure peak, (2) fluid expansion loading associated with very low sub-atmospheric pressure close to the saturated vapour pressure, and (3) less severe secondary reloading with super-atmospheric pressure. It is also disclosed that aeration introduced into water can effectively reduce local pressures and total forces on the flat plate. The peak impact loading on the plate can be reduced by half or even more with 1.6% aeration in water. At the same time, the lifespan of shock loading is prolonged by aeration, and the variation of impulse is less sensitive to the change of aeration than the peak loading.

  11. Energy Consumption and Energy Potential of Miraco Bubble Aerated Oxidation Ditch & BAF and Measures of Energy Saving%微曝氧化沟+BAF污水深度处理能耗潜能分析与节能研究

    Institute of Scientific and Technical Information of China (English)

    时章明; 沈浩; 姜信杰; 陈通; 余煌

    2012-01-01

    The advanced treatment of urban sewage and the related energy consumption are issues for concern. The wastewater treatment process of miraco bubble-aerated oxidation ditch and biological aerated filter is studied in this paper, its energy consumption and the process energy potential are analyzed from the perspective of the technical process. The results show that the maximum power consumption in the process of miraco bubble-aerated oxidation ditch accounts for 54.59% in the total power consumption, followed by those in water pumping stations, sludge pumping stations and water pumping stations, respectively, which account for 13.49%, 9.56% and 8.69% in the total power consumption. The aeration system and the sewage sludge dynamic system take still the most important part in the energy consumption. The reductions of chemical energy potential and biological energy potential in the entire process are 231.6 × l06hj/d and 201.5 xl06kJ/d. The potential energy in the sewage water is higher than the total energy consumption, the rates of the increase in the energy consumption and decrease in the energy potential are the greatest in the miraco bubble-aerated oxidation ditch. Some energy-saving measures are proposed for the process, the electrical equipment and the re-use of resources.%城市污水的深度处理必然成为未来发展的趋势,污水处理的能耗问题已经引起人们的关注.某城市污水处理厂采用的是微曝氧化沟+生物曝气滤池(BAF)的污水深度处理工艺,从该工艺处理流程的角度进行了能耗与工序潜能分析,将能耗与潜能联系起来进行了研究.结果表明,工序中微曝氧化沟耗电量最大,占污水处理工艺总电耗的54.59%,其次是进水泵房、污泥泵房和出水泵房,分别占总电耗的13.49%,9.56%和8.69%,曝气系统和污水污泥的动力系统仍是耗能的重点;整个处理工序中化学与生化潜能的减少量分别为231.6×106kJ/d与201.5×106kJ/d,污水进

  12. Microwave Filters

    OpenAIRE

    Zhou, Jiafeng

    2010-01-01

    The general theory of microwave filter design based on lumped-element circuit is described in this chapter. The lowpass prototype filters with Butterworth, Chebyshev and quasielliptic characteristics are synthesized, and the prototype filters are then transformed to bandpass filters by lowpass to bandpass frequency mapping. By using immitance inverters ( J - or K -inverters), the bandpass filters can be realized by the same type of resonators. One design example is given to verify the theory ...

  13. Experimental Analysis of Pressure Fluctuations behind a Bottom Aerator

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Experimental observations show that the random process of two-phase flow beh ind an aerator is an ergodic process and its amplitude distribution is similar t o a normal distribution. The maximum pressure fluctuation is at the re-attachme n t point where the jet-trajectory flow over the aerator re-attaches to bottom o f the channel, and its amplitude is 2-3 times larger than when there is no aerato r. There is a dominant frequency of 1.24 Hz in the model, but the coherence in th e frequency domain is not obvious for other frequencies beside the dominant frequ ency. There is a large vortex at the re-attachment point behind the aerator but correlation among the measurement points is not obvious in the time domain.

  14. RE-AERATION LAW OF WATER FLOW OVER SPILLWAYS

    Institute of Scientific and Technical Information of China (English)

    CHENG Xiang-ju; LUO Lin; CHEN Yong-can; ZHAO Wen-qian

    2006-01-01

    In order to explore the re-aeration law of water flow over spillway, the transfer process of oxygen in water flow over spillway was studied. The interfacial mass transfer coefficients were obtained by experiments. The flow fields and the turbulence characteristics are simulated by numerical methods. The fractional volume of fluid model (VOF) of the air-water two phase flows was introduced to track the interface. Consequently, the quantitative expression of the interfacial mass transfer coefficients related with velocity and kinetic energy at the free surface was derived and the re-aeration model for the water flow over spillway was established. The examination with the experimental data of different conditions shows the validity of the re-aeration model for the water flow over spillways. This study will be important to evaluate the dissolved oxygen concentration and self-purification ability of rivers.

  15. Aspects concerning the quality of aeration for environmental friendly turbines

    Science.gov (United States)

    Bunea, F.; Houde, S.; Ciocan, G. D.; Oprina, G.; Baran, G.; Pincovschi, I.

    2010-08-01

    The hydro renewable energy provides a reliable power source; it does not pollute the air or land but affects the aquatic habitat due to low dissolved oxygen (DO) level in the water discharged from turbines. Hydro-turbines intake generally withdraws water from the bottom layer of the reservoirs with low DO level. In the different methods used for improving DO downstream the hydropower plants the volume of air is considered to be the main parameter of the injection. The energetic consumption is affected, in terms of loss of turbine efficiency due to air injection. The authors propose a study to show the importance of the quality of air injection, meaning bubble size, pressure loss on the aeration device etc. Different types of fine bubble aeration systems have been tested and compared. The capacity to predict the aeration by numerical simulation is analysed.

  16. Aerobic N2O emission for activated sludge acclimated under different aeration rates in the multiple anoxic and aerobic process.

    Science.gov (United States)

    Wang, Huoqing; Guan, Yuntao; Pan, Min; Wu, Guangxue

    2016-05-01

    Nitrous oxide (N2O) is a potent greenhouse gas that can be emitted during biological nitrogen removal. N2O emission was examined in a multiple anoxic and aerobic process at the aeration rates of 600mL/min sequencing batch reactor (SBRL) and 1200mL/min (SBRH). The nitrogen removal percentage was 89% in SBRL and 71% in SBRH, respectively. N2O emission mainly occurred during the aerobic phase, and the N2O emission factor was 10.1% in SBRL and 2.3% in SBRH, respectively. In all batch experiments, the N2O emission potential was high in SBRL compared with SBRH. In SBRL, with increasing aeration rates, the N2O emission factor decreased during nitrification, while it increased during denitrification and simultaneous nitrification and denitrification (SND). By contrast, in SBRH the N2O emission factor during nitrification, denitrification and SND was relatively low and changed little with increasing aeration rates. The microbial competition affected the N2O emission during biological nitrogen removal.

  17. Aerobic N2O emission for activated sludge acclimated under different aeration rates in the multiple anoxic and aerobic process.

    Science.gov (United States)

    Wang, Huoqing; Guan, Yuntao; Pan, Min; Wu, Guangxue

    2016-05-01

    Nitrous oxide (N2O) is a potent greenhouse gas that can be emitted during biological nitrogen removal. N2O emission was examined in a multiple anoxic and aerobic process at the aeration rates of 600mL/min sequencing batch reactor (SBRL) and 1200mL/min (SBRH). The nitrogen removal percentage was 89% in SBRL and 71% in SBRH, respectively. N2O emission mainly occurred during the aerobic phase, and the N2O emission factor was 10.1% in SBRL and 2.3% in SBRH, respectively. In all batch experiments, the N2O emission potential was high in SBRL compared with SBRH. In SBRL, with increasing aeration rates, the N2O emission factor decreased during nitrification, while it increased during denitrification and simultaneous nitrification and denitrification (SND). By contrast, in SBRH the N2O emission factor during nitrification, denitrification and SND was relatively low and changed little with increasing aeration rates. The microbial competition affected the N2O emission during biological nitrogen removal. PMID:27155411

  18. INVESTIGATION ON THE SPLASH LENGTH OF THE AERATED JET

    Institute of Scientific and Technical Information of China (English)

    Liu Shi-he; Qu Bo

    2003-01-01

    Atomized flow forms as an aerated jet from high dams impacts against the downstream water surface at high speed. Of all the regions of atomized flow the splash region is in the center of storm rainfall, which might cause certain damage to the hydropower stations and thence more attention should be paid. In this paper the impact of the water drop at the outer edge of the aerated jet against the downstream water surface was analyzed, and the motion of the splash water drop was investigated. Furthermore, a new formula for the calculation of the splash length was suggested, which is in good agreement with the data of model tests and prototype observation.

  19. Modelling and test of aeration tank settling (ATS)

    DEFF Research Database (Denmark)

    Nielsen, M. K.; Bechmann, H.; Henze, Mogens

    2000-01-01

    The use of aeration tank settling during high hydraulic loads on large wastewater treatment plants has previously been demonstrated as a reliable technique and proven valuable. The paper proposes a simplified deterministic model to predict the efficiency of the method. It is shown that a qualitat......The use of aeration tank settling during high hydraulic loads on large wastewater treatment plants has previously been demonstrated as a reliable technique and proven valuable. The paper proposes a simplified deterministic model to predict the efficiency of the method. It is shown...

  20. Case study of aeration performance under changing process conditions

    DEFF Research Database (Denmark)

    Iranpour, R.; Shao, Y.J.; Ahring, Birgitte Kiær;

    2002-01-01

    Off gas analyses of oxygen transfer efficiency (OTE) at Terminal Island Treatment Plant of Los Angeles document changing performance of fine-pore diffusers in an activated sludge plant from 1991 to 1998. Although the plant treats a challenging waste stream, the aeration tanks are little different...... from other plants. Recent sessions provided improved time and space resolution, compared to previous work. Samples were more closely spaced, and some samples were taken in the intervals between the aeration grids, at the ends of the tanks, and near the edges of the grids. Very short term fluctuations...

  1. Fault detection and isolation of sensors in aeration control systems.

    Science.gov (United States)

    Carlsson, Bengt; Zambrano, Jesús

    2016-01-01

    In this paper, we consider the problem of fault detection (FD) and isolation in the aeration system of an activated sludge process. For this study, the dissolved oxygen in each aerated zone is assumed to be controlled automatically. As the basis for an FD method we use the ratio of air flow rates into different zones. The method is evaluated in two scenarios: using the Benchmark Simulation Model no. 1 (BSM1) by Monte Carlo simulations and using data from a wastewater treatment plant. The FD method shows good results for a correct and early FD and isolation.

  2. AERATION EFFECT OF SUBMERGED JET ON HYDRAULIC CHARACTERISTICS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A water-air two-phase turbulence mathematical model was proposed, The mass-weighted average was adoptedfor velocity, air mass fraction and turbulent parameters. Thealgebraic stress equation was used to calculate the Reynoldsstress. The pulsating flux of air mass fraction was simulatedby employing the concept of the eddy viscosity. The numericalsimulation of aerated flow in plunge pool shows that, for the same depth, aeration may decrease the time-averaged pressureon pool floor and increase slightly the turbulent intensity. Thecomputed concentration and pressure distributions coincidewith the experimental data.

  3. In-tank aeration, a necessary compliment of loaded systems in an airlift recirculating aquaculture system

    Science.gov (United States)

    Water treatment components in recirculating aquaculture systems in generally address solids removal, nitrification, circulation, aeration, and degasification. Airlift pumps in a recirculating aquaculture system can address water circulation, aeration, and degasification. Recent data indicates oxygen...

  4. Selection of optimum conditions of medium acidity and aeration for submerget cultivation of Bacillus thuringiensis and Beauveria bassiana

    Directory of Open Access Journals (Sweden)

    O. A. Dregval

    2010-06-01

    Full Text Available The paper deals with the influence of medium pH and aeration rate on growth and sporulation of Bacillus thuringiensis and Вeauveria bassiana, which are main constituents of the complex microbial insecticide. It was established optimal medium pH for B. thuringiensis – 6.0 and for В. bassiana – 6.0–7.0. The maximum productivity of the studied microorganisms was observed in the same range of aeration – 7– 14 mmol O2/l/h. The selected conditions of cultivation are necessary for the production of complex biological insecticide based on the association of B. thuringiensis and B. bassiana.

  5. Liquid and atmospheric ammonia concentrations from a dairy lagoon during an aeration experiment

    Science.gov (United States)

    Rumburg, Brian; Neger, Manjit; Mount, George H.; Yonge, David; Filipy, Jenny; Swain, John; Kincaid, Ron; Johnson, Kristen

    Ammonia emissions from agriculture are an environmental and human health concern, and there is increasing pressure to reduce emissions. Animal agriculture is the largest global source of ammonia emissions and on a per cow basis dairy operations are the largest emitters. The storage and disposal of the dairy waste is one area where emissions can be reduced, aerobic biological treatment of wastewater being a common and effective way of reducing ammonia emissions. An aeration experiment in a dairy lagoon with two commercial aerators was performed for 1 month. Liquid concentrations of ammonia, total nitrogen, nitrite and nitrate were monitored before, during and after the experiment and atmospheric ammonia was measured downwind of the lagoon using a short-path differential optical absorption spectroscopy (DOAS) instrument with 1 ppbv sensitivity. No changes in either liquid or atmospheric ammonia concentrations were detected throughout the experiment, and neither dissolved oxygen, nitrite nor nitrate could be detected in the lagoon at any time. The average ammonia concentration at 10 sampling sites in the lagoon at a depth of 0.15 m was 650 mg l -1 and at 0.90 m it was 700 mg l -1 NH 3-N. The average atmospheric ammonia concentration 50 m downwind was about 300 ppbv. The 0.90 m depth total nitrogen concentrations and total and volatile solids concentrations decreased during the experiment due to some mixing of the lagoon but the 0.15 m depth concentrations did not decrease indicating that the aerators were not strong enough to mix the sludge off the bottom into the whole water column.

  6. Water Filters

    Science.gov (United States)

    1993-01-01

    The Aquaspace H2OME Guardian Water Filter, available through Western Water International, Inc., reduces lead in water supplies. The filter is mounted on the faucet and the filter cartridge is placed in the "dead space" between sink and wall. This filter is one of several new filtration devices using the Aquaspace compound filter media, which combines company developed and NASA technology. Aquaspace filters are used in industrial, commercial, residential, and recreational environments as well as by developing nations where water is highly contaminated.

  7. Reduction of ripening time of full-scale manganese removal filters with manganese oxide-coated media

    NARCIS (Netherlands)

    Bruins, J.H.; Petrusevski, B.; Slokar, Y.M.; Huysman, K.; Joris, K.; Kruithof, J.C.; Kennedy, M.D.

    2015-01-01

    Effective manganese removal by conventional aeration-filtration with virgin filter media requires a long ripening time. The aim of this study was to assess the potential of manganese oxide-coated media to shorten the ripening time of filters with virgin media, under practical conditions. A full scal

  8. Development and evaluation of a new aerator for the catfish industry

    Science.gov (United States)

    Traditional paddle-wheel aerators have been used for supplemental and emergency aeration in the aquaculture industry for over 30 years but distribute a high volume of water which dilutes the aeration effort over the entire pond volume. Thus, a great deal of equipment and a large amount of power is r...

  9. Intermittent aeration to improve wastewater treatment efficiency in pilot-scale constructed wetland.

    Science.gov (United States)

    Uggetti, Enrica; Hughes-Riley, Theodore; Morris, Robert H; Newton, Michael I; Trabi, Christophe L; Hawes, Patrick; Puigagut, Jaume; García, Joan

    2016-07-15

    Forced aeration of horizontal subsurface flow constructed wetlands (HSSF CWs) is nowadays a recognized method to improve treatment efficiency, mainly in terms of ammonium removal. While numerous investigations have been reported testing constant aeration, scarce information can be found about the efficiency of intermittent aeration. This study aims at comparing continuous and intermittent aeration, establishing if there is an optimal regime that will increase treatment efficiency of HSSF CWs whilst minimizing the energy requirement. Full and intermittent aeration were tested in a pilot plant of three HSSF CWs (2.64m(2) each) fed with primary treated wastewater. One unit was fully aerated; one intermittently aerated (i.e. by setting a limit of 0.5mg/L dissolved oxygen within the bed) with the remaining unit not aerated as a control. Results indicated that intermittent aeration was the most successful operating method. Indeed, the coexistence of aerobic and anoxic conditions promoted by the intermittent aeration resulted in the highest COD (66%), ammonium (99%) and total nitrogen (79%) removals. On the other hand, continuous aeration promotes ammonium removal (99%), but resulted in nitrate concentrations in the effluent of up to 27mg/L. This study demonstrates the high potential of the intermittent aeration to increase wastewater treatment efficiency of CWs providing an extreme benefit in terms of the energy consumption. PMID:27062558

  10. Directional Flow of Summer Aeration to Manage Insect Pests in Stored Wheat

    Science.gov (United States)

    Field trials were conducted in metal wheat storage bins to determine whether pressure aeration, pushing ambient air from the bottom, or suction aeration, pulling air down from the top, would be more efficient at cooling the wheat mass and thereby limiting insect population growth. Aeration was accom...

  11. 7 CFR 201.55a - Moisture and aeration of substratum.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Moisture and aeration of substratum. 201.55a Section... and aeration of substratum. (a) The substratum must be moist enough to supply the needed moisture to the seeds at all times. Excessive moisture which will restrict aeration of the seeds should be...

  12. Intermittent aeration to improve wastewater treatment efficiency in pilot-scale constructed wetland.

    Science.gov (United States)

    Uggetti, Enrica; Hughes-Riley, Theodore; Morris, Robert H; Newton, Michael I; Trabi, Christophe L; Hawes, Patrick; Puigagut, Jaume; García, Joan

    2016-07-15

    Forced aeration of horizontal subsurface flow constructed wetlands (HSSF CWs) is nowadays a recognized method to improve treatment efficiency, mainly in terms of ammonium removal. While numerous investigations have been reported testing constant aeration, scarce information can be found about the efficiency of intermittent aeration. This study aims at comparing continuous and intermittent aeration, establishing if there is an optimal regime that will increase treatment efficiency of HSSF CWs whilst minimizing the energy requirement. Full and intermittent aeration were tested in a pilot plant of three HSSF CWs (2.64m(2) each) fed with primary treated wastewater. One unit was fully aerated; one intermittently aerated (i.e. by setting a limit of 0.5mg/L dissolved oxygen within the bed) with the remaining unit not aerated as a control. Results indicated that intermittent aeration was the most successful operating method. Indeed, the coexistence of aerobic and anoxic conditions promoted by the intermittent aeration resulted in the highest COD (66%), ammonium (99%) and total nitrogen (79%) removals. On the other hand, continuous aeration promotes ammonium removal (99%), but resulted in nitrate concentrations in the effluent of up to 27mg/L. This study demonstrates the high potential of the intermittent aeration to increase wastewater treatment efficiency of CWs providing an extreme benefit in terms of the energy consumption.

  13. Effect of cyclic aeration on fouling in submerged membrane bioreactor for wastewater treatment.

    Science.gov (United States)

    Wu, Jun; He, Chengda

    2012-07-01

    Due to the inefficiency of aeration measures in preventing fouling by soluble and colloidal particles. The effect of alternating high/low cyclic aeration mode on the membrane fouling in the submerged membrane bioreactor was studied by comparing to fouling in a constant aeration mode. Results indicated a higher overall fouling rate in the cyclic aeration mode than in the constant aeration. However, a higher percentage of reversible fouling was observed for the cyclic aeration mode. The membrane permeability can be more easily recovered from physical cleaning such as backwashing in the cyclic aeration mode. The activated sludge floc size distribution analysis revealed a floc destruction and re-flocculation processes caused by the alternating high/low aeration. The short high aeration period could prevent the destruction of strong strength bonds within activated sludge flocs. Therefore, less soluble and colloidal material was observed in the supernatant due to the preservation of the strong strength bonds. The weak strength bonds damaged in the high aeration period could be recovered in the re-flocculation process in the low aeration period. The floc destruction and re-flocculation processes were suggested to be the main reason for the low irreversible fouling in the cyclic aeration mode.

  14. Non-autoclaved aerated concrete with mineral additives

    Science.gov (United States)

    Il'ina, L. V.; Rakov, M. A.

    2016-01-01

    We investigated the effect of joint grinding of Portland cement clinker, silica and carbonate components and mineral additives to specific surface of 280 - 300 m2/kg on the properties (strength, average density and thermal conductivity) of non-autoclaved aerated concrete, and the porosity of the hardened cement paste produced from Portland cement clinker with mineral additives. The joint grinding of the Portland cement clinker with silica and carbonate components and mineral additives reduces the energy consumption of non-autoclaved aerated concrete production. The efficiency of mineral additives (diopside, wollastonite) is due to the closeness the composition, the type of chemical bonds, physical and chemical characteristics (specific enthalpy of formation, specific entropy) to anhydrous clinker minerals and their hydration products. Considering the influence of these additions on hydration of clinker minerals and formation of hardened cement paste structure, dispersed wollastonite and diopside should be used as mineral additives. The hardness and, consequently, the elastic modulus of diopside are higher than that of hardened cement paste. As a result, there is a redistribution of stresses in the hardened cement paste interporous partitions and hardening, both the partitions and aerated concrete on the whole. The mineral additives introduction allowed to obtain the non-autoclaved aerated concrete with average density 580 kg/m3, compressive strength of 3.3 MPa and thermal conductivity of 0.131 W/(m.°C).

  15. No-till bioenergy cropping systems effect on soil aeration

    Science.gov (United States)

    Bioenergy cropping systems have been proposed as a way to enhance United States energy security. However, research on soil quality, such as the effects of maize stover harvesting on soil aeration and the relationships to soil structure and water, associated with bioenergy cropping systems has been l...

  16. HYDRAULIC CHARACTERISTICS OF CHUTE AERATORS FOR RELEASE WORKS

    Institute of Scientific and Technical Information of China (English)

    RUAN Shi-ping

    2008-01-01

    On the basis of model tests and theoretical analysis, hydraulic characteristics, air demand, air concentration distribution and their relationships between prototype and model of an aerator were studied. Some computational examples show that the present methods have higher accuracy, and can meet the need of engineering design.

  17. Fin characteristics of aerator devices with lateral deflectors

    Institute of Scientific and Technical Information of China (English)

    WU Jian-hua; LI Dan; MA Fei; QIAN Shang-tuo

    2013-01-01

    The fins will be formed if the lateral deflectors in the side-walls with a bottom aerator device are improperly designed,and the flow regime downstream of the aerator device will be worsened.In this paper,the height and the length of the fins induced by the lateral deflectors are theoretically analyzed along with their influencing factors,and the fin characteristics are experimentally investigated on the basis of the theoretical analysis.It is shown that the intensities of the fins are strongly dependent on the ratio of the lateral cavity length to the bottom cavity length,and other factors,like the working head,the height and the angle of the lateral deflector,the flow Froude number around the aerator device,affect the fins indirectly through the changes of the lateral cavity length.When an aerator device with lateral deflectors is designed,it is crucial to match the above mentioned ratio,and to make the ratio of the two cavity lengths less than 1.0 in order to avoid the generation of the fins.

  18. Internal aeration development and the zonation of plants in wetlands

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith

    support many species which have root aeration adaptations but are otherwise unspecialised for aquatic life. Permanent standing water is a much greater challenge for plants, and survival here is restricted to species with special adaptations to their oxygen transport physiology such as the development...

  19. Nutrients removal using moving beds with aeration cycles

    International Nuclear Information System (INIS)

    Moving Bed Biofilm Reactors (MBBR) are based on the biomass growth over a media that moves into the reactor due to aeration, mechanical agitation or recirculation. These reactors have been gaining popularity and they are employed in hundreds of plants everywhere with different treatment purposes (organic matter removal, nitrification/denitrification), both for urban and industrial wastewater. (Author)

  20. Methane biofiltration using Autoclaved Aerated Concrete as the carrier material

    NARCIS (Netherlands)

    Ganendra, Giovanni; Mercado-Garcia, Daniel; Hernandez-Sanabria, Emma; Boeckx, P.; Ho, Adrian; Boon, N.

    2015-01-01

    The methane removal capacity of mixed methane-oxidizing bacteria (MOB) culture in a biofilter setup using autoclaved aerated concrete (AAC) as a highly porous carrier material was tested. Batch experiment was performed to optimize MOB immobilization on AAC specimens where optimum methane removal was

  1. Aeration of bread dough influenced by different way processing

    NARCIS (Netherlands)

    Peighambardoust, S.H.; Fallah, E.; Hamer, R.J.; Goot, van der A.J.

    2010-01-01

    The effect of steady shearing versus z-blade mixing on mechanical aeration and gas retaining ability of the dough during processing and subsequent proofing and bread baking stages was investigated. Reduction in moisture content led to reduction in both static and dynamic densities of z-blade mixed d

  2. Ventilation/perfusion mismatch during lung aeration at birth.

    Science.gov (United States)

    Lang, Justin A R; Pearson, James T; te Pas, Arjan B; Wallace, Megan J; Siew, Melissa L; Kitchen, Marcus J; Fouras, Andreas; Lewis, Robert A; Wheeler, Kevin I; Polglase, Graeme R; Shirai, Mikiyasu; Sonobe, Takashi; Hooper, Stuart B

    2014-09-01

    At birth, the transition to newborn life is triggered by lung aeration, which stimulates a large increase in pulmonary blood flow (PBF). Current theories predict that the increase in PBF is spatially related to ventilated lung regions as they aerate after birth. Using simultaneous phase-contrast X-ray imaging and angiography we investigated the spatial relationships between lung aeration and the increase in PBF after birth. Six near-term (30-day gestation) rabbits were delivered by caesarean section, intubated and an intravenous catheter inserted, before they were positioned for X-ray imaging. During imaging, iodine was injected before ventilation onset, after ventilation of the right lung only, and after ventilation of both lungs. Unilateral ventilation increased iodine levels entering both left and right pulmonary arteries (PAs) and significantly increased heart rate, iodine ejection per beat, diameters of both left and right PAs, and number of visible vessels in both lungs. Within the 6th intercostal space, the mean gray level (relative measure of iodine level) increased from 68.3 ± 11.6 and 70.3 ± 7.5%·s to 136.3 ± 22.6 and 136.3 ± 23.7%·s in the left and right PAs, respectively. No differences were observed between vessels in the left and right lungs, despite the left lung not initially being ventilated. The increase in PBF at birth is not spatially related to lung aeration allowing a large ventilation/perfusion mismatch, or pulmonary shunting, to occur in the partially aerated lung at birth. PMID:24994883

  3. Optimal filtering

    CERN Document Server

    Anderson, Brian D O

    2005-01-01

    This graduate-level text augments and extends beyond undergraduate studies of signal processing, particularly in regard to communication systems and digital filtering theory. Vital for students in the fields of control and communications, its contents are also relevant to students in such diverse areas as statistics, economics, bioengineering, and operations research.Topics include filtering, linear systems, and estimation; the discrete-time Kalman filter; time-invariant filters; properties of Kalman filters; computational aspects; and smoothing of discrete-time signals. Additional subjects e

  4. Effect of spray aeration on organics and nitrogen removal in vertical subsurface flow constructed wetland.

    Science.gov (United States)

    Ding, Yi; Wang, Wei; Song, Xin-Shan; Wang, Gang; Wang, Yu-Hui

    2014-12-01

    The objective of present study was to assess the simultaneous removal of organics and nitrogen by four lab-scale vertical subsurface flow constructed wetlands (V-SFCWs). The emergent plants employed were Canna indica. Five-month experiments showed that the planted and aerated system largely reduced the COD by 95%, NH4 by 88% and total inorganic nitrogen (TIN) by 83%. It outperformed the unplanted or simple aerated system and was much better than non-aerated system. The study provided a strong evidence to support widespread research and application of spray aeration as a low-cost and energy-efficient aeration technology in V-SFCWs.

  5. Redox potential driven aeration during very-high-gravity ethanol fermentation by using flocculating yeast.

    Science.gov (United States)

    Liu, Chen-Guang; Hao, Xue-Mi; Lin, Yen-Han; Bai, Feng-Wu

    2016-05-10

    Ethanol fermentation requires oxygen to maintain high biomass and cell viability, especially under very-high-gravity (VHG) condition. In this work, fermentation redox potential (ORP) was applied to drive the aeration process at low dissolved oxygen (DO) levels, which is infeasible to be regulated by a DO sensor. The performance and characteristics of flocculating yeast grown under 300 and 260 g glucose/L conditions were subjected to various aeration strategies including: no aeration; controlled aeration at -150, -100 and -50 mV levels; and constant aeration at 0.05 and 0.2 vvm. The results showed that anaerobic fermentation produced the least ethanol and had the highest residual glucose after 72 h of fermentation. Controlled aerations, depending on the real-time oxygen demand, led to higher cell viability than the no-aeration counterpart. Constant aeration triggered a quick biomass formation, and fast glucose utilization. However, over aeration at 0.2 vvm caused a reduction of final ethanol concentration. The controlled aeration driven by ORP under VHG conditions resulted in the best fermentation performance. Moreover, the controlled aeration could enhance yeast flocculating activity, promote an increase of flocs size, and accelerate yeast separation near the end of fermentation.

  6. Performance of completely autotrophic nitrogen removal over nitrite process under different aeration modes and dissolved oxygen

    Institute of Scientific and Technical Information of China (English)

    Jinsong GUO; Guohong YANG; Fang FANG; Yu QIN

    2008-01-01

    In this study, three sequential batch biofilm reactors (SBBRs) were operated for 155 days to evaluate the performance of completely autotrophic nitrogen removal over nitrite (CANON) process under different aeration modes and dissolved oxygen (DO). Synthetic wastewater with 160-mg NH4+-N/L was fed into the reac-tors. In the continuously-aerated reactor, the efficiency of the ammonium nitrogen conversion and total nitrogen (TN) removal reached 80% and 70%, respectively, with DO between 0.8-1.0 mg/L. Whereas in the intermit-tently-aerated reactor, at the aeration/non-aeration ratio of 1.0, ammonium was always under the detection limit and 86% of TN was removed with DO between 2.0 2.5 mg/L during the aeration time. Results show that CANON could be achieved in both continuous and inter-mittent aeration pattern. However, to achieve the same nitrogen removal efficiency, the DO needed in the inter-mittently-aerated sequential batch biofilm reactor (SBBR) during the aeration period was higher than that in the continuously-aerated SBBR. In addition, the DO in the CANON system should be adjusted to the aeration mode, and low DO was not a prerequisite to CANON process.

  7. Redox potential driven aeration during very-high-gravity ethanol fermentation by using flocculating yeast.

    Science.gov (United States)

    Liu, Chen-Guang; Hao, Xue-Mi; Lin, Yen-Han; Bai, Feng-Wu

    2016-01-01

    Ethanol fermentation requires oxygen to maintain high biomass and cell viability, especially under very-high-gravity (VHG) condition. In this work, fermentation redox potential (ORP) was applied to drive the aeration process at low dissolved oxygen (DO) levels, which is infeasible to be regulated by a DO sensor. The performance and characteristics of flocculating yeast grown under 300 and 260 g glucose/L conditions were subjected to various aeration strategies including: no aeration; controlled aeration at -150, -100 and -50 mV levels; and constant aeration at 0.05 and 0.2 vvm. The results showed that anaerobic fermentation produced the least ethanol and had the highest residual glucose after 72 h of fermentation. Controlled aerations, depending on the real-time oxygen demand, led to higher cell viability than the no-aeration counterpart. Constant aeration triggered a quick biomass formation, and fast glucose utilization. However, over aeration at 0.2 vvm caused a reduction of final ethanol concentration. The controlled aeration driven by ORP under VHG conditions resulted in the best fermentation performance. Moreover, the controlled aeration could enhance yeast flocculating activity, promote an increase of flocs size, and accelerate yeast separation near the end of fermentation. PMID:27161047

  8. PENGGUNAAN MEMBRAN SERAT BERONGGA SEBAGAI AERATOR DALAM SISTEM KULTIVASI UNTUK MENINGKATKAN PRODUKSI BIOMASSA DAN BIOFIKSASI CO2 DARI Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    D Dianursanti

    2015-06-01

    Full Text Available Pemanasan global yang memicu terjadinya perubahan iklim, sebagian besar disebabkan karena merebaknya gas CO2.  Pemanfaatan mikroalga Chlorella sp. untuk mereduksi gas CO2 menjadi potensi yang menjanjikan. Hal ini mengingat, bahwa Chlorella dapat dengan efisien mereduksi CO2 karena mereka dapat tumbuh dengan cepat dan mudah diadaptasikan ke dalam rekayasa sistem fotobioreaktor. Dalam penelitian ini akan diupayakan pengaturan sistem aerasi berfilter untuk kultivasi Chlorella vulgaris dalam reaktor agar proses transfer massa gas CO2 dalam kultur mikroalga menjadi lebih baik. Dengan demikian nilai KLa (CO2 menjadi salah satu parameter penentu dalam peningkatan produksi biomassa Chlorella. Nilai KLa yang tinggi menunjukkan proses transfer massa CO2 yang lebih baik dalam kultur mikroalga. Namun nilai KLa (CO2 yang terlalu besar sangat mungkin menyebabkan terjadinya shear stress pada alga.Dengan menggunakan membran serat berongga sebagai aerator, permasalahan shear stress pada alga dapat dihindari. Dengan diameter pori yang sangat kecil, membran ini dapat memberikan laju alir dan transfer massa CO2 dalam kultur yang optimal, tanpa menimbulkan efek shear strees. Dengan demikian penggunaan membran ini dapat menghasilkan produktivitas Chlorella yang lebih baik serta dapat meningkatkan kemampuan biofiksasi CO2 selama proses kultivasinya. Penggunaan membran serat berongga sebagai aerator telah terbukti mampu meningkatkan produksi biomassa C. vulgaris  sebesar 27,2 %. Abstract Global warming triggering climate change is largely due to the presence of CO2. Utilization of microalgae Chlorella vulgaris to reduce CO2 gas is potential as it efficiently reduces CO2while growing quickly and adapting to the photobioreactor systems engineering. This study explored filter aeration system settings for cultivating C. vulgaris in the reactor thus mass transfer of CO2 in microalgae cultures becomes more efficient. Value of KLa (CO2 is one of the parameters in

  9. Phosphorus removal in aerated stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghigliazza, R.; Lodi, A.; Rovatti, M. [Inst. of Chemical and Process Engineering ``G.B. Bonino``, Univ. of Genoa (Italy)

    1999-03-01

    The possibility to obtain biological phosphorus removal in strictly aerobic conditions has been investigated. Experiments, carried out in a continuous stirred tank reactor (CSTR), show the feasibility to obtain phosphorus removal without the anaerobic phase. Reactor performance in terms of phosphorus abatement kept always higher then 65% depending on adopted sludge retention time (SRT). In fact increasing SRT from 5 days to 8 days phosphorus removal and reactor performance increase but overcoming this SRT value a decreasing in reactor efficiency was recorded. (orig.) With 6 figs., 3 tabs., 18 refs.

  10. Bioaccumulation of selenium and induced biological effects in the filter feeding bivalve Corbicula fluminea: influence of ventilatory activity, selenium speciation and route of transfer

    International Nuclear Information System (INIS)

    Selenium is an essential micro-nutrient for most of living organisms. However, toxic effects in several ecosystems have been reported in the literature. Toxicity comprehension is difficult due to the complexity of Se oxidation states in the environment. The aim of this thesis work was to acquire knowledge on the physiological and environmental factors involved in bioaccumulation and toxicity processes in the freshwater filter-feeding bivalve C. fluminea. The aims were: i) to define what the factors involved in Se bioaccumulation processes in the bivalve are, ii) to characterize Se bioaccumulation at different biological organisation levels, iii) to investigate Se toxic effects. First experiments, carried out for short term exposure duration (3 days), have permitted to underline the importance of Se chemical speciation in bioaccumulation processes in C. fluminea. It has been shown that the organic form, seleno-methionine, was much more bio-available than the inorganic forms, selenite and selenate. Moreover, the route of transfer was determinant in those processes. Inorganic forms have been better extracted by trophic route, whereas seleno-methionine has been better extracted by the direct route. In our experimental conditions, ventilation of the bivalve has not been a limiting factor for Se bioaccumulation by the direct route, whereas it has been for bioaccumulation by the trophic route. Ventilation has been largely modified by the presence of dissolved selenite and seleno-methionine. We have shown that the kinetics of seleno-methionine bioaccumulation are much more fast than those of selenite. Moreover, when introduced as SeMet, internalized Se appeared to be relatively remanent in soft tissues of C. fluminea in comparison with Se internalized when introduced as selenite. Subcellular and molecular distributions of these forms were very different. Finally, it has been shown that seleno-methionine and selenite could generate weak alterations of the anti

  11. BIOVENTING - Groundwater Aeration by Discontinuous Oxygen Gas Pulse Injections

    Science.gov (United States)

    Schirmer, M.

    2003-12-01

    Groundwater aeration by discontinuous oxygen gas pulse injections appears to be a promising concept for enhanced natural attenuation of dissolved contaminants that are susceptible for oxygenase enzyme attacks. Oxygen amendments facilitate indigenous microbiota to catabolize groundwater pollutants, such as aromatics, that are considered to be recalcitrant in absence of dissolved oxygen. As a rule, natural attenuation of many pollutants under aerobic conditions is considerably faster than under anaerobic conditions. Thus, enhancing the dissolved oxygen level appears to be worthwhile. In situ aeration of groundwater has been accomplished by air sparging, H2O2-supply, or by utilization of oxygen release compounds. However, continuous aeration of previously anaerobic groundwater is not desirable for several reasons: (a) economic efforts too high, (b) pollutant dislocation towards surface (desired only in air sparging), (c) risk of aquifer clogging (gas clogging, oxidation of ferrous iron, formation of bioslimes). In contrast, discontinuous oxygen gas sparging provides only for periodical groundwater aeration which is followed by microaerobic and suboxic conditions. Microaerobic conditions can prevail spatially (e.g., at plume fringes or within biofilms) or temporarily (e.g., at discontinuous bioventing). They still allow adapted bacteria to transform environmental pollutants to less toxic compounds, e.g., aromatic ring cleavage after dioxygenasis attack. Ring cleavage products, on the other hand, may be degraded more easily by anaerobic consortia than the initial aromatic compounds, making oxygen depletion periods highly intriguing in regard to an initiation of natural attenuation processes at plume fringes. In our work we outline the effect of oxygen depletion conditions on biodegradation of monchlorobenzene (MCB) as they occur subsequently to temporary aeration periods. For microaerobic conditions, relative to the oxygen supply, a stoichiometric transformation of MCB

  12. Aerator Performance Effectiveness to Prevent Cavitation in Steep Channel

    Directory of Open Access Journals (Sweden)

    Yeri Sutopo

    2016-04-01

    Full Text Available The incoming air from the atmosphere into the water flow which reaches the bed of the flow > 7% can prevent the cavitation at the bed of the chute spillway channel. At the time of the concentration of air bubbles in the bed flow cannot naturally reach 7 %, then aerator is required at the bottom of the channel, so that the concentration is increased to > 7%.The purpose of this study was to test the aerator effectiveness in increasing the concentration of air bubbles at the bottom of a steep channel. This study used steep channel whose length is 10 m, width 0.2 m, and height 0.4 m, while slope of steep channel is 20º and25º.The discharge is 20.9 l/s.A set of video cameras was used to take a picture of the movement of air bubbles. A Sony ED210 CCTV whose specifications are: indoor, 1/3 "color CCD, 540 TVL resolution, 0.1 lux was used for documentation purpose. The analysis of air bubbles was conducted using aUlead Video Studio 11 equipped with a ImageJ software version 1.43. The results of this study was on the slope of steep channel bed α = 25°, and Q = 20.9 l/s, at a point 7.2 m from the inlet flume on the condition of artificial air entrainment in the downstream flow region after the first aerator was installed, new aerator unit is not required.

  13. Effect of nitrogen on phosphate reduction in biological phosphorus removal from wastewater

    OpenAIRE

    Vabolienė, Giedrė; Matuzevičius, Algimantas B.; Valentukevičienė, Marina

    2007-01-01

    Conventional schemes of biological nitrogen removal can be combined with phosphorus removal schemes. One of the common technology schemes for biological nitrogen removal is the aeration zone and the anoxic zone in one tank. The nitrification and denitrification are carried out during the aeration switching on and off. The anaerobic zone is equipped behind the nitrification/denitrification tank for biological phosphorus removal. Exchange of the anaerobic and aerobic conditions is necessary for...

  14. Soil aeration status in a lowland wet grassland

    Science.gov (United States)

    Barber, K. R.; Leeds-Harrison, P. B.; Lawson, C. S.; Gowing, D. J. G.

    2004-02-01

    The maintenance or development of plant community diversity in species-rich wet grasslands has been a focus of water management considerations in the UK for the past 20 years. Much attention has been given to the control of water levels in the ditch systems within these wet grassland systems. In this paper we report measurements of aeration status and water-table fluctuation made on a peat soil site at Tadham Moor in Somerset, UK, where water management has focused on the maintenance of wet conditions that often result in flooding in winter and wet soil conditions in the spring and summer. Measurement and modelling of the water-table fluctuation indicates the possibility of variability in the aeration of the root environment and anoxic conditions for much of the winter period and for part of the spring and summer. We have used water content and redox potential measurements to characterize the aeration status of the peat soil. We find that air-filled porosity is related to water-table depth in these situations. Redox potentials in the spring were generally found to be low, implying a reducing condition for nitrate and iron. A significant relationship (p < 0.01) between redox potential and water-table depth exists for data measured at 0.1 m depth, but no relationship could be found for data from 0.4 m depth.

  15. Optimum air-demand ratio for maximum aeration efficiency in high-head gated circular conduits.

    Science.gov (United States)

    Ozkan, Fahri; Tuna, M Cihat; Baylar, Ahmet; Ozturk, Mualla

    2014-01-01

    Oxygen is an important component of water quality and its ability to sustain life. Water aeration is the process of introducing air into a body of water to increase its oxygen saturation. Water aeration can be accomplished in a variety of ways, for instance, closed-conduit aeration. High-speed flow in a closed conduit involves air-water mixture flow. The air flow results from the subatmospheric pressure downstream of the gate. The air entrained by the high-speed flow is supplied by the air vent. The air entrained into the flow in the form of a large number of bubbles accelerates oxygen transfer and hence also increases aeration efficiency. In the present work, the optimum air-demand ratio for maximum aeration efficiency in high-head gated circular conduits was studied experimentally. Results showed that aeration efficiency increased with the air-demand ratio to a certain point and then aeration efficiency did not change with a further increase of the air-demand ratio. Thus, there was an optimum value for the air-demand ratio, depending on the Froude number, which provides maximum aeration efficiency. Furthermore, a design formula for aeration efficiency was presented relating aeration efficiency to the air-demand ratio and Froude number.

  16. Optimum air-demand ratio for maximum aeration efficiency in high-head gated circular conduits.

    Science.gov (United States)

    Ozkan, Fahri; Tuna, M Cihat; Baylar, Ahmet; Ozturk, Mualla

    2014-01-01

    Oxygen is an important component of water quality and its ability to sustain life. Water aeration is the process of introducing air into a body of water to increase its oxygen saturation. Water aeration can be accomplished in a variety of ways, for instance, closed-conduit aeration. High-speed flow in a closed conduit involves air-water mixture flow. The air flow results from the subatmospheric pressure downstream of the gate. The air entrained by the high-speed flow is supplied by the air vent. The air entrained into the flow in the form of a large number of bubbles accelerates oxygen transfer and hence also increases aeration efficiency. In the present work, the optimum air-demand ratio for maximum aeration efficiency in high-head gated circular conduits was studied experimentally. Results showed that aeration efficiency increased with the air-demand ratio to a certain point and then aeration efficiency did not change with a further increase of the air-demand ratio. Thus, there was an optimum value for the air-demand ratio, depending on the Froude number, which provides maximum aeration efficiency. Furthermore, a design formula for aeration efficiency was presented relating aeration efficiency to the air-demand ratio and Froude number. PMID:25225935

  17. Development of Filter-Blower Unit for use in the Advanced Nuclear Biological Chemical Protection System (ANBCPS) Helicopter/Transport-aircraft version

    NARCIS (Netherlands)

    Sabel, R.; Reffeltrath, P.A.; Jonkman, A.; Post, T.

    2006-01-01

    As a participant in the three-nation partnership for development of the ANBCP-S for use in Helicopters, Transport Aircraft and Fast Jet, the Royal Netherlands Airforce (RNLAF) picked up the challenge to design a Filter- Blower-Unit (FBU). Major Command (MajCom) of the RNLAF set priority to develop a

  18. Violent breaking wave impacts. Part 3. Effects of scale and aeration

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Bullock, G. N.; Hogg, A. J.

    2015-01-01

    The effects of scale and aeration on violent breaking wave impacts with trapped and entrained air are investigated both analytically and numerically. By dimensional analysis we show that the impact pressures for Froude scaled conditions prior to the impact depend on the scale and aeration level....... The Bagnold-Mitsuyasu scaling law for the compression of an air pocket by a piston of incompressible water is rederived and generalised to 3D air pockets of arbitrary shape. Numerical results for wall pressure, force and impulse are then presented for a flip-through impact, a low-aeration impact and a high-aeration...... impact, for nine scales and five levels of initial aeration. Two of these impact types trap a pocket of air at the wall. Among the findings of the paper is that for fixed initial aeration, impact pressures from the flip-through impact broadly follow Froude scaling. This is also the case for the two...

  19. Effects of aeration position on organics, nitrogen and phosphorus removal in combined oxidation pond-constructed wetland systems.

    Science.gov (United States)

    Wang, Xiaoou; Tian, Yimei; Zhao, Xinhua; Peng, Sen; Wu, Qing; Yan, Lijian

    2015-12-01

    Given that few studies investigated the effects of aeration position (AP) on the performance of aerated constructed wetlands, the aim of this study was to evaluate the effects of AP on organics, nitrogen and phosphorus removal in lab-scale combined oxidation pond-constructed wetland (OP-CW) systems. Results showed that middle aeration allowed the CW to possess more uniform oxygen distribution and to achieve greater removals of COD and NH3-N, while the CW under bottom aeration and surface aeration demonstrated more distinct stratification of oxygen distribution and surface aeration brought about better TN removal capacity for the OP-CW system. However, no significant influence of artificial aeration or AP on TP removal was observed. Overall, AP could significantly affect the spatial distribution of dissolved oxygen by influencing the oxygen diffusion paths in aerated CWs, thereby influencing the removal of pollutants, especially organics and nitrogen, which offers a reference for the design of aerated CWs.

  20. Experience of drilling wells using pump-compressor unit to inject aerated fluid

    Energy Technology Data Exchange (ETDEWEB)

    Oleynik, S.P.; Beley, I.V.; Lopatin, Yu.S.; Pytel, S.P.; Vasilak, I.I.; Yushkevich, V.I.

    1979-01-01

    Results are described from drilling wells with flushing by highly aerated clay fluid with the help of a UNGA unit which includes pumps and compressors of the drilling unit UBSh-1 which permits injection of an aerated mixture under pressures considerably exceeding the pressure of its formation. Qualitative and technical-economic advantages of drilling with flushing by aerated solutions with the use of a unit for injecting gas-liquid agents are presented.

  1. Aeration-Induced Changes in Temperature and Nitrogen Dynamics in a Dimictic Lake.

    Science.gov (United States)

    Holmroos, Heidi; Horppila, Jukka; Laakso, Sanna; Niemistö, Juha; Hietanen, Susanna

    2016-07-01

    Low levels of oxygen (O) in the hypolimnion layer of lakes are harmful to benthic animals and fish; they may also adversely affect nutrient cycles. Artificial aeration is often used in lake management to counteract these problems, but the effects of aeration on nitrogen (N) cycling are not known. We studied the effects of hypolimnetic aeration on N dynamics and temperature in a eutrophic lake by comparing continuous and pulsed aeration with a nonaerated station. Aeration decreased the accumulation of NH-N deep in the lake (20-33 m) by supplying O for nitrification, which in turn provided substrate for denitrification and promoted N removal. Aeration also increased the temperature in the hypolimnion. Denitrification rate was highest in the nonaerated deep areas (average, 7.62 mg N m d) due to very high rates during spring turnover of the water column, demonstrating that natural turnover provides O for nitrification. During stratification, denitrification was highest at the continuously aerated station (4.06 mg N m d) and lowest at the nonaerated station (3.02 mg N m d). At the periodically aerated station, aeration pauses did not restrict the increase in temperature but resulted in accumulation of NH-N and decreased the contribution of denitrification as a nitrate reduction process. Our findings demonstrate that hypolimnetic aeration can substantially affect N cycling in lakes and that the effect depends on the aeration strategy. Because N is one of the main nutrients controlling eutrophication, the effects of aeration methods on N removal should be considered as part of strategies to manage water quality in lakes.

  2. Aeration-Induced Changes in Temperature and Nitrogen Dynamics in a Dimictic Lake.

    Science.gov (United States)

    Holmroos, Heidi; Horppila, Jukka; Laakso, Sanna; Niemistö, Juha; Hietanen, Susanna

    2016-07-01

    Low levels of oxygen (O) in the hypolimnion layer of lakes are harmful to benthic animals and fish; they may also adversely affect nutrient cycles. Artificial aeration is often used in lake management to counteract these problems, but the effects of aeration on nitrogen (N) cycling are not known. We studied the effects of hypolimnetic aeration on N dynamics and temperature in a eutrophic lake by comparing continuous and pulsed aeration with a nonaerated station. Aeration decreased the accumulation of NH-N deep in the lake (20-33 m) by supplying O for nitrification, which in turn provided substrate for denitrification and promoted N removal. Aeration also increased the temperature in the hypolimnion. Denitrification rate was highest in the nonaerated deep areas (average, 7.62 mg N m d) due to very high rates during spring turnover of the water column, demonstrating that natural turnover provides O for nitrification. During stratification, denitrification was highest at the continuously aerated station (4.06 mg N m d) and lowest at the nonaerated station (3.02 mg N m d). At the periodically aerated station, aeration pauses did not restrict the increase in temperature but resulted in accumulation of NH-N and decreased the contribution of denitrification as a nitrate reduction process. Our findings demonstrate that hypolimnetic aeration can substantially affect N cycling in lakes and that the effect depends on the aeration strategy. Because N is one of the main nutrients controlling eutrophication, the effects of aeration methods on N removal should be considered as part of strategies to manage water quality in lakes. PMID:27380085

  3. Performance Evaluation of an Oxidation Ditch System with a Disc Aerator

    OpenAIRE

    Abdel E. Ghaly; Ashley Thistle

    2011-01-01

    Problem statement: The oxidation ditch system has been used to treat various types of wastewaters. Several types of aerators are used to supply the treatment process with oxygen. Among these devices, the disc aerator has certain advantages regarding foam generation over the brush and paddle type rotors, but the main disadvantages of this aerator is the limited oxygenation capacity. The main objectives of this study were to study the effects of various design parameters and system operation pa...

  4. CFD study to determine the optimal configuration of aerators in a full-scale waste stabilization pond.

    Science.gov (United States)

    Alvarado, Andres; Vesvikar, Mehul; Cisneros, Juan F; Maere, Thomas; Goethals, Peter; Nopens, Ingmar

    2013-09-01

    Aerated lagoons (ALs) are important variants of the pond wastewater treatment technology that have not received much attention in the literature. The hydraulic behaviour of ALs and especially the Facultative aerated lagoons (FALs) is very complex since the aeration in these systems is designed for oxygen transfer but not necessarily to create complete mixing. In this work, the energy expenditure of the aerators was studied by means of a scenario analysis. 3D CFD models (one phase and multiphase) of a 3 ha FAL in a waste stabilization pond system in Cuenca (Ecuador) were built for different configurations of aerators. The thrust produced by the aerators was modelled by an external momentum source applied as velocity vectors into the pond fluid. The predictions of a single phase model were in satisfactory agreement with experimental results. Subsequently, a scenario analysis assessing several aeration schemes with different numbers of aerators in operation were tested with respect to velocity profiles and residence time distribution (RTD) curves. This analysis showed that the aeration scheme with all 10 aerators switched on produces a similar hydraulic behaviour compared to using only 6 or 8 aerators. The current operational schemes comprise of switching off some aerators during the peak hours of the day and operating all 10 aerators during night. This current practice could be economically replaced by continuously operating 4 or 6 aerators without significantly affecting the overall mixing. Furthermore, a continuous mixing regime minimises the sediment oxygen demand enhancing the oxygen levels in the pond. PMID:23764602

  5. Rapid Start-up and Loading of an Attached Growth, Simultaneous Nitrification/Denitrification Membrane Aerated Bioreactor

    Science.gov (United States)

    Meyer, Caitlin E.; Pensinger, Stuart; Pickering, Karen D.; Barta, Daniel; Shull, Sarah A.; Vega, Letticia M.; Christenson, Dylan; Jackson, W. Andrew

    2015-01-01

    Membrane aerated bioreactors (MABR) are attached-growth biological systems used for simultaneous nitrification and denitrification to reclaim water from waste. This design is an innovative approach to common terrestrial wastewater treatments for nitrogen and carbon removal and implementing a biologically-based water treatment system for long-duration human exploration is an attractive, low energy alternative to physiochemical processes. Two obstacles to implementing such a system are (1) the "start-up" duration from inoculation to steady-state operations and (2) the amount of surface area needed for the biological activity to occur. The Advanced Water Recovery Systems (AWRS) team at JSC explored these two issues through two tests; a rapid inoculation study and a wastewater loading study. Results from these tests demonstrate that the duration from inoculation to steady state can be reduced to under two weeks, and that despite low ammonium removal rates, the MABRs are oversized.

  6. Method and apparatus for energy efficient self-aeration in chemical, biochemical, and wastewater treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

    2002-05-28

    The present invention is a pulse spilling self-aerator (PSSA) that has the potential to greatly lower the installation, operation, and maintenance cost associated with aerating and mixing aqueous solutions. Currently, large quantities of low-pressure air are required in aeration systems to support many biochemical production processes and wastewater treatment plants. Oxygen is traditionally supplied and mixed by a compressor or blower and a mechanical agitator. These systems have high-energy requirements and high installation and maintenance costs. The PSSA provides a mixing and aeration capability that can increase operational efficiency and reduce overall cost.

  7. Monitoring transitory profiles of leachate humic substances in landfill aeration reactors in mesophilic and thermophilic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Huanhuan [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Yin, Ke; Ge, Liya; Giannis, Apostolos [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); Chuan, Valerie W.L. [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Wang, Jing-Yuan, E-mail: JYWANG@ntu.edu.sg [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2015-04-28

    Highlights: • Polymerization and condensation of humic substances (HS) were enhanced by aeration. • Carboxylic group was enriched in HS by aeration presenting improved hydrophilicity. • Mobility of humic acid, as a result was enhanced by aeration especially in young landfill. • Waste age plays an important role in leachate management during aeration. - Abstract: The presence of humic substances (HS) in landfill leachate is of great interest because of their structural stability and potential toxicity. This study examined the effects of temperature and waste age on the transformation of HS during in situ aeration of bioreactor landfills. By establishing aerobic conditions, dissolved organic carbon (DOC) rapidly accumulated in the bioreactor leachate. Fractional analysis showed that the elevated concentration of humic acids (HAs) was primarily responsible for the increment of leachate strength. Further structural characterization indicated that the molecular weight (MW) and aromacity of HS were enhanced by aeration in conjunction with thermophilic temperature. Interestingly, elevation of HAs concentration was not observed in the aeration reactor with a prolonged waste age, as the mobility of HAs was lowered by the high MW derived from extended waste age. Based on these results, aeration may be more favorable in aged landfills, since dissolution of HAs could be minimized by the evolution to larger MW compared to young landfills. Moreover, increased operation temperature during aeration likely offers benefits for the rapid maturation of HS.

  8. Microstructure and Properties of Silty Siliceous Crushed Stone-lime Aerated Concrete

    Institute of Scientific and Technical Information of China (English)

    WANG Qiankun; CHEN Youzhi; LI Fangxian; SUN Tao; XU Bingbo

    2006-01-01

    The clayish crushed stone was used for making aerated concrete. Through studying hydro-thermal synthesis reaction, mix ratio, gas-forming and performance analysis, Grade-B05 and Grade-B06 aerated concrete were prepared successfully. The proper mix ratio and key processing parameters were achieved. The microstructure of aerated concrete with crush stone was analyzed by means of XRD and SEM. The experimental results indicate that the hydration products are poorly crystalline C-S-H (B), tobermorite and hydrogarnet. No component of clay was found. Unreacted SiO2 can be in existence, and the structure system of aerated concrete is homogeneous and dense.

  9. [Effect of aeration intensity on the nitrogen and phosphorus removal performance of AOA membrane bioreactors].

    Science.gov (United States)

    Chen, Xiao-Yang; Xue, Zhi-Yong; Xiao, Jing-Ni; Zhang, Han-Min; Yang, Feng-Lin; Wang, Wei-Ping; Hong, Chun-Lai; Zhu, Feng-Xiang

    2011-10-01

    The ability of simultaneous phosphorus and nitrogen removal of sequencing batch membrane bioreactor run in anaerobic/oxic/ anoxic mode (AOA MBR) was examined under three aeration intensities [2.5, 3.75 and 5.0 m3 x (m2 x h)(-10]. The results showed that the averaged removals of COD were over 90% at different aeration intensities. And the higher aeration intensity was, the more ammonia nitrogen removal rate achieved. The removal rates of NH4(+) under the three aeration intensities were 84.7%, 90.6% and 93.8%, respectively. Total nitrogen removal rate increased with the increasing aeration intensity. But excessive aeration intensity reduced TN removal. The removal rates of TN under the three aeration intensities were 83.4%, 87.4% and 80.6%, respectively. Aeration intensity affected the denitrifying phosphorus ability of the AOA MBR. The ratio of denitrification phosphorus removal under the three aeration intensities were 20%, 30.2% and 26.7%, respectively.

  10. Bioreactor tests preliminary to landfill in situ aeration: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Raga, Roberto, E-mail: roberto.raga@unipd.it [ICEA Department, University of Padova. Via Marzolo, 9, 35131 Padova (Italy); Cossu, Raffaello [ICEA Department, University of Padova. Via Marzolo, 9, 35131 Padova (Italy)

    2013-04-15

    Highlights: ► Carbon and nitrogen mass balances in aerated landfill simulation reactors. ► Waste stabilization in aerated landfill simulation reactors. ► Effect of temperature on biodegradation processes in aerated landfills. - Abstract: Lab scale tests in bioreactor were carried out in the framework of the characterization studies of a landfill where in situ aeration (possibly followed by landfill mining) had been proposed as part of the novel waste management strategy in a region in northern Italy. The tests were run to monitor the effects produced by aerobic conditions at different temperatures on waste sampled at different depths in the landfill, with focus on the carbon and nitrogen conversion during aeration. Temperatures ranging from 35 to 45 °C were chosen, in order to evaluate possible inhibition of biodegradation processes (namely nitrification) at 45 °C in the landfill. The results obtained showed positive effects of the aeration on leachate quality and a significant reduction of waste biodegradability. Although a delay of biodegradation processes was observed in the reactor run at 45 °C, biodegradation rates increased after 2 months of aeration, providing very low values of the relevant parameters (as in the other aerated reactors) by the end of the study. Mass balances were carried out for TOC and N-NH{sub 4}{sup +}; the findings obtained were encouraging and provided evidence of the effectiveness of carbon and nitrogen conversion processes in the aerated landfill simulation reactors.

  11. Partial nitritation ANAMMOX in submerged attached growth bioreactors with smart aeration at 20 °C.

    Science.gov (United States)

    Shannon, James M; Hauser, Lee W; Liu, Xikun; Parkin, Gene F; Mattes, Timothy E; Just, Craig L

    2015-01-01

    Submerged attached growth bioreactors (SAGBs) were operated at 20 °C for 30 weeks in smart-aerated, partial nitritation ANAMMOX mode and in a timer-controlled, cyclic aeration mode. The smart-aerated SAGBs removed 48-53% of total nitrogen (TN) compared to 45% for SAGBs with timed aeration. Low dissolved oxygen concentrations and cyclic pH patterns in the smart-aerated SAGBs suggested conditions favorable to partial nitritation ANAMMOX and stoichiometrically-derived and numerically modeled estimations attributed 63-68% and 14-44% of TN removal to partial nitritation ANAMMOX in these bioreactors, respectively. Ammonia removals of 36-67% in the smart-aerated SAGBs, with measured oxygen and organic carbon limitations, further suggest partial nitritation ANAMMOX. The smart-aerated SAGBs required substantially less aeration to achieve TN removals similar to SAGBs with timer-controlled aeration. Genomic DNA testing confirmed that the dominant ANAMMOX seed bacteria, received from a treatment plant utilizing the DEMON® sidestream deammonification process, was a Candidatus Brocadia sp. (of the Planctomycetales order). The DNA from these bacteria was also present in the SAGBs at the conclusion of the study providing evidence for attached growth and limited biomass washout.

  12. Nitrogen-removal performance and community structure of nitrifying bacteria under different aeration modes in an oxidation ditch.

    Science.gov (United States)

    Guo, Chang-Zi; Fu, Wei; Chen, Xue-Mei; Peng, Dang-Cong; Jin, Peng-Kang

    2013-07-01

    Oxidation-ditch operation modes were simulated using sequencing batch reactors (SBRs) with alternate stirring and aerating. The nitrogen-removal efficiencies and nitrifying characteristics of two aeration modes, point aeration and step aeration, were investigated. Under the same air-supply capacity, oxygen dissolved more efficiently in the system with point aeration, forming a larger aerobic zone. The nitrifying effects were similar in point aeration and step aeration, where the average removal efficiencies of NH4(+) N were 98% and 96%, respectively. When the proportion of anoxic and oxic zones was 1, the average removal efficiencies of total nitrogen (TN) were 45% and 66% under point aeration and step aeration, respectively. Step aeration was more beneficial to both anoxic denitrification and simultaneous nitrification and denitrification (SND). The maximum specific ammonia-uptake rates (AUR) of point aeration and step aeration were 4.7 and 4.9 mg NH4(+)/(gMLVSS h), respectively, while the maximum specific nitrite-uptake rates (NUR) of the two systems were 7.4 and 5.3 mg NO2(-)-N/(gMLVSS h), respectively. The proportions of ammonia-oxidizing bacteria (AOB) to all bacteria were 5.1% under point aeration and 7.0% under step aeration, and the proportions of nitrite-oxidizing bacteria (NOB) reached 6.5% and 9.0% under point and step aeration, respectively. The dominant genera of AOB and NOB were Nitrosococcus and Nitrospira, which accounted for 90% and 91%, respectively, under point aeration, and the diversity of nitrifying bacteria was lower than under step aeration. Point aeration was selective of nitrifying bacteria. The abundance of NOB was greater than that of AOB in both of the operation modes, and complete transformation of NH4(+) N to NO3(-)-N was observed without NO2(-)-N accumulation.

  13. Rapid Startup and Loading of an Attached Growth, Simultaneous Nitrification/Denitrification Membrane Aerated Bioreactor

    Science.gov (United States)

    Meyer, Caitlin; Vega, Leticia

    2014-01-01

    The Membrane Aerated Bioreactor (MABR) is an attached-growth biological system for simultaneous nitrification and denitrification. This design is an innovative approach to common terrestrial wastewater treatments for nitrogen and carbon removal. Implementing a biologically-based water treatment system for long-duration human exploration is an attractive, low energy alternative to physiochemical processes. Two obstacles to implementing such a system are (1) the "start-up" duration from inoculation to steady-state operations and (2) the amount of surface area needed for the biological activity to occur. The Advanced Water Recovery Systems (AWRS) team at JSC explored these two issues through two tests; a rapid inoculation study and a wastewater loading study. Results from these tests demonstrate that the duration from inoculation to steady state can be reduced to two weeks and that the surface area to volume ratio baseline used in the Alternative Water Processor (AWP) test was higher than what was needed to remove the organic carbon and ammonium from the system.

  14. Experimental Study on Characteristics of Biological Filter with Combination Packing for Removal C, N and P from Sewage%组合填料生物滤床处理污水脱碳氮磷性能试验

    Institute of Scientific and Technical Information of China (English)

    赵玉华; 赵杰; 李艳凤; 徐丽

    2011-01-01

    目的 深度处理模拟城市污水厂二级出水,考察对磷、有机物及氨氮的去除效果.方法 选取沸石、钢渣、煤灰渣、硅藻土4种填料,采用不同的组合方式构建4个填料生物滤池,在试验滤速0.65 m/d的条件下,利用组合填料生物滤床的物理、化学和生物的协同作用,通过填料层过滤、吸附、共沉、离子交换和微生物的分解.结果 装有钢渣填料的滤柱除磷效果较好.沸石、钢渣、硅藻土组合方式填料滤柱对磷、碳、氨氮的去除效果均较高,磷的平均去除率93.68%,氨氮平均去除率86.1%,CODCr平均去除率62.7%.而沸石与煤渣组合滤柱、或沸石、煤渣、硅藻土组合滤柱除磷效果较差.结论 下向流组合填料滤床处理模拟城市污水厂二级出水最佳填料组合方案:从上至下,沸石、钢渣、硅藻土.%Municipal secondary effluent was treated deeply,to investigate removal efficiency to phosphorus, organic pollutants and ammonia nitrogen. Four packing bio-filters was built by selecting zeolite,steel slag, coal ash and diatomite, using different packing combination way. In the test we set the biological filter by filtration, adsorption, precipitation, ion exchange and microbial decomposition. With physical,chemical,biological synergy of biological filter with combination packing, the test filtering velocity was 0. 65 meters per hour. Effect of phosphorus removal was high by filters packed steel slag. Average phosphorus removal rate was 93. 68 percent,ammonia nitrogen 86. 1 percent and 62. 7 percent,so all the rates was high velocity ,0. 65 meters per hour. But filters packed zeolite,coal cinder or zeolite,coal cinder and diatomite have a poor removal effect for phosphorus. The best combination scheme for packing bed in the down-flow bio-filter is zeolite, steel slag and diatomite from top to bottom to treat municipal secondary effluent.

  15. DIGITAL IMAGE MEASUREMENT OF BUBBLE MOTION IN AERATED WATER FLOWS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Digital image measurement method, as an ex-tension of Particle Image Velocimetry of single-phase flowmeasurement, was investigated for application to air-watertwo-phase flows. The method has strong potential ability inmeasuring bubble geometrical features and moving velocitiesfor complex bubble motion in aerated water flow. Both dilutedand dense bubble rising flows are measured using the digitalimage method. Measured bubble shapes and sizes, and bubblevelocities are affected by threshold selection for binary image.Several algorithms for selecting threshold are compared andmethods for calculating the time-averaged void fraction arediscussed.

  16. Pulverizing aeration as a method of lakes restoration

    Science.gov (United States)

    Kaczorowska, E.; Podsiadłowski, S.

    2012-04-01

    The principal threat to lakes of the temperate zone is posed by factors accelerating their eutrophication and causing marked deoxygenation of the deeper layers of water, mainly the hypo- and metalimnion. Among their effects are frequent phytoplankton blooms, including those of blue-green algae, and general deterioration of water quality also affecting the abundance and health status of fish. The chief concern is a disturbed proportion between the amount of complex chemical compounds, especially organic, and the oxygen content of lake waters. Natural processes of water oxygenation are not too intensive, because they are practically limited to the epilimnion layer, connected as they are with the activity of aquatic plants of the littoral and sublittoral zone (which tends to disappear in contaminated lakes) and wind energy (the effect of waving). In summer conditions, with a relatively great chemical activity of bottom deposits, the intensity of those processes is usually inadequate. Hence, in 1995 a research was launched in the Institute of Agricultural Engineering of the Agricultural University in Poznań on an integrated lake restoration technology whose core was a self-powered aerator capable of oxygenating also the bottom layers of water (the hypolimnion) of deep lakes. The aerator uses energy obtained from a Savonius rotor mainly to diffuse gases: to release hydrogen sulphide, which usually saturates the hypolimnion water completely, and then to saturate this water with oxygen. Even early studies showed the constructed device to be highly efficient in improving oxygen conditions in the bottom zone. They also made it clear that it should be equipped with an autonomous system designed to inactivate phosphorus, one of the principal factors determining the rate of lake degradation. In 2003 the first wind-driven pulverising aerator equipped with such a system was installed in Town Lake in Chodzież. The aim of this work is to present the principles of operation of a

  17. Comparison of Biomass and Lipid Production under Ambient Carbon Dioxide Vigorous Aeration and 3% Carbon Dioxide Condition Among the Lead Candidate Chlorella Strains Screened by Various Photobioreactor Scales

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Naoko [Univ. of Nebraska, Lincoln, NE (United States); Barnes, Austin [Univ. of Nebraska, Lincoln, NE (United States); Jensen, Travis [Univ. of Nebraska, Lincoln, NE (United States); Noel, Eric [Univ. of Nebraska, Lincoln, NE (United States); Andlay, Gunjan [Synaptic Research, Baltimore, MD (United States); Rosenberg, Julian N. [Johns Hopkins Univ., Baltimore, MD (United States); Betenbaugh, Michael J. [Johns Hopkins Univ., Baltimore, MD (United States); Guarnieri, Michael T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Oyler, George A. [Univ. of Nebraska, Lincoln, NE (United States); Johns Hopkins Univ., Baltimore, MD (United States); Synaptic Research, Baltimore, MD (United States)

    2015-09-01

    Chlorella species from the UTEX collection, classified by rDNA-based phylogenetic analysis, were screened based on biomass and lipid production in different scales and modes of culture. Lead candidate strains of C. sorokiniana UTEX 1230 and C. vulgaris UTEX 395 and 259 were compared between conditions of vigorous aeration with filtered atmospheric air and 3% CO2 shake-flask cultivation. We found that the biomass of UTEX 1230 produced 2 times higher at 652 mg L-1 dry weight under both ambient CO2 vigorous aeration and 3% CO2 conditions, while UTEX 395 and 259 under 3% CO2 increased to 3 times higher at 863 mg L-1 dry weight than ambient CO2 vigorous aeration. The triacylglycerol contents of UTEX 395 and 259 increased more than 30 times to 30% dry weight with 3% CO2, indicating that additional CO2 is essential for both biomass and lipid accumulation in UTEX 395 and 259.

  18. Remoção de diclofenaco, ibuprofeno, naproxeno e paracetamol em filtro ecológico seguido por filtro de carvão granular biologicamente ativado Removal of diclofenac, ibuprofen, naproxen, and paracetamol in ecological filter followed by granular carbon filter biologically active

    Directory of Open Access Journals (Sweden)

    Caroline Moço Erba

    2012-06-01

    Full Text Available O filtro ecológico representa uma promissora tecnologia de tratamento, em razão desta não necessitar da aplicação de produtos químicos, além de sua constatada eficiência. Nele, estabelece-se entre os seres vivos a relação de cadeia alimentar. Inicialmente uma matriz aquosa foi acrescida de quatro fármacos (diclofenaco, naproxeno, ibuprofeno e paracetamol e posteriormente analisada por cromatografia líquida de alta eficiência para avaliar a remoção desses compostos pelo filtro ecológico seguido pelo filtro de carvão granular biologicamente ativado. Parâmetros, entre eles turbidez, coliformes totais e termotolerantes, cor aparente e cor verdadeira, foram mensurados para verificar a eficiência dos filtros. Houve remoção de 97,43% do diclofenaco, 85,03% do ibuprofeno: 94,11% do naproxeno e 84,07% do paracetamol.The ecological filter represents a promising treatment technology, because this doesn't require the application of chemicals and is efficient. In it, is between living beings the relationship of the food chain. Initially an aqueous matrix was added to four drugs (diclofenac, naproxen, ibuprofen and paracetamol, and subsequently analyzed by high performance liquid chromatography to evaluate the removal of these compounds by ecological filter followed by granular activated carbon filter biologically active. The pharmacological compounds and parameters such as turbity, total and fecal coliforms, apparent color and true color were measured to evaluate the effectiveness of filters. There was removal of the drugs applied and the parameters measured. The percentages of removal were 97,43% of diclofenaco,85,03% of ibuprofen, 94,11% of naproxen and 84,07% of paracetamol.

  19. Biodegradation of diesel oil and gasoline contaminated effluent employing intermittent aeration.

    Science.gov (United States)

    Vieira, P A; Vieira, R B; Faria, S; Ribeiro, E J; Cardoso, V L

    2009-09-15

    We examined the effects of aeration interval and agitation speed in an effort to optimize the biodegradation of effluent contaminated with diesel oil and gasoline. The biodegradation process employed a C(1) mixed culture and intermittent aeration. Optimization was performed using central composite design (CCD). The independent variables were aeration interval (X(1)) and agitation speed (X(2)) and the dependent variable was the degree of removal of total petroleum hydrocarbons (TPH). The optimum aeration interval (33h) and agitation speed (110rpm) resulted in TPH removal of 75.9% after 3 days. Five hydrocarbons classes were identified using gas chromatography: paraffins, isoparaffins, olefins, naphthenics, and aromatics. The following reductions were observed: 91.8% for the paraffins, 83.3% for the isoparaffins, 80.9% for the olefins, 39.3% for the naphthenics, and 80.9% for the aromatics. In comparative studies performed under constant aeration (CA), without aeration (WA), and intermittent aeration (IA) conditions, intermittent aeration resulted in the highest TPH removals, with 90% reduction after 22 days. Under the IA condition, the degradation percentages were 99.6% for the paraffins, 94% for the isoparaffins, 95.4% for the olefins, 70.8 for the naphthenics, and 83.4% for the aromatics. PMID:19356851

  20. Evaluating aeration techniques for decreasing phosphorus export from grasslands receiving manure

    Science.gov (United States)

    Given that surface-applied manures can contribute to phosphorus (P) in runoff, a study was conducted to examine mechanical aeration of grasslands for reducing P transport by increasing infiltration of rainfall and binding of P with soil minerals. The effects of three aeration treatments and a contr...

  1. Aerated Shewanella oneidensis in Continuously-fed Bioelectrochemical Systems for Power and Hydrogen Production

    Science.gov (United States)

    We studied the effects of aeration of Shewanella oneidensis on potentiostatic current production, iron(III) reduction, hydrogen production in a microbial electrolysis cell, and electric power generation in a microbial fuel cell. The potentiostatic performance of aerated S. oneidensis was considerab...

  2. 40 CFR 265.278 - Unsaturated zone (zone of aeration) monitoring.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Unsaturated zone (zone of aeration) monitoring. 265.278 Section 265.278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED..., STORAGE, AND DISPOSAL FACILITIES Land Treatment § 265.278 Unsaturated zone (zone of aeration)...

  3. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda;

    2014-01-01

    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...

  4. Evaluation of re-aeration equations for river Ghataprabha, Karnataka, India and development of refined equation.

    Science.gov (United States)

    Kalburgi, P B; Jha, R; Ojha, C S P; Deshannavar, U B

    2015-01-01

    Stream re-aeration is an extremely important component to enhance the self-purification capacity of streams. To estimate the dissolved oxygen (DO) present in the river, estimation of re-aeration coefficient is mandatory. Normally, the re-aeration coefficient is expressed as a function of several stream variables, such as mean stream velocity, shear stress velocity, bed slope, flow depth and Froude number. Many empirical equations have been developed in the last years. In this work, 13 most popular empirical re-aeration equations, used for re-aeration prediction, have been tested for their applicability in Ghataprabha River system, Karnataka, India, at various locations. Extensive field data were collected during the period March 2008 to February 2009 from seven different sites located in the river to observe re-aeration coefficient using mass balance approach. The performance of re-aeration equations have been evaluated using various error estimations, namely, the standard error (SE), mean multiplicative error (MME), normalized mean error (NME) and correlation statistics. The results show that the predictive equation developed by Jha et al. (Refinement of predictive re-aeration equations for a typical Indian river. Hydrological Process. 2001;15(6):1047-1060), for a typical Indian river, yielded the best agreement with the values of SE, MME, NME and correlation coefficient r. Furthermore, a refined predictive equation has been developed for river Ghataprabha using least-squares algorithm that minimizes the error estimates.

  5. Experimental investigations of aeration efficiency in high-head gated circular conduits.

    Science.gov (United States)

    Cihat Tuna, M; Ozkan, Fahri; Baylar, Ahmet

    2014-01-01

    The primary purpose of water aeration is to increase the oxygen saturation of the water. This can be achieved by using hydraulic structures because of substantial air bubble entrainment at these structures. Closed conduit aeration is a particular instance of this. While there has been a great deal of research on air-demand ratio within closed conduit, very little research has specifically addressed aeration efficiency of closed conduit. In the present work an experimental study was conducted to investigate the aeration efficiency of high-head gated circular conduits. Results showed that high-head gated circular conduits were effective for oxygen transfer. The effects of Froude number and ratio of the water cross-sectional flow area to the conduit cross-sectional area on aeration efficiency were particularly significant, whereas the effect of conduit length was only moderate. Further, a design formula for the aeration efficiency was presented relating the aeration efficiency to ratio of water cross-sectional flow area to conduit cross-sectional area and Froude number. The obtained results will be useful in future modeling processes and aid the practicing engineer in predicting aeration efficiency for design purposes.

  6. Experimental investigations of aeration efficiency in high-head gated circular conduits.

    Science.gov (United States)

    Cihat Tuna, M; Ozkan, Fahri; Baylar, Ahmet

    2014-01-01

    The primary purpose of water aeration is to increase the oxygen saturation of the water. This can be achieved by using hydraulic structures because of substantial air bubble entrainment at these structures. Closed conduit aeration is a particular instance of this. While there has been a great deal of research on air-demand ratio within closed conduit, very little research has specifically addressed aeration efficiency of closed conduit. In the present work an experimental study was conducted to investigate the aeration efficiency of high-head gated circular conduits. Results showed that high-head gated circular conduits were effective for oxygen transfer. The effects of Froude number and ratio of the water cross-sectional flow area to the conduit cross-sectional area on aeration efficiency were particularly significant, whereas the effect of conduit length was only moderate. Further, a design formula for the aeration efficiency was presented relating the aeration efficiency to ratio of water cross-sectional flow area to conduit cross-sectional area and Froude number. The obtained results will be useful in future modeling processes and aid the practicing engineer in predicting aeration efficiency for design purposes. PMID:24647194

  7. EXPERIMENTAL STUDY ON A NEW TYPE OF AERATOR IN SPILLWAY WITH LOW FROUDE NUMBER AND MILD SLOPE FLOW

    Institute of Scientific and Technical Information of China (English)

    SU Pei-lan; LIAO Hua-sheng; QIU Yue; LI Chen-juan

    2009-01-01

    Experimental study on aeration characteristics of various aeration devices was conducted in the spillway tunnel of the Pubugou hydropower project, Sichuan Province, China. It is shown by comparison that the new type of aeration device, namely, the aerator with a trapezoidal-shaped slot and a steep-slope section(ATSS), can avoid water accumulation in the cavity of the aeration device in the project, thus can effectively solve the backwater problems arising from this project and be used for a wide range of different water levels, without any drain facilities. Above the water level of 840 m, the water contained in the cavity can be eliminated completely, which means that the recommended new type of aerator can meet the aeration demands in the spillway of the project with low Froude number and may be of practical significance and of interest to other projects with similar types of aeration devices.

  8. EXPERIMENTAL INVESTIGATION ON SOUND SPEED PROPAGATING THROUGH HIGH SPEED AERATED FLOW IN OPEN CHANNEL

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An experiment concerning the sound propaga-tion in aerated open channel flow was designed and conductedin a variable slope chute. The acquisition of sound data wasdone by the hydro-phones installed into the bottom wall of thechute. The data were analyzed and processed by the tape re-corder and a 3562A analyzer. The primary experimetal resultsindicated that the sound speed in aerated flow is varied with the air concentration and highly lower than each of the soundspeed in pure water or air. As released by the derived theoryformula, the minimum sound of 24m/s in aerated flow hap-pened when the air concentration achieved to 50%. This resultshows that the compressibility of high speed aerated flowshould be considered when the air concentration is near to50%. A criterion of compressibility of high speed aerated flowwas also giv. En in this paper.

  9. Effects of intermittent aeration on pollutants removal in subsurface wastewater infiltration system.

    Science.gov (United States)

    Pan, Jing; Fei, Hexin; Song, Siyu; Yuan, Fang; Yu, Long

    2015-09-01

    In this study, the pollutant removal performances in two pilot-scale subsurface wastewater infiltration systems (SWISs) with and without intermittent aeration were investigated. Matrix oxidation reduction potential (ORP) results showed that intermittent aeration well developed aerobic conditions in upper matrix and anoxic or anaerobic conditions in the subsequent sections, which resulted in high NH4(+)-N and TN removal. Moreover, intermittent aeration increased removal rates of COD and TP. Microbial populations and enzyme activities analysis proved that intermittent aeration not only obviously boosted the growth and reproduction of bacteria, fungus, actinomyces, nitrifying bacteria and denitrifying bacteria, but also successfully increased nitrate reductase (NR) and nitrite reductase (NIR) in the depth of 80 and 110 cm. The results suggest that the intermittent aeration could be a widespread research and application strategy for achieving the high removal performance in SWISs.

  10. Nitrous oxide emissions from an intermittent aeration activated sludge system of an urban wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    William Z. de Mello

    2013-01-01

    Full Text Available This study investigated the emission of N2O during the sequential aerated (60-min and non-aerated (30-min stages of an intermittent aeration cycle in an activated sludge wastewater treatment plant (WWTP. N2O emission occurred during both stages; however, emission was much higher during aeration. Air stripping is the major factor controlling transfer of N2O from the sewage to the atmosphere. The N2O emissions exclusively from the aeration tank represented 0.10% of the influent total nitrogen load and the per capita emission factor was almost 3 times higher than that suggested by the IPCC for inventories of N2O emission from WWTPs.

  11. 净水厂生物活性炭池无脊椎动物群落结构研究%Study of the invertebrate community structure in a biological activated carbon filter

    Institute of Scientific and Technical Information of China (English)

    尤为; 王庆; 刘丽君; 杨宇峰

    2012-01-01

    调查了南方某净水厂生物活性炭(BAC)池中无脊椎动物的群落结构周年变化.共发现无脊椎动物26种(属或类).轮虫为优势类群,其次为桡足类及其无节幼体、枝角类、寡毛类.调查期间BAC池炭总管水中无脊椎动物的平均丰度是主臭氧后水的8.2倍,炭滤后水中无脊椎动物的平均丰度是炭滤前水的12~18.7倍.研究结果表明,BAC池是无脊椎动物滋生的重要场所.春夏两季BAC池中无脊椎动物增长较快,水温升高对BAC池中无脊椎动物滋生起促进作用.夏季和其他时期分别以桡足类和轮虫占据优势,存在着小型无脊椎动物(轮虫)向大型无脊椎动物(桡足类)演替的现象.%A study was carried out to investigate the invertebrate community structure changes in the biological activated carbon (BAC) filter of some water treatment plant in South China. Totally 26 kinds of invertebrate were discovered. Rotifers were dominant species, and the others are copepods, nauplii larvae, cladocerans, and oligochaetes in declining sequence. During the research, the average invertebrate abundance in the filter was 8. 2 times of that in post-inter-ozonation-water, and the average invertebrate abundance after filter was 12 to 18. 7 times of that before filter. The research showed that BAC filter was the major spot for invertebrate breeding. During summer and fall, the invertebrate in BAC grow faster than other seasons. The increase of water temperature could improve the invertebrate breeding. In summer and other seasons, the copepods and rotifer were the dominant species respectively, and the succession from small invertebrate (rotifer) to large invertebrate (copepods) also existed.

  12. Impact of aeration control on N2O emission in a full-scale activated sludge wastewater treatment plant

    OpenAIRE

    Filali, A.; Fayolle, Y.; Peu, P.; Philippe, L.; Nauleau, F.; Gillot, S.

    2013-01-01

    International audience This work investigated the impact of aeration control strategy on energy consumption and nitrous oxide (N2O) emission in a full-scale wastewater treatment plant. Two identical activated sludge processes treating the same effluent but operated with different aeration control strategies were compared. Aeration tank 1 was operated with a new control strategy favouring the simultaneous nitrification denitrification (SND) whereas aeration tank 2 was operated with a conven...

  13. Generalised Filtering

    Directory of Open Access Journals (Sweden)

    Karl Friston

    2010-01-01

    Full Text Available We describe a Bayesian filtering scheme for nonlinear state-space models in continuous time. This scheme is called Generalised Filtering and furnishes posterior (conditional densities on hidden states and unknown parameters generating observed data. Crucially, the scheme operates online, assimilating data to optimize the conditional density on time-varying states and time-invariant parameters. In contrast to Kalman and Particle smoothing, Generalised Filtering does not require a backwards pass. In contrast to variational schemes, it does not assume conditional independence between the states and parameters. Generalised Filtering optimises the conditional density with respect to a free-energy bound on the model's log-evidence. This optimisation uses the generalised motion of hidden states and parameters, under the prior assumption that the motion of the parameters is small. We describe the scheme, present comparative evaluations with a fixed-form variational version, and conclude with an illustrative application to a nonlinear state-space model of brain imaging time-series.

  14. [Optimization and comparison of nitrogen and phosphorus removal by different aeration modes in oxidation ditch].

    Science.gov (United States)

    Guo, Chang-Zi; Peng, Dang-Cong; Cheng, Xue-Mei; Wang, Dan

    2012-03-01

    The oxidation ditch operation mode was simulated by sequencing batch reactor (SBR) system with alternate stirring and aeration. The nitrogen and phosphorus removal efficiencies were investigated in two different aeration modes: point aeration and step aeration. Experimental results show that oxygen is dissolved more efficiently in point aeration mode with a longer aerobic region in the same air supply capacity, but dissolved oxygen (DO) utilization efficiency for nitrogen and phosphorus removal is high in step aeration mode. Nitrification abilities of the two modes are equal with ammonia-nitrogen (NH4(+) -N) removal efficiency of 96.68% and 97.03%, respectively. Nitrifier activities are 4.65 and 4.66 mg x (g x h)(-1) respectively. When the ratio of anoxic zones and the aerobic zones were 1, the total nitrogen (TN) removal efficiency of point aeration mode in 2, 4 or 7 partitions was respectively 60.14%, 47.93% and 33.7%. The total phosphorus (TP) removal efficiency was respectively 28.96%, 23.75% and 24.31%. The less the partitions, the higher the nitrogen and phosphorus removal efficiencies, but it is in more favor of TN removal. As for step aeration mode with only one partitioning zone, the TN and TP removal efficiencies are respectively 64.21% and 49.09%, which is better than in point aeration mode, but more conducive to the improvement of TP removal efficiency. Under the condition of sufficient nitrification in step aeration mode, the nitrogen and phosphorus removal is better with the increase of anoxic zone. The removal efficiencies of TN and TP respectively rose to 73.94% and 54.18% when the ratio of anoxic zones and the aerobic zones was increased from 1 : 1 to 1. 8 : 1. As the proportion of anoxic zones was enlarged further, nitrification and operation stability were weakened so as to affect the nitrogen and phosphorus removal efficiencies.

  15. Modular microfluidic system for biological sample preparation

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  16. The role of loading rate, backwashing, water and air velocities in an up-flow nitrifying tertiary filter.

    Science.gov (United States)

    Vigne, Emmanuelle; Choubert, Jean-Marc; Canler, Jean-Pierre; Heduit, Alain; Sørensen, Kim Helleshøj; Lessard, Paul

    2011-01-01

    The vertical distribution of nitrification performances in an up-flow biological aerated filter operated at tertiary nitrification stage is evaluated in this paper. Experimental data were collected from a semi-industrial pilot-plant under various operating conditions. The actual and the maximum nitrification rates were measured at different levels inside the up-flow biofilter. A nitrogen loading rate higher than 1.0 kg NH4-Nm(-3)_mediad(-1) is necessary to obtain nitrification activity over all the height of the biofilter. The increase in water and air velocities from 6 to 10 m h(-1) and 10 to 20 m h(-1) has increased the nitrification rate by 80% and 20% respectively. Backwashing decreases the maximum nitrification rate in the media by only 3-14%. The nitrification rate measured at a level of 0.5 m above the bottom of the filter is four times higher than the applied daily average volumetric nitrogen loading rate up to 1.5 kg NH4-N m(-3)_mediad(-1). Finally, it is shown that 58% of the available nitrification activity is mobilized in steady-state conditions while up to 100% is used under inflow-rate increase.

  17. Chemical oxidation combined with biological filters application in PCB waste water treatment%化学氧化结合曝气生物滤池技术在线路板废水处理中的应用

    Institute of Scientific and Technical Information of China (English)

    陈志强; 简丽萍; 张俊峰

    2011-01-01

    The paper describes the process and principle of chemical oxidation combined with biological filters by introducing the upgrading of the WWTP of a PCB factory in Shenzhen, which proved that it help the WWTP of PCB reach the new standards.%通过介绍深圳某线路板有限公司废水处理改造升级工程,阐述化学氧化和曝气生物滤池相结合的工艺过程,说明在实际工程应用中可使得排放废水污染物指标达到新标准。

  18. Combination and Application on A/O Bio-chemical Pool and BAF Biological Filter%A/O生化池和BAF生物滤池的组合应用

    Institute of Scientific and Technical Information of China (English)

    段进元

    2012-01-01

      The paper presents the application principle and its result on two-grade combination of bio-chemistry of A/O bio-chemical pool and BAF biological filter, makes analysis on inlet and outlet water quality of two-grade bio-chemistry and explains the problems existed in system operation.%  较为全面地介绍了A/O生化池和BAF生物滤池两级生化合并的应用原理和效果,对两级生化的进出水水质进行了分析,并对系统运行中存在的问题进行了阐述。

  19. Oxygen tolerance capacity of upflow anaerobic solid-state (UASS) with anaerobic filter (AF) system.

    Science.gov (United States)

    Meng, Yao; Jost, Carsten; Mumme, Jan; Wang, Kaijun; Linke, Bernd

    2016-07-01

    In order to investigate the oxygen tolerance capacity of upflow anaerobic solid-state (UASS) with anaerobic filter (AF) system, the effect of microaeration on thermophilic anaerobic digestion of maize straw was investigated under batch conditions and in the UASS with AF system. Aeration intensities of 0-431mL O2/gvs were conducted as pretreatment under batch conditions. Aeration pretreatment obviously enhanced anaerobic digestion and an aeration intensity of 431mL O2/gvs increased the methane yield by 82.2%. Aeration intensities of 0-355mL O2/gvs were conducted in the process liquor circulation of the UASS with AF system. Dissolved oxygen (DO) of UASS and AF reactors kept around 1.39±0.27 and 0.99±0.38mg/L, respectively. pH was relatively stable around 7.11±0.04. Volatile fatty acids and soluble chemical oxygen demand concentration in UASS reactor were higher than those in AF reactor. Methane yield of the whole system was almost stable at 85±7mL/gvs as aeration intensity increased step by step. The UASS with AF system showed good oxygen tolerance capacity. PMID:27372134

  20. Structure, composition, and strength of nitrifying membrane-aerated biofilms

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Smets, Barth F.

    2014-01-01

    Membrane-aerated biofilm reactors (MABRs) are a novel technology based on the growth of biofilms on oxygen-permeable membranes. Hereby, MABRs combine all the advantages of biofilm growth with a more flexible and efficient control of the oxygen load. In the present work, flow cell operation...... to achieve full nitrification revealed a significantly different structure of nitrifying MABR biofilms with respect to its co-diffusion counterparts reported in the literature (up to now assumed to have similar properties). Different levels of shear stress and oxygen loadings during MABR operation also...... affected these biofilm parameters. Furthermore, reactor operation at higher oxygen loads resulted in an increase of the biofilm cohesiveness, which depended on the EPS mass in the biofilms and the type of stress applied (more cohesive against normal than shear stresses). The EPS in the strongest biofilms...

  1. Thermal conductivity of newspaper sandwiched aerated lightweight concrete panel

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Soon-Ching; Low, Kaw-Sai [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, Setapak, 53300 Kuala Lumpur, Wilayah Persekutuan (Malaysia)

    2010-12-15

    Investigation on the thermal conductivity of newspaper sandwiched aerated lightweight concrete (ALC) panels is the main purpose of this study. Various densities of ALC panels ranging from 1700, 1400 and 1100 kg/m{sup 3} with three different aerial intensities of newspaper sandwiched were produced. Investigation was limited to the effect of aerial intensity of newspaper sandwiched and the effect of density of ALC on thermal conductivity. It is found that the thermal conductivity of newspaper sandwiched ALC panels reduced remarkably compared to control ALC panels. The reduction was recorded at 18.0%, 21.8% and 20.7% correspond to densities of 1700, 1400 and 1100 kg/m{sup 3} with just a mere 0.05 g/cm{sup 2} aerial intensity of newspaper sandwiched. Newspaper sandwiched has a significant impact on the performance of thermal conductivity of ALC panels based on regression analysis. (author)

  2. Aeration-Controlled Formation of Acid in Heterolactic Fermentations

    DEFF Research Database (Denmark)

    Adler-Nissen, Jens

    1994-01-01

    by the buffer capacity only. Ethanol and acetic acid formed during the fermentation were analyzed by rapid head space gas chromatography, and the ratio of the molar concentrations of these two volatiles quantitatively predicted the balance between the formation of acetic acid and lactic acid. The oxygen......Controlled aeration of Leuconostoc mesenteroides was studied as a possible mechanism for control of the formation of acetic acid, a metabolite of major influence on the taste of lactic fermented foods. Fermentations were carried out in small scale in a medium in which growth was limited...... concentration during the fermentations decreased rapidly to zero, meaning that oxygen transfer was limited by the volumetric oxygen transfer rate, k1aC*. A linear correlation between k1aC* and the quantity of acetic acid produced was established, and it is suggested that such oxygenated heterolactic...

  3. Nitrogen and phosphorus removal under intermittent aeration conditions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A practice wastewater treatment plant was operated usingintermittent aeration activated sludge process to enhancebiological nitrogen and phosphorus removal. When the influentconcentrations of CODCr, BOD5, TN, TP, NH3-N, TKN, and SS varied ina range of 207.5-1640 mg/L, 61.8-637 mg/L, 28.5-75.6 mg/L, 4.38-20.2 mg/L, 13.6-31.9 mg/L, 28.5-75.6 mg/L, and 111-1208 mg/L, theeffluent means were less than 50 mg/L, 20 mg/L, 5 mg/L, 1.0 mg/L,5 mg/L, 10 mg/L, and 20 mg/L, respectively. Based on a long time ofoperating results, this process is very suitable for nutrientbiological removal for treating the municipal wastewater thosewater characteristics are similar as that of the Songjiang Municipal Waste water Treatment plant(SJMWTP).

  4. Water Filter

    Science.gov (United States)

    1982-01-01

    A compact, lightweight electrolytic water sterilizer available through Ambassador Marketing, generates silver ions in concentrations of 50 to 100 parts per billion in water flow system. The silver ions serve as an effective bactericide/deodorizer. Tap water passes through filtering element of silver that has been chemically plated onto activated carbon. The silver inhibits bacterial growth and the activated carbon removes objectionable tastes and odors caused by addition of chlorine and other chemicals in municipal water supply. The three models available are a kitchen unit, a "Tourister" unit for portable use while traveling and a refrigerator unit that attaches to the ice cube water line. A filter will treat 5,000 to 10,000 gallons of water.

  5. Effects of loading rate and aeration on nitrogen removal and N2O emissions in intermittently aerated sequencing batch reactors treating slaughterhouse wastewater at 11 °C.

    Science.gov (United States)

    Pan, Min; Hu, Zhenhu; Liu, Rui; Zhan, Xinmin

    2015-04-01

    This study aimed to find optimal operation conditions for nitrogen removal from high strength slaughterhouse wastewater at 11 °C using the intermittently aerated sequencing batch reactors (IASBRs) so as to provide an engineering control strategy for the IASBR technology. Two operational parameters were examined: (1) loading rates and (2) aeration rates. Both the two parameters affected variation of DO concentrations in the IASBR operation cycles. It was found that to achieve efficient nitrogen removal via partial nitrification-denitrification (PND), "DO elbow" point must appear at the end of the last aeration period. There was a correlation between the ammonium oxidizing bacteria (AOB)/nitrite oxidizing bacteria (NOB) ratio and the average DO concentrations in the last aeration periods; when the average DO concentrations in the last aeration periods were lower than 4.86 mg/L, AOB became the dominant nitrifier population, which benefited nitrogen removal via PND. Both the nitrogen loading rate and the aeration rate influenced the population sizes of AOB and NOB. To accomplish efficient nitrogen removal via PND, the optimum aeration rate (A, L air/min) applied can be predicted according to the average organic loading rates based on mathematical equations developed in this study. The research shows that the amount of N2O generation in the aeration period was reduced with increasing the aeration rate; however, the highest N2O generation in the non-aeration period was observed at the optimum aeration rates.

  6. Influence of aeration intensity on mature aerobic granules in sequencing batch reactor.

    Science.gov (United States)

    Gao, Da-Wen; Liu, Lin; Liang, Hong

    2013-05-01

    Aeration intensity is well known as an important factor in the formation of aerobic granules. In this research, two identical lab-scale sequencing batch reactors with aeration intensity of 0.8 (R1) and 0.2 m(3)/h (R2) were operated to investigate the characteristics and kinetics of matured aerobic granules. Results showed that both aeration intensity conditions induced granulation, but they showed different effects on the characteristics of aerobic granules. Compared with the low aeration intensity (R2), the aerobic granules under the higher aeration intensity (R1) had better physical characteristics and settling ability. However, the observed biomass yield (Y obs) in R1 [0.673 kg mixed liquor volatile suspended solids (MLVSS)/kg chemical oxygen demand (COD)] was lower than R2 (0.749 kg MLVSS/kg COD). In addition, the maximum specific COD removal rates (q max) and apparent half rate constant (K) of mature aerobic granular sludge under the two aeration intensities were at a similar level. Therefore, the matured aerobic granule system does not require to be operated in a higher aeration intensity, which will reduce the energy consumption.

  7. Optimization of aeration for biodiesel production by Scenedesmus obliquus grown in municipal wastewater.

    Science.gov (United States)

    Han, Song-Fang; Jin, Wenbiao; Tu, Renjie; Abomohra, Abd El-Fatah; Wang, Zhi-Han

    2016-07-01

    Despite the significant breakthroughs in research on microalgae as a feedstock for biodiesel, its production cost is still much higher than that of fossil diesel. One possible solution to overcome this problem is to optimize algal growth and lipid production in wastewater. The present study examines the optimization of pretreatment of municipal wastewater and aeration conditions in order to enhance the lipid productivity of Scenedesmus obliquus. Results showed that no significant differences were recorded in lipid productivity of S. obliquus grown in primary settled or sterilized municipal wastewater; however, ultrasound pretreatment of wastewater significantly decreased the lipid production. Whereas, aeration rates of 0.2 vvm significantly increased lipid content by 51 %, with respect to the non-aerated culture, which resulted in maximum lipid productivity (32.5 mg L(-1) day(-1)). Furthermore, aeration enrichment by 2 % CO2 resulted in increase of lipid productivity by 46 % over the CO2 non-enriched aerated culture. Fatty acid profile showed that optimized aeration significantly enhanced monounsaturated fatty acid production, composed mainly of C18:1, by 1.8 times over the non-aerated S. obliquus culture with insignificant changes in polyunsaturated fatty acid proportion; suggesting better biodiesel characteristics for the optimized culture. PMID:26969589

  8. THREE-DIMENSIONAL NUMERICAL SIMULATION OF AERATED FLOWS DOWNSTREAM SUDDEN FALL AERATOR EXPANSION-IN A TUNNEL

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-min; CHEN Jian-gang; XU Wei-lin; WANG Yu-rong; LI Gui-ji

    2011-01-01

    Air entrainment is known to be one of efficient and inexpensive methods to prevent cavitation damages in hydropower projects.The shape of sudden expansion-fall is used as a common device for mitigating cavitation erosions.The complex flow patterns with cavitation are numerically simulated by using the realizable k-ε turbulence model and the air-water mixture model.The calculated results are compared well with the experimental results as well as those obtained with the k -ε turbulence model with the Volume Of Fluid (VOF) Model.The calculated results agree well with the experimental data for the aeration cavity and wall pressure.Moreover, the air concentration near sidewall is simulated by a mixture model.It is found that the mixture turbulence model is superior to the VOF turbulence model.

  9. Treatment Wetland Aeration without Electricity? Lessons Learned from the First Experiment Using a Wind-Driven Air Pump

    Directory of Open Access Journals (Sweden)

    Johannes Boog

    2016-11-01

    Full Text Available Aerated treatment wetlands have become an increasingly recognized technology for treating wastewaters from domestic and various industrial origins. To date, treatment wetland aeration is provided by air pumps which require access to the energy grid. The requirement for electricity increases the ecological footprint of an aerated wetland and limits the application of this technology to areas with centralized electrical infrastructure. Wind power offers another possibility as a driver for wetland aeration, but its use for this purpose has not yet been investigated. This paper reports the first experimental trial using a simple wind-driven air pump to replace the conventional electric air blowers of an aerated horizontal subsurface flow wetland. The wind-driven air pump was connected to a two-year old horizontal flow aerated wetland which had been in continuous (24 h aeration since startup. The wind-driven aeration system functioned, however it was not specifically adapted to wetland aeration. As a result, treatment performance decreased compared to prior continuous aeration. Inconsistent wind speed at the site may have resulted in insufficient pressure within the aeration manifold, resulting in insufficient air supply to the wetland. This paper discusses the lessons learned during the experiment.

  10. NUMERICAL SIMULATION OF 3-D AERATED JET BEHIND FLIP BUCKET OF OVERFLOW DAM

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Aerated jet,such as the jet flow behind the flip bucket of an overflow dam, widely exists in hydraulic engineering. Up to now the model test and prototype observation have been two main methods of studying the aerated jet for a special hydraulic project. In this paper, a three-dimensional mathematical model for the aerated jet was established. It seems that the suggested model has high predictive power by comparison with the results of model tests and prototype observations, which is very useful in the study of energy dissipation and jet flow atomization.

  11. AN INVESTIGATION OF FLOW CHARACTERISTIC OF AERATED DRAG REDUCTION IN TUBE

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Under the aerated conditions of wall and top intube, the turbulent flow in the tube was measured by usingLDA. The turbulent structure of the flow field and the mech-anism of aerating drag reduction in the tube were discussed. It is shown that the energy dissipations of turbulence flow andmean flow will reduce and the flow velocity (or flow rate) willincrease by injecting mini-bubbles to the wall or top of tube,namely the effect of aerating drag reduction is attained.

  12. Computational Fluid Dynamics Modelling of Hydraulics and Sedimentation in Process Reactors during Aeration Tank Settling

    DEFF Research Database (Denmark)

    Jensen, M.D.; Ingildsen, P.; Rasmussen, Michael R.;

    2006-01-01

    Aeration tank settling is a control method allowing settling in the process tank during highhydraulic load. The control method is patented. Aeration tank settling has been applied in several wastewater treatment plants using the present design of the process tanks. Some process tank designs...... and outletcausing a disruption of the sludge blanket at the outlet and thereby reducing the retention of sludge in theprocess tank. The model has allowed us to establish a clear picture of the problems arising at the plantduring aeration tank settling. Secondly, several process tank design changes have been...

  13. Computational Fluid Dynamics Modelling of Hydraulics and Sedimentation in Process Reactors During Aeration Tank Settling

    DEFF Research Database (Denmark)

    Dam Jensen, Mette; Ingildsen, Pernille; Rasmussen, Michael R.;

    2005-01-01

    Aeration Tank Settling is a control method alowing settling in the process tank during high hydraulic load. The control method is patented. Aeration Tank Settling has been applied in several waste water treatment plant's using present design of the process tanks. Some process tank designs have...... and outlet causing a disruption of the sludge blanket at the outlet and thereby reducing the retention of sludge in the process tank. The model has allowed us to establish a clear picture of the problems arising at the plant during Aeration Tank Settling. Secondly, several process tank design changes have...

  14. Aeration remediation of a polluted waterway increases near-surface coarse and culturable microbial aerosols.

    Science.gov (United States)

    Dueker, M Elias; O'Mullan, Gregory D

    2014-04-15

    Aeration remediation is currently used in polluted urban waterways to increase oxygen levels in the water column. Recent studies have provided increasing evidence that the bursting of bubbles at water surfaces introduced by aeration, or other surface disturbances, can transfer viable bacteria to the air. In heavily sewage-polluted waterways these water-originated bacterial aerosols may pose as a health risk to recreators in small boats or residents inhabiting the shoreline. Nonetheless, few studies have explored aerosols above active aeration remediation projects in waterways or investigated how bacterial aerosols change with vertical distance from aeration activities. This study, conducted at the Newtown Creek superfund site in Brooklyn, NY, USA, measured coarse aerosol particles and culturable bacteria in near-surface air above waters undergoing aeration remediation. Regardless of aeration operation culturable bacterial fallout was greater near-surface (0.6m above water) than previously-reported measurements made at 2.5m. Molecular analysis of the 16S rRNA gene sequences from isolated bacteria demonstrates that water and air shared a large number of bacterial genera and that the genera present in the near-surface aerosols (0.6m) contained water-associated Vibrio and Caulobacter, which were not present at 2.5m, despite the smaller sequence library size from the near-surface. Also, the near-surface microbial assemblage had significantly greater association with sequences detected previously in aquatic environments compared to the 2.5m library. We found compelling evidence that aeration activity contributed to this vertical gradient in bacterial aerosol concentrations and identity. Similar to results from 2.5m, concentrations of near-surface respirable coarse aerosols (aeration was occurring. Culturable bacterial aerosol fallout was also greater near-surface when the aerator was on compared to simultaneous measurements made at 2.5m. Furthermore, when the aerator was

  15. Numerical modelling of the strength of highly porous aerated autoclaved concrete

    Energy Technology Data Exchange (ETDEWEB)

    Schenider, T.; Greil, P. [Univ. of Erlangen-Nuernberg, Erlangen (Germany). Dept. of Materials Science; Schober, G. [Hebel AG, Fuerstenfeldbruck (Germany). Materialtechnische Entwicklung

    1998-12-31

    Highly porous building materials like aerated autoclaved concrete are characterized by low thermal conductivity and high mechanical strength, which both strongly depend on porosity. The influence of porosity distribution on the compressive strength of aerated autoclaved concrete was investigated by using finite element analysis and multiaxial Weibull theory. Calculations of failure probability of microstructures with ordered as well as random pore configurations show a dependence of compressive strength on the Weibull modulus of the matrix material and the size and arrangement of pores. The results of the calculations are compared to experimental data of aerated autoclaved concrete.

  16. Enhanced long-term organics and nitrogen removal and associated microbial community in intermittently aerated subsurface flow constructed wetlands.

    Science.gov (United States)

    Fan, Jinlin; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Wu, Haiming

    2016-08-01

    The long-term enhanced removal efficiency of organics and nitrogen in subsurface flow constructed wetlands (SSF CWs) with and without intermittent aeration for decentralized domestic wastewater was evaluated, and the function of intermittent aeration on microbial community was also investigated in this study. The high and long-term 95.6% COD, 96.1% NH4(+)-N and 85.8% TN removal efficiencies were achieved in experimental intermittently aerated SSF CW compared with non-aerated SSF CW. Aerated SSF CWs also exhibited the excellent removal performance when comparatively comparing with other strategies and techniques applied in CWs. In addition, fluorescence in situ hybridization (FISH) analysis revealed that associated microbial abundance significantly increased owing to intermittent aeration. These results indicated intermittent aeration CWs might be an effective and sustainable strategy for wastewater treatment in rural areas, but require further full-scale investigation in future.

  17. Improving microalgal growth with reduced diameters of aeration bubbles and enhanced mass transfer of solution in an oscillating flow field.

    Science.gov (United States)

    Yang, Zongbo; Cheng, Jun; Lin, Richen; Zhou, Junhu; Cen, Kefa

    2016-07-01

    A novel oscillating gas aerator combined with an oscillating baffle was proposed to generate smaller aeration bubbles and enhance solution mass transfer, which can improve microalgal growth in a raceway pond. A high-speed photography system (HSP) was used to measure bubble diameter and generation time, and online precise dissolved oxygen probes and pH probes were used to measure mass-transfer coefficient and mixing time. Bubble diameter and generation time decreased with decreased aeration gas rate, decreased orifice diameter, and increased water velocity in the oscillating gas aerator. The optimized oscillating gas aerator decreased bubble diameter and generation time by 25% and 58%, respectively, compared with a horizontal tubular gas aerator. Using an oscillating gas aerator and an oscillating baffle in a raceway pond increased the solution mass-transfer coefficient by 15% and decreased mixing time by 32%; consequently, microalgal biomass yield increased by 19%.

  18. Enhanced long-term organics and nitrogen removal and associated microbial community in intermittently aerated subsurface flow constructed wetlands.

    Science.gov (United States)

    Fan, Jinlin; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Wu, Haiming

    2016-08-01

    The long-term enhanced removal efficiency of organics and nitrogen in subsurface flow constructed wetlands (SSF CWs) with and without intermittent aeration for decentralized domestic wastewater was evaluated, and the function of intermittent aeration on microbial community was also investigated in this study. The high and long-term 95.6% COD, 96.1% NH4(+)-N and 85.8% TN removal efficiencies were achieved in experimental intermittently aerated SSF CW compared with non-aerated SSF CW. Aerated SSF CWs also exhibited the excellent removal performance when comparatively comparing with other strategies and techniques applied in CWs. In addition, fluorescence in situ hybridization (FISH) analysis revealed that associated microbial abundance significantly increased owing to intermittent aeration. These results indicated intermittent aeration CWs might be an effective and sustainable strategy for wastewater treatment in rural areas, but require further full-scale investigation in future. PMID:27246456

  19. UASB/flash aeration enable complete treatment of municipal wastewater for reuse.

    Science.gov (United States)

    Khan, Abid Ali; Gaur, Rubia Zahid; Lew, Beni; Diamantis, Vasileios; Mehrotra, Indu; Kazmi, A A

    2012-08-01

    A simple, efficient and cost-effective method for municipal wastewater treatment is examined in this paper. The municipal wastewater is treated using an upflow anaerobic sludge bed (UASB) reactor followed by flash aeration (FA) as the post-treatment, without implementing aerobic biological processes. The UASB reactor was operated without recycle, at hydraulic retention time (HRT) of 8 h and achieved consistent removal of BOD, COD and TSS of 60-70% for more than 12 months. The effect of FA on UASB effluent post-treatment was studied at different HRT (15, 30 and 60 min) and dissolved oxygen (DO) concentrations (low DO = 1-2 mg/L and high DO = 5-6 mg/L). The optimum conditions for BOD, COD and sulfide removal were 30-60 min HRT and high DO concentration inside the FA tank. The final effluent after clarification was characterized by BOD and COD values of 28-35 and 50-58 mg/L, respectively. Sulfides were removed by more than 80%, but the fecal coliform only by ~2 log. The UASB followed by FA is a simple and efficient process for municipal wastewater treatment, except for fecal coliform, enabling water and nutrients recycling to agriculture.

  20. Evaluation of the corrosion resistance of AISI 316 stainless steel filters

    Directory of Open Access Journals (Sweden)

    Luzinete Pereira Barbosa

    2005-06-01

    Full Text Available In this investigation, the corrosion resistance of AISI 316 SS filters prepared with powders in the size ranges 74-44 µm and 210-105 µm and compacted with pressures of 300 MPa and 400 MPa has been evaluated in naturally aerated 0.5 M H2SO4 solution at 25 °C. Weight loss of filters manufactured with compacting pressure of 400 MPa were significantly higher than that of filters compacted at 300 MPa. The filter compacted at 400 MPa had higher carbon and nitrogen contents compared to those compacted at 300 MPa. The former also had chromium rich precipitates and oxides in the grain boundaries. The pores in filters compacted at 400 MPa were smaller than in filters compacted at 300 MPa. Smaller pores favor the formation of concentration cells and consequently, increased crevice corrosion.

  1. Removal of arsenic and iron removal from drinking water using coagulation and biological treatment.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Suja, Fatihah

    2016-02-01

    Effects of biological activated carbon (BAC), biological aerated filter (BAF), alum coagulation and Moringa oleifera coagulation were investigated to remove iron and arsenic contaminants from drinking water. At an initial dose of 5 mg/L, the removal efficiency for arsenic and iron was 63% and 58% respectively using alum, and 47% and 41% respectively using Moringa oleifera. The removal of both contaminants increased with the increase in coagulant dose and decrease in pH. Biological processes were more effective in removing these contaminants than coagulation. Compared to BAF, BAC gave greater removal of both arsenic and iron, removing 85% and 74%, respectively. Longer contact time for both processes could reduce the greater concentration of arsenic and iron contaminants. The addition of coagulation (at 5 mg/L dosage) and a biological process (with 15 or 60 min contact time) could significantly increase removal efficiency, and the maximum removal was observed for the combination of alum and BAC treatment (60 min contact time), with 100% and 98.56% for arsenic and iron respectively. The reduction efficiency of arsenic and iron reduced with the increase in the concentration of dissolved organics in the feedwater due to the adsorption competition between organic molecules and heavy metals.

  2. Removal of arsenic and iron removal from drinking water using coagulation and biological treatment.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Suja, Fatihah

    2016-02-01

    Effects of biological activated carbon (BAC), biological aerated filter (BAF), alum coagulation and Moringa oleifera coagulation were investigated to remove iron and arsenic contaminants from drinking water. At an initial dose of 5 mg/L, the removal efficiency for arsenic and iron was 63% and 58% respectively using alum, and 47% and 41% respectively using Moringa oleifera. The removal of both contaminants increased with the increase in coagulant dose and decrease in pH. Biological processes were more effective in removing these contaminants than coagulation. Compared to BAF, BAC gave greater removal of both arsenic and iron, removing 85% and 74%, respectively. Longer contact time for both processes could reduce the greater concentration of arsenic and iron contaminants. The addition of coagulation (at 5 mg/L dosage) and a biological process (with 15 or 60 min contact time) could significantly increase removal efficiency, and the maximum removal was observed for the combination of alum and BAC treatment (60 min contact time), with 100% and 98.56% for arsenic and iron respectively. The reduction efficiency of arsenic and iron reduced with the increase in the concentration of dissolved organics in the feedwater due to the adsorption competition between organic molecules and heavy metals. PMID:26837833

  3. Digital filters

    CERN Document Server

    Hamming, Richard W

    1997-01-01

    Digital signals occur in an increasing number of applications: in telephone communications; in radio, television, and stereo sound systems; and in spacecraft transmissions, to name just a few. This introductory text examines digital filtering, the processes of smoothing, predicting, differentiating, integrating, and separating signals, as well as the removal of noise from a signal. The processes bear particular relevance to computer applications, one of the focuses of this book.Readers will find Hamming's analysis accessible and engaging, in recognition of the fact that many people with the s

  4. Equalization characteristics of an upflow sludge blanket-aerated biofilter (USB-AF) system.

    Science.gov (United States)

    Jun, H B; Park, S M; Park, J K; Lee, S H

    2005-01-01

    Equalization characteristics of the upflow sludge blanket-aerated bio-filter (USB-AF) were investigated with the fluctuated raw domestic sewage. Recycle of nitrified effluent from AF to USB triggered the equalization characteristics of the sludge blanket on both soluble and particulate organic matter. Increment of EPS in sludge blanket by nitrate recycle was detected and removal of turbidity and particulates increased at higher recycle ratios by bio-flocculation. Increased TCOD removal in the USB was due to both denitrification of recycled nitrate and entrapment of the particulate organic matter in sludge blanket. Capture of both soluble and particulate organic matter increased sludge blanket layer in the USB, which improved the reactor performances and reduced the organic load on the subsequent AF. Overall TCOD and SS removal efficiencies were about 98% and 96%, respectively in the USB-AF system. Turbidity in the USB effluent was about 44, 20 and 5.5 NTU, at recycle ratios of 0, 100 and 200%, respectively. Particle counts in the range 2-4 microm in the USB effluent were higher than those in influent without nitrate recycle, while particle counts in the range of 0.5-15 microm in the USB effluent decreased 70% at recycle ratio of 200%. The major constituent of EPS extracted from anaerobic sludge was protein and total EPS increased from 109.1 to 165.7 mg/g-VSS with nitrate recycle of 100%. Removal efficiency and concentration of T-N in the UBS-AF effluent was over 70% and below 16 mg/L, respectively.

  5. 曝气生物滤池不同挂膜方法预处理微污染水源水研究%EXPERIMENTAL STUDY ON DIFFERENT BIOFILM FORMATION METHODS IN BIOLOGICAL AERATED FILTER USED FOR PRETREATMENT OF MICRO-POLLUTED WATER SOURCE

    Institute of Scientific and Technical Information of China (English)

    唐文锋; 孙丰英; 何晓文

    2011-01-01

    采用陶粒填料曝气生物滤池预处理微污染水源水,对接种挂膜和自然挂膜2种挂膜方式下挂膜时间、生物膜生长形态特征及对微污染有机物和氨氮的去除情况进行了试验.结果表明,接种挂膜可以加快系统启动,比自然挂膜启动时间减少1周左右,并且生物量较多;系统成功启动进入稳定运行期间,2种挂膜方式下的微生物形态和特征基本相同;系统稳定运行期间,2种挂膜方法启动系统均取得较好的微污染物去除效果,自然挂膜对COD的去除效果稍好于接种挂膜,接种挂膜对NH3-N的去除效果要好于自然挂膜.%BAF was used for pretreatment of micro-polluted water source. Under the different bilfilm formation methods of natural biofilm formation and inoculated biofilm formation, the time of biofilm formation, the biofilm morphology and characteristics, the removal effects of COD and NH3-N were analyzed. The results show that the inoculated biofilm formation can shorten the start-up time and the start-up time of the inoculated biofilm formation compared with the natural biofilm formation is shorted by about seven days, and the biomass is also greater. The biofilm morphology and characteristics are similar under the two different bilfilm formation methods during the stable operation of the systems. The two systems started by the two different bilfilm formation methods can both achieve better removal of micro-pollutants during the stable operation, and the removal of COD of the natural biofilm formation is slightly better than the inoculated biofilm formation, conversely, the removal of NH3-N of the inoculated biofilm formation is slightly better than the natural biofilm formation.

  6. Microorganisms interacting in a bio filter

    Energy Technology Data Exchange (ETDEWEB)

    Barba-Avila, M. D.; Flores-Tene, F. J.; Moreno-Terrazas, R.; Ramirez-Lopez, E. M.

    2009-07-01

    Biofilm microorganisms developed on a bio filter support media allow the metabolism of volatile organic compounds (VOCs) to carbon dioxide and water. VOCs are present in polluted gaseous streams for varied industrial activities. The main objective of this study was to identify the microorganisms present in the biofilm developed on a bio filter support media using molecular biology techniques. (Author)

  7. Removal of radon by aeration: testing of various aeration techniques for small water works. For European Commission under Contract No FI4PCT960054 TENAWA project

    International Nuclear Information System (INIS)

    Capability of various aeration techniques to remove radon from water in small waterworks was studied as a part of project (Treatment Techniques for Removing Natural Radionuclides from Drinking Water), which was carried out during 1997-1999 on a cost-shared basis (contract No. F14PCT960054) with The European Commission (CEC) under the supervision of the Directorate-General XII Radiation Protection Research Unit. In TENAWA project both laboratory and field experiments were performed in order to find reliable methods and equipment for removing natural radionuclides from ground water originating either from private wells or small waterworks. Because such techniques are more often needed in private households than at waterworks, the main emphasis of the research was aimed to solve the water treatment problems related to the private water supplies, especially bedrock wells. Radon was the most important radionuclide to be removed from water at waterworks whereas the removal of other radionuclides (234,238U, 226,228Ra, 210Pb and 210Po) was oft required from radonrich bedrock waters. The currently available methods and equipment were mainly tested during the field and laboratory experiments but the project was also aimed to find new materials, absorbents and membranes applicable for radionuclide removal from various types of ground waters (e.g. soft, hard, acidic). Because iron, manganese or organic occur in waters with radionuclides, their simultaneous removal was also studied. The project was divided into 13 work packages. In this report the results of the work package 2.2 are described. Elevated levels of radon and other natural radionuclides in European ground waters have been observed mainly in wide areas of the crystalline Scandinavian bedrock, especially in the granite rock areas of Finland and Sweden but also in more limited crystalline rock areas of Central and Southern Europe, Ukraine and Scotland. The radon removal efficiencies of different aeration methods

  8. Improving microalgal growth with small bubbles in a raceway pond with swing gas aerators.

    Science.gov (United States)

    Yang, Zongbo; Cheng, Jun; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2016-09-01

    A novel swing gas aerator was developed to generate small bubbles for improving the mass transfer coefficient and microalgal growth rate in a raceway pond. A high-speed photography system (HSP) was used to measure the bubble diameter and generation time, and online precise dissolved oxygen probes and pH probes were used to measure the mass transfer coefficient and mixing time. Bubble generation time and diameter decreased by 21% and 9%, respectively, when rubber gas aerators were swung in the microalgae solution. When water pump power and gas aeration rate increased in a raceway pond with swing gas aerators and oscillating baffles (SGAOB), bubble generation time and diameter decreased but solution velocity and mass transfer coefficient increased. The mass transfer coefficient increased by 25% and the solution velocity increased by 11% when SGAOB was used, and the microalgal biomass yield increased by 18%. PMID:27243604

  9. Effects of Aerated Irrigation on Leaf Senescence at Late Growth Stage and Grain Yield of Rice

    Institute of Scientific and Technical Information of China (English)

    ZHU Lian-feng; Yu Sheng-miao; JIN Qian-yu

    2012-01-01

    With the japonica inbred cultivar Xiushui 09,indica hybrid combinations Guodao 6 and Liangyoupeijiu as materials,field experiments were conducted in 2007 and 2008 to study the effects of aerated irrigation on leaf senescence at late growth stage and grain yield of rice.The dissolved oxygen concentration of aerated water evidently increased and decreased at a slow rate.The soil oxidation-reduction potential under aerated irrigation treatment was significantly higher than that of the CK,contributing to significant increases in effective panicles,seed setting rate and grain yield.In addition,the aerated irrigation improved root function,increased superoxide dismutase activity and decreased malondialdehyde content in flag leaves at post-flowering,which delayed leaf senescence process,prolonged leaf functional activity and led to enhanced grain filling.

  10. Fluctuant characteristics of two-phase flow behind a bottom aerator

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Experimental observations show that the random process of two-phase flow behind an aerator is an ergodic process and its amplitude distribution is similar to a normal distribution. The maximum pressure fluctuation is at the re-attachment point where the jet-trajectory flow over the aerator re-attaches to the bottom of the channel, and its amplitude is 2—3 times larger than when there is no aerator. There is a dominant frequency of 1.24 Hz in the model, but the coherence in the frequency domain is not obvious for other frequencies beside the dominant frequency. There is a large vortex at the re-attachment point behind the aerator but correlation among the measurement points is not obvious in the time domain.

  11. SONIC SPEED AND SHOCK WAVE IN HIGH VELOCITY AERATED FLOWS FROM HIGH HEAD DISCHARGE STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    Dong Zhi-yong

    2003-01-01

    The compressible characteristics in aerated flows at the high velocity of about 50m/s were analyzed. Based on the theory of compressible the relations between the sonic speed and shock wave in high-velocity aerated flow were theoretically deduced. And comparisons with measured data were made. The theoretical and experimental results show the sonic speed in aerated flow is merely of the order of several-dozen meters per second, and its minimum value is only 20m/s, which is far much less than that in water or air alone. So high subsonic flow, supersonic flow and transonic flow as well as compression wave, shock wave and expansion wave similarly to aerodnamics may be produced in high velocity aerated flow at the speed of the order of 50m/s. Hence the influences of these compressible characteristics on high head discharge structures can not be neglected, especially on super high dams over 200m high.

  12. Effects of impeller speed and aeration rate on flotation performance of sulphide ore

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effects of aeration rate and impeller speed on the concentrate sulfur grade and recovery for batch flotation of a complex sulphide ore were investigated. The relationships between the water recovery and solid entrainment were discussed. It is found that the solid entrainment is linearly related to the water recovery regardless of aeration rate and impeller speed, and the higher sulfur recovery at the aeration rate of 2 and 4 L/min for the impeller speed of 1 500 r/min is considered to be the contribution of true flotation. Finally, the sulfur recovery flux is correlated with the bubble surface area flux based on the froth image at the different aeration rates and impeller speeds.

  13. P2M2: Physical and physiological properties of membrane-aerated and membrane-supported biofilms

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles

    Autotrophic nitrogen removal has become the process of choice to treat nitrogenrich wastewaters due to its significantly lower operation costs. This technology makes use of stratified biofilm or bioaggregate structures to enrich aerobic and anaerobic ammonium oxidizing bacteria that catalyse...... without compromising performance. Preliminary experimental work manifested the difficulty of reducing the activity of Nitrite Oxidizing Bacteria (NOB), which lowered the removal efficiency of the system. Advanced molecular biology tools were used to confirm that periodic aeration of MABRs can serve...... investigations under undisturbed reactor operation. It could be concluded that conventional methods to characterize oxygen transfer rates in clean water underestimated those observed when a biofilm was present considerably. Higher degrees of bacterial activity at the biofilm base catalysed oxygen transfer...

  14. A Novel Aeration Method for the Preparation of Algae (Dunaliella Salina) Biomass for Biofuel Production.

    OpenAIRE

    U.O. Enwereuzoh; G.N. Onyeagoro

    2014-01-01

    Preparation of algae (Dunaliela Salina) biomass in ammonia (NH4 + ) and nitrate (NO3 - ) growth media for biofuel production was investigated, with special attention on the elimination of inhibitory oxygen that adversely affects algae growth. A novel aeration method based on high and efficient transfer of carbon dioxide (CO2) required to stabilize the CO2 of the algae growth medium in a short time was adopted for the elimination of the inhibitory oxygen. The novel aeration method was found...

  15. Nitrate-removal activity of a biofilm attached to a perlite carrier under continuous aeration conditions.

    Science.gov (United States)

    Yamashita, Takahiro; Yokoyama, Hiroshi; Kanafusa, Sumiyo; Ogino, Akifumi; Ishida, Mitsuyoshi; Osada, Takashi; Tanaka, Yasuo

    2011-01-01

    The nitrate-removal activity of a biofilm attached to a perlite carrier from an aerobic bioreactor used for treating dairy farm wastewater was examined by batch experiments under continuous aeration conditions. Despite aeration, the biofilm removed nitrate at a rate of 114.4 mg-N/kg-perlite/h from wastewater containing cow milk and manure. In a clone library analysis of the biofilm, bacteria showing high similarity to the denitrifying bacteria Thauera spp. were detected.

  16. Aeration effect on Spirulina platensis growth and γ-Linolenic acid production.

    Science.gov (United States)

    Ronda, Srinivasa Reddy; Bokka, Chandra Sekhar; Ketineni, Chandrika; Rijal, Binod; Allu, Prasada Rao

    2012-01-01

    The influence of aeration on algal growth and gamma-linolenic acid (GLA) production in a bubble column photobioreactor was investigated. Studies were performed in a 20-L reactor at different aeration rates (0.2- 2.5 vvm). Static, continuous, and periodic operation of air resulted in 41.9%, 88.4%, and 108% air saturation of dissolved oxygen, for which the corresponding values of GLA were 2.3, 6.5, and 7.5 mg·g(-1) dry cell weight, respectively. An increase in the aeration rate from 0.2 to 2.5 vvm enhanced both the specific growth rate and GLA content under periodic sparging in the bicarbonate medium. With a 6-fold increase in the aeration rate, the GLA content of the alga increased by 69.64% (5.6-9.5 mg· g(-1) dry cell weight). In addition, the total fatty acid (TFA) content in dry biomass increased from 2.22% to 4.41%, whereas the algae maintained a constant GLA to TFA ratio within the aeration rate tested. The dependence of GLA production on the aeration rate was explained by interrelating the GLA production rate with the specific growth rate using the Luedeking and Piret mixed growth model.

  17. Laboratory study of nitrification, denitrification and anammox processes in membrane bioreactors considering periodic aeration.

    Science.gov (United States)

    Abbassi, Rouzbeh; Yadav, Asheesh Kumar; Huang, Shan; Jaffé, Peter R

    2014-09-01

    The possibility of using membrane bioreactors (MBRs) in simultaneous nitrification-anammox-denitrification (SNAD) by considering periodic aeration cycles was investigated. Two separate reactors were operated to investigate the effect of different anammox biomass in the presence of nitrifying and denitrifying biomass on the final nitrogen removal efficiency. The results illustrated that the reactor with higher anammox biomass was more robust to oxygen cycling. Around 98% Total Nitrogen (TN) and 83% Total Organic Carbon (TOC) removal efficiencies were observed by applying one hour aeration over a four-hour cycle. Decreasing the aeration time to 30, 15, and 2 min during a four-hour cycle affected the final TN removal efficiencies. However, the effect of decreasing aeration on the TN removal efficiencies in the reactor with higher anammox biomass was much lower compared to the regular reactor. The nitrous oxide (N2O) emission was a function of aeration as well, and was lower in the reactor with higher anammox biomass. The results of q-PCR analysis confirmed the simultaneous co-existence of nitrifiers, anammox, and denitrifiers in both of the reactors. To simulate the TN removal in these reactors as a function of the aeration time, a new model, based on first order reaction kinetics for both denitrification and anammox was developed and yielded a good agreement with the experimental observations.

  18. Evaluation of aeration energy saving in two modified activated sludge processes.

    Science.gov (United States)

    Lee, Ingyu; Lim, Honglae; Jung, Byunghun; Colosimo, Mark F; Kim, Hyunook

    2015-12-01

    A variety of modified activated sludge processes are widely used in wastewater treatment plants (WWTPs) for removing organics and nutrients (N and P). Since energy consumption in aeration basin accounts for the major part of the overall energy usage in WWTPs, efforts have been made to find ways to reduce aeration energy. In this study, two modified activated sludge processes in a pilot scale designed for nutrient removal were evaluated for the extent of energy saving: (1) ABA(2) process - adjusting air on/off period (i.e., with a temporal change); and (2) MB-A(2)O process - changing volume ratio of aerobic tank to anoxic tank (i.e., with a spatial change). For the 1st process, the air on/off period was fixed at 60min/45min with aerobic fraction being 0.57, while for the 2nd process, the aerobic/anoxic volume ratio was reduced from 0.58 to 0.42. The results demonstrate that the effluent COD, TN, NH4(+) and TP concentrations are acceptable while reduced aeration time/volume certainly saves significant energy consumption. To the best of our knowledge, this is 1st attempt to reduce the aeration period or aeration volume to save the aeration energy in these two modified activated sludge processes. The implication of these observations is further discussed.

  19. Improving arachidonic acid fermentation by Mortierella alpina through multistage temperature and aeration rate control in bioreactor.

    Science.gov (United States)

    Gao, Min-Jie; Wang, Cheng; Zheng, Zhi-Yong; Zhu, Li; Zhan, Xiao-Bei; Lin, Chi-Chung

    2016-05-18

    Effective production of arachidonic acid (ARA) using Mortierella alpina was conducted in a 30-L airlift bioreactor. Varying the aeration rate and temperature significantly influenced cell morphology, cell growth, and ARA production, while the optimal aeration rate and temperature for cell growth and product formation were quite different. As a result, a two-stage aeration rate control strategy was constructed based on monitoring of cell morphology and ARA production under various aeration rate control levels (0.6-1.8 vvm). Using this strategy, ARA yield reached 4.7 g/L, an increase of 38.2% compared with the control (constant aeration rate control at 1.0 vvm). Dynamic temperature-control strategy was implemented based on the fermentation performance at various temperatures (13-28°C), with ARA level in total cellular lipid increased by 37.1% comparing to a constant-temperature control (25°C). On that basis, the combinatorial fermentation strategy of two-stage aeration rate control and dynamic temperature control was applied and ARA production achieved the highest level of 5.8 g/L.

  20. Ecophysiology of wetland plant roots: A modelling comparison of aeration in relation to species distribution

    Science.gov (United States)

    Sorrell, B.K.; Mendelssohn, I.A.; McKee, K.L.; Woods, R.A.

    2000-01-01

    This study examined the potential for inter-specific differences in root aeration to determine wetland plant distribution in nature. We compared aeration in species that differ in the type of sediment and depth of water they colonize. Differences in root anatomy, structure and physiology were applied to aeration models that predicted the maximum possible aerobic lengths and development of anoxic zones in primary adventitious roots. Differences in anatomy and metabolism that provided higher axial fluxes of oxygen allowed deeper root growth in species that favour more reducing sediments and deeper water. Modelling identified factors that affected growth in anoxic soils through their effects on aeration. These included lateral root formation, which occurred at the expense of extension of the primary root because of the additional respiratory demand they imposed, reducing oxygen fluxes to the tip and stele, and the development of stelar anoxia. However, changes in sediment oxygen demand had little detectable effect on aeration in the primary roots due to their low wall permeability and high surface impedance, but appeared to reduce internal oxygen availability by accelerating loss from laterals. The development of pressurized convective gas flow in shoots and rhizomes was also found to be important in assisting root aeration, as it maintained higher basal oxygen concentrations at the rhizome-root junctions in species growing into deep water. (C) 2000 Annals of Botany Company.

  1. Scale-up criterion of power consumption for a surface aerator used in wastewater treatment tank

    Directory of Open Access Journals (Sweden)

    Hayder M. Issa

    2016-01-01

    Full Text Available The major part of operation costs in surface aeration basins or tanks is because of power requirements. Therefore, it is always necessary to find a dependable criterion for the predictive scale-up of power consumption measurements obtained at laboratory-scale surface aeration tanks to industrial-scale wastewater treatment surface aeration systems. A scale-up approach was proposed in this work for volumetric power consumption between geometrically similar laboratory-scale and industrial full-scale surface aeration tanks at an invariant Froude number Fr. Scale-up order between the laboratory and industrial sizes was 7.4. A mathematical correlation has been developed to estimate the volumetric power consumption and then compared with a model that already was investigated experimentally. Scale-up criterion involved the evaluation of three similarities; the geometrical, kinematic and dynamics. The scale-up basis that developed in this work led us to achieve a suitable scale-up criterion for volumetric power consumption in aeration tanks at matched surface flow condition. At matched Froude number Fr for the laboratory and industrial scales and at low and moderate turbine rotation speeds for surface aeration than 0.8 rps, complete predictions of volumetric power consumption have been achieved. The prediction by the existing previous model showed higher results than the actual values.

  2. Modeling a full scale oxidation ditch system, coupling hydrodynamics and biological kinetics using ASM1 model

    International Nuclear Information System (INIS)

    Optimising the aeration in oxidation ditch aims on one hand, a better wastewater quality and on the other hand, a reduction of the energy expenses of the treatment. given that the energy expenses relative to the aeration represents 60 to 80% of the operating costs of a wastewater treatment plant and given that the biological activity is strictly dependent on dissolved oxygen, the transfer of oxygen is considered as one of the key parameters of the process. (Author) 8 refs.

  3. Mixing regime as a key factor to determine DON formation in drinking water biological treatment.

    Science.gov (United States)

    Lu, Changqing; Li, Shuai; Gong, Song; Yuan, Shoujun; Yu, Xin

    2015-11-01

    Dissolved organic nitrogen (DON) can act as precursor of nitrogenous disinfection by-products formed during chlorination disinfection. The performances of biological fluidized bed (continuous stirred tank reactor, CSTR) and bio-ceramic filters (plug flow reactor, PFR) were compared in this study to investigate the influence of mixing regime on DON formation in drinking water treatment. In the shared influent, DON ranged from 0.71mgL(-1) to 1.20mgL(-1). The two biological fluidized bed reactors, named BFB1 (mechanical stirring) and BFB2 (air agitation), contained 0.12 and 0.19mgL(-1) DON in their effluents, respectively. Meanwhile, the bio-ceramic reactors, labeled as BCF1 (no aeration) and BCF2 (with aeration), had 1.02 and 0.81mgL(-1) DON in their effluents, respectively. Comparative results showed that the CSTR mixing regime significantly reduced DON formation. This particular reduction was further investigated in this study. The viable/total microbial biomass was determined with propidium monoazide quantitative polymerase chain reaction (PMA-qPCR) and qPCR, respectively. The results of the investigation demonstrated that the microbes in BFB2 had higher viability than those in BCF2. The viable bacteria decreased more sharply than the total bacteria along the media depth in BCF2, and DON in BCF2 accumulated in the deeper media. These phenomena suggested that mixing regime determined DON formation by influencing the distribution of viable, total biomass, and ratio of viable biomass to total biomass. PMID:25585870

  4. Fate of Pathogen Indicators During Extended Aeration Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Norshuhaila Mohamed Sunar

    2015-05-01

    Full Text Available Pathogen indicators normally used in water quality indicator because large numbers of the bacteria are always present in the faeces of humans, but are not naturally found in water. Since these bacteria don’t live long in water once outside the intestine, their presence in water means there has been recent contamination through effluent discharges or other sources. Like other enteric pathogens, a common mode of transmission for E.coli is via contaminated water, food and by direct person to person contact. Infection often causes severe bloody diarrhea, abdominal cramps, and possibly fever.  In some cases, infection can lead to kidney failure and possibly death. In order to evaluate the effieciency of extended aeration wastewater treatment plant (EAWWTP, the microbial analyses such as enumeration of E.coli and total coliform were measured. Besides, this study also involved the measurements of pH, turbidity, DO (Dissolve Oxygen, BOD (Biochemical Oxygen Demand, COD (Chemical Oxygen Demand and TSS (Total Suspended Solid. This study summarized that each treatment process provides important roles to overall effieciency of EAWWTP. The secondary treatment was proved sufficient not only on reducing pathogen indicators but for all examined parameters. Significantly, this study conclude that numbers of pathogen indicators discharges in effluent meet the regulated standard guideline after treated through the EAWWTP.

  5. Removal of pharmaceuticals in aerated biofilters with manganese feeding.

    Science.gov (United States)

    Zhang, Yongjun; Zhu, Hong; Szewzyk, Ulrich; Geissen, Sven Uwe

    2015-04-01

    A tertiary treatment step is required in current wastewater treatment plants to remove trace pollutants and thus to prevent their extensive occurrence in the aquatic environment. In this study, natural MnOx ore and natural zeolite were separately used to pack two lab-scale aerated biofilters, which were operated in approximately 1.5 years for the removal of frequently occurring pharmaceuticals, including carbamazepine (CBZ), diclofenac (DFC), and sulfamethoxazole (SMX), out of synthetic and real secondary effluents. Mn(2+) was added in the feeds to promote the growth of iron/manganese oxidizing bacteria which were recently found to be capable of degrading recalcitrant pollutants. An effective removal (80-90%) of DFC and SMX was observed in both biofilters after adaptation while a significant removal of CBZ was not found. Both biofilters also achieved an effective removal of spiked Mn(2+), but a limited removal of carbon and nitrogen contents. Additionally, MnOx biofilter removed 50% of UV254 from real secondary effluent, indicating a high potential on the removal of aromatic compounds.

  6. A two-fluid model for violent aerated flows

    CERN Document Server

    Dias, Frédéric; Ghidaglia, Jean-Michel

    2008-01-01

    In the study of ocean wave impact on structures, one often uses Froude scaling since the dominant force is gravity. However the presence of trapped or entrained air in the water can significantly modify wave impacts. When air is entrained in water in the form of small bubbles, the acoustic properties in the water change dramatically. While some work has been done to study small-amplitude disturbances in such mixtures, little work has been done on large disturbances in air-water mixtures. We propose a basic two-fluid model in which both fluids share the same velocities and analyze some of its properties. It is shown that this model can successfully mimic water wave impacts on coastal structures. The governing equations are discretized by a second-order finite volume method. Numerical results are presented for two examples: the dam break problem and the drop test problem. It is shown that this basic model can be used to study violent aerated flows, especially by providing fast qualitative estimates.

  7. Hydroxyl radical induced degradation of salicylates in aerated aqueous solution

    International Nuclear Information System (INIS)

    Ionizing radiation induced degradation of acetylsalicylic acid, its hydrolysis product salicylic acid and a salicylic acid derivative 5-sulpho-salicylic acid, was investigated in dilute aqueous solutions by UV–vis spectrophotometry, HPLC separation and diode-array or MS/MS detection, chemical oxygen demand, total organic carbon content and by Vibrio fischeri toxicity measurements. Hydroxyl radicals were shown to degrade these molecules readily, and first degradation products were hydroxylated derivatives in all cases. Due to the by-products, among them hydrogen peroxide, the toxicity first increased and then decreased with the absorbed dose. With prolonged irradiation complete mineralization was achieved. - Highlights: • In OH induced reactions of salicylates first products are hydroxylated derivatives. • With prolonged irradiation dihydroxy derivatives also form. • In aerated solutions the one-electron oxidant OH induces 3–4 oxidations. • Toxicity first increases and then decreases with dose mainly due to H2O2 formation. • The toxicity in tap water is smaller than in pure water

  8. A novel process of dye wastewater treatment by linking advanced chemical oxidation with biological oxidation

    Directory of Open Access Journals (Sweden)

    Zou Haiming

    2015-12-01

    Full Text Available Dye wastewater is one of typically non-biodegradable industrial effluents. A new process linking Fenton’s oxidation with biological oxidation proposed in this study was investigated to degrade the organic substances from real dye wastewater. During the combination process, the Fenton’s oxidation process can reduce the organic load and enhance biodegradability of dye wastewater, which is followed by biological aerated filter (BAF system to further remove organic substances in terms of discharge requirement. The results showed that 97.6% of chemical oxygen demand (COD removal by the combination process was achieved at the optimum process parameters: pH of 3.5, H2O2 of 2.0 mL/L, Fe(II of 500 mg/L, 2.0 h treatment time in the Fenton’s oxidation process and hydraulic retention time (HRT of 5 h in the BAF system. Under these conditions, COD concentration of effluent was 72.6 mg/L whereas 3020 mg/L in the influent, thus meeting the requirement of treated dye wastewater discharge performed by Chinese government (less than 100 mg/L. These results obtained here suggest that the new process combining Fenton’s oxidation with biological oxidation may provide an economical and effective alternative for treatment of non-biodegradable industrial wastewater.

  9. Evaluation of six aerator modules built on venturi air injectors using clean water test.

    Science.gov (United States)

    Dong, C; Zhu, J; Miller, C F

    2009-01-01

    Six aerator modules constructed using venturi air injectors connected in either series or parallel were evaluated and compared for their oxygen transfer coefficients (OTC), standard oxygen transfer rate (SOTR), and standard oxygenation efficiency (SOE) determined by clean water tests. Modules in series (module a, b, c) included one, two, and three venturi injectors, respectively. The aerator module with two (module d) and three (module e, f) venturi injectors in parallel were used, while module f had less friction and more even flow rate in each line compared with module e. The results showed that the OTC, SOTR, and SOE for the six different module configurations (module a, b, c, d, e, f) were 4.54, 3.79, 3.58, 8.37, 5.93 and 11.87 h(-1); 0.10, 0.09, 0.09, 0.18, 0.15, and 0.31 kgO(2)/h; and 0.07, 0.06, 0.06, 0.12, 0.10, and 0.21 kgO(2)/kWh, respectively. The observations indicate that a 3-fold increase in SOTR and 3.5-fold increase in SOE can be obtained by simply changing the way that venturi air injectors are connected, which suggests that it is possible to improve the aeration efficiency of a venturi type aeration system by innovative aerator module designs. In view of the situation that the venturi aeration systems currently used for swine manure lagoons need significant improvement in their performance in order to match the cost-effective requirement, more research in aerator module development is needed so that effective control of odor from liquid swine manure lagoons can be achieved at an affordable cost. The technology such developed can also be applied to other livestock species. PMID:19717924

  10. Reducing aeration energy consumption in a large-scale membrane bioreactor: Process simulation and engineering application.

    Science.gov (United States)

    Sun, Jianyu; Liang, Peng; Yan, Xiaoxu; Zuo, Kuichang; Xiao, Kang; Xia, Junlin; Qiu, Yong; Wu, Qing; Wu, Shijia; Huang, Xia; Qi, Meng; Wen, Xianghua

    2016-04-15

    Reducing the energy consumption of membrane bioreactors (MBRs) is highly important for their wider application in wastewater treatment engineering. Of particular significance is reducing aeration in aerobic tanks to reduce the overall energy consumption. This study proposed an in situ ammonia-N-based feedback control strategy for aeration in aerobic tanks; this was tested via model simulation and through a large-scale (50,000 m(3)/d) engineering application. A full-scale MBR model was developed based on the activated sludge model (ASM) and was calibrated to the actual MBR. The aeration control strategy took the form of a two-step cascaded proportion-integration (PI) feedback algorithm. Algorithmic parameters were optimized via model simulation. The strategy achieved real-time adjustment of aeration amounts based on feedback from effluent quality (i.e., ammonia-N). The effectiveness of the strategy was evaluated through both the model platform and the full-scale engineering application. In the former, the aeration flow rate was reduced by 15-20%. In the engineering application, the aeration flow rate was reduced by 20%, and overall specific energy consumption correspondingly reduced by 4% to 0.45 kWh/m(3)-effluent, using the present practice of regulating the angle of guide vanes of fixed-frequency blowers. Potential energy savings are expected to be higher for MBRs with variable-frequency blowers. This study indicated that the ammonia-N-based aeration control strategy holds promise for application in full-scale MBRs.

  11. Reducing aeration energy consumption in a large-scale membrane bioreactor: Process simulation and engineering application.

    Science.gov (United States)

    Sun, Jianyu; Liang, Peng; Yan, Xiaoxu; Zuo, Kuichang; Xiao, Kang; Xia, Junlin; Qiu, Yong; Wu, Qing; Wu, Shijia; Huang, Xia; Qi, Meng; Wen, Xianghua

    2016-04-15

    Reducing the energy consumption of membrane bioreactors (MBRs) is highly important for their wider application in wastewater treatment engineering. Of particular significance is reducing aeration in aerobic tanks to reduce the overall energy consumption. This study proposed an in situ ammonia-N-based feedback control strategy for aeration in aerobic tanks; this was tested via model simulation and through a large-scale (50,000 m(3)/d) engineering application. A full-scale MBR model was developed based on the activated sludge model (ASM) and was calibrated to the actual MBR. The aeration control strategy took the form of a two-step cascaded proportion-integration (PI) feedback algorithm. Algorithmic parameters were optimized via model simulation. The strategy achieved real-time adjustment of aeration amounts based on feedback from effluent quality (i.e., ammonia-N). The effectiveness of the strategy was evaluated through both the model platform and the full-scale engineering application. In the former, the aeration flow rate was reduced by 15-20%. In the engineering application, the aeration flow rate was reduced by 20%, and overall specific energy consumption correspondingly reduced by 4% to 0.45 kWh/m(3)-effluent, using the present practice of regulating the angle of guide vanes of fixed-frequency blowers. Potential energy savings are expected to be higher for MBRs with variable-frequency blowers. This study indicated that the ammonia-N-based aeration control strategy holds promise for application in full-scale MBRs. PMID:26905799

  12. CAVITATION CHARACTERISTICS OF HIGH VELOCITY FLOW WITH AND WITHOUT AERATION ON THE ORDER OF 50 m/s

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Experimental study of cavitation characteristics with and without aeration was conducted at the flow velocity 50m/s in the non-circulating type water tunnel in the Hydraulics Laboratory at Zhejiang University of Technology. Variations of pressure and cavitation number with air concentration, pressure waveforms as well as cavitation erosion level of concrete specimen with and without aeration were obtained. The effects of cavitation control by aeration were analyzed.

  13. A new dynamic model for highly efficient mass transfer in aerated bioreactors and consequences for kLa identification.

    Science.gov (United States)

    Müller, Stefan; Murray, Douglas B; Machne, Rainer

    2012-12-01

    , potentially confounding the determination of the "biological enhancement" of mass transfer. Our new model provides an improved theoretical framework that can be readily applied to aerated bioreactors in research and biotechnology.

  14. Optimal Gaussian Filter for Effective Noise Filtering

    OpenAIRE

    Kopparapu, Sunil; Satish, M

    2014-01-01

    In this paper we show that the knowledge of noise statistics contaminating a signal can be effectively used to choose an optimal Gaussian filter to eliminate noise. Very specifically, we show that the additive white Gaussian noise (AWGN) contaminating a signal can be filtered best by using a Gaussian filter of specific characteristics. The design of the Gaussian filter bears relationship with the noise statistics and also some basic information about the signal. We first derive a relationship...

  15. Optimizing aeration rates for minimizing membrane fouling and its effect on sludge characteristics in a moving bed membrane bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Yousef, E-mail: yrahimi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Torabian, Ali, E-mail: atorabi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Mehrdadi, Naser, E-mail: mehrdadi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Habibi-Rezaie, Mehran, E-mail: mhabibi@khayam.ut.ac.ir [Department of Biotechnology, Faculty of Biology, College of Science, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Pezeshk, Hamid, E-mail: pezeshk@khayam.ut.ac.ir [Department of Statistics, Faculty of Mathematics and Computer, College of Science, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Nabi-Bidhendi, Gholam-Reza, E-mail: ghhendi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of)

    2011-02-28

    Research highlights: {yields} There is an optimum aeration rate in the MBMBR process compartments. {yields} Optimum aeration rate maximizes nutrients removal. {yields} Optimum aeration rate minimizes membrane fouling. {yields} Both aeration rates in MBBR and membrane compartment can affect on membrane permeability. - Abstract: In MBR processes, sufficient aeration is necessary to maintain sustainable flux and to retard membrane fouling. Membrane permeability, sludge characteristics, nutrient removal and biomass growth at various air flow rates in the membrane and moving bed biofilm reactor (MBBR) compartments were studied in a pilot plant. The highest nitrogen and phosphorous removal rates were found at MBBR aeration rates of 151 and 85 L h{sup -1} and a specific aeration demand per membrane area (SAD{sub m}) of 1.2 and 0.4m{sub air}{sup 3} m{sup -2} h{sup -1}, respectively. A linear correlation was found between the amount of attached biofilm and the nutrient removal rate. The aeration rate in the MBBR compartment and SAD{sub m} significantly influenced the sludge characteristics and membrane permeability. The optimum combination of the aeration rate in the MBBR compartment and SAD{sub m} were 151 L h{sup -1} and 0.8-1.2m{sub air}{sup 3}m{sub membrane}{sup -2} h{sup -1}, respectively.

  16. Effect of artificial aeration on the performance of vertical-flow constructed wetland treating heavily polluted river water

    Institute of Scientific and Technical Information of China (English)

    Huiyu Dong; Zhimin Qiang; Tinggang Li; Hui Jin; Weidong Chen

    2012-01-01

    Three lab-scale vertical-flow constructed wetlands (VFCWs),including the non-aerated (NA),intermittently aerated (IA) and continuously aerated (CA) ones,were operated at different hydraulic loading rates (HLRs) to evaluate the effect of artificial aeration on the treatment efficiency of heavily polluted river water.Results indicated that artificial aeration increased the dissolved oxygen (DO) concentrations in IA and CA,which significantly favored the removal of organic matter and NH4+-N.The DO grads caused by intermittent aeration formed aerobic and anoxic regions in IA and thus promoted the removal of total nitrogen (TN).Although the removal efficiencies of CODcr,NH4+-N and TN in the three VFCWs all decreased with an increase in HLR,artificial aeration enhanced the reactor resistance to the fluctuation of pollutant loadings.The maximal removal efficiencies of CODcr,NH4+-N and total phosphorus (TP) (i.e.,81%,87% and 37%,respectively) were observed in CA at 19 cm/day HLR,while the maximal TN removal (i.e.,57%) was achieved in IA.Although the improvement of artificial aeration on TP removal was limited,this study has demonstrated the feasibility of applying artificial aeration to VFCWs treating polluted eiver water,particularly at a high HLR.

  17. Glucose metabolism in Lactococcus lactis MG1363 under different aeration conditions: Requirement of acetate to sustain growth under microaerobic conditions

    DEFF Research Database (Denmark)

    Nordkvist, Mikkel; Jensen, N.B.S.; Villadsen, John

    2003-01-01

    Lactococcus lactis subsp. lactis MG1363 was grown in batch cultures on a defined medium with glucose as the energy source under different aeration conditions, namely, anaerobic conditions, aerobic conditions, and microaerobic conditions with a dissolved oxygen tension of 5% (when saturation...... with air was used as the reference). The maximum specific growth rate was high (0.78 to 0.91 h(-1)) under all aeration conditions but decreased with increasing aeration, and more than 90% of the glucose was converted to lactate. However, a shift in by-product formation was observed. Increasing aeration...

  18. Impact of post-infiltration soil aeration at different growth stages of sub-surface trickle-irrigated tomato plants

    Science.gov (United States)

    Li, Yuan; Jia, Zong-xia; Niu, Wen-Quan; Wang, Jing-wei

    2016-07-01

    Sensitivity to low rhizosphere soil aeration may change over time and therefore plant response may also depend on different growth stages of a crop. This study quantified effects of soil aeration during 5 different periods, on growth and yield of trickle-irrigated potted single tomato plants. Irrigation levels were 0.6 to 0.7 (low level) or 0.7 to 0.8 (high level) of total water holding capacity of the pots. Soil was aerated by injecting 2.5 l of air into each pot through the drip tubing immediately after irrigation. Fresh fruit yield, above ground plant dry weight, plant height, and leaf area index response to these treatments were measured. For all these 4 response variables, means of post-infiltration aeration between 58 to 85 days after sowing were 13.4, 43.5, 13.7, and 37.7% higher than those for the non-aerated pots, respectively. The results indicated that: post-infiltration soil aeration can positively impact the yield and growth of sub-surface trickle-irrigated potted tomato plants; positive effects on plant growth can be obtained with aeration during the whole growth period or with aeration for partial periods; positive growth effects of partial periods of aeration appears to persist and result in yield benefit.

  19. Miniaturized dielectric waveguide filters

    Science.gov (United States)

    Sandhu, Muhammad Y.; Hunter, Ian C.

    2016-10-01

    Design techniques for a new class of integrated monolithic high-permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled transverse electromagnetic filters with the same unloaded Q-factor. Designs for Chebyshev and asymmetric generalised Chebyshev filter and a diplexer are presented with experimental results for an 1800 MHz Chebyshev filter and a 1700 MHz generalised Chebyshev filter showing excellent agreement with theory.

  20. O/A两级生物砂滤工艺脱氮效果研究%Study on denitrification performance of O/A two-stage biological sand filter

    Institute of Scientific and Technical Information of China (English)

    赵靖; 唐锋兵; 王斌; 付民

    2011-01-01

    污水中的氮元素是可供藻类利用的营养元素之一,但其含量过高时将会引起水体富营养化.采用O/A两级生物砂滤工艺处理城市污水厂二级出水,考察了水温、水力负荷和碳氮质量比对生物砂滤脱氮效果的影响.试验结果表明,生物砂滤池的反硝化性能随水温增加而提高,随水力负荷增加而下降,TN的平均去除率随碳氮质量比的增加逐渐提高.当水温在20~26℃时,确定本试验的最优控制参数为:水力负荷为3 m3/(m2,h)、碳氮质量比为3.5∶1,此时TN的平均去除率可达到44%以上,出水TN质量浓度小于15 mg/L,O/A两级生物砂滤工艺可以取得较好的脱氮效果,是一种应用前景广阔的污水深度处理技术.%As a nutrition element for algae's growth, nitrogen can cause eutrophication when the concentration is too high. Using O/A two-stage biological sand filter to treat secondary effluent water from an urban sewage treatment plant, the influences of water temperature, hydraulic loading and mass ratio of carbon to nitrogen on the denitrification effect were investigated. The results of the test showed that, the denitrification performance of biological sand filter was improved with the increase of water temperature, and declined with the increase of hydraulic loading, the average removal rate of TN increased gradually with the increase of C/N mass ratio. When the water temperature was 20 - 26 ℃, the optimal control parameters of the test was determined as follows: the hydraulic loading was 3 m3/(m2·h) , the mass ratio of carbon to nitrogen was 3.5 : 1. Under the above condition, the average removal rate of TN reached above 44%, the mass concentration of TN in the effluent water was lower than 15 mg/L. It could be seen that, O/A two-stage biological sand filtration process could get a good denitrification effect, which was a technology for wastewater advanced treatment with a broad application prospect.

  1. Analysis of Process Gases and Trace Contaminants in Membrane-Aerated Gaseous Effluent Streams.

    Science.gov (United States)

    Coutts, Janelle L.; Lunn, Griffin Michael; Meyer, Caitlin E.

    2015-01-01

    In membrane-aerated biofilm reactors (MABRs), hollow fibers are used to supply oxygen to the biofilms and bulk fluid. A pressure and concentration gradient between the inner volume of the fibers and the reactor reservoir drives oxygen mass transport across the fibers toward the bulk solution, providing the fiber-adhered biofilm with oxygen. Conversely, bacterial metabolic gases from the bulk liquid, as well as from the biofilm, move opposite to the flow of oxygen, entering the hollow fiber and out of the reactor. Metabolic gases are excellent indicators of biofilm vitality, and can aid in microbial identification. Certain gases can be indicative of system perturbations and control anomalies, or potentially unwanted biological processes occurring within the reactor. In confined environments, such as those found during spaceflight, it is important to understand what compounds are being stripped from the reactor and potentially released into the crew cabin to determine the appropriateness or the requirement for additional mitigation factors. Reactor effluent gas analysis focused on samples provided from Kennedy Space Center's sub-scale MABRs, as well as Johnson Space Center's full-scale MABRs, using infrared spectroscopy and gas chromatography techniques. Process gases, such as carbon dioxide, oxygen, nitrogen, nitrogen dioxide, and nitrous oxide, were quantified to monitor reactor operations. Solid Phase Microextraction (SPME) GC-MS analysis was used to identify trace volatile compounds. Compounds of interest were subsequently quantified. Reactor supply air was examined to establish target compound baseline concentrations. Concentration levels were compared to average ISS concentration values and/or Spacecraft Maximum Allowable Concentration (SMAC) levels where appropriate. Based on a review of to-date results, current trace contaminant control systems (TCCS) currently on board the ISS should be able to handle the added load from bioreactor systems without the need

  2. [Effect of Intermittent Aeration on Nitrogen Removal Efficiency in Vertical Subsurface Flow Constructed Wetland].

    Science.gov (United States)

    Wang, Jian; Li, Huai-zheng; Zhen, Bao-chong; Liu, Zhen-dong

    2016-03-15

    One-stage vertical subsurface flow constructed wetlands (CWs) were used to treat effluent from grit chamber in municipal wastewater treatment plant. The CW was divided into aerobic zone and anoxic zone by means of raising the effluent level and installing a perforated pipe. Two parameters (the ratio of aeration time and nonaeration time, aeration cycle) were optimized in the experiment to enhance nitrogen removal efficiency. The results suggested that the removal rates of COD and NH₄⁺-N increased while TN showed a trend of first increasing and then decreasing with the increasing ratio. When the ratio was 3:1, the C/N value in the anoxic zone was 4. 8. And the TN effluent concentration was 15.8 mg · L⁻¹ with the highest removal rate (62.1%), which was increased by 12.7% compared with continuous aeration. As the extension of the aeration cycle, the DO effluent concentration as well as the removal rates of COD and NH: -N declined gradually. The TN removal rate reached the maximum (65.5%) when the aeration cycle was 6h. However, the TN removal rate dropped rapidly when the cycle exceeded the hydraulic retention time in the anoxic zone. PMID:27337890

  3. EXPERIMENTAL AND NUMERICAL SIMULATION OF THREE-PHASE FLOW IN AN AERATION TANK

    Institute of Scientific and Technical Information of China (English)

    Cheng Wen; Zhou Xiao-de; Song Ce; Min Tao; Murai Yuichi; Yamamoto Fujio

    2003-01-01

    Aeration plays an important role in the treatment of activated sludge due to the interactions among bubbles, sewage and activated sludge in an aeration tank. The aeration performance is directly concerned with the efficiency of sewage disposal. So the three-dimensional two-fluid model was established with emphasis on the phase interaction terms in this paper. This model, as an extension of the two-phase flow model, involved the motion laws of three-phases, and was compared with experimental studies. The finite volume method was used in the numerical simulation of gas-liquid two-phase flow and gas-liquid-solid three-phase flow. In order to discuss the influence of gas-phase, liquid-phase and solid-phase motions in an aeration tank on the sewage disposal, three kinds of boundary and initial conditions were adopted. The simulated results of the flow structure show qualitatively good agreement with the experimental data. And the theoretical basis for designing the best aeration tank was discussed according to the simulated results.

  4. [Effect of Intermittent Aeration on Nitrogen Removal Efficiency in Vertical Subsurface Flow Constructed Wetland].

    Science.gov (United States)

    Wang, Jian; Li, Huai-zheng; Zhen, Bao-chong; Liu, Zhen-dong

    2016-03-15

    One-stage vertical subsurface flow constructed wetlands (CWs) were used to treat effluent from grit chamber in municipal wastewater treatment plant. The CW was divided into aerobic zone and anoxic zone by means of raising the effluent level and installing a perforated pipe. Two parameters (the ratio of aeration time and nonaeration time, aeration cycle) were optimized in the experiment to enhance nitrogen removal efficiency. The results suggested that the removal rates of COD and NH₄⁺-N increased while TN showed a trend of first increasing and then decreasing with the increasing ratio. When the ratio was 3:1, the C/N value in the anoxic zone was 4. 8. And the TN effluent concentration was 15.8 mg · L⁻¹ with the highest removal rate (62.1%), which was increased by 12.7% compared with continuous aeration. As the extension of the aeration cycle, the DO effluent concentration as well as the removal rates of COD and NH: -N declined gradually. The TN removal rate reached the maximum (65.5%) when the aeration cycle was 6h. However, the TN removal rate dropped rapidly when the cycle exceeded the hydraulic retention time in the anoxic zone.

  5. Influence of aeration and initial water thickness on axial velocity attenuation of jet flows

    Institute of Scientific and Technical Information of China (English)

    Wang-ru WEI; Jun DENG; Bin LIU

    2013-01-01

    With the development of ski-jump energy dissipation for high and large discharge among the hydraulic projects,the effects of characteristics of water flow on energy dissipation are increasingly important.In the present study,the effects of aeration and the initial water thickness on axial velocity attenuation of jet flow were analyzed,using variance analysis and numerical calculated methods.From the analysis of test data,both of the air concentration and initial water thickness are sensitive factors for the axial velocity attenuation of jet flow along the axial way,and there is no significant interaction effect between the aeration and initial water thickness.Aeration has a more significant effect on the axial velocity attenuation of jet flow.Decreasing the initial water thickness of jet flow can reduce the length of jet core,and make the initial position of axial velocity attenuation closer to the nozzle exit.The numerical calculation results show that aeration can contribute to the enhancement of entrainment ability of jet flow,which may improve the interaction between jet flow and surroundings.For ski-jump energy dissipation among the hydraulic projects,combining aeration with decreasing initial water thickness of jet flow is an effective way to enhance the rate of axial velocity attenuation.

  6. Performance of a fixed-bed biofilm reactor with microbubble aeration in aerobic wastewater treatment.

    Science.gov (United States)

    Zhang, Lei; Liu, Junliang; Liu, Chun; Zhang, Jing; Yang, Jingliang

    2016-01-01

    Microbubble aeration is supposed to be highly efficient for oxygen supply in aerobic wastewater treatment. In the present study, the performance of a fixed-bed biofilm reactor microbubble-aerated using a Shirasu porous glass (SPG) membrane system was investigated when treating synthetic municipal wastewater. The biofilm formation on the carriers was enhanced with microbubble aeration due to the strong adhesion of microbubbles to the solid surface. The dissolved oxygen concentration, the removals of chemical oxygen demand (COD) and nitrogen, and the oxygen utilization efficiency were influenced by the organic loading rate at a certain oxygen supply capacity. The relatively optimal organic loading rate was determined as 0.82 kgCOD/(m(3)d) when the oxygen supply capacity was 0.93 kgO(2)/(m(3)d), where COD and ammonia removal efficiencies were 91.7% and 53.9%, respectively. The corresponding SPG membrane area-based COD removal capacity was 6.88 kgCOD/(m(2)d). The oxygen utilization efficiency of microbubble aeration was obviously higher compared to conventional bubble aeration. The simultaneous nitrification and denitrification occurred in the biofilm reactor and the total nitrogen removal efficiency of 50.4% was achieved under these conditions. In addition, the increase in air supply capacity of the SPG membrane system was suggested to improve its energy utilization efficiency. PMID:27386991

  7. Maximization of beta-galactosidase production: a simultaneous investigation of agitation and aeration effects.

    Science.gov (United States)

    Alves, Fernanda Germano; Filho, Francisco Maugeri; de Medeiros Burkert, Janaína Fernandes; Kalil, Susana Juliano

    2010-03-01

    In this work, the agitation and aeration effects in the maximization of the beta-galactosidase production from Kluyveromyces marxianus CCT 7082 were investigated simultaneously, in relation to the volumetric enzyme activity and the productivity, as well as the analysis of the lactose consumption and production of glucose, and galactose of this process. Agitation and aeration effects were studied in a 2 L batch stirred reactor. A central composite design (2(2) trials plus three central points) was carried out. Agitation speed varied from 200 to 500 rpm and aeration rate from 0.5 to 1.5 vvm. It has been shown in this study that the volumetric enzyme production was strongly influenced by mixing conditions, while aeration was shown to be less significant. Linear models for activity and productivity due to agitation and aeration were obtained. The favorable condition was 500 rpm and 1.5 vvm, which lead to the best production of 17 U mL(-1) for enzymatic activity, 1.2 U mL(-1) h(-1) for productivity in 14 h of process, a cellular concentration of 11 mg mL(-1), and a 167.2 h(-1) volumetric oxygen transfer coefficient. PMID:19517069

  8. Optimisation of pressure aeration systems in waste water treatment; Optimierung von Druckbelueftungssystemen in der Abwasserbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.

    2002-07-01

    This paper investigates, evaluates and places in context a diverse range of factors impacting on the performance of aerator elements used in the pressure aeration of wastewater treatment. To perform the investigation, a large-scale test basin and column were installed to allow oxygen transfer tests to be conducted under identical and hence reproducible boundary conditions. In addition to standard model aerators, numerous prototypes of disc, pipe and hose aerators were produced which differed in individual design characteristics or other properties. The various designs were installed in the experimental set-up and their performance measured by means of oxygen transfer tests using the desorption method. Based on these findings as well as on the detailed theoretical principles and the empirical investigations, recommendations were drawn up for the optimisation of pressurised aerator systems which will allow a significant reduction in the required volumes of air and hence in the cost of electricity for the compressors and blowers without a reduction in performance. (orig.)

  9. Nitrogen removal in the bioreactor landfill system with intermittent aeration at the top of landfilled waste

    Energy Technology Data Exchange (ETDEWEB)

    He Ruo [College of Environment and Resource, Zhejiang University, Hangzhou 310029 (China)]. E-mail: heruo@zju.edu.cn; Shen Dongsheng [College of Environment and Resource, Zhejiang University, Hangzhou 310029 (China)

    2006-08-25

    High ammonia concentration of recycled landfill leachate makes it very difficult to treat. In this work, a vertical aerobic/anoxic/anaerobic lab-scale bioreactor landfill system, which was constructed by intermittent aeration at the top of landfilled waste, as a bioreactor for in situ nitrogen removal was investigated during waste stabilization. Intermittent aeration at the top of landfilled waste might stimulate the growth of nitrifying bacteria and denitrifying bacteria in the top and middle layers of waste. The nitrifying bacteria population for the landfill bioreactor with intermittent aeration system reached between10{sup 6} and 10{sup 8} cells/dry g waste, although it decreased 2 orders of magnitude on day 30, due to the inhibitory effect of the acid environment and high organic matter in the landfilled waste. The denitrifying bacteria population increased by between 4 and 13 orders of magnitude compared with conventional anaerobic landfilled waste layers. Leachate NO{sub 3} {sup -}-N concentration was very low in both two experimental landfill reactors. After 105 days operation, leachate NH{sub 4} {sup +}-N and TN concentrations for the landfill reactor with intermittent aeration system dropped to 186 and 289 mg/l, respectively, while they were still kept above 1000 mg/l for the landfill reactor without intermittent aerobic system. In addition, there is an increase in the rate of waste stabilization as well as an increase of 12% in the total waste settlement for the landfill reactor with intermittent aeration system.

  10. Municipal waste stabilization in a reactor with an integrated active and passive aeration system.

    Science.gov (United States)

    Kasinski, Slawomir; Slota, Monika; Markowski, Michal; Kaminska, Anna

    2016-04-01

    To test whether an integrated passive and active aeration system could be an effective solution for aerobic decomposition of municipal waste in technical conditions, a full-scale composting reactor was designed. The waste was actively aerated for 5d, passively aerated for 35 d, and then actively aerated for 5d, and the entire composting process was monitored. During the 45-day observation period, changes in the fractional, morphological and physico-chemical characteristics of the waste at the top of the reactor differed from those in the center of the reactor. The fractional and morphological analysis made during the entire process of stabilization, showed the total reduction of organic matter measured of 82 wt% and 86 wt% at the respective depths. The reduction of organic matter calculated using the results of Lost of Ignition (LOI) and Total Organic Carbon (TOC) showed, respectively, 40.51-46.62% organic matter loss at the top and 45.33-53.39% in the center of the reactor. At the end of the process, moisture content, LOI and TOC at the top were 3.29%, 6.10% and 4.13% higher, respectively, than in the center. The results showed that application of passive aeration in larger scale simultaneously allows the thermophilic levels to be maintained during municipal solid waste composting process while not inhibiting microbial activity in the reactor.

  11. POLISHING EFFLUENT FROM A PERCHLORATE-REDUCING ANAEROBIC BIOLOGICAL CONTACTOR

    Science.gov (United States)

    The U.S. Environmental Protection Agency undertook at 3 ½ year pilot-scale biological perchlorate treatment study that included two long (311 and 340 days) examinations of anaerobic effluent polishing. The polishing system consisted of hydrogen peroxide addition and aeration, fo...

  12. Thermal Response Of An Aerated Concrete Wall With Micro-Encapsulated Phase Change Material

    Directory of Open Access Journals (Sweden)

    Halúzová Dušana

    2015-06-01

    Full Text Available For many years Phase Change Materials (PCM have attracted attention due to their ability to store large amounts of thermal energy. This property makes them a candidate for the use of passive heat storage. In many applications, they are used to avoid the overheating of the temperature of an indoor environment. This paper describes the behavior of phase change materials that are inbuilt in aerated concrete blocks. Two building samples of an aerated concrete wall were measured in laboratory equipment called “twin-boxes”. The first box consists of a traditional aerated concrete wall; the second one has additional PCM micro-encapsulated in the wall. The heat flux through the wall was measured and compared to simulation results modeled in the ESP-r program. This experimental measurement provides a foundation for a model that can be used to analyze further building constructions.

  13. A Novel Aeration Method for the Preparation of Algae (Dunaliella Salina Biomass for Biofuel Production.

    Directory of Open Access Journals (Sweden)

    U.O. Enwereuzoh

    2014-09-01

    Full Text Available Preparation of algae (Dunaliela Salina biomass in ammonia (NH4 + and nitrate (NO3 - growth media for biofuel production was investigated, with special attention on the elimination of inhibitory oxygen that adversely affects algae growth. A novel aeration method based on high and efficient transfer of carbon dioxide (CO2 required to stabilize the CO2 of the algae growth medium in a short time was adopted for the elimination of the inhibitory oxygen. The novel aeration method was found to increase the algae growth rate in the growth media investigated as suggested by increases in pH and decreases in dissolved oxygen concentration. However, algae grown in ammonia medium showed 17% higher growth rate than algae grown in nitrate medium. The high mass transfer of CO2 and high energy efficiency make the novel aeration method of algae growth in ammonia medium better suited for high yield of algae biomass for biofuel production.

  14. A Novel Surface Aeration Configuration for Improving Gas—Liquid Mass Transfer

    Institute of Scientific and Technical Information of China (English)

    YUGengzhi; MAZaisha; 等

    2002-01-01

    A novel surface aeration configuration featured with a self-rotating and floating baffle (SRFB) and a Rushton disk turbine (DT) with a perforated disk has been developed. The SRFB, consisted of 12 fan blades twisted by an angle of 30° to the horizontal plane, is incorporated onto the impeller shaft to improve gas entrainment, bubble breakup, mixing in a φ154mm agitated vessel. This new configuration is compared to the conventional DT surface aeration experimentally. The results suggest that the critical impeller speed for onset of gas entrainments is lower for the new configuration and it demands greater power consumption. Moreover, the SRFB system produces 30%-68% higher volumetric mass transfer coefficient per unit power input than that obtained in the conventional DT surface aerator under the same operation conditions.

  15. Study on Migration and Transformation Rule of Organic Pollutants (COD) in Aerated Zone

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Collecting waste water with a certain concentration of organic pollutants COD (chemical oxygen demand), static adsorption, static biodegradation and dynamic soil column experiments were made in laboratory, we researched migration and transformation of COD in aerated zone, and put forward a mathematical model showing the process. The results show that adsorption of organism in aerated zone is linear, which is represented by Henry's law s=Kdc+sd, adsorption coefficient Kd =0. 069 3;biodegradation diagram accord basically with first-order kinetics equation c=c0e-K1t , biodegradation coefficient K1 = 0. 049 9 d-1; dispersion coefficient D= 0. 002 42 m2/d in experiments. The migration and transformation of organic pollutants (COD) in aerated zone jointly result from many factors such as dispersion, adsorption and biodegradation etc..

  16. ON NECESSITY OF PLACING AN AERATOR IN THE BOTTOM DISCHARGE TUNNEL AT THE LONGTAN HYDROPOWER STATION

    Institute of Scientific and Technical Information of China (English)

    WU Jian-hua; WU Wei-wei; RUAN Shi-ping

    2006-01-01

    The air entrainment for avoiding cavitation damage has been widely used in long free flow tunnels. It is crucial to determine whether an aerator is needed for shorter tunnels. In this article, the bottom discharge tunnel at the Longtan Hydropower Station was involved, for which the free flow tunnel section was only 50.00 m long. The cavitation in the tunnel with and without the aerator was investigated using the physical models of the scale 1/30, through the measurements of cavitation noise. The experimental results show that it is necessary to place the aerator at the inlet of the free flow section for higher reservoir level to protect this tunnel from cavitation damage.

  17. RBF methods for solving laterally averaged Saint Venant equations: application to eutrophication prevention through aeration

    Science.gov (United States)

    Halassi, A.; Ouazar, D.; Taik, A.

    2015-10-01

    A vertical 2Dxz laterally averaged hydrodynamic model is presented in this paper to study the aeration process in lakes. The system exhibits highly nonlinear behaviour due to the phenomena involved such as stratification, air concentration, and convective terms. The suggested model is used to simulate mechanical aeration to overcome and prevent the eutrophication in lakes. The multiquadric radial basis functions are used to solve numerically the governing partial differential equations. Because of the difficulty and the complexity when choosing a suitable shape parameter in radial basis functions, an alternative way is introduced in this work to overcome these difficulties. A validation study is carried out using several test examples, including Poisson, Navier-Stokes and transport equations. Finally, the proposed model is first applied to simulate a squared domain aeration problem and then a real test case has been considered. The obtained results are in good agreement with the results reported in the literature.

  18. Influence of agitation speeds and aeration rates on the Xylanase activity of Aspergillus niger SS7

    Directory of Open Access Journals (Sweden)

    Yasser Bakri

    2011-08-01

    Full Text Available In this study, the effect of agitation and aeration rates on xylanase activity of Aspergillus niger SS7 in 3-litre stirred tank bioreactor was investigated. The agitation rates tested were 100, 200 and 300 rpm at each airflow rates of 0.5, 1.0 and 1.5 vvm. The maximum xylanase activity in mono- agitator system was at the agitation speed of 200 rpm and aeration rate of 1.0 vvm. In bi-agitator system, at low agitation speed (100 rpm, the xylanase activity was enhanced by 13% compared to mono- agitator system for an aeration rate of 1.0 vvm. Xylanase productivity in continuous culture was higher by approximately 3.5 times than in batch culture.

  19. Management of microbial community composition, architecture and performance in autotrophic nitrogen removing bioreactors through aeration regimes

    DEFF Research Database (Denmark)

    Mutlu, A. Gizem

    intensification in single-stage reactors. Single-stage reactors require biofilms or bioaggregates to provide the complementary redox niches for the aerobic and anaerobic bacteria that are required for nitritation and anaerobic ammonium oxidation (anammox), respectively. The nitritation/anammox process might...... ammonium oxidizing bacteria in systems with size-segregated aggregates were considered to weaken the system robustness. Further assessment of the interaction between aeration regime and architectural evolution of the nitritation/anammox aggregates was carried out on the two systems once they achieved......-segregated community became more redox-stratified with larger aggregates. Increasing the duration of aeration, on the other hand, did not significantly alter the original redox-stratified architecture, but allowed proliferation of unwanted nitrite oxidizing bacteria. The decrease in aeration intensity concomitant...

  20. Active Optical Lattice Filters

    OpenAIRE

    Gary Evans; MacFarlane, Duncan L.; Govind Kannan; Jian Tong; Issa Panahi; Vishnupriya Govindan; L. Roberts Hunt

    2005-01-01

    Optical lattice filter structures including gains are introduced and analyzed. The photonic realization of the active, adaptive lattice filter is described. The algorithms which map between gains space and filter coefficients space are presented and studied. The sensitivities of filter parameters with respect to gains are derived and calculated. An example which is relevant to adaptive signal processing is also provided.

  1. Evaluation on aeration performance of movable solar aerator%移动式太阳能增氧机的增氧性能评价

    Institute of Scientific and Technical Information of China (English)

    吴宗凡; 程果锋; 王贤瑞; 刘兴国; 张拥军; 邹海生; 唐荣

    2014-01-01

    为改善池塘养殖环境,设计了一种移动式太阳能增氧机,由光伏供电装置和水面行走装置搭载涌浪机而成,能在水面沿钢丝绳移动并利用涌浪机的波浪增氧和水层交换作用,大范围扰动水体并为池塘增氧。该研究的目的是通过机械增氧效率检测、提水能力测定和池塘增氧能力测定3个试验,评估太阳能增氧机的机械增氧性能、水层交换性能和实际应用效果,以期全面了解移动增氧机增氧能力。结果表明,该移动式太阳能增氧机最大机械增氧能力为1.24 kg/h,动力效率2.59 kg/(kW·h);最大提水能力1254.4 m3/h,提水动力效率2613.3 m3/(kW·h);并在晴好天气白天(09:00—19:00),在对照组底层溶氧为3.1~3.8 mg/L时,大幅度提升池塘底层溶氧水平,最高时达7.8 mg/L,维持池塘上下溶氧均匀度72%~84%,极大改善了底层溶氧环境。数据表明移动式太阳能增氧机具有良好的机械增氧和水层交换性能,因而能有效改善池塘底层溶氧环境,提高上下水体溶氧均匀度。该研究结果可为太阳能增氧机的进一步推广应用提供数据支撑。%In pond aquaculture, it is usually necessary in sunny noon that running aerator stirs pond water, so that the supersaturated dissolved oxygen (DO) from phytoplankton’s photosynthesis in upper water can be transferred into the relatively anoxic bottom, reducing the“oxygen debt”of bottom water and preventing fish hypoxia at the next early morning. However, this approach consumes a lot of electric energy and has low efficiency. To improve the ecological state of aquaculture ponds and save electric energy, a movable solar aerator was designed and developed. This machine is solar-powered and can move upon the water, and mainly consists of a photovoltaic power system, a water walking device, and a wave aerator. The photovoltaic power system provides power for the entire machine

  2. Volatile emissions during storing of green food waste under different aeration conditions.

    Science.gov (United States)

    Agapiou, A; Vamvakari, J P; Andrianopoulos, A; Pappa, A

    2016-05-01

    Controlled field experiments were carried out for monitoring the emissions of three plastic commercial household waste bins, which were adapted for studying the effect of aeration process in the evolved volatiles, during house storing of green food waste for 2 weeks, prior to collection. Three experimental scenarios were examined based on no aeration ("NA," closed commercial waste bin), diffusion-based aeration ("DA," closed commercial waste bin with tiny holes), and enforced aeration ("EA," closed commercial waste bin with tiny holes and enforced aeration). The monitoring of volatile organic compounds (VOCs) emitted from organic household kitchen waste was performed using solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) analysis. Portable sensors were also used for monitoring selected gases and parameters of environmental, bioprocess, and health interest (e.g., CO2, O2, H2S, CH4, NH3, % RH, waste temperatures). VOC emissions are strongly dependent on the waste material. The most frequent VOCs identified over the storing waste, showing over 50 % appearance in all examined samples, were terpenes (e.g., di-limonene, beta-myrcene, delta-3-carene, alpha-pinene, alpha-terpinolene, linalool, etc.), sulfides (dimethyl disulfide), aromatics (benzene, 1-methyl-2-(2-propenyl)), alkanes (e.g., decane, dodecane), ketones (2-propanone), esters (e.g., acetic acid ethyl ester, acetic acid methyl ester), and alcohols (e.g., 3-cyclohexen-1-ol, 4-methyl-1-(1-methylethyl)). The prominent role of terpenes in the "pre-compost" odor and especially that of di-limonene was highlighted. In all examined scenarios, the emitted volatiles were increased at raised temperatures and later decreased in time. Aeration of waste bins slightly affected the volatilization process resulting in higher profiles of VOCs; uniformity in the composition of VOCs was also noted. Slight modifications of commercial waste bins may favor the initiation of home composting. PMID

  3. Volatile emissions during storing of green food waste under different aeration conditions.

    Science.gov (United States)

    Agapiou, A; Vamvakari, J P; Andrianopoulos, A; Pappa, A

    2016-05-01

    Controlled field experiments were carried out for monitoring the emissions of three plastic commercial household waste bins, which were adapted for studying the effect of aeration process in the evolved volatiles, during house storing of green food waste for 2 weeks, prior to collection. Three experimental scenarios were examined based on no aeration ("NA," closed commercial waste bin), diffusion-based aeration ("DA," closed commercial waste bin with tiny holes), and enforced aeration ("EA," closed commercial waste bin with tiny holes and enforced aeration). The monitoring of volatile organic compounds (VOCs) emitted from organic household kitchen waste was performed using solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) analysis. Portable sensors were also used for monitoring selected gases and parameters of environmental, bioprocess, and health interest (e.g., CO2, O2, H2S, CH4, NH3, % RH, waste temperatures). VOC emissions are strongly dependent on the waste material. The most frequent VOCs identified over the storing waste, showing over 50 % appearance in all examined samples, were terpenes (e.g., di-limonene, beta-myrcene, delta-3-carene, alpha-pinene, alpha-terpinolene, linalool, etc.), sulfides (dimethyl disulfide), aromatics (benzene, 1-methyl-2-(2-propenyl)), alkanes (e.g., decane, dodecane), ketones (2-propanone), esters (e.g., acetic acid ethyl ester, acetic acid methyl ester), and alcohols (e.g., 3-cyclohexen-1-ol, 4-methyl-1-(1-methylethyl)). The prominent role of terpenes in the "pre-compost" odor and especially that of di-limonene was highlighted. In all examined scenarios, the emitted volatiles were increased at raised temperatures and later decreased in time. Aeration of waste bins slightly affected the volatilization process resulting in higher profiles of VOCs; uniformity in the composition of VOCs was also noted. Slight modifications of commercial waste bins may favor the initiation of home composting.

  4. Relationship between ecosystem respiration and aeration constant in open channel dissolved oxygen analysis

    Science.gov (United States)

    Parker, S. J.; Butler, A. P.; Heppell, C. M.

    2015-12-01

    Using the open channel diel method of Odum (1956) and the night-time regression method (Hornberger and Kelly, 1985), we analysed a time series of dissolved oxygen (DO) in two slow flowing streams for a two month period in summer 2014 and obtained values for ecosystem respiration and the aeration constant for each day in the period. We then used the standard dissolved oxygen lumped model to generate a DO time series behaviour for one of those rivers selecting respiration and aeration parameters by randomly sampling from the values obtained from the data. Two synthetic time series were created, one where respiration and aeration were independent of temperature and a second where respiration and aeration were affected by temperature according to the modified Arrhenius relationship. With these two synthetic time series, we again recovered the respiration and aeration input parameters using the night- time regression method and compared those recovered parameters with the input parameters. Because the simulations were conducted with parameters that were known, the values recovered using the night-time regression method (i.e post-simulation) could be compared with parameters driving the simulation (i.e. pre-simulation input values). For values based on data, we found a strong correlation between the aeration constant and respiration for both rivers. For the synthetic time series, no such correlation was found, either with the temperature independent or temperature dependent time series. The night-time regression method also recovered perfectly the input parameters, so the correlation was not brought about as a result of implementing the method itself. We are currently investigating the cause of the correlation.

  5. Ammonia-based intermittent aeration control optimized for efficient nitrogen removal.

    Science.gov (United States)

    Regmi, Pusker; Bunce, Ryder; Miller, Mark W; Park, Hongkeun; Chandran, Kartik; Wett, Bernhard; Murthy, Sudhir; Bott, Charles B

    2015-10-01

    This work describes the development of an intermittently aerated pilot-scale process (V = 0.45 m(3) ) operated for optimized efficient nitrogen removal in terms of volume, supplemental carbon and alkalinity requirements. The intermittent aeration pattern was controlled using a strategy based on effluent ammonia concentration set-points. The unique feature of the ammonia-based aeration control was that a fixed dissolved oxygen (DO) set-point was used and the length of the aerobic and anoxic time (anoxic time ≥25% of total cycle time) were changed based on the effluent ammonia concentration. Unlike continuously aerated ammonia-based aeration control strategies, this approach offered control over the aerobic solids retention time (SRT) to deal with fluctuating ammonia loading without solely relying on changes to the total SRT. This approach allowed the system to be operated at a total SRT with a small safety factor. The benefits of operating at an aggressive SRT were reduced hydraulic retention time (HRT) for nitrogen removal. As a result of such an operation, nitrite oxidizing bacteria (NOB) out-selection was also obtained (ammonia oxidizing bacteria [AOB] maximum activity: 400 ± 79 mgN/L/d, NOB maximum activity: 257 ± 133 mgN/L/d, P ammonia (COD/NH4 (+) -N) ratio of 10.2 ± 2.2 at 25°C within the hydraulic retention time (HRT) of 4 h and within a total SRT of 5-10 days. The TIN removal efficiency up to 91% was observed during the study, while effluent TIN was 9.6 ± 4.4 mgN/L. Therefore, this pilot-scale study demonstrates that application of the proposed on-line aeration control is capable of relatively high nitrogen removal without supplemental carbon and alkalinity addition at a low HRT.

  6. The Application of EIS and PIV Methods to the Measurement of Aerated Flow

    Directory of Open Access Journals (Sweden)

    Fejfarová M.

    2013-04-01

    Full Text Available The paper describes measurements in the aerated water medium using modern methods PIV (Particle Image Velocimetry and EIS (Electrical Impedance Spectrometry, which are applied in the Laboratory of Water Management Research (LVV of the Department of Water Structures (UVST at the Faculty of Civil Engineering (FAST of Brno University of Technology (VUT. Measurements of the water medium were carried out for three different aeration intensities at special experimental workplaces. The experiment was focused on the capability of the methods to monitor the air content in the water.

  7. Protease obtention using Bacillus subtilis 3411 and amaranth seed meal medium at different aeration rates

    Directory of Open Access Journals (Sweden)

    Pastor Maria Delia

    2001-01-01

    Full Text Available The influence of the addition of Amaranthus cruenthus seed meal to the medium, as nutrient and growth factor, on protease production by Bacillus subtilis 3411 was studied. Tests were carried out in a rotary shaker and in mechanically stirred fermenters. The influence of aeration was also evaluated. The addition of amaranth in a concentration of 20 g/L resulted in 400% increase in protease production. Aeration up to 750 r.p.m. and 1 L/L.min had a favorable effect.

  8. Effects of Soil Aeration on Sweet Potato Yield and Its Physiological Mechanism

    Institute of Scientific and Technical Information of China (English)

    SHI Chun-yu; WANG Zhen-lin; YU Song-lie

    2002-01-01

    The effects of soil aeration on physiological characters and root tuber yield of Ipomoea batatas (L.) Lam. CV Lushu7 and Xushu18 were studied. The results showed that soil aeration improvement could increase ATP content and ATPase activity in functional leaves and root tubers and ABA content in root tubers.It also accelerated the transportation of 14C-photosynthate from leaves to root tubers and enhanced dry matter distribution in root tubers and thus root tuber yield was significantly raised. The role of ATP, ATPase and ABA in accelerating the transportation of 14C-photosynthate was discussed based on the changes of soluble carbonhydrate content in sweet potato plant.

  9. Integral Parameters for Characterizing Water, Energy, and Aeration Properties of Soilless Plant Growth Media

    DEFF Research Database (Denmark)

    Chamindu, Deepagoda; Lopez, Jose Choc Chen; Møldrup, Per;

    2013-01-01

    approach provided important insights for irrigation management and for potential optimization of substrate properties. Furthermore, an observed relationship between the integral parameters for water availability and oxygen diffusivity can be potentially applied for the design of advanced irrigation...... and management strategies to ensure stress-free growth conditions, while conserving water resources. 2013 Elsevier B.V. All rights reserved....... there are considerable empirical and theoretical efforts devoted to characterize water retention and aeration substrate properties, a holistic, physically-based approach considering water retention and aeration concurrently is lacking. In this study, the previously developed concept of integral water storage and energy...

  10. Pathways of nitrobenzene degradation in horizontal subsurface flow constructed wetlands: Effect of intermittent aeration and glucose addition.

    Science.gov (United States)

    Kirui, Wesley K; Wu, Shubiao; Kizito, Simon; Carvalho, Pedro N; Dong, Renjie

    2016-01-15

    Intermittent aeration and addition of glucose were applied to horizontal subsurface flow constructed wetlands in order to investigate the effect on pathways of nitrobenzene (NB) degradation and interactions with microbial nitrogen and sulphur transformations. The experiment was carried out in three phases A, B and C consisting of different NB loading and glucose dosing. For each phase, the effect of aeration was assessed by intermittently aerating one wetland and leaving one unaerated. Regardless of whether or not the wetland was aerated, at an influent NB concentration of 140 mg/L, both wetlands significantly reduced NB to less than 2 mg/L, a reduction efficiency of 98%. However, once the influent NB concentration was increased to 280 mg/L, the aerated wetland had a higher removal performance 82% compared to that of the unaerated wetland 71%. Addition of glucose further intensified the NB removal to 95% in the aerated wetlands and 92% in the unaerated. Aeration of wetlands enhanced NB degradation, but also resulted in higher NB volatilization of 6 mg m(-2) d(-1). The detected high concentration of sulphide 20-60 mg/L in the unaerated wetland gave a strong indication that NB may act as an electron donor to sulphate-reducing bacteria, but this should be further investigated. Aeration positively improved NB removal in constructed wetlands, but resulted in higher NB volatilization. Glucose addition induced co-metabolism to enhance NB degradation. PMID:26468606

  11. Functional linkage between N acquisition strategies and aeration capacities of hydrophytes for efficient oxygen consumption in roots.

    Science.gov (United States)

    Nakamura, Motoka; Nakamura, Takatoshi; Tsuchiya, Takayoshi; Noguchi, Ko

    2013-02-01

    We evaluated the specific strategies of hydrophytes for root O(2) consumption in relation to N acquisition and investigated whether the strategies varied depending on the aeration capacity. Aeration capacity of roots is an important factor for determining hypoxia tolerance in plants. However, some hydrophytes possessing quite different aeration capacities often co-occur in wetlands, suggesting that root O(2) consumption also strongly affects hypoxia tolerance. We cultivated Phragmites australis with high aeration capacity and Zizania latifolia with low aeration capacity in hypoxic conditions with NH(4)(+) or NO(3)(-) treatment and compared the growth, N uptake, N assimilation and root respiration between the two species. In Z. latifolia grown with NH(4)(+) treatment, high N uptake activity and restrained root growth led to sufficient N acquisition and decrease in whole-root respiration rate. These characteristics consequently compensated for the low aeration capacity. In contrast, in P. australis, low N uptake activity was compensated by active root growth, but the whole-root respiration rate was high. This high root respiration rate was allowed by the high aeration capacity. The O(2) consumption-related traits of hydrophyte roots were closely correlated with N acquisition strategies, which consequently led to a compensational relationship with the root aeration capacity. It is likely that this functional linkage plays an important role as a core mechanism in the adaptation of plants to hypoxic soils.

  12. Pathways of nitrobenzene degradation in horizontal subsurface flow constructed wetlands: Effect of intermittent aeration and glucose addition.

    Science.gov (United States)

    Kirui, Wesley K; Wu, Shubiao; Kizito, Simon; Carvalho, Pedro N; Dong, Renjie

    2016-01-15

    Intermittent aeration and addition of glucose were applied to horizontal subsurface flow constructed wetlands in order to investigate the effect on pathways of nitrobenzene (NB) degradation and interactions with microbial nitrogen and sulphur transformations. The experiment was carried out in three phases A, B and C consisting of different NB loading and glucose dosing. For each phase, the effect of aeration was assessed by intermittently aerating one wetland and leaving one unaerated. Regardless of whether or not the wetland was aerated, at an influent NB concentration of 140 mg/L, both wetlands significantly reduced NB to less than 2 mg/L, a reduction efficiency of 98%. However, once the influent NB concentration was increased to 280 mg/L, the aerated wetland had a higher removal performance 82% compared to that of the unaerated wetland 71%. Addition of glucose further intensified the NB removal to 95% in the aerated wetlands and 92% in the unaerated. Aeration of wetlands enhanced NB degradation, but also resulted in higher NB volatilization of 6 mg m(-2) d(-1). The detected high concentration of sulphide 20-60 mg/L in the unaerated wetland gave a strong indication that NB may act as an electron donor to sulphate-reducing bacteria, but this should be further investigated. Aeration positively improved NB removal in constructed wetlands, but resulted in higher NB volatilization. Glucose addition induced co-metabolism to enhance NB degradation.

  13. Potential of aeration flow rate and bio-char addition to reduce greenhouse gas and ammonia emissions during manure composting

    DEFF Research Database (Denmark)

    Chowdhury, Md Albarune; de Neergaard, Andreas; Jensen, Lars Stoumann

    2014-01-01

    Aeration is an important factor influencing CO2, CH4, N2O and NH3 emissions from the composting process. Both CH4 and N2O are potent greenhouse gases (GHG) of high importance. Here, we examined the effects of high and low aeration rates together with addition of barley straw with and without bio...

  14. Influence of aeration of Candida albicans during culturing on their surface aggregation in the presence of adhering Streptococcus gordonii

    NARCIS (Netherlands)

    Millsap, KW; van der Mei, HC; Busscher, HJ; Bos, R.R.M.

    1999-01-01

    Candida albicans surfaces are extremely sensitive to changes in growth conditions. In this study, adhesion to glass of aerated and non-aerated C. albicans ATCC 10261 in the presence and absence of adhering Streptococcus gordonii NCTC 7869 was determined in a parallel plate flow chamber. In addition,

  15. The effect of aeration position on the spatial distribution and reduction of pollutants in the landfill stabilization process--a pilot scale study.

    Science.gov (United States)

    Chai, Xiaoli; Hao, Yongxia; Shimaoka, Takayuki; Nakayama, Hirofumi; Komiya, Teppei; Zhao, Youcai

    2013-01-01

    Three pilot-scale simulators with different aeration systems were constructed to explore the effects of aeration position on the reduction of pollutants. The simulator with a bottom aeration system successfully distributed oxygen and efficiently inhibited methane production. A close relationship was found between the oxygen distribution and the removal of pollutants, especially that of nitrogen. The transition between nitrification and denitrification in the longitude direction of the simulator with a bottom aeration system contributed to nitrogen removal in aerobic conditions. This process can be defined as a new path for nitrogen removal in addition to simultaneous nitrification and denitrification. The concentration of NH4+ -N total nitrogen and total organic carbon dropped to 3, 78 and 204 mg L(-1), respectively, after 312 days of bottom aeration and to 514, 659 and 828 mg L(-1), respectively, after 312 days of top aeration. These results indicate that the bottom aeration system was more efficient for reducing pollutants than the top aeration system.

  16. Performance of organics and nitrogen removal in subsurface wastewater infiltration systems by intermittent aeration and shunt distributing wastewater.

    Science.gov (United States)

    Pan, Jing; Yuan, Fang; Yu, Long; Huang, Linli; Fei, Hexin; Cheng, Fan; Zhang, Qi

    2016-07-01

    Organics and nitrogen removal in four subsurface wastewater infiltration systems (SWISs), named SWIS A (without intermittent aeration and shunt distributing wastewater), SWIS B (with intermittent aeration), SWIS C (with shunt distributing wastewater) and SWIS D (with intermittent aeration and shunt distributing wastewater) was investigated. High average removal rates of 92.3% for COD, 90.2% for NH4-N and 88.1% for TN were achieved simultaneously in SWIS D compared with SWIS A, B and C. The excellent TN removal of SWIS D was due to intermittent aeration provided sufficient oxygen for nitrification in upper matrix and the favorable anoxic or anaerobic environment for denitrification in subsequent matrix, and moreover, shunt distributing wastewater provided sufficient carbon source for denitrification process. The results indicated that intermittent artificial aeration combined with shunt distributing wastewater could achieve high organics and nitrogen removal in SWISs.

  17. Nitrification cessation and recovery in an aerated saturated vertical subsurface flow treatment wetland: Field studies and microscale biofilm modeling.

    Science.gov (United States)

    Murphy, Clodagh; Rajabzadeh, Amin R; Weber, Kela P; Nivala, Jaime; Wallace, Scott D; Cooper, David J

    2016-06-01

    In aerated treatment wetlands, oxygen availability is not a limiting factor in sustaining a high level of nitrification in wastewater treatment. In the case of an air blower failure, nitrification would cease, potentially causing adverse effects to the nitrifying bacteria. A field trial was completed investigating nitrification loss when aeration is switched off, and the system recovery rate after the aeration is switched back on. Loss of dissolved oxygen was observed to be more rapid than loss of nitrification. Nitrate was observed in the effluent long after the aeration was switched off (48h+). A complementary modeling study predicted nitrate diffusion out of biofilm over a 48h period. After two weeks of no aeration in the established system, nitrification recovered within two days, whereas nitrification establishment in a new system was previously observed to require 20-45days. These results suggest that once established resident nitrifying microbial communities are quite robust. PMID:26967335

  18. Filter synthesis using Genesys S/Filter

    CERN Document Server

    Rhea, Randall W

    2014-01-01

    S/Filter includes tools beyond direct synthesis, including a wide variety of both exact and approximate equivalent network transforms, methods for selecting the most desirable out of potentially thousands of synthesized alternatives, and a transform history record that simplifies design attempts requiring iteration. Very few software programs are based on direct synthesis, and the additional features of S/Filter make it a uniquely effective tool for filter design.This resource presents a practical guide to using Genesys software for microwave and RF filter design and synthesis. The focus of th

  19. Aeration control in a full-scale activated sludge wastewater treatment plant: impact on performances, energy consumption and N2O emission

    OpenAIRE

    Filali, A.; Fayolle, Y.; Peu, P.; Philippe, L.; Nauleau, F.; Gillot, S.

    2013-01-01

    International audience This work investigated the impact of aeration control strategy on energy consumption and nitrous oxide (N2O) emission in a full-scale wastewater treatment plant. Two identical activated sludge processes treating the same effluent but operated with different aeration control strategies were compared. Aeration tank 1 was operated with a new control strategy favouring the simultaneous nitrification denitrification (SND) whereas aeration tank 2 was operated with a conven...

  20. Ammonia transformation in a biotrickling air filter

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Nielsen, Marie Louise; Andersen, Mathias;

    2007-01-01

    measurements and model was obtained by using conventional substrate and inhibition kinetics of ammonium and nitrite oxidizing bacteria. Highest rates of ammonia removal were observed in the central section of the filter. Near the air outlet and water inlet the process was ammonia limited, while high nitrous...... acid concentrations almost excluded any biological activity near the air inlet and water outlet. Nitrous acid inhibition also stabilized pH at 6.5-7 all through the filter. Being sensitive to both ammonia and nitrous acid the nitrite oxidation process occurred mainly in the filter sections near the air...... outlet / water inlet, and only 8% of the nitrite was turned into nitrate. Water supply only exceeded evaporation by 20% but modelling indicated that additional watering would have limited effect on filter efficiency. The filter was also robust to varying loading, as a 4-fold increase in ammonia inlet...

  1. THEORETICAL DIFFRACTIVE FILTER PERFORMANCE FOR BALLISTIC TRANSILLUMINATION

    OpenAIRE

    Vacas-jacques, Paulino; Ryabukho, Vladimir; Strojnik, Marija; Tuchin, Valery; Paez, Gonzalo

    2009-01-01

    We address the topic of selectively probing turbid media, equivalent to biological tissue, with ballistic photons. The samples considered exhibit highly forward-directed scattering (anisotropy factor g > 0.9). We propose the utilization of a non-linear grating-based angular filter to separate the faint ballistic signal from optical noise. The filter is conformed of a monochromatic source incident on a ruled grating, positioned at grazing diffraction, followed by a narrow slit. Minute devia...

  2. Mecoprop (MCPP) removal in full-scale rapid sand filters at a groundwater-based waterworks

    DEFF Research Database (Denmark)

    Hedegaard, Mathilde Jørgensen; Arvin, Erik; Corfitzen, Charlotte B.;

    2014-01-01

    Contamination by the herbicide mecoprop (MCPP) was detected in groundwater abstraction wells at Kerteminde Waterworks in concentrations up to 0.08μg/L. MCPP was removed to below detection limit in a simple treatment line where anaerobic groundwater was aerated and subsequently filtered by primary...... filters, MCPP concentration decreased from 0.037μg/L to below the detection limit of 0.01μg/L. MCPP was removed continuously at different filter depths (0.80m).Additionally, biodegradation, mineralisation and adsorption were investigated in the laboratory in order to elucidate removal mechanisms.......It was concluded that MCPP was removed in secondary rapid sand filters at Kerteminde Waterworks, to which both adsorption and microbial degradation contributed....

  3. UV Bandpass Optical Filter for Microspectometers

    OpenAIRE

    Correia, J. H.; Emadi, A.R.; Wolffenbuttel, R.F.

    2006-01-01

    This paper describes the design and modeling of a UV bandpass optical filter for microspectrometers. The materials used for fabricating the multilayer UV filter are: silicon dioxide (SiO2), titanium dioxide (TiO2) and yttrium oxide (Y2O3). The optical filter shows a bandpass response wavelength in the range 230-280 nm, with a transmittance higher than 80%. Such a device is extremely suitable for optical detection of biological molecules with optical absorption or/and fluorescence in the UV sp...

  4. Sensory Pollution from Bag Filters, Carbon Filters and Combinations

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Clausen, Geo; Weschler, Charles J.

    2008-01-01

    by an upstream pre-filter (changed monthly), an EU7 filter protected by an upstream activated carbon (AC) filter, and EU7 filters with an AC filter either downstream or both upstream and downstream. In addition, two types of stand-alone combination filters were evaluated: a bag-type fiberglass filter...

  5. Method of securing filter elements

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Erik P.; Haslam, Jeffery L.; Mitchell, Mark A.

    2016-10-04

    A filter securing system including a filter unit body housing; at least one tubular filter element positioned in the filter unit body housing, the tubular filter element having a closed top and an open bottom; a dimple in either the filter unit body housing or the top of the tubular filter element; and a socket in either the filter unit body housing or the top of the tubular filter element that receives the dimple in either the filter unit body housing or the top of the tubular filter element to secure the tubular filter element to the filter unit body housing.

  6. 活性炭滤池中微生物特征及其对溶解性有机碳的去除作用%Characteristics of biomass in biological activated carbon(BAC)filters and its contribution to DOC removal

    Institute of Scientific and Technical Information of China (English)

    张春雷; 王东升; 樊康平; 顾军农; 李涛

    2009-01-01

    采用异养菌总数计数(HPC)法检测了北京地区J水厂活性炭滤池中微生物量,并分析了活性炭滤池进出水中有机物的组成、活性炭的吸附作用及微生物作用对溶解性有机碳(DOC)去除的贡献率.结果表明,不同炭龄、不同运行周期活性炭滤池中的微生物量有显著的差异.由于溶解性可生物降解有机碳(BDOC)占溶解性有机碳(DOC)的比例较小,且受微生物数量、活性等因素的影响,微生物对DOC的去除效果极为有限,在1.5年和5年炭龄活性炭滤池中对DOC的去除率仅占总去除率的18.8%和26.4%.此外,微生物对较为敏感的嗅味物质2-MIB和geosmin去除作用也不显著,去除率在15%以下(初始浓度为100ng·L~(-1));在使用5年活性炭滤池中,微生物对2-MIB和geosmin去除率为12%和14%,分别占总去除率的32%和29%.因此,北京地区地表水净水厂活性炭滤池中微生物对有机物控制的贡献率较低,对DOC的去除主要以活性炭的吸附为主.%Heterotrophic plate count ( HPC ) determination is applied to measure the biomass on the carbon used in the biological activated carbon ( BAC ) filter in a water treatment plant in Beijing. The effect of the DOC component in the filtered water, the adsorption of active carbon, the biological activity, and their contribution to DOC removal is analyzed. The results indicate that the biomass fluctuates greatly with the service time of the carbon filter and the operation stage. The micro-biological degradation in BAC filters contributes little to the total DOC removal because of the low ratio of BDOC to DOC in the filtered water. The micro-biologically degraded DOC in the 1.5a-carbon filter comprises only 18.8% of total DOC removed, and 26.4% in the 5a-carbon filter. Furthermore, the micro-biological degradation process is not significant for odorous material removal and contributes 32% and 29% to the total removal of 2-MIB and geosmin, respectively, even in the 5a carbon

  7. Effect of agitation and aeration on the citric acid production by Yarrowia lipolytica grown on glycerol.

    Science.gov (United States)

    Rywińska, Anita; Musiał, Izabela; Rymowicz, Waldemar; Zarowska, Barbara; Boruczkowski, Tomasz

    2012-01-01

    The effects of agitation rates from 400 to 900 rpm and aeration rates ranging from 0.18 to 0.6 vvm on biomass and citric acid production on glycerol media by acetate-negative mutants of Yarrowia lipolytica, Wratislavia 1.31 and Wratislavia AWG7, in batch culture were studied. The agitation rates of 800 and 900 rpm (at a constant aeration rate of 0.36 vvm) and aeration rates within the range of 0.24-0.48 vvm (at a constant agitation rate of 800 rpm), which generated dissolved oxygen concentration (DO) higher than 40%, were found the best for citric acid biosynthesis from glycerol. An increase in agitation rate (higher than 800 rpm) and aeration rate (higher than 0.36 vvm) had no impact on DO and citric acid production. The highest citric acid concentration (92.8 g/L) and yield (0.63 g/g) were obtained with Wratislavia 1.31 strain at 0.24 vvm. The highest volumetric citric acid production rate (1.15 g/Lh) and specific citric acid production rate (0.071 g/gh) were reached at 0.48 vvm.

  8. Gas transfer rates from airlifts used for concurrent aeration, carbon dioxide stripping, and recirculation

    Science.gov (United States)

    Airlifts simplify recirculating aquaculture systems and can potentially reduce capital costs and minimize maintenance issues. Airlifts have the ability to move and aerate water as well as degass the water of any carbon dioxide. This study evaluated the oxygen transfer and carbon dioxide removal abil...

  9. Combination of methoprene and controlled aeration to manage insects in stored wheat

    Science.gov (United States)

    The insect growth regulator methoprene, in the commercial formulation Diacon II®, was applied to wheat stored in small bins either alone or in combination with controlled aeration of the bins to lower grain temperature for insect pest management of stored wheat. Grain temperatures and monitored and ...

  10. Flow, aeration, and carbon dioxide transfer rates for airlifts used in recirculating aquaculture systems

    Science.gov (United States)

    Airlift pumping systems reduce the electrical costs of moving water in a recirculating aquaculture system and can be concurrently designed to aerate water and remove carbon dioxide. This study determined the water flow, oxygen transfer, and CO2 removal rates for water using airlift technology in a 1...

  11. Use of a web-based model for aeration management in stored rough rice

    Science.gov (United States)

    A web-based model was used to simulate the impact of aeration on population growth of the lesser grain borer, Rhyzopertha dominica (F.), and the rice weevil, Sitophilus oryzae (L.), in stored rough rice at Beaumont, TX, USA. Simulations were run for each of 10 years with 1 August as the start date, ...

  12. [Technological characteristics of bioreactor landfill with aeration in the upper layer].

    Science.gov (United States)

    Tian, Ying; Wang, Shen; Xu, Qi-Yong

    2014-11-01

    In order to study the effects of upper-layer aerobic pretreatment in bioreactors on refuse degradation, leachate condition and methane production, two simulated columns were constructed, including traditional anaerobic bioreactor A1 and hybrid bioreactor C1 with aeration pretreatment in the upper layer. Results indicated that A1 was seriously inhibited by the accumulation of volatile fatty acids (VFA) with nearly no methane production and slower settlements. At the end of operations, refuse in A1 only deposited 5.4 cm which was less than half of that in C1. And up to 70 000 mg x L(-1) COD and 30 000 mg x L(-1) VFA could be monitored in the leachate. On the contrary, aerobic pretreatment effectively improved the removal of high VFA concentrations and remarkably accelerated the degradation rate. In bioreactor C1, COD and VFA concentrations were reduced to less than 14000 mg x L(-1) and 8900 mg x L(-1) at the end of the experiment, respectively. And about 61 976 mL methane gases were produced since aeration ceased on day 60 with its methane recovery efficiency rising to over 95%. However, the performance of hybrid bioreactors was still closely related to its operation conditions, such as aeration supply and leachate recirculation. Therefore, in order to guarantee better performance, appropriate aeration and leachate operations need to be provided.

  13. Microbial activity catalyzes oxygen transfer in membrane-aerated nitritating biofilm reactors

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Domingo Felez, Carlos; Lackner, Susanne;

    2013-01-01

    The remarkable oxygen transfer efficiencies attainable in membrane-aerated biofilm reactors (MABRs) are expected to favor their prompt industrial implementation. However, tests in clean water, currently used for the estimation of their oxygen transfer potential, lead to wrong estimates once biofilm...

  14. A STUDY OF THE DISCHARGE OF COHESIVE POWDERS UNDER SIMULTANEOUS AERATION AND VIBRATION

    NARCIS (Netherlands)

    Marring, E.; Hoffmann, A.C; Janssen, L.P.B.M.

    1995-01-01

    The influence of applying simultaneous aeration and vibration on the discharge of cohesive powders from a laboratory scale cylindrical silo has been studied experimentally. The powders investigated were batches of potato starch powder of different moisture contents and therefore different degrees of

  15. Effects of overlying water aeration on phosphorus fractions and alkaline phosphatase activity in surface sediment

    Institute of Scientific and Technical Information of China (English)

    Jianjun Chen; Shaoyong Lu; Yikun Zhao; Wei Wang; Minsheng Huang

    2011-01-01

    Microbial activity may influence phosphorus (P) deposit and release at the water sediment interface.The properties of DO (dissolved oxygen), pH, P fractions (TP, Ca-P, Fe-P, OP, IP), and APA (alkaline phosphatase activity) at the water sediment interface were measured to investigate microbial activity variations in surface sediment under conditions of two-month intermittent aeration in overlying water.Results showed that DO and TP of overlying water increased rapidly in the first week and then decreased gradually after 15 day of intermittent aeration.Microorganism metabolism in surface sediment increased pH and decreased DO and TP in the overlying water.After two-month intermittent aeration, APA and OP from surface sediment (0-2 crm) were both significantly higher than those from bottom sediment (6-8 cm) (p < 0.05), and surface sediment Fe-P was transferred to OP during the course of microorganism reproduction on the surface sediment.These results suggest that microbial activity and microorganism biomass from the surface sediment were higher than those from bottom sediment afar two-month intermittent aeration in the overlying water.

  16. Start-up strategies of membrane-aerated biofilm reactor (MABR) for completely autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Sun, Sheng-Peng; Pellicer i Nàcher, Carles; Terada, Akihiko;

    2009-01-01

    downside of this process stems from a long start-up period due to the slow growth rate of AnAOB. Therefore, two different start-up strategies, i.e., continuous inoculation of AnAOB and sequential batch inoculation of AOB and AnAOB, were tested in two laboratory scale membrane-aerated biofilm reactor (MABRs...

  17. Effects of Aeration on Root Physiology and Nitrogen Metabolism in Rice

    Institute of Scientific and Technical Information of China (English)

    XU Chun-mei; WANG Dan-ying; CHEN Song; CHEN Li-ping; ZHANG Xiu-fu

    2013-01-01

    In order to clarify the effects of aeration on root nitrogen metabolism in rice seedlings,rice cultivars Guodao 6 (indica) and Xiushui 09 (japonica) were investigated for root growth,the activities of glutamine synthetase (GS),glutamic acid-pyruvic acid transaminase (GPT) and glutamic acid oxaloacetate transaminase (GOT),the nitrate (NO3-N) concertration,the contents of free amino acids and soluble sugar in root under hydroponics with continuous aeration treatment.The results showed that rice seedlings grown in oxygenation solutions had higher root dry matter,longer root length,stronger root activity and larger root absorption area compared with the control.In addition,the contents of soluble sugar,root vigor and the activities of GS,GOT and GPT in the aeration solutions were higher than those in the control.The results also indicated that the activities of enzymes involved in root nitrogen metabolism of Xiushui 09 were enhanced by aeration,however,there was no significant influence on root nitrogen metabolism of Guodao 6,which suggested that effect of oxygenation on rice root nitrogen metabolism might be genotype-specific.

  18. Microbial community stratification in Membrane-Aerated Biofilm Reactors for Completely Autotrophic Nitrogen Removal

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Ruscalleda, Maël; Terada, Akihiko;

    , respectively) and Anaerobic Ammonium Oxidizing Bacteria (AnAOB) is grown on bubbleless aeration membranes to remove ammonium. Since oxygen permeates through the membrane-biofilm interface while ammonium diffuses into the biofilm from the biofilm-liquid interface, oxygen gradients can be established across...

  19. Evaluation of cost-effective aeration technology solutions to address total trihalomethane (TTHM) compliance

    Science.gov (United States)

    The primary objective of this project was to evaluate cost-effective aeration technology solutions to address TTHM compliance at a water treatment plant clearwell. The project team worked closely with EPA Region 6 and the EPA Office of Research and Development (ORD) to identify a...

  20. Comparative Study of Nirmalya Solid Waste Treatment by Vermicomposting and Artificial Aeration Composting

    Directory of Open Access Journals (Sweden)

    Pallavi S.Chakole

    2014-08-01

    Full Text Available Temple waste normally contains floral offering, leaves and milk product i.e. “Abishek waste water”, and this solid waste management is one of the important issues in the world, because of shortage ofdumping sites and strict environmental legislation. Now days ‘Nirmalyasolid waste’ is generated in large quantity due toincreased in population are commonly treated using different types of bins by the method of composting or vermicomposting. Vermicomposting of solid waste can be done by using different types of earthworms providing natural and artificial aeration along with mixture of cow dung and soil, artificial aeration is carried out by providing diffused aerators or perforated pipes. The parameters like C/N ratio, temperature, moisture contain are carried out. The main objective of this study is to minimize the problem of solid waste management by treating nirmalya solid waste by vermicomposting and suggesting that which method gives good quality of compost at short interval of time comparing artificial and natural aeration composting.

  1. Biofiltration of Methane from Ruminants Gas Effluent Using Autoclaved Aerated Concrete as the Carrier Material

    NARCIS (Netherlands)

    Ganendra, Giovanni; Mercado-Garcia, Daniel; Hernandez-Sanabria, Emma; Peiren, Nico; De Campeneere, Sam; Ho, Adrian; Boon, Nico

    2015-01-01

    Abstract The performance of Methane-Oxidizing Bacteria (MOB) immobilized on Autoclaved Aerated Concrete (AAC) in a biofilter setup to remove methane from ruminants gas effluent was investigated. Two dairy cows were housed in respiration chambers for two days where the exhaust gas from the chambers w

  2. The initial behaviour of freshly etched copper in modertely acid, aerated chloride solutions

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers; Jaskula, M.; Chorkendorff, Ib;

    2002-01-01

    When freshly etched samples of various types of copper were exposed in moderately acid, aerated chloride solutions, two phenomena were observed. First the corrosion potential and the pH of the solution decreased over a shorter time, then the potential increased over a long period (600-1500 min), ...

  3. Processes to improve energy efficiency during pumping and aeration of recirculating water in circular tank systems

    Science.gov (United States)

    Conventional gas transfer technologies for aquaculture systems occupy a large amount of space, require considerable capital investment, and can contribute to high electricity demand. In addition, diffused aeration in a circular tank can interfere with the hydrodynamics of water rotation and the spee...

  4. Effect of the aerated structure on selected properties of freeze-dried hydrocolloid gels

    Science.gov (United States)

    Ciurzyńska, Agnieszka; Lenart, Andrzej

    2016-01-01

    The ability to create diverse structures and studies on the effect of the aerated structure on selected properties with the use of freeze-dried gels may provide knowledge about the properties of dried foods. Such gels can be a basis for obtaining innovative food products. For the gel preparation, 3 types of hydrocolloids were used: low-methoxyl pectin, a mixture of xanthan gum and locust-bean gum, and a mixture of xanthan gum and guar gum. Gels were aerated for 3 and 7 min, frozen at a temperature of -45°C 2 h-1, and freeze-dried at a temperature of 30°C. For the samples obtained, structure, porosity, shrinkage, rehydration, and colour were investigated. It was shown that the type of the hydrocolloid and aeration time influence the structure of freeze-dried gels, which determines such properties of samples as porosity, shrinkage, density, rehydration, and colour. The bigger pores of low-methoxyl pectin gels undergo rehydration in the highest degree. The delicate and aerated structure of gels with the mixture of xanthan gum and locust-bean gum was damaged during freeze-drying and shrinkage exhibited the highest value. Small pores of samples with the mixture of xanthan gum and guar gum were responsible for the lower rehydration properties, but the highest porosity value contributed to the highest lightness value.

  5. Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste

    International Nuclear Information System (INIS)

    Highlights: • Effect of micro-aeration on acidogenesis and hydrolysis of food waste was investigated. • Micro-aeration at 258 L-air/kg TS/d increased the VFAs production 3-fold. • High aeration leads to loss of substrate through microbial biomass and respiration. • Optimum aeration increased methane recovery while high aeration intensity reduced methane yield. - Abstract: Micro-aeration is known to promote the activities of hydrolytic exo-enzymes and used as a strategy to improve the hydrolysis of particulate substrate. The effect of different micro-aeration rates, 0, 129, 258, and 387 L-air/kg TS/d (denoted as LBR-AN, LBR-6h, LBR-3h and LBR-2h, respectively) on the solubilization of food waste was evaluated at 35 °C in four leach bed reactors (LBR) coupled with methanogenic upflow anaerobic sludge blanket (UASB) reactor. Results indicate that the intensity of micro-aeration influenced the hydrolysis and methane yield. Adequate micro-aeration intensity in LBR-3h and LBR-2h significantly enhanced the carbohydrate and protein hydrolysis by 21–27% and 38–64% respectively. Due to the accelerated acidogenesis, more than 3-fold of acetic acid and butyric acid were produced in LBR-3h as compared to the anaerobic treatment LBR-AN resulting in the maximum methane yield of 0.27 L CH4/g VSadded in the UASB. The performance of LBR-6h with inadequate aeration was similar to that of LBR-AN with a comparable hydrolysis degree. Nevertheless, higher aeration intensity in LBR-2h was also unfavorable for methane yield due to significant biomass generation and CO2 respiration of up to 18.5% and 32.8% of the total soluble hydrolysate, respectively. To conclude, appropriate micro-aeration rate can promote the hydrolysis of solid organic waste and methane yield without undesirable carbon loss and an aeration intensity of 258 L-air/kg TS/d is recommended for acidogenic LBR treating food waste

  6. Impact of intermittent aerations on leachate quality and greenhouse gas reduction in the aerobic-anaerobic landfill method.

    Science.gov (United States)

    Nag, Mitali; Shimaoka, Takayuki; Komiya, Teppei

    2016-09-01

    The aerobic-anaerobic landfill method (AALM) is a novel approach in solid waste management that could shorten the landfill post-closure period and minimize the environmental loads. In this study, the aerobic-anaerobic landfill method was evaluated by using intermittent aeration. In addition, the nitrification-denitrification process was assessed as a means of reducing the emission of greenhouse gases (GHGs) and improving the leachate quality during the degradation of the organic solid waste. The leachate quality and the gas composition in each of the reactors were measured during the experimental period (408days). The aeration process entailed the injection of air into plexiglass cylinders (200cm height×10 cm diameter), filled with fresh organic solid waste collected from a composting plant. Different aeration routines were applied, namely, continuous aeration (aerobic reactor A), aeration for three days/week (aerobic-anaerobic reactor B), aeration for 6h/day (aerobic-anaerobic reactor C), and no aeration (non-aerated reactor D). It was found that aerobic reactor A produced the best results in terms of reduction of GHGs and improvement of the leachate quality. The aerobic-anaerobic reactor C was found to be more effective than reactor B in respect of both the emission of GHGs and the leachate quality; moreover, compared with aerobic reactor A, energy costs were reduced by operating this reactor. The transition period phenomenon was investigated during an intensive seven-day experiment conducted on the discharged leachate obtained from aerobic-anaerobic reactors B and C. The experiment concerned the differences in the composition of the gas during the aeration and the non-aeration periods. It was found that the transition period between the aeration and non-aeration cycles, which followed the simultaneous nitrification-denitrification had a considerable effect on the leachate quality of both the reactors. The results indicated that AALM has the potential to reduce

  7. Impact of intermittent aerations on leachate quality and greenhouse gas reduction in the aerobic-anaerobic landfill method.

    Science.gov (United States)

    Nag, Mitali; Shimaoka, Takayuki; Komiya, Teppei

    2016-09-01

    The aerobic-anaerobic landfill method (AALM) is a novel approach in solid waste management that could shorten the landfill post-closure period and minimize the environmental loads. In this study, the aerobic-anaerobic landfill method was evaluated by using intermittent aeration. In addition, the nitrification-denitrification process was assessed as a means of reducing the emission of greenhouse gases (GHGs) and improving the leachate quality during the degradation of the organic solid waste. The leachate quality and the gas composition in each of the reactors were measured during the experimental period (408days). The aeration process entailed the injection of air into plexiglass cylinders (200cm height×10 cm diameter), filled with fresh organic solid waste collected from a composting plant. Different aeration routines were applied, namely, continuous aeration (aerobic reactor A), aeration for three days/week (aerobic-anaerobic reactor B), aeration for 6h/day (aerobic-anaerobic reactor C), and no aeration (non-aerated reactor D). It was found that aerobic reactor A produced the best results in terms of reduction of GHGs and improvement of the leachate quality. The aerobic-anaerobic reactor C was found to be more effective than reactor B in respect of both the emission of GHGs and the leachate quality; moreover, compared with aerobic reactor A, energy costs were reduced by operating this reactor. The transition period phenomenon was investigated during an intensive seven-day experiment conducted on the discharged leachate obtained from aerobic-anaerobic reactors B and C. The experiment concerned the differences in the composition of the gas during the aeration and the non-aeration periods. It was found that the transition period between the aeration and non-aeration cycles, which followed the simultaneous nitrification-denitrification had a considerable effect on the leachate quality of both the reactors. The results indicated that AALM has the potential to reduce

  8. Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Suyun [Department of Environmental and Low-Carbon Science, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai (China); Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (Hong Kong); Selvam, Ammaiyappan [Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (Hong Kong); Wong, Jonathan W.C., E-mail: jwcwong@hkbu.edu.hk [Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (Hong Kong)

    2014-02-15

    Highlights: • Effect of micro-aeration on acidogenesis and hydrolysis of food waste was investigated. • Micro-aeration at 258 L-air/kg TS/d increased the VFAs production 3-fold. • High aeration leads to loss of substrate through microbial biomass and respiration. • Optimum aeration increased methane recovery while high aeration intensity reduced methane yield. - Abstract: Micro-aeration is known to promote the activities of hydrolytic exo-enzymes and used as a strategy to improve the hydrolysis of particulate substrate. The effect of different micro-aeration rates, 0, 129, 258, and 387 L-air/kg TS/d (denoted as LBR-AN, LBR-6h, LBR-3h and LBR-2h, respectively) on the solubilization of food waste was evaluated at 35 °C in four leach bed reactors (LBR) coupled with methanogenic upflow anaerobic sludge blanket (UASB) reactor. Results indicate that the intensity of micro-aeration influenced the hydrolysis and methane yield. Adequate micro-aeration intensity in LBR-3h and LBR-2h significantly enhanced the carbohydrate and protein hydrolysis by 21–27% and 38–64% respectively. Due to the accelerated acidogenesis, more than 3-fold of acetic acid and butyric acid were produced in LBR-3h as compared to the anaerobic treatment LBR-AN resulting in the maximum methane yield of 0.27 L CH{sub 4}/g VS{sub added} in the UASB. The performance of LBR-6h with inadequate aeration was similar to that of LBR-AN with a comparable hydrolysis degree. Nevertheless, higher aeration intensity in LBR-2h was also unfavorable for methane yield due to significant biomass generation and CO{sub 2} respiration of up to 18.5% and 32.8% of the total soluble hydrolysate, respectively. To conclude, appropriate micro-aeration rate can promote the hydrolysis of solid organic waste and methane yield without undesirable carbon loss and an aeration intensity of 258 L-air/kg TS/d is recommended for acidogenic LBR treating food waste.

  9. Biodegradation of beet molasses vinasse by a mixed culture of micro organisms: Effect of aeration conditions and pH control

    Institute of Scientific and Technical Information of China (English)

    Krzysztof Lutoslawski; Agnieszka Ryznar-Luty; Edmund Cibis; Malgorzata Krzywonos; Tadeusz Mi(s)kiewicz

    2011-01-01

    The effect of aeration conditions and pH control on the progress and efficiency of beet molasses vinasse biodegradation was investigated during four batch processes at 38℃ with the mixed microbial culture composed of Bifidobacterium,Lactobacillus,Lactococcus,Streptococcus,Bacillus,Rhodopseudomonas,and Saccharomyces.The four processes were carried out in a shake flask with no pH control,an aerobic bioreactor without mixing with no pH control,and a stirred-tank reactor (STR) with aeration with and without pH control,respectively.All experiments were started with an initial pH 8.0.The highest efficiency of biodegradation was achieved through the processes conducted in the STR,where betaine (an organic pollutant occurring in beet molasses in very large quantities) was completely degraded by the microorganisms.The process with no pH control carried out in the STR produced the highest reduction in the following pollution measures:organic matter expressed as chemical oxygen demand determined by the dichromatic method + theoretical COD of betaine (CODsum,85.5%),total organic carbon (TOC,78.8%) and five-day biological oxygen demand (BOD5,98.6%).The process conditions applied in the shake flask experiments,as well as those used in the aerobic bioreactor without mixing,failed to provide complete betaine assimilation.As a consequence,reduction in CODwum,TOC and BOD5 was approximately half that obtained with STR.

  10. [Effect of Aeration Strategies on Emissions of Nitrogenous Gases and Methane During Sludge Bio-Drying].

    Science.gov (United States)

    Qi, Lu; Wei, Yuan-song; Zhang, Jun-ya; Zhao, Chen-yang; Cai, Xing; Zhang, Yuan-li; Shao, Chun-yan; Li, Hong-mei

    2016-01-15

    The data on nitrogen gas (NH3, N2O, NO) emissions during sludge bio-drying process in China is scarce, especially NO due to its unstable chemical property. In this study, effect of two aeration modes on emissions of methane and nitrogenous gas was compared during the continuous aerated turning pile sludge bio-drying process at full scale. In these two aeration strategies, the one currently used in the plant was set as the control, and the other was set as the test in which the aeration was used for oxygen supply, pile temperature control, and moisture removal in the start-up, middle and final stages, respectively. The results showed that the aeration strategy used in the test could not only obviously accelerate the rate of sludge drying (the moisture contents of the test and the control were 36.6% and 42% on day 11) , but also had a better drying performance (the final moisture contents of the test and the control were 33.6% and 37.6%, respectively) and decreased the ammonia cumulative emission by 5%, (ammonia cumulative emission of the test and the control were 208 mg x m(-3) and 219.8 mg x m(-3), respectively). Though a lower accumulated emission (eCO2) of greenhouse gas in the test at 3.61 kg x t(-1) was observed than that of the control (3.73 kg x t(-1) dry weight) , the cumulative emission of NO in the test at 1.9 g x m(-2) was 15. 9% higher than that of the control (1.6 g x m(-2)). PMID:27078979

  11. [Effect of Aeration Strategies on Emissions of Nitrogenous Gases and Methane During Sludge Bio-Drying].

    Science.gov (United States)

    Qi, Lu; Wei, Yuan-song; Zhang, Jun-ya; Zhao, Chen-yang; Cai, Xing; Zhang, Yuan-li; Shao, Chun-yan; Li, Hong-mei

    2016-01-15

    The data on nitrogen gas (NH3, N2O, NO) emissions during sludge bio-drying process in China is scarce, especially NO due to its unstable chemical property. In this study, effect of two aeration modes on emissions of methane and nitrogenous gas was compared during the continuous aerated turning pile sludge bio-drying process at full scale. In these two aeration strategies, the one currently used in the plant was set as the control, and the other was set as the test in which the aeration was used for oxygen supply, pile temperature control, and moisture removal in the start-up, middle and final stages, respectively. The results showed that the aeration strategy used in the test could not only obviously accelerate the rate of sludge drying (the moisture contents of the test and the control were 36.6% and 42% on day 11) , but also had a better drying performance (the final moisture contents of the test and the control were 33.6% and 37.6%, respectively) and decreased the ammonia cumulative emission by 5%, (ammonia cumulative emission of the test and the control were 208 mg x m(-3) and 219.8 mg x m(-3), respectively). Though a lower accumulated emission (eCO2) of greenhouse gas in the test at 3.61 kg x t(-1) was observed than that of the control (3.73 kg x t(-1) dry weight) , the cumulative emission of NO in the test at 1.9 g x m(-2) was 15. 9% higher than that of the control (1.6 g x m(-2)).

  12. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration.

    Science.gov (United States)

    Chiu, Sheng-Yi; Kao, Chien-Ya; Tsai, Ming-Ta; Ong, Seow-Chin; Chen, Chiun-Hsun; Lin, Chih-Sheng

    2009-01-01

    In order to produce microalgal lipids that can be transformed to biodiesel fuel, effects of concentration of CO(2) aeration on the biomass production and lipid accumulation of Nannochloropsis oculata in a semicontinuous culture were investigated in this study. Lipid content of N. oculata cells at different growth phases was also explored. The results showed that the lipid accumulation from logarithmic phase to stationary phase of N. oculata NCTU-3 was significantly increased from 30.8% to 50.4%. In the microalgal cultures aerated with 2%, 5%, 10% and 15% CO(2), the maximal biomass and lipid productivity in the semicontinuous system were 0.480 and 0.142 g L(-1)d(-1) with 2% CO(2) aeration, respectively. Even the N. oculata NCTU-3 cultured in the semicontinuous system aerated with 15% CO(2), the biomass and lipid productivity could reach to 0.372 and 0.084 g L(-1)d(-1), respectively. In the comparison of productive efficiencies, the semicontinuous system was operated with two culture approaches over 12d. The biomass and lipid productivity of N. oculata NCTU-3 were 0.497 and 0.151 g L(-1)d(-1) in one-day replacement (half broth was replaced each day), and were 0.296 and 0.121 g L(-1)d(-1) in three-day replacement (three fifth broth was replaced every 3d), respectively. To optimize the condition for long-term biomass and lipid yield from N. oculata NCTU-3, this microalga was suggested to grow in the semicontinuous system aerated with 2% CO(2) and operated by one-day replacement.

  13. Spatiotemporal Aeration and Lung Injury Patterns Are Influenced by the First Inflation Strategy at Birth.

    Science.gov (United States)

    Tingay, David G; Rajapaksa, Anushi; Zonneveld, C Elroy; Black, Don; Perkins, Elizabeth J; Adler, Andy; Grychtol, Bartłomiej; Lavizzari, Anna; Frerichs, Inéz; Zahra, Valerie A; Davis, Peter G

    2016-02-01

    Ineffective aeration during the first inflations at birth creates regional aeration and ventilation defects, initiating injurious pathways. This study aimed to compare a sustained first inflation at birth or dynamic end-expiratory supported recruitment during tidal inflations against ventilation without intentional recruitment on gas exchange, lung mechanics, spatiotemporal regional aeration and tidal ventilation, and regional lung injury in preterm lambs. Lambs (127 ± 2 d gestation), instrumented at birth, were ventilated for 60 minutes from birth with either lung-protective positive pressure ventilation (control) or as per control after either an initial 30 seconds of 40 cm H2O sustained inflation (SI) or an initial stepwise end-expiratory pressure recruitment maneuver during tidal inflations (duration 180 s; open lung ventilation [OLV]). At study completion, molecular markers of lung injury were analyzed. The initial use of an OLV maneuver, but not SI, at birth resulted in improved lung compliance, oxygenation, end-expiratory lung volume, and reduced ventilatory needs compared with control, persisting throughout the study. These changes were due to more uniform inter- and intrasubject gravity-dependent spatiotemporal patterns of aeration (measured using electrical impedance tomography). Spatial distribution of tidal ventilation was more stable after either recruitment maneuver. All strategies caused regional lung injury patterns that mirrored associated regional volume states. Irrespective of strategy, spatiotemporal volume loss was consistently associated with up-regulation of early growth response-1 expression. Our results show that mechanical and molecular consequences of lung aeration at birth are not simply related to rapidity of fluid clearance; they are also related to spatiotemporal pressure-volume interactions within the lung during inflation and deflation.

  14. Combination of Methoprene and Controlled Aeration to Manage Insects in Stored Wheat.

    Science.gov (United States)

    Liu, Samuel S; Arthur, Frank H; VanGundy, Douglas; Phillips, Thomas W

    2016-06-17

    A commercial formulation of the insect growth regulator methoprene was applied to wheat stored in small bins either alone or in combination with controlled aeration of the bins, to lower grain temperature for insect pest management of stored wheat. Grain temperatures were monitored and modified by a computer-controlled thermocouple system that also activated the aeration system at programmed set-points to move cool ambient air through the grain mass to lower grain temperature. Results from sampling insect populations in experimental storage bins along with laboratory mortality bioassays of insects placed on wheat taken from the bins over the course of the storage period showed that methoprene was very effective in controlling infestation by the externally-feeding stored grain insects Plodia interpunctella (Hübner), the Indian meal moth Tribolium castaneum (Herbst), the red flour beetle, Cryptolestes ferrugineus (Stephens), the rusty grain beetle, and also for the internal-feeding pest Rhyzopertha dominica( Fauvel), the lesser grain borer. Methoprene did not give good control of the internal-feeding pest Sitophilus oryzae (L.), the rice weevil. Aeration alone was somewhat effective in suppressing insect population development, while methoprene alone or when combined with aeration greatly enhanced insect control. Commercial grain grading for industry quality standards at the end of the storage period confirmed the impact of insect suppression on maintaining high quality of the stored wheat. This field experiment shows that methoprene combined with aeration to cool grain can be effective for pest management of stored wheat in the southern plains of the United States of America.

  15. Combination of Methoprene and Controlled Aeration to Manage Insects in Stored Wheat

    Directory of Open Access Journals (Sweden)

    Samuel S. Liu

    2016-06-01

    Full Text Available A commercial formulation of the insect growth regulator methoprene was applied to wheat stored in small bins either alone or in combination with controlled aeration of the bins, to lower grain temperature for insect pest management of stored wheat. Grain temperatures were monitored and modified by a computer-controlled thermocouple system that also activated the aeration system at programmed set-points to move cool ambient air through the grain mass to lower grain temperature. Results from sampling insect populations in experimental storage bins along with laboratory mortality bioassays of insects placed on wheat taken from the bins over the course of the storage period showed that methoprene was very effective in controlling infestation by the externally-feeding stored grain insects Plodia interpunctella (Hübner, the Indian meal moth Tribolium castaneum (Herbst, the red flour beetle, Cryptolestes ferrugineus (Stephens, the rusty grain beetle, and also for the internal-feeding pest Rhyzopertha dominica( Fauvel, the lesser grain borer. Methoprene did not give good control of the internal-feeding pest Sitophilus oryzae (L., the rice weevil. Aeration alone was somewhat effective in suppressing insect population development, while methoprene alone or when combined with aeration greatly enhanced insect control. Commercial grain grading for industry quality standards at the end of the storage period confirmed the impact of insect suppression on maintaining high quality of the stored wheat. This field experiment shows that methoprene combined with aeration to cool grain can be effective for pest management of stored wheat in the southern plains of the United States of America.

  16. Numerical and experimental investigation of the self-inducing turbine aeration capacity

    International Nuclear Information System (INIS)

    Highlights: • Numerical and experimental study of kLa coefficient of a self-inducing turbine. • Validation of experimental results. • Numerical study of kLa variation with the variation of impeller submersion and blade inclination. • Numerical study of the flow field and hydrodynamic parameters. - Abstract: Self-inducing turbines are a model of mixers that ensure the aeration of a fluid field without using a sparger and a surface aerator. Nevertheless, this type of turbines remain quite complicated in terms of behavior of the fluid within the tank, and its actual aeration capacity varies depending on the type of turbine used. The studied turbine is self-inducing and made of three blades and each blade contains five holes. In this work, we evaluated experimentally – using the technique of dynamic oxygenation and deoxygenating – the aeration capacity of our impeller by calculating the volumetric mass transfer coefficient kLa for various submergences and various inclination angles of the blade. This work was then validated by a numerical modeling using the commercial code Fluent, and the flow within the tank as well as the evolution of the hydrodynamic parameters was also studied. The simulation is steady state with a VOF multiphase model and the realizable k–ε turbulence model. We finally concluded that kLa decreases with the increase of the inclination angle and with the increase of the submergence of our turbine. We could also study the hydrodynamic parameters of the flow such as the power number, the aeration number and the shear rate

  17. Simultaneous nitrification and denitrification in step feeding biological nitrogen removal process

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates.Biological occurrence of simultaneous nitrification and denitrifieation was verified in the aspect of nitrogen mass balance and alkalinity.The experimental results also showed that there was a distinct linear relationship between simultaneous nitrification and denitrification and DO concentration under the conditions of low and high aeration flow rate.In each experimental run the floe sizes of activated sludge were also measured and the results showed that simultaneous nitrification and denitrification could occur with very small size of floc.

  18. 曝气生物滤池技术%Elementary Introduction on the Techniques of Aeration Bio-filter Tank

    Institute of Scientific and Technical Information of China (English)

    李菲; 卢佳

    2006-01-01

    介绍了曝气生物滤池的原理及特点,并对曝气生物滤池的主要形式进行了总结和描述.从去除有机物、SS、硝化、反硝化等方面阐述了曝气生物滤池的主要功能,并就曝气生物滤池的设计和运行提出了作者的观点.

  19. HEPA filter monitoring program

    Science.gov (United States)

    Kirchner, K. N.; Johnson, C. M.; Aiken, W. F.; Lucerna, J. J.; Barnett, R. L.; Jensen, R. T.

    1986-07-01

    The testing and replacement of HEPA filters, widely used in the nuclear industry to purify process air, are costly and labor-intensive. Current methods of testing filter performance, such as differential pressure measurement and scanning air monitoring, allow determination of overall filter performance but preclude detection of incipient filter failure such as small holes in the filters. Using current technology, a continual in-situ monitoring system was designed which provides three major improvements over current methods of filter testing and replacement. The improvements include: cost savings by reducing the number of intact filters which are currently being replaced unnecessarily; more accurate and quantitative measurement of filter performance; and reduced personnel exposure to a radioactive environment by automatically performing most testing operations.

  20. Novel Backup Filter Device for Candle Filters

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, B.; Goldsmith, R.; Dunham, G.; Henderson, A.

    2002-09-18

    The currently preferred means of particulate removal from process or combustion gas generated by advanced coal-based power production processes is filtration with candle filters. However, candle filters have not shown the requisite reliability to be commercially viable for hot gas clean up for either integrated gasifier combined cycle (IGCC) or pressurized fluid bed combustion (PFBC) processes. Even a single candle failure can lead to unacceptable ash breakthrough, which can result in (a) damage to highly sensitive and expensive downstream equipment, (b) unacceptably low system on-stream factor, and (c) unplanned outages. The U.S. Department of Energy (DOE) has recognized the need to have fail-safe devices installed within or downstream from candle filters. In addition to CeraMem, DOE has contracted with Siemens-Westinghouse, the Energy & Environmental Research Center (EERC) at the University of North Dakota, and the Southern Research Institute (SRI) to develop novel fail-safe devices. Siemens-Westinghouse is evaluating honeycomb-based filter devices on the clean-side of the candle filter that can operate up to 870 C. The EERC is developing a highly porous ceramic disk with a sticky yet temperature-stable coating that will trap dust in the event of filter failure. SRI is developing the Full-Flow Mechanical Safeguard Device that provides a positive seal for the candle filter. Operation of the SRI device is triggered by the higher-than-normal gas flow from a broken candle. The CeraMem approach is similar to that of Siemens-Westinghouse and involves the development of honeycomb-based filters that operate on the clean-side of a candle filter. The overall objective of this project is to fabricate and test silicon carbide-based honeycomb failsafe filters for protection of downstream equipment in advanced coal conversion processes. The fail-safe filter, installed directly downstream of a candle filter, should have the capability for stopping essentially all particulate

  1. MST Filterability Tests

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Duignan, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-12

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). The low filter flux through the ARP has limited the rate at which radioactive liquid waste can be treated. Recent filter flux has averaged approximately 5 gallons per minute (gpm). Salt Batch 6 has had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. In addition, at the time the testing started, SRR was assessing the impact of replacing the 0.1 micron filter with a 0.5 micron filter. This report describes testing of MST filterability to investigate the impact of filter pore size and MST particle size on filter flux and testing of filter enhancers to attempt to increase filter flux. The authors constructed a laboratory-scale crossflow filter apparatus with two crossflow filters operating in parallel. One filter was a 0.1 micron Mott sintered SS filter and the other was a 0.5 micron Mott sintered SS filter. The authors also constructed a dead-end filtration apparatus to conduct screening tests with potential filter aids and body feeds, referred to as filter enhancers. The original baseline for ARP was 5.6 M sodium salt solution with a free hydroxide concentration of approximately 1.7 M.3 ARP has been operating with a sodium concentration of approximately 6.4 M and a free hydroxide concentration of approximately 2.5 M. SRNL conducted tests varying the concentration of sodium and free hydroxide to determine whether those changes had a significant effect on filter flux. The feed slurries for the MST filterability tests were composed of simple salts (NaOH, NaNO2, and NaNO3) and MST (0.2 – 4.8 g/L). The feed slurry for the filter enhancer tests contained simulated salt batch 6 supernate, MST, and filter enhancers.

  2. Intensified organics and nitrogen removal in the intermittent-aerated constructed wetland using a novel sludge-ceramsite as substrate.

    Science.gov (United States)

    Wu, Haiming; Fan, Jinlin; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Liang, Shuang; Lv, Jialong; Lu, Shaoyong; Wu, Weizhong; Wu, Suqing

    2016-06-01

    In this study, a novel sludge-ceramsite was applied as main substrate in intermittent-aerated subsurface flow constructed wetlands (SSF CWs) for treating decentralized domestic wastewater, and intensified organics and nitrogen removal in different SSF CWs (with and without intermittent aeration, with and without sludge-ceramsite substrate) were evaluated. High removal of 97.2% COD, 98.9% NH4(+)-N and 85.8% TN were obtained simultaneously in the intermittent-aerated CW system using sludge-ceramsite substrate compared with non-aerated CWs. Moreover, results from fluorescence in situ hybridization (FISH) analysis revealed that the growth of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the intermittent-aerated CW system with sludge-ceramsite substrate was enhanced, thus indicating that the application of intermittent aeration and sludge-ceramsite plays an important role in nitrogen transformations. These results suggest that a combination of intermittent aeration and sludge-ceramsite substrate is reliable to enhance the treatment performance in SSF CWs.

  3. Intensified organics and nitrogen removal in the intermittent-aerated constructed wetland using a novel sludge-ceramsite as substrate.

    Science.gov (United States)

    Wu, Haiming; Fan, Jinlin; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Liang, Shuang; Lv, Jialong; Lu, Shaoyong; Wu, Weizhong; Wu, Suqing

    2016-06-01

    In this study, a novel sludge-ceramsite was applied as main substrate in intermittent-aerated subsurface flow constructed wetlands (SSF CWs) for treating decentralized domestic wastewater, and intensified organics and nitrogen removal in different SSF CWs (with and without intermittent aeration, with and without sludge-ceramsite substrate) were evaluated. High removal of 97.2% COD, 98.9% NH4(+)-N and 85.8% TN were obtained simultaneously in the intermittent-aerated CW system using sludge-ceramsite substrate compared with non-aerated CWs. Moreover, results from fluorescence in situ hybridization (FISH) analysis revealed that the growth of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the intermittent-aerated CW system with sludge-ceramsite substrate was enhanced, thus indicating that the application of intermittent aeration and sludge-ceramsite plays an important role in nitrogen transformations. These results suggest that a combination of intermittent aeration and sludge-ceramsite substrate is reliable to enhance the treatment performance in SSF CWs. PMID:26832393

  4. Hydraulic characteristics of converse curvature section and aerator in high-head and large discharge spillway tunnel

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The hydraulic characteristics and cavitation erosion near the converse curvature section in the high-head and large discharge spillway tunnel have been important issues of concern to the hydropower project.In this paper,the evolutions of hydraulic elements such as pressure,flow velocity,wall shear stress,etc.in the converse curvature section are analyzed and the impacts of bottom aerator on hydraulic characteristics are discussed,with the commercial software FLUENT6.3 as a platform and combining the k-model and VOF method.The flow pattern in the converse curvature section of spillway tunnel is given by the three-dimensional numerical simulation.It indicates that the pressure changes rapidly with great pressure gradient from the beginning to the end of the curve.It also shows that the shear stress on side wall just downstream the end of the converse curvature curve is still increasing;the aeration cavity formed downstream the bottom aerator may cause the side wall pressure decreased to worsen the cavitation characteristics near the side wall.By means of the physical model experiment,the three-dimensional aerator composed of side wall baffling aerator and bottom aerator is studied,the baffling aerator suitable for the water flow conditions with water depth of 6.0 to 8.0 m and flow velocity of 35 to 50 m/s is proposed.

  5. Influence of aeration modes on leachate characteristic of landfills that adopt the aerobic-anaerobic landfill method.

    Science.gov (United States)

    Wu, Chuanfu; Shimaoka, Takayuki; Nakayama, Hirofumi; Komiya, Teppei; Chai, Xiaoli; Hao, Yongxia

    2014-01-01

    As far as the optimal design, operation, and field application of the Aerobic-Anaerobic Landfill Method (AALM) are concerned, it is very important to understand how aeration modes (different combinations of aeration depth and air injection rate) affect the biodegradation of organic carbon and the transformation of nitrogen in landfill solid waste. Pilot-scale lysimeter experiments were carried out under different aeration modes to obtain detailed information regarding the influence of aeration modes on leachate characteristics. Results from these lysimeter experiments revealed that aeration at the bottom layer was the most effective for decomposition of organic carbon when compared with aeration at the surface or middle layers. Moreover, the air injection rate led to different nitrogen transformation patterns, unlike the lesser influence it has on organic carbon decomposition. Effective simultaneous nitrification and denitrification were observed for the aeration mode with a higher air injection rate (=1.0 L/min). On the other hand, the phenomenon of sequenced nitrification and denitrification could be observed when a low air injection rate (=0.5L/min.) was employed. Finally, it is concluded that, for AALM, air injection with a higher air injection rate at the deepest layer near the leachate collection pipe tends to accelerate the stabilization of landfill waste as defined in terms of the enhancement of denitrification as well as organic carbon decomposition.

  6. Removal of organic pollutants from oak leachate in pilot scale wetland systems: How efficient are aeration and vegetation treatments?

    Science.gov (United States)

    Svensson, Henric; Ekstam, Börje; Marques, Marcia; Hogland, William

    2015-11-01

    This study investigated the effects of aeration and/or vegetation in experimental constructed wetlands (CWs) as mesocosms on the removal of pollutants in oak wood leachate. Twelve outdoor wetland mesocosms, with randomized replicated treatment combinations of vegetation (Phragmites australis) and aeration was monitored during the second and third year after construction. The investigation included control tanks with no aeration and no vegetation. The parameters monitored were polyphenols (PPs), chemical oxygen demand (COD) and water colour. The reduction of COD after 28 days was approx. 50% and more than 50% of PPs, whereas only 40% of the water colour was removed. Aeration increased the effect of both COD and PP removal. The vegetation treatment had a small but significant effect on removal of COD. The vegetation + aeration treatment, as well as aeration alone, increased the removal efficiency of COD from 9.5 g m(-3) d(-1) in the control to 11 g m(-3) d(-1). The results suggest that CWs can be used to treat stormwater contaminated by oak wood leachate. Further, it is suggested that the main processes for removal of pollutants in the leachate occur in the open-water habitat and that the hydraulic retention time is more important for removal than aeration and vegetation related processes.

  7. Oriented Fiber Filter Media

    OpenAIRE

    Bharadwaj, R; A. Patel, S. Chokdeepanich, Ph.D.; G.G. Chase, Ph.D.

    2008-01-01

    Coalescing filters are widely used throughout industry and improved performance will reduce droplet emissions and operating costs. Experimental observations show orientation of micro fibers in filter media effect the permeability and the separation efficiency of the filter media. In this work two methods are used to align the fibers to alter the filter structure. The results show that axially aligned fiber media improve quality factor on the order of 20% and cutting media on an angle from a t...

  8. Introduction to Kalman Filtering

    OpenAIRE

    Alazard, Daniel

    2005-01-01

    This document is an introduction to Kalman optimal Filtering applied to linear systems. It is assumed that the reader is already aware of linear servo-loop theory, frequency-domain Filtering (continuous and discrete-time) and state-space approach to represent linear systems. Generally, Filtering consists in estimating a useful information (signal) from a measurement (of this information) perturbed by a noise. Frequency-domain Filtering assumes that a frequency-domain separation exists between...

  9. 高铁高锰微污染地下水的生物同层净化研究%Biological Removal of High-concentration Fe and Mn from Micro-polluted Groundwater Using a Single Filter

    Institute of Scientific and Technical Information of China (English)

    张建林; 李相昆; 曾辉平; 佟伟云; 张杰

    2011-01-01

    向经过曝气的高铁高锰深井地下水中加入生活污水以模拟微污染地下水,并考察了生物除铁除锰滤池对其的净化效果.滤柱高为2.7m,内径为60 mm,内装填除铁除锰能力已经成熟的锰砂,设计滤速为6 m/h.研究了去除有机物滤层的培养过程及在不同滤速下对各污染物的去除规律,结果表明:生物滤柱对微污染地下水具有良好的净化效果,其中,Fe的高效去除区间在滤层上部,Mn和有机物可以实现同层去除,高效去除区间在滤层中下部;当进水有机物浓度较高时,沿程的溶解氧浓度会逐渐降低,导致对CODMn和Mn的去除效果变差,此时应考虑在滤层中部或底部增加曝气来提高溶解氧.%Domestic sewage was added into aerated groundwater with high concentration of Fe and Mn to simulate micro-polluted groundwater, and the removal efficiency of pollutants was investigated in a biofilter column with height of 2. 7 m, internal diameter of 60 mm and filtration velocity of 6 m/h and filled with mature manganese sand. Organism cultivation process and the removal rule of pollutants under different filtration rates were studied. The results indicate that the biofilter column has a good purification efficiency of micro-polluted groundwater. Fe is removed in the upper part of the biofilter column effectively , Mn and organics are both removed in the middle and lower parts effectively. DO concentration is reduced when the influent organic concentration is higher. As a result, the removal efficiencies of CODMN and Mn become poor. In this situation, aeration should be added in the middle or lower parts to improve ' DO.

  10. Filtering in Finance.

    OpenAIRE

    Lautier, Delphine; Javaheri, Alireza; Galli, Alain

    2003-01-01

    In this article we present an introduction to various Filtering algorithms and some of their applications to the world of Quantitative Finance. We shall first mention the fundamental case of Gaussian noises where we obtain the well-known Kalman Filter. Because of common nonlinearities, we will be discussing the Extended Kalman Filter.

  11. Filter service system

    Science.gov (United States)

    Sellers, Cheryl L.; Nordyke, Daniel S.; Crandell, Richard A.; Tomlins, Gregory; Fei, Dong; Panov, Alexander; Lane, William H.; Habeger, Craig F.

    2008-12-09

    According to an exemplary embodiment of the present disclosure, a system for removing matter from a filtering device includes a gas pressurization assembly. An element of the assembly is removably attachable to a first orifice of the filtering device. The system also includes a vacuum source fluidly connected to a second orifice of the filtering device.

  12. HEPA filter encapsulation

    Science.gov (United States)

    Gates-Anderson, Dianne D.; Kidd, Scott D.; Bowers, John S.; Attebery, Ronald W.

    2003-01-01

    A low viscosity resin is delivered into a spent HEPA filter or other waste. The resin is introduced into the filter or other waste using a vacuum to assist in the mass transfer of the resin through the filter media or other waste.

  13. Oxygen demand for the stabilization of the organic fraction of municipal solid waste in passively aerated bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Kasinski, Slawomir, E-mail: slawomir.kasinski@uwm.edu.pl; Wojnowska-Baryla, Irena

    2014-02-15

    Highlights: • The use of an passively aerated reactor enables effective stabilization of OFMSW. • Convective air flow does not inhibit the aerobic stabilization of waste. • The use of an passively aerated reactor reduces the heat loss due to convection. • The volume of supplied air exceeds 1.7–2.88 times the microorganisms demand. - Abstract: Conventional aerobic waste treatment technologies require the use of aeration devices that actively transport air through the stabilized waste mass, which greatly increases operating costs. In addition, improperly operated active aeration systems, may have the adverse effect of cooling the stabilized biomass. Because active aeration can be a limiting factor for the stabilization process, passive aeration can be equally effective and less expensive. Unfortunately, there are few reports documenting the use of passive aeration systems in municipal waste stabilization. There have been doubts raised as to whether a passive aeration system provides enough oxygen to the organic matter mineralization processes. In this paper, the effectiveness of aeration during aerobic stabilization of four different organic fractions of municipal waste in a reactor with an integrated passive ventilation system and leachate recirculation was analyzed. For the study, four fractions separated by a rotary screen were chosen. Despite the high temperatures in the reactor, the air flow rate was below 0.016 m{sup 3}/h. Using Darcy’s equation, theoretical values of the air flow rate were estimated, depending on the intensity of microbial metabolism and the amount of oxygen required for the oxidation of organic compounds. Calculations showed that the volume of supplied air exceeded the microorganisms demand for oxidation and endogenous activity by 1.7–2.88-fold.

  14. Structure formation of aerated concrete containing waste coal combustion products generated in the thermal vortex power units

    Science.gov (United States)

    Ivanov, A. I.; Stolboushkin, A. Yu; Temlyanstev, M. V.; Syromyasov, V. A.; Fomina, O. A.

    2016-10-01

    The results of fly ash research, generated in the process of waste coal combustion in the thermal vortex power units and used as an aggregate in aerated concrete, are provided. It is established that fly ash can be used in the production of cement or concrete with low loss on ignition (LOI). The permitted value of LOI in fly ash, affecting the structure formation and operational properties of aerated concrete, are defined. During non-autoclaved hardening of aerated concrete with fly ash aggregate and LOI not higher than 2%, the formation of acicular crystals of ettringite, reinforcing interporous partitions, takes place.

  15. Production and mitigation of N2O in sequentially membrane-aerated redox-stratified nitritation/anammox biofilms

    DEFF Research Database (Denmark)

    Smets, Barth F.; Pellicer i Nàcher, Carles; Thamdrup, Bo;

    ) sections of the biofilm. We have successfully operated such membrane –aerated redox-stratifed biofilm reactors performing completely autotrophic N removal and have monitored N2O dynamics. Successful community control required periodic aeration. N2O emissions were detected, but only in the inner cores...... of the fiber bundles, and only transiently, upon initiation or cessation of aeration. Bulk phase N2O concentrations were significantly lower than expected based on transient evolution rates, suggesting a removal mechanism. Emitted N2O fluxes represented less than 0.02 % of the converted ammonium N. Anoxic...

  16. Effect of Treating Wastewater from Intensive Fish Ponds by Biological Filter%生物滤料净化精养池塘废水的效果研究

    Institute of Scientific and Technical Information of China (English)

    王璐; 刘玥姗; 傅啊慧; 陈睿; 敬小军

    2013-01-01

    [Objective]To study the effect of bio-filer to treat wastewater. [ Method] The bio-filter was hung in the aquarium close to windows for treatment of wastewater from in intensive fish pond. Four test groups were designed in the experiment; controlled group (no bio-filter) , No. 1 group (5 bundles of bio-filter) , No. 2 group (10 bundles of bio-filter) and No. 3 group (15 bundles of bio-filter) , the purificating effect of bio-filter on water quality and optimal configuration were studued. [Result] The bio-filter was effective on the removal of total nitrogen and nitrite nitrogen, and on improving DO. Through analysis of water quality parameters, No. 2 group showed the best effect on water purification. [ Conclusion] Bio-filter was effective on wastewater treatment of intensive fish pond. The optimal density of bio-filter in the indoor experiment for water purification was 0.07 bundles /L (water).%[目的]研究生物刷净化废水的效果.[方法]通过在临窗水族箱内吊挂生物刷的方法来净化精养池塘的废水.设置了对照组(无生物刷)、试验组①(5串生物刷)、试验组②(10串生物刷)和试验组③(15串生物刷),研究生物刷对水质的改善作用和最优的配置密度.[结果]生物刷对TN、NO2均有一定的去除效果,对DO的升高也有一定的作用;在此试验条件下,试验组②生物滤料净化精养池水的综合效果最佳.[结论]生物刷对精养池塘废水具有良好的净化效果,在此试验条件下,净化废水所需的最优密度配置为0.07串/L.

  17. Bias aware Kalman filters

    DEFF Research Database (Denmark)

    Drecourt, J.-P.; Madsen, H.; Rosbjerg, Dan

    2006-01-01

    This paper reviews two different approaches that have been proposed to tackle the problems of model bias with the Kalman filter: the use of a colored noise model and the implementation of a separate bias filter. Both filters are implemented with and without feedback of the bias into the model state...... are illustrated on a simple one-dimensional groundwater problem. The results show that the presented filters outperform the standard Kalman filter and that the implementations with bias feedback work in more general conditions than the implementations without feedback. 2005 Elsevier Ltd. All rights reserved....

  18. Ceramic fiber filter technology

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, B.L.; Janney, M.A.

    1996-06-01

    Fibrous filters have been used for centuries to protect individuals from dust, disease, smoke, and other gases or particulates. In the 1970s and 1980s ceramic filters were developed for filtration of hot exhaust gases from diesel engines. Tubular, or candle, filters have been made to remove particles from gases in pressurized fluidized-bed combustion and gasification-combined-cycle power plants. Very efficient filtration is necessary in power plants to protect the turbine blades. The limited lifespan of ceramic candle filters has been a major obstacle in their development. The present work is focused on forming fibrous ceramic filters using a papermaking technique. These filters are highly porous and therefore very lightweight. The papermaking process consists of filtering a slurry of ceramic fibers through a steel screen to form paper. Papermaking and the selection of materials will be discussed, as well as preliminary results describing the geometry of papers and relative strengths.

  19. Changing ventilation filters

    International Nuclear Information System (INIS)

    A filter changing unit has a door which interlocks with the door of a filter chamber so as to prevent contamination of the outer surfaces of the doors by radioactive material collected on the filter element and a movable support which enables a filter chamber thereonto to be stored within the unit in such a way that the doors of the unit and the filter chamber can be replaced. The door pivots and interlocks with another door by means of a bolt, a seal around the periphery lip of the first door engages the periphery of the second door to seal the gap. A support pivots into a lower filter element storage position. Inspection windows and glove ports are provided. The unit is releasably connected to the filter chamber by bolts engaging in a flange provided around an opening. (author)

  20. Compact planar microwave blocking filters

    Science.gov (United States)

    U-Yen, Kongpop (Inventor); Wollack, Edward J. (Inventor)

    2012-01-01

    A compact planar microwave blocking filter includes a dielectric substrate and a plurality of filter unit elements disposed on the substrate. The filter unit elements are interconnected in a symmetrical series cascade with filter unit elements being organized in the series based on physical size. In the filter, a first filter unit element of the plurality of filter unit elements includes a low impedance open-ended line configured to reduce the shunt capacitance of the filter.